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CHAPTER I

INTRODUCTION

The convergence of microelectronics and wireless communication leads

to the emergence of wireless networks of sensor devices, which are capable

of sensing, data processing and communication. Video sensor networks are

equipped with video cameras as front end and are capable of providing video

surveillance in many application scenarios, such as remote health care and

traffic control. Many challenges arises in the design of video sensor network

due to the conflict between its QoS requirement and the limited resource

availability.

In this thesis, we consider two critical issues for video sensor network, (1)

timely delivery of captured video stream and (2) energy-efficient network de-

sign. The first goal, driven by the application needs, e.g., video surveillance,

targets to deliver the data acquired at a sensor node to the collection point

in a timely fashion, or more strictly, within bounded delay. The second goal,

driven by the resource scarcity of wireless nodes running on finite battery

power, targets to maximize the network lifetime by carefully orchestrating

the energy consumption of each node to the minimum degree and equitable

manner.

Existing research on wireless (video) sensor networks usually considers

one of the three interdependent aspects: delay [11, 19], bandwidth [10, 22, 1]
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Figure I.1: A Example explaining the correlation between application seman-
tics and system resource condition.

and lifetime [6, 9, 8, 12, 23, 5]. Some works consider the tradeoff between

two factors [17, 3, 13]. However, no theoretical framework exists in the

existing literature that provides an analytical study of the tradeoff between

bandwidth and delay requirement and energy consumption, especially under

bursty traffic and power management.

Fig. I.1 illustrates a simple scenario to demonstrate the challenge. Among

the three nodes shown in the picture, A and B are two video sensor nodes

which can both directly connect to the data sink C. The achievable bandwidth

of the shared wireless medium is 1Mbps. Different solutions can be examined

to explore the tradeoff between packet delay and power consumption. En-

forcing power awareness in scheduling management, A and B alternatively

transmit. When A is sleeping, B takes the entire 1Mbps bandwidth, and

vice versa. Depending on the time quantum that A and B switch, large time

quantum will reduce the switching overhead and save power accordingly at

the cost of longer packet delay, while small time quantum will achieve the

opposite. In the extreme case, with no power management, each node will
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always keep up and get itself 500Kbps bandwidth through contention, hence

achieves the minimum packet delay.

Evidently, the goals of reducing packet delay and achieving energy effi-

ciency are far from orthogonal, and actually contradictory from each other.

This goal becomes even more challenging if we consider the bursty and non-

uniform traffic in the video sensor networks. As such, we call for a unified

framework that is able to quantitatively weigh the tradeoff of these two fac-

tors. Moreover, it should answer to the system objective (e.g., the packet

delay bound) by setting the design parameter (e.g., maximum time quantum

to meet the specified delay bound).

In light of such need, we propose an analytical framework to evaluate

the tradeoff among video transmission requirements, buffer, delay and power

consumption. Based on the previous results in network calculus [2], we in-

vestigate the service curve, buffer and delay bounds for both single-hop and

multi-hop wireless network under power management. Such analytical re-

sults are important to guide the design of power management schedules that

could minimize the energy consumption while providing bounded delay guar-

antee. Although considerably deriving from the previous results in min-plus

network calculus, our work is justified by the following unique contributions:

(1) This work is the first one that considers the effect of power management

on the service curve and provides close-form analytical results for buffer and

delay bounds; (2) This work extends the network calculus analysis to the

domain of wireless network where flows not only contend in the temporal
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domain but also spatial domain, and provides the basis of interference-aware

delay analysis for wireless networks. The rest of this thesis is organized as

follows. We present the system model in Chapter II, the analysis of delay

bound for single-hop wireless network in Chapter III and multi-hop network

in Chapter IV. We evaluate our analysis in an experiment-based study in

Chapter V, and conclude the thesis in Chapter VII.
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CHAPTER II

MODEL

Compression
Network

 Adapter

Arrival

Flow  A(t)

Departure

Flow  R(t)

Camera Buffer

Ci

Figure II.1: Video Sensor Model.

System Model

We consider a wireless sensor network with a set of N video sensors.

Fig. II.1 illustrate the architecture of one sensor node. As shown in the

figure, a video camera is used as the sensor front. Motion of objects in

observed area will be captured as video images and compressed into a video

stream. The compressed data abstract the difference between every adjacent

raw video frames, recorded motion in raw data flow with more ‘severe’ object

movement, in terms of more pixel difference, will cause larger amount of

compressed data flow. The compressed video stream will be sent to a buffer

for transmission.

In the following discussions, we call such compressed video stream arrival

flow. In order to save energy, power management is adopted for the network
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adaptor, which periodically turns the adaptor into sleep. When awake, the

network adaptor retrieves video packets from the buffer and transmit them

in a FIFO fashion. The data stream transmitted from the network adaptor

is called departure flow.

The video stream will be delivered from the video sensors to a data sink.

In this thesis, we consider both single-hop networks and multi-hop networks.

For simplicity, we consider the achievable network capacity as C.

t

α(t)

A(t)

0

Flow /bit

t

β(t)

D(t)

0

Flow /bit

t

A(t)

Backlog

Latency

D(t)

0

Flow /bit

Figure II.2: Traffic Model.

Traffic Model
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The occurrence of interested events in the surveillance area are random

and bursty. which produces fluctuated traffic from arrival flows. To charac-

terize such fluctuation, we model the arrival flow at node i, i ∈ N using its

cumulative traffic Ai(t), defined as the number of bits coming from the flow

in time interval [0, t] (Ai(0) = 0), and |N | = N . For a focused discussion

on the impact of power management on delay, we adopt a fluid model for

the arrival flows. Thus Ai(t) is a continuous increasing function defined on

continuous time domain. Further, we assume that the arrival flow traffic Ai

is constrained by a wide-sense increasing function αi, i.e.,

Ai(t)− Ai(s) ≤ αi(t− s);∀s ≤ t, t ≥ 0 (II.1)

αi(t) is called the arrival curve of Ai(t). In this thesis, we assume affine

arrival curves for all video sensors, which is defined by αi(t) = ai · t + bi.

Having a affine arrival curve αi(t) allows a source to send bi bits at once,

but not more than ai bps over the long run, which means with a maximum

flow rate of ai. Fig. II.2 illustrates the relationship between the cumulative

function A(t) and the arrival curve α(t). Intuitively, for a randomly selected

time period, the cumulative arrival function A(t) always stays below the

linear function defined by αi(t) = ai · t + bi within that time period.

Similarly, the departure flow from node i could also be characterized by

a cumulative function Di(t), which is defined as the traffic volume departed
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from node i during time [0, t]. We further define service curve βi(t) of sensor

node i as a wide-sense increasing function, with β(0) = 0 and

Di(t) ≥ inf
s≤t

(Ai(s) + βi(t− s)) (II.2)

In network calculus [2], the arrival flow is denoted by R(t) and the departure

flow is denoted by R∗(t).

When βi(t) is a continuous function, the use of infimum could be avoided.

For continuous function Ai(t) the above definition could be simplified as

follows.

Di(t)− Ai(s) ≥ βi(t− s) (II.3)

The relation between arrival flow A(t), departure flow D(t), arrival curve

α(t), and departure curve β(t) are illustrated in Fig. II.2. For arrival flow

A(t), arrival curve α(t) serves as a piecewise upper bound for arrival flow

rate; For departure flow D(t), departure curve β(t) serves as piecewise lower

bound for service rate. Therefore, the vertical deviation between arrival flow

A(t) and departure flow D(t) is the amount of backlogged flow data waiting

to be transmitted, which should not exceed the buffer length of that sensor

node. The horizontal deviation between arrival flow A(t) and departure flow

D(t) is the latency that would be experienced by a bit of video flow, if all the

data arrived before it is served before it. Intuitively, the buffer length, and
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delay are bounded by their corresponding deviation between arrival curve

α(t) and departure curve β(t).

Energy Model

In such a system, if assume Time division multiplex power management

in single-hop scenario, the energy consumption will be contributed by three

factors: data transmission, node sleeping, and slot switching. Denote the

energy consumption rate of the three stages as Etx, Esleep, and Eswitch, we

have the Unit Energy Consumption,

Eunit = (
1

N
)Etx + (

N − 1

N
)Esleep + (

1

T
)Eswitch (II.4)

Here unit refers to the energy consumption of each node during one time

period T . For example, suppose N nodes communicate with data sink in

Time division multiplex fashion. Each node has a share of time Ti, and a

whole round takes time T . For node i, during its transmission time slot,

energy will be consumed with rate Etx, and with rate Esleep for the rest of

the period T . For round-robin, each node will have 1
N

share of the period,

transmitting, and 1− 1
N

share of the period, sleep. Between the state change

of transmission and sleep, energy consumption rate will be Eswitch. The

switching happens once every period for each node.
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CHAPTER III

ANALYSIS FOR SINGLE-HOP WIRELESS NETWORK

We start with the simplest case of video sensor network – single-hop

wireless network.

Figure III.1: Single-Hop Scenario.

In this case all sensor nodes could communicate with the data sink di-

rectly. These nodes are sharing the wireless channel capacity together. We

assume that the power management are in a time-division fashion with pe-

riod T . Each node i will wakes up during time slot Ti and transmit. All

the other nodes will remain asleep until its turn to transmit. The above

TDM scheduling serve as a power management scheme can as well reduce

the wireless contention.
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Now we proceed to analyze the delay experienced by the data flow from

node i. First we study the service curve βi(t) of node i under the above

power management scheme. Recall that C is the achievable capacity of the

wireless network. Since only one node wakes up and transmit at a time, node

i is able to transmit at rate C during its wake-up period, which leads to an

average transmission rate of C·Ti

T
. Also node i will wait at most T − Ti for

its next turn. Thus we have the following results for service curve at node

i. All the proofs in this thesis are provided in our technical report [4] due to

the space constraint.

Lemma 1 (Service Bound in Single-Hop Network) The service curve

βi for node i under time-division round-robin power management with wake-

up time Ti out of period T is given by the following rate-latency function with

rate C·Ti

T
and latency T − Ti.

βi(τ) =
C · Ti

T
[τ − (T − Ti)]

+ (III.1)

At time t, the amount of data await in the buffer of node i is called

backlog Bi, which can be considered as the difference between the cumulative

function of arrival flow and departure flow Ai(t) − Di(t). Recall that the

cumulative function of the arrival flow Ai(t) is α − smooth, with α as its

arrival curve. Then the backlog at time t satisfies
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Lemma 2 (Buffer Bound in Single-Hop Network)

Bi ≤ sup
s≥0
{α(s)− β(s)} (III.2)

Such a backlog introduces a delay for the data stream. Formally we define

virtual delay at time t as

d(t) = inf
τ≥0
{A(t) ≤ D(t + τ)} (III.3)

which is the delay that would be experienced by a bit arriving at t if all bits

are received before it are served before it.

Now we describe the latency at time t with the virtual delay d(t).

Theorem 3 (Delay Bound for Single-hop Network) In a single-hop wire-

less sensor network under time-division round-robin power management, the

delay for flow

d(t) = inf{τ ≥ 0 : A(t) ≤ D(t + τ)}

The definition of d(t) is the delay that would be experienced by a bit

arriving at time t if all bits arrived before it are served before it. The intuition

behind d(t) is like this(See Fig. II.2), because both arrival and departure

cumulative function A(t) and D(t) are wide-sense increasing, virtual delay

d(t) can be considered as shift D(t) leftward, to the time point, at which D(t)

12



has the same value with A(t), and d(t) is the smallest value that D(t) need

to shift, which means departure flow D(t) will cumulate to the same amount

of bits as the arrival flow after a latency with the length of at least d(t).

We considered delayed bound instead of other metrics as jitter explicitly.

Because if every packets in departure flow satisfy the delay bound, we may

smooth out jitters at receiver side buffer with corresponding playback delay.

13



CHAPTER IV

ANALYSIS FOR MULTI-HOP WIRELESS NETWORK

Figure IV.1: Multi-Hop Scenario.

Contention Model

A wireless video sensor network can be modelled as a graph G = (N , E).

E ⊆ 2N denotes the set of wireless links, which are formed by sensor nodes
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that are within the transmission range of each other. A wireless link e ∈ E

is represented by its end nodes i and j, i.e., e = {i, j}
In such a network, there exists a set of end-to-end flows, denoted as

F . Each flow f ∈ F goes through single or multiple hops in the network,

passing a set of wireless links E(f). A single-hop data transmission in the

flow f along a particular wireless link is referred to as a subflow of f . We

use the notation S(S ⊆ E) to represent a set of wireless links in G, such that

each of the wireless links in S carries at least one subflow, i.e. the wireless

link is currently not idle.

Based on the protocol model, flows in a wireless video sensor network

contend for shared resources in a location-dependent manner: two subflows

contend with each other if either the source or destination of one subflow is

within the range of the source or destination of the other. Among a set of

mutually contending subflows, only one of them may transmit at any given

time. Formally, we consider a wireless contention graph Gc = (Vc, Ec), in

which vertices correspond to the wireless links(i.e., Vc = S), and there exists

an edge between two vertices if the subflows along these two wireless links

contend with each other.

In a graph, a complete subgraph is referred to as a clique that is not con-

tained in any other cliques [20]. In a wireless contention graph, the vertices

in maximal clique represent a maximal set of mutually contending wireless

links, along which at most one subflow may transmit at any given time. De-

note the set of all maximal clique in Gc as Q, and the achievable channel

15



capacity(or bandwidth) at a clique q ∈ Q as Cq. Each flow f may pass

through one or more maximal cliques, within each maximal clique q, sub-

links of flow f , denoted as Sf ( Sf = V (q)∩E(f) ) will share the achievable

channel bandwidth of clique q, in a time division multiplex manner. Each

sublink will have Cq

Sf
bps bandwidth, which is similar to the single-hop sce-

nario. Sublinks of flow f have to wait for its turns to transmit within each

cliques , meanwhile, communication may be carry on simultaneously among

the concatenating maximal cliques of flow f . Between every adjacent cliques

delays will be cumulated, the concatenated service curve and bounds will be

affected accordingly.

Analysis within Single Clique

We first study the service curve, buffer and delay bound within a single

clique.

Lemma 4 (Service Curve in a Single Clique) The service curve βq for

flow f , passing through maximal clique q under time-division round-robin

power management with number of sunlinks in clique |Sf | = |V (q) ∩ E(f)|,
is given by the following rate-latency function with rate Cq

|Sf | and maximum

possible latency |Sf |(T − Ti).

βq(τ) =
C · Ti

T
[τ − |Sf |(T − Ti)]

+ (IV.1)
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Lemma 5 (Buffer Bound in a Single Clique)

Bq = Aq(t)−Dq(t) ≤ sup
s≥0
{α(s)− βq(s)} (IV.2)

in which arrival curve α(s) remain the same, and service curve βq(s) =

C·Ti

T
[s− |Sf |(T − Ti)]

+

Theorem 6 (Delay Bound in a Single Clique) In a multi-hop wireless

sensor network with each maximal clique under time-division round-robin

power management, the delay for flow f within each clique q

d(t) = inf{τ ≥ 0 : Dq−1(t) ≤ Dq(t + τ)} (IV.3)

Lemma 4.1, Lemma 4.2, and Theorem 4.3 are based on analysis within each

maximal clique. To get the flow-based service, buffer and delay bounds, we

need to concatenate every pairs of adjacent cliques that flow f pass through,

and consider the accumulated constraint along the flow. Theorem 3.3 in-

volves spacial reuse and concatenation at the same time, which is hard to

resolve. To get more precise bounds, we divide the situation into two folds

and consider them each at a time.

Refined Bounds with Spacial Reuse

If omit the affect of spacial reuse within each clique, and consider a tree-

styled hierarchical concatenation, in which, every flow are originated from

17



leave nodes, and no data will be generated along each flow from leaf node(the

camera) to root node(the end host). In this case, the concatenated result may

be derived according to min-plus Algebra.

In min-plus Algebra (R∪{+∞},∧, +), where the ‘addition’ is ∧ and the

‘multiplication’ is +. an ‘integral’ of function f becomes therefore

∫ t

0

f(s)ds = inf
0≤s≤t s∈R

{f(s)} (IV.4)

the convolution of two functions β1 and β2 is the function

(β1 ⊗ β2)(t) = inf
0≤s≤t

{β1(t− s) + β2(s)} (IV.5)

Theorem 7 Assume a flow traverse two systems(nodes or cliques)S1and S2

in sequence. If Si offers a service curve of βi, i = 1, 2 to the flow. Then

the concatenation of the system offers a service curve of β1 ⊗ β2 to the flow,

which is the min-plus convolution of the two service curves.

From Theorem 7, we can intuitively derive

Lemma 8 (Service Bound in Multi-Hop Network) Assume a flow tra-

verse N systemsSi, i = 1, 2, ..., N in sequence. If Si offers a service curve of

βi, , i = 1, 2, ..., N to the flow. Then the concatenation of the system offers

a service curve of
∏N

i=1⊗βi = β1 ⊗ β2 ⊗ ... ⊗ βN to the flow, which is the

iterated min-plus convolution of the N service curves.
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Therefore, we have the concatenated departure flow from system SNas

DN = D0

N∏
i=1

⊗βi = A1

N∏
i=1

⊗βi (IV.6)

With the service curve, we may get the buffer bound:

Lemma 9 (Buffer Bound in Multi-Hop Network)

Bq = Aq(t)−Dq(t) ≤ sup
s≥0
{α(s)− βq(s)} (IV.7)

in which arrival curve α(s) remain the same, and service curve βq(s) =

∏N
i=1⊗βi

For tree-like hierarchical concatenation we have

Theorem 10 (Delay Bound in Multi-Hop Network) Assume a flow tra-

verse tree-like hierarchical systemsSn,j in sequence. If Sn,j offers a service

curve of βn,j to the flow. Then the concatenation of the system offers a

service curve of λ[·] to the flow, which is

λ[•] =

Nn−1∑
jn−1=1

[

Nn−2∑
jn−2=1

[...[

N0∑
j0=1

•]⊗ β1,j1 ]⊗ ...]⊗ βn−1,jn−1 ]⊗ βn,jn (IV.8)
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CHAPTER V

EXPERIMENT

Experiment Setup

The experiment was carried out on wireless video sensor platform. We

use Stargate wireless testbed(XScale PXA255) as sensor node, with Ambi-

Com WL1100C-CF (802.11b) wireless network interface. The video sensor is

Logitech Pro4000 camera, with USB connection, which connects to Stargate.
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Figure V.1: Arrival Flow and Arrival Curve.
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Figure V.2: Departure Flow in Single-hop Scenario with 2 nodes.

The video stream is generated by a modified video capture application

vidcat on Stargate. The captured video stream will serve as Arrival Flow

(See Fig. V.1) in our experiment. The Arrival Curve can be inferred with

the maximum arrival flow rate. We generated the trace of Departure Flow

(See Fig. V.2) by logging packets received at video sensor nodes and data

sink (Fedora FC6 Laptop).

We tested our system with single-hop and multi-hop scenarios. In single-

hop case, two or four video sensor nodes constantly send out video streams

and contending for the wireless channel. The multi-hop experiment is carried

out with three different routing configurations as showing in Fig. V.3. Video

21



Scenario A

Scenario B

Scenario C

Figure V.3: Multi-hop Experiment Scenarios.

sensor node 1 and 2 will capture and transmit video streams, Video sensor

node 3 serves as a dedicated router to data sink H, and does not capture

video. In scenario A, only node 2 and 3 are presented and form a two-hop

network to data sink. In scenario B, node 2 will send its own data as well as

data forwarded for node 1 to data sink though node 3. In scenario C, node 1

and node 2 send video streams to data sink through contending for node 3.

Experiment Results

With two nodes in single-hop scenario (See Fig. V.4) , the departure curve

will surpass the arrival curve, which means the transmission ability may well

handle all the arrival flow and no data will be backlogged. With four nodes in

single-hop scenario (See Fig. V.5) , arrival flow will be delayed (See Fig. V.6)
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Figure V.4: Departure Flow and Departure Curve in Single-hop Scenario (2
Nodes with Arrival Curve in Background).

and backlogged (See Fig. V.7), but within the threshold of Delay Bound and

Buffer Bound.

By logging the packet departure time at video sensor node and arrival

time at data sink, we also measured the end-to-end delay and backlog length

in aforementioned scenarios. In Fig. V.6, we get the delay of two single-

hop nodes by measuring the horizontal deviation between arrival flow and

departure flow in Fig. V.5. Similarly, in Fig. V.7, we get their backlog by

measuring the vertical deviation between arrival flow and departure flow in

Fig. V.5.
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Figure V.5: Departure Flow and Departure Curve in Single-hop Scenario (4
Nodes with Arrival Curve in Background).

Similar experiment have also been performed with other multi-hop testbed

setup: scenario A (See Fig. V.8 and Fig. V.9), scenario B (See Fig. V.10 and

Fig. V.11), and scenario C (See Fig. V.12 and Fig. V.13).

From experiment result of scenario A (Fig. V.8 and Fig. V.9), we observed

that, during the entire 300 seconds experiment, the longest delay caused by

burst of event is around 6 second, and most of the time, the delay is around its

average 2 second. For backlogged data, the largest backlog is about 6 frames

(1 frame = 225K Bytes) with an average of between 1 and 2 frames. There-

fore, both delay and backlog are bounded. If compare Fig. V.8 and Fig. V.9,

we may find that when bursty event occur, the delay become longer and
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Figure V.6: Delay and Delay Bound in Single-hop Scenario (2 Nodes)

backlog get larger correspondingly. When transmission rate change rapidly,

the delay become jitter, and backlog change get more intensively.

From experiment results of scenario B (Fig. V.10 and Fig. V.11), we may

find similar phenomenon as observed in results of scenario A, besides, at the

connection establishing stage, both node 1 and 2 shows jitter in delay and

backlog, and get stable with the average around 4 seconds. If we compare

the delay traces of node 1 and 2, we may find node 2’s delay curve has the

similar but larger shape with node 1, and shifted right a little bit, since node

2 has to forward data from node 1 beside its own. The node with longer

delay has larger backlog as well.
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Figure V.7: Buffer and Buffer Bound in Single-hop Scenario (2 Nodes)

For results from scenario C (Fig. V.12 and Fig. V.13), delay curve from

node 1 and 2 tend to be phase inversion of each other, and center with

expectation value approximately, since both of them contend for node 3.

The average delay of the two nodes is around 3 seconds, which is “one hop”

more efficient than scenario B on average. Senario C shows a more balanced

load assignment than scenario B, in terms of delay and backlog, which hence

means more evenly distributed energy consumption, and a longer overall

battery life.
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Figure V.8: Delay and Delay Bound in Multi-hop Scenario ( Scenario A in
Fig. V.3 )
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Figure V.9: Buffer and Buffer Bound in Multi-hop Scenario ( Scenario A in
Fig. V.3 )
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Figure V.10: Delay and Delay Bound in Multi-hop Scenario ( Scenario B in
Fig. V.3 )
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Figure V.11: Buffer and Buffer Bound in Multi-hop Scenario ( Scenario B in
Fig. V.3 )
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Figure V.12: Delay and Delay Bound in Multi-hop Scenario ( Scenario C in
Fig. V.3 )
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Figure V.13: Buffer and Buffer Bound in Multi-hop Scenario ( Scenario C in
Fig. V.3 )
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CHAPTER VI

RELATED WORKS

The flow based model used in this thesis is based on the work of network

calculus [2]. In [2], the formal definition of the three bounds, namely Backlog

Bound, Delay Bound, and Output Bound were given for general queueing

systems, we derived the mathematical expression of the three bounds in video

sensor network semantics, under both single- and multi-hop scenarios. The

maximal clique based contention graph has been detailed discussed in [20],

in [20], the clique-based discussion is used for flow-based pricing, in order to

solve the corresponding primal-dual problem that maximize utility, subject

to achievable bandwidth, over rate allocation within clique.

Paper [3]considered lifetime and coverage tradeoff. They proposed a pro-

tocol for node sleep scheduling that guarantees a bounded-delay sensing cov-

erage while maximizing network lifetime.In [3], the framework is optimized

for rare event detection, which is in favor of the bursty traffic in intensive

events situation.

Paper [22] considered the bandwidth and scheduling issue, it present a

bandwidth management framework that coordinate multiple video streams,

but doesn’t explicitly take energy efficiency as optimization goal.

Paper [6] considered maximized the functional lifetime, which refers to

maximum number of times a certain data collection function or task can be
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carried out without any node running out of energy. Therefore it formu-

lated and solved linear programming problem. Under the upper bound of

energies and data, optimal communication strategy is derived. While our

research focused on efficiently using sarcastic resource under the constraint

of communication facility.

Paper [16] considered energy, coverage and bandwidth issues integrally,

but did not discussed in detail, no analytical bounds or approaches have been

provided. Other effort to reduce the power consumption in wireless sensor

network either introduce extra hardware or middleware [7], e.g. hierarchical

infrastructure or multi-tier sensor system [14], or require assistance of other

information. e.g. extra synchronization [18] [21]or messaging between peers

beside necessary coordination. Other related works on the energy efficient

sensor networks, include taking advantage of the spacial redundancy in sensor

node deployment[15].
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CHAPTER VII

CONCLUSION

In this thesis, we investigated the power management problem in the

context of sleep/awake scheduling. We adopt a network calculus approach,

through which we derived the service curve, buffer and delay bound under

single-hop and multi-hop scenarios. Our analysis has been validated through

experiments conducted on a video sensor network testbed. Further optimiza-

tion on the energy consumption could be done by adjusting the scheduling

algorithm subject to the service, buffer, and delay constraints. For exam-

ple, improve the energy model to relate scheduling-related variables to the

three bounds and solve the energy consumption minimization problem by for-

matting it as linear programming problem.Our bounded experiment results

validate the presentness of the optimal solution.Other improvement includes

formulate more realistic and complex contention model beside and compared

with our current clique model, and implement proper approximation algo-

rithm to efficiently simplify them.
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