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ABSTRACT 

	

The	ability	of	diffusion	magnetic	resonance	imaging	(dMRI)	fiber	tractography	to	non-invasively	

map	the	three-dimensional	(3D)	network	of	the	human	brain	has	proven	to	be	a	valuable	

neuroimaging	tool,	improving	our	understanding	of	both	normal	development	and	complex	

brain	disorders.	However,	the	process	from	data	acquisition	to	generation	of	a	3D	map	of	

reconstructed	fibers	is	a	multi-step	procedure	with	numerous	assumptions	and	uncertainties	

that	can	ultimately	affect	the	ability	of	this	technique	to	faithfully	represent	the	true	axonal	

connections	of	the	brain.	Because	of	this,	validating	dMRI	tractography	is	required	on	many	

levels.	It	is	necessary	not	only	to	measure	the	ability	of	these	techniques	to	track	white	matter	

fibers	from	voxel	to	voxel,	but	also	to	quantify	the	ability	of	dMRI	to	assess	the	underlying	fiber	

orientation	distribution	(FOD)	within	each	voxel.	To	do	this,	we	propose	to	compare	diffusion	

data	directly	to	histology	data	on	both	the	microstructural	scale	of	tissues	and	the	

macrostructural	scale	of	brain	connectivity.	These	experiments	will	lead	to	a	better	

understanding	of	the	limitations	and	pitfalls	of	dMRI	experiments,	and	provide	a	quantitative	

assessment	of	the	reliability	of	these	techniques.	 
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	 1	

CHAPTER 1: INTRODUCTION 

1.1	Connectivity	

	 A	major	goal	in	neuroscience	research	is	to	build	a	comprehensive	map	of	the	neuronal	

connections	in	the	brain.	This	has	been	named	the	“connectome”	in	direct	analogy	to	an	

organism’s	full	complement	of	genetic	information,	the	genome.	The	connectome	could	serve	

as	a	fundamental	research	tool	for	understanding	how	the	brain	works	as	a	complex	system,	

offering	insight	into	normal	brain	function	and	dysfunction,	normal	brain	changes	(e.g.	aging	

and	development),	disease,	and	injury	of	specific	white	matter	pathways.	

	 For	centuries,	mapping	the	structural	connectivity	of	the	brain	was	limited	to	using	

anatomical	dissection	techniques	in	cadavers	[1,	2]	or	invasive	chemical	tracer	studies	in	animal	

models.	In	the	late	1980’s	an	MRI	technique	sensitive	to	the	diffusion	of	water	molecules	in	

biological	tissues	was	introduced	[3].	Scientists	soon	realized	that	this	technique,	called	

diffusion	MRI	(dMRI),	offered	the	ability	to	probe	tissue	microstructure	and	map	out	white	

matter	connections	both	in	vivo	and	non-invasively	in	a	process	termed	“fiber	tractography”	

(see	[4]	for	a	review).	The	potential	of	dMRI	to	non-invasively	describe	the	connectivity	

between	brain	regions	led	to	a	renewed	interest	in	constructing	the	human	connectome,	and	

opened	the	door	to	a	new	level	of	understanding	of	the	living	brain.		

	 Now,	25	years	after	its	introduction,	there	is	a	plethora	of	dMRI	methods	for	image	

acquisition	[5],	image	analysis	[6],	and	fiber	tractography	[7]	-	all	of	which	are	based	on	an	

attenuation	of	the	MR	signal	caused	by	diffusion	of	water	molecules.	These	tractographic	

reconstructions	provide	us	with	beautiful	images	of	the	neuronal	connections	in	the	brain,	

many	of	which	qualitatively	appear	to	be	valid	and	in-line	with	existing	anatomical	knowledge.	

However,	the	process	from	data	acquisition	to	generation	of	a	3D	map	of	reconstructed	fibers	is	

a	multi-step	procedure	with	numerous	assumptions	and	uncertainties	that	can	ultimately	affect	

the	ability	of	this	technique	to	faithfully	represent	the	true	axonal	connections	of	the	brain.		

	 The	first	source	of	error	is	in	the	inference	of	fiber	orientation	in	each	MRI	voxel.	The	

challenge	here	lies	in	the	fact	that	axons	have	diameters	in	the	micron	range,	while	a	typical	

MRI	voxel	can	be	on	the	order	of	millimeters	and	contain	hundreds	of	thousands	of	axons,	with	
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a	wide	range	of	possible	configurations.	This	discrepancy	in	spatial	scales	leads	to	uncertainty	in	

the	estimated	underlying	distribution	of	fiber	orientations	in	a	voxel,	which	is	what	we	would	

ideally	like	to	be	able	to	input	into	the	various	fiber	tracking	algorithms.	The	second	source	of	

error	lies	in	tracking	a	continuous	fiber	trajectory	from	discrete,	voxel-by-voxel	estimates	of	

fiber	orientation.	The	success	of	fiber	tracking	is	dependent	upon	imaging	conditions	(including	

signal-to-noise	ratio,	resolution,	diffusion	weighting),	the	tracking	parameters	(e.g.	seeding	and	

stopping	criteria),	and	the	tracking	algorithm	itself	[8].		Because	uncertainty	in	either	of	these	

steps	can	easily	lead	to	misleading	connectivity	results,	it	is	necessary	to	(A)	validate	the	ability	

of	diffusion	MRI	to	assess	fiber	orientation	within	each	voxel	and	(B)	to	validate	the	ability	of	

diffusion	tractography	to	track	fibers	from	voxel	to	voxel.	

1.2	Outline	of	thesis	

	 This	thesis	begins	with	a	series	of	chapters	that	provide	the	background	and	motivation	

for	the	research	chapters	that	follow.	The	focus	of	Chapter	2	is	how	MRI	can	be	used	to	non-

invasively	probe	the	tissue	microstructure	of	the	brain,	with	a	focus	on	a	technique	called	

diffusion	MRI,	or	diffusion	weighted	imaging.	The	acquisition,	biophysics,	and	modeling	of	

diffusion	MRI	are	explored	in	depth.	This	is	followed	by	a	review	of	diffusion	fiber	tractography.	

Here,	we	discuss	the	assumptions	inherent	in	this	process,	existing	approaches	to	map	

connectivity,	and	applications	of	in	vivo	fiber	tractography.	This	chapter	concludes	with	a	brief	

description	of	classical	neuroanatomy	relevant	to	brain	connectivity	and	fiber	tractography.	

Chapter	3	wraps	up	the	introductory	chapters	by	summarizing	the	current	state	of	diffusion	

MRI	validation.	This	chapter	begins	by	motivating	the	need	for	validation	(specifically	

histological	validation),	followed	by	a	literature	review	of	validation	studies	and	the	known	

pitfalls	and	limitations	of	the	tractography	process.	

	 The	creation	of	a	digital	atlas	of	the	squirrel	monkey	brain	is	described	in	Chapter	4.	

Non-human	primates	(NHPs)	serve	as	a	valuable	model	for	validation	studies	of	the	brain.	This	

atlas	contains	data	from	multiple	monkeys,	with	multiple	imaging	modalities,	and	will	facilitate	

comparisons	of	MRI	and	microscopy	utilized	in	Chapter	6	and	7.	In	addition,	the	image	

registration	and	image	processing	techniques	used	in	atlas	creation	are	employed	in	Chapters	5	

and	8,	which	use	the	macaque	brain	for	validation.		
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	 Chapter	5	is	the	first	of	four	research-based	chapters.	Before	stepping	directly	into	

validation	studies,	we	ask	whether	technical	and	hardware	advancements	in	MRI	can	mitigate	

some	of	the	limitations	inherent	in	diffusion	imaging	techniques	by	increasing	spatial	

resolution.	Specifically,	an	(in)famous	problem	in	the	dMRI	community	is	the	“crossing	fiber”	

problem,	which	describes	the	situation	where	an	imaging	voxel	contains	multiple	white	matter	

fiber	populations,	introducing	uncertainty	in	the	inverse	problem	of	estimating	the	voxel-wise	

fiber	geometry	from	the	diffusion	signal.	Finding	that	this	problem	exists	at	imaging	resolutions	

currently	unachievable	even	on	pre-clinical	scanners,	and	will	always	exist	in	diffusion	datasets,	

further	motivates	the	endeavor	to	fully	validate	the	methods	developed	to	solve	this	problem	

by	fully	characterizing	the	white	matter	configurations	in	each	voxel.		

	 Chapters	6	and	7	address	the	first	aim	of	the	thesis,	to	verify	the	accuracy	of	dMRI	in	

assessing	fiber	orientation	information.	The	challenge	lies	in	characterizing	the	complex	

distribution	of	neuronal	fibers	using	histology	and	making	direct	comparisons	to	the	dMRI	

orientation	distribution	estimates.	Chapter	6	begins	by	describing	the	approaches	used	to	

extract	the	fiber	orientation	distribution	from	3D	confocal	data	of	ex	vivo	tissue,	as	well	as	the	

spatial	registration	of	dMRI	data	to	the	confocal	z-stacks	to	facilitate	comparisons	of	the	same	

tissue	volumes.	Chapter	7	then	utilizes	this	methodology	to	focus	on	determining	how	well	

existing	diffusion	models	predict	the	histological	fiber	distributions.	The	results	of	this	study	

provide	quantitative	measures	of	the	reliability	and	limitations	of	dMRI	reconstruction	

methods,	identify	relative	advantages	of	competing	approaches,	and	suggest	potential	

strategies	for	improving	accuracy.		

	 The	next	aim	is	addressed	in	Chapter	8.	Aim	two	of	the	thesis	is	to	validate	the	

anatomical	accuracy	of	dMRI	tractography	methods,	and	to	determine	sources	of	error	in	dMRI	

connectivity	estimates.	There	is	growing	concern	in	the	dMRI	field	over	an	anatomically-

correlated	bias	in	tractography	findings.	In	this	chapter,	we	demonstrate	that	there	is	a	bias	for	

fiber	tracking	algorithms	to	terminate	preferentially	on	gyral	crowns,	rather	than	sulcal	banks.	

We	compare	tractography	estimates	of	white	matter	pathways	to	histological	measurements	

on	a	voxel-by-voxel	basis	in	order	to	better	understand	and	quantify	potential	sources	of	this	
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bias.	This	work	sheds	light	on	a	significant	limitation	of	diffusion	tractography	and	may	help	to	

prioritize	development	of	more	sophisticated	or	anatomically-informed	methods.	

	 To	conclude,	Chapter	9	presents	general	discussion	and	conclusions.	This	chapter	

summarizes	the	contributions	to	the	field	of	diffusion	MRI	reported	in	the	thesis,	proposes	

potential	future	directions	for	this	work,	and	discusses	the	implications	of	the	present	work	

regarding	characterizing	the	tissue	microstructure	and	brain	macrostructure	utilizing	diffusion	

MRI.		
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CHAPTER 2: DIFFUSION MRI 

	 Conventional	MRI	contrasts	obtained	from	T1,	T2,	and	T2*	relaxation	processes	provide	

indispensable	insight	into	the	molecular	environment	of	the	brain	in	both	health	and	disease.	

However,	these	contrasts	provide	little	information	on	the	geometric	microarchitecture	of	the	

brain.	However,	diffusion	MRI,	which	measures	the	random	motion	of	water	molecules	in	

tissues,	allows	non-invasive	investigation	of	the	organization	of	the	brain,	including	dimensions	

and	arrangements	of	neurons	and	other	cells	that	make	up	both	white	and	gray	matter	tissue.	

Since	its	introduction	in	the	mid-1980’s,	dMRI	has	become	a	pillar	of	neuroimaging	in	both	

clinical	and	research	domains.	

	 Clinically,	the	primary	application	of	diffusion	MRI	has	been	for	early	detection	and	

characterization	of	cerebral	ischemia.	Diffusion	weighted	images	(DWIs)	clearly	show	a	bright	

signal	in	regions	under	ischemic	attack,	easily	discernable	from	the	normal	brain	tissue,	with	a	

contrast	not	easily	seen	(acutely)	in	conventional	T1	or	T2-weighted	images.	Because	of	this,	

dMRI	has	become	the	primary	modality	for	management	of	stroke	patients,	including	selecting	

therapeutic	approaches	[9],	monitoring	patient	progress	[10],	and	predicting	clinical	outcome	

[10,	11].	Diffusion	MRI	is	also	being	increasingly	used	to	manage	cancer	patients.	Water	

diffusion	slows	when	tumor	cellularity	increases	[12],	with	decreased	diffusion	associated	with	

a	high	degree	of	malignancy	[13],	and	high	diffusion	a	potential	predictor	of	poor	therapeutic	

response	[14].	In	the	research	domain,	diffusion	MRI	is	best	known	for	mapping	the	white	

matter	fibers	of	the	brain.	As	the	only	available	technique	to	infer	anatomical	connections	

between	brain	regions	in	vivo,	diffusion	MRI	has	provided	tremendous	insight	into	how	brain	

connections	underlie	function	and	opened	up	new	investigations	into	cognitive	neuroscience	

and	brain	dysfunction	in	aging,	addiction,	mental	health	disorders,	and	neurological	disease	

[15].	Another	branch	of	diffusion	MRI	is	microstructure	imaging.	It	aims	to	provide	quantitative,	

physically	and	physiologically	meaningful	microstructural	tissue	parameters,	with	the	potential	

to	someday	provide	a	virtual	biopsy	of	brain	tissue.	

	 This	chapter	describes	the	physics	and	MRI	background	needed	to	understand	the	work	

in	this	thesis.	The	various	models	of	diffusion	in	the	brain	are	presented,	with	a	focus	on	those	

that	attempt	to	recover	the	underlying	neuronal	geometry	or	fiber	orientations,	as	well	as	a	
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recent	multi-compartment	model.	Here,	we	also	briefly	introduce	a	common	confound	in	

diffusion	MRI,	the	“crossing	fiber”	problem,	which	has	spurred	the	development	of	many	of	

these	models	and	algorithms.	Finally,	the	basic	principles	of	fiber	tractography	are	introduced	

and	different	algorithms	are	discussed.		

2.1	Physics	of	Diffusion	

	 Diffusion	is	the	random	translational	motion	of	molecules	driven	by	internal	thermal	

energy.	In	1855,	Adolf	Fick	derived	two	differential	equations	to	describe	the	diffusion	of	

molecules	through	thin	membranes	[16].	According	to	Fick’s	first	law	of	diffusion,	the	number	

of	particles	that	moves	through	a	2D	plane	per	unit	time	(i.e.	the	flux,	J),	at	a	spatial	position	r	

and	time	t,	is	proportional	to	the	concentration	gradient	∇c	according	to:	

where	D	is	the	diffusion	coefficient	and	c(r,t)	is	the	concentration	of	particles.	Combining	this	

with	conservation	of	mass,	expressed	by	the	equation	of	continuity:	

leads	to	Fick’s	second	law	of	diffusion:	

Up	to	this	point,	derivations	have	assumed	a	net	flux	by	diffusion	over	a	concentration	gradient.	

To	describe	the	diffusion	in	the	absence	of	internal	concentration	gradients,	for	example	

diffusion	in	pure	water,	it	is	convenient	to	introduce	the	diffusion	propagator,	or	probability	

function,	P(r0|r,t),	which	gives	the	probability	of	a	particle	having	moved	from	position	r0	to	

position	r	over	time	t.	For	isotropic	diffusion,	the	propagator	obeys	Fick’s	second	law	of	

diffusion:	

Given	the	starting	condition	P(r0|r,0)	=	d(r0-r),	and	boundary	condition	P(r0|r,0)	®0	for	r®∞,	

the	solution	to	this	equation	for	unbounded	isotropic	diffusion	yields	a	Gaussian	displacement	

function:	

	 𝐉 𝐫, t = −D∇c(𝐫, t)	 (1)	

	 ∂c(𝐫, t)
∂t = −∇ ∙ 𝐉(𝐫, t)	 (2)	

	 ∂c(𝐫, t)
∂t = D∇/c(𝐫, t)	 (3)	

	 ∂P(𝐫1|𝐫, t)
∂t = D∇/P(𝐫1|𝐫, t)	 (4)	
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	 Since	diffusion	is	a	random	process	with	displacements	equally	probable	in	all	

directions,	the	net	(mean)	displacement	 (𝐫 − 𝐫1) 	is	zero	(here	 … 	indicates	averaging	over	all	

particles).	Thus,	the	molecular	displacement	with	3D	diffusion	is	described	with	the	mean-

squared	displacement	derived	by	Albert	Einstein	[17]:	

This	relationship	states	that	the	squared	displacement	of	molecules	from	their	starting	point,	

averaged	over	all	molecules	in	the	sample,	is	directly	proportional	to	the	observation	time,	t,	

with	the	constant	of	proportionality	being	the	self-diffusion	coefficient,	D.	However,	for	water	

diffusion	in	biological	tissue,	equations	(5)	and	(6),	in	general,	do	not	hold	true	[18].	If	diffusing	

water	molecules	encounter	any	barriers	along	their	random	walk,	such	as	from	cell	membranes	

and	macromolecules,	the	mean	squared	displacement	will	be	lower	than	that	of	free	water.	If	

Einstein’s	equation	were	applied	to	calculate	the	diffusion	coefficient,	it	would	be	lower	than	

expected.	Thus,	diffusion	may	act	as	a	sensitive	probe	for	tissue	microstructure.		

2.2	Diffusion	MRI	

	 Early	in	the	history	of	NMR	it	was	recognized	that	the	signal	is	influenced	by	spin	

diffusion	in	the	presence	of	magnetic	field	gradients	(for	a	full	review	of	the	history	of	Diffusion	

MRI,	see	Addendum	1).	In	the	classic	1950	paper	on	spin-echoes,	Hahn	[19]	outlined	the	

measurement	of	diffusion	in	the	presence	of	a	constant	background	gradient,	which	was	

subsequently	modified	and	further	developed	by	Carr	and	Purcell	in	1954	[20],	who	deliberately	

sensitized	the	MR	signal	to	diffusion.	The	mathematical	formalism	describing	the	effects	of	

diffusion	in	the	presence	of	time	varying	magnetic	field	gradients	was	outlined	by	Torrey	[21],	

who	adapted	the	Bloch	equations	to	account	for	diffusion.	The	Bloch-Torrey	equation	is:	

where	the	macroscopic	magnetization	M	is	the	vector	sum	of	Mx,	My,	and	Mz,	along	the	unit	

axes	𝑥,	𝑦,	and	𝑧,	respectively.	The	first	three	terms	on	the	right-hand	side	are	the	classic	Bloch	

equations,	while	the	last	term	describes	diffusion,	and	shows	similarities	to	Fick’s	second	law	of	

	 P 𝐫1 𝐫, t ) = (4πDt)9://exp	[−(𝐫 − 𝐫1)//4Dt]	 (5)	

	 λ = 	 (𝐫 − 𝐫𝟎)/ = 6Dt	 (6)	

	
∂𝐌
∂t = 	γ𝐌×𝐁 −

𝐌Ix +𝐌Ky
T/

−
(𝐌N −𝐌1)z

TP
+ ∇ · 𝐃∇𝐌	 (7)	
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diffusion	from	equation	(3).	The	Bloch-Torrey	equation	has	the	solution	for	transverse	

magnetization,	Mxy:		

where	M0	is	the	magnetization	after	excitation,	and	b	defines	the	so-called	“b-value”	that	

describes	the	diffusion-weighting,	or	sensitivity,	introduced	by	the	magnetic	field	gradients:	

The	diffusion	pulse	sequence	most	widely	used	today	is	the	pulsed	gradient	spin	echo	(PGSE)	

proposed	by	Stejskal	and	Tanner	in	1965	[22].		

2.2.1	The	Pulsed	Gradient	Spin	Echo	

	 As	previously	described,	diffusion	measurements	in	an	MRI	experiment	rely	on	the	

principle	of	signal	loss	through	diffusion	dependent	phase	dispersal.	Strong	magnetic	field	

gradients	can	be	applied	to	enhance	diffusion	sensitivity.		In	the	PGSE	sequence	(Figure	2.1),	the	

standard	spin	echo	sequence	is	complemented	with	two	diffusion	gradient	pulses,	with	

strength	G	and	duration	d,	on	either	side	of	the	refocusing	pulse.	After	excitation,	the	first	

gradient	pulse	imposes	a	phase	on	protons,	f1,	that	varies	with	spatial	location	in	the	direction	

in	which	the	gradient	is	applied	(fP = γr𝐆d).	The	refocusing	pulse	then	reverses	spin	phase.	A	

second	gradient	pulse	of	equal	duration	and	amplitude,	applied	following	a	delay	(the	diffusion	

time,	D),	induces	a	position	dependent	phase	f2.	If	all	spins	are	stationary,	f1	=	f2,	and	at	the	

time	of	data	acquisition	all	spins	have	zero	phase.	However,	if	protons	diffuse	through	the	

tissue,	changing	spatial	position	during	the	delay,	D,	the	phase	induced	by	the	second	magnetic	

field	gradient	no	longer	cancels	the	phase	induced	by	the	first.	Therefore,	application	of	

gradients	in	the	presence	of	diffusion	leads	to	phase	dispersal	across	the	sample,	resulting	in	

signal	loss.	The	difference	in	phase	is	proportional	to	the	distance	the	proton	has	moved	in	the	

direction	of	the	diffusion	gradient.	This	relation	is	only	strictly	valid	if	the	pulse	duration	is	short	

compared	to	the	gradient	separation,	d	≪	D,	an	assumption	known	as	the	narrow	pulse	

approximation.		

	 𝐌IK = 𝐌1e
9 V
WXe9YZ	 (8)	

	 b = γ/ 𝐺(𝑡′)𝑑𝑡′
`

1

/

𝑑𝑡
ab

1
	 (9)	
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Figure	2.1:	Pulsed	Gradient	Spin	Echo	Sequence.	Spins	are	excited	by	a	90-degree	pulse,	refocused	by	a	180-degree	pulse,	
resulting	in	a	spin	echo.	Diffusion	weighting	gradients	are	applied	on	both	sides	of	the	180-degre	pulse,	with	amplitude	G,	
duration	d,	and	separated	by	diffusion	time	D.		

		 While	the	exact	functional	form	the	for	diffusion	dependent	signal	loss	is	given	below,	it	

is	straightforward	to	see	that	the	function	will	be	dependent	on	the	diffusion	coefficient	(D),	

the	area	of	the	magnetic	field	gradient	(i.e.	the	amplitude	and	duration),	as	well	as	the	

separation	between	magnetic	field	gradients.	For	example,	increasing	the	diffusion	time	allows	

more	time	for	protons	to	diffuse	and	an	increased	mean	square	displacement.	As	the	spins	

move	farther	in	the	direction	of	the	gradient,	the	dephasing	of	the	system	will	be	larger,	and	

more	signal	loss	will	occur.	Specifically,	for	a	PGSE	sequence,	the	diffusion	weighting	imposed	

by	the	gradient	pulses	is	determined	by	the	gradient	amplitude	(G),	duration	(d),	and	separation	

(D),	with	a	b-value	given	by:	

The	diffusion	weighted	MR	signal	is	then	related	to	the	diffusion	coefficient	D	and	the	b-value	

by:	

where	S0	is	the	signal	in	the	absence	of	diffusion	gradient	pulses.	The	PGSE	sequence	has	been	

used	extensively	in	the	diffusion	MRI	community	to	probe	diffusivity	in	a	particular	direction,	

and	is	the	diffusion	weighting	module	employed	in	all	chapters	of	this	thesis.		

	 b = 	𝛾/𝛿2𝑮2(∆ −
𝛿

3
)		 (10)	

	 S = 	𝑆1𝑒9lm	 (11)	
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2.2.2	Q-space	Imaging		 	

Previously,	the	diffusion	propagator	was	introduced	in	Equation	5	as	a	general	description	of	

the	probability	of	proton	displacements	as	a	function	of	diffusion	time.	In	effect,	the	PGSE	

experiment	allows	us	to	sample	the	voxel-wise	diffusion	propagator	after	a	given	diffusion	time,	

and	the	b-value	is	derived	as	a	convenient	way	to	express	the	MR	signal	as	a	simple	exponential	

decay	in	the	presence	of	Gaussian	diffusion.	As	described	below,	protons	can	be	highly	

hindered,	or	even	restricted,	in	different	tissue	compartments,	causing	deviations	from	

Gaussian	diffusion.	As	an	alternative,	it	may	be	convenient	to	describe	the	“diffusion	weighting”	

of	the	experiment	using	the	“q-space”	formalism	[23].	If	the	diffusion	gradient	pulse	is	short	

(again,	the	narrow	pulse	approximation),	the	MR	signal	can	be	related	to	the	diffusion	

propagator	by	the	Fourier	relation:	

with	the	wave-vector,	or	q-vector	

where	the	displacement	vector,	r,	forms	a	Fourier	pair	with	the	wave-vector	for	a	fixed	

diffusion	time.	In	a	direct	analogy	to	MRI	“k-space”	sampling	during	MR	measurements	-	which	

describes	the	Fourier	transform	of	the	MR	image	-		the	voxel-wise	sampling	of	3D	proton	

displacements	is	described	by	parameter	q,	in	“q-space”.	Note	that	the	b-value	is	directly	

proportional	to	the	square	of	the	q-value.		

	 It	is	feasible	to	sample	a	Cartesian	grid	in	q-space,	and	perform	a	simple	Fourier	

transform	of	the	data	to	calculate	the	diffusion	propagator.	This	technique	has	been	termed	

Diffusion	Spectrum	Imaging	(DSI)	[24].	The	range	of	q-space	sampled	determines	the	resolution	

at	which	the	diffusion	propagator	can	be	reconstructed.	This	means	that	for	characterizing	

small	displacements,	or	small	diffusion	restrictions,	high	q-values	(and	consequently	high	b-

values)	are	required.	In	addition	to	capturing	smaller	displacements,	higher	diffusion	weightings	

(i.e.	higher	b-values)	lead	to	larger	deviations	from	Gaussian	behavior,	and	can	be	

advantageous	to	improve	angular	contrast,	for	example	accentuating	directions	of	maximum	

	
S(𝐪)
𝑆1

= 	 𝑝(𝒓, ∆)𝑒q𝒒𝒓𝑑𝒓	 (12)	

	 𝐪 = 	
𝛾𝛿𝑮
2𝜋 	 (13)	
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diffusivity	which	can	be	used	to	broadly	reflect	the	orientation	of	axons	in	a	voxel	(see	Section	

2.3	Biophysics	of	Diffusion	in	the	Brain).		The	density	of	q-space	sampling	(1/Dq)	then	

determines	the	field	of	view	of	diffusion	displacements,	or	the	range	of	displacement	distances	

included	in	the	measurements.		

2.2.3	High	Angular	Resolution	Diffusion	Imaging	 	

	 Although	the	DSI	q-space	acquisition	provides	the	most	complete	characterization	of	

diffusion	in	each	MR	voxel,	the	large	number	of	DWIs	required	(often	>500)	leads	to	long	scan	

times,	making	it	impractical	for	routine	use.	Further,	the	large	q-values	required	can	only	be	

achieved	using	long	echo	times,	resulting	in	compromises	in	SNR	and	image	resolution.	For	

these	reasons,	a	majority	of	the	methods	proposed	to	characterize	brain	tissue	geometry	

(particularly	those	that	estimate	the	orientation	distribution	of	fibers	in	a	voxel	for	subsequent	

tractography)	are	designed	to	operate	using	a	sparser	acquisition	strategy.	For	example,	it	is	

common	to	acquire	a	large	number	of	DWIs	at	only	a	single	 𝑞 -value	(or	b-value),	acquiring	a	

single	spherical	“shell”	in	q-space,	in	a	strategy	often	referred	to	as	a	High	Angular	Resolution	

Diffusion	Imaging	(HARDI)	acquisition.	Although	HARDI	acquisitions	provide	little	information	

about	the	radial	distribution	of	displacements,	r,	they	do	provide	a	concise	characterization	of	

the	angular	dependence	of	the	diffusion	signal	over	a	sphere,	which	is	critical	for	resolving	the	

geometric	orientation	of	white	matter	in	a	voxel.	The	advantage	of	this	approach	is	the	reduced	

acquisition	times,	since	q-space	coverage	is	reduced	from	a	3D	volume	to	a	2D	spherical	shell	in	

q-space.	 	

	 A	major	focus	of	this	thesis	is	on	models	and	techniques	that	utilize	single-shell	HARDI	

spherical	acquisition	strategies	which	have	become	common	in	both	research	and	clinical	

domains.	Specifically,	we	validate	the	ability	of	different	methods	to	both	assess	fiber	

orientation	information	and		to	accurately	reflect	the	white	matter	anatomy	using	fiber	

tractography.	A	full	description	of	many	of	the	validated	models	and	techniques	is	given	in	

Section	2.4	Models	of	Diffusion	in	the	Brain,	in	addition	to	a	brief	description	of	the	“crossing	

fiber	problem”,	which	has	provided	motivation	for	development	and	advancement	of	diffusion	

MRI	acquisition	and	reconstruction	strategies.		
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2.3	Biophysics	of	Diffusion	in	the	Brain	

	 The	self-diffusion	coefficient	of	free	water	is	around	3.0	×	10-9	m2/s	at	37°	C	[25].	Using	

Einstein’s	equation	(Equation	6),	this	translates	to	a	mean	squared	displacement	of	17um	

during	50	milliseconds.	Einstein’s	equation	assumes	a	“free”	diffusion,	much	like	an	ink	drop	

diffusing	through	a	large	glass	of	water,	where	the	distribution	of	molecular	displacements	

obeys	a	Gaussian	law.	In	biological	tissue	of	the	brain,	however,	diffusion	is	not	free	but	is	

hindered	by	physical	barriers	such	as	cell	membranes,	fibers,	or	macromolecules,	causing	the	

molecular	displacements	to	deviate	from	a	Gaussian	distribution.	Consequently,	the	diffusion	

coefficient	derived	from	DWIs	is	no	longer	the	free	diffusion	coefficient	of	water,	but	an	

apparent	diffusion	coefficient	(ADC).	The	actual	diffusion	distance	is	reduced	to	a	few	

micrometers,	a	fortuitous	scale	that	is	perfectly	suited	to	explore	brain	tissue	structure,	where	

axons	are	typically	on	the	order	of	~1um	and	cell	bodies	on	the	order	of	~1-100um.		

	 The	brain	parenchyma	relevant	to	diffusion	MRI	can	roughly	be	divided	into	

extracellular	and	intracellular	space.	The	extracellular	space	accounts	for	approximately	20%	of	

the	volume	fraction	of	the	parenchyma.	Macromolecules	of	the	extracellular	matrix	hinder	

diffusion	of	the	interstitial	fluid.	In	combination	with	the	tortuous	geometry	of	cellular	barriers,	

the	diffusion	in	this	continuous	space	is	typically	considered	“hindered”	diffusion	[26]	–	lower	

than	free	diffusion,	but	reasonably	approximated	by	a	Gaussian	diffusion	propagator	(Figure	

2.2,	left).	In	contrast,	the	remaining	80%	of	the	volume	occupied	by	cells,	the	intracellular	

space,	is	often	said	to	be	“restricted”.	In	addition	to	diffusion	hindrance	due	to	cytoskeletal	

filaments	and	intracellular	organelles	[27],	cellular	membranes	act	as	impermeable	barriers	(on	

typical	time	scales	of	diffusion	MRI	experiments),	confining	protons	within	the	cell	and	limiting	

displacements	to	the	size	of	the	cell’s	dimensions.	There	is	significant	interest	in	characterizing	

these	restrictions	to	investigate	the	size	and	geometry	of	these	compartments.	

	 A	remarkable	feature	of	diffusion	in	brain	tissue	is	that	the	distance	a	molecule	diffuses	

in	one	direction	in	space	may	or	may	not	be	the	same	as	in	other	directions.	In	a	sample	with	no	

hindrances	to	diffusion,	or	where	barriers	are	not	coherently	oriented,	diffusion	is	the	same	in	

all	directions	and	is	termed	isotropic	diffusion.	However,	if	diffusion	depends	on	direction,	for	

example	due	to	an	orientational	preference	of	barriers,	it	is	termed	anisotropic	diffusion.	It	was	
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recognized	early	on	that	diffusion	in	brain	white	matter	is	anisotropic	[28].	This	was	

hypothesized	to	be	caused	by	the	fact	that	neurons	are	elongated	cylindrical	processes	typically	

structured	into	organized	bundles	or	sheets.	Researchers	found	that	diffusion	was	typically	fast	

in	the	direction	of	these	neuronal	“fibers”,	and	slower	perpendicular	to	them	(Figure	2.2,	right),	

influenced	largely	by	hindrance	of	diffusion	by	the	myelin	sheath	and	axon	membranes	[18].	

After	this	discovery,	it	was	soon	suggested	that	this	feature	of	diffusion	directional	specificity	

could	be	used	to	determine	and	map	the	orientation	of	white	matter	fibers	in	the	brain,	

assuming	that	the	direction	of	the	fibers	was	parallel	to	the	direction	with	the	fastest	diffusion.	

Mapping	and	modeling	the	geometric	fiber	configurations	in	each	voxel	from	a	set	of	diffusion	

measurements	has	become	a	major	goal	of	the	diffusion	MRI	community.		

	
Figure	2.2	Diffusion	in	the	Brain.	Cartoon	representation	of	myelinated	axons	with	displacement	trajectories	of	three	protons	
shown	in	intracellular	and	extracellular	space	(left)	and	anisotropic	diffusion	along	axons	(right).	

2.4	Models	of	Diffusion	in	the	Brain	

	 As	previously	described,	the	PGSE	experiment	can	be	used	to	probe	diffusivity	in	a	

particular	direction.	In	many	applications,	it	is	beneficial	to	be	able	to	obtain	a	full	

characterization	of	the	diffusion	processes	via	the	diffusion	propagator,	from	which	measures	

of	restriction,	compartment	volume	fractions,	and	diffusivities	can	be	inferred.	When	

investigating	structural	connectivity	via	diffusion	fiber	tractography,	the	features	of	interest	

that	we	would	like	to	obtain	are	the	orientations	of	neuronal	fibers	in	each	voxel.	Thus,	many	
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HARDI	techniques	use	the	PGSE	experiment	to	sample	the	diffusion	propagator	in	multiple	

directions,	with	the	aim	of	relating	diffusion	measurements	to	orientation	features	of	the	

propagator,	or	directly	to	biophysical	features	of	the	brain	tissue	itself.	Towards	this	end,	a	

number	of	algorithms	have	been	developed	to	estimate	fiber	orientations.	In	this	chapter,	a	

number	of	the	algorithms	implemented	in	this	thesis	are	classified	according	to	how	they	

encode	fiber	orientation	information.			

	 Many	q-space	methods	aim	to	provide	an	estimate	of	a	spherical	function	called	the	

diffusion	orientation	distribution	function	(dODF).	The	dODF	is	the	radial	integration	of	the	

diffusion	propagator:	

where	𝒙	is	a	unit	vector	in	the	direction	of	x,	r	is	the	radial	distance	from	the	origin,	and	the	

function	f	weights	the	contribution	to	the	integration	along	different	radii.	The	dODF	then	

reflects	the	relative	number	of	spins	that	have	diffused	in	a	given	direction,	x.		One	can	look	for	

peaks,	or	local	maxima,	of	the	dODF	over	a	sphere,	which	represent	the	directions	of	maximum	

diffusion.	Fiber	orientations	are	then	typically	assumed	to	coincide	with	these	discrete	peaks	in	

the	ODF,	and	tractography	can	be	performed	using	these	orientations	[29].	

	 While	the	dODF	characterizes	features	of	the	diffusion	process	itself,	it	may	be	more	

relevant	to	directly	estimate	the	fraction	of	fibers	in	each	voxel	that	point	in	each	direction.	This	

object	is	referred	to	as	the	fiber	orientation	distribution	(FOD),	and	is	ideally	what	we	would	

like	use	as	input	to	fiber	tractography	algorithms.	A	large	class	of	methods	estimate	this	

function	directly,	and	have	theoretical	advantages	over	functions	based	on	features	of	the	

propagator	(for	example	the	ODF)	which	may	reflect	the	FOD	only	in	an	obscure	way.	Both	the	

FOD	and	ODF	are	functions	defined	over	a	sphere,	and	are	commonly	used	as	input	to	

subsequent	tractography	algorithms.		

	 In	this	section,	we	give	a	brief	description	of	the	reconstruction	methods	implemented	

in	this	study.	Again,	the	focus	is	on	those	that	attempt	to	describe	the	underlying	geometry	of	

neuronal	fibers,	whether	by	the	ODF,	FOD,	or	some	other	function	which	parameterizes	

orientation	features.	Because	of	the	large	number	of	these	techniques	proposed	in	the	

	 ODF(𝒙) = 	 𝑃 𝑟, 𝒙 𝑓 𝑟 𝑑𝑟
{

1
	 (14)	
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literature,	the	assessment	presented	in	this	work	is	not	exhaustive,	yet	comprises	some	of	the	

more	commonly	implemented	reconstruction	techniques.		

2.4.1	Diffusion	Tensor	

Diffusion	Tensor	Imaging	(DTI)	[30,	31]	was	one	of	the	first	and	certainly	remains	the	most	

commonly	implemented	of	the	algorithms	to	model	anisotropic	diffusion.	DTI	models	the	

diffusion	propagator	as	a	zero-mean	Gaussian	distribution	in	three	dimensions	using	a	rank-2	

symmetric	positive	definite	tensor	(or	matrix)	D:	

which	replaces	the	1D	diffusion	coefficient	D	in	Equation	11	as:	

and	can	be	rewritten	as	

	

where	bij	are	the	components	of	the	b-matrix	(which	can	be	calculated	based	on	Equation	9),	

and	Dij	are	the	components	of	the	tensor.	The	diagonal	elements	(Dii	>	0)	are	the	displacement	

variances	along	the	scanner’s	x,	y	and	z	axes,	and	the	off-diagonal	elements	are	the	covariance	

terms	and	are	symmetric	about	the	diagonal	(Dij	=	Dji).	Diagonalization	of	the	diffusion	tensor	

yields	the	eigenvalues	(𝜆1,	𝜆,	𝜆	3)	and	corresponding	eigenvectors	(v1,	v2,	v3),	which	describe	the	

directions	and	apparent	diffusivities	along	the	axes	of	principal	diffusion.	The	diffusion	tensor	

may	be	visualized	using	an	ellipsoid	with	the	eigenvectors	defining	the	directions	of	the	

principal	axes	and	the	lengths	of	the	semi-major	axes	defined	by	the	eigenvalues	(Figure	2.3,	A).	

	 	From	the	tensor,	measures	of	ellipsoid	size	and	shape	can	be	calculated	which	allows	a	

geometric	representation	of	the	apparent	diffusion	in	3	dimensions.	The	most	commonly	

implemented	metrics	of	the	tensor	are	the	mean	diffusivity	(MD),	defined	as	the	mean	of	the	

eigenvalues,	and	the	fractional	anisotropy	(FA),	a	dimensionless	value	that	ranges	from	0	to	1	

	 𝐃 =	
𝐷~~ 𝐷~� 𝐷~�
𝐷~� 𝐷�� 𝐷��
𝐷~� 𝐷�� 𝐷��

	 (15)	

	 S = 	𝑆1𝑒9𝒃:𝑫	 (16)	

	 ln
𝑆
𝑆1

= 	− 𝑏q�𝐷q�

:

q�P

:

q�P

	 (17)	
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and	describes	the	anisotropy	of	the	DTI	ellipsoid	(0	for	perfectly	isotropic	and	1	for	purely	one-

dimensional	diffusion).	These	metrics	have	become	invaluable	as	biomarkers	for	tissue	states.	

The	MD	is	sensitive	to	the	overall	density	of	structural	boundaries.	This	makes	MD	an	excellent	

biomarker	for	pathologies	that	affect	membrane	spacing,	such	as	edema,	necrosis,	and	overall	

cellularity.	Major	applications	of	MD	are	in	evaluating	stroke	and	tumor	cellularity.	The	FA	has	

historically	been	interpreted	(and	often	misinterpreted	[32])	as	a	measure	of	axonal	integrity.	

FA	is	highly	sensitive	to	microstructural	changes	including	fiber	density,	fiber	diameter,	

myelination,	and	fiber	geometries,	however	FA	lacks	specificity	for	the	sources	of	anisotropy.		

	 DTI	also	provides	orientation	information	given	by	the	principal	axis	of	the	tensor,	v1.	It	

was	proposed	that	in	ordered	tissue,	the	eigenvector	associated	with	the	largest	eigenvalue	

within	a	voxel	lies	parallel	to	the	local	fiber	direction	[31].	This	became	the	basis	of	several	of	

the	earliest	strategies	for	fiber	tractography.	Due	to	its	overwhelming	popularity,	many	flavors	

of	tractography	today	are	still	referred	to	as	DTI	tractography,	even	if	DTI	is	not	the	technique	

used	to	model	diffusion	processes.		Although	limitations	and	pitfalls	of	DTI	are	well	known	(see	

section	2.4.2	The	Crossing	Fiber	Problem),	the	tensor	is	included	in	this	manuscript	due	to	its	

prevalence	in	the	imaging	community,	and	as	a	baseline	from	which	more	advanced	models	can	

be	compared.		

	
Figure	2.3	Axon	configurations	and	the	estimated	diffusion	tensor.	The	tensor	model	provides	adequate	characterization	of	
fiber	orientations	when	only	a	single	fiber	bundle	is	present	within	a	voxel	(A),	but	may	fail	to	properly	reflect	the	true	fiber	
geometry	in	crossing	fiber	regions	(B).	Here,	alternative	modeling	of	the	diffusion	propagator,	or	direct	estimation	of	the	FOD,	
may	better	reflect	axonal	geometries.		

2.4.2	The	Crossing	Fiber	Problem	

	 Although	DTI	has	proven	to	be	extremely	useful	in	both	mapping	microstructural	

properties	and	mapping	structural	connectivity,	this	model	is	inadequate	in	voxels	that	contain	

complex	fiber	configurations,	an	issue	known	as	the	“crossing	fiber	problem”.	This	problem	
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typically	refers	to	the	situation	where	there	are	two	or	more	differently	oriented	white	matter	

bundles	in	the	same	MR	voxel,	with	both	fibers	contributing	to	the	diffusion	MRI	signal,	in	

effect	causing	a	partial	volume	effect.	In	general,	this	partial	volume	effect	occurs	anytime	

axons	within	a	voxel	do	not	all	run	parallel	to	each	other,	including	not	only	crossing,	but	also	

bending,	fanning,	and	so-called	“kissing”	geometries.	Because	DTI	allows	an	estimate	of	only	a	

single	fiber	direction	per	voxel,	in	these	situations	DTI	can	lead	to	incorrect	estimates	of	fiber	

orientation,	for	example	showing	a	single	peak	in	between	the	actual	fiber	directions	(Figure	

2.3,	B).	These	crossing	fiber	regions	have	been	shown	not	only	to	lead	to	ambiguous	

microstructural	indices,	for	example	FA,	but	also	to	result	in	anatomically	inaccurate	

tractography	[33,	34].	Ideally,	the	scatter	pattern	of	molecules	(i.e.,	the	propagator),	or	some	

estimate	of	the	FOD	itself,	should	allow	a	proper	characterization	of	the	fiber	geometry	in	each	

voxel	(Figure	2.3,	B).	Because	of	this,	a	large	number	of	methods	have	been	introduced	to	

resolve	crossing	fibers	for	tractography,	most	often	based	on	some	feature	of	the	propagator	

(i.e.,	the	ODF)	or	a	direct	estimate	of	the	FOD	from	the	diffusion	signal.	The	following	section	

lists	the	diffusion	reconstruction	methods	relevant	in	this	dissertation,	as	well	as	a	very	brief	

description	of	each.	

2.4.3	HARDI	models	

Diffusion	Spectrum	Imaging	(DSI):	DSI	uses	the	q-space	imaging	method	described	above	

(Section	2.2.2	Q-space	Imaging)	to	obtain	the	diffusion	propagator	by	acquiring	data	on	a	

rectilinear	grid	in	q-space	[24]	and	performing	a	Fourier	transform	of	the	data.	The	dODF	is	then	

calculated	as	the	radial	projection	of	the	propagator	as	in	Equation	14.	

	

Q-ball	Imaging,	with	regularization	(QBIr):	QBIr	samples	measurements	only	on	a	single	shell	in	

q-space	(single	b-value)	-	as	do	all	the	following	HARDI	models.	Because	a	Fourier	transform	is	

no	longer	possible,	QBI	approximates	the	dODF	using	the	Funk	Radon	transform	of	the	diffusion	

attenuation	on	a	shell	in	q-space	[35].	A	Radon	transform	finds	the	projection	of	an	object	over	

a	number	of	angles.	The	Funk-Radon	transform	is	the	spherical	analogue	of	the	Radon	

transform,	where	each	radial	projection	is	obtained	by	integrating	the	signal	over	the	equator	

that	is	normal	to	the	projection.	QBIr	was	one	of	the	first	methods	proposed	to	resolve	crossing	
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fibers,	and	uses	f(a)=1	from	Equation	14.	Finally,	QBIr	incorporates	Laplace-Beltrami	

regularization	when	solving	for	the	“Q-ball”	in	order	to	better	denoise	the	dODF	[36].	

	

Q-ball	Imaging,	constant	solid	angle	(QBIcsa):	While	related	to	QBIr,	this	function	computes	the	

mathematically	correct	formulation	of	the	marginal	probability	of	diffusion	in	a	given	direction	

(i.e.	the	dODF)	by	increasing	the	weighting	of	high-frequency	information	with	a	quadratic	

weighting	function	f(a)=a2,	compared	to	the	linear	formulation	of	QBIr	[37].	This	function	

generally	provides	sharper	peaks	than	QBIr.		

	

Diffusion	Orientation	Transform	(DOT):	Using	a	slightly	different	function	over	a	sphere,	DOT	

approximates	a	single	contour	of	the	diffusion	propagator	at	a	fixed	displacement	radius	[38].	

This	function	differs	slightly	from	the	dODF	in	that	it	is	not	a	radial	projection	of	the	propagator	

(i.e.,	the	sum	of	all	contours),	but	is	still	a	function	of	the	propagator.		

	

Diffusion	orientation	transform,	revisited	(DOTr1):	DOTr1	uses	the	DOT	formalism	and	a	linear	

first-order	radial	projection	(f(a)=a),		of	the	diffusion	propagator	to	estimate	the	ODF	[39].	

	

Persistent	Angular	Structure	(PAS):	Using	another	function	on	the	unit	sphere,	PAS	MRI	

attempts	to	capture	the	angular	structure	of	the	diffusion	propagator	that	persists	over	the	

most	important	range	of	diffusion	displacements,	and	it	is	intended	to	reflect	the	angular	

structure	of	the	FOD	[40].	Thus,	it	is	intended	to	have	much	sharper	peaks	in	regions	of	crossing	

fibers.			

	

Spherical	Deconvolution:	Spherical	deconvolution	is	based	on	the	assumption	that	the	diffusion	

signal	from	a	single	voxel	can	be	modelled	as	a	convolution	between	the	FOD	and	the	fiber	

response	function	that	describes	the	signal	profile	due	to	a	single	coherently	oriented	fiber	

population		[41-43],	thus	this	method	estimates	the	physical	FOD	directly.	The	key	idea	here	is	

to	consider	the	set	of	diffusion-weighted	signal	attenuation	measurements	as	the	sum	of	

measurements	we	would	get	from	a	fiber	population	with	each	orientation	weighted	by	the	
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fraction	of	fibers	in	that	orientation.	Mathematically,	the	signal	S(q,j)	is	then	a	convolution	of	

the	response	function	for	a	single	fiber	population,	R(q),	with	the	FOD:	

The	fraction	of	fibers	aligned	in	each	direction	(i.e.	the	FOD)	can	then	be	obtained	by	a	

deconvolution	of	R(q)	from	S(q,j).	The	fiber	response	function,	R,	is	typically	estimated	from	

the	data	by	considering	only	voxels	with	the	highest	anisotropy	as	in	[43],	which	should	contain	

only	single	fiber	voxels.	Alternatively,	the	response	function	can	be	modelled	as	a	diffusion	

tensor	with	fixed	eigenvalues	[41].	Often,	both	the	signal	and	the	fiber	response	function	are	

represented	as	spherical	harmonic	(SH)	coefficients,	a	set	of	orthogonal	functions	used	to	

represent	functions	defined	on	the	surface	of	the	sphere	(just	as	sines	and	cosines	are	used	to	

represents	functions	on	a	circle	via	the	Fourier	Series).	In	this	way,	the	deconvolution	turns	into	

a	simple	matrix	inversion	that	yields	the	FOD,	also	represented	as	SH	coefficients	(note	that	all	

functions	of	a	sphere	in	this	manuscript	are	represented	as	SH	series,	including	the	output	to	all	

HARDI	methods	described).		

	 Because	this	inversion	is	ill-posed,	filtering	and	regularization	are	necessary	to	prevent	

spurious	results.	Thus,	we	implement	two	variations	of	spherical	deconvolution.	First,	

constrained	spherical	deconvolution,	with	Richardson-Lucy	regularization	(CSDlrd)	utilizes	a	

damped	Richardson-Lucy	algorithm	to	condition	the	inverse	problem	[44].	Second,	super-

resolved	constrained	spherical	deconvolution	(sCSD)	implements	a	non-negativity	constraint	on	

an	iterative	deconvolution	process,	which	allows	an	FOD	estimate	that	preserves	angular	

resolution	while	remaining	robust	to	noise	[45].	

2.4.4	Biophysical	models	

	 Rather	than	extracting	orientation	information	only,	it	is	often	desirable	to	relate	the	

diffusion	process	to	specific	features	of	the	microstructural	environment.	Biophysical	models	

aim	to	describe	this	environment	by	separating	the	tissue	of	interest	into	multiple	

compartments,	each	affecting	the	diffusion	signal	in	a	different	way.	Two	compartments	most	

commonly	included	in	most	models	are	the	intracellular	and	extracellular	spaces.	For	example,	

the	first	multi-compartment	model	was	introduced	in	1995	by	Szafer	et	al.	[46,	47]	and	

modeled	intracellular	and	extracellular	diffusion	coefficients	in	a	periodic	array	of	boxes	(cells)	

	 S q,j = 	F q,j ⊗R(q)	 (18)	
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surrounded	by	partially	permeable	membranes.	Today,	white	matter	is	often	modelled	as	

stacks	of	cylinders,	with	the	space	inside	and	outside	the	cylinders	representing	intra-	and	

extra-axonal	compartments.	Various	other	geometries	have	been	employed	in	the	literature,	

ranging	from	sticks,	balls,	zeppelins,	dots,	and	astrosticks	-	all	designed	to	capture	diffusion	in	

various	compartments	that	may	exist	in	the	brain.	From	these,	geometrical	parameters	in	the	

model	can	be	varied	to	include	measures	of	axon	diameters,	fiber	densities,	and	myelin	

thickness,	among	others	[48-53].	

	 The	model	most	relevant	to	this	dissertation	is	the	neurite	orientation	dispersion	and	

density	imaging	(NODDI)	method,	proposed	by	Zhang	et	al.	[54].	NODDI	models	intra-cellular,	

extra-cellular,	and	CSF	components	as	sticks,	an	anisotropic	tensor,	and	an	isotropic	

compartment,	respectively.	The	intracellular	volume	fraction	provides	information	on	axon	and	

dendrite	density,	while	the	sticks	provide	orientation	information.	One	particularly	interesting	

feature	of	the	intracellular	compartment	is	that	it	models	the	dispersion	in	orientations	of	the	

sticks,	capturing	an	orientation	dispersion	index	(ODI)	that	describes	the	overall	dispersion,	or	

spread,	of	the	underlying	FOD.	The	ODI	has	several	promising	applications,	including	

quantifying	bending	and	fanning	of	axons	potentially	providing	informative	priors	for	mapping	

connectivity,	as	well	as	the	ability	to	identify	crossing	fiber	regions.	In	gray	matter,	the	index	

can	quantify	the	pattern	of	sprawling	dendritic	processes,	which	may	be	a	marker	for	gray	

matter	complexity	or	integrity.	To	date,	there	has	been	no	histological	validation	of	the	

estimated	orientation	dispersion	in	the	brain	using	this	model.	Because	this	index	may	provide	

specificity	towards	different	fiber	configurations,	fiber	complexities,	and	potentially	different	

pathologies,	validation	of	the	ability	to	model	dispersion	using	NODDI	is	an	important	step	

towards	its	implementation	as	a	useful	biomedical	tool.		

2.5	Tractography	

	 The	connections	between	brain	regions	are	mainly	contained	within	the	brains	white	

matter,	which	is	composed	of	myelinated	bundles	of	axons.	These	connections	form	the	

substrate	for	information	transfer	between	brain	regions,	and	are	central	to	our	understanding	

of	brain	structure	and	function	in	both	the	normal	and	diseased	brain.	Until	recently,	studying	

connectivity	was	limited	to	anatomical	dissection	techniques	in	cadavers	and	invasive	chemical	
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tracer	studies	in	animals.	However,	the	axonal	orientation	information	provided	by	diffusion	

MRI	may	be	used	to	reconstruct	estimates	of	white	matter	pathways	in	the	living	brain	non-

invasively.	The	methods	for	doing	this	are	called	white	matter	fiber	tractography.	The	non-

invasive	nature	of	fiber	tractography	techniques,	as	well	as	ease	of	measurements,	makes	

diffusion	tractography	potentially	valuable	in	both	basic	neuroscience	and	clinical	research.		

	 	The	two	main	components	of	any	tractography	process	are	(1)	discrete,	voxel-wise	

measures	of	fiber	orientation,	and	(2)	an	algorithm	to	reconstruct	continuous	pathways	(fiber	

tracts)	from	these	discrete	measurements.	Regarding	component	(1),	all	tractography	

techniques	rely	on	the	assumption	that	the	diffusion	of	water	molecules	will	be	hindered	to	a	

greater	extent	across	axons	than	along	them.	This	assumption	is	investigated	in	detail	in	Aim	1	

of	this	thesis,	and	methods	to	extract	measurements	of	fiber	orientation	are	described	in	

Section	2.4.3	HARDI	models.	The	strategies	employed	to	find	continuous	paths	through	the	

data	field	vary	greatly	from	algorithm	to	algorithm.		Here,	we	describe	the	basic	principles	of	

two	broad	classes	of	algorithms	designed	to	approximate	continuous	white	matter	pathways:	

deterministic	tractography	and	probabilistic	tractography.	

2.5.1	Deterministic	Tractography	

	 A	streamline	through	a	vector	field	is	any	curve	whose	tangent	is	always	parallel	to	the	

vector	field.	Making	these	streamlines	is	an	intuitive	method	for	performing	tractography	–	by	

starting	at	a	seed	point	and	following	the	local	vector	information	step-by-step,	a	

representation	of	a	white	matter	pathway	is	created	by	effectively	“joining	the	arrows”.	If	these	

orientations	are	discrete	estimates	of	the	underlying	fiber	orientations	(for	example	the	

primary	eigenvector	of	the	diffusion	tensor,	or	a	“peak”	of	the	FOD),	this	creation	of	3D	

streamlines	is	considered	deterministic	tractography	(Figure	2.4,	top).	

	 The	first	attempt	at	tractography	was	a	deterministic	method	introduced	in	1999	by	

Mori	et	al.	[55].	This	method,	called	Fiber	Assignment	by	Continuous	Tracking	(FACT)	simply	

followed	the	primary	eigenvector	of	the	diffusion	tensor	over	the	entire	voxel.	This	basic	

tracking	still	serves	as	the	framework	for	all	present-day	deterministic	algorithms,	with	only	

minor	variations	in	streamline	propagation.	For	example,	interpolation	can	be	performed	

between	voxels	in	order	to	estimate	the	local	path	direction	(i.e.	a	Runge-Kutta	or	Euler	
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integration	[56]rather	than	nearest	neighbor	interpolation	of	FACT).	In	addition,	neighboring	

information	can	be	used	in	combination	with	the	direction	of	the	incoming	streamline	to	make	

informed	decisions	when	tracking	through	areas	associated	with	low	anisotropy	[57].	With	the	

realization	that	DTI	cannot	adequately	represent	crossing	fibers	(see	Section	2.4.2	The	Crossing	

Fiber	Problem),	many	deterministic	algorithms	were	tailored	towards	use	with	HARDI	models	

by	allowing	more	than	one	fiber	orientation	per	voxel.	The	peaks	from	any	ODF	or	FOD	can	be	

used	as	inputs	to	these	algorithms,	with	streamline	propagation	typically	following	the	peak	

that	is	closest	to	the	incoming	tracking	direction.	The	use	of	HARDI	models	has	been	shown	to	

be	able	to	track	through	crossing	fiber	regions	[29,	58],	and	reduce	both	false	positive	and	false	

negative	connections.	

	 Two	critical	criteria	that	significantly	affect	the	resulting	tractography	are	where	to	start	

and	terminate	streamlines.	It	is	important	to	stop	streamline	propagation	when	tracts	either	

leave	the	region	of	interest,	or	become	unreliable.	Often,	one	wants	to	track	only	white	matter,	

thus	stopping	should	occur	in	gray	matter.	Because	FA	is	low	in	gray	matter,	it	is	convenient	to	

stop	when	entering	a	region	of	low	FA.	This	has	the	added	benefit	of	stopping	when	the	

estimate	of	the	major	eigenvector	has	a	large	variance,	meaning	it	is	less	well	defined.	Further,	

assuming	that	most	pathways	do	not	bend	sharply	in	the	brain,	most	algorithms	will	stop	

tracking	when	the	trajectory	bends	more	than	a	prescribed	angle	over	a	certain	distance	in	

order	to	avoid	back-tracking	and	jumping	to	a	crossing	fiber.	

	 Tractography	is	initiated	at	so-called	seed	points.	There	are	two	main	strategies	for	seed	

placement.	The	traditional	approach	is	to	select	a	voxel	or	region	of	voxels	(a	region	of	interest)	

where	tractograms	will	be	initiated.	A	second	approach	is	to	select	seeds	over	the	entire	brain,	

termed	“whole	brain	seeding”.	In	both	cases,	multiple	seeds	can	be	placed	in	a	voxel	with	sub-

voxel	locations	to	generate	multiple	tract	solutions	(because	with	deterministic	tractography,	

the	same	seed	will	always	result	in	the	same	tract	given	a	certain	algorithm).	Whole-brain	

seeding	generates	nearly	all	possible	pathways,	while	regional	seeds	are	often	used	when	trying	

to	extract	a	specific	pathway	or	mapping	tracts	from	a	specific	region.		

	 After	tractograms	have	been	generated,	regional	constraints	are	often	imposed	to	

extract	pathways	that	meet	specific	criteria.	Most	often,	rules	based	on	Boolean	logic	are	
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developed	in	order	to	select	specific	pathways	using	inclusive	waypoints,	or	in	order	to	

minimize	unintended	tracts	using	exclusive	waypoints.	This	use	of	prior	anatomical	knowledge	

of	white	matter	trajectories	to	apply	region	of	interest	constraints	parallels	the	fiber	dissection	

approaches	taken	by	early	anatomists	to	segment	white	matter	into	functionally	distinct	

pathways.	Thus,	these	approaches	are	often	referred	to	as	in	vivo	dissection.	Streamlines	are	

often	rendered	as	lines,	or	tubes,	for	visualization	(Figure	2.4,	top).	

2.5.2	Probabilistic	Tractography	

	 The	data	and	modeling	that	tractography	rely	on	are	subject	to	errors,	and	these	errors	

propagate	through	the	tractography	process,	potentially	leading	to	erroneous	connectivity	

estimates.	While	deterministic	tractography	generates	tracks	through	the	data	on	the	basis	of	a	

best	estimate	of	the	underlying	fiber	orientation,	a	different	set	of	techniques,	known	as	

probabilistic	tractography,	takes	into	account	sources	of	uncertainty	in	these	orientation	

estimates	in	order	to	provide	an	indication	of	the	probability	that	a	particular	voxel	in	the	brain	

is	connected	to	another	given	the	diffusion	data.	Probabilistic	tractography	gives	an	assessment	

of	confidence	with	which	a	connection	can	be	observed,	and	aims	to	allow	the	researcher	to	

make	the	statement:	“with	these	data,	and	a	given	reconstruction	model,	I	have	X%	confidence	

that	the	path	of	least	hindrance	to	diffusion	from	seed	point	A	passes	through	region	B.”	To	do	

this,	a	streamline	experiment	is	repeated	many	times	while	incorporating	the	uncertainty	

associated	with	the	fiber	orientation	estimate	into	the	propagation	procedure	(Figure	2.4,	

bottom).	The	connection	“probability”	for	a	given	voxel	is	obtained	by	counting	the	number	of	

streamlines	that	traverse	that	voxel.		

	 The	key	step	in	any	probabilistic	tractography	technique	is	to	build	a	function	that	

characterizes	the	uncertainty	in	the	fiber	orientation	estimates.	As	an	intuitive	example,	instead	

of	selecting	the	peak	of	the	FOD,	a	random	sample	can	be	drawn	from	the	orientation	

distribution	in	order	to	select	the	tracking	direction	for	the	next	step	of	the	tracking	process.	

Thus,	at	any	point	on	the	trajectory,	a	different	direction	is	likely	to	be	taken	for	every	

repetition	of	the	tracking	process.	Over	many	repetitions,	the	pathways	visited	most	often	will	

have	a	higher	probability	index,	often	visualized	as	a	hot-cold	colormap	(Figure	2.4,	bottom).	

Other	approaches	to	characterizing	uncertainty	include	bootstrapping	from	multiple	repetitions	
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or	multiple	combinations	of	the	data	[59,	60],	or	Bayesian	approaches	[61,	62]	to	infer	

uncertainties	from	the	given	parametric	model.		

	 When	compared	to	deterministic	methods,	probabilistic	tractography	offers	the	benefit	

of	an	assessment	of	confidence	in	the	observed	connections.	This	allows	researchers	to	make	

judgements	on	the	reliability	of	their	observations,	as	well	as	confidence	in	the	existence	of	

tracks	existing	in	the	data.	A	second	benefit	is	that	these	methods	may	be	better	able	to	cope	

with	axonal	branching	and	crossing	patterns,	rather	than	following	a	single	orientation	

throughout	a	voxel.	However,	these	connection	indices	are	still	not	a	true	quantitative	

assessment	of	anatomical	connectivity,	but	rather	the	probability	of	a	connection	through	the	

diffusion	data	based	on	the	chosen	model	of	the	diffusion	signal	and	on	the	assumptions	of	the	

tracking	process	itself.		

	
Figure	2.4	Deterministic	and	probabilistic	Tractography.	Streamlines	for	deterministic	(top)	and	probabilistic	(bottom)	
tractography	are	shown	schematically,	along	with	in	vivo	tracking	of	the	frontal	projections	of	the	corpus	callosum	(forceps	
minor)	and	the	corticospinal	tract.		

2.5.3	Applications	of	Tractography	

	 Since	its	introduction	in	1999	[55],	diffusion	fiber	tractography	has	become	an	extremely	

useful	tool	to	study	the	central	nervous	system,	with	a	wide	range	of	applications	in	both	

clinical	and	basic	neuroscience.	Most	analysis	of	MR-tractography	can	typically	be	classified	into	

three	main	techniques.	First,	tractography	can	be	used	to	segment	white	matter	into	specific	
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pathways	in	order	to	examine	some	quantitative	imaging	measure	along	the	course	of	the	

selected	pathway,	for	example	a	comparison	of	a	specific	pathway	in	healthy	and	diseased	

subjects.	Second,	tractography	has	been	used	to	identify	new	white	matter	pathways,	or	

characterize	the	presence,	absence,	or	changes	in	specific	tracts.	Third,	tractography	has	been	

used	to	gain	insights	into	normal	brain	anatomy,	which	adds	to	our	understanding	of	structural	

connectivity	and	the	consequences	of	localized	pathologies,	and	can	guide	interventions.		

	 The	first	application	of	fiber	tractography	is	to	improve	models	of	normal	human	white	

matter	anatomy.	Understanding	the	patterns	of	cognitive,	motor,	and	sensory	impairments	

resulting	from	brain	damage	depends	on	good	models	of	functional	and	structural	anatomy.	For	

example,	much	is	known	about	the	anatomy	of	the	language	network	from	animal	studies.	The	

anatomy	of	this	network	has	been	extrapolated	from	animals	to	in	vivo	humans	and	has	been	a	

subject	of	a	number	of	tractography	studies	that	localize	pathways	involving	Broca’s	and	

Wernicke’s	areas	in	healthy	human	brains	[63,	64].	Understanding	the	basic	language	

processing	routes	provides	a	framework	for	understanding	deficits	that	may	arise	from	white	

matter	damage	to	these	areas.	Recently,	there	has	been	a	large	effort	to	map	the	human	

“connectome”,	a	comprehensive	map	of	the	neural	connections	of	the	brain	[65,	66].	Studying	

the	brain	as	a	network,	rather	than	individual	white	matter	structures	could	shed	light	on	

relationships	between	structural	and	functional	connectivity,	and	aid	in	deciphering	the	

networks	that	generate	cognition,	emotion,	and	behavior.		

	 Tractography	has	also	been	applied	to	segmentation	of	the	brain	into	functionally	and	

structurally	distinct	subareas,	for	example,	segmenting	the	thalamus	according	to	its	cortical	

connectivity	[67,	68].	Likewise,	segmentation	of	gray	matter	regions	may	be	defined	based	on	

patterns,	an	example	being	defining	the	functional	boundary	between	supplemental	and	pre-

supplemental	motor	cortex	of	the	medial	frontal	cortex	[69].		

	 A	number	of	developmental	brain	disorders	and	abnormalities	have	been	described	

using	tractography.	Tractography	has	demonstrated	incomplete	development	of	tracts	in	

disorders	such	as	lissencephaly	[70],	or	smaller/absent	white	matter	pathways	in	

holoprosencephalies	[71,	72].	DTI	tractography	has	demonstrated	both	widespread	as	well	as	
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tract	specific	changes	in	anisotropy	and	diffusivities	in	premature	newborns,	and	allows	

monitoring	and	assessment	of	development	during	the	first	few	months	of	life	[73,	74].	

	 Mild	decreases	in	anisotropy	have	been	observed	in	healthy	subjects	as	a	result	of	aging.	

However,	tractography	has	shown	additional	changes	in	patients	with	several	types	of	

neurodegenerative	diseases	and	dementia.	A	common	theme	with	these	diseases	is	a	

decreased	anisotropy	(and	often	an	increased	diffusivity)	in	one	or	more	pathways	identified	

using	tractography.	For	example,	patients	with	Parkinson	disease	show	decreased	anisotropy	in	

the	substantia	nigra	[75],	while	the	corpus	callosum	(in	addition	to	frontal,	temporal,	and	

parietal	white	matter	pathways)	demonstrated	decreased	anisotropy	in	both	Huntington’s	[76]	

and	Alzheimer’s	disease	[77,	78].	The	disruption	of	these	callosal	pathways	has	been	correlated	

to	disturbances	of	motor	or	cognitive	processing	that	characterize	these	diseases.	Finally,	

decreased	anisotropy	in	the	corticospinal	tract	in	amyotrophic	lateral	sclerosis	has	been	

correlated	with	both	disease	progression	and	slower	nerve	conduction	time	[79,	80].		

	 Similar	studies	of	tractography	have	been	applied	to	psychiatric	diseases,	again	typically	

using	tractography	to	examine	some	quantitative	index	along	a	tractography-defined	pathway.	

Decreased	anisotropy	(often	interpreted	as	decreased	white	matter	integrity)	has	been	

observed	in	prefrontal	white	matter	of	patients	with	bipolar	disorder	[81],	in	the	superior	

frontal	gyrus	of	patients	with	depression	[82],	and	in	a	number	of	white	matter	regions	in	

children	with	autism	[83],	obsessive-compulsive	disorder	[84,	85],	and	attention	deficit	disorder	

[86,	87].	Because	schizophrenia	may	involve	disordered	brain	activity,	many	investigators	have	

used	tractography	to	demonstrate	a	variety	of	white	matter	abnormalities,	often	correlated	

with	performance	on	cognitive	tests.	These	findings	included	decreased	anisotropy	in	frontal	

and	temporal	regions,	as	well	as	altered	structural	connectivity	of	the	thalamus,	frontal,	

temporal,	and	parietal	cortices	[88-91].				

	 Because	diffusion	is	exquisitely	sensitive	to	both	myelin	loss,	axonal	damage,	and	

edema,	tractography	has	been	particularly	useful	for	demyelinating	diseases,	particularly	

multiple	sclerosis.	An	increased	diffusivity	has	been	observed	in	many	tracts	in	patients	with	

motor	symptoms,	as	well	as	specific	white	matter	changes	in	a	variety	of	white	matter	tracks	

[92-94].	In	addition,	a	network	analysis	using	graph	theoretical	measures	indicates	decreased	
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network	efficiencies	in	multiple	sclerosis	patients,	particularly	in	sensorimotor,	visual,	and	

default-mode	areas	[95].	Related,	patients	presenting	with	optic	neuritis	show	reduced	

connection	strengths	along	the	optic	radiations.		

	 Finally,	diffusion	tractography	is	emerging	as	an	important	part	of	preoperative	

neurosurgical	planning.	When	a	surgeon	aims	to	remove	tumors,	tractography	could	provide	

information	on	the	location	of	critical	structures	to	avoid,	for	example	the	corticospinal	tract	

[96].	By	seeding	from	areas	defined	by	functional	imaging,	tractography	allows	the	tracing	of	

these	pathways	displaced	by	tumors	[97],	informing	tumor	removal	approaches	[98],	and	

delineating	tumor	margins	[99,	100].		Neurosurgical	uses	have	not	been	limited	to	oncology,	but	

have	also	been	used	in	surgical	planning	for	epilepsy.	Again,	tractography	has	been	used	to	

determine	whether	seizure	foci	involve	visual	radiations,	or	to	predict	visual	field	impairments	

after	temporal	lobe	resections	[101-103].			
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Addendum 1: History of Diffusion, Diffusion MRI, and Fiber Tracking 
 

 
 
Diffusion 
 Diffusion is the process by which matter is transported from one part of a system to 
another as a result of random molecular motion, also called Brownian motion. This random 
motion was described as early as 60 BC, where the Roman Lucretius described dust particles 
mingling and tumbling through sunbeams in a poem titled “On the Nature of Things”. He used 
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this as proof of the existence of what we now know as atoms and molecules. Similarly, the Dutch 
physiologist Jan Ingenhousz described the irregular motion of coal dust particles on the surface 
of alcohols in 1785. However, the discovery of this random molecular walk of thermal origin is 
traditionally credited to the botanist Robert Brown in 1827 (which subsequently was named after 
him, “Brownian motion”), who described the jittering of pollen grains, in addition to inorganic 
material, under a microscope. It wasn’t until 1905 that Albert Einstein explained in mathematical 
detail the motion of individual water molecules observed by Brown. Here, he formulated 
diffusion equations relating the diffusion coefficient to the mean squared displacement of 
particles, in addition to relating the diffusion coefficient to measurable physical quantities of the 
particle and medium. In doing so, he indirectly confirmed the existence of atoms and molecules. 
Shortly after, in 1908 the French physicist Jean Perrin confirmed Einstein’s relations 
experimentally and confirmed the molecular kinetic theory (in addition to determining 
Avogadro’s number). 
 
Diffusion NMR 
 Half a century later, Erwin Hahn showed that spin echoes in nuclear magnetic resonance 
(NMR) offer a way to measure translational motion of molecules, or the self-diffusion coefficient 
[Hahn, Phys Rev 1950]. In his experiments, spin echoes occur because spins were immersed in 
an inhomogeneous field. This results in a distribution of Larmor frequencies, causing dephasing 
and a decay of the signal. With the phase reversal from a second RF pulse, the effect of the 
inhomogeneous field was to cause spin phases to converge and result in an echo. Hahn realized 
that the formation of this echo is dependent on the molecules remaining in the same field, and 
that any translational motion would disturb the refocusing and result in an attenuation of the spin 
echo amplitude.  
 The original Hahn experiment utilized two 90° pulses. The spin echo was further 
developed in 1954 by Herman Carr and Edward Purcell who not only showed that echoes could 
be repeated successively with a 90° pulse followed by a train of 180° pulses, but also showed 
that this technique permitted a direct measurement of the molecular self-diffusion constant in 
fluids – the first quantitative measurement of diffusion using MR [Carr and Purcell, Phys Rev 
1954]. Just two years later, Henry Torrey revised and generalized the NMR Bloch equations by 
including an additional term that accounted for both self-diffusion and flow [Torrey, Phys Rev 
1956], and was represented as a form of “transport of magnetization”. The new form of this 
equation is now referred to as the Bloch-Torrey equation. It was soon suggested that diffusion 
gradients may be more usefully applied in the form of rectangular pulses before and after the 
refocusing pulses, but turned off during RF pulse transmission and signal detection. The pulsed-
gradient spin echo (PGSE) was first demonstrated by Tanner and Stejskal [Stejskal and Tanner, 
Phys Rev 1965], who also provided the mathematical analysis of the PGSE diffusion weighted 
sequence. This new acquisition allowed a precise measure of diffusion time, and eliminated 
difficulties associated with using diffusion gradients during the refocusing pulse. The PGSE is 
now the most common form of diffusion weighting today.  
 
Diffusion MRI 
 The first diffusion weighted images were acquired in 1984 using the methods proposed 
by Stejskal and Tanner, now with the addition of linear gradients to create a 2D image. For 
example, George Wesbey suggested diffusion could be imaged by using regular MR imaging 
sequences and varying the slice selection gradient pulses – and performed subsequent 
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experiments in both water phantoms and in canine myocardium [Wesbey et al., Invest Radiol 
1984].  The first diffusion images of the brain were made in 1985 and presented at the Society of 
Magnetic Resonance in Medicine (SMRM) meeting in London. Here, Dieter Merboldt and Denis 
Le Bihan were two of only three abstracts at that meeting on diffusion imaging (the third was a 
poster by Taylor and Bushel showing diffusion measurements in a chicken egg). For the first 
time in vivo, in addition to measuring T1, T2, PD, velocity, and susceptibility, molecular self-
diffusion coefficients are now on the list of biophysical parameters capable of being measured by 
MRI for characterizing biological systems. The tremendous clinical potential of DWI was soon 
realized. In 1986, Le Bihan introduced the first application of DWI towards medical use by 
measuring what is now commonly referred to as intra-voxel incoherent motion (IVIM), a 
measure which includes both diffusion and microcirculation of blood in capillary networks [Le 
Bihan et al., Radiology 1986]. Here, ADC and IVIM differences were found between normal and 
pathological tissue, extending the capabilities of diffusion MRI into diagnostic imaging. 
 Shortly after, it was recognized that diffusion in the central nervous system was not the 
same in all directions (i.e. diffusion is anisotropic). Michael Moseley showed that diffusion in 
the cat CNS depends on orientation, particularly in the white matter and the spinal cord [Moseley 
et al., Radiology 1990], suggesting that diffusion anisotropy could be used to identify white 
matter orientation. This immediately suggested the use of diffusion to characterize pathologies 
such as demyelination, however the recognition that water diffusion is lower perpendicular to 
axons opened the door to tracking fiber orientation throughout the brain. In 1990, the first color-
coded orientation maps [Douek et al., JACT 1991] were rendered, reflecting the fiber direction, 
and producing the stunning visualization that diffusion MRI is known for. In 1994, Peter Basser 
introduced diffusion tensor imaging (DTI) [Basser et al., Biophys J 1994]. DTI models the 
diffusion process as a 3D Gaussian function by describing it with a tensor formalism. Now, it 
was possible to model not only fiber orientation, but also quantitative indices of microstructure 
and anatomy. For the first time, instead of a diffusion coefficient, DTI allows calculation of 
invariants of the tensor and its eigensystem to produce a variety of useful maps and information 
that had previously not existed in the MRI community. For example, some of the first 
quantitative metrics of diffusion (other than simple ADC) were introduced [Basser and Pierpaoli, 
JMR 1996], one of them being the commonly used fractional anisotropy. These metrics offered 
sensitivity to microstructure of the brain, allowing monitoring of structural changes in 
development, aging, and disease. These microstructural measures are still a major topic of 
research today. 
 
Fiber Tracking 
 In 1999, Susumu Mori proposed a way to use the estimated axon orientation provided by 
DTI in order to reconstruct the neuronal projections of the brain in a process known as fiber 
tracking [Mori et al., Ann Neurol. 1999]. Here, he used a simple method of linking the vector 
field of orientations in a process named fiber assignment by continuous tracking (FACT) to 
noninvasively create streamlines of the rat brain. The same year, the first fiber tracking in the 
human brain was performed [Conturo et al., PNAS 1999]. Tracts such as the optic radiation, 
corpus callosum, and subcortical association pathways were reconstructed, and validated against 
known anatomical knowledge. These studies opened a new window to see connections in the 
brain. As opposed to invasive tracer techniques in animals, this enabled noninvasive study of the 
fiber connections among brain regions in individual subjects.  
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 Very quickly, it was realized that DTI was not able to accurately capture the complex 
geometry of many areas of the brain. For example, DTI assumes a single fiber population in an 
imaging voxel, however, the brain contains many regions where crossing fibers are expected to 
be present, or a distribution of fibers exists. This realization led a large number of more advanced 
reconstruction algorithms as well as more refined ways to propagate fiber tracks.  One of the first 
methods proposed to resolve multiple fiber populations was named Q-ball imaging [Tuch et al., 
MRM 2002]. This acquisition scheme required more sampled diffusion directions and (typically) 
a larger diffusion weighting than DTI. Techniques like this that required a large number of 
acquisition directions and sometimes multiple diffusion weightings came to be known as high 
angular resolution diffusion imaging, or HARDI [Frank et al., MRM 2002], techniques. Some of 
the more common HARDI methods in the literature include Persistent angular structure MRI 
[Jansons et al., IPMI 2003], Spherical deconvolution [Tournier et al., Neuroimage 2004; 
Anderson, MRM 2005], and Diffusion Orientation Transform (Ozarslan et al., Neuroimage 
2006], among others. These all vary in assumptions of diffusion in a voxel, and each has its own 
unique advantages as well as limitations. Finally, a method named Diffusion Spectrum Imaging 
(DSI) attempts to elucidate the full 3D diffusion propagator in each voxel (which is a function of 
both orientation/space and diffusion time) [Van Wedeen MRM 2005]. DSI is an adaptation of 
NMR work in the 1990’s [Callaghan, JMR 1990] which describes 1D propagator imaging. DTI, 
HARDI, and DSI methods (in combination with various tractography algorithms) are now 
ingrained in the connectivity literature, are still the primary methods for probing structural 
connectivity in vivo. Recently, efforts have been made to create a comprehensive map of the 
neuronal connections of the brain. One of the largest – the Human Connectome Project [Van 
Essen et al., Neuroimage 2014], sponsored by the NIH and launched in 2009– has utilized all the 
above methods to perform fiber tractography, with the goal to shed light on connectivity of the 
healthy brain, as well as produce tractography data that will facilitate research on brain disorders 
such as dyslexia, autism, Alzheimer’s disease, and schizophrenia.  
 
Microstructure Characterization 
 In addition to assessing structural connectivity using fiber tracking, diffusion is also 
unique in its ability to probe the tissue microstructure. Originally implemented in porous solids 
[Callaghan et al., 1990], measures of diffusion have been shown to be sensitive to material 
tortuosity, permeability, size, and density. Several methods have been proposed to model 
diffusion in biological tissue. A common strategy is to model different microstructural 
compartments with different geometric or biophysical properties. The first “multi-compartment” 
diffusion model was introduced by Aaron Szafer (Szafer et al., MRM 1995] - this modeled the 
apparent diffusion coefficient as a combination of intracellular and extracellular contributions. 
Surprisingly, it wasn’t until a decade later that microstructural models became commonplace in 
dMRI research. In 2003, Behrens [Behrens et al., MRM 2003] proposed the “ball and stick” 
model which is able to account for one or more fiber directions in each voxel, assuming diffusion 
in axons is along a single direction (sticks) and extracellular diffusion is isotropic (ball). Daniel 
Alexander [Alexander et al., MRM 2008] investigated the ability of dMRI to measure axon 
radius using a two-compartment model that models the intra-axonal space as a cylinder with a 
non-zero pore size. Soon, these techniques were expanded to include cylindrical axons with a 
distribution of radii in a method called AxCaliber [Assaf et al., MRM 2008]. Models containing 
more than 2 compartments are also common, often including a CSF compartment [Alexander et 
al., NeuroImage 2010], or a dispersion of axon orientations (“orientation dispersion”) in the 
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NODDI model [Zhang, NeuroImage 2011]. Recently, several models consider the diffusion data 
as a linear combination of multiple anisotropic compartments (myelinated and unmyelinated 
axons) and a spectrum of isotropic compartments (cells, sub-cellular structures, stationary water) 
in a technique known as diffusion basis spectrum imaging [Wang, Brain 2011]. Finally, as an 
alternative to compartment modeling, one can quantify features of the diffusion displacement 
function and relate these to tissue properties. For example, Diffusion Kurtosis Imaging [Jensen et 
al., MRM 2005] extends DTI by quantifying the non-Gaussianity of diffusion. Again, the 
Kurtosis metrics can be related to characteristics of tissue, including axonal water fractions, intra 
and extra-axonal diffusivities, and myelination [Fieremans et al., AJNR Am J Neuroradiol 2013].  
 
New Applications 
 The vast majority of Diffusion MRI studies have focused on tissue microstructure and 
connectivity with tractography. Recently, several new applications of diffusion in the brain have 
been explored. In 2006, Denis Le Bihan introduced diffusion functional MRI (dfMRI) [Le Bihan 
et al., PNAS 2006]. It is hypothesized that cells swell during neuronal activation, resulting in a 
decreased diffusivity coefficient, meaning that diffusion can act as a direct marker of cortical 
activation. DfMRI has been shown to have similar (yet more specific) activation patterns as 
BOLD responses, and to precede the BOLD vascular response. Because cell swelling may be 
more intrinsically linked to neuronal activation than blood oxygenation, dfMRI may provide 
improved functional resolution throughout the cortex.  
 A second application of diffusion MRI is anatomic labelling and parcellation of brain 
structures. Originally applied to the thalamus [Johansen-Berg et al., PNAS 2004], regions are 
defined as volumes having similar connectivity profiles, and anatomical borders are identified 
where connectivity changed. Similar methods have been applied across the human cortex 
[Anwander et al., Cereb. Cortex 2007]. By taking advantage of structural connectivity obtained 
through dMRI, these methods offer strategies for testing correspondences between structure and 
function in the brain.  
 One final exciting application of diffusion MRI is as a tool for surgical planning 
[Berman, FBTI 2014]. In Neurosurgery, it is critical to preserve functionally critical cortices and 
the underlying white matter tracts, and currently diffusion tractography remains the only 
noninvasive method of determining the course of these tracts. The use of tractography to 
complement surgical planning by localizing and visualizing white matter pathways has the 
potential to significantly improve surgical outcomes, and it is expected that tractography for 
surgical planning will become the standard of care in the near future [Berman, FBTI 2014]. 
However, it is essential that the capabilities and limitations of these techniques are understood 
before they can be routinely used in the clinic.  
  



	 33	

CHAPTER 3:  VALIDATING DIFFUSION MRI 

3.1	What	needs	to	be	validated?	

	 The	potential	of	diffusion	tractography	to	map	the	three-dimensional	network	of	

connections	in	the	living	human	brain	has	opened	up	a	large	number	of	applications	(see	

Section	2.5.3	Applications	of	Tractography).	There	exists	evidence	that	the	anisotropic	diffusion	

of	water	largely	reflects	axonal	geometry	[18],	and	that	many	large	tractography-defined	

pathways	appear	valid	[67].	However,	the	process	from	data	acquisition	to	generation	of	a	3D	

map	of	reconstructed	pathways	is	a	multi-step	procedure,	with	numerous	assumptions	and	

uncertainties	that	can	ultimately	affect	the	ability	of	diffusion	tractography	to	faithfully	

represent	the	true	axonal	connections	of	the	brain	(Figure	3.1).	Thus,	it	is	critical	that	

tractography	methods	and	experiments	are	carefully	validated	in	order	to	provide	proper	

interpretation	of	the	results	and	to	better	understand	the	limitations	of	these	techniques.		
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Figure	3.1	Sources	of	ambiguity,	uncertainty,	and	error	in	diffusion	MRI	fiber	tractography.	

	 There	are	many	potential	sources	of	error	and	ambiguities	that	affect	interpretation	of	

the	diffusion	signal.	As	with	any	quantitative	imaging	approach,	reliability	of	estimates	is	

dependent	on	image	signal-to-noise	ratio	(SNR),	as	well	as	image	resolution	which	influences	

partial	volume	effects	(as	well	as	SNR)	(Figure	3.1,	left).	In	addition,	image	artifacts	such	as	

those	from	subject	motion	can	corrupt	results.	Other	artifacts	particularly	relevant	to	echo-

planar	imaging	diffusion	MRI	are	geometric	distortions	caused	by	susceptibility	gradients,	or	

induced	by	eddy	currents	due	to	the	strong	diffusion	gradients.	In	order	to	eliminate	some	of	

these	confounds,	many	of	the	experiments	performed	in	this	work	are	on	ex	vivo	specimens.	

Imaging	of	fixed	tissue	has	several	experimental	advantages	including	the	feasibility	of	longer	

scanning	times	and	the	absence	of	motion.	Together,	this	makes	it	possible	to	obtain	data	with	

high	SNR	at	a	much	higher	resolution	compared	to	in	vivo	studies.	The	most	critical	advantage	

of	ex	vivo	imaging	relevant	to	our	studies	is	the	ability	to	compare	diffusion	data	to	histological	
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data,	which	provides	a	gold	standard	for	validation	studies	that	are	not	available	for	the	living	

human	brain.		

	 The	next	obvious	source	of	error	encountered	in	the	tractography	process	is	in	the	

inference	of	fiber	orientation	(Figure	3.1,	middle).	While	axons	have	diameters	on	the	scale	of	

~1um,	a	typical	MRI	voxel	is	typically	on	the	order	of	millimeters,	and	can	contain	hundreds	of	

thousands	of	axons	[104],	with	a	wide	range	of	possible	configurations.	This	makes	mapping	

from	the	diffusion	signal	to	a	fiber	orientation	distribution	an	ill-posed	problem,	with	many	

patterns	likely	to	give	rise	to	the	same	MRI	measurement.	In	addition	to	ambiguities	associated	

with	image	acquisition	(motion,	distortion,	SNR,	resolution)	and	fiber	geometry,	the	inference	

of	fiber	geometry	in	each	voxel	is	dependent	on	the	utilized	dMRI	reconstruction	method,	in	

combination	with	experimental	conditions,	including	the	number	of	DWIs	and	the	amount	of	

diffusion	weighting	(b-value).		Because	these	estimates	of	fiber	orientation	form	the	input	to	all	

tracking	algorithms,	the	validity	of	experimentally	estimated	orientation	information	must	be	

checked	and	quantified	against	the	true	physical	geometry	of	fibers	under	investigation.	Thus,	

in	Aim	1	of	this	thesis,	we	ask	“can	diffusion	MRI	accurately	predict	the	fiber	orientation	

distribution	in	each	MRI	voxel?”.	To	do	this,	we	investigate	how	well	different	HARDI	models	

and	reconstruction	methods	predict	the	ground-truth,	histologically	defined	neuronal	

orientation	distribution,	as	well	as	investigate	their	behavior	over	a	range	of	physical	and	

experimental	conditions.			

	 Finally,	errors	can	be	introduced	in	the	fiber	tracking	process	itself	(Figure	3.1,	right).	

Every	stage	in	the	tracking	process,	including	seeding,	track	propagation,	and	stopping,	

influences	the	final	results	of	the	estimated	fiber	pathways.	For	example,	varying	tracking	

parameters	such	as	curvature	limits	and	path	step	length,	in	addition	to	potential	integration	of	

neighboring	information,	will	likely	result	in	differing	estimates	of	white	matter	pathways.	The	

effects	of	each	of	these	components	on	the	anatomical	accuracy	of	tractography	needs	to	be	

studied	in	order	to	allow	the	limitations,	in	terms	of	track	specificity,	sensitivity,	and	precision,	

to	be	understood.		

	 When	estimating	some	measure	of	point-to-point	connectivity	(for	example,	cortico-

cortical	connectivity),	it	is	not	only	important	to	correctly	follow	white	matter	trajectories,	but	
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also	to	accurately	map	their	gray	matter	origins	and	terminations.	This	is	particularly	

problematic	in	areas	of	the	cortex	that	exhibit	complex	folding	and	convolutions,	necessitating	

sharp	turns	or	crossing	fibers	at	or	near	the	white	matter/	gray	matter	boundary.	Recently,	it	

has	been	shown	that	tractography	streamlines	have	a	tendency	to	terminate	primarily	on	gyral	

crowns	(Figure	3.2),	rather	than	the	walls	of	the	sulci,	or	the	sulcal	fundi	[105-107].	While	these	

results	could	have	significant	implications	regarding	morphogenesis	and	development,	it	has	

been	suggested	that	these	observations	likely	reflect	a	bias	in	fiber	tracking	algorithms	[108].	

Clearly,	a	tendency	for	streamlines	to	track	to	certain	regions	of	the	brain	could	bias	

quantitatively	connectivity	studies.		In	Aim	2,	we	investigate	the	“gyral	bias”	of	tractography,	by	

making	direct	comparisons	of	diffusion	MRI	and	light	microscopy	to	analyze	discrepancies	in	

connectivity	measures	and	investigate	the	effects	of	tracking	parameters	and	algorithms	on	

observed	biases.		

	
Figure	3.2	A	"gyral	bias"	in	diffusion	tractography?	An	example	coronal	slice	is	shown	highlighting	gyral	crowns,	sulcal	walls,	and	
sulcal	fundi	(left).	A	potential	white	matter	configuration	along	the	gyral	blade	is	depicted,	along	with	a	histological	slice	which	
indicates	myelinated	axons	entering	the	cortex	along	the	entire	gyral	blade	(middle).	Finally,	tractography	may	result	in	
overestimation	of	connectivity	at	the	crowns,	shown	schematically	and	with	experimental	data	(right).		

Addendum 2: Neuroanatomy Relevant to White Matter Connectivity 
 

 In addition to cadaveric dissection, much of what is known pertaining to white matter 
structural connectivity comes from tracer studies in animals. By capitalizing on cytoplasmic flow 
and the axoplasmic transport systems, these histological analyses can be very precise with regard 
to spatial localization, and allow reporting of the entire axon trajectory from source to target 
regions. For example, key studies in non-human primates utilize retrograde tracer injections to 
quantify strength of area-to-area connections [109], or anterograde injections to analyze axonal 
trajectories within the white matter [110]. These tracer studies allow us to make some general 
observations regarding anatomical connectivity. 
 First, we know that white matter appears to be grossly organized into a relatively 
moderate number of large fiber bundles (major tracts), however axons must follow more 
complex trajectories in order to reach their specific gray matter (or subcortical) targets. These 
pathways can largely be divided into association tracts, projection tracts, and commissural tracts. 
Association fibers are those that connect two cortical areas (cortico-cortical connection) with the 
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same cerebral hemisphere. Examples of “long” association tracts are the fornix, uncinated 
fasciculus, cingulum, and superior longitudinal fasciculus. A class of association fibers called 
“short” association fibers, or U-fibers, lie immediately beneath the gray matter of the cortex, and 
connect together adjacent gyri, often passing from one sulcal wall to another. Projection fibers 
consist of afferent and efferent fibers connecting the cortex with either the spinal cord, or 
subcortical structures, such as the thalamus or brainstem. Examples of projection pathways are 
the motor tract (occupying part of the internal capsule), the fornix (containing efferent fibers 
from the hippocampus), and the optic radiation.  Finally, commissural fibers connect the two 
hemispheres of the brain. These include the corpus callosum (the largest commissural fiber 
system in the brain), the anterior commissure, and the posterior commissure.  

 
 The axonal fiber bundles show a diverse pattern of geometries and trajectories within the 
white matter, and variations across pathways. Many white matter tracts are known to tightly 
fasciculate over long distances, remaining in a coherent bundle from injection site to termination 
in the gray matter [110]. Another geometry is fiber branching. Individual axons, or entire 
bundles, may branch at varying angles (from acute to near-orthogonal) into new pathways or into 
nearby cortical gray matter. In addition, there is evidence for a fiber dispersion, or fanning, from 
a tight bundle into a more diffuse pattern (or vice-versa) [110]. Finally, different pathways may 
cross others (again ranging from acute to orthogonal crossings), sometimes as adjacent, but 
separate, bundles, and other times as an interwoven “checkerboard” like pattern. Taken together, 
there is an extraordinary complexity of wiring of the brain, with a diverse range of bundle 
geometries, curvature, diameters, and lengths.  
 A second observation from tracer results is that cortico-cortical association circuits 
comprise the vast majority of long-distance pathways in the brain, relative to subcortical or 
commissural pathways. Qualitatively, for cortical injections (for example tracer reproductions 
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from [109] supplemental figures) some labeled neurons are present in subcortical structures, but 
the vast majority of labeling occurs in the cerebral cortex. This predominance of cortico-cortical 
association fibers is expected to be even larger in humans due to the larger proportion of cerebral 
cortex in the human brain [111].  
 Finally, it is known that cortico-cortical connections vary in strength over a wide range 
(five orders) of magnitude. Connections tend to follow a distance-rule, where they are generally 
strongest between neighboring cortical areas, and the strength of connection declines 
progressively with increasing separation with an approximately exponential slope [109]. This 
may be particularly problematic for tractography algorithms, where the longest connections will 
be the weakest, and correspond to the largest streamline propagation, and consequently, the 
largest uncertainty in estimations.   
 In addition to this, there are a number of connection patterns that pose challenges to 
diffusion MRI. Long-range connections from across the brain may converge in a sulcus, yet their 
terminations show an interdigitating pattern, or topographic organization, with different paths 
exiting the stalk of the sulcus at different locations along the sulcal banks [112]. Diffusion MRI 
may not have the specificity to identify the converging, and subsequent branching, of pathways 
into the cortex. In addition to this, pathways are generally widely distributed across gyral and 
sulcal regions, and there is no obvious bias (or increased connection density) for gyral crowns, 
sulcal walls or sulcal fundi [108] (see Section 3.1 What needs to be validated? for a discussion of 
the gyral bias). However, there are currently no published studies which attempt to quantify the 
distribution of neurons across the gyral blades. Finally, in addition to a topographic organization 
of termination patterns across a gyral blade, there also exists a laminar organization of 
connection patterns along the depth of the cortex, as well as connections within and between the 
cortical layers themselves. Diffusion MRI would have to be able to distinguish separate 
connections to and from different cortical layers. At the current imaging resolution, gray matter 
is largely isotropic, however, evidence exists that diffusion MRI may be able to distinguish 
cortical lamina, with estimated fiber orientations running both tangentially and radially within 
the cortex [113-115], with some potential to reveal intra-cortical or lamina-specific connectivity 
[116].  
 To summarize, classical neuroanatomical studies have revealed that white matter 
pathways are organized into regular bundles, but can still have complex geometries and 
trajectories. Termination and connectivity patterns can have intricate organization, both within 
gyri and within cortical layers, and cortico-cortical connection strengths can vary over several 
orders of magnitude. Together, a precise quantification of axonal trajectories or connection 
strengths from diffusion MRI is a lofty goal, and tractography connectivity patterns must be 
validated in order to understand the sensitivity to different geometries and current limitations.    

3.2	Validating	Microstructure	

	 It	is	important	not	only	to	test	the	ability	of	tractography	algorithms	to	track	pathways	

from	voxel	to	voxel,	but	also	to	verify	the	accuracy	of	diffusion	MRI	to	assess	the	fiber	

orientation	within	each	voxel.	To	achieve	reliable	tractography,	it	is	essential	that	the	fiber	

reconstruction	method	is	highly	accurate,	especially	in	the	case	of	complex	of	crossing	fibers.	

Several	validation	studies	have	been	performed	which	check	and	quantify	the	match	between	
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the	experimentally	estimated	orientation	information,	and	the	true	orientation	of	fibers.	For	

any	validation	method,	a	gold	standard	is	needed	from	which	to	gather	the	ground	truth	

orientation.	The	most	common	approaches	are	validation	using	software	phantoms	(numerical	

simulations),	physical	phantoms,	and	histology.	Each	method	has	contributed	to	our	knowledge	

of	the	advantages	and	limitations	of	the	wide	variety	of	reconstruction	algorithms.	

3.2.1	Simulations	and	Software	Phantoms	

	 The	validation	framework	of	choice	for	the	majority	of	reconstruction	algorithms	

proposed	in	the	literature	has	been	through	software	phantoms	using	simulated	data.	Typically,	

the	signal	resulting	from	a	fiber	bundle	(or	bundles)	is	simulated	based	on	some	model	of	

diffusion	representing	tissue	microstructure	or	fiber	orientation(s).	The	data	are	then	analyzed	

using	the	given	reconstruction	method	and	compared	to	the	ground	truth	

microstructure/orientation(s).	The	synthetic	signal	is	generally	created	in	one	of	two	ways:	by	

test	functions,	or	Monte	Carlo	simulations	of	spins	undergoing	Brownian	motion	within	a	user-

defined	environment.	Most	commonly,	test	functions	are	typically	based	on	a	mixture	of	user-

defined	Gaussian	distributions	simulating	multiple	fiber	populations	(i.e.	crossing	fibers)	in	a	

voxel	[6].	Monte	Carlo	simulations	allow	highly	complex	physical	environments	to	be	

formulated	mathematically,	generating	synthetic	datasets	based	on	more	“exact”	models	of	

diffusivity	in	the	underlying	environments	[53,	117].	Simulations	offer	the	user	full	control	over	

all	experimental	conditions,	including	signal	models,	fiber	configurations,	sampling	schemes,	

and	noise	levels.	This	enables	a	simple	and	versatile	way	to	assess	the	performance	of	a	

reconstruction	algorithm	over	a	broad	range	of	physical	and	acquisition	conditions.		

	 The	major	limitations	of	many	algorithms	are	first	identified	using	simulations.	For	

example,	several	studies	utilized	simulations	to	highlight	the	failure	of	DTI	to	characterize	intra-

voxel	orientation	complexity	when	more	than	a	single	fiber	population	is	present	[118,	119].	A	

large	number	of	HARDI	methods	intended	to	solve	the	crossing	fiber	problem	first	test	their	

method	on	simulated	data	[36-38,	45,	120,	121].	The	simulations	are	often	used	to	optimize	

selection	of	algorithmic	parameters,	for	example	regularization	constants	and	spherical	

harmonic	order	[36].	Another	common	use	is	to	compare	the	performance	of	different	

algorithms	under	varying	simulated	physical	conditions.	In	[6],	the	q-ball	and	PAS-MRI	methods	
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are	compared	using	crossing	Gaussian	test	functions	across	a	range	of	simulated	separation	

angles,	fiber	volume	fractions,	and	noise	levels.	Here,	they	demonstrate	the	minimum	

resolvable	crossing	angle,	and	the	accuracy	and	consistency	in	identifying	both	peaks	of	the	

fiber	distribution.	They	determine	that	(a)	PAS-MRI	more	consistently	recovers	the	principal	

directions	of	the	synthetic	functions	for	typical	clinical	imaging	conditions	(SNR	of	16	and	54	

gradient	directions),	(b)	an	increase	in	either	SNR	(to	24)	or	gradient	directions	(>100)	allows	q-

ball	to	recover	directions	with	consistency	comparable	to	PAS-MRI,	and	that	q-ball	gives	the	

best	performance	with	b-values	in	the	range	of	2,000-2,500	s/mm2.	The	same	group	has	also	

applied	Monte	Carlo	simulations	to	investigate	the	optimal	value	of	diffusion	weighting	(for	

both	single	and	crossing	fibers)	for	estimating	the	mean	diffusivity,	fractional	anisotropy,	and	

fiber	orientations	[122].		

	 Finally,	a	recent	challenge	held	by	the	diffusion	MRI	community,	the	“HARDI	

reconstruction	challenge”	[123]	used	fields	of	simulated	Gaussian	functions	to	compare	the	

behavior	of	a	large	number	of	algorithms,	including	from	DTI,	sparse	reconstruction	methods,	

HARDI	methods,	and	DSI-like	methods.	The	two	main	criteria	evaluated	are	the	correct	

assessment	of	the	number	of	fiber	populations	and	the	angular	accuracy	in	their	orientation.	

The	comparative	study	highlighted	the	strengths	and	weaknesses	of	each	approach	and	results	

in	interesting	considerations	common	to	all	algorithms.	For	example,	(a)	no	method	

outperformed	all	others	in	every	experimental	condition,	(b)	accurate	reconstruction	using	

sparse-reconstruction	schemes	are	possible	with	very	few	DWIs,	(c)	and	inaccuracy	in	

algorithms	was	caused	by	underestimation	of	fiber	populations	in	high	quality	data,	and	over-

estimation	in	low	SNR	acquisitions.			

	 While	computer	simulations	are	useful	to	ensure	a	new	method	behaves	as	intended,	

and	allows	simple,	inexpensive	comparisons	among	methods,	the	simulations	are	only	as	good	

as	the	assumptions	and	approximations	that	lie	behind	the	model	from	which	the	signal	is	

derived.	The	results	are	likely	to	be	highly	dependent	on	the	user’s	knowledge	and	assumptions	

about	how	different	anatomical	compartments	influence	the	diffusion	signal.	Thus,	computer	

simulations	are	almost	certainly	an	over-simplification	of	the	diffusion	process,	and	of	limited	

use	for	validation	in	the	living	brain.			



	 41	

3.2.2	Physical	Phantoms	

	 In	contrast	to	simulations,	physical	phantoms	offer	the	generation	of	diffusion	datasets	

based	on	the	true	Brownian	motion	of	water	molecules	within	a	real	model	of	underlying	fiber	

orientations.	An	extra	layer	of	realism	is	added	in	that	the	diffusion	images	are	obtained	on	a	

real	scanner	and	are	subject	to	real	data	acquisition	conditions	(including	noise	and	image	

artifacts	inherent	to	diffusion	MRI).	A	number	of	studies	have	been	performed	to	validate	the	

diffusion	estimated	fiber	orientations	utilizing	physical	phantoms.	To	date,	most	of	these	

studies	utilize	capillary	and	synthetic	based	fiber	phantoms	to	act	as	substitutes	for	axonal	

fibers.		

	 Capillary-based	phantoms,	or	hollow	plastic	cylindrical	capillaries,	were	some	of	the	first	

anisotropic	structures	used	to	mimic	the	geometry	of	axons.	For	example,	an	early	study	used	

water-filled	capillaries	to	investigate	the	effects	of	different	b-values	on	the	apparent	diffusion	

coefficient	in	given	directions,	demonstrating	the	alignment	of	diffusion	peaks	with	the	capillary	

orientations	[124].	Similarly,	using	polytetrafluoroethylene	capillaries,	Lin	et	al.	[125]	showed	

that	DSI	was	able	to	resolve	sheets	of	fibers	crossing	at	90°	and	45°	(even	when	the	narrow	

pulse	approximation	was	violated),	while	DTI	failed	to	resolve	crossing	fibers.	Similar	

intersecting	capillary	set-ups	investigated	the	ability	of	QBI	and	various	implementations	of	CSD	

to	resolve	crossing	fibers,	showing	the	advantages	of	using	sCSD	to	resolve	crossings	at	acute	

angles	(~30°).	Although	these	phantoms	allow	assessment	of	fiber	orientation	information,	they	

are	limited	in	how	well	they	geometrically	match	the	characteristics	of	tissue.	For	example,	the	

inner	diameter	can	be	an	order	of	magnitude	larger	than	that	of	axons	(~50um),	while	the	outer	

diameter	is	much	larger,	for	example	325um	in	[125].	This	certainly	affects	diffusion	anisotropy,	

as	a	larger	diffusion	time	is	needed	in	order	for	spins	to	probe	the	local	environment.	Further,	

these	structures	possess	no	permeability	to	water,	which	may	influence	compartmental	

estimates	depending	on	the	diffusion	time	relative	to	the	water	exchange	rates.	

	 Investigation	of	the	extracellular	component	of	diffusion	has	been	performed	using	

synthetic	fiber-based	phantoms.	These	can	be	composed	of	rayon	fibers	[126]	,	hydrophobic	

acrylic	fibers	[127],	or	polyester	yarn	[128],	which	have	fiber	diameters	closer	to	that	of	axons	

(~17	um	in	[126]),	and	increased	densities	relative	to	capillary	phantoms,	resulting	in	more	
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biologically	realistic	values	of	FA	(0.6-0.8)	[128].	These	synthetic	phantoms	offer	the	ability	to	

vary	fiber	density,	such	as	in	the	phantom	developed	by	Farrher	et	al.	[129].	This	phantom	not	

only	has	varying	density	from	section	to	section	(resulting	in	variable	FA),	but	also	regions	of	

crossing	fibers,	as	well	as	homogenous	density	fibers,	and	has	been	used	to	validate	CSD	and	

QBI,	as	well	as	investigate	the	effects	of	packing	density	on	anisotropy.	Finally,	micron-sized,	

hollow,	permeable	fibers	can	be	made	using	co-electrospinning	of	polymer	solutions	[130].	

These	techniques	are	capable	of	producing	aligned	fibers,	with	tuneable	size	distribution,	and	

have	been	used	to	investigate	the	effects	of	inner	diameter	on	DTI	indices	[131],	although	to	

date,	there	has	been	little	validation	of	orientation	information	using	the	electrospun	fibers.	

Although	a	step	in	the	right	direction	in	regards	to	replicating	geometry	and	fiber	densities,	

these	synthetic	fiber-based	phantoms	still	fail	to	replicate	the	enormous	complexity	seen	in	

tissue	of	the	central	nervous	system.			

3.2.3	Histological	Validation	

	 Finally,	several	studies	have	validated	orientation	measures	using	post-mortem	

histology.	The	imaging	is	performed	on	the	tissue	itself,	which	inherently	contains	the	complex	

structural	and	biophysical	characteristics	of	the	central	nervous	system.	From	stained	tissue	

sections,	techniques	such	as	manual	tracing	of	fibers	[132],	filter	matching	[133],	or	structure	

tensor	analysis	[134]	has	been	used	to	quantify	the	histological,	ground-truth	FOD.	Studies	in	

the	owl	monkey	[133]	and	blocks	of	human	cortical	tissue	[135]	have	investigated	the	angular	

accuracy	of	the	DTI	primary	eigenvector,	and	probed	the	relationship	between	fiber	density,	

fiber	spread,	and	anisotropy	with	the	angular	orientation	error.	To	date,	the	only	histological	

validation	of	orientation	information	obtained	through	HARDI	methods	was	done	for	high-b-

value	QBI	in	a	study	by	Leergaard	et	al.	[132],	where	they	conclude	that	the	fiber	orientation	

distributions	obtained	from	high	dimensional	diffusion	data	provide	accurate	representations	of	

the	myeloarchitecture,	even	in	regions	of	crossing	fibers.		

	 Several	disadvantages	have	plagued	histological	validation	studies	to	date.	First,	most	

histological	validation	studies	of	orientation	information	have	been	limited	to	two-dimensional	

(2D),	in-plane	analysis	of	tissue	sections.	Thus,	they	rely	on	tissue	sectioning	in	a	plane	parallel	

to	the	direction	of	fibers,	and	analysis	is	restricted	only	to	fibers	oriented	in	that	plane.	
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Recently,	3D	histology	for	the	purposes	of	validation	has	been	performed	with	the	use	of	

confocal	microscopy	[136]	or	optical	coherence	tomography	[137],	although	these	studies	have	

been	limited	by	resolution,	estimating	only	a	single	dominant	fiber	orientation	per	voxel,	rather	

than	the	full	neuronal	orientation	distribution.	Another	histological	technique,	polarized	light	

imaging	–	with	contrast	based	on	the	birefringence	of	nerve	fibers	–	has	become	popular	

because	it	allows	3D	fiber	orientation	characterization	of	unstained	brain	sections	at	high	

resolution	[138].	Three-dimensional	polarized	light	imaging	has	been	utilized	to	validate	

diffusion	MRI	orientation	dispersion	measures,	however	it	has	not	yet	been	used	to	validate	

fiber	orientation	information.	A	second	limitation	of	histological	validation	is	that	accurate	

alignment	of	the	histological	and	MRI	data	is	rarely	addressed	and,	if	performed,	typically	

involves	only	manual	alignment	[132,	135,	136]	of	the	data,	which	is	prone	to	error	and	can	

lead	to	geometric	mismatch	and	a	bias	in	the	validation	results.	Consequently,	there	is	a	need	

for	a	method	to	compare	dMRI	estimates	of	white	matter	pathways	to	direct	measurements	of	

axonal	orientations	on	a	voxel-by-voxel	basis	-	one	which	allows	three-dimensional	(3D)	analysis	

and	addresses	accurate,	reproducible	registration.	We	address	these	limitations	in	Aim	1	of	this	

work,	where	we	develop	an	approach	to	extend	histological	validation	of	orientation	functions	

to	3	dimensions.	Also,	because	a	histological	validation	of	many	existing	reconstruction	

methods	is	lacking,	we	utilize	this	approach	in	order	to	assess	the	reliability	and	accuracy	of	

many	of	these	techniques,	as	well	as	study	the	effects	of	acquisition	parameters	on	their	

performance.	

3.3	Validating	Macrostructure	(Connectivity)	

	 Even	perfect	estimation	of	fiber	orientation	distributions	on	the	voxel-scale	does	not	

guarantee	success	in	fiber	tracking.	Each	step	in	the	tracking	process	has	numerous	

assumptions	and	uncertainties	that	could	result	in	potential	errors	in	delineating	pathways	or	

connectivity	estimates.	Much	like	validation	of	orientation	information,	software	and	physical	

phantoms	have	been	used	as	gold	standards	from	which	tractography	algorithms	can	be	

validated.	In	addition,	invasive	tracers	in	animal	models	are	commonly	employed	to	visualize	

the	true	underling	anatomical	pathways	for	comparison	with	diffusion	tractography.	Together,	
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these	studies	have	advanced	our	understanding	of	the	limitations	and	successes	of	various	

tracking	algorithms.		

3.3.1	Software	Phantoms	

	 Software	phantoms	for	tractography	are	constructed	choosing	a	“true”	fiber	trajectory	

or	trajectories.	For	every	voxel	along	that	trajectory,	a	diffusion	signal	is	simulated	using	some	

model	of	diffusion	based	on	the	simulated	tissue,	noise	is	added,	and	finally	the	tractography	

method	under	interrogation	is	applied	and	compared	to	the	ground	truth.	Simulations	are	

convenient	in	that	they	allow	testing	of	a	variety	of	methods,	and	the	flexibility	of	assessing	a	

broad	range	of	experimental	conditions	by	easily	manipulating	the	trajectory	itself	or	the	

acquisition	conditions	(noise,	samples,	b-value,	etc.).	A	wide	range	of	phantoms	have	been	

developed,	varying	from	linear,	to	circular,	to	crossing	and	more	complicated	trajectories,	with	

a	range	of	anisotropies	and	varying	partial	volume	effects.	Again,	however,	simulations	are	

limited	in	their	validation	ability	because	(a)	they	rely	on	a	generative	model	of	diffusion	to	

create	the	signal,	and	(b)	are	certainly	a	simplification	of	the	in	vivo	tissue	geometry.	Despite	

this,	simulations	have	provided	useful	analysis	of	various	approaches	to	tractography.	

	 Early	studies	utilized	simple	geometries	for	simulations.	For	example,	helical	[139],	

circular,	or	semi-circular	paths	[140].	Studying	the	effects	of	experimental	phantom	designs,	

Lori	et	al.	[139]	showed	that	random	tracking	error	is	dependent	on	SNR,	anisotropy,	and	voxel	

size,	and	accumulates	with	the	square	root	of	the	track	length	(similar	to	a	random	walk	

process).	This	agrees	with	theoretical	predictions	[141].	Tournier	et	al.	[140]	find	that	the	most	

reliable	results	are	obtained	with	high	SNR	data,	high	anisotropy	tracks,	using	interpolation	(as	

opposed	to	FACT	tracking),	and	smaller	step	sizes.	They	also	show	that	partial	volume	effects	

can	considerably	bias	results	when	tracking	narrow	fibers.	Crossing	fibers	have	been	

incorporated	into	simulations	[142]	to	show	advantages	of	using	neighboring	information	to	

successfully	track	through	ambiguous	areas	with	DTI	estimates.	Simulations	have	played	

significant	roles	in	fine-tuning	the	user-defined	parameters	of	tractography,	including	

regularization	,	step	size,	termination	criteria,	and	tract	curvatures	[143].	In	addition,	some	

interesting	tracts	have	been	simulated,	for	example,	a	Canadian	favorite:	the	maple	leaf	track	

[144].	
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	 Despite	the	wide	number	of	simulation	studies,	these	simulations	still	represent	

geometries	that	greatly	over-simplify	those	of	tissue.	To	overcome	this	partially,	Close	et	al.	

[145]	have	developed	a	software	tool	that	generates	structures	with	a	range	of	complexities	

(resembling	a	ball	of	spaghetti),	that	is	flexible	in	generating	a	range	of	crossing	and	kissing	

tracks	with	densely	packed	bundles.	Finally,	a	recent	diffusion	MRI	community	“challenge”	was	

hosted	using	an	open	source	simulation	tool	called	Fiberfox	[146]	to	replicate	the	well-known	

“FiberCup”	physical	phantom	[147]	(see	Section	3.3.2	Physical	Phantoms),	which	is	intended	to	

replicate	a	coronal	slice	of	the	brain,	including	3	crossing	bundles,	1	kissing	bundle,	and	3	

bundles	that	split,	covering	a	range	of	very	straight,	to	U-shaped	fibers.	The	simulated	Fiberfox	

data	was	used	to	evaluate	12	tractography	pipelines,	each	with	different	local	models,	

tractography	methods,	and	different	open-source	software	implementations.	However,	even	

with	these	sophisticated	simulations,	results	depend	on	the	model	used	to	generate	the	signal,	

which	can	show	biases	towards	methods	which	also	assume	the	same	diffusion	processes.		

3.3.2	Physical	Phantoms	

	 Similar	to	validation	of	orientation	information,	physical	phantoms	for	tractography	

have	been	constructed	from	a	variety	of	materials	including	polyester	[148],	ultra-high	

molecular	weight	polyethylene,	rayon,	cotton,	nylon	[117],	and	hemodialysis	fibers	[126].	These	

phantoms	can	incorporate	some	complexity,	for	example	crossing	fibers	at	varying	degrees	to	

validate	q-balls	ability	to	track	through	crossing	fiber	regions	[126,	127].	Recently,	a	physical	

“FiberCup”	phantom	was	created	using	acrylic	fibers	packed	into	a	polyurethane	case	to	mimic	

a	2D	slice	of	a	coronal	brain	section	[147].	A	dMRI	community	challenge	was	organized	using	

real	MR-acquired	data	on	this	phantom,	with	10	research	groups	submitting	their	own	

tractograms,	and	evaluation	criteria	including	spatial	overlap,	orientation	agreement,	and	

curvature	agreement	with	the	ground	truth	acrylic	fibers.	This	work	has	recently	been	extended	

with	the	“Tractometer”	[149]	to	include	a	large	number	of	algorithms	(currently	>57,000)	on	

the	FiberCup	dataset.	The	Tractometer,	in	addition	to	spatial	overlap,	assesses	the	number	of	

valid	and	invalid	connections	(end	point	analysis),	number	of	missing	connections	(premature	

stopping),	as	well	as	valid	and	invalid	bundles	(whole	tract	analysis).	Together,	these	results	

have	provided	valuable	insight	into	the	various	sources	of	ambiguity	in	tracking.	A	meta-
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analysis	of	this	data	shows	(a)	seeding	has	a	large	impact	on	tractography	output,	(b)	

deterministic	tractography	produces	fewer	invalid	tracts	than	probabilistic,	c)	averaging	

improves	quality	of	all	tractography,	and	(c)	reconstruction	methods	that	result	in	sharper	

angular	profiles	(for	example	FOD	estimation	rather	than	ODF)	improve	tractography.	Yet,	these	

phantoms	still	do	not	model	fiber	packing	in	a	realistic	way,	and	again,	cannot	capture	the	

geometric	complexity	of	the	true	connectivity	in	the	brain.	

3.3.3	Tracer	and	Histological	Validation	

	 Finally,	validation	using	invasive	tracers	within	tissue	are	the	only	validation	approach	

that	provides	the	possibility	of	visualizing	the	actual	true	underlying	anatomical	environment	

from	which	diffusion	data	is	acquired.	In	addition	to	real	imaging	conditions	with	real	biological	

diffusion	physics,	histological	tracers	have	a	low	false	positive	rate	(high	specificity),	meaning	

that	detection	of	the	compound	away	from	the	injection	site	is	strong	evidence	for	a	

connection.	In	addition,	the	spatial	resolution	allows	the	discovery	of	axon	organization	at	a	

level	of	detail	well	beyond	that	of	current	MRI	techniques.	Because	of	this,	neuro-tracing	is	

considered	the	gold	standard	in	measuring	and	validating	connections.	

	 There	are	a	variety	of	classical	tracers	that	have	been	used	by	neuroscientists	to	study	

the	neuronal	architecture	of	animal	brains.	Common	tracers	include	Horseradish	Peroxidase,	

lectins	and	toxins,	fluorescent	tracing	compounds,	and	dextrans	(for	a	review,	see	[150]),	all	of	

which	have	slightly	different	properties,	for	example	anterograde	vs.	retrograde	transport,	cell	

body	vs.	axon	vs.	membrane	staining,	and	single	axon	specificities.	Traditionally,	validating	the	

prediction	strength	of	tractography	against	tracers	takes	one	of	two	forms.	First,	a	measure	of	

spatial	overlap	of	the	tract	vs.	tracer	can	be	performed,	which	validates	the	overall	layout	and	

anatomical	accuracy	of	tractography.	Second,	many	studies	measure	connectivity	measures,	

disregarding	how	tracts	reached	their	destinations,	and	focusing	only	on	the	number	of	

streamlines	connecting	different	regions	(for	example	cortico-cortical	connectivity).		

	 The	cortico-cortical	connections	estimated	from	tractography	have	been	compared	with	

the	results	of	invasive	tracer	data	accumulated	in	web-based	atlases	or	databases,	for	example	

the	CoCoMac	[151]	database	and	Markov-Kennedy	datasets	[109,	152]	for	the	macaque,	or	the	

Allen	Brain	Atlas	of	the	mouse	[153].	These	databases	are	the	results	of	a	large	number	of	
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tracer	studies	(126	studies	for	the	CoCoMac	database,	29	separate	tracer	injections	for	Markov	

dataset,	and	488	tracer	injections	for	the	Allen	Mouse	Brain),	with	some	quantification	of	

connection	strength	to	a	number	of	parcellated	cortical	regions	(39	regions,	91	regions,	and	592	

regions,	respectively.	Connection	strength	matrices	(from	tracer	injection	site	to	each	cortical	

region)	can	be	described	as	“strong”,	“medium”,	or	“weak”	(as	in	CoCoMac),	or	described	by	a	

continuous	distribution	such	as	the	“fraction	of	labelled	neurons”	or	staining	intensity	(as	in	the	

Markov	and	Allen	Brain	Atlas	Datasets).	These	studies	have	provided	encouraging	results	

regarding	the	fidelity	of	tractography.	For	example,	studying	the	detailed	connections	known	in	

the	macaque	visual	cortex,	Azadbakht	et	al.	[154]	find	that	~74%	of	known	connections		were	

successfully	identified	by	probabilistic	tractography,	although	this	required	optimization	of	FA	

thresholds,	step	size,	and	uncertainty	thresholding	(to	minimize	false	positives).	Further,	

although	the	tracts	were	identified,	this	was	done	in	a	binary	fashion	(exists,	or	doesn’t	exist),	

whereas	tracts	actually	vary	in	connection	strength	by	orders	of	magnitude.	In	a	study	of	the	

full	macaque	brain	comparing	the	number	of	streamlines	to	connectivity	measures	from	both	

the	CoCoMac	and	Markov	databases,	van	den	Heuvel	et	al.	[155]	find	positive	correlation	

between	tractography	and	connection	strength,	and	conclude	that	the	number	of	streamlines	is	

a	valid	method	of	assessing	projection	strength	of	white	matter	pathways.	Similarly,	Donahue	

et	al.	[156],	utilize	ex	vivo	diffusion	MRI	probabilistic	tractography	and	the	same	Markov	atlas	

to	show	that	tractography	connection	weights	are	only	accurate	to	within	one	or	two	orders	of	

magnitude	to	tracer	ground	truth,	yet	are	a	reliable	predictor	of	connectivity	strengths	for	

strong	connections,	and	less	so	for	longer	pathways	(which	have	weaker	connection	strengths).	

Despite	the	fact	that	tractography	was	less	correlated	with	tracer	for	weak	connections,	both	

the	weak	and	strong	pathways	still	contributed	to	the	fairly	high	correlation	(r=0.59).		They	also	

show	that	tractography	results	heavily	depend	on	seeding,	with	seeding	from	the	white-matter-

gray-matter	boundary	have	slightly	higher	correlations	to	ground	truth,	while	seeding	from	all	

of	white	matter	showed	higher	streamline	densities	in	gyri	rather	than	sulci	(i.e.	showed	a	gyral	

bias).	Finally,	comparing	connectivity	strengths	with	a	comprehensive	mouse	atlas,	Calabrese	et	

al.	[157]show	modest	correlation	between	tracer	and	tractography	at	a	very	high	level	
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parcellation	(592	anatomic	regions,	r=0.42)	but	stronger	correlations	at	coarser	resolutions	(for	

example,	r=0.71	at	a	“structure-level”	segmentation).		 	

	 Studies	using	large-scale	databases	have	the	advantage	of	assessing	connectivity	of	tens	

to	hundreds	of	pathways	at	a	time	across	many	cortical	areas,	however	they	have	several	

significant	limitations.	Most	significantly,	the	tracer	and	MRI	is	not	performed	on	the	same	

animal,	and	pathway	and	connection	strength	can	vary	between	animals.	For	example,	

repeated	tracer	injections	into	the	same	portion	of	the	same	area	can	vary	by	approximately	an	

order	of	magnitude	[158].	In	addition,	there	can	be	heterogeneity	in	the	connectivity	of	a	given	

area,	for	example	an	injection	in	a	specific	location	of	a	defined	region	may	inadequately	

describe	the	connectivity	to	(or	from)	that	region	as	a	whole	due	to	the	known	topographic	

organization	of	many	cortical	areas	(see	Addendum	2:	Neuroanatomy	Relevant	to	White	Matter	

Connectivity).	Variance	in	brain	geometry	between	injected	and	scanned	animals	could	also	

lead	to	mismatches	in	identifying	injection	regions	(or	seed	locations)	in	the	subject	of	interest.	

Finally,	many	atlases	display	asymmetric	connection	matrices,	but	are	being	compared	to	the	

inherently	symmetric	diffusion	measures	(which	cannot	identify	anterograde	vs.	retrograde	

connections).		

	 Very	few	studies	perform	diffusion	MRI	and	histology	in	the	same	animal	for	validation.	

The	first	work	to	make	direct	comparisons	of	cortico-cortical	connectivity	and	tractography	in	

the	same	animal	by	Gao	et	al.	utilized	the	squirrel	monkey	brain,	and	BDA	injections	into	the	

primary	motor	area.	By	calculating	BDA	density	maps	from	histology	registered	to	diffusion	

data,	Gao	et	al.	[159,	160]	show	that	DTI	tractography	strongly	correlated	with	anatomical	

connectivity	when	measured	on	the	scale	of	major	cortical	regions	(defined	by	cytoarchitectural	

borders	from	Nissl	stained	slices),	however	was	much	less	reliable	measuring	voxel-to-voxel	

connectivity.	They	also	show	that	tractography	was	not	reliable	in	ranking	connectivity	strength	

in	regions	with	weaker	connectivity	result	reproduced	in	macaques	[156].	One	limitation	of	this	

study	is	that	the	diffusion	acquisition	scheme	consisted	of	a	low	number	of	DWIs,	limiting	

analysis	to	DTI	tractography.	While	not	addressing	cortico-cortical	connectivity	directly,	a	recent	

study	by	Reveley	et	al,	utilize	ex	vivo	macaque	specimens	to	show	that	even	with	very	high-

resolution	data	with	a	large	number	of	DWIs,	large	portions	of	the	cortex	were	inaccessible	to	
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tractography,	with	streamlines	never	penetrating	as	much	as	half	of	the	entire	surface.	

Similarly,	seeding	in	many	of	these	regions	leads	to	identification	of	only	local	fiber	bundles,	

with	streamlines	never	penetrating	to	deep	white	matter	for	long	range	tractography.	

Qualitatively,	many	of	these	cortical	regions	that	pose	challenges	to	tractography	were	

observed	near	the	sulcal	fundi.	These	tracking	limitations	are	attributed	to	the	dense	superficial	

white	matter	U-fibers,	located	immediately	under	the	deepest	cortical	layer	and	running	

parallel	to	the	gray	matter	surface,	limiting	tracking	to	and	from	the	cortex	nearest	these	layers.	

This	work	motivated	much	of	the	work	presented	in	Chapter	8,	which	aims	to	quantify	this	gyral	

bias,	as	well	as	investigate	the	effects	of	tracking	algorithms	and	image	resolution	on	the	

observed	bias.		

	 In	contrast	to	measures	of	connectivity,	a	number	of	studies	have	investigated	spatial	

overlap	of	entire	white	matter	trajectories	with	those	from	tractography.	Validating	these	

measures	gives	confidence	in	the	ability	to	segment	specific	white	matter	pathways,	with	

subsequent	analysis	usually	assessing	some	quantitative	imaging	measure	along	that	pathway,	

or	characterizing	the	presence	or	absence	of	these	tracts	(see	2.5.3	Applications	of	

Tractography).	For	example,	Schmahmann	et	al.	[161]	compare	DSI	tractography	to	

autoradiographic	histological	tract	tracing	[110],	and	identify	10	association	fiber	bundles	using	

tractography	that	match	the	histological	observations.	They	show	that	DSI	tractography	is	able	

to	replicate	the	major	features	of	these	tracks,	and	largely	represents	the	geometrical	

organization	of	these	large	white	matter	pathways.	However,	no	quantitative	analysis	is	

performed,	and	again,	diffusion	MRI	and	histology	are	from	different	specimens.	In	a	series	of	

studies	on	a	macaque	brain,	Dauguet	et	al.	[162,	163]	inject	a	neural	tracer,	WGA-HRP,	into	

three	sites	of	the	brain	in	three	monkeys.	They	then	reconstruct	the	histological	sections	of	

labeled	fiber	tracts	in	3D,	segment	and	register	the	fibers	with	the	in	vivo	animal	MRI,	and	

perform	DTI	tractography	using	the	injection	sites	as	seeds.	Visually,	tractography	correlated	

well	with	histology,	and	quantitative	analysis	showed	Dice	overlap	coefficients	ranging	from	as	

low	as	0.2	to	as	high	as	0.75	depending	on	FA	threshold,	radius	of	curvature,	and	step	size.	They	

then	perform	a	voxel-wise	analysis	of	false	positive	voxels	(those	that	contain	a	DTI	streamline,	

but	do	not	contain	histological	WGA-HRP)	and	false	negative	voxels	(those	that	do	not	contain	a	
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DTI	streamline,	but	do	contain	WGA-HRP	stain),	and	conclude	that	DTI	has	difficulties	when	

tracts	cross	or	divide,	and	often	stop	prematurely	due	to	low	anisotropy.	This	was	the	first	

visualization	of	the	crossing	fiber	problem	as	it	relates	to	the	failure	of	in	vivo	tractography.		

	 From	phantoms	and	simulations,	tracking	is	known	to	be	limited	by	technical	factors	

affecting	in	vivo	data	acquisition,	such	as	noise,	artifacts,	and	data	under-sampling	resulting	

from	scan	time	constraints.	To	investigate	the	anatomical	accuracy	of	tractography	with	these	

limitations	minimized,	Thomas	et	al.	[164]	utilized	the	same	high-quality	macaque	dataset	as	as	

in	[107].	Comparing	tractography	to	two	tracer	injections	from	a	previous	study	[110],	they	

investigated	the	sensitivity	and	specificity	of	a	large	number	of	advanced	tractography	

algorithms.	In	contrast	to	previous	histological	validation	studies	where	modest	overlap	or	

correlations	were	generally	interpreted	in	an	optimistic	light,	Thomas	et	al.	[164]	show	that	no	

tractography	method	showed	a	high	accuracy,	with	methods	that	showed	the	highest	

sensitivity	also	showing	the	lowest	specificity,	and	vice	versa.	The	accuracy,	again	in	agreement	

with	previous	studies,	was	highly	dependent	on	a	number	of	technical	parameters	(including	

diffusion	model,	angular	threshold,	and	seeding	strategy).	The	authors	conclude	that	

anatomically	accurate	results	are	an	elusive	goal,	and	will	remain	so	even	with	advances	in	

acquisition	and	imaging	strategies.		

	 Another	method	for	validating	tractography	has	been	through	the	use	of	invasive	

Manganese	(Mn)	tracing.	The	paramagnetic	Mn	ion	is	an	excellent	T1	contrast	agent,	and	

injection	into	the	animal	brain	has	been	shown	to	highlight	many	of	the	pathways	connected	to	

the	administration	site.	This	MR-visible	tracer	has	several	advantages,	most	notably	it	can	be	

used	in	the	same	monkey	in	which	diffusion	MRI	is	performed,	and	is	inherently	registered	to	

the	same	data	(assuming	similar	imaging	fields	of	view)	allowing	simple	voxel-wise	validation.	

The	first	study	to	compare	tractography	to	Mn-enhanced	MRI	images	investigated	the	optic	

tract	of	the	rat	using	both	DTI	and	DSI	[125,	165],	showing	improved	results	in	regions	of	

crossing	fibers	with	DSI.	Two	other	studies,	utilized	three	MR-visible	tracer	injections	in	the	pig	

brain	[166,	167]	to	validate	various	tractography	algorithms.	First,	Dyrby	et	al.	[166]	used	this	

technique	to	assess	the	performance	of	a	multi-tensor	probabilistic	tractography	method,	

showing	generally	high	agreement	between	tracer	and	tractography,	which	was	reproducible	
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across	brains.	To	extend	this	study,	[167]	implements	more	algorithms,	both	probabilistic	and	

deterministic,	with	diffusion	models	including	CSD,	multi-tensor,	and	ball-and-stick	

compartment	models.	They	conclude	that	tractography	is	capable	of	identifying	major	fiber	

tracts,	and,	as	in	[164],	find	that	it	is	not	possible	to	achieve	high	specificity	and	sensitivity	at	

the	same	time,	with	problems	arising	in	regions	with	complex	fiber	arrangements	or	high	

curvature	(with	different	limitations	associated	with	different	white	matter	pathways).	A	major	

limitation	of	Mn	tracing	is	the	presence	of	false	positive	and	false	negative	bundles	identified	

due	to	enhanced	transport	and	trans-synaptic	capacity	of	Mn	ions,	as	well	as	anterograde	only	

projections	identified	using	these	tracers.	Finally,	there	is	a	lack	of	specificity	due	to	the	

somewhat	arbitrary	user-defined	threshold	applied	to	the	T1-weighted	images	in	order	to	

identify	signal	enhancement,	and	thus	isolate	the	white	matter	pathways.	The	extent	and	

geometry	of	the	pathways	extracted	is	heavily	dependent	on	the	quantitative	analysis	of	the	T1	

images	[167].	

	 In	Aim	2	of	this	thesis,	we	use	histology	to	validate	various	tractography	measures	

obtained	from	diffusion	MRI.	As	described	above,	histology	is	the	only	validation	approach	able	

to	capture	both	the	enormous	complexity	of	the	system	of	interest	(brain	white	matter	tissue)	

and	biophysical	or	diffusion	properties	of	the	system,	in	addition	to	incorporating	true	imaging	

considerations	(noise,	artifacts,	etc.).	Specifically,	we	address	limitations	of	previous	histological	

validation	studies:	MRI	and	histology	are	performed	on	the	same	specimens,	and	image	

alignment	is	addressed	through	multi-step	registration	procedures.	These	validation	studies	are	

enabled	through	the	construction	and	framework	provided	by	the	squirrel	monkey	digital	brain	

atlas	(Chapter	4).		Specifically,	aim	2	utilizes	a	myelin	stain	to	quantify	axonal	density	along	gyral	

blades	in	order	to	assess	errors	and	biases	associated	with	gyral	blade	geometries	(i.e.	the	

“gyral	bias”	in	tractography).	In	addition,	the	web-based	atlas	contains	BDA	tracer	injections.	

BDA	has	the	advantages	of	being	transported	both	anterograde	and	retrograde,	and	is	highly	

axon	specific,	identifying	only	regions	connected	to	the	injection	location.	This	MRI-registered	

BDA	tracer	should	facilitate	future	tractography	validation	studies,	which	can	elucidate	

strengths	and	limitations	of	current	tractography	algorithms.		
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CHAPTER 4: DIGITAL ATLAS OF THE SQUIRREL MONKEY BRAIN 

Prologue	

The	validation	presented	in	this	work	is	made	possible	through	the	use	of	non-human	primates	

(NHP)	as	models	for	diffusion	MRI	of	the	brain.	This	chapter	describes	our	work	creating	and	

disseminating	a	web-based,	combined	MRI-histology	digital	atlas	of	the	squirrel	monkey	brain.	

Later	chapters	either	use	the	data	from	this	atlas	directly,	or	utilize	the	atlas	registration	

framework	(on	another	NHP,	the	macaque),	in	order	to	facilitate	comparisons	of	the	MRI	and	

histological	imaging	modalities.	In	addition,	the	database	and	front-end	web	viewer	acts	as	a	

tool	for	other	investigators	to	view	and	access	the	data	to	investigate	questions	well	beyond	

the	Aims	of	this	work.		

Abstract		

The	squirrel	monkey	is	a	commonly-used	surrogate	for	humans	in	biomedical	research.	In	the	

neuroimaging	community,	MRI	and	histological	atlases	serve	as	valuable	resources	for	

anatomical,	physiological,	and	functional	studies	of	the	brain;	however,	no	digital	MRI/histology	

atlas	is	currently	available	for	the	squirrel	monkey.	This	chapter	describes	the	construction	of	a	

web-based	multi-modal	atlas	of	the	squirrel	monkey	brain.	The	MRI-derived	information	

includes	anatomical	MRI	contrast	(i.e.,	T2-weighted	and	proton-density-weighted)	and	diffusion	

MRI	metrics	(i.e.,	fractional	anisotropy	and	mean	diffusivity)	from	data	acquired	both	in	vivo	

and	ex	vivo	on	a	9.4	Tesla	scanner.	The	histological	images	include	Nissl	and	myelin	stains,	co-

registered	to	the	corresponding	MRI,	allowing	identification	of	cyto-	and	myelo-architecture.	In	

addition,	a	bidirectional	neuronal	tracer,	biotinylated	dextran	amine	(BDA)	was	injected	into	

the	primary	motor	cortex,	enabling	highly	specific	identification	of	regions	connected	to	the	

injection	location.	The	atlas	integrates	the	results	of	common	image	analysis	methods	including	

diffusion	tensor	imaging	glyphs,	labels	of	49	white-matter	tracts	identified	using	DTI-

tractography,	and	18	cortical	regions	of	interest	identified	from	Nissl-revealed	cyto-

architecture.	All	data	are	presented	in	a	common	space,	and	all	image	types	are	accessible	

through	a	web-based	atlas	viewer,	which	allows	visualization	and	interaction	of	user-selectable	

contrasts	and	varying	resolutions.	By	providing	an	easy	to	use	reference	system	of	anatomical	
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information,	our	web-accessible	multi-contrast	atlas	forms	a	rich	and	convenient	resource	for	

comparisons	of	brain	findings	across	subjects	or	modalities.	The	atlas	is	called	the	Combined	

Histology-MRI	Integrated	Atlas	of	the	Squirrel	Monkey	(CHIASM).	All	images	are	accessible	

through	our	web-based	viewer	(https://smda.vandyxnat.org/smda/),	and	data	are	available	for	

download	at	(https://www.nitrc.org/projects/smatlas/).	

4.1	Introduction	

	 Non-human	primates	(NHP)	are	phylogenetically	close	to	humans,	sharing	genetic,	

anatomical,	and	physiological	similarities	[168],	making	them	a	valuable	model	for	biomedical	

studies	of	the	brain.	Numerous	white	matter	pathways,	as	well	as	major	functional	subdivisions	

of	the	cortex,	have	been	shown	to	have	homologous	counterparts	in	the	human	brain.	This	

includes	well	defined	lateral,	central,	and	temporal	sulci,	as	well	as	parietal,	occipital,	frontal,	

and	temporal	lobes.	NHPs	have	sophisticated	behavioral	and	cognitive	capacities,	and	the	use	

of	NHPs	allows	access	to	“ground	truth”	anatomical	or	microstructural	information	via	post-

mortem	histology,	upon	which	experiments	can	be	designed	and	evaluated.		

	 One	of	the	most	commonly	studied	New	World	primates	is	the	squirrel	monkey	(Saimiri	

sciureus).	In	addition	to	the	above,	squirrel	monkeys	have	a	relatively	small,	lissencephalic	

brain,	making	experimentation	less	cumbersome,	and	histological	processing	easier.	Moreover,	

because	of	their	small	size	they	can	be	handled	easily,	trained	to	perform	in	behavioral	

experiments,	and	have	relatively	low	resource	requirements.	Studies	using	the	squirrel	monkey	

are	prevalent	in	neuroscience	and	related	fields,	including	ophthalmology,	toxicology,	

pharmacology,	and	psychiatry	[169-180].		

	 Brain	atlases	are	useful	for	analyzing	and	identifying	neurological	structures.	Currently,	

two	stereotaxic	atlases	from	the	1960’s	are	available	for	the	squirrel	monkey	brain	[181,	182].	

Brain	structures	in	these	atlases	are	delineated	based	on	cyto-architecture	in	Nissl	stained	

sections	and	on	myelo-architecture	in	myelin	stained	sections.	However,	these	are	printed	

atlases	and,	unlike	digital	atlases,	do	not	facilitate	spatial	normalization	of	new	image	

information	for	quantitative	comparisons	of	brains	across	subjects,	time,	or	differing	

experimental	conditions.	In	other	species,	atlases	based	on	magnetic	resonance	imaging	(MRI)	

have	become	valuable	tools	to	reference	the	anatomy	of	the	brain.	Recently,	we	have	
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introduced	the	first	MRI	atlas	of	the	squirrel	monkey	brain	to	facilitate	three-dimensional	(3D)	

anatomical	localization	or	segmentation,	and	to	enable	comparisons	of	experimental	data	

across	different	subjects	[183].		

	 While	MRI	allows	for	3D	viewing	of	the	brain	and	specific	structures	within	it,	precise	

spatial	relationships	between	structures	and	differentiation	between	types	of	tissue,	the	image	

resolution	is	somewhat	limited.	Stained	tissue	sections,	on	the	other	hand,	offer	high	spatial	

resolution,	and	the	ability	to	identify	individual	cells	and	fiber	systems,	however,	there	are	

often	spatial	distortions	inherent	in	histological	sectioning,	staining,	and	processing.	Here,	we	

present	a	web-based	digital	atlas	of	the	squirrel	monkey	brain	that	combines	aligned	MRI	and	

histology	data.	The	MRI	includes	anatomical	and	diffusion	contrasts,	and	histology	includes	

Nissl	and	myelin	stains.	In	addition,	a	bi-directional	(anterograde	and	retrograde)	tracer	is	

injected	into	the	primary	motor	cortex	of	the	subjects,	and	histologically	processed	in	order	to	

identify	white	matter	pathways	associated	with	the	injection	location.	All	histological	contrasts	

are	registered	to	the	corresponding	MRI	data	of	the	same	specimen.	The	atlas	also	includes	

post-processed	results,	including	diffusion	tensor	imaging	glyphs,	diffusion	tractography-

defined	white	matter	labels,	and	cyto-architecturally	defined	cortical	regions.	This	atlas	is	

designed	to	provide	an	easy	to	use	resource	for	anatomical,	functional,	and	physiological	

studies	of	the	squirrel	monkey	brain	that	may	benefit	from	information	gathered	through	either	

histological	or	MRI	modalities.	Thus,	the	atlas	provides	a	convenient	medium	for	comparisons	

of	brain	findings	across	subjects	or	modalities.	To	highlight	typical	usage,	we	also	present	three	

illustrations	of	the	application	of	data	contained	in	this	atlas	to	neuroscience	research,	with	a	

focus	on	diffusion	MRI	fiber	tractography.	All	images	are	accessible	through	our	web-based	

atlas	viewer	(https://smda.vandyxnat.org/smda/).	

4.2	Methods	and	Materials	

4.2.1	Data	Acquisition	Overview	

	 Figure	4.1	shows	an	overview	of	the	atlas	data	acquisition	pipeline.	Each	squirrel	

monkey	was	imaged	in	at	least	two	in	vivo	scan	sessions.	Following	scanning,	a	bidirectional	

tracer,	biotinylated	dextran	amine	(BDA)	was	injected	into	the	left	hemisphere	primary	motor	
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cortex	(M1).	One	to	three	weeks	after	surgery	the	monkey	was	sacrificed.	The	brain	was	then	

removed	from	the	skull	and	scanned	ex	vivo.	After	this	session,	the	brain	was	frozen	and	cut	

serially	on	a	microtome	in	the	coronal	plane.	For	registration	purposes,	the	surface	of	the	

frozen	tissue	block	(i.e.	the	“block	face”)	was	photographed	using	a	digital	camera	prior	cutting	

every	third	section.	Next,	series	of	sections	were	processed	for	BDA	histochemistry,	Nissl,	and	

myelin	stains.	Finally,	borders	of	cortical	regions	of	interest	were	manually	labeled	by	an	expert	

based	on	cyto-architecture	provided	by	Nissl	stains.	Each	data	acquisition	step	is	described	in	

full	detail	below.	

	
Figure	4.1	Atlas	data	acquisition	pipeline.	

4.2.2	MRI	Methods	

Animals	

	 The	full	acquisition	pipeline	(Figure	4.1)	was	completed	for	three	subjects	(subjects	#1-

3),	while	three	additional	subjects	(#4-6)	were	acquired	only	after	sacrifice	and	did	not	undergo	

in	vivo	scans	nor	tracer	injections.	The	data	used	to	construct	the	atlas	were	acquired	as	part	of	

a	longer-term	study	validating	the	biological	basis	of	diffusion	MRI,	hence	additional	subjects	

will	be	continually	added	to	the	database.	
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In	Vivo	Imaging	

	 All	in	vivo	imaging	procedures	were	performed	on	a	Varian	9.4	T,	21	cm	horizontal	bore	

imaging	system,	using	a	quadrature	birdcage	volume	coil	(inner	diameter	=	85mm).	The	two	(or	

more)	in	vivo	sessions	were	separated	by	at	least	a	20-day	interval.	During	MRI	data	acquisition,	

each	monkey	was	maintained	under	stable	anesthesia	(isoflurane	0.5%-	1.0%)	and	mechanically	

ventilated	(40	respiration	cycles/min),	with	head	and	body	stabilized	in	an	MR	compatible	

frame.	Vital	signs	including	heart	rate	(Nonin),	core	body	temperature	(SA	Instruments),	

respiration	pattern	and	EKG	(SA	Instruments),	end	tidal	CO2,	and	SpO2	(SurgiVet)	were	

monitored	and	maintained	at	normal	levels	throughout	the	imaging	session.	Both	structural	

and	diffusion-weighted	images	were	acquired	in	vivo.	Structural	images	were	acquired	with	a	

standard	T1-weighted	gradient	echo	multi-slice	(GEMS)	sequence	(TR	=	404ms,	TE	=	2.4ms,	flip	

angle	=	20	̊,	630μm	isotropic	voxels,	64×64×80	matrix).	Diffusion-weighted	images	were	

acquired	using	a	pulsed	gradient	spin	echo	(PGSE)	echo	planar	imaging	(EPI)	sequence	(TR=5.5s,	

TE=44ms,	32	gradient	directions,	630um	isotropic	voxel,	64×64×65	matrix)	with	a	b-value,	or	

diffusion	weighting,	of	1000	s/mm2.	

	

Ex	vivo	Imaging		

	 Four	weeks	after	the	second	in	vivo	scan,	the	monkey	was	given	a	lethal		

dose	of	barbiturate,	and	perfused	through	the	heart.	All	blood	was	rinsed	out	with	physiological	

saline	(0.9%	NaCl)	followed	by	fixative	(4%	paraformaldehyde).	The	brain	was	removed	from	

the	skull	and	stored	in	buffered	saline	overnight.	Ex	vivo	imaging	was	performed	on	the	same	

Varian	9.4	T	magnet	and	also	included	both	structural	and	diffusion-weighted	contrasts.	

Structural	contrasts	were	acquired	with	a	GEMS	sequence	with	full	brain	coverage	(TR	=	963ms,	

TE	=	4ms,	flip	angle	=	20	̊,	300μm	isotropic	voxels,	192×128×115	matrix).	Diffusion	weighted	

scans	were	performed	using	a	PGSE	multi-shot	spin-warp	imaging	sequence	with	the	same	FOV	

as	the	structural	images	(TR=4.6s,	TE=42ms,	32	gradient	directions,	b≈1000s/mm2,	300μm	

voxel,	192x128x115	matrix).		

	 A	slightly	different	protocol	was	followed	for	the	three	additional	subjects	(subjects	#4-

6)	that	were	acquired	only	after	sacrifice	(and	hence	did	not	have	in	vivo	scans).	These	brains	
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were	also	perfusion	fixed	with	4%	paraformaldehyde	preceded	by	rinse	with	physiological	

saline.	Brains	were	then	removed	and	immersed	for	3	weeks	in	phosphate-buffered	saline	(PBS)	

medium	with	1mM	Gd-DTPA	in	order	to	reduce	longitudinal	relaxation	times	[184].	The	brains	

were	then	placed	in	liquid	Fomblin	(California	Vacuum	Technology)	prior	to	scanning.	For	these	

specimens,	structural	imaging	was	performed	using	a	3D	gradient	echo	(GE3D)	sequence	(TR	=	

50ms;	TE	=	3ms;	flip	angle	=	45°)	at	200um	isotropic	resolution.	Diffusion	data	were	acquired	

using	a	3D	spin-echo	multi-shot	diffusion	weighted	EPI	sequence	(TR	=	410ms;	TE	=	41ms;	

NSHOTS	=	4;	NEX	=	1;	Partial	Fourier	k-space	coverage	=	0.75)	at	300um	isotropic	resolution.	

Diffusion	gradient	duration	and	separation	were	8ms	and	22ms,	respectively,	and	101	diffusion	

weighted	images	with	uniformly	spaced	directions	were	acquired	at	b-values	3,000,	6,000,	

9,000,	and	12,000	s/mm2.	Use	of	increased	numbers	of	DWIs	and	larger	diffusion	weightings	

allows	advanced	diffusion	processing	techniques	that	require	more	directions	and/or	b	values	

than	common	DTI.	

 

MRI	data	processing	

	 Diffusion	MRI	pre-processing	was	performed	in	the	coordinate	system	the	data	were	

acquired	in.	Steps	included	correction	for	movement,	susceptibility	induced	distortions,	and	

eddy	currents	using	FSL’s	topup	and	eddy	algorithms	[185].	The	gradient	tables	were	rotated	

based	on	the	transformations	obtained	from	the	corrections.	Next,	for	web	visualization,	

processing	is	performed	in	“block-space”		(see	Section	4.2.4	Atlas	Framework,	Registration),	

although	the	registration	procedure	allows	data	to	be	moved	to	any	space	(i.e.	histology,	block,	

or	MR-space)	for	comparison	or	overlay	between	modalities.	Diffusion	tensors	were	calculated	

using	weighted-linear	least	squares	fitting,	from	which	maps	of	mean	diffusivity	(MD),	fractional	

anisotropy	(FA),	and	diffusion-encoded	color-maps	were	computed.	Tensor	results	are	

visualized	as	ellipsoidal	glyphs,	representing	the	proton	displacement	isosurfaces.	Constrained	

spherical	deconvolution	(CSD)	was	performed	for	the	high	angular	resolution	datasets	

(monkeys	4-6)	using	MRTrix	software	[186].	CSD	results	are	visualized	as	glyphs	representing	

the	estimated	fiber	orientation	distributions.	Finally,	structural	contrasts	for	all	monkeys	are	

also	visualized	in	block-space.	
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White	Matter	Labels	

	 The	atlas	contains	individual	white	matter	labels	for	three	monkeys	(#1-3),	based	on	

processed	ex	vivo	diffusion	weighted	images	using	diffusion	fiber	tractography	[55].	Detailed	

procedures	are	described	in	[187].	Due	to	structural	similarities	between	the	macaque	and	

squirrel	monkey	brain,	the	results	of	a	comprehensive	set	of	histological	tracer	injections	of	the	

macaque	brain,	described	in	[110],were	used	as	a	reference	for	both	seeding	and	refining	

tracts.	Deterministic	fiber	tractography,	and	subsequent	tract	trimming	and	editing,	were	

performed	in	DSI	Studio	[188].	Tracking	parameters	(including	FA	threshold,	step	size,	angular	

threshold)	were	manually	tuned	according	to	the	characteristics	of	each	white	matter	bundle.	

All	3D	fiber	tracts	were	stored	as	tract	density	maps,	and	thresholded,	resulting	in	a	binary	

mask	for	each	white	matter	pathway.	All	white	matter	pathways	were	checked	by	a	

neuroanatomist	with	expertise	in	nonhuman	primate	brain	structure,	assessing	the	coarse	

shape	and	orientation	of	each	tract,	the	gray	matter	structures	next	to	each	bundle,	and	the	

cortical	regions	connected	by	the	pathways.	This	procedure	resulted	in	57	white	matter	labels	

for	each	monkey.	

4.2.3	Histological	Methods	

Tracer	Injection	

	 BDA	is	a	commonly	utilized	neuroanatomical	tracer	for	studying	neural	pathways.	

Because	it	can	be	transported	both	anterograde	and	retrograde,	BDA	can	yield	sensitive	and	

detailed	labeling	of	both	axons	and	terminals,	as	well	as	neuronal	cell	bodies	[189].	This	tracer	

relies	on	axonal	transport	systems;	thus,	BDA	injection	is	performed	prior	to	ex	vivo	scanning	

(see	Figure	4.1).	Under	general	anesthesia	using	aseptic	techniques,	BDA	(Molecular	Probes	

Inc.,	Eugene,	OR)	was	injected	(as	a	10%	solution	in	phosphate	buffer)	into	left	hemisphere	M1	

cortex	of	three	monkeys	(subjects	#1-3).	Surgical,	microstimulation,	and	injection	procedures	

were	performed	following	those	described	in	[160,	190].	Pressure	injections	of	BDA	were	

carried	out	using	a	2	ul	Hamilton	syringe.	Eight	injections	(1	ml/	site)	were	made	in	order	to	

cover	a	large	M1	region	representing	the	forearm	as	identified	by	intracortical	
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microstimulation.	After	surgery,	the	monkey	was	allowed	to	recover	from	the	procedure,	giving	

the	tracer	sufficient	time	to	be	transported	along	axons	to	all	regions	connected	to	M1. 

	

Histological	Acquisition	

	 Following	ex	vivo	MRI	scanning,	the	brain	was	frozen	and	cut	serially	on	a	microtome	in	

the	coronal	plane	at	50	um	thickness.	All	sections	were	collected	in	phosphate	buffer,	but	prior	

to	cutting	every	third	section	(i.e.,	at	150	mm	intervals),	the	surface	of	the	frozen	tissue	block	

was	photographed	using	a	Canon	digital	camera	(image	resolution	=	50	um/pixel,	image	size	=	

3330×4000	pixels,	number	of	images	per	brain	~	280),	mounted	above	the	microtome.	These	

block-face	images	have	been	shown	to	produce	more	robust	inter-modality	registration	results	

by	providing	a	relatively	undistorted	intermediate	reference	space	between	the	histological	and	

MRI	data	[191].	

	 Three	stains	were	performed	for	each	brain.	A	cresyl	violet	Nissl	stain	[192]	for	

identification	of	cell	bodies,	a	Gallyas	silver	stain	[193]	to	identify	myelinated	axons,	and	

processing	for	BDA	[189]	to	trace	pathways	associated	with	M1	cortex.	Sections	were	divided	

into	six	series,	and	every	sixth	tissue	section	was	processed	for	a	given	stain	(for	example	

sections	#1,	7,	13	for	Nissl).		

	 Whole-slide	brightfield	microscopy	was	performed	using	a	Leica	SCN400	Slide	Scanner	

at	20x	magnification,	resulting	in	a	maximum	in-plane	resolution	of	0.5um/pixel.	The	images	are	

stored	in	the	Leica	image	file	format	(file	extension:	SCN),	which	stores	a	hierarchical	series	of	

images	at	varying	resolution	levels.	Each	series	has	the	associated	size,	position,	and	resolution,	

as	well	as	the	image	data	stored	as	TIFF	data.	For	example,	there	are	five	levels,	ranging	from	

level	#0	at	0.5	um/pixel	(typical	size	~80,000×80,000	pixels)	to	level	#4,	down-sampled	by	a	

factor	of	256	to	a	resolution	of	128	um/pixel	(typical	size	~300×300	pixels).	Each	level	has	¼	the	

resolution	of	the	previous	level.		

	

Cortical	Labels	

	 The	atlas	contains	cortical	labels	for	three	monkeys	(#1-3)	that	were	histologically	

defined	based	on	cytoarchitectural	features	revealed	in	Nissl-stained	sections.	Eighteen	cortical	
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regions	of	interest	(ROIs)	in	the	frontal	and	parietal	lobes	were	manually	labeled	by	an	

experienced	neuroanatomist	on	the	digitized	Nissl-stained	slides.	Labelling	was	performed	

using	ITK-SNAP	(Version	2.4.0),	and	labels	were	digitized	to	create	masks	for	each	ROI.	

4.2.4	Atlas	Framework	

	 In	order	to	transfer	information	between	high-resolution	microscopy	and	MRI	data,	a	

multi-step	registration	scheme	was	utilized.	Figure	4.2	summarizes	the	steps	of	this	procedure.	

The	aim	is	to	provide	an	atlas	framework	which	facilitates	comparisons	across	modalities.	

	
Figure	4.2	Atlas framework. Registration from one space to another allows comparisons across modalities.	

Registration	

	 The	multi-step	registration	utilized	here	is	very	similar	to	the	registration	procedure	

validated	in	an	earlier	study	[194],	which	showed	that	the	accuracy	of	the	overall	registration	

was	approximately	one	MRI	voxel	(~0.3mm).	From	the	Leica	image	file,	the	TIFF	image	stored	at	

128um/pixel	(down-sample	factor	256)	was	extracted	and	registered	to	the	down-sampled	

photograph	(256×256	pixels	at	a	resolution	of	approximately	128um/pixel)	of	the	

corresponding	tissue	block	using	a	2D	affine	transformation	followed	by	a	2D	non-rigid	

transformation,	semi-automatically	calculated	via	the	Thin-Plate	Spline	algorithm	[195].	Next,	

all	down-sampled	block	face	photographs	were	assembled	into	a	3D	block	volume	and	

registered	to	the	corresponding	3D	MRI	volume	using	a	3D	affine	transformation	followed	by	a	

non-rigid	transformation	automatically	calculated	via	the	Adaptive	Bases	Algorithm	[196].	The	

deformation	fields	produced	by	all	registration	steps	are	saved	in	order	to	transfer	any	set	of	

acquired	data	(or	processed	data)	to	any	desired	space	for	comparisons.		
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	 For	the	web-interface,	we	have	chosen	to	display	all	data	(high	resolution	histology,	

block-face	photographs,	in	vivo	and	ex	vivo	MRI)	in	the	intermediate	block-space.		

	

Layer	construction	

	 As	described	above,	the	histology	images	are	captured	at	a	resolution	of	0.5um/pixel.	

For	comparisons	of	high-resolution	histology	with	MRI	images	that	have	fields-of-view	on	the	

order	of	tens-of-millimeters	(for	example	~40	mm),	the	histology	file	would	contain	billions	of	

pixels	(~80,000×80,000	pixels),	making	the	image	much	larger	than	is	reasonably	handled	in	a	

browser	viewport,	and	hindering	interactive	panning	or	zooming	functions.	For	this	reason,	all	

images	are	“shredded”	into	smaller	PNG	files	(on	the	order	of	~256×256	pixels)	which	are	

dynamically	loaded	and	stitched	together	for	viewing	(see	Web	Viewer	Tool	section	for	details).	

In	this	way,	the	user	can	assess	the	data	at	a	resolution	suitable	for	the	task	at	hand,	loading	

and	manipulating	millions	of	pixels	rather	than	billions.		

	 All	histological	images	were	shredded	in	block-space,	and	in	the	coronal	plane.	For	

histological	level	#4,	the	OpenSlide	[197]	library	(a	C-based	library	for	whole-slide	digital	

images)	was	used	to	read	and	extract	the	corresponding	image	matrix	from	the	SCN	file,	and	

the	image	was	deformed	to	block-space	using	the	appropriate	2D	deformation	field.	Finally,	the	

256×256	image	was	saved	as	a	PNG.	For	higher-resolution	levels	(levels	#3	through	#0),	the	

deformation	field	was	up-sampled	to	the	appropriate	spatial	resolution,	the	corresponding	

image	matrix	was	read	from	the	SCN	file,	and	the	deformation	field	was	applied	to	this	image.	

The	final	histological	images	(now	in	block-space)	were	saved	as	a	series	of	256×256	PNGs	

covering	the	entire	field-of-view.	For	example,	level	#3	contains	16	PNGs	(four	rows	by	four	

columns),	while	level	#0	(at	0.5um/pixel)	contains	65,536	PNGs	(256	rows	by	256	columns).	This	

procedure	was	repeated	for	every	slice	in	block	space.	Finally,	all	PNGs	were	stored	on	a	

CentOS	7	web-server,	and	a	Postgres	database	created	to	store	meta-information	about	image	

locations	and	spatial	positions		

	 Similar	shredding	was	performed	for	MRI	and	block-face	data.	Because	these	are	not	

acquired	at	high	resolution,	they	are	saved	as	PNGs	at	the	resolution	of	the	block-face	image	
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only,	corresponding	to	histology	level	#4.	In	addition	to	coronal	images,	these	two	modalities	

are	also	shredded	in	axial	and	sagittal	views	to	facilitate	3D	localization	and	visualization.	

	

Web	Viewer	Tool	

	 The	web	interface	aims	to	support	exploring	the	squirrel	monkey	brain	through	both	

MRI	and	histological	imaging	modalities,	as	well	as	the	relationship	between	them.	

Functionality	includes	the	ability	to	page	through	MRI	volumes	in	coronal,	axial,	and	sagittal	

orientations,	with	cross-hairs	showing	the	3D	position	in	the	brain,	displayed	with	a	tri-planar	

viewer.	Drop-down	menus	allow	navigation	through	different	contrasts,	sessions,	and	subjects.	

Overlays	include	DTI	and	CSD	diffusion	glyphs,	as	well	as	both	white	matter	and	gray	matter	

labels.	

	 On	the	histological	side,	the	website	displays	slices,	and	facilitates	navigating	across	

slices	with	a	slider,	as	well	as	scrolling	or	panning	across	a	slice.	Zooming	can	be	performed	

through	sliders	and	mouse	functionality,	with	a	mini-map	utilized	to	display	current	screen	

position	in	the	image.	Again,	drop-down	menus	allow	navigation	through	different	staining	

contrasts.			

	 Finally,	registration	of	the	histology	and	MRI	data	supports	overlays	between	the	

aligned	modalities,	showing	the	differing	contrasts	in	the	same	parts	of	the	same	brain.	

Histology	can	be	overlaid	on	MRI	contrast,	with	the	ability	to	switch	between	the	various	

contrasts,	as	well	as	change	the	transparency	of	the	histology	modality.	

	 The	web	viewer	is	a	Python	Flask	web	server	that	uses	PostgreSQL	to	access	the	

database	of	images.	The	web	frontend	uses	HTML5	and	the	javascript	library	AngularJS	and	

makes	requests	to	the	web	server	in	order	to	dynamically	retrieve	images.	Specifically,	the	

frontend	requests	information	in	the	form	of	JSON	text	data	(image	size,	number	of	slices,	etc.)	

and	uses	this	information	to	form	a	URL	to	a	specific	image	on	the	web-server.	The	images	are	

rendered	using	WebGL,	including	the	histology	mosaic	and	the	different	MR	contrasts.	When	

zooming,	the	frontend	uses	the	magnification	factor	to	determine	which	histological	level	to	

load,	and	interpolates	the	images	until	the	magnification	reaches	the	next	highest	histological	

level.	
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	 All	data,	including	shredded	images,	processed	and	unprocessed	histology	and	MRI,	

block-face	images,	and	deformation	fields,	are	made	available	at	

(https://www.nitrc.org/projects/smatlas/).	The	back-end	currently	includes	upwards	of	1.2TB	of	

data.		

4.2.5	Additional	content	

	 Additional	content	was	added	to	the	atlas	web-viewer	in	the	form	of	the	VALiDATe29	

multi-channel	atlas	of	the	squirrel	monkey	brain	[183].	This	atlas	is	based	on	multiple	types	of	

MRI	contrast	acquired	on	29	squirrel	monkeys,	and	created	using	nonlinear	registration	

techniques,	resulting	in	a	population-averaged	stereotaxic	coordinate	system.	The	MRI-based	

atlas	contains	T1,	T2,	T2*,	and	diffusion-weighted	MRI	templates,	as	well	as	population	

averaged	cortical	and	white	matter	labels.	The	atlas	facilitates	spatial	normalization	for	

comparisons	of	data	across	subjects	or	differing	experimental	conditions,	as	well	as	label	

propagation	to	identify	regions	of	interest.	The	VALiDATe29	atlas	is	presented	in	the	web-

viewer	in	its	own	space	(as	opposed	to	all	other	data	in	block-space),	in	sagittal,	coronal,	and	

axial	orientations.	Functionality	includes	scrolling,	zooming,	and	panning	throughout	the	atlas-

space	as	well	as	overlays	of	labels	and	differing	contrasts.	VALiDATe29	data	is	made	available	

with	all	other	data	content	(https://www.nitrc.org/projects/smatlas/),	as	well	as	downloadable	

separately	at	https://www.nitrc.org/projects/validate29/	as	described	in	[183].	

4.3	Results	

	 The	squirrel	monkey	atlas	is	available	at	https://smda.vandyxnat.org/smda/,	and	the	

complete	set	of	images	upon	which	the	atlas	is	based	is	freely	available	at	

(https://www.nitrc.org/projects/smatlas/).	This	includes	shredded	images	of	all	imaging	

modalities,	as	well	as	processed	and	unprocessed	histology	and	MRI,	deformation	fields,	as	well	

as	VALiDATe29	atlas	and	templates.			

4.3.1	Atlas	Contents	

	 All	data	in	the	web-viewer	are	aligned	to	each	subject’s	block-face	images.		Figure	4.3	

shows	a	selection	of	MRI	(top)	and	histology	(bottom)	data	for	a	single	subject.	MRI	data	for	all	

subjects,	all	sessions,	and	all	contrasts	(both	acquired	and	calculated	contrasts)	are	presented	in	
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a	tri-planar	viewer.	Figure	4.3	(top)	shows	the	mean	ex	vivo	diffusion	weighted	image,	the	ex	

vivo	T2	contrast,	the	in	vivo	(session	1)	T2	contrast,	and	the	in	vivo	(session	2)	processed	FA	

maps	for	a	selected	subject,	which	demonstrates	excellent	alignment	across	sessions	and	across	

modalities.	In	addition	to	these,	contrasts	of	MD,	diffusion	tensor	elements,	mean	b0	images,	

radial	anisotropy,	diffusion	weighted	images,	RGB	color	maps,	and	primary	eigenvector	maps	

are	also	available	and	viewable.	

	 Histological	data	for	each	subject	are	displayed	as	coronal	slices	(Figure	4.3,	bottom),	

and	currently	include	Nissl,	Myelin,	and	BDA	contrasts.	Again,	contrasts	demonstrate	excellent	

alignment	in	most	areas	of	the	brain,	even	at	increased	levels	of	magnification.		

	 Additional	content	includes	block	space	images,	as	well	as	all	MRI	contrasts	made	

available	through	the	VALiDATe29	squirrel	monkey	atlas	[183].	In	addition,	white	matter	and	

gray	matter	labels,	as	well	as	DTI	(and	CSD)	glyphs	are	viewable,	although	these	will	be	utilized	

most	often	as	overlays	on	histological	or	MR	modalities	(see	Section	4.3.2	Atlas	Interface	and	

Functionality).	
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Figure	4.3	Atlas Contents. For all subjects and sessions, the atlas contains both MRI (top) and histological (bottom) data. Here, 
selected MRI contrasts are shown for a single subject for the same coronal, sagittal, and axial slices. Similarly, histological 
contrasts of Nissl, myelin, and BDA stains are shown for the same single subject.	

4.3.2	Atlas	Interface	and	Functionality	

	 Figure	4.4	shows	the	basic	atlas	interface	for	visualizing	MRI,	histology,	and	block	face	

data.	The	image	type	is	selected	using	the	“Modality	Layers”	menu.	For	MRI	contrast	(Figure	

4.4,	A),	the	“Selection”	menu	below	the	image	display	window	contains	drop-down	menus	that	

allow	selection	of	subject,	MR	contrast	type,	and	session,	as	well	as	sliders	to	facilitate	scrolling	
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through	the	3D	volume.	In	addition,	a	crosshair	tool,	pan	tool,	and	minimap	tool	are	selectable	

in	the	toolbar	above	the	image	display,	which	facilitate	navigation	and	localization	within	the	

image	volumes.		

	 For	histological	contrast	(Figure	4.4,	B),	images	are	displayed	as	coronal	slices,	and	the	

Selection	menu	allows	choice	of	subject,	stain,	and	slice.	In	addition,	the	menu	contains	a	slider	

for	zoom,	which	allows	viewing	histology	at	a	range	of	magnification	levels.	Zoom	can	also	be	

controlled	through	mouse	wheel	scrolling,	with	panning	controlled	by	dragging	the	mouse.	By	

default,	the	minimap	is	displayed,	which	shows	the	current	location	and	field	of	view.	Finally,	

the	toolbar	again	allows	selection	of	crosshair	and	panning	tools,	as	well	as	the	ability	to	

enable/disable	the	minimap.					

	
Figure	4.4	Atlas	interface	and	functionality.	The	toolbars,	menus,	and	display	associated	with	MRI	(A)	and	histology	(B)	
modalities	are	shown.	 	

	 Multiple	modalities	can	be	displayed	simultaneously.	For	example,	any	histological	stain	

can	be	overlaid	onto	any	coronal	MRI	contrast.	Figure	4.5	(A	and	B)	shows	an	example	overlay	

of	a	Nissl-stained	histological	slice	overlaid	on	an	ex	vivo	FA	map.	The	transparency	of	each	

layer	can	be	adjusted	using	the	slider	bar	(note	differences	between	Figure	4.5	A	and	B).	In	

addition,	the	overlay	order	can	be	changed	by	dragging	and	dropping	the	label	in	the	“Modality	

Layers”	menu,	with	the	order	of	the	labels	corresponding	to	the	order	of	the	layers.		
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	 Finally,	various	derived	maps	can	be	displayed	and/or	overlaid	on	images.	For	example,	

anatomical	labels	(Figure	4.5,	C)	can	be	shown	in	order	to	identify	the	region	of	the	brain	

currently	under	investigation.	Finally,	DTI	glyphs,	which	highlight	the	direction	of	greatest	

diffusivity,	can	be	shown	over	both	MRI	and	histology	(Figure	4.5,	D).		
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Figure	4.5	Image overlays. Overlays of Nissl-stained histology and FA maps from MRI (A and B) at low (top) and high (bottom) 
zoom levels. Overlays of ROI labels (C) and DTI glyphs (D) at low (top) and high (bottom) zoom levels. Alpha levels can be 
adjusted for each contrast/overlay independently.	
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4.3.3	Applications	

	 The	data	in	this	atlas	can	be	utilized	for	a	broad	range	of	neuroscience	investigations.	

Here,	we	briefly	describe	three	studies	which	have	utilized	the	data	contained	in	this	atlas:	(A)	

validation	of	fiber	tractography,	(B)	comparison	of	fiber	orientation	and	DTI	measurements,	and	

(C)	label	propagation	for	fiber	tractography.		

	 Using	the	BDA	stained	histology	in	this	atlas,	Gao	et	al.	[160]	compared	DTI	tractography	

to	“ground	truth”	M1-cortical	connectivity	revealed	by	the	tracers.	By	segmenting	BDA	from	

histological	sections	and	running	tractography	algorithms	directly	on	the	aligned	MRI	data,	

comparisons	are	easily	made	between	the	two	modalities	(Figure	4.6,	A).	Doing	this,	the	

authors	found	that	DTI	tractography	of	major	pathways	predicted	inter-regional	connectivity	

comparable	to	the	histological	connectivity,	but	was	less	reliable	in	measuring	voxel-wise	

connectivity	strengths.	Future	tractography	validation	studies	with	these	data	could	investigate	

newer	high	angular	resolution	algorithms,	or	other	tractography	methods	[167].		
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Figure	4.6	Atlas applications. The data in this atlas can be used for validation of diffusion tractography (A) by comparing BDA 
stains (red in the overlay) to fiber tractography (blue) algorithms; validating diffusion microstructure measurements (B) through 
comparisons with myelin or Nissl stained sections; and (C) label propagation to new subjects for fiber tracking or region of 
interest delineation. Here, fiber tractography for the Optic Tract (top left), inferior occipito-frontal fasciculus (top right) and genu, 
body, and splenium of the corpus callosum (bottom) are shown. We note that, in these examples, the BDA (A), myelin (B), and 
labels (C) are directly from our atlas data, while the tractography (A and C) and orientation maps (B) are calculated results not 
currently in the atlas, but easily derived from atlas data.	 	
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	 Choe	et	al.	[133]	used	a	framework	similar	to	that	in	this	atlas	in	order	to	compare	

myelin-stained	brain	sections	directly	to	the	diffusion	parameters	from	registered	DTI	(Figure	

4.6,	B	shows	similar	results	based	on	atlas	data).	Using	a	Fourier-based	image	processing	

technique	to	extract	myelin	orientations,	the	authors	found	that	the	major	eigenvector	of	the	

tensor	aligned	well	with	the	underlying	myelinated	fibers	in	voxels	with	highly	coherent	fibers,	

and	was	able	to	identify	regions	of	complex	fiber	structures	via	a	reduced	FA	(Figure	4.6,	B	for	

examples	using	atlas	data).	The	myelin	data	in	our	atlas	could	be	processed	using	similar	

techniques,	in	combination	with	the	co-aligned	MRI	data,	to	validate	both	DTI	and	higher	order	

diffusion	models.	

	 A	final	example	application	of	the	atlas	is	in	identifying	regions	of	interest.	In	addition	to	

the	web-based	label	overlays	to	localize	regions	of	interest	on	the	histology	or	MRI,	these	labels	

can	also	be	propagated	to	new	datasets	for	comparisons	of	data	across	different	subjects	or	

across	varying	experimental	conditions	[183,	187].	The	atlas	labels	can	be	registered	to	an	

individual	squirrel	monkey	brain	(or	vice-versa)	and	used	for	delineating	regions	of	interest,	or	

as	seeds	for	fiber	tractography.	For	example,		Figure	4.6C	shows	fiber	tractography	performed	

after	labels	for	the	optic	tract,	inferior	occipito-frontal	fasciculus,	and	corpus	callosum	were	

registered	to	a	squirrel	monkey	diffusion	dataset,	and	used	as	seed	regions	for	tractography.	

4.4	Discussion	and	Conclusion	

	 Here	we	present	the	construction	of	a	web-based	multi-modal	atlas	of	the	squirrel	

monkey	brain,	called	the	Combined	Histological-MRI	Integrated	Atlas	of	the	Squirrel	Monkey	

(CHIASM).	The	atlas	data	include	both	in	vivo	and	ex	vivo	MRI	scans	(including	anatomical	and	

diffusion	contrasts),	tracer	injections,	and	a	variety	of	histological	stains.	Calculated	

parameters,	including	diffusion	MRI	glyphs	and	region	of	interest	labels,	are	also	included	in	the	

atlas.	All	data	are	presented	in	a	common	space,	a	framework	which	facilitates	comparisons	

across	imaging	modalities.	Data	from	all	subjects	are	accessible	through	a	web-based	atlas	

viewer,	which	allows	visualization	and	interaction	with	data,	allowing	the	user	to	select	

contrasts,	locations,	and	varying	resolutions.	This	multi-contrast	atlas	provides	a	convenient	

medium	for	comparisons	of	neuroanatomical	findings	across	subjects	or	modalities,	for	

example,	validating	MRI	measurements	with	histological	correlates.	The	web-viewer	is	
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accessible	at	https://smda.vandyxnat.org/smda/,	and	the	complete	set	of	images	upon	which	

the	atlas	is	based	are	freely	available	at	(https://www.nitrc.org/projects/smatlas/).			

	 Future	work	will	include	more	comprehensive	MRI	protocols	on	a	larger	set	of	animals,	

both	in	vivo	and	ex	vivo.	Larger	b-values	and	more	diffusion	directions	will	facilitate	

implementation	and	validation	of	a	larger	selection	of	high	angular	resolution	diffusion	

techniques	[198].	In	addition,	multiple	MRI	modalities	can	be	incorporated,	including	BOLD	

contrast,	susceptibility	imaging,	or	myelin	volume	fraction	imaging.	For	histology,	more	stains	

will	be	included,	for	example	acetylcholinesterase	to	facilitate	identifying	thalamic	nuclei	[190].	

In	addition	to	wide-field	light	microscopy,	high	resolution	3D	confocal	images	can	be	included	

to	facilitate	comparisons	of	fiber	orientation	information	estimated	from	diffusion	MRI	[199].	

Finally,	new	forms	of	processed	data,	including	fiber	orientation	maps	[200]	or	quantified	BDA	

tracer	densities,	should	be	included	in	future	iterations	of	the	atlas.	
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CHAPTER 5: THE CROSSING FIBER PROBLEM 

Prologue	

The	most	commonly	implemented	diffusion	MRI	method,	diffusion	tensor	imaging	(DTI),	cannot	

adequately	describe	voxels	with	complex	fiber	geometries	(see	Section	2.4.2	The	Crossing	Fiber	

Problem	and	Figure	2.3),	which	can	ultimately	affect	the	fidelity	of	fiber	tractography.	One	may	

expect	that	technological	advances	in	MRI	(including	higher	field	strengths,	stronger	gradients,	

and	faster	imaging)	may	lead	to	a	decreased	prevalence	of	the	crossing	fiber	problem	by	

enabling	an	increased	spatial	resolution	of	images.	Here,	we	investigate	the	prevalence	of	this	

crossing	fiber	problem	using	both	histology	and	MRI	of	a	macaque,	using	the	acquisition	and	

processing	framework	developed	in	the	atlas.	We	ask	at	what	resolution	we	expect	this	crossing	

fiber	problem	to	be	solved,	if	any.	If	unresolved,	higher	order	models	of	diffusion	become	

crucial	to	the	successful	implementation	of	tractography.		

Abstract		

It	is	now	widely	recognized	that	voxels	with	crossing	fibers	or	complex	geometrical	

configurations	present	a	challenge	for	diffusion	MRI	(dMRI)	reconstruction	and	fiber	tracking,	as	

well	as	microstructural	modeling	of	brain	tissues.	This	“crossing	fiber”	problem	has	been	

estimated	to	affect	anywhere	from	30%	to	as	much	as	90%	of	white	matter	voxels,	and	it	is	

often	assumed	that	increasing	spatial	resolution	will	decrease	the	prevalence	of	voxels	

containing	multiple	fiber	populations.	The	aim	of	this	study	is	to	estimate	the	extent	of	the	

crossing	fiber	problem	as	we	continually	increase	the	spatial	resolution,	with	the	goal	of	

determining	whether	it	is	possible	to	mitigate	this	problem	with	higher	resolution	spatial	

sampling.	This	is	accomplished	using	ex	vivo	MRI	data	of	the	macaque	brain,	followed	by	

histological	analysis	of	the	same	specimen	to	validate	these	measurements,	as	well	as	to	extend	

this	analysis	to	resolutions	not	yet	achievable	in	practice	with	MRI.	In	both	dMRI	and	histology,	

we	find	unexpected	results:	the	prevalence	of	crossing	fibers	increases	as	we	increase	spatial	

resolution.	The	problem	of	crossing	fibers	appears	to	be	a	fundamental	limitation	of	dMRI	

associated	with	the	complexity	of	brain	tissue,	rather	than	a	technical	problem	that	can	be	

overcome	with	advances	such	as	higher	fields	and	stronger	gradients.	
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5.1	Introduction	

	 Diffusion-weighted	magnetic	resonance	imaging	(dMRI)	is	a	technique	sensitive	to	the	

random	thermal	motion	of	water	[22],	providing	contrasts	that	give	unique	insights	into	tissue	

architecture.	In	the	neuroimaging	community,	dMRI	research	can	loosely	be	divided	into	two	

main	classes	[201].	The	first	concerns	mapping	the	neural	fiber	pathways,	or	connectivity,	of	

the	brain.	These	fiber	“tractography”	techniques	exploit	diffusion	anisotropy	to	infer	the	

orientation	of	the	underlying	white	matter	(WM)	in	each	voxel,	and	use	the	field	of	these	

discrete	orientation	estimates	to	reconstruct	continuous	trajectories	called	streamlines	(for	

review,	see	[8]).	The	second	class	concerns	mapping	microstructural	properties	of	the	tissue.	

Rather	than	focusing	on	fiber	orientation	estimation,	these	techniques	attempt	to	extract	

properties	such	as	axon	diameter,	axon	density,	or	degree	of	myelination	–	measures	serving	as	

biomarkers	for	WM	and	gray	matter	(GM)	physiology	and	pathology.	Despite	significant	

progress	in	assessing	microstructure	and	connectivity,	both	areas	of	research	are	complicated	

when	voxels	contain	complex	fiber	configurations,	an	issue	that	has	generically	been	referred	to	

as	the	“crossing	fiber	problem”	[201-203].		

	 This	crossing	fiber	problem	typically	refers	to	the	situation	where	there	are	two	or	more	

differently	oriented	fiber	bundles	located	in	the	same	dMRI	imaging	voxel	[202,	203].	This	

causes	a	partial	volume	effect,	with	multiple	fiber	bundles	contributing	to	the	dMRI	signal.	In	

general,	this	partial	volume	effect	can	occur	in	any	situation	where	axons	within	a	voxel	do	not	

all	run	parallel	to	each	other.	Therefore,	the	‘crossing	fiber’	problem	encompasses	not	only	

crossing	fibers,	but	also	fibers	of	bending,	fanning,	or	kissing	geometries.		

	 It	is	now	widely	recognized	that	these	geometries	can	lead	to	ambiguous	or	incorrect	

estimates	of	fiber	orientation	[33,	120,	204]	and	subsequent	failure	of	tractography	[34,	59],	as	

well	as	misleading	microstructural	indices.	This	is	particularly	true	for	one	of	the	earliest,	yet	

arguably	the	most	common,	dMRI	technique,	diffusion	tensor	imaging	(DTI)	[30],	which	models	

a	single	primary	fiber	direction	per	voxel.	While	a	plethora	of	methods	have	been	introduced	to	

resolve	crossing	fibers	for	tractography	[24,	40,	41,	43,	58,	120,	205],	they	are	still	plagued	by	

assumptions	on	the	signal,	lengthy	acquisition	requirements,	and	limited	ability	to	resolve	

fibers	crossing	at	acute	angles.	Similarly,	methods	have	been	introduced	to	describe	axon	
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diameters,	dispersion,	and	density	[48,	52-54,	206-208],	but	typically	assume	a	single	known	

orientation	of	axons	in	the	model,	limiting	their	use	to	small	regions	of	the	brain	with	known	

orientation,	or	leading	to	ambiguous	measurements	in	crossings	between	tracts	with	different	

orientations.			

	 Given	its	implications	on	dMRI	neuroimaging	studies,	it	is	important	to	fully	investigate	

the	scope	of	the	crossing	fiber	problem.	With	axon	diameters	on	the	order	of	microns	[209],	

fiber	tracts	(i.e.,	bundles	of	axons)	often	less	than	a	few	millimeters	wide,	and	dMRI	voxels	

typically	2-3	mm	in	each	dimension	on	clinical	scanners,	it	is	not	unreasonable	to	expect	

crossing	fibers	to	be	widespread	throughout	the	brain.	In	fact,	fitting	dMRI	data	to	multiple	

tensors,	Behrens	et	al.	[34]	found	that	nearly	one-third	of	voxels	contain	2	fiber	populations.	

Moreover,	using	data	acquisition	and	modeling	techniques	specifically	designed	to	estimate	the	

prevalence	of	crossing	fibers,	Jeurissen	et	al.	[210]	found	that	as	many	as	90%	of	white	matter	

voxels	are	affected	by	crossing	fibers.	However,	these	results	have	yet	to	be	validated	through	

histology.	Also,	because	these	results	were	obtained	using	dMRI	methods	designed	for	

detecting	discrete	sets	of	fiber	orientations,	or	discrete	“peaks”	in	the	fiber	orientation	

distribution	(FOD),	it	is	unclear	whether	these	fractions	represent	true	crossing	fibers,	or	

something	like	fiber	“spreading”	that	is	interpreted	as	multiple	distinct	fiber	populations	using	

these	dMRI	techniques.		

	 It	is	often	assumed	that	increasing	the	spatial	resolution	will	decrease	the	prevalence	of	

voxels	containing	multiple	fiber	populations.	If	true,	there	would	be	a	tradeoff	between	

minimizing	the	crossing	fiber	problem	(increasing	spatial	resolution),	and	increasing	signal-to-

noise	ratio	(SNR),	increasing	angular	resolution	(number	of	diffusion	weighting	directions),	and	

increasing	diffusion	weighting	(or	b-value,	which	has	been	shown	to	provide	greater	sensitivity	

to	fiber	orientations).	At	present,	there	is	little	consensus	on	the	optimal	acquisition	protocol,	

which	is	typically	determined	based	on	the	type	of	questions	to	be	answered	from	the	data.	

Moreover,	it	is	unknown	what	resolution	is	necessary	to	ameliorate	this	crossing	fiber	problem,	

or	if	it	is	at	all	feasible	with	advances	in	imaging	methods	in	the	foreseeable	future.		

	 In	this	study,	we	set	out	to	estimate	the	extent	of	the	crossing	fiber	problem	as	a	

function	of	spatial	resolution.	Specifically,	our	goal	is	to	determine	whether	it	is	possible	to	
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significantly	mitigate	the	problem	by	increasing	spatial	resolution.	This	is	performed	using	both	

ex	vivo	MRI	data	from	the	macaque	brain,	followed	by	histological	analysis	of	the	same	

specimen.	Ex	vivo	dMRI	offers	several	experimental	advantages	including	longer	scanning	times	

and	absence	of	motion,	allowing	acquisition	of	data	with	much	higher	SNR	at	a	resolution	

currently	unachievable	in	the	clinic.	Histological	methods	allow	us	to	further	extend	this	

analysis	to	resolutions	not	possible	even	on	pre-clinical	scanners.	In	addition,	it	serves	as	a	

validation	of	the	current	standard	MRI	techniques	for	resolving	crossing	fibers.	For	dMRI,	we	

report	the	fraction	of	crossing	fibers	in	WM	and	GM,	as	well	as	the	inter-fiber	angle	of	crossing	

fibers	in	each	voxel,	as	a	function	of	acquisition	resolution.	For	histology,	we	report	the	fraction	

of	voxels	with	a	“complex”	geometry	at	varying	resolution	levels.	In	addition,	in	direct	analogy	

to	dMRI,	we	report	on	a	subset	of	these	complex	voxels	–	those	that	exhibit	distinct	“crossing”	

fibers.	Finally,	we	also	describe	the	histological	inter-fiber	angle	of	these	fibers	at	each	

resolution	level.		

5.2.	Methods	

5.2.1	MRI	acquisition	

MRI	experiments	were	performed	on	a	single	hemisphere	of	an	adult	Rhesus	Macaque	(Macaca	

Mulatta)	brain	that	had	been	perfusion	fixed	with	physiological	saline	followed	by	4%	

paraformaldehyde.	The	brain	was	then	immersed	for	3	weeks	in	phosphate-buffered	saline	

(PBS)	medium	with	1mM	Gd-DTPA	in	order	to	reduce	longitudinal	relaxation	time	[184].	The	

brain	was	placed	in	liquid	Fomblin	and	scanned	on	a	Varian	9.4	T,	21	cm	bore	magnet.	For	

WM/GM	segmentation,	a	structural	image	was	acquired	using	a	3D	gradient	echo	sequence	(TR	

=	50ms;	TE	=	3ms;	flip	angle	=	45°)	at	200um	isotropic	resolution.		

	 Diffusion	data	were	then	acquired	with	a	3D	spin-echo	diffusion-weighted	EPI	

sequence	(TR	=	340ms;	TE	=	40ms;	NSHOTS	=	4;	NEX	=	1;	Partial	Fourier	factor	=	.75).	Diffusion	

gradient	duration	and	separation	were	8ms	and	22ms,	respectively,	and	the	b-value	was	set	to	

6,000	s/mm2,	which	has	been	shown	to	be	in	the	optimal	range	for	modeling	multiple	fiber	

populations	in	ex	vivo	specimens	[198].	A	gradient	table	of	101	uniformly	distributed	directions	

[211]	was	used	to	acquire	101	diffusion-weighted	volumes	with	four	additional	image	volumes	



	 77	

collected	at	b=0.	This	acquisition	protocol	was	performed	at	imaging	resolutions	ranging	from	

800um	isotropic	to	300um	isotropic,	in	100um	increments.	All	acquisition	parameters	were	

kept	constant	(including	diffusion	times),	except	for	the	field-of	view	and	the	number	of	phase	

encoding	and	readout	samples	required	to	achieve	the	intended	resolution.	Total	acquisition	

time	was	approximately	48	hours.		

5.2.2	MRI	fiber	orientation	estimation	

	 Fiber	orientations	were	estimated	using	constrained	spherical	deconvolution	(CSD)	[45],	

and	following	the	procedures	developed	and	outlined	in	[210].	The	diffusion-weighted	signal	

was	first	deconvolved	with	the	single-fiber	response	function	[43,	45],	estimated	from	all	WM	

voxels	with	an	FA	>	0.7,	to	obtain	the	FOD	fit	to	spherical	harmonics	of	degree	8	(the	response	

function	was	derived	independently	for	each	dataset).	A	peak-finding	procedure	was	then	

performed	to	identify	distinct	fiber	orientations.	This	algorithm	uses	a	Newton	optimization	

algorithm	to	identify	local	maxima	of	the	FOD	that	meet	a	specific	threshold	criterion.	As	in	

[210],	maxima	in	the	FOD	are	included	if	the	peak	amplitude	is	>10%	of	the	maximum	peak	

amplitude.	The	number	of	unique	peaks	is	then	counted	and	assumed	to	be	equal	to	the	

number	of	fiber	populations	in	each	MRI	voxel.	This	procedure	was	performed	in	all	voxels,	for	

datasets	at	all	acquired	resolutions.	In	this	study,	we	refer	to	voxels	containing	>1	discrete	

peaks	as	voxels	with	“crossing	fibers”	(peaks	in	directions	𝑟	and	-𝑟	are	considered	the	same).	

5.2.3	Histology	Acquisition	

	 After	imaging,	the	brain	was	embedded	in	dry	ice	and	sectioned	on	a	microtome	at	a	

thickness	of	25um	in	the	coronal	plane.	Sixteen	slices,	covering	the	entire	brain,	were	selected	

for	this	study.	The	selected	tissue	sections	were	stained	for	myelin	using	the	silver	staining	

method	of	Gallyas	[193]	and	mounted	on	glass	slides.	Whole-slide	brightfield	microscopy	was	

performed	using	a	Leica	SCN400	Slide	Scanner	at	20x	magnification,	resulting	in	an	in-plane	

resolution	of	0.5um/pixel.		

5.2.4	Histological	fiber	orientation	estimation	

	 The	histological	fiber	orientations	were	defined	on	myelin-stained	slices	using	structure	

tensor	(ST)	analysis	[134,	200,	212].	ST	analysis	is	an	image	processing	technique	based	on	the	
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dyadic	product	of	the	image	gradient	vector	with	itself,	resulting	in	an	orientation	estimate	of	

objects	in	every	pixel	in	the	image.	These	techniques	have	previously	been	performed	on	

histological	samples	in	the	brain	of	rats	[134],	squirrel	monkeys	[199],	macaques	[136],	and	

humans	[200,	213].		

	 Histological	fiber	orientation	distributions	were	calculated	by	combining	pixel-wise	

estimates	of	orientation	over	larger	volumes	of	tissue,	constructed	to	match	potential	MRI	

voxels.	For	example,	a	voxel	with	a	resolution	of	32um	would	be	created	by	combining	all	

orientation	estimates	in	an	area	with	a	32um	by	32	um	field	of	view.	The	FOD	in	each	“voxel”	

was	computed	as	the	histogram	of	orientation	estimates	using	64	equally	spaced	bins,	as	

performed	in	[200].	These	FOD’s	were	then	fit	to	a	von	Mises	distribution	[214]		

and	a	mixture	of	two	von	Mises	distributions.	Here,	µ	is	center	of	the	distribution	with	

concentration	parameter	κ,	and	I0	is	the	modified	Bessel	function	of	order	0.	Also	note	the	

factor	2	in	the	exponent,	which	was	included	because	the	orientation	distributions	in	this	study	

are	pi-periodic.	Both	distributions	also	included	an	isotropic	component.	Fitting	was	performed	

using	the	Matlab	Curve	Fitting	Toolbox	(The	MathWorks,	Natick,	MA,	USA).		

	 Model	selection	was	performed	using	the	Akaike	information	criterion	(AIC)	[215].	The	

AIC	is	a	measure	of	the	quality	of	a	given	model,	and	quantifies	the	trade-off	between	model	

complexity	and	goodness-of-fit:	

where	L	is	the	likelihood	of	obtaining	the	data	given	the	current	model,	K	is	the	number	of	

estimated	parameters,	and	N	is	the	number	of	measurements	[215].	The	lower	the	AIC,	the	

more	predictive	the	model	is.	Thus,	the	AIC	was	calculated	for	both	the	single	and	mixture	von	

Mises	distributions	for	each	voxel,	and	the	model	with	the	lowest	AIC	was	selected	to	represent	

the	FOD	in	that	voxel.	

	 We	then	classified	the	histological	voxels	based	on	model	selection	and	the	resulting	

FOD.	If	a	single	von	Mises	distribution	was	the	best	fit,	the	voxel	was	classified	as	a	“single	

	 𝑓 𝜃; 𝜇, 𝜅 = 	
𝑒����	 /(�9�)

2𝜋𝐼1(𝜅)
	 (19)	

	 𝐴𝐼𝐶 = 	−2 𝑙𝑜𝑔 𝐿 + 	2𝐾 +	
2𝐾(𝐾 + 1)
𝑁 − 𝐾 − 1 	

(20)	
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fiber”	voxel.	In	this	case,	the	parameter	θ	reflects	the	dominant	fiber	orientation.	If	a	mixture	

model	was	the	best	fit,	the	voxel	was	classified	as	a	“complex	fiber”	voxel.	To	further	classify	the	

complex	configuration,	we	performed	a	procedure	analogous	to	that	for	MRI	and	searched	for	

local	maxima,	or	peaks,	in	the	FOD	that	were	>10%	of	the	maximum	peak	amplitude.	If	two	

distinct	peaks	existed,	the	voxel	was	classified	as	a	“crossing	fiber”	voxel.	Thus,	“crossing	fibers”	

are	a	subset	of	“complex	fibers”.	Complex	fibers	that	did	not	contain	two	distinct	peaks	in	the	

FOD	(i.e.	not	crossing)	could	be	the	result	of	asymmetric	FOD’s	due	to	geometries	like	fiber	

fanning	or	bending	(see	Discussion).	The	fiber	classifications	and	definitions	for	both	dMRI	and	

histology	are	summarized	in	Table	5.1.		

For	all	complex	fiber	voxels	(including	crossing	fibers),	we	calculated	the	inter-fiber	angle,	or	

the	angle	that	the	parameter	θ	from	the	two	distributions	make	with	each	other.	These	

histological	procedures	were	performed	at	“voxel”	sizes	ranging	from	32	um	isotropic	to	1024	

um	isotropic,	doubling	the	linear	dimensions	at	each	step.	For	both	MRI	and	histological	

analysis,	we	present	results	on	WM	voxels	only,	as	the	crossing	“fiber”	problem	refers	

specifically	to	axons	in	the	WM	tissue.		
Table	5.1	Fiber	classification	definitions	for	MRI	and	histological	analysis	

	

5.3	Results	

5.3.1	Fiber	Orientation	Estimation	in	Crossing	Fiber	Regions	

	 A	region	of	the	brain	containing	crossing	fibers	of	the	superior	corona	radiata	(SCR)	and	

the	body	of	the	corpus	callosum	(BCC)	is	examined	in	detail	in	Figure	5.1.	A	color-coded	

orientation	map	at	native	resolution	(Figure	5.1,	A)	demonstrates	the	ability	to	detect	the	

orientation	of	individual	myelinated	fibers	in	these	intersecting	fiber	bundles.	Zooming	in	on	a	

region	of	fiber	crossings	(yellow	box),	the	left-right	fibers	of	the	BCC	(blue/red)	and	superior-

Single	Fiber	

Crossing	Fiber

Single	Fiber

Complex	Fiber

Crossing	Fiber
(Crossing	�Complex)

Histology

MRI
Voxel	where	FOD	derived	from	CSD	has	1	local	maximum	(1	peak)

Voxel	where	FOD	derived	from	CSD	has	>1	local	maximum	(>1	discrete	peaks)

FOD	derived	from	ST	Analysis	best	fit	to	single	von	Mises	distribution	(1	peak)

FOD	derived	from	ST	Analysis	best	fit	to	mixture	of	Von	Mises	distributions

FOD	derived	from	ST	Analysis	best	fit	to	mixture	of	Von	Mises	distributions
AND	FOD	dervied	from	ST	Analysis	has	>1	local	maximum	(>1	discrete	peaks)
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inferior	fibers	of	the	SCR	(green/yellow)	are	intersecting	in	a	woven	“checkerboard-like”	

pattern,	highlighting	the	stereotypical	“crossing	fiber”	problem.	Interestingly,	even	in	the	BCC	

(blue	box),	a	region	typically	assumed	to	contain	a	single	homogenous	fiber	population,	ST	

analysis	is	able	to	capture	a	dispersion,	or	heterogeneity	of	orientations,	on	a	microscopic	scale.	

	 To	identify	voxels	in	this	region	containing	crossing	or	complex	fiber	configurations,	the	

FODs	were	fit	to	a	single	von	Mises	and	a	mixture	of	von	Mises	distributions	(Figure	5.1,	B)	at	all	

resolution	levels.	At	the	coarsest	resolution	(1024um)	the	predominant	white	matter	tract	

orientations	are	visible,	even	with	broad	peaks	(low	κ),	and	throughout	the	entire	region	of	

intersection.	At	increasing	resolutions	levels	(256um	and	64um)	there	is	still	evidence	of	

crossing	fibers.	The	peaks	become	narrower,	yet	there	is	still	spatial	coherence	in	peak	

orientations.	

	 Maps	of	the	types	of	fiber	populations	detected	in	histology	(Figure	5.1,	C,	D)	similarly	

show	a	high	degree	of	structural	coherence.	As	the	voxel	size	decreases,	there	is	evidence	of	

crossing	fibers	in	the	BCC,	whereas	at	a	coarse	resolution	typical	of	dMRI,	these	regions	do	not	

contain	multiple	(distinct)	peaks	in	orientation	(Figure	5.1,	C).	However,	at	these	coarse	

resolutions,	nearly	all	voxels	suggest	a	complex	geometry	(Figure	5.1,	D).	The	orientations	

become	less	complex	at	the	higher	spatial	resolutions,	particularly	in	the	BCC.	However,	a	large	

percentage	of	voxels	still	do	not	support	a	simple	single	fiber	geometry.	The	results	of	MRI	data	

in	the	same	region	show	trends	qualitatively	similar	to	that	of	the	“crossing”	fiber	histological	

analysis;	specifically,	the	BCC	is	composed	of	largely	single	fiber	regions,	yet,	even	at	the	highest	

spatial	resolutions,	crossing	fibers	still	persist	throughout	the	region	of	interest.		

	 Figure	5.1,	F	summarizes	the	results	in	this	region	in	plot	form.	From	dMRI,	the	fraction	

of	voxels	with	crossing	fibers	in	this	region	increases	as	the	image	resolution	increases.	

Similarly,	the	fraction	of	histological	voxels	exhibiting	multiple	peaks	(i.e.	crossing	fibers)	also	

increases	at	higher	resolutions.	Conversely,	the	histological	“complex”	fibers	decreases	as	the	

resolution	increases.		
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Figure	5.1	Fiber	orientation	estimation	in	a	crossing	fiber	region.	The	results	of	structure	tensor	analysis	on	a	myelin-stained	
histological	slice	shown	as	a	color-coded	orientation	map	(A),	and	shown	zoomed	in	on	two	regions	containing	crossing	(yellow	
box),	and	disperse	(blue	box)	fibers.	The	resulting	FODs	are	displayed	at	varying	resolution	levels	(B).	From	the	resulting	FODs,	
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voxels	are	characterized	as	crossing	fiber	(C;	green)	vs.	not-crossing	fibers	(C;	red),	as	well	as	single	fiber	(D;	red)	vs.	complex	
fibers	(D;	green),	at	all	resolutions.	Note	that	“not-crossing”	voxels	are	those	that	with	single	fiber	populations	in	addition	to	
complex	fibers	that	do	not	contain	two	discrete	local	maxima.	Voxels	from	diffusion	MRI	in	the	same	region	are	also	displayed	
as	single	fiber	(E;	red)	vs.	crossing	fibers	(E;	green).	Histograms	for	this	specific	region	of	interest	show	percentages	of	crossing	
fibers	(F;	left)	and	percentages	of	complex	fibers	(F;	middle)	for	histology,	as	well	as	percentage	of	crossing	fibers	(F;	right)	for	
dMRI.	

5.3.2	MRI	crossing	fiber	analysis	

		 The	prevalence	of	crossing	fibers	was	determined	for	all	voxels	in	the	WM,	at	all	

resolution	levels.	Maps	of	the	number	of	fiber	populations	detected	in	the	WM	are	shown	in	

Figure	5.2,	A.	At	all	spatial	scales,	large	clusters	of	voxels	containing	two	or	more	orientations	

are	present	throughout	the	brain.	Examples	of	regions	with	two	fiber	populations	include	the	

BCC	and	anterior	corona	radiata	(ACR)	(label	1),	BCC	and	ACR	(label	2),	and	posterior	thalamic	

radiation	(PTR)	and	the	superior	longitudinal	fasciculus	(SLF)	(label	3).	Although	labeled	in	the	

highest	resolution	dataset,	these	clusters	appear	structurally	quite	similar	and	of	comparable	

size	at	all	resolutions,	although	a	slight	reduction	in	the	area	of	these	crossing	fiber	regions	at	

more	coarse	resolutions	is	discernable.	A	cluster	of	3	fiber	populations	is	shown	at	the	

intersection	of	the	posterior	corona	radiata	(PCR),	the	BCC,	and	the	dorsal	posterior	corona	

radiata	(DPCR)	(label	4).	Interestingly,	this	cluster	nearly	disappears	in	the	800	and	700	um	

datasets.		

	 Figure	5.2,	B	displays	the	FOD	glyphs	that	are	typical	of	dMRI,	at	both	the	lowest	and	

highest	resolution	levels.	At	both	resolutions,	we	see	orientation	coherence	across	space	in	

regions	containing	both	single	and	crossing	fibers.	However,	the	300um	glyphs	indicate	a	higher	

prevalence	of	voxels	with	multiple	fiber	populations	(particularly	those	with	3	peaks),	and	

qualitatively	the	glyphs	appear	shaper,	with	more	concentrated	orientation	distributions.	
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Figure	5.2	MRI	crossing	fibers.	(A)	Number	of	fiber	orientations	per	voxel	(red:	1,	green:	2,	blue:	3)	estimated	using	CSD.	
Numbered	arrows	highlight	regions	of	crossing	fibers	and	are	described	in	the	text.	(B)	Glyphs	highlighting	FODs	estimated	
using	CSD	for	voxels	at	800	um	and	300	um	isotropic.	Note	that	background	color	corresponds	to	that	in	(A),	while	glyph	color	is	
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based	on	fiber	orientation,	where	red,	green,	and	blue	represent	fibers	running	right/left,	anterior/posterior,	and	
superior/inferior.	

	 Figure	5.3	summarizes	the	incidence	of	crossing	fibers	for	all	acquired	image	resolutions.	

Consistent	with	the	qualitative	results	of	Figure	5.2,	the	fraction	of	crossing	fibers	increases	as	

the	voxel	size	decreases.	Multiple	fiber	populations	were	found	in	23%	of	all	WM	voxels	at	

800um	isotropic	resolution,	and	in	51%	at	300um	isotropic	resolution.		

	
Figure	5.3	Percentages	of	crossing	fiber	voxels	throughout	the	WM	as	determined	using	CSD,	for	different	MRI	acquisition	
resolutions.	

	 The	inter-fiber	angle	of	all	voxels	with	crossing	fibers	was	investigated,	and	summarized	

as	histograms	in	Figure	5.4.	For	all	cases,	a	majority	of	the	resolved	fiber	crossing	occurred	at	

nearly	orthogonal	angles.	The	1st,	2nd,	and	3rd	quartile	of	crossing	angles,	in	all	cases,	was	in	the	

range	of	63-69°,	75-78°,	and	83-85%,	respectively.	Similarly,	for	all	datasets,	almost	all	

crossing	angles	detected	(95%	of	all	crossings)	are	greater	than	~47°.		
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Figure	5.4	Histograms	of	inter-fiber	angle	for	crossing	fiber	voxels	in	WM,	at	all	acquired	dMRI	resolutions.	The	1st,	2nd,	and	3rd	
quartiles	are	shown	as	dashed,	solid,	and	dashed	lines,	respectively.	

5.3.3	Histological	Crossing/Complex	Fiber	Analysis	

	 To	validate	the	dMRI	measurements,	as	well	as	identify	and	quantify	crossing	fibers	at	

resolutions	currently	unachievable	with	even	preclinical	imaging,	ST	analysis	of	histological	

sections	was	performed	for	all	slices.	Visual	inspection	of	maps	displaying	crossing	fibers	(Figure	

5.5)	shows	crossings	in	regions	previously	identified	in	MRI.	These	regions	still	show	evidence	of	

multiple,	distinct	fiber	bundles	down	to	resolutions	of	32um.	As	in	the	dMRI	data,	these	maps	

show	spatial	coherence,	suggesting	genuine	anatomical	features.		

	 Visual	inspection	of	“complex”	fibers	(Figure	5.6)	shows	that	a	large	majority	of	the	

voxels	meets	this	criterion,	particularly	at	lower	resolutions.	Very	few	regions	meet	the	

definition	of	a	voxel	containing	only	a	single	fiber	bundle.	In	fact,	the	only	regions	in	Figure	5.6	



	 86	

that	show	large	areas	without	complex	fibers	are	the	corpus	callosum	(label	1),	the	external	

capsule	(label	2),	the	SLF	III	(label	3),	and	the	middle	longitudinal	fasciculus	(label	4).	Even	these	

regions	become	more	complex	as	the	spatial	resolution	decreases	towards	those	currently	

achievable	with	dMRI.	Further	yet,	these	regions	may	still	contain	complex	geometries	that	are	

unable	to	be	captured	using	2D	brightfield	microscopy,	and	the	number	of	regions	with	a	single	

dominant	orientation	may	be	overestimated	on	histology.	

	
Figure	5.5	Histological	maps	of	crossing	fibers	(green)	vs.	voxels	without	crossing	fibers	(red).	Crossing	fibers	are	defined	as	
voxels	whose	FOD	contains	two	distinct	local	maxima,	or	peaks.	Note	that	red	voxels	are	those	with	single	fiber	populations	in	
addition	to	complex	fibers	that	do	not	contain	two	distinct	local	maxima.	
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Figure	5.6	Histological	maps	of	complex	fibers	(green)	and	single	fibers	(red).	Complex	fibers	are	defined	as	voxels	whose	FOD	
supports	fitting	to	a	mixture	of	von	Mises	distributions,	and	may	or	may	not	contain	two	distinct	peaks	in	the	FOD.	

	 Figure	5.7	quantifies	these	results	in	histogram	form.	These	results	confirm	that,	in	

general,	the	fraction	of	voxels	with	crossing	fibers	increases	at	higher	resolutions	.	Crossing	

fibers	are	most	prevalent	at	32um	resolution,	affecting	as	much	as	52%	of	voxels	in	the	WM.	In	

contrast,	the	fraction	of	voxels	with	complex	geometries	tends	to	decrease	somewhat	at	the	

higher	resolutions,	leveling	off	at	approximately	128um	resolution.		

	 Figure	5.8	shows	histograms	of	inter-fiber	angles	for	crossing	fibers	and	complex	fibers.	

For	crossing	fibers,	the	histograms	shift	to	the	left	(toward	smaller	angles)	at	the	highest	
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resolutions.	From	coarse	to	fine	resolutions,	the	median	crossing	angle	decreases	from	65°	to	

29°	in	the	WM.	The	angular	difference	between	the	centers	of	the	two	von	Mises	distributions	

shows	similar	trends	for	the	complex	distributions,	although	with	much	lower	angular	

differences.	The	median	inter-fiber	angle	is	reduced	from	37°	at	1024um	resolution,	to	23°	at	

32um	resolution.		

	
Figure	5.7	Percentages	of	crossing	fibers	and	complex	fibers	throughout	WM	as	determined	through	ST	analysis	of	histology,	for	
different	“voxel”	sizes.	Error	bar	shows	standard	deviation	across	16	histological	slices.	
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Figure	5.8	Histograms	of	inter-fiber	angles	for	crossing	fibers	and	complex	fibers	in	WM,	at	all	resolutions,	as	determined	using	
ST	analysis	of	histological	sections.	The	1st,	2nd,	and	3rd	quartiles	are	shown	as	dashed,	solid,	and	dashed	lines,	respectively.	

5.3.4	Qualitative	Analysis	

	 To	understand	these	trends,	two	more	regions	(each	1024um	across)	are	further	

analyzed,	including	a	region	with	two	non-overlapping	fiber	populations	(Figure	5.9)	and	one	

with	two	interwoven	fiber	populations	(Figure	5.10).	For	both	figures,	the	original	gray	scale	

image	(A)	is	shown	along	with	the	color-coded	orientation	maps	(B).	The	FOD’s	at	all	resolutions	

are	shown	(C),	along	with	fiber	classification	(D),	and	(if	crossing	fibers	exist),	the	crossing	angle	

(E).		

	 Figure	5.9	shows	the	case	of	an	apparent	orthogonal	crossing	voxel	at	larger	voxel	sizes	

(Figure	5.9,	C,	D,	E).	As	the	voxel	size	decreases,	the	intersection	of	the	two	bundles	is	
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highlighted	(Figure	5.9,	E,	white	oval),	where	most	crossing	angles	are	nearly	orthogonal.	

However,	at	even	higher	spatial	resolutions,	multiple	fiber	populations	are	detected	in	areas	

not	along	the	interface	of	the	two	bundles,	and	at	more	acute	angles.	This	is	caused	by	the	

spatial	averaging	of	incoherent	fibers	within	the	same	fiber	“bundle”.	This	figure	demonstrates	

that	crossing	fibers	are	more	prevalent	at	higher	spatial	resolutions,	and	that	higher	spatial	

resolutions	typically	resolve	fibers	crossing	at	more	acute	angles.	

	 Figure	5.10	shows	a	fiber	geometry	typical	in	many	regions	of	the	brain,	a	so-called	

“checkerboard-like”	crossing.	The	solid	box	around	an	example	FOD	shows	a	crossing	fiber	

region.	When	the	four	neighboring	regions	(dashed	box)	are	averaged	to	go	to	the	next	coarser	

resolution	level	(i.e.	larger	voxel	size),	the	ability	to	distinguish	separate	fiber	populations	is	

lost,	and	the	voxel	is	now	a	complex	fiber	(rather	than	complex-crossing).	This	is	because	the	

inter-voxel	angular	dispersion	of	the	individual	fiber	populations	becomes	larger	than	the	

crossing	angle	of	the	two	fiber	populations,	and	it	blurs	the	FOD,	reducing	the	ability	to	resolve	

discrete	peaks.	This,	again,	explains	why	crossing	fiber	populations	may	be	more	prevalent	at	

higher	spatial	resolution.	
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Figure	5.9	Histological	analysis	of	region	with	two	non-overlapping	fiber	populations.	Structure	tensor	analysis	on	myelin-
stained	region	of	interest	(A)	is	shown	as	color-coded	orientation	map	(B).	For	all	spatial	resolutions,	2D	FODs	are	displayed	(C).	
Voxels	are	characterized	as	single	fiber	(D;	black),	complex	fibers	(D;	green),	or	complex	“crossing”	fibers	(D;	yellow).	In	voxels	
with	crossing	fibers,	the	inter-fiber	angle	(in	degrees)	is	shown	in	(E).		White	oval	highlights	the	interface	between	the	two	fiber	
populations.	
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Figure	5.10	Histological	analysis	of	region	with	two	overlapping	fiber	populations.	Structure	tensor	analysis	on	myelin-stained	
region	of	interest	(A)	is	shown	as	color-coded	orientation	map	(B).	For	all	spatial	resolutions,	2D	FODs	are	displayed	(C).	Voxels	
are	characterized	as	single	fiber	(D;	black),	complex	fibers	(D;	green),	or	complex	“crossing”	fiber	(D;	yellow).	In	voxels	with	
crossing	fibers,	the	inter-fiber	angle	(in	degrees)	is	shown	in	(E).		Solid	box	highlights	a	crossing	fiber	voxel	at	256um	resolution.	
At	a	coarser	spatial	resolution	(512um),	the	ability	to	detect	discrete	fiber	populations	is	limited	by	partial	volume	effects	
(dashed	box).	

5.3.5	Crossing	Fibers	and	SNR	

	 The	role	of	SNR	on	CSD	reconstruction	has	been	studied	in	great	detail	[45,	216],	and	it	

is	well	known	that	a	decreased	SNR	can	results	in	spurious,	false-positive	peaks.	To	examine	

whether	our	findings	of	an	increased	prevalence	of	crossing	fibers	at	higher	resolution	could	be	

due	to	the	comparatively	lower	SNR,	we	assess	the	effects	of	SNR	on	our	MRI	data	directly.	
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Gaussian	random	noise	was	added	in	quadrature	to	the	lowest	resolution	dataset	(800	um	

isotropic)	in	order	to	make	datasets	with	equivalent	SNR	to	all	other	resolutions.	The	effects	of	

SNR	on	crossing	fibers	is	shown	in	Figure	5.11.	As	the	SNR	decreases	towards	that	of	the	highest	

resolution	dataset,	the	prevalence	of	crossing	fibers	increases	from	23%	to	29%	of	all	WM	

voxels.	This	increase	is	much	smaller	than	that	found	for	increasing	resolution,	shown	in	Figure	

5.3.	

	
Figure	5.11	Percentages	of	crossing	fiber	voxels	throughout	the	WM	determined	using	CSD,	for	varying	SNR	levels.	SNR	levels	
were	simulated	by	adding	Gaussian	random	noise	in	quadrature	to	all	DWIs	of	the	800um	isotropic	dataset	in	order	to	obtain	an	
SNR	equivalent	to	all	other	acquired	resolutions.	

5.3.6	2D	projection	of	MRI	FOD	

	 One	discrepancy	between	MRI	and	histology	is	the	lower	fraction	of	crossing	fibers	in	

histology	relative	to	MRI	at	similar	resolutions	(for	example,	compare	512um	histology	in	Figure	

5.9	with	500um	MRI	in	Figure	5.5).	To	determine	whether	this	is	due	to	the	2D	nature	of	the	

histology,	we	performed	a	projection	of	all	MRI-derived	3D	FOD’s	onto	the	coronal	plane,	and	

the	same	2D	fitting	procedures	used	for	histology.		

	 Figure	5.12	shows	the	fraction	of	crossing	and	complex	fibers	for	the	2D	FOD	projections	

in	WM.		Similar	to	the	results	from	3D	MRI	and	2D	histology,	these	figures	show	an	increase	in	

the	fraction	of	crossing	fibers	at	increasing	resolutions.	These	values	are	much	closer	to	the	

results	from	the	2D	histological	analysis	at	similar	resolution	levels	(compare	to	Figure	5.7),	and	

confirm	that	the	discrepancy	between	3D	MRI	and	2D	histology	is	largely	due	to	the	projection	

of	orientation	information	into	a	2D	plane.		
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Figure	5.12	Percentages	of	crossing	fibers	and	complex	fibers	throughout	WM	as	determined	after	2D	projection	of	the	CSD	
FOD,	and	fitting	to	a	2D	circular	distribution	(in	a	manner	equivalent	to	analysis	of	histological	data).	

5.4	Discussion	

	 The	aim	of	this	study	was	to	investigate	the	prevalence	of	crossing	fibers	in	the	brain	as	

the	spatial	resolution	is	continually	increased.	Using	both	dMRI	and	subsequent	histology,	we	

find	that	the	fraction	of	voxels	with	crossing	fibers	varies	with	resolution,	but	in	an	unintuitive	

way	–	the	percentage	of	crossing	fibers	increases	as	the	resolution	increases	(Figure	5.3	and	

Figure	5.7).	The	problem	of	crossing	fibers	appears	to	be	a	fundamental	limitation	of	dMRI	

associated	with	fiber	microstructure,	rather	than	a	technical	problem	that	can	be	overcome	

with	higher	fields,	stronger	gradients,	or	technological	advances	that	may	increase	spatial	

resolution.	This	limitation	is	likely	shared	by	any	imaging	method	(e.g.,	polarized	light	imaging)	

that	is	subject	to	partial	volume	averaging	of	fiber	orientation	information.	
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	 One	potential	explanation	for	these	results	could	be	an	artefactual	increase	in	voxels	

with	false-positive	peaks	caused	by	a	decreased	SNR	of	the	high-resolution	datasets.	While	an	

analysis	of	SNR-equivalent	datasets	does	show	a	small	increase	in	WM	crossing	fibers	(Figure	

5.11),	this	increase	is	only	a	small	fraction	of	that	due	to	increased	resolution	(compare	to	

Figure	5.3),	and	the	resultant	decreased	partial	volume	averaging.	It	is	important	to	note	that	

even	our	highest	resolution	MRI	dataset	(300um	isotropic)	had	an	SNR	of	~38	in	the	WM	of	the	

b0	image,	a	value	much	higher	than	is	expected	in	typical	human	DWIs.	Finally,	the	finding	that	

the	prevalence	of	crossing	fibers	increases	as	resolution	increases	is	also	validated	using	

histological	analysis	at	spatial	scales	over	a	range	an	order	of	magnitude	greater	than	the	dMRI	

data.	

	 A	surprising	result	was	that	even	at	voxel	size	as	low	as	32um	on	histology,	a	size	much	

smaller	than	the	scale	of	WM	fiber	tracts,	crossing	fibers	are	found	in	>50%	of	voxels	in	the	

WM.	So,	although	there	is	a	much	finer	delineation	of	structures,	resolutions	much	higher	than	

currently	achievable	on	pre-clinical	scanners	still	will	not	eliminate	the	crossing	fiber	problem.	

In	fact,	our	data	suggest	that	with	smaller	voxels	and	the	consequent	finer	delineation	of	

structures,	there	is	less	partial	volume	averaging	of	axon	orientations	between	and	within	

tracts.	As	voxel	size	increases,	the	within-voxel	angular	dispersion	of	individual	fibers	can	

become	larger	than	the	crossing	angle	of	the	two	fiber	populations,	which	reduces	the	ability	to	

resolve	discrete	peaks	in	the	fiber	orientation	distribution.	This	implies	that	the	minimum	

detectable	crossing	angle	depends	on	both	the	within-voxel	orientation	dispersion	and	the	

intrinsic	angular	resolution	of	the	imaging	method.	Increased	spatial	resolution	leads	to	less	

ambiguous	orientation	estimates	in	regions	containing	complicated	fiber	geometries	(fiber	

dispersion,	fiber	splaying,	fibers	crossings	at	very	acute	angles),	which	are	eventually	resolved	

into	multiple	distinct	fiber	populations	at	higher	spatial	resolutions.	These	results,	however,	do	

not	imply	less	accurate	fiber	tracking	at	higher	resolutions.	Because	there	is	less	partial	volume	

averaging,	and	more	voxels	containing	pure	crossing	fibers,	it	makes	the	crossing	fiber	model	

more	valuable	at	these	resolutions.		

	 While	many	dMRI	techniques	are	geared	towards	resolving	crossing	fibers,	histological	

analysis	was	able	to	capture	a	range	of	complex	fiber	geometries.	Figure	5.7	shows	that	the	
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fraction	of	fibers	containing	complex	geometries	does	decrease	at	higher	spatial	resolutions,	

yet	remains	as	high	as	~60%	at	32um.	Our	definition	of	“complex”	fibers	not	only	includes	

voxels	with	distinct	crossing	fibers,	but	also	includes	any	situation	where	partial	volume	effects	

arise	between	multiple,	or	even	within	single,	fiber	populations.	This	could	include	asymmetries	

in	the	FOD	due	to	fibers	with	high	curvature	or	fiber	fanning.	These	complex	fibers	represent	

regions	where	the	diffusion	tensor	(and	any	metrics	derived	from	it)	will	fail	to	accurately	

capture	the	underlying	fiber	distribution,	even	if	the	region	still	contains	only	a	single	fiber	

population.	In	addition,	the	regions	described	by	complex,	but	not	crossing	fibers,	are	regions	

where	even	methods	developed	to	resolve	crossing	fibers	[24,	40,	41,	43,	58,	120,	205]	may	fail	

to	characterize	the	true	tissue	complexity,	which	cannot	be	adequately	described	by	a	simple	

count	of	the	number	of	discrete	peaks.	It	is	interesting	to	note	that	these	complex	

configurations	can	take	place	in	regions	typically	assumed	to	contain	single	fiber	populations	

(e.g.,	the	corpus	callosum),	where	heterogeneous	fiber	orientations	are	apparent	in	histological	

sections	(see	Figure	5.1).		

	 These	results	have	implications	for	the	future	development	of	dMRI	acquisition	

methods.	Because	voxels	with	complex	fiber	configurations	will	always	exist	in	datasets,	even	at	

resolutions	far	beyond	current	dMRI	capabilities,	it	may	be	more	beneficial	to	focus	on	

appropriate	tissue	models	for	describing	fiber	geometry	in	voxels	rather	than	focus	on	pushing	

resolution	(and	sacrificing	SNR),	where	the	gains	in	fiber	reconstruction	accuracy	may	be	

minimal.	For	dMRI	sessions,	rather	than	acquiring	high	spatial	resolution	data,	time	may	be	

better	spent	on	acquiring	high	angular	resolution	data	or	more	unique	diffusion	weightings,	at	a	

higher	SNR,	to	accommodate	biophysical	modeling,	although	specific	acquisition	requirements	

are	likely	to	depend	on	the	intended	goal	of	the	individual	study,	in	addition	to	the	

implemented	diffusion	reconstruction	method.	Also,	because	of	the	pervasiveness	of	complex	

fiber	configurations,	significant	emphasis	could	be	placed	on	models	with	fiber	fanning	and	

curving	[62,	217,	218],	as	well	as	those	containing	multiple	compartments,	allowing	both	

fanning	and	crossing	[50].			

	 An	interesting	discrepancy	between	MRI	and	histology	is	the	inter-fiber	angle	in	voxels	

containing	crossing	fibers.	Figure	5.4	shows	that	dMRI	tends	to	resolve	crossing	fibers	when	the	
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fibers	are	crossing	at	nearly	orthogonal	angles,	at	all	resolutions.	Many	dMRI	techniques	are	

limited	by	the	minimum	angle	that	can	be	resolved	reliably.	While	dependent	upon	acquisition	

parameters,	this	minimum	resolvable	angle	is	typically	in	the	range	of	40-60°.	A	similar	

distribution	of	crossing	angles	has	been	previously	described	[210],	and	if	the	observed	

orthogonal	crossings	are	the	result	of	genuine	anatomical	structures,	they	could	have	

significant	implications	for	evolution,	development,	and	brain	connectivity	[219].	However,	our	

results	suggest	that	when	voxels	are	large	enough	(i.e.,	when	intra-voxel	orientation	dispersion	

grows	large),	then	near-orthogonal	crossings	will	be	most	common.	Hence,	the	‘blurring’	of	

FODs	(and	other	orientation	distribution	functions)	due	to	intra-voxel	fiber	dispersion	biases	

measurements	of	the	prevalence	of	orthogonal	fiber	crossings.	Analysis	of	histological	sections	

(Figure	5.8)	shows	that	the	mode	of	the	inter-fiber	angle	distribution	is	much	smaller	than	90°,	

and	actually	decreases	at	higher	spatial	resolutions,	for	both	crossing	and	complex	

configurations.	CSD	has	an	intrinsic	angular	resolution	limit	defined	by	the	deconvolution	kernel	

[45],	meaning	that	this	technique	cannot	model	crossing	fibers	(i.e.,	will	not	find	two	local	

maxima)	that	have	a	crossing	angle	smaller	than	the	width	of	the	kernel.	While	we	do	not	

attempt	to	state	an	optimal	resolution	for	dMRI	(as	this	will	surely	depend	on	the	goals	of	the	

individual	study),	in	regards	to	the	crossing	fiber	problem,	there	may	be	little	advantage	in	

increasing	the	spatial	resolution	beyond	the	point	where	the	intrinsic	angular	resolution	of	the	

reconstruction	algorithm	is	able	to	detect	true	crossing	angles.		

	 The	second	discrepancy	between	MRI	and	histology	was	the	lower	percentage	of	

crossing	fibers	in	histology	relative	to	MRI	at	similar	resolutions.	While	histological	

measurements	are	often	considered	a	“gold	standard”	from	which	to	validate	diffusion	MRI	

measurements,	they	may	come	with	their	own	set	of	limitations.	In	addition	to	potential	

geometric	tissue	distortion	and	a	limited	tissue	slice	thickness	(25um),	a	major	limitation	of	this	

study	is	the	use	of	inherently	2D	histological	analysis.	There	is	no	information	on	the	3rd	

dimension	(in	this	case	anterior	to	posterior);	all	fiber	orientations	derived	from	histology	are	

instead	projections	onto	the	histological	plane.	After	projection	of	the	3D	MRI	data	onto	a	2D	

plane	(Figure	5.12),	we	find	much	better	agreement	in	percentage	of	crossing	fibers	–	for	

example	the	2D	projection	of	the	500um	dataset	decreases	the	percentage	of	crossing	fibers	
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from	30%	to	16%,	a	value	in	good	agreement	with	the	17%	indicated	by	the	512um	histological	

analysis	(Figure	5.7).	Note,	however,	that	2D	and	3D	histological	FODs	still	exhibit	similar	partial	

volume	averaging	effects	as	voxel	size	increases,	so	the	2D	calculations	can	be	used	to	predict	

general	features	of	the	dependence	of	3D	FODs	on	voxel	size.	It	is	also	possible	that	dMRI	

actually	overestimates	the	fraction	of	crossing	fibers	in	regions	with	highly	curved	or	fanning	

structures	that	are	resolved	into	two	discrete	fiber	bundles	due	to	modeling	strategies	

employed	with	CSD.	In	addition,	we	have	only	implemented	one	variant	of	one	reconstruction	

algorithm	(CSD),	whereas	a	multitude	of	techniques	exist	for	the	purposes	of	resolving	crossing	

fibers.	Different	algorithms	and	different	diffusion	kernels	are	expected	to	vary	in	performance	

when	estimating	tissue	microstructure.	Future	studies	should	acquire	and	derive	the	3D	

histology	FODs	[199]	for	comparisons	with	CSD	and	other	analysis	methods	in	order	to	quantify	

both	fiber	orientation	accuracy	and	the	ability	to	identify	voxels	with	multiple	fiber	populations.	

These	data	could	also	be	used	to	test	whether	brain	fiber	pathways	are	truly	arranged	in	

orthogonal	grid-like	structures	[219].			

	 A	final	limitation	is	the	use	of	the	macaque	brain,	whereas	studying	human	brain	

connectivity,	structure,	and	function	is	commonly	the	ultimate	goal	of	non-invasive	

neuroimaging.	However,	the	time	required	to	scan	a	human	at	the	resolutions	acquired	in	this	

study	is	not	feasible,	and	there	would	be	no	histological	gold	standard	with	which	to	validate	

the	dMRI	measurements.		Furthermore,	the	ex	vivo	macaque	brain	is	a	common	model	for	

validating	dMRI	measurements	[154,	157,	164,	220,	221]	because	it	contains	a	functional	and	

microstructural	organization	similar	to	humans’.	Despite	this	similarity,	it	seems	that	the	

fraction	of	crossing	fibers	identified	through	dMRI	(ranging	from	23%	to	51%	in	WM)	is	less	

than	that	using	similar	methods	in	the	human	(between	63%	and	90%	in	WM)	[210].		

5.5	Conclusion	

	 In	this	work,	we	investigate	the	prevalence	of	crossing	fibers	and	complex	fiber	

configurations	in	WM	tissue	using	both	dMRI	and	histological	analysis	of	the	same	brain.	Our	

results	indicate	that	increasing	spatial	resolution	does	not	completely	eliminate	the	crossing	

fiber	problem.	In	fact,	the	frequency	of	crossing	fibers	increases	at	higher	spatial	resolutions	in	

both	histology	and	MRI.	Our	histological	results	highlight	the	fact	that	complex	fiber	
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configurations	will	always	exist	in	dMRI	data,	even	at	resolutions	that	far	surpass	today’s	

technology.	These	findings	have	implications	for	future	generations	of	tractography	algorithms	

as	well	as	microstructural	models,	and	highlight	the	importance	of	both	crossing	and	more	

complex	fiber	geometries.		
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CHAPTER 6: COMPARISON OF 3D ORIENTATION DISTRIBUTION 

FUNCTIONS WITH CONFOCAL MICROSCOPY AND DIFFUSION MRI 

Prologue	

Because	fibers	with	crossing	or	complex	fiber	configurations	will	always	exist	in	datasets	of	the	

brain,	it	is	critical	that	diffusion	reconstruction	algorithms	adequately	capture	the	distribution	

of	neuronal	fibers	in	each	voxel	in	order	for	fiber	tractography	to	be	successful.	In	this	chapter,	

we	develop	an	approach	to	validate	the	accuracy	of	diffusion	reconstruction	algorithms.	We	

extract	the	histological	fiber	orientation	distribution	from	3D	confocal	data	by	extending	the	

image	processing	techniques	(structure	tensor	analysis)	from	Chapter	5	to	three	dimensions.	

We	also	utilize	the	spatial	registration	techniques	developed	in	the	atlas	to	facilitate	

comparisons	of	histology	and	MRI	of	the	same	tissue	volumes.	While	no	direct	validation	is	

performed	in	this	chapter,	the	developed	techniques	are	benchmarked	and	assessed	by	

comparing	histology	to	both	DTI	and	spherical	deconvolution.	The	methodology	developed	in	

this	chapter	will	be	implemented	in	Chapter	7	for	the	first	3D	histological	validation	of	a	large	

number	of	commonly	implemented	diffusion	techniques.		

Abstract		

The	ability	of	diffusion	MRI	(dMRI)	fiber	tractography	to	non-invasively	map	three-dimensional	

(3D)	anatomical	networks	in	the	human	brain	has	made	it	a	valuable	tool	in	both	clinical	and	

research	settings.	However,	there	are	many	assumptions	inherent	to	any	tractography	

algorithm	that	can	limit	the	accuracy	of	the	reconstructed	fiber	tracts.	Among	them	is	the	

assumption	that	the	diffusion-weighted	images	accurately	reflect	the	underlying	fiber	

orientation	distribution	(FOD)	in	the	MRI	voxel.	Consequently,	validating	dMRI’s	ability	to	assess	

the	underlying	fiber	orientation	in	each	voxel	is	critical	for	its	use	as	a	biomedical	tool.	Here,	

using	post-mortem	histology	and	confocal	microscopy,	we	present	a	method	to	perform	

histological	validation	of	orientation	functions	in	3D,	which	has	previously	been	limited	to	two-

dimensional	analysis	of	tissue	sections.	We	demonstrate	the	ability	to	extract	the	3D	FOD	from	

confocal	z-stacks,	and	quantify	the	agreement	between	the	MRI	estimates	of	orientation	
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information	obtained	using	constrained	spherical	deconvolution	(CSD)	and	the	true	geometry	of	

the	fibers.	We	find	an	orientation	error	of	approximately	6°	in	voxels	containing	nearly	parallel	

fibers,	and	10-11°	in	crossing	fiber	regions,	and	note	that	CSD	was	unable	to	resolve	fibers	

crossing	at	angles	below	60°	in	our	dataset.	This	is	the	first	time	the	3D	white	matter	

orientation	distribution	is	calculated	from	histology	and	compared	to	dMRI.	Thus,	this	

technique	serves	as	a	gold	standard	for	dMRI	validation	studies	-	providing	the	ability	to	

determine	the	extent	to	which	the	dMRI	signal	is	consistent	with	the	histological	FOD,	and	to	

establish	how	well	different	dMRI	models	can	predict	the	ground	truth	FOD.	

6.1	Introduction	

	 Diffusion	magnetic	resonance	imaging	(dMRI)	has	the	ability	to	estimate	the	distribution	

of	neuronal	fiber	orientations	in	each	voxel	from	a	set	of	diffusion	measurements,	an	object	

often	referred	to	as	the	fiber	orientation	distribution	(FOD).	By	following	these	fiber	orientation	

estimates	from	voxel	to	voxel	throughout	the	brain,	intricate	maps	of	brain	connectivity	can	be	

created.	This	process	of	mapping	brain	connectivity	using	dMRI	data	has	been	termed	“fiber	

tractography”	[8,	55],	and	has	been	used	in	applications	ranging	from	delineating	brain	

networks	[222],	to	studying	the	changes	associated	with	disease	[78,	93],	psychiatric	disorders	

[223],	and	traumatic	brain	injury	[224].		

	 	Diffusion	tensor	imaging	(DTI)	was	the	first	MRI	method	to	allow	mapping	of	fiber	

orientations	throughout	the	brain[225],	and	remains	the	most	common.	However,	this	uni-

modal	Gaussian	diffusion	model	is	known	to	be	inadequate	for	characterizing	diffusion	in	voxels	

with	complex	fiber	structure	[204]	and	has	been	shown	to	lead	to	erroneous	tractography	

results.	A	number	of	methods	have	been	introduced	to	address	this	“crossing	fiber”	problem	

[24,	34-36,	38,	40,	41,	43,	49,	61,	120].	Typically,	these	approaches	solve	for	the	fiber	

orientation	by	estimating	the	FOD	or	the	orientation	density	function	(ODF)	–	another	spherical	

function,	which	reflects	the	relative	number	of	spins	that	have	diffused	in	any	given	direction.	

Tractography	algorithms	then	exploit	local	peaks	in	the	FOD	or	ODF	to	propagate	tract	

streamlines.		

	 While	these	techniques	have	produced	improvements	in	white	matter	tractography,	

there	has	been	no	clear	consensus	on	a	“gold	standard”	for	validating	the	underlying	
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orientation	distributions.	The	most	common	method	to	date	has	been	validation	using	

synthetic	data	[6,	226].	However,	these	simulations	rely	on	assumptions	and	approximations	to	

generate	the	modeled	MR	signal,	and	are	likely	to	be	inadequate	for	validation	in	the	living	

brain.	Physical	phantoms	can	be	used	to	provide	more	realistic	experiment	conditions	

(including	artifacts	inherent	to	dMRI)	and	allow	control	of	the	ground	truth	orientation	

distribution.	Yet,	these	capillary-based	[125,	227]	or	synthetic	fiber-based	[117,	126,	129]	

phantoms	can	still	fail	to	replicate	the	structural	characteristics	typical	of	neuronal	tissue,	

including	axon	diameter,	membrane	permeability,	and	most	importantly,	the	enormous	

geometric	complexity	seen	in	the	central	nervous	system.		

	 To	overcome	these	limitations,	several	studies	have	validated	orientation	measures	

using	post-mortem	histology.	From	stained	tissue	sections,	techniques	such	as	manual	tracing	

[132],	structure	tensor	analysis	[135],	and	Fourier	analysis	[133]	have	been	used	to	quantify	the	

histological	FOD.	However,	two	potential	disadvantages	have	plagued	histological	validation	

studies	to	date.	First,	many	have	been	limited	to	two-dimensional	(2D),	in-plane	analysis	of	

tissue	sections.	Thus,	they	rely	on	tissue	sectioning		in	a	plane	parallel	to	the	direction	of	fibers,	

and	analysis	is	restricted	to	fibers	oriented	in	that	plane.	Recently,	this	limitation	of	validation	

studies	has	been	circumvented	through	the	use	of	confocal	microscopy	[115,	136]		and	optical	

coherence	tomography	[137].	However,	no	method	has	been	presented	which	characterizes	

the	full	fiber	orientation	distribution	in	white	matter	voxels,	but	rather	recent	studies	estimate	

a	single	dominant	orientation	in	areas	equivalent	in	size	to	an	MRI	voxel	[136,	137],	or	

determine	the	orientation	distribution	in	axons	and	dendrites	of	the	cerebral	cortex	[115].	

Second,	comparing	MRI	and	histology	is	often	done	through	manual	alignment	[132,	136,	228]	

of	the	data	,	which	is	prone	to	error	and	can	lead	to	geometric	mismatch	and	a	bias	in	the	

validation	results.	Consequently,	there	is	a	need	for	a	method	to	compare	dMRI	estimates	of	

white	matter	pathways	to	direct	measurements	of	axonal	orientations	on	a	voxel-by-voxel	basis	

-	one	which	allows	three-dimensional	(3D)	analysis	and	addresses	accurate,	reproducible	

registration.		

	 In	this	study,	using	post-mortem	histology	and	confocal	microscopy,	we	develop	an	

approach	to	extend	histological	validation	of	orientation	functions	to	3D.		We	also	describe	
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appropriate	alignment	and	orientation	of	the	histological	data	to	MRI	data.	The	intention	of	this	

work	is	not	a	comprehensive	validation	of	the	strengths	and	weaknesses	of	the	various	dMRI	

algorithms,	nor	determination	of	optimal	acquisition	parameters.	Rather,	the	focus	is	on	the	

technique	itself,	which	represents	an	advance	in	the	development	of	a	“gold	standard”	for	the	

purposes	of	validating	fiber	orientation	information.	We	begin	with	an	in-depth	description	of	

the	method,	which	employs	a	common	image	processing	technique	-	structure	tensor	analysis	-	

in	order	to	extract	the	3D	FOD	in	areas	equivalent	in	size	to	an	MRI	voxel.	Next,	we	describe	the	

sensitivity	of	this	approach	to	confocal	acquisition	and	image	processing	parameters.	Finally,	

we	apply	this	technique	to	both	single	fiber	and	crossing	fiber	white	matter	(WM)	regions,	and,	

as	a	methodological	benchmark,	make	quantitative	comparisons	of	the	histological-FOD	to	the	

corresponding	MRI-FOD	derived	using	constrained	spherical	deconvolution	(CSD)	with	the	

damped	Richardson-Lucy	algorithm	[44].		

6.2	Materials	and	Methods	

6.2.1	MRI	Acquisition	

	 Diffusion	MRI	experiments	were	performed	on	an	adult	squirrel	monkey	brain	that	had	

been	perfusion	fixed	with	physiological	saline	followed	by	4%	paraformaldehyde.	The	brain	was	

then	immersed	in	4%	paraformaldehyde	for	3	weeks.	The	brain	was	transferred	into	a	

phosphate-buffered	saline	medium	for	24	hours	and	scanned	on	a	Varian	9.4	T,	21	cm	bore	

magnet	using	a	multi-shot	multi-slice	spin	echo	EPI	sequence	(TR	=	6.7s;	TE	=	42ms;	δ	=	8ms;	Δ	=	

27ms;	max	gradient	strength	=	30G/cm;	voxel	size	=	400um	isotropic;	partial	Fourier	=	.75;	NEX	

=	5).		A	30-direction	diffusion-sampling	scheme	based	on	an	electrostatic	repulsion	algorithm	

[229]	was	used	to	acquire	30	diffusion-weighted	images	at	a	b-value	of	3200	s/mm2,	and	2	

additional	images	were	collected	with	b=0.		This	set	of	data	was	used	for	calculating	diffusion	

tensors	using	a	weighted	linear	least	squares	fit.	Next,	a	90-direction	scheme	was	used	to	

acquire	diffusion	weighted-images	at	a	b-value	of	6400	s/mm2,	and	6	additional	images	at	b=0.	

From	this	data	set,	the	MRI-FOD	was	estimated	using	constrained	spherical	deconvolution	with	

the	damped	Richardson-Lucy	algorithm	[44]	and	fit	to	8th	order	spherical	harmonic	(SH)	
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coefficients.	MRI	data	processing	was	done	using	the	high	angular	resolution	diffusion	imaging	

(HARDI)	toolbox	for	MATLAB,	available	at	http://neuroimagen.es/webs/hardi_tools/.		

6.2.2	Histological	Procedures	

	 After	imaging,	the	brain	was	sectioned	on	a	cryomicrotome	at	a	thickness	of	80um	in	

the	coronal	plane	and	mounted	on	glass	slides.	Using	a	Canon	EOS20D	(Lake	Success,	NY,	USA)	

digital	camera	with	a	zoom	lens	of	70-300	mm,	the	tissue	block	was	digitally	photographed	

prior	to	cutting	every	other	section,	resulting	in	a	3D	“block-face”	volume	with	a	through-plane	

resolution	of	160um.		

	 The	tissue	sections	were	mounted	on	glass	slides	and	stained	following	the	procedures	

outlined	in	[134].	Briefly,	tissue	sections	were	rinsed	in	PBS	and	dehydrated	through	graded	

ethanol	solutions.	The	fluorescent	lipophilic	dye,	“DiI”,	(1,1’-dioctadecyl-3,3,3’3’-

tetramethylindocarbocyanine	percholarate)	in	100%	ethanol	(.25mg/mL)	was	rinsed	over	

sections	for	1	minute.	The	stained	sections	were	then	rehydrated	through	graded	ethanol	

solutions,	and	coverslipped	with	Fluoromount-G	mounting	medium.		

6.2.3	Confocal	Acquisition	

	 All	histological	data	were	collected	using	an	LSM	710	inverted	confocal	microscope	(Carl	

Zeiss,	Inc.	Thornwood,	NY.	USA).	For	all	selected	tissue	slices,	confocal	acquisition	consists	of	

two	protocols:		[1]	creating	a	2D	montage	of	the	entire	tissue	and	[2]	constructing	a	3D	high-

resolution	image	in	a	selected	region	of	interest.		The	2D	montage	(Figure	6.1,	A)	consists	of	

approximately	600-900	individual	tiles	acquired	using	a	10x	oil	objective	at	a	resolution	of	

0.80μm2,	which	are	stitched	together	using	Zeiss	software,	ZEN	2010.	Acquisition	for	a	single	

slice	takes	approximately	30	minutes.	To	correct	for	image	inhomogeneity	and	tiling	effects	in	

the	image,	we	found	it	useful	to	increase	the	zoom	feature	to	1.5x	or	higher	at	the	expense	of	

collecting	more	tiles.	This	2D	montage	is	used	for	image	registration,	and	for	localizing	the	3D	

high-resolution	region	of	interest.	

	 Prior	to	3D	z-stack	acquisition,	two	steps	are	performed.	First,	tissue	thickness	in	the	z-

dimension	is	determined	by	adjusting	the	focal	plane	depth	to	determine	where	fluorescence	

begins	and	ends.	This	thickness	is	used	to	correct	orientation	estimates	for	tissue	shrinkage	(see	

Histological	FOD	below).	Second,	it	is	necessary	to	increase	the	laser	output	as	deeper	layers	
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are	imaged	due	to	the	increases	in	light	scatter	and	absorption	at	greater	tissue	depths	(see	

Confocal	Pre-Processing).		The	laser	power	is	adjusted	for	approximately	5	different	depths	

ranging	from	the	coverslip	to	the	end	of	the	tissue,	at	each	step	ensuring	that	the	image	

intensity	range	will	cover	the	full	8-bit	depth	from	0-255	units.	The	LSM	710	interpolates	the	

laser	output	between	depths.		

	 The	3D	z-stack	(Figure	6.1,	B)	is	then	collected	using	a	63x	oil	objective	at	a	nominal	

resolution	of	0.18μm×0.18μm×0.42μm.	Typical	acquisition	time	to	acquire	the	entire	section	

thickness	with	an	in-plane	field	of	view	of	1.6mm	×	1.6mm	(equivalent	to	16	MRI	voxels)	is	

approximately	8	hours.	The	through-plane	resolution	is	the	“optimal”	slice-thickness,	calculated	

from	the	LSM710	software	based	on	a	1.0	Airy	unit	pinhole	diameter	and	an	excitation	

wavelength	of	543nm.	Stitching,	again,	is	performed	using	ZEN	2010	software	to	create	a	single	

3D	z-stack.			

	 Finally,	all	confocal	data	are	converted	from	the	LSM	file	format	to	TIFF	images	and	

imported	into	MATLAB	for	further	processing.	

	
Figure	6.1	Estimating	the	fiber	orientation	distribution	from	confocal	z-stacks.	Confocal	acquisition	includes	a	2D	low-resolution	
montage	(A)	and	a	high-resolution	3D	z-stack	(B).	Image	pre-processing	(C)	comprises	light	scatter	and	absorption	correction,	
deconvolution,	and	interpolation.		Next,	structure	tensor	analysis	is	performed	(illustrated	in	Figure	2	on	a	simulated	fiber),	and	
the	tertiary	eigenvector	extracted	for	all	pixels.	This	is	followed	by	geometric	correction	for	tissue	shrinkage,	thresholding	
fibers,	and	fitting	to	spherical	harmonic	coefficients.	The	resulting	FOD	is	displayed	as	a	3D	glyph	(D).		
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6.2.4	Confocal	Pre-processing	

	 The	aim	here	is	to	extract	the	histological-FODs	from	the	3D	z-stacks	in	areas	equivalent	

to	the	size	of	an	MR	voxel.	To	do	this,	we	use	structure	tensor	analysis	to	obtain	an	orientation	

estimate	for	every	pixel	in	the	3D	z-stack	that	is	occupied	by	a	fiber.		

	 Prior	to	structure	tensor	analysis,	four	sources	of	anisotropy	inherent	to	confocal	

microscopy	must	be	accounted	for	(Figure	6.1,	C).	Three	corrections	are	performed	directly	on	

the	confocal	z-stack	prior	to	structure	tensor	analysis,	and	the	final	correction	performed	post-

analysis.	The	first	is	an	attenuation	of	the	image	intensity	as	a	function	of	tissue	depth.	This	

effect	is	caused	by	light	scatter	and	absorption	which	decreases	the	intensity	of	excitation	light	

penetrating	to	the	deeper	layers	of	the	tissue,	and	consequently,	the	fluorescence	of	these	

layers.	Because	structure	tensor	analysis	is	based	on	image	intensity	gradients,	this	artifact	

could	result	in	a	bias	in	fiber	orientation	estimates	[136].		The	attenuation	correction	is	

performed	in	the	Confocal	Acquisition	stage	described	above.		Increasing	the	laser	power	for	

deeper	layers	generates	a	z-profile	that	has	a	relatively	constant	mean	intensity	in	each	x-y	

plane	containing	fibers.		

	 The	second	source	of	anisotropy	arises	from	the	confocal	microscope’s	point	spread	

function	(PSF).	The	PSF	is	the	3D	diffraction	pattern	resulting	from	the	systems	response	to	an	

infinitely	small	point	source	of	light.	This	diffraction	pattern	is	known	to	be	nearly	three	times	

wider	through-plane	than	in-plane	[230],	leading	to	anisotropic	blurring	of	the	image;	in-plane	

structures	will	be	better	resolved	than	those	oriented	through-plane.		To	deblur	the	confocal	

data,	we	use	the	iterative	Lucy-Richardson	algorithm	[231]	and	a	computed	theoretical	model	

of	the	confocal	microscope’s	PSF	[230].	This	model	takes	into	account	various	confocal	

parameters	including	the	numerical	aperture,	refractive	index,	wavelength	of	light,	and	the	

acquired	image	resolution.	The	Lucy-Richardson	deconvolution	algorithm	is	a	maximum-

likelihood	approach	to	find	the	statistically	most	likely	image,	given	the	blurred	image	and	

assuming	Poisson	noise		[231,	232],	which	is	an	appropriate	noise	model	of	the	photon-

counting	process	of	confocal	imaging	[230].	

	 The	final	pre-processing	step	is	to	correct	for	the	anisotropic	acquisition	resolution.	This	

ensures	that	fibers	oriented	laterally	in	the	image	will	contain	an	equivalent	number	of	pixels	
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per	length	as	fibers	oriented	axially.	Interpolation	to	isotropic	resolution	is	accomplished	using	

cubic	interpolation.		

6.2.5	Structure	Tensor	Analysis	

	 The	structure	tensor	was	introduced	in	the	late	1980’s	for	point	and	edge	detection	

[212,	233],	and	has	since	become	popular	in	image	processing	and	computer	vision,	with	

applications	including	texture	analysis	and	materials	science	[234,	235].	This	analysis	technique	

is	applied	to	our	entire	3D	confocal	image,	f(x,y,z).	The	structure	tensor	[236]	is	based	on	the	

gradient	of	f:	

which	is	calculated	with	Gaussian	derivative	filters:	

where	∗	denotes	the	convolution	operation	and	gx,σ,	gy,σ,	and	gz,σ	are	the	spatial	derivatives	in	

the	x,	y,	and	z-direction,	respectively,	of	a	3D	Gaussian	with	standard	deviation	σ:		

For	illustration	purposes,	we	show	this	step	as	performed	on	a	simulated	cylindrical	fiber	

(Figure	6.2,	A),	representative	of	the	neuronal	structures	seen	in	the	3D	confocal	image	(similar	

illustrations	appear	in	[136]	and	[237]).	Ideally,	the	image	gradients	are	orthogonal	to	the	fibers	

at	all	points	(Figure	6.2,	B).	Next,	an	object	known	as	the	gradient	square	tensor,	is	calculated	

for	each	point	in	the	image	by	taking	the	dyadic	product	of	the	gradient	vector	with	itself:		

Each	tensor	element	is	averaged	over	a	local	neighborhood	to	create	the	pixel-wise	structure	

tensor.	For	spatial	averaging,	we	choose	a	3D	Gaussian	filter	with	standard	deviation	ρ:	

	 This	results	in	a	3-by-3	symmetric,	semi-positive	definite,	rank-two	tensor.	Much	like	the	

diffusion	tensor,	this	matrix	will	have	three	positive	eigenvalues,	and	can	be	visualized	as	an	

	 𝛻𝑓¡ = (𝑓~, 𝑓�, 𝑓�)a 	 (21)	

	 𝑓~ = 	𝑔~,¡ ∗ 𝑓,									𝑓� = 	𝑔�,¡ ∗ 𝑓,									𝑓� = 	𝑔�,¡ ∗ 𝑓	 (22)	

	 𝑔¡ 𝑥, 𝑦, 𝑧 = 	
1

( 2𝜋𝜎/):
𝑒9

(~X£�X£�X)
/¡X 	 (23)	

	 𝐺𝑆𝑇(𝑥, 𝑦, 𝑧)¡ = 	∇𝑓¡∇𝑓¡
a	 = 	

𝑓~/ 𝑓~𝑓� 𝑓~𝑓�
𝑓~𝑓� 𝑓�/ 𝑓�𝑓�
𝑓~𝑓� 𝑓�𝑓� 𝑓�/

	 (24)	

	 𝑆𝑇¥ ∇f¡ = 	𝑔¥ 	∗ (∇𝑓¡∇𝑓¡a)	 (25)	
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ellipsoid	(Figure	6.2,	C).	In	DTI,	one	is	typically	interested	in	the	largest	eigenvalue	and	

eigenvector,	which	points	in	the	direction	of	greatest	diffusion,	and	is	usually	assumed	to	be	

parallel	to	the	primary	structure	orientation	in	the	MR	voxel.		However,	in	structure	tensor	

analysis,	the	image	intensity	gradients	are	strongest	perpendicular	to	the	fibers,	which	means	

the	largest	two	eigenvectors	will	also	be	perpendicular	to	the	fiber	bundles.	Hence,	we	make	

the	assumption	that	the	direction	of	minimal	intensity	variation	is	parallel	to	the	fiber	

orientation	at	each	pixel,	a	direction	given	by	the	eigenvector	corresponding	to	the	smallest	

eigenvalue.		

	 The	certainty	in	estimated	fiber	orientation	can	be	described	by	the	Westin-measure	

[238]	defining	how	planar	the	structure	tensor	is:	

where	λ1,	λ2,	and	λ3	are	the	primary,	secondary,	and	tertiary	eigenvalues	of	the	structure	

tensor.	This	value	varies	from	0	to	1	and	will	be	large	in	areas,	like	that	depicted	in	Figure	6.2,	C,	

where	the	first	two	eigenvalues	are	much	larger	than	the	third.	This	measurement	is	used	to	

threshold	the	confocal	image,	so	voxels	with	low	certainties	are	not	included	in	the	final	

orientation	distribution.					

	 For	the	results	presented	in	this	paper,	the	spatial	derivatives	were	calculated	using	a	

Gaussian	with	standard	deviation	σ	=	1μm,	and	spatial	averaging	performed	using	a	Gaussian	

with	standard	deviation	ρ	=	2.5μm	(these	values	were	chosen	based	on	comparisons	to	

distributions	of	manually	traced	fibers	–	see	Section	6.3.1	Sensitivity	Analysis).	

	 𝑐¨ = 	
𝜆/ − 𝜆:
𝜆P

	 (26)	
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Figure	6.2	Structure	tensor	analysis	illustrated	on	a	simulated	cylindrical	fiber	(A).	The	structure	tensor	is	derived	from	the	
image	intensity	gradients	(B),	which	should	be	orthogonal	to	the	fiber	at	all	points.	The	Cartesian	product	of	the	gradient	vector	
with	itself	is	taken,	and	averaged	over	a	local	neighborhood	to	derive	the	structure	tensor,	which	has	3	eigenvalues	and	3	
eigenvectors	(C).	The	tertiary	eigenvector,	ν3,	will	point	in	the	direction	of	minimum	intensity	variation	–	parallel	to	the	
fiber.	

6.2.6	Histological-FOD	

	 After	a	fiber	orientation	has	been	extracted	for	all	pixels	in	the	image	(Figure	6.1,	C)	one	

final	correction	for	anisotropy	must	be	performed.	It	is	known	that	tissue	samples	may	shrink	

due	to	processing,	sectioning,	and	staining	[239,	240].	These	effects	are	mainly	a	result	of	

fixation	and	dehydration	in	alcohol	solutions	during	the	staining	procedure	[241,	242].			We	use	

the	thickness	measurement	before	acquisition	of	each	3D	z-stack	to	perform	a	geometric	

correction	to	the	orientation	estimate	for	every	pixel	in	the	image	by	assuming	linear	shrinkage	

in	the	through-plane	(z)	direction.		

	 Once	all	estimated	vectors	have	been	appropriately	re-oriented	to	account	for	tissue	

shrinkage,	the	results	are	thresholded		using	both	image	intensity	and	the	certainty	value.	This	

yields	an	orientation	estimate	for	every	pixel	in	our	z-stack	that	is	occupied	by	a	fiber.		
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	 A	histogram	representing	the	histological-FOD	is	then	created	as	a	function	of	polar	and	

azimuthal	angle,	where	the	orientation	estimates	are	placed	into	bins	that	cover	constant	solid	

angles	over	a	sphere.	This	FOD	is	fit	to	high	order	(20)	SH	coefficients,	and	throughout	this	

dissertation	is	displayed	as	a	three	dimensional	glyph	(Figure	6.1,	D)	in	the	same	way	that	the	

MRI-FOD’s	are	typically	displayed.		

6.2.7	Image	Registration	

	 In	order	to	make	a	quantitative	comparison	of	the	histological-FOD	and	the	MRI-FOD,	

the	data	must	be	aligned	and	oriented	appropriately.	A	multi-step	registration	procedure	[194]	

was	used	to	align	histology	to	MRI	data.	The	first	step	is	registration	of	the	2D	confocal	

montage	to	the	corresponding	block	face	image	using	mutual	information	based	2D	linear	

registration	followed	by	2D	nonlinear	registration	using	the	adaptive	bases	algorithm	(ABA)	

[196].	Next,	all	block	face	photographs	were	assembled	into	a	3D	block	volume,	which	is	

registered	to	the	MRI	b=0	image	using	a	3D	affine	transformation	followed	by	3D	nonlinear	

registration	with	ABA.	Given	the	location	of	the	3D	z-stack	in	the	2D	confocal	montage,	we	can	

use	the	combined	deformation	fields	to	determine	the	MRI	signal	from	the	same	tissue	volume.	

The	MRI	signal	of	interest	is	analyzed	in	MRI	native	space.	As	described	above,	we	derive	the	

tensor	using	a	WLLS	fit,	and	estimate	the	MRI-FOD	using	constrained	spherical	deconvolution.		

The	final	step	is	to	transform	the	diffusion	tensor	and	MRI-FOD	to	histological	space	to	facilitate	

comparisons	with	the	histological	FOD.	For	the	tensor,	we	apply	the	preservation	of	principal	

directions	(PPD)	strategy	[243]	twice:	once	to	transform	the	tensor	from	MRI-space	to	block-

space,	and	again	to	transform	to	histological	space.	For	the	MRI-FOD,	we	choose	the	approach	

developed	in	Hong	et	al.	[244].	This	method	takes	into	account	rotation,	scaling,	and	shearing	

effects	of	the	spatial	transformations,	and	can	be	applied	to	any	orientation	distribution	on	a	

sphere.	After	these	corrections,	both	the	histological-FOD	and	the	MRI-FOD	are	in	histological	

space,	and	quantitative	analysis	can	be	performed.		
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6.3	Results	

6.3.1	Sensitivity	Analysis	

	 We	begin	by	reporting	the	sensitivity	of	this	technique	to	acquisition	and	image	analysis	

parameters.		First,	three	single	fiber	regions	(with	three	different	primary	orientations)	were	

acquired	at	in-plane	resolutions	ranging	from	0.08μm×0.08μm	to	0.42μm×0.42μm.	The	

through-plane	resolution	was	set	to	0.42μm	for	all	sets.		Structure	tensor	analysis	was	

performed	on	all	datasets	with	parameters	σ	=	1μm	and	ρ	=	2.5μm.	To	determine	the	ground	

truth	fiber	distribution,	100	fibers	(seeded	from	100	random	voxels)	were	manually	traced	in	

the	highest	resolution	dataset,	the	corresponding	histogram	fit	to	spherical	harmonic	

coefficients,	and	the	primary	orientation	extracted	as	performed	above.	The	angular	error	

between	the	ground	truth	orientation	and	the	results	from	structure	tensor	analysis	is	shown	in	

Figure	6.3	(left).	It	is	clear	that	higher	resolution	provides	the	most	accurate	representation	of	

fiber	direction,	however,	even	isotropic	resolution	had	an	average	error	of	less	than	5.0°.		

	
Figure	6.3	Sensitivity	of	structure	tensor	analysis	to	imaging	and	image	processing	parameters.	Ground	truth	fiber	orientation	
distribution	was	determined	for	three	confocal	z-stacks	by	manually	tracing	100	fibers	per	confocal	volume.	Angular	error	in	the	
primary	fiber	orientation	is	plotted	as	a	function	of	the	in-plane	confocal	resolution	(left),	the	standard	deviation	(σ)	of	the	
Gaussian	kernel	used	for	calculating	spatial	derivatives	(middle),	and	the	standard	deviation	(ρ)	of	the	Gaussian	kernel	
used	for	spatial	averaging	(right).	Dashed	lines	indicate	the	parameters	chosen	for	this	study.	

	 Next,	the	sensitivity	of	the	analysis	to	the	standard	deviation	of	the	first	derivative	

Gaussian,	σ,	was	analyzed.	This	was	done	using	the	z-stacks	acquired	at	

0.18μm×0.18μm×0.42μm,	ρ	=	2.5μm,	and	a	range	of	σ	(Figure	6.3,	middle).	We	find	a	range	of	

kernel	sizes,	with	σ	between	0.5μm	and	2μm	that	result	in	accurate	orientation	results.	This	

optimal	range	closely	matches	the	size	of	the	myelinated	fibers	in	the	image,	which	we	found	to	
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have	diameters	in	the	range	of	0.5μm-1.5μm.	Outside	this	range,	the	results	become	unreliable.	

In	particular,	too	large	a	kernel	will	result	in	a	significant	blurring	of	the	image,	which	leads	to	

large	areas	of	isotropic	intensity,	and	an	almost	random	orientation	estimate	for	all	pixels.	The	

error	begins	to	approach	the	expected	value	for	the	angle	between		two	randomly	oriented	

lines	through	the	origin,	1	radian	or	57.3°	[245].	

	 Finally,	we	find	that	the	method	is	relatively	robust	to	the	averaging	kernel	size,	ρ	

(Figure	6.3,	right).	With	a	resolution	of	0.18μm×0.18μm×0.42μm	and	σ=1μm,	all	values	of	the	

averaging	kernel	gave	an	estimate	of	the	primary	fiber	direction	accurate	to	within	4°.		

6.3.2	Image	Registration	

	 An	example	of	the	correspondence	between	histology	and	MRI	after	registration	is	

shown	in	Figure	6.4.	The	top	row	shows	the	2D	confocal	montage	(A1),	the	corresponding	

block-face	image	(A2),	and	the	MRI	data	(A3),	all	aligned	in	the	intermediate	“block-space”.	

These	whole-slice	images	show	agreement	of	large-scale	features,	including	sulci	and	gyri,	and	

major	white	matter	tracts.	A	magnified	region	of	interest	is	also	shown	for	each	modality	(A4-

A6).	The	asterisk	indicates	the	location	of	the	center	of	the	3D	confocal	z-stack	acquired	and	

displayed	in	Figure	6.9,	E.	The	arrows	highlight	anatomical	landmarks	and	are	drawn	at	the	

same	position	on	each	image.	It	is	clear	that	smaller	scale	features	still	share	precise	shape,	

position	and	alignment	on	all	three	modalities.		

	 	Similarly,	panels	(B1-B3)	assess	the	registration	accuracy	from	the	slice	corresponding	

to	that	shown	in	Figure	6.9,	A.	While	not	strictly	necessary,	we	chose	to	manually	remove	the	

cerebellum	from	the	confocal	and	block	images	to	facilitate	registration,	as	is	commonly	done	

in	studies	where	this	structure	is	of	no	interest	[246,	247].	Again,	we	see	excellent	agreement	

between	histology,	block,	and	MRI	on	the	scale	of	the	full	slice	(B1-B3)	and	at	the	voxel-wise	

scale	(B4-B6).		
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Figure	6.4	Image	registration	quality.	Selected	histological	slices	show	the	correspondence	of	matching	between	MRI	and	
histology	of	the	full	slice	and	magnified	views.	The	top	two	rows	correspond	to	the	histological	slice	shown	in	Figure	6.9,	E,	and	
displays	histology	(A1),	the	matching	block-face	(A2)	and	the	non-diffusion	weighted	MRI	images	(A3),	all	registered	to	the	
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intermediate	“block	space”.	The	magnified	views	(A4-A6)	show	that	MRI	can	be	correlated	on	the	voxel	level	to	histology.	The	
arrows	highlight	anatomical	borders	or	edges	between	white	and	gray	matter,	while	the	asterisk	indicates	the	location	of	the	
center	of	the	acquired	3D	z-stack.	The	lower	two	rows	show	the	slice	from	Figure	6.9,	A	(note	the	cerebellum	was	removed	to	
facilitate	registration).	Again,	there	is	a	large	scale	agreement	between	histology	(B1),	block-face	(B2),	and	the	registered	MRI	
(B3).		Magnified	views	are	displayed	in	figures	(B4-B6)	and	show	agreement	on	the	voxel-wise	scale.	The	asterisk,	again,	
indicates	the	center	of	the	3D	z-stack,	while	arrows	facilitate	comparisons	by	highlighting	anatomical	similarities.	

6.3.3	Single	Fiber	Analysis	

		 The	results	of	3D	structure	tensor	analysis	in	regions	of	the	brain	containing	

predominantly	single	fiber	populations	are	shown	in	Figure	6.5	(rows	1	and	2).	Structure	tensor	

analysis	demonstrates	the	corpus	callosum	(Figure	6.5,	A)	is	composed	of	fibers	running	in	the	

right-left	orientation	and	remaining	largely	in-plane.	Visually,	this	corresponds	well	with	the	

primary	fiber	orientation	derived	from	MRI,	including	the	CSD-FOD	(row	3)	as	well	as	the	

apparent	diffusion	coefficient	profile	of	the	diffusion	tensor	(row	4),	calculated	as	the	negative	

log	of	the	normalized	diffusion	signal.	Histological	results	from	the	optic	tract	(Figure	6.5,	B)	and	

external	capsule	(Figure	6.5,	C)	demonstrate	the	ability	of	this	technique	to	describe	obliquely-

oriented,	or	slightly	through-plane,	fibers	as	well	as	those	oriented	completely	through-plane,	

respectively.	Again,	the	3D	structure	tensor	results	qualitatively	agree	well	with	both	the	MRI-

derived	FOD	and	diffusion	tensor.		
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Figure	6.5	Qualitative	single	fiber	analysis.	Three	large	white	matter	tracts	containing	a	single	fiber	population	are	shown,	
including	the	corpus	callosum	(A),	optic	tract	(B),	and	external	capsule	(C).	The	2D	confocal	montage	of	the	tissue	for	each	slice	
(row	1)	highlights	the	locations	of	the	3D-confocal	z-stack	(yellow	box).	Histological	FOD	(row	2)	is	shown	overlaid	on	a	single	
slice	of	the	z-stack.	The	MRI-FOD	(row	3)	and	tensor	(row	4)	for	corresponding	voxels	are	displayed	as	3D	glyphs.	All	glyphs	are	
color	coded	based	on	orientation,	where	red,	blue,	and	green	represent	orientations	in	the	left-right,	superior-inferior,	and	
anterior-posterior	directions,	respectively.	Note	that	the	third	column	from	the	external	capsule	(C)	contained	predominantly	
gray	matter	and	has	been	excluded	from	analysis.		
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	 Figure	6.6	shows	cloud	plots	of	angular	error	in	peak	orientations	between	diffusion	MRI	

and	histology	for	74	voxels	in	10	different	regions	of	the	brain	containing	only	a	single	fiber	

population.			The	average	magnitude	angular	error	(in	3D)	was	6.4°±4.0°	for	CSD	and	a	larger	

error	of	11.2°±5.9°	for	DTI.	For	CSD,	the	mean	in-plane	orientation	error	was	-0.8°±6.5°,	

and	through-plane	was	1.7°±4.0°.		The	mean	DTI	error	was	-3.8°±6.5°	in-plane	and	-

6.6°±7.9°	through-plane.		

	
Figure	6.6	Quantitative	single	fiber	analysis.	Cloud	plots	display	angular	error	between	MR	and	histology	for	CSD	(left)	and	DTI	
(right)	derived	orientation	estimates.	Orientations	are	projected	onto	the	xy-axis	(in-plane)	and	the	yz-axis	(through-plane).	

While	the	regions	in	Figure	6.5	represent	voxels	containing	classic	single	fiber	populations,	an	

in-depth	examination	of	the	histology	depicts	a	“spread”	of	orientations	in	these	imaging	

voxels.	For	example,	structure	tensor	analysis	of	the	corpus	callosum	voxel	(Figure	6.7,	A)	shows	

an	anisotropic	fanning	of	the	fibers	while	the	optic	tract	voxel	(Figure	6.7,	B)	shows	axonal	

orientation	dispersion	symmetric	around	the	predominant	orientation.	A	common	analysis	

approach	in	the	literature	is	to	fit	these	to	a	distribution	on	a	sphere	in	order	to	extract	

parameters	that	can	be	used	to	describe	geometric	patterns	[248].	One	such	distribution	is	the	

Bingham	distribution	[249],	an	antipodally	symmetric	distribution	with	elliptical	contours	on	the	

sphere	that	is	well	suited	for	representing	asymmetric	or	anisotropic	dispersion	[50].	If	fit	to	the	

Bingham	distribution,	the	voxel	in	the	corpus	callosum	results	in	anisotropic	concentration	

parameters:	κ1=21,		κ2=12,	confirming	slightly	anisotropic	fanning	geometry	(fanning	in	the	S/I	
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direction).		The	optic	tract	voxel	has	slightly	larger,	but	isotropic,	dispersion:	κ1=10,		κ2=9,	

consistent	with	a	symmetric	orientation	dispersion.	

	
Figure	6.7	Orientation	dispersion	in	single	fiber	regions.	Vector	maps	(A1,	B1)	display	fiber	orientation	projected	onto	xy	plane.	
In	colormaps	(A2,	B2)	fibers	are	orientationally	color-coded	using	the	coloring	scheme	described	in	Figure	6.5.	The	FOD	is	
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further	displayed	as	a	distribution	over	the	unit	sphere	(A3,	B3).	These	have	been	rotated	to	better	visualize	the	dispersion	
patterns.	The	blue-yellow	color	codes	from	0	to	high	values	of	the	distribution.	The	voxel	from	the	corpus	callosum	(A)	is	the	
center	voxel	depicted	in	Figure	6.5A,	while	that	from	the	optic	tract	(B)	is	also	the	center	voxel	from	Figure	6.5B.		Note	that	both	
voxels	display	a	spread	of	orientations.	

6.3.4	Crossing	Fiber	Analysis	

	 Figure	6.8	demonstrates	the	advantages	of	using	3D	acquisition	and	analysis	over	

previous	studies	limited	to	2D.	The	confocal	montage	(Figure	6.8,	A)	was	used	to	choose	a	voxel	

for	high-resolution	acquisition	that	visually	appeared	to	contain	fibers	oriented	both	in-plane	

and	through-plane	(Figure	6.8,	B).	The	middle	slice	of	the	z-stack	was	chosen	for	conventional	

2D	analysis	using	the	methods	described	in	Budde	and	Frank,	2012	[134].	These	results	(Figure	

6.8,	C)	suggest	a	single	fiber	population	in	this	voxel,	oriented	primarily	in	the	superior-inferior	

direction.	However,	the	MR	data	indicate	the	presence	of	multiple	fibers	(Figure	6.8,	D),	which	

is	verified	with	3D	structure	tensor	analysis,	shown	as	a	color-coded	fiber	map	(Figure	6.8,	E)	

and	3D	glyph	(Figure	6.8,	F).		
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Figure	6.8	Crossing	fiber	analysis	in	2D	and	3D.	The	2D	confocal	montage	(A)	highlights	the	location	of	the	high-resolution	3D	z-
stack	(B).	2D	structure	tensor	analysis	was	performed	on	a	single	slice	and	the	results	shown	in	the	2D	rose	plot	(C)	suggest	a	
single	fiber	population,	while	CSD-MRI	data	(D)	suggest	two	fiber	populations.	Results	from	3D	structure	tensor	analysis	are	
displayed	as	a	colormap	of	the	slice	(E),	along	with	the	two	orthogonal	views,	using	the	color	scheme	described	in	Figure	6.2,	as	
well	as	FOD	glyph	(F),	both	of	which	highlight	the	fact	that	two	distinct	fiber	orientations	are	present.	
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	 Figure	6.9	further	demonstrates	the	ability	of	3D	structure	tensor	analysis	to	capture	the	

crossing	of	fiber	bundles	in	3D.	A	3.2mm×1.2mm	region	where	the	corpus	callosum	meets	the	

corona	radiata	is	highlighted	(Figure	6.9,	A)	along	with	the	structure	tensor	results	from	the	

histological	z-stack	(Figure	6.9,	B),	where	the	two	dominant	fiber	bundles	and	their	intersection	

are	readily	apparent.	These	results	qualitatively	agree	with	the	FODs	derived	from	MRI	data	

(Figure	6.9,	D).		

	 The	ability	to	extract	orientation	information	from	complicated	crossing	geometries	is	

highlighted	in	Figure	6.9,	C,	where	fibers	running	right	to	left	(Figure	6.9,	C,	red)	interdigitate	

with	the	majority	of	fibers	which	run	superior	to	inferior	(Figure	6.9,	C,	blue).	Further,	regions	

with	very	sharp	crossing	angles	can	be	identified	(Figure	6.9,	E)	and	resolved	with	structure	

tensor	analysis	(Figure	6.9,	F).	The	dominant	orientations	again	agree	well	with	those	from	CSD	

(Figure	6.9,	G),	however,	regions	with	multiple	crossings	at	acute	angles	are	often	not	identified	

in	MRI	as	having	multiple	fiber	populations.				
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Figure	6.9	Qualitative	crossing	fiber	analysis.	The	intersection	of	the	corpus	callosum	and	corona	radiata	(A)	was	imaged	in	3D,	
and	FOD’s	from	structure	tensor	analysis	are	displayed	(B).	The	yellow	box	highlights	the	voxel	displayed	in	(C)	where	
interdigitating	fibers	running	right-left	are	visible	in	both	the	colormap	and	the	3D	glyph.	The	MRI	results	using	CSD	(D)	appear	
to	be	a	blurred	version	of	the	histological	FOD,	where	primary	orientations	largely	agree.	The	region	identified	in	(E)	is	shown	to	
contain	fanning	structures	and	bundles	crossing	at	sharp	angles	(F),	while	the	MRI	data	(G)	fail	to	resolve	sharp	crossing	angles.	

	 Forty	histological	voxels	were	identified	through	structure	tensor	analysis	as	having	

multiple	fiber	populations,	and	quantitatively	compared	to	CSD	results.	The	algorithm	to	

determine	whether	a	voxel	contains	crossing	fibers	is	described	in	[40].	Briefly,	the	histological	

FOD	is	sampled	in	a	large	number	of	evenly	distributed	directions	on	a	unit	sphere	and	local	

maxima	identified	(local	maxima	are	defined	to	be	greater	than	any	other	samples	within	a	

search	radius	of	0.25	radians).	Similarly,	the	FOD’s	of	the	corresponding	MRI-CSD	results	were	
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analyzed.	In	order	to	remove	spurious	peaks,	those	with	amplitude	less	than	10%	of	the	

amplitude	of	the	largest	peak,	as	well	as	peaks	that	did	not	correspond	with	any	histological	

peak	to	within	an	angular	error	of	30°,	were	discarded.	The	results	of	this	analysis	are	shown	in	

Figure	6.10.	The	average	magnitude	angular	error	was	10.4°±5.1°	for	the	primary	(largest	

amplitude)	fiber	orientation	(Figure	6.10,	left),	and	11.6°±7.0°	for	the	secondary	orientation	

(Figure	6.10,	right),	both	of	which	are	larger	than	the	error	associated	with	single	fiber	regions.	

For	the	primary	direction,	the	mean	in-plane	orientation	error	was	-0.1°±9.7°,	and	through-

plane	was	3.5°±5.7°,	while	that	for	the	secondary	direction	was	-0.2°±10.4°	and	3.6°±8.4°,	

respectively.	Finally,	we	employ	a	commonly	used	measure,	the	success	rate,	as	a	function	of	

fiber	crossing	angle	(Figure	6.10).	The	success	rate	measures	the	proportion	of	voxels	

containing	two	fiber	orientations	(as	identified	by	histology)	where	two	peaks	could	also	be	

identified	by	the	chosen	MRI	algorithm.	From	the	40	identified	voxels	with	multiple	fiber	

populations,	only	29	of	the	corresponding	MRI	voxels	exhibited	the	presence	of	crossing	fibers	

after	spherical	deconvolution.	With	this	data	set,	CSD	consistently	failed	(<20%	success	rate)	to	

resolve	crossing	fibers	in	regions	where	histology	identified	crossing	at	angles	below	60	

degrees,	while	the	success	rate	was	high	for	fibers	crossing	at	angles	above	70°.		Further,	DTI	

failed	to	resolve	crossing	at	all	angles,	which	was	expected	[204],	as	the	tensor	model	

represents	only	one	dominant	direction.				

	
Figure	6.10	Quantitative	crossing	fiber	analysis.	Cloud	plots	display	angular	error	between	MR	and	histology	for	the	primary	
fiber	orientation	(left)	and	secondary	fiber	orientation	(middle)	in	regions	with	crossing	fibers.	Orientations	are	projected	onto	
the	xy-axis	(in-plane)	and	the	yz-axis	(through-plane).	The	success	rate	of	CSD	with	the	damped	Richardson-Lucy	algorithm	is	
reported	as	a	function	of	fiber	crossing	angle	as	identified	by	histology	(right).	The	sample	size	is	also	noted	for	each	crossing	
angle	bin.	
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6.4	Discussion	

	 Diffusion	MRI-based	non-invasive	mapping	of	the	three-dimensional	network	of	

connections	in	the	brain	has	gained	widespread	use	in	the	neuroimaging	community.	These	

tractographic	reconstructions	result	in	exquisite	images	of	the	human	brain	that	can	easily	be	

over-interpreted	or	misinterpreted.	Thus,	validating	diffusion	imaging’s	ability	to	assess	the	

underlying	fiber	orientation	in	each	voxel	is	critical	for	its	use	as	a	biomedical	tool.		

	 The	use	of	ex	vivo	histology	as	a	“gold	standard”	holds	promise,	as	it	provides	true	

axonal	characteristics	at	the	micron	and	voxel-sized	scales,	including	microstructural	

compartments,	biophysical	properties,	and	complex	tissue	geometries.		This	work	presents	an	

extension	of	histological	validation	of	orientation	functions	to	three	dimensions.		Previous	

orientation	validation	studies	have	been	limited	in	that	they	required	identification	of	suitable	

regions	of	interest	where	3D	FODs	could	be	compared	to	the	inherently	2D	coronally	sectioned	

histological	data.	This	also	necessitated	sectioning	the	tissue	block	paraellel	to	the	primary	

directions	of	interest	for	adequate	analysis,	as	any	through	plane	fibers	would	be	undetected	

[134]	and	could	lead	to	misleading	orientation	results	(Figure	6.8,	C).	While	the	use	of	3D	

optical	imaging	to	validate	dMRI	has	recently	gained	traction,	determination	of	the	white	

matter	histological	fiber	orientation	distribution	has	not	yet	been	reported.	For	example,	the	

current	study	shares	many	methodological	similarities	with	Khan	et	al.,	2015,	including	

structure	tensor	analysis	of	confocal	data.	However,	rather	than	assessing	the	orientation	of	all	

individual	axons,	the	focus	in	that	study	was	on	quantitative	comparisons	of	dMRI	and	structure	

tensor	measures	(FA,	eigenvalues)	on	the	scale	of	10’s-100	microns.	Similarly,	Jesperson,	2012,	

performed	a	3D	analysis	of	Golgi-stained	tissue,	but	with	aim	of	deriving	the	dendritic	and	

axonal	orientations	in	the	cerebral	cortex.	

	 The	use	of	histology	for	validation	studies	presents	several	potential	limitations.	Two	of	

these	are	the	data	registration	problem,	and	the	imaging	depth	limitation	inherent	to	confocal	

microscopy.	Mapping	high	resolution	histological	data	onto	the	MRI	images	is	known	to	be	a	

challenge	because	of	the	many	differences	between	the	histological	slices	and	the	original	brain	

tissue	[247].	The	process	of	fixation	and	brain	extraction	can	lead	to	mechanical	distortions	in	

the	tissue,	while	cutting,	placing	slices	on	slides,	and	staining	can	cause	contractions,	nonlinear	
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distortions,	and	separation	of	the	hemispheres	[247].	In	this	study,	these	problems	are	

addressed	through	the	use	of	linear	and	non-linear	registration	of	the	data	sets.	For	data	

alignment,	the	acquisition	of	the	block-face	image	data	is	crucial;	it	provides	an	undistorted	3D	

image	of	the	brain	before	sectioning,	and	operates	as	an	intermediate	step	in	registration	of	the	

potentially	distorted	histology	to	the	MR	data	[191].	Previously,	this	technique	has	been	shown	

to	provide	registration	accurate	to	approximately	the	size	of	the	MRI	voxel	[194].	Tissue	

contraction	(shrinkage)	is	further	accounted	for	in	the	confocal	pre-processing	steps	(and	

discussed	in	section	6.4.4	Data	Pre-Processing).	The	imaging	depth	limitation	of	confocal	

microscopy	is	also	discussed	in	Section	6.4.4	Data	Pre-Processing.		

6.4.1	Single	Fiber	Analysis	

	 The	peaks	of	the	histological	FOD	correspond	well	with	those	obtained	with	DTI	and	CSD	

in	regions	containing	predominantly	a	single	fiber	population.	While	DTI	had	a	larger	angular	

error	than	CSD	reconstruction	(11.2°	versus	6.4°,	respectively),	this	is	potentially	a	result	of	

differing	acquisition	protocols	(lower	b-value	and	fewer	sampling	directions	for	DTI)	rather	than	

DTI	being	an	inferior	technique	in	single	fiber	regions.	These	mean	angular	errors	are	slightly	

larger	than	simulation	[250]	and	phantom	[227]	studies	with	similar	imaging	conditions,	

emphasizing	the	importance	of	incorporating	the	complex	tissue	geometries	seen	in	vivo.	

Further,	the	in-plane	orientation	errors	agree	well	with	previous	2D	histological	validation	

studies	[132,	133],	which	were	only	able	to	capture	in-plane	orientation	estimates.		These	

results	verify	that	confocal	analysis	and	image	processing	are	able	to	extract	fiber	orientation	

distributions	in	3	dimensions	from	histological	data,	thus	serving	as	a	methodological	

benchmark.		

	 A	closer	look	at	these	regions	shows	that	the	underlying	geometry	may	be	more	

complex	than	an	idealized	single	fiber	bundle	where	all	fibers	are	assumed	to	be	running	

parallel	within	the	voxel.	For	example,	histology	(Figure	6.7)	depicts	a	spread	of	orientations	in	

the	form	of	fiber-fanning,	or	in	wave-like	undulations.	Recently,	there	has	been	interest	in	

characterizing	this	spread	by	using	dispersion	indices	in	order	to	infer	the	underlying	fiber	

geometry	[54,	206,	251].	While	the	CSD	and	DTI	methods	implemented	assume	axially	

symmetric	profiles,	3D	structure	tensor	analysis	is	well	suited	for	studying	the	axonal	angular	
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dispersion,	even	in	highly	organized	white	matter	tracts.	Thus,	the	methods	presented	in	this	

study	can	provide	a	valuable	resource	in	validation	of	this	challenging	inverse	problem.		

6.4.2	Crossing	Fibers	

	 Understanding	the	limitations	of	dMRI	in	crossing	fiber	regions	is	an	active	area	of	

research.	Here,	we	chose	to	analyze	our	data	using	a	spherical	deconvolution	model,	which	

aims	to	reconstruct	the	FOD	directly.	However,	there	are	a	variety	of	high	angular	resolution	

approaches	to	reconstruct	orientation	estimates	that	could	be	validated	against	histology,	

including,	but	not	limited	to,	Q-ball	Imaging	[35],	DSI	[24],	multi-tensor	[120]	or	ball-and-stick	

models	[61],	persistent	angular	structure	models	[40],	diffusion	orientation	transform	[38],	and	

the	CHARMED	model	[49].	While	this	study	does	not	present	a	full	validation,	it	is	important	to	

point	out	that	with	the	current	imaging	parameters	(SNR	~15,	sampling	directions	=	90,	b-value	

=	6400	s/mm2,	roughly	equivalent	attenuation	profile	as	an	in	vivo	value	of	~2000	s/mm2),	CSD	

was	not	able	to	consistently	resolve	fibers	crossing	at	angles	below	60°.	This	is	in	close	

agreement	with	simulations	[123]	which	found	a	success	rate	of	approximately	20%	for	

constrained	spherical	deconvolution	[45]	at	crossing	angles	below	60°	with	an	SNR	of	30,	b-

value	of	3000	s/mm2,	and	60	sampled	directions.	Additionally,	simulating	crossing	fibers	with	

equal	fiber	volume	fractions,	an	SNR	of	30,	and	a	b-value	of	1000	s/mm2		[252]	find	an	angular	

resolution	limit	using	CSD	of	54°.	

	 It	is	important	to	emphasize	that	we	do	not	want	to	draw	broader	conclusions	regarding	

this	reconstruction	method	without	larger	sample	sizes	and	an	optimized	acquisition	protocol	

that	would	be	appropriate	to	validate	this	(and	other)	models	and	parameters.		Thus,	future	

work	will	determine	the	relationship	between	the	MRI	signal	and	the	histological	FOD	as	a	

function	of	diffusion	model,	b-value,	number	of	diffusion	encoding	directions,	SNR,	and	scan	

time	equivalence.	Validation	using	structure	tensor	analysis	is	not	limited	to	CSD	methods,	and	

can	easily	be	applied	to	any	of	the	existing	techniques	for	modeling	orientation	functions	in	

order	to	test	the	limitations	of	these	techniques	or	to	determine	optimal	acquisition	

parameters.		
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6.4.3	Sensitivity	

	 Figure	6.3	shows	that	3D	structure	tensor	analysis	is	relatively	robust	to	the	resolution	

of	the	confocal	z-stack.	The	angular	error	closely	follows	intuition	–	the	higher	the	image	

resolution,	the	more	accurate	are	the	orientation	measurements.	The	final	choice	of	in-plane	

resolution,	0.18μm×0.18μm,	was	a	compromise	between	orientation	accuracy	and	scan	time.	A	

more	than	two-fold	reduction	in	resolution	from	0.08μm2	to	0.18μm2	leads	to	a	minimal	loss	of	

accuracy,	yet	allows	acquisition	of	a	field	of	view	greater	than	4	times	larger	in	a	given	scan	

time.	

	 We	found	our	technique	is	quite	sensitive	to	the	kernel	used	for	calculating	spatial	

derivatives.	While	this	step	can	be	performed	using	a	simple	finite	difference	kernel	(e.g.	

forward,	backward,	central		difference)	along	all	three	axes,	a	Gaussian	derivative	is	most	

commonly	used	as	a	regularization	step	to	improve	SNR	and	decrease	sensitivity	to	noise.	This	

also	makes	the	algorithm	sensitive	to	structures	that	correspond	to	the	size	of	the	Gaussian	

derivative.	This	explains	the	lower	angular	error	when	the	kernel	size	is	approximately	the	size	

of	the	myelinated	fibers,	which	are	the	objects	we	wish	to	detect	in	the	image.		

	 Finally,	the	structure	tensor	analysis	was	not	particularly	sensitive	to	the	averaging	

kernel	size.	This	kernel	serves	to	combine	all	orientation	information	in	a	local	neighborhood,	

which	leads	to	better	estimates	and	reduced	local	errors	in	orientation	estimates.	Any	low-pass	

filter	can	accomplish	this	smoothing	operation,	however,	if	two	distinct	orientations	exist	in	a	

neighborhood,	an	averaging	operation	could	lead	to	erroneous	estimates.	Thus,	we	chose	an	

averaging	kernel	large	enough	to	encompass	the	surfaces	normal	to	the	fiber,	but	small	enough	

to	resolve	fibers	interdigitating	on	scales	as	small	as	2.5μm.	

	 For	fiber	orientation	estimation	from	3D	data	using	structure	tensor	analysis,	we	advise	

acquiring	data	at	the	highest	resolution	that	time	permits.	We	recommend	calculating	the	

spatial	derivatives	using	a	filter	matched	to	the	size	of	the	structures	of	interest,	while	ensuring	

that	the	averaging	kernel	is	slightly	larger	than	the	structure	of	interest.	For	future	work,	an	

adaptive	approach	may	prove	fruitful.	Iterating	through	a	range	of	spatial	derivative	kernels	and	

keeping	the	estimate	that	maximizes	the	orientation	certainty	could	lead	to	more	accurate	

estimates	in	the	presence	of	a	distribution	of	fiber	diameters.		



	 127	

6.4.4	Data	Pre-Processing	

	 To	obtain	reliable	FODs	using	structure	tensor	analysis	we	found	it	necessary	to	perform	

4	corrections,	similar	to	those	found	in	Khan	et	al.,	2015	[136].	First,	image	intensity	variation	as	

a	function	of	depth	must	be	corrected	as	it	could	bias	orientation	estimates.	Existing	

corrections	include	dividing	each	slice	of	the	z-stack	by	the	mean	intensity	within	that	slice	

[136],	or	estimating	the	extinction	coefficient	of	light	in	the	tissue	[253]	and	correcting	each	

slice	using	this	decaying	exponential,	both	of	which	should	result	in	a	constant	intensity	profile.	

Here,	we	chose	to	increase	the	laser	power	as	a	function	of	tissue	depth.	However,	additional	

analysis	(not	shown)	indicates	that	all	three	methods	yield	similar	orientation	results.	Our	

current	implementation	was	chosen	to	ensure	that	all	slices	make	use	of	the	entire	8-bit	

intensity	range,	which	preserves	detail	as	well	as	SNR	as	a	function	of	depth.		Light	scattering	is	

one	of	the	major	limitations	of	the	current	technique,	as	it	limits	the	tissue	depth	that	can	

reasonably	be	imaged.	Optical	clearing	to	minimize	light	scattering	is	one	possible	solution,	and	

will	be	a	focus	of	future	work.		

	 The	second	pre-processing	step,	deconvolution,	is	necessary	because	PSF	anisotropy	will	

bias	orientation	estimates.	For	this,	Khan	et	al.,	2015	chose	to	measure	and	approximate	the	

PSF	with	an	anisotropic	3D	Gaussian	function,	then	blurred	their	image	in	the	xy	plane	to	create	

an	image	effectively	convolved	with	an	isotropic	PSF.	This	is	an	appropriate	approach	for	their	

analysis,	as	they	are	interested	in	answering	questions	regarding	a	single	dominant	orientation	

in	the	MR-voxel	rather	than	the	full	orientation	distribution.	However,	our	analysis	requires	the	

ability	to	distinguish	individual	fibers,	and	necessitates	deconvolution.	Using	the	same	data	

from	the	sensitivity	analysis,	we	performed	analysis	without	the	deconvolution	step	(but	all	

other	parameters	constant),	and	find	a	significant	bias	in	the	through	plane	direction,	with	an	

average	of	16°	angular	error	towards	the	A/P	direction,	or	towards	the	third	dimension	(data	

not	shown).	Interestingly,	the	in-plane	error	remained	minimal	(<4°).		

	 The	third	operation,	interpolation	to	isotropic	resolution,	is	necessary	(as	described	

before)	to	ensure	that	in-plane	and	through-plane	fibers	are	weighted	equally	in	the	final	

distribution.	The	final	correction	is	a	simple	geometric	correction	to	account	for	tissue	

shrinkage.	The	thickness	after	histological	processing	was	consistently	found	to	be	between	50	
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and	55um,	or	62-68%	of	the	thickness	of	the	original	section.	These	values,	again,	are	in	line	

with	those	obtained	from	Khan	et	al.,	2015,	where	similar	processing	and	staining	techniques	

were	used.		

6.5	Conclusion	

	 We	have	demonstrated	the	ability	of	structure	tensor	analysis	to	extract	the	3D	FOD	

from	confocal	microscopy	z-stacks	and	compared	these	to	FODs	calculated	via	constrained	

spherical	deconvolution	for	the	same	voxel	locations.	Agreement	is	good	(5-11	degrees)	for	

both	single	and	crossing	fibers,	except	when	the	crossing	angle	is	less	than	about	60	degrees.		

This	technique	represents	a	considerable	advancement	in	the	development	of	a	“gold	

standard”	for	validating	fiber	reconstruction	methods,	and	could	be	used	to	assess	and	improve	

the	various	“crossing	fiber”	algorithms	that	attempt	to	recover	the	FOD	or	ODF	on	a	voxel-wise	

scale.	Further,	by	extracting	features	such	as	the	spread	of	fiber	orientations	and	the	fractions	

of	fibers	in	each	direction,	these	methods	could	be	the	basis	of	detailed	studies	of	the	

relationship	between	the	diffusion	MRI	signal	and	the	underlying	tissue	microstructure.				
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CHAPTER 7: HISTOLOGICAL VALIDATION OF DIFFUSION MRI 

FIBER ORIENTATION DISTRIBUTIONS AND DISPERSION 

Prologue	

Using	the	methodology	developed	in	Chapter	6,	and	the	squirrel	monkey	MRI	data	from	

Chapter	4,	this	chapter	presents	a	full	validation	of	a	large	number	of	commonly	implemented		

algorithms	for	recovering	intra-voxel	fiber	structures	from	diffusion	MRI	data.	This	study	

represents	the	first	3D	histological	validation	of	diffusion	MRI	techniques,	and	the	first	

validation	to	quantitatively	compare	a	large	number	of	competing	algorithms	to	direct	

measurements	of	histologically-derived	axonal	orientations.		

Abstract		

Diffusion	magnetic	resonance	imaging	(dMRI)	is	widely	used	to	probe	tissue	microstructure,	

and	is	currently	the	only	non-invasive	way	to	measure	the	brain’s	fiber	architecture.	While	a	

large	number	of	approaches	to	recover	the	intra-voxel	fiber	structure	have	been	utilized	in	the	

scientific	community,	a	direct,	3D,	quantitative	validation	of	these	methods	against	relevant	

histological	fiber	geometries	is	lacking.	In	this	study,	we	investigate	how	well	different	high	

angular	resolution	diffusion	imaging	(HARDI)	models	and	reconstruction	methods	predict	the	

ground-truth	histologically	defined	fiber	orientation	distribution	(FOD),	as	well	as	investigate	

their	behavior	over	a	range	of	physical	and	experimental	conditions.	The	dMRI	methods	tested	

include	constrained	spherical	deconvolution	(CSD),	Q-ball	imaging	(QBI),	diffusion	orientation	

transform	(DOT),	persistent	angular	structure	(PAS),	and	neurite	orientation	dispersion	and	

density	imaging	(NODDI)	methods.	Evaluation	criteria	focus	on	overall	agreement	in	FOD	shape,	

correct	assessment	of	the	number	of	fiber	populations,	and	angular	accuracy	in	orientation.	In	

addition,	we	make	comparisons	of	the	histological	orientation	dispersion	with	the	fiber	spread	

determined	from	the	dMRI	methods.	As	a	general	result,	no	HARDI	method	outperformed	

others	in	all	quality	criteria,	with	many	showing	tradeoffs	in	reconstruction	accuracy.	All	

reconstruction	techniques	describe	the	overall	continuous	angular	structure	of	the	histological	

FOD	quite	well,	with	good	to	moderate	correlation	(median	angular	correlation	coefficient	>	
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0.70)	in	both	single-	and	multiple-fiber	voxels.	However,	no	method	is	consistently	successful	at	

extracting	discrete	measures	of	the	number	and	orientations	of	FOD	peaks.	The	major	

inaccuracies	of	all	techniques	tend	to	be	in	extracting	local	maxima	of	the	FOD,	resulting	in	

either	false	positive	or	false	negative	peaks.	Median	angular	errors	are	~10°	for	the	primary	

fiber	direction	and	~20°	for	the	secondary	fiber,	if	present.	For	most	methods,	these	results	did	

not	vary	strongly	over	a	wide	range	of	acquisition	parameters	(number	of	diffusion	weighting	

directions	and	b	value).	Regardless	of	acquisition	parameters,	all	methods	show	improved	

successes	at	resolving	multiple	fiber	compartments	in	a	voxel	when	fiber	populations	cross	at	

near-orthogonal	angles,	with	no	method	adequately	capturing	low	to	moderate	angle	(<60	

degrees)	crossing	fibers.	Finally,	most	methods	are	limited	in	their	ability	to	capture	orientation	

dispersion,	resulting	in	low	to	moderate,	yet	statistically	significant,	correlation	with	

histologically-derived	dispersion	with	both	HARDI	and	NODDI	methodologies.	Together,	these	

results	provide	quantitative	measures	of	the	reliability	and	limitations	of	dMRI	reconstruction	

methods	and	can	be	used	to	identify	relative	advantages	of	competing	approaches	as	well	as	

potential	strategies	for	improving	accuracy.	

7.1	Introduction	

	 Diffusion	magnetic	resonance	imaging	(dMRI)	has	proven	a	valuable	neuroscience	tool	

due	to	its	unique	ability	to	provide	information	about	tissue	composition,	microstructure,	and	

structural	connectivity	of	the	brain	non-invasively	[25,	254].	In	the	white	matter,	the	diffusion-

driven	displacements	of	water	molecules	are	hindered	by	the	organization	of	intra	and	extra-

cellular	tissue	components	[18],	making	it	possible	to	infer	the	distribution	of	neuronal	fiber	

orientations	in	each	voxel	from	a	set	of	diffusion	measurements,	an	object	often	referred	to	as	

the	fiber	orientation	distribution	(FOD).	Fiber	tractography	can	then	be	performed	by	following	

these	fiber	orientation	estimates	from	voxel	to	voxel	throughout	the	brain	in	order	to	

reconstruct	the	structural	connections	between	different	brain	areas	[8,	55].			

	 There	are	a	number	of	assumptions	and	uncertainties	that	can	affect	the	ability	of	fiber	

tractography	to	faithfully	represent	the	true	axonal	connections	of	the	brain.	The	most	obvious	

potential	source	of	error	is	in	the	inference	of	fiber	orientation	in	each	MRI	voxel	[32,	255].	The	

challenge	here	lies	in	the	fact	that	axons	have	diameters	in	the	micron	range,	while	a	typical	
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MRI	voxel	can	be	on	the	order	of	millimeters	and	contain	hundreds	of	thousands	of	axons	[104,	

256]	with	a	wide	range	of	possible	configurations,	which	makes	the	mapping	from	diffusion	

signal	to	axon	orientation	an	ill-posed	problem	(where	many	patterns	are	likely	to	give	rise	to	

the	same	MRI	measurement).	In	addition,	the	choice	of	dMRI	reconstruction	method	in	

combination	with	experimental	conditions,	including	the	number	of	diffusion	weighted	images	

(DWIs)	and	the	amount	of	diffusion	weighting	(the	“b-value”),	are	expected	to	result	in	

different	inferences	of	the	fiber	geometry	in	each	voxel.	Because	these	estimates	of	fiber	

orientation	form	the	input	to	nearly	all	fiber	tracking	algorithms,	it	is	critical	that	the	validity	of	

experimentally	estimated	orientation	information	be	checked	and	quantified	against	the	true	

physical	geometry	of	fibers	under	investigation.	

	 Diffusion	tensor	imaging	(DTI),	the	first	reconstruction	method	to	allow	mapping	of	fiber	

orientations	throughout	the	brain,	models	diffusion	as	a	3D	Gaussian	distribution	[225].	While	

the	fiber	orientation	estimates	from	DTI	have	been	validated	in	large	coherent	fiber	bundles,	a	

significant	limitation	of	DTI	is	that	it	cannot	adequately	capture	the	underlying	structure	in	

voxels	containing	complex	white	matter	architectures	or	multiple	fiber	populations.	This	

“crossing	fiber”	problem	has	motivated	the	development	of	a	large	number	of	reconstruction	

methods	which	aim	to	resolve	multiple	fiber	orientations	and	recover	complex	fiber	

configurations	[24,	35-41,	43-45,	49].	These	algorithms,	typically	referred	to	as	high	angular	

resolution	diffusion	imaging	(HARDI)	methods,	differ	in	a	number	of	aspects,	including	

acquisition	requirements,	fundamental	assumptions	on	diffusion	processes,	and	the	

representation	of	orientation	information.	Some	techniques	estimate	the	FOD	directly,	whereas	

others	estimate	a	diffusion	orientation	distribution	function	(dODF)	describing	the	probability	

of	diffusion	in	a	given	direction,	with	the	assumption	that	fiber	orientations	coincide	with	the	

peaks	of	the	dODF.	Finally,	while	some	reconstruction	methods	do	not	explicitly	model	diffusion	

in	white	matter,	others	model	distinct	tissue	compartments	and	fiber	populations	separately.	

For	example,	a	common	compartmental	model,	termed	NODDI	(neurite	orientation	dispersion	

and	density	imaging)	[54],	utilizes	a	fiber	orientation	dispersion	index	(ODI)	to	characterize	the	

geometrical	angular	variation	of	the	fiber	populations.	Similarly,	measures	of	dispersion	can	be	

extracted	from	the	FOD	and	ODF	directly	[257-259]	as	a	way	to	characterize	the	fiber	geometry	
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in	a	voxel.	Due	to	the	large	number	of	reconstruction	methods,	and	differences	among	them,	a	

direct	validation	and	comparison	among	techniques	remains	very	difficult.		

	 The	validation	method	of	choice	for	most	reconstruction	algorithms	[36-38,	45,	120,	

260],	or	comparison	of	algorithms	[6,	123],	is	through	numerical	simulations.	Simulations	offer	

the	versatility	of	assessing	performance	across	a	broad	range	of	physical	and	experimental	

conditions.	However,	they	rely	on	assumptions	and	approximations	to	generate	the	modeled	

dMRI	signal	that	are	likely	to	be	over-simplifications	of	complex	biological	tissue.	Physical	

phantoms	add	additional	complexity	and	realism	to	the	validation	process	by	incorporating	

practical	effects	of	image	acquisition.	Yet,	these	synthetic	fiber-based	[117,	129]	and	capillary-

based	[125,	227]	phantoms	can	still	fail	to	replicate	the	biological	characteristics	of	brain	tissue,	

including	membrane	permeability,	axon	diameters,	and	the	geometric	complexity	of	the	central	

nervous	system.	Finally,	validation	of	orientation	information	has	been	performed	by	

comparisons	with	the	results	of	histological	analysis	[132,	133,	135,	261].	While	offering	

exquisite	detail	of	the	tissue	microstructure,	these	studies	have	been	limited	to	two-

dimensional	analysis	of	tissue	sections,	restricting	investigation	to	only	those	fibers	oriented	

parallel	to	the	plane	of	sectioning.	Recently,	several	groups	have	explored	the	use	of	confocal	

microscopy	[115,	199],	optical	coherence	tomography	[137],	and	polarized	light	imaging	[138,	

262]	as	a	means	of	extracting	the	3D	histological	FOD	for	direct	comparison	with	dMRI.	Despite	

these	advances,	most	histological	validation	studies	have	studied	only	a	few	axonal	tracts	or	

MRI	voxels,	and	none	have	investigated	the	performance	of	multiple	reconstruction	algorithms,	

nor	studied	the	effect	of	varying	acquisition	parameters	on	their	performance.	

	 Thus,	there	is	a	need	to	characterize	the	distribution	of	neuronal	fibers	in	3D	using	

histology	and	make	direct	comparisons	to	the	corresponding	dMRI	estimated	orientation	

distributions.	With	this	in	mind,	the	aim	of	this	study	is	to	determine	how	well	different	dMRI	

models	and	reconstruction	methods	predict	the	ground	truth	FODs,	as	well	as	investigate	the	

effect	of	fiber	geometry,	b-value,	and	number	of	gradient	directions	on	the	accuracy	of	the	

reconstruction	methods.	This	is	done	by	extracting	the	ground	truth	FOD	from	3D	confocal	data	

of	ex	vivo	tissue	followed	by	spatial	registration	of	the	dMRI	data	to	the	z-stacks	to	facilitate	

comparisons	of	the	same	tissue	volume.	The	results	of	this	study	are	measures	of	reliability	and	
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accuracy	of	competing	intra-voxel	fiber	reconstruction	methods,	as	well	as	highlights	of	the	

relative	merits	and	limitations	of	state-of-the-art	techniques	for	analysis	of	dMRI	data.						

7.2	Methods	

7.2.1	MRI	acquisition	

	 MRI	acquisition	was	performed	on	three	adult	squirrel	monkey	brains,	and	implemented	

as	described	in	the	squirrel	monkey	atlas,	Section		

4.2.2	MRI	Methods	(Ex	Vivo	Imaging,	subjects	#4-6).	Briefly,	diffusion	data	were	acquired	on	a	

Varian	9.4T	magnet	with	a	3D	spin-echo	diffusion-weighted	EPI	sequence	at	300um	isotropic	

resolution,	with	101	uniformly	distributed	diffusion	gradient	directions,	and	the	b-value	set	to	

6,000	s/mm2.	

	 In	order	to	assess	the	effects	of	diffusion	weighting	on	reconstruction	accuracy,	the	full		

diffusion	acquisition	was	repeated	with	b-values	of	3,000,	9,000,	and	12,000	s/mm2,	while	

keeping	all	other	acquisition	parameters	(including	diffusion	times)	constant.		

7.2.2	Histological	Procedures	

	 Here,	we	aim	to	extract	the	histological	FOD	from	3D	confocal	z-stacks	in	areas	

equivalent	to	the	size	of	an	MRI	voxel	[199].	To	do	this,	we	utilized	an	image	processing	

technique,	structure	tensor	analysis	[212],	which	results	in	an	orientation	estimate	for	every	

pixel	in	the	3D	z-stack	that	is	occupied	by	a	fiber.	All	histological	procedures	are	performed	as	

described	in	Section	6.2	Materials	and	Methods,	and	shown	in	Figure	7.1	for	convenience.	This	

includes	block-face	photographs,	tissue	sectioning	and	staining,	and	both	2D	and	3D	confocal	

acquisition	(Figure	7.1,	A,	B).	Similarly,	confocal	pre-processing	(correcting	for	inherent	sources	

of	anisotropy),	structure	tensor	analysis,	and	image	thresholding	(Figure	7.1,	C)	are	performed	

as	described	in	Chapter	6.	Finally,	the	histological	FOD	is	then	computed	as	the	histogram	of	the	

extracted	fiber	orientations,	and	fit	to	high	order	spherical	harmonic	(SH)	coefficients	(Figure	

7.1,	E).	Throughout	this	chapter,	the	FODs	are	displayed	as	3D	glyphs	(Figure	7.1,	F)	in	the	same	

way	that	the	MRI-FOD’s	are	typically	displayed	in	literature.	

	 Four	slices	were	randomly	selected	for	each	monkey	(12	total	slices)	for	confocal	

imaging.	For	each	slice,	multiple	regions	of	interest	were	chosen	to	image	(using	the	above	
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protocol)	in	order	to	capture	both	voxels	with	coherent	single	fiber	populations,	as	well	as	

expected	regions	of	crossing	fibers.	This	was	done	using	prior	anatomical	knowledge	of	squirrel	

monkey	white	matter	bundles.	For	crossing	fiber	regions,	sampling	was	continued	until	a	

sample	size	of	at	least	N>10	was	collected	for	each	histogram	bin	of	crossing	angles,	ranging	

from	<30°	to	90°,	with	a	bin	width	of	10°.	
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Figure	7.1	Histological	procedures	and	image	registration.	Confocal	acquisition	includes	a	2D	low-resolution	montage	(A)	and	a	
high-resolution	3D	z-stack	(B).	Image	pre-processing	(C)	comprises	light	scatter	and	absorption	correction,	deconvolution,	and	
interpolation,	followed	by	structure	tensor	analysis.	This	is	followed	by	geometric	correction	for	tissue	shrinkage	and	
thresholding	fibers.	This	results	in	an	orientation	estimate	for	every	pixel	in	the	z-stack	occupied	by	a	fiber,	here	shown	as	an	
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RGB	color	map	(D)	where	red,	green,	and	blue	represent	fiber	oriented	right/left,	anterior/posterior,	and	superior/inferior.	
Zooming	in	on	the	center	voxel	shows	crossing	fibers	oriented	primarily	left/right	and	superior/inferior.	Fitting	the	orientation	
distribution	to	spherical	harmonic	coefficients	(E)	results	in	the	histologically	defined	ground	truth	FODs,	displayed	as	3D	glyphs	
(F).	The	registration	procedure	involves	2D	registration	of	the	2D	confocal	montage	(G)	to	the	corresponding	frozen	tissue	block	
(H)	and	subsequent	3D	registration	to	the	non-diffusion	weighted	image	(I).	From	this,	the	signal	corresponding	to	the	high-
resolution	z-stack	can	be	determined	and	processed	using	a	chosen	reconstruction	method	for	direct	voxel-wise	comparison	of	
histology	and	dMRI.		

7.2.4	Image	Registration	

	 In	order	to	make	quantitative	comparisons	of	the	histological	FODs	with	estimates	

derived	from	MRI,	the	data	must	be	aligned	and	oriented	appropriately.	The	multi-step	

registration	procedure	used	to	align	histology	to	MRI	data	is	described	in	detail	in	Section	6.2.7	

Image	Registration.	Briefly,	the	registration	included	both	2D	linear	and	nonlinear	registration	

of	the	confocal	montage	(Figure	7.1,	G)	to	the	corresponding	block-face	image	(Figure	7.1,	H),	

followed	by	3D	linear	and	nonlinear	registration	of	the	block	stack	to	the	MRI	volume	(Figure	

7.1,	I).	Given	the	location	of	the	3D	z-stack	in	the	2D	confocal	montage,	we	can	use	the	

combined	deformation	fields	to	determine	the	MRI	signal	from	the	same	tissue	volume.	The	

MRI	signal	of	interest	is	analyzed	in	MRI	native	space	using	the	chosen	reconstruction	method	

(Figure	7.1,	I),	and	transformed	to	histological	space	in	order	to	facilitate	comparisons	with	the	

histological	FOD.		

7.2.5	MRI	Reconstruction	Methods	

	 The	reconstruction	models	implemented	in	this	study	include	DTI,	Q-ball	imaging	(QBIr:	

regularized;		QBIcsa:	constant	solid	angle),	diffusion	orientation	transform	(DOT	and	DOTr1),	

constrained	spherical	deconvolution	(Richardson-Lucy	regularization:	CSDlrd;	super-resolved:	

sCSD),	and	persistent	angular	structure	(PAS).	In	addition,	the	biophysical	model,	NODDI,	is	also	

investigated.	Detailed	descriptions	of	each	method	are	given	in	Section	2.4.3	HARDI	models	and	

Section	2.4.4	Biophysical	models.	Again,	the	focus	is	on	those	that	attempt	to	describe	the	

underlying	fiber	orientation	information.	Because	of	the	large	number	of	these	techniques	

proposed	in	the	literature,	the	assessment	presented	in	this	work	is	not	exhaustive,	yet	

comprises	some	of	the	more	commonly	implemented	reconstruction	techniques.	All	MRI	

techniques	resulting	in	a	function	over	a	sphere	are	represented	as	SH	series,	where	the	SH	

order	is	determined	by	the	number	of	DWI’s	utilized	in	calculation,	up	to	a	maximum	of	order	8	

[263].	All	reconstruction	algorithms	are	implemented	using	the	Matlab	HARDI	Toolbox	(freely	
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available	at	NeuroImageN.es),	Camino	Diffusion	MRI	Toolbox	[264],	and	MRtrix3	software		

[186],	with	default	reconstruction	parameters.		

7.2.6	Orientation	and	Fiber	Geometry	Measures	

	 For	each	histological	FOD,	and	all	MRI	reconstructions	(FOD,	ODF,	etc.),	a	number	of	

measures	were	extracted.	First,	a	peak	finding	algorithm	[43,	210]	was	used	to	identify	distinct	

fiber	populations,	and	the	orientations	of	each.	In	order	to	avoid	including	small	peaks	

introduced	by	noise	[210],	only	peaks	whose	values	are	larger	than	a	threshold	percentage	of	

the	largest	FOD/ODF	value	are	counted	(this	threshold	is	often	heuristically	chosen	–	we	have	

chosen	0.2	in	this	study,	a	value	commonly	seen	in	literature	[123]).	In	this	study,	voxels	where	

the	histological	FOD	contains	>1	local	maxima	(>1	peaks,	counting	peaks	at	𝑟	and	-𝑟	as	one)	are	

considered	“crossing	fiber”	voxels	while	those	with	a	single	maximum	are	considered	“single	

fiber”	voxels.	In	the	case	of	crossing	fibers,	we	also	calculate	the	intra-voxel	crossing	angle	as	

the	angular	difference	between	the	two	peaks	(i.e.	fiber	populations).	The	same	peak	finding	

procedures	and	fiber	classification	schemes	are	applied	to	both	histological	and	MRI	FODs	(or	

ODFs).	These	procedures	resulted	in	a	sample	size	of	383	histologically	defined	single	fiber	

voxels,	and	181	crossing	fiber	geometries.		

	 Next,	measures	of	orientation	dispersion	were	determined	for	each	peak.	The	ODI	is	

calculated	by	fitting	a	Watson	(or	a	multi-Watson,	if	>1	peak)	distribution	directly	to	the	SH	

representation	of	the	function	[257]	(note	that	for	the	NODDI	model	the	ODI	is	estimated	as	

part	of	the	model-fitting	procedure).	The	Watson	distribution,	a	spherical	analogue	of	the	

Gaussian	distribution,	is	described	by	two	parameters,	the	mean	orientation	(or	peak	

orientation),	and	a	concentration	parameter,	k.	As	in	the	NODDI	model	[54],	k	is	mapped	to	the	

ODI:	

The	ODI	ranges	from	1	for	isotropic	distributions,	to	0	for	perfectly	parallel	fibers.		

7.2.7	Evaluation	Criteria	

	 To	assess	the	quality	and	accuracy	of	the	reconstructions,	we	have	implemented	a	

variety	of	metrics	that	focus	on	[A]	overall	agreement	in	shape	of	the	histological	FOD	and	dMRI	

	 𝑂𝐷𝐼 = 	
2
𝜋 𝑎𝑟𝑐𝑡𝑎𝑛

1
k
		 (27)	
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spherical	function,	[B]	correct	assessment	of	the	number	of	fiber	populations	in	each	voxel,	[C]	

angular	error	in	orientation	estimation,	and	[E]	correlation	between	histological	and	MRI	

measures	of	dispersion	or	fiber	spread.		

	 In	order	to	evaluate	agreement	in	overall	shape	with	the	histological	FOD,	we	

implemented	the	angular	correlation	coefficient	(ACC)	and	the	Jensen-Shannon	divergence	

(JSD)	(See	Appendix	7.A	for	mathematical	descriptions).	The	ACC,	like	the	linear	correlation	

coefficient,	measures	the	degree	to	which	two	functions	over	a	sphere	are	correlated	and	can	

be	calculated	directly	from	the	spherical	harmonic	coefficients	of	the	two	functions	[41].	The	

JSD	measures	the	distance	between	two	probability	distributions	(in	this	case,	over	a	sphere)	

and	has	been	used	in	the	dMRI	literature	to	compare	ODFs	from	different	reconstruction	

methods	[265],	and	to	quantify	reproducibility	of	dMRI	algorithms	[266,	267].	The	JSD	is	

bounded	between	0	and	1,	where	lower	values	indicate	greater	similarity	of	distributions.		

	 To	assess	the	estimation	of	the	number	of	fiber	populations,	we	employ	the	commonly	

used	success	rate	(SR)	[123]	and	consistency	fraction	(CF)	[6].	Here,	a	reconstruction	algorithm	

is	a	“success”	if	it	successfully	detects	all	peaks	identified	with	histology,	within	a	given	angular	

tolerance	(in	this	study,	25°).	A	value	of	20°	has	been	previously	employed	in	simulation	studies	

[123];	our	tolerance	includes	this	20°	plus	an	additional	uncertainty	of	~5°	expected	due	to	the	

registration	and	pre-processing	steps	[199].	A	voxel	is	then	consistent	if	it	successfully	detects	

all	histological	peaks	within	a	given	angular	tolerance	(25°)	AND	if	the	number	of	estimated	

peaks	equals	the	number	of	peaks	identified	in	histology.	In	both	cases,	a	1-to-1	

correspondence	is	established	between	peaks	in	histology	and	dMRI,	meaning	that	2	

histological	peaks	cannot	be	“successfully”	identified	by	the	same	MRI	peak,	even	if	it	happens	

to	be	within	the	given	angular	tolerance	from	both	peaks.	To	understand	reasons	for	non-

successful	or	non-consistent	voxels,	we	also	calculated	the	number	of	false	positive	(FP)	and	

number	of	false	negative	(FN)	peaks	identified	with	the	given	reconstruction	method.	The	

number	of	FP	peaks	in	a	voxel	is	the	number	of	peaks	in	MRI	that	do	not	have	a	corresponding	

peak	in	histology	(within	an	angular	tolerance).	The	number	of	FN	peaks	is	the	number	of	

histological	peaks	that	do	not	have	a	corresponding	peak	in	MRI	(within	an	angular	tolerance).		
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	 The	angular	accuracy	of	orientation	estimation	is	measured	as	the	error	(in	degrees)	

between	the	estimated	fiber	directions	and	the	histological	FOD	peaks,	again	ensuring	a	1-to-1	

mapping	between	histological	and	MRI	peaks.	The	angular	error	is	calculated	separately	(i.e.	

not	averaged	over	a	voxel)	for	the	primary,	and	(if	it	exists)	the	secondary	fiber	orientations	in	a	

voxel.		

	 Finally,	to	compare	estimates	of	white	matter	dispersion	from	diffusion	MRI	to	the	true	

histological	fiber	dispersion,	simple	linear	correlation	coefficients	were	utilized.		

	 We	begin	by	implementing	the	above	metrics	in	order	to	assess	the	effects	of	fiber	

geometry	on	reconstruction	accuracy.	Specifically,	we	first	computed	metrics	in	single	fiber	and	

crossing	fiber	regions	for	all	methods.	To	further	elucidate	limitations	in	crossing	fiber	regions,	

we	assess	the	quality	metrics	as	a	function	of	the	intra-voxel	crossing	angle.	We	then	

investigate	the	effects	of	fiber	dispersion	on	angular	error	and	MRI	ODI	estimates.	Next,	we	

examine	the	effects	of	the	number	of	DWIs	acquired	on	reconstruction	accuracy.	To	do	this,	the	

full	100	gradient	directions	were	re-ordered	to	minimize	the	electrostatic	potential	energy	of	

any	partial	set	of	“N”	directions,	ensuring	that	these	“N”	directions	are	maximally	uniformly	

distributed	[268].	From	this,	subsets	of	DWIs	from	20	to	100	directions	(in	increments	of	4)	

were	created	and	quality	assessed	using	the	above	metrics.	Finally,	we	end	by	investigating	the	

effects	of	b-value	on	accuracy	and	quality	of	reconstruction.		

7.3	Results	

7.3.1	Effects	of	Fiber	Geometry	on	Reconstruction	Accuracy	

Qualitative	Results	

	 Representative	confocal	data	are	shown	in	Figure	7.2	for	a	single	fiber	region	(A),	and	a	

crossing	fiber	region	(B)	that	contains	two	local	maxima	in	the	histologically	defined	FOD.		The	

2D	confocal	montage	highlights	where	the	3D	z-stack	was	acquired.	A	zoomed-in	view	of	the	

middle	voxel-equivalent	(Figure	7.2,	middle	column)	shows	the	high-resolution	of	the	confocal	

data,	in	which	individual	myelinated	axons	are	discernable.	The	results	from	structure	tensor	

analysis	are	shown	as	color-coded	maps	(Figure	7.2,	right	column)	where	each	axon	contributes	

to	the	voxel-wise	FOD,	overlaid	on	the	image	as	a	3D	glyph.	The	single	fiber	region	(Figure	7.2,	
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A)	is	composed	of	fibers	coherently	oriented	in	the	left/right	direction,	while	the	crossing	fiber	

region	(Figure	7.2,	B)	is	predominantly	composed	of	fibers	oriented	left/right	with	a	smaller	

volume	fraction	oriented	superior/inferior	and	slightly	through-plane.		

	
Figure	7.2	Qualitative	confocal	images.	Representative	confocal	data	(of	a	single	slice)	are	shown	for	single	(A)	and	crossing	(B)	
fiber	regions.	Overview	images	highlight	location	of	full	3D	z-stacks	(shown	as	a	single,	middle	slice).	A	zoomed	region	of	
interest	in	the	middle	of	the	z-stack	(equivalent	in	size	to	an	MRI	voxel)	are	shown	in	the	middle	column.	Results	from	structure	
tensor	analysis	are	shown	as	color-coded	images	(with	colors	scheme	as	described	in	Figure	7.1),	with	the	histologically-defined	
FOD	overlaid	as	3D	glyphs	(right).	

	 Histological	3D	FODs	derived	from	ST	analysis	are	shown	as	glyphs	overlaid	on	histology	

in	Figure	7.3,	displaying	two	regions	containing	crossing	fibers	(left	and	middle	columns)	and	a	

single	fiber	region	(right	column).	This	highlights	the	ability	of	our	histological	procedures	to	

resolve	fibers	crossing	within	a	voxel	where	both	fibers	are	in-plane	(left),	as	well	as	the	ability	

to	detect	bundles	of	fibers	crossing	in	a	plane	orthogonal	to	confocal	acquisition	(middle).	In	
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addition,	the	results	from	all	eight	reconstruction	methods	are	displayed	below	the	

corresponding	histological	FOD.		All	methods	(except	DTI)	demonstrate	some	ability	to	resolve	

the	crossing	fibers	in	generally	the	same	orientations	as	revealed	by	the	histological	FOD.	

However,	differences	between	dMRI	methods	are	apparent,	particularly	in	the	sharpness	and	

number	of	peaks.	For	example,	at	the	two	extremes,	QBIr	results	in	a	smoother	function	over	a	

sphere	than	PAS,	which	results	in	distinct,	sharp	peaks.	Similarly,	in	the	single	fiber	region,	all	

methods	show	qualitative	agreement	with	histology	in	fiber	orientation,	with	the	only	

differences	being	overall	lobe	width	(or	dispersion),	and	sometimes	small	spurious	peaks	(most	

readily	apparent	in	PAS	and	DOT).		
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Figure	7.3	Effects	of	fiber	geometry	on	reconstruction	accuracy	-	qualitative	results.	Histological	FODs	are	shown	overlaid	on	
confocal	images	for	three	z-stacks.	Z-stack	locations	are	shown	as	yellow	boxes	overlaid	on	2D	confocal	montages	(top).	The	
voxels	represent	typical	crossing	fibers	(left),	fibers	crossing	both	in-plane	and	through-plane	(middle),	and	a	typical	single	fiber	
regions	(right).	MRI	data	was	analyzed	at	corresponding	locations,	and	glyphs	for	all	eight	reconstruction	methods	are	shown	
below	each	histological	slice.	Note	that	DTI	results	are	displayed	as	the	ADC	profile.	
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Single	Fiber	and	Crossing	Fiber	Regions	

	 Quantitative	comparisons	between	reconstruction	methods	for	voxels	containing	single	

fiber	geometries	(N=383)	and	those	containing	crossing	fiber	geometries	(N=181)	are	shown	in	

Figure	7.4.	All	methods	indicate	good	to	moderate	overall	angular	agreement	with	the	

histological	FOD	in	single	fiber	regions,	showing	similar	ACC	results	with	median	values	between	

0.73	and	0.80	for	all	methods.	The	one	exception	is	PAS	with	a	lower	median	ACC	of	0.56	

(Figure	7.4,	A).	The	two	methods	with	the	highest	ACC	are	those	that	estimate	the	FOD	directly,	

sCSD	and	CSDlrd.	Similarly,	most	methods	show	low	JSD	of	<0.05,	with	the	largest	deviations	

occurring	for	PAS,	DOT,	and	sCSD,	respectively.	The	performance	of	each	method	with	respect	

to	estimation	of	the	number	of	fiber	populations	in	single	fiber	regions	(Figure	7.4,	C)	shows	

that	most	methods	consistently	estimate	a	single	peak.	However,	QBIcsa,	DOT,	and	PAS	

consistently	show	the	presence	of	FP	peaks,	with	an	average	of	~2	peaks	in	these	single	fiber	

regions.	The	ability	of	all	methods	to	successfully	identify	the	single	peak	remains	high	(SR>93%	

for	HARDI	models)	for	all	methods	(including	DTI)	(Figure	7.4,	D),	however,	the	CF	varies	

dramatically	across	models	(Figure	7.4,	E).	For	example,	PAS,	QBIcsa,	and	DOT	have	low	CF,	

largely	due	to	the	prevalence	of	false	positive	peaks.	Finally,	the	angular	error	in	single	fiber	

regions	is	remarkably	consistent	across	all	methods,	with	a	median	value	of	~10°	(Figure	7.4,	F).	
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Figure	7.4	Effects	of	fiber	geometry	on	reconstruction	accuracy	in	single	fiber	and	crossing	fiber	regions.	Quality	metrics	
describing	overall	agreement	with	the	histological	FOD	(ACC:	angular	correlation	coefficient,	JSD:	Jensen-Shannon	Divergence),	
correct	assessment	of	number	of	peaks	(FP:	false	positive,	FN:	false	negative,	SR:	success	rate,	CF:	consistency	fraction),	and	
orientation	accuracy	(angular	error),	are	shown	for	all	HARDI	methods,	and	DTI	where	appropriate.	

	 The	quantitative	metrics	show	similar	trends	in	crossing	fiber	regions	(Figure	7.4,	G-N).	

The	ACC	is	decreased	slightly	compared	to	that	in	single	fiber	regions	(Figure	7.4,	G)	with	a	

median	ACC	between	0.7	and	0.76	for	all	methods	except	DOT	and	PAS,	which	indicate	a	lower	

overall	angular	correlation	with	the	ground	truth	FOD.	Similarly,	the	JSD	remains	low	for	all	

methods,	with	the	largest	deviations	occurring	for	PAS,	DOT,	and	sCSD,	respectively	(Figure	7.4,	

H).	In	these	regions,	QBIcsa,	DOT	and	PAS	still	contain	a	large	number	of	FP	peaks	(Figure	7.4,	I),	

while	QBIr	and	DOTr1	show	the	largest	prevalence	of	FN	peaks	(Figure	7.4,	J),	indicating	the	
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lowest	ability	to	resolve	crossing	fibers.	These	two	methods	also	show	the	lowest	SR	(Figure	7.4,	

K)	with	all	other	methods	able	to	resolve	the	multiple	fiber	populations	>50%	of	the	time.	

However,	all	methods	have	low	CF	in	crossing	fiber	regions	(Figure	7.4,	L),	due	to	the	frequency	

of	FP	and	FN	peaks.	The	median	angular	error	of	the	primary	peak	(defined	by	histology)	is	

consistently	between	11-13°,	a	value	slightly	higher	than	that	in	single	fiber	regions.	The	

exception	to	this	is	DTI	(median	value	of	18°),	which	is	unable	to	resolve	multiple	fiber	

populations,	and	the	primary	orientation	is	expected	to	lie	somewhere	between	the	two	

dominant	peaks.	The	angular	error	of	the	non-dominant	peaks	is	larger	still,	with	a	median	

value	between	16°	and	20°	for	all	HARDI	methods	(we	note	that	if	a	given	reconstruction	

method	did	not	contain	multiple	peaks,	its	lone	peak	is	included	only	in	one	of	the	angular	

metrics,	the	one	giving	the	lowest	error).		

	

Crossing	Angle	

	 To	assess	under	which	geometrical	conditions	these	methods	succeed/fail	in	crossing	

fiber	regions,	we	re-examine	the	quality	metrics	as	a	function	of	fiber	crossing	angle	(Figure	

7.5).	First,	voxels	were	grouped	by	crossing	angle	and	placed	into	bins	with	a	width	of	10°,	

ranging	from	those	with	intra-fiber	angle	<30°	to	a	maximum	angle	of	80-90°.	Each	bin	had	a	

sample	size	of	10	or	greater	(Figure	7.5,	J).		

	 	Crossing	angle	has	very	little	effect	on	ACC	(Figure	7.5,	A)	and	JSD	(Figure	7.5,	B)	

measures,	although	a	slight	increase	in	ACC	with	increasing	angle	is	noticeable	for	PAS,	QBIcsa,	

DOT,	and	sCSD.	For	all	methods,	the	number	of	FP	peaks	is	dramatically	reduced	as	fibers	cross	

at	more	orthogonal	angles	(Figure	7.5,	C),	with	a	similar	reduction	in	FN	peaks	for	QBIcsa,	DOT,	

CSDlrd,	sCSD,	and	PAS	at	larger	angles	(Figure	7.5,	D).	The	reduction	in	both	FP	and	FN	peaks	

leads	to	a	significant	increase	in	SR	(Figure	7.5,	E)	and	CF	(Figure	7.5,	F)	for	all	methods.	In	fact,	

QBIcsa,	DOT,	CSDlrd,	sCSD,	and	PAS	are	able	to	successfully	resolve	nearly	all	peaks	(SR	near	1)	

at	angle	>80°.	Besides	angles	<40°,	the	angular	error	for	both	primary	(Figure	7.5,	G)	and	

secondary	(Figure	7.5,	H)	fiber	orientation	is	not	dramatically	affected	by	crossing	angle.	The	

increased	angular	error	at	small	crossing	angles	is	likely	caused	by	reconstruction	methods	

resolving	multiple	fiber	populations,	with	only	one	accurately	corresponding	to	one	of	the	two	
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histological	peaks,	and	the	other	being	a	spurious	peak	and	contributing	to	a	larger	error,	or	the	

dMRI	finding	only	one	peak	with	a	primary	orientation	somewhere	between	the	two	true	

peaks.	

	 Finally,	Figure	7.5,I	shows	boxplots	of	the	MRI-resolved	angles	(if	the	given	

reconstruction	method	was	able	to	resolve	multiple	fiber	populations)	versus	the	histologically	

defined	crossing	angle.	The	shaded	box	highlights	where	the	range	of	crossing	angles	should	be	

if	there	was	a	perfect	match	in	each	histological	angular	bin.	First,	many	methods	do	not	show	

boxplots	(or	only	have	a	single	data	point)	in	voxels	with	low	crossing	angles	(in	agreement	with	

the	low	SR	with	these	fiber	geometries).	Second,	it	is	obvious	that	nearly	all	methods	over-

estimate	the	intra-voxel	crossing	angle.	This	effect	is	most	noticeable	in	the	40-50°	and	50-60°	

range.	With	very	few	exceptions,	the	MRI	reconstruction	methods	consistently	resolve	fibers	

crossing	at	a	more	orthogonal	angle	than	is	suggested	by	the	histological	FOD.		
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Figure	7.5	Effects	of	crossing	angle	on	reconstruction	accuracy	in	crossing	fiber	regions.	Quality	metrics	(A-H)	are	evaluated	for	
all	reconstruction	methods	as	a	function	of	histologically	defined	crossing	angle,	grouped	into	bins	with	widths	of	10°.	In	
addition,	MRI-resolved	crossing	angle	is	compared	to	that	from	histology	(I),	and	sample	sizes	for	each	angular	bin	(J)	are	
shown.	Reconstruction	methods	are	designated	by	color.	

Fiber	Dispersion	

	 We	next	examine	the	effect	of	fiber	orientation	dispersion	on	accuracy	of	MRI	

reconstruction	methods.	Histological	analysis	revealed	a	range	of	dispersion	in	the	confocal	z-

stacks.	Figure	7.6	provides	a	qualitative	reference	for	the	dispersion	values	investigated	in	this	

study,	visualized	as	both	3D	glyphs	as	well	as	surface	distributions	over	a	sphere.	The	ODI	

ranges	from	very	highly	aligned	bundles	with	a	low	ODI	(0.02-0.03,	corresponding	to	a	fiber	

spread	of	~7-9°),	to	ODI	more	typical	of	WM	voxels	(0.08-0.13,	a	fiber	spread	of	~17-19°),	to	

ODI	>	0.40	(a	fiber	spread	>37°).		
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Figure	7.6	Histological	dispersion	in	the	brain	WM.	A	range	of	fiber	orientation	dispersion	is	shown,	ranging	from	low	ODI	(left)	
to	high	ODI	(right).	Dispersion	is	visualized	with	3D	glyphs	as	well	as	orientation	distributions	on	a	sphere	(for	the	center	voxel	
of	each	stack).	We	note	that	ODI	values	between	0.08-0.13	are	most	typical	of	WM	encountered	in	this	study	(in	voxels	
containing	single	fiber	populations).	

	 We	begin	by	examining	the	relationship	between	fiber	dispersion	derived	from	the	3D	

histological	FOD	(in	single	fiber	regions	only)	and	those	derived	from	MRI	reconstruction	

methods,	as	well	as	the	relationship	between	dispersion	and	accuracy	of	fiber	orientation	

estimates.	(Figure	7.7).	Plots	of	histological	ODI	versus	orientation	error	indicate	a	low,	but	

significant,	positive	correlation	for	all	methods	(Figure	7.7,	A).	Plotting	the	MRI-estimated	ODI	

versus	that	from	histology	(Figure	7.7,	B)	shows	moderate	correlation	for	all	methods,	except	

for	DOT.	While	correlation	coefficients	are	similar,	differences	between	methods	are	

noticeable.	For	example,	sCSD	and	PAS	consistently	result	in	low	dispersion	indices,	while	the	

QBI	methods	tend	to	overestimate	ODI.	Finally,	for	most	methods,	some	form	of	an	ODI	lower	

bound	is	present,	below	which	a	resulting	ODI	is	not	possible	due	to	either	modeling	

assumptions,	or	the	truncated	spherical	harmonic	representation	of	the	function.		
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	 A	potential	source	of	discrepancy	between	MRI	and	histological	measures	of	dispersion	

could	be	the	presence	of	false	positive	peaks	estimated	with	dMRI,	causing	a	bias	in	ODI	

estimation.	We	find	that	many	of	the	histological	single	fiber	voxels	with	larger	dispersion	were	

separated	into	two	or	more	distinct	FP	peaks	using	all	reconstruction	methods	(Figure	7.7,	D).	In	

all	cases,	larger	dispersion	was	significantly	more	likely	to	result	in	resolving	2	or	more	peaks.	

When	voxels	with	FP	peaks	were	removed	from	the	analysis,	all	methods	estimated	dispersion	

indices	with	a	much	stronger	correlation	with	histology	(Figure	7.7,	C),	with	correlation	

coefficients	ranging	from	0.52	for	PAS	to	0.74	for	QBIcsa.	Next,	DTI	FA	shows	a	moderate,	

negative	correlation	with	histological	ODI,	and	the	DTI	angular	error	shows	a	small	positive	

correlation	(Figure	7.7,	E).	Finally,	the	NODDI	multi-compartment	model	has	a	much	stronger	

overall	correlation	with	histological	ODI	(Figure	7.7,	F)	than	the	HARDI	models	(compare	to	

Figure	7.7,	B).	We	note	that	NODDI	systematically	overestimates	the	true	ODI	in	our	ex	vivo	

experiments,	although	the	line	of	best	fit	retains	a	slope	near	unity	(m=1.09).	However,	there	is	

also	some	low,	but	significant,	correlation	with	the	estimated	intra-cellular	volume	fraction	

(ICVF)	and	isotropic	volume	fraction	(ISOVF).		

	
Figure	7.7	Effects	of	histological	dispersion	on	MRI	orientation	and	dispersion	measures.	MRI	angular	error	(A)	and	MRI	ODI	
estimates	(B)	are	plotted	against	histological	ODI	in	single	fiber	voxels.	For	all	methods,	large	histological	ODI	consistently	
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resulted	in	two	or	more	distinct	MRI	peaks	(D),	and	when	FP	voxels	are	removed,	MRI-ODI	correlations	with	histology-ODI	are	
increased	(C).	DTI	measures	of	FA	and	angular	error	(E),	and	NODDI	measures	of	ODI,	ICVF,	and	ISOVF	(F)	are	plotted	against	
histology-ODI.	Significance	levels	are	indicated	by	asterisks	(*p<0.05;	**p<0.01;	***p<0.001).	

7.3.2	Effects	of	Number	of	DW	Directions	on	Reconstruction	Accuracy	

Qualitative	Results	

	 We	next	examine	the	effects	of	the	number	of	acquired	DWIs	(gradient	directions)	on	

reconstruction	accuracy	and	quality	metrics.	Qualitative	results	are	shown	in	Figure	7.8	for	

three	selected	HARDI	methods.	Here	we	focus	on	a	region	with	fibers	crossing	at	acute	angles	

(top),	a	region	containing	fibers	crossing	at	near-orthogonal	angles	(middle),	and	a	single	fiber	

region	(bottom).	For	sharp	crossing	angles	(top),	while	significant	differences	exist	between	

methods,	there	is	very	little	noticeable	change	between	the	64	and	96	direction	glyphs	within	

methods.	At	32	directions,	peaks	tend	to	“blend”	into	each	other	(see	QBI-csa	and	DOTr1)	or	

orientations	are	no	longer	consistent	with	histology	(sCSD).	Remarkably,	at	regions	of	

orthogonal	crossings	(middle)	almost	no	difference	is	observable	across	gradient	directions,	

with	all	methods	visually	indicating	the	presence	of	crossing	fibers.	Similarly,	in	single	fiber	

regions	(bottom)	no	difference	is	observed	as	the	number	of	DWIs	varies.		
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Figure	7.8	Effects	of	number	of	DW	directions	on	reconstruction	accuracy	-	qualitative	results.	Histological	FODs	are	shown	
overlaid	on	confocal	images	for	three	z-stacks.	The	voxels	represent	fibers	crossing	at	sharp	angles	(top),	fibers	crossing	at	near-
orthogonal	angles	(middle),	and	a	typical	single	fiber	region	(bottom).	MRI-derived	glyphs	for	three	selected	reconstruction	
methods	are	shown	for	each	histological	slice.	
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Single	Fiber	and	Crossing	Fiber	Regions	

	 Quantitative	analysis	of	the	effects	of	number	of	DW	directions	is	shown	in	Figure	7.9.	

For	these	results,	it	is	important	to	point	out	that	the	SH	representation	of	all	functions	over	a	

sphere	use	a	maximum	SH	order	of	4	for	20-24	directions,	a	maximum	order	of	6	for	28-44	

directions,	and	a	maximum	order	of	8	for	48	directions,	or	greater.		

	 For	single	fiber	regions,	all	methods	show	a	slight	decrease	in	ACC	(Figure	7.9,	A)	from	

24	to	28	directions,	and	a	slow,	but	consistent	increase	in	ACC	as	directions	increase	(except	for	

PAS).	Also,	there	is	little	to	no	change	in	the	rankings	of	the	models	across	directions,	for	

example	sCSD	and	CSDlrd	retain	the	highest	ACC	at	all	directions.	Results	for	JSD	(Figure	7.9,	B)	

show	very	distinct	changes	when	changing	the	SH	order	used	to	represent	the	functions.	

Specifically,	the	changes	as	the	number	of	DW	directions	vary	is	much	smaller	than	the	changes	

in	JSD	when	changing	SH	order,	with	noticeable	increase	in	JSD	at	a	6th	order	representation.	

The	response	to	changing	number	of	directions	as	it	relates	to	FP	peaks	varies	across	methods	

(Figure	7.9,	C).	DOT	and	QBIcsa	show	an	increasing	prevalence	of	FP	peaks	as	the	number	of	

DWIs	increase,	while	PAS	and	CSDlrd	show	decreasing	number	of	FP	peaks,	and	QBIr	and	DOTr1	

show	very	little	change.	The	SR	shows	continuous	improvement	with	increasing	directions,	with	

the	greatest	improvement	apparent	between	20	and	30	directions	(Figure	7.9,	D).	The	CF	

(Figure	7.9,	E)	shows	trends	inversely	mirroring	that	of	the	FP	peaks;	QBIr	and	DOTr1	retain	

high,	but	consistent	CF,	PAS	and	CSDlrd	show	increasing	CF	with	directions,	with	DOT	and	

QBIcsa	decreasing	in	CF.	Finally,	the	angular	error	(Figure	7.9,	F)	continually	decreases	with	

increasing	directions,	with	all	HARDI	methods	showing	very	similar	results,	and	DTI	indicating	

the	largest	overall	error.		
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Figure	7.9	Effects	of	number	of	DW	directions	on	reconstruction	accuracy	in	single	fiber	and	crossing	fiber	regions.	Quality	
metrics	are	evaluated	for	all	modeling	methods	as	a	function	of	the	number	of	DWIs	(i.e.	number	of	gradient	directions)	used	in	
reconstruction.	Reconstruction	methods	are	designated	by	color.	

	 Results	in	crossing	fiber	regions	show	similar	trends.	All	methods	(except	for	PAS)	

indicate	a	slight	increase	in	ACC	(Figure	7.9,	G)	with	increasing	directions,	with	the	greatest	

increase	occurring	for	CSDlrd	(overtaking	all	other	methods	after	52	directions).	Again,	JSD	is	

most	sensitive	to	the	SH	order	(Figure	7.9,	H),	rather	than	number	of	directions,	with	6th	order	

showing	the	largest	divergence	from	ground	truth	data.	The	number	of	FP	peaks	(Figure	7.9,	I)	

again	varies	between	methods,	mirroring	the	trends	seen	in	the	single	fiber	analysis	(see	Figure	

7.9,	C).	In	all	cases	increasing	image	volumes	regularizes	the	reconstruction,	resulting	in	
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decreasing	FN	peaks	(Figure	7.9,	J),	with	the	largest	changes	occurring	between	20	and	30	

directions,	most	notably	for	sCSD.	Both	the	SR	(Figure	7.9,	K)	and	CF	(Figure	7.9,	L)	for	all	

methods	show	consistent	increases	as	DW	directions	increase,	continuing	all	the	way	to	the	full	

100	directions.	All	methods	show	consistent	behavior	in	these	trends,	with	no	obvious	

“optimal”	number	above	which	increases	are	diminishing.	Finally,	all	methods	(except	DTI)	

show	a	slow,	but	continuous	increase	in	orientation	accuracy	for	both	primary	(Figure	7.9,	M)	

and	secondary	(Figure	7.9,	N)	fiber	orientations,	with	larger	improvements	apparent	for	the	

primary	fiber	orientations.	

	

Number	of	DW	directions	and	Crossing	Angle	

	 The	SR	for	all	methods	is	plotted	as	a	function	of	histological	crossing	angle	and	number	

of	DW	directions	in	Figure	7.10	for	all	reconstruction	methods.	A	few	general	trends	are	

noticeable.	Unsurprisingly,	the	SR	increases	as	the	intra-voxel	angle	increases	(in	agreement	

with	Figure	7.5,	E),	and	increases	as	the	number	of	DW	directions	increases.	Interestingly,	for	

many	methods,	one	can	appreciate	a	sharp	increase	in	SR	at	70-80°	and	>80°	range	as	the	

number	of	directions	reaches	28	or	greater.	In	addition,	a	similar	increase	in	SR	is	apparent	for	

the	intermediate	crossing	angles	(50-60°	and	60-70°	range)	at	numbers	of	directions	ranging	

from	as	low	as	~36	for	PAS	to	approximately	60-64	directions	for	sCSD,	QBIcsa,	DOT,	and	

CSDlrd.	Finally,	methods	such	as	PAS,	sCSD,	QBIcsa,	and	DOT	consistently	show	greater	SR	than	

QBIr	and	DOTr1,	regardless	of	fiber	geometry	and	acquisition	parameters.		
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Figure	7.10	Effects	of	histological	crossing	angle	and	number	of	DWIs	on	SR	of	reconstruction	methods.	

7.3.3	Effects	of	b-value	on	Reconstruction	Accuracy	

Qualitative	Results	

	 Finally,	we	examine	the	effects	of	diffusion	weighting	(b-value)	on	the	MRI	

reconstruction	methods.	Qualitative	results	are	shown	in	Figure	7.11	for	3	select	HARDI	

methods,	in	3	different	anatomical	locations.	Again,	we	have	a	region	with	near-orthogonal,	

clearly	separated	fibers	(top),	a	region	of	sharp	crossing	fibers	(middle),	and	a	region	with	single	

fiber	voxels	(bottom).	In	these	figures,	it	is	apparent	that	the	QBIr	and	CSDlrd	methods	are	

better	able	to	resolve	crossing	fibers	at	higher	b-values	(>6,000	s/mm2	in	these	regions),	which	

also	result	in	sharper	FOD/ODF	profiles.	For	PAS,	the	profiles	do	not	appear	to	get	“sharper”,	

but	the	orientations	seem	to	differ	across	diffusion	weightings.	However,	even	at	low	b-values,	

all	methods	show	a	general	agreement	with	the	histologically	defined	FOD	in	crossing	and	
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single	fiber	regions.	There	are	no	readily	apparent	differences	in	the	spherical	profiles	of	the	

methods	in	the	single	fiber	regions.		

	
Figure	7.11	Effects	of	b-value	on	reconstruction	accuracy	-	qualitative	results.	Histological	FODs	are	shown	overlaid	on	confocal	
images	for	three	z-stacks.	The	voxels	represent	fibers	crossing	at	near-orthogonal	angles	(top),	fibers	crossing	at	acute	angles	
(middle),	and	a	typical	single	fiber	region	(bottom).	MRI-derived	glyphs	for	three	selected	reconstruction	methods	are	shown	
for	each	histological	slice.	
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Single	Fiber	and	Crossing	Fiber	Regions	

	 The	effects	of	b-value	on	accuracy	of	MRI-reconstructions	are	shown	in	Figure	7.12	for	

single	fiber	(top)	and	crossing	fiber	(bottom)	voxels.	For	single	fiber	regions,	the	b-value	has	

varying	effects	on	ACC	(Figure	7.12	,	A),	with	methods	like	QBIr	and	DOTr1	showing	clear	

improvement	as	b-value	increases,	while	DOT	and	sCSD	show	improvement	at	lower	b-values.	

For	JSD	(Figure	7.12	,	B),	most	methods	show	an	increased	divergence	at	higher	b-values,	with	

exceptions	for	QBIr	and	DOTr1.	QBIr	retains	a	low	number	of	FP	peaks	at	all	diffusion	

weightings	(Figure	7.12	,	C),	PAS	shows	a	decreasing	FP	rate	once	the	b-value	is	increased	above	

3,000	s/mm2,	and	all	other	methods	show	a	clear	increase	in	FP	prevalence	at	higher	b-values.	

The	SR	(Figure	7.12	,	D)	remains	high	for	all	methods,	with	very	little	difference	between	

methods,	and	little	difference	between	b-values	from	6,000-12,000	s/mm2.	However,	the	CF	

(Figure	7.12	,	E)	is	affected	by	the	increased	FP	rate	at	high	b-value,	showing	significant	

decreases	for	all	HARDI	methods.	Finally,	the	angular	error	shows	minor	improvements	at	

increasing	b-values	(Figure	7.12	,	F),	for	all	methods.		

	 The	effects	of	b-value	on	MRI-reconstructions	in	crossing	fiber	regions	show	similar	

trends.	The	ACC	(Figure	7.12	,	G)	closely	mirrors	that	in	single	fiber	regions,	although	at	a	lower	

overall	correlation.	The	JSD	(Figure	7.12	,	H)	indicates	decreased	performance	at	higher	b-

values	for	most	methods,	in	particular	DOT	and	PAS.	Again,	most	methods	show	an	increased	

number	of	FP	peaks	at	larger	diffusion	weightings	(Figure	7.12	,	I),	with	the	largest	increases	

observed	for	CSDlrd	and	sCSD.	PAS	shows	the	opposite	trend,	with	the	QBI	methods	showing	a	

decreased	FP	rate	at	b-values	of	6,000	and	9,000	s/mm2.	All	methods	show	significant	

decreases	in	the	number	of	FN	peaks	with	b-values	greater	than	3,000	s/mm2	(Figure	7.12	,	J).	

At	a	b-value	of	3,000	s/mm2	all	methods	consistently	result	in	a	single	fiber	population	(a	FN	

rate	near	1).	The	decreased	FN	rate	leads	to	increases	in	SR	(Figure	7.12	,	K)	for	all	methods	at	

higher	b-value,	with	the	largest	differences	seen	between	3,000	and	6,000	s/mm2.	Similarly,	the	

CF	(Figure	7.12	,	L)	remains	low	at	a	b-value	of	3,000	s/mm2,	peaking	at	either	a	b-value	of	

6,000	or	9,000	s/mm2	for	all	methods.	Finally,	the	angular	error	is	largest	in	both	the	primary	

(Figure	7.12	,	M)	and	secondary	(Figure	7.12	,	N)	peaks	for	the	b-value	of	3,000,	with	little	

change	seen	when	increasing	diffusion	weightings	beyond	6,000	s/mm2.		
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Figure	7.12	Effects	of	b-value	on	reconstruction	accuracy	in	single	fiber	and	crossing	fiber	regions.	Quality	metrics	are	evaluated	
for	all	modeling	methods	as	a	function	of	the	diffusion-weighting	used	in	reconstruction.	b-values	(in	s/mm2)	are	indicated	by	
gray-scale	level.		

b-value	and	Crossing	Angle	

	 The	SR	of	all-reconstruction	methods	at	all	b-values	is	plotted	as	a	function	of	

histological	crossing	angle	in	Figure	7.13.	As	before,	and	for	all	b-values,	the	resolving	ability	of	

all	reconstruction	methods	increases	as	the	crossing	angle	becomes	larger.	Also,	for	all	

methods,	the	data	at	b=3,000	s/mm2	consistently	has	the	lowest	SR	for	all	fiber	configurations.	

At	the	low	b-value,	PAS	tends	to	be	the	most	successful	at	resolving	fibers,	at	all	crossing	
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angles.	For	all	methods,	the	SR	generally	increases	at	higher	b-values,	with	smaller	differences	

between	b=6,000	and	b=12,000	s/mm2.	At	the	lower	crossing	angles,	sCSD	tends	to	have	the	

highest	success	(at	b-values	of	6,000	s/mm2	or	greater).		

	
Figure	7.13	Effects	of	histological	crossing	angle	and	b-value	(in	s/mm2)	on	success	ratio	(SR)	of	reconstruction	methods.	

7.4	Discussion	

	 While	there	are	a	large	number	of	dMRI	methods	for	estimating	neuronal	fiber	

orientation	distributions,	the	correspondence	between	dMRI	measures	and	realistic	biological	

fiber	architectures	remains	unclear.	Towards	this	end,	this	study	investigated	the	relationship	

between	the	3D	histologically-defined	distribution	of	neuronal	fibers	(the	FOD)	and	the	
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corresponding	dMRI	estimated	orientation	distributions,	implementing	a	wide	range	of	high	

angular	resolution	diffusion	imaging	techniques.	Estimates	of	fiber	orientation	and	anisotropy	

have	previously	been	reported	in	biological	tissue	[200],	and	compared	to	DTI	indices	[132,	133,	

135]	and	a	high	angular	resolution	QBI	model	[132];	however,	these	methods	have	been	limited	

to	2D	histological	measurements	and	small	sample	sizes.	Recent	work	with	confocal	microscopy	

[115,	199],	optical	coherence	tomography	[137],	and	polarized	light	imaging	[138,	262]	extend	

the	ability	to	extract	the	fiber	orientation	distributions	to	3	dimensions.	Still,	no	3D	histological	

validation	of	orientation	and	dispersion	measures	has	been	performed	for	any	existing	dMRI	

reconstruction	techniques.	Further,	no	histological	validation	study	has	presented	a	comparison	

of	models,	nor	studied	the	effects	of	fiber	geometry	(crossing	fibers,	fiber	dispersion)	and	

acquisition	parameters	(number	of	DWIs,	b-value,	etc.)	on	their	performance.	

	 The	most	pertinent	questions	addressed	in	our	study	are	whether	the	current	

generation	of	dMRI	reconstruction	methods	allow	us	to	adequately	infer	the	underlying	voxel-

wise	fiber	orientations,	and	how	algorithmic	differences	(including	acquisition	schemes,	

assumptions	in	modeling,	descriptors	used	to	characterize	the	intra-voxel	structure,	etc.)	affect	

the	fidelity	of	the	resulting	reconstruction.	While	we	do	not	attempt	a	final	ranking	of	the	

models	(because	the	optimal	technique	is	almost	certainly	going	to	depend	on	the	intended	

goals	and	interests	of	the	specific	study)	we	are	able	to	make	some	general	observations,	and	

report	on	the	strengths	and	weaknesses	of	the	tested	dMRI	algorithms.		

	 All	HARDI	models	are	shown	to	describe	the	overall	angular	structure	of	the	FOD,	as	

evidenced	by	high	ACC	and	low	JSD	in	voxels	containing	both	simple	and	complicated	figure	

geometries	(shown	qualitatively	in	Figure	7.3,	and	quantified	in	Figure	7.4).	Despite	correlating	

well	with	the	overall	FOD	shape,	no	method	is	consistently	successful	at	extracting	discrete	

measures	of	the	number	and	orientations	of	FOD	peaks.	The	major	inaccuracies	of	all	

techniques	tend	to	be	in	extracting	or	capturing	local	maxima	of	the	FOD,	resulting	in	either	

false	positives	and	false	negatives.	Regardless	of	acquisition	parameters,	all	methods	show	

improved	successes	at	resolving	multiple	fiber	compartments	in	a	voxel	when	fiber	populations	

cross	at	near-orthogonal	angles	(Figure	7.5,	Figure	7.10,	Figure	7.13).	This	is	consistent	with	the	

literature	on	both	phantoms	[125,	216]	and	simulations	[6,	123]	and	describes	one	of	the	major	
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hurdles	to	resolving	crossing	fiber	populations.	In	addition,	the	ability	to	resolve	crossing	fibers	

increases	for	all	reconstruction	methods	at	increased	diffusion	weightings	(Figure	7.13),	often	

at	the	expense	of	increased	FP	peaks	and	an	overall	lower	overall	angular	agreement	with	the	

histological	FOD	(Figure	7.12).	Thus,	although	techniques	tend	to	capture	the	overall	

continuous	shape	of	the	FOD,	care	must	be	taken	when	evaluating	diffusion	results,	particularly	

with	respect	to	estimates	of	number	of	fibers	or	fiber	orientation	based	on	local	maxima	of	the	

FOD	or	ODF	alone.		

	 A	comparison	across	methods	showed	that	no	HARDI	model	outperformed	others	in	

every	quality	criteria	or	experimental	condition.	There	was	nearly	always	a	tradeoff	in	measures	

of	accuracy.	For	example,	PAS	regularly	had	the	highest	rate	of	success	in	resolving	crossing	

fibers,	at	acute	angles	with	low	b-values	and	fewer	gradient	directions,	however	it	is	plagued	

with	FP	peaks	in	all	conditions,	and	consistently	had	the	lowest	overall	angular	agreement	with	

the	FOD	in	both	single	and	crossing	fiber	regions.	On	the	other	end	of	the	spectrum,	QBIr	rarely	

resulted	in	identification	of	multiple	maxima	of	the	ODF,	however,	resulted	in	some	of	the	

highest	ACC	and	lowest	JSD	values	in	all	acquisition	conditions.	At	first	glance,	the	lack	of	

consistency	across	models	and	wide	range	of	accuracy	in	describing	the	FOD	may	be	

disheartening,	the	most	commonly	implemented	(single-shell)	HARDI	methods	for	the	last	

decade	give	varying	results,	and	will	almost	certainly	result	in	even	more	dramatic	differences	

with	subsequent	fiber	tracking.	However,	these	results	are	unsurprising;	the	techniques	all	

differ	a	great	deal	not	only	in	modeling	assumptions,	but	also	what	they	aim	to	represent.	One	

could	envision	a	model	based	on	the	empirically	derived	FODs	in	this	study,	or	some	

combination	of	techniques	to	obtain	an	optimal	reconstruction.	Another	reassurance	is	that	

techniques	show	robustness	to	acquisition	parameters	including	b-value	(³	6,000	s/mm2	for	

most	methods	in	this	ex	vivo	study)	and	number	of	DW	directions,	indicating	that	studies	

implementing	the	same	reconstruction	technique	are	likely	to	be	comparable	even	with	

somewhat	different	acquisition	parameters.	

	 The	robustness	to	the	number	of	acquired	DW	directions	is	particularly	surprising.	Upon	

introduction	of	many	techniques,	a	large	number	of	directions	are	used.	For	example,	492	[58],	

252	[35],	and	80	directions	[216]	for	QBI	methods,	60	[43],	92	[41],	and	80	directions	[216]	for	
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spherical	deconvolution	methods,	and	82	[38]	directions	for	DOT	methods.	For	many	methods,	

validation	studies	(often	through	simulation)	show	that	with	a	moderate	number	of	directions	

(>~50),	methods	show	success	at	describing	fiber	geometries[6,	122,	269,	270]	.	Our	results	are	

generally	in	agreement	with	this	observation,	suggesting	that	many	methods	show	an	

improvement	at	moderate	numbers	of	directions	(particularly	in	resolving	intermediate	

crossing	angles,	Figure	7.10).	However,	the	overall	correlation	with	the	histological	FOD	and	

other	quality	metrics	(SR,	false	peaks)	remain	high	for	as	few	as	28	directions	(Figure	7.9),	a	

protocol	common	in	many	DTI	schemes.	Further,	we	find	that	some	measures	of	quality	(i.e.	

JSD	and	FP	peaks)	are	largely	influenced	by	the	fit	SH	order	used	to	represent	that	function	on	a	

sphere,	an	effect	observed	in	previous	reproducibility	studies	[267].	

	 In	addition	to	validating	HARDI	methods’	ability	to	capture	orientation	and	number	of	

fiber	populations,	we	also	validate	the	ability	to	capture	another	descriptor	of	fiber	geometry,	

orientation	dispersion.	We	tested	a	popular	multi-compartment	diffusion	technique	(NODDI)	

that	estimates	indices	of	neurites	that	may	be	more	directly	related	to,	and	provide	specific	

markers	of,	brain	tissue	microstructure.	Measures	of	orientation	dispersion	may	provide	

specificity	for	various	pathologies	[271-274],	as	well	as	provide	fiber	“tract-specific”	indices	that	

can	again	correlate	to	pathology,	or	increase	fiber	tracking	specificity	[257-259].	Validation	of	

dispersion	measures	has	been	performed	for	NODDI	in	the	ex	vivo	spinal	cord	[275]	and	on	a	2-

compartment	dispersion	model	in	the	human	corpus	callosum	[262].	In	this	study,	we	evaluate	

both	signal	models	(which	primarily	aim	to	recover	only	the	angular	component	of	the	diffusion	

profile)	and	the	NODDI	multi-compartment	model	(Figure	7.7).	We	find	that	the	FOD	and	ODFs	

from	signal	models	can	provide	more	information	that	just	number	of	peaks	and	peak	

directions.	Specifically,	the	width	of	the	FOD	(or	ODF)	lobe	is	correlated	with	the	histological	

fiber	dispersion,	for	all	reconstruction	methods	(significant	correlations	from	r=0.34-0.55).	High	

dispersion	typically	results	in	false	positive	peaks	which	can	lead	to	errors	in	dispersion	

measures	when	fitting	to	Watson	(or	multi-Watson)	distributions.	When	removing	false	positive	

peaks	from	analysis,	the	correlation	is	much	stronger	(r=0.52-0.74).	Despite	the	high	

correlation,	there	is	an	overall	limited	range	of	dispersion	identifiable	with	these	techniques.	

For	example,	PAS	and	sCSD	result	in	consistently	low	ODI	(and	sharp	peaks),	while	QBIr	and	
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QBIcsa	consistently	result	in	larger	ODI	values.	In	addition,	we	find	that	increasing	dispersion	

leads	to	greater	uncertainty	in	estimating	the	primary	fiber	orientation	in	a	voxel.	For	the	

NODDI	model,	which	explicitly	estimates	a	dispersion	index,	we	find	a	much	greater	overall	

correlation	(without	the	removal	of	FP	peaks	because	NODDI	estimates	only	a	single	fiber	

compartment).	Overall,	this	demonstrates	that	the	orientation	dispersion	estimates	from	dMRI	

correlate	well	with	tissue	architecture,	using	both	HARDI	and	the	multi-compartment	NODDI	

model.			

	 A	recent	study	[219]	proposed	that	the	brain’s	white	matter	structure	is	organized	in	a	

pattern	of	parallel	sheets	by	analyzing	crossing	fiber	pathways	using	dMRI	tractography.	It	was	

found	that	incident	pathways	cross	nearly	orthogonally	in	a	grid-like	or	sheet-like	structure,	

with	this	pattern	found	throughout	white	matter	and	across	species.	This	pattern	has	significant	

implications	with	regard	to	development,	evolution,	and	structural	connectivity.	However,	it	

has	been	argued	[276]	that	this	grid	pattern	is	likely	an	artifact	due	to	the	inherently	low	

angular	resolution	of	the	proposed	dMRI	technique	(which	estimated	the	diffusion	ODF),	

causing	a	bias	towards	orthogonal	angles,	making	the	grid	pattern	a	likely	apparent	geometric	

configuration.	Our	results	indicate	that	all	methods	studied	show	a	bias	towards	orthogonal	

crossings	(Figure	7.5,	I),	regardless	of	true	histological	crossing	angle,	and	regardless	of	whether	

the	FOD	or	ODF	(or	any	other	function)	is	estimated.	This	would	seem	to	argue	in	favor	of	a	

technical	limitation	causing	an	artefactual	grid.	However,	we	note	that	(although	we	did	not	

perform	systematic	random	sampling)	it	was	much	easier	to	find	near-orthogonal	crossings	

than	crossing	angles	less	than	50°	in	the	histological	sections	we	studied	(Figure	7.5,	J).	

	 Future	work	should	investigate	the	effects	of	reconstruction	accuracy	as	spatial	

resolution	varies.	Because	of	the	tradeoffs	in	spatial	resolution,	signal	to	noise	ratio,	and	

imaging	time,	optimizing	the	resolution	for	diffusion	MRI	(and	subsequent	analysis	and/or	

tractography)	is	highly	relevant	to	human	in	vivo	imaging.	Interestingly,	recent	work	using	MRI	

and	high	resolution	histology	has	shown	that	the	crossing	fiber	problem	is	not	eliminated	even	

with	very	high	spatial	resolution	data	[277].	However,	it	is	expected	that	the	angular	accuracy	

of	diffusion	MRI	estimates	will	increase	at	high	spatial	resolution	[261]	due	to	reduced	

geometric	complexity	or	decreased	fiber	dispersion	[261,	277].		



	 164	

	 While	validation	comparing	dMRI	and	histology	is	the	only	validation	method	able	to	

capture	both	the	enormous	complexity	of	the	white	matter	and	the	practical	effects	of	image	

acquisition,	it	is	not	without	limitations.	Histology	is	technically	complex	due	to	tissue	

deterioration	during	preparation	(shrinking,	deformation,	etc.).	We	have	attempted	to	

ameliorate	the	shrinkage	with	confocal	image	pre-processing,	and	a	previous	study	describing	

the	methodology	[199]	shows	an	expected	error	of	less	than	5°	when	compared	to	manually	

traced	fibers.	In	addition,	to	assess	whether	residual	anisotropy	or	bias	is	introduced	during	

confocal	processing,	we	have	evaluated	the	angular	error	as	a	function	of	the	z-component	of	

the	histological	FOD	(data	not	shown)	and	found	only	very	low	correlations	(maximum	

correlation	of	coefficient	of	|r|	=	0.20).	Only	one	reconstruction	method	(DTI)	showed	a	

statistically	significant	correlation	(interestingly,	a	negative	correlation	as	through-plane	

orientation	increased).	Together,	this	suggests	that	the	angular	error	is	largely	independent	of	

the	histological	FOD	orientation.	The	multi-step	registration	procedure	accounts	for	both	

deformation	and	tissue	placement	on	the	slide,	and	can	result	in	localization	errors	on	the	

order	of	the	size	of	MRI	voxels	[194],	300	um	in	our	study.	Together,	these	may	account	for	the	

slightly	larger	angular	error	than	that	seen	in	simulation	studies	[122,	123,	278,	279],	however,	

a	median	angular	error	of	10°	is	consistent	with	previous	2D	histological	validation	studies	on	

DTI	[132,	133].	Thus,	rather	than	a	methodological	limitation,	this	could	indicate	that	the	

models	used	in	simulation	(often	mixtures	of	Gaussians)	are	overly	simplistic	relative	to	the	

complicated	true	FOD	that	may	not	only	contain	disperse	mixtures	of	fiber	populations,	but	also	

varying	microstructure	affecting	the	motion	of	water,	and	anisotropic	dispersion	causing	

differences	between	the	peak	amplitude	and	something	similar	to	an	angular	“center-of-mass”	

of	the	FOD.	A	further	limitation	is	that	confocal	data,	acquired	in	50	micron	tissue	sections	was	

compared	to	dMRI	data	acquired	in	300	micron	thick	MRI	sections.	This	comparison	is	based	on	

the	assumption	that	histological	FODs	change	slowly	in	the	slice	direction,	which	is	likely	false	in	

some	fraction	of	voxels	(and	may	account	for	some	of	the	outliers	in	Figure	7.4	and	Figure	7.12,	

for	example).	While	the	present	research	focused	on	distinguishing	“single”	and	“crossing”	

fibers,	this	may	be	an	oversimplification	of	the	true	geometry.	For	example,	in	our	confocal	

data,	fibers	are	often	seen	bending	throughout	the	field	of	view,	and	even	within	a	voxel.	
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Voxels	can	have	both	a	dispersion	and/or	bending	of	fibers,	yet	result	in	a	single	local	maximum	

of	the	FOD.	Future	work	should	utilize	confocal	data	to	quantify	not	only	fiber	curvature	and	

bending,	but	also	characterize	how	fibers	cross	and	fan	out	(or	in)	within	the	voxel,	and	how	

these	geometries	relate	to	the	diffusion	signal.	One	final	limitation	of	our	study	is	extrapolation	

of	the	ex	vivo	tissue	and	imaging	conditions	to	that	of	in	vivo.	However,	previous	studies	

indicate	that	anisotropy	and	the	angular	dependence	of	the	signal	is	preserved	[113,	198,	280],	

albeit	at	a	lower	diffusivity,	thus	care	must	be	taken	in	interpreting	the	equivalent	in	vivo	

diffusion	weightings	for	this	study.	Overall,	there	is	no	perfect	validation	method	for	dMRI,	and	

we	must	rely	on	the	accumulation	of	evidence	from	all	approaches	to	validate	and	better	

understand	the	relationship	between	the	dMRI	signal	and	the	tissue	microstructure.	

7.5	Conclusions	

	 This	work	compared	and	evaluated	fiber	orientation	distributions	and	orientation	

dispersion	values	derived	from	a	number	of	diffusion	MRI	algorithms	with	those	derived	from	

histology.	The	algorithms	included	commonly	implemented	high	angular	resolution	techniques	

for	recovering	intra-voxel	fiber	geometries,	as	well	as	a	multi-compartment	model.	All	

reconstruction	techniques	are	able	to	recover	the	overall	angular	structure	of	the	FOD	with	

some	accuracy,	with	weaknesses	in	extracting	discrete	orientations	and	numbers	of	peaks.	In	

addition,	both	HARDI	methods	and	the	microstructural	model	show	high	correlations	with	

histologically	defined	orientation	dispersion.	These	results	can	be	used	to	identify	the	relative	

advantages	of	competing	approaches,	potential	strategies	for	improving	accuracy,	and	

appropriate	techniques	to	implement	for	answering	specific	research	questions.	

Appendix	7.A	Measures	of	similarity	on	the	unit	sphere	(ACC	and	JSD)	

	 A	 method	 for	 calculating	 the	 correlation	 of	 functions	 over	 a	 sphere	 given	 the	 SH	

expansions	of	both	functions	is	given	in	[41].	Given	two	spherical	functions	and	their	spherical	

harmonic	expansions:	
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The	ACC	of	the	functions	is	calculated	as:	
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	 The	JSD	was	used	to	quantify	the	similarity	between	two	FODs	(or	ODFs).	Similar	to	[266],	

we	projected	both	FODs	onto	724	values	distributed	equally	over	a	sphere.	The	JSD	is	defined	as	

	
𝐽𝑆𝐷 𝑃, 𝑄 = 	

𝐷»¼ 𝑃,𝑀 + 𝐷»¼(𝑄,𝑀)
2

	

	

[A.3]	

with	

	
𝑀 𝑖 =
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[A.4]	

and	P(i)	and	Q(i)	are	the	magnitudes	of	the	histological	and	MRI	FODs	(or	ODFs)	along	index	i	

(i=1…724),	and	DKL	is	the	Kullback-Leibler	divergence:	

	 𝐷»¼ 𝑃, 𝑄 = 𝑃(𝑖)
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CHAPTER 8: A GYRALBIAS IN DIFFUSION MRI FIBER 

TRACTOGRAPHY 

Prologue	

Assessing	the	performance	of	diffusion	MRI	techniques	to	estimate	fiber	orientation	

information	is	an	essential	step	in	the	validation	process;	however,	it	is	not	in	itself	sufficient	to	

predict	the	performance	of	the	tractography	process.	In	this	chapter,	we	investigate	the	

anatomical	accuracy	of	tractography	methods	and	potential	sources	of	error	in	connectivity	

estimates.	Specifically,	by	comparing	diffusion	MRI	to	myelin-stained	histology,	we	ask	if	

tractography	results	are	related	in	any	way	to	histologically	derived	measures	of	axon	counts	or	

densities.	Doing	so,	we	find	several	sources	of	bias	in	tractography	algorithms.	

Abstract		

Diffusion	MRI	fiber	tractography	has	been	increasingly	used	to	map	the	structural	connectivity	

of	the	human	brain.	However,	this	technique	is	not	without	limitations,	for	example,	there	is	a	

growing	concern	over	anatomically-correlated	bias	in	tractography	findings.	In	this	study,	we	

demonstrate	that	there	is	a	bias	for	fiber	tracking	algorithms	to	terminate	preferentially	on	

gyral	crowns,	rather	than	the	banks	of	sulci.	We	investigate	this	issue	by	comparing	diffusion	

MRI	(dMRI)	tractography	with	equivalent	measures	made	on	myelin-stained	histological	

sections.	We	begin	by	investigating	the	orientation	and	trajectories	of	axons	near	the	white	

matter/gray	matter	boundary,	as	well	as	the	density	of	axons	entering	the	cortex	at	different	

locations	along	gyral	blades.	These	results	are	compared	with	dMRI	orientations	and	tract	

densities	at	the	same	locations,	where	we	find	a	significant	gyral	bias	in	many	gyral	blades	

across	the	brain.	This	effect	is	shown	for	a	range	of	tracking	algorithms,	both	deterministic	and	

probabilistic,	and	multiple	diffusion	models,	including	the	diffusion	tensor	and	a	high	angular	

resolution	diffusion	imaging	technique.	Additionally,	the	gyral	bias	occurs	for	a	range	of	

diffusion	weightings,	and	even	for	very	high-resolution	datasets.	The	bias	could	significantly	

affect	connectivity	results	using	the	current	generation	of	tracking	algorithms.		
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8.1	Introduction	

It	has	long	been	recognized	that	a	detailed	map	of	the	structural	connections	in	the	

brain	would	be	of	great	value	for	understanding	cognition,	brain	function,	normal	development	

and	aging,	as	well	as	neurological	disease	and	disorders	[110,	281,	282].	Thus,	creating	a	

comprehensive	description	of	the	neuronal	connections	in	the	brain	(i.e.	the	human	

connectome	[283])	has	been	a	major	scientific	goal	for	decades	[281].	Early	investigators	relied	

on	techniques	performed	on	post-mortem	tissue	that	limit	analysis	to	small	brain	areas,	or	one	

system	of	pathways	at	a	time	(see	[110,	281]	for	historical	reviews).	The	advent	of	diffusion	MRI	

(dMRI)	[3]	and		dMRI	fiber	tracking	[55]	opened	up	the	possibility	of	studying	white	matter	

anatomy	on	living	subjects,	and	across	the	entire	brain,	in	a	matter	of	minutes.	

The	ability	to	non-invasively	study	the	human	brain	has	made	dMRI	one	of	the	main	

tools	used	in	Connectomics	research	for	inferring	anatomical	pathways	connecting	brain	

regions.	Significant	progress	has	been	made	in	modeling	the	network	architecture	of	the	brain	

[66,	222,	284],	parcellating	the	cortex	into	functionally	and	anatomically	distinct	subregions	

[285,	286],	and	making	detailed	measurements	of	white	matter	microstructure	[114,	287,	288].	

However,	despite	its	widespread	use	in	inferring	the	“connectedness”	between	brain	regions,	

dMRI	fiber	tracking	is	not	without	its	limitations	[201].		

For	an	accurate	connectivity	map	of	the	brain,	estimated	dMRI	fiber	trajectories	

(streamlines)	must	be	able	not	only	to	follow	major	fiber	bundles	through	the	deep	white	

matter,	but	must	also	correctly	follow	fibers	as	they	cross	the	white	matter/gray	matter	

(WMGM)	boundary.		This	is	particularly	problematic	in	areas	of	the	cerebral	cortex	that	exhibit	

complex	folding	and	convolutions.	Recently,	it	has	been	shown	that	tractography	streamlines	

have	a	tendency	to	terminate	primarily	on	gyral	crowns,	rather	than	the	walls	of	sulci,	or	the	

sulcal	fundi	[105-107,	289].	These	results	could	have	significant	implications	regarding	cortical	

development	and	morphogenesis	[105,	106].	However,	it	has	been	suggested	that,	rather	than	

an	anatomical	reality,	this	likely	reflects	a	bias	in	fiber	tracking	algorithms	[108].	Clearly,	a	

tendency	for	streamlines	to	track	towards	certain	regions	of	the	brain	could	significantly	bias	

quantitative	connectivity	studies	using	dMRI,	including	network	connectome	profiles	and	brain	

parcellation	results.		
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The	observation	that	tractography	streamlines	are	denser	in	gyri	than	in	sulci	could	have	

several	explanations.	For	one,	it	could	have	genuine	anatomical	underpinnings.	Due	to	their	

convexity	[290,	291],	the	cortical	volume	(per	unit	surface	area	of	the	WMGM	boundary)	at	

gyral	crowns	would	be	greater	than	at	the	relatively	flat	sulcal	walls	or	concave	fundi	[108].	If	

the	axonal	density	associated	with	a	unit	volume	of	the	cortex	were	to	be	relatively	

homogenous,	as	is	often	assumed	[108,	156,	292],	this	would	imply	that	the	number	of	axons	

crossing	the	WMGM	boundary	at	the	gyral	crowns	would	have	to	be	higher	than	those	along	

the	banks	or	fundus	of	sulci	[108].		

On	the	other	hand,	the	“gyral	bias”	could	be	an	artifact	of	tracking	algorithms,	due	

either	to	technical	limitations	or	inherent	simplifying	assumptions.	Analysis	of	myelin-stained	

sections	has	shown	that	many	fibers	follow	a	sharply	curved	trajectory	as	they	enter	the	cortex,	

particularly	those	near	the	sulcal	walls	[108,	200,	293].	Because	of	the	large	voxel	size	of	dMRI	

acquisitions	(typically	2-3mm),	these	areas	are	prone	to	partial	volume	effects.	This	could	bias	

orientation	estimates	along	the	WMGM	border	to	point	in	the	direction	of	the	adjacent	white	

matter	(which	is	often	tangential	to	the	boundary	[108,	294]),	rather	than	correctly	pointing	

towards	the	sulcal	cortical	surface	[108].	Because	these	orientation	estimates	form	the	input	of	

most	tracking	algorithms,	any	fiber	tracking	would	subsequently	exhibit	a	bias.		

Even	if	fiber	orientations	were	estimated	perfectly,	tracking	algorithms	might	still	not	be	

able	to	propagate	correctly	into	the	cortex.	Tracking	usually	involves	choosing	a	curvature	

threshold,	a	maximum	angle	that	the	trajectory	is	able	to	turn	through	over	a	certain	distance	

[201].	This	parameter	is	often	justified	on	the	basis	that	fibers	in	the	brain	typically	do	not	

exhibit	sharp	bends;	however,	this	will	clearly	preclude	accurately	tracking	fibers	that	truly	

exhibit	curvatures	greater	than	this	threshold.	Similarly,	in	voxels	where	multiple	“crossing”	

fibers	are	detected,	many	algorithms	will	propagate	in	the	direction	with	the	least	angular	

deviation	from	the	previous	tracking	step.	Again,	along	the	cortex,	this	could	lead	to	

streamlines	continuing	to	follow	the	direction	of	the	white	matter	bundles,	rather	than	exiting	

the	white	matter	to	enter	the	cortex	[108],	even	if	these	fibers	were	correctly	detected.		

In	addition	to	limitations	of	the	dMRI	acquisition	and	tracking	algorithm,	bias	can	be	

introduced	in	part	by	the	strategy	used	to	begin	streamline	propagation.	Some	of	the	most	
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common	seeding	strategies	include	propagating	streamlines	from	every	voxel	in	the	brain	

(“whole	brain”	seeding),	or	seeding	from	every	voxel	in	the	white	matter	(“white	matter’	

seeding).	Because	longer	white	matter	pathways	occupy	a	greater	volume	from	which	to	seed,	

these	pathways	tend	to	be	over-represented	in	streamline	reconstruction	[295,	296].	If	these	

pathways	were	to	terminate	more	frequently	in	specific	regions	(i.e.	gyral	crowns),	this	could,	

again,	lead	to	a	larger	number	of	streamlines	entering	this	area.	To	compensate	for	this,	it	is	

common	in	many	brain	network	studies	to	heuristically	scale	the	contribution	of	each	

streamline	to	the	overall	connection	density	by	the	reciprocal	of	the	streamline	length	[65,	66].	

Several	groups	have	attempted	to	bypass	this	potential	source	of	bias	by	seeding	only	from	the	

WMGM	boundary	[297,	298].	However,	it	is	unclear	what	effect	the	seeding	strategy,	and	

subsequent	quantification,	have	on	potential	gyral	biases	in	diffusion	tractography.	

Taken	together,	it	is	clear	that	dMRI	tractography	has	limitations	that	could	produce	

significant	bias	in	certain	anatomical	regions,	and	prevent	creation	of	accurate	connectivity	

maps	of	the	brain.	Hence,	there	is	a	need	to	better	understand	to	what	extent,	and	under	which	

circumstances,	these	biases	occur.		

In	this	study,	using	histology	as	a	validation	tool,	we	compared	dMRI	fiber	tractography	

to	myelin	histology	performed	on	a	Rhesus	macaque	brain	to	investigate	gyral	bias.	We	first	

asked	how	the	true	(histologically	defined)	density	of	fibers	entering	the	cortex	varies	along	the	

gyral	blade,	and	if	this	“fiber	density	profile”	varies	between	different	gyri.	Next,	we	asked	

whether	fiber	tracking	using	the	very	commonly	used	diffusion	tensor	imaging	(DTI)	model	is	

biased	towards	the	gyral	crowns,	relative	to	histological	measurements,	and	if	this	bias	is	

dependent	on	seeding	or	fiber	quantification	strategies.	We	then	investigated	the	axonal	

trajectories	near	the	WMGM	boundary	along	gyral	blades	by	assessing	fiber	curvature,	the	

effects	of	the	tractography	curvature	threshold,	and	the	agreement	with	dMRI	estimated	fiber	

orientations.		We	then	assess	whether	the	b-value,	or	diffusion-weighting,	affects	the	results	in	

any	way.	In	addition,	intuition	suggests	that	increasing	the	spatial	resolution	of	dMRI	images	

would	lead	to	more	accurate	fiber	tracking	[108,	299]	and	a	reduced	gyral	bias.	Hence,	we	

analyze	different	tractography	methods	using	data-sets	acquired	at	varying	spatial	resolutions	

to	test	this	hypothesis.	Finally,	we	then	move	away	from	the	commonly	used	diffusion	tensor	
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and	assess	tractography	based	on	a	higher-order	algorithm	(constrained	spherical	

deconvolution	[45])	for	estimating	fiber	orientation,	and	use	this	to	construct	3D	fiber	

pathways.		

8.2	Methods	

8.2.1	MRI	acquisition	

	 MRI	experiments	were	performed	on	a	single	hemisphere	of	an	adult	Rhesus	macaque	

(Macaca	Mulatta)	brain	on	a	Varian	9.4T	magnet	following	perfusion,	Gd-DTPA	immersion,	and	

Fomblin	preparation	described	in	Section		

4.2.2	MRI	Methods.	A	structural	image	was	acquired	using	a	3D	gradient	echo	sequence	(TR	=	

50ms;	TE	=	3ms;	flip	angle	=	45°)	at	200um	isotropic	resolution.		

Diffusion	data	were	then	acquired	with	a	3D	spin-echo	diffusion-weighted	EPI	

sequence	(TR	=	340ms;	TE	=	40ms;	NSHOTS	=	4;	NEX	=	1;	Partial	Fourier	k-space	coverage	=	.75)	

at	400um	isotropic	resolution.	Diffusion	gradient	pulse	duration	and	separation	were	8ms	and	

22ms,	respectively,	and	the	b-value	was	set	to	6,000	s/mm2.	This	value	was	chosen	due	to	the	

decreased	diffusivity	of	ex	vivo	tissue,	which	is	approximately	a	third	of	that	in	vivo	[198],	and	is	

expected	to	closely	replicate	the	signal	attenuation	profile	for	in	vivo	tissue	with	a	b-value	of	

approximately	2,000	s/mm2.	A	gradient	table	of	101	uniformly	distributed	directions	[211]	was	

used	to	acquired	101	diffusion-weighted	volumes	with	four	additional	image	volumes	collected	

at	b	=	0.	Unless	otherwise	noted,	all	fiber	tractography	was	performed	on	this	dataset.		

In	order	to	assess	the	effects	of	the	diffusion	weighting	on	any	potential	gyral	bias,	the	

full	diffusion	acquisition	was	repeated	with	b-values	of	3,000,	9,000,	and	12,000	s/mm2,	while	

keeping	all	other	acquisition	parameters	(including	diffusion	times)	constant.	Higher	b-values	

have	been	shown	to	be	beneficial	for	several	advanced	diffusion	(and	fiber)	reconstruction	

algorithms	[122,	198,	263].	Finally,	to	assess	the	effects	of	image	resolution,	the	full	acquisition	

was	repeated	with	resolution	ranging	from	300um	isotropic	to	800um	isotropic,	in	100um	

increments.	Here,	all	b-values	were	set	to	6,000	s/mm2.	Again,	all	acquisition	parameters	were	

kept	constant	(including	diffusion	times),	except	for	field-of-view	and	number	of	phase-

encoding	and	readout	points	required	to	achieve	the	intended	resolution.		
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	 The	signal-to-noise	ratio	in	the	white	matter	of	the	non-diffusion	weighted	images	

ranged	from	approximately	36	in	the	300um	isotropic	images,	to	approximately	310	in	the	

800um	isotropic	images,	values	much	higher	than	those	typical	of	diffusion	MRI	on	clinical	

scanners	(approximately	16-20).	Comparing	the	macaque	and	human	brain	based	on	volume	

only	(approximately	80mL	and	1200mL	[300],	respectively),	our	300um	isotropic	voxels	would	

be	roughly	equivalent	to	~740um	isotropic	in	the	human,	while	our	800um	isotropic	scans	

would	resemble	human	voxels	at	approximately	2mm	isotropic.	

8.2.2	Histology	

Tissue	sectioning,	and	block-face	photography,	were	performed	following	the	

methodology	described	in	Section	4.2.3	Histological	Methods.	Thirty-five	slices,	with	an	

effective	slice	gap	of	1.8mm,	were	selected	for	this	study.	The	tissue	sections	were	then	stained	

for	myelin	using	the	silver	staining	method	of	Gallyas	[193]	and	mounted	on	glass	slides.	Whole-

slide	brightfield	microscopy	was	performed	using	a	Leica	SCN400	Slide	Scanner	at	20x	

magnification,	resulting	in	an	in-plane	resolution	of	0.5um/pixel.	

8.2.3	Registration		

In	order	to	transfer	the	MRI	information	into	high-resolution	histological	space	(or	vice-

versa),	the	multistep	registration	procedure	introduced	for	the	atlas	construction	was	used	(see	

Section	4.2.4	Atlas	Framework,	registration).	Briefly,	this	included	2D	linear	and	nonlinear	

registration	of	each	histological	slice	to	the	corresponding	block-face	image,	followed	by	3D	

linear	and	nonlinear	registration	of	the	block	volume	to	the	mean	MRI	b=0	image.	The	block	to	

MRI	registration	was	performed	for	all	MRI	acquisitions	separately.	Concatenation	of	these	two	

deformation	fields	allows	any	scalar	MRI	information	(i.e.	labels	for	the	crown	and	walls)	to	be	

transformed	into	histological	space.	For	orientation	information	derived	from	MRI,	the	data	

were	transformed	and	re-oriented	appropriately	using	the	preservation	of	principal	directions	

(PPD)	strategy	[301].		

8.2.4	Data	Processing	

From	the	histological	and	MRI	datasets,	six	pieces	of	information	were	obtained	(Figure	

8.1).	
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Figure	8.1	Data	processing	pipeline.	From	the	histological	(left	column)	and	MRI	(right	column)	datasets,	six	pieces	of	
information	are	extracted.	Twenty-four	gyral	blades	are	manually	defined	on	histological	slices	(A),	while	labels	for	the	crown,	
walls,	and	fundi	are	defined	based	on	convexity	measures	from	3D	MRI	data	(B).	The	3D	WMGM	surface	colored	with	the	
crown/wall/fundus	labels	are	shown	on	top,	while	the	gyral	labels	transferred	to	MRI	space	are	shown	below	(note	color	
scheme	is	same	from	part	1).	Structure	tensor	analysis	(C,	left)	is	used	to	extract	the	myelinated,	or	ground	truth,	axon	
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orientations	(C,	right),	for	comparisons	with	dMRI	estimated	fiber	orientations	(D)	after	transformation	to	histological	space.	A	
count	of	axons	entering	the	cortex	is	made	along	the	entire	gyral	blade,	in	gyral	crowns	and	sulcal	walls	(left)	for	the	myelinated	
tract	density	measurement	(right)	(E),	for	comparisons	with	the	dMRI	tractography	connectivity	and	fiber	density	measures	(F).	
Shown	on	top	are	a	select	slice	from	the	b0	image,	the	WMGM	boundary,	and	gyral	labels	segmented	into	crowns,	walls,	and	
fundi.	On	bottom	are	shown	results	from	various	tractography	algorithms	(from	left	to	right:	DTI,	M1;	DTI,	M2;	CSD,	M1).	

8.2.4.1	Definition	of	Gyral	Blades	

Gyral	blades	were	defined	on	the	histological	sections.	Manual	labeling	of	24	gyral	

blades	across	all	slices	(Figure	8.1,	A)	was	performed	by	a	neuroanatomist	(IS),	with	the	help	of	

existing	macaque	atlases	[302,	303].	Each	gyral	region	of	interest	was	represented	on	a	

minimum	of	4	slices,	and	all	described	procedures	were	performed	for	all	regions	on	all	slices.	

Gyral	blades	and	abbreviations	are	as	follows:	Superior	Frontal	Gyrus	(SFG);	Medial	

Frontal	Gyrus	(MFG);	Inferior	Frontal	gyrus	(IFG);	Frontal	Orbital	Gyrus	(FOG);	Lateral	Orbital	

Gyrus	(LorG);	Medial	Orbital	Gyrus	(MorG);	Gyrus	Rectus	(Gre);	Anterior	Cingulate	Gyrus	

(ACgG);	Precentral	Gyrus	(PrG);	Superior	Temporal	Gyrus	(STG);	Insula	(INS);	Middle	Temporal	

Gyrus	(MTG);	Inferior	Temporal	Gyrus	(ITG);	Postcentral	Gyrus(PoG);	Posterior	Cingulate	Gyrus	

(PCgG);	Supramarginal	Gyrus	(SMG);	Fusiform	Gyrus	(FuG);	Posterior	Parahippocampal	Gyrus	

(PPhG);	Superior	Parietal	Lobule	(SPL);	Angular	Gyrus	(AnG);	Inferior	Occipital	Gyrus	(IOG);	

Lingual	Gyrus	(LiG);	Cuneus	(CUN);	Occipital	Gyrus	(OG).	Note	that	one	gyrus,	PPhG,	was	

removed	from	analysis	as	it	was	determined	to	be	defined	only	on	gyral	crowns	(see	2.4.2),	and	

had	no	data	from	sulcal	walls	for	comparison.		

The	gyral	labels	were	transferred	to	MRI	space	(Figure	8.1,	B,	bottom)	using	the	

transformations	described	above	(see	Section	8.2.3	Registration).	Transferred	labels	were	

visually	inspected,	and	manually	corrected	as	necessary.			

8.2.4.2	Defining	Gyral	Crowns	and	Sulcal	Walls	

Labels	for	gyral	crowns	and	sulcal	walls	were	defined	from	the	structural	MRI	data.	

Taking	advantage	of	the	3D	architecture	provided	from	MRI,	many	groups	have	developed	

methods	to	reconstruct	gyral	and	sulcal	parcellations	using	mesh-based,	or	surface-based,	

analysis	derived	from	either	mean	curvature	or	convexity	measures	[304-310].	Traditionally,	the	

crown	of	the	gyrus	is	defined	by	its	convexity	(negative	curvature)	[291,	308].	The	sulcal	walls,	

or	banks	of	the	sulci,	are	the	areas	of	cortex	along	opposing	sides	of	adjacent	gyri	[291]	and	are	

characterized	by	a	low	curvature	[308].	Finally,	the	fundus	describes	the	deepest	part	of	the	
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sulcus	[291]	and	are	regions	with	positive	curvature	[308].	In	this	study,	we	began	with	a	joint	

segmentation	and	bias	field	correction	based	on	integrated	local	intensity	clustering	[311]	to	

create	a	white	matter	mask.	Next,	a	mesh	of	the	WMGM	boundary	was	created,	and	for	every	

vertex,	the	mean	curvature	[304,	305]	is	calculated.	Then,	a	simple	threshold	was	applied	at	the	

33rd	and	66th	percentile	of	the	mean	curvatures	to	segment	the	surface	into	crown,	walls,	and	

fundi	(Figure	8.1,	B,	top).	After	registration,	the	labels	derived	from	3D	MRI	data	were	

transferred	into	2D	histological	space	(Figure	8.1,	B,	bottom).	At	this	point,	we	have	labels	for	

gyral	blades	defined	in	both	histological	and	MRI	space,	and	each	blade	is	segmented	into	

crown(s),	wall(s)	and	fundus	(fundi).			

8.2.4.3	Myelinated	Fiber	Orientations	

	 The	ground	truth	fiber	orientations	were	defined	on	histological	myelin-stained	slices	

using	structure	tensor	(ST)	analysis	[212].	The	ST	has	been	employed	on	histological	sections	in	

2D	on	rat	[134]	and	human	[200,	213]	brains,	and	in	3D	on	macaque	[136]	and	squirrel	monkey	

[199]	brains.	ST	analysis	is	a	technique	based	on	the	dyadic	product	of	the	image	gradient	

vector	with	itself,	and	results	in	an	orientation	estimate	for	every	pixel	in	the	image	(Figure	8.1,	

C,	left).	Downsampling	of	the	high-resolution	orientation	estimates	was	employed	to	determine	

the	primary	fiber	orientation	in	150um2	areas	(Figure	8.1,	C,	right).	These	were	then	used	for	

comparison	with	the	primary	orientation	estimated	from	MRI	using	the	diffusion	tensor	model	

(see	Section	8.2.4.4	dMRI	Estimated	Fiber	Orientations),	as	well	as	for	analysis	of	fiber	

curvature	along	the	WMGM	boundary.	For	visualization,	ST	values	of	orientation,	anisotropy,	

and	staining	intensity	are	displayed	as	hue,	saturation,	and	brightness	(HSB)	images	(Figure	8.1,	

C,	left),	respectively,	at	native	resolution	[134].			

8.2.4.4	dMRI	Estimated	Fiber	Orientations	

We	chose	to	use	the	tensor	model	for	comparisons	of	orientation	with	histology	

(although	any	local	reconstruction	algorithm	can	be	processed	and	compared	in	a	similar	way).	

The	tensor	was	estimated	using	a	NLLS	DT	fit	[312].	After	transformation	to	and	reorientation	in	

histological	space	(see	Section	8.2.3	Registration),	the	primary	eigenvector	of	the	diffusion	

tensor	was	projected	onto	the	2D	histological	plane	[133]	(Figure	8.1,	D).	This	2D	projection	was	

then	compared	to	the	histological	fiber	orientations	estimated	using	ST	analysis.		
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8.2.4.5	Myelinated	“Tract	Density”		

	 An	automatic	count	of	the	axons	leaving	the	white	matter	and	entering	the	cortex	was	

made	along	the	entire	WMGM	boundary	mesh	surface	for	every	gyral	blade	(Figure	8.1,	E).	This	

was	performed	by	dilating	the	WMGM	boundary	50um	into	the	cortex	(to	ensure	we	were	not	

counting	axons	in	the	white	matter)	and	taking	the	intensity	profile	along	this	band.	Because	

the	myelinated	axons	appear	as	low	intensities,	the	intensity	values	were	inverted,	and	a	count	

of	the	number	of	peaks	meeting	an	(empirically	derived)	intensity	threshold	was	made.	This	

threshold	was	kept	constant	across	the	entire	slice,	and	for	all	slices.	The	fiber	density	was	then	

the	average	axon	count	over	a	specific	distance.	For	each	gyral	blade,	this	measurement	was	

summarized	by	taking	the	ratio	of	the	average	fiber	density	at	the	crown(s)	over	the	average	

fiber	density	at	the	wall(s).	We	refer	to	this	quantity	as	the	“connectivity	profile”	of	each	gyral	

blade.		For	statistical	analysis,	we	took	the	natural	log	of	this	ratio.	This	makes	the	ratios	

additive,	the	variance	homogenous,	and	the	distribution	symmetric	[313],	which	allows	for	

standard	parametric	hypothesis	testing.	A	positive	log-ratio	(ratio>1)	suggests	higher	fiber	

connectivity	at	the	crown(s),	while	a	negative	value	(ratio<1)	suggests	higher	connectivity	at	the	

wall(s).		

8.2.4.6	Diffusion	MRI	Tract	Density	

	 We	begin	our	study	by	choosing	fiber	tractography	based	on	(arguably)	the	most	

commonly	used	local	reconstruction	technique,	diffusion	tensor	imaging	[30,	225].	Three	

tracking	strategies	that	are	ubiquitous	in	the	field	are	employed,	distinguished	largely	by	the	

strategy	for	seeding	streamlines.	Each	method	is	performed	using	both	deterministic	and	

probabilistic	propagation	techniques.	Finally,	for	each	method,	four	connectivity	“scaling”	

measures	are	performed.		

	 Method	1	(M1)	is	based	on	whole	brain	seeding.	This	means	seeds	are	initiated	from	all	

voxels	in	the	brain,	and	terminate	only	when	they	exit	the	brain,	or	exceed	the	maximum	

curvature	threshold.	This	method	is	consistent	with	analysis	based	on	tract-density	imaging	

[314],	and	most	commonly	applied	in	studies	where	whole-brain	seeding	is	used	in	combination	

with	waypoints	to	select	specified	white	matter	pathways	[167,	315].	For	each	region	of	

interest	(i.e.	the	crowns	and	walls	for	each	gyral	blade),	the	number	of	streamlines	ending	
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within	the	region	volume	are	counted.	Method	2	(M2)	is	seeded	throughout	the	white	matter.	

White	matter	seeding	is	the	most	common	strategy	for	studies	mapping	the	human	

connectome	[222,	316,	317],	and	again,	is	also	commonly	performed	before	addition	of	

inclusion/exclusion	masks	for	extracting	specific	fiber	pathways.	For	M2,	tracking	is	stopped	

once	the	voxel	leaves	the	WM	(crosses	the	WMGM	boundary),	and	the	number	of	pathways	

terminating	on	the	surface	of	each	label	is	counted.	Method	3	(M3)	then	seeds	from	the	

interface	of	the	WMGM	boundary.		The	method	has	been	proposed	as	a	way	to	bypass	

potential	seeding	biases	[297,	298],	and	is	gaining	in	popularity	in	structural	connectivity	

pipelines.		Again,	tracking	is	terminated	when	the	pathway	crosses	the	WMGM	boundary,	and	

the	number	of	pathways	terminating	on	the	surface	of	each	label	is	counted.	In	all	cases,	

tracking	was	performed	using	the	publically	available	software	package	MRTrix3	[56,	186],	and	

seeding	was	repeated	until	2,500,000	streamlines	were	created.	Streamlines	that	did	not	meet	

the	minimum	length	criteria	of	5x	the	voxel	size	were	discarded.	

	 The	four	connectivity	scaling	measures	are	as	follows.	The	first	option	is	no	

normalization	at	all.	This	number	then	represents	the	raw	“count”	of	streamlines	entering	each	

region	of	interest.	The	second	scaling	mechanism	is	to	scale	the	contribution	of	each	streamline	

to	the	total	count	by	the	reciprocal	of	its	length.	As	described	above,	this	is	intended	to	

compensate	for	biases	introduced	by	homogenous	seeding	throughout	the	brain,	which	leads	

to	over-representation	of	the	long	fiber	pathways.	Third,	the	number	of	streamlines	can	be	

scaled	by	the	reciprocal	of	the	total	node	volume.	This	is	intended	to	compensate	for	the	fact	

that	larger	target	regions	are	more	likely	to	be	intersected	by	an	overall	greater	number	of	

streamlines.	The	results	are	traditionally	interpreted	as	a	connection	density	(count	per	

volume),	which	is	more	of	an	analogue	to	our	histological	measurements	(fiber	density).	(Note	

that,	for	M2	and	M3,	the	data	are	normalized	by	GMWM	surface	area,	rather	than	volume).	

The	final	scaling	option	we	assess	is	to	scale	the	contribution	of	each	streamline	by	the	

streamline	length	(exactly	the	inverse	of	the	second	normalization	mechanism).	Although	not	as	

commonly	used	in	literature,	this	scaling	could	be	justified	on	the	basis	that	longer	connections	

are	harder	to	reconstruct	than	shorter	ones	due	to	tract	dispersion	(uncertainty)	and	tract	

deviation	(errors	in	orientating	estimation)	[57,	141,	318].	Thus,	this	scaling	would	emphasize	
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these	longer,	harder	to	reconstruct	connections	as	an	attempt	to	correct	for	the	path-length	

dependency	inherent	in	fiber	tractography	[156,	319].	

	 In	order	to	assess	the	effects	of	curvature	criteria	on	DTI	tracking,	tractography	was	

performed	with	no	stopping	criteria	other	than	curvature	threshold,	or	leaving	the	brain	mask.	

The	curvature	thresholds	chosen	for	analysis	were	15°,	30°,	45°,	60°,	75°,	90°,	135°,	and	180°	

(equivalent	to	no	stopping	criterion).		Similarly,	the	effect	of	b-value	and	resolution	were	

assessed	by	performing	repeating	tractography	for	all	b-values	(3,000–12,000	s/mm2)	and	for	

the	entire	range	of	resolutions	(300-800um	isotropic).	In	order	to	eliminate	the	effects	of	the	

step	size	on	analysis	of	acquisition	resolution,	the	step	size	was	fixed	for	all	tracking	algorithms,	

at	all	resolutions,	to	10%	of	the	smallest	voxel	size	(i.e.	30um	step	size).	Finally,	to	test	tracking	

biases	using	a	reconstruction	method	capable	of	resolving	multiple	fiber	populations,	we	have	

chosen	a	commonly	used	higher	order	algorithm,	constrained	spherical	deconvolution	(CSD)	

[298],	implemented	in	MRTrix3.		

	 Figure	8.1,	F	shows	the	WMGM	boundary	used	for	seeding	and	stopping,	the	gyral	

blades	segmented	into	crowns,	walls,	and	fundi,	and	3	representative	tractograms.	

8.3	Results	

8.3.1	Histological	Density	Profile	

	 The	results	of	histological	analysis	are	shown	in	Figure	8.2.	We	find	that	many	gyral	

crowns	do	have	more	dense	connectivity	than	neighboring	sulcal	walls.	Eleven	of	the	23	regions	

of	interest	have	a	significantly	higher	fiber	count	at	the	crowns,	and	all	but	one	have	a	higher	

average	fiber	count	at	the	crown	(one-sample	t-test;	p<0.05).		Across	all	gyri,	we	find	an	overall	

log-ratio	value	of	0.12	(average	ratio	of	1.13)	suggesting	an	average	13%	increased	fiber	density	

at	the	crowns	relative	to	walls.	Finally,	a	1-way	ANOVA	with	the	gyral	blades	as	factors	suggests	

that	the	histological	fiber	density	profile	is	not	the	same	across	all	gyri	(F=3.27,	p<.001).	
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Figure	8.2	Histological	density	profile	across	23	gyral	blades.	Average	log-ratio	(circles)	and	95%	confidence	intervals	(lines)	are	
shown	for	each	region	of	interest.	The	value	of	0	(ratio	=	1)	is	shown	as	a	horizontal	dotted	line.	Asterisks	indicate	that	log-ratio	
is	significantly	greater	than	0	(*	p<.05;	**	p<.01;	***	p<.001),	which	means	the	gyral	crown	has	significantly	higher	density	than	
neighboring	sulcal	wall(s).	

8.3.2	DTI	tractography	

	 Figure	8.3	shows	the	tractography-derived	fiber	density	profiles	(ratio	of	crown	measure	

to	wall	measure)	for	all	gyral	blades.	Results	are	shown	for	all	3	seeding	methods,	each	with	

both	deterministic	and	probabilistic	propagation,	and	with	4	scaling	methods	applied	to	each.	It	

is	clear	that	DTI	streamlines	are	biased	towards	the	gyral	crown	relative	to	histology	in	many	

gyral	blades,	for	all	3	tracking	strategies.	No	combination	of	seeding	method	and	quantification	

is	consistently	non-biased	across	all	gyral	blades.	In	fact,	many	gyral	blades	show	a	bias	of	as	

much	as	much	as	12x	more	“connectivity”	at	crowns	that	at	the	corresponding	walls.		
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Figure	8.3	DTI	streamlines	are	biased	towards	gyral	crowns	in	many	gyral	blades,	for	all	tracking	strategies.	The	ground	truth	
density	profile	is	shown	as	horizontal	lines	(mean	+/-	95%	confidence	interval).	DTI	tractography-derived	densities	for	whole	
brain	seeding	(top),	white	matter	seeding	(middle),	and	WMGM	boundary	seeding	(bottom)	are	shown	for	each	gyral	blade,	for	
both	deterministic	(light	gray)	and	probabilistic	(dark	gray)	propagation.	Data	are	shown	as	(1)	no	normalization	(circle),	
normalized	by	length	(star),	inverse	length	(square),	and	inverse	node	volume	(diamond).	Log-ratio	scale	is	shown	on	left	
vertical	axis,	while	the	ratio	measure	is	shown	on	the	right.	A	tractography-derived	value	greater	than	the	histological	range	
indicates	a	bias	towards	the	gyral	crowns.	

	 Condensing	this	information	across	all	gyri	(Figure	8.4)	shows	that	across	the	whole	

brain,	all	algorithms	are	significantly	biased	relative	to	histology,	and	consistently	overestimate	

connectivity	at	the	gyral	crowns	by	a	factor	of	between	1.5	and	5.	Several	trends	are	apparent.	

First,	bias	is	dependent	on	seeding	method	(p<.001,	F=17.64,	df=5),	for	example	M1	(whole	

brain	seeding)	has	significantly	higher	bias	than	M2	and	M3.	Second,	there	is	no	significant	

difference	between	deterministic	and	probabilistic	DTI	tractography.	Finally,	there	are	

significant	effects	of	scaling	mechanism	on	the	gyral	bias	(p<.001,	F=27.89,	df=5).	For	all	cases,	

scaling	by	length	leads	to	the	largest	bias,	followed	by	no	normalization,	then	inverse	length	

and	inverse	node	volume.	It	is	important	to	point	out	that	the	methods	resulting	in	a	fiber	

profile	most	similar	to	histology	-	M3	with	scaling	by	inverse	length	-	has	no	biological,	
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anatomical,	or	technical	basis	for	scaling	by	inverse	length.	This	scaling	mechanism	is	tailored	to	

address	biases	inherent	to	homogenous	white	matter	seeding,	which	is	not	performed	in	M3.	

Thus,	this	combination	of	seeding	and	quantification	is	unlikely	to	be	performed	in	practice.		

	
Figure	8.4	DTI	streamlines	are	more	dense	in	gyri	than	sulci	for	all	three	seeding	strategies,	regardless	of	subsequent	fiber	
quantification.	Mean	(circle)	and	95%	confidence	intervals	(vertical	line)	are	shown	over	all	gyri	for	each	DTI	tracking	algorithm.	
Four	quantification	strategies	include	(1)	no	scaling,	(2)	scaling	by	length	(3)	inverse	streamline	length,	(4)	and	inverse	node	
volume.	Histological	mean	and	95%	confidence	intervals	across	all	gyri	are	shown	as	horizontal	solid	and	dotted	lines.	

	 Inspection	of	the	resulting	fiber	pathways	gives	insight	into	potential	sources	of	the	bias.	

Figure	8.5	shows	a	select	coronal	slice,	with	labels	for	the	crown	and	walls	highlighted.	All	

streamlines	are	colored	by	their	endpoints,	meaning	groups	of	fibers	with	similar	endpoints	will	

share	similar	colors.	For	M1,	the	most	striking	feature	is	the	densely	populated	gray	matter	in	

the	crown,	with	sparse	fibers	throughout	the	wall.	Even	more	striking,	there	are	areas	of	the	

fundus	(dotted	arrow),	where	no	fibers	are	able	to	propagate,	a	characteristic	described	in	

[107],	and	attributed	to	the	superficial	U-shaped	fibers	just	beneath	the	infragranular	layers	of	

the	cortex.	In	addition,	we	see	relatively	sharp	curvature	into	the	cortex	at	the	walls	(solid	

arrow),	a	feature	similar	to	that	described	in	histological	sections	[108,	200,	293].	This	

motivates	an	analysis	of	the	effect	of	curvature	threshold	on	tractography	results	(described	

later).	M2	shows	features	similar	to	M1.	As	in	M1,	it	is	clear	there	is	an	over-representation	of	

some	of	the	longer	pathways	which	tend	to	orient	towards	the	gyral	crown.	For	example,	

seeding	anywhere	in	the	oval	leads	to	an	excessively	dense	representation	of	tracts	in	the	stalk	

of	the	gyrus,	which	all	terminate	in	the	same	vicinity.		
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Figure	8.5	Subset	of	DTI	streamlines	for	each	tracking	strategy.	Labels	for	crown,	wall,	and	fundi	are	shown	with	a	zoomed	in	
view	of	the	SFG.	DTI	streamlines	are	shown	for	M1	(whole	brain	seeding),	M2	(WM	seeding),	and	M3	(WMGM	boundary	
seeding),	and	are	colored	based	on	streamline	end	points.	The	dashed	arrow	highlights	a	fundus,	where	no	streamlines	are	able	
to	propagate.	The	solid	arrow	points	towards	the	increased	curvature	of	streamlines	entering	the	GM.	And	the	oval	highlights	a	
large,	homogenous,	area	of	WM,	where	seeding	will	contribute	to	over-representation	of	fibers	terminating	at	the	crown.	

	 To	confirm	that	the	dominant	source	of	bias	comes	from	the	longer	fibers,	we	separate	

streamlines	by	length	into	short,	medium,	and	long	fibers	(binned	by	33rd	and	66th	percentiles),	
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and	repeat	the	analysis.	Figure	8.6	shows	the	results	(without	scaling),	for	all	algorithms.	In	all	

cases,	the	longer	fibers	are	more	biased	towards	the	crowns	than	medium	and	short	fibers.	In	

agreement	with	known	anatomy	[110],	the	short	streamlines	consist	of	the	short	association	

fibers	(U-fibers)	connecting	the	same	or	adjacent	gyri,	while	the	medium	and	long	fibers	are	

composed	of	the	long	association	fibers	(connectivity	of	different	lobes)	and	commissural	

fibers.	However,	unlike	the	results	of	anterograde	and	retrograde	tracer	studies	[110],	there	is	a	

clear	penchant	for	the	association	and	commissural	streamlines	to	terminate	on	the	gyral	

crowns.	Despite	the	fact	that	increased	seeding	in	longer	pathways	is	the	dominant	source	of	

bias,	applying	inverse-length	scaling	does	not	eliminate	the	bias	(Figure	8.6).		
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Figure	8.6	The	effects	of	fiber	length	on	gyral	bias.	The	(unscaled)	fiber-density	profile	across	all	gyral	blades	is	shown	for	long,	
medium,	and	short	fibers	(top).	A	subset	of	long,	medium,	and	short	fibers	is	shown	for	each	of	the	three	tracking	strategies	for	
a	select	coronal	slice	(bottom).	

8.3.3	Fiber	Curvature	at	the	cortex	

	 Two	examples	highlighting	a	potential	anatomical	cause	of	this	bias	are	shown	in	Figure	

8.7.	Here,	we	focus	on	the	curvature	of	fibers	as	they	enter	the	cortex,	taking	as	examples	a	
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slice	showing	the	SFG	(A-C)	as	well	as	a	slice	containing	the	IFG	and	FOG	areas	(D-F).	Figures	A	

and	D	show	the	WMGM	boundary	(blue	voxels)	along	the	gyral	blades,	as	well	as	the	normal	to	

the	boundary	(yellow	sticks).	ST	analysis,	along	with	the	HSB	images,	qualitatively	highlights	the	

high	curvature	of	fibers	entering	the	cortex	along	the	sulcal	wall	(B	and	E),	and	the	relatively	

low	curvature	at	the	crown	(C	and	F).		

	
Figure	8.7	Fibers	typically	curve	more	at	the	sulcal	wall	than	they	do	at	gyral	crowns.	A	histological	slice	containing	the	SFG	(A)	is	
shown,	along	with	the	WMGM	border	(blue)	and	the	normal	to	the	border	(yellow	lines).	Arrows	are	shown	at	the	wall	(blue)	
and	crown	(red)	going	from	white	matter	into	gray	matter.	Both	arrows	are	perpendicular	to	the	WMGM	boundary.	High-
resolution	HSB	images	in	the	same	places	at	the	wall	(B)	and	crown	(C)	demonstrate	the	high	curvature	of	fibers	entering	the	
cortex	at	the	walls	(B)	and	the	long,	straight	fibers	at	the	crown	(C).	A	myelin-stained	slice	containing	IFG	and	FOG	regions	(D),	
and	high-resolution	HSB	images	at	the	wall	(E)	and	crown	(F),	show	similar	trends.	The	fibers	from	A-C	are	tracked	from	white	
matter,	into	gray	matter,	and	the	angle	these	fibers	make	with	the	normal	to	the	WMGM	border	is	recorded	(G)	for	the	wall	
(blue)	and	crown	(red).	The	slope	of	this	curvature	is	marked	in	various	locations.	The	fibers	from	D-F	are	similarly	tracked,	and	
the	angle	at	these	locations	from	the	wall	(blue)	and	crown	(red)	are	plotted	(H).	Finally,	the	results	from	all	gyral	blades	
analyzed	(I)	are	shown	for	the	crown	(red)	and	wall	(blue)	with	the	mean	(solid	line)	and	standard	deviations	(vertical	lines)	
plotted	for	each.	
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	 To	quantify	the	fiber	curvature	(G	and	H),	the	angle	the	fibers	make	relative	to	the	

normal	to	the	WMGM	boundary	is	plotted	as	they	traverse	from	white	(negative	distance)	into	

gray	matter	(positive	distance).	In	these	regions,	fibers	at	the	crown	stay	relatively	parallel	to	

the	normal	(red	arrows)	throughout	the	entire	path,	and	are	curving	at	only	5°	and	6°	per	

400um	as	they	enter	the	cortex.	At	the	wall,	the	fibers	bend	from	nearly	perpendicular	to	the	

normal,	to	almost	parallel,	within	a	distance	of	less	than	1.5mm.	In	these	specific	slices,	the	wall	

of	the	SFG	(G)	is	curving	at	a	larger	22°/400um	entering	the	cortex,	while	the	highest	curvature	

happens	just	inside	the	white	matter	at	nearly	49°/400um.	For	the	wall	of	the	IFG	and	FOG	(H),	

the	highest	curvature	takes	place	about	400um	into	the	cortex,	curving	at	approximately	

39°/voxel.	Thus,	in	these	two	examples,	the	fibers	curve	more	at	the	sulcal	walls	than	they	do	at	

gyral	crowns.		

	 While	these	examples	highlight	two	slices	with	high	curvature	at	the	walls,	there	is	high	

variability	across	slices	and	across	gyral	blades.	Figure	8.7	(I),	shows	the	mean	and	standard	

deviation	of	the	angle	relative	to	the	WMGM	normal	across	all	analyzed	gyral	blades.	Despite	

the	wide	range,	two	trends	are	apparent.	Fibers	at	the	crown	enter	the	cortex	at	a	smaller	angle	

(relative	to	the	WMGM	normal)	than	those	at	the	walls	(22°	±	15°	and	50°	±	17°,	respectively),	

and	curve	less	upon	entering	the	cortex	than	those	at	the	walls.	

8.3.4	Effects	of	curvature	threshold	

	 We	next	test	the	effects	of	curvature	threshold	on	the	gyral	bias,	by	performing	

tractography	with	varying	curvature	thresholds	(data	not	shown).		We	find	that	for	all	3	

methods,	with	all	4	quantification	techniques,	there	is	no	significant	effect	of	pathway	

curvature	threshold	on	the	bias	(F	ranged	from	0.50-0.81,	p>0.05).		

8.3.5	Angular	agreement	between	histology	and	dMRI	

	 To	assess	whether	the	diffusion	orientation	estimates	are	biased	towards	the	gyral	

crowns	relative	to	the	true	fiber	orientations,	we	compared	the	primary	diffusion	directions	

(projected	onto	the	2D	histological	plane)	with	the	histological	fiber	orientations	estimated	

using	ST	analysis	(calculated	in	the	2D	plane).	Figure	8.8	(top)	shows	the	angular	differences	for	

all	voxels	along	the	WMGM	boundary,	in	each	of	the	gyral	blades.	A	positive	angular	difference	

indicates	that	the	fiber	orientation	from	diffusion	is	angled	more	towards	the	apex	of	the	gyral	
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blade	(relative	to	ST	orientation),	while	a	negative	angular	difference	means	it	is	angled	away	

from	the	apex.	The	first,	second	(median),	and	third	quartiles	of	this	dataset	are	-8.6°,	2.2°,	and	

13.7°,	respectively.	This	indicates	a	slight	bias	for	estimated	fiber	orientations,	the	inputs	for	

fiber	tracking	algorithms,	to	be	oriented	slightly	more	towards	the	crown	than	they	should	be.	

However,	as	the	tensors	become	more	isotropic,	particularly	near	the	cortex,	the	ambiguity	in	

fiber	orientation	increases,	and	could	account	for	much	of	the	angular	differences	measured.		

	 Figure	8.8	(bottom)	shows	the	absolute	angular	deviation	of	voxels	in	the	white	matter	

(this	does	not	include	all	white	matter,	only	that	which	is	contained	within	the	gyral	stalks).	The	

median	absolute	angular	difference	in	the	white	matter	is	9.2°,	indicating	that,	on	average,	the	

tensors	differ	from	the	true	fiber	orientation	by	less	than	10°,	a	value	in	good	agreement	with	

previous	histological	validation	studies	[132,	133].		

	
Figure	8.8	Histograms	of	measured	angle	differences.	The	differences	between	the	true	fiber	orientation	measured	with	high-
resolution	micrographs	and	the	fiber	orientation	estimated	from	diffusion	imaging	are	shown	for	both	the	voxels	comprising	
the	WMGM	boundary	(top),	and	those	that	are	in	pure	WM	(bottom).	The	top	figure	shows	both	positive	and	negative	angular	
differences	along	the	WMGM	border,	indicating	estimated	orientation	error	towards	and	away	from	the	gyral	crown,	
respectively.	The	bottom	figure	shows	the	absolute	value	of	angular	differences	in	white	matter	regions	contained	within	the	
gyral	blades.	
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8.3.6	Effect	of	b-value	

	 Next,	DTI	tractography	was	repeated	for	all	acquired	b-values	(data	not	shown).		For	all	

methods,	and	all	quantification	strategies,	the	diffusion	weighting	did	not	have	a	significant	

effect	on	the	gyral	bias	(F	ranged	from	0.02-0.33,	p>.05).		

8.3.7	Effect	of	image	resolution	

	 Figure	8.9	shows	the	results	(over	all	gyri)	of	running	all	tractography	algorithms	for	all	

acquired	resolutions	ranging	from	300um	isotropic	to	800um	isotropic	voxels	(shown	ranging	

from	light	to	dark	grays).		It	is	interesting	that	for	M2,	increasing	the	resolution	(i.e.	reducing	

voxel	size)	does	not	improve	the	fiber	density	profile	along	the	gyral	blades.	In	fact,	the	

opposite	happens	-	the	observed	bias	consistently	decreases	as	the	resolution	decreases.		This	

however,	does	not	mean	the	streamlines	produced	from	lower	resolution	data	are	more	

anatomically	accurate	(see	Discussion),	only	that	the	measured	tractography	density	along	the	

WMGM	border	more	closely	approximates	the	histological	densities	as	the	voxel	size	increases.	

In	contrast,	the	observed	bias	in	M1	and	M3	trend	in	the	opposite	direction.	

	
Figure	8.9	Gyral	bias	is	dependent	on	MRI	resolution.	Fiber	tracking	is	performed	using	three	tracking	strategies,	at	image	
resolutions	ranging	from	300um	isotropic	to	800um	isotropic.	The	log-ratio	of	density	at	the	gyral	crowns	to	that	at	the	walls	is	
shown	for	all	algorithms,	and	all	resolutions.	Results	are	shown	with	no	scaling	factor.	

8.3.8	Effect	of	higher	order	diffusion	model	

	 We	next	ask	whether	the	ability	to	detect	multiple	fiber	orientations	in	a	voxel	enables	

more	anatomically	correct	streamline	propagation	into	the	cortex.	CSD	has	been	shown	to	be	
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both	accurate	and	consistent	in	resolving	multiple	intra-voxel	fiber	populations,	and	has	been	

used	extensively	to	study	crossing	fibers	throughout	the	brain[45,	210,	216].	Figure	8.10	shows	

the	voxel-wise	reconstruction	results	for	both	DTI	and	CSD	in	two	gyral	blades.	For	DTI	(middle	

column),	3D	ellipsoids	are	shown	representing	the	mean-square	diffusion	distance	in	each	

direction.	WM	glyphs	show	the	typical	“cigar”	shape,	while	more	isotropic	ellipsoids	are	

apparent	along	the	WMGM	boundary	along	with	a	lower	FA,	likely	indicating	larger	geometric	

fiber	dispersion	or	multiple	fiber	populations.	The	CSD	glyphs	(right	column)	show	the	

estimated	fiber	orientation	distributions.	Many	areas	in	both	WM	and	GM	show	multiple	fiber	

populations.	In	addition,	in	agreement	with	previous	studies	[114,	116,	198],	we	see	fibers	

largely	oriented	radially	(perpendicular)	to	the	WMGM	boundary,	particularly	in	the	crowns	

(solid	arrows),	and	crossing	fibers	oriented	tangentially	to	the	boundary	that	are	especially	

prevalent	in	the	walls	(solid	arrows).	Also	of	note,	the	short	U-shaped	fiber	tract	occurring	

between	the	faces	of	adjacent	sulci	(white	brackets)	are	apparent	in	both	diffusion	techniques.	

Even	here,	CSD	often	shows	the	presence	of	a	second	fiber	population	oriented	perpendicular	

to	the	surface,	although	occupying	a	much	smaller	volume	fraction	in	each	voxel	(see	

Discussion).	
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Figure	8.10	CSD	shows	evidence	of	multiple	fiber	populations	along	the	WMGM	boundary.	DTI	ellipsoids	(middle	column)	and	
CSD	fiber	orientation	glyphs	(right	column)	are	shown	for	SFG	(top	row)	and	PRG	(bottom	row).	WMGM	boundary	is	shown	as	a	
yellow	line.	Fibers	are	largely	perpendicular	to	the	WMGM	surface	at	the	crowns	(solid	arrow),	while	crossing	fibers	(not	
detectable	using	DTI)	are	prevalent	along	the	walls	and	in	GM	(dashed	arrow).	Dense	U-fibers	just	below	the	cortical	surface	are	
visible	between	adjacent	sulci	(white	brackets).	

	 Figure	8.11	shows	the	results	of	CSD	[45,	186,	216]	with	both	deterministic	and	

probabilistic	tractography.	Comparing	these	results	with	Figure	4,	CSD	has	a	modest	reduction	

of	gyral	bias	(~1-20%	reduction)	compared	to	DTI.	In	addition,	multiple	combinations	of	seeding	

and	scaling	strategies	are	no	longer	(statistically)	significantly	biased.	However,	these	results	

still	tend	to	overestimate	the	density	at	the	crowns	relative	to	walls.	In	other	words,	although	

the	bias	is	reduced	below	a	statistically	detectable	level,	there	is	still	a	numeric	difference	

between	the	tractography	results	and	the	ground	truth	histology,	but	we	did	not	have	sufficient	

power	to	detect	a	significant	difference.		
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Figure	8.11	CSD	streamline	bias	is	reduced	compared	to	DTI	(compare	to	Figure	8.4),	but	is	still	greater	than	histological	ground	
truth.	Mean	(circle)	and	95%	confidence	intervals	(vertical	line)	are	shown	over	all	gyri	for	each	CSD	tracking	algorithm.	Four	
quantification	strategies	include	(1)	no	scaling,	(2)	scaling	by	length	(3)	inverse	streamline	length,	(4)	and	inverse	node	volume.	
Histological	mean	and	95%	confidence	intervals	across	all	gyri	are	shown	as	horizontal	solid	and	dotted	lines.	

	 Qualitatively,	the	tractography	results	show	high	levels	of	similarity	with	those	from	DTI	

(Figure	8.12),	however	the	ability	of	streamlines	to	propagate	in	multiple	directions	is	now	

apparent	in	both	WM	and	GM.	Similarly,	the	dominant	source	of	bias	from	these	tractography	

results	comes	from	the	longer	fibers	(Figure	8.13),	where,	in	all	cases,	longer	fibers	are	more	

biased	towards	the	crowns	than	medium	and	short	fibers.	However,	this	bias	is	reduced	(for	all	

lengths)	when	compared	to	DTI	tractography	(compare	to	Figure	8.6).	Angular	agreement	in	

CSD	orientation	estimates	was	also	assessed.	The	angular	differences	along	the	WMGM	

boundary	were	slightly	improved	compared	to	DTI,	with	first,	second,	and,	third	quartiles	of	-

8.5°,	-0.7°,	and	7.3°,	respectively,	a	reduction	likely	due	to	the	reduced	partial	volume	effects	of	

multiple	fiber	orientations	along	the	boundary.	The	median	absolute	angular	difference	in	WM	

was	7.9°,	again,	a	slightly	better	value	than	for	the	diffusion	tensor.			
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Figure	8.12	Subset	of	CSD	streamlines	for	each	tracking	strategy.	Labels	for	crown,	wall,	and	fundi	are	shown	with	a	zoomed	in	
view	of	the	SFG.	CSD	streamlines	are	shown	for	M1	(whole	brain	seeding),	M2	(WM	seeding),	and	M3	(WMGM	boundary	
seeding),	and	are	colored	based	on	streamline	orientation.	
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Figure	8.13	The	effects	of	CSD	fiber	length	on	gyral	bias.	The	(unscaled)	fiber-density	profile	across	all	gyral	blades	is	shown	for	
long,	medium,	and	short	fibers	(top)	estimated	using	CSD	tractography.	A	subset	of	long,	medium,	and	short	fibers	is	shown	for	
each	of	the	three	tracking	strategies	for	a	select	coronal	slice	(bottom).		



	 194	

8.4	Discussion	

	 Using	dMRI	tractography	to	map	the	neuronal	connections	of	the	brain	requires	

accurately	estimating	connections	between	large	numbers	of	gray	matter	regions.	In	this	study,	

we	have	shown	that	there	is	a	significant	bias	for	dMRI	tractography	streamlines	to	terminate	

on	gyral	crowns,	relative	to	the	sulcal	banks	-	an	artifact	that	could	significantly	affect	the	

results	of	any	quantitative	estimates	of	connectivity	using	dMRI.	It	appears	that	this	gyral	bias	is	

significant	in	many	gyral	blades	across	the	entire	brain,	and	occurs	even	with	exceptionally	

high-quality	ex	vivo	data.	This	effect	was	shown	for	a	range	of	tracking	algorithms,	including	

both	deterministic	and	probabilistic,	and	varying	model	complexities,	from	the	simple	diffusion	

tensor	(Figure	8.3),	to	a	model	capable	of	describing	a	complex	fiber	orientation	distribution	

(Figure	8.11).		Additionally,	this	gyral	bias	occurred	for	a	range	of	diffusion	weightings,	and	even	

for	very	high	spatial	resolution	datasets	(Figure	8.9).		

	 These	results	have	several	implications	for	current	tractography	practices.	As	described	

in	[201],	the	use	of	the	“fiber	count”	and	similar	terminology	is	likely	an	inaccurate	metric	to	

describe	the	true	connection	strength	between	two	regions	derived	from	diffusion	

tractography.	However,	these	measures	are	widely	used	in	the	literature	[201],	particularly	in	

mapping	connectomes	[65,	66,	222,	284].	Here,	we	have	shown	that	a	“count”	of	the	

streamlines	crossing	the	WMGM	boundary	does	not	accurately	represent	the	fiber	count	in	the	

same	regions	derived	from	histological	measurements.	In	fact,	no	fiber	quantification	strategy	

consistently	yielded	a	connectivity	measure	that	was	not	biased	relative	to	histology.	This	does	

not,	however,	invalidate	existing	connectivity	studies;	rather	than	true	measures	of	

connectivity,	these	graph-theoretical	measures	and	streamline	connections	reflect	some	

characteristics	of	the	underlying	white	matter	microstructure,	with	some	level	of	uncertainty	

and	bias.	This	work	focuses	on	one	of	several	potential	sources	of	fiber	tracking	bias.		

	 The	results	from	this	study	should	also	provide	guidance	for	future	generations	of	

tracking	algorithms.	Specifically,	we’ve	shown	that	nearly	orthogonal	bending	over	the	range	of	

a	millimeter,	particularly	along	sulcal	walls,	is	not	uncommon.	While	the	average	curvature	of	

axons	crossing	the	WMGM	border	is	relatively	small	(~20°/voxel,	see	Figure	8.5),	there	is	

tremendous	variation	across	the	brain,	as	the	gyral	blades	take	a	variety	of	different	geometries	
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and	sizes	(see	Figure	8.1).	Thus,	there	is	a	tradeoff	when	choosing	a	curvature	threshold	

parameter.	A	liberal	threshold	is	necessary	to	track	properly	into	the	cortex,	but	too	high	a	

threshold	may	result	in	a	loss	of	tracking	specificity	[164],	and	potentially	anatomically	

unrealistic	tracks.		Even	so,	very	liberal	thresholds	(including	no	curvature	threshold)	still	

numerically	overestimated	the	connectivity	at	the	gyral	crowns.	Alternatively,	there	is	a	

possibility	to	modify	the	rules	of	fiber	tracking,	possibly	at	the	cortex	[108].	Some	groundwork	

has	already	been	laid	towards	a	histology-informed	model	of	diffusion	near	the	cortex	by	

Cottaar	et	al.		[320,	321],	but	as	of	yet,	no	fiber	tracking	results	using	modified	rules	have	been	

reported.	However,	applying	anatomically-informed	constraints	to	fiber	tracking	algorithms	

terminations	and	rejection	criteria	was	proposed	in	[298],	which	shows	encouraging	results,	

including	a	more	homogenous	density	of	streamlines	along	the	cortical	ribbon	(see	Figure	6	in	

[298]).		

	 In	addition,	there	is	a	class	of	emerging	tractography	methods	in	the	literature	[295,	

322,	323]	in	which	whole-brain	streamline	reconstruction	is	forced	to	match	the	diffusion	

imaging	data,	ensuring	that	the	streamline	density	in	each	voxel	is	more	reflective	of	the	

underlying	biological	fiber	density	at	that	location.	If	the	streamlines	approaching	any	surface	of	

the	WMGM	boundary	have	an	appropriate	spatial	density	distribution,	the	gyral	bias	should	

disappear	[296].	While	these	methods	have	been	shown	to	result	in	more	accurate	streamline	

quantification	in	simulation,	phantom,	and	in	vivo	studies,	they	have	not	been	validated	against	

histologically	defined	fiber	densities.	Results	from	these	techniques,	and	future	tracking	

strategies,	can	be	compared	to	our	histological	results	to	ensure	plausible	connectivity	

measures	that	are	anatomically	meaningful.	

	 Finally,	although	this	observed	bias	causes	both	false	positive	(overestimation	of	fiber	

termination	on	gyri)	and	false	negative	(underestimation	on	sulci)	connectivity	measures,	it	may	

not	present	a	significant	issue	in	studies	of	the	human	connectome.	Because	many	connectome	

analyses	study	regional	differences	in	connectivity	at	the	scale	of	the	entire	gyral	blade,	biases	

in	connection	patterns	and	subsequent	graph	theoretical	measures	may	be	mitigated	by	coarse	

parcellation	schemes.	For	example,	a	parcellation	scheme	based	on	gyral-based	regions	of	
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interest	[306],	or	a	relatively	low	number	of	regions	(~30-70)	[307,	308]	will	probably	be	less	

affected	by	gyral	bias	than	a	scheme	with	~1000	cortical	nodes	[66].		

Sources	of	Bias	–	seeding,	curvature,	partial	volume	effects,	and	fiber	propagation	

	 Overall,	it	appears	that	the	observation	that	streamlines	are	denser	in	gyral	crowns	than	

along	the	sulcal	banks	may	be	influenced	by	a	variety	of	factors.	The	dominant	source	of	gyral	

bias	is	the	over-representation	of	longer	fibers	due	to	whole	brain	and	white	matter	seeding.	

We	show	that	these	long	and	medium	length	fibers	tend	to	terminate	on	gyral	crowns,	and	

contribute	most	to	the	bias	(Figure	8.6).	Importantly,	scaling	the	connectivity	profile	by	the	

inverse	fiber	length	does	not	eliminate	the	observed	gyral	bias.		While	this	empirical	

normalization	does	reduce	the	gyral	bias	relative	to	histology,	applying	this	scaling	de-

emphasizes	almost	all	neighborhood	and	long	association	pathways,	as	well	as	all	commissural	

fibers	–	fibers	which	form	important	components	of	the	brains	connectome.	While	seeding	

from	the	WMGM	boundary	partially	alleviates	this	problem	(Figure	8.4),	there	still	exists	a	bias	

towards	the	gyral	crown	in	many	gyral	blades	(Figure	8.3),	with	an	average	2x	higher	

connectivity	at	the	crowns	that	walls.	It	is	important	to	note	that	because	scaling	by	inverse	

fiber	length	is	specifically	intended	to	compensate	for	homogenous	white	matter	seeding,	the	

application	of	this	metric	(although	it	reduces	bias)	is	not	appropriate	with	WMGM	seeding.	

With	DTI	tractography,	no	combination	of	seeding	and	subsequent	scaling	matches	the	profiles	

obtained	with	histological	analysis.		

	 	Our	analysis	of	myelin-stained	sections	showed	a	higher	overall	curvature	of	fibers	at	

the	sulcal	wall	compared	to	the	relatively	low	curvature	at	the	crowns	(Figure	8.6).	We	

hypothesized	that	a	higher	curvature	threshold	would	allow	more	streamlines	to	enter	the	

cortex,	resulting	in	a	reduced	gyral	bias.	However,	we	found	that	the	curvature	threshold	did	

not	affect	the	overall	bias	(Figure	8.7),	although	it	almost	certainly	does	affect	anatomical	

accuracy	(which	we	did	not	assess).	Analysis	of	individual	gyral	blades	(Figure	8.6,	G	and	H)	

shows	that	myelinated	axons	can	curve	by	as	much	as	50	degrees	per	voxel	(400um	in	this	

dataset)	as	they	enter	the	gray	matter.	This	means	that	(assuming	perfect	orientation	

estimates),	the	curvature	threshold	should	be	set	to	at	least	50	degrees,	and	likely	even	higher	

with	lower	resolution	datasets.		
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	 Partial	volume	effects	due	to	sub-cortical	white	matter	could	cause	a	bias	in	orientation	

estimates	along	the	WMGM	boundary	to	point	towards	the	gyral	crown,	which	would	result	in	

a	gyral	bias	in	subsequent	tractography	[108].	Our	validation	of	orientation	information	on	a	

voxel-by-voxel	basis	shows	that	there	is	a	slight	propensity	for	the	estimated	orientations	to	be	

biased	towards	the	gyral	crown	(by	a	median	value	of	just	2.2	degrees).	This	is	observed	in	data	

acquired	at	400um	isotropic	resolution,	and	is	likely	to	be	even	worse	in	human	datasets	at	

2+mm	voxel	sizes.		

	 Finally,	in	the	case	of	a	local	reconstruction	algorithm	that	is	able	to	reconstruct	

complex	fiber	geometries,	biases	could	result	due	to	assumptions	inherent	in	the	propagation	

method	of	choice.	For	example,	high	angular	resolution	diffusion	imaging	techniques	are	able	

to	resolve	multiple	fiber	orientations	along	the	WMGM	boundary	(see	Figure	8.10),	in	

agreement	with	histology	(see	[293]).	However,	most	tracking	algorithms	will	choose	to	follow	

the	path	with	least	angular	deviation,	rather	than	make	the	sharp	turns	necessary	to	exit	the	

white	matter	(even	if	the	curvature	threshold	allows	for	it).	This	explains,	at	least	partially,	why	

a	gyral	bias	is	still	observed	in	Figure	8.11,	where	we	have	chosen	to	use	CSD	for	local	

reconstruction.	Similar	difficulties	of	fiber	tracks	reaching	certain	cortical	areas	have	been	

previously	documented	in	the	macaque	brain	[107].	Using	dMRI	from	high	resolution	ex	vivo	

specimens,	Reveley	et	al.	find	that	a	large	portion	of	the	cortical	surface	is	inaccessible	to	fiber	

tractography.	They	attribute	these	results	to	dense	sheets	of	white	matter	axons	parallel	to	the	

WMGM	boundary	and	just	beneath	the	cortex	(for	example,	the	U-fibers	seen	in	our	Figure	

8.10),	which	inhibit	appropriate	cortical	termination.	Even	if	dMRI	is	able	to	detect	multiple	

fiber	populations	in	these	superficial	white	matter	bundles	(Figure	8.10),	the	tracking	algorithm	

is	unlikely	to	follow	the	correct	orientation,	which	may	have	not	only	a	larger	deviation	angle,	

but	a	smaller	volume	fraction	component	in	that	voxel.	The	large	areas	of	the	cortex	

inaccessible	to	tracking	are	also	visible	in	our	data	(see	Figure	8.5,	dashed	arrow),	and	lie	

predominantly	in	sulci.	Here,	we	find	that	the	gyral	bias	is	not	only	caused	by	inter-voxel	

(superficial	white	matter	bundles)	and	intra-voxel	(crossing	fibers)	WM	geometries,	but	is	

modulated	by	seeding	and	stopping	strategies,	as	well	as	subsequent	track	weighting	and	

scaling	strategies.	
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Resolution		

	 Because	the	dimensions	of	the	dMRI	voxel	are	orders	of	magnitude	larger	than	the	

structures	the	technique	aims	to	trace	(2-3mm	vs	1-20um,	respectively),	image	resolution	is	a	

clear	limitation	when	it	comes	to	brain	connectivity	studies	[201].	Thus,	it	is	advantageous	to	

increase	the	spatial	resolution	(at	the	expense	of	SNR)	as	much	as	possible	in	order	to	minimize	

the	partial	volume	effects	of	crossing	or	bending	fibers,	and,	hopefully,	better	identify	white	

matter	insertion	points	into	the	cortex.	Results	from	the	Human	Connectome	Project	[282,	324,	

325],	and	other	studies	pushing	the	current	resolution	limits	of	dMRI	[299,	326],	including	ex	

vivo	imaging	[113,	184],	show	promise	in	more	accurately	tracking	white	matter	pathways	into	

the	cortex.		

	 The	results	for	M2	in	our	studies	seems	contradictory	(Figure	8.9),	where	the	gyral	bias	

becomes	worse	as	voxel	size	decreases.	This	could	have	two	potential	explanations.	First,	is	the	

over-representation	of	large	white	matter	tracks	(as	previously	described),	which	are	now	

seeded	more	frequently	due	to	smaller	voxel	volumes.	Second,	the	larger	voxel	size	may	cause	

the	fibers	within	the	cortex	to	have	an	increased	influence	on	fiber	orientations	sampled	in	the	

WM.	This	can	be	due	to	both	partial	volume	effects	between	WM	and	GM,	and	due	to	

interpolation	of	orientation	information	during	the	tracking	process	itself.	Because	the	cortical	

fiber	orientations	are	largely	tangential	to	the	WMGM	boundary	(see	Figure	8.7),	the	estimated	

fiber	orientations	in	larger	voxels	may	be	rotated	towards	the	cortex,	causing	streamlines	

entering	gyral	blades	to	exit	the	WM	along	the	sulcal	bank	before	they	reach	the	crowns.	It	is	

interesting	that	M1	does	not	show	share	the	same	trend,	even	though	it	will	also	be	affected	by	

homogenous	WM	seeding.	The	only	difference	between	M1	and	M2	is	the	inclusion	of	the	GM	

as	a	seed	region	for	M1.	This	suggests	that	a	large	source	of	the	bias	comes	from	seeding	in	the	

cortex	itself.	For	example,	seeds	placed	in	the	sulcal	wall	or	fundi	may	only	propagate	a	few	

voxels	before	encountering	orthogonal	fibers	of	the	underlying	WM	and	terminate	propagation	

due	to	excessive	curvature.	Because	this	propagation	is	(at	most)	the	length	of	the	cortex,	these	

fibers	often	do	not	meet	the	minimum	length	threshold.	In	contrast,	fibers	seeded	from	the	
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crown	can	easily	propagate	into	the	deep	WM	(see	Figure	8.5).	Both	contrasting	effects	on	gyral	

bias	are,	in	part,	partially	alleviated	with	WMGM	boundary	seeding	(Figure	8.9).	

	

Histology	

	 This	study	is	important	also	from	a	purely	histological	perspective.	The	(non)uniformity	

of	the	cortex	has	implications	for	evolution,	cortical	organization,	connectional	architecture,	

and	cerebral	development	or	morphology.	Rather	than	a	structurally	uniform	cortex	[292,	327,	

328],	it	has	recently	been	shown	that	there	is	variation	of	neuronal	density	both	across	species	

[111],	and	within-species	across	major	cortical	areas	[111,	329,	330].	Here,	we	show	that	the	

density	of	axons	entering	(or	leaving)	the	white	matter	actually	varies	even	within-gyrus,	from	

gyral	crown	to	sulcal	walls.	Using	a	similar	parcellation	scheme	based	on	convexity,	Hilgetag	and	

Barbas	[331]	found	an	increase	in	neuron	number	in	the	deep	layers	(cortical	layers	V	and	VI)	of	

the	gyrus	compared	to	the	same	layers	of	the	sulcal	and	intermediate	(sulcal	banks)	regions,	

results	that	are	in	agreement	with	our	studies.	Because	the	architectural	connections	of	cortical	

areas	are	influenced	by	their	location	within	the	gyral	blade,	the	potential	exists	for	future	

parcellation	schemes	to	further	distinguish	cortical	areas	based	on	structural	connectivity.		

	

Study	Limitations	

	 There	are	a	number	of	potential	limitations	to	this	study.	The	most	significant	is	the	

method	for	counting	histological	fibers	crossing	the	WMGM	boundary	–	if	the	boundary	is	too	

deep	into	white	matter,	the	estimated	density	would	be	too	high,	and	too	shallow	a	boundary	

would	make	the	fiber	count	too	low.	To	limit	errors	in	fiber	counting,	we’ve	made	these	

measurements	across	the	entire	gyral	blade	in	each	section,	as	well	as	across	multiple	

independent	sections	(>4)	per	region	of	interest.	Further,	it	can	be	seen	(Figure	8.3)	that	the	

variability	in	these	histological	density	measurements	is	much	less	than	that	estimated	from	

dMRI	fiber	tracking.	Another	major	limitation	is	the	2D	nature	of	the	histological	sections.	

Recent	work	has	extended	histological	analysis	to	3D	[115,	136,	199],	however,	analysis	is	

limited	to	small	fields-of-view,	and	characterization	of	multiple	whole	slices	in	3D	is	a	significant	

technological	challenge.	In	addition,	because	we	are	only	staining	and	imaging	myelin,	our	
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histology	is	not	sensitive	to	non-myelinated	tissue	structures	(including	unmyelinated	axons,	

dendrites,	and	glial	cells)	that	may	contribute	to	diffusion	anisotropy,	particularly	in	the	cortex	

[115].	In	addition,	our	measurements	are	simply	quantifying	the	agreement	(or	lack	thereof)	

between	the	histological	“myelinated	axon	count”	and	diffusion	tractography	“fiber	count”,	

with	the	common	assumption	that	streamline	density	should	be	in	some	way	related	to	the	

number	or	density	(or	some	measure	of	connectivity)	of	axons	(in	our	case,	myelinated	axons).		

	 Finally,	our	histological	“fiber	density”	is	a	simple	count	of	the	axons	entering	the	cortex.	

We	do	not	attempt	to	determine	cortico-cortical	connectivity	in	this	study,	meaning	we	have	no	

knowledge	of	the	specific	fiber	pathway	followed	other	than	the	fact	that	the	fiber	left	the	

white	matter	and	entered	the	gray	matter.	The	myelinated	axons	in	our	study	cannot	be	related	

or	attributed	to	a	specific	tract	system.	A	full	characterization	of	gyral-gyral,	gyral-sulcal,	and	

sulcal-sulcal	connectivity	would	lend	significant	support	(or	opposition)	to	the	various	

morphogenesis	and	morphological	theories	of	cortical	structure	[106,	331].	Similarly,	it	would	

be	of	interest	to	be	able	to	determine	where	in	the	gyral	blade	those	fibers	entering	the	cortex	

came	from.	For	example,	do	fibers	that	form	the	center	of	the	gyral	“stalk”	tend	to	enter	the	

crowns,	while	those	near	the	periphery	“peel-off”	from	the	stalk	as	they	enter	the	cortex	[108]?	

Visual	inspection	of	myelin-stained	or	neuron-stained	histological	slices	suggests	this	is	the	case	

in	at	least	some	regions.	However,	a	full	characterization	of	this	organization	would	require	

tracing	individual	fibers	throughout	the	entire	gyral	blade,	and	could	enable	the	development	

of	future	tracking	algorithms	that	use	anatomical	priors	to	enhance	the	accuracy	of	these	

techniques.	We	not	aware	of	any	studies	quantifying	the	distribution	of	labeled	fibers	which	

could	determine	whether	long-	or	short-range	fibers	are	expected	to	terminate	preferentially	

on	the	crown	or	walls,	nor	that	determine	specific	fiber	systems	that	are	affected	by	this	bias.		

8.5	Conclusion	

	 In	this	study,	using	histology	as	a	tool	for	validation,	we	have	shown	that	there	is	a	bias	

of	fiber	tracking	algorithms	to	terminate	on	gyral	crowns.	We	first	show	that	many	gyral	regions	

in	the	brain	have	denser	histological	fiber	connectivity	than	do	neighboring	sulcal	walls.	Next,	

we	find	that	DTI	fiber	tracking	algorithms	are	significantly	biased	towards	the	gyral	crowns	in	

many	gyral	blades.	The	source	of	this	gyral	bias	is	most	heavily	dependent	on	seeding	strategy	
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and	subsequent	connectivity	quantification	(i.e.,	scaling).	We	also	find	that	myelinated	fibers	

curve	more	at	sulcal	walls	than	they	do	at	crowns.	However,	the	curvature	threshold	of	DTI	

tracking	algorithms	does	not	have	a	significant	effect	on	the	bias.	A	comparison	with	

histological	fiber	trajectories	shows	that	the	underlying	dMRI	estimated	fiber	orientations	are	

also	biased	towards	gyral	crowns.	We	then	show	that	this	tractography	gyral	bias	still	persists	

with	more	advanced	diffusion	models	and	tracking	algorithms,	and	over	a	wide	range	of	MRI	

acquisition	resolutions.	It	is	important	to	keep	these	limitations	in	mind	when	interpreting	dMRI	

connectivity	studies.	Tracking	algorithms	may	be	able	to	incorporate	this	anatomical	

information	when	constructing	streamline	trajectories	and	determining	appropriate	seeding	

and	stopping	criteria.	Future	dMRI	studies	may	need	to	incorporate	anatomical	priors	and	

constraints,	or	non-dMRI	information,	to	accurately	determine	the	structural	connectivity	of	

the	brain.	
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CHAPTER 9: DISCUSSION, CONCLUSIONS, AND FUTURE WORK 

Summary	

	 The	validation	of	quantitative	diffusion	MRI	and	diffusion	fiber	tractography	is	

fundamental	to	the	implementation	of	these	techniques	as	useful	biomedical	tools.	This	

dissertation	focuses	on	validating	tractography	by	comparing	diffusion	MRI	results	directly	to	

histological	data	on	multiple	spatial	scales	–	the	microstructural	scale	of	tissues,	the	scale	of	

MRI	voxels,	and	the	macrostructural	scale	describing	brain	connectivity.	In	Chapter	4,	we	

present	a	web-based	digital	atlas	of	the	squirrel	monkey	brain,	which	serves	as	a	valuable	

resource	of	validation	data	and	methods,	both	of	which	are	utilized	extensively	throughout	the	

thesis.	Chapter	5	then	motivates	subsequent	chapters	by	showing	that	the	most	commonly	

utilized	diffusion	model,	diffusion	tensor	imaging,	is	inadequate	in	a	large	percentage	of	the	

brain,	which	suggests	that	the	use	of	alternative,	more	sophisticated,	reconstruction	methods	

are	necessary	for	anatomical	fidelity.	Chapters	6	and	7	then	aim	to	fully	validate	a	large	number	

of	experimental	methods	developed	to	assess	intra-voxel	fiber	orientation	information.	Finally,	

chapter	8	investigates	the	anatomical	accuracy	of	fiber	tractography,	and	confirms	biases	

associated	with	both	brain	anatomy	and	tractography	methodological	choices.	In	this	chapter,	

we	summarize	the	main	results	of	each	contribution	and	potential	for	future	research	

directions.		

9.1	Squirrel	Monkey	Brain	Atlas	

9.1.1	Summary	

	 Neuroscience	investigations	into	the	organization	of	nerve	pathways	in	the	brain	

frequently	make	use	of	non-human	primates,	which	allow	access	to	a	“gold	standard”	upon	

which	many	of	the	in	vivo	experiments	for	humans	are	designed	and	evaluated	against.	The	

work	in	this	thesis	utilizes	the	squirrel	monkey	brain	as	a	tool	for	validation.	In	the	

neuroimaging	community,	atlases	serve	as	valuable	resources	for	anatomical,	physiological,	and	

functional	studies	of	the	brain,	however,	no	digital	atlas	currently	exists	for	the	squirrel	monkey	

brain.	Because	of	this,	one	of	our	aims	was	to	create	a	web	based	squirrel	monkey	brain	atlas	
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and	database,	both	to	serve	as	a	foundation	for	our	own	validation	studies,	and	for	

dissemination	of	validation	data	to	others	in	the	neuroimaging	community.		

9.1.2	Main	Contributions/Results	

1.	The	first	combined	MRI	and	histology	maps	of	the	squirrel	monkey	brain	are	made	available	

to	the	neuroimaging	community.	The	atlas	data	acquisition	includes	both	in	vivo	and	ex	vivo	

MRI	scans,	tracer	injections,	and	a	variety	of	histological	stains.	In	addition,	a	variety	of	post-

processing	results	are	included.			

2.	A	difficulty	facing	many	validation	studies	is	that	experts	in	image	analysis	rarely	have	access	

to	histological	and	MRI	data	of	the	same	animal.	We	remove	this	impediment	by	providing	both	

light	microscopy	and	diffusion	data,	as	well	as	an	interface	to	our	MRI	and	histology	image	

archive,	and	tools	for	navigating,	viewing,	analyzing,	and	downloading	the	data.	

3.	All	imaging	data	are	aligned	using	a	multi-step	registration	framework,	facilitating	

comparisons	of	multiple	imaging	modalities.	This	framework	is	utilized	throughout	this	work	to	

make	voxel-wise	comparisons	between	light	microscopy	and	quantitative	diffusion	metrics.		

9.1.2	Future	Work	

	 The	Vanderbilt	University	Institute	of	Imaging	Science	is	continually	scanning	and	

employing	the	squirrel	monkey	in	research	on	the	central	nervous	system.	As	additional	data	

are	acquired,	it	will	frequently	be	added	to	the	current	image	archive.	This	could	include	more	

comprehensive	diffusion	MRI	protocols,	expanding	our	current	histology	or	MRI	contrasts	

(BOLD,	susceptibility,	myelin	volume	fraction	imaging,	etc.),	or	imaging	modalities	(i.e.,	confocal	

data).		

	 The	atlas	system	could	be	leveraged	by	external	investigators	to	answer	questions	

beyond	the	current	work.	First	are	quantitative	tests	of	the	accuracy	of	novel	dMRI	analysis	and	

tractography	algorithms.	However,	other	possibilities	include	quantitative	validation	of	fMRI	

connectivity,	validation	methods	for	parcellating	the	thalamus	based	on	dMRI	connectivity,	and	

comparison	of	connectivity	patterns	between	primate	species	(squirrel	monkey,	macaque,	

human).	
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	 In	addition,	our	diffusion	data	in	combination	with	our	tracer	injections	are	currently	

being	used	for	a	diffusion	MRI	community	challenge	for	the	2018	IEEE	International	Symposium	

of	Biomedical	Engineering.	These	publicly	organized	challenges	provide	unique	opportunities	

for	research	communities	to	fairly	compare	algorithms	in	an	unbiased	format,	resulting	in	

quantitative	measures	of	the	reliability	and	limitations	of	competing	approaches.	For	the	first	

time,	the	diffusion	challenge	will	use	histological	data	(from	our	squirrel	monkey	atlas),	with	the	

aim	being	to	most	accurately	replicate	the	anatomical	connections	identified	by	the	histological	

tracer.	These	challenges	should	lead	us	to	conclusions	regarding	tracking	sensitivity	and	

specificity,	as	well	as	potential	reasons	for	tractography	failures	or	misalignments.		

9.2	Crossing	Fibers		

9.2.1	Summary	

	 It	has	long	been	recognized	that	the	diffusion	tensor	model	is	inappropriate	to	

characterize	complex	fiber	architecture,	for	example	voxels	with	two	crossing	fiber	populations,	

causing	misleading	and	erroneous	tensor	measures.	There	is	much	debate	about	the	impact	of	

this	problem,	and	the	best	approaches	to	solve	and/or	mitigate	these	issues.	In	this	study,	we	

ask	if	we	can	mitigate	this	problem	by	increasing	spatial	resolution,	or	whether	future	

neuroscientists	and	researchers	should	focus	on	more	advanced	acquisitions	or	modeling	

techniques.	We	approach	the	problem	using	ex	vivo	MRI	of	the	macaque	brain,	followed	by	

histological	analysis	of	the	same	specimen	to	validate	the	measurements,	as	well	as	extend	the	

analysis	to	resolutions	currently	not	achievable	even	on	pre-clinical	systems.		

9.2.2	Main	Contributions/Results	

1.	Using	both	diffusion	MRI	and	subsequent	histology,	we	find	that	crossing	fibers	are	prevalent	

throughout	the	macaque	brain.	In	addition,	we	find	that	the	fraction	of	voxels	with	crossing	

fibers	varies	with	resolution	in	an	unintuitive	way	–	the	percentage	of	crossing	fibers	increases	

as	the	resolution	increases.		

2.	Crossing	fibers	are	still	prevalent	even	at	scales	of	10’s	of	microns,	a	distance	smaller	than	

bundles	of	white	matter	fiber	tracts.	Thus,	technological	advances	that	may	lead	to	increased	

spatial	resolution	still	will	not	“solve”	this	crossing	fiber	problem.	Rather,	because	complex	fiber	
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configurations	will	always	exist	in	real	datasets,	it	is	critical	to	focus	on	appropriate	tissue	

models	for	describing	fiber	geometry.	

9.3.3	Future	Work	

	 This	work	has	several	results	that	should	help	to	prioritize	future	endeavors	to	improve	

fiber	tractography.	First	and	foremost,	the	diffusion	tensor,	and	all	derived	quantitative	indices,	

will	likely	result	in	un-interpretable	results	in	a	large	portion	of	the	brain,	even	with	high	quality	

datasets.	Because	of	this,	higher	order	models	of	diffusion	become	crucial	to	the	successful	

implementation	of	tractography,	and	future	tractography	studies	should	focus	on	implementing	

these	high	angular	resolution	models	developed	to	resolve	crossing	fibers.	This	motivates	the	

need	to	assess,	understand,	and	validate	these	models,	an	endeavor	undertaken	in	subsequent	

chapters.		

9.3	Validating	Fiber	Orientation	Distributions	

9.3.1	Summary	

	 The	ability	of	diffusion	imaging	to	accurately	assess	fiber	orientation	within	each	voxel	is	

of	paramount	importance	for	valid	reconstruction	of	fiber	pathways.	As	such,	it	is	important	to	

check	and	quantify	the	match	between	the	diffusion	estimates	of	fiber	orientation	information	

and	the	true	structural	orientation	of	fibers.	In	this	work,	we	validate	the	first	step	of	the	

tracking	process:	the	voxel-wise	inference	of	fiber	orientation	from	diffusion	data.		

9.3.2	Main	Contributions/Results	

1.	We	present	the	first	3D	histological	validation	of	fiber	orientation	distributions,	as	well	as	the	

first	histological	validation	to	compare	a	variety	of	the	most	common	and	cutting-edge	

algorithms.	We	do	this	using	high-resolution	microscopy	data,	collected	from	the	same	

specimen	on	which	diffusion	data	were	acquired.	Histological	validation	has	the	advantage	of	

containing	both	the	structural	complexity	and	the	true	diffusion	processes	(and	thus	signal	

generation)	of	the	central	nervous	system.			

2.	All	high	angular	resolution	diffusion	reconstruction	methods	describe	the	overall	continuous	

angular	structure	of	the	fiber	orientation	distribution	well,	however,	no	method	is	consistently	

successful	at	extracting	discrete	measures	of	number	of	fibers	and	orientations	of	fiber	
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orientation	distribution	peaks.	Thus,	care	must	be	taken	when	interpreting	diffusion	results,	

particularly	with	respect	to	estimates	of	number	of	fibers	and	fiber	orientation	based	on	local	

maxima	of	the	FOD.		

3.	No	model	outperformed	others	in	every	quality	criteria	or	experimental	condition,	and	there	

usually	involves	some	tradeoff	in	measures	of	accuracy,	sensitivity,	and	specificity.	In	addition,	

the	models	are	particularly	robust	to	the	number	of	diffusion	directions,	with	acquisitions	

commonly	implemented	for	DTI	(containing	as	few	as	20-30	directions)	retaining	overall	

moderate	to	high	correlations	with	the	histological	fiber	orientations.			

4.	Information	extracted	from	the	diffusion	signal	contains	more	information	than	just	the	

number	and	directions	of	peaks	of	the	fiber	distribution.	Specifically,	the	width	of	the	

distribution	for	many	methods	is	correlated	with	the	histological	dispersion	of	fibers	(i.e.,	the	

orientation	dispersion),	a	metric	that	may	prove	useful	for	increasing	fiber	tracking	accuracy	or	

specificity	for	pathologies.		

9.3.3	Future	Work	

	 The	combination	of	high	resolution	confocal	data	and	multi-shell	high	angular	resolution	

ex	vivo	diffusion	data	is	rich	with	information.	A	large	number	of	both	diffusion	validation	and	

tissue	microstructure/modeling	studies	can	be	performed.	For	example,	incorporating	this	data	

into	future	releases	of	the	brain	atlas	will	allow	other	researchers	to	try	their	own	

reconstruction	algorithms	and	compare	their	results	to	the	current	state	of	modeling.	In	

addition,	approaches	such	as	machine	learning	can	be	studied	to	attempt	to	“learn”	the	

relationship	between	the	diffusion	signal	and	resulting	fiber	distribution.	For	example,	given	the	

diffusion	MRI	signal	and	the	ground	truth	histologically	defined	FOD,	if	deep	networks	can	learn	

a	better	relationship	between	the	signal	and	distribution	than	the	best	current	models,	it	would	

suggest	there	is	unutilized	information	remaining	in	the	diffusion	signal	that	could	be	exploited	

by	clever	modeling	or	interpretation.	We	expect	that	these	confocal	data	will	be	utilized	heavily	

in	the	future	to	inform	diffusion	reconstruction	models.		
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9.4	Validating	Tractography	

9.4.1	Summary	

	 While	accurate	reconstruction	of	the	fiber	orientation	distribution	is	an	essential	step	in	

the	tractography	process,	it	is	not	sufficient	in	itself	to	guarantee	anatomically	accurate	fiber	

pathways.	Here,	we	investigate	whether	the	fiber	tractography	count,	or	streamline	density,	

across	different	locations	in	the	brain	accurately	reflects	that	seen	in	corresponding	histological	

sections.	Specifically,	this	work	focuses	on	one	aspect	of	diffusion	tractography,	a	propensity	for	

streamlines	to	end	at	gyral	crowns,	rather	than	sulcal	walls	or	fundi.	A	bias,	that	if	present,	

could	significantly	influence	our	interpretation	of	fiber	tractography	streamline	counts.	

9.4.2	Main	Contributions/Results	

1.	This	is	the	first	study	to	confirm	the	presence	of	a	gyral	bias	in	diffusion	tractography	

compared	to	histological	measures	of	fiber	density.	We	find	that	there	is	a	statistically	

significant	bias	for	streamlines	to	terminate	on	gyral	crowns,	relative	to	sulcal	banks.	This	gyral	

bias	occurs	in	many	gyral	blades	across	the	brain,	for	a	range	of	tracking	algorithms	and	

reconstruction	methods,	and	in	very	high	quality,	high	resolution	datasets.	

2.	A	simple	“count”	of	streamlines	connecting	two	regions	is	an	inaccurate	measure	of	

“connection	strength”,	and	does	not	represent	the	histological	fiber	densities	in	these	regions.	

No	subsequent	quantification	strategy	common	in	the	literature	(normalizing	by	track	length,	

region	volume,	etc.)	yielded	a	connectivity	measure	that	was	not	biased	relative	to	histology.		

3.	From	a	histological	perspective,	this	is	the	first	work	to	characterize	both	fiber	curvature	at	

the	cortex	and	fiber	density	along	the	cortex.	We	find	that	fibers	curve	when	entering	sulcal	

regions	more	than	they	do	in	gyral	crowns.	In	addition,	rather	than	a	structurally	uniform	

cortex,	we	show	that	the	density	of	axons	entering	(or	leaving)	the	white	matter	actually	varies	

across	and	within	gyri.		

4.	Sources	of	this	anatomical	bias	include	seeding	strategy,	fiber	curvatures,	partial	volume	

effects,	and	fiber	propagation	logic.	Seeding	from	the	white	matter/	gray	matter	boundary	

partially	alleviates	the	anatomical	bias,	relative	to	other	seeding	strategies.	Curvature	

thresholds	of	at	least	50	degrees	per	voxel	are	recommended	to	correctly	branch	into	the	sulcal	
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cortical	regions.	Partial	volume	effects	cause	a	small	bias	in	orientation	estimates	towards	the	

crown,	an	effect	which	will	be	strengthened	on	human	in	vivo	datasets.	Finally,	even	if	fiber	

reconstruction	algorithms	adequately	capture	fiber	curvatures	and	crossings,	many	

tractography	streamlines	will	incorrectly	choose	the	next	propagation	step	based	on	

assumptions	and	simplifications	in	the	tracking	algorithms	itself.	

9.4.3	Future	Work	

	 There	is	tremendous	potential	for	future	work	with	data	in	this	atlas,	both	regarding	the	

gyral	bias,	and	tractography	validation	in	general.	There	is	a	class	of	emerging	tractography	

techniques	which	force	the	reconstructed	streamlines	to	match	the	diffusion	data,	ensuring	

streamline	density	along	the	gyrus	is	more	reflective	of	the	underlying	biology.	This,	and	future	

generations	of	tractography	algorithms,	including	those	that	may	be	anatomically-informed,	

should	be	implemented	on	our	data,	and	validated	using	our	histological	techniques.		

	 There	is	still	much	left	to	do	for	validating	tractography	algorithms.	Every	step	in	the	

tracking	process	–	including	seeding,	track	propagation,	and	stopping	criteria	-	influences	the	

final	results	of	estimated	pathways.	For	example,	varying	tracking	parameters	such	as	curvature	

limits	and	path	step	length,	in	addition	to	potential	integration	of	neighboring	information,	will	

likely	result	in	differing	estimates	of	white	matter	pathways.	The	effects	of	each	of	these	

components	on	the	anatomical	accuracy	of	tractography	needs	to	be	studied	in	order	to	allow	

the	limitations,	in	terms	of	track	specificity,	sensitivity,	and	precision,	to	be	understood.	

Because	the	incidence	of	erroneous	connections	in	tractography	is	largely	unknown,	future	

work	should	probe	whether	fiber	tractography	can	correctly	reflect	the	anatomical	connections	

in	the	brain.	To	do	this,	one	could	utilize	the	diffusion	MRI	and	histological	chemical	tracer	data	

from	the	same	specimens	–	all	data	currently	available	in	our	atlas	-	in	order	to	quantify	the	

anatomical	accuracy	of	diffusion	fiber	tractography,	as	well	as	investigate	the	systematic	effects	

of	existing	tracking	algorithms	and	acquisition	parameters	on	tracking	specificity	and	sensitivity.	

The	use	of	histology	is	the	only	tool	which	offers	both	high	sensitivity	to	be	able	to	delineate	

tracks	of	interest,	and	the	high	complexity	seen	in	the	tissue	of	interest	–	the	brain.		
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9.5	Concluding	Remarks	

	 Diffusion	MRI	fiber	tractography	has	the	potential	to	expand	our	knowledge	and	

understanding	of	the	fiber	pathways	in	both	healthy	and	diseased	brains,	aid	diagnosis	of	

patients	with	brain	injury	and	disease,	and	provide	insight	into	basic	neuroscience.	However,	

the	application	of	these	methods	is	racing	ahead	of	our	ability	to	understand	the	data,	their	

limitations	and	untapped	potential.	For	these	techniques	to	be	used	in	a	safe,	accurate,	and	

effective	manner,	we	must	be	sure	of	their	efficacy.	To	improve	the	accuracy	of	diffusion	MRI	

studies,	and	our	ability	to	understand	these	techniques,	this	thesis	compares	diffusion	data	

directly	to	histological	data.	This	work	highlights	some	of	the	leading	causes	of	error	of	these	

techniques,	on	both	the	tissue	microstructure	scale	to	that	of	brain-scale	networks.	In	addition,	

we	hope	that	the	research	described	in	this	dissertation,	and	methodology	and	dissemination	

of	validation	data,	will	increase	the	understanding	of	the	relationship	between	the	diffusion	

MRI	signal	and	the	neuronal	organization,	tissue	properties,	and	structural	connectivity	of	the	

brain.		
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