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CHAPTER I 

 

INTRODUCTION 

 

  Common, complex diseases are not caused by a single gene mutation but rather 

have genetic and environmental components.  As a subset, autoimmune diseases also 

possess robust gene expression signatures that have both genetic and environmental 

contributions.  We explored gene expression signatures in type 2 diabetes, coronary 

artery disease, and their precursor state metabolic syndrome, and identified overlapping 

gene expression signatures exhibiting greater resemblance to each other than to an 

autoimmune disease.  These signatures are consistent with activation of the innate 

immune response.  Genetic variations contribute to familiality and we sought to 

determine if large-scale genomic variants, copy number variants (CNVs), are associated 

with common, complex diseases.  To do so, we first developed methods to identify CNVs 

from SNP-based arrays. We analyzed genomic variation in type 1 diabetes and identified 

CNVs that were differentially present in patients with or at high risk for type 1 diabetes 

versus control. Thus, we conclude that both gene expression profiles and genomic 

variants are easily detected clinical markers that may be useful predictors of disease 

liability and serve to identify new classes of therapeutic targets.   
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Common Complex Disease 

 

  Complex diseases can include all those not known to be caused by a single gene 

mutation. Rather, they are thought to be caused by a combination of multiple genetic and 

environmental factors. Examples include chronic obstructive pulmonary disease, 

Parkinson disease, hypertension and diabetes. Autoimmune disease is one class of 

complex diseases with a strong genetic component. This group of diseases affects 3-5% 

of the human population1 and can be further divided into diseases that are systemic, like 

systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) and those that target a 

single organ, like type 1 diabetes (T1D) and multiple sclerosis (MS).  

  Another class of common complex diseases includes such conditions as type 2 

diabetes (T2D), coronary artery disease (CAD) and a well-defined precursor state to both 

T2D and CAD, the metabolic syndrome (MetS). These conditions will be called 

“metabolic disorders” because obesity is a trait strongly associated with all three. Obesity 

is also increasingly common in the United States. The U.S. prevalence of MetS may be as 

high as 39%, indicating that over 1/3 of the nation is at high risk for developing T2D or 

CAD, and possibly both2,3. 

 

Autoimmune Disease 

  SLE is a systemic autoimmune disease where antibodies to the components of cell 

nuclei can be detected4. These autoantibodies are able to bind in any cell, tissue and 

organ in the body, often causing widespread disease. RA is a disease of joint 

inflammation triggered by lymphocytic and monocytic infiltration to the synovium, 
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synovial hyperplasia, antibodies binding to the synovium, joint destruction and systemic 

inflammation5. T1D results from immune-mediated selective destruction of insulin 

producing beta cells of the pancreatic islets resulting in insulin deficiency and 

hyperglycemia6,7. Symptoms of polydipsia, polyuria, polyphagia and weight loss manifest 

when significant numbers of beta cells are destroyed.  MS is a neurological disease 

characterized by demyelination of the myelin sheaths of neurons resulting in symptoms 

such as vision and sensorimotor disturbances8. 

  A central tenet of the immune system is the ability of lymphocyte receptors to 

distinguish self from non-self; this concept is called tolerance. Lymphocyte specificity is 

determined by random recombination events in order to create a large repertoire of 

antigen receptors. This is achieved by recombination of one of each of three essential 

receptor segments: variable (V), diversity (D) and joining (J).  By the nature of the 

random generation of these receptors, between 20 and 50% of them will recognize and 

bind self proteins and must be edited or removed centrally, or controlled peripherally, to 

prevent autoimmune disease9. The processes by which tolerance is established differ 

slightly for B cells and T cells10. 

  B cells that react with self antigen can either be deleted or undergo receptor 

editing of the light chain during their development in the bone marrow; this is called 

central tolerance.  Receptor editing changes the antigen specificity of the cell and ideally 

prevents it from binding to self.  Receptor editing serves as the last chance for 

autoreactive B cells to escape deletion.  If the receptor retains self-specificity, the cell is 

signaled to undergo apoptosis in a process referred to as negative selection. Sometimes 

self-reactive B cells escape deletion and are accidentally released to the periphery.  When 
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these self-reactive cells encounter the antigen they recognize in the absence of co-

stimulatory molecules, which are required for complete activation, they are stimulated in 

such a way to become permanently "anergic," or not responsive to antigen. Additionally, 

other B cells bind only weakly to self antigen and so escape detection and deletion.  

These B cells are usually nonfunctional (since their antigen binding is weak), but can 

become activated if the concentration of the antigen they recognize is unusually high. 

   T cells undergo both positive and negative selection during development in the 

thymus. Like B cells, T cells that react to self-antigen are deleted by negative selection.  

T cells must bind self-MHC in order to recognize antigen.  Positive selection of T cells 

occurs when T cells bind self-MHC in the thymus and receive a signal to live and 

proceed to the periphery. Positive selection is important to ensure T cells that fail to 

recognize self-MHC are not released to the periphery, as they would essentially be 

nonfunctional.  Clonal selection ensures that the mature T cell population can react with 

foreign antigen, but does not react with self-antigen. Inevitably, there are self antigens 

expressed at very low levels, or not at all, in the thymus. T cells reacting to these antigens 

do not have the opportunity to undergo negative selection. These cells are released to the 

periphery where they must be controlled through clonal deletion, anergy, active 

suppression or ignorance.  

  Clonal deletion occurs when a T cell that binds repeatedly to antigen (due to a 

high concentration of self antigen, for example) undergoes programmed cell death. 

Anergy, as previously described, is a state in which the T cell recognizes self-antigen but 

remains inactive due to a lack of the co-stimulatory molecules required for activation of 

the T cell. Self reactive T cells are kept non-functional when self antigen is presented at 
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low levels, a process called active suppression. The cells reacting at low levels 

differentiate into regulatory cells, which prevent other cells from reacting to that antigen 

by secreting regulatory cytokines. This is the most common mechanism for controlling 

potentially autoreactive T cells in the periphery.  Finally, like B cells, if a self-reactive T 

cell never encounters its antigen, it will be harmless under normal conditions. This is 

called clonal ignorance.  

  In all autoimmune diseases, there is a fundamental loss of tolerance that develops 

through one or more of several possible pathways.  Mechanisms proposed to account for 

loss of tolerance to self-antigen include, but are not limited to, homeostatic expansion of 

autoreactive T cells, cross-reactivity of infectious antigens with self-proteins, and genetic 

predisposition to recognition of self-antigens.   

  Homeostatic expansion is the proliferation of certain subtypes of T cells in 

response to relative lymphopenia, a process driven both by lack of T cells in the 

lymphocyte compartment and cytokine growth factors11,12,13. Lymphopenia, due to 

thymectomy or a viral infection, for instance, is often found as a precursor to the 

development of autoimmunity14 and as a feature of certain autoimmune diseases, like 

T1D15. It is hypothesized that in the T cell depleted state, autoreactive T cells 

preferentially expand and trigger the onset of autoimmune disease14,16. 

  Cross reactivity of an antibody, originally generated to fight an infection, with a 

self-antigen could also trigger development of an autoimmune disease. For example, in 

MS, antibodies are found that react with the nervous system protein myelin17. Sequencing 

of several viral genomes including influenza, measles and Epstein-Barr virus show that 

each of these genomes contain sequences similar to those found in myelin, a concept 
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called “molecular mimicry.” During an infection with any of these viruses, there is a 

chance that an antibody will be generated that is cross reactive with myelin, potentially 

resulting in the onset of MS.  

  Finally, genetics are also known to play a role in the loss of tolerance and 

occurrence of autoimmune disease. One of the initial observations that suggested a 

genetic component was that this group of diseases tends to cluster in families and be 

present generation after generation. One way to study the inheritance of disease is to 

determine incidences in monozygotic and dizygotic twin pairs. Presumably, monozygotic 

twins share the exact same genome while dizygotic twins share only as much as non-twin 

siblings do, estimated to be no more than 50% similar. By studying pairs in which one 

twin is diagnosed with an autoimmune disease and counting the frequency with which the 

co-twin is also diagnosed with that disease, the impact of genetics can be assessed.  

  The incidence of RA in a monozygotic co-twin of a diagnosed subject is 15.4% 

whereas the incidence of disease in a dizygotic co-twin is only 3.6%18. Data from twin 

studies also make it possible to estimate the heritability of RA by accounting for factors 

that may compound the data, like age, gender and clinical disease characteristics. Based 

upon two separate analyses, the genetic component of RA ranges from 53-65%19. T1D 

shows similar genetic heritability. Monozygotic twins have anywhere from 27.3-65% 

concordance rate while the disease concordance rate for dizygotic twins is only 3.8%20,21. 

Interestingly, the average time to diagnosis of T1D in the second twin is also shorter (6.9 

years) in monozygotic than dizygotic twins (23.6 years)20. Additional studies have 

tracked the unaffected twin in a T1D-discordant pair not only for development of 

diabetes, but for presence of an islet specific autoantibody in serum. While cumulative 
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incidence of diabetes in the unaffected twin was 65% by age 60, persistent autoantibody 

positivity was detected in 78% of the unaffected twins in the same time frame21. 

  The major histocompatibility complex (MHC) is a highly polymorphic region of 

the genome, found on chromosome 6, that encodes proteins (human leukocyte antigens, 

HLA) responsible for the presentation of antigens to immune system cells. HLA types are 

inherited and certain are shown to provide protection from or susceptibility to 

autoimmune disease. For instance, HLA-DR and HLA-DQ confer the greatest 

susceptibility to developing MS; HLA-DRB1 is a risk allele for RA and the DQ allele 

also confers risk for T1D17,22,23. Additional genes have been associated with autoimmune 

disorders but do not carry the same impact on heritability as the MHC24,25,26. It has been 

estimated that as much as 30% of the heritability of RA is derived from HLA alleles 

while estimates for the heritability of T1D place the importance of the MHC at 50%22,27. 

  While homeostatic expansion of T cells, cross reactivity following infection and 

genetics are all sound bases for the development of autoimmune diseases, none have been 

shown to operate independently of the other to cause disease. How these three work 

together to definitively trigger disease is not entirely understood.  

 

Metabolic Disorders 

  Type 2 diabetes (T2D) is a metabolic disorder of peripheral insulin resistance28. 

Insulin is a pancreatic hormone involved in tightly regulating blood glucose levels. 

Insulin resistance occurs when the biological effect of insulin does not achieve its 

purpose of disposing of blood glucose in skeletal muscle and suppressing hepatic glucose 

production. The result, hyperglycemia, should stimulate greater insulin production and 
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secretion from the beta cells of the pancreas. In T2D, the physiological response to 

hyperglycemia is not sufficient to reduce blood glucose levels to the normal range, 

resulting in maintained hyperglycemia and glucose toxicity. Glucose toxicity is another 

mechanism that induces beta cell dysfunction. While T2D begins as a problem of insulin 

resistance, prolonged untreated hyperglycemia may ultimately cause partial or complete 

loss of beta cell function requiring pharmacologic insulin therapy. Risk factors for T2D 

include obesity, physical inactivity and family history. Adipocytes secrete non-esterified 

fatty acids that affect the ability of insulin action at effector sites like the liver and 

skeletal muscle. Twin studies in type 2 diabetics show the monozygotic concordance rate 

of T2D ranges from 35-58% while the dizygotic concordance is 17-20%29. Thus we can 

see that even in situations of presumably identical environmental exposures, genetic 

factors have an additional impact on the occurrence of T2D. 

  Coronary artery disease (CAD) results from atherosclerotic plaque development 

in coronary arteries30. A plaque begins as a so-called "fatty streak," when lipid-filled 

macrophages accumulate in the inner layers of the artery wall. The process that follows 

layers smooth muscle cells with additional lipid-filled macrophages underneath a cap of 

connective tissue to create a complex lesion. This fibrous, fatty plaque can ultimately 

block the flow of blood or rupture the vessel, resulting in angina and/or myocardial 

infarction. Risk factors for CAD are similar to those for T2D. Hyperlipidemia 

predisposes to the development of these plaques, making obesity and physical inactivity 

risk factors for CAD. CAD also has a genetic component as studies of risk of death due to 

CAD have shown the relative risk of death to be 8.1-15.0 for monozygotic twins whose 
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co-twin died of complications related to CAD prior to age 55, with only a 2.6-3.8 relative 

risk of death in dizygotic twins31. 

  Metabolic syndrome (MetS) is a well-defined precursor state to both T2D and 

CAD3,32,33,34,35,36,37,38. The International Diabetes Federation (IDF) defines this pre-

disease state as central obesity plus any 2 of the following 4 characteristics: 

hypertriglyceridemia, low levels of high-density lipoprotein (HDL) cholesterol, 

hypertension or raised fasting plasma glucose. These criteria reference a number of 

underlying biological processes. Raised fasting plasma glucose, for instance, is the first 

clinically detectable sign of insulin resistance or beta cell dysfunction. As previously 

mentioned, hyperlipidemia, including hypertriglyceridemia, is an independent risk factor 

for both T2D and CAD that is included in the definition of MetS.  

  The prevalence of MetS in the United States is as high as 39% using the IDF 

criteria2. Diagnosis of MetS confers a 1.5-2.6 relative risk of developing CAD33,34 and a 

3.5-7.5 relative risk of developing T2D3,35,39. Additionally, the Framingham study 

determined that a portion of these relative risks persist even in the absence of obesity40. 

This trio of disorders poses a significant threat to public health in the United States but 

one that is not irreversible. Weight loss and dietary modifications can reverse the criteria 

used to diagnose metabolic syndrome and decrease the patient's consequent risk for T2D 

and CAD. 
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Gene Expression Profiling 

 

  In the mid-1990s robotic printing of cDNAs onto glass slides birthed microarray 

technology and the ability to measure the mRNA expression levels of large numbers of 

genes in a biological sample in one experiment41,42.  Soon after, these arrays were 

employed to define cellular and disease phenotypes, biological responses to stimuli as 

well as to monitor progression of disease and responses to treatment. Both organ target 

tissues and peripheral blood have been used as substrates for transcript isolation and 

microarray analysis. 

  Gene expression microarrays are built using oligonucleotide probes 

complementary to the sequences of mRNA transcripts. Early arrays measured expression 

based on sequences in the 3' untranslated region for targeted groups of genes numbering 

in the thousands. With advancing technology, it has become possible to assess the 

expression levels of all known genes with probes that can recognize and bind various 

parts of the transcript including exon-exon boundaries and alternatively spliced 

sequences.  Two options for genome wide gene expression analysis are the Human 

Exonic Evidence Based Oligonucleotide, or HEEBO, array (www.microarray.org) and 

the Affymetrix GeneChip array (www.affymetrix.com). The HEEBO array contains 

nearly 45,000 cDNA probes designed by researchers at Stanford University using a 

transcriptome based library of exonic structure. The probes include both constitutively 

expressed and alternatively spliced sequences for maximum detection of all known 

transcripts of genes. The Affymetrix GeneChip is one of the most widely used gene 
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expression arrays and measures expression of nearly 29,000 genes with multiple probes 

per gene spanning the length of the transcript. 

  To analyze gene expression by microarrays, mRNA is isolated from a biologic 

sample and transcribed to produce fluorescently labeled cDNA. The cDNA is hybridized 

to the array, washed to remove excess unbound sample and scanned into a computer. The 

computer aligns fluorescence intensity values at each oligonucleotide probe with the 

corresponding gene. Two-color fluorescence can be used with a control (CTRL) sample 

on each array and a measurement of the ratio of intensity. Alternatively, raw intensities 

from each test sample can be compared to those of a separate CTRL sample or group for 

determination of relative expression values.  

  There are a number of options for analyzing microarray data, including statistical 

analyses offered by The Institute for Genomic Research's program TM443 and gene set 

analysis using Gene Ontology groupings44. TM4 is a suite of microarray analysis 

programs including options for normalization and viewing. The multi-experiment viewer 

(MeV) allows not only visualization of microarray data but also advanced statistical 

analyses. Statistical analysis of microarray (SAM) is a supervised comparison of two 

groups of microarray data that assumes gene expression is significantly different between 

groups45. Each sample is assigned to a group and SAM determines which genes are most 

likely to differ between those groups. This result comes with a false discovery rate 

estimating the number of genes likely to have been identified as differential by chance 

alone. The SAM output can be used as input for support tree hierarchical clustering with 

bootstrap re-sampling. Bootstrapping is a method of re-sampling with replacement where 

each group retains the same number of samples, but in each comparison certain samples 
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are dropped and others are duplicated. This allows the impact of an outlier sample to be 

minimized and support can be calculated for the similarity of samples to each other based 

on the significantly differentially expressed genes determined by SAM.   

  Additionally, gene expression data can be analyzed in the context of gene sets to 

increase the likelihood of discovering functional associations46. In this process, intensity 

based expression levels of all genes measured are grouped by similar function or 

participation in shared pathways using research deposited into public databases. Genes 

may belong to more than one gene set. By grouping genes, differential expression of 

pathways and processes can be detected on a biologically relevant level. Of note, these 

analyses work within the framework of known gene associations and pathways. The 

identification of novel gene-pathway associations would not be possible through this type 

of gene set analysis.  

 

Gene Expression Profiling of Cancer  

  One of the first applications of microarray gene expression technology was in the 

field of cancer. Gene expression profiles were characterized for known tumors and 

consequently, transcripts isolated from potentially malignant tumors could be analyzed 

by microarray and the type of cancer could be determined. These tests allowed for the 

better typing of known classes of tumors as well as further classification of cancer 

types47,48,49. Prior knowledge of diagnosis or cancer type in a study of acute leukemia was 

not necessary to inform the distinctions in gene expression between types making gene 

expression microarray a powerful and sufficient tool for future diagnoses50.  
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  Certain of these expression signatures are also associated with differential 

outcomes. Microarray analysis of B cell lymphoma showed two distinct profiles, one 

most closely resembling the expression profile of germinal center B cells and the other of 

activated B cells51. Overall survival was significantly better in patients with germinal-

center-like lymphoma making gene expression profiling clinically significant in the 

diagnosis of and care for patients with B cell lymphomas.  

 

Gene Expression Profiling in Autoimmune Disease 

  Microarray analysis of transcripts isolated from peripheral whole blood can give a 

portrait of gene expression in lymphocyte-related diseases like autoimmune diseases52,53. 

Using an array that quantified expression of more than 4,000 genes, a gene expression 

signature was found to be common to RA, SLE, T1D and MS (Figure 1-1)54. This 

signature is unique from CTRL subjects and recently immunized subjects, indicating that 

genes differentially regulated in autoimmune disease are not those involved in a typical 

immune response.  Rather, differentially expressed genes encode proteins involved in cell 

cycle regulation, differentiation, apoptosis and cell migration55.  

 

Figure 1-1. Comparison of the immune and autoimmune classes by cluster analysis. 
The entire data set: preimmune (Cont), postimmune (Imm), and the four autoimmune 
disease groups—RA, SLE, IDDM, and MS—were subjected to cluster analysis. 
IDDM=T1D.  
Taken from: Aune, T. M., et al. "Profiles of gene expression in human autoimmune 
disease." Cell Biochemistry and Biophysics. 2004. 40:81-96. 
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  To explore the reach and impact of the autoimmune gene expression signature 

further, transcripts isolated from peripheral blood of unaffected first degree relatives of 

patients with an autoimmune disease were analyzed on the same 4,000 gene 

microarray56,57. Unaffected first degree relatives showed a similar profile to their 

autoimmune-affected relatives, indicating that the profile is not solely representative of 

an active disease process (Figure 1-2). Environmental exposures or genetic inheritance 

may also influence expression of the genes in this signature in the absence of clinical 

disease57.  
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Figure 1-2. Hierarchical clustering using core autoimmune genes. 
Microarray data were restricted to 29 previously identified core autoimmune genes. 
Profiles for control individuals (Cont), unaffected family members (F) and autoimmune 
individuals (RA or SLE) were subjected to hierarchical clustering. Hybridization 
intensities are represented as a range from black (no expression) to red (high expression). 
Taken from: Aune, T. M., et al. "Profiles of gene expression in human autoimmune 
disease." Cell Biochemistry and Biophysics. 2004. 40:81-96. 
  

  While a portion of the signature overlaps with unaffected relatives, a portion can 

be identified as unique to patients with RA, T1D, SLE or MS58. The differentially 

expressed genes unique to patients with an autoimmune disease fall in the broad classes 

of DNA damage response genes, RNA splicing, and responses to toxin.  
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  Ability to differentiate a patient with an autoimmune disease from one without 

based on gene expression data derived from peripheral blood is clinically relevant when 

considering that certain autoimmune diseases, like SLE and MS, are notoriously difficult 

to diagnose and peripheral blood is an easily accessible and replenishable resource. The 

differentially expressed genes, together, could serve a purpose in diagnostics. In addition, 

the differential expression of genes in the autoimmune signature also suggests certain 

functional deficits might be found in lymphocytes from patients with autoimmune 

diseases. 

  The autoimmune gene expression signature showed differential expression of cell 

cycle response and apoptosis genes, in particular down regulation of the gene encoding 

the protein p53. The apoptotic response to gamma radiation is a p53-dependent cellular 

process. Lymphocyte viability studies showed that T cells from patients with RA had 

lower levels of apoptosis in response to gamma radiation than T cells from CTRL 

subjects59. This study is in agreement with research on murine models of autoimmune 

disease that showed defective apoptotic pathways to be involved in the pathogenesis of 

disease60. Similar gamma radiation studies in peripheral blood mononuclear cells from 

patients with MS showed identical deficits in apoptosis in response to radiation and 

further attributed the decline in p53 to a lack of stabilization of that protein by the ATM 

protein61. These studies confirmed a functional cellular deficit corresponding to altered 

transcript levels discovered in the peripheral blood gene expression profiles of patients 

with autoimmune diseases. 

  Additional studies have delineated disease-specific gene expression profiles for 

autoimmune diseases. The peripheral blood gene expression signature of SLE has been 
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characterized by a number of groups to include significant differential expression and 

dysregulation of genes involved in the interferon response62,63,64. The presence of this 

signature has also been associated with more severe disease, including kidney and 

nervous system involvement. As a result of this work, interferon-targeted therapies have 

been developed and are presently being tested as treatment in SLE patients with the 

interferon associated gene expression profile65,66.  

  Microarray studies in T1D have characterized peripheral blood gene expression 

signatures unique to both patients who test positive for islet-autoantibodies and patients 

with clinical diagnosis of T1D, each distinguishable from the signature of CTRL 

patients67. The signatures feature differential expression of genes associated with cellular 

metabolism and oxidative phosphorylation as well as interferon response genes, similar to 

SLE. 

  Gene expression profiling of peripheral blood has also further characterized the 

RA signature, delineating differential gene expression in patients based on their HLA 

profiles, treatment status and disease activity. Gene expression profiling of synovial 

tissue has also characterized gene expressions based on the type of lymphocyte 

infiltration seen microscopically68. These advances make it possible to use gene 

expression to further characterize disease and assess response to treatment. 

  Collectively, studies of microarray gene expression analysis in autoimmune 

diseases show that in addition to distinguishing patients with disease from CTRL subjects 

and their relatives, data gathered from peripheral blood gene expression microarray 

analysis can also inform on cellular functional deficits that may contribute to the 

pathogenesis of disease.  
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Peripheral Blood Gene Expression in Metabolic Conditions 

  We hypothesized that other common, complex diseases like T2D, CAD and their 

precursor, MetS, would also have distinct peripheral blood gene expression profiles that 

would enable distinction of these patients from CTRL and enhance our understanding of 

each disease or state. We sought to analyze their gene expression profiles in reference to 

CTRL, to each other and to an autoimmune disease. 

  T2D, CAD and MetS each feature a peripheral blood gene expression profile 

distinct from that of CTRL patients (Chapter II). However, the profiles of each of these 

states are indistinguishable from the others by support tree clustering. Comparison of 

T2D, CAD and MetS with the autoimmune disease RA showed that the three metabolic-

related disorders more closely resemble each other than RA. Gene set analysis revealed 

common differential regulation of genes involved in the activation of the innate immune 

system with an emphasis on monocyte and macrophage regulation in CAD and 

involvement of the adaptive immune system, specifically T cells, in T2D.  

 

Genetics and Gene Expression 

  A portion of the autoimmune peripheral blood gene expression profile can also be 

detected in first-degree relatives indicating that gene expression in this group of diseases 

is not entirely a function of an active disease process. Rather, a portion of the differential 

gene expression may be influenced by genetics or environmental exposures in the 

absence of disease. To test the hypothesis that genetics influence gene expression in 

autoimmune disease, investigators mapped the coding regions of differentially expressed 



19 
 

genes to the chromosomal level. Over 50% of the autoimmune signature genes mapped 

back to 1 of 15 chromosomal domains representing shared genetic loci that confer 

susceptibility to develop an autoimmune disease. Collectively, these loci are contained in 

less than 10% of the genome56. It is possible that inherited variations of the genome 

within these domains influence the expression of the genes in these regions, 

strengthening the argument for genetic inheritance influencing gene expression56,69.   

  With the sequencing of the human genome, microarray technology expanded into 

genomics and arrays were built to assess genomic variation. Parallel measurement of 

genomic variation and gene expression in the same subject allowed for gene expression 

to be mapped back to the DNA coding sequence. In these studies, expression levels of 

mRNA transcripts are treated as "traits," mapped to their respective genomic coding 

regions, and identified as gene expression quantitative trait loci, or eQTLs70. These 

studies found that the majority of eQTLs are regulated by genetic variation in close 

proximity to the eQTL or in cis (on the same chromosome) rather than by distal genetic 

variants or in trans (on a different chromosome)71.   

 

Genetics 

 

  Applications of array technology to gene expression and genomics led to the first 

genome-wide association studies (GWAS). GWAS associate genomic variants with both 

physical traits, like height72 and obesity73 and with the incidence of common complex 

diseases like autoimmune diseases74. Genomic variation can be found at the single 
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nucleotide level and in larger nucleotide variations, such as those spanning > 1kb of 

genomic DNA.    

 

Single Nucleotide Polymorphisms 

  Widespread genomic variation was first discovered in the form of single 

nucleotide polymorphisms (SNPs)75.  A SNP is the change of a single base pair in a 

coding or noncoding sequence that tends to occur in association with other single 

nucleotide changes, forming haplotype blocks76. A haplotype block is a set of alleles that 

segregates together forming a unit of genetic inheritance. Haplotype blocks may also 

segregate together at a greater frequency than chance and these non-random associations 

are said to be in linkage disequilibrium within the genome. Haplotype blocks in linkage 

disequilibrium may each contain a variant in a gene or group of genes associated with a 

disease. The SNP or SNPs in that block then serve as measurable markers of the variance.  

  SNPs have been associated with common, complex diseases such as autoimmune 

diseases26,77,78,79,80. Many of the associations are shared among multiple autoimmune 

diseases, including association of SNPs in the HLA region with T1D, RA, MS and 

Crohn's disease81,82,83.  The HLA region of chromosome 6 is the portion of the genome 

most robustly linked to autoimmune disease and was the only genetic region to be 

associated with progression to diabetes in a longitudinal study testing the associations of 

37 SNPs in individuals at high risk for developing T1D84. 

  Certain SNP associations confer a functional liability on the cell. For example, a 

SNP in the gene coding region of the intracellular lymphoid tyrosine phosphatase 22, 

PTPN22, is associated with T1D and RA among other autoimmune disorders83,85.  In the 
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presence of the PTPN22 phosphatase polymorphism, the phosphatase shows reduced 

kinase binding, interfering with the activation of T cells86. This functional liability is 

directly related to a pathway, T cell activation, known to be involved in the pathogenesis 

of autoimmune disease. 

 

Copy Number Variation 

  Copy number variations (CNVs) are amplifications or deletions in the genome 

that span more than 1kb of genomic DNA87,88. These alterations, which are widespread in 

nature, result in a deviation from the baseline 2 copies of each genomic segment per 

genome, to an amplification of 3 or more copies or a deletion to 1 or zero copies. One 

mechanism by which CNVs are generated is non-allelic homologous recombination 

(NAHR)89. NAHR is a normal meiotic process by which chromosomes align and 

recombine to generate the normal diversity seen in the human population. When identical 

regions of tandem repeats or regions of segmental duplication are present both upstream 

and downstream of a gene, it is possible for the chromosomes to misalign (Figure 1-3). 

The crossing over of misaligned chromosomes results in 2 copies of the gene being 

passed on to one daughter cell and zero copies of the gene to the other daughter cell. 

Assuming an identical event did not occur in the other haploid cell, the resultant diploid 

genomes would contain 3 copies and 1 copy of the gene, respectively.  
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Figure 1-3. Schematic model of a molecular mechanism for meiotic NAHR between 
low copy repeats. Crossover between two paralogous low copy repeats (black and 
shaded rectangles) in direct orientation results in reciprocal duplication and deletion. 
These rearrangements lead to a duplication or deletion of a unique genomic segment 
(circle) flanked by the low copy repeats.  
Taken from: Inoue, K and JR Lupski. "Molecular Mechanisms for Genomic Disorders." 
Annual Review of Genomics and Human Genetics. 2002. 3:199-242.  
 
   

  The influence of segmental duplications on the generation of CNVs is great. 

Segmental duplications can be defined as >1kb regions of the genome that share greater 

than 90% similarity with another region of the genome90. More than half of the 

nucleotides known to fall within regions of segmental duplication also comprise part of a 

known CNV and CNVs not associated with regions of segmental duplication tend to be, 

on average, less common in the population. Of note, regions of segmental duplication 

have a lower density of SNPs than the rest of the genome, indicating that these CNVs 

represent novel variation not previously assessed in SNP studies91,92. 

  Meiotically generated CNVs, specifically gene amplifications, play an important 

role in evolution. Certain regions of the human genome recombine to generate CNVs at 

much higher rates than the rest of the genome. The olfactory receptor gene family is one 

of the largest in the human genome and the coding sequences are rich with segmental 
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duplications93,94.  High degrees of sequence similarity found between consecutive 

olfactory receptor genes suggest that the initial duplication of genes through the process 

of copy number (CN) amplification is in part responsible for the size of this gene family.  

  CNVs may also be generated during mitotic processes such as non-homologous 

end joining, NHEJ95. NHEJ is an error-prone process of DNA repair following such 

events as replication fork stalling on the DNA template during DNA duplication89. This 

process is down regulated in meiosis but occurs frequently in mitosis. When NHEJ was 

chemically induced in clonal cell populations, one effect was formation of novel CN 

alterations in regions not characterized by tandem repeats or other known fragile 

breakpoints that may recombine during meiosis. These DNA repair induced variants are 

more likely to occur in vivo in continuously dividing cells, like lymphocytes for example. 

The result is somatic mosaicism, or the presence of a CNV in one tissue of an organism 

but not all96. 

  CNVs can influence gene expression by dosage effects, or a proportional 

association between the number of copies of a gene and the number of transcripts.  Other 

variants can interrupt coding sequences or alter gene regulation processes97. A genomic 

deletion can decrease the amount of protein through a dosage effect98, and through 

transcriptional regulation effects. An example of the latter would be the deletion of a 

promoter region decreasing the production of a downstream gene transcript. Positional 

effects, or increasing and decreasing the distance between a gene and its promoter or 

repressor, is another mechanism by which CNVs influence gene expression. Finally, 

studies in mice have shown that a single CNV can affect expression of genes outside of 

the CNV and up to 1/2 megabase away99,100. For all of these reasons, it is difficult to 
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predict the potential functional outcome of a CNV without extensive knowledge of the 

genomic region housing the variant.  

  CNVs can be detected by fluorescence in-situ hybridization (FISH), quantitative 

PCR (qPCR), array comparative genomic hybridization (array-CGH) and SNP-based 

arrays101.  FISH can be used to discover large CNVs and to confirm the presence or 

absence of a variant in a particular genome. FISH is fluorescent staining of chromosomes 

that requires the sequence of a region of interest be known. Thus, FISH is not a method 

by which to discover novel variants or associations. qPCR also requires a known target. 

While these accurate methods are ideal for investigating a known genomic region of 

interest or validation of a CN call determined by a different method, they do not lend 

themselves to genome-wide CN surveys. 

  Both array-CGH and SNP-based arrays have the ability to determine CN across 

the entire genome and consequently discover rare variants or novel associations102. 

Array-CGH functions much like a gene expression microarray. Clone-derived genomic 

sequences are robotically spotted onto a glass slide. Fluorescently labeled CTRL and test 

DNA are hybridized to the slide, the slide is scanned and intensity values are read for 

each sample at each spot. A ratio of the intensity values is used to determine CN across 

the genome. SNP-based genotyping arrays are built using matched and mismatched 

probes originally designed to detect SNPs; however, the same concept of probe design 

has been applied to regions without SNPs. Only one genomic DNA sample is hybridized 

to each array and the sample is first digested with restriction enzymes to improve the 

signal-to-noise ratio. Intensity values at the probes are interpreted using computer 
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algorithms. Array-CGH and SNP-based arrays have both been widely used to determine 

genome-wide CN and its potential associations with traits or diseases. 

  Intensity data from these arrays can be transformed into CN using any of a 

number of methods, including defined threshold intensity cut-offs and complex statistical 

algorithms like circular binary segmentation or Hidden Markov Models (HMM). These 

methods, however, are known to call widely different CN values for the same regions. 

Researchers often combine methods by using a "consensus copy number" from multiple 

algorithms, or validating CN by PCR. So far, there is not a standard method by which to 

determine accurate and reproducible CNs across the genome. 

 

Copy Number Variation in the Human Genome  

  CNVs were first thought to be rare and, when present, pathogenic103. However, 

along with the ability to measure genome-wide CNV, we learned that these variants are 

in fact widespread in the genome and most often benign88,104. The International HapMap 

project was created to catalog global human genetic variation, beginning with analysis of 

>1 million SNPs in the genomes of 270 individuals from around the world- 30 parent-

child trios from Nigeria, 30 parent-child trios of European descent living in Utah, 45 

unrelated individuals of Japanese descent living in Tokyo and 45 unrelated Han Chinese 

individuals living in Beijing105. Redon, et al. determined CN in the HapMap 270 using a 

combination of SNP arrays and comparative genomic hybridization methods106. They 

discovered 1,447 CNV regions covering 12% of the genome with no portions of the 

genome seemingly exempt from this class of variant (Figure 1-4). 24% of these 

sequences were flanked by segmental duplications, more than expected by chance. 
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Figure 1-4. Genomic distributions of CNVRs.  
The chromosomal locations of 1,447 CNVRs are indicated by lines to either side of 
ideograms. Green lines denote CNVRs associated with segmental duplications; blue lines 
denote CNVRs not associated with segmental duplications. The length of right-hand side 
lines represents the size of each CNVR. The length of left-hand side lines indicates the 
frequency that a CNVR is detected (minor call frequency among 270 HapMap samples). 
When both platforms identify a CNVR, the maximum call frequency of the two is shown. 
For clarity, the dynamic range of length and frequency are log transformed (see scale 
bars). All data can be viewed at the Database of Genomic Variants 
(http://projects.tcag.ca/variation/). 
Taken from: Redon, R. et al. "Global variation in copy number in the human genome." 
Nature. 2006. 444: 444-454. 
    
 

  McCarroll, et al. discovered 3,048 CNV regions in the HapMap population using 

a SNP-based microarray modified to include nucleotide probes specific for CN. 1,320 of 

these CNVs segregated at allele frequencies greater than 1% and were thus denoted as 

copy number polymorphisms (CNPs). The CNPs span approximately 5% of the 

genome107. The percent of the genome that differed from one subject to the next was less 

than 0.5%, with more than 90% of these differences classified as CNPs. Family trios 

http://projects.tcag.ca/variation/�
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within the HapMap also showed that inheritance, not de novo generation, is responsible 

for the majority of CNVs.  

  Additional studies have varied in their estimation of genome-wide CNV. 

Estimates of the number of distinct regions of CNV present in the genome range from 

>1,000 to >4,000, spanning 2.86% to 25% of the genome90,106,107,108,109,110. The average 

length of a CNV in these studies is 200-300kb109,110. Variables like sample size and 

resolution, related to the different experimental methods and statistical models used to 

determine CN in these studies account for the lack of consensus regarding the amount of 

the genome that can be variant by CN. However, if all studies are considered together, the 

38,406 non-independent CNVs deposited to the Database of Genomic Variants (DGV), 

cover 29.74% of the genome. For comparison, less than 1% of the genome is affected by 

the 14 million non-independent DGV-deposited SNPs111. 

  CNVs are known to be associated with a number of diseases, both Mendelian 

disorders (diseases caused by the mutation of one gene) and common complex diseases. 

One of the first reported CNV-disease associations was the duplication of the gene 

PMP22 as a direct cause of Charcot-Marie Tooth disease112. Increased copies of PMP22 

correspond with increased gene transcripts through a dosage effect resulting in 

phenotypic disease. 

  A CNV in the FCGR3A gene, encoding the Fc-gamma receptor, is associated with 

SLE113. This protein binds the Fc portion of the antibody IgG and variation impacts 

protein expression in a dose-dependent manner114. Functionally, decreased levels of 

FcγRIIIa impact the ability of NK cells to carry out antibody-dependent cytotoxicity. 

CNVs in FCGR3B have also been associated with SLE115,116. 
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  Additionally, CNV in the gene CCL3L1 is associated with susceptibility to 

infection with HIV117 and CNVs are also associated with a number of neurological, 

neuropsychological and behavioral disorders like epilepsy, Parkinson, schizophrenia and 

autism118,119,120,121,122. Deletions in the LCE genes have been associated with psoriasis and 

deletions in the complement factor H genes protect from age-related macular 

degeneration123,124,125.  

 

Copy Number Variation in Type 1 Diabetes  

  In spite of the numerous SNP associations made in autoimmune diseases, SNPs 

have so far failed to fully explain disease pathogenesis or account for genetic inheritance. 

The second phase of the human HapMap project catalogued over 3.1 million human 

SNPs genotyped in the first 270 HapMap individuals126. A genome-wide association 

study for SNPs associated with any 1 of 7 common diseases, including T1D, failed to 

identify many new SNP associations and verified that the majority of SNP associations 

confer very small risks for disease. The authors further determined that known SNPs do 

not account for all of the familiality of the 7 diseases studied and concluded that there 

must be another source of genetic variation responsible for heritability26.  

  We hypothesized that CNVs would be found enriched and depleted in patients 

with T1D. To test this hypothesis, CNVs were analyzed using the Affymetrix SNP 6.0 

array. This array contains nearly 1 million probes designed to detect all known SNPs and 

an additional 1 million probes specifically designed to assess genome-wide CN. We first 

addressed the problem that different calling algorithms produced different CN calls based 

on the same data by utilizing qPCR to inform validity of the calls (Chapter III). This 
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process included an evaluation of three commonly used algorithms and resulted in a 

reliable and reproducible method by which to call CN in our samples.  

  With these established methods, CNVs were detected to be both enriched and 

depleted in a cohort of patients with T1D and an independent cohort of monozygotic 

twins discordant for T1D (Chapter IV). Many of the CNV regions were similarly 

enriched or depleted in RA and MS, indicating that these genomic markers may encode 

regions important in the development of autoimmunity and autoimmune disease. 
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CHAPTER II 

 

PERIPHERAL BLOOD GENE EXPRESSION PROFILES IN METABOLIC 

SYNDROME, CORONARY ARTERY DISEASE AND TYPE 2 DIABETES 

 

Abstract 

 

  To determine if peripheral blood from individuals with inflammatory metabolic 

disorders has a distinct gene expression profile distinguishable from CTRL individuals, 

we performed comprehensive analysis of transcript levels in peripheral blood from 

patients with coronary artery disease, type 2 diabetes and their precursor state, metabolic 

syndrome. We compared these gene expression profiles to those of CTRL subjects and 

patients with a classic autoimmune disease, rheumatoid arthritis. The gene expression 

profile of each metabolic state was distinguishable from that of CTRLs and the 3 states 

showed greater correlation with each other than with rheumatoid arthritis. Of note, 

subjects with metabolic syndrome, coronary artery disease or type 2 diabetes over-

expressed genes and gene sets involved in the innate immune response. Genes involved 

in activation of the pro-inflammatory transcription factor, NF-κB, were also over-

expressed in coronary artery disease. Many genes differentially expressed in type 2 

diabetes regulate T cell activation and signaling. RT-PCR analysis of a subset of genes 

identified in this pathway analysis determined quantitative differences in the disease 

versus CTRL comparison but additional overlap of significance among the metabolic 

disorders, greater than suggested by array analysis. Additionally, many of these genes 
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correspond to genes differentially expressed in both mouse models or other human 

studies of insulin resistance and obesity. Taken together, these data demonstrate that the 

peripheral blood from individuals with metabolic disorders display both overlapping and 

non-overlapping patterns of gene expression indicative of unique, underlying immune 

processes. 

 

Introduction 

  

  Type 2 diabetes (T2D) is a metabolic disorder of peripheral insulin resistance 

resulting in hyperglycemia and ultimately decreased insulin secretion from the pancreas. 

Risk factors for T2D include obesity, physical inactivity and family history28. Diabetes 

currently affects 6.3% of the United States population and approximately 90% of these 

cases are non-insulin dependent, or T2D127. Coronary artery disease (CAD) results from 

atherosclerotic plaque development in coronary arteries. These fibrous, fatty deposits can 

ultimately block the flow of blood resulting in angina and/or myocardial infarction. 

Hyperlipidemia predisposes to the development of these plaques, making obesity and 

physical inactivity also risk factors for CAD30. The prevalence of CAD in the United 

States is 4.1%128. Metabolic syndrome (MetS) is a precursor state to both T2D and 

CAD2,3,32,33,34,35,36,37,38. The International Diabetes Federation (IDF) defines this pre-

disease state as central obesity plus any 2 of the following 4 characteristics: 

hypertriglyceridemia, low high-density lipoprotein (HDL) cholesterol, hypertension or 

raised fasting plasma glucose. The prevalence of MetS in the United States is as high as 

39% using the IDF criteria. Diagnosis of MetS confers a 1.5-2.6 relative risk of 
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developing CAD and a 3.5-7.5 relative risk of developing T2D. Additionally, the 

Framingham study determined that a portion of these relative risks persist even in the 

absence of obesity. This trio of disorders poses a significant threat to public health in the 

United States. 

  Inflammatory processes are involved in the pathogeneses of T2D and CAD. 

Visceral adipose tissue, present in abundance in many patients with T2D, produces 

inflammatory cytokines like IL-6 and TNF-α that are known to aid in the impairment of 

insulin signaling in adipocytes. These cytokines can activate a systemic immune response 

and attract inflammatory cells, like lymphocytes, to infiltrate visceral adipose tissue 129. 

In the case of CAD, the lesion is not visceral adipose tissue, but rather fatty deposits in 

the vasculature. These deposits contain fat-laden macrophages and immunoreactive T-

cells30.  

  Gene expression profiling of blood or tissue samples is one way to assess cellular 

changes due to cell differentiation and aging130,131, disease pathogenesis132,133,134 or 

pharmacological response135,136. One example of this is tumor typing; gene expression 

signatures are presently used to classify tumor types in breast cancer biopsies. This 

method can also be used to assess changes in peripheral whole blood of patients with 

common, complex diseases55,137,138. Individuals with autoimmune diseases [type 1 

diabetes, multiple sclerosis, systemic lupus erythematosus and rheumatoid arthritis (RA)] 

display unique gene expression signatures in peripheral whole blood. Portions of these 

signatures are expressed in first degree unaffected relatives57; however, disease-specific 

signatures are also found in peripheral blood and are sufficient to distinguish individuals 

with disease from CTRL individuals58. Moreover, peripheral blood gene expression 
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profiling can give insight into disease processes and suggest specific functional defects in 

cells. For example, peripheral blood gene expression in patients with RA contains low 

transcript levels of the tumor suppressor protein, p53. Consequently, T cells from patients 

with RA are resistant to gamma-radiation induced apoptosis, a p53 dependent pathway59. 

Gene expression profiling may also aid in diagnosing patients who have these often hard 

to diagnose diseases; therefore, analysis of peripheral blood gene expression already 

represents one way to assess immune system changes, predict related cellular defects and 

diagnose patients with immune-related disease in a minimally invasive way.   

  T2D, CAD and their precursor, MetS are not autoimmune diseases but feature 

inflammation as a possible pathogenic component. The purpose of our studies was to 

assess if these inflammatory diseases also display unique peripheral blood gene 

expression profiles and if so, what do the profiles indicate about the interrelatedness of 

MetS, CAD and T2D. To address this question, we compared profiles of each disease 

state to control (CTRL) subjects, to an autoimmune disease, RA, and to each other.  We 

found that MetS, CAD and T2D have unique gene expression profiles that distinguish 

each cohort from CTRL subjects.  Further, profiles of MetS, CAD and T2D are more 

similar to each other than to RA. These profiles feature a common component of 

activation of the innate immune response, reflected by increased expression of 

complement factor related proteins and acute phase proteins, for example.  Over-

expression of genes involved in activation of the pro-inflammatory transcription factor, 

NF-κB, was a dominant theme in the CAD expression signature, whereas the T2D profile 

included increased expression of genes encoding proteins that regulate activation and 
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signaling in T cells. Additionally, many of these genes correspond to genes differentially 

expressed in both mouse models or other human studies of insulin resistance and obesity. 

 

Materials and Methods 

 

Patient Recruitment 

  Rheumatoid arthritis is defined by the American College of Rheumatology 

Criteria. Patients displayed four or more of the following symptoms for greater than 6 

months: morning stiffness, swelling in 3 or more joints, swelling of finger and/or wrist 

joints, symmetric swelling, rheumatoid nodules, positive rheumatoid factor, or 

radiographic erosions in the hand and/or wrist139. Metabolic syndrome is defined by the 

International Federation of Diabetes as central obesity plus any 2 of the following 4 

characteristics: hypertriglyceridemia, low HDL cholesterol, hypertension or raised fasting 

plasma glucose40. Coronary artery disease was diagnosed in each patient using imaging 

techniques to detect flow-limiting coronary artery stenoses140. Three of the 6 patients 

with coronary artery disease participating in this study were post coronary artery bypass 

graft or myocardial infarction. All patients in this cohort are also being treated for 

systemic hypertension. Diabetes is defined by the WHO criteria of classic symptoms of 

diabetes (polydipsia, polyuria, polyphagia and weight loss) and a plasma glucose >200 

mg/dl, a fasting plasma glucose of >126 mg/dl or a 2 h plasma glucose during an oral 

glucose tolerance test of >200 mg/dl. Type 1 diabetes is differentiated from T2D by a 

number of clinical criteria including history, clinical presentation and laboratory findings. 

Type 2 diabetics are more likely to have a high body mass index and less likely to need 
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insulin in restoring normal plasma glucose levels32. Control patients have not ever 

received any of the previous diagnoses, have not been diagnosed with any autoimmune or 

other chronic disease, and are not currently taking medication for any illness or condition. 

The study was approved by the Institutional Review Board of Vanderbilt University and 

all subjects provided written informed consent. 

 

Microarray Gene Expression Experiments 

  Peripheral whole blood was drawn directly into PreAnalytiX PAXgene tubes 

(VWR, West Chester, PA). RNA was isolated using the PreAnalytiX protocol “Manual 

Purification of Total RNA from Human Whole Blood Collected into PAXgene Blood 

RNA Tubes.” Amplified CTRL and sample RNA was coupled to Cy3 or Cy5 dyes (GE 

Healthcare, Piscataway, NJ), respectively, using the Vanderbilt Functional Genomics 

Shared Resource (FGSR) coupling protocol, found at [array.mc.vanderbilt.edu]. The 

reverse transcription reaction used 6 µg of Oligo dT and the superscript III reverse 

transcriptase (Invitrogen, Carlsbad, CA). Labeled cDNA was purified using the Qiagen 

QiaQuick PCR purification kit and resuspended in 2X hybridization buffer (50% 

formamide, 10X SSC and 0.2% SDS) and 1 µl polyA RNA. Labeled, resuspended cDNA 

was heated to 100ºC for 2 min and hybridized to the Human Exonic Evidence-Based 

Oligonucleotide (HEEBO) array at 42ºC for 16 h in a heating oven. The HEEBO slide 

was designed by the Stanford Functional Genomics Facility (microarray.org). Oligo 

probes are commercially available (Invitrogen, Carlsbad, CA) and the slides were printed 

by Microarrays Inc (Hudson Alpha Institute, Huntsville, AL). We washed and dried the 

slides per the FGSR protocol and scanned them into the GenePix Pro4.1 Software using a 
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400B scanner (Axon Instruments, Union City, CA). We analyzed intensity data using 

GenePix software in combination with The Institute for Genomic Research’s TM4: 

Microarray Suite programs43. 

 

Microarray Data Analysis 

  The Institute for Genomic Research’s Multi-Experiment Viewer was used to 

visualize intensity data. We used Significance Analysis of Microarray to determine a 

group of significantly under- and over-expressed genes in the comparisons of each 

disease group versus CTRL. The median number of falsely significant genes was set to 

≤2. Following this analysis, the bootstrap statistical method created support trees showing 

hierarchical clustering for the 4 comparisons of each disease versus CTRL based on 

1,000 permutations. For statistical analysis of gene sets, we normalized microarray data 

using the print-tip lowess normalization algorithm as implemented in the Bioconductor 

package marray141. We used maximum expression levels from multiple probe sets 

corresponding to the same gene to represent the gene expression level. To ensure reliable 

gene expression estimates, we included genes with intensity values for more than 6 

CTRL samples and more than 3 samples for each of the other groups. There were 14,558 

genes left after this step.  

  To identify groups of functionally related genes differentially expressed for 

different patient groups, we conducted gene set analysis using the mixed effects models 

approach142,143. Gene sets used in these analyses were derived from the controlled 

vocabulary of the Gene Ontology (GO) project, 

http://www.broad.mit.edu/gsea/msigdb/index.jsp. For each gene set, the mixed models 

http://www.broad.mit.edu/gsea/msigdb/index.jsp�
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included gene expression levels as outcome, group (disease group vs. CTRL group) as 

the fixed effect and batches as the random effects. In addition, we included random 

effects based on eigenvectors of gene-gene correlation matrix to account for correlation 

patterns of the genes143. Because we examined many gene sets, to control for the rate of 

false positive findings by chance, we adjusted nominal p-values using the method of false 

discovery rate144. To study the relations between T2D, MetS, CAD and RA, we estimated 

pairwise Spearman correlation coefficients for these disease groups based on nominal 

pathway p-values from comparing each disease group versus CTRL. We used Cytoscape 

software145 to visualize these associations.  

  The data discussed in this chapter have been deposited in NCBI's Gene 

Expression Omnibus146 and are accessible through GEO Series accession number 

GSE23561 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23561). 

 

RT-PCR 

  Gene expression was determined by RT-PCR using a TaqMan Low Density Array 

(TLDA). Fold change expression levels were determined by the ΔΔCt method, 

comparing expression of test gene to an average of two independent measurements of 

GAPDH, and then comparing the disease cohort versus CTRL. Significance was 

determined using a t-test on the ΔCt raw values. 
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Results 

 

  Peripheral blood gene expression profiling using microarrays has been shown 

sufficient to distinguish between phenotypically distinct cohorts of patients55,137,138. We 

sought to determine if subjects with MetS, CAD or T2D also possessed a gene expression 

signature in blood sufficient to distinguish these subjects from CTRL subjects and, if so, 

did this signature bear any resemblance to the signature of an autoimmune disease, RA. 

To do so, we recruited subjects with MetS, CAD and T2D (n=6, n=6, n=8, respectively), 

6 subjects with RA, and 9 subjects who had never been diagnosed with a chronic illness, 

and were not presently taking medications for any diagnosed state, to serve as the CTRL 

cohort.   

  We analyzed all 35 peripheral blood samples for gene expression using the human 

exonic evidence-based oligonucleotide (HEEBO) array. Next, we normalized the data to 

a sum total intensity of 10,000, giving an average intensity per oligonucleotide probe of 

0.2. Those genes with an average intensity of greater than 0.2 were used as the data 

points for clustering analysis. The intensity values of the filtered set of genes for each 

array were inputted into The Institute for Genomic Research’s multi-experiment viewer. 

We compared the RA, MetS, CAD and T2D groups individually to the CTRL cohort 

using a supervised significance analysis for microarray function. Each list of significantly 

differentially expressed genes was used to run a bootstrap hierarchical clustering to 

determine the similarity of the patient samples to each other within each disease and their 

similarity to CTRL (Figure 2-1). A black bar, representing 100% support, separates two 

main branches neatly clustering the RA cohort away from the CTRL cohort based on 
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gene expression. For the T2D cohort, two T2D patients clustered with the CTRL group 

and conversely, the same 2 CTRL patients clustered on a branch with the MetS and CAD 

groups in their individual comparisons with CTRL.  These separations indicate that the 

majority of persons with RA, MetS, CAD or T2D are more like each other than the 

CTRL. Hierarchical clusters confirm that expression of genes in peripheral whole blood 

is sufficient to distinguish between the autoimmune disease, RA, and CTRL, as well as 

the inflammatory metabolic states of MetS, CAD and T2D and CTRL. Further 

similarities and differences can be seen amongst the disease affected subjects. In the RA 

group at least one further branch with 100% support was seen, indicating that gene 

expression is not entirely homogenous within this group. 
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Figure 2-1. Hierarchical clustering of individual disease cohorts versus CTRL.  
(continued on next page) 
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Figure 2-1. Hierarchical clustering of individual disease cohorts versus CTRL.  
To determine if the gene expression profiles of the disease cohorts were distinguishable 
from that of the 9 CTRL patients, normalized intensity data points from oligos with an 
average intensity of ≥0.20 (average array intensity) were inputted into The Institute for 
Genomic Research’s Multi-Experiment Viewer. For each comparison, gene intensity 
averages were calulcated and those ≥0.20 were selected as input in each comparison. The 
CTRL v RA input was 4,969 gene and gene splice data points; CTRL v MetS input was 
4,225 data points; CTRL v CAD input contained 4,271 data points and the CTRL v T2D 
comparison featured an input of 4,983 data points. Supervised significance analysis of 
microarray, with a median number of falsely significant genes set to ≤2 , yielded lists of 
significant genes in each comparison, visible to the right of each heat map. Green 
indicates decreased expression while red denotes increased expression. These lists were 
inputted into a bootstrap analysis resulting in the hierarchical clustering trees shown 
above each map.  Statistical support for each branch of the tree is shown by color, legend 
in the bottom right corner. CTRL= control, RA= rheumatoid arthritis, T2D= type 2 
diabetes, MetS= metabolic syndrome and CAD= coronary artery disease.  
 
 
  Additionally, when all samples were analyzed together, the support tree indicates 

that 8/9 CTRL subjects cluster, with 100% support, on one branch with 2 T2D subjects, 

one of those being patient T2D 03 who previously clustered on the CTRL branch in the 

CTRL:T2D analysis (Figure 2-2). The second branch features just one CTRL patient and 

the remainder of the patients in the disease cohorts. Five of the 6 RA patients cluster 

together on this branch, indicating that the RA signature is more like that of the metabolic 

diseases than CTRL; however, the RA patients are more like each other than the 

metabolic cohort patients. Furthermore, the remaining metabolic disease patients did not 

cluster in any particular pattern suggesting similarity amongst the MetS, CAD and T2D 

peripheral blood gene expression profiles. Taken together, this analysis demonstrates that 

subjects with MetS, CAD or T2D each possess a common gene expression signature in 

blood sufficient to distinguish them from CTRL and that these signatures may have 

overlapping components. 
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Figure 2-2. Hierarchical clustering of all disease cohorts versus CTRL.  
To determine the similarity and difference of the profiles of each disease cohort to each 
other in the presence of CTRL, normalized intensity data points from all gene and gene 
splice oligos were inputted into The Institute for Genomic Research’s Multi-Experiment 
Viewer (40,538 data points). Supervised significance analysis of microarray, with a 
median number of falsely significant genes set to 1.0, yielded a list of significant genes 
shown to the right of the heat map. This list was inputted into a bootstrap analysis 
resulting in the hierarchical clustering tree shown above the heat map. Green indicates 
decreased expression while red denotes increased expression. CTRL= control, RA= 
rheumatoid arthritis, T2D= type 2 diabetes, MetS= metabolic syndrome and CAD= 
coronary artery disease.  
 

  One possible source of differential gene expression in leukocytes is an alteration 

in the underlying genetic code71. Extensive genome wide analyses have been performed 

in RA, CAD and T2D revealing a number of single nucleotide polymorphisms (SNPs) 

associated with each individual disease. We probed our expression dataset to determine if 

genes associated with these SNPs showed differential expression in peripheral blood of 

subjects with disease versus CTRL subjects in any of our cohorts. A list of SNPs 

associated with RA, CAD or T2D was populated from The National Human Genome 

Research Institute147 and a recent pathway based SNP analysis by Torkamani, et al.148. 

For the SNPs present in gene coding regions, we calculated expression levels of the 

encoded gene as an average for the RA, CAD and T2D groups. Each set of genes was 

analyzed for expression in disease groups and we found a number of correlations between 

a SNP, its encoded gene and differential expression of that gene. Eight genes with a 

disease-associated SNP were differentially expressed in the corresponding disease group- 

CD244, IL2RA, PRKCA, SLC22A4 and TRAF1 in RA, and ADAMTS9, ANXA11 and 

KCNQ1 in T2D (Table 2-1). IL2RA and TRAF1, genes identified by SNP studies in RA, 

were also differentially expressed in T2D and the T2D SNP-identified genes ADAMTS9 

and KCNQ1 were differentially expressed in RA. While SNPs are known to influence 
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gene expression, we only found associations in RA and T2D, not CAD. Altered gene 

expression was not confined to just one disease state; differential expression of certain 

genes was shared between RA and T2D.   

 

Table 2-1. SNPs associated with RA and T2D show differential gene expression 
        RA       T2D 
RA SNP   Gene   pa   FCb   p   FC 
Rs6682654 CD244   0.009  5.57   ns 
Rs2104286 IL2RA   0.002  4.30   0.028  2.52 
-c    PRKCA  0.001  2.88   ns 
-    SLC22A4  0.044  0.32   ns 
Rs3761847 TRAF1   0.026  0.34   0.010  0.29 
 
T2D SNP 
Rs4607103 ADAMTS9  0.003  11.69   0.030  4.65 
Rs2789686 ANXA11  ns       0.028  0.016 
Rs2237892 KCNQ1  0.049  0.59   0.020  0.58 
ap= derived from Mixed Effects Model, RA or T2D relative to CTRL 
bFC= fold change, average of RA or T2D cohort relative to average of CTRL 
c= identified via pathway-based analysis in Torkamani, et al.  
ns= not significant 

 

  Because hierarchical clustering demonstrated differences in gene expression 

profiles of each metabolic disorder cohort versus CTRL and potential overlap amongst 

the signatures of the metabolic states, we further analyzed the relationships of gene 

expression within and amongst the 4 disease or pre-disease states in the context of gene 

sets. A gene set is defined as a group of genes with a common purpose, derived from the 

Gene Ontology project44. For further information on gene sets, normalization, and 

calculations, see the Methods section. Complete analysis with p-values for each gene set 

as well as the p-value and fold change for individual genes considered in each gene set 

comparison are also available (Supplemental Tables 2-1 and 2-2). Gene set analysis 
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showed that genes driving the differential expression in MetS, CAD and T2D are 

associated with overlapping activation of the innate immune response, activation of the 

pro-inflammatory transcription factor NF-κB in CAD, and over-expression of genes 

involved in T cell activation and signaling in T2D.  

 

Rheumatoid Arthritis 

  Rheumatoid Arthritis is an autoimmune disease characterized by systemic 

inflammation that extends into and damages peripheral joints149. Patients with RA have 

robust and distinguishable gene expression profiles in peripheral whole blood55. This 

finding was repeated using the HEEBO slide as the array format. Our analysis identified 

5 gene sets of particular significance (Table 2-2). BIRC4 is over-expressed in gene set 

110, Cell Development, and is involved in activation of the transcription factor NF-κB. 

NF-κB regulates expression of many pro-inflammatory genes. Immune System Process, 

gene set 271, includes over-expression of LAT2 and NFAM1, genes involved in B cell 

signaling and development. Additional genes, BAT1, LIG4 and ILF2, are expressed in 

lymphocytes and differentially expressed in gene set 435. BAT1 is an HLA-associated 

transcript mutated in patients with RA. LIG4 encodes a protein essential for V(D)J 

recombination and non-homologous end joining as part of DNA repair. ILF2 is involved 

in T cell expression of IL-2, a potent stimulator of proliferation of lymphocytes. The IL2-

receptor alpha, IL2RA, is also over-expressed in this cohort and is found in gene set 753, 

Signal Transduction. Differential expression of genes involved in activation, maturation 

and signaling of lymphocytes is in agreement with the gene expression profile of RA seen 

previously55.  
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Table 2-2. Differentially expressed gene sets 
Gene Set Gene Set Name         p-value 
RA v CTRL 
110  Cell Development         0.0045 
271  Immune System Process       0.0116 
435  Nucleobase Nucleoside Nucleotide and  

Nucleic Acid Metabolic Process     2.13E-08 
706  Response to External Stimulus     0.0078 
753  Signal Transduction        1.03E-11  
MetS v CTRL 
13   Acute Inflammatory Response     0.048 
316  Lymphocyte Differentiation      0.004 
407  Negative Regulation of Signal Transduction  0.051 
615  Regulation of Developmental Process    0.023 
CAD v CTRL 
412  Negative Regulation of Transferase Activity  0.014  
499  Positive Regulation of Immune Response   0.020 
636  Regulation of I KappaB Kinase NF KappaB  

Cascade          0.051 
T2D v CTRL 
104  Cell Cell Signaling        0.0048 
117  Cell Proliferation Go 0008283     0.002 
271  Immune System Process       1.7E-06 
435  Nucleobase Nucleoside Nucleotide and  

Nucleic Acid Metabolic Process    9.7E-28 
753  Signal Transduction        4.8E-13 
CAD v MetS 
372  Negative Regulation of Biological Process  5.7E-04 
482  Positive Regulation of Cellular Process    0.008 
682  Regulation of Transcription      0.019 
753  Signal Transduction        0.009 
T2D v MetS 
271  Immune System Process        0.043 
478  Positive Regulation of Caspase Activity   0.033 
596  Regulation of Cellular Metabolic Process   0.052 
104  Cell Cell Signaling        0.030 
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  Other genes significantly differentially expressed in this gene set included the 

IL9-receptor, IL9R, which supports IL-2 and IL-4 independent T cell growth, and 

MAP2K6, which activates p38 MAP kinase in response to inflammatory cytokines. 

LILRB4 was significantly under-expressed as part of the Signal Transduction gene set. 

This gene is an immune-cell receptor for MHC-I that transduces a signal to inhibit the 

immune response; increased expression of LILRB4 on antigen presenting cells renders 

the cells tolerant, therefore decreased expression might allow for increased 

autoreactivity150. Finally, in gene set 706, Response to External Stimulus, CHST2, 

encoding a protein expressed by vascular endothelium to attract lymphocytes, and F11R, 

encoding another protein expressed by vascular endothelium and involved in leukocyte 

transmigration, were over-expressed.  Over-expression of genes encoding proteins with 

key roles in lymphocyte activation and growth could influence activation and expansion 

of self-reactive lymphocytes believed to cause joint destruction in individuals with RA.   

 

Metabolic Syndrome 

  The triad of MetS, CAD, and T2D are typically considered metabolic, not 

immune, diseases although aspects of each involve inflammation, sometimes 

systemically. Nevertheless, each of these pathogenic states was characterized by an 

identifiable peripheral blood gene expression distinguishing each state from CTRL 

(Figure 2-1). Here, we identify the differentially expressed genes driving these signatures.  

  The gene expression profile characterizing MetS was comprised of many genes 

involved in innate immune responses (Table 2-2). Gene set 13, Acute Inflammatory 

Response, featured up-regulation of CFHR1, a complement factor gene, and ORM1, an 
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acute phase reactant. Acute phase reactants may be present at increased levels as a 

consequence of hyperlipidemia-induced liver injury. CD1D, involved in antigen 

presentation of lipids and glycolipids to activate NKT cells, is over-expressed in gene set 

316. Under-expression of TNFAIP3 is found in gene set 407, Negative Regulation of 

Signal Transduction. This gene encodes a protein that inhibits NF-κB activation and 

terminates NF-κB responses. Decreased expression of this gene, as with LILRB4 in RA, 

limits at least one way in which an immune response is attenuated. Also decreased in 

expression were two apoptosis-related genes: DAXX, involved in TNF-mediated 

apoptosis, and MOAP1, involved in caspase-mediated apoptosis, in the Regulation of 

Developmental Process gene set. MAP3K5, also in gene set 615, shows increased 

expression. MAP3K5 activates MAP2K6 which in turn activates p38 in response to 

inflammatory cytokines. This pathway was also over-expressed in RA.  

 

Coronary Artery Disease 

  Peripheral blood gene expression in CAD was also distinguishable from the 

CTRL cohort (Figure 2-1). This profile is defined by genes that impact activation and 

expression of NF-κB (Table 2-2). While some genes encoding proteins that impact NF-

κB were differentially expressed in RA and MetS, the CAD gene expression profile 

encompassed a far greater number of NF-κB associated genes. Gene set 499, Positive 

Regulation of Immune Response, includes the over-expressed genes IKBKG and TLR8. 

IKBKG is a regulator of the IKK complex, which activates NF-κB; TLR8 also activates 

NF-κB as part of the innate immune response. MAP3K7IP2, TNFAIP3 and TNFRSF10B 

are differentially expressed in gene set 636. IL-1 initiated activation of NF-κB is 



50 
 

mediated by MAP3K7IP2, TNFRSF10B is also an activator while previously mentioned 

TNFAIP3, an inhibitor of NF-κB, is under-expressed in this disease cohort, as well as in 

MetS. TRIB3 in gene set 412, Negative Regulation of Transferase Activity, was highly 

over-expressed. This gene encodes a protein that is induced by NF-κB and acts as a 

feedback regulator of this transcription factor, thus sensitizing the cells to apoptosis. 

Downstream effects of activation of NF-κB include increased expression of many genes 

involved in inflammation and also of genes that protect the immune cells from apoptosis, 

allowing further expansion of the inflammatory response. 

 

Type 2 Diabetes 

  The T2D peripheral blood gene expression signature was robust and included 

many protein-coding genes involved in T cell signaling and function (Table 2-2). Three 

of these, gene sets 271, 435 and 753, were also significantly differentially expressed in 

RA and gene sets 435 and 753 specifically showcase the T cell associated genes. Gene set 

435, Nucleobase Nucleoside Nucleotide and Nucleic Acid Metabolic Process, includes 

over-expression of the T cell genes ILF2, or nuclear factor of activated T cells, which 

modulates IL-2 expression, NFATC4, a gene involved in the inducible expression of 

cytokines and NP, a gene encoding an enzyme that, when lacking, compromises cell-

mediated immunity. In gene set 753, Signal Transduction, the trio of receptors IL1RL1, 

IL4R and IL9R were over-expressed. IL1RL1 is a receptor induced by inflammatory 

cytokines, IL4R promotes differentiation of T cells to T helper type 2 cells, and IL9R 

encodes a receptor that supports IL-2 and IL-4 independent growth of the T cell 

population. This gene set also features decreased expression of the leukocyte 
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immunoglobulin-like receptors LILRB2 and LILRB4, both of which serve to limit the 

immune response. MAPK11, encoding a protein activated by pro-inflammatory cytokines, 

is over-expressed in this gene set along with GPX1, a glutathione peroxidase. Finally, 

levels of TNFRSF13B transcripts are increased; this gene serves to stimulate lymphocyte 

function.  

  A number of other gene sets were significantly differentially expressed in T2D. 

Cell Cell Signaling, gene set 104, includes up-regulation of the complement component 

C1QA and the chemotaxin CXCL5. Gene set 117 features increased expression of CD276, 

another regulator of T cell mediated immunity and IL2RA, a gene also over-expressed in 

RA and involved in proliferation of lymphocytes. The Immune System Process gene set 

271 includes many of the previously discussed differentially regulated genes as well as 

decreased expression of CTLA4, a gene encoding a protein expressed on the surface of 

helper T cells that transduces an inhibitory signal. The gene expression profile of T2D 

was distinct from CTRL subjects in the differential expression of many genes involved in 

the activation of and signaling in T cells, reflecting the possibility that components of the 

adaptive immune system may contribute to the pathogenesis of T2D.  

 

Correlation Among Disease States 

  To further investigate the overlap in gene expression profiles of the metabolic 

disorders suggested by hierarchical clustering (Figure 2-2), we explored interrelationships 

of these profiles in the gene set analysis. To do so, we created a list of gene sets whose 

average expression level differed significantly from that of CTRL (p<0.05) for any of the 

four comparisons. Next, we assessed the relationships among RA, MetS, CAD and T2D 
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by estimating pairwise Spearman Correlation coefficients based on the p-values for the 

gene sets derived from the comparison of each state to CTRL. The thickness of the line 

connecting one state to another is based on the estimated Spearman’s correlations (Figure 

2-3A). The sole autoimmune disease, RA, showed the lowest correlation with the other 

diseases. We found the highest degrees of correlation in comparisons among MetS, CAD 

and T2D demonstrating strong overlap in the peripheral blood gene expression profiles of 

these inflammatory disease states. Correlation among this trio ranged from Spearman’s 

rho 0.44296 to 0.53772, all with significance of p<0.0001. There were 618 genes 

significantly differentially expressed in 2 or more of MetS, CAD or T2D versus CTRL 

comparisons (Figure 2-3B).  

  Within the genes differentially expressed in all three states versus CTRL, 

FCGR1A, an Fc receptor for immunoglobulin-gamma involved in both innate and 

adaptive immunity, AGER, a receptor for the immunogenic advanced glycation end 

products, the innate immunity-related complement stabilizer CFP, and the acute phase 

reactant, CP, were over-expressed. These genes and their related pathways may all lead 

to activation of the innate immune response. PPARA, a peroxisome proliferator receptor, 

also showed increased expression. IL2RA, the NF-κB activator TNFRSF1A, and the 

inflammatory signaling molecule MAPK11 showed increased expression in both CAD 

and T2D. IL-1 mediates synthesis of acute phase reactants and the IL-1 receptor 

associated protein, IL1RAP, was differentially expressed in both MetS and T2D along 

with the NF-κB associated NFKB2. Differentially expressed in both CAD and MetS were 

the innate immune activator LILRA5, MAP3K5 involved in the activation of p38 MAP 

kinase in response to inflammatory cytokines, and the NF-κB associated NFKBIB.  Gene 
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expression profiles of MetS, CAD and T2D were significantly correlated with each other 

and, to a lesser degree, with RA. 

 

A              B  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-3. Correlative relationships among disease cohort gene expression.  
(A) Gene sets that significantly differed in expression versus CTRL were the input for 
this Spearman’s correlation coefficient based diagram. Thickness of the bar represents a 
combination of Spearman’s rho and statistical significance of the correlation. RA= 
rheumatoid arthritis, T2D= type 2 diabetes, MetS= metabolic syndrome and CAD= 
coronary artery disease. For the RA-T2D comparison Spearman’s rho=0.10396, 
p=0.0555, RA-CAD rho=0.28462, p<0.0001, RA-MetS rho=0.19942, p=0.0002. T2D 
compared to CAD rho=0.42389, p<0.0001, T2D-MetS rho=0.53772, p<0.0001 and for 
the comparison of CAD to MetS rho=0.44296, p<0.0001. (B) A Venn diagram 
representing the number of genes with significantly different expression in each disease 
state versus CTRL that overlap among 2 or more of the states.  

 

  Given that MetS is a precursor to both CAD and T2D, an analysis was performed 

to eliminate those gene sets that overlap amongst CAD or T2D and MetS in order to 

isolate the genes and gene sets that may be involved in progression of MetS to its 

sequelae. We selected gene sets that were not significantly differentially expressed in 

MetS but were significantly differentially expressed in CAD or T2D (Table 2-2).  As 
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MetS progresses to its sequelae, CAD, we found differential expression of an increased 

number of genes involved in activation of and signaling in macrophages. The 

predominance of genes participating in activation of NF-κB, seen in the comparison of 

CAD to CTRL, was also found in the comparison of CAD to MetS. The increased 

expression of monocyte and macrophage related genes can be found primarily in gene set 

753, Signal Transduction. CD14 is a monocyte surface marker, CXCL14 encodes a 

chemokine for monocytes, and MST1R encodes a protein that serves as the receptor for 

macrophage stimulating protein. All 3 of these genes were over-expressed in CAD 

compared to MetS. In addition, three MAP kinases, MAP2K7, MAPK11 and MAPK13, 

were over-expressed in this gene set, all of which are involved in mediating the immune 

response to pro-inflammatory cytokines. Gene sets 482 and 682 feature a number of 

genes involved in the activation of the pro-inflammatory transcription factor NF-κB. 

CARD14 interacts with BCL10 to positively influence NF-κB activation; IKBKG and 

TNFRSF1A also activate NF-κB. Gene set 372, Negative Regulation of Biological 

Processes, contains differentially expressed CLCF1, a B cell stimulatory cytokine, F2, or 

coagulation factor II, associated with vascular inflammation, and MPO, encoding the 

protein myeloperoxidase, an enzyme found in neutrophils. In addition to the over-

expression of NF-κB activating genes, also seen in the direct comparisons of CAD to 

CTRL and MetS, monocyte and macrophage related genes were also over-expressed in 

CAD. 

  Differences in peripheral blood gene expression of T2D as contrasted with MetS 

were much more subtle than the comparison of CAD with MetS. Of note are CD276, LAT 

and LCK, in gene sets 271, 478 and 596. CD276 is involved in regulation of cell-
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mediated immune responses in T cells, LAT is a component of the cell surface T cell 

receptor complex, and LCK is a protein involved in the maturation and function of T 

cells. Also significant, ILF2, encoding a protein that regulates IL-2 and proliferation of T 

cells, was over-expressed in T2D relative to MetS. Finally, CXCL5, a chemotactic 

cytokine, was increased in expression in gene set 104, Cell Cell Signaling. T2D and MetS 

were the two most closely correlated disease states (Figure 2-3A). The gene expression 

profiles of these two states differ primarily in the over-expression of T cell associated 

genes in T2D.  

 

PCR Validation 

  To quantitatively measure differences in transcript levels of a selected group of 

genes identified by the array analysis, we performed quantitative-reverse transcriptase 

PCR (RT-PCR). We analyzed 19 of the original 35 samples used for the microarray 

analysis (group 1).  In addition, we obtained 61 independent samples from CTRL, MetS, 

CAD and T2D subjects (group 2).   We determined the fold difference between each 

experimental group and its own CTRL group, e.g. group 1 or group 2, using the ΔΔCt 

method (Table 2-3).  A 'pooled' p value was calculated by pooling results from groups 1 

and 2. From the MetS peripheral blood gene expression profile, CD1D also showed 

increased expression while the decreased expression of DAXX, MOAP1 and TNFAIP3 

was similarly validated. Of interest, our additional analysis demonstrates that CD1D and 

DAXX were also differentially expressed in the CAD cohort. Expression of MOAP1 and 

TNFAIP3 was also decreased in all three metabolic cohorts relative to the level in the 

CTRL cohort in both group1 and group 2.  Three genes over-expressed in the CAD 
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signature were also confirmed by RT-PCR measurements, CD14, CFHR1 and CXCL14. 

These genes also showed significant differential expression in MetS (CFHR1), T2D 

(CXCL14) or both (CD14).  Finally, the differences in expression of CTLA4, GPX1, IL4R 

and NP, from the T2D microarray signature, were confirmed by the RT-PCR 

experiments.  CTLA4 also displayed decreased transcript levels in CAD and GPX1 and 

IL4R showed increased and decreased expression, respectively, in all 3 metabolic cohorts.  

Besides validating results obtained from microarray analyses in independent cohorts by 

an independent method, these experiments also identify expression patterns of individual 

genes unique to one or two metabolic disorders or shared by all three metabolic disorders. 

  

Table 2-3. RT-PCR determined ratiosa of differentially expressed genes 
MetS       T2D      CAD      

Gene   Grp 1b Grp 2c p-valued  Grp 1 Grp 2 p-value   Grp 1  Grp 2  p-value 
CD14   1.88  1.33  0.008   1.68  1.26  0.005   1.39  1.39   0.009 
CD1D   1.59  1.36  0.006   1.49  1.35  0.003   0.55  0.83  ns 
CFHR1   9.21  3.85  <0.0001   3.48  3.08  <0.0001   1.34  1.48  ns 
CTLA4   1.52  0.65  ns    0.21  0.41  0.002   0.55  0.58  0.002 
CXCL14  3.4   0.32  ns    11.82  10.95  0.002   10.3  17.95  0.002 
DAXX   0.33  0.43   <0.0001  0.53  0.51  <0.0001   0.88  0.72  ns 
GPX1   4.75  1.57  0.002   2.41  1.61  0.003   1.91  2.05  0.003 
IL4R   0.61  0.51  <0.0001   0.26  0.35  <0.0001   0.49  0.68  0.008 
MOAP1  0.42  0.28  <0.0001   0.31  0.67  0.01   0.72  0.62  0.03 
NP     2.31  1.06  ns    1.36  1.25  ns    1.82  1.41  0.02 
TNFAIP3  0.4   0.26  <0.0001   0.23  0.27  <0.0001   0.97  0.41  0.03 
aratio= fold change, determined by ΔΔCt calculations, calculated separately for each 
group versus group-specific CTRLs 
bGroup 1 is composed of 19 samples used in the original gene set analysis (CTRL=4, 
MetS=6, CAD=3, T2D=6) 
cGroup 2 is an independent set of 61 patient samples (CTRL=16, MetS=16, CAD=13, 
T2D=16) 
dp-values calculated on groups 1 and 2 pooled data 
ns= not significant 
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Discussion 

 

  Our analysis of peripheral blood gene expression in CAD, T2D and their 

precursor state, MetS, shows that these inflammatory disorders feature unique gene 

expression signatures. We included individuals with RA in these studies as an example of 

a disease with a known peripheral blood gene expression profile and for purposes of 

comparing the metabolic expression signatures to that of an autoimmune disease. As 

expected, gene expression of the RA cohort was sufficient to distinguish these individuals 

from CTRL. In each of MetS, CAD and T2D, there were sufficient numbers of genes 

differentially expressed to cluster the majority of each group away from the CTRL cohort 

with 100% support. Additionally, when all 4 disease states were included in the analysis, 

24/26 subjects from the disease cohorts branched together with 100% support. Within 

that branch, the RA patients clustered together while the metabolic cohorts showed 

considerable overlap. Thus, the metabolic cohorts have peripheral blood gene expression 

signatures that are more similar to RA than CTRL, but also more similar to each other 

than RA.  

The gene expression signature of MetS centers on dysregulation of genes 

involved in the innate immune response. One component of MetS is 

hypercholesterolemia, specifically, greater levels of very low density lipoprotein 

(VLDL). VLDL stimulates release of acute phase proteins from the liver. Activation of 

the innate immune response in peripheral blood could be a response to increased amounts 

of circulating VLDL. Fatty acids are known to activate innate immune signaling 

molecules, like TLR4151. The gene expression signature of MetS shares much in common 
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with that of CAD and T2D; many of the gene sets differentially expressed in the 

individual comparisons of MetS, CAD and T2D to CTRL also overlap among the three 

disorders. Spearman’s test for correlation showed clear association of the three metabolic 

disorders, an association that was also significant, but to a lesser extent when correlated 

to RA. The gene sets and corresponding genes driving this similarity are those associated 

with activation of the innate immune response, an association not seen in the RA cohort.  

  In addition to activation of the innate immune response, many genes involved in 

activation of the pro-inflammatory transcription factor, NF-κB, are differentially 

expressed in the CAD profile. Comparing CAD and T2D directly to their precursor, 

MetS, is a more appropriate analysis to determine genes and pathways involved in 

progression of pre-disease to disease. The comparison of CAD to MetS revealed 

monocyte and macrophage associated genes are more prominently differentially 

expressed. In addition to the hyperlipidemia of MetS, diagnosis of CAD indicates the 

presence of atherosclerotic plaques in the lumen of peripheral blood vessels. CAD gene 

expression profiles uncovered here reflect systemic inflammation and activation of 

monocytes. Many of these activated monocytes may migrate from the lumen to become 

the lipid-filled macrophages seen in the core of these plaques152. One possible 

interpretation of these results is that immunological processes occurring at the site of 

disease are reflected in peripheral blood. 

In the gene expression profile of T2D, a disease that represents more refractory 

insulin resistance than MetS, we see increased expression of genes associated with 

activation, signaling and function of T cells. This was also the case in a direct comparison 

of gene expression between MetS and T2D. Many of these T cell activation genes are 
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also differentially expressed in RA; however unlike T2D, in RA there is a documented 

role of T cells in the pathogenesis of disease: as the effector cells of joint-specific 

destruction149. The up-regulation of T cell activation seen in these studies may be a 

byproduct of enhanced activation of the immune response by adipocytes. Recent studies 

have shown activated T cells to be present in abundance in visceral adipose tissue of mice 

with T2D153.  

This independent study also replicates a number of findings in the literature with 

regards to altered expression of genes in states of insulin resistance and obesity. The 

monocyte surface antigen CD14, upregulated in MetS, CAD and T2D is also upregulated 

in mice with insulin resistance154. CXCL14 null female mice were protected from 

obesity-induced hyperglycemia and did not develop insulin resistance155. An additional 

correlation can be found found in a human study in which a SNP in the IL4R gene is 

associated with increased body mass index156.  

Taken together, our data support a hypothesis whereby MetS produces a state of 

general systemic inflammation mediated by the innate immune system. This 

inflammation persists as the pre-disease state progresses to CAD or T2D. Peripheral 

blood gene expression in CAD and T2D identifies additional immune processes 

underlying these two disease phenotypes; NF-κB activation in CAD, T cell activation in 

T2D. Thus, the gene expression profiles of MetS, CAD and T2D present convincing 

evidence that systemic inflammation is a component of the pathogenesis of all 3 states. 

Furthermore, this study identifies a minimally invasive system that could be used in a 

longitudinal study to better understand the progression of MetS to its sequelae. 
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CHAPTER III 

 

A COMPARISON OF GENOMIC COPY NUMBER CALLS BY PARTEK 

GENOMICS SUITE, GENOTYPING CONSOLE AND BIRDSUITE  

ALGORITHMS TO QUANTITATIVE PCR 

 

Abstract 

 

  Copy number variants are >1kb genomic amplifications or deletions that can be 

identified using array platforms. However, arrays produce substantial background noise 

that contributes to high false discovery rates of variants. We hypothesized that 

quantitative PCR could finitely determine copy number and assess the validity of calling 

algorithms. Using data from 29 Affymetrix SNP 6.0 arrays, we called copy numbers 

using three programs: Partek Genomics Suite, Affymetrix Genotyping Console 2.0 and 

Birdsuite. We compared array calls at 25 chromosomal regions to those determined by 

qPCR and found nearly identical calls in regions of copy number 2. Conversely, 

agreement differed in regions called variant by at least one method. The highest overall 

agreement in calls, 91%, was between Birdsuite and quantitative PCR. In 38 independent 

samples, 96% of Birdsuite calls agreed with quantitative PCR. Analysis of three copy 

number calling programs and quantitative PCR showed Birdsuite to have the greatest 

agreement with quantitative PCR.  
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Introduction 

 

 Copy Number Variants (CNVs) are defined as amplifications or deletions of >1 

kilobase segments of the genome87,88. Gene duplications were first identified in the 

pathogenesis of Charcot-Marie Tooth disease in the 1980s; a copy number (CN) 

amplification of the PMP22 gene was shown to be sufficient to cause disease112.  These 

regions of variance were thought to be rare and when the human genome was published, 

variance amongst humans was primarily attributed to base-pair level single nucleotide 

polymorphisms (SNPs)75,157. However, CNVs were discovered to be present and 

widespread in the genome shortly thereafter87,88. These variants are generated during 

normal recombination events, leading to inherited CNVs, as well as somatically 

throughout life in rapidly dividing cells96,158,159. CNVs can directly influence gene 

expression through dosage effects where more copies of the gene produce greater 

expression, and also by altering transcriptional regulation in the genome, both in the 

region of variance itself and also in regions up to 1 megabase away98,160,161.  

 CNVs can be detected by fluorescence in situ hybridization, bacterial artificial 

chromosome arrays, genome-wide SNP arrays or direct quantitative PCR (qPCR) in a 

genomic region of interest. One example of a genome-wide array is the Affymetrix SNP 

6.0 array, with close to 1 million probes for determining SNPs across the genome and an 

additional ~ 1 million probes specifically designed to assess CN. Data from these arrays 

can be transformed into CN using any of a number of methods, including defined 

threshold intensity cut-offs and complex statistical algorithms like circular binary 

segmentation and the Hidden Markov Model102. These calling methods are built in to user 
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accessible programs like Partek Genomics Suite, Affymetrix's Genotyping Console 2.0 

and Copy Number Analysis Tool,  and Birdsuite software developed by the Broad 

Institute at Harvard, among others162. A recent analysis evaluating the performance of 

seven CN calling algorithms- circular binary segmentation163, CNVFinder164, 

cnvPartition, gain and loss of DNA165, Nexus segmentation methods Rank and SNPRank, 

PennCNV166 and QuantiSNP167- found QuantiSNP outperformed other methods and had 

the highest statistical power to detect CNVs168. However, this comparative analysis was 

based on consensus of calls amongst the methods and did not assess a non-array 

reference, like qPCR, that might determine the accuracy of the calls.  

 Due to concerns about accuracy when only one calling method is used, CNVs 

have been associated with a number of diseases and states based on the use of multiple 

algorithms with a consensus call made for each genome region169, or from just one 

algorithm paired with additional validation like qPCR or multiple ligation-dependent 

probe amplification methods73,170,171,172,173. In addition to the programs and methods 

already mentioned, new methods continue to be introduced in the literature174,175. 

 We hypothesized that qPCR could finitely determine CN and through this 

process, assess the validity of a calling algorithm. To test this hypothesis, we took data 

from 29 Affymetrix SNP 6.0 arrays and called CNs across the genome using three 

separate programs: Partek Genomics Suite, Affymetrix Genotyping Console 2.0 and 

Birdsuite. We compared the array calls at 25 individual chromosomal regions with CN 

calling in the same genomic DNA samples by qPCR. 
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Materials and Methods 

 

Patient Recruitment 

  Patients were recruited by the Clinical Research Center at Vanderbilt University. 

These studies were approved by the Institutional Review Board of Vanderbilt University 

and all subjects provided written informed consent. 

 

Affymetrix SNP 6.0 Arrays 

  Peripheral blood was drawn into a Vacutainer Venous Blood Collection Tube 

(BD Catalog #367861) containing EDTA. Equal volume of lysis buffer (0.32M Sucrose, 

10mM Tris-HCL, 5mM MgCl2, 0.75% Triton X-100, pH 7.6) and 2X volumes of dH20 

were added to each. Samples were centrifuged and resuspended in lysis buffer. After a 

second centrifugation, the pellet was resuspended in proteinase K buffer (20mM Tris-

HCl, 4mM Na2-EDTA, 100mM NaCl, pH 7.4) and proteinase K (20mg/ml) was added to 

the solution. Samples were incubated for 1h at 55°C, cooled on ice and 5.3M NaCl was 

added. Samples were centrifuged, supernatants kept and added to cold isopropanol and 

incubated for 30 minutes. Finally, genomic DNA was centrifuged and the pellet was 

washed twice with 70% ethanol. Genomic DNA was dissolved in Tris-HCl (pH 8.0) and 

hybridized to the Affymetrix Genome-Wide Human SNP Array 6.0 (Santa Clara, CA) 

according to the manufacturer’s protocol.  Following scanning, arrays were checked for 

quality using Affymetrix Genotyping Console.  Arrays with a Contrast QC less than 0.4 

were removed from further analysis.  
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Copy Number Analysis 

 Genotypes and CN were called using three different methods. The data were 

loaded into Partek Genomics Suite, quantile normalized and compared to the HapMap 6.0 

baseline. CNV regions were called based on the presence of at least 3 consecutive probe 

sets. Data were also loaded into the Affymetrix program Genotyping Console 2.0. CN 

was determined with reference to the GenomeWideSNP_6.hapmap270 file and CNVs 

were similarly called based on variance of at least 3 consecutive probes. Finally, data 

were inputted into Birdsuite v.1.5.3 and variant regions were called without a pooled 

reference file.  As a further quality control step for Birdsuite, arrays with an overall call 

rate less than 98% were discarded from further analysis. 

 

Quantitative PCR Experiments 

  To validate the CN of variant regions from the Affymetrix chip, primer assays 

were ordered from Applied Biosystems, either custom designed or selected from their 

inventoried stock of assays, all designed specifically to detect genomic CN 

(Supplementary Table 3-2). Reactions were run with 20ng genomic DNA per the 

standard Applied Biosystems protocol in a 7300 Real Time PCR System. All samples 

were run in triplicate with a multiplexed RNase P or Hemoglobin-beta reference assay 

and CN was called using ΔΔCt values calculated in Applied Biosystem’s CopyCaller 

v.1.0.  In cases where a calibrator sample with CN of 2 was not known, plates were 

calibrated to an average CN=2. 
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Results 

   

  Genomic DNA samples from 77 individuals were hybridized on Affymetrix SNP 

6.0 Arrays. 29 of these samples were analyzed for CN using the Partek Genomics Suite, 

Genotyping Console 2.0 (GTC) and Birdsuite (Supplementary Table 3-1). Of note, both 

Partek and GTC CN calls were determined using a pooled HapMap comparison file. 

qPCR analysis was performed to determine CN at a total of 25 individual genomic 

regions across 12 chromosomes. The results were compared to the 3 sets of genome-wide 

calls made from the arrays (Supplementary Table 3-2).  

  A number of regions were identified by one or more of the algorithms to have CN 

of 2 in all samples tested. We probed 16 of these "invariant" regions by qPCR and 

compared the results of the calls in each sample by each method (Table 3-1). There was 

vast agreement in CN calls in these regions. Of note, qPCR called 4 samples variant at 

chromosome 2 that were called CN of 2 by all three algorithms. Additionally, in a region 

on chromosome 8, Partek and GTC called all 8 samples a CN of 2 while Birdsuite called 

2 samples variant. Those same 2 samples were also found to be variant by qPCR. 

Additionally, one sample was called variant by GTC on chromosome 9 but invariant, or 

CN of 2, by all other methods. All together, seven sample-region pairings were called 

variant by just one or two methods and invariant by the others while 209 sample-region 

pairings were uniformly called CN of 2 by Partek, GTC, Birdsuite and qPCR, 

representing nearly 97% agreement amongst all methods of CN calling in these 16 

regions. 

   



66 
 

Table 3-1. Copy number calls at invariant regions of the genome 
Region    Partek  GTCa  Birdsuite qPCR 
2:240,032,091   28/0b  28/0  28/0  24/4 
3:180,366,781   27/0  27/0  27/0  27/0 
6:326,150    5/0   5/0   5/0   5/0 
7:11,288,419   17/0  17/0  17/0  17/0 
7:24,002,710   24/0  24/0  24/0  24/0 
8:51,195,001   8/0   8/0   6/2   6/2 
9:16,930,899   25/0  24/1  25/0  25/0 
13:53,784,055   9/0   9/0   9/0   9/0 
13:56,713,547   9/0   9/0   9/0   9/0 
15:32,555,299   8/0   8/0   8/0   8/0 
16:3,104,307   9/0   9/0   9/0   9/0 
16:4,280,826   8/0   8/0   8/0   8/0 
16:18,557,305   9/0   9/0   9/0   9/0 
20:28,068,523   6/0   6/0   6/0   6/0 
20:29,271,114   8/0   8/0   8/0   8/0 
22:47,400,722   16/0  16/0  16/0  16/0 
aGTC=Genotyping Console 2.0 
bValues are represented as “#samples with CN=2” / “#samples with CN=non 2” 

 

  Additional regions were identified as variant, containing numerous CNVs 

amongst the 29 samples. Nine of these regions were investigated by qPCR, 184 sample-

region pairs in total, and the results produced by the three CN calling algorithms were 

compared by CN class, 0, 1, 2, 3 and 4 (Table 3-2). Region 1 on chromosome 2 produced 

an identical group of CN calls amongst each of the 4 methods. GTC, Birdsuite and qPCR 

also produced identical CN calls in Region 2. Additional regions 3-9 did not show such 

similarity in CN calls between the 4 methods but these comparisons suggested that 

agreement was highest when Partek calls were compared to GTC calls or when Birdsuite 

calls were compared to qPCR. Regions 3, 4 and 8 produced a very similar breakdown of 

calls in Partek and GTC while region 7 was nearly identical, with 7 samples being called 

amplifications by both programs. Regions 3, 4, 6, 7 and 9 showed similar calls by both 
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Birdsuite and qPCR. These analyses indicate that some patterns of agreement were 

observed amongst the different methods of CN calling. 

 

Table 3-2. Comparison of copy number calls at variant regions       
Region 1  
Chr2:242,648,367 
  0 1 2 3 4 
Partek 0b 4 24 0 0 
GTCa 0 4 24 0 0 
Birdsuite0 4 24 0 0 
qPCR 0 4 24 0 0 
 
Region 4  
Chr8:144,776,429 
  0 1 2 3 4 
Partek 0 0 8 0 0 
GTC 1 0 7 0 0 
Birdsuite1 2 5 0 0 
qPCR 1 2 5 0 0 
 
Region 7  
Chr20:1,522,539 
  0 1 2 3 4 
Partek 0 4 13 7 0 
GTC 0 4 13 0 7 
Birdsuite17 7 0 0 0 
qPCR 18 6 0 0 0 

Region 2  
Chr3:53,010,599 
  0 1 2 3 4 
Partek 0 1 24 0 0 
GTC 1 3 21 0 0 
Birdsuite1 3 21 0 0 
qPCR 1 3 21 0 0 
 
Region 5  
Chr19:56,824,268 
  0 1 2 3 4 
Partek 0 0 13 13 0 
GTC 0 0 17 3 6 
Birdsuite0 0 26 0 0 
qPCR 1 6 19 0 0 
 
Region 8  
Chr22:22,643,636 
  0 1 2 3 4 
Partek 0 0 23 5 0 
GTC 1 0 24 3 0 
Birdsuite12 11 5 0 0 
qPCR 0 0 28 0 0 

Region 3  
Chr7:133,441,893 
  0 1 2 3 4 
Partek 0 1 5 0 0 
GTC 0 1 4 1 0 
Birdsuite1 3 2 0 0 
qPCR 1 3 2 0 0 
 
Region 6  
Chr19:56,838,253 
  0 1 2 3 4 
Partek 0 0 7 6 0 
GTC 0 0 6 3 4 
Birdsuite0 2 11 0 0 
qPCR 0 2 11 0 0 
 
Region 9  
Chr22:22,713,888 
  0 1 2 3 4 
Partek 0 0 14 12 0 
GTC 1 1 16 6 2 
Birdsuite2 13 11 0 0 
qPCR 2 14 10 0 0 
 

aGTC=Genotyping Console 2.0 
bValues are numbers of samples called each CN at each region. 
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  To determine exact agreement among the CN calling methods, 400 CN calls were 

compared on a sample-by-sample basis to determine agreement of each CN state (Figure 

3-1). As previous analyses indicated, the highest agreement in every comparison was 

seen at CN=2 among the individual CN states (0, 1, 2, 3, and 4). These agreements 

ranged from 82% to 96% and greatly influenced the overall agreements of each 

comparison.  Discordance among calls from each method was found by comparing the 

variant calls (CN of 0, 1, 3 or 4). 
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Figure 3-1. Agreement of CN calls made by Partek, GTC, Birdsuite and qPCR.   
CN calls were analyzed on a sample-by-sample basis across 25 individual chromosomal 
regions. Results were sorted according to the CN called by the method named at the top 
of each column. Descending in each column are method-by-method comparisons. A total 
of 400 CN calls were considered in this analysis.  Results are expressed as % agreement 
between any two methods of CN call determinations. 
 

  When Partek called a CN of 1, GTC also called the sample a CN=1 70% of the 

time. However, when GTC called a sample region CN=1, Partek correctly called that 

region a CN=1 54% of the time. There was no agreement between GTC and Partek at CN 

of 0 because Partek did not call any CN=0 in any of the tested regions. Partek showed 

less than 50% agreement with variant calls in both Birdsuite and qPCR.  The overall 

agreement of GTC with Partek was 88%, between Birdsuite and Partek was 72% and 

qPCR CN calls agreed with Partek CN calls 76% of the time. 
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  When GTC called a CN of 0, Birdsuite also called a 0 100% of the time while the 

agreement with qPCR was 75%. At CN of 1, Birdsuite and qPCR had an identical call in 

less than 60% of samples. Conversely, when Birdsuite or qPCR made a CN call of 0 or 1, 

GTC reported the same call in those samples less than 20% of the time. Overall 

agreement of Birdsuite with GTC was 76% and qPCR and GTC agreed in 79% of the 

samples. 

  When Birdsuite called a CN of 0 or 1, the agreement with Partek was 0% and 9%, 

respectively. Birdsuite variant calls agreed with GTC's calls at slightly higher rates, 12% 

for CN=0 and 15% for CN=1. The agreement between Birdsuite and qPCR, however, 

was 65% for CN of 0 and 75% for CN of 1. Of note, the majority of the disparate calls in 

this comparison came from region 8 (Table 3-2), where Birdsuite called 23 samples to be 

CN deletions while qPCR determined them to be CN=2. While GTC and qPCR showed 

high agreement at CN of 0, the agreement at CN=1 was 54%. The Birdsuite agreement 

with qPCR in CNV sample regions were thus the highest seen among any comparison of 

array-based calls with qPCR. The overall agreement of qPCR with Birdsuite was also the 

highest, at 91%.  

  Finally, when CN calling from array-based algorithms were compared to qPCR, 

GTC and Partek both showed variant agreements less than 20% of the time, while 

Birdsuite agreed with 92% of qPCR calls at CN=0 and 76% of qPCR calls at CN=1. 

Similar to the inverse comparison of qPCR calls to Birdsuite, when Birdsuite variant calls 

were compared to qPCR, region 5 (Table 3-2) showed 6 samples that were determined to 

be CN deletions by qPCR and called CN of 2 by Birdsuite, accounting for a large portion 
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of the 24% error in calls at CN=1. Overall, the highest agreement was found between 

qPCR and Birdsuite.  

  We next assessed if the high percent agreement between Birdsuite and qPCR was 

reproducible in a second independent group of samples.  Data from 38 additional 

Affymetrix SNP 6.0 arrays were analyzed by Birdsuite to determine CN calls across the 

genome (Supplemental Table 3-1).  qPCR reactions were performed using 18 different 

assays investigating regions on 10 chromosomes to determine CN at each region.  A total 

of 387 comparisons were made in this step (Table 3-3 and Figure 3-2). A total of 14 

Birdsuite calls in 7 genomic regions did not agree with the CN call made by qPCR (Table 

3-3). Six of these disparate calls were CN=2, 7 of CN=1 and 1 of CN=3. Overall 

agreement at each CN was also determined (Figure 3-2). Birdsuite and qPCR agreed on 

100% of CN=0, 87% of CN=1 and 98% of CN=2. Of note, there was 0% agreement in 1 

sample called a CN=3 by qPCR. The overall agreement of Birdsuite with qPCR was 

96%, better than the overall agreement rate from the first analysis (91%).   
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Table 3-3. Birdsuite agreement with qPCR calls in 18 genomic regions 
Region      0       1     2     3 
2:242,648,367   0 (0)    1 (0)  36 (0)  0 (0) 
3:53,010,599   1 (0)    2 (1)  30 (0)  0 (0) 
3:180,366,781   0 (0)    0 (0)  16 (0)  0 (0)   
7:11,288,419   0 (0)    0 (0)  26 (0)  0 (0) 
7:24,002,710 0 (0)    0 (0)  16 (0)  0 (0) 
7:133,441,893   2 (0)  14 (0)    6 (0)  0 (0) 
8:51,195,001   1 (0)  11 (2)  13 (0)  0 (0) 
8:144,776,429   1 (0)    5 (2)  10 (2)  0 (0) 
9:16,930,899   0 (0)    0 (0)  16 (0)  0 (0) 
13:53,784,055   0 (0)    0 (0)  18 (0)  0 (0) 
13:56,713,547   0 (0)    0 (0)  13 (4)  0 (0) 
13:71,376,533   7 (0)  12 (1)    1 (0)  0 (0) 
15:32,555,299   0 (0)    3 (0)   16 (0)  0 (0) 
16:3,104,307   0 (0)    0 (0)  18 (0)  0 (0) 
16:4,280,826   0 (0)    0 (1)  15 (0)  0 (0) 
16:18,557,305   0 (0)    0 (0)  26 (0)  0 (0)    
20:29,271,114   0 (0)    0 (0)    8 (0)  0 (1) 
22:47,400,722   0 (0)    0 (0)  29 (0)  0 (0) 
aValues are represented as the number of calls that "agree(disagree)" 
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Figure 3-2. Agreement between CN calls made by Birdsuite and qPCR. 
Birdsuite CN calls were compared to qPCR CN calls at 18 distinct chromosomal regions 
on 10 chromosomes. A total of 387 data points were considered in the analysis. At CN=0, 
12/12 samples agreed, at CN=1, 48/55 samples agreed, at CN=2, 313/319 samples agreed 
and at CN=3, 0/1 sample agreed. Results are expressed as % agreement between any the 
two methods of CN call determinations. 
 

 

Discussion 

 

  A total of 77 peripheral blood genomic DNA samples were analyzed for CN on 

Affymetrix SNP 6.0 Arrays. CN calls for 29 of these samples were determined by three 

different methods: Partek Genomics Suite, GTC and Birdsuite. Calls at 25 genomic 

regions were also determined by qPCR in these same samples. Comparison of these CN 

calls shows that all 4 methods agreed when the CN call is 2.  However, there is 

considerably less agreement when the CN calls identify variant regions or CNVs. One 

way to determine one singular CN call for each region would be pooling the array CN 

calls from each algorithm to arrive at a consensus call. However, the disagreement 
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amongst variant calls by Partek, GTC and Birdsuite seen in this sampling prohibit 

arriving at a clear consensus. When each of the 4 methods was compared to the others, 

the highest agreement both in variant calls and overall calls was between Birdsuite and 

qPCR. 

  CN calls made by each algorithm- Partek, GTC and Birdsuite, on each array are 

subject to a number of assumptions. CN calls are calculated in GTC and Partek by using 

a reference file or baseline. This reference file is generally composed of pooled CN data 

such that the average intensity of the group is assumed to be CN of 2. However, in the 77 

arrays analyzed we discovered numerous regions to be variant in greater than 80% of 

samples. Pooling these arrays and assuming a CN of 2 would therefore skew results. In 

contrast, Birdsuite uses a unique method to determine CN. The Broad Institute has 

previously characterized copy number polymorphisms by determining those CNVs 

present in greater than 5% of the HapMap population176. Birdsuite uses known intensity 

value-CN references at the 1,320 copy number polymorphisms to infer CN in the 

remaining portions of the genome162. However, no algorithm can completely escape the 

problem of background intensity on the array and the risk for type I and type II errors that 

come with the sampling of intensity values at nearly 2 million probes.  

  CN determined by qPCR is not without assumptions. Calls are made using the 

ΔΔCt calculation with the first comparison coming between the test assay Ct value and a 

multiplexed reference assay Ct value. Reference assays exist for genes known to be CN 

invariant, or to always have exactly 2 copies of the gene in the genome. The second 

comparison is made between the test assay-reference assay value and that same value for 

a calibrator sample, known to have a CN=2 in the test region. If the calibrator sample is 
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not a CN of 2, the data would be skewed in the direction of the actual CN of the 

calibrator sample. qPCR, however, does not have the problem of additional background 

noise and is also immune to multiple sampling errors. For these reasons, qPCR is 

considered to be the standard in determining CN. 

  The algorithm employed by Birdsuite to call CNs across the genome closely 

agrees with the qPCR determinations of CN. When all 787 comparisons from these data 

are considered, the overall agreement is 94%. For this reason, the use of the Birdsuite 

algorithms, in combination with PCR validation, generated the most reproducible CN 

calls in this group of patient samples. Of note, more recent versions of Genotyping 

Console now employ the Birdsuite algorithms to determine CN. 
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CHAPTER IV 

 

GENOME-WIDE ANALYSIS OF COPY NUMBER  

VARIATION IN TYPE 1 DIABETESa

 

 

Abstract 

 

  Type 1 diabetes tends to cluster in families, suggesting there may be a genetic 

component predisposing to disease.  However, a recent large-scale genome-wide 

association study concluded that identified genetic factors, single nucleotide 

polymorphisms, do not account for overall familiality. Another class of genetic variation 

is the amplification or deletion of >1 kilobase segments of the genome, also termed copy 

number variations (CNVs).  We performed genome-wide CNV analysis on a cohort of 20 

unrelated adults with type 1 diabetes and a control cohort of 20 subjects using the 

Affymetrix SNP Array 6.0 in combination with The Birdsuite copy number calling 

software.  We identified 39 CNVs as enriched or depleted in type 1 diabetes versus 

control.  Additionally, we performed CNV analysis in a group of 10 monozygotic twin 

pairs discordant for type 1 diabetes.   Eleven of these 39 CNVs were also respectively 

enriched or depleted in the Twin cohort, suggesting that these variants may be involved 

in the development of islet autoimmunity, as the presently unaffected twin is at high risk 

for developing islet autoimmunity and type 1 diabetes in their lifetime. These CNVs 

include a deletion on chromosome 6p21, near an HLA-DQ allele. CNVs were found that 

were both enriched or depleted in patients with or at high risk for developing type 1 
                                                           
a This chapter has been published in: PLoSOne. 2010 Nov 15; 5(11):e15393 
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diabetes. These regions may represent genetic variants contributing to development of 

islet autoimmunity in type 1 diabetes.  

 

Introduction 

  

  Type 1 diabetes (T1D) results from immune-mediated selective destruction of 

pancreatic islet cells resulting in insulin deficiency and hyperglycemia6,7. Symptoms of 

polydipsia, polyuria, polyphagia and weight loss manifest when significant numbers of 

islet cells have been destroyed.  However, antibodies to islet autoantigens can be detected 

in peripheral blood prior to clinical disease6,21. With early diagnosis of disease or 

assessment of risk, immune therapy may impede islet destruction and preserve insulin 

production, delaying onset of clinical manifestations7.  

 Another component of T1D that aids in our understanding of the disease and 

assessment of risk is genetic inheritance. A long-term (up to 40 year) study of twin pairs 

in Finland revealed a monozygotic (MZ) pairwise concordance for T1D of 27.3% while 

the concordance for dizygotic (DZ) twins was 3.8%20. The impact of genetics was further 

made clear in this study because upon diagnosis of T1D in one twin, the length of time to 

diagnosis in the other twin in the concordant pairs was a maximum of 6.9 years in MZ 

twins and 23.6 years in DZ twins20. In addition to measuring incidence of T1D in twin 

studies, islet antigen-specific autoimmunity can also be determined. As a precursor to 

T1D, autoimmunity is defined as the presence of antibodies to islet autoantigens in 

sera177. In another study, 83 unaffected monozygotic twins were followed for nearly 44 

years and incidence of autoimmunity or diagnosis of T1D was recorded. This study 
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showed a 65% cumulative incidence of T1D by 60 years of age and more than 75% tested 

positive for an islet autoantibody during the course of the study. Once autoimmunity was 

established, the risk of diabetes was 89% within 16 years of the first positive 

autoantibody test. 

 Clearly genetics play an important role in the T1D disease process as both MZ 

and DZ twins have the same environmental exposures but different concordance rates and 

length to diagnosis of the second twin. Numerous genes have been associated with T1D, 

the most significant being the HLA region on chromosome 6178. More than 90% of type 1 

diabetics carry HLA alleles DR3-DQ2 or DR4-DQ8 compared to no more than 40% of 

the general population179. Alleles at HLA-DQB1 are known to be, in part, protective180. 

Single nucleotide polymorphisms (SNPs) are also associated with T1D. A recent 

genome-wide association study of approximately 2,000 patients with each of 7 common, 

chronic diseases, including T1D, and 7,000 shared controls confirmed the association of 

SNPs in 5 previously identified regions with T1D and discovered 5 novel associations. 

However, the authors concluded that these regions, with the exception of the HLA on 

chromosome 6, confer only modest effects on T1D, and “the association signals so far 

identified account for only a small proportion of overall familiality”26. These results 

suggest that additional genetic variants contribute to inheritance of T1D.  

 Another class of genetic variation is the amplification or deletion of >1 kilobase 

segments of the genome, also called copy number variations (CNVs)87,88. Gene 

duplications were first identified in the pathogenesis of Charcot-Marie Tooth disease in 

the 1980s; a CN amplification of the PMP22 gene was shown to be sufficient to cause 

disease112.  These regions of variance were thought to be rare and when the human 
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genome was published, variance amongst humans was primarily attributed to base-pair 

level SNPs75,157. However, CNVs were discovered to be present and widespread in the 

genome shortly thereafter87,88. These variants are generated during normal recombination 

events, leading to inherited CNVs, as well as somatically throughout life in rapidly 

dividing cells96,158,159. CNVs can directly influence gene expression through dosage 

effects where more copies of the gene produces greater expression, and also by altering 

the transcriptional regulation of the genome, both of the region of variance itself and 

regions up to 1 megabase away98,160,161.  

 Monozygotic twins discordant for disease represent a controlled population in 

which to identify potentially disease-associated CNVs. Monozygotic twins do not have 

identical genetic sequences and are known to vary in CNVs and at the epigenetic 

level170,181,182,183. Differences may arise during prenatal cell division or post-natally in 

continuously dividing cells like lymphocytes. The latter would result in CNVs that not 

only differ from the co-twin but also from CNVs in other cells and tissues of the body. In 

the case of disease discordant monozygotic twins, if a CNV were associated with a 

certain disease, we presume the twin affected by the disease would have the variant and 

the unaffected twin would not. A study of nine MZ twin pairs discordant for Parkinson's 

disease identified 35 regions of variance present in only the affected twin of at least four 

of those pairs, confirming the hypothesis that MZ twins differ in CNVs and that these 

regions may be involved in the development of disease, as evidenced by the presence of 

specific CNVs in multiple affected twins181.  

 There are numerous other diseases and states associated with differences in 

CNVs, among them schizophrenia and adult deficit hyperactivity disorder181,184,185. But 
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not all CNV associations are with neurologic or behavioral diseases. Recent studies have 

shown additional functional implications of CNV and disease, notably in studies of CNV 

of the Fc-gamma receptor and the autoimmune disease systemic lupus erythematosus 

(SLE). Patients with SLE are more likely to have fewer copies of FCGR3B, encoding a 

protein involved in the uptake and clearance of immune complexes186.  

 We hypothesize that CNVs contribute to susceptibility to and/or protection from 

T1D. To test this hypothesis, we performed genome-wide analysis on a cohort of 20 

unrelated adults diagnosed with T1D and 20 unrelated control (CTRL) subjects to 

identify CNVs either enriched or depleted in the T1D cohort compared to CTRL. We 

then looked at the frequency of these variants in a second cohort of 10 MZ twin pairs 

disease discordant for T1D. The frequencies of the CNVs of interest did not differ from 

the affected twin subset to the unaffected twin subset. However, because of the high 

lifetime incidences of autoimmunity and/or T1D in the unaffected twins, the 10 twin pairs 

were considered as a single cohort with or at high risk for T1D21. This analysis identified 

5 CNVs enriched and 4 CNVs depleted in both the T1D and Twin cohorts. 

  

Materials and Methods 

 

Ethics Statement 

  These studies were approved by the Institutional Review Board of Vanderbilt 

University and all subjects provided written informed consent. Monozygotic twin blood 

samples and family history information were provided with written informed consent 
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using protocols and consent forms approved by the Colorado Multiple Institutional 

Review Board. 

 

Patient Recruitment 

  Diabetes is defined by the WHO criteria of classic symptoms of diabetes 

(polydipsia, polyuria, polyphagia and weight loss) and a plasma glucose >200 mg/dl, a 

fasting plasma glucose of >126 mg/dl or a 2 h plasma glucose during an oral glucose 

tolerance test of >200 mg/dl6. T1D is differentiated from type 2 diabetes by a number of 

criteria- history, clinical presentation and laboratory findings, including antibody testing 

when available. Control patients have never received a diagnosis of a chronic disease or 

syndrome and are not currently taking medication for any illness or condition. 

Rheumatoid arthritis is defined by the American College of Rheumatology Criteria. 

Patients displayed four or more of the following symptoms for greater than 6 months: 

morning stiffness, swelling in 3 or more joints, swelling of finger and/or wrist joints, 

symmetric swelling, rheumatoid nodules, positive rheumatoid factor, or radiographic 

erosions in the hand and/or wrist139. Multiple Sclerosis patients were recruited with the 

following characteristics: diagnosis of relapsing remitting MS (RRMS) based upon the 

revised McDonald criteria187,188, no prior cytotoxic treatments that might induce DNA 

damage, no family history of MS in either first or second degree relatives, and age 

between 25-35 (to restrict the possibility of age-related somatic mutations).  

  Ten pairs of monozygotic twins were selected from the Barbara Davis Center 

Twin Family Study, an ongoing, long-term follow up study of initially unaffected twins 

of patients with type 1 diabetes.  Twins are ascertained through various sources, 
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including the Barbara Davis Center Clinic, the Joslin Diabetes Clinic, the Diabetes 

Prevention Trial, TrialNet, and other physician and self-referrals.  Family history of 

diabetes and other autoimmune diseases is collected at enrollment and updated over time.  

Serum and DNA samples are collected from twins and other family members.  Serum is 

tested for the presence of islet autoantibodies as well as celiac and adrenal autoantibodies.  

Autoantibody testing is repeated for unaffected twins for as long as they remain in the 

study or until they develop diabetes.  Twin zygosity is confirmed by testing a panel of 16 

microsatellite markers.   Twin DNA samples included in the present study were collected 

within 14 months of diagnosis of the affected twin, and at approximately the same time 

(within 1 week) for the two twins of each pair.  

  Genomic DNA samples from 73 patients with T1D, comprising the independent 

cohort for qPCR analysis, were obtained from Coriell Cell Repository, repository number 

65895. 

 

Affymetrix Copy Number Variation Experiments 

  Please refer to methods in Chapter III (page 63). Genotypes and CNs were 

called using Birdsuite v1.5.3.  As a further quality control step, arrays with an overall call 

rate less than 98% were discarded from further analysis. 

 

Copy Number Analysis 

 Genomic regions with a Birdsuite CN call confidence value less than 5 were 

merged to the adjacent region with a confidence score greater than 5, assuming the CN of 

that confident region. Next, each genome was narrowed down to a list of genomic 
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variants with confidence scores greater than 5. Regions of CN=2 were discarded. These 

lists were merged with the list of CNPs and regions of variance not represented by a CNP 

were denoted as “novel”176. Next, CNVs that were present in greater than 40% of the 

T1D group at a 1.5 fold change greater frequency as compared to the CTRL group were 

determined to be enriched and CNVs present in greater than 40% of the CTRL group at a 

1.5 fold change greater frequency as compared to the T1D group were determined to be 

depleted. For validation of these CNVs whose presence or absence may be associated 

with diabetes, an identical analysis was performed on the discordant twin cohort, as 

compared to CTRL and with the additional step of comparing the affected twins versus 

their unaffected co-twin pair to determine any variants present differentially within the 

group. CNVs enriched or depleted in both the twins and unrelated T1D adults were 

selected for further analysis. Chi-square analyses were performed on each CNV of 

interest in each cohort versus CTRL based on the presence or absence of variance. 

 We assessed statistical significance for the observed overlapping CNVs in both 

T1D cohorts relative to the CTRL group using a permutation test with 1000 permutations. 

Briefly, keeping the number of patients fixed in each of the three groups, we randomly 

permutated group status for the samples (so that they were re-assigned to different 

groups) and re-calculated the number of enriched CNVs in both disease groups relative to 

CTRL. This process was repeated 1000 times. The p-value for the number of observed 

overlapping CNVs (i.e. 10) was estimated by the number of permutations with 10 or 

more overlapping CNVs divided by the total number of permutations. 

 

 



84 
 

Quantitative PCR Experiments 

 See methods in Chapter III (page 64).  

 

Results 

 

 We sought to determine if CNVs are associated with T1D by performing genome-

wide CNV analysis on a cohort of 20 patients with T1D and 20 CTRL patients using the 

Affymetrix SNP Array 6.0. An additional cohort of 10 monozygotic twin pairs discordant 

for T1D was analyzed for validation purposes. Quality of the hybridization, as defined by 

Affymetrix in the Genotyping Console as a contrast QC <0.4, was assessed and 1 CTRL 

sample failed prior to CN analysis. 

 Of primary importance in the analysis of these data was the validity of our CN 

calling algorithm. Raw data from all 3 cohorts, 59 Affymetrix arrays in total, were 

inputted into the Birdsuite programs and CNs were called across the genome. The 

Birdsuite software determined integer CNs of predefined regions of common variance 

(copy number polymorphisms, CNPs) and employed a more complex, multi-dimensional 

model to identify rare variants162. Output files contain CN values across the chromosome 

with a confidence score of each individual call (Supplemental Table 4-1). Genome wide 

call rates were also estimated for each individual sample. Two samples from the 

unrelated adult T1D cohort failed a quality control checkpoint of call rate greater than 

98%. The remaining 57 arrays had call rates ≥ 98.6%. In a similar analysis to those 

described in Chapter III, we compared CNs determined by the Birdsuite analysis to CNs 

determined by quantitative PCR (qPCR) in 37 samples of genomic DNA across 5 distinct 
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chromosomal regions (Supplemental Table 4-2). For qPCR experiments, Applied 

Biosystem’s CopyCaller1.0 program determined a non-integer CN based upon the ΔΔCt 

calculation and then predicted an integer CN, each with an associated confidence value. 

For 185 separate experimental points, there was > 96% agreement in CN determinations 

made by the Birdsuite analysis and the qPCR analysis (Figure 4-1).  
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Figure 4-1. Percent agreement between Birdsuite copy number calls and qPCR. 
Percent agreement between the Affymetrix array CNs, as determined by the Birdsuite 
software, and qPCR CN, determined using ΔΔCt calculations, is plotted for each CN 
class. Percents are based on 214 comparisons from CNs for 37 samples on 6 distinct 
chromosomal regions (7q33, 8q11, 8q24, 15p13, 16p12). For CN 0, 6/6 samples agreed 
(100%). For CN 1, 45/45 samples agreed (100%). For CN 2, 127/134 of samples agreed 
(94.7%). The overall agreement is 178/185 samples (96.2%).  
  

  For the analysis, we first catalogued all confident, variant CN calls on 

chromosomes 1-22 within the framework of known copy number polymorphisms 

(CNPs)176.  CNPs are regions of CN variance present in greater than 1% of the 270 

HapMap samples, resulting in a library of 1,320 CNPs. Novel CNVs not represented in 

the CNP library were also identified and included in the analysis.  
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 A single CNV is capable of causing disease. In the case of Charcot Marie Tooth 

disease type 1, 70% of patients have one singular pathogenic variant112,189. In a more 

common disease, like T1D, we hypothesized that a single undiscovered variant would not 

be present and pathogenic at a percentage as high as 70%, rather we set the threshold of 

variance within each diabetes group at roughly half that, or 40%. Additionally, to ensure 

selection of variants differentially expressed between the two groups, we further limited 

the classification of enrichment in T1D to those CNVs present at a 1.5 fold greater 

frequency than CTRL. Conversely, a CNV was classified as depleted in T1D if it was 

present in >40% of the CTRL cohort at a 1.5 fold greater frequency than T1D.  

 Variants in the T1D group were compared to those in the CTRL group and 18 

CNPs present in > 40% of the T1D cohort at a 1.5 fold greater frequency than the CTRL 

cohort were identified as enriched in T1D. Conversely, 20 CNPs and 1 novel CNV were 

depleted in the T1D cohort, defined as a variant present in >40% of the CTRL cohort at a 

1.5 fold greater frequency than the T1D cohort. These 39 CNVs were then studied in a 

second cohort.  

 The Affymetrix chip determines CN based on values of nearly 1,000,000 probes 

in the genome, resulting in a high probability for both type I and II errors. To help control 

for these errors, we performed genome-wide CN analysis in a second cohort of patients, 

monozygotic twin pairs discordant for T1D. We hypothesized that the 39 CNVs 

identified in the first T1D:CTRL comparison may be differentially present in this second 

cohort of MZ twins. For each twin, confident variant calls were catalogued in the CNP 

library as before. CNVs present in only 1 twin of a pair were isolated and grouped based 

on disease status (affected or unaffected). These variants were compared to the 39 CNVs 
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from the previous analysis and no overlap was found. Additionally, there were no CNVs 

present in more than 2 affected or unaffected twins of the pairs when this cohort was 

considered independently of the previous analysis. 

 The unaffected twin in each of these MZ twin pairs will have a greater than 75% 

lifetime incidence of developing islet autoantibodies and 65% of these now-unaffected 

twins will go on to develop T1D in their lifetime21. As such, CNVs may be enriched in 

this group as a whole that confer risk to developing islet autoimmunity or T1D. 

Alternatively, the CNVs depleted in the unrelated adult T1D cohort may also be depleted 

in the twin cohort as a whole.  The 10 MZ twin pairs were compared to the CTRL cohort 

to determine CNVs that were enriched or depleted in the Twin group. Criteria for 

enrichment and depletion were identical to those outlined above. A total of 49 CNPs were 

enriched and 23 CNVs were depleted in the Twin cohort. Of the depleted CNVs, 22 were 

CNPs while 1 novel CNV was identified. All together, 72 CNVs were enriched or 

depleted in the Twin cohort. 

 The 72 CNVs identified in the Twin cohort were compared to the 39 CNVs 

identified in the adult T1D cohort to identify CNVs present in both cohorts.  Of these, 10 

CNVs were enriched in both cohorts relative to CTRL and 11 CNVs were depleted. 

Based upon permutation testing (with 1000 permutations), the p-value or probability of 

observing 10 or more overlapping CNVs in these cohorts by chance is 0.005 (= 5/1000).  

 The 21 CNVs were further classified to select those CNVs greater than 1,000 base 

pairs in length and identified by at least 3 consecutive probes on the Affymetrix array. A 

total of 9 CNVs (8 CNPs, 1 novel CNVR) met these criteria. Of these, 5 CNPs were 

enriched in the T1D and Twin cohorts and are identified by their CNP ID (Table 4-1). 
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These CNPs are located on 5 different chromosomes, range in size from 1,400 base pairs 

to 14,000 base pairs and are deletions to CNs of 0 or 1. Frequencies in the T1D and Twin 

cohorts range from 50% to 95% with corresponding frequencies in the CTRL cohort from 

21% to 58%. CNP253, on chromosome 2p11, contains part of a non coding RNA, 

NCRNA00152. CNP1303 contains the gene SNTG1, encoding gamma syntrophin, a 

cytoplasmic peripheral membrane protein known to be expressed in brain. Two regions, 

CNP934 and CNP1162, contain at least one segment of DNA longer than 100bp with 

more than 70% evolutionarily conserved sequence to Mus musculus as determined by the 

ECR browser, defined as an evolutionarily conserved noncoding sequence190. Each of 

these sequences encodes at least one potential transcription factor binding site suggesting 

these regions may have regulatory function. The sequence encompassed by CNP1956 is 

not gene coding and does not contain an evolutionarily conserved noncoding sequence.  

  Four CNVs were depleted in the T1D and Twin cohorts relative to CTRL (Table 

4-2). The 3 CNPs are gene coding regions located on 3 different chromosomes, span 

3,400 base pairs to 15,900 base pairs and are also all CN deletions to 0 or 1. The 

frequency of the CNVs depleted in the diabetes cohorts range from total absence (0%) to 

39%. The frequency of these CNPs in the CTRL cohort ranged from 42%-68%. 

CNP1102 contains a deletion of TYW1, encoding a protein involved in stabilizing 

ribosomal decoding processes.  CNP1879 is in the region coding for the ankyrin repeat 

and sterile alpha motif domain gene, ANKS1B, and the chromosome 17 CNP2240 

contains coding sequence for TRIM16.  
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Table 4-1. CNVs enriched in T1D and Twin cohorts, relative to CTRL  
CNP 
IDa Chr Start End Amplification 

or Deletion 
CTRL 

% 
T1D 
% 

CTRL: 
T1D pb 

Twin 
% 

CTRL: 
Twin p Sequence 

253 2p11 87,600,933 87,609,093 deletion 42 72 0.13 70 0.15 NCRNA00152 
934 6p21 32,700,999 32,710,085 deletion 42 89 0.01 65 0.26 CNSc 
1162 7q33 133,435,735 133,449,694 deletion 37 78 0.03 80 0.02 CNS 
1303 8q11 51,194,577 51,195,974 deletion 21 61 0.03 50 0.12 SNTG1 
1956 13q21 71,375,556 71,378,557 deletion 58 89 0.08 95 0.02 - 

aCNP ID as defined in McCarroll, et al. Nature Gen 40(10):1166-74. 
bp-value derived from chi-square analysis 
cCNS= Conserved Noncoding Sequence, defined as a region >100bp with at least 70% similarity to sequence in mus musculus 
(as determined by ECR browser, ecrbrowser.dcode.org) 
 
 
 
Table 4-2. CNVs depleted in T1D and Twin cohorts, relative to CTRL 
CNP 
IDa Chr Start End Amplification  

or Deletion 
CTRL 

% 
T1D 
% 

CTRL: 
T1D pb 

Twin 
% 

CTRL: 
Twin p Sequence 

1102 7q11 66,266,764 66,282,667 deletion 68 39 0.14 10 0.001 TYW1 
1879 12q23 98,319,424 98,322,865 deletion 47 22 0.20 10 0.02 ANKS1B 

A588c 15q11 18,491,920 19,803,369 both 58 33 0.24 10 0.004 
BCL8, POTEB, 
GOLGA6L6, 
GOLGA8C 

2240 17p12 15,483,886 15,487,515 deletion 42 22 0.35 0 0.004 TRIM16 
aCNP ID as defined in McCarroll, et al. Nature Gen 40(10):1166-74. 
bp-value derived from chi-squared analysis 
cA588 is a novel variant identified in this study
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 The novel CNV, A588, depleted in both T1D and Twin cohorts is located on 

chromosome 15 and spans more than 1.3 million base pairs. It manifests as both an 

amplification and deletion and contains coding regions for genes like the golgin family 

members GOLGA6L6 and GOLGA8C, B cell CLL/Lymphoma gene BCL8 and an 

ankyrin domain family member, POTEB. The frequency of this variant in the CTRL 

group is 58%, T1D group 33% and only 10% in the Twin cohort. Interestingly, many of 

the variants in this region do not span the entirety of the more than 1 million base pairs 

(Figure 4-2), rather we see a preponderance of overlapping and non-overlapping variants 

clustered in this region. Because a single variant can impact regulation and expression of 

a gene more than 1 megabase away, these variants were grouped together as one singular 

CNV region (CNVR)161.  
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Figure 4-2. Individual breakpoints of CNVR A588.  
Starting and ending points of each variant in a 1.3 mega base pair region on chromosome 
15. Below the x-axis are the gene coding regions (GCR) found in this portion of the 
genome.   
 

 

 The CNVs enriched and depleted in our cohorts are potentially associated with 

autoimmunity so we assessed the frequency of these variants in cohorts of 21 patients 

with rheumatoid arthritis (RA), and 50 patients with multiple sclerosis181 (Figure 4-3). 

The T1D enriched CNPs 253, 934, 1162 and 1303 also meet the criteria for enrichment in 

RA; additionally, CNP1162 and CNP1303  were significantly enriched in the MS cohort 

(Figure 4-3a). The frequency of CNP1956 did not meet the criteria for enrichment in RA 

or MS. For those CNVs depleted in T1D, we similarly assessed their frequency in the RA 

and MS cohorts (Figure 4-3b). CNPs 1879, 2240 and the novel CNVR, A588, were also 
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depleted in RA and MS. The depletion of CNVR A588 in RA was significant along with 

the depletion of CNP2240 in both RA and MS. CNP1102 was depleted in T1D and RA, 

but not MS (Figure 4-3b).  Thus, a portion of CNVs enriched or depleted in T1D are 

found at similar frequencies in subjects with other autoimmune diseases. 
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Figure 4-3. Frequencies of CNVs in other autoimmune diseases. 
Panel A. Frequency of CNPs identified as enriched in the T1D cohort in the CTRL, 
pooled T1D, RA and MS cohorts. Panel B. Frequency of CNVs identified as depleted in 
the T1D cohorts, in CTRL, pooled T1D, RA and MS cohorts. CTRL n=19, T1D n=38, 
RA n=21, MS n=50. p-values determined by chi-square analysis, *= p<0.05, **= p<0.005 
and ***= p<0.0005.  
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 Finally, we sought to determine if similar differential frequency of variance could 

be seen in larger, independent cohorts of cases and controls. CN at the T1D enriched 

CNPs 1162, 1303 and 1956 was determined by qPCR in a group of 73 CTRL subjects 

and 73 subjects with T1D, independent of previous cohorts (Figure 4-4). While frequency 

of variance did not differ appreciably between the two groups at CNPs 1162 and 1956, 

the difference of variance at CNP 1303 approached significance (p=0.0655). Independent 

validation of 3 CNPs enriched in T1D showed one region that may continue to be of 

interest as a potential pathogenic variant.  
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Figure 4-4. qPCR analysis of 3 T1D enriched CNPs in independent cohorts. 
Frequency of variance is shown for an independent CTRL cohort (n=73) and an 
independent T1D cohort (n=73) at 3 CNP locations. CN was determined by ΔΔCt 
calculations from qPCR data. p-values determined by chi-square analysis. 
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Discussion 

 

 We identified 9 CNVs enriched or depleted in 2 independent cohorts of patients 

with T1D or at high risk for developing disease relative to a CTRL cohort. These CNVs 

represent amplifications and deletions and contain both known genes and evolutionarily 

conserved non-coding sequences. The regions containing these 9 CNVs were cross 

referenced with a list of T1D associated SNPs generated from recent reports and The 

National Human Genome Research Institute26,191,192. The only CNV region to have a 

corresponding SNP association is CNP934 located on chromosome 6p21, the major 

histocompatibility complex (MHC). The CNV region is specifically in the vicinity of 

HLA-DQA1; DQ alleles have long been associated with susceptibility to and protection 

from T1D23.  Additionally, CNV in the HLA region has previously been reported in the 

literature193. The duplication of this finding in a small cohort of patients indicates the 

importance of the MHC region on chromosome 6 in the genetic susceptibility to T1D and 

affirms that analysis of small sample sizes can yield biologically relevant results. 

Additionally, because of the limited overlap of SNPs and CNVs, this study establishes 

the two as independent classes of genomic variants associated with T1D.  

 In addition to CNP934 on chromosome 6, four other CNVs were enriched in 

patients with T1D and unaffected twins at high risk to develop islet-specific 

autoimmunity and diabetes. At least 2 of the unaffected twins already test positive for 

islet autoantibodies. This information indicates that the 5 CNPs enriched in these groups, 

while they are not beacons of clinical disease, may be involved in the formation of islet 

autoantibodies, or autoimmunity.  Enrichment or depletion of certain of these CNPs in 
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clinically distinct additional autoimmune diseases supports this view.  CNP1303 encodes 

SNTG1, a candidate gene for scoliosis194. Deletions of two evolutionarily conserved non-

coding sequences on chromosomes 6 and 7 could lead to dysregulation of any number of 

genes near the variant region on each chromosome. Underlying mechanisms by which 

CN deletions at these regions and others may contribute to autoimmunity remains to be 

determined. 

 Three regions enriched in T1D were further analyzed by qPCR in independent 

cohorts of CTRL and T1D patients, CNPs 1162, 1303 and 1956. CNPs 1162 and 1956 

did not differ in their variance between the CTRL and T1D independent cohorts. 

CNP1303 however, is variant in a greater number of T1D subjects than CTRL and is 

barely shy of the criteria for enrichment with a fold change difference of 1.48. The 

difference in variance also approaches statistical significance. One reason the variance 

seen in the independent cohorts might have trended the same direction as the original data 

but not quite to the same degree is that our primary analysis is influenced heavily by the 

cohort of monozygotic twins. The affected twin of each pair was diagnosed with T1D as 

a child while the independent T1D cohort are adult patients with T1D who were 

diagnosed at varying ages. Thus, patients with an earlier onset of T1D may have a greater 

likelihood of possessing the CNP1303 variant.   

 Additionally, 4 CNVs were less likely to be variant in the T1D and Twin cohorts 

relative to the CTRL group. One potential consequence of these CNVs is that normal 

regulation and expression of these genes contributes to the T1D disease process. 

Alternatively, differential expression induced by variance may confer some sort of 

protection to the patients in the CTRL cohort. 
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 CNVR A588 on chromosome 15 represents a unique class of variant. Both 

amplifications and deletions of varying lengths are observed with an increased frequency 

of variance in T1D. CNVs can affect expression levels of genes within 1 megabase of the 

variant through positional effects, by deletion or amplification of distal regulatory 

elements or other poorly understood mechanisms. An amplification of a promoter may 

cause increased expression of a certain gene. Deletion of an inhibitory element in that 

same region could also produce increased expression of that same gene. This T1D 

depleted CNVR contains as many as 26 gene coding regions and cDNA clones195. 

Preservation of this region at a CN of 2 is more common in patients with T1D for 

unknown reasons. Determining expression levels of the genes encoded in this region 

could begin to unravel the mystery of this CNVR.  

 In considering the overlap of enrichment and depletion of these regions in 

additional autoimmune cohorts of RA and MS patients we can assess contributions to 

autoimmunity. 2 CNPs found enriched in the diabetes cohorts were also enriched in RA 

and may be shared regions of susceptibility to peripheral, non-neurologic autoimmunity. 

An additional 2 CNPs were enriched in RA and MS and could be involved in general 

autoimmune processes. Similarly, the 2 CNPs and 1 novel CNVR depleted in all 3 

autoimmune diseases may indicate that normal functioning in these regions is also 

involved in general autoimmune processes. 

 In conclusion, 9 CNVs were found that are either enriched or depleted in 2 

independent cohorts of patients with or at high risk for developing T1D. These regions 

may represent genetic variants contributing to islet autoimmunity or disease onset and 
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could be used to assess risk of developing T1D. Knowledge of CNVs associated with 

T1D risk and islet autoimmunity could also improve our understanding of disease origins. 
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CHAPTER V 

 

GENERAL DISCUSSION AND CONCLUSION 

  

  The framework within which we understand common complex diseases is 

changing. The category of risk assessment previously titled "family history" is being 

replaced with complex equations of SNP alleles and risk ratios. A new class of genetic 

variation, CNVs, is now being associated with common complex diseases and built into 

the aforementioned equations. Additionally, we now have the ability to assess peripheral 

blood gene expression of every known gene. While this technology first impacted the 

field of lymphocyte-mediated autoimmune diseases, in chapter II we show that peripheral 

blood gene expression microarray can be used to differentiate patients with diseases that 

are not primarily lymphocyte-mediated to detect specific types of inflammation 

associated with metabolic disorders.  

  Analysis of CNV in T1D in chapter IV yielded a number of regions of variance 

enriched and depleted in patients with or at high risk for developing disease. Enrichment 

or depletion, respectively, was also seen in the same regions in cohorts of patients with 

other autoimmune diseases, like RA and MS. This finding mimics those of SNP 

associations where 1 SNP is associated with multiple autoimmune diseases. The overlap 

of association of certain genetic variants, particularly SNPs, with multiple diseases, 

combined with the fact that seemingly none of these variants, SNPs or CNVs, are 

sufficient to cause disease has inspired 3 hypothesized models by which genetic variants 

could cause common complex disease196.  
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  The "common variant, multiple disease" theory of common complex disease 

hypothesizes that certain polymorphisms, or risk alleles, are common to a group of 

diseases197. Patients who are affected by these diseases have an overabundance of risk 

alleles in their respective genomes.  Many of the risk alleles, however, are detectable at 

high frequencies in the general population. This indicates that while a given risk allele 

may be statistically associated with disease, each should be considered a disease "trait" 

rather than a causative agent. These traits, when combined with each other and potential 

environmental triggers, can predispose to or cause one of many related disorders.  

  Another model of genetic variation causing common disease is the "infinitesimal" 

model, originating from a study of genetic factors associated with autoimmune 

diseases196. This model states that the combination of a potentially infinite number of 

genomic variants, each contributing low relative risk, with environmental factors can 

cause a common complex disease.  A study of SNP associations in T2D estimates that, 

assuming similar effect sizes to those SNP associations already discovered, 800 SNP 

variants would be needed to explain the 40% heritability of T2D198.  

  The third model is called "rare alleles of major effect," or RAME196. In this 

model, variations present in extremely rare frequencies convey the genetic risk. These 

rare alleles might not be present at sufficient levels to meet statistical significance in a 

case versus control study, but may be found clustered in one individual, possibly in a 

homozygous fashion. The segregation of many rare alleles together, in combination with 

environmental risks, could cause common diseases. One example of the RAME 

hypothesis is the overabundance of large, rare variants in patients with autism and 

schizophrenia122,184,199,200. 
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  In the same way that variant genomic markers are thought to work in concert to 

comprise the heritable portions of complex diseases, we propose a model through which 

these markers combine with environmental exposures to impact gene expression (Figure 

5-1). Altered gene expression confers a change in the cell's phenotype that ultimately 

results in disease. 

  

        

 

 

Figure 5-1. Progression from risk to disease. 
Genetic variation, currently catalogued as SNPs and CNVs, combine with environmental 
exposures to influence cellular gene expression. Changes in gene expression confer a 
change in the cell's phenotype that ultimately results in disease. 
 

  It is already possible to perform a genome-wide screen on a patient and assess for 

risk at many SNP alleles and regions of CNV. We hypothesize that pairing these data 

with continual evaluations of both environmental exposures and peripheral blood gene 

expression has the potential to revolutionize care and treatment of complex diseases by 

more accurately determining risk for disease, making it possible to arrive at an accurate 

diagnosis earlier in the disease process and/or make therapeutic intervention possible at 

the earliest stages of disease. 

  Thus far, risk assessment in complex diseases has primarily relied on the presence 

or absence of environmental risk factors (like smoking as a risk factor for chronic 

obstructive pulmonary disease), combined with family history and any available clinical 

signs (raised fasting blood glucose in T2D, for instance). Any genetic contribution to risk 

Disease Change in 
cell phenotype 

Gene 
expression 

Environment 

Genetic Variation: 
SNPs 
CNVs 
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is generally assessed by positive or negative family history of the disease. The nature of 

genetic variation is such that a majority of the risk loci are present from birth or even pre-

birth. Work done to characterize potential autoimmune CNVs (Chapter IV) may add 

another dimension to assessment of genetic risk. Also, with peripheral blood gene 

expression profiling of patients with MetS, we show that a well-defined pre-disease state 

has a distinct gene expression profile distinguishable from CTRL subjects as well as 

subjects with T2D and CAD. The combination of measured genetic variants and interval 

screenings of environmental risk and peripheral blood gene expression profiles has the 

potential to produce a more accurate and fluid assessment of disease risk. 

  With accurate knowledge of risk, appropriate groups of patients at high risk for 

disease can be properly screened. Our studies of gene expression profiles associated with 

metabolic disorders (Chapter II) also demonstrates that portions of the MetS signature are 

common to both CAD and T2D while portions of these signatures are different and 

unique to each respective disease process.  A longitudinal study of patients with MetS as 

they potentially progress to meet diagnostic criteria for CAD or T2D could further 

delineate the molecular and cellular changes that take place during the pre-clinical phase 

of each disease. Diagnosing a disease at the earliest point may spare patients irreversible 

damage to vital organs or decrease the incidence of complications most commonly found 

with advanced disease. 

  The ability to intervene and stop a disease process is only as good as its earliest 

detection. This point is especially relevant in T1D where it is estimated that destruction 

of approximately 90% of beta cells precedes the first clinical signs of hyperglycemia.  

Accurate assessment of disease risk prior to clinical manifestations may make it possible 
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to inactivate or sequester autoreactive lymphocytes before they can trigger an immune 

response in the pancreas, or maintain tolerance of the immune system to beta cells and 

prevent the autoreactive lymphocytes from becoming active.  

  This great promise is not without great challenge. The portrait of genetic variation 

is far from complete; there are serious technological and financial concerns to genotype 

and gene expression testing; and finally, if history is any indication, the road from a 

research finding to a clinical test is not one of great success.  

  The catalog of SNP variation has been well explored in the context of large scale 

studies of disease heritability26. GWAS of SNPs in 17,000 people, 14,000 of whom had 1 

of 7 common complex diseases came to some realistic conclusions about the impact of 

SNPs on familiality. The authors concluded, "It is important to recognize that the 

association signals so far identified account for only a small proportion of overall 

familiality… These estimates demonstrate the limited potential of the variants thus far 

identified (singly or in combination) to provide clinically useful prediction of disease." 

And while CNV studies, ours included (Chapter IV), show that CNVs are in fact 

associated with a variety of distinct complex diseases, thus far there are no single CNVs 

with great effects on incidence and inheritance of disease, like the relationship of the 

amplification of the gene encoding PMP22 with Charcot-Marie Tooth disease. As GWAS 

of CNVs are performed and repeated, and relative risk ratios are assessed, the impact of 

CNVs on genetic heritability will be merged with that of SNPs into collective genomic 

risk alleles for any given disease.  

  There is an added dimension of assessing the impact of CNV both on causality 

and inheritance of disease and that is positional effects201. Knowing that a particular gene 
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has an increased or decreased CN does not infer a direct functional consequence. Variants 

may insert themselves into other regions of the genome, disrupting transcriptional 

regulation of genes that are neither similar in function or location to the detected CNV. 

Additionally, an amplified third copy of a gene may invert itself into the genome causing 

unknown consequences on gene regulation. Other positional effects may produce 

additional alterations of the transcriptional landscape that cannot be predicted simply by 

determining the presence or absence of a given CNV. 

  In addition to SNPs and CNVs, an entire class of genetic variants has yet to be 

fully assessed due to previous limitations in resolution of the "genome-wide" arrays. 

SNPs occur at the single nucleotide level and CNVs are variants larger than 1kb.  

Variants of intermediate size, 1 bp to 1000 bp, a class referred to as genomic "insertions 

and deletions", have yet to be catalogued across the genome and their possible 

association with complex diseases is almost completely unknown. 

  Technological challenges in the field of genetics range from reproducibility of 

array data to data interpretation and storage. With both gene expression arrays and 

genotyping arrays, the data are only as good as the algorithm used to interpret them. Our 

work in validating data derived from both gene set analysis of gene expression 

microarrays and Birdsuite based CNs from genotyping arrays show that data can be 

reproduced in a quantifiable method (Chapters II and III). For tests based on either 

platform to succeed in clinical disease assessment, they must be reproducible in the same 

sample by any person in any lab and produce an identical interpretation and clinical 

result.  
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  Financially, the array alone is expensive. When one factors in the accreditation of 

labs to achieve technological needs, the most affordable way to put genotyping and gene 

expression data into practice in risk assessment and disease diagnosis is by merging 

multiple tests together. This is especially a concern for gene expression testing that would 

need to be repeated on an interval basis to serve as a marker of disease progression. If one 

gene expression microarray could detect transcripts differentially regulated in several 

common complex diseases, it would reduce the financial burden. In the realm of genetic 

variation, it is fathomable to place many known disease variants on one array that would 

be run once in a patient's life, similar to the screening for metabolic and endocrine related 

disorders in newborn babies. Another option is the complete sequencing of a patient's 

genome. While experts in the field foresee a day within years when the sequencing of a 

patient's genome will be "affordable," the issue of data interpretation still exists, in 

addition to problems with data storage as just one human genome sequence currently 

requires 3 gigabytes of storage, not including annotations202.  

  Finally there remains the matter of taking a research finding, however sure and 

reproducible, and translating it to routine clinical practice. There are very few successful 

examples of this, with tumor typing of breast cancer arguably the most widely accepted 

and utilized. Assessment of risk for a complex disease using genotyping scores has been 

well documented in the literature but has yet to be put into practice with a schedule of 

screenings or preventative interventions following. While the challenges are great, gene 

expression and genotyping technologies have the potential to permit more accurate 

assessment of risk and earlier and more definitive diagnoses, which could allow earlier 

therapeutic interventions.  
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APPENDIX A 

 

SUPPLEMENTAL DATA 

 

Supplemental Table 2-1. Gene set analysis 
Raw p-value for each gene set comparison between groups: RA v CTRL, MetS v CTRL, 
CAD v CTRL, T2D v CTRL, CAD v MetS and T2D v MetS.  
 

Supplemental Table 2-2. Gene by gene analysis 
Fold change and raw p-value for each gene of every gene set in each disease comparison: 
RA v CTRL, MetS v CTRL, CAD v CTRL, T2D v CTRL, CAD v MetS and T2D v 
MetS. 
 

Supplemental Table 3-1. Array-based copy number calls 
Raw CN calls for 29 samples in Partek, 29 samples in GTC and 77 samples in Birdsuite. 
Calls are organized by sample across the genome from chromosome 1-24.  
 

Supplemental Table 3-2. Comparison of copy number calls 
CN comparisons between Partek, GTC, Birdsuite and qPCR used to determine agreement 
in the tables and figures of Chapter III. 
 

Supplemental Table 4-1. Array-based copy number calls 
Raw genome CNs and confidence scores for each of the 57 patient samples in 3 cohorts 
(CTRL, T1D, Twin). 
 

Supplemental Table 4-2. Birdsuite and qPCR copy number calls 
Birdsuite and qPCR predicted CN calls for 185 individual comparisons. 
 

All supplemental data can be found on the enclosed CD. 
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