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CHAPTER I

INTRODUCTION

The interest in nanoscale engineered materials has been steadily increasing since Richard

Feynman suggested at a 1959 talk to the American Physical Society that there is “plenty

of room at the bottom”, referring to the possibilities of nanoscale science [1], and has

rapidly expanded in recent decades as more experimental tools that can characterize at

the nanoscale have become available. The notion that an understanding of nanoscale

interactions and the ability to manipulate those interactions to produce specific

macroscopic physical qualities provided fresh inspiration to the scientific community and

caught the attention of many outside of specific scientific disciplines.

Nanotechnology is an increasingly growing field; the percentage of goods sold

incorporating nanotechnology has been estimated to increase from 0.1% in 2004 to 15%

in 2014, representing a $2.6 trillion industry which will encompass 11% of the

manufacturing workforce [2].  Currently, industry is benefiting from the renaissance of

so-called “passive” nanotechnology, which implies the enhancement of existing materials

via the simple addition of nanoparticles [3]. Common passive nanotechnology has

resulted, for example, in significantly increased tensile properties of polymeric systems

upon the addition of carbon nanotubes [4] and the enhanced flame retardancy

characteristics of polypropylene when combined with montmorillonite particles [5].

“Active” nanotechnology is defined as applications that are typically built up

from the nanoscale, as opposed to passive nanotechnology, which simply incorporates
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nanoparticles into macroscale systems [3]. Defining systems on the nanoscale will result

in a more sophisticated material, with a more distinct purpose. While the incorporation of

nanomaterials in this fashion is at a much earlier stage than passive nanotechnology

techniques, the large predicted growth in usage of nanotechnology is critically dependent

on advances in active nanotechnology. While such a bottom-up approach seems radical,

biological systems produce similarly detailed nanoscaled processes, via self-assembly, in

order to carry out multitudes of biological processes [6]. Therefore, increasing knowledge

of how biological systems assemble molecular machines and manipulate systems on the

nanoscale should provide keys to the advancement of active nanoscience. Some strides in

active nanoscience are already being realized, such as the discovery that fullerenes

particles may be effective HIV inhibitors, where the particle has been shown to clog the

protease inhibitor’s active site, slowing the proliferation of the virus [7] or as a biological

tag molecule for MRI imaging [8]. Synthetic nanoscale machines, such as gears,

bearings, motors, pumps, and logic gates [9] have been proposed to influence nanoscale

environments similar to how their macroscale counterparts effect large systems. Efforts

towards developing nanoscale machines have already been realized, as evidenced by a

successfully synthesized “nanocar”, consisting of four C60 “wheels”, alkynyl “axles”, and

a chassis that consists of fused aromatic rings [10].

To supplement the advancement of nanotechnology, an array of nanoparticles of

varying size, shape, chemical and mechanical properties have been devised. Of the many

classifications of nanoparticles, the fullerene family is one of the most studied and

understood. Fullerene particles are carbon based and are comprised mostly of hexagonal

graphene rings, much like graphite. What differentiates fullerenes from graphite is that
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graphite has an effectively flat surface, while fullerenes exhibit a curved surface. The

ability of the fullerene surface to curve results in the possibility of various nanoscaled

geometric objects, or nanoscale building blocks (NBBs), such as spheres, tubes, cones,

and horns [11].  Additionally, fullerenes have been shown to range from one nanometer

to several nanometers in diameter and up to a millimeter in length [12]. Fullerenes have

found a multitude of applications, particularly in their use in nanocomposites, such as

incorporating fullerenes into polymer micelles that have potential as refined photovoltaic

devices [13], in soft hydrogel polymers producing tunable and robust protein separators

[14], and with poly(3-butylthiophene) to create high efficiency solar cells [15]. Beyond

nanocomposites, fullerenes have been proposed as a next-generation logic gate [16] and

as a delivery agent for therapeutics [17].

Quantum dots, colloidal gold, and hybrid inorganic-organic compounds are other

types of nanoparticles that receive a significant degree of attention in the literature.

Quantum dots are semi-conducting crystals composed of particles from periodic groups

II-VI, III-V, or IV-VI and range from 2-10 nanometers in diameter [18]. Among other

applications, quantum dots have shown potential as a fluorescent tag for sub-cellular

structures in living organisms [19] and as a DNA sequence characterizing agents [20].

Gold nanoparticle suspensions, which can be as large as 75 nanometers in diameter [21],

have also shown many potential applications. When coated with oligonucleotides, gold

nanoparticles exhibit extraordinary stability in salt solutions and have therefore been

classified as good candidates for protein interaction characterization [22]. Additionally,

due to the relative ease in which organics can be fashioned on the surface in one, two,

and three dimensions, the particles have been proposed as possible molecular electronic
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devices [23]. Hybrid organic-inorganic nanoparticles generally consist of an inorganic

constituent and an organic component, often maintaining the desirable materials

properties of both groups [24]. The particles commonly exhibit inorganic constituents

such as siloxanes [25], titanium, and aluminum [26]. Due to their highly ordered

crystalline state, latex-based hybrid inorganic-organic particles have a very high

refractive index, and therefore may prove useful for photonic applications [24].

Additionally, polymers grafted with hybrid inorganic-organic nanoparticles exhibit

properties liquid crystals [27].

Given the multitudes of current and projected uses of nanoparticles, the

manufacturing sector will undoubtedly be affected by the growing demand to produce

these materials. Indeed, in 2001, the estimated production of all carbon-based

nanoparticles was several hundred tons, whereas, by 2003, the production of carbon

nanotubes alone was 900 tons [28]. So far, there are over 200 possible industrial

fabrication techniques, practically all stemming from a so-called “top-down,” or passive,

approaches; meaning that the particles are created from macroscale synthesizing

techniques [29]. Sophisticated “bottom-up” approaches are anticipated to increase the

functionality of nanoparticles and are predicted to increase yield by several orders of

magnitude by 2020 [29]. While the new innovations in materials that will be a result of

heightened nanoparticle production is undeniably exciting, the growth in nanoparticle

production will present the issue of occupational and environmental exposure. This is

problematic, because the toxic effect for many nanoparticles is poorly understood, and

mass production may have serious repercussions to workers in the manufacturing facility

and the environment surrounding the facility. For many current production facilities,
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information appearing on material data safety sheets (MSDS) for the nanoparticle in

production or use is often substituted with the MSDS information for a bulk material of

equivalent chemical composition, which is problematic as different isomeric forms of a

particle may have different toxicological effects. Furthermore, detailed information

regarding the size and chemical identity of nanoparticles can be difficult to obtain, as

such information is often proprietary [30] or simply not known. These shortcomings

highlight the fact that the growth in understanding of nanoparticles is being far outpaced

by the production of new nanoparticle variants, which may result in unforeseen, negative

environmental and toxic consequences.

In order to better understand the environmental and occupational implications of

the looming increase in nanoparticle production, it is important to be familiar with

existing literature regarding toxicology. Such reports provide insight into how to carry

out the exhaustive studies required to satisfactorily characterize the toxic ramifications of

the incorporation of nanotechnology into common consumer and commercial products.

The current production of nanoparticles may already be exposing workers in

manufacturing facilities and neighboring residents of the facility to unforeseen,

deleterious chronic effects. Furthermore, significant increases in nanoparticle production,

both in terms quantity and variety produced, practically guarantees occupational and

environmental exposure. Once exposed to the environment, a potential toxin is capable of

disrupting crucial cellular processes. This is possible, provided the toxin can traverse a

very discriminating pathway, designed to supply water and nutrients to cells. Toxicology

is the study of this path, and of the liklihood of a given compound being able to span it

and disrupt cellular processes. Due to the highly varied nature and great potential of
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customization of nanoparticles, both comprehensive experimental and rapid

computational toxicology techniques will ultimately be required to sufficiently gauge the

vast array of toxicological effects that will be introduced as new particles are introduced

to the market.

Experimental toxicity is a proven means of discovering the effect of toxins on

animal cells and the characterization to their route of disruption on cellular processes.

There are two broad types of experimental toxicology: descriptive animal toxicology and

mechanistic toxicology [31]. Many experimental toxicology efforts are so called

“descriptive animal toxicity” tests. These studies observe the toxic effects of a material

on animal test subjects on a dose per unit of body surface or mass basis. These studies are

often applicable to humans, as humans commonly express similar toxicity reactions to

that of laboratory test animals; however, humans are typically found to be a factor of 10

times more vulnerable to toxins than animals [31]. Therefore, such a technique is not an

absolute means of determining human toxicity. Such studies have been standardized to

produce toxicity parameters such as the median lethal dose (LD50), the existence of skin

or eye irritation (Draize test [32]), irregularities in reproduction, and persistent genetic

alterations of several generations.

 While descriptive animal toxicity can be very helpful in diagnosing the ultimate

toxicity of a compound, a more detailed account of how the toxin travels from the

environment to the point of disruption of cellular processes can often provide a more

sophisticated means of limiting the toxic potential of the compound. The directed study

of the route that a toxin enters an organism, how it interacts with target molecules, how it

exerts the harmful effect, and how the organism adapts to the resulting damage is know
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as “mechanistic toxicology [31].” Figure 1.1 shows a mechanistic toxicity study of the

pesticide isofenphos in UK livestock [33].

Figure 1.1 shows the concentration of isophenphos at various levels of exposure, from the

warehouse floor to the tissue of the livestock. This study highlights the various industrial

and physiological barriers to isophenphos interrupting cellular processes. The figure

shows that while the elimination of the toxin at each step is quite significant, even a

minute exposure on the extracellular level can lead to serious, adverse effects.

The beginning of the route is typically characterized by the toxin being absorbed

from the point of exposure (skin, lungs, stomach lining, etc.) into the circulatory system.

At this point, the toxin may be reduced or eliminated from the organism via several

barriers, such as the GI mucosal cells, liver, or lungs. An example of such an elimination

would be the oxidation of ethanol by alcohol dehydrogenase [34]. If the toxin is not

eliminated from the circulatory system, then it will likely be distributed into the tissue of

Figure 1.1: Exposure levels of isofenphos in UK livestock contamination [33]



8

physiological systems. For the UK livestock case, it is shown that very little of the initial

isofenphos exposure actually manifests into the tissue of the animal, as the concentration

in the tissue is six magnitudes lower than the initial industrial concentration. The

elimination of the majority of the pesticide present in the feed is likely due to the

pesticide preferentially partitioning to the aqueous phase, as opposed to the organic

phase, where cells reside. Generally speaking, a lipid bilayer separates the tissue

(organic) phase from the water phase, therefore, the ability of a particle to partition and

migrate through a lipid bilayer will determine if the toxin will accumulate in the tissue.

Thermodynamic driving forces typically guide this process, as the toxin generally has an

energetically favorable phase in which to partition. A popular gauge for this is the

octanol-water partition coefficient (Ko/w) and is simply the ratio of the mole fractions of a

given solute in octanol compared to its mole fraction in water. This is an apt description

of the water/tissue environment due to the physical similarities between octanol and the

lipids membranes covering tissue, namely a polar head with a non-polar tail. Ko/w can be

directly related the difference between the Gibbs free energy of solvation (ΔGsolv)

between the phases when the particle is sparingly soluble in each solvent.

When present in tissue, the toxin may then have access to the intracellular space

of the cell. There are a variety of routes that toxins may take to traverse the cellular

membrane, which separates the intracellular and extracellular mediums. One such route is

for the toxin to exploit voltage gated channels, intended for the transport of ions across

the membrane. Furthermore, toxins gain access to the intracellular medium by binding to

molecules in the extracellular environment that naturally target the cell, such as

chloroquine binding to melanin, which ultimately results in retinal damage [35]. Once
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inside the cell, toxins can hinder a variety of cellular processes, such as DNA

transcription [36], signal transduction [37], or ATP synthesis [38].

The potential toxic impact of nanoparticles is a hotly debated topic, as a

consensus answer has yet to be reached on the subject. In one study, it was found that

juvenile largemouth bass in the presence of C60 suffered a 17-fold increase in brain tissue

damage after just 48 hours of exposure [39]. It is believed that the toxic behavior of C60 is

due to its tendency to produce free radicals in water, which in turn damage the lipids of

the cellular membranes and ultimately destroy the cell. Theoretical studies, showing that

C60 can bind to and deform DNA segments and in turn potentially hindering the ability of

DNA to repair itself and replicate [40], further suggest the toxic potential of C60. Another

claim suggests that the C60 molecule exhibits no acute or subacute toxicity [41]. In this

study, bare C60 did not have any observable effect on the proliferation rate of

keratinocytes and fibroblasts. Additionally, in vivo tests in Swiss mice show no signs of

lethality, toxicity, or growth inhibition [41]. The same study finds that a family of

pyrrolidinium salt derivatives of C60 generally shows no signs of toxicity, although one

compound did exhibit relatively acute toxicity on ddY female mice (a genetic strain with

superior growth and reproductive performance). Fullerenes have even been proclaimed as

possible antioxidants; it was found that C60 and carboxylic acid C60 derivatives actually

bind with free radicals, which normally induce lipid peroxidation [42]. Other studies

claim that fullerene toxicity is greatly dependent on functionalization [43, 44] and

particle geometry [45]. One argument is that carbon based particles with small aspect

ratios, such as carbon black, are more toxic than large aspect ratio materials, such as

carbon nanotubes, because these materials contain a higher density of reactive dangling
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bonds, which interfere with active sites on the cell surface [45]. However, Magrez et al.

have shown that water-soluble fullerenes, typically functionalized with carbornyl,

carboxyl, or hydroxyl groups, tend to show a decreased toxicity, as they do not induce

cell death or activation of lymphocytes. These finding are in contrast with toxicity studies

of undecorated carbon nanotubes [43].

These preliminary toxicology studies have alerted the scientific community to the

possible toxicological ramifications of introducing nanoparticles into biological systems.

Since these nanoparticles are relatively new and, their modifiable nature allows almost a

limitless number of arrangements, we are presented with the problem of having a group

of potentially biologically relevant compounds whose toxicological identity we know

little about. To understand this problem more clearly, it is important to recognize the

steps involved in how nanoparticles migrate through physiological systems. Furthermore,

methodical study of each step in reference to a particular nanoparticle should help

elucidate the particle’s toxic potential and help the scientific community make informed

decisions about their usage in biological systems and the environment.

Given the increasing rate at which new chemicals are being developed due to

combinatorial chemistry and high throughput chemistry techniques, traditional,

experimental toxicity analysis methods may be too costly or time consuming to be

practical. Computational toxicology analysis techniques are becoming very important, as

they often prove to be fast and inexpensive, while offering a high degree of accuracy.

Two computational approaches have been developed that predict high-level toxicological

parameters such as LD50 and maximum tolerated dose: so-called “knowledge based” and

“statistically based” approaches.
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Knowledge based programs include the DEREK [46], OncoLogic [46], and

HazardExpert [47] codes. The term “knowledge based” refers to rules that are defined

between molecular descriptors, such as structure and biological activity, and qualitative

toxic potential, which is mined from expert opinion and toxicological data. Such a

methodology provides a quick means of assigning toxic potential to novel compounds.

Several studies [48-50] have shown that such a methodology has a relatively high success

rate for identifying mutagens in a library of compounds.

Statistical methods, on the other hand, fit various calculated parameters and

structural connectivity, via a statistical analysis, to a mathematical relationship, which

can ascribe toxicity reports to various compounds relatively generically. This approach is

often able to assign quantitative results regarding toxicity. Such methods have been

shown to exhibit 68% accuracy in predicting the probability of a compound to be

carcinogenic [51, 52]. Examples of programs that utilize such are methodology are

TopCat [53] and MultiCase [54].

At present, the datasets in computational toxicology programs are insufficient to

accurately predict specific toxicology parameters for any given compound. As a result,

there is an interest in methodologies that can accurately and cheaply predict

thermodynamic parameters that influence the toxic potential of a compound, without the

reliance on preexisting, detailed toxicological experimental data. Group-contribution

techniques, such as UNIFAC [55], and quantitative structure property relationship

analyses (QSPR) [56] have been applied to to the calculation of logKO/W
 [57, 58], infinite

dilution activity coefficients (γ∞) [59, 60], and blood barrier partition coefficients (logBB)

[61]. While not an absolute indicator of toxicity, such parameters are commonly



12

acknowledged to directly contribute to toxic potential, and these methods have shown a

high degree of accuracy in estimating thermodynamic parameters over a large range of

components [62], and complex systems, such as ionic liquids [63, 64].

While such methods are also dependent on experimental data, they are more

established than many dedicated computational knowledge statistically based toxicology

techniques. This data will be extendable to systems of many different solvents and

perhaps to nanoparticle systems with some degree of accuracy. However, this will likely

not be the case for unusual, or even hypothetical particles that may be synthesized in the

future, as the existing datasets will likely not contain parameters for inorganic molecules.

This is typical for many nanoparticles, as experimental phase equilibria measurements

may be difficult to obtain due to very unusual molecular interactions. Alternatively, phase

equilibria data may be missing due simply to the novelty of the compounds, as

experiments may have yet to be performed on the systems of interest. Molecular

simulation offers the unique opportunity to study the phase equilibria of novel, or even

hypothetical nanoparticle systems. To combat the shortcomings of a lack of experimental

data for nanoparticle systems, several predictive, computational techniques may be used

to calculate solubility parameters of nanoparticles relative to toxicity studies. For

instance, molecular dynamics (MD) simulation have been used in conjunction with

thermodynamic integration (TI) to calculate the ∆Gsolv for alkanes [65], aromatics [66],

and amines [67]. In turn, ΔGsolv values for a solute in aqueous and organic phases can be

used to find organic-water partition coefficients. Furthermore, the Gibbs free energy of

transfer (G(z)) and the one-dimensional diffusivity function (D(z)) of simple molecules,

such as benzene [68], and even complicated fullerenes [69, 70] have been calculated in
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heterogeneous bilayers using MD and a potential of mean force (PMF) analysis.

Alternative options include the parameterization of UNIFAC binary interaction

parameters using an ab initio “supermolecule” approach [71], which may be used in an

UNIFAC analysis to find solvation parameters. This approach has been successfully

applied to find γ∞ for aqueous alcohol, ketone [72], and aldehyde [73] systems.

This work consists of three main thrusts, which contributes to the effort of

efficient toxicology screening techniques for nanoparticle systems. One main objective of

this work is the calculation of ΔGsolv for a variety of fullerenes in octanol and water using

MD and TI. A major emphasis of this study is the impact of fullerene geometry on ΔGsolv.

Thermodynamic integration studies of seven different fullerenes of varying sizes, aspect

ratios, and cavity size have been conducted for both water and n-octanol solvents. These

results agree with the current consensus that fullerenes are remarkably hydrophobic [74]

and organophilic [75]. Furthermore, the results show that the fullerene particle geometry

indeed has a significant effect on solubility in aqueous an organic phases, in particular,

that larger fullerenes tend to be more hydrophobic/organophilic than smaller varieties. It

is also observed  that uncapped nanotubes, where internal wetability is possible, results in

a significant hydrophobic shift relative to uncapped carbon nanotubes.

Secondly, this work quantitatively determines the effects of adding hydrophilic

groups, to the bare nanoparticle unit, on the ∆Gsolv in water. The particles of interest are

the water-soluble C60(OH)32, H-POSS, F-POSS, and OH-POSS. In most cases, no particle

geometry or force field information are available; therefore, such data is determined

using density functional theory calculations. The resulting parameters are subsequently

used in a thermodynamic integration analysis and values for ΔGsolv in water. The results
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reflect the common perception that C60(OH)32 is hydrophilic [76, 77]. Additionally, the

hydrophilic shift that could be expected from H-POSS to OH-POSS is noted in these

calculations.

This work also gauges the practicability of using the group contribution method,

UNIFAC, in terms of calculating KO/W for a variety of nanoparticle systems. As UNIFAC

parameters are often not available for inorganic molecules, such as POSS, ab initio

“supermolecule” calculations were performed to obtain needed binary interaction

parameters. It will be shown that while infinitely dilute activity coefficients (γ∞) from

UNIFAC analyses may be artificially high due to very stong, negative solute-solute

interactions, partitioning calculations cancel these effects, leading to reasonable

estimations of logKO/W. Furthermore, functionalizing the nanoparticles with hydrophilic

groups results in a hydrophilic shift from the bare unit, which corresponds to the shift

observed for water-soluble nanoparticles in the TI study.

Finally, the partitioning of C60 and H-POSS in heterogenous lipid bilayers has

been evaluated using molecular dynamics simulations and potential of mean force (PMF)

calculations in a DPPC bilayer. This study calculated ΔG (z), which describes the

energetic barriers to partitioning into the heterogeneous bilayer at varying depths from

the bilayer center. These barriers are related to particle size, orientation, and particle/lipid

interactions. The results indicate that C60 will likely partition into the bilayer phase,

whereas the H-POSS encounters a large energy barrier at the bilayer/water interface,

suggesting that the partitioning of H-POSS into the organic phase relatively low.
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CHAPTER II

BACKGROUND & THEORY

General Methodology

Molecular dynamics (MD) is a tool used extensively in this work used to calculate the

trajectories of a single solute molecule (the nanoparticle) in a system of either pure

solvent (octanol or water) or in an explicit, hydrated phospholipid bilayer. This is

achieved by simply applying Newton’s laws of motion over a thermodynamically

relevant timescale (femtoseconds-nanoseconds)

where 

� 

F  is the force vector on each particle, m is the particle mass, 

� 

q is the particle

coordinate and t is time. Each molecular system is defined by an atomic force field that

carries a set of bonded and non-bonded interactions that describes the potential between

two or more atomistic sites. Equation 2.2 represents an inclusive list of all of the

contributions to the atomistic force fields used in this work.

The first three terms in equation 2.2 describe intramolecular interactions, which means

that they describe the interactions between atoms on the same molecule. The first term,

Ubond, is the bond potential, which describes the energy associated with stretching the

bond between two atoms. The second, Uangle, is the angle potential and describes the

energy associated with flexing the angle about three consecutive atoms. The third term,

� 

F q( ) = m d2q
dt 2

(2.1)

� 

U q( ) = Ubond + Uangle + Udihedral + UvdW + Uelec
m=1

E

∑
l=1

V

∑
k=1

D

∑
j=1

A

∑
i=1

B

∑ (2.2)
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Udihedral, is the torsional potential and represents the energy expended when four

consecutive atoms are torqued.

The latter two terms in Equation 2.2 are intermolecular interaction terms, which

for the most part describe interactions between atoms on differing molecules. All short-

ranged non-bonded interactions for these studies, the van der Waals (vdW) interactions,

are in the form of the 12-6 Lennard-Jones potential, defined by Equation 2.3

where 

� 

εij  is the energetic well depth and 

� 

σ ij  is the van der Waals radius of each atom.

The long-ranged electrostatic (elec) interactions are modeled after a simple point-point

Coulombic potential, where 

� 

qi represents the point charge for atom 

� 

i  in Coulombs and

� 

ε0  is the permittivity of free space.

With the force field defined, we can determine the forces acting on the atoms and

molecules, as shown in Equation 2.5.

Using Equations 2.2-2.5 and the Verlet leapfrog algorithm, Equation 2.1 can be

integrated over discrete timesteps to produce the MD trajectories.

� 

U r( ) = 4εij
σ ij

r
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
12

−
σ ij

r
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
6⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

(2.3)

� 

U r( ) = 1
4πε0

qiq j

r
(2.4)

(2.5)

� 

F q( ) = −∇U q( )
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Thermodynamic integration and solubility calculations

Knowing the Gibbs free energy of solvation, 

� 

ΔGsolv , for nanoparticles in octanol and

water phases would greatly contribute to the understanding of nanoparticle partitioning in

binary aqueous/organic systems.  To understand how to manipulate the system in order to

obtain 

� 

ΔGsolv , an appropriate starting point is the isothermal-isobaric partition function

(

� 

Δ) for a system containing one solute molecule in a solvent.  This is the most convenient

choice as the Gibbs free energy can be expressed in terms of this partition function [1],

viz.

where 

� 

Ω is the system degeneracy at a given number of particles (

� 

N ), system volume

(

� 

V ), and system energy (

� 

U ). For simplicity, we have considered the partition function in

the case where the system has discrete energies and volumes.  The partition function is

defined by three constraints, namely system pressure (

� 

P ), temperature (

� 

T ), and the

number of particles. Where β = 

� 

1
kBT

, kB is the Boltzmann constant, and h is Planck’s

constant.  Describing he thermodynamic path of solvating a single nanoparticle in

solution can be aided by adding an additional parameter, 

� 

λ , into the partition function.

Since the 

� 

ΔGsolv  is desired, the partition function should be modified by 

� 

λ  in the

Hamiltonian, which describes solute-solvent interactions. If U → U(λ), and the derivative

of Equation 2.7 is taken with respect to λ the following result is obtained.

(2.6)

� 

G = −kbT ln Δ N,P,T( )[ ]

(2.7)

� 

Δ = Ω N,V ,U( )
V
∑

U
∑ e−βUe−βPV



25

This derivation shows that sampling the change in the Hamiltonian with respect to 

� 

λ  and

averaging the result can appropriately calculate the derivative of the Gibbs free energy at

a constant 

� 

λ . We choose 

� 

λ  to be a coupling parameter for the solute-solvent interactions,

so that when 

� 

λ  = 0 we have pure solvent and when 

� 

λ  = 1 the solute is fully coupled to

the solvent; that is, U (λ =1) includes the full solute-solvent interactions. Since the

Hamiltonian is well defined by the selected force fields, the trajectories produced by the

MD simulation can be easily sampled and 

� 

∂U
∂λ λ

can be calculated. Finally, the

� 

ΔGsolv  can be calculated by integrating over the thermodynamic path,

where Equation 2.9 again shows that the boundaries of integration were chosen to be zero

to one. This method for computing the 

� 

ΔGsolv  is known as thermodynamic integration

(TI) [1]. With the theoretical framework for how 

� 

ΔGsolv  will be sampled via MD in place,

the final hurdle in implementing the simulations is to explicitly embed λ into the system

(2.9)

� 

ΔGsolv = ∂G
∂λ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

λ= 0

λ=1

∫
N ,P ,T

dλ = ∂U
∂λ λλ= 0

λ=1

∫ dλ

(2.8)

� 

∂G
∂λ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
N ,P ,T

= − 1
β

∂
∂λ
lnΔ N,P,T,λ( ) = − 1

βΔ N,P,T,λ( )
∂Δ N,P,T,λ( )

∂λ

� 

=
Ω N,V ,U( ) ∂U

∂λ
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ e−βU (λ)e−βPV

V
∑

U
∑

Ω N,V ,U( )e−βU (λ)e−βPV
V
∑

U
∑

= ∂U
∂λ λ
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Hamiltonian. The λ parameter is incorporated into the force fields in accordance with the

boundaries ascribed to λ. That is, the solvent-solute interactions are zero when λ = 0 and

the interactions are full at λ  = 1.   There are, however, technical details that must be

addressed in order to make the simulations robust, efficient, and make the calculations as

accurate as possible. One important detail of the simulations is that singularities be

avoided; with softened parameters between the solvent and solute, there is a possibility

that the potentials will tend towards infinity as the radius between atomistic sites

approaches zero. Introducing λ into the van der Waals interaction in the following

fashion eliminates such a problem [2].

The extra parameters, α  and n in Equation 2.10, are used to address singularity and

accuracy issues. Generally speaking, a value of n ≥ 2 is required, as a number less than

this will have significant trajectory noise and the insertion of the solute molecule may not

be gradual enough, resulting in inaccuracy in the calculation of 

� 

ΔGsolv . The α parameter

is a constant that is generally positive and less than unity. The selection of this parameter

will directly effect the finite height of the potential as rij → 0. For all simulations in this

work, the commonly used values of n = 2 and α  = 0.50 were employed [2]. The

application of these modified potentials is easily achieved by supplying tabulated short

(2.10)

� 

U r,λ( ) = 4εijλ
1

α 1− λ( )2 +
σ ij

r
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
6⎛ 

⎝ 
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⎞ 

⎠ 
⎟ ⎟ 

2 −
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ranged potentials to the MD code. Figure 2.1 illustrates the prototypical potential curve at

various values of λ.

Incorporating λ  into the long-ranged Coulombic interactions without introducing

singularities and noise errors is somewhat more difficult, as the electrostatic interactions

cannot be presented in tabular form if periodic boundary conditions and Ewald

summations are used in the simulations. Therefore, it is impossible to add the singularity

eliminating term that is present in the denominator of the van der Waals interactions

without modifying the DL_POLY [3] source code. As an alternative, the electrostatic

potential has been modified by a simple λn coefficient, where again, n = 2.

(12.11)

� 

U r ,λ( ) =
λnqiq j

4πε0r

Figure 2.1: Prototypical softened van der Waals curves (soft, medium, hard)
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While it is obvious that this form will not prevent singularities, as it is free to become

undefined as rij → 0, the solvation of the nanoparticle into solvent can be decoupled into

two separate paths: one in which the nanoparticle has no partial charges and the van der

Waals potentials are grown in and the other with the softened electrostatics and full van

der Waals interactions. This approach effectively shields the electrostatically charged

nanoparticle atomistic sites, eliminating singularities. This process can be expressed

mathematically in the following fashion.

As a result, the softened electrostatic potentials do not feature the plateaus at small rij as

seen in the modified van der Waals potentials. However, since the repulsive van der

Waals interactions are stronger than the electrostatic potentials at small rij, singularities

are not encountered. Figure 2.2 shows typical softened electrostatic curves at various

values of λ.

Figure 2.2: Prototype of softened electrostatic curves

(12.12)

� 

ΔGsolv = ∂U
∂λ10

1∫
vdw

dλ1 + ∂U
∂λ20

1∫
elec

dλ2
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Once softened non-bonded potentials are implemented, the MD trajectories are sampled

and the derivative of the potentials with respect to λ is calculated. A symbolic derivation

of Equations 2.10 and 2.11 yield the following, respectively

It should be noted that both the short-ranged van der Waals and the long-ranged

electrostatic thermodynamic integrations are not needed for all solutes. In this study, the

POSS structures have partial charges assigned to the inner cage, so both steps are needed.

However, unmodified fullerene structures have no partial charges, therefore, only the

short ranged thermodynamic integration step is required.

To calculate the dynamic value of 

� 

∂U
∂λi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , the radial distance, r, between every

solute-solvent atomic site interaction is calculated in a single time step. With the r values

(2.13)
+

� 
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∂λ1
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(2.14)
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∂U
∂λ2
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⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
elec

= nλ2
n−1 qiq j

4πε0r
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and the equations above, the value of the derivative can be computed at that instant. Since

there is appreciable statistical scatter, 100 samples are taken over a 1 nanosecond run

without temperature scaling, ensuring that a well-converged average for the derivative is

obtained. For each TI process a minimum of 10 separate MD runs are performed between

0.05 ≤ λi ≤  1.0 at discrete intervals of 0.05 or 0.10, depending on the softness of the

potentials (note that with the form of U given in Equations 2.10 and 2.11, runs at λ = 0

yield no solute-solvent interactions, and since 

� 

∂U
∂λi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  = 0 also, there is no contribution to

� 

ΔGsolv ). Figure 2.3 is a protypical representation of a TI curve obtained from such

calculations. The general behavior of positive derivative values at small λ and negative

derivative values at large λ in the curve can be logically deduced from the force fields

themselves, at low λ, the forces between atomistic sites are low and radii on the flat,

positive potential curves in Figure 2.1 can be explored. However, at high values of λ, the

radii are generally pushed out around σij, resulting in negative derivative values. With a

TI curve extending from λ = 0 to λ = 1.0, we can now compute the area under the curve,

and determine 

� 

ΔGsolv .
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Figure 2.3: Prototypical TI curve

so
lv

λ

� 

HU ,V = ρRTe
ΔGsolv

RT (2.15)

Although values of 

� 

ΔGsolv for nanoparticles in solvents are useful quantities, the

ultimate desire is to use these values to calculate common, industrially relevant, solubility

parameters such as Henry’s law constants (H U,V) and logKow. Using common

thermodynamic formulations, this can be accomplished. To find values for Henry’s law

coefficients from 

� 

ΔGsolv , the Ben-Naim equation [4] is employed

where H is the Henry’s constant, U is the solute, V is the solvent, ρ is the molar density of

the solvent, R is the universal gas constant and T is temperature.

Furthermore, since in the evaluation of Kow, the octanol and water phases are in

equilibrium, and we further assume that the solutes are in very dilute concentrations, the
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fugacities of each phase are equal and each can be defined in terms of the Henry’s law

constant as given below

where fU
V is the fugacity of the solute-solvent system and xV

U is the mole fraction of

solute in the solvent. Rearranging Equations 2.16 and 2.17, the definition of the octanol-

partition coefficient can be derived in terms of Henry’s law coefficients in octanol and

water phases as,

it is important to remember that this formulation of 

� 

KO /W  only holds if the solute is

sparingly soluble in each solvent, otherwise the Equation 2.17 is invalidated and

� 

KO /W can no longer be expressed in terms of the ratio of Henry’s constants. In the case of

substantial solubility of the solute, the Krichevsky-Ilinskaya equation 2.17 [5], shown

below, is required

where vU∞ is the partial molar volume of the solute at the infinite dilution condition and

A is the Margules expression constant. v U∞  can be calculated using liquid structure

information from MD simulations by means of the Kirkwood-Buff solution theory [6],

shown below

(2.16)fU
oct = f U

water

(2.17)fU
V → lim  HU,VxV

U
xV

U→ 0

� 

v =
1+ ρ2 G22 −G12( )

ρ1 + ρ2 + ρ1ρ2 G11 − 2G12( ) (2.20)

(2.19)

� 

fU
V = HU ,V xU

Ve
A xv

2−1( )
RT e

vU
∞

RT
dP

PU
sat
P∫

� 

Kow = xU
octanol

xU
water = HU ,water

HU,octanol

(2.18)
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where

and gij(r) is the radial distribution function between particles i and j and ρi is the number

density of particle i. Therefore, using radial distribution functions from dilute MD

simulations, vU∞  can be obtained, and in turn, the pressure correction term in Equation

2.19 can be evaluated. Furthermore, if values of G ij are obtained over the entire

composition range of the binary system, the Margules constant can be fitted from

fluctuation solution theory [7].

Calculation of UNIFAC Group-Contribution Parameters and Activity Coefficients

The ability to estimate 

� 

KO /W  for a variety of nanoparticles without performing expensive

and costly experiments or simulations is very desirable. To achieve this end, an empirical

correlation that ties various molecular attributes, such as interaction energy and molecular

shape, could be very useful. The UNIFAC group-contribution method [8] is widely and

effectively used to find activity coefficients. This is due in part, to the fact that UNIFAC

parameters have been parameterized with a large library of binary and multiphase

equilibria data, for many substances, including water, alcohol, chlorides, nitriles, ketones,

and amides, among other compounds. Additionally, the UNIFAC method is widely

applicable, as calculations are not dependent on parameterization of specific substances,

but rather generic molecular “groups,” from which specific systems can be built. As a

result, calculations may be performed for which there is no prior experimental data. Due

to these advantages, we have applied the UNIFAC group-contribution method to the

� 

Gij = 4πr2 gij r( ) −1[ ]0

∞∫ dr (2.21)
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calculation of 

� 

KO /W for C60 and POSS octa-functionalized with hydrogen (

� 

SiO1.5H( )8,

designated H-POSS), and compared the results to TI studies to test the accuracy of the

calculation. Additionally, the ability of UNIFAC to predict the hydrophilic shift observed

in the TI studies of C60(OH)32, F-POSS (

� 

SiO1.5F( )8)  and OH-POSS (

� 

SiO1.5OH( )8)from

their respective bare particles was also tested.

The UNIFAC method divides the activity coefficient into a combinatorial and a

residual portion, as seen in Equation 2.22

where, the combinatorial portion is defined as follows

and the residual portion is defined as,

in Equations 2.23 and 2.24, the parameter 

� 

Φi  is the segment fraction of component 

� 

i  and

is a function of the mole fraction of 

� 

i  (

� 

xi) and 

� 

Vwk , the group volume.. Parameter 

� 

Θ i  is

the area fraction of group 

� 

i  and is a function of 

� 

xi and 

� 

Awk , the group area. Parameter 

� 

z

is the lattice coordination number, normally taken as a constant and 

� 

l = f Awk,Vwk,z( ). The

� 

τ ij  parameter is defined as,

� 

lnγ i = lnγ i
C + lnγ i

R (2.22)

� 

τ ji = e
−

U ji −Uii( )
RT

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ (2.25)
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lnγ i
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qi ln
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x j l j

j
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lnγ i
R = qi 1− ln Θ jτ ij
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where 

� 

Uij  is the interaction energy due to short ranged and long ranged interactions

between component 

� 

i  and component 

� 

j  [9]. 

� 

Uij  has been defined as the minimum-

energy of a molecular pair [10] and can be estimated using Sandler’s ab initio

“supermolecule” technique [11]. A “supermolecule” is defined as a minimum energy

configuration of two or more molecules, where the interaction energy between the

molecules can be calculated if the cluster energy and the energy of each isolated molecule

in the cluster are known. The following equation calculates the interaction energy of a

two-molecule cluster containing molecules 

� 

A  and 

� 

B

where 

� 

EA ⋅B A ⋅ B{ }is the ab initio energy of cluster 

� 

A ⋅ B and 

� 

Ei is the energy of molecule

� 

i , with the same conformation as molecule 

� 

i  in the cluster, in a vacuum. For the ab initio

calculations to effectively account for dispersion interactions, a minimum of the MP2

level of theory is needed. The cluster geometries were optimized using a modest 6-31G

basis set and the point energies used to determine 

� 

Uij  used a 6-311++G** basis set. Due

to the overlap of basis functions that are assigned to different molecules, the

supermolecule calculations are subject to the so-called basis set superposition error

(BSSE) [12]. This arises from the augmentation of orbitals on molecule 

� 

A  by basis

functions allocated to molecule 

� 

B, and vice versa. This results in an artificially high

resolution for the orbital energies in question, which skews the results of Equation 2.26.

To counteract this error, the full counterpoise method [13] was utilized. The counterpoise

method cancels some of the error associated with BSSE by calculating the energy of

� 

UA ⋅B = EA ⋅B A ⋅ B{ }− EA A{ }− EB B{ } (2.26)
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molecule 

� 

A  in vaccum with all the basis sets used in the 

� 

A ⋅ B cluster and vice versa.

These calculated energies replace the last two terms in Equation 2.26, resulting in the

following equation

where 

� 

EA A ⋅ B{ }  is the energy of molecule A augmented by basis functions from both 

� 

A

and 

� 

B and 

� 

EB A ⋅ B{ }   is the energy of molecule B augmented by basis functions from

both A and B. These augmented energies should include the overlaps observed in the

cluster calculation, therefore, subtracting these terms should effectively cancel the

superposition error.

Intuitively, 

� 

Uij  is the non-bonded interaction energy between like molecules.

Additionally, it should be noted that 

� 

Uij  = 

� 

U ji  The values of 

� 

Uij  are widely available for

most organic species of interest, however, supermolecule calculations were performed in

order to determine the POSS binary interaction parameters.

The remaining parameters to evaluate are Awk and Vwk, which are documented for

a large number of molecular groups, including those appearing in the solvents of interest.

However, for the solutes, the calculation of Awk and Vwk will be necessary. The solvent

accessible area for the solutes has been calculated via the Connolly technique [14] and

the excluded volume is calculated by integrating over the space between adjacent

Connolly surfaces.

To calculate the Connolly solvent accessible surface area, the solvent is modeled

as a small sphere, or probe, with radius rp that is rolled along the 2-dimensional profile at

finite intervals along the molecule [15]. The total number of rotations the probe

� 

UA ⋅B = EA ⋅B A ⋅ B{ }− EA A ⋅ B{ }− EB A ⋅ B{ } (2.27)
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experiences can then be mapped into the solvent accessible area of the molecule. The

calculation of the excluded volume and Connoly solvent accessible area is present in

some molecular visualization software packages, such as Chimera [16]. Figure 2.5 is a

visual representation of the probe rolling along the surface of a molecule.

Lipid Bilayer Perturbation Studies

Thermodynamic integration studies of nanoparticles in isotropic organic phases, such as

octanol, do not take into the distinct barriers to partitioning along the heterogeneous axis

of a structured system, such as a lipid bilayer. Such systems are ubiquitous in nature, and

understanding how nanoparticle size, shape, and atomic composition are relate to solute

partitioning in such systems is very important [17].  It is reasonable to hypothesize that,

although the nanoparticle geometry may effect the partition coefficient due to differences

in the amount of surface exposed to the solvent, that effect will not fully reflect the

dependence of the partitioning into the bilayer on particle geometry. Considering the

Figure 2.4: The probe path around the 2-D profile of a particle
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limitations of a thermodynamic analysis in isotropic mediums, a partitioning study of a

nanoparticle into an ordered organic phase is very beneficial.

A lipid bilayer has a varying atomic composition in the direction normal to its

surface. Bilayers are commonly divided into four parts along this axis, which are defined

by their distance away from the center of the bilayer (Figure 2.5).  Region 1 is the

perturbed water region, or in other words, the aqueous phase adjacent to polar head

surface of the membrane. Region 2 is interfacial region, which is characterized a high

density of phosphate complexes. Region 3 is the soft-polymer zone, which is comprised

primarily of the high-density hydrocarbon chains of the phospholipids. Region 4 is the

hydrophobic core of the membrane, where the structure of the hydrocarbon chains

reduces from that of region 3, resulting in a lower hydrocarbon density [18]. The

classifications of such regions are important, as the varying compositions will have a

substantial effect on diffusivity in the z direction. Figure 2.5 illustrates the distinct

regions in a lipid bilayer.

.
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Figure 2.5: Perturbing the lipid bilayer with a particle

In an effort to understand the partitioning behavior of the C60 and H-POSS nanoparticles

along the heterogeneous axis, the one-dimensional lipid/water partition function (K(z))

[17] has been calculated. The K(z) parameter can be readily determined from the z-

directed forces exerted on the solute by the water/lipid system on the nanoparticle, if the

z-constrained partition function is considered. The equation below is the isothermal-

isobaric partition function (Eq. 2.7), with one particle being constrained at a z value of z2

[19]

if an additional partition function is taken at a reference depth, z1, Equation 2.6 can be

applied to yield to Gibbs free energy of transfer from depth z1 to z2

� 

Δ z2( ) = Ω N,V ,U( )δ z2 − z( )
V
∑

U
∑ e−βUe−βPV (2.28)

� 

ΔG z2( ) = −kbT ln
Δ z2( )
Δ z1( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ (2.29)
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If the derivative of Equation 2.29 is taken, the following result is noted

where

if Equation 2.31 and Equation 2.30 are combined, the result is similar to that of Equation

2.9. Therefore, ΔG(z2) can be defined as

therefore the z-directed lipid/water partition function takes the following form.

In this study, K(z) is obtained for the C60 and H-POSS nanoparticles by constrained them

in one of the four regions of the phospholipids bilayer, where F(z,t) is sampled every 50

fs, over a 2.5 ns production run.
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CHAPTER III

ON THE CALCULATION OF THE GIBBS FREE ENERGY OF SOLVATION FOR
FULLERENE PARTICLES BY MOLECULAR DYNAMICS SIMULATIONS

Introduction

Fullerenes are among the most widely studied nanoparticles; in the past year alone, more

than 2,500 papers have been published on the properties and potential applications of

these materials. Like many other nanoparticles, there is a growing interest in

incorporating fullerenes into biological systems, with applications including their use as

HIV protease inhibitors [1], immunosensors for the detection of cancers and viruses [2],

and light-mediated DNA cleaving agents [3].

Despite the potential of these carbon-based materials surprisingly, few studies

have been reported that probe the environmental and physiological impact of fullerenes.

Of particular interest is recent theoretical work that has demonstrated that C60 can bind to,

and deform a DNA fragment [4], suggesting the potential for C60 molecules to disrupt

replication and repair of DNA. However, this work [4] does not address whether C60 can

enter the intracellular region of the cell and in turn expose DNA for potential damage. Of

the experimental physiological studies performed [5-8],  conflicting results regarding the

toxicity of fullerene materials have been reported. While it is generally acknowledged [9-

11] that fullerenes display a high level of aggregation, particularly in non-organic

solvents, implying that the particles prefer carbon-rich environments to aqueous systems,

several studies have shown that functionalizing fullerenes with hydrophilic groups [12,

13] or varying their aspect ratio [14], can lower tissue damage and hence toxicity. Since
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both the addition of functional groups or molecular shape and size of a solute can

significantly alter its partitioning between aqueous and organic phases, the lowered

toxicity may be linked to the change in partitioning characteristics.

The almost limitless number of fullerene derivatives makes identifying the

general partitioning behavior of fullerenes difficult. Furthermore, solubility data, which is

key to understanding the partitioning of molecules between aqueous and organic phases,

has been particularly difficult to measure accurately for fullerenes due to particle

aggregation, particularly in polar fluids; the known agglomeration [15-17] behavior of

buckyballs could explain the discrepancies observed in solubility data relative to

temperature [18] and solvent chain length [19]. Experimental evidence suggests that

buckyballs are effectively large, sticky spheres that can form very stable cluster

configurations ranging from 13 to 147 particles [20] resulting in solubility shifts of up to

two orders of magnitude compared to isolated particles in solution [21, 22].

In an effort to provide molecular level insight into the solubility and partitioning

of fullerenes in this work, the Gibbs free energy of solvation has been determined for a

family of fullerene particles in octanol and water solvents, through molecular dynamics

simulation. From a comparison of the solubility of a particle in octanol to water, the

octanol/water partition coefficient (KO/W) can be determined. KO/W is commonly used in

environmental and physiological studies to estimate the fate of the particle in the natural

environment. The fullerenes studied in this work vary in volume, aspect ratio and solvent

accessible surface area, which are attributes that are believed to impact particle solubility.
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Simulation Details

Molecular dynamics simulations and thermodynamic integration have been used to

determine the ∆Gsolv for the fullerene particles of interest. The structures [23-25] of the

particles studied are pictured in Figure 3.1 and their geometric attributes summarized in

Table 3.1. As can be seen from Table 3.1 the particles studied were chosen to provide a

range of aspect ratios and solvent accessible surface areas, in order to probe the effect of

these quantities on the partitioning of fullerene materials.

Particle Diameter, Å Length, Å

C60 7.0 7.0

Thick, Uncapped CNT 18.6 8.8

Thin, Uncapped CNT 6.1 28.6

Medium, Uncapped CNT 7.9 16.7

Thin, Capped CNT 7.9 23.7

Medium, Capped CNT 13.8 19.9

Thick, Capped CNT 15.1 16.9

Table 3.1: Geometries of the fullerene molecules studied in this work.
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The change in ∆Gsolv for an isolated solute particle in solution can be calculated

from molecular dynamics simulation using thermodynamic integration [26], in which the

solute molecule is gradually “grown” into the solvent. The simulations are performed in

the NPT ensemble, in which the number of solvent particles (N), the pressure (P) and the

temperature (T) are held constant. For this ensemble it can be shown that [27],
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e.) f.) 

Figure 3.1: a) C60, b) 15.1Å uncapped CNT, c)  6Å uncapped CNTsd) 8Å uncapped CNTs, e) 8Å capped
CNTs,  f) 13.5Å capped CNT and g) 15.1Å capped CNTs
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therefore,

where U  is the potential between the solute and solvent and λ the coupling parameter,

which is defined such that λ = 0 represents a pure solvent state and λ = 1 indicates a fully

interacting particle in solution; all intermediate values of λ represent a “ghost” state for

the solute particle, for which the solute-solvent-interactions are present but weakened.

Hence, λ  enters into the solvent-solute interactions. Given an explicit means of

incorporating the λ parameter into the interactions between the solvent and the solute,

from the trajectories produced from molecular dynamics simulations, the right hand side

of Equation 3.2 can be computed. Thermodynamic integration therefore requires that the

force fields used in the simulations be modified by the λ parameter in a fashion such that

solvent/solute interactions are zero at  λ = 0 and full at λ = 1.

The TraPPE united atom force field [28] was used to model the octanol solvent,

the DREIDING force field [29] used to describe the fullerenes particles, and the SPC/E

model [30] used to describe water. Below we discuss the choice of each of these

potentials, with the reader is directed to the original references for full details of the

potential models.

The TraPPE force field was chosen to describe the octanol molecules due to the

accuracy of force field in describing liquid state properties and phase equilibria. In the

TraPPE united atom force field the hydrogen atoms are not treated explicitly but
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collapsed into a single site with the corresponding heavy atom. The bond stretching, bond

angle bending, and torsional potentials between united atom sites are described by

equations 3.3-3.5, are respectively

where kb, kθ, and ci are the force constants, ro is the equilibrium bond length, rij the length

of the bond between adjacent bonded atoms i and j, θo  the equilibrium bond angle and

θijk the angle between adjacent bonded atoms i, j, and k, and φijkl the dihedral angle

between the planes defined by four adjacent bonded atoms i, j, k, and l.

The SPC/E model is a commonly used three site water model that was chosen to

describe the water molecules since it adequately describes the thermodynamic and

structural properties of water [31] whilst being less computationally expensive than

recent, more accurate models that incorporate more atomistic sites, such as TIP4P/2005

[32] , or effects such as explicit polarisability present in the GCPM water model [33].

The DREIDING force field has a similar functional form to the TraPPE force

field; however in all simulations the solute is held fixed in the center of the simulation

cell and is treated as a rigid body. Therefore only the non-bonded interactions are

considered. For both the fullerene and solvent molecules the non-bonded interactions are

modeled by a 12-6 Lennard-Jones (LJ) potential. In addition, a Coulombic term is used to

describe electrostatic interactions between atoms i and j in the solvent molecules. The

combined potential is therefore given by,

(3.4)

� 

Uangle θijk( ) = kθ θijk −θo( )2

(3.3)

� 

Ustretch rij( ) = kb rij − ro( )2

(3.5)

� 

Utorsion φijkl( ) = co + c1 1+ cos φijkl( )[ ] + c2 1− cos 2φijkl( )[ ] + c3 1+ cos 3φijkl( )[ ]
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where εij is the LJ energy depth, σij is the LJ diameter, εo is the permittivity of free space

and qi and qj are partial charges on atoms i and j, and r is the distance between atoms i

and j. For the fullerene/water cross interactions, the Bojan-Steele force field [34] is used,

which has been noted for it’s accuracy in modeling fullerenes in water [35, 36]. The cross

terms for the fullerene/octanol interactions were obtained using Jorgensen’s mixing rules,

viz.

� 

εij = εiε j
;σ ij = σ iσ j

As discussed above, in the molecular dynamics simulations a parameter λ is

introduced to modifying the solute-solvent intermolecular interactions. In modifying the

intermolecular potential it is important that the softened potentials exclude the possibility

of numerical instabilities. To meet this end, the following form of the softened potentials

was employed to ensure finite energies at small intermolecular radii [37]
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where n is an integer and αLJ is a positive constant, which are taken to be 2 and 0.50

respectively in this study.

The simulations were performed using the DL_POLY v. 2.13 [23] program at

ambient conditions (i.e. P = 1 bar and T = 25 ˚C). Both the octanol and water simulations

contain approximately 10,000 solvent atoms corresponding to 3,334 SPC/E water

(3.6)

(3.7)

3.8



50

molecules for the water solvent case and 1,000 TraPPE octanol molecules for the octanol

solvent case. A Verlet integrator with a 10Å neighbor list was used to integrate the

equations of motion. The Ewald summation method was implemented to calculate the

long-ranged electrostatic interactions and a Nosè-Hoover thermostat and barostat were

used to provide temperature and pressure.

The solute was held fixed in the center of the simulation cell as it has been found

that allowing arbitrary conformational changes in the solute can lead to significant noise

in the thermodynamic integration analysis [38]. This restricts the particle from

translating, rotating, or flexing, which can be problematic if the solute has multiple,

probable, conformations, in which case multiple simulations must be performed to

account for each conformation of the solute. Fullerene molecules as large or larger than

C60 are commonly acknowledged to be relatively rigid structures [39], due primarily to

geometric constraints [40]. Thus, the assumption of a rigid structure is a reasonable

approximation in our work.

Each thermodynamic integration analysis performed in this work has 15 samples

at regular intervals of λ. The soft-potential (i.e. λ≈0) regimes of the thermodynamic

integration curve are very sensitive to changes in λ. Therefore, for λ ≤ 0.50, an increment

of 0.05 was used. For λ ≥ 0.50, the thermodynamic integration curve becomes linear with

increasing λ and so larger increments (0.10) were implemented. After a 1 ns equilibration

period, each λ value was sampled for an additional ns to ensure that an accurate value for

〈∂U(λ)/∂λ〉λ was obtained.
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Results and Discussion

The ∆Gsolv for each fullerene particle in water and octanol has been calculated and the

change in solvent structure relative to the solute of interest analyzed. We first present the

results for the particles in water and then in octanol before comparing the results and

discussing the implications on solubility relative to particle geometry. Table 3.2

summarizes the solubility of each nanoparticle in water and octanol respectively in

addition to reporting the calculated Connolly area and surface-enclosed volume, both of

which were determined using a probe size of 1.4Å [41, 42].

Particle
∆Gsolv (kcal/mol)

water
∆Gsolv

(kcal/mol)
octanol

Diameter
(Å)

Connolly
Area
(Å2)

Excluded
Volume

(Å3)
C60 10.97 +/- 7.5 -18.91 +/- 3.1 7 307 477.0

Thin, Capped CNT 21.58 +/- 4.0 -77.21 +/- 3.9 7.9 971.4 2220

Medium, Capped
CNT

31.01 +/- 4.0 -82.19 +/- 4.4 13.75 1214 3673

Thick, Capped CNT 31.62 +/- 4.0 -77.96 +/- 6.4 15.1 1174 3534

Thin, Uncapped CNT 51.62 +/- 5.2 -56.42 +/- 6.0 6.1 1046 2034

Medium, Uncapped
CNT

41.70 +/- 4.2 -82.32 +/- 5.8 7.9 1082 1454

Thick, Uncapped
CNT

86.85 +/- 8.7 -66.38 +/- 5.8 18.6 1768 2195

Fullerenes in Water Solvent

The results in Table 3.2 clearly show that all of the fullerene particles exhibit a

hydrophobic nature, regardless of their geometric attributes. The general expectation that

inserting a large, hydrophobic particle into water will result in a higher ΔGsolv than the

insertion of a chemically similar, smaller particle is observed; the free energy of solvation

Table 3.2:∆Gsolv in water and octanol with geometric attributes for fullerenes
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of the C60 particle in water is by far the lowest as would be expected on the basis of the

least disruption to the water hydrogen bonding network [43] and the smallest cavity

volume needed to accommodate the nanoparticle. Perhaps surprisingly, we see a

considerable increase the solvation free energy for the uncapped systems relative to

similarly sized and shaped capped fullerenes. In Figure 3.2, we compare the

thermodynamic integration curves for capped and uncapped carbon nanotubes with

similar diameters, in water.

The curves shown in Figure 3.2 are representative of the behavior seen for all the

fullerenes in water, in that the maxima are shifted for all uncapped fullerenes relative to

their capped analogues, resulting in a positive shift in ∆Gsolv for the uncapped fullerenes.

This behavior can be understood if the possibility of water entering the cavity of the

uncapped nanotube is considered.

In a series of papers, Hummer and coworkers [44-47] have studied the kinetics of

the filling/emptying mechanism of water in carbon nanotubes and have shown that water

Figure 3.2: Thermodynamic integration curve for 8Å uncapped/capped carbon nanotubes (left) and 18.6Å
uncapped and 15.1Å capped carbon nanotubes (right). Results for the capped particles are shown by the
solid lines and the uncapped by the dotted lines
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molecules can enter the core of an open 8.1Å diameter carbon nanotube. Additionally it

was found that while the 6.1Å and 7.9Å open nanotubes did not allow water inside the

tube at full potential, when the potential was softened (λ ≤ 0.40) water did enter the

tubes, resulting in an increase in energy (and hence positive 〈∂U(λ)/∂λ〉λ ). The increase in

energy upon entry into of the water molecules into the nanotube was found to be due to

the disruption of the hydrogen bonds of the water molecules with the bulk water. We also

note that experimental studies [48] have demonstrated the same behavior for a 14.1Å

open nanotube. We therefore attribute the shift in maxima seen in the thermodynamic

integration curves for the uncapped nanotubes compared to their capped counter parts to

the water solvent entering the interior of the uncapped nanotubes at low values of λ,

while the water is excluded from the central cavity in the closed nanotubes. To illustrate,

in Figure 3.3 we present the cross sectional water density averaged over the length of the

nanotube, for the 7.9Å uncapped, 6.1Å uncapped, and the 7.9Å capped systems at λ =

0.30 are presented. The figure confirms that water enters the open nanotubes at the

softened potentials, whereas water does not enter the capped nanotube, leading to the

observed differences in ∆Gsolv.
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We now consider the connection between the molecular topology of the solute

and ∆Gsolv. In particular, we consider the surface areas as implicit solvation methods,

such as the generalized Born/surface area (GBSA)[49], have linked ∆Gsolv of an

uncharged particle to its surface area viz,

(3.9)

� 

ΔGsolv = σ kSAk
k
∑

 

  

Figure 3.3: Water density profiles around 7.9Å uncapped (top left), 6.1Å uncapped (top right) and
7.9Å capped (bottom center) carbon nanotubes obtained form molecular dynamics simulations with λ
= 0.30. Scale in g/cm3.
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where σk is an empirical parameter and SAk is the surface area of atom k. The solvent-

accessible surface area and solute-excluded volume for the fullerene particles in water

have been calculated with a spherical probe of radius 1.4Å, using the Connolly and

surface-enclosed volume techniques, respectively [41, 42]. The Connolly surface area is

generated by rolling the solvent probe along the surface of the particle, and the area is

determined from the number of times the probe has turned while rolling over the surface.

The surface enclosed volume is simply generated by numerically integrating the

Connolly surface area over the enclosed volume. In Figure 3.4, we show the relationship

between ∆Gsolv and Connolly area and in Figure 3.5 the relationship between ∆Gsolv and

excluded volume for the capped fullerenes [41, 42].

Figure 3.4: ∆Gsolv vs. Connolly surface area for capped fullerenes in water
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As can be seen from the figures both the solvent accessible surface area and the excluded

volume exhibit an approximately linear trend, indicating a correlation between the size of

the solute and ΔGsolv. The interfacial surface tension is often substituted σk in Equation

3.9 for the calculation of ΔGsolvof flat particles, where approximately 30% of the

interfacial surface tension can be used for curved surfaces [50]. The slope of the fitted

line in Figure 4 gives a value of 19.1 mJ/m2, which is within reasonable agreement with

30% of the interfacial surface tension of graphite/water, which is 28.6 mJ/m2 [51].

A similar comparison is difficult for the uncapped nanotubes, due to the influence

of water accessing the core of the nanotube on ∆Gsolv. It is noteworthy that a moderate

jump in energy is observed between the 7.9Å and 6.1Å uncapped nanotubes despite the

fact that both tubes have almost identical Connolly areas, while the latter has a

significantly larger excluded volume. This provides evidence that the excluded volume

also effects ∆Gsolv and is not due to the fact that the excluded volume often increases with

an increase in accessible surface area.

Figure 3.5: ∆Gsolv vs. excluded volume for capped fullerenes in water
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Fullerenes in Octanol Solvent

The thermodynamic integration analysis of the 7 fullerenes studied in octanol indicates a

more conventional relationship between the ∆Gsolv and solute geometry, particularly for

the capped fullerenes, than that observed in water. Although, there is a jump in energy for

the uncapped nanotubes compared to the capped nanotubes, the energetic effect of the

caps in the octanol solvent is considerably smaller than in a water solvent. This is likely a

result of varying degrees of partial wetting due to the chain nature of the solvent and the

diameter of the given nanotube. From a CHx density study for the capped nanotubes,

similar to that performed for water and reported in Figure 3.3, we find that the capped

fullerenes are completely devoid of interstitial octanol at low values of λ . For the

uncapped nanotubes at λ = 0.25 the interior of the 6.1Å uncapped nanotube is found to be

relatively devoid of organic carbon, the 7.9Å uncapped nanotube has a low, yet finite

CHx concentration and the 18.6Å nanotube can easily accommodate the octanol solvent.

This suggests that neither the 6.1Å nanotube nor the 7.9Å will exhibit an extended region

of increasing 〈∂U(λ)/∂λ〉λ, as was the case in the water systems. The 18.6Å nanotube will

potentially be subject to the energy penalty, as its diameter is large enough to easily

accommodate octanol molecules. However, this penalty is likely to be relatively small, as

hydrogen-bond breakage for transitioning an octanol molecule from bulk to the interior of

the nanotube will be much smaller than that for water. Figure 3.6 compares the TI curves

for the uncapped nanotubes. Note that all the 〈∂U(λ)/∂λ〉λ curves peak at approximately

the same value of λ, with the largest nanotube exhibiting a shoulder on the right hand

side, which is consistent with the observations discussed above.
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From the figure we note that the 7.9Å thermodynamic integration curve has a lower tail at

high λ  regimes than the 6.1 Å curve, indicating a greater negative free energy

contribution. This is likely due to the interior of the 7.9Å nanotube being more accessible

to octanol than the 6.1Å nanotube. Considering the very similar solvent accessible

surface areas reported in Table 1.1 for the 6.1Å and 7.9Å nanotubes, it is likely that either

the Connolly solvent-accessible surface area for the interior of 6.1Å nanotube has been

overestimated, or the interior accessible area for the 7.9Å nanotube had been

underestimated. The likelihood of a misrepresentative Connolly surface area for a particle

in an anisotropic solvent, such as octanol, will be greater than in water since the analysis

is done with a spherical probe.  Interestingly, the thermodynamic integration curve for the

18.6Å nanotube is somewhat pronounced at λ = 0.25 and 0.30 values, which is similar to

the shift observed in the TI graphs for uncapped nanotubes in water. It is reasonable to

expect that since the thick uncapped nanotubes are wide enough to accommodate many

Figure 3.6: Thermodynamic integration curve for 6.1Å uncapped carbon nanotubes (dotted line), 7.9Å
uncapped carbon nanotube (dash-dotted line) and 18.6Å uncapped carbon nanotube (solid line)
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octanol molecules, this effect is also due to solvent molecules entering the cavity of the

nanotube and hydrogen bonds being broken resulting in higher energy.

In Figures 3.7 and 3.8 we present the relationship between ∆Gsolv and the Connolly

surface area and excluded volume for capped fullerenes in octanol.

Figure 3.7: ∆Gsolv vs. Connolly area for capped fullereznes in octanol

Figure 3.8: ∆Gsolv vs. excluded volume for capped fullerenes in octanol
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Again, Figure 3.7 indicates an approximately linear relationship between ∆Gsolv Connolly

surface area, whereas Figure 3.8 shows a decaying relationship between ∆Gsolv and

excluded volume. Again, the GBSA model appears to be applicable to the fullerene

systems.

Conclusion

The ∆Gsolv for 7 different fullerene molecules of differing molecular geometry has been

calculated using molecular dynamics simulation and thermodynamic integration. The

findings in this work generally support previous findings in the literature that report

strong hydrophobicity for fullerene molecules and a relatively high solubility in many

organics [19, 52, 53]. This is evidenced by the consistently positive ∆Gsolv values for

fullerenes in water and negative ∆Gsolv values for fullerenes in octanol. Furthermore,

general trends between ∆Gsolv and geometric attributes, such as the Connolly area and

excluded volume, are seen for capped fullerenes. The results generally fit within the

constructs of simple implicit solvation models, such as GBSA; additionally, the linear fit

of ∆Gsolv versus solvent accessible surface area for capped fullerenes in water gives an

approximation to the interfacial water/graphite surface tension [50, 51], which is often

used for the empirical constant in the GBSA equation. For capped nanotubes, it is

observed that ∆Gsolv in water increases as the Connolly surface area and the excluded

volume increase. The ∆Gsolv for capped carbon nanotubes in octanol decays with

increasing solute size, with larger particles having significantly lower solvation energies.

Therefore, it seems likely that large, capped fullerenes may partition into organic phases

more readily. No general correlation is noted for uncapped fullerenes relative to solute
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geometry due to the solute entering the cavity of the nanotube in the systems studied.

Solute density maps show that, depending on particle diameter; water can enter the

interior cavity at various degrees and form “water wires.” We believe, the entry of water

molecules into the interior of the tube results in an overall loss of hydrogen bonds

between the water molecules, resulting in a larger ∆Gsolv for the uncapped tubes

compared to the capped tubes.
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CHAPTER IV

ESTIMATING INFINITELY DILUTE ACTIVITY COEFFICIENTS FOR SELECTED
NANOPARTICLES USING GROUP-CONTRIBUTION METHODS AND AB INITIO

CALCULATIONS

Introduction

Accurate models for the estimation of activity coefficients are essential in many fields of

science and engineering, such as process design and the modeling of the fate of chemicals

in the environment. With the burgeoning interest in nanoscience [1], there is a growing

need for data on the solubility of these particles in common solvents, such as water and

octanol, and their partitioning between phases in equilibrium. In particular, accurate

descriptions of the infinite dilution activity coefficient of these particles in water and

octanol solvents would allow for the calculation of the octanol-water partition coefficient,

KO W , which is one of the key parameters used in modeling of the fate of chemicals in the

environment. For a given solute, labeled U , KO/W is defined as follows: assume that U  is

present in two immiscible liquid phases, one octanol-rich, the other water-rich, in

equilibrium with each other. If the mole fraction of U  in the octanol-rich liquid phase is

xU
octanol  and the mole fraction of U  in the water rich phase is xU

water , then

Clearly, as in any liquid-liquid immiscibility problem, activity coefficients will play a key

role in the calculation of KO W , as discussed below.� 

KO /W = xU
octanol

xU
water

(4.1)
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Many empirical methods such as UNIFAC [2], QSAR [3], and AlogPS [4] have

been developed for the direct estimation of KO W  or indirectly through the estimation of

activity coefficients. These techniques use a variety of approaches, such as empirical

linear combinations of physiochemical properties deemed to effect KO W  (QSPR) or the

use of associative neural networks with input from large physiochemical databases

(AlogPS).  Alternatively, some molecular-simulation-based techniques, such as

thermodynamic integration or Widom particle insertion [5] have been developed for the

calculation of the chemical potential of a solute. Such techniques can often yield very

accurate solubilities, but can also be limited due to the size of the particle, the lack of

relevant force fields, and computational expense.

From a practical standpoint, group-contribution activity coefficient methods seem

to be the optimal choice, as the calculations take little computational effort compared to

molecular-simulation-based methods, and the group parameters are intended to be

applicable, and thus predictive, for many molecular species. Furthermore, molecular-

simulation based studies may be insufficient for the calculation of KO W in instances

where the solute is largely or completely miscible in the solvent. For miscible solutes,

parameters describing infinite dilution often need to be extrapolated from experimental

phase equilibrium data. Liquid activity models, such as UNIFAC or the Margules

equation, are often well suited for such a problem [6]. One drawback to a standard group-

contribution approach is that it does not take into account the thermodynamic

implications of different isomeric structures. This is a particularly significant

shortcoming, as many nanoparticles have several isomeric forms that can have unique

wetting properties. For instance, a curved surface typically has a Gibbs free energy of
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solvation (ΔGsolv) that is about 30% of the corresponding flat surface value [7]. Therefore,

it would follow that C60 would be considerably less hydrophobic than a 60 particle

graphene sheet. Given the sensitivity of wetting properties to particle shape and the

multitudes of isomeric structures for many nanoparticles, the application of a group-

contribution method is inherently limited.  However, if shape and energy parameters are

defined for the entire bare nanoparticle unit, as opposed to small groups of atoms, the

error due to this simplification can be minimized. Although this is contrary to one of the

main intentions of the UNIFAC method, specifically parameterizing volume, area, and

energy factors for a given nanoparticle may sufficiently distinguish it from an isomer.

Binary interaction energies can be obtained from ab initio supermolecule calculations [8],

that include the entire bare nanoparticle unit and the given solvent group. UNIFAC shape

factors can be obtained from Connolly surface areas [9, 10] and excluded volume

calculations.

Due to the highly modifiable nature of many nanoparticles, many variants will be

of interest for various applications. The ability to use a simple group-contribution method

to calculate various solvation parameters, such as 

� 

γ∞ and logKO W , would greatly assist

in providing thermodynamic parameters for such a large array of particles. In this work,

the KO W  parameter for the C60 fullerene has been estimated using UNIFAC with

standard aromatic carbon parameters, which gives results that lie within range of

experimental and theoretical studies. The methodology is extended to the H-POSS

nanoparticle, where, due to the lack of experimental data, binary interaction parameters

between H-POSS and solvent groups must be calculated by ab initio methods.

Thermodynamic integration studies of C60(OH)32, H-POSS, OH-POSS, and F-POSS in
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water were also performed in order to obtain 

� 

ΔGsolv . It was found that attaching

hydrophilic groups, such as –OH, to the bare nanoparticle surface resulted in a significant

shift towards hydrophilicity. The application of the UNIFAC method towards these

systems also indicates a strong hydrophilic shift, further confirming the applicability of

UNIFAC to dilute nanoparticle systems.

Methodology

 The UNIFAC-FV group-contribution model

Using liquid phase equilibria expressions, theKO W of a compound can be estimated if 

� 

γ∞

is known for both phases, as shown below. We begin with the standard equations for

liquid-liquid equlibria for octanol and water containing a solute dissolved in both phases.

Focusing on the solute U , if the mole fraction of U  in the octanol-rich liquid phase is

xU
octanol  and the mole fraction of U  in the water-rich phase is xU

water , then equilibrium

requires that

where fU
0 , the standard state fugacity of the solute, is the same for both phases, and

γ U
octanol  and γ U

water , are the activity coefficients of the solute in the octanol-rich and

water-rich phases, respectively. KO W can be calculated by rearranging Equation 4.3 to

give

γ U
octanol xU

octanol fU
0 = γ U

water xU
water fU

0 (4.2)

KO W =
xU
octanol

xU
water =

γ U
water

γ U
octanol

(4.3)
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In principle, xU
octanol  and xU

water will be computed as part of an overall liquid-liquid

equilibrium calculation, in which three equations (Equation 4.2 plus two additional

equations similar to Equation 4.2, but for octanol and water) are solved. Under the

assumptions that the water-rich phase contains no octanol, and the octanol phase contains

no water, and that the solute is at low dilution in each phase, we can approximate

Equation 4.2 by

where γ U
∞,octanol  and γ U

∞,water  are the activity coefficients of the solute at infinite dilution

in pure octanol and pure water respectively.

The standard UNIFAC model simplifies the calculation of the activity coefficient

of a chemical species in a mixture using a linear combination of two contributions, the

combinatorial contribution (

� 

γ i
C ), which accounts for the size of the molecules in the

system, and the residual contribution (

� 

γ i
R ), which accounts for the intermolecular

interactions. The standard UNIFAC formulation is as follows

where the combinatorial term takes the following form

and the residual term takes the form.
� 

lnγ i
C = ln Φ i

xi
+ z
2
qi ln

θ i

Φ i

+ li −
Φ i

xi
xj lj

j
∑ (4.6)

� 

lnγ i
R = qi 1− ln θ jτ ji

j
∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

θ jτ ij
θ kτkj

k
∑

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ j

∑
⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

(4.7)

� 

lnγ i = lnγ
i

C + lnγ
i

R (4.5)

� 

KO / W = γU
∞,water

γU
∞, octanol

(4.4)
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In these equations, xi  is the mole fraction of species i , z  is a constant commonly taken

as 10, and τ ij  is a binary interaction parameter between groups i  and j , which is

commonly obtained by fitting to experimental data.  The group shape parameters, ri  and

qi  represent molecular volume and area respectively, and are calculated from the

following expressions

where Rk  and Qk  are the group volume and area for group k , and vk  is an integer that

describes how many times group k  appears in molecule i . The group shape parameters

are often estimated by van der Waals group volume and area as proposed by Bondi [11].

Ab initio calculations

The binary interaction parameters between functional groups used in group-contribution

methods are generally conditional on the availability of experimental phase equilibria

data for mixtures containing the needed functional groups. However, for many systems,

no such data exists. Nanoparticle systems, in particular, are underrepresented in terms of

� 

li = z
2
ri − qi( ) − ri −1( ) (4.8)

� 

τ ji = e
−
uji −uii
RT

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ (4.10)

� 

ri = νkRk; qi =
k
∑ νkQk

k
∑ (4.11)

� 

θ i = qixi
qjxj

j
∑ ; Φ i = rixi

rjxj
j
∑ (4.9)
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phase equilibria, as unusually strong solute-solute interactions result in large aggregates,

which often do no reflect the true phase behavior of the solute [12-14]. Additionally,

many nanoparticle variants have yet to be studied as a result of their novelty.

The ab initio “supermolecule” approach of Sandler et .al [8, 15] is a means by

which to obtain energetic binary interaction parameters for use in group-contribution

methods, when no fitted parameters are available. This approach has shown improved

UNIQUAC phase equilibria predictions for a variety of polar mixtures [15] and greatly

improved infinite dilution activity coefficients for binary systems containing water, n-

hexane, n-octanol and acetonitrile [16]. The supermolecule consists of a cluster of at least

two molecules, with each species of interest being represented. The larger the number of

molecules in the cluster, the more representative it is of the bulk solution. To find the

interaction energy between groups i  and 

� 

j , 

� 

uij ,, that appears in Equation 4.10, the

following expression may be used

where 

� 

Eij  is the calculated ab initio  energy of the cluster of molecules i  and 

� 

j , and 

� 

Ei

is the energy of the molecule i  from cluster 

� 

ij , in vacuum. Commonly, ab initio cluster

calculations are susceptible to so-called basis set superposition error (BSSE) [17]. This

occurs when the basis function on molecule 

� 

j  is used to optimize basis functions on

molecule i , and vice versa, resulting in an artificially low cluster energy. The

counterpoise correction accounts for BSSE that is inherent in ab initio cluster calculations

[18]. This method corrects the interaction energy by calculating the energy of the isolated

molecules, i  and 

� 

j , with all of the basis functions used in the cluster calculation. This

introduces the same, artificial optimization of orbitals on the lone molecules that is

� 

uij = Eij − Ei + Ei( ) (4.12)
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present in the cluster calculations. Therefore, when Equation 4.12 is applied with this

correction, the errors associated with BSSE should cancel. The following expression

describes the ab initio interaction energy with the counterpoise method applied

where the notation 

� 

i ⋅ j{ } indicates that all of the basis functions from the 

� 

ij  cluster

calculation are being used.

 All first principles calculations in this work are carried out using the NWChem

software package [19]. Given, the size of some of the nanoparticle clusters studied,

careful consideration was needed to obtain an optimum between the efficiency of the

calulation, and the accuracy of the interaction energies. The geometry of each cluster is

optimized with the MP2 level of theory and the 6-31G basis set. Once an optimized

cluster geometry is obtained, the cluster and individual molecule energies are obtained

using the MP2 level of theory with a minimum of the 6-311++G** basis set with the

counterpoise correction method [17]. The binary interaction energy is then calculated by

comparing the cluster energy to the combined energies of the isolated molecules in the

cluster. Since the calculations in this work require first principle calculations of large

nanoparticle systems, only the minimum requisite of two molecules per cluster are

calculated, as adding more particles is computationally infeasible. The water molecule is

also treated as a single group, which is in accordance with common UNIFAC

parameterization. The octanol molecule is broken up into a methanol (CH3OH) and

methane (CH4) groups. The methanol group describes the terminal alcohol unit in octanol

and methane group describes the methyl/methylene units in octanol.

� 

uij = Eij i ⋅ j{ }− Ei i ⋅ j{ }− E j i ⋅ j{ } (4.13)
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Thermodynamic integration technique

One major hurdle in establishing group-contribution methods as an effective tool for

calculating KO W  parameters for nanoparticle systems is the general lack of solubility

data. Some work correlating the solubility of a bare C60 using QSPR [20, 21] has been

published, along with some experimental partitioning data of the C60 and C70 fullerene in

water [22] and C60 in organic solvents [23]. However, solubility data for novel

nanoparticles, such as POSS, or functionalized fullerenes is very limited. In order to

verify that group-contribution techniques can adequately model systems of nanoparticles

at infinite dilution, an alternate means of estimating nanoparticle solubility is desirable. In

this work, the Gibbs free energy of solvation (

� 

ΔGsolv ) for three POSS variants

( SiO1.5H( )8  referred to as H-POSS, SiO1.5F( )8  referred to as F-POSS, and SiO1.5OH( )8
referred to as OH-POSS),  and C60(OH)32 in a water solvent have been calculated using

molecular dynamics simulations and thermodynamic integration (TI) [5]. Figure 4.1

shows the nanoparticle variants in the TI study.
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The simulations were performed in the NPT ensemble, in which the number of particles

(

� 

N ), the system pressure (

� 

P ), and the system temperature (

� 

T ) are constant. In order to

maintain ambient conditions at which many KO W  studies are performed, the system

pressure is held constant at 1 bar and the temperature at 298K. In an NPT system, the

� 

ΔGsolv  can be expressed as follows

� 

∂G
∂λ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
N ,P ,T

= ∂U
∂λ λ

so that,

� 

ΔGsolv = ∂G
∂λ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

0

1∫
N ,P ,T

dλ = ∂G
∂λ0

1∫
λ

dλ

(4.14)

(4.15)

 
 

a.) b.) 

  

c.) d.) 

 

Figure 4.1: Nanoparticles in TI study a.) H-POSS b.) F-POSS, c.) OH-POSS d.) C60(OH)32
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where U  is the potential between the solute and solvent and 

� 

λ  is an arbitrarily defined

variable that is defined such that 

� 

λ = 0 represents a pure solvent state and 

� 

λ =1 represents

a full nanoparticle in solution. All intermediate values of 

� 

λ  indicate a “ghost” state for

the solute particle, in which the solvent-solute interactions are softened. Therefore, 

� 

ΔGsolv

can be derived given an explicit form of the solvent-solute potential, which decays to 0 at

� 

λ = 0  and reduces to the standard potential form at 

� 

λ =1, and the resulting trajectories

from MD simulations.

When possible, a CHARMM compatible forcefield was used to model the

systems [24]. The CHARMM forcefield was chosen due to the fact that it has been

extended to a wide array of compounds, which eliminates the need to mix forcefields.

Additionally, due in large part to its explicit atom nature, CHARMM is considered

superior to most common force fields in terms of phase equilibria calculations [25]. In all

simulations, the TIP3P force field [26] was used to model water, as it is the only water

potential optimized for CHARMM. For systems with a POSS solute, a CHARMM

compatible force field for silica/water systems [27] was used to model the inner cage,

using surface type III parameters for the oxygen atom. For the functionalized groups in

POSS, the CHARMM fluorocarbon potential [28] was used to model van der Waals

interactions of the fluorine group and the CHARMM22 force field for lipids [24] was

used to model the van der Waals interactions of the functional groups for H-POSS and

OH-POSS.

 Since there is no CHARMM parameterization for graphitic materials, the

potential of Jiang and Sandler [29], which utilizes the Bojan/Steel force field for

graphene atoms [30] and the TraPPE force field [31] hydroxyl groups, was used for
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applied to the C60(OH)32 simulations. When cross terms were unavailable, Berthelot

mixing rules were employed, shown below.

� 

σ ij =
σ i + σ j

2
;εij = εiε j

It has been shown that allowing conformational changes in the solute can lead to

significant noise in the thermodynamic integration [32], therefore, all solutes in this study

have been fixed rigidly in the center of the simulation cell. The lowest energy

configuration for each nanoparticle was found using a DFT level optimization with a

minimum 6-31G basis set and a B3LYP exchange/correlation functional. The C60(OH)32

particle is believed to exhibit several hydroxyl adsorption patterns on its surface. For this

work, the lowest energy C60(OH)32 structure, calculated by Rodriguez-Zavala et al. [33],

was used for the initial configuration for the DFT optimization.

Most of the solutes in this study have no corresponding electrostatic force field

parameters. Using the DFT optimized structures, partial atomic charges were obtained by

performing a Mulliken population analysis on a DFT/6-311G** point energy calculation.

There is a considerable amount of debate regarding the validity of using the Mulliken

population analysis [34] for the calculation of partial atomic charges instead of other

methods [35], which typically base partial charges on the fitting of electrostatic surfaces,

such as the ChelpG [36] or Merz-Kollman [37] schemes. However, these methods often

fail for large molecules, as they often predict unrealistic charges for atoms that lie far

away from the electrostatic potential surface (ESP) [38]. Given the unrealistic charges

computed in this work for the nanoparticles of interest using ESP techniques, it seems

likely that such methods are inadequate due to an inability to fit the separate inner and

(4.16)
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outer surfaces of the cage-like particles; hence, the partial charges in this work are

calculated using Mulliken population analysis.

The integration in Equation 4.15 was performed in two steps. First, the van der

Waals interactions between the solute-and solvent were grown in, with no solute partial

charges, using the following modified 12-6 LJ potential [39]

� 

Uij
LJ r,λ1( ) = λ1

n 4εij
1

αLJ 1− λ1
2( )2 + r

σ ij

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

6⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

2 −
1

αLJ 1− λ1
2( )2 + r

σ ij

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

6

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

where 

� 

r  is the distance between particles 

� 

i  and 

� 

j  λ1  is the van der Waals softening

parameter defined before, εij  is the well depth of the LJ interaction between particles 

� 

i

and 

� 

j , σ ij  is the interaction radius between particles 

� 

i  and 

� 

j , α LJ  is a positive constant,

chosen to be 0.25 and n is an integer, chosen to be 2. This particular modification was

chosen, as it gives finite energies at low distances for soft potentials, minimizing

numerical instabilities. The thermodynamic analyses tend to be very sensitive to changes

in λ1 at soft potentials, therefore, for λ1 ≤ 0.5 , an increment of 0.05 is used, whereas for

λ1 > 0.5 , an increment of 0.10 is used. The solvent-solute electrostatic contribution is

calculated, with full van der Waals interactions, using a simple variation of the point-

point Coulombic interaction

� 

Uij
elec r,λ2( ) = λ2

n qiq j

r

(4.17)

(4.18)
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where λ2  is the electrostatic softening parameter. Since 

� 

dUelec

dλ λ

is generally less

sensitive relative to λ2 , λ2  is sampled in increments of 0.10 over 0.1 ≤ λ2 ≤ 1.0 . Using

Equations 4.15, 4.17, and 4.18 the 

� 

ΔGsolv  can be calculated as follows

where λ1  is the vdW interaction softening parameter, λ2  is the electrostatic softening

parameter, and the 

� 

⋅ ⋅ ⋅  denotes the time average of the summation of all solute-solvent

interactions. For both the vdW and electrostatic analyses, each data point is sampled over

a 1 ns MD run and the equations of motion are integrated using the DL_POLY [40]

program.

Results and Discussion

Application of ab initio supermolecule/UNIFAC method  of computing  KO/W for alkanes

and alcohols

Table 4.1 shows interaction energies for UNIFAC alcohol and water groups, as calculated

using the ab intio supermolecule technique.

(4.19)

� 

ΔGsolv = dUvdW

dλ1 λ1 ,λ2= 0
0

1∫ dλ1 + dUelec

dλ2 λ1=1,λ2
0

1∫ dλ2
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Cluster

� 

ΔEA ⋅B
kcal
mol

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

MeOH•MeOH -5.07

MeOH•CH4 -0.520

MeOH•H2O -5.17

CH4• CH4 -0.150

CH4• H2O ~0

H2O • H2O -5.77

The logKO W obtained from Equation 4.3, with infinite dilution activity coefficients

calculated using the UNIFAC method with binary energy parameters computed using the

supermolecule calculations (Table 4.1) for alkanes and alcohols are shown in Figures

4.2a and 4.2b. Also shown for comparison are experimental results and results from

several dedicated logKO W  algorithms [41].

Table 4.1: Interaction energies for water and alcohol groups
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Figure 4.2a shows that the UNIFAC method with binary interaction parameters derived

from ab initio supermolecule studies predicts logKO W values for linear alkanes that are in

better agreement with the experimental values than the other techniques considered. The

agreement with experiment may be due to the fact that the alkane solutes are only

composed of one group, thus reducing errors due to UNIFAC’s inability to distinguish

between isomers. However, it is shown that the standard UNIFAC calculation produces

generally poor results, which diverge away from experimental values as the alkane chain

becomes larger. Figure 4.2b illustrates that, for small alcohol solutes, the supermolecule

UNIFAC study predicts octanol-water partitioning that deviates by 1 order of magnitude

from experiment. As the carbon chain of the solute alcohol becomes larger, the calculated

logKO W  values converge towards the experimental logKO W , with the calculated value

for decanol being closer to experiment than any other. This limitation tends to indicate

Figures 4.2a and 4.2b: Comparison of calculated logKO W  values for (a) linear alkanes and (b)
normal alcohols as a function of carbon number

a.) b.)
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that the methanol binary interaction energies may not be fully representative of methanol

interactions in the bulk phase. Methanol, as opposed to methane, will form a very

defined, hydrogen bonded, structure with other polar molecules. When in a bulk system,

these hydrogen bonds may be disrupted by competing interactions of neighboring

molecules and, as a result, a simple binary cluster may overpredict the attractive energy

between two polar molecules. Since binary clusters cannot account for structure defects

due to the energetics of many interacting molecules, the binary interaction energies

involving polar species may be over estimated. However, the logKO W  predictions for

larger solutes, which are the focus of this work, are satisfactory.

Application of UNIFAC to C60 in octanol and water systems

Despite the well-known hydrophobicity of C60, the γ C60 /water
∞  appears high. However, the

values are more conservative than those predicted from prediction from regular solution

theory [43]. Using the heat of complete vaporization and specific volume data for C60 [44,

45] and the solvents [46, 47], regular solution theory gives γ C60 /water
∞  = 4.5x1059 and

γ C60 /octanol
∞  = 362.3. Additionally, considering the favorable ΔGsolv of C60 in octanol [42],

the 

� 

γC60 / octanol
∞  also seems unreasonably high. The large values of γ C60 /water

∞  and 

� 

γC60 / octanol
∞

are directly attributable  to the large negative solute-solute energy (

� 

uii = uC60C60 ) appearing

in Equation 4.10.  The value of 

� 

uC60C60  affects both γ C60 /water
∞  and 

� 

γC60 / octanol
∞ ; however, the

ratio of the two, yielding 

� 

KO /W , is independent of 

� 

uC60C60 . Hence, the value of 

� 

KO /W

reported is being diven by solute-solvent interactions.
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UNIFAC/supermolecule analysis of H-POSS and water/octanol systems

The binary interaction parameters for a H-POSS system in water or octanol solvents have

been parameterized using the ab initio supermolecule approach. The area (Qk  ) and

volume ( Rk ) factors were obtained by calculating the Connolly area and the excluded

volume [49], respectively; where 

� 

Qk = 6.45 cm
2

mol
 and 

� 

Rk =14.24 cm
3

mol
. Table 4.2 indicates

the interaction energies found for all H-POSS complexes.

Cluster

� 

ΔEA ⋅B
kcal
mol

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

H-POSS•H-POSS -14.23

H-POSS•CH4 -0.68

H-POSS•MeOH -3.24

H-POSS•H2O -3.18

It is seen that H-POSS interacts quite favorably with groups that have polar constituents,

such as water or methanol. However, the interaction energy between two H-POSS

particles is far greater, indicating that H-POSS system may also be subject to solute-

solute interaction artifacts in infinite dilution calculations. A UNIFAC analysis of H-

POSS in water yields γ POSS /water
∞ = 1.00x1066 and  γ POSS /octanol

∞ = 1.19x1055, resulting in a

logKO W = 10.9 . 

Table 4.2: Interaction energies for H-POSS
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Calculation of ΔGsolv for benzene in water using Mulliken Charges

As a test of our molecular-simulation based methodology for computing KO W , we

compute ΔGsolv  for benzene in water using thermodynamic integration with the

CHARMM force field and electrostatics for benzene derived from a DFT/6-311G**

Mulliken population analysis. The ΔGsolv for benzene in water has been calculated using

thermodynamic integration with the CHARMM force field and electrostatics for benzene

derived from a DFT/6-311G** Mulliken population analysis. Since the solubility of

benzene in water is well known, the accuracy of the calculation should indicate the

efficacy of using Mulliken partial charges in a TI study. The resulting partial charges are

shown in Table 4.3

CHARMM atom name (Mulliken) 

� 

qi GROMOS 43A1

� 

qi [50]

GROMOS 53A6

� 

qi [51]

CA -0.15 -0.10 -0.14

HP 0.15 0.10 0.14

Table 4.3 shows that the Mulliken partial charges are comparable to that of the

GROMOS potential, and in particular, close in value to the recent GROMOS 53A6

parameterization. A 250 ps thermodynamic integration of a CHARMM benzene with

Mulliken partial charges produces the vdW and electrostatic TI curves, shown in Figure

4.3.

Table 4.3: Mulliken partial charges for benzene
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Integrating (Figure 4.3a) over λ1  yields the first term in Equation 4.19, resulting in a

ΔGvdW
solv = +1.29 kcal/mol , where integrating Figure 4.3b over λ2  gives a

ΔGCoulombic
solv =  - 2.03 kcal/mol . Therefore, 

� 

ΔGsolv = −0.74 kcal /mol  , which is in better

agreement with the experimental value of 

� 

ΔGsolv = −0.86 kcal /mol, than either GROMOS

43A1 

� 

ΔGsolv = −1.15 kcal /mol) or GROMOS 53A6 (

� 

ΔGsolv = −1.60 kcal /mol)[52].

Solubility response associated with adding hydrophilic groups using thermodynamic
integration and UNIFAC

The partial charges for a C60(OH)32 were parameterized using a Mulliken population

analysis in order to carry out a thermodynamic integration of the particle in a water

solvent. The partial charges are documented in Table 4.4, along with the partial charges

for similar atoms in a TraPPE alcohol molecule, in an effort to compare the

parameterization to an established potential.

Figure 4.3: TI curves for CHARMM benzene with Mulliken charges a) step 1 b)step 2



86

Atom Mulliken qi TraPPE qi

CAd 0.09000 0.00

CB 0.26125 0.265

O -0.73000 -0.700

H 0.39000 0.435

In Table 4.4, CB represents a carbon atom bonded to an oxygen atom and CAd is a

carbon atom bonded to a CB, but not bonded to an oxygen atom. Despite the often-cited

limited applicability of the Mulliken technique [53] and the fundamental differences

between the hydroxyl group on a fullerenol and the hydroxyl group on a normal alcohol,

the partial charges are quite comparable.

The thermodynamic integration of C60(OH)32 in water yields a 

� 

ΔGelec
solv = +8.11 kcal

mol

and a 

� 

ΔGvdW
solv = −53.00 kcal

mol
, resulting in a 

� 

ΔGsolv = −44.89 kcal
mol

. This result is in

accordance with experimental studies suggesting that fullerenols with more than 12

hydroxyl groups are water soluble [54, 55]. Therefore, the lowered energy of solvation

relative to the undecorated C60 is due solely to more favorable solvent-solute interactions.

A UNIFAC analysis of a C60(OH)32 in water yields a 

� 

γC60 OH( )32
∞,water =1.88γ∞C60(OH)32/water = 1.88,

which is in stark contrast to the bare fullerene solubility. This response is at least a

qualitative indicator that the UNIFAC method can distinguish between strongly

hydrophobic and hydrophilic fullerenes.

Table 4.4: Comparison of Mulliken C60(OH)32 partial charges and TraPPE partial charges



87

A similar thermodynamic integration analysis has been done for H-POSS, F-

POSS, and OH-POSS. Table 4.5 summarizes the partial charges found from the Mulliken

population analysis.

Atom H-POSS F-POSS OH-POSS

Si 1.19000 0.21005 0.57505

OP -0.64000 -0.06670 -0.27170

HP -0.23000 N/A N/A

FP N/A -0.11000 N/A

O N/A N/A -0.44500

H N/A N/A 0.27750

The thermodynamic integration study produced solvation energies for H-POSS, F-POSS,

and OH-POSS, shown in Table 4.6. Also given are 

� 

γ∞ calculated from UNIFAC for each

particle in a water solvent.

Solute

� 

ΔGvdW
solv

(kcal/mol)

� 

ΔGelec
solv

 (kcal/mol)
� 

ΔGsolv

(kcal/mol)

� 

γ∞

H-POSS -6.78 -2.04 -8.82 +/- 3.9 1.00x1066

OH-POSS -7.51 -12.43 -19.94 +/- 4.5 1.02x1054

F-POSS -9.02 -1.96 -10.96 +/- 3.1 1.65x1066

The UNIFAC predictions are crude estimations, as there are no binary interaction

parameters for the intramolecular interactions between POSS and the functional groups.

As an approximation, the POSS•H2O interaction was used for the POSS•OH interaction,

Table 4.5: Mulliken partial charges for H-POSS, F-POSS, and OH-POSS

Table 4.6: Solubility parameters for POSS molecules in H2O
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and the POSS•C H4 interaction for the POSS•F interaction. All other UNIFAC

interactions were available from either the supermolecule calculation or from

experimental fitting [56]. The approximations were used because the H2O•OH and

CF•CH4 binary interaction parameters were relatively close to 0.  The UNIFAC

calculation reflects the increase of relative solubility of OH-POSS in water in comparison

to that of H-POSS, which in agreement with the thermodynamic integration analysis.

However, the UNIFAC analysis is unable to indicate the more subtle shift in relative

solubility in water from H-POSS to F-POSS, as shown in the thermodynamic integration

analysis.

Conclusions

The ability of the UNIFAC group contribution method to accurately estimate the

� 

logKO /W  for C60 and H-POSS. It was found that the UNIFAC method gives estimations

of logKO W  for C60 that are comparable to theory and experiment. Additionally,

thermodynamic integration studies were performed on C60(OH)32, H-POSS, F-POSS, and

OH-POSS in water using parameterizations from ab initio studies. The hydrophilic shift

from the base nanoparticle unit to the functionalized particle was tested with both the

thermodynamic integration method and the UNIFAC method. For particles with

significant water association, such as C60(OH)32 and OH-POSS, both techniques indicate

significant shifts in hydrophilicity from their base counterparts. In the instance of the F-

POSS/water system, the subtle hydrophilic shift from H-POSS that was shown in the

thermodynamic integration was not captured in the UNIFAC analysis. This shortcoming
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may be due to the approximations used to model the F-POSS/water system in UNIFAC,

or simply the inability of UNIFAC to distinguish between such similar solutes.

The results of these findings present a fast, simple, and inexpensive means of

obtaining logKO W for nanoparticle systems. The methodology is not meant to replace

theoretical or experimental means of obtaining logKO W values for nanoparticle systems;

rather, it is to be used as a tool to quickly estimate octanol/water partitioning for novel,

functionalized nanoparticles. Given the rate at which new nanoparticle variants are being

synthesized, this is a powerful tool in terms of tuning the solubility of new particles.

References

1. Roco, M.C., International perspective on government nanotechnology funding in
2005. Journal of Nanoparticle Research, 2005. 7: p. 707-712.

2. Fredenslund, A., Jones Russell L., and Prausnitz, John M., Group-Contribution
Estimation of Activity Coefficients in Nonideal Liquid Mixtures. AIChE Journal,
1975. 21(6): p. 1086-1099.

3. Hansch, C., and Leo, Albert, Substituent Constants for Correlation Analysis in
Chemistry and Biology. 1979, New York: John Wiley and Sons.

4. Tetko, I.V., Tanchuk, Vsevolod Yu., and Villa, Alessandro E.P., Prediction of n-
Octanol/Water Partition Coefficients from PHYSPROP Database Using Artificial
Neural Networks and E-State Indices. J. Chem. Inf. Comput. Sci., 2001. 41(5): p.
1407-1421.

5. Frenkel, D., and Smit, Berend, Understanding Molecular Simulation:From
Algorithms to Application. Computational Science Series. Vol. 1. 2002, San
Diego: Academic Press.

6. Smith, F.L., and Harvey, Allan H., Avoid Common Pitfalls when Using Henry's
Law. Chemical Engineering Progess, 2007. Sept.: p. 33-39.

7. Moore, J.W., and Pearson, Ralph G., Kinetics and Mechanism. 1981: John Wiley
and Sons.



90

8. Wu, H.S., and Sandler, Stanley I., Use of ab Initio Quantum Mechanics
Calculations in Group Contribution Methods. 1. Theory and the Basis for Group
Identifications. Ind. Eng. Chem. Res., 1991. 30(5): p. 881-889.

9. Connolly, M.L., Solvent-Accessible Surfaces of Proteins and Nucleic Acids.
Science, 1983. 221(4612): p. 709-713.

10. Richards, F.M., Areas, Volumes, Packing, and Protein Structure. Ann. Rev.
Biophys. Bioeng., 1977. 6: p. 151-176.

11. Bondi, A.A., Physical Properties of Molecular Crystals, Liquids, and Gases.
1968, New York: Wiley.

12. Chen, B., Siepmann, J. Ilja, Karaborni, Sami, and Klein, Michael L., Vapor-
Liquid and Vapor-Solid Equilibrium of Fullerenes: The Role of the Potential
Shape on the Triple Point. J. Phys. Chem. B., 2003. 107(44): p. 12320-12323.

13. Hagen, M.H.J., Meijer, E.J., Mooij, G.C.A.M., Frenkel, D., and Lekkerkerker,
H.N.W., Does C60 have a liquid phase? Nature, 1993. 365: p. 425-426.

14. Brant, J., Locanet, Helene, and Wiesner, Mark R., Aggregation and deposition
characteristics of fullerene nanoparticles in aqueous systems. Journal of
Nanoparticle Research, 2005. 7: p. 545-553.

15. Sum, A.K., Sandler, Stanley I., Use of ab initio methods to make phase equilibria
predictions using activity coefficient models. Fluid Phase Equilibria, 1999. 158-
160: p. 375-380.

16. Lin, S.-T., and Sandler, Stanley I., Infinite Dilution Activity Coefficiets from Ab
Initio Calculations. AIChE Journal, 1999. 45(12): p. 2606-2618.

17. Simon, S., Duran, Miquel, and Dannenberg, J.J., How does basis set superposition
error change the potential surfaces for hydrogen bonded dimers? Journal of
Chemical Physics, 1996. 105(24): p. 11024-11031.

18. Boys, S.F. and F. Bernardi, Calculation of Small Molecular Interactions by
Differences of Separate Total Energies - Some Procedures with Reduced Errors.
Molecular Physics, 1970. 19(4): p. 553-560.

19. Kendall, R.A., Apra, E., Bernholdt, D.E., Bylaska, E.J., Dupuis, M., Fann, G.I.,
Harrison, R.J., Ju, J.; Nichols, J.A., Nieplocha, J., Straatsma, T.P., Windus, T.L.,
and Wong, A.T., High Performance Computational Chemistry: An Overview of
NWChem a Distributed Parallel Application. Computer Phys. Comm., 2000. 128:
p. 260-283.



91

20. Marcus, Y., Smith, Allan L., Korobov, M.V., Mirakyan, A.L., Avramenko, N.V,
and Stukalin, E.B., Solubility of C60 Fullerene. J. Phys. Chem. B., 2001. 105(13):
p. 2499-2505.

21. Hansen, C.M., and Smith, Allan L., Using Hansen solubility parameters to
correlate solubility of C60 fullerene in organic solvents and polymers. Carbon,
2004. 42: p. 1591-1597.

22. Heymann, D., Solubility of Fullerenes C60 and C70 in Water. Lunar and
Planetary Institute, 1996. 27: p. 543-544.

23. Heymann, D., Solubility of C60 in Alcohols and Alkanes. Carbon, 1995. 34(5): p.
627-631.

24. Merz, K.M., and Roux, Benoit, Biological Membranes: A Molecular Perspective
from Computation and Experiment. 1996, Boston: Birkhauser.

25. Martin, M.G., Comparison of the AMBER, CHARMM, COMPASS, GROMOS,
OPLS, TraPPE and UFF force fields for prediction of vapor-liquid coexistence
curves and liquid densities. Fluid Phase Equilibria, 2006. 248(1): p. 50-55.

26. Jorgensen, W.L., Chandrasekhar, Jayaraman,Madura, Jeffry D., Impey, Roger W.,
and Klein, Michael L., Comparison of simple potential functions for simulating
liquid water. J. Chem. Phys., 1983. 79(2): p. 926-935.

27. Cruz-Chu, E.R., Aksimentiev, Aleksei, and Schulten, Klaus, Water-Silica Force
Field for Simulating Nanodevices. J. Phys. Chem. B., 2006. 110(43): p. 21497-
21508.

28. Chen, I.J., Yin, Daxu, MacKerell, Alexander D., Combined Ab initio/Empirical
Approach for Optimization of Lennard Jones Parameters for Polar-Neutral
Compounds. Journal of COmputational Chemistry, 2001. 23(2): p. 199-213.

29. Jiang, J., and Sandler, Stanley, I., Adsorption and phase transitions on
nanoporous carbonanceous materials: insights from molecular simulations. Fluid
Phase Equilibria, 2005. 228-229: p. 189-195.

30. Bojan, M.J., and Steele, William A., Interactions of Diatomic Molecules with
Graphite. Langmuir, 1987. 3(6): p. 1123-1127.

31. Chen, B., Pottoff, Jeffrey J., and Siepmann, J. Ilja, Monte Carlo Calculations for
Alcohols and Their Mixtures with Alkanes. Transferable Potentials for Phase
Equilibria. 5. United-Atom Description of Primary, Secondary, and Tertiary
Alcohols. J. Phys. Chem. B., 2001. 105(15): p. 3093-3104.



92

32. Wescott, J.T., Fisher, L.R., and Hanna, S., Use of Thermodynamic Integration to
calculate the hydration free energy of n-alkanes. Journal of Chemical Physics,
2001. 116(6): p. 2361-2369.

33. Rodriguez-Zavala, J.G., and Guirado-Lopez, R.A., Stability of Highly OH-
Covered C60 Fullerenes: Role of Coadsorbed O Impurities and the Charge State
of the Cage in the Formation of Carbon-Opened Structures. J. Phys. Chem. A,
2006. 110(30): p. 9459-9468.

34. Mulliken, R.S., Electronic Population Analysis on LCAO-MO Molecular Wave
Functions. J. Chem. Phys., 1955. 23: p. 1833, 1841, 2338, 2343.

35. Wiberg, K.B., and Rabien, Paul R., Comparison of Atomic Charges Derived via
Different Procedures. Journal of Computation Chemistry, 1993. 14(12): p. 1504-
1518.

36. Breneman, C.M., and Wiberg, Kenneth B., Determining Atom-Centered
Monopoles from Molecular Electrostatic Potentials. The Need for High Sampling
Density in Formamide Conformational Analysis. Journal of Computation
Chemistry, 1990. 11(3): p. 361-373.

37. Besler, B.H., Merz, Kenneth M., and Kollman, Peter A., Atomic Charges Derived
from Semiempirical Methods. Journal of Computational Chemistry, 1990. 11(4):
p. 431-439.

38. Martin, F., and Zipse, H., Charge Distribution in the Water Molecule-A
Comparison of Methods. Journal of Computational Chemistry, 2004. 26(1): p. 97-
105.

39. Beutler, T.C., Mark Alan E., van Schaik, Rene C., Gerber, Paul R., and van
Gunsteren, Wilfred F., Avoiding singularities and numerical instabilites in free
energy calculations based on molecular simulations. Chemical Physics Letters,
1994. 222: p. 529-539.

40. Smith, W., and Forrester, T.R., DL_POLY. 2003, Daresbury Laboratory:
Warrington, England.

41. Tetko, I.V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Palyulin.
V.A., Radchenko, E.V., Zefirov, N.S., Makerenko, A.S., Tanchuk, V.Y.,
Prokopenko,, Virtual computational chemistry laboratory - design and
description. J. Comput. Aid. Mol. Des., 2005. 19(453): p. 453-63.

42. Redmill, P.S., Capps, Shannon C., Cummings, Peter T., and McCabe, Clare, On
the Calculation of the Gibbs Free Energy of Solvation for Fullerene Particles by
Molecular Dynamics Simulation. 2008.



93

43. Prausnitz, J.M., Lichtenthaler, Rüdiger N., de Azevedo, Edmundo Gomes,
Molecular Thermodynamics of Fluid-Phase Equilibria. 3rd ed. 1999, Upper
Saddle River, NJ: Prentice Hall.

44. Pan, C., et al., Heats of Sublimation from a Polycrystalline Mixture of C60 and
C70. Journal of Physical Chemistry, 1991. 95(8): p. 2944-2946.

45. David, W.I.F., et al., Crystal-Structure and Bonding of Ordered C60. Nature,
1991. 353(6340): p. 147-149.

46. Kulikov, D., S.P. Verevkin, and A. Heintz, Enthalpies of vaporization of a series
of aliphatic alcohols - Experimental results and values predicted by the ERAS-
model. Fluid Phase Equilibria, 2001. 192(1-2): p. 187-207.

47. Felder, R.M., and Rousseau, Ronald W., Elementary Principles of Chemical
Processes. 3rd ed. 2000, New York, Chichester, Brisbane, Toronto, Singapore:
John Wiley & Sons.

48. Marmur, A., Dissolution and Self Assembly: The Solvophobic/Hydrophobic
Effect. J. Am. Chem. Soc., 2000. 122(9): p. 2120-2121.

49. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M.,
Meng, E.C., and Ferrin, T.E., UCSF Chimera - A Visualization System for
Exploratory Research and Analysis. J. Computational Chemistry, 2004. 25: p.
1605-1612.

50. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., and Hermans, J.,
Intermolecular Forces, ed. B. Pullman. 1981, Dordrecht. 331-342.

51. Oostenbrink, C., Villa, Alessandra, Mark, Alan E., and van Gunsteren. William
F., A biomolecular force field based on the free enthalpy of hydration and
solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of
Computational Chemistry, 2004. 25(13): p. 1656-1676.

52. Schravendijk, P., and van der Vegt, Nico F.A., From Hydrophobic to Hydrophilic
Solvation: An Application to Hydration of Benzene. Journal of Chemical Theory
and Computation, 2005. 1(4): p. 643-652.

53. DeProft, F., Martin, J.M.L, and Geerlings, P., On the performance of density
functional methods for describing atomic populations, dipole moments and
infrared intensities. Chemical Physics Letters, 1996. 250(3-4): p. 393-401.

54. Liu, W.-J., Jeng, U., Lin, T.-L., Lai, S,-H., Shih, M.C., Tsao, C.-S., Wanf, L.Y.,
Chiang, L.Y., and Sung, L.P., Adsorption of doceahydroxylated-fullerene
monolayers at the air-water interface. Physica B, 2000. 2000(283): p. 49-52.



94

55. Rincon, M.E., Hu, H., Campos, J., and Ruiz-Garcia, J., Electrical and Optical
Properties of Fullerenol Langmuir-Blodgett Films Deposited on Polyaniline
Substrates. J. Phys. Chem. B., 203. 107(17): p. 4111-4117.

56. Gmehling, J., Rasmussen, and Fredenslund, Aage, Vapor-Liquid Equilibria by
UNIFAC Group Contribution. Revision and Extension. 2. Ind. Eng. Chem.
Process Des. Dev., 1982. 21(1): p. 118-127.



95

 CHAPTER V

BEHAVIOR OF SELECTED NANOSCALE BUILDING BLOCKS IN A LIPID
BILAYER: A MOLECULAR DYNAMICS STUDY

Introduction

Many toxins function by attacking biological systems at a cellular level and disrupting

cellular structure or function, resulting in apoptosis (programmed cell death) or necrosis

(abnormal cell death). Toxins can, for example, alter the structure of the cellular

membrane, resulting in cell wall loosening and rupture (i.e. cell lysis) [1] or enter the

intercellular region and induce abnormal cell function, such as increased mitochondrial

function or ATP production [2], inducing apoptosis. Toxins often access the cell via

active transport or facilitated diffusion, by mechanisms such as ion channel permeation

[3] and binding with transport proteins [4], while some small particles are able to migrate

across the cell membrane unassisted.

Partitioning of solutes into a lipid bilayer is a complex process influenced in large

part by energetic considerations. By comparing the free energy of solvation in octanol

and water phases, qualitative conclusions about the partitioning of particles between

aqueous/organic phases can be made, which by extension can provide some insight into

the fate of the particles in analogous systems, such as soil/water [5] or tissue/water

interfaces [6]. A common parameter used to quantify organic/water partitioning is the

octanol-water partition coefficient (

� 

KO /W ). However, 

� 

KO /W  coefficients describing

partitioning of a molecule between an isotropic aqueous phase and an isotropic organic

phase, such as octanol, may be insufficient to describe the partitioning of the between an
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aqueous phase and an anisotropic, semi-ordered organic phase, such as a phospholipids

membrane. In the case of a highly structured, heterogeneous membrane, the diffusivity of

the particle is dependent on the location within the membrane, which contributes to

partitioning behavior. Additionally, complex membrane systems may exhibit many more

phases, which have significant effects on solute partitioning, over a relatively small range

of condit ions.  For example,  the part i t ioning of  benzene in

dimyristoylphosphatidylcholine (DMPC) model bilayer systems decreases by an order of

magnitude when the temperature is lowered below the phase transition temperature of

23.5°C [7, 8], which increases the surface density of the bilayer, in turn making the

insertion of the solute into the membrane more difficult.By contrast, the partitioning of

benzene in an octanol water system only changes by 2.5% when the temperature is

lowered from 25°C to 15°C [9]. Due to the fact that octanol, as well as many other

isotropic hydrocarbons, does not undergo any significant phase transition between these

temperatures, the true partitioning of the solute in the DMPC membrane is lost with a

simple 

� 

KO /W  study. Furthermore, it has been suggested that geometric characteristics of

the solute, such as molecular volume, will have a fundamental role in passive transport

across a structured membrane [10].

In light of the growing interest in incorporating nanoparticles into biological

systems for various applications such as MRI contrasting agents [11] and drug delivery

[12], the determination of their toxic potential has become a key issue. The particles in

this study (Figure 5.1) for example, which were chosen due to their compact size and

highly symmetric shape, have been proposed as nanoscale building blocks (NBBs) for

many applications, including structural materials, thus significantly increasing the
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liklihood of occupational exposure to these nanoparticles. In addition, functionalized

versions of the nanoparticles in Figure 5.1 have been proposed as possible HIV protease

inhibitors [13], light-mediated DNA cleaving agents [14], dental restorative composites

[15], and vascular prostheses [16]. Several studies have shown that these nanoparticles

exhibit some toxic traits; buckyballs have been shown to cause oxidative stress in the

brain tissue of juvenile large mouth bass [17], bind to and deform DNA fragments [18],

and partition significantly in the organic phase of octanol/water systems [19]; and it has

been shown that a cationic variant of the POSS molecule can diffuse across the cellular

membrane and gain access to the cytosol [20], where it would be hypothetically capable

of interfering with intracellular processes.

In this work, the Gibbs free energy required to insert the nanoparticle at various

depths normal to the bilayer plane (hitherto referred to as the 

� 

z  direction), (

� 

ΔG z( )), has

been calculated for these particles in a fully hydrated DPPC (Figure 5.2) bilayer using

molecular dynamics (MD) simulations and potential of mean force (PMF) calculations.

Figure 5.1: C60 and H-POSS (SiO1.5)8
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The DPPC molecule was chosen since it is commonly used to study model bilayers by

molecular simulation[21-26]. The common usage of DPPC is a result of human

membranes consisting of over 90% phospholipids, 60% of which is DPPC [27].

The calculated 

� 

ΔG z( ) functions describe the partitioning behavior of the particle in the

bilayer and therefore providing insight into the likelihood of a C60 or H-POSS molecule

penetrating the cell. Furthermore, the permeability of the particles can be compared to

that of similarly sized polymers and biomolecules, in order to ascertain the significance

of solute geometry on bilayer partitioning.

Figure 5.2: dipalmitoylphosphatidylcholine
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Simulation Details

Molecular dynamics simulations have been performed and potential of mean force

calculations used to determine the 

� 

z -directed Gibbs free energy and diffusivity functions

for C60 and H-POSS molecules in a fully hydrated DPPC phospholipid bilayer. Bilayer

systems are commonly separated into 4 distinct groups along the heterogeneous 

� 

z  axis

[28][29] as shown in Figure 5.3.

Region 1 is the so called ‘perturbed water” region that encompasses the depth from

roughly 8Å above the bilayer surface (at which point the water structure is that of bulk

water), to the depth where the lipid and water densities become equal. Region 2, the

“interfacial” region, is characterized by a dramatic drop in water density and is comprised

1

1

2

2

3

3

4

Figure 5.3: The four-region model of a fully hydrated DPPC bilayer:
water O (red), water H (white), nitrogen head group (blue), phosphorus
head group (brown), hydrocarbon chain (silver)
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primarily of DPPC choline and phosphate groups. Region 3 is the “soft polymer” region,

which is also about 8Å thick, and is comprised primarily of partially ordered hydrocarbon

chains, starting at the carbonyl groups of the DPPC molecules and extending to the depth

where the hydrocarbons are roughly at the density of n-hexadecane. Region 4 is the

hydrophobic region and exhibits low structure and a low density, comparable to that of

decane.

The overall resistance (

� 

R) associated with solute permeation crossing a

heterogeneous bilayer of depth 

� 

dz , defined as the inverse of the permeability coefficient

(

� 

P ), is connected to the diffusivity function, 

� 

D z( ) , and 

� 

ΔG z( ) through the following

relations [30]

where 

� 

K z( ) is the lipid/water partitioning function, which describes the ratio of the

concentration of solute in the lipid and in water. The 

� 

ΔG z( ) function can be obtained by

performing a potential of mean force study on the solutes in each of the four regions in

Figure 5.3. The potential mean force calculation is performed by fixing the center of mass

of the solute at a given 

� 

z -depth of the bilayer, while the molecule is able to freely

translate in the x and y directions and individual atoms on the solute can move about on

the z-axis. The forces acting upon individual atoms in the solute can be obtained and, in

turn, can provide the force on the center of mass (

� 

F z,t( )) required to keep the solute fixed

at the chosen depth.  The 

� 

ΔG z( )function is obtained from Equation 5.3 [31],

� 

R = 1
P

= dz
K(z)D(z)0

d∫ (5.1)

� 

K(z) = e
−ΔG z( )
RT (5.2)
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where 

� 

zref  is the region from which the change in energy will be in reference to, which in

this study is region 1 of Figure 5.3 and 

� 

⋅ ⋅ ⋅ t  indicates a time average. To simplify the

calculation of 

� 

F z,t( ), both the C60 and H-POSS structures were held rigid by fixing all

intramolecular bonds and angles using the SHAKE algorithm. This simplification is

justified, as both H-POSS [32-34] and C60 [35, 36] have been found to be somewhat rigid

structures. The simulations were performed using the LAMMPS [37] molecular

dynamics code, employing the particle-particle-particle mesh method for long-ranged

interactions and a velocity-Verlet integrator with an 8Å Lennard-Jones cutoff and a 10Å

electrostatic real space cutoff.

The simulations are performed in the NPAT ensemble, in which the number of

particles (

� 

N ), pressure normal to the bilayer (

� 

P ), cross sectional-area of the bilayer

surface (

� 

A), and temperature (

� 

T ) are held constant. In order to accurately model a

membrane, either a knowledge of the surface area per lipid or the surface tension of the

membrane must be applied [29]; therefore, practically all lipid bilayer simulations use

either the NPAT or NPγT ensemble. Since there is a considerable amount of literature

debating the appropriate value of the water/membrane surface tension to be applied to

NPγT ensembles [23, 38-41], the NPAT ensemble was employed with the well defined

constant area of  61.8Å2/lipid [29].  The simulation contained 288 DPPC molecules and

8375 water molecules. In order to mimic ambient conditions, the temperature was held

constant at 298.15 K and the pressure was held at 1 atm. The simulations were relaxed for

1 ns, and then the trajectories were sampled over an additional 2.5 ns at 0.5 ps intervals.

� 

ΔG z( ) = − F z'( ) t
dz'

zref

z∫ (5.3)
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Table 5.1: Results from a B3LYP-DFT/6-311G** geometry optimization of H-POSS

The CHARMM27 force field [42] was used to model the hydrated phospholipid

system with the standard TIP3P [43] force field to describe the water. To model the C60

molecule we used the van der Waals parameters for aromatic carbons in the

CHARMM27 force field.  For H-POSS, the water-silica force field of Cruz-Chu et. al

was used. [44]. This force field was chosen due to the fact it has been optimized to be

compatible with the CHARMM force field and has been shown to reproduce wetting

characteristics of water on a silica surface, a phenomena that strongly correlates to the

Gibbs free energy of solvation (

� 

ΔGsolv )  [45]. Partial atomic charges for H-POSS were

obtained using a Mulliken population analysis from a B3LYP-DFT/6-311G** point

energy calculation with a structure obtained from a B3LYP-DFT/6-31G geometry

optimization. All DFT studies in the work were executed using the NWCHEM program

[46]. Geometry and partial charge information for H-POSS are provided in Tables 5.1

and 5.2.

Geometry rij (Å) θijk (degrees) φijkl (degrees)

Si-O 1.63 - -

Si-H 1.45 - -

O-Si-O - 108.97 -

Si-O-Si - 109.47 -

H-Si-O - 109.97 -

Si-O-Si-O - - 59.3

H-Si-O-Si - - 178.60
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Table 5.2: Partial charges for H-POSS derived from Mulliken population analysis

Figure 5.4: Atom group densities in an unperturbed DPPC bilayer: H2O
( ), CH2 ( ), CH3 ( ), phosphorus ( ), and nitrogen (+)

Atom qi

Si 1.83

O -1.15

H 0.105

Results and Discussion

As discussed above, the energetic behavior of the particles along the heterogeneous axis

of the DPPC bilayer has been calculated. A 1 ns MD simulation of an unperturbed

hydrated DPPC bilayer was first performed to confirm that the simulated model bilayer is

consistent with those used in earlier simulation studies [28].  In Figure 5.4 we present

density profiles for pertinent atom groups in the unperturbed DPPC bilayer.
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Figure 5.5: 

� 

ΔG z( ) of C60 in a gel-phase DPPC bilayer   , a liquid
crystalline DPPC bilayer    , and a liquid crystalline DMPC bilayer

We note that the density profiles closely resemble those of similar systems [29, 47, 48]

for DPPC bilayers. Additionally, Figure 5.3 reflects the characteristics of each region as

described in the four-region model. Namely, the system approaches that of pure water

around 24Å away from the center of the bilayer, a significant presence of polar heads is

observed between the depths of 16Å - 24Å and the system exhibits a relatively low

aliphatic density in the center.

Study of C60 in DPPC

The 

� 

ΔG z( ) function for the C60 particle along the heterogeneous axis of the gel-phase

DPPC bilayer, along with Gibbs free energies of transfer for C60 in liquid crystalline

DPPC and DMPC systems are shown in Figure 5.5.

Figure 5.5 represents the change in Gibbs free energy associated with transferring the C60

particle from the water phase to another layer of the gel-phase DPPC system studied here,
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along with liquid-crystalline DMPC and DPPC systems from other studies. The water

phase was chosen as the reference therefore, region 1 corresponds to ΔG = 0. For the gel-

phase DPPC system, the transition from the water phase to the interfacial region results in

a 

� 

ΔG= -25.5 kcal/mol, which is the lowest energy state of the system. This value is

significantly lower in comparison to the insertion of C60 into the interfacial region of a

DMPC membrane at 310K shown by Bedrov, et. al [49]. However, the value of the

energy minima for each system is similar, with a value of –21.8 kcal/mol in the DMPC

study. The discrepancy in terms of the location of the minima in each system may be due

to a variety of factors. It should be noted that the DMPC study is performed in the liquid

crystalline temperature range, whereas this study is performed in the gel temperature

range [50].  It is believed that this will have a significant effect on partitioning to the

center of the bilayer, as the hydrophobic core in the gel phase will be significantly more

rigid. The DMPC study was also sampled 10 nanoseconds, which is much longer than

this study. However, the DMPC study uses a bilayer system that consists of only 52 lipid

molecules, which may be too small to insert a particle as large as C60 without periodic

effects. The transition of C60 to the highly ordered aliphatic region of the membrane from

water is –12.1 kcal/mol, whereas the transition into the interior of the membrane is –2.1

kcal/mol. While this still indicates a favorable partitioning to the interior of the

membrane, the degree of partitioning is greatly decreased from the liquid crystalline

bilayer study. The relationship presented in Equation 5.2 indicates a moderate

partitioning of C60 into a DPPC bilayer, with K(0) = 34. As with this study, most

theoretical studies predict an energy minima that does not occur in the bilayer center [49,

51]. However, the depth of this minima is subject to debate, as the liquid crystalline
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DMPC study only indicates a difference of about 1.8 kcal/mol from the minima to the

center of the bilayer, where a very similar liquid crystalline study of DPPC [51] shows a

difference of 12.4 kcal/mol, whereas the gel phase simulation in this study indicates a

change of 23.4 kcal/mol.  

These results seem to suggest that, for the gel phase of DPPC, C60 is energetically

driven to the water/bilayer interfacial region. Alternatively, literature focused on liquid

crystalline systems seems to suggest that C60 energetically prefers the zone between the

high-density aliphatic carbon chain region and the decane region. The preference to the

interfacial region for the gel phase study is reasonable, as the hydrocarbon region will be

considerably more rigid, resulting in a greater energetic penalty when the particle is

transferred to that region.  Similar changes in partitioning behavior over the phase change

from liquid crystalline to gel has been noted for smaller molecules, such as benzene,

which exhibits a decrease in membrane/water partitioning by an order of magnitude [7,

8]. Therefore, given the relative size of C60, the significant change in partitioning

behavior is perhaps not so surprising

In an effort to better understand the migration of the C60 particle, a 1 ns simulation

of a free floating C60 particle, initialized in the high-density-aliphatic region, was

performed. Figure 5.6 shows the probability density of C60 occupying different depths in

the vicinity of the interfacial region. The simulation indicates that C60 translates very

minimally at the interface, with the particle predominantly occupying the region between

15Å – 19Å from the center of the bilayer.
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This suggests that both the aliphatic region of the membrane and the bulk water region

exert a significant amount of competing forces on the particle. Over the time range

chosen, no explicit diffusive behavior is noted (i.e. the particle does not consistently trend

towards either extreme), however, the probability distribution does indicate that C60 is

most likely found about 17.5Å from the bilayer center. The particle will be largely

segregated from the water at this depth and will be in contact with the highly-ordered

alkane tail and polar head regions of the bilayer. The fact that C60 never fully enters the

water phase again suggests that there is an energetic preference for the C60 to embed into

the polar head rich region of the bilayer, as opposed to the water region.

Study of H-POSS in DPPC

The ΔG z( )  function for the H-POSS particle along the heterogeneous axis of the DPPC

bilayer is shown in Figure 5.7.

Figure 5.6: Probability of finding C60 at various depths about the interfacial region
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Figure 5.7 shows that H-POSS energetically prefers the aqueous phase of the

DPPC systems, with 

� 

ΔG   = -0.57 kcal/mol 28Å away from the bilayer center. The figure

also shows an increase in ΔG z( )  as the particle approaches the interface, as the ΔG z( )

from bulk water to a depth of 24.5 Å is +0.45 kcal/mol. The partitioning of H-POSS into

the hydrophobic region of the membrane is shown to be energetically unfavorable, with a

transfer energy to the high-density aliphatic region of about +5 kcal/mol, whereas the

core of the membrane shows a slightly less unfavorable transition energy of about +4

kcal/mol.

The favorable energy of H-POSS in water is likely due to the presence of partial

atomic charges on the solute. Charges on the solute will lead to a stronger association

with the polar water. These electrostatic interactions will be generally absent from the

hydrophobic region, as the methyl groups in that region are relatively non-polar. The

Figure 5.7: ΔG z( )  of H-POSS in DPPC bilayer
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small dips in energy seen at 28Å and at the bilayer center are likely the result of an

overall lowered density in each region, as shown in Figure 5.4. The lower densities are

attributed to the perturbation of the bulk water phase by the polar head groups of the

DPPC molecules and the general loss of structure in the hydrocarbon chains as the center

of the membrane is approached.  The lowered density will provide a greater free volume

available to the solute, which decreases the energetic penalty associated with creating the

cavity for the particle.

A 1 ns, simulation with a free floating H-POSS in the DPPC membrane was also

performed. The position of the H-POSS was initialized in the high density aliphatic

regions, at a depth of about 13Å. In Figure 5.8 we present the probability density of H-

POSS occupying various depths of the bilayer.

Figure 5.8: Probability of finding H-POSS at various depths in the DPPC membrane



110

The profile shows a maximum at 13Å, which is likely a result of the particle being

initialized at this location. Given the high rigidity of the hydrophobic core, the H-POSS

particle will likely spend a considerable amount of the 1 ns simulation near the depth at

which it was initialized. The profile does show, however, that the probability of H-POSS

occupying depths closer to the bilayer center drops off steeply, with a depth of 8.5Å

being the closest to the center recorded. This observation agrees with Figure 5.7, which

indicates that the insertion of H-POSS into the hydrophobic core is energetically

unfavorable, making the occurrence of H-POSS in that region statistically improbable.

The probability curve in Figure 5.8 does not decay very quickly as the H-POSS

approaches the interfacial and perturbed water regions. Figure 5.8 shows an appreciable

probability of finding H-POSS in the interfacial region between 16Å-24Å, with H-POSS

being observed as far away from the center as 24.5Å. The fact that H-POSS is

consistently found near the polar head region of the membrane, despite H-POSS being

initialized far away from this region and the relatively short simulation time, supports the

finding in Figure 5.7 that the perturbed water region of the DPPC system is the

energetically favorable position for H-POSS.

Conclusions

The ΔG z( )  function for C60 and H-POSS nanoparticles have been calculated using

constraint dynamics molecular dynamics simulations. Additionally, free-floating

simulations of both particles have been performed in an effort to clarify the partitioning

behavior of the particles in interfacial regions. It was found that C60 partitions into the
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organic phase of a hydrated DPPC system, particularly into the polar head region of the

DPPC. The energetic preference of C60 to the interfacial region of the bilayer is likely a

consequence of the extraordinary hydrophobicity of C60. Furthermore, the gel phase of

the DPPC membrane allows relatively little free volume available to the solute.

Therefore, although the interior of the membrane is energetically favorable to the bulk

water, the structure of the aliphatic chains of the gel phase DPPC are too rigid to allow

partitioning from the interfacial region to the membrane interior.

The simulation results show that H-POSS is likely to partition into the aqueous

phase of the DPPC/water system. Inserting the H-POSS into the aliphatic region of the

DPPC membrane corresponds with a +5 kcal/mol penalty in the soft polymer region and

a +4 kcal/mol penalty in the decane region. Like C60, this penalty is likely due to the lack

of free volume in the inner membrane to contain the H-POSS. Conversely, it was found

that H-POSS is slightly energetically favorable in the perturbed water region of the

system, with a ∆G = -0.57 kcal/mol. This is likely due to the increased free volume in the

water due to the perturbation of the bulk water by the bilayer surface.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

Conclusions

The work presented in this dissertation demonstrates the feasibility of predicting

of aqueous/organic partitioning data for various nanoscale building blocks (NBBs). Using

molecular dynamics simulations and thermodynamic integration, it has been shown that

bare fullerene materials exhibit significant hydrophobicity and organophilicity, implying

that such particles partition readily into the organic phase of aqueous/organic systems. It

was found that the size and shape of fullerene particles has a direct effect on

hydrophobicity. Generally speaking, larger fullerene particles exhibit a higher 

� 

ΔGsolv  than

their smaller counterparts. Also, the surface wettability of fullerenes has a profound effect

on hydrophobicity, as open nanotubes that allow water into the interior of the tube are

found to be significantly more hydrophobic than capped nanotubes, which do not allow

water into the interior of the tube.

The group-contribution method, UNIFAC, was applied to systems of infinitely

dilute C60
 in water and octanol. While the values of 

� 

γC60
∞  in a given solvent appear to be

artificially high due to large negative solute-solute energies which appear in the

calculation, the ratio of the activity coefficients in water and octanol provides a

reasonable first approximation of 

� 

logKO /W  for NBBs. A b initio supermolecule

calculations were then performed to generate binary interaction parameters for H-POSS

for the use in UNIFAC logKO/W calculations. The UNIFAC approach was further tested
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by showing that the method correctly predicted the hydrophilic shift, reflected in TI

studies, for a C60 decorated with 32 -OH groups, and H-POSS functionalized with

fluorine and OH.

Finally, the partitioning of H-POSS and C60 in a heterogenous DPPC bilayer was

evaluated using a potential of mean force calculation. These studies show that a C60 will

readily partition into the center of the bilayer from the bulk water phase. The H-POSS

particle, on the other hand, experiences a significant barrier at the DPPC/water interface,

implying that H-POSS may ultimately remain in the water phase.

This work is a step towards of understanding the partitioning behavior of some

basic NBBs in aqueous/organic systems. The techniques described here will hopefully

inspire measurements of solubility data for NBB variants as well as additional theoretical

studies. The ultimate goal is to be able to calculate solubility data for any particle, in any

solution, at various degrees of accuracy depending on the desired expense of the

calculation. Despite these gains, there are many phenomena of nanoparticle phase

equilibria not explored in this work, that will likely prove beneficial to this goal. Below

are recommendations of future studies on this subject.

Future Work

 CHARMM parameterization for fullerene materials

Given the lack of potentials available for fullerene materials, particularly for

functionalized varieties, and the uncertainty associated with which solvent force fields

can be used with established fullerene potentials; a standardized fullerene potential for a

common force field. Given its wide usage and well-documented parameterization
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methodology, the CHARMM force field seems ideal for this endeavor. Ideally, the force

field would be as general as possible, with the ability to model pristine and functionalized

fullerenes, in a variety of solvents. Given the ambitious nature of such an endeavor, this

is a goal that would likely take the contribution of several students.

Fortunately, gas phase conformations of many fullerenes, such as bare C60, bare

carbon nanotubes, and the hydroxylated C60 from this work, are readily available. The

CHARMM parameterization[1] cites ab initio vibrational spectra as a means of fitting

intramolecular force constraints, such as the bonded, angular, torsional, improper, and

Urey-Bradley interactions. As per the CHARMM parameterization methodology, the HF

level of theory with a 6-31G(d) basis set is to be used for vibrational spectra calculations.

Vibrational spectra are common output from ab initio codes, and many packages, such as

NWCHEM, have built in features that easily allow this computation.

For the calculation of intermolecular interactions, the partial charges of the solute

atoms are determined via supermolecule calculations involving the solute and a TIP3P

water molecule. In the calculations, the partial charges of the water molecule are held

fixed to the TIP3P parameters, whereas the charges of the solute atoms that  are

interacting directly with the water molecule are parameterized using a Mulliken

population analysis. The remainder of the non-BSSE interaction energy at the HF/6-

31G(d) basis set energy is initially attributed to van der Waals interactions. The initial

well depth of the interaction is taken as the remainder of the energy scaled by a factor of

1.16, whereas the interaction minimum radius is assumed to be 0.20Å smaller than the ab

initio radius. The empirical scaling of ε and σ are due to the HF level of theory being

unable to account appreciably for dispersion effects. Subsequently, the dispersion
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interactions are optimized in a fashion, designed to reproduce experimental condensed

phase properties, such as density, from an MD simulation.

UNIFAC parameterization of bare NBB units

The work presented here shows that UNIFAC is a sufficient tool for an

inexpensive estimation of 

� 

logKO /W  of fullerene systems, yet falls short of being able to

predict γ in a given solvent. Ideally, it is desired that not only UNIFAC be able to more

accurately estimate 

� 

logKO /W  values, but also predict activity coefficients in a single

solvent. There is a substantial body of work that compiles the solubility of fullerenes in

various organic solvents[2, 3], therefore, binary interaction parameters for C60 in organic

solvents can be optimized relative to existing phase data. Obviously, the calculation of

aqueous/organic partitioning coefficients is contingent upon fullerene/water equilibria

data, which is scarce. However, the solid-equilibria calculations via the density-of

states/MC technique, in conjunction with accounting for aggregation effects of the

fullerene solutes, would allow for the formal parameterization of fullerene/water binary

interaction parameters.
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APPENDIX A

ELECTRONIC STRUCTURE CALCULATIONS

This appendix is largely adapted from Hehre, W.J, et al[1], which offers a more

thorough of treatment of sections 1, 2a, 2c, and 3a.

General Formulism

Electronic structure calculations are valuable in cases where energetic or

structural attributes need to be defined. The Hamiltonian operator, shown below,

describes the energy of a molecule

where

and Ψ is the many electron wavefunction and E is the energy eigenvalue resulting from

the operation. Each term in the Hamiltonian represents an energetic contribution to the

system. Namely, the first term the kinetic energy of the electrons, the second term is the

Coulombic potential between electrons and nuclei, the third is the repulsive term between

electrons, and the final term is the Coulombic potential between nuclei. The

wavefunction is an abstract concept, and is commonly related to the probability of finding

an electron within a given 3-dimensional space

where, if integrated over all space, will return a normalization constant of 1.

� 

ˆ H Ψ = EΨ (A.1)
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(A.3)
  

� 

ρ dV1,dV2,…dVn( ) = …∫∫ Ψ∗∫ ΨdV1dV2…dVn
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Given a perfect wavefunction, equation 1 will calculate the exact system energy.

Unfortunately, exact wavefunctions only exist for the simplest systems; therefore, a large

aspect of electronic structure calculations is the optimization of a many-electron

wavefunction that effectively describes the system.

The many electron wavefunction can be constructed by using so-called molecular

orbital wavefunctions (ψi), which in turn, are defined by a basis function (φi) of

predefined form. The molecular orbital is defined as

where N is the number of one-electron basis functions and cµi is a constant to be varied in

order to achieve the minimization of E. Below are the forms of common Gaussian-type

basis functions[2]

  

� 

ρ dV1,dV2,…dVn( ) = …
−∞

∞

∫
−∞

∞

∫ Ψ∗

−∞

∞

∫ ΨdV1dV2…dVn =1 (A.4)

� 

ψi = cµiφµ
µ =1

N

∑ (A.5)
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where the function gs has the s–type atomic orbital symmetry and gx, gy and gz have the p-

type atomic orbital symmetry. A combination of these orbitals yields two additional d-

type atomic orbitals

and an additional s-type atomic orbital.

� 

grr = 5−1/ 2 gxx + gyy + gzz( )
Assuming each electron can have an “up” (α) or “down” (β) spin, where the spin

wavefunctions take the form

where the argument is the spin number of the electron in question. The complete

wavefunction, or spin orbital, for an electron is the product of the molecular orbital and

the spin function
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� 

χ x,y,z,ξ( ) =ψ x,y,z( )α ξ( )

� 

χ x,y,z,ξ( ) =ψ x,y,z( )β ξ( )
(A.8)
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 Many-body electron wavefunctions must exhibit the property of antisymmetry, in which

the exchange of electrons produces the original wavefunction, multiplied by -1.

While a product of all the spin orbitals does result in a simple representation of a many

electron wavefunction, it does not necessarily have the required property of

antisymmetry.

 Therefore, in order to ensure antisymmetry, the spin orbitals are arranged in a

determinantal wave function

where the elements of the 1st row of the determinant contain the assignations of election 1

to all of the spin orbitals calculated in equation 8. Exchanging electrons i and j is the

equivalent of exchanging rows i and j in the determinant, which by definition, changes

the sign of the determinant. With a closed-shell (i.e. all orbitals doubly occupied),

equation 10 can be written in the form of the Slater determinant[3]

where (n!)-1/2 is the normalization constant where n is the number of electrons in the

system. As all orbitals doubly occupied, there are, of course, n/2 molecular orbitals.

  

� 

Ψ i jn( ) = −Ψ jin( ) (A.9)

  

� 

Ψproduct = χ 1( )χ 2( )χ n( ) ≠ −1( )χ 2( )χ 1( )χ n( ) (A.10)

  

� 

Ψdeterminant =

χ1 1( ) χ2 1( )  χn 1( )
χ1 2( ) χ2 2( )  χn 2( )


χ1 n( ) χ2 n( )  χn n( )

(A.11)

  

� 
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1
2
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ψ1 2( )α 2( ) ψ1 2( )β 2( ) ψ2 2( )α 2( )  ψn / 2 2( )β 2( )


ψ1 n( )α n( ) ψ1 n( )β n( ) ψ2 n( )α n( )  ψn / 2 n( )β n( )

(A.12)
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Levels of Theory

Hartree-Fock

A so-called full electron configuration energy can be built upon the many electron

wavefunction, determinantal wavefunction using a linear combination of determinantal

wavefunctions

where Ψs denotes a many body electron wavefunction that puts electrons in promoted

electronic energy states. The further equation 13 is extended, the more accurate the value

of E becomes, which, of course, corresponds with a substantial computational costs.

Truncating equation 13 at the 0th term is known as the Hartree-Fock (HF) level of

theory. While this level of theory has recently been largely abandoned in favor of higher

levels of theory, such as DFT or MP2, HF can often predict accurate molecular structures

and reaction energies. Furthermore, the optimization of the HF system provides a

template for many higher-level theories.

Given the imperfect nature of the HF many electron wavefunction, the energy

calculated follows the strict rule

where Φ is the HF many electron wavefunction, E’ is the HF energy, and E is the actual

system energy. Equation 14 once again indicates that any non-perfect wavefunction will

produce energy higher than the actual energy; therefore, all calculations provide an upper

bound to the actual energy.

 

� 

Ψ = aoΨo + asΨs
s>0
∑ (A.13)

� 

E '= Φ∗∫ ˆ H ΦdV < E (A.14)
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The Roothaan-Hall equations[4, 5], shown below, are used to optimize the

coefficients of the closed-shell HF formulation

where N is the number of basis functions in a molecular orbital, εi is the one-electron

orbital in molecular orbital ψi , Sµν  are elements of a NxN matrix termed the overlap

matrix

and Fµν is an element in another NxN matrix, called the Fock matrix.

The 1st in the Fock matrix represent the one-electron energy in a field of “bare” nuclei,

which takes the following form

where ZA is the atomic number of atom A. The 2nd term, Pλσ, is the one-electron density

matrix

� 

Fµν −εiSµν( )
ν

N

∑ cνi = 0 (A.15)

� 

Sµν = φµ
∗∫ 1( )φν dV1 (A.17)
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which is summed over only the occupied orbitals. The leading factor of 2 indicates that

there are 2 electrons per orbital. The final terms are the so-called two-electron repulsion

integrals.

The total system energy can now be expressed in terms of the electronic energy, Eee, and

the internuclear repulsion, Enr.

Obviously, the Roothaan-Hall equations are non-linear, therefore, and

iterative scheme must be invoked for their solution. Commonly used iterative schemes in

ab initio software are the Jacobi-Davidson[6] and Newton-Raphson[7] methods.

Density Functional Theory

This section has been largely adapted largely from Argaman, N. et al[8], where a

more rigorous treatment of the subject material may be found.

Density Functional Theory (DFT) is an extension to the simple HF theory,

which, while maintaining the same low computational expense, computes some

molecular attributes such as vibrational frequencies and IR spectra of closed-shell

molecules, more accurately.  This is due to the inclusion of an empirical function that

accounts for exchange and correlation effects.

� 

µν | λσ( ) = φµ
∗∫∫ 1( )φν 1( ) 1
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The basis of DFT is the Kohn-Sham equation[9], which can be applied as an

alternative form of the standard Hamiltonian

where the 1st term is the kinetic energy of  n non-interacting particles, the 2nd term is the

energy due to the electron-nuclei attraction, the 3rd term is the electron-electron repulsion

term, and the 4th term is the exchange-correlation (XC) term. The electron density, ρ(r),

can be expressed in terms of the single-electron wavefunction, ψi, in the following

fashion.

The main difference between DFT and ab initio methods is the usage of a simple, 3-

dimensional density function describing n non-interacting electrons in an effective field

in DFT, versus the cumbersome 3N-dimensional many-electron wavefunction used in ab

intio methods. Density functional theory also adds an empirical function to describe the

exchange and correlation effects on a molecular system, an attribute that the HF level

lacks. Therefore, if the Exc term in equation 25 is omitted, the HF result is obtained.

Furthermore, the Exc term adds little computational expense over HF, as both scale on the

order of N4.

The exchange energy represents the energy associated with swapping the

spatial coordinates of two exclusive electrons. Whereas the correlation energy

corresponds to energy that results from the perturbations of electron cloud ρ(r’) due to

interactions with a changing position of ρ(r). Many empirical XC functionals are

� 

E = − 1
2

ψi r( )∇2ψ i r( )∫
i=1

n

∑ dr + ZA

RA − r
∫
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2

ρ r( )ρ r'( )
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available, and the subject remains an active area of research in quantum chemistry

calculations. The simplest XC functional is the Local Density Approximation (LDA), as

suggested by Kohn and Sham

where εxc(ρ(r)) is the exchange-correlation energy per particle of a uniform interacting

gas, which as been measured to great accuracy with literature.

Møller-Plesset Perturbation Theory

The closed-shell, single-determinant many electron wavefunction used in the

Hartree-Fock level of theory has many qualitative deficiencies due to its lack of

correlation between electrons. Primarily, HF and DFT methods fail to reproduce accurate

dispersion interactions between two particles.

The Møller-Plesset perturbation theory (MPn)[10] accounts, in part, for this

deficiency by taking the extended form of equation 13, which has multiple secular

determinants based upon the ground and excited states of  the molecule.

The generalized operator, 

� 

ˆ H λ , defines Møllet-Plesset models,

where 

� 

ˆ H o  is the sum of the one-electron Fock operators (which produces the Fock

matrix, in equation 18) and 

� 

ˆ V o  is the system perturbation, defined as

with λ being a dimensionless parameter and 

� 

ˆ H being the Hamiltonian. Accordingly, the

many-electron wavefunction and energy take the following form

� 

ˆ H λ = ˆ H 0 + λ ˆ V (A.28)

� 

λ ˆ V = λ ˆ H − ˆ H o( ) (A.29)

  

� 

Ψλ = Ψo + λΨ 1( ) + λ2Ψ 2( ) (A.30)

� 

Exc ρ r( )[ ] = εxc ρ r( )( )ρ r( )∫ dr (A.27)
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where the 0th term is simply the HF level of theory. Furthermore, the singly excited state

term (1st term) give a mathematically trivial addition to the HF level of theory, so the

wavefunction is never expressed as simply two terms. Truncation at the 2nd order term is

referred to as the MP2 level of theory, with is a widely used post-HF electronic structure

method. Truncation after later terms is denoted as MP3, MP4, etc., however, these

methods are used much more rarely, as they represent a great computational expense.

Electronic Structure Parameterization Techniques

Mulliken Population Analysis

First-principles techniques offer the unique opportunity to parameterize force-

field potentials for molecular systems that have experimentally unknown properties.

Long-range electrostatic potentials are crucial for the accurate modeling of many systems

within a MD context. Fortunately, the resulting molecular orbitals from electronic

structure calculations can be utilized by several different techniques, to produce atomistic

point charges; which demand little additional computational expense.

One such technique is known as the Mulliken population analysis[11]. This

technique assigns a distinct point charge to an atomistic position by integrating the

electron density over space, as in equation 26, and allocating electron populations to the

atoms and bonds of the molecule. Integration over the electron density yields

  

� 

Eλ = E o( ) + λE 1( ) + λ2E 2( ) (A.31)

� 

ρ r( )∫ dr = Pµν
ν

N

∑
µ

N

∑ Sµν = n (A.32)
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where Pµν is the one-electron density matrix described in equation 21 and Sµν is the

overlap matrix, which describes the inter-relationship between basis functions µ and ν.

Accordingly, the electron population of orbital volumes occupied by both basis functions

µ and ν is as follows

where the coefficient of 2 reflects that there are two electrons in each orbital.

Furthermore, the electronic population of a basis function can be estimated by adding the

one-electron density and half of the overlap density, summed over all other basis

functions, shown below.

In order to find the Mulliken population about atom A, the electron populations of

orbitals centered about atom A are summed.

Counterpoise Correction[12]

Commonly, it is desired to obtain intermolecular interactions between two

molecules from ab intio calculations. However, errors arise due to the fact that many

molecular orbitals on one molecule overlap with oribitals on the opposing molecule. This

is called the basis set superposition error. The interaction energy of a cluster of particles

A and B is simply the following expression

� 

qµ = Pµµ + PµµPµν
µ≠ν
∑ (A.34)

� 

qA = qµ
µ

A

∑ (A.35)

� 

ΔEA ⋅B = EA ⋅B − EA + EB( ) (A.36)

� 

Qµν = 2Pµν Sµν µ ≠ν( ) (A.33)
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where ΔEA⋅B is the interaction energy, EA⋅B is the energy of cluster A and B, and EA and EB

are the energies of molecules A and B in vacuo.

Orbitals from molecule A will overlap with orbitals on molecule B, and vice

versa. As a result, ab initio calculations will optimize the coefficients in orbitals from

molecule A to refine orbitals in molecule B, and likewise from B to A. This results in an

artificially low energetic state for the individual molecules and can lead to dramatically

overestimated interaction energies.

One projected solution to this problem is the counterpoise correction, where the

interaction energy is expressed with an additionally calculated correction.

where EA
* and EB

* are the energies for individual molecules A and B calculated using all

of the basis functions used in the A⋅B cluster energy calculation, but with all the nuclei

and electrons of the opposing molecule omitted. This calculation produces a molecule

with orbitals having a high resolution, similar to that of the overlapping orbitals in the

original ab intio calculation.  Subtracting these energies from the original single molecule

energies screen outs the superposition error inherent in the A⋅B cluster.
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APPENDIX B

FUNDAMENTAL TOOLS FOR BULK MD SIMULATIONS

Ewald Summation

This section is largely adapted from section Frenkel and Smit, section 12.1[1], for a more

rigorous, treatment of Ewald summations, that section may be consulted.

Many intermolecular interactions can be calculated easily and efficiently by

applying a simple, finite cutoff radius, beyond which interactions are assumed to be zero.

This is a suitable assumption for many types of interactions, as they decay rapidly with

respect to rij. However, this does not apply to Coulombic interactions, which decay on the

order of 1/rij. Applying a simple cutoff to these type interactions is almost always

insufficient. Therefore, a special technique that considers interactions in periodic images

is required to treat these situations. For an N particle, periodic system, the electrostatic

potential for ion i can be described in the following fashion

where qj is the charge of atom j, n is the unit vector describing the period image, and L is

the MD unit cell length. Note that equation 1 does not apply when j = i and n = 0. While

equation 1 is theoretically sound, it exhibits poor convergence and is unsuitable for the

use in MD simulations. Applying a screening, diffuse opposing charge leads to a

calculation that decays much more rapidly with respect to rij. In turn, the screening

� 

φ ri( ) =
q j

rij + nLn
∑

j
∑ (B.1)
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function must be accounted for, so an additional set of diffuse functions are added to

offset the effect of the screening function. Figure B.1 shows the form of the point charges

in terms of the rapidly decaying, screened and diffuse functions.

      

Therefore, a quickly decaying, long range electrostatic calculation will consist of three

contributions: the point charge due to qj, the screening, diffuse charge of -qj, and the

compensating cloud charge of qj. The diffuse electron clouds will be defined by the

density function, ρGauss(r),

where α is a constant, which typically is correlated with the MD cell size, and is chosen

in a way that optimizes computational efficiency.

+=

Figure B.1: Diffuse charge representation of point
charges

� 

ρGauss r( ) = −q j
α
π

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3 / 2

exp −αr2( ) (B.2)
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Fourier Contribution to Ewald Sum

The inherent problem in the Ewald summation is the solution of the Poisson

equation, which defines the charge distribution in terms of the potential

noting that the Fourier transform of the potential and charge density over N particles in a

periodic box take the following forms

where k = (2π/L)l and l is the periodic lattice vector (lx,ly,lz). In Fourier space, equation 3

takes a much more explicit form.

If equations 5 and 6 are substituted into equation 3, the following equality is produced

where, for a point charge, the right side of the equation is simply the charge of the ion at

the center of the cloud. Therefore, the solution for the Poisson equation for a point charge

is,

alternatively,  when taken as a diffuse electron cloud and summed over all periodic

images, the right-hand side of equation 5 takes the form

� 

−∇2φ r( ) = 4πρ r( ) (B.3)

� 

ρ r( ) = 1
V

˜ ρ k( )
k
∑ expir⋅k (B.5)

� 

−∇2φ r( ) = −∇2 1
V

˜ φ k( )expir⋅k

k
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 1

V
k 2 ˜ φ k( )expir⋅k

k
∑ (B.6)

� 

k 2 ˜ φ k( ) = 4π ˜ ρ k( ) (B.7)

� 

˜ φ k( ) = 4πz
k 2

(B.8)

9

� 

4π ˜ ρ k( ) = 4π qi exp−ik ⋅r
i

i=1

N

∑ exp −k 2 / 4α( ) (B.9)

� 

φ r( ) = 1
V

˜ φ k( )
l=−∞

∞

∑ exp− ik ⋅r (B.4)
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and finally,

where the expression only holds for k ≠ 0. Noting that the potential energy between two

particles is

the Fourier term can be expressed by utilizing the various equations derived thusfar to

produce the potential energy in its final state.

Correction for self-interaction

Equation 12 constants a term that calculates the interaction between charge qi,

and it’s own electron cloud, which is an unrealistic consequence of the formulation. To

account for this, the self-interaction term must be subtracted from both the real space and

Fourier space terms in the Ewald summation. This correction can be solved by simply

integrating the Poisson equation in polar coordinates

� 

˜ φ k( ) = 4π
k 2 qi exp− ik ⋅r

i

i=1

N

∑ exp −k 2 / 4α( ) (B.10)

� 

U1 = 1
2

qiφi r( )
i
∑ (B.11)

� 

UF = 1
2

qiφi r( )
i
∑ = 1

2V
4π
k 2

qi exp
ik ⋅ri( )

i=1

N

∑
2

k≠0
∑ exp −k 2 / 4α( ) (B.12)

� 

−1
r
∂ 2rφGauss r( )

∂r2
= 4πρGauss r( ) (B.13)

� 

−
∂rφGauss r( )

∂r
= dr4πρGauss = −2qi

α
π

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

∞

r∫
1/ 2

exp −αr2( ) (B.14)

� 

φGauss = 2 qi
r

α
π
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
1/ 2

drexp −αr 2( ) =
0

r∫ qi
r
erf α r( ) (B.15)
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And then simply taking the self-correction term as eqn 15 at r = 0.

By combining equations 11 and 16, the self correction tern can be quantified.

Real space term

Finally, the interactions due to the point charges with oppositely charged, diffuse

screening charges must be calculated. The short-ranged potential can be expressed simply

as the point-point electrostatic potential subtracted by the same potential in diffuse terms,

as defined by equation 15

therefore

and finally, the total Ewald potential energy is defined as.

Nosé-Hoover thermostat/barostat

In order to control the temperature and pressure in the MD simulations in this

work, a Nosé-Hoover thermostat/barostat was employed[2]. This controller allows the

� 

φGauss r = 0( ) = 2qi
α
π
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
1/ 2

(B.16)

� 

Uself = α
π
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
1/ 2

q
i

2

i=1

N

∑ (B.17)

� 

φshort−range = qi
r
− qi
r
erf α r( ) (B.18)

� 

Ushort−range = 1
2

qiq j

riji≠ j

N

∑ erfc α rij( ) (B.19)

� 

UCoul =UF −Uself +Ushort−ranged (B.20)
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system temperature and pressure to be held constant, allowing the simulation box vary in

size. This is accomplished by damping the equations of motion with temperature and

pressure friction coefficients, χ and η, respectively. The equations of motion are

modified thusly

where Ro is the center of mass for the system. The friction coefficients and volume

fluctuation are defined by further differential equation

Where N is the number of particles in the system, T is the dynamic system temperature, P

is the dynamic system pressure, Text is the temperature of the external bath, Pext is the

pressure of the external bath, and τT and τP are the temperature and pressure control

constants, which are in units of time and typically have values ~1ps. Obviously, many of

  

� 

dχ t( )
dt

= 1
τT
2

T
Text

−1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

(B.23)

  

� 

dη t( )
dt

= 1
N kBTextτP

2 V t( ) P − Pext( ) (B.24)

� 

dV t( )
dt

= 3η t( )[ ]V t( ) (B.25)

� 

dr t( )
dt

= v t( ) + η t( ) r t( ) −Ro( ) (B.21)

� 

dv t( )
dt

=
F t( )
m

− χ t( ) + η t( )[ ]v t( ) (B.22)
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the equations are coupled, therefore, several iterations of each must be performed to

reach self-consistency.
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APPENDIX C

C60(OH)32 OPTIMIZED STRUCTURE

Please contact patrickredmill@gmail.com for a text-based copy of this optimization.

124

   C    -1.26296111    -2.81191787    -1.01780165
   C    -2.39996446     1.76156920    -2.70085471
   C     2.86455579     2.84669315    -0.13560048
   C     1.84943060     3.51780838     0.92175019
   C     2.01026425     2.61594509    -1.34849440
   C     0.00769228     1.82650737    -3.09990458
   C     2.10926968    -1.41975543     1.96782073
   C    -2.20356200    -2.28838794    -0.14063185
   C     3.10710249     0.49846804    -2.00891278
   C     1.53342458    -0.11855550    -3.82508208
   C     1.36658223    -3.06367829    -2.41736881
   C    -3.02726316     2.26570624     0.34738565
   C    -2.14274054    -2.91265332     1.21227344
   C    -0.39793257    -3.85725789    -0.41680970
   C    -1.73387598     3.05216313    -1.95730952
   C     1.51026082    -2.49096149     1.31395803
   C     0.53675837     3.97015407    -0.01001574
   C    -2.76808862    -0.60040482    -1.74619998
   C     3.41972050     0.79297177     1.71174938
   C     0.75618011     3.20032079    -1.26939691
   C    -0.25707309     2.80628396    -2.13314924
   C    -2.01692615     1.70781980     1.28085242
   C     2.78024942    -0.67721204    -2.95087207
   C    -1.81732443    -1.12080357    -2.61283237
   C     2.64363806    -2.09410569    -2.18451815
   C    -0.74106152    -3.71081280     1.19746591
   C     3.25045627    -0.83586108    -0.05028079
   C     0.18794242     2.03703098     2.12894223
   C    -1.19133884     1.05457270    -3.33034260
   C    -3.80060918    -0.37496602     0.40901183
   C     3.54642794     0.39068429    -0.73977681
   C     0.21282334    -1.01303707    -3.94890400
   C     0.11334685    -2.45543495    -3.15827318
   C    -3.82024893     1.10903696    -0.37220345
   C     0.44513329    -3.15582575     2.11734702
   C     2.45960316     1.46357072     2.75115924
   C    -2.09303309     0.51203418     1.95445867
   C     0.10509120     0.83650774     2.80457690
   C    -2.96943351    -1.19395317    -0.51503670
   C     0.15479145    -2.09002154     3.28978015
   C     1.52258961    -1.12765435     3.29871321
   C     2.26412532     1.63372473    -2.31490216
   C    -2.15647988     3.38112284    -0.47918632
   C     1.08462231    -3.69053579    -0.89648617
   C     1.26538915     1.23674624    -3.20065339
   C    -2.46527032    -1.86936530     2.36237296
   C     1.79933983    -2.73433741    -0.01766182
   C    -0.90453154     3.69816899     0.55467162
   C     2.96528060    -0.57594619     1.28865655
   C    -1.22438632    -1.31487058     3.22889993
   C     1.36187318     0.43081296     3.46260630
   C    -1.02704855     0.06146018     2.70255408
   C    -0.87962764     2.47854633     1.38578616
   C     2.65746028    -1.90584854    -0.70360080
   C    -3.19861636    -0.45764035     1.85078719
   C     3.69835519     1.52925479     0.27486691
   C    -3.37106364     0.76290453    -1.87928966
   C    -1.05497169    -2.23078053    -2.24807758
   C     1.51692316     2.68911718     2.23080987
   C    -1.05195695    -0.27643258    -3.49204680
   O    -0.30868484    -3.40996666    -4.18401060
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   H     0.38545569    -4.11270277    -4.21620950
   O     0.08265217    -1.30413600    -5.36424151
   H    -0.21891158    -2.24900625    -5.41665372
   O     2.05413452     0.07953395    -5.17085013
   H     1.44601052    -0.41142569    -5.78081050
   O     3.89856333    -0.84351855    -3.86080179
   H     3.59515033    -0.48645473    -4.73570763
   O     3.80251422    -2.89461577    -2.56010410
   H     4.28832096    -2.37235482    -3.24774795
   O     1.79461479    -4.14096150    -3.25771982
   H     2.77039326    -4.22566598    -3.13730543
   O    -1.03914866    -5.05077794     1.65800029
   H    -0.26816266    -5.31853850     2.22948865
   O    -3.20821647    -3.92420115     1.29607881
   H    -2.77421178    -4.77769857     1.52572959
   O    -3.33589727    -2.51115688     3.29739009
   H    -3.77946431    -3.25045442     2.81728704
   O    -1.67234068    -1.26555860     4.62615941
   H    -2.61979493    -1.53009596     4.64120899
   O     0.17925193    -2.82767368     4.53207326
   H    -0.57014846    -2.45230628     5.07705388
   O     1.00042290    -4.35377803     2.77326507
   H     0.88350958    -4.22384748     3.74378180
   O     4.73993418     0.65442715     2.32822805
   H     4.69842419     1.11011905     3.20206790
   O     5.08889910     1.94354212     0.27748547
   H     5.50048627     1.50854857     1.06972035
   O     3.85537856     3.89071398    -0.41697120
   H     4.74483067     3.46559261    -0.29609615
   O     2.46357594     4.75434502     1.36208364
   H     3.31175968     4.82720900     0.83504215
   O     1.48318332     3.62453786     3.35020546
   H     1.88421337     4.46570545     3.03674222
   O     3.31863455     1.98052161     3.76930975
   H     2.79329662     2.63404216     4.28095171
   O    -2.96416319     4.55657497    -0.58360660
   H    -3.47161852     4.62921383     0.25467617
   O    -2.08721520     4.19885367    -2.79914684
   H    -2.56490807     4.84167345    -2.22210055
   O    -3.21812615     2.27365445    -3.78569296
   H    -3.01579298     3.24504903    -3.84169767
   O    -4.62328900     0.69038344    -2.63433453
   H    -4.49730847     1.27044225    -3.43061269
   O    -5.20780393     1.51410336    -0.42424574
   H    -5.48313152     1.38220599    -1.37643832
   O    -3.98606024     3.04836835     1.11945537
   H    -4.88431904     2.78828834     0.81679704
   O     1.30889359     0.74402992     4.85976116
   H     1.96992036     0.16110673     5.29155239
   O     2.37176863    -1.57184117     4.38342711
   H     1.86543221    -2.24511953     4.89158837
   O    -5.15861487    -0.85763289     0.49024697
   H    -5.74096924    -0.10912499     0.22552288
   O    -4.20605908    -0.10091187     2.80431666
   H    -5.01450915    -0.59496755     2.55760345
   O     1.74734786    -4.95699422    -0.80475532
   H     1.13416775    -5.61768697    -1.18934569
   O    -0.82342357    -5.17353402    -0.85336664
   H    -1.06508274    -5.68021344    -0.04598821
   O     0.62434690     5.39517525    -0.24375022
   H     1.37343159     5.72587722     0.30459333
   O    -1.28777431     4.81334394     1.37396671
   H    -0.95074384     5.61165244     0.91178787
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APPENDIX D

SAMPLE INPUT FILES

DL_POLY TI input files

CONTROL

CONTROL file generated by DL_POLY/java utility

temperature      298.15
pressure         0.0010
ensemble npt hoover   1.0000  1.0000

steps           600000
equilibration   100000
scale              1000
print              1000
stack               100
stats               500
trajectory      100000    5000       2
rdf                  10

timestep         0.002
cutoff           10.0000
delr width       0.5000
rvdw cutoff      10.0000
ewald precision   1e-4

shake tolerance  1.0E-5

quaternion tolerance  1.0E-5

print rdf

job time              3000000.

close time            200.00

finish
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FIELD

Thin Nanotube
UNITS kcal
MOLECULES 2
B_S model of C60/water
NUMMOLS 1
ATOMS     180
       C  12.0110000  0.00000000  180    1
FINISH
Water
NUMMOLS 2989
ATOMS 3
       O     15.9994   -0.8476
       H       1.008    0.4238
       H       1.008    0.4238
RIGID 1
    3    1    2    3
FINISH
vdw 3
       O       O  lj       0.1553      3.1660
       C       C  lj       0.0951       3.473
       C       O tab       0.0747      3.1900
CLOSE

NWChem supermolecule input files

start POSS_water
title "POSS/water cluster optimization, ab initio, mp2"
#
geometry
    Si    -0.16327260    -2.04700048    -1.60954640
    Si    -0.16407861    -2.04472470     1.61238725
    Si     2.30410473     0.10755092     1.61797242
    Si     2.30498950     0.10537713    -1.61665501
    Si     0.16327721     2.54933013    -1.63240353
    Si    -2.30109164     0.42538701    -1.62035249
    Si    -2.30198496     0.42772814     1.61867409
    Si     0.16230701     2.55159619     1.62917205
    O      1.45038997     1.51831397     1.93061536
    O     -1.25570550     1.70245288     1.92523318
    O     -1.45132738    -1.00022320     1.85493426
    O      1.24856624    -1.17860864     1.83681341
    O      2.75114539     0.11959829     0.00076863
    O      1.24918247    -1.18069918    -1.83452726
    O     -0.21671652    -2.57676706     0.00180012
    O      0.19050003     2.94451469    -0.00187319
    O      1.45171385     1.51589923    -1.93174784
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    O     -2.73744063     0.49053850    -0.00099253
    O     -1.45065724    -1.00308971    -1.85415272
    O     -1.25453390     1.69964546    -1.92784078
    H     -3.48399206     0.49050534     2.48667880
    H      0.24213624     3.75431844     2.46675196
    H      3.47653631    -0.00769437     2.49294052
    H     -0.24242674    -3.20159477     2.51258680
    H     -0.24078502    -3.20508361    -2.50821812
    H     -3.48258121     0.48715847    -2.48913504
    H      3.47793574    -0.01125959    -2.49074865
    H      0.24335279     3.75088313    -2.47163952
    O      0.10336203    -5.62612358     0.00076949
    H     -0.06998096    -4.66744737     0.00163935
    H     -0.72591336    -6.12853337     0.00393440
end
basis
Si library 6-311++G(2d,2p)
O library 6-311++G**
C library 6-311++G**
H library 6-311++G**
bqO library O 6-311++G**
bqC library C 6-311++G**
bqH library H 6-311++G**
bqSi library Si 6-311++G(2d,2p)
end
bsse
mon first  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28
mon second 29 30 31
end
mp2
   tight
   scratchdisk 512
end
task mp2 energy
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LAMMPS lipid bilayer input file

# 288 DPPC molecules in 3655 SPC water molecules

units          real
atom_style     full

pair_style  hybrid   lj/expand   2.0     lj/charmm/coul/long  8.0  10.0
bond_style     harmonic
angle_style    charmm
dihedral_style charmm
improper_style harmonic
kspace_style   ewald  0.01

read_restart   save.dppc288

group bead type 13
group c60  type 14

restart  100000 save.dppc288

pair_coeff      1       1     lj/charmm/coul/long              0.07     3.563594873
pair_coeff      2       2     lj/charmm/coul/long              0.12     3.029055642
pair_coeff      3       3     lj/charmm/coul/long             0.055     3.875409424
pair_coeff      4       4     lj/charmm/coul/long             0.022     2.351972616
pair_coeff      5       5     lj/charmm/coul/long              0.08     3.670502719
pair_coeff      6       6     lj/charmm/coul/long               0.2     3.296325257
pair_coeff      7       7     lj/charmm/coul/long             0.585     3.830864488
pair_coeff      8       8     lj/charmm/coul/long              0.12     3.029055642
pair_coeff      9       9     lj/charmm/coul/long            0.1521     3.153781462
pair_coeff      10     10     lj/charmm/coul/long              0.02     4.053589168
pair_coeff      11     11     lj/charmm/coul/long        0.15210298     3.160610000
pair_coeff      12     12     lj/charmm/coul/long                 0             0.0
pair_coeff      13     13     lj/charmm/coul/long              0.00             0.0
pair_coeff      14     14     lj/charmm/coul/long              0.07     3.550053212

neighbor       2.0  bin

timestep    1.0

thermo_style   multi
thermo         1000

fix            1   all   shake   0.0001   10   100   b    15   17   a   30   31   32
fix            2   all   npt  298.15 298.15 1000  aniso   NULL  NULL  NULL  NULL  1.0
1.0  1000
fix            3   all   temp/rescale  100   298.15   298.15   2   0.75
fix            4   bead  setforce  NULL   NULL   0

#dump           1   all   custom 2000   dump.dppc288 tag type  q   x   y   z

run           1000000

unfix         3

dump           1   all   custom 10000   dump.dppc288 tag type  q   x   y   z   fx  fy  fz
dump           2   c60   custom 100     dump.forces  tag type  z  fz
run          1000000


