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CHAPTER I 

 

INTRODUCTION 

 

Discovery of Helicobacter pylori 

Helicobacter pylori (H. pylori) is a Gram-negative, pathogenic bacterium that infects half 

the world’s population and is responsible for the majority of cases of gastric and duodenal ulcers.  

It is also the most important risk factor for gastric cancer.  Uniquely adapted to survive the low 

pH conditions of the human stomach, if left untreated it will establish an infection that will 

persist for the remainder of the infected individual’s life.  In the most severe cases, long-term 

infection can lead to gastric cancer.  Complications of H. pylori infections have incredible human 

health costs and economic costs both in the United States and worldwide.  According to the U.S. 

Centers for Disease Control website, between 500,000 and 850,000 new cases of peptic ulcers 

are reported each year.  New and recurring ulcers lead to over one million hospitalizations and 

6500 deaths annually.  In addition, the economic costs of peptic ulcer disease are estimated to be 

around $6 billion in the United States alone.   

Given the prevalence of gastric diseases that are now associated with H. pylori, which has 

accompanied humanity since the beginning of the species, it is surprising that the discovery of H. 

pylori and the understanding of its role in these diseases has been so recent.  Before the 

discovery of H. pylori, and even several years after, the medical community considered stress 

and lifestyle factors such as eating spicy foods to be the cause of ulcers.  In 1982, Barry J. 

Marshall and J. Robin Warren discovered and cultivated a new bacterium from biopsies of 

patients with gastric inflammation and ulcers (Warren and Marshall 1983).  In a brave attempt to 
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prove the gastric pathogenicity of H. pylori, Marshall drank a culture of the bacteria and soon 

after, suffered from typical symptoms of acute gastritis.  Unfortunately, given the firm belief by 

the medical community that no organism could thrive in the stomach, most did not regard this as 

sufficient proof that the bacterium could be the cause of ulcers.  Subsequent work over the next 

several years firmly established the causative role of H. pylori in ulcers and more severe gastric 

diseases, including cancer.  In 1994, the World Health Organization declared H. pylori to be a 

class I carcinogen (IARC 1994).  Marshall and Warren were awarded the Nobel Prize in 

Medicine in 2005. 

 Although our awareness of H. pylori is rather recent, it appears that we have a very long 

history with the bacterium.  A recent genetic analysis of hundreds of strains from around the 

world found that genetic differentiation among H. pylori strains increases, while genetic diversity 

decreases, with distance from East Africa.  These genetic trends, along with the timescales 

associated with them, closely parallel those of humans, confirming that H. pylori migrated from 

East Africa along with its human hosts (Linz, Balloux et al. 2007).  It is unlikely that H. pylori is 

zoonotic because there is no known reservoir outside of humans.  In fact, the most closely related 

species, Helicobacter acinonychis, which infects large cats, is thought to have jumped from 

humans to cats approximately 200,000 years ago (Eppinger, Baar et al. 2006). Because of its 

high degree of genetic variability and the fact that it infects such a large percentage of the 

population, H. pylori genetics can in some cases be an incredibly useful tool for other areas of 

science.  One extremely interesting study showed that H. pylori genetic markers could determine 

human population movements even when human genetic markers were useless (Wirth, Wang et 

al. 2004). 
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H. pylori is a member of the ε-proteobacteria, which includes Helicobacter species as 

well as closely related Campylobacter and Wolinella species.  Many species establish 

commensal infections within their natural hosts, but can cause disease in humans.  

Campylobacter jejuni is a commensal organism in chickens and other birds, but is a pathogen in 

humans, capable of causing severe, bloody diarrhea (Young, Davis et al. 2007).  Wolinella 

succinogenes, which is the most closely related species to H. pylori outside of the Helicobacter 

genus, infects bovines and is considered to be nonpathogenic (Baar, Eppinger et al. 2003).  

Arcobacter species are found in livestock and various water sources.  They cause a less serious 

diarrhea than Campylobacter and are considered emerging pathogens (Snelling, Matsuda et al. 

2006).  Besides these terrestrial species, more than 90% of bacteria in deep-sea hydrothermal 

vents are members of the ε-proteobacteria (Nakagawa, Takaki et al. 2007). 

In their original Lancet paper (Warren and Marshall 1983) and a follow-up the next year 

(Marshall and Warren 1984), Marshall and Warren described several features of H. pylori that 

led to its identification as a new species.  The bacteria have a curved rod shape with 1-2 spirals 

(Figure 1) that is quite unique among ε-proteobacteria and may bestow upon it the ability to 

penetrate the gastric mucosa (Andersen 2007).  They have 4-6 flagella, all located at one end of 

the cell.  The flagella are an essential colonization factor, giving the bacterium the ability to 

penetrate the mucus layer of the stomach and to escape regions of high acidity (Croxen, Sisson et 

al. 2006).  They are quite different from other bacterial flagella in many ways.  Sheaths protect 

them from depolymerization in the acidic environment, and they contain only seven 

protofilaments instead of the usual eleven (Galkin, Yu et al. 2008).  The differences render them 

unrecognizable by toll-like receptor 5 (Andersen-Nissen, Smith et al. 2005).  Marshall and 

Warren also noticed that H. pylori are microaerophilic and slow-growing.  In fact, they did not 
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recover bacteria from their first samples because they threw out the incubation plates after only 

two days.  H. pylori have a long doubling time, on the order of four hours, in part because of 

their constant mobility, which consumes large amounts of energy. 

 

 

Figure 1. Electron micrograph of a Helicobacter pylori J99 cell at 15,000x magnification (taken 
by Amy Kendall) 
 

 

The genomes of six different strains of H. pylori have been sequenced.  The 26695 strain 

(GenBank AE000511) was the first to be sequenced (Tomb, White et al. 1997), and in fact, it 

was the seventh complete sequenced bacterial genome (Josenhans, Beier et al. 2007).  Following 

that, the J99 strain (GenBank AE001439) was sequenced (Alm, Ling et al. 1999), allowing a 

comparison of the two genomes.  The entire genome of the HPAG1 strain (GenBank CP000241), 

associated with higher incidences of chronic atrophic gastritis and gastric adenocarcinoma, has 

also been sequenced (Oh, Kling-Backhed et al. 2006).  More recently, sequences for the G27 



5 
 

(GenBank CP001173), Shi470 (GenBank CP001072), and P12 (GenBank CP001217) strains 

have become available. 

 

Disease  

Possible Outcomes  

 H. pylori is the underlying cause of a wide range of gastric diseases.  It is important to 

note, however, that the majority of infections do not lead to severe disease.  Once an infection 

has been established, H. pylori adopts a strategy of persistence rather than acute pathogenicity.  

Although infection leads to chronic gastritis in all cases (Kandulski, Selgrad et al. 2008), this 

itself does not usually cause any discomfort, and the person will remain unaware of the infection.  

H. pylori has several effects on the epithelial tissue.  The bacteria stimulate cytokine production 

that leads to an inflammatory reaction.  The chronic inflammatory state can eventually lead to 

changes such as atrophy and fibrosis (Ernst and Gold 2000).  A small percentage of those 

infected will at some point in their lives suffer from a gastric or duodenal ulcer, which is an 

erosion of the mucosal lining of the stomach or the duodenum.  The underlying tissue becomes 

more exposed to acid, leading to a painful experience.  The lifetime risk of developing an ulcer 

has been estimated to be around 10% (Ernst and Gold 2000), but varies between 3 and 25% 

depending on a number of factors (Kandulski, Selgrad et al. 2008).   

 Gastric cancer is a less common, but more serious, eventual outcome than ulcers.  Two 

types of gastric cancer are associated with H. pylori infection – mucosa associated lymphoid 

tissue (MALT) lymphoma and gastric adenocarcinoma.  MALT lymphoma develops as a result 

of chronic stimulation of T-cells, whose cytokines cause an expansion of B-cells that can invade 

the epithelial cell compartment (Ernst and Gold 2000; Kandulski, Selgrad et al. 2008).  During 

the unchecked proliferation of cells, genetic alterations can occur, including a specific 
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translocation that leads to oncogenesis (Swisher and Barbati 2007).  Gastric adenocarcinoma is a 

cancer of the epithelial cells of the stomach.  Inflammatory responses, including oxygen radicals, 

from white blood cells recruited to the epithelium in response to H. pylori infection can induce 

greater cell proliferation and eventually mutations that lead to carcinogenesis (Correa 2004). 

 

Risk Factors 

Several risk factors have been identified for both the initial infection with H. pylori and 

also the subsequent development of more severe disease.  Rates of infection vary widely in 

different regions of the world.  One glance at a map (Figure 2) showing regional rates of 

infection and it is clear that less developed regions have the highest rates.  Poor socioeconomic 

conditions, which are sometimes accompanied by crowded and unsanitary conditions and poor 

nutrition are associated with higher rates of infection.  Many studies in children have shown that 

not only are the rates of infection in poor communities higher, but rates of spontaneous clearance 

are also lower than in wealthier communities (Kivi and Tindberg 2006). 

 

 
Figure 2.  World map showing rates of Helicobacter pylori infection in various regions. 



7 
 

Much of a person’s risk for becoming infected with H. pylori depends on the infection 

status of family members.  The route by which H. pylori spreads from person to person is not 

known, but genetic evidence suggests that it is primarily acquired during childhood from close 

family members.  The most prevalent route of infection is from mother to child.  No free-living 

sources of the bacteria have been found.    Fecal-oral and oral-oral routes of infection have been 

suggested but not firmly established.   In healthy people with normal bowel movements, there is 

usually no culturable H. pylori in the feces.  Large amounts of culturable H. pylori have been 

found in vomitus, however (Amieva and El-Omar 2008). 

 For both ulcers and gastric cancer, H. pylori infection is the single greatest risk factor.  

70-75% of gastric ulcers and 90-95% of duodenal ulcers are caused by H. pylori (Ernst and Gold 

2000), and it is the most important risk factor for gastric cancer (Kandulski, Selgrad et al. 2008).  

Like many other ε-proteobacteria in their natural hosts, H. pylori “prefers” to establish a 

commensal infection rather than causing severe disease which could risk the life of its host.  The 

eventual outcome of infection, however, depends on environmental, host, and bacterial virulence 

factors.   

Researchers have investigated bacterial genetic factors that can help predict long-term 

outcomes.  H. pylori strains can be classified as either type I or type II, depending on expression 

of the two genes cagA and vacA (Xiang, Censini et al. 1995).  CagA is one protein expressed 

from the CAG (cytotoxin associated gene) pathogenicity island, which also encodes for the 

components of a type 4 secretion system.  CagA is secreted into host cells, where it is 

phosphorylated by host kinases (Higashi, Tsutsumi et al. 2002; Saadat, Higashi et al. 2007).  It 

can then activate several different signal transduction pathways.  Individuals harboring CagA+ 

strains have greater inflammatory responses and higher levels of IL-8 secretion than individuals 



8 
 

with CagA- strains (Peek, Miller et al. 1995).  Although cagA+ strains increase the risk of cancer 

two-fold (Kandulski, Selgrad et al. 2008), 70-95% of all strains have cagA, and only a very small 

percentage of people actually develop cancer (Ernst and Gold 2000).  Approximately 1% will 

eventually develop gastric adenocarcinoma, while development of MALT lymphoma is even 

rarer.  VacA is a secreted toxin that forms hexameric chloride channels in membranes (Iwamoto, 

Czajkowsky et al. 1999).  Some of its reported effects include causing osmotic swelling in 

endosomes (Amieva and El-Omar 2008), altering tight junctions to allow passage of nutrients 

such as Fe3+ and Ni2+ (Papini, Satin et al. 1998), and inhibition of T cell activation (Gebert, 

Fischer et al. 2003). 

Probably more important than bacterial factors for determining the outcome of H. pylori 

infection are host factors.  It has been suggested that more severe diseases are the result of poorly 

regulated immune responses (Ernst and Gold 2000), although the immune response is, in turn, 

affected by certain bacterial factors.  Some individuals have cytokine profiles that indicate a 

greater inflammatory response to infection.  Polymorphisms in the interleukin-1 gene cluster 

have been shown to be particularly important (El-Omar, Carrington et al. 2000).  

 

Treatment  

Fortunately, many of the diseases associated with H. pylori are preventable or even 

curable now that we know to treat the underlying cause with antibiotics.  Some of the most 

convincing evidence that advanced Marshall and Warren’s hypothesis was the drastic reduction 

in recurrence rates of ulcers following antibiotic treatment (Ernst and Gold 2000).  Treatments 

can be quite complex, with upwards of a dozen pills taken at specific times each day for several 

weeks.  It is rare for a single agent to be administered.  Drug regimens are usually known as dual, 
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triple, or even quadruple therapies, depending on the number of drugs involved.  Early dual 

therapies consisted of a proton pump inhibitor (PPI) and either amoxicillin or clarithromycin. 

Bismuth is an agent that is commonly used against H. pylori.  It has very interesting 

antibacterial properties.  Bismuth interferes with the cell wall (Stratton, Warner et al. 1999) and 

adhesion to gastric epithelial cells and may inhibit urease and phospholipase (Ottlecz, Romero et 

al. 1999).  Its overall effects on the cells appear similar to those of iron deprivation (Bland, 

Ismail et al. 2004).  Dual therapies consisting of bismuth and one antibiotic do not have 

acceptable eradication rates; however, triple therapies consisting of bismuth, tetracycline, and 

either metronidazole or clarithromycin have eradication rates greater than 95% and are the most 

effective and least costly treatments (Salcedo and Al-Kawas 1998).  The most intense drug 

regimens are called quadruple therapies, and consist of bismuth, a proton-pump inhibitor, and 

two antibiotics. 

Although the best therapies can approach eradication rates of around 98%, the effective 

rates of all therapies are reduced by two principal factors – noncompliance and antibiotic 

resistance.  Noncompliance is a result of the length and complexity of the drug regimens as well 

as adverse effects of some drugs.  Treatments often require taking several pills each day at 

precise times.  More complex treatments involving more drugs that should have higher 

eradication rates may suffer more from noncompliance.  Adverse effects include those of 

clarithromycin, which can cause a bitter, metallic taste sensation.  Metronidazole can do the 

same, as well as causing nausea or a disulfiramlike reaction (Salcedo and Al-Kawas 1998).  One 

common adverse effect due to antibiotic use in general is diarrhea, due to full or partial 

eradication of naturally occurring, beneficial bacteria in the intestines (McFarland 2008). 
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Antibiotic Resistance 

As with many bacterial pathogens, we are now facing a situation where antibiotic 

resistance is on the rise.  At this point, virtually all infections have some antibiotic resistance 

(Graham and Shiotani 2008).  Although H. pylori does not easily develop resistance to some 

drugs such as amoxicillin and tetracycline, there are now known strains with resistance to each.  

The mechanisms of resistance have been identified and are really quite simple – a single amino 

acid substitution in a penicillin-binding protein in the case of amoxicillin (Gerrits, Schuijffel et 

al. 2002) and a triple base-pair substitution in the 16S rRNA gene in the case of tetracycline 

(Gerrits, de Zoete et al. 2002).  Clarithromycin, which has the greatest antibacterial activity 

against H. pylori, and metronidazole are often rendered less effective because of resistant strains 

(Salcedo and Al-Kawas 1998).  In order to combat resistance, dual therapies were soon replaced 

by triple therapies, which consisted of a proton-pump inhibitor or bismuth and 2 antibiotics 

among amoxicillin, clarithromycin, and metronidazole.  Unfortunately, triple therapies 

containing clarithromycin now only boast a 50-79% eradication rate, far below the 95% rate 

which is often considered to be the threshold for an effective antibacterial treatment (Graham and 

Shiotani 2008).  

 

Genetic Variability  

H. pylori has an extraordinary ability to adapt to changing circumstances, and it is this 

ability that enables it to establish permanent infections.  The key to its adaptability is its genetic 

variability.  H. pylori is one of the most genetically variable species, and each carrier harbors his 

own strain or strains (Suerbaum and Josenhans 2007).  Different isolates can vary quite 

significantly in their genomic content.  One microarray study of several strains showed that 25% 
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of genes from the sequenced J99 and 26695 strains are missing in at least one of the tested strains 

(Gressmann, Linz et al. 2005).  Many of the strain-specific genes encode for restriction enzymes, 

transposases, and outer membrane proteins (Salama, Guillemin et al. 2000).  Most of these genes 

have high GC content and were likely picked up by horizontal gene transfer.  Genetic variability 

is a trait common to many ε-proteobacteria, and many mechanisms contribute to it.  H. pylori has 

one of the highest mutation rates among bacteria, and also a high rate of exogenous DNA uptake 

and homologous recombination.  Analysis of the sequenced genomes failed to identify homologs 

of several DNA repair genes that can be found in E. coli (Kang and Blaser 2006).  In one study 

of genetic variability over time within a single host, it was found that both the overall content of 

genes as well as individual gene sequences could change significantly over the course of several 

years (Israel, Salama et al. 2001).  A later study, however, showed that although most genetic 

changes were due to homologous recombination, very few recombination events resulted in loss 

or gain of genes (Kraft, Stack et al. 2006).  In one study of homologous recombination in 

pathogenic bacteria, H. pylori was found to have the highest recombination rate (Perez-Losada, 

Browne et al. 2006).  Several instances of recombination between two strains infecting a single 

patient over the course of long-term infection have been detected (Kersulyte, Chalkauskas et al. 

1999).  In addition, slipped-strand mispairing appears to be a common mechanism of switching 

on and off several genes (Suerbaum and Josenhans 2007).  Many of the changes that occur allow 

the bacteria to evade the immune system, a task it performs so well that it appears that those with 

an immune deficiency do not have a higher rate of infection than the general population 

(Suerbaum and Josenhans 2007).  All of these mechanisms allow H. pylori to adapt to specific 

hosts, specific regions of the stomach, and to changing conditions over the lifetime of their host. 
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Transcriptional Regulation in H. pylori 

Transcription is the process by which cells read genomic information encoded by specific 

sequences of DNA and produce RNA with the same sequences, except for replacing thymine 

with uracil.  The process is essential, as the RNAs that are produced play several vital roles 

within the cells.  Messenger RNA (mRNA) contains the necessary information for ribosomes to 

produce new proteins.  Ribosomal RNAs are necessary components of the ribosomes.  Transfer 

RNAs are coupled to specific amino acids that they deliver to the ribosome for incorporation into 

the growing polypeptide chain.  Transcription is carried out by DNA-dependent RNA 

polymerase, a multisubunit enzyme with core composition α2ββ'ω in bacteria (Burgess 1969).  

The situation is more complicated in eukaryotes, where there are three different RNA 

polymerases, each of which has many more subunits than the bacterial RNA polymerase 

(Cramer, Armache et al. 2008).   

The protein content of a cell is not constant through time.  Cells must continually be able 

to change the levels of certain proteins in response to different situations, such as different 

growth phases or stages of the cell cycle or in response to environmental signals.  Therefore, 

regulation of the transcriptional process is essential.  There are several mechanisms of regulating 

transcription, including the use of sequence-specific transcription factors that bind DNA and 

recruit RNA polymerase, repressors that bind DNA and prevent RNA polymerase from binding 

the promoter sequence, and sequence-specific sigma factors that are considered subunits of RNA 

polymerase holoenzyme.  Slipped-strand mispairing can completely turn a gene on or off. 

With approximately 1,500 genes, H. pylori has a relatively small genome and very few 

transcriptional regulators described to date (Tomb, White et al. 1997; Alm, Ling et al. 1999).  

Initial identification of several transcriptional regulators by homology resulted from sequencing 
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efforts.  The small number of regulators has been explained by the fact that H. pylori has only 

one environmental niche and must respond to only a small number of stimuli compared to free 

living bacteria.  It has been reported that the number of transcriptional regulators in bacteria 

increases proportionally to the square of the number of genes in the genome (van Nimwegen 

2003).  Having a genome that is only approximately one-third the size of that of E. coli, one 

would expect to find many fewer transcriptional regulators.  Nevertheless, our understanding of 

the regulation of metabolic processes and environmental responses in H. pylori is far from 

complete, and there are surely more transcriptional regulators to be discovered. 

 The first level of transcriptional regulation is found in the RNA polymerase itself.  

Although the core subunits, α2ββ'ω, form a catalytically-competent enzyme, called the 

apoenzyme, promoter-specific transcription requires a σ subunit, which binds tightly to the core, 

forming the holoenzyme (Murakami and Darst 2003).  H. pylori has only three sigma factors, 

σ80, σ54, and σ28.  σ80 is similar to σ70 from E. coli in that it is responsible for transcription of 

most housekeeping genes.  There are many other ways in which activity of RNA polymerase can 

be modified at individual promoters.  The major transcriptional responses of H. pylori and many 

of the regulatory proteins involved in them will be summarized below. 

 

Two-Component Systems 

 Two-component signaling systems are widely found in bacteria as well as eukaryotes 

outside of the animal kingdom.  Composed of a histidine kinase (HK) and a response regulator, 

they are important for a wide range of responses, including chemotaxis, quorum sensing, and in 

eukaryotes, hormone-dependent development.  HK’s are transmembrane proteins with an 

extracellular sensor domain and signal transducing intracellular domains.  They usually function 
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as dimers and in response to the proper signal, autophosphorylate a conserved histidine found in 

the dimerization domain.  The catalytic domain is responsible for phosphorylating a conserved 

aspartate in the response regulator.  Structures have been determined of the intracellular 

dimerization and catalytic domains for several HK’s, and they appear to be structurally well-

conserved.  The extracellular sensing domains, however, respond to a wide variety of signals, 

and there is no common structural motif among them (Wolanin, Thomason et al. 2002). 

 H. pylori has relatively few HK’s and response regulators (4 and 7, respectively) (Marais, 

Mendz et al. 1999) compared to other bacteria such as E. coli, which has more than 30 two-

component systems.  The number of HK’s in an organism is thought to reflect the complexity of 

its lifecycle and the number of environmental signals it must respond to.  The low number of 

HK’s in H. pylori is indicative of the fact that the bacterium only inhabits the human stomach 

and that it has very little competition from other microorganisms (Beier and Frank 2000). 

 

Acid Response 

Regular exposure to low pH in the human stomach is the most significant environmental 

challenge faced by the gastric pathogen Helicobacter pylori.  The acid response is the most 

important and complex response of H. pylori.  Sachs has described its unique acid response as 

“acid acclimation” because although several other bacteria such as Salmonella typhimurium, 

Vibrio cholera, and Escherichia coli can mount a temporary response allowing them to survive 

the acid of the stomach while they pass through, they are incapable of colonizing their host and 

continuing to grow in such low pH conditions (Sachs, Weeks et al. 2005).  Much research has 

been done on the acid response, but because of its complexity, our understanding of it is still 

limited. 
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Several array-based gene transcription studies have shown that between 100-200 genes 

are differentially regulated in response to acid (Ang, Lee et al. 2001; Merrell, Goodrich et al. 

2003; Wen, Marcus et al. 2003).  Within the general acid response, there are several specific 

responses including raising the local pH, dealing with the increased divalent metal ion 

concentration, maintenance of cell membranes and the cell wall, and increased motility.  

Although there is not complete agreement between the different studies, several key components 

of the acid response have been identified.  Of critical importance is the enzyme urease, a nickel-

dependent enzyme that catalyzes a reaction that converts urea to ammonia and carbon dioxide.  

Ammonia is quickly protonated, removing an excess proton from the cytoplasm.  Carbon dioxide 

is an important product as well.  H. pylori has both cytoplasmic and periplasmic versions of 

carbonic anhydrase, which uses carbon dioxide to produce carbonate ions that buffer the 

cytoplasm and periplasm against sudden changes of pH.  The periplasmic carbonic anhydrase 

may be one of the key factors that allows H. pylori to survive low pH longer than most other 

bacteria (Marcus, Moshfegh et al. 2005). 

One of the important regulatory systems involved in the acid response is the two-

component system ArsRS (HP0165/HP0166).  ArsS (HP0165) is a histidine kinase known to act 

as an acid sensor (Pflock, Dietz et al. 2004), and several studies have identified genes that are 

targeted by its cognate response regulator ArsR (HP0166) (Dietz, Gerlach et al. 2002; Forsyth, 

Cao et al. 2002; Pflock, Kennard et al. 2005; Pflock, Finsterer et al. 2006; Wen, Feng et al. 

2006; Wen, Feng et al. 2007).  Metal ion-dependent regulators are also involved in the acid 

response.   Some of the important regulatory proteins involved in the metal ion response include 

the two-component system HP1364/HP1365, the nickel responsive regulator NikR (Contreras, 

Thiberge et al. 2003), and the ferric uptake regulator Fur.  Fur was the first regulatory protein 
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shown to be involved in the acid response (Bijlsma, Waidner et al. 2002), and array studies have 

implicated both Fur and NikR in the acid response (Bury-Mone, Thiberge et al. 2004).  Recently, 

it was also shown that the CrdRS (HP1364/HP1365) two-component system is required for an 

effective acid response (Loh and Cover 2006), although there appear to be strain-specific 

differences (Pflock, Muller et al. 2007).  

 

Metal-Ion Responses 

Closely associated with the acid response are the metal ion responses.  Low pH 

conditions increase the solubility of divalent metal ions and raise their effective concentrations 

available to cells (Krishnaswamy and Wilson 2000).  Many divalent metal ions are essential in 

trace amounts, but at higher concentrations, they can have toxic effects.  Intracellular 

concentrations of many metal ions are precisely controlled.  Two repressors, NikR and Fur, are 

involved in the homeostasis of nickel and iron, respectively.  Both have been shown to be 

important regulators of the acid response as well (Bury-Mone, Thiberge et al. 2004).  NikR was 

discovered in E. coli (De Pina, Desjardin et al. 1999), where it binds the promoter of the 

nikABCDE operon (Chivers and Sauer 1999), repressing its transcription.  The H. pylori 

homolog of NikR was found to have a more significant role in transcriptional regulation, 

affecting not only the nickel uptake mechanism, but also urease, iron uptake genes, and motility 

genes (Contreras, Thiberge et al. 2003).  It was later shown to be both an activator and a 

repressor, depending on the position of its binding site within different promoters (Ernst, Kuipers 

et al. 2005).  The ferric uptake regulator Fur can also induce or repress different sets of genes in 

an iron-dependent way, inducing iron storage and energy genes while repressing metal 

metabolism, motility, and cell wall synthesis genes (Ernst, Bereswill et al. 2005). 
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Copper is another metal that is an essential cofactor in many proteins, but toxic at high 

concentrations.  H. pylori has a system that specifically regulates intracellular copper 

concentration.  CrdRS is a two-component system that responds to high copper concentrations 

and upregulates transcription of the copper resistance determinant protein CrdA (Waidner, 

Melchers et al. 2005).  CrdA, along with CrdB, CzcA, and CzcB form a copper efflux system 

(Waidner, Melchers et al. 2002).   

 

Motility  

 Motility is an essential colonization factor and a hierarchically regulated process that 

requires at least 40 genes involved in flagellar biosynthesis and chemotaxis.  Building the 

flagella correctly and in the right number, as well as responding correctly to environmental 

stimuli requires a complex set of regulatory mechanisms.  Aside from the housekeeping σ80 

transcription factor, which promotes transcription of one set of motility genes, the other two σ 

factors, σ54 and σ28, are responsible for transcription of different sets of motility genes.  σ54 

requires the two-component system FlgRS for its function.  A number of other proteins are 

involved in motility regulation (Niehus, Gressmann et al. 2004). 

 

Adhesion Response 

 H. pylori must always be ready to move to escape acid or avoid being washed away with 

the gastric mucus that is constantly being overturned.  At any given time, however, about 20% of 

cells are adhered to the gastric epithelial cell surface layer (Amieva and El-Omar 2008).  From 

this position, they are protected from the acidic conditions in the lumen of the stomach by the 
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gastric mucus.  Many proteins have been identified as adhesins that contribute to these 

interactions. 

 Adhesion is accompanied by transcriptional changes in several genes.  One 

transcriptional array-based study found many upregulated and downregulated genes (Kim, 

Marcus et al. 2004).  Upregulated genes include the paralyzed flagella protein (HP1274), outer 

membrane proteins, and HP0222.  The most noticeable class of downregulated genes are those 

involved in motility, including the major flagellin flaA.  It makes sense for H. pylori to conserve 

energy by downregulating motility upon adhesion to the gastric epithelial cell layer because they 

are protected from acid by the mucus layer.  We do not yet know what transduces the signal 

upon adhesion to cause expression changes, nor do we know what transcriptional regulators are 

involved.  Among the upregulated and downregulated genes, the only known transcriptional 

regulator is HP0222, which was discovered in our laboratory. 

 

Stringent Response 

The stringent response in bacteria is a survival strategy used in times of low nutrient 

conditions that can be triggered by uncharged tRNAs (Jain, Kumar et al. 2006) or low levels of 

phosphorous, iron, or a carbon source (Srivatsan and Wang 2008).  One study reported a lack of 

a stringent response in H. pylori (Scoarughi, Cimmino et al. 1999) even though it had been found 

in the closely related Campylobacter jejuni (Gaynor, Wells et al. 2005).  Subsequent studies, 

however, found an active stringent response.  Like other bacteria, H. pylori produces ppGpp in 

response to low nutrient conditions and exhibits a typical stringent response, including much 

lower transcription of ribosomal RNA (Wells and Gaynor 2006).  H. pylori mutants lacking 
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SpoT, a (p)ppGpp synthetase and hydrolase, are unable to survive aerobic shock or acid and are 

less capable of surviving during stationary phase growth (Mouery, Rader et al. 2006).  

 

Growth Phase 

As H. pylori cultures begin their transition from log phase growth into stationary phase 

growth, a large number of genes, especially virulence genes, are either induced or repressed 

(Thompson, Merrell et al. 2003).  Iron uptake proteins are repressed, while iron storage proteins 

are induced.  Many of the acid response genes such as urease and carbonic anhydrase are 

repressed.  Ribosomal genes are also repressed.  Several papers have addressed the role of 

growth phase in the regulation of motility (Niehus, Ye et al. 2002; Loh, Forsyth et al. 2004; 

Rader, Campagna et al. 2007). 

 

Nuclear Magnetic Resonance 

NMR as a Tool for Structural Biology 

The primary experimental method used in our laboratory is nuclear magnetic resonance 

(NMR).  NMR is an incredibly useful technique in many fields of science.  In medicine, MRI is 

used as a diagnostic imaging tool.  NMR is used by chemists to determine structures of small 

molecules and monitor the progress of reactions.  It is also used in materials science and oil 

exploration (Kleinberg 2001).  We use NMR for its ability to provide information about the 

atomic-level structures of biomacromolecules.  Along with X-ray crystallography, it is one of the 

two methods capable of determining high-resolution structures of biomacromolecules.  Our 

laboratory focuses on determining structures of proteins.  High-resolution structures of proteins 

are useful for figuring out how they perform their function and in some cases, for helping 

determine their functions in the first place.  Structures can help elicit the details of how proteins 
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interact with other proteins, DNA, and small molecule ligands and can even aid in the design of 

new drugs that will bind with high affinity to a specific protein target. 

As a method for doing structural biology, NMR is much newer than X-ray 

crystallography.  This is reflected in the relative numbers of NMR and X-ray structures in the 

Protein Data Bank (PDB) (Bernstein, Koetzle et al. 1977; Berman, Westbrook et al. 2000).  

When a structure is determined, its atomic coordinates are usually deposited in the PDB, which 

serves as a central repository for protein structures.  As of October, 2008, there are 53,917 

structures in the PDB.  NMR methods were used to determine 7,546 of them, or only about 14%.  

While the first X-ray protein structures were determined in the 1960s, the first NMR protein 

structure was only determined in 1983 in the lab of Kurt Wüthrich (Williamson, Havel et al. 

1985). 

Although NMR and X-ray crystallography methods are both capable of producing high-

resolution structures, the two methods each have their own advantages and disadvantages.  For 

X-ray crystallography, the main difficulty lies in producing crystals of the protein.  Crystal 

formation may only occur in a narrow range of conditions, and sometimes thousands of 

conditions must be tested.  One advantage of X-ray crystallography, however, is that once good, 

diffracting crystals can be produced and the phase problem can be solved, the time and effort 

demanded of the researcher for data collection and structure computation is less than that for 

determining an NMR structure.  The other advantage of X-ray crystallography is that it is not 

limited by molecular size.  Although new NMR methods are continually being developed that 

push the size limit higher and higher, structure determination in general becomes exponentially 

more difficult with increasing molecular weight.  NMR methods have two main advantages over 

X-ray crystallography.  One is that crystal formation is not required.  Once a soluble protein 
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sample has been obtained, one can begin collecting useful data.  The other advantage is that the 

protein is in solution, which is closer to its functional, physiological conditions than in a packed 

crystal.  It has become clear that dynamic motions of proteins are often critical for their 

functions.  NMR methods have been developed to gain insight into these motions, which cannot 

be easily discerned by X-ray crystallography. 

 

Discovery of Nuclear Magnetic Resonance 

As an experimental tool, NMR is based on the fact that certain atomic nuclei have spin, 

an intrinsic angular momentum that gives rise to a magnetic moment.  One of the experiments 

that directly led to the development of the concept and theory of spin was the Stern-Gerlach 

experiment (Gerlach and Stern 1922).  In this experiment, silver ions were sent through an 

inhomogeneous magnetic field, and their deflections were recorded.  Contrary to classical theory, 

which predicted that the deflections would vary continuously with the direction of their spin 

angular momentum vectors, all of the ions were found to have deflected along one of two paths.  

The Stern-Gerlach experiment provided some of the most direct evidence in favor of quantum 

theory.  The original experiment done with silver ions measured the deflection due to electron 

spin angular momentum, which is much greater than that of a proton, however.  Stern went on to 

measure the magnetic moment of the proton, for which he won the Nobel prize in 1943.  Isidor 

Rabi’s molecular beam resonance experiments, which used oscillating magnetic fields to induce 

transitions between nuclear magnetic spin states, allowing measurement of magnetic moments 

(Rabi 1939), earned him a Nobel prize in 1944.  Nuclear magnetic resonance was finally 

detected in bulk matter in 1946 by two independent groups led by Felix Bloch and Edward 

Purcell.  Bloch’s group detected an NMR signal from water (Bloch, Hansen et al. 1946) while 
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Purcell’s group detected a signal from paraffin (Purcell, Torrey et al. 1946).  They shared the 

Nobel prize for their work in 1952. 

 

Nuclear Magnetic Resonance Spectroscopy 

 The NMR phenomenon arises from the spin of nuclear particles, a property that is purely 

quantum mechanical.  A deep understanding of NMR requires a good knowledge of quantum 

mechanics; however, the basic magnetic resonance phenomenon can be explained in classical 

terms because the two regimes predict the same results (Hanson 2008).  Because nuclear spins 

have intrinsic angular momentum, as well as a magnetic moment, their magnetic moments begin 

to precess when placed in a magnetic field.  The precessional frequency is called the Larmor 

frequency and is governed by the following equation: 

𝜔𝜔 =  𝛾𝛾𝛾𝛾 

The Larmor frequency ω depends on the gyromagnetic ratio γ, which is a constant for a given 

nucleus, and the strength of the magnetic field, B, in which it is placed.  For field strengths 

commonly used in biomolecular NMR, Larmor frequencies of protons are typically on the order 

of hundreds of MHz, in the radiofrequency range.  All nuclei of a given species should precess 

with the exact same frequency when placed in a homogeneous magnetic field, but in practice, a 

number of other phenomena slightly perturb the effective field felt by each nucleus.  Nuclei in 

different parts of a molecule will have slightly different Larmor frequencies, and this makes 

NMR a powerful tool for structure determination.   

Chemical shift is one of the most fundamental concepts in NMR.  Although all nuclei of 

a given isotope have the same gyromagnetic ratio, they will not all have the exact same Larmor 

frequency due to slight variability of the magnetic field strength at different positions in a 
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molecule.  These variations are primarily due to differences in the local electronic structure 

around each nucleus.  Differences in electron density due to electronegativity as well as currents 

of valence electrons induced by the static field give rise to small secondary magnetic fields that 

modify the net field felt by the nuclear spins.  The secondary field at a given position is 

anisotropic (orientation dependent) with respect to the orientation of the molecule in the static 

field; however, in solution NMR, rapid tumbling of the molecule gives rise to an averaging 

process that causes each nucleus at a given position to have only a single frequency.  The 

secondary fields change the Larmor frequencies of the nuclei by just a few parts per million 

(ppm) compared to a standard reference frequency, and this change expressed in ppm is known 

as the chemical shift of the nucleus.  Remarkably, these small effects can easily be detected, and 

they inherently contain a great deal of useful structural information.  Patterns of backbone atom 

nuclei chemical shifts can be used to obtain accurate secondary structure predictions (Wishart 

and Sykes 1994). 

J-coupling (scalar coupling) is an interaction between two spins that alters the Larmor 

frequency of one spin depending on the spin state of its coupling partner.  The J-coupling 

interaction is mediated through chemical bonds, and in particular, through s-orbital electrons due 

to the dominant Fermi contact term.  In biological applications, most relevant nuclei have spin ½, 

leading to two stationary spin states which, at room temperature, are roughly evenly populated.  

If these nuclei are J-coupled to another nucleus, they will split the signal of the coupled nucleus 

into two signals of equal intensity.  The frequency difference of the two signals in Hz indicates 

the strength of the coupling interaction.  Like chemical shifts, J-couplings contain a lot of 

structural information; however, depending on the situation, the splittings of the resonance 

signals can be either very useful or very inconvenient.  For small molecule applications, the 
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splitting, which distribute the observed signal of one nucleus into multiple proportionally weaker 

signals, are useful because of the structural information they provide.  The reduction in intensity 

of the signals is not usually a problem because small molecules have sharp, intense lines to begin 

with.  For biomacromolecules, decoupling methods are often used to suppress the splittings.  

Large molecules already have wider, less intense lines than small molecules.  J-coupling further 

reduces the intensities of the lines.  The greatest problem, though, is that spectra of large 

molecules already suffer from the overlap problem because of the large number of signals.  

Splittings due to J-coupling only make this problem worse.  

 Dipolar coupling is another interaction between spins, but it is mediated directly through 

space instead of through chemical bonds.  Like J-coupling, the dipolar interaction affects the 

Larmor frequency of one spin according to the spin state of its coupling partner; however, the 

dipolar interaction is much stronger than scalar coupling, with splittings on the order of several 

kHz.  In isotropic solution, splitting due to the dipolar coupling interaction is not observed 

because the rapid tumbling of the molecules averages the interaction to zero.  It is possible, 

however, to alter the sample conditions to induce a slight orientation of the molecules.  The 

slight orientation means that the motional averaging will not reduce the dipolar coupling to zero.  

There will be a small, observable splitting called the residual dipolar coupling (RDC), and these 

can be used to refine structures. 

 Although dipolar couplings are not observed directly in solution NMR, the dipolar 

interactions are responsible for a large part of the relaxation of signals.  Tumbling of the 

molecules in solution creates random fluctuations in the field that one spin feels due to other, 

nearby spins.  Some of the frequencies of these fluctuations are capable of inducing spin-flips, 

which cause relaxation. 
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 One particular type of relaxation, called cross-relaxation, occurs when mutual spin-flips 

cause magnetization to be transferred from one spin to another.  This phenomenon gives rise to 

the nuclear Overhauser effect (NOE).  The original Overhauser effect described a similar 

phenomenon, in which polarization is transferred from electrons to nuclear spins (Overhauser 

1953).  The efficiency of polarization transfer from one nucleus to another by NOE is inversely 

proportional to the 6th power of the distance between them.  Although internal protein motions 

and “spin diffusion” (the multistep propagation of polarization by cross-relaxation) preclude 

calculation of exact distances between nuclei, the measured NOEs can be converted to 

approximate distance restraints.  NOEs are extremely important for NMR structure determination 

because they give rise to the most important and commonly used restraints for structure 

calculations.    

 Modern NMR experiments rely on the fact that the bulk magnetization that arises from 

many spins in a sample can be manipulated using precise sequences of radio frequency pulses 

and time delays.  During the course of structure determination, a number of different pulse 

sequences are employed to obtain different types of information about the molecule of interest.  

When a sample is first placed in the magnet, relaxation processes cause the buildup of a small net 

magnetization that is parallel to the magnetic field of the instrument.  Short radiofrequency 

pulses applied through a coil that surrounds the sample “rotate” the net magnetization vector 

about an axis perpendicular to the static field.  Combinations of these pulse-induced rotations of 

the magnetization, along with relaxation and magnetization transfer due to J-coupling and 

dipolar coupling that occur during time delays define different NMR experiments that contain a 

wealth of information about relationships of observed nuclei within molecules. 
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  After the pulse sequence is finished, the same coil that is used to transmit radiofrequency 

pulses to the sample is then used to detect the signal coming from the sample.  This signal is 

composed of individual signals from all nuclei in the sample, each with a slightly different 

frequency of oscillation.  The time-domain data points that are detected and stored are subjected 

to a Fourier transform to convert them into the corresponding frequency spectrum. 

 

Structure Determination 

The general strategy for structure determination by NMR was laid out in Wüthrich’s 

seminal work, NMR of Proteins and Nucleic Acids (Wüthrich 1986).  The process can be 

divided into three phases – spin system identification and sequential assignments, collection of 

restraints, and structure calculations.  At the time, the sequential assignment process utilized 2D 

1H experiments, such as COSY, NOESY, and TOCSY.  COSY and TOCSY experiments were 

used to identify spin systems (all protons that can be linked by J-coupling).  NOESY experiments 

were used to determine which spin systems occurred next to each other in the sequence.  Known 

patterns of spins for each amino acid allowed the identification of unique two, three, and four 

residue sequence elements that could be assigned unequivocally and serve and anchor points for 

additional assignments.  Once spin systems are assigned to specific residues within the protein 

and all of the sidechain protons are assigned to specific atoms, NOESY crosspeaks can be 

assigned and converted into distance restraints between two specified atoms.  Using the 

experimentally determined distance restraints as well as the covalent structure of the polypeptide, 

distance geometry methods were employed to determine 3D structures (Havel, Kuntz et al. 

1983). 
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 Although the main ideas outlined by Wüthrich are still valid today, there has been 

incredible progress concerning each step in the process of structure determination, and there are 

now many more tools available to the researcher.  The wide variety of expression vectors allow 

overexpression of a protein of interest in bacterial and eukaryotic hosts in isotopically enriched 

forms.  Field strengths of spectrometers in use today are much higher, increasing both the 

sensitivity and resolution of the experiments.  Pulsed field gradients allow for better water 

suppression and are used in place of time-consuming phase cycles for coherence selection.  

Isotope labeling strategies allow more complicated pulse sequences and pushed higher the 

maximum size of biomacromolecules that can be studied by NMR.  The sequential assignment 

process is now easier due to 15N and 13C labeling and the development of 3D triple-resonance 

experiments (Sattler, Schleucher et al. 1999).  2H labeling drastically reduces relaxtion due to 

dipolar interactions, and in combination with TROSY experiments (Pervushin, Riek et al. 1997), 

has allowed NMR studies of much larger molecules.  New types of measurements, including 

residual dipolar couplings (RDCs) (Lipsitz and Tjandra 2004) and paramagnetic relaxation 

enhancements (PREs), give rise to additional restraints that are complementary to NOE-derived 

distance restraints and can be used to refine structures.  Simulated annealing algorithms using 

torsion angle dynamics provide efficient methods to calculate structures (Guntert, Mumenthaler 

et al. 1997).  Because structure determination is a very iterative process involving dozens to 

hundreds of rounds of NOE assignments and structure calculations, the incredible increase in 

computational power has significantly reduced the time needed at each step and iteration of this 

process.  
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Outline 

 Our work on transcriptional regulation in Helicobacter pylori started several years ago as 

a small scale structural genomics project.  Several targets of unknown structure and function 

were chosen based on possible biological interest and certain qualities that were predicted to 

make them suitable for NMR structural work (Popescu 2004).  This work resulted in the 

structure of one particular target, HP0222, that turned out to be a very interesting DNA-binding 

protein (Popescu, Karpay et al. 2005). 

 Since then, work in our laboratory has expanded to several other aspects of 

transcriptional regulation in H. pylori.  Figure 3 shows a few of the proteins involved in 

transcriptional regulation that are targets of study in our laboratory.  The major part of my effort 

over the last several years has been determining the function of HP0222, but we have also made 

progress on other projects.  This thesis describes both structural and functional results we have 

obtained on several of the projects.  Chapters II and III cover the structure determination of the 

RNA polymerase α-subunit C-terminal domain and HP0564, a protein homologous to HP0222.  

Chapters IV and V cover our progress toward determining the functions of HP0222 and HP0564.  

Appendix A covers work done on other projects dealing with H. pylori proteins. 
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Figure 3.  Diagram showing some proteins involved in transcriptional regulation and important 
environmental responses of Helicobacter pylori.  Targets of structural and functional study in our 
laboratory include the RNA polymerase α subunit C-terminal domain, the response regulator 
ArsR, the periplasmic sensor domain of the histidine kinase ArsS, and the ribbon-helix-helix 
transcriptional repressor HP0222.  
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CHAPTER II 

 

STRUCTURE DETERMINATION OF THE H. PYLORI RNA POLYMERASE α 
SUBUNIT C-TERMINAL DOMAIN 

 

A large part of the material presented in this chapter has been submitted for publication. 

 

Abstract 

 Bacterial RNA polymerase is a large, multi-subunit enzyme responsible for transcription 

of genomic information.  The C-terminal domain of the α subunit of RNA polymerase (αCTD) 

functions as a DNA and protein recognition element localizing the polymerase on promoter 

sequences.  Despite the high degree of conservation of the subunits among bacteria, Helicobacter 

pylori RNA polymerase has several distinctive features.  We have determined the tertiary 

structure of H. pylori αCTD. It is larger and includes a highly amphipathic helix near the C-

terminal end that is not present in other structurally determined αCTDs.  Residues within this 

helix are highly conserved among ε-proteobacteria.  NMR experiments show that the H. pylori 

αCTD can bind DNA similarly to other αCTDs.  By contrast, the sequence and structural 

differences modeled into the context of transcriptional complexes suggest novel interactions with 

transcription factors. 

 

Introduction 

 RNA polymerase (RNAP) is the essential protein complex that transcribes genomic 

information contained in the template strand of DNA, producing RNA that can be translated into 

a protein sequence or function on its own.  Catalytically important regions of the enzyme are 
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conserved on the sequence, structural, and functional levels across all kingdoms of life.  In 

bacteria, the catalytically competent core of the enzyme has subunit composition α2ββ'ω and a 

total molecular weight of about 400 kDa (Burgess 1969).  The β and β' subunits are the largest 

and contain the catalytic site.  Each is bound to one of the α subunits, which stabilize the 

complex by dimerizing through their N-terminal domains.  The ω subunit has both structural and 

functional roles in the complex (Mathew and Chatterji 2006).  Promoter-specific transcription is 

driven by σ subunits (factors), which bind the core complex and recognize specific promoter 

elements. 

 Although the catalytically competent core subunits of RNAP from bacteria have 

homologs in archaea and eukaryotes, there are major differences in the RNAPs from the different 

kingdoms.  Whereas in bacteria, there is a single RNAP that is responsible for transcribing all 

RNAs, in eukaryotes, there are three different RNAPs - Pol I, Pol II, and Pol III.  Each has a 

distinct function.  Pol I transcribes ribosomal RNA (rRNA).  Pol II transcribes messenger RNA 

(mRNA).  Pol III transcribes transfer RNAs (tRNA) and other small RNAs (Cramer 2002).  In 

addition, the eukaryotic RNA polymerases, as well as the archaeal RNA polymerase, have much 

more complex subunit compositions, with 14, 12, and 17 subunits for eukaryotic Pol I, Pol II, 

and Pol III, respectively (Cramer, Armache et al. 2008).  Among them, there is a 10 subunit, 

structurally conserved core.  The homodimer of α subunits (α2) that recruits the β and β' subunits 

and stabilizes the complex in bacteria, is replaced by a heterodimer in eukaryotes.  The subunits 

comprising this heterodimer do not have C-terminal domains like the α subunits from bacteria. 

 

Structure and Assembly of Bacterial RNA Polymerase 

 The order in which subunits are added to the RNAP complex has been determined 

(Ishihama 1981).  First, an α2 homodimer is formed through the N-terminal domains of α.  Then, 
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the β subunit is recruited.  By convention, it is bound to the αI subunit.  Finally, the β' subunit, in 

association with the ω subunit, is incorporated, binding the αII subunit, forming the catalytically 

competent apoenzyme core.  The ω subunit binds both N-terminal and C-terminal regions of β' 

simultaneously, assisting its incorporation into the α2β subcomplex (Ghosh, Ishihama et al. 

2001).  The core can then associate with one of a number of σ factors to form the holoenzyme 

(Figure 4A). 

 Over the last decade, a lot of structural work has been done on both individual subunits 

and the full RNAP complex from bacteria, archaea, and eukaryotes.  Crystal structures of the 

bacterial apoenzyme from Thermus aquaticus (Zhang, Campbell et al. 1999) and the holoenzyme 

from Thermus thermophilus (Vassylyev, Sekine et al. 2002) have been determined.  Structures of 

RNA polymerase II from yeast (Cramer, Bushnell et al. 2001; Armache, Mitterweger et al. 2005) 

(Figure 4B) and the archaeal RNA polymerase from Sulfolobus solfataricus (Hirata, Klein et al. 

2008) (Figure 4C) have allowed detailed structural comparisons (Cramer 2002). 
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Figure 4. RNA polymerase from A) bacterium (Thermus thermophilus) B) eukaryote 
(Saccharomyces cerevisiae) C) archaeon (Sulfolobus solfataricus). In A), αI and αII are colored 
red and blue; β and β' are colored orange and green; ω is colored cyan; σ is colored magenta.  
The corresponding subunits in the eukaryotic and archaeal RNAPs have the same color.  
Additional subunits are colored white.  



34 
 

Transcription  

 Upon binding of the apoenzyme to the σ factor, the resulting holoenzyme is capable of 

recognizing specific promoter sequences at -10 and -35 bp upstream of the transcriptional start 

site.  Initial binding to DNA forms the closed RNAP-promoter complex.  The DNA sequence 

around the -10 site usually consists of several A-T basepairs that transiently unwind.  Conserved 

aromatic residues in the sigma factor stack against the unwound bases, stabilizing the transiently 

melted form.  Unwinding of several basepairs around the -10 site extending past the start site 

forms the transcription bubble and the open RNAP-promoter complex.  In a process called 

abortive initiation, RNAP will repeatedly transcribe short segments of RNA, which will be 

prematurely released.  Eventually, it will transcribe an RNA that reaches about 12 nucleotides in 

length.  At this point, a sequence of conformational changes destabilizes interactions between the 

core RNAP and the sigma factor, allowing the RNAP to escape from the promoter, forming the 

ternary elongation complex (TEC).  The TEC consists of the RNAP, DNA, and RNA, but it is 

unknown whether the sigma factor is completely dissociated from RNAP during elongation 

(Murakami and Darst 2003).  The TEC is highly stable and processive, dissociating when it 

reaches specific termination signals that consist of a stable RNA hairpin followed by a U-rich 

tract (Herbert, Greenleaf et al. 2008). 

 

α Subunit C-Terminal Domain 

 Despite the high degree of evolutionary conservation of RNA polymerase, Helicobacter 

pylori RNA polymerase demonstrates several structural differences from other known bacterial 

RNA polymerases.  The β and β' subunits are about 45% identical to their E. coli counterparts.  

Although they are usually expressed as separate gene products in bacteria, they are found as one 
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fused gene product in Helicobacter and Wolinella species (Zakharova, Paster et al. 1999), and 

this fusion may confer a selective advantage (Dailidiene, Tan et al. 2007).  Also, the primary 

specificity subunit of the RNA polymerase holoenzyme, σ80, has diverged significantly 

compared to σ70 from E. coli and other bacteria (Solnick, Hansen et al. 1997).  Sequence 

alignments between H. pylori and E. coli for all the subunits show that the α subunits (28% 

identical, 50% similar) have diverged even more than the σ subunits (32% identical, 51% 

similar).  Table 1 shows sequence identities and similarities of all subunits from H. pylori and E. 

coli.  Values were determined using the EMBOSS global alignment tool (Rice, Longden et al. 

2000).  Identity and similarity decrease away from the catalytic core.  The ω subunits have 

unusually low similarity because they are small proteins and each sequence has a stretch of 

residues not present in the other. 

 

Table 1. Sequence identity and similarity of H. pylori and E. coli RNAP subunits 

  
 
 

The C-terminal domains of the α subunits (αCTDs) are separated from the dimerizing N-

terminal domains by long, flexible linkers (Jeon, Yamazaki et al. 1997), and are essential for 

growth in E. coli and most likely all other bacteria (Hayward, Igarashi et al. 1991).  They are 

Subunit Identity Similarity 

α 28.4 49.7 

αCTD 25.2 39.8 

β 46.0 65.1 

β' 45.3 61.5 

ω 23.8 33.7 

σ80/ σ70 32.1 50.9 
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known to play an important role in transcription of certain genes.  A highly conserved region of 

the domain interacts with upstream elements, binding the minor groove of A+T rich sequences 

that are often found near the consensus -10 and -35 elements of some promoters.  This 

interaction drastically raises transcription levels at the E. coli rrnB P1 promoter (Ross, Gosink et 

al. 1993).  The ways in which the αCTDs stimulate transcription are complex and varied.  

Several interaction surfaces of the domain are used to contact DNA and different transcription 

factors (Benoff, Yang et al. 2002; McLeod, Aiyar et al. 2002; Dangi, Gronenborn et al. 2004). 

 A sequence alignment of αCTDs (Figure 5) shows a highly conserved domain that 

consists of four α-helices and a long, ordered N-terminal loop.  The conservation does not extend 

to several C-terminal residues.  The first determined structure of an αCTD, from E. coli, showed 

that these C-terminal residues are, in fact, well-ordered and contribute key hydrophobic core 

interactions (Jeon, Negishi et al. 1995).  In H. pylori, the αCTD C-terminal segment is several 

residues longer than in E. coli, and the two sequences are not at all similar.  We determined the 

solution structure of αCTD from H. pylori.  Our structure shows that not only are most of the C-

terminal residues ordered, but that they form a fifth helix that is highly amphipathic and 

contributes more to the hydrophobic core than the corresponding sequence present in E. coli 

αCTD. 
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Figure 5. Amino acid sequence alignment of several bacterial αCTDs including part of the 
interdomain linker.  PFAM-defined conserved domain is shaded gray.  The two helical turns are 
indicated by boxes above the sequences and are labeled ht1 and ht2.  α-helices are indicated by 
cylinders above the sequences and are labeled α1-α5.  Helix α5 is an additional α-helix found in 
H. pylori.  The conservation in all sequences presented is indicated by symbols in the bottom 
line; * invariant, : very highly conserved, . conserved.  Numbers correspond to positions in the 
native sequence of each protein. Hp Helicobacter pylori; Hh Helicobacter hepaticus; Ws 
Wolinella succinogenes; Cj Campylobacter jejuni; Ec Escherichia coli; Vc Vibrio cholerae; Bs 
Bacillus subtilis; Lm Listeria monocytogenes; Mt Mycobacterium tuberculosis. 
 
 
 
 We have modeled H. pylori αCTD into known three-dimensional structures of the αCTD-

containing complexes.  Although much work has been done to describe αCTD interactions both 

structurally and functionally in E. coli and Bacillus subtilis, this type of analysis has not yet been 

done for H. pylori.  Our models show that in many cases, the H. pylori αCTD would not be able 

to form the homologous protein-protein interactions.  The inability of H. pylori and E. coli RNA 

polymerases to transcribe genes downstream of some promoters from the other bacterium due to 

differences in the σ subunits has been documented (Beier, Spohn et al. 1998; Shirai, Fujinaga et 

al. 1999).  Our modeling suggests that the H. pylori αCTD interacts with cognate transcription 
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factors in novel ways and would also cause additional incompatibilities with some E. coli 

promoters. 

 

Experimental Procedures 

Protein Expression and Purification 

 Residues 231-344 encoded by the JHP1213 (HP1293, in sequenced strain 26695) gene 

from H. pylori strain J99, corresponding to the C-terminal domain of the α-subunit of RNA-

polymerase and the flexible, interdomain linker were PCR amplified from genomic DNA using 

the following oligonucleotide primers: forward- 5'-gacggatccctgggcgtttttggcgaaag, reverse- 5'-

gacggtaccgtttgtgtctcatcagtcgttacctcc.  The PCR product was cloned into a modified pET vector 

that introduced an N-terminal, 12 residue His6 tag (MRGSHHHHHHGS).  Transformed E. coli 

BL21 (DE3) cells were grown in LB media to OD600=1 and induced with 0.4 mM IPTG for 3 h.  

Cells were collected and lysed by sonication in binding buffer (20 mM Tris-HCl, 5 mM 

imidazole, 0.5 M NaCl, 8 M urea, pH 7.9).  Cell extract was centrifuged to remove insoluble 

debris and filtered through a 2.7 µm filter.  Soluble proteins were loaded onto Ni-NTA resin, 

washed (20 mM Tris-HCl, 30 mM imidazole, 0.5 M NaCl, 8 M urea, pH 7.9), and eluted (20 

mM Tris-HCl, 0.5 M NaCl, 100 mM EDTA, 8 M urea, pH 7.9).  Refolding was achieved by 

extensive dialysis against NMR sample buffer (25 mM KH2PO4, 225 mM KCl, 1mM TCEP, pH 

7.3).  Isotope-labeled samples were prepared by growing cells in M9 minimal media with 

15NH4Cl and/or 13C-u-glucose (CIL, Andover, MA) as sole sources of nitrogen and/or carbon.  
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NMR Experiments 

 NMR experiments were performed on Bruker Avance 600 and 800 MHz spectrometers 

equipped with cryoprobes.  Samples were prepared at approximately 1 mM protein concentration 

in 25 mM KH2PO4, 225 mM KCl, 1mM TCEP, pH 7.3 and placed in 3 mm tubes to reduce the 

total salt in the detection volume.  All experiments were performed at 25 °C.  Singly-labeled 15N 

samples were used to acquire 2D HSQC experiments.  Doubly-labeled 15N,13C samples were 

used to acquire 3D CBCANH, CCCONH, HCCCONH, and HCCH-TOCSY experiments used 

for backbone and sidechain assignments.  3D 15N and 13C NOESY-HSQC experiments were used 

for assigning NOESY crosspeaks used in structure calculations. 

 A heteronuclear {1H}-15N NOE experiment was recorded to measure the backbone 

dynamics.  Peak assignments from a 1H-15N HSQC were transferred to the spectra with and 

without saturation, and for each residue, the ratio of the intensities of the peak in the two spectra 

was taken as a measure of the steady-state heteronuclear NOE.  Residues with peaks that 

overlapped in the spectrum (I239, Y244, D253, K255, D256, L293, K301, Y304, E309, D344) 

were excluded.  

 Chemical shift perturbation experiments were performed to observe DNA-binding and 

protein-protein interactions by αCTD.  Protein concentration was decreased to 100 µM to 

minimize nonspecific binding to DNA.   After addition of DNA, the salt concentration was 

gradually decreased to 50 mM.  At this salt concentration, changes caused by protein-DNA 

interactions could be observed in the spectrum.  Because αCTD tends to aggregate at such low 

salt concentrations, 50 mM arginine and 50 mM glutamate were added to the sample as a salt 

substitute (Hautbergue and Golovanov 2008).  A fragment of dsDNA from the promoter region 

of gene HP1408 from strain 26695, with sequence 5'-gataaaataataaaaacgcatcattaaccattgattga, was 
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used.  It contains a postulated αCTD binding site (Ross, Gosink et al. 1993) as well as a possible 

binding site for the acid-response regulator ArsR (Dietz, Gerlach et al. 2002).  After mixing 

αCTD and DNA at 100 µM each, ArsR DNA-binding domain was added to the sample at 200 

µM concentration to account for the two potential ArsR binding sites on the DNA fragment. 

 

Structure Determination 

 NMR data were processed using TOPSPIN 2.0.b.6 (Bruker, Billerica, MA) and analyzed 

using SPARKY (T. D. Goddard and D. G. Kneller, SPARKY 3, University of California, San 

Francisco).  Structure calculations were performed using CYANA (Guntert, Mumenthaler et al. 

1997) version 2.1 with 25,000 steps for each structure.  Distance restraints were calibrated 

automatically using CYANA routines.  Hydrogen bond restraints were included only in later 

stages of calculations when they could be identified in a majority of structures.  A total of 119 

backbone φ and ψ dihedral angle restraints calculated using TALOS (Cornilescu, Delaglio et al. 

1999) were used in the calculations.  For the final round of calculations, 500 structures were 

calculated in CYANA, and the 50 with the lowest target function were energy-minimized using 

AMBER 9 (Case, Cheatham et al. 2005) with 3,000 steps of steepest descent energy 

minimization.  Energy-minimized structures were analyzed with AQUA and PROCHECK-NMR 

(Laskowski, Rullmannn et al. 1996).  The final ensemble consists of the 15 structures with the 

lowest energies and the best non-bonded backbone geometry.  The PDB accession code for the 

ensemble is 2k8n.  Chimera (Pettersen, Goddard et al. 2004) was used for visualization of 

structures and for producing figures.  Delphi (Gilson 1987) was used for calculating the 

electrostatic surface potentials. 
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Results 

Sequence Alignment 

 The bacterial RNA polymerase α subunit C-terminal domain family (Pfam (Finn, Tate et 

al. 2008) PF03118) is highly conserved with a length of about 68 residues (Figure 5).  The 

average identity between members of this domain family is 45%.  The conservation does not 

extend to a variable number of C-terminal residues of the polypeptide.  Figure 5 shows a 

sequence alignment of nine bacterial αCTDs including the flexible linker between the N-terminal 

domain (NTD) and the CTD.  The C-terminal sequences of the proteins are not conserved in 

terms of length or identity; however, among ε-proteobacteria, there is very good conservation in 

positions occupied by hydrophobic and charged residues.   

  

Structure Determination 

 To determine the structure of the αCTD from H. pylori, we isolated a fragment consisting 

of the core domain, the interdomain linker, and the C-terminal residues to the end of the native 

protein sequence.  We used NMR methods to determine a solution structure.  Our final structural 

ensemble consists of 15 models with an average backbone RMSD of 0.41 Å and heavy atom 

RMSD of 0.93 Å (Table 2).  Similar to other bacterial αCTDs, the well-conserved domain 

consists of four helices with short connecting loops, and a longer N-terminal, ordered loop 

(A254-S267) containing two helical turns that contributes residues critical to the hydrophobic 

core.  Analyzing the final ensemble, we noticed that the backbone carbonyl oxygen atoms of N-

terminal loop residues A259 and L257 act as hydrogen bonding partners for the backbone amide 

hydrogen atoms of helix 2 terminal residues V282 and G283, respectively.  During the course of 

resonance assignments, the backbone amide proton of S267, also in the N-terminal loop, was 



42 
 

found far downfield shifted at 10.43 ppm, suggesting a strong hydrogen bond.  Initial structure 

calculations showed the amide proton to be in the vicinity of the sidechain oxygens of E306.  

This glutamate is highly conserved, and known crystal structures confirmed these hydrogen 

bonds, so they were added as structural restraints in the remaining calculations.  Helices 2 and 3 

are rather short, while helices 1 and 4 are longer and contribute residues that are required for 

DNA-binding. 

 The NMR structure of the E. coli αCTD showed that the C-terminal loop, comprised of 

residues not included in the core domain alignment, is well-ordered and makes important 

hydrophobic contacts (Jeon, Negishi et al. 1995).  This is also the case for the H. pylori αCTD, 

except that after a short loop, there is a fifth helix (Figure 6).  Helix 5 is amphipathic, 

contributing three leucine sidechains that make many contacts with other hydrophobic residues 

in the hydrophobic core.  Nearly all other residues in this helix have charged sidechains. 
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Table 2.  Structural statistics for ensemble of 15 structures of H. pylori αCTD 

Nonredundant NOE restraints 957 
   Intraresidue 316 
   Short 252 
   Medium 169 
   Long 220 
Hydrogen bond restraints 36 
TALOS dihedral angle restraints 119 
Average CYANA target function 1.52 
   Number of violations > 0.2 Å 0 
Average AMBER energies (± standard deviation)  
   Input structures 3953 

    Energy minimized structures -4354 (± 24) 
Average Ramachandran statistics from PROCHECK (residues 

 
 

   Most favored (%)  90.0 
   Additionally allowed (%) 9.4 
   Generously allowed (%) 0.6 
   Disallowed (%) 0 
Average RMSD from mean structure (Å, residues 254-337)  
   Backbone (N,Cα,C',O) 0.41 
   Heavy atoms 0.93 
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Figure 6. A) Ribbon diagram of the H. pylori RNA polymerase αCTD. Rainbow coloring, N-
terminus blue and C-terminus red, was used. The fifth, C-terminal helix is visible at the top in 
orange and red.  Sidechains of the three leucines from the helix as well as of other hydrophobic 
residues that they contact are shown.  Well-conserved DNA-binding residues (R269, N298, 
K302) are also indicated.  B) Wire diagram of ensemble of 15 conformers in the same orientation 
as in A). 
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Table 3. PROCHECK-NMR and AMBER statistics for 50 conformers 

conformer 
# 

most 
favorable 

additionally 
allowed 

generously 
allowed disallowed 

initial 
energy 

final 
energy 

17 90.8 9.2 0 0 2016 -4305 
35 90.8 7.9 1.3 0 2346 -4373 
8 90.8 7.9 1.3 0 2244 -4370 
30 90.8 7.9 1.3 0 5917 -4359 
48 90.8 7.9 1.3 0 3563 -4353 
27 90.8 7.9 1.3 0 4408 -4320 
3 89.5 10.5 0 0 2042 -4392 
12 89.5 10.5 0 0 1484 -4359 
40 89.5 10.5 0 0 7918 -4357 
43 89.5 10.5 0 0 5471 -4355 
7 89.5 10.5 0 0 3428 -4344 
34 89.5 10.5 0 0 8481 -4340 
38 89.5 10.5 0 0 3549 -4335 
22 89.5 9.2 1.3 0 3744 -4390 
23 89.5 9.2 1.3 0 2689 -4365 
39 89.5 9.2 1.3 0 2379 -4361 
10 89.5 9.2 1.3 0 4109 -4356 
1 89.5 9.2 1.3 0 2565 -4338 
14 89.5 9.2 1.3 0 1485 -4317 
46 88.5 10.5 1.3 0 1705 -4354 
31 88.2 11.8 0 0 2989 -4347 
21 88.2 11.8 0 0 3368 -4343 
42 88.2 11.8 0 0 7795 -4330 
36 88.2 11.8 0 0 1263 -4324 
24 88.2 11.8 0 0 1356 -4323 
47 88.2 11.8 0 0 7682 -4321 
26 88.2 10.5 1.3 0 8964 -4366 
28 86.8 13.2 0 0 1212 -4363 
37 86.8 13.2 0 0 6117 -4358 
5 86.8 13.2 0 0 1512 -4356 
6 86.8 13.2 0 0 3438 -4353 
4 86.8 13.2 0 0 6615 -4347 
19 86.8 13.2 0 0 1836 -4341 
9 86.8 13.2 0 0 5822 -4335 
44 86.8 13.2 0 0 9453 -4335 
45 86.8 13.2 0 0 7908 -4333 
2 86.8 13.2 0 0 1797 -4330 
20 86.8 11.8 1.3 0 5848 -4357 
25 86.8 11.8 1.3 0 2280 -4335 
11 86.8 11.8 1.3 0 3720 -4319 
18 85.5 14.5 0 0 3267 -4357 
16 85.5 14.5 0 0 3146 -4348 
13 85.5 14.5 0 0 1350 -4325 
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“Table 3, continued” 
 
49 85.5 14.5 0 0 1262 -4312 
50 85.5 14.5 0 0 3036 -4301 
15 85.5 14.5 0 0 1710 -4285 
29 84.2 15.8 0 0 1097 -4357 
32 84.2 15.8 0 0 3223 -4337 
41 88.2 10.5 0 1.3 1625 -4338 
33 88.2 10.5 0 1.3 4481 -4334 

 

  

 A heteronuclear {1H}-15N NOE experiment (Figure 7) was recorded to determine the 

point at which the flexible, interdomain linker ends and the stable, structured domain begins, and 

also to determine the mobility of the C-terminal residues.  The first residue with a steady-state 

NOE greater than 0.5 is L257, which is also involved in many hydrophobic core contacts.  

Residue A254 has an NOE of 0.5, on the borderline between the flexible and structured regions.  

This is consistent with the fact that we found just a few proton-proton NOE interactions between 

A254 and the structured domain.  The heteronuclear steady-state NOEs also showed that the 

entire region corresponding to the well-conserved domain up to the end of helix 4 has a stable 

conformation.  There is a steady decline in the heteronuclear NOEs from Y316 to L322.  Our 

structural ensemble shows that this region has a greater range of conformations than the rest of 

the structured domain.  On the other hand, the backbone of residues S323 to L337 appears well-

ordered based on the observed heteronuclear NOEs. This is consistent with the formation of a 

helix that contributes residues to the hydrophobic core. 
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Figure 7.  Heteronuclear {1H}-15N NOE values for backbone amides of αCTD.  NOE values 
were calculated as a ratio of intensities of peaks in the spectra with and without saturation, and 
are plotted against the residue numbers.  The two helical turns and the five α-helices are 
indicated by boxes above the graph. 
 
 

DNA and Protein Interactions 

 Chemical shift perturbation experiments were performed to confirm DNA-binding by H. 

pylori αCTD.  Optimal DNA recognition sequences have only been found for the E. coli αCTD 

(Estrem, Ross et al. 1999).  We used a fragment of the promoter region of the H. pylori gene 

HP1408, which contains an element that is thought to be bound by the acid-response regulator 

ArsR (Dietz, Gerlach et al. 2002) as well as a sequence that appears similar to known αCTD 

binding sites in other bacteria.  All amide peaks of αCTD broadened upon addition of the DNA 

fragment, indicating a binding event that formed a larger complex and affected the relaxation 

properties of the resonance signals.  Several peaks nearly disappeared, and all of those peaks 

mapped to residues found on the DNA-binding surface of the protein (Figure 8).  The additional 

broadening of peaks at the interface of the complex is a result of intermediate chemical 

exchange, wherein the resonant frequencies of nuclei near the interface differ depending on 

whether they are in a bound or unbound state and the binding and release events are occurring at 
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a rate on the order of the difference in the resonant frequencies of the nuclei in the two states.  

No additional changes in the HSQC spectrum of αCTD were observed when the ArsR DNA-

binding domain was added to the sample. However, we do not know whether the ArsR DNA-

binding domains bind strongly enough to this DNA fragment to allow such observations.  

 

 
 
Figure 8.  Sections of 1H-15N HSQC spectra of H. pylori αCTD. A) αCTD alone.  B) αCTD with 
bound DNA.  Binding of DNA causes all peaks in the spectrum to broaden, but peaks 
corresponding to some of the residues on the DNA-binding surface have disappeared. 
 
 
 
Model Building 

 Although the core of the domain is highly similar to that of other αCTDs, especially 

around the DNA-binding surface, we wanted to gain more insight into its possible protein-

protein interactions.  We produced electrostatic surface potentials for both the H. pylori and E. 

coli αCTDs (Figure 9).  Overall, the two proteins have very similar isoelectric points (5.31 for H. 

pylori vs. 5.41 for E. coli); however, there are significant differences in surface charge 
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distribution.  The surface area of the C-terminal segments in the H. pylori αCTD is much more 

charged than that of E. coli, which is fairly hydrophobic. 

 

 

 
 
Figure 9. Electrostatic surface potentials.  A) H. pylori αCTD.  B) E. coli αCTD. Blue indicates 
positive charge; red indicates negative charge. The structurally divergent C-terminal fragments 
are indicated by black coloring of the ribbons.  The C-terminal helix from H. pylori αCTD 
presents a more charged surface to the solvent than the hydrophobic ordered loop from the E. 
coli αCTD. 
 
 

   There are a few high-resolution structures that include αCTD in complex with other 

proteins or DNA.  We used the structure of the E. coli αCTD in complex with the catabolite 

activator protein (CAP) and DNA (Benoff, Yang et al. 2002) to model possible interactions of H. 

pylori αCTD.  CAP, also known as the cAMP receptor protein, activates transcription at 

promoters such as Plac and Pgal in E. coli.  Given the conservation of both sequence and structure 

around the DNA-binding site, the H. pylori αCTD interaction with DNA is likely very similar to 
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that of other αCTDs.  Our structure was superimposed on the E. coli αCTD in complex with 

CAP (Figure 10A).  Only a few minor conformational changes of the sidechains of the DNA-

binding face would be required for the H. pylori αCTD to fit at this interface.   

 Although the structures of the H. pylori and E. coli αCTDs superimpose quite closely in 

the model, the backbone of helix 3 from the H. pylori αCTD is found much closer to CAP.  At 

the αCTD/CAP interface (Figure 10B), there is a steric clash due to a bulkier residue (E291) that 

would probably preclude the interaction.  This model orients αCTD with respect to the DNA and 

other possible DNA-bound proteins and shows that the flexible portion of the C-terminal 

segment that precedes the amphipathic helix extends further away from the core of the protein 

than in E. coli.  It is also well-placed for interacting with other proteins bound to promoter 

sequences.  This region of the protein is part of the “287 determinant” in the E. coli αCTD and is 

known to be important for protein-protein interactions with CAP and the E. coli FNR protein, 

which activates transcription in response to oxygen starvation (Lee, Wing et al. 2000). 
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Figure 10.  Structure of H. pylori αCTD superimposed on the structure of E. coli αCTD in 
complex with DNA and CAP.  H. pylori αCTD shown in pink; E. coli αCTD shown in purple; 
CAP shown in cyan; DNA shown in orange.  A) Interaction between αCTD and DNA.  Well-
conserved DNA binding residues, R269(R265), N298(N294), and K302(K298) are shown in red, 
green, blue, respectively.  Residue numbers are given for H. pylori (E. coli).  B) Interaction 
between αCTD and CAP.  The position of helix 3 as well as its particular residue sidechains 
might interfere with CAP binding in the red outlined area. 
 
 
 

Discussion 

 The structure of the conserved core domain of H. pylori αCTD (residues 257-318 in H. 

pylori numbering) is similar to that of E. coli αCTD (PDB accession code 1coo), with a 

backbone RMSD of 2 Å.  The most noticeable difference between the H. pylori αCTD and the E. 

coli αCTD is in the C-terminal, sequentially divergent segment.  Although both segments 

provide critical hydrophobic core residues, their backbone conformations are very different.  

While the E. coli αCTD C-terminal segment is well-ordered and extended without a regular 

secondary structure, the H. pylori αCTD segment forms a highly amphipathic α-helix.  H. pylori 

αCTD also contains additional hydrophobic residues in helix 3. L287 from H. pylori replaces 

Q283 from E. coli and makes contact with L330 from helix 5. 
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 H. pylori αCTD superimposes more closely on the αCTD from Bacillus subtilis 

(Newberry, Nakano et al. 2005)  over the core domain (residues 257-318), with a backbone 

RMSD of only 1 Å.  The C-terminal ends of the H. pylori and B. subtilis αCTDs, however, are 

even more divergent than H. pylori and E. coli.  The B. subtilis αCTD does not loop back around 

to make hydrophobic contacts with the N-terminal loop or the beginning of helix 3.  This can be 

explained by the fact that the B. subtilis αCTD helix 3 is much more hydrophilic than that of H. 

pylori αCTD.  Y281 from H. pylori, which is at the N-terminal end of helix 3, makes contact 

with L334 and L337 from helix 5.  In B. subtilis, the corresponding residue is a threonine (T273).  

Hydrophobic residues L287 and M288 at the end of helix 3 from H. pylori correspond to 

residues N279 and K280 from B. subtilis. 

 Many different interaction surfaces are used by αCTD to interact with both DNA and 

other proteins.  In E. coli, three determinants have been identified that are required for 

transcription activation by CAP (Benoff, Yang et al. 2002).  The “265 determinant”, which 

includes residues from helix 1, the turn between helices 3 and 4, and helix 4 that are used in 

binding the minor groove of DNA, is highly conserved in all αCTDs.  The “261 determinant”, 

composed of residues in the N-terminal loop that may come into contact with σ70, is similar in 

terms of structure and sequence identity.  The “287 determinant”, which includes residues in 

helix 3 and the first part of the C-terminal loop, is similar to H. pylori αCTD in terms of 

sequence identity in helix 3 residues, but is different in terms of both sequence and structure in 

the C-terminal loop.  The E. coli Fis transcriptional activator interacts with residues 271-273 

(McLeod, Aiyar et al. 2002) (E. coli numbering), which are not similar in H. pylori.  MarA, 

another E. coli transcription activator, actually interacts with αCTD at the same site where αCTD 

would normally interact with DNA (Dangi, Gronenborn et al. 2004). 
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 At this point, there are no reports of specific interactions between H. pylori transcription 

factors and αCTD or other subunits of RNA polymerase, nor do we know consensus DNA-

binding sequences for many of the transcription factors.  Therefore, we used modeling to explore 

possible protein-protein interactions of αCTD, and especially the role that the unique C-terminal 

segment might play in them.  The models suggest that the H. pylori αCTD would not be able to 

interact with transcription factors from E. coli, the system in which these interactions have been 

best studied.  Our model based on the αCTD/CAP/DNA complex shows that the part of the C-

terminal segment that is less well-ordered is perfectly situated for making contacts with 

transcription factors on DNA.  Although it does not place the amphipathic helix in a position 

where it can directly interact with the adjacent CAP protein, it is difficult to say whether or not it 

is involved in protein-protein interactions due to a lack of other experimentally determined 

complex structures showing alternative interaction modes. 

 The αCTD from H. pylori and other ε-proteobacteria features a fifth helix with a well-

conserved pattern of hydrophobic and charged residues, even though these bacteria have some of 

the most rapidly evolving genomes.  Studies have shown that H. pylori has one of the highest 

rates of mutation due to its apparent lack of several DNA repair enzymes (Wang, Humayun et al. 

1999) and also one of the highest rates of exogenous DNA uptake and homologous 

recombination of all bacteria (Suerbaum and Josenhans 2007).  The fact that the features of 

αCTDs are highly conserved on both the tertiary and primary levels indicates that they most 

likely serve a specific function.  If they did not, one would expect to see greater sequence 

diversity.  Given that the αCTDs from other bacteria use so many different interaction surfaces 

for protein-protein interactions, it is possible that the fifth helix forms a required interaction site 

for other transcriptional regulators.  Although interactions between αCTD and several 
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transcriptional regulators have been studied in E. coli, this work has not yet been done for H. 

pylori.  Compared to E. coli, H. pylori has a relatively small genome (Tomb, White et al. 1997; 

Alm, Ling et al. 1999), with fewer identified transcriptional regulators.  We look forward to 

determining which transcriptional regulators interact with αCTD and mapping their interaction 

surfaces. 

 

Conclusions and Future Directions 

 Finding an additional helix in a protein that has such great overall sequence conservation 

is exciting.  In the future, we would like to determine the importance of this helix as well as all of 

the other structural differences.  Although the parts of RNAP that are directly involved in the 

catalytic process of transcription are highly conserved among all organisms, parts that are 

involved in the regulation of transcription are less conserved.  Overall, the regulation of 

transcription is species-specific.  Therefore, no single organism can serve as an adequate model 

organism for transcriptional regulation.  It is worthwhile studying the interactions of RNAP with 

transcription factors.  RNA polymerase is a promising target for new antibiotics because of 

significant structural differences compared to eukaryotic RNA polymerases (Artsimovitch and 

Vassylyev 2006).  If unique features of the H. pylori RNAP could be targeted, patients would 

benefit from eradication of their H. pylori infections without suffering from side effects due to 

the killing of all other intestinal bacteria. 

 At this point, we speculate that the C-terminal helix of the αCTD from H. pylori and 

other ε-proteobacteria plays a role in protein-protein interactions.  The amphipathic helix 

presents several charged residues to the solvent, in contrast to the hydrophobic, ordered C-
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terminal residues of E. coli.  To determine the importance of these charged residues, we would 

mutate them one by one or in combination.  

We would also like to determine interacting partners of αCTD and map their interaction 

surfaces.  This would be a long-term project because we do not yet know which transcription 

factors might interact with it, nor do we have consensus DNA-binding sequences for all of them.  
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CHAPTER III 

 

STRUCTURE DETERMINATION OF HP0564 

 

A large part of the material presented in this chapter has been taken from published work: 

Borin BN, Krezel AM. Structure of HP0564 from Helicobacter pylori identifies it as a new 

transcriptional regulator. Proteins 2008 Oct;73(1):265-8. 

 
Introduction 

 As part of a small-scale H. pylori structural genomics project in our laboratory, several 

target genes were identified that satisfied several criteria: i) no sequence homologs in bacteria, ii) 

sequence properties suggesting feasibility of structural determination by NMR, iii) some hint of 

biological interest (Popescu 2004).  From among the final list of target genes, HP0222 was 

chosen for its potential relevance to two major environmental responses of H. pylori.  Microarray 

studies had shown HP0222 to be highly upregulated upon exposure to low pH (Ang, Lee et al. 

2001) as well as upon attachment to gastric epithelial cells (Kim, Marcus et al. 2004).  

 Through structure determination, HP0222 was found to be a member of the ribbon-helix-

helix (RHH) superfamily of transcriptional regulators (Popescu, Karpay et al. 2005).  Among all 

known protein sequences, HP0222 has a single sequence homolog that is encoded by another 

Helicobacter pylori gene, HP0564.  We determined the structure of HP0564 to confirm that it is 

also a member of the RHH superfamily of transcriptional regulators and also to compare the 

structure of HP0222 and HP0564 (Borin and Krezel 2008).  Although it has no assigned 

function, our structural analysis indicates that it is a member of the ribbon-helix-helix 
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superfamily (Pfam protein domain family PF01402) of transcriptional regulators.  These proteins 

bind to specific DNA sequences with high affinity and usually act as repressors. 

 
Ribbon-Helix-Helix Proteins 

Fold 

 The RHH fold was first described in 1989 with the crystal structure of the E. coli MetJ 

repressor (Rafferty, Somers et al. 1989).  Since then, over 2000 sequences have been putatively 

identified as belonging to the RHH family, but only a few have been characterized biochemically 

or structurally and are confirmed RHH proteins.  So far, RHH proteins have been found in 

prokaryotes, archaea, and bacteriophages.  Putative RHH sequences from eukaryotes do not 

demonstrate certain sequence motifs present in known RHH proteins (Schreiter and Drennan 

2007). 

RHH proteins are named for their characteristic secondary structural elements.  All have 

a short β-ribbon followed by an α-helix (helix α1), a short loop, and a second α-helix (helix α2) 

(Figure 11b).  The β-ribbon consists of approximately seven residues and is followed 

immediately by helix α1.  Both helices consist of about fourteen residues, and they are separated 

by a three-residue linker.  In solution, RHH proteins are found as intertwined homodimers, 

where dimerization produces a double-stranded, antiparallel β-sheet with solvent-exposed 

sidechains that are used in making sequence-specific contacts with DNA.  The hydrophobic core 

of the protein is rather small, consisting of the sidechains of three residues from the β-sheet, one 

residue from helix α1, and three residues from helix α2, for each of the subunits.  Branched chain 

hydrophobic amino acids are very well-conserved at these positions (Schreiter and Drennan 

2007).  
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There are only minor differences in the structures of some of the RHH proteins, mainly in 

the lengths of the helices and the linker between them.  Overall, the pairwise backbone RMSD 

between known RHH structures is quite low (Schreiter and Drennan 2007).  Despite having very 

similar structures, sequence identity among RHH proteins is very low, making it difficult to 

recognize new ones from their sequences alone.  HP0222 and HP0564 from H. pylori have 

significant sequence homology, but neither produces any hits from other species in a BLAST 

search. 

 

Function 

 In general, RHH proteins bind DNA through their N-terminal β-sheets.  More 

specifically, they have very diverse functions within cells.  Arc (Susskind 1983) and Mnt 

(Levine, Truesdell et al. 1975) are both involved in regulation of the bacteriophage lytic cycle.  

CopG (del Solar, Acebo et al. 1995) and omega (de la Hoz, Ayora et al. 2000) are involved in 

plasmid copy number control.  MetJ represses transcription of genes that encode for proteins in 

the methionine biosynthesis pathway (Saint-Girons, Parsot et al. 1988).  Most RHH proteins act 

as repressors; however, there have been some reports of positive regulation, as well.  In E. coli, 

NikR responds to high concentration of Ni2+ and represses transcription of the nikABCDE 

operon, which encodes for a nickel transport system (De Pina, Desjardin et al. 1999).  In H. 

pylori, however, NikR not only represses the NixA nickel transporter, it also upregulates 

transcription of urease (Ernst, Kuipers et al. 2005).  AlgZ has been reported to be a positive 

regulator of the alginate synthesis operon in Pseudomonas aeruginosa (Baynham, Brown et al. 

1999). 
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DNA-Binding 

RHH proteins bind specific DNA sequences by placing their β-sheets in the major groove 

of DNA.  The original model of DNA-binding by RHH proteins, however, suggested that the 

second α-helices were placed into the major groove, consistent with the fact that all known 

transcription factors at the time, including the helix-turn-helix family, used α-helices to bind 

DNA.  In fact, the RHH family was the first that was found to bind DNA using a β-sheet instead 

of an α-helix (Breg, van Opheusden et al. 1990; Somers, Rafferty et al. 1994).   

 Functional RHH protein/DNA complexes always involve higher orders of protein 

oligomerization.  The resulting cooperative binding effectively increases the binding affinity.  

Each dimer recognizes a specific DNA sequence, termed a half-site because many RHH proteins 

tetramerize, with each dimer binding one half-site.  Usually, binding sites contain inverted-repeat 

half sites.  MetJ, however, binds a site consisting of five tandemly-repeated half-sites (Davidson 

and Saint Girons 1989).  Spacing between half-sites is usually small, but there are cases where 

the spacing is quite large.  NikR tetramerizes in a nickel-dependent way through an additional 

domain, placing the two RHH domains on half-sites that are 16 bp apart (Contreras, Thiberge et 

al. 2003). 

 

Materials and Methods 

Protein Expression and Purification 

 For structural work, a shortened construct of HP0564 was created that lacks the flexible 

N-terminal 20 residues as well as the C-terminal 7 residues, leaving only the stably folded 

region.  The corresponding sequence was PCR amplified from genomic DNA of H. pylori strain 

J99 and cloned into a modified pET vector with an N-terminal, 12 residue His6 tag 
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(MRGSHHHHHHGS).  Transformed Escherichia coli BL21 (DE3) cells were grown in LB 

media to the OD600=1 and induced with 0.4 mM IPTG for 3 h.  Cells were spun down, 

resuspended in binding buffer (20 mM Tris, 0.5 M NaCl, 5 mM imidazole, 8 M urea, pH 7.9), 

and disrupted by sonication (6x30 seconds).  Filtered (1 µm) cell extract was loaded on a Ni-

NTA column, followed by a 100 mL wash (20 mM Tris, 0.5 M NaCl, 30 mM imidazole, 8 M 

urea, pH 7.9) and elution (20 mM Tris, 0.5 M NaCl, 0.1 M EDTA, 8 M urea, pH 7.9).  Refolding 

was achieved by dialysis against distilled water.  No additional protein bands could be detected 

by tricine, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).  

 Isotope-labeled samples were prepared by growing cells in M9 minimal media 

supplemented with 15NH4Cl and/or 13C-u-glucose (CIL, Andover, MA).  All other aspects of the 

expression and purification of labeled samples were identical to those used for natural abundance 

protein. 

 

Crosslinking Experiments 

 Crosslinking experiments were performed with BS3 (Pierce, Rockford, IL).  Reaction 

buffer was 20 mM NaH2PO4, pH 7.0.  Crosslinker was dissolved in reaction buffer to 10 mM 

stock concentration immediately prior to setting up reactions.  All reactions were in 20 µL, 

consisting of 17 µL reaction buffer, 2 µL HP0564 (10 µg/µL), and 1 µL of an appropriate 

dilution of BS3.  Final concentrations of 0, 0.005, 0.05, and 0.5 mM BS3 were used.  Reactions 

were allowed to proceed for 3 minutes before being quenched with 5 µL of 1 M Tris, pH 7.5.  

All reactions were run on a 10% SDS-PAGE gel and stained with Coomassie Blue. 

 

 
 



61 
 

Gel Filtration Experiments 

 Size exclusion separations were performed on a Superdex 75 10/30 FPLC column 

(Pharmacia, Piscataway, NJ) at 4 °C in 50 mM KH2PO4, pH 4.0.  Elution was followed by UV 

absorption at 214 nm.  The calibration curve used to calculate the molecular weight was prepared 

with ubiquitin, thioredoxin, and ovalbumin run under identical conditions. 

 

NMR Experiments 

 NMR experiments were performed on Bruker Avance 600 and 800 MHz spectrometers at 

25 °C.  Samples were prepared at 1 mM monomer concentration in 50 mM KH2PO4, pH 4.0.  

Natural abundance protein was used to acquire 1H 2D NOESY spectra using mixing times of 25, 

50, and 100 ms.  Singly-labeled 15N and 13C samples were used to acquire 2D HSQCs.  Doubly-

labeled 15N,13C samples were used to acquire 3D HNCO, CBCANH, CCCONH, and 

HCCCONH experiments used for backbone and sidechain assignments (Sattler, Schleucher et al. 

1999).  Over 98% of backbone resonances (HN, N, Cα, Hα, C') and 85% of commonly assignable 

carbon and proton sidechain resonances were assigned. 

 

Structure Calculations 

 NMR data were processed using XWINNMR (Bruker, Billerica, MA) and analyzed using 

SPARKY (T. D. Goddard and D. G. Kneller, SPARKY 3, University of California, San 

Francisco).  Structure calculations were performed using CYANA (Guntert, Mumenthaler et al. 

1997) version 2.1 with 25,000 steps for each structure.  NOE crosspeaks corresponding to both 

intramolecular and intermolecular interactions were assigned manually, and intensities were 

automatically converted to distance restraints using built-in CYANA routines.  Given the small 
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size of the protein (7.8 kDa monomer), the 2D NOESY was sufficiently resolved to assign all 

crosspeaks.  3D heteronuclear-resolved NOESY spectra were recorded, but offered no additional 

distance information and were not used in structure calculations.  In the initial stages of 

calculations, only NOE-derived restraints were used.  Hydrogen bond restraints were added in 

later stages when they could be identified in a majority of calculated structures.  In the last stage, 

out of 1,000 initial structures, the 50 with the lowest target function values were minimized in 

AMBER (Case, Cheatham et al. 2005) version 9 using 10,000 steps of conjugate gradient energy 

minimization (Table 4).  Of these 50 energy-minimized structures, the 20 with the lowest 

nonbonded backbone energies were used in the final ensemble, which was analyzed using 

AQUA and PROCHECK-NMR (Laskowski, Rullmannn et al. 1996) (Table 5).  The PDB entry, 

including the structural ensemble as well as the restraints used in structure calculations, has the 

PDB accession code 2k1o.  BMRB entry 15761 contains 1H, 13C, and 15N chemical shift 

assignments.  Chimera (Pettersen, Goddard et al. 2004) was used for interactive analysis and 

figure production. 
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Table 4. PROCHECK-NMR and AMBER statistics for 50 conformers 

conformer 
# 

most 
favorable 

additionally 
allowed 

generously 
allowed disallowed 

initial 
energy 

final 
energy 

6 91.2 8.8 0 0 3987.90 -5111.10 
19 90 10 0 0 3683.10 -5133.20 
10 90 10 0 0 3967.00 -5119.90 
25 90 10 0 0 3897.60 -5112.90 
47 90 8.8 1.2 0 3931.80 -5126.20 
1 90 8.8 1.2 0 3953.10 -5120.00 
17 90 8.8 1.2 0 3910.20 -5102.70 
20 88.8 11.2 0 0 3999.70 -5154.80 
31 88.8 11.2 0 0 3815.30 -5126.00 
28 88.8 11.2 0 0 3830.00 -5122.60 
18 88.8 11.2 0 0 3404.00 -5122.20 
37 88.8 11.2 0 0 3924.00 -5120.10 
39 88.8 10 1.2 0 3945.20 -5126.00 
36 87.5 12.5 0 0 3928.90 -5148.60 
38 87.5 12.5 0 0 4081.30 -5134.40 
16 87.5 12.5 0 0 4031.20 -5123.00 
15 87.5 12.5 0 0 3943.40 -5120.60 
29 87.5 12.5 0 0 3867.50 -5116.80 
13 87.5 12.5 0 0 3794.60 -5111.60 
30 87.5 12.5 0 0 3981.30 -5102.70 
34 87.5 12.5 0 0 3979.80 -5092.00 
49 87.5 12.5 0 0 3823.60 -5081.20 
7 87.5 12.2 0 0 3693.50 -5087.60 
44 87.5 11.2 1.2 0 3916.50 -5165.20 
35 87.5 11.2 1.2 0 4007.70 -5134.00 
5 87.5 11.2 1.2 0 3824.40 -5116.70 
22 86.2 13.8 0 0 3745.40 -5153.70 
4 86.2 13.8 0 0 3978.90 -5147.50 
40 86.2 13.8 0 0 3986.60 -5139.20 
12 86.2 13.8 0 0 3605.10 -5139.00 
2 86.2 13.8 0 0 4067.20 -5137.10 
24 86.2 13.8 0 0 3980.30 -5133.50 
8 86.2 13.8 0 0 3608.70 -5124.80 
45 86.2 13.8 0 0 3882.90 -5123.80 
33 86.2 13.8 0 0 3909.90 -5112.50 
42 86.2 12.5 1.2 0 3842.90 -5123.10 
11 86.2 12.5 1.2 0 3937.30 -5114.30 
50 86.2 12.5 1.2 0 3790.90 -5112.20 
27 86.2 12.5 1.2 0 3815.10 -5103.70 
41 85 15 0 0 3967.90 -5145.30 
21 85 15 0 0 3794.70 -5136.60 
14 85 15 0 0 3876.60 -5135.20 
32 85 15 0 0 3873.40 -5125.10 



64 
 

“Table 4, continued” 
 
23 85 15 0 0 3961.60 -5116.70 
46 85 12.5 2.5 0 4005.00 -5140.60 
48 83.8 16.2 0 0 3772.90 -5112.20 
3 87.5 11.2 0 1.2 3969.60 -5126.10 
26 87.5 11.2 0 1.2 3963.00 -5116.80 
9 86.2 12.5 0 1.2 3895.60 -5136.10 
43 86.2 12.5 0 1.2 3686.90 -5106.40 

 
 
 
Table 5.  Structural statistics for ensemble of 20 structures of HP0564 (JHP0511) 

NOE restraints 797 
   Intraresidue 222 
   Short 220 
   Medium 134 
   Long 221 
   Intramolecular 626 
   Intermolecular 171 
Hydrogen bonds per dimer 44 
Average CYANA target function 0.11 
   Number of violations > 0.2 Å 0 
Average AMBER energies (± standard deviation)  
   Input structures -3894 (± 146) 
   Energy minimized structures -5123 (± 13) 
Average Ramachandran statistics from PROCHECK (residues 
23-62) 

 

   Most favored (%)  88.8 
   Additionally allowed (%) 10.9 
   Generously allowed (%) 0.2 
   Disallowed (%) 0 
Average RMSD from mean structure (Å, residues 23-62)  
   Backbone (N,Cα,C’,O) 0.59 
   Heavy atoms 1.08 
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Results and Discussion 

 A Genbank search with the DNA or protein sequence of Helicobacter pylori HP0564 

(Uniprot Q9ZLR7_HELPJ) yields no orthologs and only one paralog, HP0222 (Popescu, Karpay 

et al. 2005) (Uniprot Q9ZML0_HELPJ), which has 17 identical residues out of 40 in the stably 

folded region consisting of residues 23-62 (Figure 11b).  The structure of HP0564 shows it to be 

a member of the ribbon-helix-helix (RHH) superfamily of transcriptional regulators (Figure 11a).  

The ensemble of 20 conformers of HP0564 is shown in (Figure 12).  A DALI (Holm and Sander 

1996) search yielded the Arc repressor (PDB accession code 1baz), CopG (PDB accession code 

1ea4), and HP0222 (PDB accession code 1x93) as its closest structural relatives, all with Z-

scores greater than 5.0.  These proteins are always found in solution as dimers (Breg, van 

Opheusden et al. 1990).  Dimerization creates an antiparallel double-stranded β-sheet with 

several sidechains exposed to solvent that are used in making sequence-specific contacts with 

DNA (Raumann, Rould et al. 1994).  Upon binding DNA, proteins in this superfamily form 

tetramers or higher order oligomers, where each dimer binds several base pairs of DNA.   
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Figure 11. a) Stereo view ribbon diagram of HP0564 showing residues 21-62 of each subunit.  
Side chain heavy atoms of β-sheet residues S25, T27, and Y29 that make up the DNA binding 
interface of ribbon-helix-helix proteins are labeled for one subunit.  b) Sequence alignment of 
JHP0511 (HP0564) and JHP0208 (HP0222) from the J99 strain of H. pylori.  Numbering is 
according to the JHP0511 sequence.  Secondary structural elements are indicated for HP0564, 
with an arrow representing the β-strand and cylinders representing the α-helices.  DNA-binding 
residues from the β-sheet are indicated by asterisks.  c) Superposition of HP0564 (cyan) on 
HP0222 (magenta).  The β-sheet of HP0564 packs more closely to the α-helices than in HP0222, 
possibly due to its less bulky valine (green) at position 53 compared to the isoleucine (orange) of 
HP0222. 
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Figure 12. Two views of the ensemble of 20 conformers of HP0564.  The two subunits are 
colored red and blue. 
 
 
 
Chemical crosslinking was performed to confirm that HP0564 could form dimers (Figure 13).  

The amount of dimer and species corresponding to higher-order oligomers increased with 

increasing BS3 concentration.  Without crosslinking, traces of noncovalent dimers were present 

on SDS-PAGE gels.  In experiments with HP0222 (Popescu, Karpay et al. 2005), we did not 

observe the higher-order, cross-linked forms.  Gel filtration experiments showed only stable 

dimers in solution (Figure 14).  



68 
 

 

Figure 13. BS3 crosslinking of HP0564.  On the left side of the figure, [BS3] values are 0, 100 
µM, 1 mM, 10 mM, and the reaction was allowed to proceed for 3 minutes.  On the right side of 
the figure, 100 µM BS3 was used, and the reactions were allowed to proceed for 0, 5, 30, and 60 
minutes. 
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Figure 14. Gel filtration of HP0564.  Experiments were performed on a Superdex 75 10/30 
column equilibrated with 50 mM potassium phosphate, pH 4.0.  Peak I corresponds to full-length 
HP0564, while peak II corresponds to the shortened construct.  The inset at the top of the graph 
is a calibration curve using ovalbumin, thioredoxin, and ubiquitin. 
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 The DNA binding residues are not conserved between the β-sheets of HP0222 and 

HP0564.  The presence of intact HP0564 does not complement a deletion of HP0222.  HP0222 

null mutants are viable, but show significantly slower growth than parent wild-type strains.  This 

suggests that they are not functionally redundant and will bind different DNA sequences and 

regulate different genes.  Structurally, the two proteins are very similar, with a backbone RMSD 

of 1.24 Å (Figure 11c).  Superimposing HP0222 and HP0564, one can see that the β-sheet in 

HP0564 packs more closely to the helices than in HP0222, possibly due to the less bulky valine 

at position 53 compared to isoleucine in HP0222.  Although there are no absolutely conserved 

amino acids in the RHH family (Schreiter and Drennan 2007), the HP0564 sequence agrees with 

the sequence motifs featured in all RHH proteins, including the alternating hydrophilic and 

hydrophobic residues within the β-sheet and the hydrophobic core residues – F24, V26, F28 

from the β-sheet, L38 from α-helix 1, and V53, I57, I61 from α-helix 2.  All of these residues are 

involved in making contacts with residues from the other subunit in the dimer. 

 It is exciting to discover a new transcriptional regulator in Helicobacter.  Because so few 

transcriptional regulators have been identified, and because of the conservation of HP0564 in 

multiple strains of H. pylori, we expect HP0564 to play an important role in transcriptional 

regulation.  We are working on determining its cognate DNA-binding sequence and its function 

in the cell. 
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CHAPTER IV 

 

FUNCTIONAL CHARACTERIZATION OF HP0222 

 

Introduction 

 Through structure determination, we identified HP0222 and HP0564 as two new DNA-

binding transcriptional regulators in H. pylori.  These results were exciting and somewhat 

fortunate because there is no guarantee that determining the structure of an unknown protein will 

give a clue to its specific function.  In our case, the dearth of known transcriptional regulators in 

H. pylori made the discovery all the more interesting. 

In order to pursue these projects further, we are attempting to fully characterize the 

functions of our novel RHH proteins.  Protein function can be divided into three general 

categories – biochemical, biological, and phenotypic.  We know that the basic biochemical 

function of RHH proteins is to bind DNA, and we expect them to act as repressors of 

transcription, but the next step is to determine the consensus DNA-binding sequences of our 

proteins.  We would also like to determine their biological roles in the cell.  Our goal is to 

determine all genes that are regulated by HP0222 and HP0564 and identify a specific pathway or 

response in which they play a critical part.  In addition, we hope that our results can explain the 

phenotypic effects that we have observed in our HP0222– and HP0564– null mutant strains.  We 

decided to attack the problem from many angles using several experimental methods. 

Functional work on these proteins is an ongoing project that we are working on in 

collaboration with the laboratory of Tim Cover. 
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Phenotypic Analysis 

Mutants 

 To determine the functions of our protein, we created mutant strains lacking functional 

copies of the HP0222 gene.  HP0222– mutant strains were created previously in the J99 and 

HPK5 strains (Popescu, Karpay et al. 2005).   

 One phenotype that the HP0222– strains exhibit is a greater adhesiveness than the WT 

strains.  After pelleting cells, it is more difficult to resuspend the mutants.  This could indicate a 

difference in the complement of outer membrane components of the strains. 

 Another phenotype that we observed was slower growth.  When H. pylori are spread 

across a blood-agar plate, they form a shiny, translucent layer within about 24 hours.  The 

HP0222– strain appeared to take longer to form a fully grown layer. 

 

Growth Kinetics 

To further quantify the apparent slower growth of HP0222–, growth curves were obtained 

from liquid cultures to determine whether the mutation would affect growth rate (Figure 15).  

Because one of the original acid response transcription profiling studies showed HP0222 to be 

highly upregulated upon exposure to acid, our initial growth experiments were performed using 

pH buffered growth media at pH 5 and 7.  Cultures of J99 and HPK5 wild-type and HP0222– 

strains were inoculated in Brucella broth (Bacto proteose peptone No. 3 10g/L, Bacto tryptone 

10g/L, Bacto yeast extract 2g/L (all Bacto products from BD), NaCl 5g/L, glucose 1g/L) medium 

supplemented with 10% fetal bovine serum (Atlanta Biologicals) at OD600 0.1 for overnight 

growth at 37°C and 5% CO2.  The following morning, the overnight cultures were used to 

inoculate 1.5 mL of pH buffered media at approximately OD 0.1 in 24 well plates.  pH buffered 
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media consisted of Brucella broth, 10% FBS, buffered with 50 mM Tris and 50 mM MES and 

adjusted to either pH 5 or pH 7.  Both WT and HP0222– strains were tested at pH 5 and pH 7, 

and all conditions were tested in triplicate.  OD readings were taken at the beginning and at 4 

hour intervals for 32 hours.   

 

 
 
Figure 15. pH-dependent growth curves for H. pylori HPK5 wild type (WT) and HP0222– 
strains. Bacteria were grown in pH-adjusted Brucella broth with 10% FBS. 
 
 
 
The presence of buffers in the media slowed the growth of H. pylori compared to unbuffered 

media even at pH 7; however, we found it to be necessary due to the ability of H. pylori to 

rapidly raise the pH of the unbuffered acidic media to neutral.  Although we expected to see an 

effect on growth at acidic pH, instead we found an effect primarily at neutral pH, where HP0222–

growth was significantly retarded compared to wild type.  At acidic pH, neither the wild-type nor 

the mutant strain grew very well, and the difference in growth was insignificant.  In addition to 
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the slower growth, HP0222– strains at either pH reached their saturation point and began to 

decline at a much lower OD than the wildtype strains.  Results from J99 and HPK5 were very 

similar. 

 Growth kinetics experiments were repeated many times, often to check that our strains 

were fully motile (see discussion).  After finding that there was not a significant difference in 

growth rate at low pH, we simplified the composition of our growth media by removing the 

buffering compounds, allowing the bacteria to grow significantly faster.  We also found that 

filter sterilizing the media instead of heat sterilizing it improved the growth rates of the bacteria.  

Figure 16 shows growth curves for J99 WT and HP0222– strains. 

 At later times in the growth curves, the measured OD is often much lower than the 

previous measurement.  This appears to be a feature of H. pylori growth.  When they have 

reached saturation, they tend to die and rupture more easily than other bacteria such as E. coli.  

We observe this decline in all growth experiments. 

 

 
 
Figure 16. Growth curves of J99 WT and HP0222– strains.  The plot on the left shows the 
measured values.  The plot on the right is on a logarithmic scale between 0 and 14 hours.  
Trendlines are shown, and their equations were used to extract doubling times for each strain. 
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Trendline equations were converted to base 2 for extraction of doubling times, which were taken 

as the inverse of the coefficient in front of x in the equations. 

WT : 𝑦𝑦 = 0.1186𝑒𝑒0.1871𝑥𝑥 = 0.1186 ∗ 20.2699𝑥𝑥    → doubling time = 3.7 h 

HP0222– : 𝑦𝑦 = 0.1054𝑒𝑒0.1422𝑥𝑥 = 0.1054 ∗ 20.2052𝑥𝑥    → doubling time = 4.9 h 

HP0222– grows significantly slower than WT, with a doubling time of only 4.9 hours, versus 3.7 

hours for WT. 

 

pH-Dependent Survival Rate Experiments 

 Growth kinetics experiments provide information about the aggregate growth rates of 

strains, but they do not tell us about the fitness of individual cells.  To determine whether 

HP0222– cells simply grow slower or die more often, we performed survival rate experiments at 

various pH values.  J99 wildtype and HP0222– strains were grown for 24 hours in buffered 

Brucella broth at pH 5,6 and 7.  A small aliquot was taken from each culture of J99 wildtype and 

HP0222– at pH 5,6 and 7 and diluted 10,000x.  50 µL of the dilution was plated onto blood-agar 

plates and incubated at 37°C for 2 days (Figure 17).  Colonies were counted manually, and the 

number of colony-forming units (CFU) per mL was determined by multiplying the number of 

colonies counted by 200,000 (Figure 17).  Survival rates were determined by dividing the CFU 

by the total number of bacteria in the culture, as estimated by the final OD measurement (Table 

6). 
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Figure 17. pH survival rate experiments.  WT and HP0222– strains were grown in Brucella broth 
adjusted to pH 5, 6, or 7.  Cultures were diluted and plated onto blood-agar plates, and colony-
forming units were counted. 
 
 
 
Table 6. Survival rates for J99 WT and HP0222– strains at pH 5,6,7.   

WT CFU Final 
OD 

Survival 
Rate 

Average (± 
spread) 

pH 5 #1 222 0.29 15.3% 12.8 ± 2.6% 
         #2 162 0.32 10.2%  
pH 6 #1 1652 1.17 28.2% 29.8 ± 1.6% 
         #2 1841 1.18 31.3%  
pH 7 #1 993 1.16 17.1% 16 ± 1.1% 
         #2 872 1.17 14.9%  
HP0222 
mutant 

    

pH 5 #1 4 0.27 2.94% 4 ± 1.1% 
         #2 7 0.28 5.05%  
pH 6 #1 660 0.69 19.1% 16.5 ± 2.6% 
         #2 485 0.70 13.9%  
pH 7 #1 340 0.54 12.7% 11.5 ± 1.3% 
         #2 271 0.53 10.2%  
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 After finding that the HP0222– mutation slowed growth at neutral and acidic pH, we 

wanted to determine whether the mutant strain was simply growing slower, or also dying at a 

faster rate.  We performed experiments to measure the number of viable, colony-forming units 

(CFU) in order to calculate survival rates.  Table I shows the number of CFU from each plate, 

the final OD measurement of the culture, and the survival rates for each strain and pH.  For both 

strains, growth rates and survival rates were optimal at pH 6, with a sharp decline in growth-rate, 

final OD measurement, and survival rate at pH 5.  Between the two strains, wild type always 

showed a higher survival rate.  Viable CFU of HP0222– were drastically decreased at pH 5. 

 

Motility Assays 

 H. pylori strains were grown on blood-agar plates for 24 hours and transferred to Brucella  

agar (0.5%), 10% FBS plates by covering the tip of a disposable plastic needle in a lawn of cells 

from the blood-agar plates and quickly stabbing it vertically down to the bottom of the Brucella 

agar plate.  Plates were incubated at 37 °C and 5% CO2 for 7 days.  Each plate was inoculated 

with wildtype and HP0222–.  Photographs of plates were taken after 7 days (Figure 18). 
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Figure 18. Motility assays of H. pylori J99 WT and HP0222– strains on semi-solid agar (0.5%) 
plates.  Each plate shows two WT spots on the left and two HP0222– spots on the right.  
Photographs were taken after 7 days. 
 
 
 
All four HP0222– spots have a larger diameter than the WT spots, while the densities are roughly 

equal.  HP0222– appears to be hypermotile compared to WT.  This result makes sense in light of 

the growth curve results.  Motility is known to use large amounts of energy, so hypermotile 

strains might be expected to grow slower than WT strains. 

 

Biological Analysis 

Microarrays 

 Because of the difficulty of the SELEX experiments, we had no hints which genes could 

be directly regulated by HP0222.  We decided to perform microarray experiments to compare 

transcript levels of all H. pylori genes between WT and HP0222– strains.  
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 H. pylori J99 WT and HP0222– cultures were inoculated in the morning in 10 mL 

Brucella broth supplemented with 10% FBS to OD 0.1 from overnight cultures.  After 8 hours, 

WT cultures had grown to OD approximately 0.4, while mutant strains grew to OD 

approximately 0.35.  2 mL from each culture were spun down gently, and 1.5 mL of culture 

medium were removed.  Cell pellets were resuspended in the remaining 500 µL of culture 

medium.  1 mL Bacterial Protect Reagent (Qiagen) was added, and the mixture was vortexed.  

After centrifugation, cell pellets were lysed by resuspending in 1 mL Trizol Reagent (Invitrogen) 

heated to 65 °C.  RNA was precipitated with isopropanol and washed with 70% ethanol.  DNA 

contamination was removed by redissolving precipitated nucleic acid in 90 µL water and adding 

10 µL RQ1 RNase-free DNase (Promega) and incubating at 37 °C for 1 hour.  Purified RNA was 

cleaned up using the RNeasy Mini Kit (Qiagen). 

 H. pylori microarrays containing sequences from all genes in the 26695 strains as well as 

unique sequences from the J99 strain were obtained from the Pathogen Functional Genomics 

Resource Center of the J. Craig Venter Institute by Dr. John Loh.  Quality control analysis of 

RNA samples and labeled cDNA synthesis, as well as hybridization and reading of the arrays 

were performed by the staff in the Vanderbilt Microarray Shared Resource facility. 

 Large datasets are required to obtain statistically significant results from microarray 

experiments because of the various sources of error.  Each gene is spotted on the microarray 

three times in different regions to control for variations in spotting and hybridization to different 

regions of the array.  To control for random variations in transcript levels, three cultures each of 

WT and HP0222– were grown.  Data from three microarrays, each hybridized with labeled 

cDNA from one WT and one HP0222–, were obtained, and all results were averaged. 
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 Because most RHH proteins act as repressors, we graphed the data as HP0222–/WT ratios 

and looked primarily for increases in the levels of transcription (Figure 19).  The left side of the 

graph, up to about gene 1600 represents sequences derived from the 26695 strain, while the right 

side of the graph represents sequences from the J99 strain.  There is clearly a difference in the 

mean and standard deviation of the ratios from sequences derived from the two strains, which 

may be due to the fact that the 26695 sequences likely contain several mismatches when binding 

cDNA from our J99 samples.   

 

 
 
Figure 19. Graph of HP0222– to WT transcript ratios for all 26695 and some J99 genes, averaged 
over three microarrays. For 26695 genes on the array, the average transcript ratio was 1.63, with 
a standard deviation of 0.53.  For the J99 genes, the average ratio was 1.22, with a standard 
deviation of 0.71. 
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 An additional set of three arrays was obtained using new isolates of both WT and 

HP0222– strains.  Data from all six arrays were averaged.  Genes were accepted as upregulated in 

the mutant strain if their HP0222– to WT transcript ratios were at least two standard deviations 

above the mean, and if they were consistently upregulated in at least five of the six samples 

(Table 7). 

 

Table 7. Microarray results for HP0222– 

Gene (J99 #) Gene (26695 #) Average (HP0222–/WT) Gene Product/Function 

JHP0572 HP0629 20.5 unknown 

JHP0662 HP0725 4.85 HopP – outer membrane protein 

JHP0954 NA 3.35 unknown 

JHP1297 NA 2.14 Type III restriction enzyme 

JHP0742 HP0806 2.10 Unknown, conserved 

 
 
 
Real-Time PCR 

 Real-time PCR is often used to quantify levels of transcripts and validate microarray data.  

RNA was obtained as described for the microarray experiments.  cDNA synthesis was performed 

using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems).  Forward and 

reverse primers for the coding region of each gene were designed using Primer3 (Rozen and 

Skaletsky 2000) with the following input parameters: 20bp length, 100-250bp product length, 

primer Tm 60 °C.  For each gene, a master mix was produced containing Maxima SYBR-Green 

qPCR Master Mix (Fermentas) and primers (final concentration of 2 uM each).  23 µL of this 

master mix was pipetted into each well, followed by 2 µL of a 200x dilution of cDNA template, 

for a total reaction volume of 25 µL.  Reactions were run on a BioRad iCycler running MyIQ 



82 
 

software.  The hot-start enzyme was activated by a 10 minute interval at 95 °C, followed by 45 

cycles of 95 °C 20 s, 55 °C 30 s, 72 °C 30 s.  Upon completion of the PCR reaction, a melt curve 

was acquired by raising the temperature 0.5 °C every 10 s from 55 °C to 95 °C. 

 Several genes were tested by real-time PCR, including JHP0572 and JHP0662, as well as 

many genes involved in motility.  Results confirmed that JHP0662, the outer membrane protein 

hopP, is upregulated in our mutant.  JHP0572 was upregulated only slightly.  Many genes 

involved in motility, including the major flagellin flaA, JHP0424, JHP1051, JHP1047, and 

JHP1048 were also slightly upregulated. 

 

Biochemical Analysis 

SELEX 

 Our initial strategy for determining the function of HP0222 in H. pylori was to use the 

SELEX (Tuerk and Gold 1990) (Systematic Evolution of Ligands by Exponential Enrichment) 

technique to determine the consensus DNA-binding sequence for the protein.  As the name 

suggests, SELEX is a technique whereby one starts with a pool of a large number of possible 

ligands and progressively selects for only the strongest binding ligands through a series of 

selection and amplification steps.  Traditionally, the ligands are nucleic acids (RNA or DNA), 

and the targets are proteins; however, the protein targets do not always have nucleic acid binding 

functions in the cell.  In fact, many very tightly binding aptamers (usually single-stranded nucleic 

acids) have been found for non-nucleic acid binding proteins (Djordjevic 2007).  Figure 20 

shows the general flow of a SELEX experiment.  At the beginning of the experiment, one starts 

with a large pool of nucleic acid sequences.  This pool is bound to the target protein, and the 

mixture is put through a separation procedure that theoretically allows one to retain only nucleic 
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acids that bind tightly to the protein.  Many separation techniques have been developed for 

SELEX, including nitrocellulose membrane filtration, affinity tags, column matrices, cross-

linking, gel electrophoresis, capillary electrophoresis, and centrifugation (Gopinath 2007).  In 

practice, because the tightly binding nucleic acids are far outnumbered by weakly or moderately 

tight binding nucleic acids, it is nearly impossible to obtain only the most strongly binding 

sequences in one step.  After the first separation procedure, the bound nucleic acids are removed 

and used as templates in a PCR reaction, which amplifies both the tight-binding nucleic acids 

and any others that passed through the separation procedure.  The resulting products are the pool 

that will be used in the second round of SELEX.  If the round was successful, then the tight-

binding sequences will be enriched relative to weakly-binding sequences.  The SELEX 

procedure ends when one has a number of very similar sequences that can be aligned to 

determine the consensus binding sequence.  Typically, a SELEX experiment will require 12-15 

rounds of binding, separation, and amplification. 

 

 

 
Figure 20. General SELEX procedure.  Starting with a large pool of sequences, an iterative 
procedure of binding, separation, and enrichment is carried out until the bulk affinity of the 
current pool of sequences for the target is sufficiently high.  Sequencing and alignment hopefully 
yields a consensus sequence.  
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 Because we were attempting to determine the consensus DNA-binding sequence for a 

known transcriptional regulator with natural DNA-binding functions, we began by performing 

genomic SELEX experiments.  The initial pool of DNA in genomic SELEX is obtained by 

purifying genomic DNA from an organism and cutting it up into smaller fragments, usually 

using restriction enzymes.  The advantage of this type of SELEX is that the number of different 

sequences in the initial pool is many orders of magnitude smaller than in the typical random 

sequence pool.  It is also almost guaranteed to contain at least one good binding sequence for a 

target protein whose function is to bind DNA, assuming that the fragmentation procedure does 

not disrupt that sequence.  One disadvantage is that it is more difficult to amplify the selected 

sequences after the first round. 

 For genomic SELEX, we followed a published procedure (Dietz, Gerlach et al. 2002).  

His6-tagged HP0222 was bound to MagneHis Ni-Particles (Promega) and incubated with J99 

genomic DNA that had been completely digested with the ApoI restriction enzyme (Figure 21A).  

Because HP0222 binds nonspecifically to too many fragments in interaction buffer (IB) (20 mM 

Tris-HCl, pH 7.5, 10 mM MgCl2, 100 mM KCl, 20 mM imidazole), we selected strongly 

binding fragments using a series of washes with increasing salt concentration.  The wash steps 

consisted of IB supplemented with NaCl (375mM, 563mM, 857mM, 1.5M) (Figure 21B).  

Eluted fragments were ligated on both ends to a double-stranded sticky end adapter.  The adapted 

fragments were PCR amplified using one primer corresponding to the adapter sequence as both 

the forward and reverse primer, and the resulting products were used in a second capture 

experiment (Figure 21C). 
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Figure 21. Genomic SELEX results, A) left lane – molecular weight standards; right lane – 
successful ApoI digest of J99 genomic DNA, with individual bands visible, B) DNA washed off 
from 1.5 M NaCl wash, C) left lane – single strong band after amplification of DNA in B) and a 
second round of selection; right lane – molecular weight standards.  DNA fragments were 
separated and stained in 2% agarose gels, 0.5x TBE, pH 8.5, with GelRed stain (Biotium). 
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Most of our attempts at SELEX utilized a random sequence pool of DNA.  This method 

is completely unbiased because every possible sequence of a specified length is present in the 

initial pool of DNA; however, the sheer number of different sequences and the extremely small 

number of copies of the most tightly binding sequences in the initial pool make it more difficult 

to detect and recover those sequences.  Unlike genomic SELEX, it is easy to design the oligos 

such that they can be amplified after the first separation procedure without an additional adapter 

ligation step.  Table 8 shows all of the template oligos used in our SELEX experiments. 

 

Table 8. Template oligos used for SELEX experiments 

Oligo Sequence 

SELEX1 CGCTGACTGACTGAGCCGCCGNNNNNNNNNNNNNNNGGCTCAGCTCACCTCAGC
CCG 

SELEX2 (reverse complement of SELEX1) 

SELEX3 CGATGACTGACTGACCTGTGCNNNNNNNNNNNNNNNGGTTCAGGTCAAGTCAGC
ACG 

SELEX4 CGATGACTCACTGACCTGCTCTACACGNNNNNNNNNNNNNNNNNNNNGGAACG
AATGCCTTGTCTACTGAGTGC 

SELEX5 CCCAAGCTTAATACGACGCACTATAGGGAGGATNNNNNNNNNNNNNNNNNNNN
TTGCAGCATCGTGAACTAGGATCCGGG 

SELEX6 CCCAAGCTTAATACGACGCACTATAGGGAGCTANNNNNNNNNNNNNNNNNNNN
CGTGTAGAGCAGGTCAGTGAGTCAGGATCCACG 

SELEX7 CGCAAGCTTCATACGACGCACTCATGGGAGCTAAGCACTAACTGCCNNNNNNNN
CGACCATGCTGAACGTGTAGAGCAGGTCAGTGAGTCCGGATCCCGC 

SELEX8 CGCAAGCTTCATACGACGCACTCATGGGAGCTAAGCACTTTTAAAANNNNNNNN
NNNNCATGCTGAACGTGTAGAGCAGGTCAGTGAGTCCGGATCCCG 

SELEX9 CGCAAGCTTCATACGACGCACTCATGGGAGCTAAGCACTANNNNNNNNNNNNN
NNNNNNNTGCTGAACGTGTAGAGCAGGTCAGTGAGTCCGGATCCCGC 

 
 

Although conceptually SELEX appears to be rather straightforward, in practice it can be 

very challenging.  The technique is simply more suitable for some proteins than for others.  The 

SELEX procedure has been thoroughly analyzed mathematically and a number of potential 

experimental pitfalls have been identified (Irvine, Tuerk et al. 1991; Levine and Nilsen-Hamilton 
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2007).  One practical obstacle is that the protein concentration used must be optimized to 

differentiate its specific and nonspecific interactions with DNA.  Without knowing these 

affinities beforehand, the initial protein concentration must be optimized; however, even this is 

difficult because of the necessity to detect and isolate complexes at very low concentration.  In 

successive rounds, the protein concentration must be lowered to obtain better selection of only 

the strongest binding sequences.  If specific interactions are not very strong (Kd ~ 10-9), it is 

possible, however, to ruin an experiment by losing the enriched tight-binding sequences if the 

protein concentration is not high enough. 

Detection of bound nucleic acids is a significant problem, especially during the early 

rounds of SELEX.  When using a large pool of sequences, there are only a few molecules that 

will bind the target protein with high affinity.  If one is using a gel-based selection procedure, it 

is often difficult to detect the position of the shifted band, even when using radioactively labeled 

DNA.  Many successful SELEX experiments rely on the existence of a known reference binding 

sequence, which is run side-by-side on the gel next to the protein-DNA mixture.   The position of 

the shifted reference sequence indicates where to cut a fragment from the lane containing the 

SELEX DNA.  In our case, because we do not have a known binding sequence, we tried a brute 

force method of finding the shifted band.  The entire lane above the band of unshifted DNA was 

cut out and sliced into eight pieces.  DNA was extracted separately from all slices and used as 

template in PCR reactions to determine which slice contained the most DNA.  Unfortunately, no 

difference in the amount of DNA from each slice could be determined (Figure 22C).  It appears 

that DNA is randomly captured in the gel. 

As SELEX proceeds and the pool of DNA is narrowed down to a number of similar 

sequences, problems with multitemplate PCR begin to appear.  Typical problems that occur 
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include bias, in which the ratios of concentrations of final products do not accurately reflect the 

ratios of the starting templates, heteroduplex formation, which occurs when one template strand 

anneals to the complementary strand of a different template strand, and chimeric products, which 

are sequences that are generated from more than one template (Kanagawa 2003).  Although we 

cannot determine how significantly the problem of PCR bias has affected our results, 

heteroduplex formation has certainly been a problem.  In many applications, heteroduplexes are 

a problem because when cloned, cellular enzymes repair the mismatch by randomly selecting a 

template strand, which can artificially increase sequence diversity (Speksnijder, Kowalchuk et al. 

2001).  In a SELEX experiment, the heteroduplexes are also a problem because the mismatches 

are not resolved through cloning and intracellular repair between selection rounds, and the bulges 

created by the mismatches can render the heteroduplexes unsuitable for binding to the target 

protein.  Mismatches appear on gels as a slightly shifted band (Figure 22A).  Using capillary 

electrophoresis to analyze PCR products, it was shown that in PCR reactions containing 

heterogeneous templates, formation of the desired products ceases before exhaustion of primers 

and that these products are converted into by-products within just a few cycles (Musheev and 

Krylov 2006).  A method of removing heteroduplexes called reconditioning PCR has been 

developed.  In this procedure, one dilutes the heteroduplex products ten-fold, adding fresh 

primers and subjects the mixture to three cycles of PCR (Thompson, Marcelino et al. 2002).  We 

have used this method with limited success.  It is best to simply reduce the number of PCR 

cycles in each reaction to limit the formation of undesired by-products in the first place 

(Kanagawa 2003); however, determining the optimum number of PCR cycles can be tricky 

because one must balance the need to create enough of the desired product for the next round 
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with limiting by-product formation, and the optimum number of cycles may change from round 

to round. 

A SELEX experiment can be performed more efficiently with fewer rounds of separation 

and amplification if there is a greater disparity between the target protein’s affinities for 

specifically and nonspecifically bound sequences.  At least two orders of magnitude is desirable.  

Proteins with unusually high affinities for nonspecific sequences will not be able to significantly 

enrich the specific aptamer from round to round, requiring a greater number of rounds before 

completion.  Performing more rounds of separation and amplification increases the risk of failure 

due to other problems mentioned above. 

 Many DNA-binding proteins feature a floppy, positively-charged N-terminal or C-

terminal segment that interacts with the phosphate backbone of DNA and increases the affinity 

of the protein for DNA without increasing its specificity (Crane-Robinson, Dragan et al. 2006).  

Among the well-characterized RHH proteins, HP0222 and its H. pylori homolog HP0564 are 

two of the four that have N-terminal tails of greater than 20 amino acids.  While determining the 

appropriate concentration of HP0222 for the binding reactions, we found that HP0222 has a high 

affinity for nonspecific DNA, being able to shift the entire band of random sequences at a 

concentration of 1 µM (Figure 22B).  We also tried SELEX experiments with a mutant version 

of HP0222 lacking the N-terminal tail. 
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Figure 22. Agarose gels showing several pitfalls of the SELEX procedure. A) Ladder of bands 
represent a series of double-stranded DNA species with increasing numbers of mismatched bases 
resulting from similar but nonidentical template sequences and depletion of PCR primers.  B) 
Left lane shows the entire pool of sequences shifted by 1 µM HP0222 protein during an early 
round of SELEX, resulting in no selection or enrichment of the strongest binding sequences.  C) 
Each lane shows PCR products from amplification of DNA contained in one of eight equal-sized 
segments cut out of a lane from the previous separation.  This experiment shows that DNA is 
randomly captured in the agarose gel matrix, reducing the efficiency of selection.   
 
 
 

Our final attempts at SELEX utilized a different separation technique – capillary 

electrophoresis (CE).  Using the nonequilibrium capillary electrophoresis of equilibrium mixture 

(NECEEM) method (Berezovski, Drabovich et al. 2005), CE-based SELEX methods offer 

several advantages over other methods.  Separation is highly efficient, and protein-bound DNA 

passes through the capillary before unbound DNA, minimizing the amount of unbound DNA that 

passes through to the next round.  Detection sensitivity is much greater than staining a gel, even 

when using UV detection.  Laser-induced fluorescence detection can be used to detect much 

smaller quantities of bound DNA, and in one case, the entire SELEX procedure could be 
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completed in only one round of selection (Berezovski, Drabovich et al. 2005).  In fact, SELEX 

experiments have been performed using a procedure called non-SELEX, in which the 

amplification steps between rounds are eliminated (Berezovski, Musheev et al. 2006).  Despite 

the apparent advantages of CE-based SELEX methods, we were unable to obtain any results on 

our protein.   

  

Discussion 

Motility Variants  

 One interesting observation we made while working with cultures on plates and in liquid 

media is that when left on a plate for more than 24 hours or in liquid media for more than about 

12 hours, both wild type and HP0222– strains became nonmotile.  We first noticed this in liquid 

culture when the doubling times of both strains steadily decreased from about 4 hours for wild 

type and 5 hours for HP0222– to about 1.9 hours for both strains.  We ran motility assays on 

these long term cultured strains and confirmed that they are nonmotile.  It appears that when 

nutrients are depleted, there is a strong selection for nonmotile variants that do not use as much 

energy.  The selection for nonmotile variants appears to be especially strong for the hypermotile, 

slower growing HP0222– cells.  It is interesting to note that the nonmotile HP0222– strain grows 

just as fast as nonmotile WT, suggesting that the slow-growth phenotype of HP0222– is primarily 

due to the hypermotility.  

 We do not know exactly how the strains become nonmotile.  The fact that the doubling 

times in liquid culture gradually decrease, however, suggests that there is a selection for a 

preexisting population of nonmotile cells.  There are reports describing such subpopulations.  

fliP, which encodes for a protein involved in flagellar export is subject to slipped-strand 
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mispairing transcriptional regulation.  WT strains have a stretch of 8 cytidines in the promoter 

region.  Variants with an additional cytidine are completely nonmotile (Josenhans, Eaton et al. 

2000).  At higher bacterial densities, when energy resources have been depleted, nonmotile 

variants may have higher survival rates, allowing them to dominate the population.  From this 

experience, we learned that it is important to regularly check growth rates and motility.  We were 

able to recover motile variants again by inoculating the strains into soft-agar motility plates and 

extracting motile bacteria from the edge of the colony after several days.  All experiments since 

then have been done using bacteria that have been taken from our permanent motile stocks and 

passed on no more than two or three times. 

 Adhesion to gastric epithelial cells has been found to upregulate HP0222, with a 

concomitant downregulation of several motility genes.  Conditions have not yet been found 

where HP0222 is expressed at lower levels than WT, except for our mutants.  There are several 

reports of hypermotile mutants in other bacteria that have a greater ability to colonize their hosts 

(Jones, Marston et al. 2004; Martinez-Granero, Rivilla et al. 2006; Haugen, Pellett et al. 2007).  

In particular, one study found that mutations that restored motility in a poorly motile strain of 

Campylobacter jejuni, a bacterium related to H. pylori, also restored its colonization ability 

(Jones, Marston et al. 2004).  It is not always the case, however, that hypermotility is linked to 

greater colonization ability.  One study found that nonmotile mutants of a strain of Escherichia 

coli grew faster and were better able to colonize the mouse intestine (Gauger, Leatham et al. 

2007).  It appears that in some cases hypermotility may be able to offset the slower growth to 

allow better colonization ability, but not always.  This makes it difficult to predict the 

colonization ability of our HP0222– strain, and it is something we would like to test in the future. 
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Microarrays 

 Whenever deleting a single gene from the genome, it is possible that polar effects on 

nearby genes may play a role in any observable phenotypes.  Although noncoding sequences in 

the genome between HP0222 and its flanking genes, HP0221 and HP0223, suggest that they are 

not part of the same operon, this remains a possibility.  Transcript levels of these two genes were 

checked in our array data and also by real-time PCR.  Neither gene is significantly affected by 

the deletion of the functional copy of HP0222. 

 Results from the growth kinetics experiments were crucial for designing the microarray 

experiments.  Because of the large number of changes in transcriptional levels of many proteins 

upon the switch to stationary phase growth, it was important to ensure that RNA was extracted 

during log phase growth.  Overnight cultures would not be acceptable.  Our procedure involved 

inoculating new cultures to OD 0.1 from overnight cultures and allowing them to grow for eight 

hours to approximately OD 0.4, well within log-phase growth according to previous 

experiments.  
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CHAPTER V 

 

FUNCTIONAL CHARACTERIZATION OF HP0564 

 

Introduction 

 Based on the structural similarity to RHH proteins, HP0564 is another H. pylori protein 

that is likely to play a role in transcriptional regulation.  Its β-sheet residues are not the same as 

those of HP0222; therefore, we expect it to bind different sequences and regulate different genes.  

In the case of HP0222, two previous microarray-based transcriptional studies found upregulated 

transcription in different conditions.  There is no literature mentioning HP0564.  We used many 

of the same experimental methods to determine the function of HP0564 as we did for HP0222. 

 

Phenotypic Analysis 

Mutants 

 Creating mutant strains in H. pylori is not as straightforward as it is in E. coli.  Many of 

the tools for doing molecular biology in H. pylori are not nearly as developed.  Although H. 

pylori are naturally competent, they also have a large number of restriction-modification (RM) 

systems, and each strain has its own set of functional RM systems.  Although some endogenous 

H. pylori plasmids have been found, our experience with them suggests that they are not stable in 

every strain. 

 The HP0564– strain that we used for the following experiments was produced by Dr. 

John Loh.  The JHP0511 coding sequence from J99 plus regions flanking upstream and 

downstream were PCR amplified and cloned into pGEM-T Easy vector.  Inverse PCR was then 
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used to generate deletions within the JHP0511 ORF while introducing BglII restriction sites.  

The inverse PCR product was digested with BglII and recircularized after a ligation step using 

T4 DNA ligase, and stored. To insert an antibiotic cassette within the coding sequence of 

JHP0511, the re-circularized plasmid was digested with BglII and the overhangs were filled by 

DNA polymerase I large (Klenow) fragment.  A blunt ended HindIII fragment containing the cat 

(chloramphenicol acetyl transferase) cassette was excised from plasmid pCM7 and ligated into 

the blunt ended BglII site within the JHP0511 ORF.  Resultant plasmids were transformed into 

E. coli DH5α, and clones harboring the desired insertion screened by colony PCR.  Plasmids 

were subsequently sequenced to confirm that the cat cassette had been inserted in the appropriate 

orientation.  Acceptable plasmids were subsequently used for natural transformation of H. pylori 

strain J99, and the cat insertion into the H. pylori genome confirmed by PCR analysis. 

 

Growth Kinetics 

 Growth curves were obtained for HP0564– in the same way as described for  HP0222– 

(Figure 23). 
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Figure 23. Growth curves of J99 WT and HP0564– strains.  The plot on the left shows the 
measured values.  The plot on the right is on a logarithmic scale between 0 and 14 hours.  
Trendlines are shown, and their equations were used to extract doubling times for each strain. 
 
 
 
Trendline equations were converted to base 2 for extraction of doubling times, which were taken 

as the inverse of the coefficient in front of x in the equations. 

WT : 𝑦𝑦 = 0.1186𝑒𝑒0.1871𝑥𝑥 = 0.1186 ∗ 20.2699𝑥𝑥    → doubling time = 3.7 h 

HP0564– : 𝑦𝑦 = 0.1175𝑒𝑒0.2030𝑥𝑥 = 0.1175 ∗ 20.2929𝑥𝑥    → doubling time = 3.4 h 

Over several experiments, HP0564– consistently grew faster than WT. 

 

Motility Assays 

 Motility assays were performed for HP0564– at the same time as for HP0222– (Figure 

24).  The results were much different. 
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Figure 24. Motility assays of J99 WT and HP0564– strains in semi-solid agar (0.5%) plates.  
Each plate shows two WT spots on the left and two HP0564– spots on the right.  Photographs 
were taken after 7 days. 
 
 
 
All four HP0564– spots have diameters that are on par with those of WT; however, the HP0564– 

spots clearly have higher densities than WT.  On these transparent plates, we also noticed that 

HP0564– has an intense yellow color at higher densities. 

 

Biological Analysis 

Microarrays 

 Microarrays were used to determine the transcription profiles of the HP0564– strain.  

Means and standard deviations of mutant to WT transcript ratios were similar to those for 

HP0222–.  Figure 25 plots the average ratio over 3 arrays for all genes on the array. 
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Figure 25. Graph of HP0564– to WT transcript ratios for all 26695 and some J99 genes, averaged 
over three microarrays. For 26695 genes on the array, the average transcript ratio was 0.90, with 
a standard deviation of 0.31.  For the J99 genes, the average ratio was 1.18, with a standard 
deviation of 0.74. 
 

 Table 9 shows a list of genes that were upregulated consistently across all the arrays with 

a transcript ratio at least two standard deviations above the mean.  More genes were found that 

satisfied these requirements than for HP0222–, which may be explained by the fact that only 

three arrays were used in the averaging instead of six.  Two of the genes, JHP1101, a 

glucose/galactose transporter, and JHP0299, an ABC transporter, were found to be upregulated 

for both the 26695 and J99 sequences present on the array.  Other genes of note that may help 

explain the observed phenotypes include the outer membrane proteins HorA and HofA, as well 

as the molybdate ABC transporter JHP0425. 
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Table 9. Microarray results for HP0564– 

Gene (J99 #) Gene (26695 #) Average (HP0564/WT) Gene Product/Function 

JHP0073 HP0079 21.9 HorA – outer membrane protein 

JHP1410 HP1521 7.06 restriction enzyme 

JHP1101 HP1174 3.47 glucose/galactose transporter 

JHP0036 HP0041/0042 2.98 ComB10 competence protein 

JHP0299 HP0611/0612 2.94 ABC transporter 

JHP0146 HP0158 2.80 unknown 

JHP0425 HP0473 2.79 molybdate ABC transporter 

JHP0195 HP0209 2.77 HofA – outer membrane protein 

Gene (26695 #) Gene (J99 #) Average (HP0564/WT) Gene Product/Function 

HP1238 JHP1159 2.22 formamidase 

HP1017 JHP0406 2.44 arginine permease 

HP0611/0612 JHP0299 2.23/2.77 ABC transporter 

HP1174 JHP1101 2.69 glucose/galactose transporter 

 

 

Real-time PCR 

 At this point, we have not yet been able to perform a thorough real-time PCR validation 

of the microarray results. 

 

Discussion 

Observed Phenotypes 

 The HP0564– strain behaved very differently from HP0222– compared to WT in our 

experiments.  HP0564– consistently grew slightly faster than WT, and on motility agar plates, 

formed discs that were about the same size, if not slightly smaller, than WT.  It is possible that 
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the upregulation of the glucose/galactose transporter JHP1101 is responsible for its faster 

growth; however, if it is truly less motile than WT, that could also explain its faster growth. 

 The yellowish color we observed for HP0564– at higher densities both on plates and in 

liquid culture was very interesting.  We do not have an explanation for this, but given the 

upregulation of transporters and outer membrane proteins, we can speculate that a molybdate 

compound or some other compound that is accumulating in the cell is responsible for giving the 

mutant its color. 

 

Microarray Experiments 

 The microarray results for the HP0564– strain looked promising.  Means and standard 

deviations of transcript ratios were reasonable, and only a few genes were found to be highly 

upregulated.  It is possible that the upregulated genes could explain the observed phenotypes; 

however, more work is needed to confirm the results and to determine whether the effects are a 

direct result of a lack of repression by HP0564 in our mutant. 

 We checked the transcript levels of the genes flanking HP0564.  In this mutant, HP0563 

was also highly downregulated.  Because the antibiotic resistance cassette was inserted into the 

coding region of HP0564, it could not interfere with HP0563.  Most likely, the homologous 

recombination event disrupted HP0563.  There is no known function for HP0563, and at this 

point, we do not know what affects it might have on transcriptional regulation, if any. 

 

Conclusions and Future Directions 

 There are many questions that remain to be answered concerning both the HP0222– and 

HP0564– strains.  Microarray studies are very useful for providing a starting point for further 
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experiments because they cover all of the genes in the genome.  One must be careful when 

interpreting microarray experiments, however.  Even with good statistics, it is possible to get 

false positives due to nonspecific binding.  In addition, genes that are truly upregulated may not 

be directly affected by the condition tested.  In our case, we do not yet know whether our 

proteins bind the upstream promoter sequences of the genes that were found to be upregulated.  

Further experiments must be performed to determine whether the observed upregulation is due to 

direct binding or to other, indirect effects. 

 We would also like to know the consensus DNA binding sequences of our proteins.  Our 

attempts to use SELEX to determine them have not been successful.  We hope that we can find 

genes whose promoter sequences contain binding sites for our proteins and that we can narrow 

them down enough to recognize the consensus sequences by alignments of all the promoter 

sequences bound. 

 HP0222 was mentioned before in the literature as one of the most highly upregulated 

genes upon adhesion to AGS cells (Kim, Marcus et al. 2004).  We do not know whether HP0564 

is upregulated or downregulated in some condition or what that condition might be.  We would 

like to know what conditions or proteins are involved in regulating the transcript levels of 

HP0222 and HP0564, but these questions will be much more difficult to answer. 

 We would also like to determine structures of our RHH proteins in complex with their 

consensus DNA binding sequences.  There are examples of two different RHH proteins having 

the same set of DNA-binding residues in their β-sheets while recognizing different DNA 

sequences.  Perhaps with more determined complex structures, we will be able to explain how 

structure determines DNA-binding specificity.  
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APPENDIX A 

 

OTHER H. PYLORI PROJECTS 

 

ArsS Sensor Domain 

 ArsS (HP0165) plays a crucial role in the acid response of Helicobacter pylori.  It is a 

histidine kinase that senses extracellular, low pH conditions and phosphorylates the essential 

response regulator HP0166, resulting in altered transcript levels of many of the genes known to 

be involved in the acid response.  

 The amino acid sequence of the extracellular sensor domain has no homology to any 

protein except for similar pH sensors in Helicobacter species and Wolinella succinogenes.  We 

were very interested in determining its structure to gain insight into how it senses low pH and 

transduces a signal across the membrane. 

 We tried expressing two constructs of this protein – one containing just the 100 

extracellular domain residues and another containing the domain with the flanking 

transmembrane helices on either side (Figure 26).  Both constructs were expressed from our 

modified pET vector that incorporates an N-terminal His6 tag. 

 There was no expression of the construct containing the two flanking transmembrane 

helices, but the sensor domain alone was expressed very well.  None of the domain, however, 

was found in the soluble fraction.  To purify the protein in larger scale expressions, we 

performed inclusion body purifications using Inclusion Body Solubilization Reagent (Pierce) 

following the manufacturer’s standard protocol. 
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Figure 26. Expression tests of both ArsS sensor domain constructs. 1) molecular weight 
standards (sizes indicated at left), 2) transmembrane construct preinduced, 3) transmembrane 
construct postinduced, 4) soluble transmembrane construct postinduced, 5) sensor domain 
preinduced, 6) sensor domain postinduced, 7) soluble sensor domain postinduced 
 
 

 

Figure 27. 1D 1H NMR spectrum of the ArsS sensor domain.  The sample is most likely 
aggregated, with visible peaks corresponding to unfolded protein. 
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 In solution, the ArsS sensor behaved very poorly.  Many sample conditions were tested 

including a range of pH values from 3 to 10 and salt concentrations from 0 to 500 mM.  Several 

additives were tested, including the divalent metal ions Ni2+, Mg2+, Ca2+, several non-detergent 

sulfobetaines (NDSBs), the amino acids glycine and arginine, and detergents such as CHAPS, 

Tween 20, and Triton X-100.  All sample conditions resulted in a solution with gel-like 

consistency.  A typical 1D 1H NMR spectrum is shown in Figure 27.  Based on the behavior of 

the sample, we expect that the protein may be largely aggregated.  The part that can be seen in 

the NMR spectrum is unfolded.  All amide peaks have collapsed to the random coil shift of 8.2 

ppm.  Aliphatic peaks are bunched into just a few broad peaks. 

 We have also tried crystallization of the sensor protein.  A sample of protein was sent to 

the high-throughput screening lab at the Hauptman-Woodward Medical Research Institute, 

which tests 1536 conditions.  Several hits were obtained, all in high concentrations of ammonium 

sulfate.  We were unable to grow crystals in any of those conditions here. 

   

JHP1348 

 JHP1348 (HP1455 in the 26695 strain) was another protein identified in the initial screen 

for structural targets from H. pylori (Popescu 2004).  It is a 12.7 kDa protein of 113 amino acids 

and no assigned function.  A BLAST search of the sequence yields only very similar proteins 

from other Helicobacter species, all of which are listed as hypothetical. 

 The N-terminal 14 residues of JHP1348 form a highly hydrophobic region that is 

predicted to be a portion of a cleaved signal sequence.  We expressed JHP1348 in E. coli BL21 

with an N-terminal His6 tag (MRGSHHHHHHGS) and lacking 14 residues of the signal 

sequence.  Uniformly 15N/13C-labeled and 15N-labeled proteins were produced by growing cells 
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in M9 media supplemented with 15N-NH4Cl and 13C-glucose.  Proteins were initially purified on 

a Ni-NTA column.  Purification was enhanced by exploiting the pH-dependent solubility of 

JHP1348.  The pH was lowered to 2.5, producing a pellet containing unwanted contaminants.  

Supernatant containing JHP1348 protein was collected, and the protein was precipitated by 

raising the pH to 7.5.  The pellet was washed with 100 mM Tris buffer, pH 7.5, resuspended in 

H2O, pH 4.0, and lyophilized. 

 NMR samples were produced by dissolving protein to 1 mM concentration in 90% 

H2O/10% D2O, pH 4.0.  Spectra were recorded at 27° C on a Bruker Avance600 spectrometer 

equipped with a 5 mm cryoprobe.  1H chemical shifts were referenced directly to 2,2-dimethyl-2-

silapentane-5-sulfonic acid (DSS) at 0.00 ppm, and 13C and 15N chemical shifts were referenced 

indirectly using absolute frequency ratios (Wishart, Bigam et al. 1995).  Backbone assignments 

as well as Cβ and Hβ assignments were made based on CBCANH, CBCA(CO)NH, HBHANH, 

HBHA(CO)NH, and HNCO experiments (Sattler, Schleucher et al. 1999).  Sidechain resonances 

were assigned using CC(CO)NH, H(CC)(CO)NH, HCCH-TOCSY, and 1H-13C HSQC 

experiments.  Three-dimensional 15N- and 13C-edited NOESY-HSQC experiments were used to 

assign asparagine and glutamine sidechain NH2 resonances and aromatic sidechain resonances to 

the correct residue.  The 2D 1H-15N HSQC (Figure 28) was run on 15N-labeled sample.  NMR 

data were processed using XWINNMR ver. 2.6 (Bruker) and analyzed with Sparky ver. 3.111 

(Goddard, T.D., Kneller, D.G. SPARKY 3, University of California, San Francisco).  Secondary 

structure prediction was performed using the PECAN server at NMRFAM.  Results are shown in 

Figure 30.  Structurally, JHP1348 belongs to the mixed alpha/beta class. 
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Figure 28. 600 MHz 2D 1H-15N HSQC spectrum of 15N-labeled JHP1348 at 27 °C, pH 4.0.  
Sequential assignments are indicated with the one-letter amino acid code and residue number. 
 
 
 
Experimental Procedures 

 Crosslinking experiments were performed to determine the oligomeric state of JHP1348 

(Figure 29).  The crosslinker BS3, with an 11.4 Å spacer, was used.  Reactions were set up in 10 

mM NaH2PO4, pH 7.0, with 8 µg protein in each reaction.  A control reaction without BS3 is 

shown in lane 2 of Figure 29, followed by reactions with 5, 50, and 500 µM BS3.  In all lanes, 

including the control reaction, a dimer of JHP1348 can be seen.  The amount of dimer, as well as 

very large molecular weight species, increases with increasing crosslinker concentration. 
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Figure 29. BS3 crosslinking reactions with JHP1348 protein.  Sizes of molecular weight 
standards are indicated to the left.  Arrows on the right indicate monomer, dimer, and high 
molecular weight oligomers. The monomer is 11.4 kDa, so we expect the middle band to 
represent a dimer. 
 
 
 
 The sequential assignment process for JHP1348 was not quite straightforward.  Although 

the 1H-15N HSQC spectrum was of reasonable quality, the number of backbone amide peaks was 

more than expected.  These additional peaks were less intense than the others, and we suspected 

that these peaks corresponded to a partially folded form of the protein.  The population of the 

partially folded form was significant enough to give rise to strong signals in 3D triple resonance 

experiments such as CBCANH.  We chose the set of peaks with greater intensity for two 

reasons: i) the chemical shift dispersion of the amide protons for this set of peaks was greater 

than for the weaker peaks, so it was assumed that these peaks represented the fully folded form, 

ii) NOE crosspeaks in the 15N-edited NOESY experiment were very weak or nonexistent for the 

set of lower intensity peaks. 

 Excluding the His6 tag, we were able to assign nearly all backbone 1H, 15N, and 13C 

resonances (Borin, Popescu et al. 2005).  Only C′ resonances assignments for L18, which 

precedes a proline, and E111, which is the final residue, are missing.  Over 87% of sidechain 1H, 
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13C, and 15N resonances have been assigned.  The 1H, 13C, and 15N chemical shifts have been 

deposited in the BioMagResBank under accession number 6640. 

 Using the assigned chemical shifts of JHP1348, a secondary structure prediction was 

obtained using the PECAN server (Figure 30).  The first 20 residues are not predicted to have 

regular secondary structure.  The next 7 residues are weakly predicted to be helical.  Following 

that is a β strand, a long helix and two more β strands. 

 

 
Figure 30. Secondary structure prediction from the PECAN server at NMRFAM based on 
chemical shifts.  
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 A preliminary structure of JHP1348 was calculated using the more intense set of peaks 

for the N-terminal region.  It has not yet been energy-minimized.  JHP1348 features a three-

strand, antiparallel β-sheet at its core (Figure 31).  On one side of the sheet, a long α-helix 

crosses diagonally.  The other side of the β-sheet, which is extremely hydrophobic, is partially 

covered by the N-terminal region, which forms a helical turn, consistent with the weak helical 

secondary structure prediction.  If the structure had been calculated with the alternative set of N-

terminal peaks, this region would not have been helical, and it would not have come into contact 

with the β-sheet. 

 

 

 
Figure 31. Two views of the JHP1348 structure calculated in CYANA 
 
 
 

In order to get hints as to the possible function of JHP1348, the structure was submitted 

to the DALI server.  DALI (distance matrix alignment) compares a given structure with all 

known structures in the PDB.  Although many hits were returned by DALI, visual inspection of 

the structures was necessary to find ones that looked similar to JHP1348.  Based on structural 
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similarity, JHP1348 is most likely a pantetheinyl transferase.  These proteins are found in fatty 

acid synthesis and non-ribosomal peptide synthesis pathways where they cleave coenzyme A and 

transfer the pantetheinyl portion to a target protein.  The active site is formed at the interface of 

two subunits in either a dimer or trimer.  If JHP1348 is a pantetheinyl transferase, then our 

protein sample is not in the correct oligomeric state.  Our NOESY data indicate that an N-

terminal region of the protein is folded back across the hydrophobic side of the beta-sheet, 

blocking the dimerization interface.  We tried expressing full-length and further truncated 

proteins, but they only increased hydrophobic aggregation.  
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APPENDIX B 

 

CALCULATION SCRIPTS AND ASSIGNMENT TABLES FOR αCTD 

 

CYANA Input Files 

 
init.cya – contains initialization parameters for CYANA 

 
nproc=4 
name:=alpha 
amberlib 
read seq $name.seq 

 
calc.cya – reads peak information, calculates distance restraints, and calculates structures 
 

peaks       := n15.peaks,c13.peaks  # names of NOESY peak lists 
prot        := alpha.prot             # names of chemical shift lists 
constraints :=                          # additional (non-NOE) constraints 
tolerance   := 0.035,0.035,0.6         # chemical shift tolerances 
calibration :=                          # NOE calibration parameters 
rmsdrange   := 24..107         # residue range for RMSD calculation 
peakcheck prot=$prot info=full 
calibration prot=$prot peaks=$peaks  
peaks calibrate "**" simple 
stereoassigns 
distance modify info=full 
caltab 
write upl alpha.upl 
ramaaco minimal 
rotameraco 
write aco alpha.aco 
./init 
read upl alpha.upl 
read aco alpha.aco 
read aco talos.aco append 
hbonds 
stereoassigns 
distance stat info=full 
seed=44465 
calc_all 500 steps=25000 
overview alpha.ovw structures=50 hbond=35 range=$rmsdrange pdb  
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alpha.prot – contains chemical shifts for all assigned atoms 

atom 
# cs dev. name 

res 
# 

1 55.53 0 CA 1 
2 42.65 0 CB 1 
3 24.98 0 CD1 1 
4 23.58 0 CD2 1 
5 27.1 0 CG 1 
6 4.373 0.011 HA 1 
7 0.862 0 QQD 1 
8 45.41 0 CA 2 
9 3.899 0.002 HA 2 
10 8.313 0.002 HN 2 
11 110.1 0.037 N 2 
12 62.5 0 CA 3 
13 32.69 0 CB 3 
14 21 0 CG1 3 
15 20.31 0 CG2 3 
16 4.029 0.005 HA 3 
17 1.927 0.003 HB 3 
18 7.865 0.007 HN 3 
19 120 0.045 N 3 
20 0.754 0.003 QQG 3 
21 58 0 CA 4 
22 39.54 0 CB 4 
23 4.617 0 HA 4 
24 3.173 0.004 HB2 4 
25 2.982 0.003 HB3 4 
26 8.342 0.004 HN 4 
27 124.2 0.054 N 4 
30 45.34 0 CA 5 
31 3.918 0 HA1 5 
32 3.832 0 HA2 5 
33 8.189 0.001 HN 5 
34 111.3 0.016 N 5 
35 56.45 0 CA 6 
36 30.57 0 CB 6 
37 36.31 0 CG 6 
38 4.284 0 HA 6 
39 2.029 0 HB2 6 
40 1.917 0 HB3 6 
41 8.222 0.004 HN 6 
42 121.5 0.036 N 6 
43 2.231 0 QG 6 
44 8.323 0.001 HN 7 
45 124 0.022 N 7 

46 63.22 0 CA 8 
47 32.09 0 CB 8 
48 50.74 0 CD 8 
49 27.81 0 CG 8 
50 61.23 0 CA 9 
51 38.86 0 CB 9 
52 13.2 0.092 CD1 9 
53 27.39 0.042 CG1 9 
54 17.6 0 CG2 9 
55 4.1 0.005 HA 9 
56 1.82 0.006 HB 9 
57 1.484 0.005 HG12 9 
58 1.176 0.003 HG13 9 
59 8.177 0.004 HN 9 
60 122.2 0.046 N 9 
61 0.851 0.016 QD1 9 
62 0.897 0.001 QG2 9 
63 52.46 0 CA 10 
64 19.53 0 CB 10 
65 8.328 0.003 HN 10 
66 128.8 0.057 N 10 
67 1.376 0.006 QB 10 
68 53.47 0 CA 11 
69 39.35 0 CB 11 
70 8.422 0.008 HN 11 
71 119.4 0.052 N 11 
72 62.17 0 CA 12 
73 69.83 0.104 CB 12 
74 21.61 0 CG2 12 
75 4.307 0.009 HA 12 
76 4.213 0.015 HB 12 
77 8.082 0.001 HN 12 
78 114.9 0.004 N 12 
79 1.156 0.005 QG2 12 
80 56.78 0 CA 13 
81 30.25 0 CB 13 
82 36.31 0 CG 13 
83 4.258 0 HA 13 
84 8.371 0.002 HN 13 
85 123.7 0.04 N 13 
86 1.906 0 QB 13 
87 2.184 0 QG 13 
88 57.97 0 CA 14 
89 38.91 0 CB 14 
90 4.244 0 HA 14 
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alpha.prot, continued 

91 3.036 0 HB2 14 
92 2.943 0 HB3 14 
93 8.167 0.003 HN 14 
94 122.1 0.043 N 14 
95 58.34 0 CA 15 
96 64.15 0 CB 15 
97 4.421 0 HA 15 
98 8.212 0.006 HN 15 
99 119.2 0.079 N 15 
100 3.823 0 QB 15 
101 45.46 0 CA 16 
102 3.888 0.001 HA2 16 
103 7.773 0.007 HN 16 
104 111.1 0.008 N 16 
105 54.49 0 CA 17 
106 41.26 0 CB 17 
107 4.572 0.004 HA 17 
108 2.609 0.008 HB2 17 
109 2.516 0.014 HB3 17 
110 8.164 0.003 HN 17 
111 121.2 0.029 N 17 
112 58.27 0.031 CA 18 
113 38.67 0.012 CB 18 
114 4.457 0.004 HA 18 
115 3.052 0.012 HB2 18 
116 2.962 0.003 HB3 18 
117 8.089 0.004 HN 18 
118 121.8 0.032 N 18 
119 7.09 0 QD 18 
120 52.74 0 CA 19 
121 19.16 0 CB 19 
122 4.533 0 HA 19 
123 8.07 0.003 HN 19 
124 125.4 0.027 N 19 
125 1.33 0.002 QB 19 
126 56.01 0 CA 20 
127 29.33 0 CB 20 
128 33.98 0 CG 20 
129 4.212 0 HA 20 
130 8.104 0.001 HN 20 
131 119.8 0.024 N 20 
132 1.966 0 QB 20 
968 55.74 0 CA 21 
133 4.29 0.004 HA 21 
134 1.859 0 HB2 21 

135 1.757 0 HB3 21 
136 8.203 0.006 HN 21 
137 123.2 0.031 N 21 
138 1.597 0 QG 21 
139 54.43 0 CA 22 
140 41.97 0 CB 22 
141 4.639 0.007 HA 22 
142 2.632 0 QB 22 
143 54.99 0 CA 23 
144 41.07 0 CB 23 
145 4.55 0.001 HA 23 
146 8.357 0.004 HN 23 
147 122.5 0.058 N 23 
148 2.707 0.003 QB 23 
149 53.07 0.147 CA 24 
150 18.71 0.085 CB 24 
151 4.26 0.007 HA 24 
152 8.162 0.015 HN 24 
153 123.8 0.032 N 24 
154 1.387 0.003 QB 24 
155 57.76 0 CA 25 
156 32.69 0 CB 25 
157 28.84 0 CD 25 
158 42.32 0 CE 25 
159 24.94 0 CG 25 
160 4.161 0.004 HA 25 
161 8.058 0.007 HN 25 
162 120.6 0.019 N 25 
163 1.867 0.012 QB 25 
164 1.733 0 QD 25 
165 3.019 0 QE 25 
166 1.419 0.016 QG 25 
167 55.61 0.181 CA 26 
168 4.538 0.011 HA 26 
169 8.254 0.007 HN 26 
170 120.5 0.084 N 26 
171 2.746 0.007 QB 26 
172 56.17 0.149 CA 27 
173 41.46 0.074 CB 27 
174 25.64 0.079 CD1 27 
175 22.6 0.047 CD2 27 
176 26.82 0 CG 27 
177 4.009 0.01 HA 27 
178 1.233 0.008 HB2 27 
179 1.756 0.008 HB3 27 
180 1.612 0.005 HG 27 
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alpha.prot, continued 

181 8.09 0.006 HN 27 
182 119.5 0.048 N 27 
183 0.65 0.005 QD1 27 
184 0.276 0.003 QD2 27 
185 57.68 0.235 CA 28 
186 63.6 0.077 CB 28 
187 4.237 0.004 HA 28 
188 7.918 0.01 HN 28 
189 113.5 0.058 N 28 
190 3.97 0.011 QB 28 
191 52.09 0.064 CA 29 
192 19.39 0.049 CB 29 
193 4.347 0.008 HA 29 
194 7.026 0.008 HN 29 
195 123.4 0.028 N 29 
196 1.498 0.007 QB 29 
197 56.09 0.142 CA 30 
198 33.09 0 CB 30 
199 28.69 0 CD 30 
200 42 0 CE 30 
201 25.84 0 CG 30 
202 4.91 0.007 HA 30 
203 1.863 0.004 HB2 30 
204 1.809 0.003 HB3 30 
205 8.842 0.005 HN 30 
206 121.1 0.043 N 30 
207 3.055 0 QE 30 
209 65.19 0.075 CA 31 
210 38.08 0.069 CB 31 
211 14.82 0.057 CD1 31 
212 26.92 0.214 CG1 31 
213 18.79 0.053 CG2 31 
214 3.836 0.007 HA 31 
215 1.859 0.005 HB 31 
216 1.472 0.008 HG12 31 
217 1.031 0.012 HG13 31 
218 8.529 0.012 HN 31 
219 120.6 0.087 N 31 
220 0.584 0.007 QD1 31 
221 0.781 0.005 QG2 31 
222 59.65 0.081 CA 32 
223 29.04 0 CB 32 
224 36.26 0 CG 32 
225 3.987 0.004 HA 32 
226 9.534 0.006 HN 32 

227 124.1 0.056 N 32 
228 2.126 0.006 QB 32 
229 2.248 0.008 QG 32 
230 60.18 0.143 CA 33 
231 64.04 0.062 CB 33 
232 4.349 0.002 HA 33 
233 7.929 0.005 HN 33 
234 115.8 0.025 N 33 
235 4.076 0.005 QB 33 
972 30.6 0 CB 34 
236 17.4 0.047 CE 34 
237 4.238 0.005 HA 34 
973 2.209 0.005 HB2 34 
974 2.063 0.018 HB3 34 
975 2.486 0.004 HG2 34 
976 2.343 0.017 HG3 34 
238 7.652 0.009 HN 34 
239 120.1 0.027 N 34 
241 1.941 0.002 QE 34 
243 54.24 0.073 CA 35 
244 36.94 0.308 CB 35 
245 4.369 0.006 HA 35 
246 2.969 0.008 HB2 35 
247 2.727 0.003 HB3 35 
248 7.489 0.005 HD21 35 
249 6.735 0.012 HD22 35 
250 7.876 0.007 HN 35 
251 116.1 0.111 N 35 
252 113.6 0.04 ND2 35 
253 54.25 0.082 CA 36 
254 43.62 0.179 CB 36 
255 22.56 0.044 CD1 36 
256 22.61 0.002 CD2 36 
257 25.87 0 CG 36 
258 4.399 0.007 HA 36 
977 1.856 0.007 HB2 36 
978 1.496 0.004 HB3 36 
259 1.664 0.002 HG 36 
260 8.624 0.008 HN 36 
261 119.3 0.044 N 36 
982 0.882 0.005 QD1 36 
983 0.88 0.008 QD2 36 
263 0.891 0.002 QQD 36 
264 58.85 0.166 CA 37 
265 63.25 0.142 CB 37 
266 4.206 0.006 HA 37 
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267 10.44 0.009 HN 37 
268 120.9 0.052 N 37 
269 4.187 0.003 QB 37 
270 56 0.061 CA 38 
271 17.93 0.061 CB 38 
272 4.175 0.009 HA 38 
273 8.71 0.008 HN 38 
274 125.7 0.043 N 38 
275 1.487 0.004 QB 38 
276 59.54 0 CA 39 
277 29.88 0 CB 39 
278 43.47 0 CD 39 
279 27.42 0 CG 39 
280 4.103 0.005 HA 39 
281 8.452 0.006 HN 39 
282 116.7 0.071 N 39 
283 1.742 0 QB 39 
284 3.278 0 QD 39 
285 1.895 0 QG 39 
286 62.5 0 CA 40 
287 26.93 0 CB 40 
288 4.034 0.016 HA 40 
289 7.6 0.004 HN 40 
290 121.9 0.034 N 40 
291 2.967 0.008 QB 40 
292 62.53 0 CA 41 
293 39.35 0 CB 41 
294 3.783 0.005 HA 41 
295 3.084 0.005 HB2 41 
296 3.003 0.01 HB3 41 
990 7.111 0.002 HD1 41 
991 7.123 0.005 HD2 41 
992 7.256 0.001 HE1 41 
993 7.236 0.006 HE2 41 
297 8.982 0.003 HN 41 
298 118.9 0.049 N 41 
301 56.65 0 CA 42 
302 38.42 0.041 CB 42 
303 4.212 0.004 HA 42 
304 2.995 0.004 HB2 42 
305 2.759 0.005 HB3 42 
306 7.7 0.008 HD21 42 
307 7.031 0.018 HD22 42 
308 8.793 0.01 HN 42 
309 116.6 0.039 N 42 

310 113.4 0.045 ND2 42 
311 62.38 0.059 CA 43 
312 26.47 0.063 CB 43 
313 4.189 0.007 HA 43 
314 3.183 0.004 HB2 43 
315 2.925 0.007 HB3 43 
316 7.486 0.014 HN 43 
317 117.6 0.041 N 43 
318 56.6 0 CA 44 
319 41.84 0 CB 44 
320 26.51 0.042 CD1 44 
321 21.94 0.058 CD2 44 
322 26.31 0 CG 44 
323 3.994 0.018 HA 44 
324 1.681 0.008 HG 44 
325 7.121 0.007 HN 44 
326 118.8 0.053 N 44 
327 1.932 0.003 QB 44 
328 0.765 0.002 QD1 44 
329 0.714 0.008 QD2 44 
330 57.35 0 CA 45 
331 42.72 0.181 CB 45 
332 4.086 0.001 HA 45 
333 2.165 0.004 HB2 45 
334 1.816 0.003 HB3 45 
335 8.738 0.008 HN 45 
336 121.2 0.101 N 45 
337 58.52 0 CA 46 
338 32.09 0 CB 46 
339 28.15 0 CD 46 
340 42.29 0 CE 46 
341 25.41 0 CG 46 
342 4.042 0.008 HA 46 
343 1.953 0.002 HB2 46 
344 1.859 0 HB3 46 
345 7.875 0.009 HN 46 
346 117.2 0.069 N 46 
347 1.69 0.002 QD 46 
348 2.995 0 QE 46 
349 1.587 0.007 QG 46 
350 61.13 0.06 CA 47 
351 37.87 0.066 CB 47 
352 15.35 0.05 CD1 47 
353 27.08 0.127 CG1 47 
354 18.3 0.06 CG2 47 
355 4.553 0.004 HA 47 
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356 2.229 0.006 HB 47 
357 6.952 0.006 HN 47 
358 111.4 0.046 N 47 
359 0.933 0.005 QD1 47 
360 1.518 0.008 QG1 47 
361 1.05 0.003 QG2 47 
362 45.86 0.08 CA 48 
363 3.761 0.008 HA1 48 
364 4.128 0.01 HA2 48 
365 7.704 0.007 HN 48 
366 110.2 0.062 N 48 
367 61.19 0 CA 49 
368 36.22 0.073 CB 49 
369 11.45 0.08 CD1 49 
370 17.82 0.136 CG2 49 
371 3.902 0.005 HA 49 
372 1.644 0.01 HB 49 
373 1.319 0.008 HG12 49 
374 1.299 0.007 HG13 49 
375 7.431 0.012 HN 49 
376 122.4 0.028 N 49 
377 0.706 0.006 QD1 49 
998 1.299 0.017 QG1 49 
378 0.766 0.006 QG2 49 
379 57.05 0.118 CA 50 
380 28.97 0.113 CB 50 
381 24.62 0.11 CD 50 
382 42.12 0 CE 50 
383 23.05 0 CG 50 
384 4.335 0.005 HA 50 
970 1.603 0.002 HB2 50 
971 1.563 0 HB3 50 
385 9.493 0.008 HN 50 
386 127.1 0.068 N 50 
388 1.245 0.012 QD 50 
389 2.936 0.009 QE 50 
390 0.995 0.008 QG 50 
391 56.85 0.075 CA 51 
392 42.04 0.186 CB 51 
393 5.385 0.006 HA 51 
394 3.231 0.004 HB2 51 
395 2.58 0.014 HB3 51 
396 9.047 0.008 HN 51 
397 121.5 0.072 N 51 
398 7.022 0.007 QD 51 

399 6.768 0.014 QE 51 
400 66.98 0.115 CA 52 
401 32.2 0 CB 52 
402 21.3 0.165 CG1 52 
403 22.51 0.071 CG2 52 
404 3.398 0.006 HA 52 
405 2.029 0.008 HB 52 
406 9.17 0.013 HN 52 
407 124.3 0.028 N 52 
408 0.81 0.009 QG1 52 
409 0.976 0.043 QG2 52 
410 48.24 0.06 CA 53 
411 3.652 0.004 HA1 53 
412 3.653 0.008 HA2 53 
413 8.949 0.01 HN 53 
414 104.1 0.041 N 53 
415 59.98 0 CA 54 
416 30.94 0 CB 54 
417 40.13 0.061 CG 54 
418 3.901 0.004 HA 54 
419 7.669 0.004 HN 54 
420 117.6 0.034 N 54 
421 2.288 0.003 QB 54 
422 2.461 0.005 QG 54 
423 57.05 0.052 CA 55 
424 42.51 0.067 CB 55 
425 24.01 0.094 CD1 55 
984 24.63 0 CD2 55 
426 26.7 0 CG 55 
427 4.202 0.006 HA 55 
428 2.208 0.002 HB2 55 
429 1.42 0.006 HB3 55 
987 1.518 0 HG 55 
430 7.434 0.005 HN 55 
431 116.9 0.049 N 55 
988 0.891 0.004 QD1 55 
989 0.899 0 QD2 55 
433 64.2 0.109 CA 56 
434 31.86 0.042 CB 56 
435 22.62 0.182 CG1 56 
436 21.06 0.065 CG2 56 
437 3.893 0.007 HA 56 
438 1.961 0.005 HB 56 
439 6.924 0.017 HN 56 
440 118.5 0.07 N 56 
441 0.774 0.006 QG1 56 
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442 0.719 0.002 QG2 56 
443 56 0.119 CA 57 
444 43.45 0.311 CB 57 
445 22.7 0.128 CD1 57 
446 23.51 0.05 CD2 57 
447 26.42 0 CG 57 
448 4.061 0.008 HA 57 
449 1.97 0.009 HB2 57 
450 1.774 0.005 HB3 57 
451 1.604 0.006 HG 57 
452 6.994 0.012 HN 57 
453 116.7 0.038 N 57 
454 0.77 0.006 QD1 57 
455 0.855 0.004 QD2 57 
456 56.79 0 CA 58 
457 34.83 0 CB 58 
458 16.86 0.129 CE 58 
459 32.51 0.108 CG 58 
460 4.401 0.005 HA 58 
461 2.448 0.006 HB2 58 
462 2.167 0.009 HB3 58 
463 2.457 0.008 HG2 58 
464 2.985 0.008 HG3 58 
465 7.253 0.006 HN 58 
466 120.8 0.085 N 58 
467 1.87 0.003 QE 58 
468 56.95 0 CA 59 
469 65.63 0.053 CB 59 
470 4.616 0.005 HA 59 
471 8.784 0.006 HN 59 
472 118.5 0.046 N 59 
473 4.422 0.009 QB 59 
474 60.18 0.222 CA 60 
475 30.01 0 CB 60 
476 35.87 0 CG 60 
477 3.966 0.009 HA 60 
478 2.06 0 HB2 60 
479 1.981 0 HB3 60 
480 9.033 0.004 HN 60 
481 123 0.07 N 60 
482 2.407 0.007 QG 60 
483 59.71 0 CA 61 
484 29.38 0 CB 61 
485 36.58 0.091 CG 61 
486 3.866 0.005 HA 61 

487 8.461 0.007 HN 61 
488 117.1 0.019 N 61 
489 1.984 0 QB 61 
490 2.269 0.006 QG 61 
491 59.17 0 CA 62 
492 30.13 0 CB 62 
493 37.6 0 CG 62 
494 3.932 0.011 HA 62 
495 7.828 0.004 HN 62 
496 121.6 0.028 N 62 
497 1.953 0.007 QB 62 
498 2.32 0.005 QG 62 
499 58.32 0.19 CA 63 
500 42.53 0.078 CB 63 
501 25.06 0.173 CD1 63 
502 24.63 0.071 CD2 63 
503 27.53 0.001 CG 63 
504 4.164 0.009 HA 63 
505 1.767 0.011 HG 63 
506 8.384 0.007 HN 63 
507 122.4 0.021 N 63 
508 1.862 0.003 QB 63 
509 0.923 0.009 QD1 63 
510 0.97 0.003 QD2 63 
511 59.11 0.055 CA 64 
512 32.88 0.063 CB 64 
513 29.5 0.067 CD 64 
514 41.62 0.055 CE 64 
515 26.61 0.215 CG 64 
516 3.819 0.006 HA 64 
517 8.196 0.006 HN 64 
518 115.7 0.044 N 64 
519 1.598 0.011 QB 64 
520 1.312 0.008 QD 64 
521 2.439 0.004 QE 64 
522 0.695 0.005 QG 64 
523 44.76 0.084 CA 65 
524 4.138 0.005 HA1 65 
525 3.614 0.006 HA2 65 
526 7.477 0.005 HN 65 
527 105.5 0.083 N 65 
528 63.89 0.079 CA 66 
529 32.19 0.049 CB 66 
530 22.69 0.117 CG1 66 
531 21.96 0.061 CG2 66 
532 3.69 0.006 HA 66 
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533 2.115 0.006 HB 66 
534 7.088 0.009 HN 66 
535 124.5 0.028 N 66 
536 1.162 0.004 QG1 66 
537 0.936 0.007 QG2 66 
538 58.58 0.029 CA 67 
539 32.17 0 CB 67 
540 28.88 0 CD 67 
541 42.17 0 CE 67 
542 24.49 0 CG 67 
543 3.927 0.005 HA 67 
544 8.374 0.005 HN 67 
545 130.9 0.071 N 67 
546 1.752 0.007 QB 67 
547 2.985 0 QE 67 
548 1.416 0.01 QG 67 
549 55.12 0.011 CA 68 
550 37.34 0.238 CB 68 
551 4.312 0.004 HA 68 
552 3.147 0.004 HB2 68 
553 3.045 0.005 HB3 68 
554 7.757 0.003 HD21 68 
555 7.003 0.008 HD22 68 
556 8.863 0.009 HN 68 
557 117.2 0.06 N 68 
558 114.9 0.032 ND2 68 
559 56.06 0 CA 69 
560 32.37 0 CB 69 
561 16.77 0.079 CE 69 
562 31.93 0.039 CG 69 
563 4.639 0.004 HA 69 
564 1.808 0.008 HB2 69 
565 2.319 0 HB3 69 
566 2.98 0.004 HG2 69 
567 2.503 0.007 HG3 69 
568 7.891 0.006 HN 69 
569 122 0.035 N 69 
570 1.989 0.006 QE 69 
571 8.06 0.005 HN 70 
572 115.5 0.23 N 70 
573 4.099 0 QA 70 
574 60.05 0 CA 71 
575 32.87 0 CB 71 
576 28.43 0 CD 71 
577 42.41 0 CE 71 

578 24.93 0 CG 71 
579 4.08 0.001 HA 71 
580 1.895 0 QB 71 
581 1.76 0 QD 71 
582 3.072 0 QE 71 
583 1.513 0 QG 71 
584 59.7 0.186 CA 72 
585 32.16 0 CB 72 
586 29.03 0 CD 72 
587 42.19 0 CE 72 
588 25.33 0 CG 72 
589 4.23 0.004 HA 72 
590 8.411 0.007 HN 72 
591 117.9 0.067 N 72 
592 1.911 0.006 QB 72 
593 1.696 0 QD 72 
594 3.052 0 QE 72 
595 1.57 0 QG 72 
596 58.68 0 CA 73 
597 64.02 0 CB 73 
598 4.47 0 HA 73 
599 7.862 0.005 HN 73 
600 118.3 0.097 N 73 
601 3.876 0 QB 73 
602 62.77 0.069 CA 74 
603 38.11 0 CB 74 
604 3.995 0.009 HA 74 
605 2.954 0.009 HB2 74 
606 3.067 0.004 HB3 74 
607 8.317 0.005 HN 74 
608 124.6 0.065 N 74 
609 7.026 0.009 QD 74 
610 6.698 0.005 QE 74 
611 57.43 0.043 CA 75 
612 40.06 0 CB 75 
613 4.21 0.003 HA 75 
614 2.812 0.002 HB2 75 
615 2.657 0.004 HB3 75 
616 8.735 0.003 HN 75 
617 119.9 0.093 N 75 
618 59.65 0 CA 76 
619 29.79 0.114 CB 76 
620 35.91 0.099 CG 76 
621 4.091 0.002 HA 76 
622 2.399 0.003 HB2 76 
623 2.23 0.003 HB3 76 
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624 2.491 0.013 HG2 76 
625 2.131 0.005 HG3 76 
626 7.686 0.009 HN 76 
627 121.8 0.016 N 76 
628 64.06 0.119 CA 77 
629 38.14 0.084 CB 77 
630 15.29 0.134 CD1 77 
631 29.97 0 CG1 77 
632 18.73 0.141 CG2 77 
633 3.576 0.005 HA 77 
634 1.763 0.003 HB 77 
635 7.916 0.013 HN 77 
636 121.1 0.024 N 77 
637 0.849 0.004 QD1 77 
638 1.667 0.005 QG1 77 
639 0.844 0.012 QG2 77 
640 55.5 0 CA 78 
641 17.31 0.067 CB 78 
642 3.8 0.003 HA 78 
643 8.841 0.008 HN 78 
644 123.8 0.029 N 78 
645 1.187 0.004 QB 78 
646 59.45 0 CA 79 
647 29.56 0 CB 79 
648 36.33 0 CG 79 
649 4.054 0.004 HA 79 
650 8.062 0.006 HN 79 
651 120.5 0.011 N 79 
652 2.248 0.001 QB 79 
653 2.411 0.001 QG 79 
654 58.77 0 CA 80 
655 32.03 0 CB 80 
656 26.07 0 CD 80 
657 42.74 0 CE 80 
658 25.44 0 CG 80 
659 4.17 0.006 HA 80 
660 1.831 0 HD2 80 
661 1.706 0 HG2 80 
662 1.589 0 HG3 80 
663 7.838 0.007 HN 80 
664 120.5 0.042 N 80 
665 1.975 0.007 QB 80 
666 3.086 0.002 QE 80 
667 58.41 0.051 CA 81 
668 39.72 0.059 CB 81 

669 24.72 1.812 CD1 81 
670 26.08 0.004 CD2 81 
671 27.21 0 CG 81 
672 3.955 0.009 HA 81 
673 2.076 0.006 HB2 81 
674 1.675 0.006 HB3 81 
675 8.712 0.009 HN 81 
676 120.8 0.091 N 81 
677 0.743 0.006 QD1 81 
989 0.74 0.002 QD2 81 
988 0.747 0.007 QQD 81 
678 57.79 0 CA 82 
679 38.89 0.124 CB 82 
680 4.062 0.005 HA 82 
681 2.943 0.003 HB2 82 
682 3.049 0.007 HB3 82 
683 7.854 0.001 HD21 82 
684 6.852 0.001 HD22 82 
685 7.885 0.003 HN 82 
686 118.9 0.053 N 82 
687 115.5 0.023 ND2 82 
688 57.48 0 CA 83 
689 40.75 0 CB 83 
690 4.357 0.002 HA 83 
691 2.909 0.01 HB2 83 
692 2.724 0.008 HB3 83 
693 8.239 0.005 HN 83 
694 122.3 0.02 N 83 
695 55.8 0 CA 84 
696 43.53 0.139 CB 84 
697 25.86 0.203 CD1 84 
698 23.84 0.127 CD2 84 
699 26.73 0 CG 84 
700 4.262 0.007 HA 84 
701 1.981 0.005 HB2 84 
702 1.778 0.004 HB3 84 
703 7.616 0.009 HN 84 
704 119 0.031 N 84 
705 0.886 0.007 QD1 84 
706 0.893 0.005 QD2 84 
707 44.07 0 CA 85 
708 4.054 0.004 HA1 85 
709 3.574 0.002 HA2 85 
710 7.692 0.003 HN 85 
711 105 0.057 N 85 
712 55.14 0 CA 86 
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713 40.19 0 CB 86 
714 4.719 0 HA 86 
716 2.945 0.004 HB3 86 
994 6.769 0.009 HD1 86 
995 6.76 0 HD2 86 
996 6.692 0.006 HE1 86 
997 6.69 0 HE2 86 
717 7.929 0.008 HN 86 
718 119.5 0.061 N 86 
721 62.82 0 CA 87 
722 31.67 0 CB 87 
723 49.81 0.044 CD 87 
724 4.32 0.003 HA 87 
725 3.476 0.004 HD2 87 
726 3.298 0.008 HD3 87 
985 2.011 0.004 HG2 87 
986 1.867 0.005 HG3 87 
727 2.441 0.004 QB 87 
728 64.95 0.081 CA 88 
729 31.79 0.019 CB 88 
730 20.93 0.05 CG1 88 
731 21.13 0.067 CG2 88 
732 3.837 0.01 HA 88 
733 1.966 0.008 HB 88 
734 9.157 0.017 HN 88 
735 123.9 0.04 N 88 
736 1.073 0.015 QG1 88 
737 1.071 0.013 QG2 88 
738 45.03 0 CA 89 
739 4.332 0.015 HA1 89 
740 3.832 0.006 HA2 89 
741 9.247 0.035 HN 89 
742 115.9 0.256 N 89 
743 64.35 0.116 CA 90 
744 69.76 0.03 CB 90 
745 21.29 0.059 CG2 90 
746 4.088 0.016 HA 90 
747 4.165 0.005 HB 90 
748 8.026 0.007 HN 90 
749 119.8 0.113 N 90 
750 1.22 0.003 QG2 90 
751 55.66 0.118 CA 91 
752 30.78 0 CB 91 
753 36.28 0 CG 91 
754 4.467 0.008 HA 91 

755 1.991 0.006 HB2 91 
756 1.942 0 HB3 91 
757 2.3 0 HG2 91 
758 2.183 0 HG3 91 
759 8.773 0.007 HN 91 
760 129.2 0.157 N 91 
761 54.16 0.125 CA 92 
762 43.38 0.327 CB 92 
763 25.89 0.15 CD1 92 
764 27.16 0 CG 92 
765 4.585 0.01 HA 92 
766 1.597 0.007 HB2 92 
767 1.471 0.004 HB3 92 
768 1.684 0.009 HG 92 
769 8.498 0.004 HN 92 
770 127.2 0.074 N 92 
771 0.738 0.004 QD1 92 
772 0.771 0.006 QD2 92 
773 56.96 0 CA 93 
774 62.65 0 CB 93 
775 4.738 0 HA 93 
776 9.063 0.005 HN 93 
777 121.6 0.058 N 93 
778 4.046 0 QB 93 
779 66.4 0.137 CA 94 
780 31.73 0.111 CB 94 
781 49.96 0.085 CD 94 
969 28.1 0 CG 94 
782 4.207 0.004 HA 94 
783 2.426 0.013 HB2 94 
784 2.406 0.001 HB3 94 
785 2.091 0.001 HG2 94 
786 2.067 0 HG3 94 
787 3.962 0.007 QD 94 
788 60.26 0 CA 95 
789 29 0 CB 95 
790 36.88 0 CG 95 
791 4.108 0.005 HA 95 
979 2.06 0 HB2 95 
980 1.967 0 HB3 95 
792 8.816 0.002 HN 95 
793 118 0.075 N 95 
795 2.295 0.002 QG 95 
796 58.87 0 CA 96 
797 29.48 0 CB 96 
798 34.74 0.125 CG 96 
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799 4.085 0.005 HA 96 
800 2.069 0 HB2 96 
801 1.932 0.005 HB3 96 
802 7.616 0.012 HE21 96 
803 6.985 0.004 HE22 96 
804 2.52 0.008 HG2 96 
805 2.408 0.006 HG3 96 
806 7.906 0.008 HN 96 
807 122.2 0.037 N 96 
808 112.8 0.02 NE2 96 
809 60.33 0.127 CA 97 
810 30.36 0 CB 97 
811 43.11 0.03 CD 97 
812 28.52 0.074 CG 97 
813 3.753 0.008 HA 97 
814 8.756 0.01 HN 97 
815 121.2 0.045 N 97 
816 1.854 0.002 QB 97 
817 3.255 0.008 QD 97 
981 1.408 0.008 QG 97 
818 59.38 0 CA 98 
819 29.38 0 CB 98 
820 36.03 0 CG 98 
821 4.043 0.006 HA 98 
822 8.134 0.003 HN 98 
823 119.3 0.039 N 98 
824 2.088 0.02 QB 98 
825 2.327 0.001 QG 98 
826 61.51 0.061 CA 99 
827 63 0 CB 99 
828 4.156 0.006 HA 99 
829 4.022 0 HB2 99 
830 3.946 0.003 HB3 99 
831 8.019 0.004 HN 99 
832 114.8 0.065 N 99 
833 58.06 0 CA 100 
834 41.53 0.078 CB 100 
835 25.82 0.094 CD1 100 
836 23.32 0 CD2 100 
837 27.21 0 CG 100 
838 4.087 0.017 HA 100 
839 1.861 0.001 HB2 100 
840 1.568 0.003 HB3 100 
841 1.411 0.016 HG 100 
842 8.065 0.013 HN 100 

843 124.3 0.047 N 100 
844 0.739 0.001 QD1 100 
845 60.33 0.118 CA 101 
846 32.46 0 CB 101 
847 29.37 0 CD 101 
848 41.98 0 CE 101 
849 25.84 0 CG 101 
850 3.772 0.006 HA 101 
851 8.302 0.009 HN 101 
852 119.8 0.05 N 101 
853 1.873 0.005 QB 101 
854 1.629 0.01 QD 101 
855 2.951 0 QE 101 
856 1.437 0 QG 101 
857 59.15 0.132 CA 102 
858 32.33 0 CB 102 
859 28.61 0 CD 102 
860 42.19 0 CE 102 
861 25.41 0 CG 102 
862 4.05 0.008 HA 102 
863 1.934 0 HB2 102 
864 1.866 0 HB3 102 
865 7.951 0.013 HN 102 
866 118.4 0.066 N 102 
867 1.632 0.008 QD 102 
868 2.971 0 QE 102 
869 1.506 0.007 QG 102 
870 59.13 0.179 CA 103 
871 30.27 0 CB 103 
872 43.62 0 CD 103 
873 27.82 0 CG 103 
874 3.998 0.012 HA 103 
875 1.964 0 HB2 103 
876 1.904 0 HB3 103 
877 7.863 0.012 HN 103 
878 121.2 0.072 N 103 
879 3.094 0 QD 103 
880 1.694 0 QG 103 
881 57.2 0.12 CA 104 
882 40.93 0 CB 104 
883 21.84 0.063 CD1 104 
884 25.88 0.162 CD2 104 
885 26.26 0 CG 104 
886 3.809 0.007 HA 104 
887 1.348 0.024 HG 104 
888 8.148 0.015 HN 104 
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alpha.prot, continued 

889 119 0.073 N 104 
890 1.801 0.006 QB 104 
891 0.463 0.004 QD1 104 
892 0.653 0.007 QD2 104 
893 59.21 0 CA 105 
894 29.66 0 CB 105 
895 36.76 0 CG 105 
896 4.014 0.009 HA 105 
897 7.987 0.004 HN 105 
898 120.2 0.042 N 105 
899 2.255 0.01 QB 105 
900 2.475 0.001 QG 105 
901 57.65 0.135 CA 106 
902 32.23 0.07 CB 106 
903 28.71 0 CD 106 
904 42.29 0 CE 106 
905 25.05 0.146 CG 106 
906 4.22 0.004 HA 106 
907 1.965 0.003 HB2 106 
908 1.876 0.008 HB3 106 
909 1.589 0 HG2 106 
910 1.535 0.005 HG3 106 
911 7.517 0.004 HN 106 
912 118.9 0.024 N 106 
913 1.707 0.006 QD 106 
914 2.985 0 QE 106 
915 56.78 0.115 CA 107 
916 41.7 0.088 CB 107 
917 25.16 0.048 CD1 107 
918 22.7 0.126 CD2 107 
919 26 0.187 CG 107 
920 4.113 0.007 HA 107 
921 1.718 0.006 HB2 107 
922 1.456 0.009 HB3 107 
923 1.713 0.002 HG 107 
924 7.503 0.007 HN 107 
925 120.7 0.066 N 107 
926 0.449 0.004 QD1 107 
927 0.769 0.006 QD2 107 

928 56.67 0 CA 108 
929 30.78 0 CB 108 
930 36.58 0 CG 108 
931 4.324 0.001 HA 108 
932 2.42 0 HB2 108 
933 2.333 0 HB3 108 
934 7.671 0.007 HN 108 
935 118.9 0.038 N 108 
936 3.005 0 QG 108 
937 54.8 0 CA 109 
938 41.25 0 CB 109 
939 4.626 0.003 HA 109 
940 2.805 0 HB2 109 
941 2.706 0 HB3 109 
942 8.042 0.004 HN 109 
943 122.2 0.072 N 109 
944 56.56 0 CA 110 
945 32.81 0 CB 110 
946 28.63 0 CD 110 
947 42.29 0 CE 110 
948 24.67 0 CG 110 
949 4.371 0.003 HA 110 
950 8.309 0.013 HN 110 
951 122.9 0.057 N 110 
952 1.916 0 QB 110 
953 1.721 0 QD 110 
954 3.034 0 QE 110 
955 1.492 0.005 QG 110 
956 45.59 0 CA 111 
957 4.005 0.002 HA1 111 
958 8.452 0.004 HN 111 
959 110.4 0.05 N 111 
960 45.46 0 CA 112 
961 3.999 0 HA1 112 
962 8.305 0.001 HN 112 
963 109.7 0.029 N 112 
964 53.21 0 CA 113 
965 39.58 0 CB 113 
966 8.364 0.002 HN 113 
967 119.7 0.046 N 113 
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hbonds.cya – contains hydrogen bond restraints 
 

hbond HN 33 O 30 
hbond HN 34 O 31 
 
hbond HN 42 O 38 
hbond HN 43 O 39 
hbond HN 44 O 40 
hbond HN 45 O 41 
hbond HN 46 O 42 
hbond HN 47 O 43 
hbond HN 48 O 44 
 
hbond HN 52 O 29 
 
hbond HN 55 O 51 
hbond HN 56 O 52 
hbond HN 57 O 53 
 
hbond HN 63 O 59 
hbond HN 64 O 60 
 
hbond HN 74 O 70 
hbond HN 75 O 71 
hbond HN 76 O 72 
hbond HN 77 O 73 
hbond HN 78 O 74 
hbond HN 79 O 75 
hbond HN 80 O 76 
hbond HN 81 O 77 
hbond HN 82 O 78 
hbond HN 83 O 79 
hbond HN 84 O 80 
 
hbond HN 100 O 96 
hbond HN 101 O 97 
hbond HN 102 O 98 
hbond HN 103 O 99 
hbond HN 104 O 100 
hbond HN 105 O 101 
hbond HN 106 O 102 
hbond HN 107 O 103 
 
hbond HN 37 OE1 76 
hbond HN 37 OE2 76 
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talos.aco – contains dihedral angle restraints from TALOS output 
 

7 ARG+ PHI -137.9 -43.5 
7 ARG+ PSI 118.6 179.8 
18 TYR PHI -79.4 -48.9 
18 TYR PSI -52.9 -29.4 
23 ASP- PHI -87.6 -45.1 
23 ASP- PSI -58.6 -16.4 
24 ALA PHI -88.2 -41.4 
24 ALA PSI -56.2 -16.1 
25 LYS+ PHI -99.6 -38.3 
25 LYS+ PSI -84.3 32.6 
26 ASP- PHI -101.5 -40.4 
26 ASP- PSI -85.2 32.8 
27 LEU PHI -100.3 -41.6 
27 LEU PSI -70 16.8 
#31 ILE PHI -73.8 -47.1 
#31 ILE PSI -47.6 -26.2 
#32 GLU- PHI -80.2 -57 
#32 GLU- PSI -51.1 -31.1 
#33 SER PHI -87 -51.3 
#33 SER PSI -53.5 -17.9 
#34 MET PHI -71.7 -51.6 
#34 MET PSI -53.3 -33.3 
#35 ASN PHI -91.4 -49.6 
#35 ASN PSI -63.3 15 
#36 LEU PHI -147.2 -45.3 
#36 LEU PSI 83.9 165.1 
38 ALA PHI -78 -44.5 
38 ALA PSI -59.6 -30 
39 ARG+ PHI -74.2 -54.2 
39 ARG+ PSI -50.8 -26 
40 CYS PHI -79.6 -58.1 
40 CYS PSI -50.9 -30.7 
41 PHE PHI -74.1 -50.5 
41 PHE PSI -55 -34.3 
42 ASN PHI -69.4 -49.4 
42 ASN PSI -57.1 -20.9 
43 CYS PHI -72.4 -52.4 
43 CYS PSI -63.2 -17.1 
44 LEU PHI -74.7 -54.7 
44 LEU PSI -48.4 -28.4 
45 ASP- PHI -76.3 -52.8 

45 ASP- PSI -51.3 -29.1 
46 LYS+ PHI -81.2 -52.3 
46 LYS+ PSI -55 -8.2 
47 ILE PHI -130.7 -64.2 
47 ILE PSI -34.8 30.6 
49 ILE PHI -115.7 -56.6 
#49 ILE PSI 107.9 153.2 
#50 LYS+ PHI -107.4 -54.1 
#50 LYS+ PSI 62.1 165.9 
52 VAL PHI -76.2 -46.4 
52 VAL PSI -52.3 -25.1 
53 GLY PHI -72.9 -52.9 
53 GLY PSI -49 -28.9 
54 GLU- PHI -77.8 -56.7 
54 GLU- PSI -50.8 -29.4 
56 VAL PHI -97.7 -46.3 
56 VAL PSI -50.4 -25.1 
57 LEU PHI -102.3 -55.1 
57 LEU PSI -47.7 -9.6 
59 SER PHI -137.3 -46.6 
59 SER PSI 121.7 196.1 
60 GLU- PHI -70.8 -47.6 
60 GLU- PSI -52.5 -26.9 
61 GLU- PHI -73.5 -53.5 
61 GLU- PSI -53.1 -27.8 
62 GLU- PHI -77 -57 
62 GLU- PSI -51.7 -29.6 
63 LEU PHI -72.6 -52.6 
63 LEU PSI -54.1 -28 
66 VAL PHI -114.9 -56.2 
66 VAL PSI 107.3 139 
67 LYS+ PHI -80.1 -41 
67 LYS+ PSI -62.2 -22 
71 LYS+ PHI -77.9 -50.6 
71 LYS+ PSI -56.6 -15 
72 LYS+ PHI -77.3 -48.5 
72 LYS+ PSI -60.3 -18.1 
73 SER PHI -88.2 -54.6 
73 SER PSI -59.8 -8.2 
74 TYR PHI -73.6 -42.9 
74 TYR PSI -68.8 -25.5 
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talos.aco, continued 

75 ASP- PHI -77.8 -50.4 
75 ASP- PSI -51.1 -24.4 
76 GLU- PHI -78.2 -57.9 
76 GLU- PSI -52.2 -27.5 
77 ILE PHI -71.3 -51.3 
77 ILE PSI -55.5 -28.9 
78 ALA PHI -73.6 -52.3 
78 ALA PSI -54.1 -26.3 
79 GLU- PHI -77.3 -53.7 
79 GLU- PSI -53.3 -33.3 
80 LYS+ PHI -81.2 -55 
80 LYS+ PSI -51.9 -30 
81 LEU PHI -77.6 -54.7 
81 LEU PSI -52.1 -32.1 
82 ASN PHI -72.4 -52.4 
82 ASN PSI -53.3 -33.3 
83 ASP- PHI -76.4 -53.2 
83 ASP- PSI -54.2 -12.8 
86 TYR PHI -135.4 -56 
86 TYR PSI 67 173.5 
88 VAL PHI -113.8 -26.1 
88 VAL PSI 113.7 148.4 
90 THR PHI -100.8 -67.3 
90 THR PSI 113.5 146.8 
91 GLU- PHI -119.2 -64 
91 GLU- PSI 112.9 156.5 
#93 SER PHI -127.6 -41 

#93 SER PSI 84.2 202.3 
95 GLU- PHI -79.5 -53.7 
95 GLU- PSI -54.9 -21.7 
96 GLN PHI -74.5 -54.5 
96 GLN PSI -52.9 -32.9 
97 ARG+ PHI -77.5 -51.5 
97 ARG+ PSI -55.7 -27.5 
98 GLU- PHI -80 -54.3 
98 GLU- PSI -58 -17.4 
99 SER PHI -74.5 -54.5 
99 SER PSI -49.9 -29.9 
100 LEU PHI -77.3 -50.9 
100 LEU PSI -50.8 -30.8 
101 LYS+ PHI -76.9 -50.3 
101 LYS+ PSI -53.9 -28.4 
102 LYS+ PHI -73.4 -53.4 
102 LYS+ PSI -52.4 -32.4 
103 ARG+ PHI -74.5 -53.5 
103 ARG+ PSI -53 -29.1 
104 LEU PHI -77.7 -54.2 
104 LEU PSI -44.8 -24.8 
105 GLU- PHI -82 -49 
105 GLU- PSI -54.6 -27.2 
106 LYS+ PHI -73.1 -52.8 
106 LYS+ PSI -57.3 -17.9 
107 LEU PHI -95.2 -45.2 
107 LEU PSI -74.1 16 
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stereoassigns.cya – contains stereospecific assignments 
 

atom stereo "27 HB2 HB3 QD1 QD2" 
atom stereo "36 QD1 QD2" 
atom stereo "41 HD1 HD2" 
atom stereo "41 HE1 HE2" 
atom stereo "44 QD1 QD2" 
atom stereo "52 QG1 QG2" 
atom stereo "55 QD1 QD2" 
atom stereo "56 QG1 QG2" 
atom stereo "57 QD1 QD2" 
atom stereo "63 QD1 QD2" 
atom stereo "66 QG1 QG2" 
atom stereo "81 QD1 QD2" 
atom stereo "84 QD1 QD2" 
atom stereo "86 HD1 HD2" 
atom stereo "86 HE1 HE2" 
atom stereo "88 QG1 QG2" 
atom stereo "92 QD1 QD2" 
atom stereo "100 QD1 QD2" 
atom stereo "104 QD1 QD2" 
atom stereo "107 QD1 QD2" 

 
alpha.upl – contains distance restraints based on NOEs 
 

55 LEU HN 56 VAL HN 3.65 #peak 3 
57 LEU HN 58 MET HN 3.64 #peak 5 
58 MET HN 59 SER HN 4.81 #peak 444 
54 GLU- HN 55 LEU HN 3.69 #peak 1 
53 GLY HN 54 GLU- HN 4.34 #peak 8 
52 VAL HN 53 GLY HN 4.13 #peak 11 
50 LYS+ HN 51 TYR HN 3.39 #peak 12 
48 GLY HN 49 ILE HN 3.56 #peak 15 
47 ILE HN 48 GLY HN 3.37 #peak 16 
46 LYS+ HN 48 GLY HN 4.45 #peak 17 
47 ILE HN 49 ILE HN 4.35 #peak 337 
45 ASP- HN 46 LYS+ HN 3.46 #peak 21 
44 LEU HN 45 ASP- HN 3.52 #peak 22 
43 CYS HN 44 LEU HN 3.48 #peak 25 
42 ASN HN 43 CYS HN 3.64 #peak 26 
41 PHE HN 42 ASN HN 3.78 #peak 28 
40 CYS HN 41 PHE HN 3.65 #peak 31 
35 ASN HN 36 LEU HN 4.56 #peak 33 
32 GLU- HN 33 SER HN 4.13 #peak 35 
33 SER HN 34 MET HN 3.71 #peak 36 
60 GLU- HN 61 GLU- HN 3.84 #peak 40 



127 
 

“alpha.upl, continued” 
61 GLU- HN 62 GLU- HN 3.67 #peak 43 
62 GLU- HN 63 LEU HN 3.6 #peak 45 
63 LEU HN 64 LYS+ HN 3.64 #peak 46 
64 LYS+ HN 65 GLY HN 3.59 #peak 48 
65 GLY HN 66 VAL HN 3.56 #peak 51 
68 ASN HN 69 MET HN 4.15 #peak 53 
75 ASP- HN 76 GLU- HN 3.63 #peak 54 
76 GLU- HN 77 ILE HN 3.56 #peak 56 
77 ILE HN 78 ALA HN 3.58 #peak 58 
78 ALA HN 79 GLU- HN 3.52 #peak 61 
79 GLU- HN 80 LYS+ HN 3.44 #peak 62 
80 LYS+ HN 81 LEU HN 3.56 #peak 93 
82 ASN HN 83 ASP- HN 3.47 #peak 65 
83 ASP- HN 84 LEU HN 3.53 #peak 66 
85 GLY HN 86 TYR HN 3.38 #peak 69 
86 TYR HN 86 TYR HD1 3.83 #peak 70 
89 GLY HN 90 THR HN 3.45 #peak 72 
98 GLU- HN 99 SER HN 3.46 #peak 74 
100 LEU HN 101 LYS+ HN 3.46 #peak 76 
101 LYS+ HN 102 LYS+ HN 3.52 #peak 77 
102 LYS+ HN 103 ARG+ HN 3.39 #peak 80 
103 ARG+ HN 104 LEU HN 3.53 #peak 81 
104 LEU HN 105 GLU- HN 3.49 #peak 83 
105 GLU- HN 106 LYS+ HN 3.42 #peak 85 
107 LEU HN 108 GLU- HN 3.7 #peak 88 
96 GLN HN 97 ARG+ HN 3.54 #peak 91 
28 SER HN 29 ALA HN 3.39 #peak 97 
29 ALA HN 30 LYS+ HN 4.33 #peak 99 
30 LYS+ HN 31 ILE HN 4.75 #peak 100 
73 SER HN 74 TYR HN 3.95 #peak 102 
74 TYR HN 75 ASP- HN 3.69 #peak 104 
95 GLU- HN 96 GLN HN 4.24 #peak 105 
27 LEU HN 28 SER HN 4.04 #peak 108 
26 ASP- HN 27 LEU HN 4.5 #peak 109 
39 ARG+ HN 40 CYS HN 4.36 #peak 32 
109 ASP- HN 109 ASP- HB3 4.01 #peak 111 
109 ASP- HN 109 ASP- HB2 4.01 #peak 112 
93 SER HN 93 SER QB 3.9 #peak 114 
76 GLU- HN 76 GLU- HB2 3.52 #peak 118 
47 ILE HN 47 ILE QD1 3.89 #peak 113 
49 ILE HN 49 ILE QD1 3.72 #peak 148 
77 ILE HN 77 ILE QG1 3.62 #peak 125 
67 LYS+ HN 67 LYS+ QB 3.35 #peak 129 
3 VAL HN 3 VAL QQG 4.05 #peak 135 
9 ILE HN 9 ILE HB 3.7 #peak 142 
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“alpha.upl, continued” 
9 ILE HN 9 ILE HG12 4.44 #peak 143 
9 ILE HN 9 ILE HG13 4.44 #peak 144 
9 ILE HN 9 ILE QG2 4.45 #peak 145 
10 ALA HN 10 ALA QB 4.17 #peak 146 
19 ALA HN 20 GLN HA 4.44 #peak 158 
19 ALA HN 19 ALA QB 3.69 #peak 160 
19 ALA QB 20 GLN HN 4.52 #peak 161 
27 LEU HN 27 LEU HG 3.77 #peak 163 
21 ARG+ HN 21 ARG+ QG 4.73 #peak 168 
23 ASP- HN 23 ASP- QB 3.71 #peak 169 
22 ASP- HA 23 ASP- HN 3.52 #peak 171 
23 ASP- HN 24 ALA HN 4.84 #peak 172 
23 ASP- QB 24 ALA HN 4.32 #peak 175 
79 GLU- HN 79 GLU- QG 4.12 #peak 177 
25 LYS+ HN 25 LYS+ QG 4.16 #peak 178 
78 ALA QB 79 GLU- HN 3.39 #peak 179 
25 LYS+ HN 25 LYS+ QB 3.7 #peak 180 
76 GLU- HA 79 GLU- HN 3.27 #peak 182 
26 ASP- HN 26 ASP- QB 3.8 #peak 186 
25 LYS+ QB 26 ASP- HN 4.1 #peak 187 
27 LEU HN 27 LEU HB3 4.14 #peak 191 
26 ASP- QB 27 LEU HN 4.48 #peak 192 
26 ASP- HA 28 SER HN 4.85 #peak 195 
28 SER HN 28 SER QB 3.97 #peak 197 
27 LEU HB3 28 SER HN 4.8 #peak 198 
27 LEU HG 28 SER HN 4.81 #peak 199 
29 ALA HN 52 VAL QG1 4.52 #peak 201 
29 ALA HN 52 VAL QG2 4.37 #peak 202 
29 ALA HN 52 VAL HB 4.27 #peak 204 
28 SER QB 29 ALA HN 4.16 #peak 205 
26 ASP- HA 29 ALA HN 4.46 #peak 208 
27 LEU HN 29 ALA HN 4.75 #peak 209 
30 LYS+ HN 30 LYS+ HB2 3.57 #peak 212 
30 LYS+ HN 30 LYS+ HB3 3.57 #peak 213 
29 ALA QB 30 LYS+ HN 3.37 #peak 214 
31 ILE HN 31 ILE QG2 3.53 #peak 216 
31 ILE HN 31 ILE HG13 3.84 #peak 217 
31 ILE HN 31 ILE HG12 3.84 #peak 218 
31 ILE HN 31 ILE HB 3.84 #peak 219 
31 ILE HN 50 LYS+ HA 4.65 #peak 221 
31 ILE HN 51 TYR QD 4.62 #peak 224 
31 ILE HN 32 GLU- HN 4.17 #peak 227 
32 GLU- HN 41 PHE HE2 4.26 #peak 229 
30 LYS+ HA 32 GLU- HN 4.65 #peak 230 
32 GLU- HN 32 GLU- QG 4.15 #peak 233 
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“alpha.upl, continued” 
30 LYS+ HB2 32 GLU- HN 4.2 #peak 235 
31 ILE HG12 32 GLU- HN 4.58 #peak 236 
31 ILE HG13 32 GLU- HN 4.58 #peak 237 
31 ILE QG2 32 GLU- HN 4.39 #peak 238 
32 GLU- QB 33 SER HN 4.6 #peak 240 
32 GLU- QG 33 SER HN 4.5 #peak 241 
31 ILE HA 33 SER HN 4.54 #peak 243 
34 MET HN 35 ASN HN 4.44 #peak 247 
33 SER QB 34 MET HN 4.64 #peak 250 
32 GLU- HA 34 MET HN 4.69 #peak 251 
31 ILE HA 34 MET HN 4.52 #peak 252 
34 MET HN 34 MET HG2 3.98 #peak 253 
34 MET HN 34 MET HG3 3.98 #peak 254 
34 MET HN 34 MET HB2 3.94 #peak 255 
34 MET HN 34 MET HB3 3.94 #peak 736 
34 MET HN 36 LEU HG 4.57 #peak 257 
34 MET HN 36 LEU QD1 4.29 #peak 258 
35 ASN HB2 36 LEU HN 5.08 #peak 262 
34 MET HB3 36 LEU HN 4.75 #peak 263 
36 LEU HN 36 LEU HB2 4.1 #peak 264 
36 LEU HN 36 LEU HG 3.5 #peak 265 
36 LEU HN 36 LEU HB3 4.1 #peak 266 
36 LEU HN 36 LEU QQD 3.62 #peak 267 
36 LEU QD2 37 SER HN 3.9 #peak 268 
36 LEU HB3 37 SER HN 4.32 #peak 269 
36 LEU HG 37 SER HN 4.83 #peak 270 
36 LEU HB2 37 SER HN 4.32 #peak 271 
37 SER HN 40 CYS QB 4.38 #peak 272 
37 SER HN 37 SER QB 3.7 #peak 273 
36 LEU HA 37 SER HN 3.2 #peak 274 
38 ALA QB 39 ARG+ HN 3.71 #peak 87 
61 GLU- HN 61 GLU- QB 3.09 #peak 278 
37 SER QB 40 CYS HN 4.49 #peak 282 
40 CYS HN 40 CYS QB 3.45 #peak 284 
38 ALA QB 40 CYS HN 4.74 #peak 285 
41 PHE HN 41 PHE HB3 3.58 #peak 288 
41 PHE HN 41 PHE HB2 3.58 #peak 289 
38 ALA HA 41 PHE HN 4.17 #peak 292 
41 PHE HD1 42 ASN HN 3.93 #peak 293 
39 ARG+ HA 42 ASN HN 4.3 #peak 295 
42 ASN HB3 43 CYS HN 3.94 #peak 300 
42 ASN HB2 43 CYS HN 3.94 #peak 301 
43 CYS HN 43 CYS HB2 3.63 #peak 302 
40 CYS HA 43 CYS HN 4.27 #peak 303 
41 PHE HA 44 LEU HN 4.71 #peak 307 
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“alpha.upl, continued” 
43 CYS HB2 44 LEU HN 4.24 #peak 100 
44 LEU HN 44 LEU QB 3.53 #peak 310 
44 LEU HN 44 LEU HG 3.71 #peak 311 
31 ILE QD1 45 ASP- HN 4.56 #peak 313 
81 LEU HN 81 LEU HB3 3.82 #peak 558 
97 ARG+ HN 97 ARG+ QB 3.26 #peak 315 
45 ASP- HN 45 ASP- HB2 3.47 #peak 316 
97 ARG+ HN 97 ARG+ QD 4.54 #peak 318 
42 ASN HA 45 ASP- HN 3.8 #peak 322 
44 LEU HN 46 LYS+ HN 4.77 #peak 323 
43 CYS HA 46 LYS+ HN 4.07 #peak 324 
46 LYS+ HN 46 LYS+ HB2 3.44 #peak 327 
46 LYS+ HN 46 LYS+ HB3 3.44 #peak 328 
46 LYS+ HN 46 LYS+ QD 4.2 #peak 329 
46 LYS+ HN 46 LYS+ QG 3.56 #peak 330 
47 ILE HN 47 ILE QG1 3.41 #peak 331 
46 LYS+ HB3 47 ILE HN 4.53 #peak 332 
47 ILE HN 47 ILE HB 4.18 #peak 333 
47 ILE HN 48 GLY HA1 5.03 #peak 334 
46 LYS+ HN 47 ILE HN 3.71 #peak 19 
48 GLY HN 49 ILE HB 4.76 #peak 342 
47 ILE QG1 48 GLY HN 4.25 #peak 343 
47 ILE QG2 48 GLY HN 4 #peak 122 
47 ILE QG1 49 ILE HN 3.95 #peak 348 
49 ILE HN 49 ILE HB 3.33 #peak 349 
49 ILE HN 50 LYS+ HN 4.82 #peak 353 
49 ILE HA 50 LYS+ HN 3.28 #peak 355 
49 ILE HB 50 LYS+ HN 4.78 #peak 356 
50 LYS+ HN 50 LYS+ QD 3.98 #peak 357 
50 LYS+ HN 50 LYS+ QG 4.47 #peak 358 
49 ILE QG2 50 LYS+ HN 3.92 #peak 359 
92 LEU QD2 93 SER HN 3.88 #peak 360 
50 LYS+ QG 51 TYR HN 4.36 #peak 361 
49 ILE QG1 51 TYR HN 4.14 #peak 362 
92 LEU HB3 93 SER HN 4.29 #peak 363 
92 LEU HB2 93 SER HN 4.29 #peak 364 
49 ILE HA 51 TYR HN 4.02 #peak 367 
91 GLU- HA 93 SER HN 4.17 #peak 369 
92 LEU HA 93 SER HN 3.16 #peak 370 
51 TYR HN 51 TYR QD 3.98 #peak 372 
31 ILE HN 52 VAL HN 4.5 #peak 373 
29 ALA HN 52 VAL HN 3.93 #peak 374 
51 TYR HA 52 VAL HN 3.28 #peak 375 
30 LYS+ HA 52 VAL HN 4.14 #peak 376 
87 PRO HA 88 VAL HN 3.08 #peak 377 
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“alpha.upl, continued” 
51 TYR HB2 52 VAL HN 4.59 #peak 380 
51 TYR HB3 52 VAL HN 4.59 #peak 381 
52 VAL HN 52 VAL HB 3.54 #peak 382 
88 VAL HN 88 VAL HB 3.36 #peak 383 
29 ALA QB 52 VAL HN 4.56 #peak 384 
52 VAL HN 52 VAL QG2 3.26 #peak 385 
52 VAL HN 52 VAL QG1 3.74 #peak 386 
52 VAL QG1 53 GLY HN 4.02 #peak 389 
52 VAL QG2 53 GLY HN 4.69 #peak 390 
27 LEU HB2 53 GLY HN 4.53 #peak 391 
52 VAL HB 53 GLY HN 3.9 #peak 392 
51 TYR HB3 53 GLY HN 4.6 #peak 393 
51 TYR HB2 53 GLY HN 4.6 #peak 394 
27 LEU HA 53 GLY HN 4.22 #peak 396 
51 TYR HN 54 GLU- HN 4.78 #peak 397 
51 TYR QD 54 GLU- HN 4.66 #peak 398 
54 GLU- HN 54 GLU- QG 3.89 #peak 402 
54 GLU- HN 54 GLU- QB 4.13 #peak 403 
27 LEU HB3 54 GLU- HN 4.76 #peak 404 
54 GLU- HN 57 LEU QD1 4.05 #peak 405 
54 GLU- HN 104 LEU QD2 4.3 #peak 406 
49 ILE QG2 55 LEU HN 3.8 #peak 407 
52 VAL HA 55 LEU HN 4.62 #peak 410 
55 LEU HB2 56 VAL HN 4.33 #peak 416 
55 LEU HB3 56 VAL HN 4.33 #peak 418 
55 LEU QD1 56 VAL HN 4.36 #peak 419 
56 VAL HN 56 VAL QG1 3.23 #peak 420 
57 LEU HN 57 LEU HG 3.89 #peak 423 
57 LEU HN 57 LEU HB3 3.91 #peak 424 
57 LEU HN 57 LEU HB2 3.91 #peak 425 
55 LEU HA 58 MET HN 4.43 #peak 429 
56 VAL HA 58 MET HN 4.32 #peak 431 
58 MET HN 58 MET HB2 3.95 #peak 433 
58 MET HN 58 MET HB3 3.95 #peak 434 
57 LEU HB3 58 MET HN 4.62 #peak 435 
59 SER HN 62 GLU- QB 4.05 #peak 436 
59 SER HN 62 GLU- QG 3.67 #peak 438 
58 MET HG3 59 SER HN 4.74 #peak 439 
57 LEU HA 59 SER HN 3.93 #peak 440 
59 SER HN 59 SER QB 3.1 #peak 441 
59 SER HN 60 GLU- HN 4.7 #peak 445 
59 SER HA 60 GLU- HN 3.25 #peak 446 
59 SER QB 60 GLU- HN 3.69 #peak 447 
60 GLU- HN 60 GLU- QG 4.57 #peak 449 
60 GLU- HN 60 GLU- HB2 3.5 #peak 450 
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“alpha.upl, continued” 
60 GLU- HN 60 GLU- HB3 3.5 #peak 451 
60 GLU- HN 88 VAL QG2 4.36 #peak 452 
61 GLU- HN 61 GLU- QG 3.75 #peak 453 
59 SER QB 61 GLU- HN 4.24 #peak 455 
59 SER HA 61 GLU- HN 4.6 #peak 456 
59 SER QB 62 GLU- HN 4.66 #peak 457 
62 GLU- HN 62 GLU- QG 3.3 #peak 459 
62 GLU- HN 62 GLU- QB 3.54 #peak 460 
63 LEU HN 63 LEU HG 3.48 #peak 461 
63 LEU HN 63 LEU QB 3.34 #peak 462 
62 GLU- QG 63 LEU HN 3.9 #peak 464 
64 LYS+ HN 74 TYR QE 4.65 #peak 467 
63 LEU QB 64 LYS+ HN 3.87 #peak 470 
64 LYS+ HN 64 LYS+ QB 3.27 #peak 471 
64 LYS+ HN 64 LYS+ QD 3.62 #peak 472 
64 LYS+ HN 64 LYS+ QG 4.2 #peak 473 
64 LYS+ QB 65 GLY HN 3.97 #peak 475 
62 GLU- HA 65 GLY HN 4.37 #peak 478 
63 LEU HN 65 GLY HN 4.94 #peak 480 
63 LEU HA 66 VAL HN 3.84 #peak 481 
64 LYS+ HA 66 VAL HN 4.47 #peak 482 
66 VAL HN 66 VAL QG1 3.12 #peak 486 
66 VAL HN 66 VAL QG2 3.72 #peak 487 
47 ILE QG2 67 LYS+ HN 4.48 #peak 489 
67 LYS+ HN 67 LYS+ QG 4.36 #peak 491 
66 VAL HA 67 LYS+ HN 3.02 #peak 492 
66 VAL HN 67 LYS+ HN 4.61 #peak 493 
67 LYS+ HA 68 ASN HN 3.57 #peak 495 
67 LYS+ QG 68 ASN HN 4.88 #peak 496 
66 VAL QG2 69 MET HN 4.02 #peak 497 
69 MET HN 69 MET HB2 3.44 #peak 498 
96 GLN HN 96 GLN HB3 3.97 #peak 499 
96 GLN HN 96 GLN HB2 3.97 #peak 500 
69 MET HN 69 MET HB3 3.44 #peak 501 
96 GLN HN 96 GLN HG3 3.74 #peak 502 
96 GLN HN 96 GLN HG2 3.74 #peak 503 
69 MET HN 69 MET HG2 4.43 #peak 504 
68 ASN HB2 69 MET HN 4.67 #peak 505 
67 LYS+ HA 69 MET HN 4.11 #peak 506 
72 LYS+ HN 72 LYS+ QB 3.82 #peak 510 
72 LYS+ QB 73 SER HN 4.03 #peak 513 
74 TYR HN 74 TYR HB2 3.58 #peak 515 
74 TYR HN 74 TYR HB3 3.58 #peak 516 
71 LYS+ HA 74 TYR HN 3.93 #peak 518 
74 TYR QD 75 ASP- HN 3.8 #peak 519 
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74 TYR HB3 75 ASP- HN 3.96 #peak 522 
74 TYR HB2 75 ASP- HN 3.96 #peak 523 
75 ASP- HN 75 ASP- HB2 3.67 #peak 524 
75 ASP- HN 75 ASP- HB3 3.67 #peak 525 
76 GLU- HN 76 GLU- HG3 4.16 #peak 526 
75 ASP- HB3 76 GLU- HN 4.11 #peak 527 
75 ASP- HB2 76 GLU- HN 4.11 #peak 528 
74 TYR HA 77 ILE HN 4.42 #peak 531 
76 GLU- HB3 77 ILE HN 4.2 #peak 534 
77 ILE HN 77 ILE QG2 3.5 #peak 535 
77 ILE QG2 78 ALA HN 3.63 #peak 536 
78 ALA HN 78 ALA QB 3.02 #peak 537 
77 ILE QG1 78 ALA HN 4.39 #peak 538 
76 GLU- HA 78 ALA HN 4.53 #peak 542 
75 ASP- HA 78 ALA HN 4.14 #peak 543 
80 LYS+ HN 80 LYS+ HG3 4.13 #peak 544 
80 LYS+ HN 80 LYS+ HG2 4.13 #peak 545 
80 LYS+ HN 80 LYS+ QB 3.54 #peak 547 
77 ILE HA 80 LYS+ HN 4.2 #peak 548 
81 LEU HN 82 ASN HN 3.61 #peak 550 
78 ALA HA 81 LEU HN 4.22 #peak 553 
77 ILE HA 81 LEU HN 4.74 #peak 554 
81 LEU HN 81 LEU HB2 3.82 #peak 555 
80 LYS+ QB 81 LEU HN 3.9 #peak 556 
45 ASP- HN 45 ASP- HB3 3.47 #peak 557 
55 LEU QD1 81 LEU HN 3.56 #peak 559 
81 LEU QD1 82 ASN HN 4.49 #peak 560 
81 LEU HB3 82 ASN HN 4.23 #peak 561 
81 LEU HB2 82 ASN HN 4.23 #peak 562 
80 LYS+ HA 83 ASP- HN 3.82 #peak 568 
83 ASP- HN 83 ASP- HB3 3.59 #peak 571 
84 LEU HN 84 LEU QD1 3.76 #peak 572 
83 ASP- HB3 84 LEU HN 4.28 #peak 575 
83 ASP- HB2 84 LEU HN 4.28 #peak 576 
81 LEU HA 84 LEU HN 4.19 #peak 577 
82 ASN HA 84 LEU HN 4.54 #peak 578 
80 LYS+ HA 84 LEU HN 4.67 #peak 579 
84 LEU HN 86 TYR HN 4.26 #peak 582 
84 LEU HN 85 GLY HN 3.7 #peak 583 
83 ASP- HN 85 GLY HN 4.83 #peak 584 
83 ASP- HA 85 GLY HN 4.74 #peak 585 
84 LEU HB2 85 GLY HN 4.62 #peak 589 
84 LEU HB3 85 GLY HN 4.62 #peak 590 
84 LEU QD1 86 TYR HN 4.81 #peak 591 
84 LEU HB3 86 TYR HN 4.76 #peak 592 
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84 LEU HB2 86 TYR HN 4.76 #peak 593 
86 TYR HN 87 PRO HD3 4.6 #peak 595 
88 VAL HN 89 GLY HN 4.53 #peak 599 
87 PRO QB 88 VAL HN 4.24 #peak 600 
88 VAL QG2 90 THR HN 4.46 #peak 606 
90 THR HN 92 LEU QD1 4.66 #peak 607 
91 GLU- HN 91 GLU- HB3 4.09 #peak 608 
91 GLU- HA 92 LEU HN 2.96 #peak 611 
92 LEU HN 92 LEU HG 3.67 #peak 613 
92 LEU HN 92 LEU HB2 4.13 #peak 614 
95 GLU- HN 95 GLU- QG 4.36 #peak 619 
95 GLU- HN 95 GLU- HB2 3.81 #peak 620 
95 GLU- HN 95 GLU- HB3 3.81 #peak 621 
94 PRO QD 95 GLU- HN 4.45 #peak 622 
98 GLU- HN 98 GLU- QG 3.67 #peak 624 
97 ARG+ HN 98 GLU- HN 3.64 #peak 627 
99 SER HN 99 SER HB2 3.5 #peak 629 
99 SER HN 99 SER HB3 3.5 #peak 630 
98 GLU- QG 99 SER HN 4.36 #peak 631 
98 GLU- QB 99 SER HN 3.56 #peak 632 
97 ARG+ HA 100 LEU HN 4.14 #peak 635 
100 LEU HN 100 LEU HB2 3.43 #peak 636 
100 LEU HN 100 LEU HG 4.33 #peak 638 
57 LEU QD1 101 LYS+ HN 4.02 #peak 639 
101 LYS+ HN 101 LYS+ QD 3.6 #peak 640 
101 LYS+ HN 101 LYS+ QB 3.14 #peak 641 
99 SER HA 102 LYS+ HN 4.11 #peak 644 
102 LYS+ HN 102 LYS+ HB2 3.27 #peak 647 
102 LYS+ HN 102 LYS+ HB3 3.27 #peak 648 
102 LYS+ HN 102 LYS+ QD 3.62 #peak 649 
102 LYS+ HN 102 LYS+ QG 4 #peak 650 
102 LYS+ QG 103 ARG+ HN 4.27 #peak 651 
103 ARG+ HN 103 ARG+ QG 4 #peak 652 
103 ARG+ HN 103 ARG+ HB2 3.31 #peak 653 
100 LEU HA 103 ARG+ HN 3.78 #peak 655 
104 LEU HN 104 LEU QB 3.28 #peak 656 
57 LEU QD1 104 LEU HN 4.42 #peak 657 
104 LEU HN 104 LEU QD2 4.06 #peak 658 
104 LEU HN 104 LEU QD1 3.95 #peak 659 
104 LEU QD1 105 GLU- HN 4.6 #peak 660 
104 LEU QD2 105 GLU- HN 4.8 #peak 661 
104 LEU HG 105 GLU- HN 4.15 #peak 662 
105 GLU- HN 105 GLU- QB 4.1 #peak 663 
105 GLU- HN 105 GLU- QG 3.67 #peak 664 
102 LYS+ HA 105 GLU- HN 3.44 #peak 666 
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106 LYS+ HN 106 LYS+ HB3 3.5 #peak 670 
106 LYS+ HN 106 LYS+ QD 4.02 #peak 671 
106 LYS+ HN 106 LYS+ HG2 3.99 #peak 672 
107 LEU HN 107 LEU QD1 3.77 #peak 259 
107 LEU HN 107 LEU QD2 4.19 #peak 675 
106 LYS+ HB3 107 LEU HN 4.2 #peak 678 
106 LYS+ HB2 107 LEU HN 4.2 #peak 679 
108 GLU- HN 109 ASP- HN 4.43 #peak 89 
107 LEU HB2 108 GLU- HN 4.32 #peak 688 
107 LEU QD2 108 GLU- HN 4.71 #peak 690 
106 LYS+ HA 109 ASP- HN 4.78 #peak 691 
110 LYS+ HN 110 LYS+ QG 4.65 #peak 696 
69 MET HA 70 GLY HN 3.53 #peak 703 
68 ASN HA 70 GLY HN 4.01 #peak 704 
69 MET HB2 70 GLY HN 4.81 #peak 706 
69 MET HB3 70 GLY HN 4.81 #peak 707 
90 THR HB 91 GLU- HN 4.64 #peak 710 
53 GLY HN 104 LEU QD2 4.85 #peak 713 
97 ARG+ HA 99 SER HN 4.84 #peak 714 
54 GLU- HN 104 LEU QD1 4.53 #peak 247 
79 GLU- HN 79 GLU- QB 4.02 #peak 716 
27 LEU HB3 53 GLY HN 4.78 #peak 717 
103 ARG+ HN 103 ARG+ HB3 3.31 #peak 718 
91 GLU- HN 91 GLU- HB2 4.09 #peak 719 
91 GLU- HN 91 GLU- HG2 5.05 #peak 720 
91 GLU- HN 91 GLU- HG3 5.05 #peak 721 
60 GLU- QG 61 GLU- HN 4.7 #peak 722 
17 ASP- HB2 18 TYR HN 5.21 #peak 727 
17 ASP- HB3 18 TYR HN 5.21 #peak 728 
66 VAL HN 69 MET QE 3.54 #peak 276 
35 ASN HB3 36 LEU HN 5.08 #peak 730 
30 LYS+ HB3 32 GLU- HN 4.2 #peak 732 
36 LEU HN 37 SER HN 5.06 #peak 734 
34 MET HB2 36 LEU HN 4.75 #peak 735 
38 ALA QB 42 ASN HN 4.8 #peak 736 
46 LYS+ HB2 47 ILE HN 4.53 #peak 737 
49 ILE QG2 51 TYR HN 3.87 #peak 740 
57 LEU HB2 58 MET HN 4.62 #peak 742 
57 LEU HG 58 MET HN 4.88 #peak 743 
59 SER HN 62 GLU- HN 4.48 #peak 744 
83 ASP- HN 83 ASP- HB2 3.59 #peak 745 
88 VAL HN 88 VAL QG1 3.22 #peak 746 
88 VAL QG2 89 GLY HN 3.79 #peak 749 
90 THR QG2 91 GLU- HN 4.02 #peak 750 
92 LEU HN 92 LEU QD2 4.14 #peak 751 
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98 GLU- HN 98 GLU- QB 3.13 #peak 752 
105 GLU- HA 108 GLU- HN 4.69 #peak 755 
38 ALA QB 42 ASN HD22 4.3 #peak 358 
82 ASN HA 82 ASN HD21 4.74 #peak 773 
82 ASN HA 82 ASN HD22 4.74 #peak 774 
79 GLU- HA 81 LEU HN 4.53 #peak 780 
28 SER HA 53 GLY HN 5.2 #peak 783 
95 GLU- HA 98 GLU- HN 3.99 #peak 784 
58 MET HG2 59 SER HN 4.74 #peak 786 
76 GLU- HN 76 GLU- HG2 4.16 #peak 787 
55 LEU QD2 88 VAL HN 4.65 #peak 788 
27 LEU HA 27 LEU QD2 3.72 #peak 1 
27 LEU HB2 27 LEU QD2 4.17 #peak 3 
27 LEU QD2 52 VAL HB 4.23 #peak 7 
26 ASP- QB 27 LEU QD2 4.93 #peak 8 
27 LEU QD2 52 VAL HA 5.34 #peak 10 
26 ASP- HA 27 LEU QD2 4.97 #peak 12 
27 LEU QD2 86 TYR HD1 4.51 #peak 13 
27 LEU QD2 29 ALA HN 4.75 #peak 14 
27 LEU QD2 54 GLU- HN 5.32 #peak 15 
27 LEU QD2 28 SER HN 4.89 #peak 16 
27 LEU HN 27 LEU QD2 4.35 #peak 17 
26 ASP- HN 27 LEU QD2 5.19 #peak 18 
27 LEU QD2 53 GLY HN 4.53 #peak 19 
27 LEU QD2 52 VAL HN 5.46 #peak 20 
27 LEU HB2 27 LEU QD1 3.72 #peak 22 
54 GLU- QG 104 LEU QD2 4.03 #peak 24 
104 LEU HA 104 LEU QD2 3.68 #peak 26 
27 LEU HA 27 LEU QD1 3.79 #peak 27 
27 LEU QD1 86 TYR HD1 4.21 #peak 28 
51 TYR QD 104 LEU QD2 4.15 #peak 29 
27 LEU HN 27 LEU QD1 3.99 #peak 31 
28 SER QB 107 LEU QD1 3.74 #peak 254 
28 SER QB 107 LEU QD2 3.81 #peak 34 
29 ALA HN 29 ALA QB 2.96 #peak 203 
28 SER HN 29 ALA QB 4.16 #peak 36 
29 ALA QB 33 SER QB 3.93 #peak 39 
29 ALA QB 52 VAL HB 4.03 #peak 40 
29 ALA QB 52 VAL QG2 3.23 #peak 320 
29 ALA QB 52 VAL QG1 3.64 #peak 43 
31 ILE QD1 55 LEU QD1 3.1 #peak 45 
31 ILE QD1 49 ILE HB 3.64 #peak 48 
31 ILE HA 31 ILE QD1 3.89 #peak 51 
31 ILE QD1 44 LEU HA 4.06 #peak 52 
31 ILE QD1 55 LEU HA 4.31 #peak 53 
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31 ILE QD1 50 LYS+ HA 4.24 #peak 54 
30 LYS+ HA 31 ILE QD1 5 #peak 55 
31 ILE QD1 51 TYR HA 5.33 #peak 56 
31 ILE QD1 41 PHE HD2 3.75 #peak 57 
31 ILE QD1 41 PHE HE2 3.82 #peak 58 
31 ILE QD1 55 LEU HN 4.59 #peak 59 
31 ILE QD1 54 GLU- HN 4.74 #peak 60 
31 ILE HN 31 ILE QD1 4.27 #peak 61 
31 ILE QD1 51 TYR HN 5.01 #peak 62 
31 ILE QD1 32 GLU- HN 4.61 #peak 63 
31 ILE QG2 31 ILE HG13 3.83 #peak 66 
31 ILE QG2 31 ILE QD1 2.86 #peak 44 
31 ILE QG2 31 ILE HG12 3.83 #peak 71 
31 ILE QG2 52 VAL HA 3.91 #peak 73 
31 ILE QG2 41 PHE HD2 4.03 #peak 76 
31 ILE QG2 41 PHE HE2 4.23 #peak 77 
90 THR HA 90 THR QG2 3.87 #peak 80 
33 SER HN 33 SER QB 3.47 #peak 245 
90 THR HA 91 GLU- HN 3.32 #peak 609 
38 ALA QB 42 ASN HD21 4.3 #peak 86 
38 ALA HN 38 ALA QB 3.27 #peak 88 
38 ALA QB 41 PHE HN 4.32 #peak 286 
43 CYS HB3 66 VAL QG2 4.06 #peak 90 
43 CYS HB2 66 VAL QG2 4.06 #peak 91 
43 CYS HB2 44 LEU HG 4.43 #peak 92 
43 CYS HB3 44 LEU HG 4.43 #peak 93 
43 CYS HB3 69 MET QE 3.86 #peak 95 
40 CYS HA 43 CYS HB2 4.03 #peak 96 
40 CYS HA 43 CYS HB3 4.03 #peak 97 
43 CYS HB3 44 LEU HN 4.24 #peak 101 
43 CYS HN 43 CYS HB3 3.63 #peak 102 
42 ASN HN 43 CYS HB2 4.91 #peak 104 
42 ASN HN 43 CYS HB3 4.91 #peak 105 
47 ILE QD1 69 MET QE 3.59 #peak 108 
47 ILE HB 47 ILE QD1 3.24 #peak 109 
47 ILE QD1 66 VAL HA 4.06 #peak 111 
44 LEU HA 47 ILE QD1 3.79 #peak 112 
47 ILE QD1 66 VAL HN 4.3 #peak 114 
47 ILE QD1 49 ILE HN 4.13 #peak 115 
47 ILE QD1 48 GLY HN 4.31 #peak 116 
46 LYS+ HN 47 ILE QD1 4.5 #peak 117 
47 ILE QD1 67 LYS+ HN 4.63 #peak 118 
46 LYS+ HN 47 ILE QG2 4.3 #peak 121 
47 ILE QG2 49 ILE HN 4.26 #peak 123 
47 ILE HN 47 ILE QG2 3.55 #peak 124 
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47 ILE HA 47 ILE QG2 3.11 #peak 125 
47 ILE QG2 58 MET QE 3.56 #peak 127 
47 ILE QG2 47 ILE QG1 3.14 #peak 128 
47 ILE QG2 49 ILE QD1 3.42 #peak 129 
47 ILE HN 48 GLY HA2 5.03 #peak 135 
47 ILE QD1 49 ILE QD1 2.75 #peak 138 
47 ILE QG1 49 ILE QD1 3.49 #peak 140 
49 ILE HB 49 ILE QD1 3.43 #peak 141 
49 ILE QD1 58 MET QE 2.64 #peak 272 
47 ILE HB 49 ILE QD1 3.76 #peak 143 
49 ILE QD1 58 MET HG2 4.32 #peak 144 
49 ILE QD1 58 MET HG3 4.32 #peak 145 
49 ILE HA 49 ILE QD1 3.4 #peak 146 
49 ILE QD1 55 LEU HA 4.01 #peak 147 
48 GLY HN 49 ILE QD1 4.13 #peak 149 
49 ILE QD1 50 LYS+ HN 4.23 #peak 150 
49 ILE HA 49 ILE QG2 3.69 #peak 151 
49 ILE HN 49 ILE QG2 3.96 #peak 152 
52 VAL HA 52 VAL QG1 3.57 #peak 430 
27 LEU HA 52 VAL QG1 3.7 #peak 156 
27 LEU QD2 52 VAL QG1 3.58 #peak 157 
27 LEU QD2 52 VAL QG2 4.36 #peak 158 
34 MET HG3 52 VAL QG2 3.89 #peak 159 
34 MET HG2 52 VAL QG2 3.89 #peak 160 
52 VAL HA 52 VAL QG2 3.56 #peak 161 
31 ILE HA 52 VAL QG2 3.73 #peak 162 
29 ALA HA 52 VAL QG2 4.23 #peak 163 
51 TYR HA 52 VAL QG2 4.22 #peak 164 
27 LEU HB2 53 GLY HA1 5.34 #peak 169 
56 VAL HA 56 VAL QG2 3.49 #peak 173 
27 LEU QD2 56 VAL QG2 3.91 #peak 176 
56 VAL QG2 86 TYR HD1 3.89 #peak 177 
56 VAL HN 56 VAL QG2 4.01 #peak 178 
66 VAL QG1 67 LYS+ HN 3.84 #peak 184 
66 VAL HA 66 VAL QG1 3.5 #peak 187 
47 ILE QG1 66 VAL QG1 3.91 #peak 192 
44 LEU QD2 66 VAL QG1 3.55 #peak 193 
66 VAL QG2 67 LYS+ HN 3.62 #peak 488 
66 VAL HN 66 VAL HB 3.17 #peak 484 
77 ILE HA 77 ILE QD1 3.74 #peak 201 
74 TYR HA 77 ILE QD1 3.66 #peak 204 
77 ILE HN 77 ILE QD1 3.96 #peak 205 
77 ILE QD1 78 ALA HN 4.38 #peak 206 
77 ILE HA 77 ILE QG2 3.63 #peak 207 
74 TYR HA 77 ILE QG2 3.55 #peak 208 
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74 TYR QD 77 ILE QG2 4.16 #peak 210 
74 TYR QD 78 ALA QB 4.32 #peak 214 
74 TYR QE 78 ALA QB 4.12 #peak 215 
78 ALA QB 88 VAL HB 3.97 #peak 218 
90 THR HN 90 THR QG2 3.98 #peak 605 
86 TYR HD2 90 THR QG2 4.05 #peak 222 
90 THR QG2 92 LEU HG 4.05 #peak 225 
90 THR QG2 92 LEU QD2 3.39 #peak 226 
100 LEU HA 100 LEU QD1 3.34 #peak 227 
81 LEU QD1 86 TYR HD1 4.1 #peak 228 
100 LEU HN 100 LEU QD1 3.84 #peak 229 
92 LEU HN 92 LEU QD1 3.99 #peak 230 
57 LEU QD1 104 LEU QD1 3.24 #peak 233 
104 LEU QB 104 LEU QD1 3.43 #peak 235 
54 GLU- QG 104 LEU QD1 4.36 #peak 236 
51 TYR HB3 104 LEU QD1 4.47 #peak 237 
54 GLU- QB 104 LEU QD1 4.5 #peak 238 
51 TYR HB2 104 LEU QD1 4.47 #peak 239 
104 LEU HA 104 LEU QD1 3.47 #peak 241 
28 SER QB 104 LEU QD1 3.87 #peak 242 
28 SER HA 104 LEU QD1 3.93 #peak 243 
51 TYR QE 104 LEU QD1 4.47 #peak 244 
51 TYR QD 104 LEU QD1 3.95 #peak 245 
104 LEU QD1 107 LEU HN 4.68 #peak 246 
53 GLY HN 104 LEU QD1 4.54 #peak 248 
104 LEU HA 107 LEU QD1 3.69 #peak 253 
107 LEU HA 107 LEU QD1 3.71 #peak 255 
28 SER HA 107 LEU QD1 3.88 #peak 256 
51 TYR QE 107 LEU QD1 3.98 #peak 257 
51 TYR QD 107 LEU QD1 4.12 #peak 258 
107 LEU QD1 108 GLU- HN 4.28 #peak 260 
57 LEU QD1 101 LYS+ HA 3.56 #peak 262 
34 MET HN 34 MET QE 3.72 #peak 264 
58 MET QE 63 LEU HN 3.6 #peak 265 
58 MET QE 66 VAL HN 3.72 #peak 266 
58 MET QE 74 TYR QE 4.53 #peak 267 
58 MET QE 63 LEU HA 2.99 #peak 268 
58 MET QE 62 GLU- HA 3.34 #peak 269 
58 MET QE 66 VAL HA 3.82 #peak 270 
58 MET HG3 58 MET QE 3.23 #peak 271 
47 ILE QD1 58 MET QE 2.45 #peak 273 
58 MET QE 66 VAL QG1 2.76 #peak 274 
49 ILE QG1 58 MET QE 3.39 #peak 275 
69 MET QE 74 TYR QE 4.21 #peak 277 
69 MET HA 69 MET QE 3.44 #peak 278 
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63 LEU HA 69 MET QE 3.38 #peak 279 
69 MET QE 74 TYR HA 3.32 #peak 280 
43 CYS HB2 69 MET QE 3.86 #peak 281 
69 MET HG3 69 MET QE 3.27 #peak 282 
66 VAL QG1 69 MET QE 3.02 #peak 283 
44 LEU QD2 69 MET QE 2.79 #peak 284 
33 SER HN 34 MET QE 3.7 #peak 285 
31 ILE HN 34 MET QE 4.34 #peak 286 
31 ILE HA 34 MET QE 3.7 #peak 287 
34 MET QE 52 VAL HA 4.07 #peak 288 
34 MET HG2 34 MET QE 3.32 #peak 289 
34 MET HG3 34 MET QE 3.32 #peak 290 
27 LEU HB3 27 LEU QD1 3.29 #peak 292 
63 LEU QD2 74 TYR QE 3.73 #peak 293 
63 LEU QD2 74 TYR QD 3.89 #peak 294 
63 LEU QD1 74 TYR QD 3.61 #peak 295 
63 LEU QD1 74 TYR QE 3.51 #peak 296 
27 LEU QD2 100 LEU QD1 3.87 #peak 297 
90 THR QG2 92 LEU QD1 3.31 #peak 298 
107 LEU HN 107 LEU HG 3.98 #peak 305 
63 LEU HA 63 LEU QD2 3.31 #peak 310 
63 LEU HN 63 LEU QD2 3.94 #peak 311 
63 LEU HN 63 LEU QD1 3.93 #peak 312 
63 LEU QD2 64 LYS+ HN 4.26 #peak 313 
58 MET HB3 63 LEU QD2 3.79 #peak 314 
58 MET HB2 63 LEU QD2 3.79 #peak 315 
63 LEU QD2 69 MET QE 3.04 #peak 316 
106 LYS+ HN 106 LYS+ HG3 3.99 #peak 324 
88 VAL HN 88 VAL QG2 3.32 #peak 325 
86 TYR HE2 88 VAL QG2 4.03 #peak 326 
60 GLU- QG 88 VAL QG1 3.61 #peak 328 
55 LEU QD1 88 VAL QG2 3.09 #peak 329 
88 VAL HA 88 VAL QG1 3.08 #peak 330 
100 LEU QD1 104 LEU QD1 3.72 #peak 332 
59 SER QB 62 GLU- QG 5.22 #peak 337 
56 VAL HA 81 LEU QD1 3.26 #peak 339 
88 VAL HA 90 THR HN 4.79 #peak 344 
31 ILE HA 34 MET HG2 4.6 #peak 345 
31 ILE HA 34 MET HG3 4.6 #peak 346 
31 ILE HA 31 ILE QG2 3.57 #peak 74 
66 VAL HA 67 LYS+ QB 4.17 #peak 353 
66 VAL HA 66 VAL QG2 3.62 #peak 194 
69 MET HN 69 MET HG3 4.43 #peak 357 
57 LEU QD2 97 ARG+ HA 3.72 #peak 361 
57 LEU QD2 97 ARG+ QG 3.33 #peak 362 
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27 LEU QD2 56 VAL QG1 3.02 #peak 4 
57 LEU HN 57 LEU QD2 3.87 #peak 365 
57 LEU HN 57 LEU QD1 3.57 #peak 421 
55 LEU HG 77 ILE QD1 3.68 #peak 367 
77 ILE QG2 77 ILE QG1 3.18 #peak 368 
77 ILE QG2 78 ALA QB 3.44 #peak 370 
64 LYS+ QD 74 TYR QE 4.91 #peak 375 
64 LYS+ QD 74 TYR QD 5.24 #peak 376 
31 ILE QG2 51 TYR HA 4.56 #peak 378 
31 ILE HG13 51 TYR HA 5.06 #peak 379 
31 ILE HG12 51 TYR HA 5.06 #peak 380 
31 ILE HB 51 TYR HA 4.88 #peak 381 
30 LYS+ HA 51 TYR HA 4.43 #peak 421 
51 TYR HA 51 TYR QD 4.45 #peak 385 
31 ILE HN 51 TYR HA 3.87 #peak 223 
51 TYR HA 51 TYR QE 5.34 #peak 388 
69 MET QE 74 TYR QD 3.66 #peak 389 
36 LEU QD2 80 LYS+ QE 3.7 #peak 390 
36 LEU HA 36 LEU QD2 3.57 #peak 391 
65 GLY HN 66 VAL QG1 4.31 #peak 393 
28 SER HN 107 LEU QD2 3.8 #peak 394 
94 PRO HA 97 ARG+ HN 4.64 #peak 397 
86 TYR HN 87 PRO HD2 4.6 #peak 596 
64 LYS+ HA 64 LYS+ QG 3.93 #peak 408 
64 LYS+ HA 64 LYS+ QD 3.86 #peak 409 
64 LYS+ HA 74 TYR QD 4.47 #peak 412 
55 LEU QD1 81 LEU HA 3.56 #peak 416 
30 LYS+ HA 31 ILE HN 3.26 #peak 222 
30 LYS+ HA 51 TYR QD 4.68 #peak 419 
30 LYS+ HA 51 TYR QE 4.86 #peak 420 
84 LEU HB2 86 TYR HD1 5.12 #peak 423 
84 LEU HB2 84 LEU QD2 3.89 #peak 425 
84 LEU HB3 84 LEU QD2 3.89 #peak 428 
31 ILE QD1 52 VAL HA 4.62 #peak 50 
104 LEU HA 107 LEU HN 4.29 #peak 680 
104 LEU HA 107 LEU QD2 4.39 #peak 440 
49 ILE QG2 55 LEU HA 3.61 #peak 443 
75 ASP- HA 78 ALA QB 3.49 #peak 216 
107 LEU HA 107 LEU QD2 2.87 #peak 322 
50 LYS+ HA 50 LYS+ QG 3.5 #peak 449 
77 ILE HA 80 LYS+ QB 4.2 #peak 452 
27 LEU HB3 27 LEU QD2 3.97 #peak 6 
107 LEU HB2 107 LEU QD1 3.93 #peak 460 
107 LEU HB3 107 LEU QD1 3.93 #peak 250 
51 TYR QE 107 LEU HB2 5.33 #peak 462 
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“alpha.upl, continued” 
107 LEU HB3 108 GLU- HN 4.32 #peak 689 
107 LEU HB2 107 LEU QD2 3.78 #peak 467 
107 LEU HB3 107 LEU QD2 3.78 #peak 468 
27 LEU HB2 53 GLY HA2 5.34 #peak 474 
55 LEU QD1 81 LEU HB2 4.27 #peak 476 
55 LEU QD1 81 LEU HB3 4.27 #peak 477 
84 LEU HB3 86 TYR HD1 5.12 #peak 481 
84 LEU HN 84 LEU HB2 3.74 #peak 574 
84 LEU HN 84 LEU HB3 3.74 #peak 573 
44 LEU HN 44 LEU QD1 3.99 #peak 312 
44 LEU HN 44 LEU QD2 4.14 #peak 781 
44 LEU HA 44 LEU QD2 3.58 #peak 486 
92 LEU HN 92 LEU HB3 4.13 #peak 615 
92 LEU HB2 92 LEU QD2 4.07 #peak 490 
92 LEU HB3 92 LEU QD2 4.07 #peak 491 
55 LEU HN 55 LEU HB3 4.05 #peak 408 
55 LEU HB2 55 LEU QD1 4.08 #peak 495 
49 ILE QG2 55 LEU HB2 4.29 #peak 496 
55 LEU HB3 55 LEU QD1 4.08 #peak 306 
55 LEU HN 55 LEU HB2 4.05 #peak 409 
100 LEU HN 100 LEU HB3 3.43 #peak 637 
63 LEU QB 63 LEU QD1 3.64 #peak 504 
57 LEU QD1 100 LEU HB3 3.92 #peak 507 
57 LEU QD1 100 LEU HB2 3.92 #peak 508 
51 TYR HA 104 LEU QD1 5.05 #peak 509 
50 LYS+ QD 51 TYR QE 4.87 #peak 511 
50 LYS+ QD 51 TYR QD 5.07 #peak 512 
50 LYS+ QD 51 TYR HN 5.02 #peak 513 
50 LYS+ HA 50 LYS+ QD 4.05 #peak 515 
106 LYS+ HN 106 LYS+ HB2 3.5 #peak 669 
51 TYR QE 107 LEU HB3 5.33 #peak 519 
47 ILE HB 49 ILE HN 4.88 #peak 526 
47 ILE HB 48 GLY HN 4.78 #peak 527 
77 ILE HB 78 ALA HN 3.59 #peak 539 
77 ILE HN 77 ILE HB 3.36 #peak 126 
74 TYR HA 77 ILE HB 4.38 #peak 530 
77 ILE HB 77 ILE QD1 3.18 #peak 532 
31 ILE HB 31 ILE QD1 3.4 #peak 49 
31 ILE HB 41 PHE HD2 5.14 #peak 537 
31 ILE HB 41 PHE HE2 5.15 #peak 538 
39 ARG+ HA 42 ASN HB2 3.88 #peak 540 
39 ARG+ HA 42 ASN HB3 3.88 #peak 542 
42 ASN HN 42 ASN HB2 3.55 #peak 297 
42 ASN HN 42 ASN HB3 3.55 #peak 299 
54 GLU- QG 57 LEU QD1 4.02 #peak 554 
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“alpha.upl, continued” 
58 MET HG2 58 MET QE 3.23 #peak 556 
66 VAL QG2 69 MET QE 3.22 #peak 566 
29 ALA HA 30 LYS+ HN 2.96 #peak 211 
32 GLU- HA 41 PHE HE2 4.26 #peak 576 
34 MET QE 52 VAL HN 5.08 #peak 580 
34 MET QE 55 LEU QD1 2.4 #peak 581 
31 ILE QG2 34 MET QE 2.64 #peak 582 
40 CYS HA 44 LEU QD1 3.73 #peak 583 
52 VAL QG1 56 VAL HB 3.37 #peak 586 
51 TYR HB2 107 LEU QD1 5.03 #peak 588 
51 TYR HB3 107 LEU QD1 5.03 #peak 589 
56 VAL HN 56 VAL HB 3.47 #peak 417 
64 LYS+ HA 74 TYR QE 4.69 #peak 593 
97 ARG+ HA 97 ARG+ QD 4.69 #peak 598 
101 LYS+ HA 104 LEU HN 3.86 #peak 754 
103 ARG+ HA 106 LYS+ HN 3.97 #peak 602 
27 LEU QD2 86 TYR HE1 4.59 #peak 604 
27 LEU QD1 86 TYR HE1 4.28 #peak 605 
50 LYS+ HB2 51 TYR QE 4.21 #peak 606 
50 LYS+ HB3 51 TYR QE 4.21 #peak 607 
56 VAL QG2 86 TYR HE1 4.28 #peak 608 
72 LYS+ HA 75 ASP- HN 4.29 #peak 610 
69 MET HG2 69 MET QE 3.27 #peak 612 
31 ILE QG2 52 VAL QG2 3.11 #peak 613 
31 ILE QD1 49 ILE QG2 2.86 #peak 632 
58 MET QE 69 MET QE 2.99 #peak 615 
91 GLU- HA 94 PRO QD 4.55 #peak 626 
78 ALA QB 88 VAL QG1 3.09 #peak 628 
92 LEU HA 92 LEU QD2 3.62 #peak 630 
36 LEU HA 36 LEU QQD 3.63 #peak 631 
44 LEU QD2 77 ILE QD1 2.87 #peak 633 
74 TYR QE 77 ILE QG2 4.35 #peak 635 
55 LEU QD2 88 VAL QG1 3.16 #peak 636 
82 ASN HN 82 ASN HB3 3.45 #peak 564 
82 ASN HN 82 ASN HB2 3.45 #peak 563 
90 THR HB 92 LEU QD1 4.63 #peak 642 
90 THR HN 90 THR HB 3.3 #peak 115 
51 TYR HA 52 VAL HB 5.31 #peak 648 
34 MET QE 52 VAL QG2 3.17 #peak 649 
35 ASN HA 36 LEU HN 3.51 #peak 261 
68 ASN HB3 69 MET HN 4.67 #peak 659 
32 GLU- HA 41 PHE HD2 4.57 #peak 663 
96 GLN HA 96 GLN HG3 4.19 #peak 666 
96 GLN HA 96 GLN HG2 4.19 #peak 667 
47 ILE QG2 47 ILE QD1 2.69 #peak 669 
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“alpha.upl, continued” 
100 LEU HG 101 LYS+ HA 3.81 #peak 671 
60 GLU- HA 88 VAL QG1 4.01 #peak 677 
64 LYS+ QE 74 TYR QD 4.68 #peak 678 
64 LYS+ QE 74 TYR QE 4.25 #peak 679 
24 ALA QB 56 VAL QG1 3.74 #peak 683 
24 ALA QB 27 LEU QD1 3.82 #peak 684 
24 ALA HN 24 ALA QB 3.45 #peak 176 
24 ALA HA 27 LEU QD1 4.5 #peak 687 
41 PHE HE1 45 ASP- HB3 5.5 #peak 691 
41 PHE HE1 45 ASP- HB2 5.5 #peak 692 
36 LEU QD2 76 GLU- HG3 4.23 #peak 694 
61 GLU- HA 61 GLU- QG 3.18 #peak 696 
57 LEU QD1 104 LEU QD2 2.73 #peak 701 
47 ILE QD1 66 VAL QG1 3.04 #peak 702 
55 LEU QD2 81 LEU QD1 2.87 #peak 703 
44 LEU QD1 55 LEU QD1 2.71 #peak 706 
47 ILE HA 47 ILE QG1 4.25 #peak 708 
94 PRO QD 95 GLU- QG 4.4 #peak 714 
64 LYS+ QB 64 LYS+ QD 3.65 #peak 373 
64 LYS+ QG 64 LYS+ QE 3.62 #peak 723 
64 LYS+ QB 64 LYS+ QE 4.01 #peak 725 
49 ILE QG2 55 LEU HB3 4.29 #peak 726 
27 LEU QD1 56 VAL QG2 2.91 #peak 727 
56 VAL QG2 84 LEU QD2 3.36 #peak 728 
63 LEU QD1 88 VAL QG1 3.1 #peak 729 
55 LEU QD1 88 VAL QG1 3.25 #peak 730 
81 LEU QD1 86 TYR HE1 4.13 #peak 731 
36 LEU QD2 76 GLU- HB2 4.66 #peak 735 
76 GLU- HN 76 GLU- HB3 3.52 #peak 119 
76 GLU- HB2 77 ILE HN 4.2 #peak 533 
36 LEU QD2 76 GLU- HB3 4.66 #peak 739 
36 LEU QD2 76 GLU- HG2 4.23 #peak 740 
57 LEU QD2 97 ARG+ QD 3.7 #peak 741 
57 LEU HA 97 ARG+ QG 4.95 #peak 742 
97 ARG+ QG 98 GLU- HN 5.04 #peak 743 
26 ASP- HA 29 ALA QB 3.94 #peak 745 
31 ILE QG2 36 LEU QD1 2.97 #peak 746 
44 LEU QD2 47 ILE QD1 2.86 #peak 748 
27 LEU QD2 84 LEU QD1 4.29 #peak 749 
63 LEU HA 66 VAL QG1 3.56 #peak 186 
60 GLU- HA 60 GLU- QG 3.98 #peak 751 
55 LEU QD2 63 LEU QD1 3.02 #peak 752 
63 LEU QD1 88 VAL QG2 3.03 #peak 753 
9 ILE HN 9 ILE QG1 3.84 #peak 144 
27 LEU HB2 53 GLY QA 4.66 #peak 169 
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“alpha.upl, continued” 
27 LEU HB3 53 GLY QA 4.98 #peak 168 
27 LEU QD1 53 GLY QA 3.88 #peak 25 
27 LEU QD2 53 GLY QA 4.09 #peak 11 
27 LEU QD2 86 TYR QB 5.03 #peak 9 
29 ALA HA 30 LYS+ QB 4.18 #peak 572 
29 ALA QB 30 LYS+ QB 3.79 #peak 41 
30 LYS+ HA 31 ILE QG1 4.36 #peak 422 
31 ILE HN 31 ILE QG1 3.34 #peak 217 
31 ILE HA 34 MET QG 3.97 #peak 345 
31 ILE QG2 31 ILE QG1 3.28 #peak 71 
31 ILE QG1 32 GLU- HN 3.76 #peak 236 
31 ILE QG1 49 ILE QG2 3.69 #peak 611 
31 ILE QG1 50 LYS+ HA 5.04 #peak 69 
31 ILE QG1 51 TYR HA 4.33 #peak 379 
31 ILE QG1 52 VAL HA 4.96 #peak 433 
33 SER HN 34 MET QG 4.55 #peak 242 
34 MET HN 34 MET QB 3.37 #peak 736 
34 MET HN 34 MET QG 3.43 #peak 253 
34 MET QB 36 LEU HN 4.07 #peak 263 
34 MET QG 34 MET QE 2.89 #peak 290 
35 ASN QB 35 ASN QD2 3.22 #peak 765 
35 ASN QB 36 LEU HN 4.22 #peak 262 
36 LEU HN 36 LEU QB 3.47 #peak 264 
36 LEU QB 37 SER HN 3.69 #peak 269 
36 LEU QB 41 PHE HN 4.3 #peak 287 
36 LEU QD2 76 GLU- QG 3.67 #peak 694 
38 ALA HA 41 PHE QB 3.89 #peak 713 
38 ALA QB 42 ASN QB 3.86 #peak 85 
39 ARG+ HA 42 ASN QB 3.39 #peak 540 
40 CYS HA 43 CYS QB 3.48 #peak 97 
41 PHE HN 41 PHE QB 3.06 #peak 288 
41 PHE QB 42 ASN HN 3.97 #peak 298 
41 PHE HD1 45 ASP- QB 5.35 #peak 693 
41 PHE HE1 45 ASP- QB 4.63 #peak 691 
42 ASN HN 42 ASN QB 2.88 #peak 297 
42 ASN HN 43 CYS QB 4.3 #peak 105 
43 CYS HN 43 CYS QB 3.17 #peak 302 
43 CYS QB 66 VAL QG2 3.48 #peak 90 
43 CYS QB 69 MET QE 3.33 #peak 281 
45 ASP- HN 45 ASP- QB 2.99 #peak 557 
45 ASP- QB 46 LYS+ HN 3.67 #peak 326 
46 LYS+ HN 46 LYS+ QB 2.95 #peak 327 
46 LYS+ QB 47 ILE HN 3.93 #peak 332 
47 ILE HN 48 GLY QA 4.32 #peak 334 
47 ILE QD1 58 MET QG 4.17 #peak 110 
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“alpha.upl, continued” 
49 ILE HN 49 ILE QG1 3.65 #peak 347 
49 ILE QG2 55 LEU QB 3.71 #peak 726 
49 ILE QD1 58 MET QG 3.74 #peak 144 
50 LYS+ QB 51 TYR QD 4.32 #peak 716 
50 LYS+ QB 51 TYR QE 3.66 #peak 606 
51 TYR QB 52 VAL HN 3.78 #peak 380 
51 TYR QB 54 GLU- HN 4.57 #peak 401 
51 TYR QB 107 LEU QD1 4.42 #peak 588 
52 VAL QG1 53 GLY QA 4.03 #peak 587 
53 GLY QA 56 VAL HN 4.11 #peak 415 
53 GLY QA 56 VAL HB 4.92 #peak 167 
53 GLY QA 56 VAL QG1 3.52 #peak 261 
53 GLY QA 104 LEU QD1 3.97 #peak 240 
53 GLY QA 104 LEU QD2 4.38 #peak 172 
53 GLY QA 107 LEU QD1 3.86 #peak 252 
55 LEU HN 55 LEU QB 3.45 #peak 409 
55 LEU QB 55 LEU QD1 3.23 #peak 306 
55 LEU QB 56 VAL HN 3.73 #peak 416 
56 VAL QG2 86 TYR QB 4.16 #peak 174 
57 LEU HN 57 LEU QB 3.07 #peak 424 
57 LEU QB 58 MET HN 3.81 #peak 435 
58 MET HN 58 MET QB 3.19 #peak 434 
58 MET HN 58 MET QG 3.52 #peak 432 
58 MET QB 59 SER HN 3.94 #peak 437 
58 MET QB 63 LEU HN 4.29 #peak 463 
58 MET QB 63 LEU QD2 3.24 #peak 314 
58 MET QG 58 MET QE 2.8 #peak 556 
58 MET QG 63 LEU QD2 3.74 #peak 555 
58 MET QG 66 VAL QG1 4.26 #peak 188 
64 LYS+ HA 69 MET QG 4.46 #peak 411 
66 VAL HN 69 MET QB 4.25 #peak 485 
69 MET HN 69 MET QB 3 #peak 501 
69 MET HN 69 MET QG 3.87 #peak 357 
69 MET QG 69 MET QE 2.83 #peak 612 
69 MET QG 70 GLY HN 4.69 #peak 616 
69 MET QG 74 TYR HN 4.47 #peak 514 
69 MET QG 74 TYR QD 4.63 #peak 200 
74 TYR QB 75 ASP- HN 3.39 #peak 522 
74 TYR QB 77 ILE QG2 4.02 #peak 209 
74 TYR QB 77 ILE QD1 3.9 #peak 202 
74 TYR QB 78 ALA QB 4.55 #peak 359 
75 ASP- HN 75 ASP- QB 3.15 #peak 524 
75 ASP- QB 76 GLU- HN 3.57 #peak 528 
76 GLU- HN 76 GLU- QG 3.63 #peak 787 
76 GLU- HA 76 GLU- QG 3.58 #peak 695 
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“alpha.upl, continued” 
76 GLU- QB 77 ILE HN 3.63 #peak 533 
78 ALA QB 81 LEU QB 3.93 #peak 219 
78 ALA QB 82 ASN QB 4.45 #peak 360 
80 LYS+ HN 80 LYS+ QG 3.43 #peak 545 
80 LYS+ HN 80 LYS+ QD 3.74 #peak 546 
81 LEU HN 81 LEU QB 3.01 #peak 558 
81 LEU QB 82 ASN HN 3.58 #peak 561 
82 ASN HN 82 ASN QB 3.01 #peak 563 
82 ASN HA 82 ASN QD2 4.07 #peak 773 
82 ASN QB 82 ASN QD2 3.18 #peak 756 
82 ASN QB 83 ASP- HN 3.51 #peak 570 
83 ASP- HN 83 ASP- QB 2.94 #peak 745 
83 ASP- QB 84 LEU HN 3.71 #peak 576 
84 LEU HN 84 LEU QB 2.96 #peak 574 
84 LEU QB 84 LEU QD1 2.82 #peak 308 
84 LEU QB 84 LEU QD2 3.37 #peak 428 
84 LEU QB 85 GLY HN 3.97 #peak 589 
84 LEU QB 86 TYR HN 3.96 #peak 593 
84 LEU QB 86 TYR HD1 4.46 #peak 481 
86 TYR HN 87 PRO QD 4.03 #peak 595 
87 PRO QD 90 THR QG2 4.48 #peak 224 
91 GLU- HN 91 GLU- QB 3.59 #peak 608 
91 GLU- HN 91 GLU- QG 4.39 #peak 720 
91 GLU- QB 92 LEU HN 4.29 #peak 612 
92 LEU HN 92 LEU QB 3.46 #peak 614 
92 LEU QB 93 SER HN 3.7 #peak 363 
93 SER HN 94 PRO QB 3.64 #peak 365 
94 PRO QB 95 GLU- HN 3.95 #peak 618 
94 PRO QB 97 ARG+ HN 3.76 #peak 317 
94 PRO QB 97 ARG+ QB 3.47 #peak 398 
96 GLN HN 96 GLN QB 3.4 #peak 499 
96 GLN HN 96 GLN QG 3.08 #peak 502 
96 GLN QG 97 ARG+ HN 4.85 #peak 665 
99 SER HN 99 SER QB 3.02 #peak 629 
99 SER QB 100 LEU HN 3.85 #peak 634 
100 LEU HN 100 LEU QB 3 #peak 636 
102 LYS+ HN 102 LYS+ QB 2.82 #peak 647 
104 LEU HA 107 LEU QB 4 #peak 442 
106 LYS+ HN 106 LYS+ QB 3 #peak 670 
106 LYS+ HN 106 LYS+ QG 3.37 #peak 324 
106 LYS+ HA 106 LYS+ QG 3.03 #peak 323 
107 LEU HN 107 LEU QB 2.92 #peak 677 
107 LEU QB 107 LEU QD1 3.25 #peak 250 
107 LEU QB 108 GLU- HN 3.67 #peak 688 
108 GLU- HN 108 GLU- QB 3.69 #peak 687 
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CYANA Output File 

alpha.ovw – contains target functions, violation statistics for 50 best structures out of 500 
     
 Structural statistics: 
    str   target     upper limits     lower limits    van der Waals   torsion angles 
        function   #    rms   max   #    rms   max   #    sum   max   #    rms   max 
      1     1.19   2 0.0169  0.20   0 0.0097  0.05   1    3.4  0.20   0 0.4544  2.40 
      2     1.24   2 0.0171  0.24   0 0.0098  0.04   1    3.5  0.20   0 0.5605  3.08 
      3     1.26   4 0.0179  0.26   0 0.0091  0.04   1    3.2  0.20   0 0.4279  2.11 
      4     1.34   1 0.0170  0.26   0 0.0144  0.09   0    3.9  0.20   0 0.8409  4.83 
      5     1.36   2 0.0174  0.24   0 0.0098  0.04   1    3.9  0.20   0 0.7289  3.99 
      6     1.37   2 0.0178  0.22   0 0.0085  0.03   1    3.9  0.20   0 0.5368  2.67 
      7     1.40   1 0.0170  0.21   0 0.0113  0.05   1    4.1  0.20   0 0.7846  4.40 
      8     1.41   2 0.0179  0.21   0 0.0107  0.05   0    4.1  0.20   0 0.7470  4.24 
      9     1.41   2 0.0179  0.28   0 0.0074  0.03   0    3.9  0.20   0 0.7413  4.72 
     10     1.45   2 0.0180  0.21   0 0.0131  0.07   1    4.3  0.20   2 0.8456  5.62 
     11     1.46   2 0.0184  0.28   0 0.0113  0.05   0    4.1  0.20   0 0.7207  4.69 
     12     1.47   2 0.0181  0.23   0 0.0126  0.06   0    4.4  0.19   0 0.7108  3.84 
     13     1.49   2 0.0187  0.22   0 0.0081  0.04   0    4.0  0.19   0 0.8171  4.00 
     14     1.49   2 0.0184  0.21   0 0.0100  0.05   1    4.3  0.20   0 0.8070  4.78 
     15     1.49   2 0.0177  0.22   0 0.0081  0.04   1    4.5  0.20   0 0.7473  4.30 
     16     1.50   1 0.0179  0.22   0 0.0119  0.07   0    4.4  0.19   1 0.8666  5.21 
     17     1.51   3 0.0198  0.24   0 0.0112  0.06   0    3.8  0.19   0 0.5446  3.22 
     18     1.51   0 0.0178  0.20   0 0.0086  0.05   0    4.1  0.20   0 0.7190  3.79 
     19     1.53   2 0.0185  0.23   0 0.0098  0.05   1    4.4  0.20   0 0.6449  3.08 
     20     1.53   1 0.0177  0.22   0 0.0103  0.04   0    4.8  0.19   0 0.7456  4.52 
     21     1.53   3 0.0184  0.22   0 0.0082  0.04   1    4.2  0.20   0 0.5880  3.10 
     22     1.53   1 0.0180  0.26   0 0.0091  0.05   1    4.1  0.20   0 0.7097  4.41 
     23     1.54   1 0.0181  0.22   0 0.0110  0.05   1    4.7  0.20   0 0.7200  4.24 
     24     1.54   4 0.0199  0.27   0 0.0107  0.05   1    3.9  0.20   0 0.7442  3.38 
     25     1.55   1 0.0177  0.22   0 0.0095  0.04   0    4.7  0.19   0 0.7486  4.68 
     26     1.56   2 0.0183  0.25   0 0.0095  0.06   0    4.3  0.19   0 0.7841  4.62 
     27     1.57   4 0.0191  0.30   0 0.0158  0.08   1    4.6  0.20   0 0.6105  3.45 
     28     1.57   4 0.0184  0.24   0 0.0108  0.05   0    4.6  0.19   0 0.5795  2.90 
     29     1.57   1 0.0186  0.30   0 0.0096  0.04   0    4.6  0.19   0 0.6238  3.52 
     30     1.58   2 0.0192  0.24   0 0.0117  0.06   1    4.4  0.20   0 0.7689  4.24 
     31     1.58   3 0.0191  0.28   0 0.0077  0.04   0    4.4  0.20   0 0.7704  3.89 
     32     1.58   3 0.0190  0.34   0 0.0105  0.05   0    4.0  0.19   0 0.7249  3.99 
     33     1.59   3 0.0182  0.27   0 0.0120  0.05   0    4.6  0.19   0 0.7967  4.68 
     34     1.59   2 0.0190  0.26   0 0.0147  0.08   0    4.5  0.19   0 0.8096  4.51 
     35     1.59   4 0.0196  0.34   0 0.0113  0.05   0    4.0  0.20   0 0.7569  4.63 
     36     1.59   1 0.0184  0.26   0 0.0100  0.06   1    5.0  0.21   0 0.6827  3.88 
     37     1.59   3 0.0195  0.26   0 0.0090  0.03   0    4.2  0.20   2 0.9318  5.29 
     38     1.59   2 0.0184  0.20   0 0.0136  0.07   1    4.2  0.20   0 0.7546  3.99 
     39     1.60   4 0.0195  0.31   0 0.0087  0.04   1    4.1  0.20   0 0.7841  3.97 
     40     1.60   3 0.0188  0.23   0 0.0111  0.05   2    4.4  0.21   0 0.8273  4.74 
     41     1.60   2 0.0192  0.24   0 0.0104  0.05   1    4.4  0.20   0 0.7212  4.21 
     42     1.61   2 0.0191  0.38   0 0.0123  0.06   0    4.4  0.20   0 0.6496  3.52 
     43     1.61   2 0.0193  0.24   0 0.0073  0.03   1    4.5  0.20   0 0.7023  3.55 
     44     1.61   3 0.0191  0.24   0 0.0105  0.06   0    4.6  0.20   0 0.6789  3.63 
     45     1.61   1 0.0192  0.24   0 0.0140  0.08   0    4.3  0.18   0 0.6552  3.07 
     46     1.62   1 0.0176  0.20   0 0.0112  0.05   2    4.8  0.21   0 0.7725  4.88 
     47     1.62   5 0.0209  0.38   0 0.0087  0.04   0    3.7  0.20   0 0.4967  2.78 
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     48     1.63   3 0.0191  0.29   0 0.0124  0.05   1    4.8  0.20   0 0.6695  3.94 
     49     1.63   2 0.0181  0.21   0 0.0135  0.06   1    4.7  0.20   2 0.9096  5.34 
     50     1.63   3 0.0201  0.24   0 0.0134  0.06   1    4.1  0.21   0 0.8678  4.99 
  
    Ave     1.52   2 0.0185  0.25   0 0.0107  0.05   1    4.3  0.20   0 0.7166  4.03 
    +/-     0.10   1 0.0008  0.04   0 0.0020  0.01   1    0.4  0.01   0 0.1094  0.79 
    Min     1.19   0 0.0169  0.20   0 0.0073  0.03   0    3.2  0.18   0 0.4279  2.11 
    Max     1.63   5 0.0209  0.38   0 0.0158  0.09   2    5.0  0.21   2 0.9318  5.62 
    Cut                      0.20             0.20             0.20             5.00 
  
    Constraints violated in 16 or more structures: 
                                 # mean max.1   5   10   15   20   25   30   35   40   45   50 
Upper HN ALA 29 - HN LYS 30 4.33 21 .20 .25   + ++  +   +++ + +    *  ++ +  ++  +    + +   +++ 
VdW  CG2 ILE 77 - C  ILE 77 2.78 16 .20 .21   +      +   +      + ++  +  +       ++++ +  +  +* 
  
   1 violated distance constraint. 
   0 violated angle constraints. 
  
    Hydrogen bonds:                   # 1   5   10   15   20   25   30   35   40   45   50 
    HN    SER   33 - O     LYS+  30  38 ++++++++++ + ++  ++ + ++++ +++++  +++++++++ ++  ++ 
    HN    MET   34 - O     ILE   31  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    SER   37 - OE1   GLU-  76  36 ++++++++++++ + + ++ + + +++++ ++   ++ ++++ + ++ ++ 
    HN    SER   37 - OE2   GLU-  76  41 ++  +++ ++ +++++++++ + ++++++++++++++++++++++  ++ 
    HN    ASN   42 - O     ALA   38  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    CYS   43 - O     ARG+  39  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    LEU   44 - O     CYS   40  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    ASP-  45 - O     PHE   41  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    ILE   47 - O     CYS   43  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    GLY   48 - O     LEU   44  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    VAL   52 - O     ALA   29  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    LEU   55 - O     TYR   51  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    VAL   56 - O     VAL   52  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    LEU   57 - O     GLY   53  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    SER   59 - O     LEU   57  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    LEU   63 - O     SER   59  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    LYS+  64 - O     GLU-  60  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    GLY   65 - O     LEU   63  48 ++++++++++++++++++++++++++++++++++++++++++++++ ++ 
    HN    MET   69 - O     LYS+  67  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    TYR   74 - O     GLY   70  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    ASP-  75 - O     LYS+  71  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    GLU-  76 - O     LYS+  72  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    ILE   77 - O     SER   73  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    ALA   78 - O     TYR   74  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    GLU-  79 - O     ASP-  75  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    LYS+  80 - O     GLU-  76  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    LEU   81 - O     ILE   77  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    ASN   82 - O     ALA   78  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    ASP-  83 - O     GLU-  79  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    LEU   84 - O     LYS+  80  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    GLU-  95 - O     SER   93  38 +++ ++ +++++ +  +  ++++ ++++++ + ++++ + ++++++++++ 
    HN    GLU-  98 - O     GLU-  95  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    LEU  100 - O     GLN   96  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    LYS+ 101 - O     ARG+  97  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    LYS+ 102 - O     GLU-  98  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    ARG+ 103 - O     SER   99  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    LEU  104 - O     LEU  100  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    GLU- 105 - O     LYS+ 101  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    HN    LYS+ 106 - O     LYS+ 102  50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 
    39 hydrogen bonds. 
  
    RMSDs for residues 24..107: 
    Average backbone RMSD to mean   :    0.32 +/- 0.06 A (0.19..0.50 A; 50 structures) 
    Average heavy atom RMSD to mean :    0.99 +/- 0.08 A (0.82..1.16 A; 50 structures)  
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AMBER Input File 

 
min.in – contains parameters for running the sander program of the AMBER 9 package 
 
#sander minimize structure 
&cntrl 
 imin=1, maxcyc=3000, 
 cut=300.0, igb=2, saltcon=0.2, gbsa=1, 
 ntpr=100, ntx=1,  ntb=0, nmropt=1, 
&end 
&wt type='REST', istep1=0, istep2=3000, value1=1, value2=1, &end 
&wt type='END' &end 
DISANG=./dist.in 
LISTOUT = POUT 
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