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ABSTRACT 

 

The history of modern semiconductor devices and circuits suggests that technologists 

have been able to maintain scaling at the rate predicted by Moore’s Law [Moor-65]. 

With improved performance, speed and lower area, technology scaling has also 

exacerbated reliability issues such as soft errors. Soft errors are transient errors that 

occur in microelectronic circuits due to ionizing radiation particle strikes on reverse 

biased semiconductor junctions. These radiation induced errors at the terrestrial-level are 

caused due to radiation particle strikes by (1) alpha particles emitted as decay products 

of packing material  (2) cosmic rays that produce energetic protons and neutrons, and (3) 

thermal neutrons [Dodd-03],  [Srou-88] and more recently muons and electrons [Ma-79] 

[Nara-08] [Siew-10] [King-10]. In the space environment radiation induced errors are a 

much bigger threat and are mainly caused by cosmic heavy-ions, protons etc. The effects 

of radiation exposure on circuits and measures to protect against them have been studied 

extensively for the past 40 years, especially for parts operating in space. Radiation 

particle strikes can affect memory as well as combinational logic. Typically when these 

particles strike semiconductor junctions of transistors that are part of feedback structures 

such as SRAM memory cells or flip-flops, it can lead to an inversion of the cell content. 

Such a failure is formally called a bit-flip or single-event upset (SEU). When such 

particles strike sensitive junctions part of combinational logic gates they produce 

transient voltage spikes or glitches called single-event transients (SETs) that could be 

latched by receiving flip-flops. As the circuits are clocked faster, there are more number 

of clocking edges which increases the likelihood of latching these transients. In older 
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technology generations the probability of errors in flip-flops due to SETs being latched 

was much lower compared to direct strikes on flip-flops or SRAMs leading to SEUs. 

This was mainly because the operating frequencies were much lower for older 

technology generations. The Intel Pentium II for example was fabricated using 0.35 μm 

technology and operated between 200-330 MHz. With technology scaling however, 

operating frequencies have increased tremendously and the contribution of soft errors 

due to latched SETs from combinational logic could account for a significant proportion 

of the chip-level soft error rate [Sief-12][Maha-11][Shiv02] [Bu97]. Therefore there is a 

need to systematically characterize the problem of combinational logic single-event 

effects (SEE) and understand the various factors that affect the combinational logic 

single-event error rate.  

Just as scaling has led to soft errors emerging as a reliability-limiting failure mode for 

modern digital ICs, the problem of increasing power consumption has arguably been a 

bigger bane of scaling. While Moore’s Law loftily states the blessing of technology 

scaling to be smaller and faster transistor it fails to highlight that the power density 

increases exponentially with every technology generation. The power density problem 

was partially solved in the 1970’s and 1980’s by moving from bipolar and GaAs 

technologies to full-scale silicon CMOS technologies. Following this however, 

technology miniaturization that enabled high-speed, multicore and parallel computing 

has steadily increased the power density and the power consumption problem. Today 

minimizing the power consumption is as much critical for power hungry server farms as 

it for portable devices, all pervasive sensor networks and future eco-bio-sensors. Low-
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power consumption is now regularly part of design philosophies for various digital 

products with diverse applications from computing to communication to healthcare. 

Thus designers in today’s world are left grappling with both a “power wall” as well as 

a “reliability wall”. Unfortunately, when it comes to improving reliability through soft 

error mitigation, most approaches are invariably straddled with overheads in terms of 

area or speed and more importantly power. Thus, the cost of protecting combinational 

logic through the use of power hungry mitigation approaches can disrupt the power 

budget significantly. Therefore there is a strong need to develop techniques that can 

provide both power minimization as well as combinational logic soft error mitigation. 

This dissertation, advances hitherto untapped opportunities to jointly reduce power 

consumption and deliver soft error resilient designs. Circuit as well as architectural 

approaches are employed to achieve this objective and the advantages of cross-layer 

optimization for power and soft error reliability are emphasized.  

Key Research Contributions 

 

1. Identification of key factors that affect technology scaling trends of 

combinational logic soft errors. Sensitive area, single-event transient pulse-

width, drive currents and operating frequency are identified as key factors that 

affect the combinational logic soft error reliability. Understanding these factors is 

critical for designers to estimate the relative contribution of combinational logic, 

flip-flop and memory soft error rate at the chip-level, especially for future 

technology nodes. Using this information the most efficient hardening 

approaches can be adopted. The experimental scaling trends for soft errors has 
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eluded researchers for last several years and limited estimates were derived 

through models and simulations [Shiv-02], [Buch-97]. This work 

comprehensively analyses the impact of scaling at 40 nm, 28 nm and 20 nm bulk 

technology nodes.  

2. Development of power-aware techniques with minimal performance 

overheads to mitigate combinational logic soft errors. Modern integrated-

circuit design emphasizes low-power design approaches.  This dissertation 

presents, for the first time, formal approaches to identify key factors that can 

reduce both, the power consumption and combinational logic error rate. Different 

approaches at the gate-level, circuit-level and architectural-level and the 

associated trade-offs and penalties are presented. A cross-layer approach to co-

optimizing for combinational logic soft-error reduction and power minimization 

is emphasized. The pitfalls of optimizing both variables independently is also 

highlighted.  

 

These contributions extend the ability of designers to estimate and improve the 

reliability of circuits in the presence of radiation induced soft-errors, even in the case of 

large and complex circuits. Using some of the results and techniques presented in this 

work a designer can compare the relative contribution of flip-flop and logic errors for 

large circuits for future generations as well. Based on this comparison designers can 

adopt the most efficient hardening approaches. In this exercise, the results presented in 

this work present designers options to improve the soft-error reliability of combinational 

logic circuits while also minimizing power consumption. These results also emphasize 
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that optimization across a variety of levels is necessary to achieve maximum reduction 

of combinational logic soft errors. 

 

Thesis Organization 

 

The subsequent discussion in this thesis is organized as follows.  

1. Chapter 1 provides a background on radiation effects in digital integrated 

circuits and combinational logic circuits in particular. The different factors that 

influence the combinational logic soft-error sensitivity and the different circuit-

level masking factors that reduce their impact are discussed. A variety of 

approaches to mitigate combinational logic soft errors and their associated 

power penalties are also discussed [Master’s Thesis Work 
(included in detail as 

Appendix I)
].  

2. Chapter 2 includes a discussion on commonly used low-power design 

techniques at various levels of design abstraction. The relative merits and 

demerits of these strategies are discussed and their potential impact on logic 

SER is also discussed. Some of the key factors that could be identified for co-

optimization of logic SER reduction and power minimization are identified.  

3. [Contribution 1] Chapter 3 presents experimental results that characterize 

logic soft errors as a function of frequency for three different technology 

generations (40 nm, 28 nm and 20 nm CMOS bulk technology nodes) and 

presents technology scaling trends.  
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4. [Contribution 2] Chapters 4, 5 and 6 present circuit level techniques to reduce 

power consumption and mitigate soft errors. The common thread across these 

chapters is the idea that reducing the effective number of switching nodes can 

reduce the power consumption as well as reduce the combinational logic soft 

error rate.   

5. [Contribution 2] In chapter 7, an architectural technique like pipelining for 

low power is employed to deal with the problem of combinational logic errors 

efficiently. The idea is to pipeline circuits to maintain constant throughput and 

reduce operating voltage. The reduced operating voltage results in lower power 

and permits the inclusion of slower and harder logic to mitigate combinational 

logic soft errors.  

6. In summary, Chapter 8 highlights the key contribution of this work and 

different conditions under which the above techniques have limited application 

are also identified.  Future directions in the rich unexplored area of power-

aware design for soft error reliability are suggested.  

7. Chapters 9, 10 and 11 are appendices which include important results about 1) 

gate level logic soft error mitigation; 2) impact of  supply voltage variation on 

the logic soft error rate and 3) fast estimation of combinational logic SER for 

large circuits.  



 

1. Chapter I. Single Event Effects in Combinational Logic Circuits  

and Mitigation Approaches 

 

Microelectronic circuits operating in harsh environments such as space, are exposed to 

cosmic radiation that can cause failures in integrated circuit (IC) operation. Early 

evidence of these effects emerged through in-flight observation of single-event upsets 

(SEUs) in memories [Bind-75], [Pick-78]. A few years later, single-events errors or soft 

errors at the terrestrial level were reported in groundbreaking work where alpha particles 

in packaging material were reported to be the cause of upsets in dynamic random access 

memories (DRAMs) [May-79]. As technologies have scaled, the problem of soft errors 

has been exacerbated for digital circuits used for high-reliability applications in space 

environment as well as terrestrial environment. More recently, experimental results have 

shown that SRAMs have now become sensitive enough to be upset by particles like 

neutrons, muons and electrons [Hazu-00], [Siew-10], [King-13].  

On the other hand, the generation of soft errors in flip-flops due to the generation and 

latching of single event transients (SETs) in combinational logic is also becoming a 

significant reliability challenge in modern CMOS ICs. First observation of single-event 

transients appeared in the 1980’s with the development of radiation-hardened space-

grade microprocessors [Harb-86] [Koga-85].  However the importance attached to soft 

errors created due to latched transients received limited attention for several years. The 

main reason for this is that the operating frequency of semiconductor ICs in the 80’s and 

90’s were in the few hundreds of MHz at best. As a result the probability of soft errors 

due to SETs that are latched compared to direct upsets in latches and memories was very 



 

 2 

low. Researchers have suggested that the number of soft errors caused due to latched 

transients from logic would exceed soft errors caused due to SEUs in flip-flops and 

unprotected memory elements at advanced technology nodes [Bu-97] [Sh-02]. Today, 

there is considerable interest in ascertaining whether soft errors due to SETs from 

combinational logic could exceed the raw flip-flop and memory error rate, and in 

understanding the future technology trends in this regard. Understanding these trends 

would influence hardening strategies for future generations of high-speed digital circuits 

employed in different environments. Some of the key mechanisms and findings related 

to how single-event particle strikes cause errors in memories as well as combinational 

logic circuits are presented in this chapter. The key topics discussed in this chapter are as 

follows: 

1. Soft errors in memories and flip-flops.  

2. Soft errors in combinational logic circuits  

a. Temporal Masking 

b. Electrical Masking 

c. Logical Masking   

3. Previous results related to logic soft errors 

4. Combinational logic soft error mitigation and overheads   

Single event effects occur when a radiation particle strikes semiconductor junctions. 

When an ionizing particle passes through a reverse-biased junction it creates electron-

hole pairs which results in a transient current at that node when some of the generated 

carriers are collected. This is illustrated in Figure 1-1. Consider an NMOS transistor with 

drain biased high. Following the strike, electron hole pairs are generated along the 
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particle track. As the junction is reverse biased, negative electrons are swept towards the 

terminal. Holes on the other hand slowly diffuse towards the other terminal. This leads 

to a fast current transient at the output node. The collected charge manifests itself as 

voltage perturbation at the struck node [Mass-93], [Dasg-07]. Previous works have 

explained the transient charge collection and recovery of reverse biased junctions [Mass-

93], [Dodd-03]. However as far digital circuits are concerned, the presence of a restoring 

device changes the voltage response at the struck node. The voltage perturbation and 

current pulse profile in the case where a stand-alone NMOS transistor is struck is 

different from the case when the NMOS is part of an inverter for example. This is shown 

in Figure 1-2. When the reverse biased drain region of a stand-alone NMOS is struck the 

current response is characterized by a sharp peak due to drift charge collection followed 

by a slow tail from diffusion charge collection. The initial fast rise time of the current is 

still dominated by drift-collection, the slowly falling component is dominated by 

diffusion currents and is characterized especially by the presence of a plateau for higher-

LET particle strikes [Dasg-07], [Nara-08]. The electric field plays an important role in 

the drift component and a higher electric field at the reverse biased junction would mean 

greater collected charge. The restoring transistor drive helps restore the struck node to its 

initial value and is largely responsible in dissipating the charge deposited by the ion 

leading to voltage recovery at the struck node. Thus the strength of the restoring 

transistor drive influences the single event transient pulse-width [Dasg-07].   
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Other effects like bipolar amplification may also further enhance the transient current, 

depending on the device structure and the exact position of the particle strike. For 

example, in a PMOS transistor, the parasitic source-body-drain (p-n-p) bipolar structure 

can significantly amplify the charge deposited in the well (or body) region [Mass-90], 

[Ferl-04]. The presence of additional transistors can also “share” some of the charge 

deposited by the ion-strike leading to the effective transient pulse-width being 

“quenched” or reduced [Ahlb-12] [Amus-06]. For a full description of all these different 

mechanisms the reader is referred to [Amus-06], Ahlb-12].  

 

 

Figure 1-1 Illustration of an ion strike on a reverse-biased n+/p junction [Ba05] 
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1.1 Single Event Effects in Memory Circuits  

As far as the effects at the circuit level are concerned, due to the collection of charge 

the voltage at the node is perturbed. In the case of memory circuits, especially SRAMs, 

transistors are connected in a way that they form a feedback loop. Figure 3 depicts a 6-T 

SRAM structure that is used to store a logic value. The transistors that are part of the 

feedback structure are M1, M2, M3, M4. Consider a case where the node NQ is at logic 

1 = VH. In other words the transistor M2 is ON and M1 is OFF. When a particle strikes 

the reverse biased junctions of M1, the nodal voltage at that reverse junction is perturbed 

in response to the charge collected. For example Figure 1-3 illustrates a strike on the 

reverse biased NMOS transistor. This results in a perturbation in the voltage at this node. 

 

Figure 1-2 Simulation of off-state NMOS transistor, either as a stand-alone transistor, or 

embedded in an inverter chain [Ferl-06]. 
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Due to this perturbation, the voltage at the struck node which is initially high begins to 

go low. This is illustrated in Figure 1-4. Since the struck NMOS transistor is OFF the 

restoring PMOS transistor is ON.  The ON transistor attempts to restore the node to the 

original value. If the charge collected is enough to exceed the restoring strength of the 

PMOS transistor and the node stays low for long enough to exceed the feedback delay of 

the loop, then the incorrect value gets latched. If the restoring drive is however is able to 

recover the struck node and restore the nodal value to its original value then a voltage 

perturbation merely manifests itself as a transient. These two cases are shown in Figure 

1-4. The minimum amount of charge required to flip the nodal vale of a feedback 

structure is called the critical charge (Qcrit). The mechanism explained above is a 

characteristic of feedback structures where the logic value stored by the memory cell 

gets inverted in response to a radiation particle strike. The critical charge thus depends 

on the output capacitance of the struck node, supply voltage, restoring drive and the 

feedback delay. Higher the capacitance, voltage, restoring lower and feedback delay, 

higher is the critical charge and lower is the probability of an upset. As technology 

scales, the voltage, nodal capacitances and feedback delay have been getting 

progressively smaller, leading to lower critical charge and increased sensitivity to soft 

errors. The general mechanism that induces errors in SRAMs is also true for flip-flops, 

latches and other storage elements that employ feedback structures.  
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Figure 1-4 SE current and voltage perturbations on the storage nodes VH and VL. First case 

corresponds to charge collection less than Qcrit, leading to a transient at the struck node. Second case 

corresponds to charge collected > Qcrit leading to an SEU.  

 

 

 

Figure 1-3 Illustration of an ion strike on a reverse-biased leading to an incorrect value being latched. 
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1.2 Single Event Effects in Combinational Logic Circuits 

Feedback loops are the characteristics of memory structures. However combinatorial 

logic gates do not use feedback structures. When radiation particles strike semiconductor 

junctions and if enough charge is collected, single event transients could be generated as 

explained earlier [Dodd-03]. These transients must then propagate through the 

combinational logic and be latched by the receiving flip-flop to be register as a soft 

error. In order to be latched by the receiving flip-flop the transients must be 1) wide 

enough and have sufficient amplitude to propagate unattenuated through the logic chain 

2) must not be logically screened or prevented by other gates from propagating through 

the logic chain and 3) must arrive during the “window of vulnerability” or setup-and-

hold time window of the flip-flop. In this work such errors are termed as combinational 

logic soft errors or plainly logic errors.  

Each of the above conditions must be satisfied by SETs for them to be successfully 

latched. Hence factors that prevent or mask SETs from causing errors are called masking 

factors [Lide-94]. These factors are:  

1. Temporal masking 

2. Electrical Masking  

3. Logical masking 

1.2.1 Temporal Masking 

SETs generated in the logic circuit can be masked or prevented from being latched by 

the storage cell, if the pulses do not reach the output node during the time that the 

storage element is ready to capture its input value [Kaul-93]. This window is referred to 
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as the latching window or window of vulnerability or the setup-and-hold time window.  

An example of latch-window masking can be seen in Figure 1-5. The minimum amount 

of time that data must be stable before a clock transition is called setup time. The hold 

time is the minimum amount of time that data should be constant after a clock transition 

to ensure reliable function. The latching window or window of vulnerability is the time 

period between the setup time and the hold time. Violating either requirement creates 

meta-stability in latches. As Figure 1-5 shows, SET pulses that fully span the latching 

window will be latched. SET pulses that partially overlap the latching window may or 

may not be masked because of the meta-stability of the latch. SET pulses that are fully 

outside of the latching window will be masked. Thus the probability of latching must 

account for the SET pulse-width. The “wider” or larger the pulse-width, the greater is 

the probability of being latched. Similarly, the larger the feedback delay of the feedback 

element, the wider is the latching window, which makes it more difficult for the transient 

to be latched. The greater the charge deposition by ions, the larger are the transient 

pulse-widths [Dasg-07]. In space environments where heavy-ions are part of the 

radiation flux, these ions deposit much more charge than protons, alpha particles and 

neutrons, which are generally the primary cause of soft errors in the terrestrial 

environment.  
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The probability of a transient resulting in an error is given by the following piecewise 

Equation [Sh02];  
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It is quite clear from this discussion that higher the frequency higher is the latching 

probability of transients. This is so because at higher frequencies there are more number 

of latching intervals which increases the likelihood of combinational logic errors. Thus 

as circuits operate faster, the effects of temporal masking diminish. In older 

technologies, the operating frequency was very low (Pentium II, for example was 

fabricated on 0.35 μm process and operated in the 233-300 MHz) as a result of which 

transients had a very low probability of being latched. Thus logic soft errors could be 

neglected in comparison to flip-flop errors, at that time.  

 

Figure 1-5 Example circuit showing electrical masking as a result of circuit delays caused by 

the switching delay of the transistors (Ra09). 
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1.2.2 Logical masking 

SETs in combinational logic produce an observable error at an output only if there 

exists an available path for the SET to propagate. If no path exists, then the fault is 

considered to be logically masked. For example, a two-input OR gate logically masks a 

strike on an input node if the other input has a high logic value. Logical masking is 

illustrated in a combination of cells in Figure 1-6. Logical masking is a property of the 

circuit topology and the input conditions. Both these factors determine whether 

transients on any of the nodes propagate to the output. In general, gates that are closer to 

the output have a higher chance of propagating to the latch, because there are fewer 

gates that could mask the transients. In terms of logical masking, the effects of 

technology scaling are minimal. However, the logic depth to a certain degree does 

influence the latching probability of transients. Modern pipelined systems use no more 

than 8-12 stages of logic between pipeline stages. The trend over the years has been 

towards less logic between pipeline stages [Hris-02]. With deeper pipelines (less 

combinational logic between flip-flop stages) the impact of logical masking is thus 

expected to diminish as well [Sh-02].   
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1.2.3 Electrical masking 

SETs that are generated at circuit nodes can be attenuated prior to reaching an output 

flip-flop. This occurrence is referred to as electrical masking. Electrical masking occurs 

because the generated single event transient must propagate through a network of logic 

gates (equivalently speaking, a network of capacitors and resistors) to reach the latching 

element. This network of RC elements tends to diminish the amplitude and reduce the 

pulse-widths of SETs. The probability of a signal being electrically masked depends on 

the characteristics of the generated pulse, the electrical noise margin of the output node 

and the capacitive loading at the struck node. The generation of the SET depends on the 

drain area struck. The larger the area, the greater is the probability of an ion-strike 

leading to a transient. The electric field and diffusion mechanisms also influence the 

SET pulse-width. The higher the field and slower the charge collection, the higher will 

 

Figure 1-6 Example circuit showing possible paths for sequential soft fault creation. State 000 

path is only possible with an input vector of (A1; B1; C1) = (0; 0; 0). State 100 path is only 

possible for an input vector of (1, 0, 0). Both combinational node hits and direct latch hits can 

contribute to SE soft faults. (Mass-00). 
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be the SET pulse-width. Conversely, a higher restoring drive and higher capacitive 

loading at the struck node reduces the SET pulse-width.  As the transient propagates to 

the output, the network of metal lines and transistors act as a network of R-C elements 

that may attenuate the pulse. If the SET pulse-width diminishes as it propagates, the 

probability of its meeting the latching window requirement decreases. This can be seen 

in Figure 1-7 where the shape of the pulse is modified as it propagates through the logic 

chain. Results from [Mass-08] suggest that SETs propagate unattenuated through 

combinational logic if the SET pulse-width exceeds the delay of the logic gates through 

which they propagate. With scaling, gate delays become progressively smaller, thus 

reducing the effects of masking.  

 

 

Figure 1-7 Example of transient pulse-widths that are attenuated as they propagate through 

logic gates (a) and transients that do not suffer attenuation as they propagate through the 

circuit (b) [Mass-08]. 
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1.3 Comparing Combinational Logic SER and Latch SER 

Historically, soft errors in memory arrays have been extensively studied especially 

because DRAM, SRAM arrays occupy huge area on chip. Most incorrect operations are 

likely to arise because of reading incorrect values from memory. L1, L2 and L3 cache 

together make up about 60-70 % of total area on processors. The rest of the area is 

devoted to the core, graphics processing and miscellaneous I/O, control and processing 

circuitry. These blocks mainly consist of logic and registers. Incorrect operation 

resulting from soft errors in these blocks can lead to erroneous operation as well. One of 

the earliest papers to characterize the problem of SETs and their possible trends with 

scaling was by [Wall-62]. This study predicted that this could be the dominant type of 

error in combinational and peripheral sections of SEU-hardened circuits. In other related 

work, the authors studied propagation and latching of these SETs more detail. However, 

the SETs were found to be so small and insignificant in number that the authors 

concluded that the SET problem was not yet as severe as memories or latches [Dieh-85] 

[Frie-85] [May-84]. However, in the 1990’s and 2000’s operating speeds of digital 

circuits were steadily on the rise and billion transistor gate count was nearing. With 

increasing frequency of operation, logic soft errors were predicted to equal or even 

exceed flip-flop errors and become the dominant mechanism for errors in data path and 

control circuits [Bu-97]. Other more detailed SPICE simulation studies of processors 

have suggested the same [Sh-02]. As Figure 1-8 and Figure 1-9 indicate, some previous 

results had predicted a substantial increase in logic soft errors.  
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Figure 1-8 Predictions that indicate logic soft errors could be problem with increasing 

frequency ([Bu97]) 
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In the recent past, however, some experimental results have shed light on the logic 

SER problem. Depending on the design and technology SETs from simple structures like 

inverter chains have been shown to be the dominant source of errors. Authors in [Seif-

12] state that under static testing for a 6-inverter skewed NMOS/PMOS chain the total 

number of errors recorded at 1.4 GHz is 430 and that with clock turned off is 110. The 

primary reason for this was the combinational logic soft error contribution of datapath 

inverters. On the other hand, the contribution of logic soft errors from 10 inverters is 

equal to that of latches at 3 GHz [Seif-12]. Results from 40 nm bulk technologies 

suggests that alpha particle combinational logic soft errors are steadily increasing and 

could exceed flip-flop SER for future technologies [Maha-11].  The key message from 

these papers is that the trends with technology scaling and increasing clock rates is not 

 

Figure 1-9 Predictions that indicate logic soft errors could be problem with technology scaling 

([Sh02]) 
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yet clear, let alone the comparison between combinational logic SER and latch or 

memory SER. Another reason that makes this a complex problem to analyze is the fact 

that most test structures to study the effects of logic SER are simple in nature (inverter 

chains, simple logic circuits). It is extremely difficult to extrapolate to system wide 

trends or SER numbers using simple experimental results. Secondly, there is no defined 

metric to compare combinational logic SER unlike memory or latch SER. For example 

while testing memories or latches, a large number of similar structures can be exposed to 

radiation and the number of errors can be counted. The cross-section or error rate can 

then be easily calculated. On the contrary, there is no consensus on which combinational 

logic circuit must be tested to compare the combinational logic soft error rate with the 

latch error rate. The circuit itself can be constructed in different ways, synthesized in 

different ways with different types of gates and varying drive strengths etc.   

In this work we attempt to simplify this problem and report the combinational logic 

soft error trends for the same circuits (inverter chains and comparators) across three 

different technology nodes. The factors that change with technology scaling are 

identified and separated from those that don’t with technology scaling. The 

understanding of these factors can be incorporated in models to estimate chip-level 

trends under a variety of different operating conditions and circuit design styles. Chapter 

III discusses the different technology scaling trends for combinational logic soft errors.   
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1.4 Mitigation of Combinational Logic Soft Errors  

Combinational logic soft error mitigation is a challenging task because of the difficulty 

in estimating the most sensitive gates/nodes in the circuit, individual pulse-widths of 

gates/nodes, the likelihood of transient propagation and latching etc. Historically, many 

papers, especially those emerging from university, government and industrial groups 

involved in radiation-hardened ICs for space repeatedly suggested that combinational 

logic upsets were not the biggest threat as far single-event effects were concerned 

[Guen-81], [Dieh-84], [Hass-89]. Here is an excerpt from [Guen-81] that perhaps is the 

first instance of non-SRAM and DRAM memory related upsets being recorded on three 

different processors designed by AMD, Intel and Motorola. “The upset rate is expected 

to be dependent upon the details of the programming of the microcomputer. It is 

nonetheless expected at some degree of logic integration that significant numbers of 

single even upsets will be observed. The observation of upsets in microprocessors is 

important because of the operational difficulty such upsets will cause. Because upsets in 

memories occur in a predictable fashion on repetitive structures, the upsets can be 

detected and corrected with a relatively low overhead in time, cost and complexity by 

the use of error correction circuitry. However such techniques are not so readily 

available in logic. Also the operation of a logic device, particularly of the complexity of 

a microprocessor, in not as predictable as a memory, so that occasional checks for errors 

are not likely to remove randomly occurring errors before they become inextricably 

intertwined in the calculation or control of the calculation.”  

As a result, the techniques employed to mitigate or eliminate combinational logic 

upsets in the circuits used in these times were limited to one or a combination of the 
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following 1) Triple Modular Redundancy (TMR): In this approach, three identical copies 

of a circuit are designed and the output is computed using a majority voter that compares 

the outputs of the three circuits. If single event transients or SEUs produce errors in one 

of the circuits but the other two are unaffected, the majority voter ensures that the final 

output is correct [Lyon-62]. Such an approach can successfully correct both SEUs and 

combinational logic errors [Schm-90]. However the area and power cost is 200% and 

can be prohibitive for power-starved space ICs. 2) Pulse-suppression using R-C elements 

: The SET pulse-width depends on the loading capacitance as well as the resistance at 

the output of a gate. Large values of resistance and capacitance act as RC filters to 

reduce the SET pulse-width. This technique drew from efforts to mitigate SEUs in 

latches and SRAMs by introducing RC delay elements in the feedback structure of these 

circuits [Sava-86]. In the 1980s and 1990s polysilicide resistances and trench capacitors 

and dummy gates in parallel were commonly used as R and C elements respectively. 

Using resistances for pull-up was a feature of resistive load logic families. The 

RAD6000 processor used for the Mars Orbiter employed this feature. 3) Increasing the 

size of gates: This was another popular method to reduce the SEE sensitivity of 

combinational logic gates. Increasing the size was a straightforward solution to increase 

capacitance as also the restoring drive and thus reduce combinational logic SER. The 

size of almost all the gates were uniformly upsized in the radiation hardened 16/32 bit 

National Semiconductor processor as explained in [Hass-89]. The third technique Many 

of these techniques have now been replaced by more sophisticated approaches as the 

performance and power penalty due to triplicating circuits and deliberately slowing 

down operation cannot be tolerated. The more recent approaches for combinational logic 
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soft error mitigation can be grouped into four broad categories 1) Reduction in pulse-

width at source 2) Selective hardening of critical nodes in the circuit 3) Temporal 

filtering at latch-level and 4) Logic protection using arithmetic error detection and 

correction.  

1.4.1 Pulse-width reduction at source  

The most common approaches to reducing the soft error rate of combinational logic 

circuits is to reduce the pulse-width for all the transistors in the circuit. This can be done 

in several ways. The most direct way to achieve pule-width reduction is to limit charge 

collection processes. Adopting technologies like silicon-on-insulator (SOI) have shown 

the benefit in reducing the SET pulse-width. The use of certain implants, especially 

highly-doped layers that limit charge collection have also been used to reduce SET 

pulse-widths. Epitaxial active layers, triple-well fabrication and other process features 

that confine or limit charge collection, as shown in Figure 1-10, have been shown to be 

effective in mitigating SETs. 
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Another simple and often employed approach is to increase the sizes of transistors that 

reduce the SET pulse-widths. Large devices have large ON currents and large 

capacitances that help dissipate the charge and thus reduce the pulse-widths. This 

however has the inevitable effect of increasing the power consumption. 

1.4.2 Selective hardening of critical nodes in the circuit 

Large combinational logic circuits generally consist of several nodes. SETs generated 

due to single event strikes on sensitive regions at the circuit nodes could propagate to the 

output and lead to a soft errors. However, in most circuits SETs from certain nodes have 

a greater likelihood of propagating to the outputs compared to other nodes. This is 

because electrical, logical and temporal masking factors tend to mask SETs from certain 

nodes more than from certain For example, nodes closer the output are less likely to be 

logically masked than those further away from the output, due to the presence of fewer 

      

Figure 1-10 Charge limiting during a single event strike using process modification [Mavi-02]. 
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gates in the logic path between those nodes and the output. Thus, selective hardening 

approaches rely on the fact that not all nodes in the circuit need to be hardened. Only 

those nodes or gates from which SETs have a very high likelihood of propagating to the 

output and being latched during the window of vulnerability need to selectively 

hardened. Several techniques exist in literature to identify the most sensitive nodes in a 

logic circuit. Some of them are discussed in [Zhou-06], [Maha-11], [Lim-12], [Srin-05], 

[Karn-02], [Poli-08], [Pagl-12], [Poli-08] and therein. The idea behind all these 

approaches is that it is wasteful in terms of area, power and speed to harden all the nodes 

in a combinational logic circuit. Rather, maximum fault coverage can be obtained by 

hardening only a few of those. Thus soft error reliability can be traded against area, 

power and speed concerns.  

1.4.3 SET filtering using Delay elements 

The most commonly used technique to mitigate combinational logic soft errors is by 

filtering transients through the use of tuneable or fixed-delay filters. This technique 

relies on the fact that signals that are less than a certain critical pulse-width can be 

filtered using the topology described in [Mavi-02]. Any SET that has a pulse width 

shorter than the tuneable delay is effectively filtered or masked from further propagation. 

[Mavi-02]. Similar techniques were employed by [Bala-08], [Nico-10] to filter SETs 

efficiently. Some of these SET filters or guard gates have also been incorporated in latch 

designs [Nase-06]. Again, the key factor with all these mitigation approaches is that the 

introduction of SET filter elements has performance as well as power overheads. With 

technology scaling such a solution has two important drawbacks. Firstly, with scaling 

the delays of individual gates is decreases which means more such gates are required to 
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filter transients. Secondly, the trend in logic design is to use short logic paths per 

pipeline stage. This means that more such filters would be necessary at each stage to 

filter transients this would increase the dynamic power consumption significantly and 

also lead to performance penalties.  

1.4.4 Logic Protection using Arithmetic Error Detection and Correction  

Apart from circuit-level approaches, architectural and system level approaches can 

also be adopted to mitigate combinational logic soft errors. Error detection and 

protection and correction of arithmetic logic circuits has been known for a very long 

time [Wats-66]. These techniques, however are mainly applicable for arithmetic circuits 

and circuits that can be protected using parity-based protection schemes. Arbitrary 

circuits such as those used in datapaths are less suitable for parity based logic protection. 

Some of the earliest approaches for space-borne electronics were adopted in [Gais-97] 

where parity-based protection was used to mitigate the effects of combinational logic 

soft errors in the Arithmetic Logic Unit (ALU) and certain other structures in the first 

few stages of the pipeline. More recently arithmetic protection based on residue codes 

and parity checking is beginning to seem attractive because the large amounts of 

arithmetic processing circuits especially in Graphics Processing Units (GPUs) as well as 

the technology agnostic nature of these approaches [Sika-13], [Naza-11].   

1.5 Summary 

In this chapter, the key factors that influence combinational logic soft errors are 

discussed. Experimental approaches to characterize logic SER and results are presented. 

Comparison between the latch and logic SER suggests that this is an important problem 
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for future technologies and has several unanswered questions. Lastly, some popular soft 

error mitigation approaches are discussed and their associated penalties are discussed. In 

the next few chapters, technology scaling trends of combinational logic SER are 

presented. Following this novel power-aware approaches to mitigate combinational logic 

SER are presented at various levels of abstraction.  
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2. Chapter II. Power Minimization Techniques 

 

Low-power design has emerged as the all-important theme behind electronic design 

today. Low-power as a design philosophy is now part of designs beginning from the 

transistor and circuit level right up to the system, architecture and software level. This 

all-pervasiveness stems from the fact that minimizing power consumption increases the 

operational time of portable devices like laptops, cell phones and tablets. With an 

increasingly connected world, biosensors for health monitoring and other wearable 

battery operated systems will increase in popularity. All these devices must operate 

under ultra-low-power consumption constraints. Similarly, systems that must maintain 

very high-reliability and data integrity, like data centers and servers, also draw huge 

amount of power due to their high-speed computation intensive design. Here energy 

efficiency in different forms beginning from circuit-level power efficiency to thermal 

cooling is necessary to keep operational costs low as well as increase the reliability. Yet, 

another class of systems that must maintain high-reliability and integrity over long 

periods without regular repair and upkeep are those that are deployed in space. Often 

such space-systems rely on different forms of energy generation such as on-board 

thermal reactors and solar panels to provide power. As such sources of power are 

limited, every sub-system must adhere to strict power budgets. Thus systems across the 

semiconductor application space must now confirm to low-power design approaches as a 

requirement rather than as an afterthought.  

In the field of very large scale integrated circuit (VLSI) design, optimizing designs for 

the lowest area, best performance (fast operation) and lower cost was of paramount 
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importance. Power considerations were often secondary. However, today, due to the 

remarkable growth in the field of personal computing devices and wireless 

communication systems, the emphasis is clearly on high speed computation and complex 

functionality with low power consumption. The motivations for reducing power 

consumption differ from application to application. In the class of micro-powered 

battery operated portable applications such as cell phones, the goal is to keep the battery 

lifetime and weight reasonable and packaging cost low. For high performance portable 

computers such as laptops the goal is to reduce the power dissipation of the electronics 

portion of the system to a point which is about half of the total power dissipation. Finally 

for the high performance non battery operated system such as workstations the overall 

goal of power minimization is to reduce the system cost while ensuring long term device 

reliability.  

Fortunately, as each application requires different levels of power regulation and 

power management, different approaches are available to designers to reduce power 

consumption to acceptable levels. Each of these techniques is targeted towards reducing 

power consumption based on the source of power consumption. In this chapter, the 

different sources of power consumption for transistors, circuits as well as architectures 

and systems are discussed. Later chapters in this thesis however focus on techniques that 

emphasize minimizing circuit-level power consumption.  Wherever relevant, the impact 

of certain variables or factors that affect power, on the SER is also discussed. This way 

the reader can grasp the effects on both the variables concurrently. Specifically, this 

thesis establishes the relationship between power and SER in several ways.  
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2.1 Sources of Power Dissipation 

There are three major sources of power dissipation in digital CMOS circuits, which are 

summarized in the following Equation:  

leakagecircuitshortdynamictotal PPPP       2-1 

 

The first term of represents the switching component of power. This can be 

expressed as  

fNCVPdynamic

2      2-2 

where C, is the loading capacitance, f is the  clock frequency, and α is the switching 

probability of N nodes that switch at a rate of f, where f is usually the clock frequency. 

In most cases, the voltage swing is the same as the supply voltage V; however, in some 

logic circuits, such as in single-gate pass-transistor implementations, the voltage swing 

on some internal nodes may be slightly less [Chan-92].  

The second term is due to the short circuit current, which arises when both the NMOS 

and PMOS transistors are simultaneously active, conducting current directly from supply 

to ground [Chan-94]. The third term is the leakage power consumption which results due 

to substrate injection, sub-threshold leakage and gate leakage. These are primarily non-

ideal currents that result due to reverse biased diode leakage, source-drain leakage and 

tunneling across the gate dielectric respectively. In circuits that operate at full speed, the 

dominant term is usually the switching component, and low-power design thus becomes 

the task of individually minimizing the number of switching nodes (N), their switching 

probabilities (α), the output capacitance as well as the voltage and frequency. Voltage 
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and frequency are closely related together through the delay. A higher voltage 

corresponds to a lower delay which allows a higher frequency. Thus operating at a 

higher frequency which is needed for faster computations, mandates higher voltages. 

Thus the designer is in a trap that does not allow reduction in voltage without a forcible 

reduction in frequency. As a result, lowering the voltage is adopted when the system is 

not required to run at full speed or can be “idled”. Such approaches to change the voltage 

and frequency adaptively are performed at the system level and are collectively called 

Dynamic Voltage and Frequency Scaling (DVFS). On the other hand, factors like the 

number of switching nodes, switching probabilities of components and gates are design 

dependent and can be reduced at the gate level, circuit level or higher level of abstraction 

based on intelligent placement and interconnection of sub-circuits and sub-systems. The 

capacitance is dependent on individual choice of gates used to synthesize the circuit but 

more fundamentally the capacitance of the transistor junctions and gate itself. 

Technology scaling generally results in lowering of the capacitance through the use of 

smaller transistors. Thus the switching component of power can be minimized at various 

levels.  

The power-delay is another useful metric to keep in mind. This product can be 

interpreted as the amount of energy expended in each switching event (or transition) and 

is thus particularly useful in comparing the power dissipation of various circuit styles. If 

it is assumed that only the switching component of the power dissipation is important, 

then it is given by Equation 3.  

2/ NCV
f

P
transitionEnergy total     2-3 
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Energy is generally defined per task. For example a high-performance fast processor 

may compute the result with high power consumption in a short time, resulting in 

significant energy consumption. Conversely, a slower processor may take longer 

consume less power but also consume less energy. Thus, either power consumption or 

energy consumption can be a metric of interest when designing systems. Often power is 

a more important metric for high-speed high-performance applications like desktop 

processors or servers. Energy on the other hand maybe more critical for portable systems 

like phones, tablets where battery longevity is relatively more important. In this work we 

emphasize power minimization techniques for high-performance and high-speed 

systems, although the same principles can be extended to energy starved systems equally 

well.  

2.1.1 Component-Level Power Dissipation Trends and Contributions 

Different components or sub-systems parts of the integrated circuit collectively 

contribute to the total power dissipation of the chip. The percentage contribution of each 

of these components varies according to the mode of operation of the IC, the application 

that is being run, the communication speeds, the performance and reliability constraints 

etc. In general however, technology scaling has led to an increase in both dynamic 

power consumption as well as static power consumption. The following trends indicate 

the power dissipation in different on-chip components in different regions of operation. 

As shown in Figure 2-1, a high frequency facilitated by full-rail supply voltage is 

necessary for high-speed high performance operation. Thus a higher frequency not only 

means higher performance but also higher power consumption. As illustrated in previous 

chapters, the combinational logic SER is also directly proportional to the frequency of 
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operation. Hence, operating at higher frequencies leads to the dual problems of high 

power consumption and higher SER. On the other hand, whenever the full clock speed is 

not quite needed by the system, the supply voltage can be lowered to operate at lower 

frequency, resulting in power savings. Tremendous saving in power can be achieved by 

lowering the supply voltage and thus the frequency. In such operating regimes where the 

chip operates at a modest frequency, other sources of power consumption become 

comparable to the logic switching power dissipation. As shown in Figure 2-1, when the 

supply is lowered to near threshold voltage regions (NTV) or half-rail, the leakage 

power dissipation from logic and memory forms a substantial proportion of the total 

power dissipation. At even lower voltages, the total SRAM memory contributes 

tremendously to the total power dissipation of the IC. Several circuits especially for 

biomedical applications operate at very slow frequencies : in the kHz to the MHz range 

where the primary source of power dissipation are the memory blocks. Thus different 

regions of operations that are needed for different applications result in different on-chip 

components dominating the power consumption. It is therefore important for designers 

to understand the impact of operating regimes, design specifications and application and 

user demands on the power consumption trends of different components. Targeted 

power minimization techniques can then be employed to result in savings in the power 

consumption.  
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2.2 Power Minimization Techniques 

Several power-minimization techniques are commonly used to reduce power 

consumption of IC operating under various conditions. These techniques apply at the 

transistor-level, circuit-level, architectural-level as well as the system and software level. 

The bulk of work in this dissertation focuses on circuit level and architectural 

approaches to mitigate the effects of soft errors and reduce power consumption. These 

involve partitioning and redesigning the circuit effectively to reduce the number of 

switching nodes and thus achieve lower power. Some of the commonly used techniques 

to reduce power consumption and their impact at the system-level are discussed. In 

general, as a rule of thumb it is reasonable to say that system-level and software-guided 

approaches tend to maximize the overall power reduction when limited information is 

 

Figure 2-1 Contribution of different components of power in different modes of operation. As 

the voltage is increased from sub-Vt to Near Threshold voltage (NTV) to Full Vdd the logic 

switching component dominates the power consumption [Bork-12].  
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available about the applications and usage patterns of the system. For example, in the 

case of cell phones and portable mobile devices, when the phone and most of its 

applications are not under use, system-level approaches to “shut down” and “power-

down” the device can save a lot of power. Indeed these are decisions that are based on 

the usage pattern and if several applications are in continuous use then such techniques 

would have limited impact. On the other hand, when certain specific portions of the IC 

dominate the power consumption, taking recourse to circuit and device level approaches 

is much more beneficial. For example if the logic switching dominates the total power 

consumption of the processor being used in the cell phone, power minimization 

techniques like redesigning the circuit to save power through Boolean manipulation, 

selective use of  Vt implants in certain gates in non-critical paths in the circuit to lower 

dynamic and leakage power etc. can be very useful. Again, if the usage profile of the cell 

phone is such that several applications lead to logic switching power dominating then 

circuit level techniques would be especially useful. Network processors, server-class 

processors, ASICs used in digital set-top boxes, gaming consoles that hardly have any 

downtime can benefit hugely from circuit-level and device-level power minimization 

strategies. In the following sections different approaches to minimizing power 

consumption at various levels of abstraction are discussed along-with their potential SER 

impact, wherever possible.    
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2.2.1 Circuit Level Power Minimization Techniques  

In this section some circuit level minimization techniques have been discussed. The  

key optimizations are at the transistor level through sizing as well as gate reordering and 

logical implementation. 

2.2.1.1 Complex Gate Design 

Circuit design involves the choice of lot of gates of different drive strengths, area, 

delay and power. Consider a function f = (a+b)∙c. Such a function can be implemented in 

two different ways as shown in Figure 2-2. Both the implementations shown below can 

have significant impact on the power consumption. For example, (assuming C = 1) in the 

first implementation (a), the output of the OR gate switches from 1-0 only when the 

inputs transition from A or B = 1 to A and B = 0. In the second implementation (b), the 

outputs of the AND gates switch whenever transitions occur on A and B if C = 1 and not 

otherwise.  

 

 

 

(a)                       (b) 

Figure 2-2 Different ways of synthesizing the same Boolean function. The synthesized version in (a) 

results in lower power consumption compared to the one on the left (b). This is mainly because the 

logic path delays are balanced and glitching power is minimized.   
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Hence the transition probabilities as well as the number of switching nodes can differ. 

Thus differences in Boolean synthesis can affect the power consumption inspite of the 

implemented function being the same. It is also very well known that signals that arrive 

late should be placed closer to the output to minimize gate delay. In [Pras-94] and [Tan-

94] methods to optimize the power and/or delay of logic-gates based on transistor 

reordering are given. Modest power and delay improvements can be obtained by 

judiciously ordering the gates within a design.  

Effects on SER : The choice of gates influences the sensitive area and the SET pulse-

widths at different nodes in circuit as well as the logical masking factor. Thus different 

synthesis styles can have an important impact on the design of the circuit. Some of these 

aspects are dealt with in [Limb-13]. The author concludes that implementations that 

optimize the speed of designs through synthesis generally result in lower SER. 

2.2.1.2 Transistor Sizing 

Transistor sizes are a tool available to designers to control the delay of individual 

gates. However sizing the transistor not only affects the circuit delay but also area and 

power dissipation. If the transistor sizes are increased, gate delay decreases but both area 

and power dissipation increase. Additionally, delay of large fan-in gates increases 

because of increased load capacitance. For a given delay constraint, choosing transistor 

sizes such that area and power are minimized is a computationally complex problem. 

Typically, the slack at each gate in the circuit is calculated, (slack = how much gate can 

be slowed without affecting the critical delay of the circuit). Sub-circuits with slacks 

greater than zero are recorded and their sizes are reduced until their slack becomes zero 
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or the transistors are all minimum size. Variants of the above approach are presented in 

[Tan-94] and [Baha-94]. 

Effects on SER: Generally, increasing transistor sizes decreases the soft-error 

sensitivity of gates. This is because the increased sizes result in increased nodal 

capacitances and increased restoring current drive leading to smaller transients. However 

increasing the transistor area also means a higher probability of striking the sensitive 

regions of the transistor leading to more transients. Thus what matters is the ratio of 

ION/W, where ION is the restoring current drive and W is the width of the struck device. If 

increasing transistor sizes increases this ratio, there is an obvious benefit. Several 

techniques in the past have attempted to selectively increase transistor sizes to reduce 

combinational logic SER due to transients [Zhou-06] [Maha-13] [Nieu-06]. However as 

explained earlier, although the delay may decrease in certain cases, the area and power 

penalties are unavoidable.   

2.2.1.3 Logic Level 

The logic level optimizations that can reduce switching activity power of 

combinational and sequential circuits is surveyed in this section. Logic optimization can 

be applied to combinational and sequential circuits.  

2.2.1.3.1 Combinational 

Logic optimization must be decomposed into two separate stages: technology-

independent optimization (traditionally called “logic optimization or Boolean 

minimization”) and technology-dependent optimization (in the physical design domain 

called synthesis where functions are implemented using combinations of gates). In the 
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first stage, logic equations are manipulated to reduce area, delay or power dissipation. In 

the second stage, the functions are mapped to particular technology libraries with the aid 

of technology mapping algorithms that optimize for area, delay or power or a 

combination of the three. [Deva-94] comprehensively analyzes logic and technology 

optimization issues. Most of the low-power techniques reviewed below have been drawn 

heavily from [Deva-94]. 

A. Don’t-care Optimization 

Any gate in a combinational circuit has an associated controllability and observability 

don’t-care set. The controllability don’t-care set corresponds to the input combinations 

that never occur at the gate inputs. In other words, for an AND gate when the output is 1, 

the controllability don’t care set includes A, B = {00, 01, 01}. The observability don’t-

care set corresponds to collections of input combinations that produce the same values at 

the circuit outputs. In other words, all possible input combinations that produce an 

output 1 in function are in the observability don’t care set of that function. These are 

extensively explained in [Savo-91]. Gate-level power dissipation is dependent on the 

probability of the gate evaluating to a 1 or a 0. This probability can be changed by 

utilizing the don’t-care sets. A method of don’t-care optimization to reduce switching 

activity and therefore power dissipation was presented in [Shen-92]. Observability don’t 

care sets on the other hand help in fault testing algorithms to identify stuck-at-faults 

because the circuit output can be made immune to certain inputs using observability 

don’t care sets. This method is utilized in in [Iman-94] where the effect of don’t-care 

optimization of a particular gate is considered to reduce power consumption.  

B. Path Balancing 
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Spurious transitions or glitches contribute to 10% and 40% of the switching activity 

power in typical combinational logic circuits [Ghos-92]. To reduce spurious switching 

activity, the delays of paths that converge at each gate in the circuit should be roughly 

equal. This can be done by adding delay buffers. This removes the spurious transitions if 

done carefully but adds to the total capacitance. Thus the switching power overheads 

from buffer insertion must be less than the total power consumption of the original 

circuit. Glitch reduction with minimal delay overheads by path balancing is described in 

[Lemo-94]. 

C. Factorization 

Factorization is a means of reducing the transistor count by minimizing the logical 

expressions. For example, a common factor in a sub-expression can be combined or 

collapsed or shared across multiple functions. For example if an ADD function is needed 

in different blocks of the circuit in one form or another it does not make much sense to 

implement a separate adder for each instance that the ADD function is needed. The same 

adder can merely be shared across designs or functions. Formally, kernels or sub-

function reduction are commonly used to perform multilevel logic optimization for area 

[Roy-92]. 

D. Technology Mapping 

Once optimized logic equations have been obtained, the task that remains is to map the 

equations onto a target library that contains optimized logic-gates in the chosen 

technology. A typical library will contain hundreds of logic gates with different 

transistor sizes and functions. Modern technology mapping methods use a graph 

covering formulation, originally presented in [Keut-87], to target area and delay cost 
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functions. The graph covering formulation of [Keut-87] has been extended to the power 

cost function. Under the zero-delay model, the optimal mapping of a tree can be 

determined in polynomial time, by extending the algorithm of [Keut-87]. Various 

approaches to technology mapping that assume different delay models and target 

minimal power dissipation have been described [Tiwa-93] [Tsui-93]. 

2.2.1.3.2 Sequential 

Sequential circuit optimization is briefly surveyed. Sequential logic optimization apply 

to two levels of abstraction; 1) at the State Transition Graph level and 2) at the logic-gate 

and flip-flop level. 

A. Encoding 

State encoding for minimal area is a well-researched problem [Asha-91]. These 

techniques can be extended to target a cost function, such as power. Intuitively, if a state 

has a large number of transitions to different states, then the different states should be 

given uni-distant codes, so as to minimize switching activity at the flip-flop outputs. 

However, the complexity of the combinational logic resulting from a state assignment 

should not be ignored. Methods to encode State Transition Graphs to produce two-level 

and multilevel implementations with minimal power are described in [Roy-92] and 

[Tsui-94]. A method to re-encode logic-level sequential circuits to minimize power 

dissipation is presented in [Hach-94]. 

Encoding or the use of tokens to reduce switching activity in datapath logic has also 

been explored. Others have proposed switching activity minimization on busses [Stan-

94]. Here, an extra line E is added to the bus which signifies if the value being transferred 

is the true value or needs to be bitwise complemented upon receipt. Depending on the 
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value transferred in the previous cycle, a decision is made to either transfer the true 

current value or the complemented current value, so as to minimize the number of 

transitions on the bus lines. For example, if the previous value transferred was 0000, and 

the current value is 1011, then the value 0100 is transferred instead, and the line E is 

asserted to signify that the value 0100 has to be complemented at the other end. 

Other methods of bus coding are also proposed in [Stan-94]. Certain methods to 

replace the traditional two’s complement arithmetic are also being investigated. A 

method of one hot residue coding to minimize switching activity of arithmetic logic is 

presented in [Chre-95]. 

B. Retiming 

Retiming [Leis-83] is a well-known optimization method and is similar in concept to 

the path balancing problem discussed earlier. It repositions the flip-flops in a 

synchronous sequential circuit to minimize the required clock period. Polynomial-time 

algorithms O(n
x
) to minimize the delay and/or the power consumption have been 

developed. It has been observed that the switching activity at flip-flop outputs in a 

synchronous sequential circuit can be significantly less than the activity at the flip-flop 

inputs. This is because there may be many spurious transitions at the inputs to the flip-

flops which are filtered out by the clock. A retiming method that exploits the above 

observation and targets the power dissipation of a sequential circuit is described in 

[Mont-93]. The idea is to clock the circuit in a way such that the spurious output 

transitions are minimized by careful delay manipulation of the clock line and the inputs. 

C. Clock-Gating 
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Modern VLSI circuits consist of complex sub-systems like data-paths, memories, 

communication modules, digital signal processing units, often integrated on a single die. 

All these modules must communicate with each other and this happens frequently in 

synchronous fashion using clocks to provide timing synchronization. The internal clocks 

of the sub-systems can be independent but must be synchronized with the system clock 

to transfer data reliably across modules. Typically one or more of these sub-systems may 

be inactive or less active during certain time periods. For example, the communication 

module could be inactive during periods when there is no communication required. 

During such periods, the switching activity can be tremendously reduced by “turning 

off” or gating the clock to the register files, flip-flops and latches within the module. 

This is termed as coarse clock gating. A more refined approach can also be adopted. For 

example, register files are typically not accessed in each clock cycle. Similarly, in an 

arbitrary sequential circuit, the values of particular flip-flops need not be updated in 

every clock cycle. In such cases the clock to such register files and flip-flops can be 

gated on a cycle-by-cycle basis. This approach is called fine-grained gating. If relatively 

simple logic and usage pattern-oriented conditions that determine the inaction of 

particular registers can be determined, then power reduction can be obtained by gating 

the clocks of these registers [Chan-94]. When these conditions are satisfied, the 

switching activity within the registers is reduced to negligible levels. Clock-gating can 

be included in a general class of techniques that reduce the switching activity of gates or 

nodes (α in Equation 2).  
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2.2.2 Architectural Level Power Minimization Techniques  

Finally, in this section architectural power-reduction approaches are evaluated. These 

techniques are technology dependent and the results from such techniques can vary 

depending upon the quality of algorithms used to synthesize circuits. Often the task to 

evaluate the power at the architectural level is a highly complex task and well defined 

benchmarks do not yet exist for power estimation.  

A. Architecture Level Power Analysis 

Estimating switching and leakage power consumption of a design is a first step 

towards incorporating power optimization techniques in a synthesis system. Without 

adequate and accurate analyses it is impossible to evaluate the various designs in the 

solution space explored during synthesis. Power analysis tools can be of great use to 

designers, by helping them explore the design space manually. A simple approach to 

develop power analysis tools is to translate high level descriptions into physical 

architectural descriptions for gates, circuits, and physical level; at such levels low-level 

power analysis can be carried out by physically switching inputs and characterizing 

nodal switching activity. This also involves Monte-Carlo campaigns to gain adequate 

accuracy. (For a survey of available tools at the gate level see [Najm-94].) This method 

is obviously infeasible if a large number of design alternatives have to be evaluated, 

which is the case in synthesis. Reasonable power models, however, can be built if the 

final lower level circuit style, module and gate library, etc., are fixed, or at the least, 

restricted in some way. The lower level analysis tools can then be used to create power 

models for the underlying architecture primitives, such as datapath execution units, 

control units, memory elements, and interconnect. However beyond simple modules, the 
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solution space explodes and random or even stratified sampling of the input space may 

be inadequate. Instead what is needed are power estimates for each module. The power 

models are obtained by characterizing the estimated capacitance that would switch when 

the given module is activated. This approach is used in [Powe-90]. In [Land-93], known 

signal statistics are used to obtain models that are more accurate than those obtained 

from using random input streams. Activity factors for the modules can be obtained from 

functional simulation over typical input streams, or from statistical/analytical models 

that are built where possible. In [Sato-94], an alternative approach is adopted where 

average power costs are assigned to individual modules, in isolation from other modules. 

During simulation, the power costs of the modules involved in the given computation are 

added up. This method ignores the correlations between the activities of different 

modules. This speeds up simulation tremendously and is surprisingly accurate in 

measured usage conditions. Other specialized approaches for architecture-level power 

estimation have been developed. These tend to be less accurate than the above methods, 

but may be acceptable since they are intended to provide only rough predictions. A 

model for estimating the power consumption of CMOS chips using gate counts, memory 

size, logic styles, and layout styles is described in [Sven-94]. A power model to evaluate 

the power cost of cache options, and multiple function units is developed in [Bund-94]. 

Again, the different synthesis and power estimation techniques in use today utilize 

knowledge of input correlations, usage conditions and applications to tailor the power 

estimation procedure.   

B. Power Optimizations in Behavioral Synthesis  
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Behavioral synthesis involves mapping a high-level specification of a problem into a 

register-transfer level design. Data flow graphs, tokens or control flow graphs are used to 

describe the high-level specification. Alliteratively, an algorithmic routine or set of 

instructions may be used. Converting such high-level descriptions or tasks to low-level 

gates and transistors can involve optimization across multiple hierarchies. Some recent 

work addresses these issues for optimizations for low-power that are possible at this 

level. The input high-level specification can be modified through specific 

transformations that potentially lead to power reduction.  

The most important transformations for fixed throughput systems are those which 

reduce the number of control steps. Slower clocks or can then can then be used for the 

same throughput, enabling the use of lower supply voltages. The quadratic decrease in 

power consumption can compensate for the additional capacitance introduced due to 

transformations that increase concurrency. Transformations that reduce the amount of 

resources needed to implement a given graph can be extended to reduce the amount of 

capacitance that switches. A number of these transformations are used in an automated 

system as described in [Chan-95]. The transformations are guided by a power estimation 

method that is based on the parameters of the given data/control flow specification, such 

as the number of operations of each kind, number of edges, etc. [Mehr-94]. Specific 

transformations for digital signal processing (DSP) circuits are studied in [Chat-94]. 

After the initial specification (data/control flow graph) has been transformed, the 

individual operations have to be assigned control steps (scheduling) and execution units 

or modules (allocation and assignment). If a number of modules, with a range of 

power/delay costs, is available for implementing the given operation types, an 
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appropriate choice of modules can lead to lower power costs for the same performance 

[Good-94]. In summary, the mapping tool has a library of functions available to it. Tasks 

can be decomposed into circuits using one or more of these functions from the library. 

The order in which these functional modules are ordered, placed, combined and even 

executed affects the overall switching capacitance. The allocation and assignment 

processes map operations in the control/data flow graph to functional units, variables to 

registers, and define the interconnection between them in terms of multiplexers and 

buses. The decisions made during these processes, including the extent of hardware 

sharing and the sequence of operations (variables) mapped to each functional unit 

(register), affect the total switched capacitance in the data path. Correlations also occur 

among these modules and can affect the power consumption estimates [Ragh-94], 

[Ragh-95]. The power consumed in memories can be a major part of the system power 

consumption. This problem is addressed in [Catt-94] in the context of multi-dimensional 

signal processing subsystems. It is noted that the memories impact power in two ways. 

Accessing memory must be done synchronously with the data path clock. When reading 

and writing data, large columns or words of data may switch, consuming active power.  

Additionally, off-chip access leads to greater power consumption due to larger 

capacitances and larger memory words. Control flow transformations, such as loop 

reordering are presented to try to minimize the memory component of the overall system 

power consumption. Several specific design examples illustrate some of the architectural 

and algorithmic tradeoffs and optimizations that can be used for low power designs.  
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2.2.3 System and Software Level Power Minimization Techniques  

Embedded systems form a large part of the modern electronic ecosystem. These 

consist of hardware and a software component along with a lot of supporting firmware. 

Software is written in application specific languages to be compiled and burned onto 

dedicated microprocessor/application specific processor (ASP) or microcontrollers, 

while the hardware component consists of application specific circuits, processors and 

microcontrollers. Hardware-based power estimation and optimization approaches are not 

completely applicable here, since a major part of the functionality is in the form of 

instructions as opposed to gates. 

This motivates the need to consider the power consumption in microprocessors from 

the point of view of software. This is a branch of power optimization possibilities that 

have been ignored until recently mainly because accurate power analysis tools existed 

only at the circuit or gate level. Large programs are difficult to analyze in terms of power 

they consume because of the number of variables involved, like clock speed, hardware 

implementation from software descriptions, the software code and its optimization itself 

etc. Instead it is wiser to analyze sequences of task or program executions. This is 

similar to the divide and conquer approach seen in earlier sections for power estimation 

[Mont-95].  

Another approach is to merely monitor the current being drawn by the CPU during the 

execution of a program which can be physically measured. An inexpensive and practical 

technique in this regard has been developed [Tiwa-94] for analyzing the power cost of 

programs for a given CPU. It has been successfully incorporated to develop instruction-

level power models for commercial CPUs. The rudimentary measurement technique can 
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also be adapted to use architecture-level power simulators, described in the earlier 

sections. The goal of these studies is to describe, develop and evaluate programs in terms 

of the associating power costs with executing them. It is true that power consumption is 

a physical real-world quantity, but actions or instructions can be translated into power 

consumption equivalents. For example doing things in parallel at a slower speed may 

lower the power consumption. Such decisions can be encoded into programs to choose 

between multi-core (parallel and low power) execution versus single-core (fast, high 

power) execution. Given the ability to characterize programs in terms of their 

power/energy costs, it is possible to search the design space in software power 

optimization. The choice of the algorithm used can also impact the power cost because 

of the runtime complexity of a program. This issue is explored in [Ong-94]. Automated 

tools for synthesizing the optimum algorithm for power, however, are not available, and 

this is a very difficult problem. If power costs of individual instructions are available, an 

appropriate choice of instructions in the generated code can lead to a reduction in the 

power cost. This aspect has been studied in the context of specific CPUs [Ong-94]. 

A general statement seems to be true for program execution “A faster code almost 

always implies lower energy code”. Such observations can be used to tailor power-

optimization driven algorithms and code development. In addition, scheduling 

techniques to reduce the estimated switching in the control path of the CPU have also 

been proposed [Su-94]. Experiments suggest that this may not be an important issue for 

large general purpose CPUs but may be applicable to server-class processors where jobs 

and tasks must be scheduled appropriately to maximize performance, improve efficiency 
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and lower power consumption [Tiwa-94]. Scheduling of instructions can also affect DSP 

processor [Lee-95].  

2.3 Summary 

Power optimization techniques spanning the design and development space from 

device to circuits to architectures and software has been presented. One or more of these 

techniques can be applicable to different domains of electronic design today. Lowering 

power dissipation at all abstraction levels is a focus of intense academic and industrial 

research. Briefly, for each technique the associated impact on the SER has been 

mentioned. Some of the impacts cannot be quantified in this work and is indeed beyond 

the scope of this work, but qualitative understanding of the effects of power 

minimization can guide SER-mitigation and SER-aware approaches. However the 

discussion from this chapter as well as the previous chapter that highlighted SER 

mitigation approaches is that in most cases, approaches to reduce the power can have 

SER overheads and conversely, approaches to reduce the SER can have power 

overheads. Worse still, the two are rarely ever co-optimized or studied in conjunction. 

This means that applying SER mitigation and power minimization independently can 

eliminate the benefit obtained from these approaches due to power overhead from SER 

mitigation and SER overhead from power minimization! Therefore there is much scope 

for research that seeks to co-optimize the variables of soft error reliability and power 

minimization and has certainly not been explored in depth so far. The next chapters 

focus on techniques that utilize the philosophy of power minimization techniques to 

reduce the combinational logic soft error rate of circuits. The approaches presented in 

this dissertation are limited to the circuit level and architectural level, but soft error 
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mitigation and power minimization can be achieved jointly at various levels of 

abstraction.     
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3. Chapter III. Combinational Logic Technology Scaling Trends 

 

Digital circuits are mainly comprised of large memory banks to store data as well as 

datapath and computational blocks that consist of combinational logic and flip-flops. 

Single-event effects (SEE) due to radiation particle strikes in memories, flip-flops as 

well as logic circuits can lead to soft errors. Soft errors in memories, latches and flip-

flops are caused due to ion-strikes on the sensitive nodes part of these structures. 

However, ion-strikes in combinational logic produce single-event transients (SETs) that 

must be latched by the receiving flip-flops. SETs can be masked or prevented from being 

latched by the flip-flops if they are 1) electrically attenuated by gates 2) logically 

masked from propagating through the logic and 3) do not arrive during the latching 

window (setup-and-hold time) of the flip. The third condition implies that if the number 

of latching intervals increases due to an increase in the operating frequency, the 

likelihood of latching SETs would be higher. Due to these factors, in older technology 

generations, where the frequency of operation was much lower, the combinational logic 

soft error (SEU caused due to latched SET originating from combinational logic) 

problem was not as big a threat as soft errors in memories and flip-flops. However, as 

technology has scaled, operating frequencies of microprocessors have steadily increased 

to the 5+ GHz range. Expecting such a trend in frequency of operation with technology 

scaling, [Shiv-02] predicted mainly through simulations and engineering insight that 

“combinational logic soft error rate driven by increasing clock frequencies and device 

scaling would exceed the flip-flop and unprotected memory error rate in the terrestrial 

environment”. However, there have been very few experimental results to establish the 
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relative contribution of combinational logic soft errors, flip-flop soft errors and memory 

soft errors, especially as a function of technology scaling and frequency of operation 

[Sief-12] [Maha-11] [Gill-09]. This mainly due to the fact that unlike memories and flip-

flops, combinational logic circuits contain a large number of gates, input combinations, 

circuit topologies etc. which makes it difficult to experimentally estimate the 

combinational logic soft error rate of circuits. In addition to this, technology scaling also 

affects all aspects of logic SER (sensitive area, critical charge, frequency, masking 

factors, etc.) increasing the complexity of such modeling efforts. All these issues made 

real progress in experimentally characterizing logic SER very difficult. Due to the lack 

of experimental evidence, the contribution of logic soft error rate (SER) was considered 

negligible compared to latch SER. As a result, in the terrestrial environment, soft error 

mitigation efforts have focused on protecting memories and latches rather than 

combinational logic gates [Maiz-03] [Mukh-05] [Hazu-00]. To estimate the impact of 

logic SER on overall chip-level SER, designers also need to identify the frequency at 

which combinational logic SER exceeds latch SER. If the operating frequency is well 

beyond this frequency threshold then combinational logic errors will dominate overall 

SER. On the other hand if the operating frequency is well below this threshold, 

combinational logic errors may not be a major issue for the chip-level SER.  

To address these issues, this work presents the alpha particle, proton and heavy-ion 

combinational logic SER and latch SER of identical circuits fabricated in 40-nm, 28-nm 

and 20-nm bulk CMOS technology nodes. Logic SER is estimated as a function of 

frequency and compared to the latch SER to determine the frequency at which logic SER 

will equal to the latch SER. By testing circuits that are representative of real-world data 
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path circuits, results can be extended to evaluate relevant chip-level SER for modern 

technology nodes, especially at high frequencies. Additionally, factors such as sensitive 

area, single-event transient (SET) pulse-widths and masking factors can be estimated 

from the slope of the logic SER as a function of frequency, to predict logic SER trends 

for future technology nodes.  

Some of the key results from this work suggest that: 

1. The raw combinational logic SER for a single gate decreases as a function of 

technology scaling.  

2. This is also accompanied by a corresponding decrease in the latch SER with 

scaling.  

 

The combined effect of these two trends has several implications. Firstly, while the 

total SER (latch+logic SER) decreases with scaling, the proportion of the logic SER to 

the total SER changes, with technology scaling. As a result the threshold frequency at 

which logic SER exceeds the latch SER changes, which must be factored into attempts 

to improve the soft error resiliency of circuits.  The following sections introduce the 

experiments and results to characterize the latch and logic SER with scaling.  

3.1 Test Circuit Description & Experiments 

The purpose of the test circuits designed and tested in this study was to evaluate the 

soft error sensitivity of combinational logic circuits as well as latches as a function of 

technology node and frequency of operation. Masking factors that affect combinational 

logic circuits are also studied. Through these experiments an attempt is made to tease out 

the key parameters that change as a function of technology scaling so that designers can 
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focus on these parameters while estimating the trends in combinational logic and latch 

SER for different circuits. The test circuits and the experimental set-up is explained in 

the following sections.  

3.1.1 Circuit Description 

In this work, the Combinational Circuit for Radiation Effects Self-Test (C-CREST) 

technique was used to measure the combinational logic soft error rate [Ahlb-08]. The 

block diagram for this technique is shown in Figure 3-1.  

 

 

 

 

 

 

The data source can be used to provide random input patterns as well as static patterns 

to the circuit. The Circuit-Under-Test (CUT) consists of a shift register design with logic 

circuits interleaved with flip-flops as shown in Figure 3-2. The logic circuit is separated 

from the critical path between flip-flops so that a circuit of arbitrary size or depth can be 

 

Figure 3-2 The Circuit Under Test consists of flip-flops and logic blocks.  

 

 

Figure 3-1 Basic structure used to evaluate flip-flop and combinational logic cross sections.   
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implemented. One flip-flop circuit along with the associated logic circuit comprises a 

single stage. The C-CREST design consists of 2,056 of such stages to improve the error 

statistics. The error detection circuit compares the correct data patterns with the output 

data pattern from the CUT. If there is no mismatch between the two patterns, no errors 

are detected and recorded. If errors occur, then a counter records the total number of 

errors observed. The errors recorded by the error detection circuit can be due to direct 

strikes on the combinational logic circuits as well as direct strikes on the flip-flops. To 

separate the effects of the two, a separate shift register chain was built with no logic 

included. This allows errors from both sources to be identified independently. The data 

is shifted out using an external slower clock compared to internal high-speed clock. All 

the error detection circuits and counters are protected against single event errors using 

Triple Modular Redundancy (TMR). The clock is provided by a high-speed Phase 

Locked Loop (PLL). The PLL was capable of being operated up to 1.2 GHz with low-

noise characteristics and was also hardened against upsets.  

Two variants of the C-CREST design were fabricated in each technology node : 40 

nm, 28 nm and 20 nm. For both the variants, 2,056 stages were used.  The flip-flop 

design used for both the variants was a conventional cross-coupled NAND gate D flip-

flop. For the first C-CREST design, the logic circuit consisted of a block of 72 inverter 

gates (12 chains of six inverters each) OR’ed together The second C-CREST design 

consisted of a four-bit ‘greater than or less than’ comparator. The four-bit comparator 

compares two four-bit numbers, A and B. The output of the comparator is a logic ‘1’ if B 

> A. The four-bit comparator was chosen because the logic depth for this circuit is close 

to that of modern circuits [Shiv-02(2)] [ARM-11] [Inte-10]. Additionally this circuit is 
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used to illustrate the impact of logical masking (which is independent of technology) on 

the relative logic and latch SER. Table 3-1 provides details about the gate count and 

transistor count for individual circuits for each technology node.  

 

 

All the gates were sized to have their rise and fall time equal to that of inverter rise and 

fall times. The sizes and threshold voltage of the PMOS and NMOS transistors used in 

the inverters in each technology are listed in Table 3-2. Minimum design widths 

available in the technology were not implemented in each case due to variability issues, 

as well as to meet appropriate timing margins across the full-custom design. This was 

especially the case with the 20-nm circuits.  

 

 

 

3.1.2 Alpha Particle Test Details  

The circuits were irradiated with 6 MeV alpha particles from a Polonium-210 source 

Table 3-2 Transistor widths and threshold voltages for inverters used in 40 nm, 28 nm and 20 nm 

technology. 

Drawn L WP/WN (nm) VTP/VTN  (mV) 

40 nm 350/140 (-480/450) 

28 nm 250/100 (-380/360 ) 

20 nm 220/180 (-470/460 ) 
 

Table 3-1 Number of gates, transistors, and transistor total area for different circuit types. 

Circuit type Inverter Comparator 

Total # of gates 94 46 

Type of gates 
83 NOT 

11 NOR 

26 NOT 

12 2-input NAND 

2 3-input NAND 

6 2-input NOR 

Total # of transistors 210 136 
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with an activity of 500 µCi, at room temperature. The alpha source was placed at a 

distance of less than 1 mm from the dies during testing. The size of the alpha source was 

1.4 cm
2
, and the maximum die size was 3 mm x 3 mm (40 nm). To account for both 

inter-die and experimental variability, measurements were repeated several times at each 

frequency and logic input value. Testing was conducted in accordance with JEDEC 

specifications [JEDE-06]. The nominal operating voltage was 0.9 V, 0.85 V and 0.9 V 

for the 40 nm, 28 nm and 20 nm circuits. The operating frequency of the circuits was 

varied up to 1.2 GHz using an on-chip low-noise Phase Locked Loop (PLL) circuit. The 

PLL was also implemented using Triple Modular redundancy for the 40 nm and 28 nm 

circuits and using a hardened PLL design for the 20 nm circuits.  

 

 

 

Figure 3-3 Alpha particle test set-up with alpha source encircled. The source was placed directly 

on top of the die. Testing was performed using a Field-Programmable Gate Array (FPGA) that 

communicates with the test IC.  

α source
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3.1.3 Experimentally Measuring Logic Cross section 

The logic and flip-flop cross-sections were measured separately. To determine the flip-

flop cross-section alone, a separate shift register chain that contains no logic was built 

and operated at different frequencies. The total soft errors observed from the shift 

register chains with no logic was normalized by the fluence and the number of flip-flops, 

which yields the flip-flop cross section. Several trials were performed across four 

different dies at each operating voltage and frequency to minimize effects of 

experimental as well as die-to-die variations. Unless otherwise stated, the error bars in 

all the figures in this work represent the standard error of measurement at each data 

point. Each data point corresponds to at least 3 measurements each from 2 die. Thus, the 

experiment was repeated at least 6 times for each data point, the standard error is σ/√n, 

where σ is the standard deviation of the sample and n is the number of times the 

experiments was repeated (n=6). Similarly, the shift register chains containing logic 

were operated at different frequencies to record the cross-section due to logic (SETs that 

are latched by flip-flops) as well as direct hits on flip-flops. The flip-flop cross-section 

measured at each frequency was then subtracted from the total cross-section (logic +FF) 

measured from the chain containing logic. As observed in [Jaga-12], a small frequency 

dependence was observed among the flip-flop chains, however this was negligibly small 

compared to the frequency dependence of the logic cross-section itself. The frequency 

dependence of flip-flops arises from the fact that one of the latch stages is always 

transparent while the other stage holds data. If the slave stage is transparent, the master 

stage can latch transients from the slave latch portion of the flip-flop [Jaga-12]. Thus as 

the flip-flop cross-section frequency dependence was weak compared to the logic cross-
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section frequency dependence,  the soft error contribution of the transparent latches has 

been assumed to be part of the combinational logic interfaced to the flip-flop, especially 

because the size of the logic is much larger compared to the latch itself. This assumption 

is also true for conventional circuit designs where substantial computational logic is 

present between flip-flop stages. On the other hand, the frequency dependence also 

reduces the latch cross-section due to the presence of logic between latch stages [Seif-

04]. However the amount of logic directly between latch stages in this work is minimal 

and the total delay of the logic stages in the critical path between the latches is less than 

2% of the clock period in all cases. Hence, the mechanism that leads to derating of the 

latch errors described in [Seif-04] does not directly apply to the results presented here.  

FluencestagesofNumberTotal

ErrorsofNumberTotal
SectionCrossTotal




                 3-1
 

 

)()( SectionCrossFlopFlipSectionCrossTotalStageperSectionCrossLogic 

           3-2 

 

3.2 Alpha-particle irradiation results 

Figure 3-4 shows the alpha particle logic cross-section normalized for 10 inverters 

each for 40-nm, 28-nm and 20-nm technology nodes measured at different frequencies. 

There are three important trends to be noticed here.  
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Firstly, a clear increase in logic cross-section as a function of frequency for circuits 

fabricated in each technology is observed. Technology scaling in general though, results 

in a reduction in the logic cross-section from 40-nm to 28-nm. However, the decrease in 

logic cross-section from 28-nm to 20-nm is not as significant as that from 40-nm to 28-

nm. In the past, technology scaling has been shown to result in a decrease or saturation 

of the latch and memory cross-section [Dixi-11]. However this phenomenon has not 

been investigated extensively for logic circuits. In the following paragraphs, reasons for 

the trends seen in Figure 3-4 and their implications for failure-in-time (FIT) rate 

calculation for circuits fabricated in future technology nodes are discussed.  

Estimating the combinational logic SER involves calculating the effects of sensitive 

area and the different masking factor at different gates across the circuit. The generalized 

expression for combinational logic SER is given as [Seif-01] 

 

Figure 3-4 The logic cross-section for the circuits in all three technologies 40 nm, 28 nm and 20 

nm increase with frequency. The slope of the logic cross-section as a function of frequency 

decreases from 40 nm to 28 nm. But is almost the same for the 20 nm node. 
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where SER is defines as the observed SER (from simulations) as the average over all 

upsets for all collected charge Qi, all injection time tinj and all nodes n of the 

combinational logic circuit. Φ is the particle flux, An is the sensitive area for the 

particle/environment of interest, Tclock is the clock period, prob(Qi, n) is the probability 

that charge Qi is collected at node n at injection time tinj. Upseti, j, n = 1 if and only if the 

SET generated due to collected charge Qi leads to a transient that is wide enough to be 

latched by the receiving flip-flop. This expression incorporates information about the 

different masking factors like electrical masking, temporal masking and logical masking 

implicitly. For example when a single-event transient is produced at a node in the circuit, 

the capacitance or the restoring drive at that node may result in an SET that may not be 

wide enough to be latched by the flip-flop or the amplitude may not exceed the required 

threshold for propagation (generally atleast Vdd/2). In other cases this transient may be 

attenuated as it propagates through the logic. Similarly, just as the charge deposited may 

not result in a transient wide enough to be latched, the transient also may not arrive at 

the latching window of the flip-flop. Both these factors would lead to the SET being 

temporally masked. Finally, the SET at the struck node may be prevented from 

propagating to the latches due to the logical conditions in the circuit, in which case it 

would be logically masked.  

In this work, the most dominant factors are incorporated in the logic cross-section as 

follows  
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where A is the sensitive area, and TM, EM and LM are the temporal, electrical and 

logical masking factors respectively at each node. The temporal masking factor 

determines the proportion of transients that arrive during the latching interval of the 

receiving flip-flop and meet the setup-and-hold condition to result in an error. Electrical 

masking is related to the attenuation of pulses as they propagate through logic chains. 

Logical masking results due to input conditions on certain gates that prevent transients to 

propagate further in the circuit. Of these factors only the sensitive area, temporal and 

electrical masking factors are technology dependent. Logical masking factor is circuit 

design dependent and purely a Boolean property. The temporal masking factor depends 

on the SET pulse-width, setup-hold time of the flip-flop and the clock period. The 

temporal masking factor can be estimated as [Alex-11], [Nguy-03], [Lide-94] 
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where TSET and w are the SET pulse-width and latching window respectively. The 

setup and hold time or latching window is the same for all the nodes in the circuit, the 

only difference being the SET pulse-width. Thus the TM of a node for a fixed charge 

deposition value can be approximated as [Shiv-02] 
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where tSET, is the single event transient (SET) pulse-width, and Tclk is the clock 

frequency.  

Thus the technology dependent cross-section can be expressed as  

 i

clock

SET
nodesn

i

i EM
T

t
A i  

1

     3-7 

Thus the cross-section  σ  = f(A, tSET, EM). Besides, in Equation 4, the product of the 

terms in parenthesis comprising of A, tSET, EM and LM is the slope of the logic cross-

section as a function of frequency. The technology dependent factors that influence the 

logic cross-section are the only the sensitive area, SET pulse-width, and electrical 

masking. In order to determine the impact of each of these factors and explain the results 

shown in Figure 3-4, qualitative simulations were performed using SPICE and calibrated 

3-D TCAD models.  

3.2.1 Impact of Sensitive Area and SET Pulse-width 

In order to estimate the scaling trends of the sensitive area and the SET pulse-width, 

3D-TCAD simulations were used. 3D-TCAD simulations were setup in such a way that 

single-event strikes were simulated on an OFF NMOS transistor. The restoring device 

was a PMOS transistor in an inverter configuration. The widths of the transistors were as 

shown in Table 3-2. The physical drain area was estimated using the layout and the drain 

extension values from the SPICE models of the process design kit (PDK).  

The alpha particles emerging from the Po-210 source used to irradiate the circuits were 

close to mono-energetic (6 MeV) and isotropic. In such cases the maximum linear 

energy transfer (LET) of the particles is not likely to exceed 1 MeV/cm
2
-mg [Gadl-08]. 

The single-event strikes with LET = 1 MeV/cm
2
-mg were simulated in raster scan 
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fashion on the OFF NMOS transistor and the single event pulse-width was monitored. 

The single-event pulse-widths along the cut-line for the 20-nm NMOS transistor case is 

shown in Figure 3-5. As seen in Figure 3-5, the single event pulse-width values reduces 

rapidly around the edge of the drain depletion edges. This is because very little charge is 

collected by the reverse biased drain region due to diffusion. As a result the charge 

collection area is limited to the area of the drain itself. Besides, since the SET value 

measured in TCAD is fairly constant around the center of the drain region, the SET 

pulse-width for a strike anywhere in the drain region can be approximated using the 

maximum SET pulse-width observed. In this case this value for the 20 nm inverter was 

~8 ps. It is important to remember that the pulse-width recorded in TCAD and shown in 

Figure 3-5 is not guaranteed to be the precise pulse-width in the physical circuit due to 

differences in calibration, supply voltage drops across the chip that can influence SET 

pulse-widths etc. However we can rely on the qualitative trend in comparing the SET 

pulse-widths for the different technologies.  
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The procedure described above was repeated for the 28-nm and 40-nm inverter cases 

with the NMOS transistor struck in TCAD. The same assumptions about the area 

(sensitive area = drain region) and the SET pulse-width (maximum SET pulse-width) 

recorded in TCAD are made. The product of the struck NMOS transistor area (sensitive 

area A in Equation 4) and the SET pulse-width (tSET in Equation 6) recorded from TCAD 

was calculated. This product (A∙tSET) of the sensitive area and pulse-width for each 

technology yields the results shown in Figure 3-6. This product includes the first two 

terms of Equation 6 that influence the slope of the logic cross-section versus frequency 

curve.  

 

Figure 3-5 The SET pulse-width is plotted as a function of the distance from the center of the 

drain (0 in inset ) along the cut-line shown. It is clear that the SET pulse-width reduces to 0 at the 

edge of the drain depletion region for alpha particles. Thus the drain area itself is a reasonable 

approximation of the sensitive area (A) in Equation 2.  Similarly since the SET pulse-width rolls 

off very sharply towards the depletion edge of the drain, the maximum value of the SET pulse-

width is a reasonable estimate of the SET pulse-width for strikes anywhere in the drain region. 

This is indicated using the dashed rectangle. 

 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

-50 -25 0 25 50 

P
u

ls
e-

w
id

th
 (

p
s)

 

Strike Location from center of drain (nm) 

TCAD alpha  

pulse-width distribution 
 

 

 

drain 

-17.5   0    17.5  

cut-line 



 

 64 

 

 

The results in Figure 3-6 are qualitatively in line with those in Figure 3-4. Due to 

technology scaling two important effects occur. Firstly the size of both NMOS and 

PMOS transistors reduces from 40 nm to 28 nm. As a result the active area for alpha 

particle strikes to result in upsets, decreases. On the other hand the current drive per μm 

increased with technology scaling from 40 nm to 28 nm. Increased restoring drive results 

in shorter transients. As a result the cumulative effect of technology scaling is that both, 

the active area and the SET pulse-widths decrease from 40 nm 28 nm. This trend is 

observed while scaling from 40-nm to 28-nm for both the experimental results in Figure 

3-4 as well as the simulations in Figure 3-6. On the other hand however, the NMOS 

transistor widths in the 20-nm circuits were larger than those of the 28-nm NMOS 

transistor widths. This choice was made to evaluate the relative impact of drain area on 

 

Figure 3-6 The product of the sensitive area and the SET pulse-width reduces from 40 nm to 28 

nm, but increases marginally from 28-nm 20-nm. This is mainly because the charge collection area 

for the NMOS transistors is larger due to the choice of widths shown in Table II. However the SET 

pulse-width reduces across all three technologies since the restoring drive decreases marginally for 

the transistors PMOS transistors chosen. The overall product of area and SET pulse-width 

reduces from 40-nm to 28-nm but is comparable for 28-nm and 20-nm.  
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the soft error sensitivity of combinational logic circuits compared to other masking 

effects and to determine whether the soft error cross-section scales well with area. Due 

to the choice of larger NMOS transistors in 20-nm compared to 28-nm but a marginally 

higher drive current that reduces the SET pulse-width, the product of the sensitive area 

of the drain and the SET pulse-width remains nearly same for these two technologies. In 

other words the decrease in SET pulse-width due to scaling from 28 nm to 20 nm is 

compensated by the increase in area.  

3.2.2 Impact of Electrical Masking on Logic Cross-Section  

Apart from the sensitive area and the SET pulse-width, the electrical masking also 

affects the SET pulse-width and subsequently the logic cross-section. For modern logic 

designs, usually the number of logic gates per latch stage (pipe-line stage) does not 

exceed 10 [Shiv-02(2)], [ARM-11], [Inte-10]. With such a small number of gates in a 

logic path, the effects of electrical masking are expected to diminish [Shiv-02]. 

Additionally, smaller gate delays reduce the impact of electrical masking on pulse-width 

propagation [Mass-08]. In particular the transient propagates with minimal attenuation if 

it exceeds the rise and fall time of the succeeding gates [Mass-08]. To characterize 

electrical masking, a 10-stage logic chain with uniform FO4 load was simulated using 

the 40 nm, 28 nm and 20 nm PDK. The average pulse-shortening was less than 1 ps with 

charge deposition values up to 20 fC. Thus, electrical masking can be neglected in 

comparison to the sensitive area scaling and transient pulse-width scaling due to 

differences in current drive while estimating the logic cross-section. In fact the FO4 

delays were 22 ps, 16 ps and 11 ps for the 40 nm, 28 nm and 20 nm technologies. Thus 

electrical masking, if any, is likely to decrease with technology scaling. Thus it is 
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possible, that SETs in the 20-nm circuits are attenuated less compared to 28-nm and 40-

nm circuits.  

Thus, the key factors that affect the alpha particle logic cross-section in Equation 4 are 

primarily the product of the sensitive area and the transient pulse-widths. Ordinarily with 

technology scaling, the active device sizes decrease and the drive currents increase, 

leading to reduction in the logic cross-section. However for the data set shown in Figure 

3-4, the logic cross-section for the 20-nm node is comparable to the 28-nm circuits. This 

is because larger than minimum sized devices were used which compensate the effects 

of reduced SET pulse-widths for the 20-nm circuits. The trends in Figure 3-6 generally 

replicate the results obtained experimentally and shown in Figure 3-4. The important 

result however, is that the trends produced by the models support the experimental 

results. Technology scaling would consistently result in reducing the logic cross-section 

if the areas of the individual transistors in 20-nm are also reduced. 

3.3 Comparison of Alpha-particle logic and latch cross-sections 

From the point of view of chip-level SER, the contribution of both logic errors and 

latch errors need to be considered. Figure 3-7 shows the ratio of combinational logic 

errors to latch errors for each technology node. The logic SER of 10 inverters was 

normalized by the latch cross-section for each technology. Again, the trend in the ratio 

of logic to latch errors follows the same trend as observed in Figure 3-4. However the 

major difference here is that the 20-nm logic SER to latch SER curve is closer to the 40-

nm curve than the 28-nm curve (as observed in Figure 3-7). The primary reason for this 

is that the latch cross-section decreases significantly from 40-nm to 28-nm. However the 

decrease in cross-section is not as significant from 28-nm to 20-nm. The DFF cross-
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section is indicated in Table 3-3 for each technology. These results are consistent with 

those that suggest that the SRAM SER/bit decreases or saturates with scaling [Dixi-11].  

 

 

 

 

Thus, although both the logic and latch cross-sections decrease with scaling, if the rate 

of decrease is dissimilar the ratio of the two could vary from one technology to the other. 

In this work, experimental results show that the logic SER scales at a different rate with 

technology compared to the latches, mainly due to differences in transistor sizes and 

their single-event effect (SEE) sensitivity. These two factors result in a lot of variation in 

the proportion of logic SER to latch SER for the three technology nodes considered. It is 

therefore important to carefully consider the total contribution of logic SER and latch 

Table 3-3 Standard NAND gate D flip-flop cross-section for 40 nm, 28 nm and 20 nm  

Technology Cross-Section (cm
2
) 

40 nm 4.6x10
-10

 

28 nm 2.9x10
-10

 

20 nm 2.3x10
-10

 
 

 

Figure 3-7 Ratio of logic SER to latch SER. As the latch SER scaling trend is different from 

logic SER trend, 20 nm logic SER to latch SER ratio is higher than 28 nm. 
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SER for the frequency of operation. As an example, at 20-nm, if the operating speed is 

2.5 GHz (which is well within the operating range of modern ICs), the logic SER from 

10 inverters in this case will be nearly equal to latch SER. It is however crucial to note 

that the total SER at any given frequency decreases due to scaling, because both the 

latch and logic cross-sections decrease with scaling. But logic SER could become the 

dominant contributor to the total SER at much lower frequencies with scaling.   

3.3.1 Impact of Logical Masking 

The logic SER contribution decreases due to the effects of logical masking. The 4-bit 

comparator was used as a test-bed to evaluate the effects of logical masking on the logic 

SER and compare with the latch SER. The comparator was used because it represents an 

average sized circuit in terms of logic depth and size. The number of gates in the circuit 

(~30) were comparable to the average number of gates per output (~25) in case of 

ISCAS-85 benchmark combinational logic circuits [ISCAS-85]. The impact of logical 

masking for two different input combinations were tested and the results are illustrated 

in Figure 3-8. The condition A = ‘0000’ and B = ‘1000’ represents the case where very 

few logic gates (high-level of logical masking) are used to establish if B>A. On the other 

hand the condition where A = ‘1000’ and B = ‘0000’ utilizes almost all the logic gates to 

compute the result (less logical masking). Results suggest that for the case where logical 

masking is highest (A = ‘0000’ and B = ‘1000’) the logic SER can be between 0.5-3% of 

the latch SER which is quite negligible. In cases where the logical masking is low (A = 

‘1000’ and B = ‘0000’), the logic SER can be as much as 20-30 % of the latch SER at 

500 MHz. Thus logical masking can result in the logic SER varying up to an order of 

magnitude for different inputs.  
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3.3.2 Impact of Latch Design 

The combinational logic soft error rate is a strong function of the logical masking 

factor. The differences in cross-section due to differences in input conditions and 

masking factors leads to differences in the ratio of the combinational logic SER to latch 

SER by as much as a factor of 15 as shown in Figure 3-8. Similarly the design of the 

latch itself can introduce differences in this ratio. Again, the technology trends of the 

latch cross-section will affect the ratio of the combinational logic and latch SER too. 

Figure 3-9 shows the measured latch cross-section of two different latches. The latch 

cross-sections differ by as much as 5X at 40 nm and almost 6X at 28 nm. Thus scaling 

led to a stronger reduction in cross-section for the hardened latch than for the soft latch. 

The combinational logic SER for 10 inverters was normalized to both these latches and 

 

Figure 3-8 SER which is quite negligible. In cases where the logical masking is low, the logic SER can be 

as much as 20-30 % of the latch SER at 500 MHz. 
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the results are plotted in Figure 3-10. The key point to be stressed here is that scaling 

leads to a decrease in both the latch and logic cross-section. But as the cross-section of 

the hard latch is lower, the ratio of logic cross-section of 10 inverters to the hard latch 

cross-section is higher than the ratio of logic to soft latch cross-section. However, 

regardless of the latch design, the ratio of logic to latch cross-section is higher for the 40 

nm designs compared to the 28 nm designs. Again, this ratio depends on both the logic 

scaling rate as well as the latch scaling rate with technology. The ratio of logic to latch 

as function of technology could change if the latch cross-section with scaling, decreases 

at a rate that is faster than that for the logic cross-section with technology.  

 

 

Figure 3-9 Latch cross-section for two different (soft and hard) latches in 40 nm and 28 nm.  
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3.4 Heavy-Ion Irradiation Results 

Heavy-ion irradiation was performed at Texas A&M Cyclotron and Lawrence 

Berkeley National Lab. The 40 nm, 28 nm and 20 nm circuits were tested as functions of 

Linear Energy Transfer (LET) at very low frequency (2 KHz) and at 500 MHz to 

measure the flip-flop and logic cross-sections, respectively. The 40 nm circuits were not 

tested at high frequency. The flip-flop cross-section consistently decreases as a function 

of technology scaling as shown in Figure 3-11. Sensitive area scaling is the primary 

reason for this decrease in the cross-section with technology scaling. The ratio of logic 

cross-section (10 inverters) to that of the flip-flop, plotted in Figure 3-12, however, 

shows two interesting trends.  

1. Nature of the curve (LET dependence): The nature of the curve suggests that 

initially the ratio of logic to latch cross-section increases linearly with LET but 

 

Figure 3-10 Ratio of logic cross-section to latch-cross section is higher with the use of hard 

latches. The ratio of logic to latch cross-section decreases from 40 nm to 28 nm implying 

that the rate of scaling of logic is faster than that of latches regardless of the latch design 

used.  
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then increases sharply at higher-LETs. This is observed in the case of both 28 nm 

and 20 nm circuits. This suggests that this trend is real and not an artifact of 

experimental error or inaccuracy.  

2. High-LET anomaly: At very high LET, the ratio of the logic to latch cross-

section for the 20 nm circuits is higher than that for the 28 nm circuits.  
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Figure 3-12 Ratio of logic cross-section to latch-cross section is higher with the use of hard 

latches. The ratio of logic to latch cross-section decreases from 40 nm to 28 nm implying that 

the rate of scaling of logic is faster than that of latches regardless of the latch design used.  
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Figure 3-11 Ratio of logic cross-section to latch-cross section is higher with the use of hard 

latches. The ratio of logic to latch cross-section decreases from 40 nm to 28 nm implying 

that the rate of scaling of logic is faster than that of latches regardless of the latch design 

used.  
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3.4.1 Nature of the curve (LET dependence) 

The flip-flop cross-section as function of LET is well-known and follows the Weibull 

curve as shown in Figure 3-11. The growth of the cross-section as function of LET is 

initially exponential and then saturates. This behavior can be captured by a piecewise 

function as follows : 
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where the cross-section σ depends on the LET exponentially up to a certain critical 

LETc and then saturates to a constant value σsat beyond this LET value.    

The logic cross-section depends on the sensitive area as well as the SET pulse-width. 

The two factors are difficult to extract from the experimental measurement of the logic 

cross-section of 10 inverters at a high frequency because the probability of striking the 

circuit and generating transients that latch is included implicitly. However, SET 

measurement circuits have been used in the past to characterize the pulse-width and the 

cross-section. These circuits do not operate on a clock but instead measure all the 

transients above a certain width that are created. A numerical count of the number of 

transients normalized by the fluence is the raw cross-section for combinational logic 

SETs, ie, the rate at which SETs are generated. The latching probability indeed depends 

on the pulse-width and the clock frequency. The frequency in the case of the 

experimental results reported in this work are concerned was fixed. The only two factors 

that change with LET are the raw cross-section and the SET pulse-width and both are 
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expected to increase. Results from [Nara-08] suggest that the raw combinational logic 

cross-section also grows exponentially with LET. These are shown in Figure 3-13. The 

latch cross-section saturates because striking even outside the sensitive drain area leads 

to enough charge collection for the latch to upset. Beyond a certain distance diffusion 

charge collection is limited and very little or no charge is collected for an upset. 

However, in case of logic, the struck gate only produces a wider transient in response to 

higher LET which deposits more charge. On the other hand the pulse-width was 

experimentally measured to increase linearly with the LET. Simulations also confirm 

this trend [Dasg-07]. Thus the logic cross-section is proportional to the product of the 

sensitive area and the SET pulse-width. As shown in Figure 3-13, the sensitive area is 

exponentially dependent on the LET and the pulse-width varies linearly with LET. The 

logic cross-section in Equation 7 can be expressed as follows.  

)()(
iSETilogic tA   

Accounting for the LET dependence of sensitive area and pulse-width we get,  

         )()( LETe LET

logic         3-9 
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Based on these observation, the functional dependence of the flip-flop and logic cross-

section on the LET has been captured in Equation 8 and 9. Therefore the ratio of the 

logic cross-section to latch cross-section can be expressed as  
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For LET values less than LETc, it is reasonable to assume that the effect of the 

exponentials have no net effect on the ratio of logic cross-section to latch cross-section 

leaving only a linear dependence. This could be the reason for a linear dependence of the 

ratio of logic to latch cross-section as seen in Figure 3-12. For a value, of LET greater 

than LETc, however, the latch cross-section saturates while the logic cross-section 

continues to increase. As a result the ratio of the two quantities increases sharply as seen 

 

Figure 3-13 Box plot indicating (a) average maximum and minimum SET pulse-width as a 

function of LET for 130-nm process and (b) SET cross-section per inverter and number of events 

measured as a function of effective LET [Nara-08]. 
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in Figure 3-12. Thus the LET could have very different impacts on the logic and latch 

cross-sections. In general, the ratio of the logic to latch cross-section for the heavy-ions 

is higher than the alpha particles. In fact the ratio is 0.3 for LET = 20 MeV/cm
2
-mg for 

the 20 nm circuits at 500 MHz. Indeed at higher frequencies, this ratio is expected to 

increase linearly with frequency as observed in the alpha particle irradiation results. 

3.4.2 High-LET anomaly 

It is seen in Figure 3-12 that the ratio of the logic cross-section to the latch cross-

section is higher for the 20 nm circuits compared to the 28 nm circuits, especially at 

higher LETs. As explained earlier, the circuits were designed to have sizes and drive 

currents that would result in approximately similar cross-sections. However the high-

LET results seem to suggest a substantial increase for the 20 nm circuits compared to 28 

nm. More than one reason could be the cause here. The layout was done using an 

automated process which could introduce additional pulse quenching effects in the 28 

nm designs compared to the 20 nm designs [Ahlb-08]. The placement of well taps too, 

strongly affects charge dissipation at high-LETs [Amus-08]. Both these factors can 

significantly affect the effective cross-section and pulse-widths of the two circuits 

relatively speaking. With limited experimental results and lack of knowledge of the 

layout pulse quenching and bipolar enhancement effects are strong candidates to explain 

the differences between 20 nm and 28 nm differences at high-LET.  
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3.5 Conclusions 

This work shows that for the terrestrial environment, scaling results in a reduction in 

both, the SER for latches as well as that for logic gates. However, the proportion of logic 

SER to latch SER for a given circuit depends on several parameters like frequency of 

operation, logic size, topology etc. in addition to latch SER. For the circuits tested in this 

work, the logic SER for benchmark 10 inverters is about 20% of the latch SER at 500 

MHz for the 20-nm node, whereas it is about 10% of the latch SER at 40 nm node. For 

an average-sized circuit like a 4-bit comparator the logic SER can be anywhere from 

~1% to 20% of the latch SER at 500 MHz. At higher frequencies, the logic SER will 

certainly be comparable to the latch SER and could exceed it as well. It therefore 

becomes imperative to estimate the logic and latch SER accurately to best determine the 

hardening strategy to reduce the total chip-level SER. If logic errors dominate, flip-flop 

hardening alone will not reduce the overall SER. Results presented in this work can be 

extended to predict the logic cross-section of arbitrary circuits. These results will lead to 

efficient logic soft error mitigation strategies for future technology nodes. In the 

following chapters, various power-mitigation schemes for combinational logic soft error 

mitigation are presented.  

  



 

 79 

4. Chapter IV. Circuit Partitioning for Power-Aware SER Mitigation  

 

In the previous chapters, the impact of various factors on the combinational logic SER 

and the different mitigation techniques have been discussed. Some of the common 

strategies employed at gate-level is to selectively increase sizes of certain critical 

transistors in the design to reduce the transient pulse-widths. This however results in 

area and more importantly power overheads. In this work, the co-optimization of logic 

SER and power is emphasized. A formal framework based to mitigate combinational 

logic soft errors and reduce power consumption of arbitrary logic circuits is presented. 

Some of the key research findings from this work include: 

1. Combinational logic mitigation and power minimization can be jointly 

achieved by targeted reduction in the number of sensitive nodes of the 

circuits.  

2. Specific conditions to achieve near-optimal reduction of the combinational 

logic SER and power consumption with minimum area overheads is 

presented  

3. Repeated application of the presented techniques results in improved soft 

error resilience and power minimization but can be shown to achieve a 

theoretical maximum.   

4.1 Shannon Expansion Theorem 

Several power reduction techniques exist to achieve low power operation at different 

level of abstraction. In this work, the reduction in dynamic power consumption is 
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stressed through circuit and architectural approaches. Minimizing power consumption 

especially for high-speed circuits in active mode mainly involves reducing the dynamic 

power consumption. The dynamic power consumption is dependent on several factors 

and is given by Equation 1  

fVCP
nodesn

i

ii

2

1

)( 




          4-1 

where Ci, is the switching capacitance of node i among n nodes of the circuit, 

that has a switching probability αi. V is the supply voltage for a circuit which is clocked 

at a frequency of f.  Reducing one or more of the factors in Equation 1 results in a 

reduction in the dynamic power consumption of the circuit. The work discussed in this 

paper primarily focuses on reducing the switching probability of certain nodes in the 

circuit. Shannon’s Decomposition Theorem or Shannon’s Expansion Theorem is a well-

known technique to effectively reduce the probability (α) of circuit nodes [Lava-95]. 

Any Boolean function can be represented in a multiplexed form controlled by a single 

variable as follows [Lava-95]:  

),...,,0(),...,,1(),...,,( 321321321 nnn xxxfxxxxfxxxxxf    4-2 

2111321 ),...,,( CFxCFxxxxxf n   

 

where CF1 = f (1,x2, x3..xn), CF2 = f (0,x2, x3..xn), are the co-factors obtained by 

evaluating the original expression for x1 = 1 and 0 respectively. The expression in the 

above equation is formally called the Shannon Decomposition or Shannon Expansion 

about the variable x1. Here x1 is called the control variable or partitioning variable. 
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Depending on the logic value of the control variable, the appropriate co-factor is selected 

to compute the output. For any input condition of the circuit, only one of the two co-

factors is required to compute the output. Thus, such an expression can be structurally 

translated into a multiplexed form where the two inputs of the multiplexer are the 

cofactors and the multiplexer select line is control variable selected for Shannon 

expansion or partition. Shannon expansion can be repeatedly applied within each co-

factor to obtain multiplexed forms of the co-factors themselves.  Figure 4-1 illustrates 

how Shannon expansion can be used to partition circuits. The individual co-factors can 

be obtained by setting a = 1 and a = 0, a being the control variable in this case. The 

original circuit and the Shannon equivalent are shown in Figure 4-1.  

 

 

 

From the above analysis certain observations can be made.  

1. The number of gates (size) of the individual co-factors is ≤ to the original 

circuit.  

2. The sum of the gates (size) of the co-factors in the Shannon equivalent circuit is 

≥ the original circuit.  

              

(a)           (b)                            

Figure 4-1 Original circuit (a) and its Shannon Equivalent implemented with multiplexers (b) 
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3. In general, the size of the two co-factors need not be identical and depends on 

the individual Boolean expression.  

4. The worst-case delay of the circuit may increase due to the addition of the 

multiplexer.  

Each of the above factors is influenced by the choice of the variable that used to 

partition the circuit. Depending on the choice of the variable, the area of the partitioned 

circuit will have different sizes relative to the original circuit. The variables can be 

selected to minimize the area of the partitioned circuit and/or to minimize delay of the 

resultant circuit. The above observations are useful in understanding how power and 

SER can be reduced with the use of Shannon’s expansion. Partitioning circuits into co-

factors using Shannon expansion results in only one of the two co-factors being actively 

used for computing the output. Power savings can be achieved in three distinct ways.  

1. Partitioning the circuit allows logic minimization in each of the co-factors thus 

reducing the number of switching nodes leading to lower dynamic power 

consumption.  

2. As only one co-factor is used for computation, the inputs to the other co-factor 

can be disabled or even power-gated in certain cases [Aldi-94]. Thus if the co-

factors generated from partition are smaller than the original circuit, then fewer 

nodes switch in each of the co-factors while the other co-factor is gated and 

contributes to only an increase in the leakage power. This is illustrated in 

Figure 2.  

3. Partitioning the circuit effectively results in better path balancing. When 

multiple paths that converge have unequal delays, spurious transitions can 
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occur leading to glitching power dissipation. Shannon expansion if performed 

correctly using the right variable to partition the circuit can result in delay 

balancing, thus reducing the glitching power consumption [Maha-00].   

Figure 4-2 provides an illustration of how power can be saved with the use of Shannon 

Decomposition of co-factors.  The given function can be expanded into its co-factors 

with respect to an input variable, in this case V.  Depending on the value of the variable, 

only one co-factor sub-circuit is computed, while the other is disabled by the use of 

AND gates at the input side of the two co-factors. The gating variable used for the AND 

gate is the control variable used for partition itself. When the variable V = 1, CF1 is 

selected and the output is computed. On the other hand since V = 1 (V’=0), the other co-

factor is gated on the input side using the AND gates with dominating value of V’ = 0 

used to prevent any switching activity in the internal nodes of this this co-factor (CF2). 

Thus the internal switching activities of the overall circuit are reduced as only one co-

factor switches for any value of the control variable. Accordingly, the power 

consumption is reduced considerably. In this work, the gating of input co-factors is used 

so that power can be saved along with combinational logic SER reduction.  
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4.2 Shannon’s Expansion Theorem to reduce logic SER 

When circuits are synthesized from Boolean descriptions of functions, the choice and 

placement of gates influences the combinational logic SER. For certain input values only 

few of the gates in the entire circuit are needed to compute the output. Single-event 

transients at the other gates however, can propagate to the output and result in single-

event errors if they are latched by the receiving flip-flops. Minimizing the presence of 

such gates can lead to a significant reduction in the combinational logic SER through the 

elimination of single-event transients from certain gates. Shannon expansion allows 

 

Figure 4-2 Input-gating of the co-factor that is not selected is achieved by using AND gates. If 

the variable select CF1 then the AND gates allow the inputs to propagate to the co-factor 

CF1. On the other hand, as the other co-factor is guarded with AND gates with 

complementary value of the controlling variable, the nodes in co-factor CF2 retain their 

previous value and do not switch. 
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logic minimization within the co-factors themselves which results in the removal and 

reduction of the redundant gates. This can be understood through the following example. 

The example circuit and its Shannon equivalent are shown in Figure 4-3. The variable 

‘a’ is used to partition the circuit. Consider the case where, b=c=d=0 for simplicity. 

When a = 1, SETs due to strikes at 5 nodes can propagate to the output. On the other 

hand, in the Shannon equivalent, only 2 nodes, including those within the multiplexer 

that are vulnerable. The logic conditions are shown in Figure 4-3. Thus a reduction of 

60% in the sensitive area is achieved through logic minimization for this co-factor.  

 

 

Similarly, for the case where a = 0 and b=c=d=0, SETs due to strikes at 6 nodes can 

propagate to the output. On the other hand, in the Shannon equivalent, 4 nodes, 

including those within the multiplexer that are vulnerable. The logic conditions are 

shown in Figure 4-4. Thus a reduction of 16% in the sensitive area is achieved through 

logic minimization for this co-factor. 

 

Figure 4-3 Sensitive nodes (in red) for the original circuit and its Shannon equivalent. The number of 

sensitive nodes reduce from 5 to 2 due to partition.  
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Comparing between these two cases illustrates that Shannon partition allows logic-

minimization within each co-factor. This allows for sensitive area reduction within each 

co-factor. As only one of the two co-factors is active for any input value for a, a 

significant reduction in the total logic SER can be achieved through Shannon partition. 

This comparison also highlights the fact that the partition using certain variables may 

result in co-factors that are of unequal size. In the extreme cases very small co-factors 

may be achieved and in other extremes very large co-factors whose size is almost the 

same as the original circuit may be obtained. Thus the key task must be to partition the 

circuit in a way that the maximum logic minimization is achieved.  

4.3 Framework to Evaluate the Power and SER of partitioned circuits 

Estimating the combinational logic SER involves calculating the effects of sensitive 

area and the different masking factor at different gates across the circuit. The generalized 

expression for combinational logic SER is given as [Seif-01] 





clock

inj

T

ti

nij

Q

i

ni

nodes

n

n

clock

tupsetqQprobA
T

SER ,,, )(


   4-3 

 

Figure 4-4 Sensitive nodes (in red) for the original circuit and its Shannon equivalent. The number 

of sensitive nodes reduce from 6 to 5 due to partition. 
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where SER is defines as the observed SER (from simulations) as the average over all 

upsets for all collected charge Qi, all injection time tinj and all nodes n of the 

combinational logic circuit. Φ is the particle flux, An is the sensitive area for the 

particle/environment of interest, Tclock is the clock period, prob(Qi, n) is the probability 

that charge Qi is collected at node n at injection time tinj. Upseti, j, n = 1 if and only if the 

SET generated due to collected charge Qi leads to a transient that is wide enough to be 

latched by the receiving flip-flop. This expression incorporates information about the 

different masking factors like electrical masking, temporal masking and logical masking 

implicitly. For example when a single-event transient is produced at a node in the circuit, 

the capacitance or the restoring drive at that node may result in an SET that may not be 

wide enough to be latched by the flip-flop or the amplitude may not exceed the required 

threshold for propagation (generally atleast Vdd/2). In other case this transient may be 

attenuated as it propagates through the logic. Similarly, just as the charge deposited may 

not result in a transient wide enough to be latched, the transient also may not arrive at 

the latching window of the flip-flop. Both these factors would lead to the SET being 

temporally masked. Finally, the SET at the struck node may be prevented from 

propagating to the latches due to the logical conditions in the circuit, in which case it 

would be logically masked.  

In this work, the most dominant factors are incorporated in an SER metric as follows  
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Where Ai, EMi, TMi, LMi, are the electrical temporal and logical masking factors 

respectively. For alpha particles and terrestrial environments, the drain area is a good 
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estimate of the OFF transistor drain area as has been shown in this work earlier [Limb-

12] [Dasg-07]. It has been shown that SETs propagate unatttenuated through logic gates 

if the delay of the gates is less than the SETs [Mass-08]. For the modern technologies, 

for example 40 nm, Fo4 delays are in the neighborhood of 15 ps - 20 ps. This delay was 

much smaller than the SET pulse-widths generated even from alpha particle strikes with 

10 fC charge deposition (close to alpha particles). Additionally similar simulations 

results in earlier parts of this thesis also bear out this fact. Thus the effects of electrical 

masking can be safely ignored. In other words EM can be safely assumed to be unity for 

these technologies. The temporal masking factor depends on the SET pulse-width, setup-

hold time of the flip-flop and the clock period. The temporal masking factor can be 

estimated as  
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where TSET and w are the SET pulse-width and latching window respectively. The 

setup and hold time or latching window is the same for all the nodes in the circuit, the 

only difference being the SET pulse-width. Thus the TM of a node for a fixed charge 

deposition value can be approximated as  
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The logical masking factor is the proportion of faults that appear at the output relative 

to the total number of faults injected at that node. This is a technology independent 



 

 89 

factor and purely dependent on the Boolean property of circuits. Thus the SER metric 

used in this work is 
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For the simulation framework presented in this thesis, a combination of C# and 

Verilog was used to partition and synthesize the circuits in different ways. Synopsys 

Design Compiler is then used to synthesize the circuits to estimate the area, power and 

speed of the resultant circuits. The FreePDK Faraday 45nm library was used to perform 

synthesis. The procedure for partitioning and SER and power estimation is divided into 

two distinct parts as shown in Figure 4-5.  

 

 

Figure 4-5 Flowchart for procedure to synthesize circuits, partition circuits and compare the 

SER/area/power.   

 

Select circuit (read Verilog/PLA/blif)
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The circuit descriptions are read in either Verilog, programmable logic array (PLA) or 

Berkeley Logic Interchange Format (BLIF). The circuit is then transformed into Boolean 

Decision Diagrams (BDDs) for easy graph manipulation and partition. Simultaneously, 

the circuit is synthesized using the FreePDK Faraday 45nm library using only 2-input 

NAND, NOR, and NOT gates. The synthesis tool, Synopsys Design Compiler is then 

used to calculate the area, power and speed of the design. The unconstrained design is 

provided inputs that have signal switching activity of 50%. In other words, the switching 

probability of each node is 0.5. The clock is set to 50 MHz so that there are no set-up 

and hold time violation.   

Following this the circuit is partitioned using the variable of choice using the BDD 

representation. The partitioned circuits are then again synthesized separately. It is 

important to note that, during post-partition synthesis, the co-factors must be synthesized 

separately rather than allow the tool to group the co-factors. If this care is not taken, the 

synthesis tool will resynthesize to produce the original circuit itself due to logical 

equivalence. The co-factors are then combined using multiplexers for each output. 

Shared logic that appears in both co-factors is replicated for simplicity. Now, the major 

advantage of Shannon partition is that the co-factor that is not being actively used can be 

gated to eliminate switching activity in that co-factor. Gating in this context means using 

an AND gate (as shown in Figure 4-2) whose one input is the original circuit input and 

the other input is the variable that is used to perform the circuit partition. The other co-

factor is gated in a similar fashion when not required in active computation. The only 

difference is that in this case the complement of the variable that is used for the partition 

is used. The partitioning and SER and power analysis was performed exhaustively for 
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certain circuits. The results of partitioning circuits and improvement in power and SER 

is shown in Figure 4-6. As seen in Figure 4-6, when the circuit is partitioned using 

several variables, the reduction in power and SER for different variables is very 

different. In fact the reduction in both can vary from as much as 5% to 55% in case of 

the cordic circuit shown in Figure 4-6. Three different cases are presented to illustrate 

three different aspects of such an exercise to partition circuits to achieve a lower SER 

and power. 

Case I: Cordic circuit: In the case of this particular circuit 25 inputs are 

exhaustively used to partition the circuit. The improvement in power and SER appear to 

be highly correlated. Intuitively this could be attributed to the fact that power and SER 

depend on certain variables that affect both. For example, when the number of switching 

nodes reduces the power consumption decreases. Similarly when certain gates are 

eliminated the sensitive area reduces. Thus the power and SER are related through the 

effective reduction in the sensitive area or sensitive nodes. The degree of correlation 

depends on the number of gates reduced and their individual impact on the power and 

SER.  
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Case II: Parity circuit: This circuit has fewer inputs (8) that in the earlier circuit. 

However there are several differences between this circuit and the previous case. Firstly, 

the degree of correlation is not as high as that in the earlier case. The improvement in 

power, on an average is more than the improvement in SER. The primary reason for this 

is as follows. When the tool synthesizes the circuit, certain primary inputs to gates are 

very close to the outputs while others are further away from the outputs. When the inputs 

are closer to the outputs, the reduction in power can be quite significant [Deva-94]. On 

the other hand, the reduction in SER is limited. This is illustrated in Figure 4-7. Consider 

the example in Figure 4-8. When ‘a’ =1 and the input is far away from the output, SETs 

at nodes 1, 2 and 3 can propagate to the output of the circuit. However, if ‘a’ were close 

to the output, for example in the position of ‘d’ then SET at previous nodes would be 

 

Figure 4-6 Relation between power improvement and SER improvement for different input 

variables for cordic circuit. 
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effectively masked. Thus the presence of inputs further away from the outputs leaves 

several gates that can be potentially struck by ions which will increase the logic SER 

sensitivity. On the other hand, if the inputs are close to the output post-synthesis, then 

the reduction in SER may not be significant. Thus not all circuits are alike in terms of 

the power-SER improvement that can be achieved using Shannon’ Theorem. In fact a 

trade-space exists in the careful synthesis of circuits so that the placement of inputs can 

be manipulated to allow for greater reduction in power or SER.  

 

 

Figure 4-7 Relation between power improvement and SER improvement for different input variables 

for Parity circuit. 
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Case III: ALU circuit: For the ALU, almost all the inputs have the same impact on 

the power and SER. This is so because the contributions of all the input variables to the 

functions are similar. Hence partitioning the circuit using on or the other variable has a 

similar impact on the power and SER reduction. The results of partition for the ALU 

circuit are shown in Figure 4-9. 

 

 

 

Figure 4-9 Relation between power improvement and SER improvement for different input 

variables for ALU circuit. 
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Figure 4-8 Sensitive nodes (in red) for the original circuit and its Shannon equivalent. The number of 

sensitive nodes reduce from 5 to 2 due to partition.  
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The observations from the above cases can be summarized as follows 

1. SER reduction and power reduction can be simultaneously achieved using 

partition achieved by Shannon’s Expansion Theorem.   

2. The relationship between these two parameters is mainly through the elimination 

of unnecessary switching transitions due to logic minimization and reduction in 

the sensitive area achieved by the same.  

3. The amount of reduction depends upon the choice of the variable. Judiciously 

choosing the right variable can lead to maximum reduction in the power and the 

SER.  

These observations can be used to guide the process of choosing the best 

candidate variable to achieve maximum reduction in SER and power.  

4.3.1 Heuristic algorithm for control variable selection  

In the Shannon expansion scheme the size of the cofactor sub-circuits notably depends 

on the input variable selected as the control signal of the mux and latches.  To avoid an 

exhaustive search, a heuristic algorithm is proposed which selects the most beneficial 

control variable from among all the inputs for a given logic function. The heuristics are 

based on the empirical observation that the size of the co-factor sub-circuits for a 

selected input is inversely proportional to the number of appearances of the variable in 

the cubic representation of a given circuit. The technique is summarized as follows. 

First, the algorithm collapses a given logic function into cubic representation. This is 

available from Synposys Equation Editor. The number of variables for each cube is 

calculated to select the variable which most frequently appears in cubes. For the unate 

variable, the weight of the variable becomes the number of cubes containing the 



 

 96 

variable. For the binate variable, the proposed algorithm computes the weight of the 

variable by summing the number of cubes containing the variable and its complement. 

When performing the Shannon expansion with respect to the selected variable, the 

cofactors of the selected variable have the minimal set of literals. This produces 

minimum-sized sub-circuits and leads to the reduction in power dissipation and SER. If 

more than one variable has the maximum weight, the proposed algorithm figures out the 

number of literals for each cube containing the variables by calculating the number of 

variables contained in the cube, then selects the variable with the largest value as the 

optimal input variable.  

Applying the above heuristic, the choice of the variable is indicated in the figures 

below. For the cordic circuit, the heuristic results in the best variable as far SER 

reduction is concerned. On the other hand, in case of the Parity circuit, the SER 

reduction achieved through the use of the heuristic does not achieve the maximum 

reduction in SER. For all the circuits analyzed in this work the heuristic adopted resulted 

in a reasonable solution as far as SER reduction is concerned. The chosen variable using 

the heuristic is highlighted in red in Figure 4-10 and Figure 4-11 for the cordic and 

parity circuits respectively.  
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Figure 4-11 Selection of variable (red data point) using heuristic shows that the SER improvement is 

close to optimal and reasonably good solution results.  
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Figure 4-10 Selection of variable (red data point) using heuristic shows that the SER 

improvement is maximum.  
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4.3.2 Trade-off between Increase in Area and SER reduction  

Partitioning the circuits into co-factors results in area overheads. The area of the 

resulting circuit after partitioning must also be minimized. The different variables 

chosen for partitioning result in different circuits. The area overhead of these different 

circuits resulting from partition is plotted in Figure 4-12. In this work, minimizing the 

power consumption and the SER was the key metric. While doing so however, area 

overheads are inevitable. For all the circuits analyzed, the area of the partitioned circuits 

was always higher than the original circuits.  

 

 

 

Figure 4-12 Trade-off between area overhead and SER improvement. For all input vectors 

studied, the area overhead ranged between 10 and 70 %.  
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4.3.3 Multi-variable Partitioning   

Apart from using a single variable to partition circuits, multi-level partition was also 

studied. At each stage the heuristic was applied to select the best variable for partition. 

The results of SER reduction using multi-variable reduction is shown in Figure 4-13. 

The key observation from here is that beyond a certain number of partitions the gains 

from partitioning circuits actually reduce. This is because the overhead from the 

introduction of multiplexers eventually leads to an increase in the sensitive area and 

SETs. Secondly, as the number of partitions increase, significant reduction in the size of 

the co-factors cannot be achieved. As a result, eventually the gains from partition 

saturate and even decrease. Similarly the power improvements also begin to decrease as 

the number of levels of partitioned is increased. Interestingly, the power gains reach a 

maximum with only 2 levels of partition. This can be attributed to two reasons. As the 

number of partitions increase the amount of shared logic between co-factors (does not 

appear in the same cube as the control variable and its complement in the Boolean 

expression) gets replicated. This adds to the leakage power overhead. Secondly, the 

additional circuitry also adds switching and leakage power overheads. Thus while in the 

case of SER mitigation the presence of the inactive co-factor does not affect the SER 

because SETs in the inactive co-factor are masked, the leakage power from inactive 

gates quickly increases and offsets gains in switching power reduction. Thus in the 

approach to reduce both power and combinational logic SER, power may be the factor 

that limits the amount of reduction achievable in the combinational logic SER.  
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Figure 4-14 Improvement in SER reaches a maximum for 3 levels of partition. 0 partitions 

corresponds to the original circuit. The power costs from adding additional circuitry and leakage 

power from the different inactive co-factors limits the improvement in power possible as far as multi-

level partition is concerned.  
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Figure 4-13 Improvement in SER reaches a maximum for 3 levels of partition. 0 partitions 

corresponds to the original circuit.  
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4.4 Summary 

Shannon’s Expansion Theorem can be effectively used to partition circuits into co-

factors. Logic minimization within the individual co-factors can also be achieved. The 

beauty of this technique is that only one of the two co-factors so produced from single-

variable partition, is actively required for computation. Thus the inputs to the co-factor 

that is not required for computation can be gated or guarded. Thus through logic 

minimization and gating of co-factors power consumption can be minimized. Logic 

minimization has the serendipitous benefit of reducing the number of sensitive nodes in 

the design and thus reducing the soft error sensitivity. Similarly partitioning the circuit 

into co-factors effectively leads to masking of SETs from the co-factor that is not 

actively needed for computation. The caveat to performing Shannon Expansion of the 

circuit is that the right variable must be chosen to partition the circuit. If care is not 

exercised, then the power consumption and combinational logic SER can also increase. 

The task of choosing the variable through exhaustive search is intractable. An elegant 

heuristic that provides near-optimal solutions for power minimization and SER 

mitigation is presented. The use of the heuristic results in massive reduction in 

computational effort as well. Results from this work clearly illustrate that achieving low-

power consumption along with logic SER minimization is possible. Upto 60 % reduction 

in logic SER and 40% reduction in dynamic power consumption is possible through the 

approach presented in this work.  
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5. Chapter V. Kernel-Based Shannon Expansion for SER Mitigation 

 

In the previous chapter the application of Shannon’s Expansion theorem to improve 

the combinational logic soft-error sensitivity of arbitrary combinational logic circuits 

was presented. The primary advantage of implementing circuits using Shannon 

partitioning for combinational logic soft errors is that the effective number of switching 

nodes decrease thus resulting in a reduction in power consumption. If the partition of the 

circuit is performed correctly, the reduction in switching nodes also leads to an effective 

reduction in the sensitive area resulting in combinational logic SER mitigation. The 

circuit implementation of Shannon’s Expansion using variables to partition circuits leads 

to multiplexed forms for the Boolean expressions. In this chapter, the possibility of 

improving the gains from employing Shannon’s Expansion by using sub-circuits or sub-

functions instead of just variables is used to partition the circuit. The approach relies on 

identifying parts of the circuit that do not affect the output under certain input 

conditions. Under these conditions, dynamic power consumption can be reduced in the 

idle sub-circuits by disabling or preventing signal transitions at the inputs of these idle 

sub-circuits. By isolating the idle sub-circuits from the part of the circuit that is actively 

used for computation of the output(s), single-event transients (SETs) in any of the idle 

sub-circuits can also be prevented from affecting the output(s). Thus soft-error 

mitigation in combinational logic can be achieved. Secondly if the conditions under 

which only a small part of the original circuit is used for computation and the rest of the 

circuit is disabled and isolated, greater reduction in dynamic power consumption and 

combinational logic soft errors can be achieved. Circuits utilizing this technique were 
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fabricated in a 20-nm bulk CMOS process and exposed to alpha particles.  Results 

clearly show the effectiveness of the proposed design technique in reducing logic soft 

error rates along with dynamic power consumption. Additionally factors that could lead 

to a trade-off between power minimization and logic soft error mitigation are also 

discussed.  

5.1 Background: Kernel-Based Shannon Expansion  

In this section, Shannon Expansion Theorem is revisited. The concepts of variable-

based Shannon Expansion and Kernel-based Shannon expansion are explained.  

5.1.1 Background on variable-based and kernel-based Shannon Expansion 

A given Boolean expression can be decomposed using Shannon Decomposition 

Theorem into its co-factors as follows: [Lava-95]  

),..,0(),..,1(),..,( 212121 nnn xxfxxxfxxxxf        5-1 

0111321 11
)..,,(   xxn fxfxxxxxf             5-2 

2111321 )..,,( CFxCFxxxxxf n           5-3 

where, x1, x2, ..xn are the input variables. The original function f is evaluated by fixing 

the value of variable x1 as 1 to obtain sub-circuit f (1, x2, x3, …xn) and x1 as 0 to obtain 

sub-circuit f(0, x2, x3, …xn). Formally, fx1=1 and fx1=0 are the co-factors of x1. The circuit is 

usually synthesized with a multiplexer with the variable x1 as the control input as 

explained in the previous chapter. Power saving comes from the ability to block nodal 

transitions in the idle co-factor with the use of either AND gates or transmission gates at 
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the inputs. Similarly, as the effective sensitive area reduces to a single co-factor, 

combinational logic soft error reduction is also possible.  

This theorem can be extended to use a function or combination of more than one 

variable, instead of a single variable, to partition a given circuit.  Instead of a single 

variable, a kernel or sub-function can be used to partition the circuit. In such a case, 

Equation 1 can be expressed as   

01321 )..,,(   KKn fKfKxxxxf                          5-4 

21321 )..,,( CFKCFKxxxxf n                                5-5 

Where K is the kernel sub-function of f and is used to partition the circuit into co-

factors. The output can be expressed in the multiplexed form by putting K=0 and K=1 in 

the original expression. The kernel consists of a subset of inputs of the circuit. Such a 

partition is shown in Figure 5-1 where the multiplexer is controlled by the kernel whose 

output, K, is the controlling input for the multiplexer instead of a single variable. The 

advantage over the use of a single variable is that in certain cases very small co-factors 

that are selected more often can be achieved using kernel-based partition compared to 

variable-based partitions.  

Power savings result from being able to block transitions in the co-factors. However, 

in this case, the size of the kernel must be kept small so that switching activity is 

minimized. Similarly, the logic cross-section must account for the overhead from the 

kernel as well. In general, the size of the kernel can be minimized by choosing as few 

variables as possible that influence the output most often. In this work, the kernel is 

chosen with the objective to save power for the partitioned circuit and evaluate the 

effects on the overall soft error rate.  
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5.1.2 Choosing Kernel using Boolean Difference Metric 

The right choice of kernel is essential in saving power and achieving reduction in logic 

soft errors. A technique called pre-computation, originally presented in [Aldi-94] 

achieves data-dependent power reduction at the sequential logic or combinational logic 

level using a well-known Boolean algebraic property called the Boolean difference (BD) 

to determine the appropriate kernel.  BD is widely used in Automatic Test Pattern 

Generation (ATPG) routines for fault detection and sensitization [Tiwa-98], [Sell-68], 

[Aker-59]. The idea behind the use of Boolean difference is that it can be used to 

identify those conditions for which the output depends on very few of the total inputs 

and thus utilize only a few gates to compute the output. The Boolean difference for a 

function f(x1, x2, x3..xn) for a variable x1 can be calculated as  

 

 

Figure 5-1 Generalized approach to decompose and partition circuits into co-factors using a 

kernel sub-function or sub-circuit. The kernel consists of a subset of the inputs to the circuit. 

Power can be saved by gating input transitions to the co-factors depending on the output of the 

kernel.  
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0101 1111   xxxxx ffffBD
i

                   5-6 

Consider a function  

321 xxxf   

32

332332 )()(

xxBD

xxxxxxBD

i

i

x

x




 

The Boolean difference can also be calculated for multiple variables. A full description 

of the Boolean difference, its properties and its application in fault tolerance and 

testability is provided in [Aker-59].  

When the Boolean difference evaluates to 1, i.e. if BDx1 =1 then any changes in the 

input variable x1, can be observed at the output. For example when x2 = 1 and x3 = 0, f = 

x1(1)+0 = x1. In other words the original function itself is only dependent on input 

variable x1. Hence, by building the kernel using the Boolean difference the co-factors 

that depend on certain variables and those that are independent of certain variables can 

be produced. Thus very small co-factors that depend on few inputs can potentially be 

achieved using this metric. If the size of the resultant co-factors is much smaller 

compared to the original circuit substantial reduction in power can be achieved as 

explained earlier.  If combinational logic soft error reduction is to be achieved through 

kernel based partitioning, then the size of the kernel and the co-factors must be small. 

Similarly, if the co-factors are of unequal size then the probability of selecting the 

smaller of the two co-factors is also important and must be maximized. Thus the kernel-

based partition relies on a combination of effective partition and logical masking to 

reduce the error cross-section in the average case. Any partition that results in a 

reduction of the total cross-section after partition must satisfy the following cost function 
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in Equation 7, below 

)()()( originalCSKCF2CSCF2PKCF1CSCF1P        5-7 

Where PCF1 is the probability of selecting the co-factor CF1 and PCF2 is the probability 

of selecting co-factor CF2. CS(CF1+K) and CS(CF2+K) are error cross-section of the co-

factors and kernel respectively. Also PCF1 + PCF2 = 1. Thus for any given input condition, 

the circuit that is vulnerable to single-event effects is any one of the co-factors and the 

kernel.  

The choice of the Boolean difference as the kernel to disable input transitions is 

common to this work and [Aldi-94]. However a key distinction between this work and 

[Aldi-94] is that in this work, the circuit is physically partitioned into two different co-

factor circuits so that the effective error cross-section can be reduced for certain input 

stimuli. In [Aldi-94] the Boolean difference-based kernel is only used to disable signal 

transitions at input variables that are not needed for output computation for certain input 

stimuli. The original circuit and its structure is not modified in any way. In such cases no 

improvement in the combinational logic soft error rate (SER) will be seen.    

5.2 Kernel Based Partition For 4-Bit Comparator   

Based on the above discussion, Boolean difference based kernel partition was applied 

to a 4-bit comparator circuit. The comparator produces a logic 1 whenever a 4-bit 

unsigned binary number A(A3:0) > B(B3:0), and 0 otherwise. The comparator was used 

because its logic size and depth is comparable to modern pipeline circuits [Gunt-08]-

[Hris-02]. Secondly the Boolean expression of the comparator is suitable to be 

partitioned using the approach explained in the previous section. The output expression 
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for a 4-bit comparator is given as  

1230231323 EEEGEEGEGGF                  5-8 

Where 

iii BAG           5-9      

iiiii BABAE          5-10       

Applying the Boolean difference metric for the two input combination, A3 and B3 we get 

[Aldi-94],  

3333 BABABD          5-11 

       

Denoting this as the kernel K,  

3333 BABAK          5-12       

Then the output function of the comparator can be rewritten as  

1202123 EEKGEKGKGGF                   5-13 

Because  

KE 3  

Substituting K=1 and K=0 in Equation 13 we get the co-factors of the decomposition 

as  

3GCF1           5-14       

1202123 EEGEGGGCF2        5-15 
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When the kernel K evaluates to 1, the term G3 in co-factor will always be 0 and can 

thus be dropped from the co-factor in which case, the co-factor CF2 then reduces to a 3-

bit comparator. The omission of G3 is by observation and may not necessarily apply to 

all circuits that are partitioned using a kernel. The multiplexed version of the 4-bit 

comparator using the kernel based on Boolean difference is shown in Figure 5-2. The 

smaller co-factor consists of a single AND gate (CF1) while the larger co-factor consists 

of a 3-bit comparator (CF2).    

In this circuit, when A3≠B3, the output can be completely specified using the most 

significant bits only and does not depend on other inputs. This is shown in bold in Table 

5-1  where A3B3 = 01 or 10.   

 

As the output of the comparator is 1 only when A3 = 1, the sub-circuit CF1 is merely 

the ANDed product of A3’ and B3. In the other input cases of A3B3, the remaining inputs 

bits are needed to compute the output. If A3 = B3, the larger co-factor must be used as 

shown in Figure 5-2.  

Thus the Boolean difference metric used to develop the kernel has two advantages. 1) 

The size of the co-factors produced are smaller than the original circuit and they can be 

computed using fewer than the total number of inputs 2) The smaller of the two co-

factors is selected for 50 % of the input vectors.  

Table 5-1 Truth Table for co-factor selection using kernel 

A3 B3 Comparator output Circuit selected by 

kernel 

0 0 Depends on lower bits (2:0) CF2 

0 1 0 CF1 

1 0 1 CF1 

1 1 Depends on lower bits (2:0)  CF2 
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Assuming that all inputs have equal probability of being at 0 or 1, for 50% of input 

conditions for numbers A and B, only a small number of gates (sub-circuit CF1) is 

needed to decide whether A>B or not. In the other cases, the output computation 

requires more gates that are part of the 3-bit comparator. Thus in the average case the 

logic cross-section is expected to improve. Consider a simple illustrative case for the 4-

bit comparator without partition.  For those cases where B3 > A3, the output is always 

logic low. In the case of the ordinary 4-bit comparator, each of the minterms in Equation 

8 will be 0. However the SETs on any of the gates that compute these minterms could 

produce a transient logic 1 at the output. Thus although the output is 0 and can be easily 

computed without the need for lower order bits, SETs on the other gates can lead to 

errors. On other hand, in case of the comparator implemented using kernel based 

partition, for cases where B3 > A3, the effective cross-section reduces to very few gates 

comprising of co-factor CF1, the kernel and the multiplexer output. If the cross-section 

 

Figure 5-2 Kernel based partition applied to a 4-bit comparator. The smaller co-factor is selected 

whenever the most significant bits of the comparator A3 and B3 are unequal. In other cases the 

rest of the bits are required for computation and the larger co-factor is selected. The kernel is 

computed using the Boolean difference metric for inputs A3 and B3. Input switches for co-factors 

are not shown.    

CF2 

 

CF1 
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of this combination is less than that of the 4-bit comparator cross-section without 

partition then logic SER reduction can be achieved. In other words the resultant partition 

must satisfy Equation 7.  The power savings for 50% of the input cases will also be 

significant as only a small number of logic gates switch for 50 % of the cases. In fact, 

such reduction in SER and power is possible in an arbitrarily large comparator.  Note, if 

4 variables, A3, B3, A2, B2 are selected then the output can be computed for 75% of the 

input vectors. However in this case the size of the co-factor and kernel will be different.  

5.3 Test Circuit Description and Experimental Details  

  The C-CREST approach to measure the combinational logic cross-section has been 

explained in earlier chapters [Ahlb-08]. It is summarized once again for the convenience 

of the reader. The data source shown in Figure 5-3 can be used to provide random input 

patterns as well as static patterns to the circuit. The Circuit-Under-Test (CUT) consists 

of a shift register design with logic circuits interleaved with flip-flops. The logic circuit 

is separated from the critical path between flip-flops so that a circuit of arbitrary size or 

depth can be implemented. Two xor gates are used as control circuits at the output of 

each logic block. One flip-flop along with the associated logic and control circuit 

comprises a single stage. The C-CREST design consists of 2,056 of such stages to 

improve the error statistics. The errors recorded by the error detection circuit can be due 

to direct strikes on the combinational logic circuits as well as direct strikes on the flip-

flops. To separate the errors due to latched SETs from logic and direct strikes on flip-

flops, another shift register chain was built with no logic included. This allows errors 

from both sources to be identified independently. The D flip-flops (DFF) used in all the 

shift-register chains consisted of NAND-gate based conventional DFF design. All the 
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error detection circuits and counters are protected against single event errors using Triple 

Modular Redundancy (TMR). The clock is provided by a high-speed Phase Locked 

Loop (PLL). The PLL was capable of being operated up to 1.2 GHz with low-noise 

characteristics and was also hardened against upsets.  

 

 

Two separate C-CREST circuits were implemented. A baseline 4-bit comparator 

circuit with no partition was implemented as logic in the first C-CREST shift register 

chain. The 4-bit comparator forms the block labeled ‘Logic’ in Figure 5-3. To reduce 

silicon area requirements, only the smaller co-factor (CF1 in Figure 5-2) of a partitioned 

4-bit comparator was implemented as logic in the second C-CREST shift register chain. 

The average of the cross-sections of the 4-bit comparator and the small co-factor is a 

reasonable estimate of the effective cross-section of 4-bit comparator with partition. In 

fact, the 4-bit comparator is slightly bigger than a 3-bit comparator (~1.2X) and would 

marginally overestimate the cross-section of the 3-bit comparator, so in reality the cross-

section of a partitioned circuit would be lower than the mere average of the 4-bit 

comparator and the smaller co-factor. The control logic consisting of xor gates shown in 

Figure 5-3 was added to both the logic circuits. Their area and sensitivity is close to that 

of the xor (for kernel) and multiplexer (selection logic) combination as shown in Figure 

 

 

Figure 5-3 C-CREST circuit implemented on 20 nm technology nodes. A single stage consists of 

a flip-flop and logic block.  
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5-2. The layout area for peripheral circuits was about 10% of the 4-bit comparator 

circuit.   

The circuits were irradiated with 6 MeV alpha particles from a Polonium-210 source 

with an activity of 500 µCi, at room temperature. The flux of particles was 7.2x10
5
 

particles/mm
2
/s. The alpha source was placed at a distance of less than 1 mm from the 

dies during testing. The size of the alpha source was 1.4 cm
2
, and the maximum die size 

was 3 mm x 3 mm. To account for both inter-die and experimental variability, 

measurements were repeated several times at each frequency and logic input value. 

Besides the high activity allowed thousands of errors to be recorded for each data point. 

Testing was conducted in accordance with JEDEC specifications [JEDE-06]. The 

nominal operating voltage was 0.9 V. The test results are reported at a fixed frequency of 

416 MHz.  

5.4 Experimental Results & Simulations for Power Consumption 

In this section, the experimental results from alpha particle testing of the two different 

circuits is reported. Subsequently the improvement in power is reported for different 

comparators.  

5.4.1 Alpha Particle Logic SER 

Figure 5-4 shows the alpha particle logic cross-section for the two circuits for different 

inputs. The different input conditions for which the 4-bit baseline comparator circuit as 

well as the smaller co-factor circuit CF1 were tested are listed in Table 5-2.  



 

 114 

 

 

As expected, the 4-bit comparator cross-section is consistently higher than that of the 

smaller co-factor (CF1 co-factor) for all the input conditions tested.  Importantly, 

however, the cross-section of the comparator is very different for different input 

conditions. For those conditions in which the most significant bit of inputs A and B is 

not equal (A3≠B3), the cross-section is lower than that of the case where the most 

significant bits are equal (A3=B3). This is mainly because different input conditions lead 

to different logical masking effects in the comparator itself and not all gates are sensitive 

to transients. When A3=B3, (A3B3 = 00 in this case) a higher number of gates are 

Table 5-2 Input vectors tested for the 4-bit comparator and smaller co-factor CF1 in Figure 

5-2 

Input Value of A, B 

i1_CF2        A=1000 B=0000 

i2_CF2         A=0100 B=1111 

i3_CF2        A=0110  B=1001 

i4_CF2        A=0000  B=0001 

avg_CF1 01 & 10 

 

 

Figure 5-4 The logic cross-section for different input patterns of the 4-bit comparator are consistently 

higher than that of the small co-factor (CF1) circuit. When the most significant bit (A3=B3) is equal a 

large number of gates are vulnerable [Input combination i4_4bit]. In other cases, due to logical 

masking fewer gates are vulnerable. [Input combinations i1_4bit, i2_4bit, i3_4bit].  
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sensitive to transients as explained earlier. Thus the average logic cross-section of the 

comparator needs to be estimated. This was done as follows. 

The relative sensitivities in terms of logical masking for the four different input 

conditions of the comparator were estimated using fault injection. The logical masking 

factor for each input condition was calculated by injecting faults at each node in the 

circuit and recording the proportion of faults that propagate to the output. As the circuit 

was small, this exercise was also repeated exhaustively for all the input conditions and 

all nodes to estimate the average logical masking factor.  As Figure 5-5 shows, different 

inputs have different masking factors. The results from Figure 5-4 and Figure 5-5 are 

also in qualitative agreement as far as effects of logical masking on the cross-section are 

concerned. In fact, i2(A=0100 B=1111) is the condition under which the logical masking 

is highest (least number of SETs propagate) and i4(A=0000  B=0001) is the condition 

under which the logical masking is lowest. The average logical masking factor of these 

two conditions (40%) is close to the average logical masking for the whole circuit 

(32%). As exhaustive testing over all input conditions is impractical, the cross-section of 

the 4-bit can be reasonably estimated as the average of the cross-section for these two 

input conditions. This value is approximately 5x10
-11

 cm
2 

(average of i2 and i4 in Figure 

5-4).  On the other hand, in a partitioned circuit, the smaller cross-section would be 

active for 50 % of the cases and the larger cross-section would be active for the 

remainder of the 50 % of the cases. Therefore, for a partitioned circuit the cross-section 

would then be the average of the larger and smaller co-factor. This value is 

approximately 3.4x10
-11

 cm
2 

(average of above value and smaller co-factor avg_CF1 

from Figure 5-4). This is expressed as the left-hand side of Equation 7. Thus, with the 
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use of kernel based partition, the cross-section reduces by 30 %. Thus the kernel based 

partition technique to partition circuits is a useful approach to reduce the logic cross-

section in certain cases.  

 

 

5.4.2 Simulations for Power Consumption 

Simulations to calculate dynamic power consumption were performed using Cadence 

Spectre 6.1. The simulations were performed at a frequency of 416 MHz and supply 

voltage of 0.9 V. As shown in Figure 5-6, the total power consumption of a partitioned 

circuit when compared with the original circuit without partition shows an improvement 

of only about 3% in the 4-bit comparator case. The primary reason for this is that the 

overhead due to the introduction of the kernel and gates at the input to disable transitions 

add to dynamic and leakage power overhead. The power improvement however steadily 

increases as the size of the comparator is increased as shown in Figure 5-6. In fact for an 

N-bit comparator where N is large, the improvement in logic SER mitigation and power 

 

Figure 5-5 The logical masking factor for the 4 input conditions under which the comparator 

was tested. i4(A=0000  B=0001) is the condition for which maximum transients propagate to the 

output. i2(A=0100 B=1111) is the condition for which least number of transients propagate to 

the output, i.e., the logical masking is highest for this input condition. 
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consumption will approach 50%.   

 

 

5.5 Summary  

In this work, a powerful technique to mitigate combinational logic soft errors along 

with power minimization through the use of circuit partition is illustrated. The technique 

for partition has its basis in a low-power design philosophy which isolates and disables 

idle sub-circuits from active ones as frequently as possible to save power. This can be 

serendipitously applied for soft error mitigation as well because isolating the idle sub-

circuits from the active ones minimizes the likelihood of SETs from the isolated sub-

circuits affecting the output. This idea was applied to a 4-bit comparator wherein 30 % 

decrease in logic cross-section was observed. For comparator circuits, as the size of the 

comparator grows, large savings in SER and power are possible. While this work shows 

that kernel-based partition can be applied to reduce both the power and soft error cross-

section of certain circuits, it must be emphasized that the results may not be applicable to 

every combinational logic circuit. The impact of some key factors must be evaluated 

 

Figure 5-6 The power consumption for 4- 6- and 8-bit comparators was estimated. For smaller 

sized comparators (4-bit for example), the additional overhead due to the kernel and input 

switches adds to dynamic and leakage power overhead. As the size of the comparator increases, 

the improvement in power is quite significant. 
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while partitioning any circuit to achieve lower power and/or combinational logic SER 

mitigation: 1) The choice of the kernel affects the size of the co-factors. Different 

kernels will produce very different co-factors. In general the problem of choosing the 

best kernel is NP-complete and heuristics may be adopted for kernel selection [Choi-02].  

2) The size of the co-factors and kernel must be small compared to the original circuit. If 

this is not achieved, the combinational logic SER could increase at the expense of power 

reduction. In fact there could also be a trade-off between power reduction and logic SER 

reduction based on the choice of kernel used for partition, inputs selected for the kernel 

etc.  
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6. Chapter VI. Circuit-Level Implementation of Shannon Expansion for SER 

Mitigation 

 

In the previous chapters the application of Shannon’s Expansion theorem to improve 

the combinational logic soft-error sensitivity of arbitrary combinational logic circuits 

was presented. The primary advantage of implementing circuits using Shannon 

partitioning for combinational logic soft errors is that the effective number of switching 

nodes decrease thus resulting in a reduction in power consumption. The simple variable 

based expansion can be extended to kernel or function based partition to generate very 

small co-factors. The circuit implementation of Shannon’s Expansion leads to 

multiplexed forms for the Boolean expressions. Such multiplexed forms can be 

implemented using different circuit-level logic families to explore the possibility of 

improving the gains from employing Shannon’s Expansion. Additionally the kernel-

based partition idea is also implemented to evaluate the maximum possible gains from 

Shannon decomposition at the circuit level.  

The observation that Shannon’s Expansion relies on the use of repeated multiplexed 

forms of Boolean expressions is used as the basis for the use of transmission-gate logic 

to implement circuits. Transmission gates are often used in high-speed circuits to replace 

large area-hungry standard cell CMOS multiplexers. This chapter is organized as 

follows: A brief summary is provided to Shannon Expansion theorem for the benefit of 

the reader. The implementation of Shannon’s theorem through the use of different logic 

styles is explained. This is followed by description and discussion of experimental 

results that demonstrate how this technique can be used to reduce the SER of adder 
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circuits implemented in TSMC 20 nm node. The delay, area and power of the different 

circuits is analyzed and the pros and cons of designing circuits using the Shannon 

technique are discussed.  

6.1 Background: Shannon Expansion Theorem  

Shannon Expansion Theorem is based on George Boole or Claude Shannon’s original 

theory on switching circuits. It can be used for logic synthesis and optimization [Lava-

95]. Arbitrary Boolean expressions can be expressed as follows.  

),...,,0(),...,,1(),...,,( 321321321 nnn xxxfxxxxfxxxxxf   

2111321 ),...,,( CFxCFxxxxxf n   

where CF1 = f (1,x2, x3..xn), CF2 = f (0,x2, x3..xn), are the co-factors obtained by 

evaluating the original expression by setting x1 = 1 and x1 = 0  respectively. Here x1 is 

called the control variable or partitioning variable. Depending on the logic value of the 

control variable, the appropriate co-factor is selected to compute the output. For any 

input condition of the circuit, only one of the two co-factors is required to compute the 

output. Thus, such an expression can be structurally translated into a multiplexed form 

where the two inputs of the multiplexer are the cofactors and the multiplexer select line 

is control variable selected for Shannon expansion or partition. Shannon expansion can 

be repeatedly applied within each co-factor to obtain multiplexed forms of the co-factors 

themselves.  Figure 6-1 illustrates how Shannon expansion can be used to partition 

circuits. The individual co-factors can be obtained by setting a = 1 and a = 0, a being the 

control variable in this case. The original circuit and the Shannon equivalent are shown 

in Figure 1 (a) and Figure 1 (b) respectively.  
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6.2 Circuit implementation of Shannon’s Expansion Theorem 

Shannon’s partition inherently allows the use of multiplexers to implement Boolean 

functions. In fact, Shannon expansion can be successively applied to partition the co-

factors themselves using every variable in the circuit. In other words, the whole circuit 

can be decomposed using a network of only multiplexers. Such an implementation 

strategy under ordinary circumstances would lead to a huge increase in the area of 

circuits. However this multiplexed form is ideal for certain functions. The 

implementation of multiplexed functions is most commonly performed using 

transmission gates as fast multiplexers in high-performance processors [Cell-05].  

In this thesis, Shannon expansion was practically implemented using transmission gate 

structures. The key advantage of transmission gates is the smaller capacitance which 

allows faster implementations of certain function. The lower capacitance and compact 

implementation also translates into lower dynamic power consumption.  The primary 

disadvantage of transmission gates is that the design must be carried out carefully to 

avoid floating nodes that can lead to erroneous operation. More importantly, it is 

  

(b)           (b)                            

Figure 6-1 Original circuit (a) and its Shannon Equivalent (b) implemented with multiplexers.  
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difficult to determine the delay of circuit paths that implement transmission gates 

especially in series because transmission gates are nothing but an R-C low pass filter. 

Implementing such networks in series results in a complex transcendental equation to 

determine the delay. The complexity of calculating the delay increases as more 

transmission gates are added and the number of poles in the system increase. On the 

other hand, the delay of standard CMOS gates can be accurately calculated using well 

known concepts like logical effort [West-09]. From the point of view of single-event 

effects, there are two important considerations. The smaller transmission gates mean that 

the sensitive area potentially reduces. On the other hand, the smaller capacitance on the 

gates and lower drive means the critical charge required for single-event transient 

generation is lower. Thus with the implementation of certain circuits with Shannon’s 

expansion theorem using transmission gates, there are potential trade-offs between the 

power and area improvement and the single-event sensitivity. This is the first instance of 

systematic comparison of the various factors involved in designing circuits using 

transmission gates implemented using Shannon’s Theorem and testing their single-event 

sensitivity. In the following sections comparisons are made between a standard cell 

adder and a “Shannon Adder” implemented using transmission gates. The experimental 

set-up for alpha particle and heavy-ion experiments are explained. Subsequently, 

simulations are used to understand the implications of using transmission gates with 

Shannon’s expansion theorem are explored.   
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6.2.1 Circuit Description 

The choice of circuit for test purposes in this work was critical. The ideal circuit to 

compare the use of transmission gate logic compared to standard CMOS implementation 

must meet two conditions. 1) The circuit designed using two different techniques 

(Shannon with transmission gates and standard CMOS) must still be representative of 

commonly used circuits in microprocessors etc. Then the results of comparison can be 

extended to other circuits for the SER mitigation and power reduction benefits. 2) The 

circuits must be simple enough to be experimentally tested exhaustively yet easily so as 

to compare the experimental results with simulated fault injection campaigns. The adder 

circuit was chosen for this exercise for its universal application in a wide range of 

circuits. Besides, at its most basic form the full adder has only 3 inputs and only 8 

different input combinations. Thus testing such a circuit exhaustively would not be 

challenging. Two different flavors of the full adder circuit were designed and tested in 

20 nm bulk technology. The standard cell CMOS adder consisted of And-Or-Inverter 

(AOI) gates. The sum and carry functions are shown in Figure 6-2 and Figure 6-3 

respectively. The XOR gates consisted on 4 NAND gates each for the sum function. All 

the gates were sized to achieve equal rise and fall time. The minimum sized inverter 

against which the rise and fall delays were benchmarked had dimensions of WP/WN = 

220 nm/180 nm. 
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The “Shannon Adder” consisted of transmission gate and the size of all the transistors 

used in each of the transmission gate designs was WP/WN = 220 nm/180 nm. The 

implementation of the Shannon Adder is shown in Figure 3. From the circuit shown 

below, it is clear that a combination of transmission gates and inverters is used. The 

primary purpose of the inverters was to restore the nodal values to full rail signal, in case 

of any degradation of the signals when they pass through the transmission gates. The 

transmission gates themselves implement multiplexer functions. For example the sum 

output of an adder is implemented using just 4 transistors. The sum expression for the 

adder is 

 

Figure 6-3 Carry generation circuit of the Standard cell adder. Internally the circuit consisted of 

NAND gates.  

 

Figure 6-4 Sum generation circuit of the Standard cell adder. Internally the circuit consisted of 

NAND gates.  

 

 

Figure 6-2 Sum generation circuit of the Standard cell adder. Internally the circuit consisted of 

NAND gates.  
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CBASum   

This can be decomposed using Shannon’s theorem as follows: 

BABASum   

Here the controlling or partitioning variable is B and A and A’ are the co-factors 

resulting from the partition. Thus the XOR function lends itself conveniently to be 

implemented using Shannon Expansion. Similarly the carry of the adder is expressed as  

CACBBACarry   

In such a form, Shannon Expansion would not be very convenient. Hence the 

expression is transformed into a form shown below. This is a very important 

transformation and effectively results in a kernel now becoming the controlling function. 

In this case the sum function generated earlier as the XOR of inputs A and B is used as 

the kernel to partition the carry function. Thus transmission gate implementation is 

coupled with the kernel-based partitioning approach to achieve a very small and compact 

carry implementation.  

BSCSBBACBACarry  )()(  

Here, the expression is now transformed into a form that resembles the variable-co-

factor notation of Shannon’s Theorem. Here the control variable is now S (sum) and the 

co-factors are merely the inputs C and B respectively. Thus expanding the expression 

using Shannon’s Theorem allows a very compact implementation using transmission 

gates. Also note that the sum expression is used a control variable for the carry 

expression. This this a form of multi-variable expansion of Shannon’s Theorem. The 

area and transistor count of the two circuits are summarized in Table 6-1.  
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6.3 Test Circuit and Experimental Details  

As has been described in Chapter 3, the C-CREST approach was used to measure the 

combinational logic cross-section of the two different adder circuits tested. Two 

different combinational logic circuits were implemented using the C-CREST scheme. 

The logic in the first C-CREST circuit consisted of the standard cell adder. The logic in 

the second C-CREST circuit consisted of the transmission gate adder. The circuits were 

irradiated with 6 MeV alpha particles from a Polonium-210 source with an activity of 

Table 6-1 Comparison of Standard CMOS and Shannon Adder 

Circuit 
Number of 

Transistors 

Drawn 

Area 
Min WP/WN 

Std. CMOS 

Adder 
28 

0.525 

μm
2
 

 

220nm/180nm 

 

Transmission 

Gate Adder 
16 

0.240 

μm
2
 

 

220nm/180nm 

 

 

 

 

Figure 6-5 Shannon implementation of the sum (S) and carry outputs using transmission gates.  

 



 

 127 

500 µCi, at room temperature. The circuits were tested at different frequencies and 

voltages at room temperature. As in all the experimental test procedures and set-ups, 

JEDEC testing standards were followed and statistical variability was limited by 

collected hundreds of errors in multiple experimental runs.  

 

6.4 Alpha-Particle Experimental Results 

The test circuits were tested under a variety of frequency and voltage conditions. The 

frequency dependence of logic soft errors is well-known and observed in both cases 

shown below for an operating voltage of 0.95 V.  As seen in Figure 6-6, the cross-

section of the Shannon Adder is lower by about 35%. The Shannon implementation did 

provide improvement in terms of measured cross-section. The primary reason for this is 

that due to the smaller size in terms of area, the sensitive area of the Shannon 

transmission gate adder is lower for almost every input combination.  
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However the improvement is not as much as the difference in area (Table 6-1) of the 

two circuits would suggest. The area of the Standard cell adder is about 2.3X higher than 

that of the Shannon transmission gate adder. However the difference in cross-section for 

the most sensitive input is merely 35 %. The SET pulse-widths were investigated to 

calculate their impact on the logic cross-section. It is well known that differences in 

drive current and capacitances introduces differences in pulse-widths for different gates. 

Different gates and corresponding input conditions have different SET pulse-width 

distributions. The SET pulse-width of three representative gates used in the circuits 

described above was estimated for different values of charge deposition using the Bias-

Dependent current pulse model [Kaup-09]. It is seen that the SET pulse-widths of the 

transmission gate adder are higher than those of inverters and the NAND gates. In fact 

the SET pulse-width of the transmission gate adder is about 3 times as much as the 

 

Figure 6-6 Comparison of the alpha particle logic SER of the conventional CMOS and 

Shannon implementation shows that the Shannon implementation improves the logic 

SER by ~35 %.  
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inverter in spite of the fact that their physical area is exactly the same. The pulse-widths 

for the different gates is shown in Figure 6-7.  

 

 

The reason for this apparent difference in the pulse-widths can be explained as follows. 

Consider the case of an inverter where the PMOS transistor is ON and the NMOS 

transistor is OFF. If the NMOS transistor is OFF then the PMOS transistor restores the 

node to the original value. The pulse-width is indeed inversely proportional to the 

restoring drive. In fact the SET pulse-width is proportional to the RC delay time taken 

by the PMOS transistor to restore the node to its original value. In the case of the 

inverter shown in Figure 6-8, the RC delay = RpC. On the other hand consider the case 

of the transmission gate and inverter combination. As Figure 6-5 shows every 

transmission gate output node is preceded by an inverter to restore any degradation in 

signal swing. Consider the case where the NMOS transistor part of the transmission gate 

is struck. The NMOS and PMOS transistors of this transmission gate are ON and PMOS 

 

Figure 6-7 SET pulse-widths for various gates and structures for charge deposited of 10 fC.  

 

0 

20 

40 

60 

80 

100 

120 

0 5 10 15 20 25 

S
E

T
 P

u
ls

ew
id

th
 (

p
s)

 

Charge Deposited (fC) 

Tx gate 

Inverter 

NAND 



 

 130 

transistor of the previous stage is ON. In this case the restoring drive is provided by the 

ON PMOS transistor. This current flows through the PMOS (part of the inverter) and the 

parallel combination of resistances of the PMOS and NMOS of the transmission gate. 

This is shown in Figure 6-9. Thus the time taken to restore the node can be calculated 

using the Elmore delay model 

21 ))||(( CRRRCR nppp   

Setting Rp=Rn = R which is a reasonable approximation (matched drive from 

PMOS and NMOS) and C1 = 2C and C2 = C, (transistor sizes almost the same) we get.  

RC
2

7
  

Thus the RC delay or the time to restore the node (SET pulse-width duration) of the 

transmission gate case is about 3.5 time that of the inverter, mainly because of the 

introduction of additional resistive and capacitive paths for the PMOS restoring current. 

As a result the pulse-widths of the transmission gates are longer than those of the 

inverter or even the NAND gate.  

 

 

Figure 6-8 Inverter with ON PMOS transistor. The restoring drive is responsible for nodal 

capacitance being restored to original value.  
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These results emphasize the fact that the combined effect of sensitive area and pulse-

widths must be accounted for while considering the use of transmission gates. Although 

the sensitive area clearly reduces, the pulse-widths. In order to gauge the impact of both 

the sensitive area and the SET pulse-width, ensemble Monte-Carlo simulations were 

performed in which every node of the standard cell adder and every node of the Shannon 

Adder were struck with a fixed charge deposition of 10 fC using the Bias-dependent 

model [Kaup-09]. The product of the sensitive area and pulse-width was monitored for 

each node and the cumulative sum of product of area and pulse-width was recorded for 

the whole circuit. This is plotted in Figure 6-10. The difference in the product of the 

sensitive area and the SET pulse-width is about 25 %, which is close to the 35 % 

difference in logic cross-section observed experimentally. Clearly this points to the fact 

that although the physical area of the circuit is lower with the use of transmission gates, 

the SET pulse-widths of the nodes in the transmission gate adder could be higher than 

those from the CMOS adder. As a result the overall logic cross-section depends on the 

relative differences between these two factors and must be considered very carefully 

while employing transmission gate based design.  

 

Figure 6-9 Transmission gate + inverter combination where the NMOS of the 

transmission gate is struck. The restoring drive encounters additional resistive and 

capacitive paths which increases the restoring delay or SET pulse-width.  
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In summary the Shannon implementation of adders using transmission gates is a 

powerful way to reduce the logic SER. The Shannon implementation importantly results 

in only one of the two co-factors being active for all the inputs and also ensures that 

there are restoring transistors for every node in the circuit. Besides, the sensitive area 

reduces substantially. However, careful attention must be paid to the SET pulse-width 

distribution of the individual nodes where transmission gates are used compared to 

standard CMOS gate implementation. If the restoring current is weak then the pulse-

widths can be very long. As a rule of thumb, cascading transmission gates is not 

recommend because of the poor restoring strength introduced by the additional RC 

combinations. Additionally the noise issues due to signal swing degradation and charge 

sharing may arise if every node is not carefully protected with CMOS restoring devices 

like inverters. But the forced inclusion of these inverters also offsets some of the area 

 

Figure 6-10 Sum of product of sensitive area and SET pulse-width with strikes simulated at each 

node of the two circuits (charge deposited = 10 fC).  
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benefits of a pure transmission gate implementation as well. Next, the power and delay 

improvement of Shannon implementation is considered.  

6.4.1 Delay and Power Analysis 

A. Adder delays.  

Transmission gate implementations are traditionally faster than standard CMOS gates 

due to the lower capacitances and fewer circuit nodes. This is borne out in the delay 

analysis of the two adders simulated at different voltages and plotted in Figure 6-11.  

 

 

 

B. Dynamic Power Consumption and Power-Delay Product of the Adders   

The power-delay product is a useful metric to compare two different logic families or 

two circuits built using two different logic families. The dynamic power was calculated 

by applying 1000 random patterns at a frequency of 1 GHz to both the adders at nominal 

 

Figure 6-11 Worst case adder delays measured for the standard CMOS and Shannon 

implementation 
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voltage (0.9). The worst-case delay was measured as in the previous section. The 

resultant power delay product is plotted in Figure 6-12. The power consumption and the 

delay of the Shannon Adder was much lower than that of the standard cell adder. As a 

result the power delay product too, is much lower.  In fact, a minimum is seen at a 

voltage of about 0.85 V which indicates that this is the lowest energy point of the 

Shannon Adder.  

The logic cross-section for the Shannon Adder at this voltage and 416 MHz is  

~ 1.41x10
-11

 cm
2  

as shown in Figure 6-13. At the same time, the minimum energy point 

for the standard cell adder appears to be ~0.98 V. At this operating voltage and 

frequency of 416 MHz, the logic cross-section of the standard cell adder is ~ 1.32x10
-11

 

cm
2 

which is comparable to the logic cross-section of the Shannon Adder. Thus the two 

cross-sections are comparable at their minimum energy points. This is a very interesting 

result and needs to be investigated. However thorough investigation this is beyond the 

scope of this work.  

 

 

Figure 6-12 : Power-delay product of the Shannon Adder is much lower compared to the 

standard CMOS implementation 
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6.5 Summary 

Shannon’s theorem can be conveniently implemented using transmission gates given 

their suitability to build multiplexed functions. The key advantages of adopting a 

transmission gate approach is that of faster speed, lower power consumption and lower 

logic SER. The expected reduction in sensitive area from the use of transmission gates 

with Shannon’s theorem, however is not realized because the transient pulse-widths due 

to strikes on transmission gates are much longer compared to standard CMOS gates. If 

transmission gates are cascaded in series, the SET pulse-widths will increase because of 

the reduced current drive to restore the struck node. These key pitfalls must be evaluated 

before adopting a transmission gate style to reduce power and SER.  For the circuits 

tested in this work, Shannon implementation using transmission gates offers a powerful 

 

Figure 6-13 Logic SER as a function of voltage for the two implementation schemes. 
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alternative to standard CMOS implementation in terms of faster speed, less power and 

area along with higher soft error reliability.  
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7. Chapter VII. SER Mitigation Using Low-Power Pipelining 

 

In previous chapters, the impact of different gate and circuit level approaches to 

achieve power-aware combinational logic SER mitigation have been presented. In this 

section a powerful approach at a higher level of abstraction to achieve SER mitigation 

along with power minimization is discussed. In the design of VLSI circuits, the tools 

available to architectural designers or software developers are different from those 

available to circuit designers or device engineers. Modern-day designs rely heavily on 

the use of silicon-intellectual property (IP) available in the form of portable high-level 

RTL designs that individual designers can synthesize in different ways. On many 

occasions however, even synthesis may not be feasible option. Architectural designers 

who work with such IP blocks can rarely modify the underlying architecture such as gate 

sizes, circuit design etc. of the IP, but must instead design the system most effectively by 

utilizing the different ‘block-level’ designs in the IP library. In such cases architectural 

or micro-architectural changes such as pipelining, retiming blocks, parallelizing 

computation, and smart placement of sub-system blocks can help improve the 

performance, reduce power and minimize area.  

In this chapter, an approach to reducing the SER by modifying a low-power pipelining 

technique is first proposed by [Hris-02] is studied. Results suggest that modest amount 

of pipelining can help reduce the SER as well as the power consumption of the evaluated 

circuits. Pipelined ripple carry adders are used as a pathfinder to understand the different 

parameters like combinational logic masking factors, effects of voltage on SET pulse-

widths, frequency, flip-flop design and count that influence the total SER of pipelined 
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systems. This chapter is organized as follows : A brief introduction to basics of 

traditional pipelining are provided. The traditional pipelining approach which is focused 

towards increasing performance or throughput is contrasted with a low-power approach 

to pipelining which emphasizes constant throughput but low power consumption. 

Following this the SER for a low-power pipeline is evaluated and the impact of 

hardening the combinational logic on SER and power is discussed.  

7.1 Introduction: Traditional Pipelining Basics 

Pipelining is a well-known and well-researched concept in which the throughput or 

performance of microprocessors is improved. Microprocessors execute a given program 

instruction by instruction. Each instruction which is introduced is first fetched, decoded 

and then executed. This process is repeated for all the instructions. Consider a processor 

that does not implement pipelining and processes every instruction in one clock cycle. 

All activity in the processor occurs on the clock edge and is timed by the clock. This 

time duration is called T-state, machine state or clock period. Let us assume that an 

instruction requires one T-state for fetching and executing an instruction. Let the time 

required to do be = T. Thus a single instruction requires T units of time to be completed. 

Let there be 5 such instructions in a program. Then the program sequence is as shown in 

Table 7-1:  
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As a result the total time taken for the program = 5 instructions * T units = 5T. Thus the 

rate of processing instructions called the throughput or instructions per cycle (IPC) = 

5/5T = 1/T 

Now consider a pipelined implementation of this processor. In a pipelined 

implementation, the logic is divided into smaller parts each of which is active at the 

same time. In other words, the action of fetching and executing instructions is separated 

and performed by two separate functional units so that while one instruction is being 

executed, another instruction can be fetched. The advantage with such a technique is that 

the logic has been divided into smaller parts, so the clock period can be reduced. Let us 

assume an ideal value of T/2 for the new clock period in this case. The program 

sequence is now given in Table 7-2.  

Table 7-1 : Program execution flow for non-pipelined processor 

T T T T T 

F1 E1 F2 E2 F3 E3 F4 E4 F5 F5 

1
st
 instruction 2

nd
 instruction 3

rd
 instruction 4

th
 instruction 5

th
 instruction 
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As seen in the program sequence for the pipelined processor, the total time taken 

reduces to 6*T/2 = 3T. The reason for this is that instruction fetch and execution overlap 

and the different processor units for fetch and execute are active at the same time. Thus 

pipelining resembles an assembly line. The time taken can be expressed as 1*(T/2 + T/2) 

+ 4*T/2 = 3T.  

For a general processor where the degree of pipelining is k, where k is the number of 

pipeline stages, then the time to execute a program with N instructions would be kT + 

(N-k)T/k where T/k is the new clock period for the processor. If N >>k which is true for 

almost all realistic workloads and programs, the time taken is ~ NT/k. The time a non-

pipelined processor with clock period T would take is NT. Thus the speedup possible in 

the ideal case is almost k. In other words the throughput improves by a factor of k for a 

pipelined system.  

 

Table 7-2 Program execution flow for pipelined processor 

T/2 T/2 T/2 T/2 T/2 T/2 

F1 E1     

 F2 E2    

  F3 E3   

   F4 E4  

    F5 E5 
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7.1.1 Pipeline Limitations and Impact on Power and SER 

Pipelining improves the throughput of processors but there are certain factors that limit 

the improvement in throughput to less than the ideal and also certain unavoidable 

overheads. The limitations of pipelining are evident when branch instructions occur or 

instruction hazards occur. Branch instructions require execution to begin from a new 

address and loading of new instructions, which means that the pipeline must be flushed 

and filled again with new instructions. If branch instruction occur very frequently, the 

throughput of the processor may be affected severely due to repeated emptying of the 

pipeline. Hazards occur when certain instructions require successive pipeline blocks to 

share data or information about the instruction being executed. Thus certain execution 

units must be given more time to complete the task and provide the data safely to the 

next execution block. This requires the pipeline to be stalled. These stalls can add to the 

performance overhead reducing the overall throughput.  

Apart from these factors, the inevitable cost of pipelining is an increase in dynamic 

power consumption due to higher frequency of operation. Additionally the number of 

flip-flops and the clock network and routing complexity increases. All these factors 

contribute to increased power consumption. As far as soft-errors are concerned, 

increasing the clock speed results in an increase in the combinational logic SER. 

Increasing the number of flip-flops also increases the flip-flop error rate. Thus, increased 

amount of pipelining results in a higher SER overall for the chip.  
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7.2 Pipelining for Low-Power  

Beginning in the 90’s and into the early 2000’s, pipelining accompanied by increasing 

frequency was the primary method by which processor performance was improved. The 

trend towards deeper pipelines in microprocessors is seen in the development of Intel 

x86 family, with a factor of 7 reduction in logic depth per stage over the last decade 

[Hris-02]. In the early-2000’s, the gains from pipelining were quite prominent and 

processor frequencies and pipeline depths continued to increase. But longer pipelines 

lead to large penalties from hazards and stalls. The resulting reduction in instructions 

completed per cycle (IPC) reduces the performance advantage from greater clock 

frequency, with greater impact on codes with lower instruction-level parallelism (ILP). 

Early work by [Kunk-86] considered pipelining in vector supercomputers and found that 

8–10 gate levels was performance-optimal for scalar code, and 4 gate levels for more 

parallel vector code. Several authors have investigated the performance-optimal pipeline 

depth for superscalar microprocessors [Hart-02, Hris-02, Spra-02], with a consensus in 

the range of 8–11 Fo4 delays for SPEC integer codes and around 6 FO4 delays for SPEC 

floating-point codes, which generally have higher ILP. These performance-optimal 

numbers ignore power as well as the design and verification complexity that would 

accompany such high-frequency designs (roughly twice the clock rate of existing 

systems [Spra-02]). Similarly the power costs and power density costs of pipelining 

limits the amount of pipelining that can be introduced. With emphasis in digital 

processor design changing towards low-power consumption the work by [Chan-92] 

proposed to use pipelining as a low-power tool but no attempt was made to determine 

the power-optimal pipelining strategy. Power-optimal pipelining was first explored in 
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[Heo-04]. The approach in [Heo-04] and related work is summarized here. The authors 

emphasized fixed-throughput designs for highly parallel computations and so do not 

include any performance loss from an increased frequency of pipeline stalls as pipeline 

depths increase. This is extremely relevant in the case of architectures like digital signal 

processing (DSP) pipelines and arithmetic intensive pipelines employed in graphics 

processing units (GPUs). DSP architectures and GPUs use a lot of adders, multipliers 

and other arithmetic constructs. Unlike microprocessors which involve heavy branching, 

DSP architectures do not need to branch very often. On the other hand, large data 

streams need to be processed and computed. Thus data parallelization and pipelining can 

be achieved very easily. In fact, just as instructions can be computed in pipeline fashion, 

data too can be processed and computed in pipelined fashion. For example 8-bit addition 

of two 8-bit numbers can be performed by adding the lower nibbles (lower 4 bits) 

together and then adding the result to the higher nibbles (higher 4 bits). Thus the 

operation of adding two 8-bits can be serialized into two separate 4-bit components. In 

traditional pipelining, the clock frequency would be increased to compensate for the 

reduced delay for 4-bit addition as against 8-bit addition. However this is accompanied 

with power overheads. However, if fixed-throughput low-power operation is required, 

then the frequency of operation does not need to be increased with pipelining. In such 

cases the amount of logic per stage reduces. As a result, the logic now gains more time 

to complete its operation. Consider the case of the 8-bit adder divided into 4-bits 

discussed earlier. If the frequency is 2 GHz for the 8-bit adder and then the 8-bit adder 

can be divided into two 4-bit components, the logic depth per stage reduces. However 

the time required to complete the 4-bit addition operation remains unchanged if the 
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voltage is the same. But, now since the 4-bit adder has gained considerable slack to 

complete the ADD operation on 4-bits, the supply voltage for both the adder blocks can 

be lowered so that power can be saved. As the logic amount per pipeline stage decreases, 

the voltage can be scaled even more. Consider the case of low-power pipeline instruction 

flow. Shown in Table 7-3. The clock period is same as the original: T units. Pipelining 

allows simultaneous execution but the latency of the first instruction increases.  

 

 

As seen in Table above, the first instruction requires 2 cycles to complete after which 

each instruction can be overlapped and completed in 1 clock cycle. Thus the total time 

taken in 6T. Here, the latency for the first instruction is larger (2 cycles) than in the non-

pipelined case (latency=1 cycle for non-pipelined processor). For a general pipeline 

where the frequency is not increased and there are no stalls/hazards, the throughput 

would be (k)T + (N-1)T = (N+k-1)T. Again if N >>k-1, then the throughput is ~NT. 

Therefore no major loss improvement in throughput is obtained from such a technique. 

The key point here is that the supply voltage can now be lowered for each execution 

Table 7-3 Program execution flow for fixed throughput pipelined processor 

T T T T T T 

F1 E1     

 F2 E2    

  F3 E3   

   F4 E4  

    F5 E5 
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block that is part of the pipeline. The delay condition required to be met to find the 

lowest voltage that can be used for the logic units is as follows:  

)(
)(

)()( VT
N

VT
VddTVddT flopflip

logic

flopfliplogic      7-1 

where, Tlogic(Vdd) is the combinational logic delay for the entire logic chain of the the 

non-pipelined system and Tflip-flop(Vdd) is the flip-flop delay for non-pipelined system 

operating at nominal supply voltage Vdd. If the logic is divided into multiple units as in a 

pipelined system, then the voltage can be lowered in each stage. The resulting delay in 

each stage and for each flip-flop is Tlogic(V)  and Tflip-flop(V)   respectively and N is the 

number of stages that the pipeline is divided into (pipeline depth). The difference 

between traditional pipelining and pipelining for low-power is illustrated in Figure 7-1 

and Figure 7-2.  

 

 

Figure 7-1 Traditional pipelining where the logic stages are divided into smaller sub-units and the 

frequency is increased (clock period decreases). The voltage is maintained at nominal supply level.  
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7.3 Pipelined Structure Evaluated 

As discussed earlier, pipelining can be used to increase performance and throughput as 

well to save power consumption with constant throughput. The objective in this work is 

to mitigate combinational logic with low power operation and minimal performance 

overheads. By implication the low-power pipelining approach is adopted to achieve low-

power and SER.  The target system for such approaches are DSP pipelines, arithmetic 

pipelines and ASIC computational circuits that do not need to branch very often. A 24-

bit adder ripple carry adder as a testbed to understand how low-power as well as lower-

SER can be achieved through pipelining. The adder was used for the following purposes: 

1. Adders are universally used as fundamental building blocks in arithmetic and 

DSP pipelines.  

 

Figure 7-2 Pipelining for low power where the logic is divided into sub-units but the frequency is 

kept constant and voltage is lowered for each logic block.  
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2. The carry signal represents a pipeline signal that is propagated from one stage to 

another.  

3. The logical masking characteristics of the adder could be exhaustively analyzed.  

4. Experimental results to compare the logic SER two different adders as a 

function of voltage and frequency were available. This experimental data could 

be used in the models to estimate the improvement in SER and power with 

pipelining.  

The 24-bit adder structure with different levels of pipelining is shown in Figure 7-3. 

The baseline structure has no pipelining and the 24-bit ripple carry adder forms the logic 

terminated by a flip-flop. As the pipeline depth (N) is increased the adder is decomposed 

into smaller logic blocks at each successive stage. For example N = 2, corresponds to 

two 12-bit adders forming the logic component and the number of flip-flops increases by 

a factor of 2. N=8 corresponds to eight 3-bit adders forming the logic interspersed with 8 

flip-flops. There are some key things to remember about such a pipeline  

1. A deeper pipeline corresponds to less logic between stages 

2. The total amount of logic remains the same but the number of flip-flops grows 

with pipelining 

3. The voltage at each stage can be lowered in accordance with Equation 1.  

Again, in the 24-bit structure only the carry-bit and carry generation circuit is 

utilized. Each adder also has sum generation which needs separate gates but the 

sum outputs are independent of each other and pipelining does not change the 

number of flip-flops or change the amount of logic for the sum generation. Thus 

the sum circuits are not relevant for this discussion.  
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In this work, all the power calculations were performed in simulations and through the 

use of models. The frequency for these simulations was set to 2 GHz and a 20 nm PDK 

was used for simulation purposes. The SER estimation on the other hand was mixed 

approach where the impact of voltage on two different adders (standard cell and 

Shannon adder) was performed experimentally.  The exhaustive logical masking 

calculations were performed using simulations. Both these factors were then used to 

model the total SER of the pipelined adder block. The adders used to experimentally 

evaluate the logic SER as function of voltage and frequency were implemented in a 20 

nm bulk technology.  The frequency of operation for the experiments was 416 MHz and 

voltage was varied from 1.1 V to 0.85 V. The carry circuit consisted of 5 gates (2 AND 

gates, 2 OR gates). The minimum size of the inverter used was Wp/Wn = 220 nm/180 

 

Figure 7-3 24-bit adder structure for power reduction and SER mitigation. The baseline is a non-

pipelined version terminated by a flip-flop. Pipeline depth of 2 corresponds to 2 12-bit adders 

separated by a flip-flop. The extreme case is a pipeline depth of 24 with only one adder stage per 

flip-flop.  
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nm. The size of the other gates was adjusted to achieve equal rise and fall time as that of 

the minimum sized inverter used. Thus the baseline consisted of 24 adders (each 

consisting of 5 gates) and 1 standard NAND gate D-flip-flop to receive the carry output. 

The delay of a single carry stage was 18.4 ps at a nominal voltage of 0.9 V. Thus the 

total delay through the 24 stages was 432 ps. In other words the logic delay was 432 ps 

for the worst case path where the carry ripples through the 24-bits. Thus, the clock 

frequency in simulation was therefore set to safe 2 GHz (clock period 500 ps) to ensure 

that the sum of the logic delay and the setup-hold time was less than 500 ps.  

The following discussion in this chapter is organized as follows: The reduction in 

power by increasing pipeline depth for the 24-bit RCA is introduced. The total SER of 

such a pipeline is modeled using experimental data for SER as a function of voltage and 

differences in masking factors. Following this, the implications of hardening the 

individual adders in different ways for SER and power are presented.   

7.4 Power Consumption with Pipelining  

The objective in low-power pipelining is to keep the frequency the same and increase 

the pipeline depth. As the frequency is the same, the voltage in each logic block can be 

lowered. Using Equation 1, given below as well, the minimum possible voltage at which 

each pipeline logic block can be operated is given as   

)(
)(

)()( VT
N

VT
VddTVddT flopflip

logic

flopfliplogic      

In this work, the voltage of the flip-flops is not changed because a logic dominated 

pipeline is assumed and the reduction in power consumption due to lower voltage on the 
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logic is much more than that due to reduction in power from the flip-flops. Thus the 

above equation can be expressed as  

)(
)(

)()( VddT
N

VT
VddTVddT flopflip

logic

flopfliplogic      7-2 

The resultant voltages obtained using the above equation for different pipeline 

depths N is plotted in Figure 7-4. As the pipeline depth is increased, lower voltages can 

be used. The initial reduction in voltage is quite sharp but the reduction in voltage is not 

as significant beyond a pipeline depth of about 8. This indicates that even modest 

pipelining allows for significant reduction in voltage. This reduction in voltage directly 

impacts the power consumption as function of pipeline depth plotted in Figure 7-5. The 

power consumption for the 24-bit pipelined system can be modeled as  

flopflipleaklogicleakflopflipswitchinglogicswitchingtotal

leakageswitchingtotal

PNPPNPNP

NPNPNP

 



)(

)()()(
7-3 

The total power was recorded in simulation for a frequency of 2 GHz and voltage V 

for different pipeline depths N. The switching components of logic and flip-flops were 

recorded separately. Ordinarily, pipelining would result in a linear increase in the 

number of flip-flops. However a more pessimistic approach has been adopted where the 

leakage and switching components are scaled by a flip-flop growth factor ρ = 1.2. So the 

number of flip-flops in the pipelined systems grow at the rate of N
1.2

 rather than N
1
 

(linear) [Heo-04]. The additional flip-flops are often required for synchronization related 

tasks with pipelining. The power consumption scaled up to a flip-flop growth factor of 

N
1.2  

is plotted in Figure 7-5. 
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Figure 7-5 The total power consumption as a function of pipeline depth initially decreases. 

This is driven by reducing voltage which leads to switching power reduction. Beyond a 

pipeline depth of about 8, the power consumption starts increasing. This is due to increased 

leakage and active power contribution of flip-flops.  
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Figure 7-4 Supply voltage variation as function of pipeline depth. A lower voltage can be 

used for deeper pipelines but, the gains decrease beyond a pipeline depth of about 8.  
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As seen in Figure 7-5, the total power consumption reduces as the pipeline depth in 

increased. The decrease in power consumption reaches a maximum at a pipeline depth of 

about 8. Even with a modest amount of pipelining the power consumption can be 

reduced by about 70% due to the V
2
 relationship of switching power. Beyond a pipeline 

depth of 8, the leakage and switching contribution of increased number of flip-flops 

begins to dominate, leading to an increase in the power consumption. Thus the optimal 

pipeline depth for this particular design is about 8 stages. In other words the logic depth 

per stage is 3 adder blocks per flip-flop stage. 3 adder blocks corresponds to about 30 

gates in the standard cell adder implementation explained earlier. This is reasonably 

close to the average number of gates per flip-flop in large circuits and ASICs (28) 

[ISCA-85]. Thus, a low-power pipelining approach can be used to lower the power 

consumption, but the increased power consumption from increased number of flip-flops 

limits the eventual power gains. Other logic circuits may yield different results based on 

individual value of logic switching capacitance, gates per flip-flop etc.  

7.5 Estimating the SER of Pipelined Systems  

For a pipelined system using a low-power approach as discussed above, two things are 

of critical importance as far as the SER of the pipelined system is concerned. Firstly, 

with increasing pipeline depth, the voltage can be lowered at each stage as a result of 

which the SET pulse-widths would increase [Dodd-03]. Secondly, the logic depth or 

amount of logic between individual flip-flop stages decreases. Logical masking reduces 

for shorter path lengths as the probability of masking SETs logically reduces as the 

number of possible blocking gates reduces. Thus with pipelining the effects of masking 

diminish. Thus these two factors need to be incorporated in estimating the combinational 
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logic SER of pipelined systems. Apart from this, the number of flip-flops in the system 

increase which would increase the total flip-flop SER. As argued in previous chapters 

the assumption is made that the gate delays are small enough for transients to propagate 

unattenuated and electrical masking is not the dominant factor that affects logic SER 

estimates. Thus the total SER for a pipelined system of depth N is  

flopflipNtotallogic SERNVSERNLMNSERTotal

NSERflopFlipNSERLogicNSERTotal





1)()()(

)()()(


  7-4 

where, SER(N) is the total SER for a pipelined system with depth N. The total SER is 

the sum of the logic SER and the flip-flop SER. The flip-flop SER grows with the flip-

flops growth factor N
ρ
. SER1 flip-flop is the raw flip-flop and SERlogic total is the SER of the 

entire logic in the pipelined implementation (24 adders) calculated from experimental 

results of a 1-bit adder as a function of voltage VN which in turn is a function of the 

pipeline depth Figure 7-4. In a pipelined system with depth N, recall that the total 

amount of logic still stays the same. What differs is the amount of logic between 

individual flip-flop stages and the supply voltage. This can be incorporated separately in 

a logical masking function which is pipeline depth dependent (LMN). In the following 

sections, the impact of pipeline depth on the voltage sensitivity of individual adders and 

the impact of pipeline depth on the logical masking is estimated.   

7.5.1 Impact of Pipelining on Voltage Sensitivity of Adders  

The 24-bit adder consisted of 1-bit adders. Due to a decrease in the voltage and the 

amount of logic per flip-flop stage, the impact on the SER must be modeled. To model 

and understand the impact of voltage reduction on the logic SER, a 1-bit adder was 
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tested as a function of voltage for a fixed frequency of 416 MHz. The experimental setup 

used was the same as that introduced in the previous chapters and was based on the C-

CREST technique. Figure 7-6 shows the impact of voltage variation on the 

combinational logic SER of the adder measured at 416 MHz.  

 

 

Due to a decrease in the voltage the logic SER increases quite considerably. The 

primary reason for this is that the single-event transient pulse-widths increase. This 

increases the likelihood of transients latching. The range of voltages that could be tested 

were limited due to the fact that the on-chip PLL could not be operated at less than 

certain voltages. However the data can be fit using a reasonable model for the SET 

variation with the voltage. It is well known that the SET pulse-widths are inversely 

proportional to the restoring drive [Ferl-13]. In fact the charge stored by the capacitor 

must be discharged by the ion-strike and restored by the ON transistor(s). If the charge 

 

Figure 7-6 Measured alpha particle cross-section for 1-bit adder at different voltages.  
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initially stored on the capacitor is CVdd where C is the output capacitance of the gate of 

interest and Vdd is the supply voltage then, the SET pulse-width is proportional to : 

DriveRestoring

 StoredCharge
widthpulseSET   

2)( thPVV

VC
widthpulseSET







  

Thus the SET pulse-width can be fit to a general Equation of type  

2)( thPVV

V
widthpulseSET







    7-5 

where λ is a fitting constant which is technology dependent. The threshold voltage of 

the transistors was approximately 0.38 V in the linear region and 0.40 in the saturation 

region due to drain induced barrier lowering. We assume a value of 0.38 V. The 

distribution of the SET pulse-widths simulated as a function of the voltage, for a strike 

that deposits 10 fC of charge, is plotted in Figure 7-7. The SET pulse-widths were fit to 

the Equation 4 and the results are reasonable. 
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The main reason for the increase in the voltage sensitivity of combinational logic is the 

increased SET pulse-widths. Using the above information about SET dependence on 

voltage, the experimental data from Figure 7-6 can be similarly fit to Equation 4. The fit 

to the data is plotted in Figure 7-8 and the fit is quite reasonable. Based on the fit to the 

data, the cross-section of a 1-bit adder as a function of voltage can be extrapolated for 

the different values of voltage shown in Figure 7-4. Similarly the 2 GHz cross-section 

which is relevant to the 24-bit adder framework and simulation can be obtained the by 

simply scaling the cross-section measured at 416 MHz by a factor of 4.8 

(2GHz/416MHz). The extrapolated cross-section for different voltages and 2 frequencies 

is plotted in Figure 7-9. In this work, the worst case adder cross-section for the input 

conditions A = 0000 and B = 0000 are reported. The worst case cross-section is a 

reasonable estimate for the raw 1-bit adder cross-section for all input conditions. For a 

full adder with 3 inputs there are 8 input combinations. For the combinations where 

 

Figure 7-7 Simulated SET pulse-widths as a functions of voltage can be fit reasonably to 

the restoring drive current of the MOSFET.  
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ABC = {000, 001, 010, 100} the experimentally measured cross-section was nearly the 

same. This is so because the same number of gates is sensitive for each of these input 

conditions, regardless of logical masking conditions. For the cross-section {110, 101, 

011} the experimentally measured cross-section was slightly lower than the above 

because transients at few gates do not appear at output. For ABC = 111, the cross-section 

is least because transients at almost gates are masked.  

 

 

Figure 7-8 Measured data and the fit obtained from SET dependence on drive current as a 

function of voltage show good agreement.  
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7.5.2 Relation between Pipeline Depth and Logical Masking 

The key factor that affects the logic SER when the logic depth per stage is reduced is 

the logical masking. In the baseline case where N = 1, a 24-bit serial ripple carry adder 

(RCA) is interfaced to a single flip-flop. In case of the pipelined versions of the baseline 

24-bit adder, two 12-bit adders are used for pipeline depth N =2, three 8-bit adders for 

pipeline depth N =3 and so on. Thus at each stage, the number of adders per stage 

declines and decreases to 1 in the extreme case where pipeline depth N = 24. Thus, with 

pipelining, the depth of the logic per stage decreases. It is quite intuitive to see that when 

SE strikes occur deep in the logic chain (farthest from the flip-flop), the likelihood of 

their propagating to the output would be low because the logic in between could 

logically mask the errors. So in the baseline case for N =1, strikes far away from the 

final carry out, have a very low probability of propagating to the output. On the other 

hand strikes closer to the output flip-flop are much more likely to produce errors. This is 

more pronounced when the logic depth becomes smaller with pipelining. Thus when the 

 

Figure 7-9 Estimated 1-bit cross-section plotted for two different frequencies.  
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logic is partitioned into smaller blocks, the amount of logic that can mask transients at 

each stage decreases considerably. Logical masking in this work was calculated as the 

proportion of faults that appear at the final carry output of a single block. So in the case 

of N=1 where no pipelining is implemented, random faults were simulated on the 24-bit 

RCA and the final carry was monitored. In the case of N=2, 2 12-bit RCAs are used. 

Logical masking in both logic blocks is similar. So faults are injected into only one of 

them and the carry signal of one of the 12-bit RCA adders is monitored. However, the 

calculation of the total SER of the system obviously incorporates both the adders. 

Combinational logic soft errors in this particular work are defined as SETs that 

propagate to any of the flip-flops at any time. In other words, the content of the whole 

pipeline, regardless of depth must be fault free at any given time instant for error free 

operation. The results of logical masking simulations on the adders of different sizes that 

are part of the pipeline of varying depth are shown inn Figure 7-10. The logical masking 

factor increases by 14X when the pipeline depth is increased from 1 to 24. Area-wise, 

there are 24 adders per flip-flop for N =1 and 1 adder per flip-flop for N =24. Thus the 

logic size per flip-flop is 24 time greater in the case of no pipelining. Consider a simple 

exercise of taking the product of logic masking with area. In this way, we get 24*0.05 = 

1.37. Similarly, the product of logic masking factor and area for the case where N=24 is 

1*0.725 = 0.725. But there are 24 such adder blocks. Therefore the contribution of errors 

from each adder block must be accounted for i.e., 24*.725 = 17.5. Thus the sum of the 

product of logical masking and area for the pipelined version (N=24) is a factor of 12 

higher than the case where no pipelining is implemented (N=1). This simple metric gives 



 

 160 

the reader an idea about the sensitivity of the logic SER to diminishing logical masking 

effects introduced due to deeper pipelining.  

 

 

7.5.3 Modeling the SER with Logical Masking and Voltage Sensitivity Effects 

In the previous sections the effects of increase in logic cross-section due to lower 

voltage and reduction in logical masking effects with pipelining were estimated. The 

logic cross-section and flip-flop cross-section can now be calculated for the 24-bit 

structure as a function of different pipeline depths. The strategy to do so is summarized 

once again 

 

Figure 7-10 Logical masking effects are estimated for each combinational logic block 

interfaced to the flip-flop. For example for N = 1, faults are injected in 24 adders and the 

final carry is monitored.  In case of N = 24, however, fault injection is performed on only 

one adder. So the results of logical masking are stage wise.  The likelihood of transients 

being masked decreases with pipelining (value of logical masking factor increases). The 

increase in logical masking factor from N = 1 to N= 24 is more than an order of magnitude.   

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0 5 10 15 20 25 30 

L
o

g
ic

al
 m

as
k
in

g
 

Pipeline Depth (N) 



 

 161 

1. Experimental measure logic cross-section for different voltages and fixed 

frequency (416 Mhz) (Figure 7-6). 

2. Fit the voltage variation data to SET dependence on voltage to allow 

extrapolation to voltages less than experimentally tested values (Figure 7-8).  

3. Estimate the logic cross-section as function of pipeline depth for different 

voltages (SERlogictotal (VN) in Equation 3.  

4. Scale cross-section to required frequency of operation. (logic cross-section 

scales linearly with frequency).  

5. Calculate logical masking factors as function of pipeline depth (Figure 7-10 and 

LM(N) term in Equation 3.   

6. Experimentally evaluate the flip-flop cross-section for fixed voltage (nominal). 

The resultant logic, flip-flop and total cross-section as a function of pipeline depth is 

plotted in Figure 7-11. The logic cross-section and flip-flop cross-section both increase 

quite significantly. The logic cross-section increases due to lower logic masking effects 

with pipelining as well as increase in SET pulse-widths with pipelining. The flip-flop 

cross-section increase is driven by an increase in the number of flip-flops as N
1.2

.  
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7.5.4 Impact of hardening on Total SER  

The impact of hardening the combinational logic is considered. The flip-flop SER 

remains unchanged. The total SER is expressed as  

flopflipNadderbit SERNVSERNLMNSERTotal

NSERflopFlipNSERLogicNSERTotal

 



11 )()()(

)()()(


 

A hardening co-efficient is assigned to the logic cross-section to calculate the cross-

section of the pipeline with logic hardening. Then the hardened SER is given by, 

flopflipNadderbit SERNVSERNLMHNHardenedSER   11 )()()( 
  7-6 

where, H is the hardening co-efficient. For example H=0.1 corresponds to reducing the 

logic SER by 90%. The percentage improvement in SER compared to the baseline (N=1, 

no pipelining) due to different amounts of hardening is illustrated in Figure 7-12. These 

 

Figure 7-11 Logic and flip-flop cross-sections increase by 60X and 50X respectively.  
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results provide some very interesting insights. Some of the key observations are listed 

below 

1. Modest amount of hardening (H=0.7) does not result in any improvement in the 

total SER. 

2. Even in the case of extreme amounts of hardening (H=0.01) the improvement is 

limited to 50% and the gains rapidly decrease with deeper pipelining. In fact, 

beyond a pipeline depth of 4, there is no improvement in SER.  

3. Eventually the flip-flop SER and the growth of the flip-flops with pipelining 

limit the impact of hardening combinational logic.   

4. Most importantly, these results highlight that circuit level hardening approaches 

(H=0.7 is close to improvement achieved through the use of Shannon Adders in 

Chapter V) may not carry through to the highest level of abstraction if sufficient 

cross-layer optimization for SER is not carried out.  
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7.5.5 Power Overheads from Hardening Combinational Logic  

The power overheads from hardening must also be accounted for to understand the co-

optimization of both power and SER. In the following results, the effects of hardening 

that lead to increased power consumption are illustrated. The example of the inclusion of 

an SET filter with the logic chain is used where the minimum operating voltage due to 

pipelining must now account for the presence of the SET filtering element. Secondly, 

power increase of 1.5 X is assumed due to the adopted hardening approach. The results 

of these comparisons are shown in Figure 7-13. This plot shows that even in the case 

where the SET filter is included and in the case where power increases uniformly by 

 

Figure 7-12 Percentage improvement in total SER for different amount of hardening 

shows that upto 50% improvement can be obtained in the best case (H=0.01). On the other 

hand, modest amount of hardening does not result in any improvement in the total SER. In 

all cases the growth of flip-flops limits the impact of hardening combinational logic and 

beyond pipeline depth of about 4, no improvement is seen.  
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1.5X, the reduction in supply voltage still results in a significant reduction in power 

compared to the baseline case with no pipelining (N=1).  

 

 

7.6 Summary 

Pipelining for low-power introduces two important effects as far as the performance, 

power consumption and SER of pipelined systems are concerned. With a fixed 

throughput, lower power consumption can be achieved. However, this is achieved 

mainly by lowering the supply voltage for the combinational logic. Due to this, the SET 

pulse-widths increase leading to a direct increase in the logic SER. Similarly pipelining 

also results in lower logical masking effects thus increasing the logic SER. The 

increased slack from operating slowly can be traded off by incorporating harder 

combinational logic which can reduce the total SER of the pipelined system. However, 

 

Figure 7-13 Power overheads from hardening are still less than the baseline case where no 

pipelining is used.  
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care must be taken to ensure that the power overheads from the hardened logic do not 

offset the improvement obtained through pipelining in the first place. If this is taken care 

of, then, pipelining allows for lower SER and low power compared to the baseline case 

where no pipelining is incorporated.  

In summary, if only pipelining for low-power is used, there would be a tremendous 

increase in SER. If only SER reduction is adopted without power considerations then in 

most cases the power overheads could be significant. However if a modest amount of 

pipelining is combined with SER mitigation approaches then lower power and lower 

SER can be achieved.  

Thus, in this dissertation work, two major ideas that explore the power and soft error 

reliability are discussed. The first relates to the use of the Shannon expansion theorem 

for combinational logic protection. Shannon expansion, if performed appropriately can 

improve the combinational logic SER quite substantially as well as reduce the dynamic 

power consumption. This is achieved by partitioning circuits in such a way that the 

effective sensitive area is reduced and the switching activity of the circuit also reduces. 

Area overheads of up to 2X and small speed penalties can be expected with such a 

combinational logic mitigation approach. The second major idea relates to the use of 

pipelining to reduce dynamic power consumption. In this approach, the pipeline depth of 

datapaths or logic chains is increased while maintaining the frequency of operation. The 

amount of combinational logic in each stage decreases as the pipeline depth is increased. 

However as the clock frequency is not increased, the combinational logic computation 

time for each stage is less than the clock delay. The combinational logic computation 

time at each stage can then be increased so that it is close to the clock time period and 
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satisfies the setup and hold timing constraints of the flip-flops, by lowering the operating 

voltage of the combinational logic.  Lowering the combinational logic supply voltage 

reduces the dynamic power consumption substantially but is accompanied by a 

corresponding increase in the combinational logic SER due to lower supply voltage. 

Increased number of latches also increase the overall latch SER. The area overhead 

however comes from the increase in the number of latches and an increased latency for 

task execution. Thus there is a trade-off between power and soft error reliability. 

Designers may however choose to combine pipelining or Shannon expansion along with 

other hardening approaches (which may have power overheads) to meet the power and 

soft error reliability budget of the circuit. In the following chapter the impact of the 

different hardening and low power approaches proposed in this work are discussed in 

unison. This will provide designers a mean to choose from and combine a variety of 

different hardening and low-power approaches so that the effective power and SER of 

the circuit is improved. For example consider the hypothetical case in which, doubling 

the pipeline depth of a baseline circuit results in 50% power savings but increase the 

SER by 3X. On the other hand a hardening approach to improve SER leads to SER 

improvement by 10X with 20% power penalty. In isolation the first technique reduces 

power at the expense of SER and vice versa for the second. However if the two are 

combined the effective resul;t could lead to 40 % power reduction and 70 % SER 

reduction. In circumstances where power and SER are both important such trade-offs 

and design practices may become essential to reduce power and SER. The following 

chapter discusses the different aspects of hardening circuits and lowering power in 

isolation and then in unison to offer designers a variety of options and a guiding 
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framework for low-power hardening. The associated area and performance penalties are 

also discussed.   
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8. Chapter VIII. Summary, Recommendations and Future Directions 

 

“Designers will soon have to cope with a reliability wall..after having tackled the 

power wall (sic)” 

    -- Pradip Bose, IBM, Invited Talk, IRPS 2014. 

As technology has scaled, semiconductor devices and circuits that operate at multi-

GHz speeds consume lot of power and are prone to failures of different kinds. This 

dissertation has shown that combinational logic soft errors have emerged as a major 

threat as far as the reliability of high-speed ICs is concerned. At the same time, as the 

number of connected and battery powered devices grows around us, there is a concurrent 

need to minimize power consumption as well. Thus designers must ensure both low-

power consumption and high reliability. However, while trying to achieve this goal there 

are two major drawbacks. Most approaches that improve the soft-error reliability result 

in power overheads as well. Popular approaches, such as increasing transistor sizes or 

nodal capacitances to mitigate transients, filtering transients, adding redundant circuits 

or computing repeatedly to ensure correct operation upon error detection, incur power 

overheads. On the other hand, standard approaches to reduce power consumption, such 

as reduction in supply voltage and capacitances, using smaller devices with lower drive, 

high-vt devices etc. inevitably result in higher SER.  

As a solution, this dissertation proposes approaches, such as Shannon Expansion 

theorem that can be used to decrease the logic SER as well as the power consumption. 

However this approach could be limited by the area overhead and the fact that the SER 

and power benefit is circuit dependent. The improvements in SER and power were in the 
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range of 10-45 % for different benchmark circuits analyzed.  However, in many 

circumstances, it may be necessary to meet certain specific power and SER targets. In 

such cases, designers may have to combine one or more approaches to meet these 

targets. This chapter presents the designer some insights into how the different 

approaches described in this work and elsewhere in literature can be combined to 

“effectively” reduce the power consumption and SER of circuits to meet the power/SER 

specifications. This provides a holistic picture of hardening, power minimization and 

associated pitfalls. Area and/or performance and design effort penalties are also 

discussed.  

The chapter presents a particular problem in the form of an SER and power 

specification and then discusses 3 different scenarios to try and meet this specification. 

The first section discusses different hardening schemes only. A brief review of the 

Shannon expansion approach is summarized and the key experimental results that show 

the improvement in power and SER for Shannon Adder circuits are presented. The 

results are presented in the context of a 24-bit adder for easy comparison with the 

pipelining results. Section 2 discusses the impact of pipelining on the SER and power 

consumption of a 24-bit adder circuit. Section 3 addresses the following questions in 

tandem 1) What is the impact on power consumption and SER when both Shannon 

approach and pipelining approach are combined? 2) When should pipelining be adopted 

in the design stage? 3) What is the observed impact on power consumption and SER 

when standard hardening approaches and pipelining are combined? The chapter 

concludes with general learning, key findings, guidelines and rubrics so that designers 
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can make informed choices about the right hardening approach to reduce power and SER 

in the best way possible.  

8.1 SER Mitigation and Low-power Approaches  

Consider a specific design constraint: 40 % reduction in SER is required along with a 

20 % reduction in power compared to a baseline circuit to meet the overall SER and 

power budget. From previous discussions it is known that conventional hardening 

techniques introduce power overheads. Similarly power reduction approaches, such as 

pipelining introduce power overheads. In the following analysis, SER hardening and 

power mitigation are considered in isolation first and then they are considered jointly to 

minimize the SER and power consumption. In this way a basic understanding about 

different factors that affect the power-SER trade-off and how different approaches can 

be combined for a better solution for power and SER reduction is provided.  The 

examples considered here are not as rigorous as those presented in earlier chapters or 

representative of all circuits or design approaches, but only to illustrate a general 

approach to attacking the dual problem of power consumption and soft error reliability.  

8.1.1 Goal 1: Only SER Mitigation with power overheads  

In this section the best possible reduction in SER is sought and power overheads of 

different approaches are evaluated. The primary goal here is logic SER mitigation. Three 

different techniques are briefly discussed. The first deals with Shannon expansion, 

introduced in earlier chapters as an effective means to reduce the dynamic power 

consumption and the logic soft error rate. This is achieved by effectively partitioning the 

circuit such that fewer nodes are switching every clock cycle and the effective circuit 
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sensitive area is reduced. Such a technique can be applied to all combinational logic 

circuits and can also be extended to partition the circuit repeatedly. Similarly circuit 

approaches such as implementing the circuit with transmission gates is permissible with 

Shannon expansion. The reader can refer to detailed discussion in Chapters 4, 5 and 6. In 

section 6.4 two different adder circuits were compared. A standard CMOS adder 

implemented using standard CMOS gates was compared to an adder based on Shannon 

expansion theorem and implemented using transmission gates. The results indicate that 

the combinational logic cross-section improves by 35 % or H=0.65X (recall hardening 

co-efficient from Section 6.4) compared to the standard cell adder case. At the same 

time, the power consumption reduces by 65 % (0.35X). The area of the Shannon 

implementation is however 2.3X less than the standard cell adder. It can be said 

reasonably that the percentage reduction in power and SER for 24-bit adder (refer to 

discussions in Section 7.5.3 for 24-bit adder details, simulation and modeling approaches 

and pipeline models) implemented with Shannon expansion and transmission gates will 

be similar to that obtained from a 1-bit adder. This is so because logical masking does 

not change from one stage to the other and it is assumed that electrical masking is 

negligible in both cases. The effective improvement in SER and power across different 

cases for the two 24-bit adders is shown in Figure 8-1. The size of the bubble is 

indicative of the area of the circuit. Along with the Shannon Adder, two other cases 

where the circuit is hardened by 90% (H=0.1X) and by 99% (H=0.01X) are shown. 

These cases correspond to the use of SET filters and layout based hardening (LEAP). 

Generally speaking SET filters are designed in a way that all the maximum expected 

SET pulse-width can be filtered, but a 90% efficiency is a reasonable assumption given 
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the experimental error in estimating SET pulse-widths and impact of voltage and process 

variation. The use of 0.01X for the LEAP approach is from experimental results 

presented in [Lilj-14] where this approach has been shown to be efficient in reducing 

combinational logic SER as well as latch SER.  The three cases are contrasted in Figure 

8-1 for the relative improvements in power and logic SER for the three different 

hardening approaches. With extreme hardening (0.01X) the highest reduction in logic 

SER is accompanied with highest power and area overheads compared to the baseline 

circuit with no hardening. On the other hand, modest amount of hardening with filters, 

for example (H=0.1X) results in substantial logic SER reduction but does come with a 

small power overhead as well as a modest area penalty. The Shannon approach provides 

the least reduction in combinational logic SER among the three approaches but does not 

suffer any power or area overheads compared to the two other approaches. Note that the 

reduced area overhead in this case from Shannon expansion is because of the use of 

transmission gates.  Use of standard CMOS gates will result in an area overhead.  

 

 

Figure 8-1 Power-SER comparison of different hardening approaches. The size of the 

bubble represents the area of the circuits.  
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Thus logic SER mitigation approaches can provide different levels of logic SER 

improvement. Generally speaking from these three techniques, as logic SER reduction 

improves, the power overheads may increase. Thus while a design that is hardened may 

meet the SER budget, the associated power overheads may hurt the power budget. In 

fact only one of the solutions provides both, lower SER and lower power than the 

original (as seen in Fig. 8-1). However the important consideration for designers is 

whether the approach that is adopted meets the specified targets for SER and power. The 

above methods are fairly generic and can be applied at any design stage but it is 

important to remember that design tweaks at the end of the design cycle can hurt the 

power budget if sufficient care is not exercised.  

8.1.2 Goal 2: Pipelining for Power Reduction and impact on SER  

In chapter 7 we have seen that pipelining is a powerful tool to achieve low power 

consumption. The performance and area overheads from such an approach are not very 

significant either. From Figure 7-5, it is seen that an increase in the pipeline depth while 

lowering the operating voltage results in lower power consumption up to a certain 

pipeline depth. However, the minimum is quickly reached at N=2 or N=3 for Vdd values 

of ~0.7-0.65 V. Practically it is reasonable for operating voltages to be lowered to these 

values in high speed paths but not much lower because of the increased impact of 

process variation which requires further design guard banding. But pipelining for low 

power inevitably increases both, the logic as well as latch SER due to lower logic Vdd 

and increased latch count with deeper pipelines. Thus while low-power pipelining can 

reduce the power consumption by even as much as 60-70 %, the SER overheads can be 

substantial. This is shown in Figure 7-5 and Figure 7-11 respectively.  
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From the two approaches discussed above we see that there is a flaw in the design 

philosophy and that is the fact that often improving power and SER is never considered 

jointly. If power optimization and SER mitigation is done in isolation (as is the case for 

most designs), either of the two (power consumption or SER) is likely to degrade 

compared to the original circuit. The next section discusses how the two approaches can 

be synthesized into a cohesive strategy to reduce the power consumption and SER of 

circuits.  

8.1.3 Goal 3: Joint power and SER Minimization   

Consider a specific design constraint : 40 % reduction in SER is required along with a 

20 % reduction in power to meet the overall SER and power budget. It is known from 

earlier discussions that conventional hardening techniques introduce power overheads. 

Similarly power reduction approaches, such as pipelining, introduce power overheads. 

There are indeed several different hardening approaches and their associated impact on 

the power consumption. Therefore one approach designers could adopt is to first 

evaluate the improvement only in SER that each hardening approach brings about as 

illustrated in Figure 8-1. Clearly only two of three hardening approaches meet the 

required SER target (40% reduction). The Shannon approach can be eliminated at this 

stage because it does not meet the specified criteria (and it is known that adopting 

pipelining at a later stage to lower the power consumption will only increase the SER). 

Thus without pipelining the circuit for low-power, if an approach does meet the SER 

target then it must be eliminated. Following this the circuit can be pipelined in an effort 

to reduce the power consumption to meet the power budget.    For simplicity, if the 
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pipeline depth is limited to N=2. The resultant impact on the SER and power is shown in 

Figure 8-2.  

 

 

In Figure 8-2, the dark bubbles represent hardening applied to the original baseline 

circuit. The light bubbles represent two-stage pipelining applied to the hardened circuits. 

Some very interesting results emerge after the hardened circuit has been pipelined to 

reduce power. Firstly, the power consumption reduces for all the hardening approaches 

as expected due to a reduction in the logic voltage. This is accompanied by a small 

increase in area as well due to increased number of latches. But as this is a small portion 

 

Figure 8-2 Power-SER comparison of different hardening approaches with low-power 

pipelining N=2. Increasing the pipeline depth decreases the power consumption for all the 

hardening approaches. However, the SER improvement decreases for all the approaches as well 

due to the exacerbating effects of reduced voltage. The dark bubbles represent SER-power with 

only the hardening approach applied. The light bubbles represent hardening followed by two-

stage low-power pipelining (N=2). The area increases marginally with this modification in the 

pipeline depth. The arrows indicate the change in power and SER from hardening the baseline 

to adding pipelining to the hardened circuits. 
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of the circuit, the increase is modest in each case. It should be noted that the size of the 

bubbles indicates the area. More importantly though, power reduction is accompanied by 

a corresponding degradation of the SER in each of the cases. This is indeed due to the 

effects of reduced logic voltage. The sensitivity of the logic is assumed to be the same in 

each of the cases. Looking carefully, it is seen that now in only one case (H=0.1, N=2 -> 

SER reduction 42% power reduction 22%) the target specification of 40% SER 

reduction and 20 % power reduction is met. Further increase in pipeline depth will of 

course reduce power but also increase SER. In circumstances where a solution is not 

found the process can be continued with deeper pipelining. A potential candidate could 

be H=0.01 and N>=3 to see if the SER improvement and power reduction is better than 

that offered by H=0.1 and N=2. It is also worthwhile to note that while power and SER 

are the major parameters being monitored in this discussion, area is also an important 

concern. The Shannon approach with no pipelining provides the reasonable solution with 

area reduction as well. This may be an important consideration during the design process 

as well.  

This general discussion highlights a few key takeaways 

1. Most hardening approaches result in power overheads and similarly power 

minimization techniques are usually accompanied with SER overheads.  

2. In a design approach where both SER and power are important, a general 

strategy such as evaluating the best hardening approach followed by low-power 

approaches, such as pipelining can be a useful technique to eliminate non-

feasible solutions when meeting power and SER budgets is essential.   
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3. A joint SER-power reduction approach is useful only if incorporated into a 

design flow very early. A separate discussion on when the above approach of 

joint power and SER optimization is more applicable follows in the general 

guidelines section below. Alternatively when such an approach is not practical is 

also included in the general guidelines below.  

8.2 Summary  

Some of the results in this work have shown that as far as the impact of technology 

scaling is concerned, combinational logic soft errors as measured per logic gate show a 

decreasing trend. This is consistent with the fact that as technologies scale, the area 

available for single-event strikes reduces. At the same time the drive currents do not 

change drastically with some preference towards modest increases from one generation 

to the next. This results in smaller pulse-widths. Thus the overall effect of technology 

scaling is to reduce the soft error rate of combinational logic circuits (per gate) in the 

terrestrial environment. This has been established through simulations as well as 

experiments at the 40 nm, 28 nm and 20 nm bulk technology nodes. Based on simple 

models and experimental results that compare the logic SER of 10 inverters to a latch, it 

is reasonable to say that the combinational logic soft errors are as important if not more 

important than latch errors for modern semiconductor circuits. In fact, in the 2+ GHz 

range, combinational logic soft errors are clearly a much bigger threat compared to latch 

errors. In harsh environments like space the problem of combinational logic SER is well 

known. In such environments logic SER is a big threat at even lower frequencies of 

operation. The trends with technology scaling are very different from those in the 

terrestrial environment. Experimentally it was observed that with scaling the ratio of 
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logic to latch SER actually increases. The primary reason for this is that the layout can 

affect the cross-section as well pulse-width. This fact needs to be considered carefully 

for future generations with the adoption of finFETs etc.  

The second and key goal of this work is to explore ways and means to mitigate 

combinational logic soft errors without any power overheads. In other words design 

circuits such that they consume less power and have higher combinational logic soft 

error reliability. The trade-off between power and SER was evaluated at three different 

levels of abstraction: 1) gate-level (Masters : discussion follows in Appendix I) 2) 

circuit-level and 3) architectural-level. At the circuit level an attempt was made to 

reduce the number of actively switching nodes and reduce the number of nodes sensitive 

to single-event particle strikes at the same time. This reduces the dynamic power 

consumption as fewer nodes switch and the soft error sensitivity through logical masking 

of transients from non-essential circuit nodes. Shannon’s theorem was employed to 

achieve reduction in power and combinational logic soft errors.  

At the architectural level, low-power pipelining inherently increases the soft error rate. 

By pipelining the circuits and holding frequency constant, voltage in each pipeline stage 

can be reduced. Such a scheme offers constant throughput but lower power 

consumption. However the smaller logic depths and lower voltages lead to an increased 

likelihood of combinational logic soft errors. This can be countered by carefully 

hardening the circuits such that a combination of hardening and pipelining then results in 

lower power and SER than a baseline circuit with no hardening or pipelining. Merely 

hardening it introduces power overheads while merely adopting low-power pipelining 

increases the SER.  
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Analysis in this dissertation shows that combinational logic soft errors are a key 

problem for designers today. Solving this issue requires different forms of hardening 

approaches at different level each of which can have area, power and speed penalties. 

Clever manipulations of circuit designs result in lower power and SER. This is critical in 

the context of modern IC design that emphasizes low-power and high-reliability 

operation. In conclusion the key findings are summarized in the form of guidelines for 

designers to achieve low power and SER especially when protecting combinational logic 

circuits.  

8.3 Guidelines and Recommendations 

1. Technology Scaling Considerations for Logic SER: In the terrestrial 

environment, combinational logic soft errors are as important as or even more 

important than latch errors as far as system level error rates are concerned. In the 

2.5+ GHz range, alpha particle logic SER easily exceeds the raw latch SER. 

Scaling leads to a reduction in the SER per gate and per latch, but designers must 

keep in mind that the number of devices grows with each technology generation 

which retains the relevance of the problem at each technology generation.  

2. Circuit-level power-aware techniques to mitigate combinational logic soft 

errors. While adopting circuit level techniques to mitigate combinational logic 

with minimum or no power overhead two key factors must be accounted. Firstly 

any approach such as Shannon expansion presented in this work, that reduces the 

number of switching nodes and at the same time reduces the number of nodes 

sensitive to transients will lead to power and logic SER reduction. In this context 

the time tested approach of shutting off parts of the circuits that are not required 
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works equally well for power reduction and SER reduction. Circuit level 

approaches to minimize power consumption and logic SER can be refined if 

there is some knowledge of the input vectors and circuit functionality. Using this 

information, idle sub-circuits in the circuit can be identified so that these can be 

separated from the main logic block and gated/disabled and the most frequently 

used sub-circuits can be activated more often. This reduces power consumption 

and minimizes transients from inactive or idle circuits. The circuit level 

approaches such as Shannon expansion and its variants discussed in this work are 

very generic and can be applied to circuits at any stage of the design process. 

While opting for standard cell design approaches area overheads of as much as 

2X can be expected for 10-50% logic SER improvement. Full-custom design 

where specialized structures like transmission gates etc. are available can result 

in faster, smaller, lower power circuits with higher logic soft error reliability can 

be designed using Shannon approach. The design effort in this case is higher 

because delay estimation for transmission gate structures is difficult.    

3. Architectural-level power-aware techniques to mitigate combinational logic 

soft errors. At the architectural level design changes are limited to redesign 

through pipelining, reordering execution or parallelization of the architecture. 

Usually, designers adopt pipelining to increase performance. This is the first step 

in high-speed datapath design and all the focus is on performance and 

maximizing speed. While dealing with power, the approach in the past has been 

to move to multi-core operation so that the frequency and pipeline depth does not 

have to be increased significantly. For such high-speed designs, soft error 
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considerations often come at the very end of the design process. In such 

circumstances designers may be better off opting or the low power logic SER 

mitigation approaches discussed in Chapters 4, 5 and 6. However another form of 

architectural design change that can be used to reduce the power consumption is 

pipelining for low power. Low-power pipelining is effective in reducing the 

power consumption through reduction in logic supply voltage but increases the 

combinational logic SER. This is because lower voltage results in longer SETs 

and the combinational logic is partitioned into stages which reduces the logical 

masking. Low-power pipelining is less applicable to high performance circuits 

like server processors but more so for ASICs, DSP pipelines or sea-of-gates 

implementations in large SoCs. Low-power pipelining must ideally be adopted 

early in the design process to ensure correct timing closure in the presence of 

multiple Vdd domains that affect the delay. However, if SER is also an issue then 

some of the power gains from low-power pipelining can be traded for SER 

mitigation by making the appropriate hardening choices. For example the 

discussion in this chapter illustrates how a careful choice of hardening technique 

and pipeline depth a circuit can be designed to have lower SER as well as power 

than a baseline circuit with no hardening and pipelining.   

8.4 Future Directions 

This dissertation for the first time has provided experimental trends as far as 

combinational logic soft errors are concerned. These trends suggest that keeping all 

things the same, logic SER per gate (as with SRAMs and flip-flops) will reduce with 

technology scaling, which is the opposite of what was predicted using simulation models 
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12 years ago [Shiv-02]. With the adoption of FinFETs, which result in smaller sensitive 

area, some of the assertions made in this work are likely to continue to hold for the next 

few generations of CMOS transistors.  

The second most important contribution of this thesis is to illustrate that low power is 

possible with higher soft error reliability. Soft error mitigation and power minimization 

can be jointly achieved by reducing certain key factors that affect both. This can be 

achieved at various levels of abstraction beginning from the device-level right up to the 

architectural level. This is a rich, unexplored area of research where plenty of 

approaches can be synergized to achieve lower power and lower SER. Some of the area 

of research that could be of great interest in the coming years are listed here: 

1. Behavioral level: Circuit descriptions can be behaviorally changed to tailor these 

towards low power and high reliability targets. For example does a carry-skip 

adder consume less power than a Manchester carry adder and result in fewer 

errors?  

2. Circuit synthesis: Topological mapping of behavioral descriptions to gates as 

has been shown in this work can have huge influence on power and SER 

reduction. Approaches tailored towards low-power, low-area and low-delay can 

have important effects on the logic SER. Some of this has been explored in part 

in [Limb-12].  

3. Circuit level: Standard cell CMOS design can be potentially replaced with 

circuit families like transmission gate logic that potentially provide higher 

reliability and potentially lower power. Formal approaches to design such 

circuits under reliability constraints is a challenging problem. 
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4. Clock gating for reliability: Can parts of circuits be clock gated or even power 

gated to improve reliability?  

5. Dynamic Voltage and Frequency Scaling: Can system voltage an frequency be 

tailored and tuned to meet required reliability targets just as for power targets. 

For example is it better to run at high speed and complete some tasks then drop 

down to lower voltage and speed and complete the rest of the task to save power 

over the duration of the task or is better to run at a fixed speed and power 

throughout as far as reliability is concerned? 

6. Pipelining and Parallel Architectures: Modern CPUs employ multiple 

cores that are pipelined in different ways. Can pipelining and parallelization be 

used in tandem to reduce the logic SER and power as has been briefly 

demonstrated in this work? What about the task completion speeds? Is it better 

to use one processor at 5 GHz or two processors in parallel at 2.5 GHz and 

slightly lower voltage? There is some serial component of programs that cannot 

be spread across two cores to achieve exact sped of 2. Is such cases what is the 

more reliable option?  

The above open questions span the entire reliability-power-performance trade space 

across different levels of abstraction. As this thesis has shown, making changes to 

designs at one level of abstraction may or may not have the desired impact at a higher 

level of abstraction. A cross-layer optimization strategy is critical to achieve low-power 

and higher soft-error reliability.  
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Appendix A : Selective Node Hardening for Logic SER Mitigation 

 

In this appendix and the following two appendices, some work pertaining to different 

aspects of combinational logic hardening and experimental evaluation of logic SER is 

reported. Some of the results are critical in being able to estimate the logic SER of large 

circuits efficiently and in the presence of non-ideal effects such as the impact of chi-

level voltage drop and its impact on the logic SER. The contents of the appendices have 

been drawn from the following three papers.  

Appendix I : Mahatme, Nihaar N., Indranil Chatterjee, Akash Patki, Daniel B. 

Limbrick, Bharat L. Bhuva, Ronald D. Schrimpf, and William Robinson. "An efficient 

technique to select logic nodes for single event transient pulse-width 

reduction."Microelectronics Reliability 53, no. 1 (2013): 114-117. 

Appendix II: Impact of voltage on logic SER: Mahatme, N.N.; Gaspard, N.J.; 

Jagannathan, S.; Loveless, T.D.; Bhuva, B.L.; Robinson, W.H.; Massengill, L.W.; Wen, 

S.-J.; Wong, R., "Impact of Supply Voltage and Frequency on the Soft Error Rate of 

Logic Circuits,"Nuclear Science, IEEE Transactions on , vol.60, no.6, pp.4200,4206, 

Dec. 2013. 

Appendix III : Fast Estimation of Logic SER and comparison with Latch SER : 

Mahatme, N.N.; Gaspard, N.J.; Jagannathan, S.; Loveless, T.D.; Abdel-Aziz, H.; Bhuva, 

B.L.; Massengill, L.W.; Wen, S.; Wong, R., "Estimating the frequency threshold for 

logic soft errors," Reliability Physics Symposium (IRPS), 2013 IEEE International , vol., 

no., pp.3D.3.1,3D.3.6, 14-18 April 2013.    
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1. Probabilistic Node Hardening  

For older technologies, the hardening of a node, or a circuit path, was achieved by 

increasing the nodal capacitances.  For a given node with capacitance C, the charge 

stored at the output is given by C * Vdd.  To introduce a rail-to-rail transient pulse in the 

circuit, the hit node must collect more charge than what is stored at the output node.  If 

the value of the capacitance is increased (primarily by increasing the input capacitance 

of the succeeding gate), the charge required to generate an SET pulse also increases, 

thereby hardening the circuit node [Zhou-04]. This approach worked for older 

technologies where the value of charge stored at a node was significantly higher than a 

few pC.  If the initial value of capacitance is only a few fC, as is the case for advanced 

technologies, the increase in capacitance values required to attenuate the transient 

becomes prohibitively high [Dasg-07].  As a result, instead of increasing nodal 

capacitances, increasing the restoring current at the struck node is a better approach for 

advanced technologies.  
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For combinational logic circuits, the hit node will always return to its original nodal 

voltage (assuming low frequency operation), resulting in an SET at the hit node. Usually 

an OFF transistor associated with a node is hit by an energetic ion and ON transistor(s) 

associated with that node removes the charge collected as a result of the hit.  For CMOS 

technologies, if the hit transistor is an n-MOSFET, then the restoring transistor is a p-

MOSFET.  The SET pulse width is determined by the amount of charge collected and 

the current drive of the restoring transistor. The amount of charge collected is usually a 

technology dependent parameter and designers have very little control of it (except 

parasitic bipolar transistor size). As a result, restoring transistor size is the only 

controllable parameter that affects the SET pulse width. Figure A1-1 shows the resultant 

 

Figure A1-1 Simulated transient pulse-widths versus charge deposited for 1X, 2X and 3X width 

of a resized pMOS arrays of a NAND gate. The 1X, 2X and 3X widths are designated as 

unhardened gate, 2X hardened gate and 3X hardened gate. 
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SET pulse width as a function of collected charge and restoring transistor size. It is clear 

that increasing restoring transistor size will significantly decrease the SET pulse width.   

The proposed approach identifies the nodes that are most sensitive and/or vulnerable to 

SE effects. The key idea behind the technique is to identify the nodes at which the 

probability of transients being generated is high and their propagation probability 

through the logic chain is also high. Previous approaches identified the most sensitive 

nodes by looking at only the logic masking effects.  However it is important to consider 

the likelihood of a hit by an ion since SETs are generated when OFF transistors are hit 

by an ion. If either of the transistor arrays in the CMOS logic (PMOS array or NMOS 

array) have a greater probability of being turned on, then OFF transistors can generate 

transients when they are hit. Thus the probability of a transistor being OFF or ON cannot 

be ignored.  The proposed approach takes into consideration all of these factors to 

determine the node vulnerability. Once the nodes are rank ordered in terms of their 

vulnerabilities, designer then can select the set of nodes to harden for maximum impact 

on error rates.   

2. Node Vulnerability Estimation 

For any given circuit, some of the gate outputs will be in either the HIGH state or the 

LOW state for a greater percentage of input vectors, assuming equally likely input 

probabilities at the primary inputs of the circuit. As a result, the probability of producing 

SETs due to n-hits is greater than that due to p-hits if the gate output stays in the HIGH 

state for a greater percentage of input. The converse is true for the logic LOW state. 

Additionally, the SET pulse width for an n-hit or a p-hit is inversely proportional to the 

current drive of the restoring transistor for the hit node. An increase in the restoring 
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current will lead to a decrease in SET pulse width, assuming all other factors remain the 

same.  Such an approach will reduce the electrical masking and latch-window masking 

probabilities without significant penalty for the design performance.  The main objective 

is, then to identify the nodes that are most likely to generate an SET that will reach a 

storage node.  The algorithm to prioritize nodes for hardening for the proposed approach 

is described below. 

The probability of signals assuming a logic 1(0) value has been defined as Phigh (Plow) 

in this chapter. Phigh can be used to give information about logical masking as a function 

of nodal probability values. Phigh (Plow) represents the percentage of input vectors for 

which the n-MOSFETs (p-MOSFETs) connected to the gate node are OFF. For 

conciseness, Phigh is used to illustrate the methodology for all following calculations, 

although the principle works equally well for Plow.  Moreover, the terms “nodes” and 

“gate outputs” may be used interchangeably. The gate outputs with Phigh > 0.5 have 

higher probability of being in the logic 1 state than in the logic 0 state. Gate outputs 

having relatively high values of Phigh are therefore more likely to produce SETs due to n-

hits. If transients generated at these gate outputs have a high probability of propagating 

to the output, then those gates are considered sensitive and are targeted for hardening. 

For such nodes, as the probability that a p-hit will occur is relatively small, it doesn’t 

merit consideration for hardening. As the SET pulse width for n-hits is a direct function 

of the restoring current drive of the associated pull-up p-MOSFETs, an increase in p-

MOSFET size decreases the SET pulse-width at these nodes. Conversely, nodes having 

low values of Phigh are more likely to produce SETs due to p-hits and increasing the 

restoring current drive of the associated n-MOSFETs will reduce the SET pulse width.  
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The following discussion, using the example circuit shown in Figure A1-2, 

demonstrates the use of Phigh to identify the most vulnerable gates in a circuit. The 

calculation of node signal probabilities is described in [Najm-91, Park-75]. The inputs to 

the system are assumed to be uncorrelated. For uncorrelated inputs, if P1 and P2 

(representing Phigh) are input signal probabilities to an AND gate, the output signal 

probability is given by (P1·P2). For an OR gate the value is (P1 + P2) – (P1·P2). For an 

inverter, the output signal probability is (1 – P1). To suppress the effects of signal 

correlations and re-convergent fan-outs, literals in products that are repeated are 

accounted for only once. For example, in the probability equation of a logic gate, if the 

term Pi is repeated in a product, it is accounted for only once. For example P1·P1 = P1. 

And Phigh + Plow = 1. Also the product of probabilities of inverted signals is 0,  

i.e., P(i)(1-P(i)) = 0. 
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For the circuit shown in Figure A1-2, the probability Phigh for node F is                

P(F) = P(A.B) + P(A.C) – P(A.B)P(A.C)      A1-1  

 

Since the inputs are uncorrelated, 

 P(A.B) = P(A)·P(B)                A1-2 

 and  

 P(A.C) = P(A)·P(C).                   A1-3 

Suppressing P(A) in the third term in (1), we get  

 P(F) = P(A)P(B) + P(A)P(C) – P(A)P(B)P(C)   A1-4 

and 

 

Figure A1-2 Representative circuit for which probability and Logical Masking Metric 

values have been calculated 
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 P(Z) = P(A.C’) + P(F) – P(A.C’)P(F)                   A1-5           

Expanding using the rules above, we get 

P(Z) = P(A)P(C)’ + P(A)P(B) + P(A)P(C) – P(A)P(B)P(C) -  P(A)P(B)P(C)’  A1-6                                 

 

The Phigh values for each node in the circuit are given in Column 2 of Table A1-1. In 

addition to SET pulse generation, the SET pulse must propagate to an output node of the 

circuit. If a node signal is blocked from reaching a circuit output for a large percentage 

of the vectors (strong logic masking), hardening it will not improve SE error rate 

significantly. Identification of nodes most likely to be struck and the resulting SET pulse 

most likely to reach a circuit output should be used as a criterion for efficient circuit 

hardening. For a given set of primary inputs to a circuit, Phigh values for each node can 

be used to calculate the probability for a transient to propagate to a circuit output. The 

probability of a signal propagating from a circuit gate output node to an output of the 

circuit is defined as the Logical Masking Metric (LMM). 

         A1-7

                                                        

where Pek is the enabling value probability for input k of each gate j, not lying on the 

path from input to output. Transients on a given input will appear on the output if the 

other inputs to the gate are at enabling values. For AND, NAND and XNOR gates this 

value is 1. For OR, NOR and XOR gates this value is 0. Consider a transient at node E to 

output Z of the circuit in Figure A1-2. The Logical Masking Metric for E is:  

 LMM (E) = (1-P(D))(1-P(H))                              A1-8 


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
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The LMM for each node in Figure A1-2 is included in Column 4 of Table A1-1. For 

larger circuits where there are multiple paths from a gate output to the circuit outputs, 

the path with least masking probability to a single output is considered.  

Once the gates having the highest probability of generating transients of each kind are 

identified, they must be compared based upon their propagation probabilities. This is 

done by taking the product of Phigh and LLM. The same is done for Plow values.  LMM 

values for a given node will remain the same for n-hits and p-hits. LMM values for a 

given node will remain the same for n-hits and p-hits. The Hardening Metric (HM) thus 

indicates the gates that produce one kind of transient more than the other and have the 

highest propagation probability.  

           A1-9 

 

Based on their hardening metric, the gates are arranged in descending order for 

hardening consideration. It should be noted that increasing the size of a transistor 

increases the probability of a hit.  So if the size of the restoring transistor is increased, 

the probability for a hit on that transistor also increases. But a high (low) value of Phigh 

(Plow) for a given node implies that the probability for the restoring transistor to be OFF 

is low.  As a result, any increase in sensitive area for the restoring transistor will have 

very small effect on the overall error rate.  

HM 
Phigh * LMM Phigh  0.5

1 Phigh * LMM Phigh  0.5








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Based on the above analysis, the signal probabilities have been calculated for the 

International Symposium on Circuits and Systems (ISCAS) benchmark circuits [Hans-

99] using a PERL script operating on a Verilog description of the circuits. Inputs were 

assumed uncorrelated and were assigned Phigh = 0.5. This is a reasonable approximation 

for most logic signals. However the designer can use appropriate probabilities for 

specific applications for the given circuit by simulating the input load for a random set of 

vectors. The pseudo code is summarized in Table A1-2 

Table A1-1 Node Signal Probabilities and LMM 

Node Phigh Plow LMM 
Hardening Metric 

From Equation 9 

A 0.50 0.50 --- --- 

B 0.50 0.50 --- --- 

C 0.50 0.50 --- --- 

D 0.25 0.75 0.56 0.42 

E 0.25 0.75 0.56 0.42 

F 0.48 0.52 0.75 0.39 

G 0.50 0.50 0.26 0.13 

H 0.25 0.75 0.52 0.39 

Z 0.50 0.50 1 0.50 
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Table A1-3 shows the total number of nodes in the circuit and the number of nodes at 

various levels of Phigh. It is evident that only a small percentage of gates have 

probabilities of being either high or low, as indicated by values close to 1 or 0, 

respectively. For each of the circuits, the top 10, 20, and 30 % of nodes on the HM list 

were hardened by increasing the restoring transistor by a factor of 2.  Based on Figure 

A1-1, a 2X increase in restoring transistor size results in an average 35% decrease in 

SET pulse-width for charge deposition spectrum considered. Since circuit SER is 

Table A1-2  Pseudocode 

Start:  Describe circuit in Structural Verilog/VHDL. 

   compute Phigh, LMM 

for (Phigh >0.5) 

{ 

HM= Phigh*LMM 

else HM= (1-Phigh)*LMM 

} 

Arrange nodes in descending order by HM values. 

   Compute circuit area and power 

   Re-size selected nodes based on HM 

for (delay > delay constraint) 

 { 

    remove least vulnerable nodes on maximum 

    re-compute delay 

  } 

    re-compute area, power 

end 
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directly related to the latching probability of SET pulse-widths, hardening the most 

sensitive nodes would reduce the SER significantly. Table A1-4 shows the area and 

power overhead for each circuit for achieving this improvement. The algorithm can be 

summarized using the flowchart shown in Figure A1-3. 

 

 

Table A1-3 Circuit Node Signal Probability Distribution 

Circuit Gates 
Number of Nodes in circuit with 

Phigh > 0.7 and Phigh< 0.3 

  >0.9 >0.8 >0.7 <0.3 <0.2 <0.1 

c432 160 14 24 48 34 19 7 

c499 546 19 68 172 126 70 22 

c880 383 14 56 81 107 60 9 

c1908 880 27 125 330 228 103 32 

c2670 1193 42 117 153 136 84 50 

c3540 1669 37 221 325 380 178 21 

c5315 2406 54 307 519 395 269 77 

c6288 2406 90 365 424 608 331 101 

c7552 3512 123 367 675 773 402 88 
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3. Average Pulse-Width Reduction Using Monte Carlo Simulations  

A Monte Carlo simulation was set up to validate the hypothesis that hardening certain 

nodes selectively for transient pulse-width reduction results in a lower logic SER. The 

results presented below are for the ISCAS Benchmark c880 8-bit ALU. The circuit was 

synthesized with minimum sized standard cell libraries built from the IBM CMOS9sf 90 

nm PDK. It was then characterized for area, power and delay. Another implementation 

of the same circuit was synthesized by applying the algorithm and resizing 10% of the 

candidate gates with the appropriate cells.  

Two kinds of Monte Carlo simulations were set-up. These involved random fault 

injections on circuit nodes with random input vectors. This is classified as Non-Stratified 

sampling because the sample set is uniformly sampled without weighting the members. 

Flowchart for algorithm implementation  

 

Figure A1-3 Algorithm flowchart for node vulnerability estimation and hardening selectively 
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The second involved stratified or weighted sampling to choose the nodes that were 

resized using the algorithm to be struck more often and then applying random input 

vectors. This is termed as Stratified sampling.  

I. Non Stratified Sampling  

In these simulations, random faults were injected at nodes in the circuit using bias 

dependent piece-wise linear current sources. The piecewise bias-dependent model has 

been proven to be more accurate compared to the double exponential [Kaup-09]. It also 

reflects the effects of LET on current shape [Dasg-07]. The resultant voltage transients 

propagated to the outputs where pulse widths were monitored and histogramed. The 

results of these simulations are illustrated for ISCAS Benchmark c880 8-bit ALU circuit. 

10% of the nodes were hardened based on the algorithm explained earlier. The same 

procedure was then repeated on the circuit with resized gates was then simulated for the 

same set of random inputs and faults were injected at the same nodes as in the previous 

case. The transient pulse-widths following these injections were again monitored and 

histogramed. The result of the random simulations on the ISCAS Benchmark c880 8-bit 

ALU circuit with and without resized gates is shown in Figure A1-4. For both the 

distributions, the 3*sigma values encompass 99% of the area under the curve, hence the 

distribution can be assumed to be normal.  
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Assuming the standard normal variate Z for a normal distribution, the mean (for 95% 

confidence limits) lies between  

= -1.96 < Z < 1.96 

= -1.96 < X-µ/ σ* < 1.96 

The observed mean of the distribution for unhardened circuit in Figure A1-2 is 534 ps 

and the standard deviation is 70. The total number of simulation runs (or SET pulses 

monitored) were 10,000. The standard error σ* is therefore σ/√n = 70/√10000 = 0.7. The 

normalized estimate mean of the standard normal variate lies between 

=  -1.96 < Z < 1.96  

= -1.96 < (X - 534)/0.7 < 1.96  

= -1.4 < X-534 <1.4 

 

Figure A1-4 Distribution of output SET pulse-widths from random Monte Carlo simulations for 

an 8-bit ALU before and after resizing. 

Unhardened 
Circuit 
Hardened 
circuit 
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Therefore the estimated mean is between (532.6, 535.4) for the distribution at 95% 

confidence limits. For the hardened or resized version of the same circuit, the observed 

mean of the distribution is 436 ps and the standard deviation is 60. The total number of 

observations were again limited to 10,000. The standard error is therefore σ/sqrt(n) = 

60/sqrt (10000) = 0.6. The observed mean is therefore 

=  -1.96 < Z < 1.96  

= -1.96 < (X - 436)/0.6< 1.96  

= -1.2 < X - 436 <1.2 

Therefore the observed mean is between (434.8, 437.2) for the distribution at 95 % 

confidence limits.  

Clearly the average pulse-width has reduced. At the cost of hardening only 10% of the 

nodes a visible reduction in the average pulse-width is observed. However, the case 

where nodes are sampled based on the probability of them being struck given that their 

sensitive cross-sections would be different, is also important. This is studied in the 

section.  

II. Stratified Or Weighted Sampling 

In the second experiment, stratified Monte-Carlo simulations were carried out. The 

nodes that were resized had a 2X probability of being chosen compared to the nodes 

with no resizing. This is so because due to increased sizes their cross-section to radiation 

particle strikes increases. So the Cumulative Distribution from which random numbers 

were generated reflected weighted probabilities of nodes being selected for fault 

injection. The same test vectors were applied to both the simulation sets, i.e., to the 

golden copy (original unhardened version) and the resized version.  However unlike the 
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previous comparison, the same sets of nodes were not selected because of weighted 

probabilities and different cumulative distributions chosen to generate random numbers.  

The resultant distribution of SET pulse-widths after this experiment is shown in Figure 

A1-5. In this case the average pulse-widths reduce by about 20%, but the interesting fact 

is that the distribution of pulse-widths after resizing the gates is wider. A possible reason 

could be that, as a result of stratified sampling, the transients at the nodes which are 

struck more often are longer and thus tend to increase the standard deviation of the 

distribution. With stratified sampling too, the average pulse-widths reduce by about 

25%, which compares favorably with the ideal reduction of about 35% as seen in Figure 

A1-1 for a range of charge deposition values. Since stratified sampling includes the 

effects of increased cross-section as a result of resizing, the reduction in pulse-widths 

should directly translate into reduced latching probabilities.  

 

 

 

Figure A1-5 Distribution of output SET pulse-widths from non-stratified sampling on 

unhardened circuit and stratified Monte Carlo simulations for an 8-bit ALU after resizing 
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4. Circuit Overhead 

To determine the performance overheads in terms of area and power the ISCAS 

benchmark circuits were synthesized using the Oklahoma State University (OSU) 45-nm 

Process Development Kit (PDK). The area and power overheads were calculated using 

Synopsis Design Compiler and are shown in Table A1-4. Since CMOS is a ratio-less 

logic, the effect of resizing nMOS and pMOS transistors independently does not result in 

a large delay penalty [Amus-07, West-94]. The average overheads resulting from 

increasing transistor widths is given in Figure A1-6. 

 

 

 

Table A1-4 Percentage overheads in terms of area and power for the 2x hardened circuits 

Circuit Percentage overhead due to hardening 

 
10% of 

nodes 

20% of 

nodes 
30% of nodes 

 Area Power Area Power Area Power 

c432 5 3 10 4 17 12 

c499 4 2 8 3 22 10 

c880 4 5 5 7 13 14 

c1908 10 7 14 9 22 11 

c2670 4 5 12 9 12 10 

c3540 10 9 9 7 16 14 

c5315 4 8 9 11 12 8 

c6288 5 5 10 7 19 9 

c7552 9 6 11 8 27 13 

 



 

 203 

 

 

By accounting for the nodes that predominantly produce transients from either n-hits 

or p-hits and have a high probability of transients propagating to the output, a 

computationally efficient algorithm has been proposed to selectively harden a circuit and 

serve as an alternative to fault injection and simulation studies. Since the circuit SER 

largely depends on the nodes where transient are generated and their propagation 

probability, hardening those nodes would lead to significant reduction in the circuit SER. 

Simulation results for ISCAS benchmark circuits show area overhead to range between 

12% to 27% and  power overhead  to range between 8% to 14% when 30% of total 

nodes were hardened.  The delay overhead was less than 8%. Thus, this technique is 

most useful when applied to harden circuits with tight area, power or delay constraints.   

Judging from the power overheads in this work, hardening even 20 % of the nodes can 

lead about 20% overhead in the power which is unacceptable as far as modern circuit 

 

Figure A1-6 Average area and power overheads due to increasing transistor widths.  
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designs are concerned. In [Zhou-06] the authors adopted the approach to characterize the 

sensitivity of nodes in the circuits and increase transistor sizes uniformly and therefore 

reduce SET pulse-widths. Similar approaches to characterize the most sensitive nodes 

were employed by [Nieu-06] [Almu-08] [Pagl-12]. The key characteristic of all these 

approaches is that the reduction in logic soft error rate comes at the expense of 

unavoidable power overheads. Limited data is available on the exact power overhead of 

these techniques but others have reported the power overheads from hardening 

selectively.  
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Appendix B : Impact of Supply Voltage on Logic Soft Error Rate  

 

In this section, the impact of voltage on single event transients and their likelihood of 

being latched is discussed. The key results suggest that the although voltage increases 

the SET pulse-width, the flip-flop setup-and-hold time also increases which impacts the 

probability of latching the SET.  

1. Introduction 

The objective of modern high-speed circuit designs is to maximize performance. 

However, increasing emphasis is being placed on minimizing power consumption while 

maximizing performance [Keat-07], [Venk-05]. Designers therefore routinely employ 

aggressive power management schemes, such as dynamic voltage and frequency scaling 

(DVFS) to save power without sacrificing performance. As a result, ICs operate under a 

variety of different voltage and frequency conditions that can affect the single-event 

error rate or soft error rate (SER) of circuits. In this work, the impact of voltage and 

frequency on the flip-flop and logic soft error rate for state-of-the-art, 28-nm, circuits is 

experimentally characterized. The frequency threshold beyond which logic SER exceeds 

flip-flop and latch SER (encircled in Figure A2-1) is also identified [Buch-97]. 

Identifying this threshold or cross-over frequency as a function of supply voltage will 

help designers to develop effective hardening strategies for logic and/or flip-flops and 

allow for a much better trade-off between performance, power, and soft error  reliability.  

It is well known that decreasing the supply voltage results in higher latch SER, while 

frequency has a much greater impact on logic SER than does supply voltage [Hazu-00]. 
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In this work, experimental results suggest that the alpha particle logic SER is relatively 

unaffected by variations in the supply voltage. Increasing the supply voltage by even 50 

mV above the nominal supply voltage can reduce the frequency threshold at which logic 

soft errors exceed flip-flop soft errors from 800 MHz to 300 MHz.  The experimentally 

observed results are qualitatively explained using circuit-level simulations. Simulations 

are also used to compare the voltage dependence of logic SER under alpha particle and 

heavy-ion irradiations.  

This chapter is organized as follows: in Section II, the test circuits and alpha particle 

experiments are described. The experimental test results for soft-error measurement 

under different voltage and frequency conditions are discussed in Section III. In Section 

IV, the impact of voltage on the combinational logic cross section is explained through 

simulations of ion strikes by alpha particles. Impact of heavy-ion irradiation on the 

voltage dependence of logic SER is also discussed. In Section V, the implications of 

operating circuits at different voltage and frequency conditions and the choice of 

hardening strategies are discussed.  

 

 

Figure A2-1 Logic errors increase with frequency. [Buch-97] defined a frequency threshold 

(encircled above) at which logic errors would exceed flip-flop errors. Beyond such a threshold, 

logic SER exceeds flip-flop SER. 
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2. Test Circuit Description & Experiments 

All the 28-nm circuits were irradiated with alpha particles to investigate the voltage 

and frequency dependence of combinational logic and flip-flop circuits. The test circuits 

and the experimental set-up is explained in the following sections.  

2.1 Circuit Description 

The approach used for this work to measure the logic error cross section is based on 

the Combinational Circuit for Radiation Effects Self-Test (C-CREST) technique [Ahlb-

09]. The basic block diagram for this technique is shown in Figure A2-2. The Circuit-

Under-Test (CUT) consists of a shift register design with logic circuits interleaved with 

flip-flops as shown in Figure A2-3. One flip-flop circuit along with the associated logic 

circuit comprises a single stage. The C-CREST design consists of 2,056 of such stages to 

improve the error statistics. The error detection circuit compares the correct data with the 

output of the CUT. In the absence of errors, the patterns from the output of the CUT and 

the data source are identical, and no errors are recorded. If errors occur, then a counter 

records the total number of errors observed. Error detection circuits are protected against 

single event errors using Triple Modular Redundancy (TMR).  

 

 

 

Figure A2-2 Basic structure used to evaluate flip-flop and combinational logic cross sections.   

 



 

 208 

 

 

Two variants of the C-CREST design were fabricated. For both the variants, 2,056 

stages were used.  The flip-flop design used for both the variants was a conventional 

transmission gate D flip-flop circuit. For the first C-CREST design, the logic circuit 

consisted of a block of 72 inverter gates (12 chains of six inverters each) OR’ed together 

using 11 OR gates. Each OR gate consists of 1 NOR gate + 1 inverter. Thus there were 

83 NOT gates and 11 NOR gates in total. The second C-CREST design consisted of a 

four-bit ‘greater than or less than’ comparator. The four-bit comparator compares two 

four-bit numbers, A and B. The output of the comparator is a logic ‘1’ if A > B. The 

four-bit comparator was chosen because the logic depth for this circuit is close to that of 

modern circuits [ARM-11], [Inte-10].  

The drawn length of all the transistors was 30 nm, and the minimum transistor width 

used in the designs was 100 nm. The threshold voltage of the NMOS (PMOS) devices 

was about 250 mV (-270 mV). The area of the transistor drain regions was (W x 75) nm
2
 

where W is the width of the transistor. All the gates were sized to have their rise and fall 

time equal to that of a minimum sized inverter (WN = 100 nm and WP = 250 nm). The 

 

 

 

 

Figure A2-3 The Circuit Under Test consists of flip-flops and logic blocks. Two different such 

structures were tested, one with inverters in the logic block and other with a 4-bit comparator.   

Single stage 

(logic + FF) 
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dimensions of the NMOS (PMOS) transistors used in the NOT, NAND, and NOR gates 

were 100 nm (250 nm), 200 nm (250 nm), 100 nm (500 nm) respectively. Table I 

provides more information about the gate counts of the two logic circuits.  

 

 

Test Details  

The circuits were irradiated with 5.5 MeV alpha particles from an Americium-241 

source with an activity of 10 µCi, at room temperature. The flux was 430 particles/mm
2
-

s. The alpha source was placed at a distance of 1 mm from the die during testing. The 

size of the alpha source was 1 cm
2
, and the size of the die was 3 mm x 3 mm. To account 

for both inter-die and experimental variability, measurements were repeated 16 times at 

each frequency and logic input value. Testing was conducted in accordance with JEDEC 

specifications [JEDE-06]. The operating voltage was varied from 0.8 V to 0.9 V in 50 

mV steps, and the operating frequency of the CUT was varied up to 500 MHz using an 

on-chip low-noise Phase Locked Loop (PLL) circuit. The PLL was also implemented 

using TMR.  

2.2 Experimentally Measuring Logic Cross section 

The logic and flip-flop cross sections were measured separately. To determine the flip-

flop cross section alone, the shift register chains were operated at very low frequency 

TABLE I. 

Number of gates, transistors, and transistor total area for different circuit types. 

Circuit type Inverter Comparator 

Total # of gates 94 46 

Type of gates 
83 NOT 

11 NOR 

26 NOT 

12 2-input NAND 

2 3-input NAND 

6 2-input NOR 

Total # of transistors 210 136 
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(e.g. 10 MHz) and at fixed voltage. At such low frequencies, the logic soft error 

contribution is orders of magnitude lower than flip-flop soft errors and can be neglected 

[Buch-97]. The total soft errors observed from the shift register chain normalized by the 

fluence and the number of flip-flops in the chain yields the flip-flop cross section. 

Several trials were performed across four different dies at each operating voltage and 

frequency to minimize effects of experimental as well as die-to-die variations. The error 

bars represent the standard error of measurement at each data point. Each data point 

corresponds to 4 measurements each from 4 dies. The experiment was repeated 16 times 

for each data point, the standard error is σ/√n, where σ is the standard deviation of the 

sample and n is the number of times the experiments was repeated (n=16). This 

procedure was then repeated for different voltage values. Following this procedure, the 

shift register chains were operated at higher frequencies to record logic as well as flip-

flop upsets. The average value of the flip-flop cross section was subtracted from the total 

cross section at higher frequencies to yield the logic cross section. The variation in the 

measured flip-flop cross section was very small and thus its variation was not propagated 

to the logic measurements. While the frequency dependence of flip-flops has been 

reported earlier, subtracting the low frequency flip-flop cross section from the total cross 

section to obtain the logic cross section is a reasonable assumption. The frequency 

dependence of flip-flops arises from the fact that one of the latch stages is always 

transparent while the other stage holds data. If the slave stage is transparent, the master 

stage can latch transients from the slave latch portion of the flip-flop [Jaga-12]. In this 

work, the soft error contribution of the transparent latches has been assumed to be part of 

the combinational logic interfaced to the flip-flop, especially because the size of the 
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logic is much larger compared to the latch itself. This assumption is also true for 

conventional circuit designs where substantial computational logic is present between 

flip-flop stages. Besides, any errors occurring on previous (upstream) latch stages will 

have a high probability of being temporally masked by the logic between flip-flop stages 

[Seif-04]. Thus, although the flip-flop cross section was measured only at 10 MHz, it is 

plotted as being independent of frequency for the whole frequency spectrum, in this 

work. The expressions used to calculate the flip-flop and logic cross section are as 

follows:  

 

FluencestagesofNumberTotal

ErrorsofNumberTotal
SectionCrossTotal




               

(1) 

 

MHz
SectionCrossFlopFlipSectionCrossTotal

StageperSectionCrossLogic

10@
)()( 



          (2) 

2.3 Experimental Results 

In this section, the results of alpha particle irradiation of the 28-nm circuits are 

reported. Although several input conditions were tested, detailed explanation of results is 

provided for inverter inputs at logic ‘0’ and the comparator inputs at A = ‘0000’ and B = 

‘0000’. Other test conditions showed similar trends as far as alpha particle irradiations 

were concerned. 

 



 

 212 

2.4 Impact of voltage and frequency on combinational and flip-flop SER 

Figure A2-4 shows the alpha particle cross section of the FF and the comparator circuit 

as a function of frequency with supply voltage of 0.9 V. The input to the comparator was 

A = ‘0000’ and B = ‘0000’. The flip-flop cross section has been plotted as being 

independent of frequency based on the reasoning provided in the previous section.  

The low frequency (10 MHz) cross section of the flip-flop, shown as a dashed line in 

Figure A2-4, was 1x10
-11

 cm
2
. The logic cross section, on the other hand, increases 

linearly as a function of frequency. The frequency threshold at which the logic cross 

section exceeds the flip-flop cross section is approximately 300 MHz. In other words, 

beyond 300 MHz, the number of logic soft errors would exceed that for flip-flop soft 

errors. The two key factors that influence the cross-over frequency are the slope of the 

logic cross section and the flip-flop cross section itself. In order to study the impact of 

supply voltage on both of these factors, the supply voltage was varied from 0.8 V to 0.9 

V in steps of 50 mV. 

 

 

Figure A2-4 Experimental cross section for comparator circuit with comparator inputs A = ‘0000’ and 

B = ‘0000’ and 0.9 V.  The flip-flop cross section is ~1×10
-11

 cm
2
. The logic cross section exceeds the 

flip-flop cross section at 300 MHz. 
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The impact of supply voltage on the FF and logic cross sections is plotted in Figure 

A2-5. As the supply voltage is reduced, the flip-flop cross section increases significantly. 

In fact the cross section increases by as much as 2.5 X when the voltage is varied from 

0.9 V to 0.8 V. The reason is that as the supply voltage is reduced, the critical charge 

decreases, and the cross section is exponentially dependent on the critical charge [Hazu-

00]. On the other hand, the slope of the logic cross section is not affected significantly 

by a change in supply voltage. The cross-over or threshold frequency at which logic soft 

errors exceed flip-flop soft errors can be estimated by extrapolating the logic cross 

section.  

 

There are several important implications of these results. Firstly, as Figure A2-4 

suggests the frequency threshold at which the logic cross section exceeds flip-flop cross 

section is in the neighborhood of 300 MHz. Clearly, for average sized modern high-

speed circuits that are capable of multi-GHz operation, the cross-over frequency of 300 

MHz can be easily exceeded by the operating frequency. At such frequencies, hardening 

flip-flops alone will not result in significant reduction in the total SER. Secondly, the 

supply voltage impacts the flip-flop’s SER more than it affects the logic circuit’s SER 

 

Figure A2-5 Flip-flop cross section increases with decrease in voltage. The logic cross section 

for input A = B = ‘0000’ is nearly independent of supply voltage variation. 
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for alpha particle irradiations, as a result of which, the cross-over frequency increases 

with a decrease in supply voltage. Figure A2-6 plots the cross-over frequency as a 

function of voltage. In other words, as the circuit operates at lower voltages, flip-flop 

soft errors are likely to contribute to a majority of the total chip-level soft errors. On the 

other hand, to ensure high-speed operation, a higher voltage is required because the 

delay is inversely proportion to the supply voltage. The higher the supply voltage, the 

lower is the gate delay and the higher the maximum operating frequency. Thus as the 

supply voltage is increased, the cross-over frequency decreases, which means that logic 

soft errors could exceed flip-flop soft errors at much lower frequencies.    

 

 

 

A. Impact of input conditions on the cross-over frequency     

Along with the operating voltage and frequency, the inputs to the logic circuits were 

also varied. Figure A2-7 shows the range of cross-over frequencies for different inputs 

conditions for the comparator as well as the inverter circuit. Different input 

 

Figure A2-6 Logic cross section was measured up to 500 MHz. The logic cross section 

extrapolated to 1 GHz shows that the threshold frequency at which logic errors exceed flip-

flop errors decreases as voltage is increased. The cross-over frequency is 300 MHz, 600 MHz, 

and 800 MHz for 0.9, 0.85, and 0.8 V operation. 
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combinations result in different logical masking factors based on the expression used to 

model the logic cross section [Alex-11], [Nguy-03], [Lide-94]  

TMLMEMA estimatedSectionCross Logic              (3) 

where A is the sensitive drain area, EM, LM and TM are the electrical, logical and 

temporal masking factors respectively. Consequently, the sensitive area varies with 

change in the input conditions. As Equation 3 suggests, the logical masking factor, LM 

influences the cross section and thus the threshold frequency.  

As far as the impact of supply voltage is concerned, for all input conditions of the 

comparator as well as for the inverter circuit, the threshold frequency decreases with 

increasing voltage. At a particular input voltage, such as 0.8 V in Figure A2-7, the 

threshold frequencies for the comparator for two different input combinations are 2.2 

GHz and 1 GHz. In the case where the threshold frequency is 2.2 GHz, a large number 

of transients are masked due to logical masking due to inputs applied. As a result the 

number of gates sensitive to transients is small compared to total number of gates in the 

circuit. Thus, the condition in which very few errors are recorded is referred to as the 

maximum logical masking case in Figure A2-7. On the other hand, certain inputs result 

in very little logical masking and the logic SER exceeds the flip-flop SER at as low as 1 

GHz. Thus, the condition in which very few errors are logically masked is referred to as 

the minimum logical masking case in Figure A2-7. As the voltage increases to 0.9 V, the 

threshold frequency reduces considerably to the 300-700 MHz range as shown  encircled 

in Figure A2-7. Indeed, the decrease in threshold frequency at higher voltages is a result 

of a decrease in the flip-flop cross section. However, the implication is that logic SER 

from even a few gates are able to exceed the flip-flop SER in the 300-700 MHz range. 
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When the comparator circuit was analyzed for different input combinations, maximum 

logical masking resulted in six gates being sensitive to transients. Yet, the cross-over 

frequency is only 700 MHz, suggesting that at higher supply voltages, the effects of 

logical masking are diminished. Thus at higher supply voltages, because the flip-flop 

cross section is much lower, logic SER dominates at much lower frequencies than at 

nominal supply voltage. In the following section, the reason for the relative supply 

voltage independence for logic SER is explained through simulations. The simple 

models utilized to explain the supply voltage dependence are also extended to evaluate 

the supply voltage of logic SER under heavy-ion irradiation.  

 

 

2.5 Simulations To Explain The Voltage Dependence of Logic SER 

The flip-flop cross section increases exponentially with decreasing voltage [Hazu-00]. 

As Equation 3 suggests, the logic cross section depends on the sensitive drain area as 

well as electrical, logical, and temporal masking factors. Electrical masking is a measure 

 

Figure A2-7 The cross-over frequency decreases as the voltage is increased for both 

comparator and inverter circuits. It is as low as 300-700 MHz at 0.9 V. 
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of transient attenuation or broadening and is dependent on supply voltage. However, the 

temporal masking, which mainly depends on the single-event transient (SET) pulse-

width and setup-and-hold (SH) time of flip-flop, is directly influenced by a change in the 

supply voltage. The temporal masking factor or latching probability of transients can be 

expressed as [Nguy-03], [Shiv-02]  

                

CLK

SHSET

T

TT

FactorMaskingTemporal



                 (4) 

where TSET , TSH and TCLK are the SET pulse-width, setup-and hold time, and the clock 

period. Both the SET pulse-width and the setup-and-hold time are functions of the 

supply voltage. In this work, first order models have been used to explain the impact of 

supply voltage on these two parameters that influence the temporal masking factor and 

hence the logic SER.  Figure A2-8 shows the circuit used to evaluate the effects of 

voltage on single-event transients. Ion strikes on complex gates, such as NAND and 

NOR gates, could result in transient pulse-widths that are different from inverters but the 

voltage dependence of the transient pulse-widths is likely to be similar. Hence, in the 

following sections, analysis of the voltage dependence of inverter transient pulse-widths 

is used to explain some of the experimental results. Ion strikes on PMOS MP1 shown in 

Figure A2-8 were simulated using a bias-dependent current source for different values of 

charge deposited and operating voltage [Kaup-09]. The restoring current of transistor 

MN1 was monitored. For a transient to propagate unattenuated through the logic chain, it 

must exceed the rise and fall time of the succeeding gate [Mass-08]. For this condition to 

be satisfied, when a transient occurs at node V1, the amplitude of the transient must 

exceed Vdd-Vtp. For simplicity, we assume it must exceed Vdd-Vt (where Vtp=Vtn=Vt). The 



 

 218 

threshold voltages of the NMOS and PMOS transistors used for simulations were 

similar. This condition ensures that the PMOS transistor MP2 turns on, and a rail-to-rail 

excursion occurs at node V2. The transient excursion above Vdd-Vt also forces restoring 

NMOS transistor MN1 into saturation. Thus the condition that must be satisfied for a 

rail-to-rail transient at V2, is that the NMOS transistor MN1 must go into saturation. The 

saturation current of MN1 helps to restore node V1. As the transistor quickly moves into 

the saturation region following an ion strike, the transistor can be assumed to be in the 

saturation region for the duration of the strike [Dasg-07]. 

 

The transient pulse-width at the node V1 is inversely proportional to the drive current. 

Ideally, the transistor drive current is proportional to only the gate voltage while 

operating in saturation region, thus the transient pulse-width is inversely proportional to 

the supply voltage as explained by the following Equations.   

2)(
1 TGS VV

MN
IDsat                                    (5) 

2

1

2)(
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V
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V
SET

T 



          (6) 

 

Figure A2-8 Inverter circuit used to study the impact of voltage on the logic cross section. 

Transistor MP1 was struck. SET pulse-width at node V1 and NMOS restoring drive were 

monitored for different values of supply voltage and charge deposition.   
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SET pulse-widths as a function of the supply voltage for different charge deposition 

values are shown in Figure A2-9. Indeed, the simulation results follow the 1/V
2
 

relationship explained previously for the different values of charge deposition.  

 

 

Similarly, the voltage dependence of the setup-and-hold time of the D flip-flop used in 

the design was evaluated. The impact of supply voltage on the setup-and-hold time is 

also plotted in Figure A2-9. In this case too, the 1/V
2
 dependence on supply voltage is 

evident. However, it is not as strong as the SET pulse-width dependence on supply 

voltage because the individual transistors do not remain in saturation for as long as it 

does in the case of SETs. Unlike SETs, where the input voltage is pinned, the nodal 

voltages in a feedback structure are not pinned. Thus during switching activity, the 

transistors in a FF spend comparatively less time in saturation than those in logic circuit 

during a SET.  

Least squares fit to an Equation of the form K/(V-0.25)
2 

for the data for SET pulse-

widths and setup-&-hold time obtained from simulations was performed using 

MATLAB. The results are shown in Table II. K is the factor that includes the β value of 

 

Figure A2-9 Simulation results for SET pulse-widths as a function of different voltages and 

setup-and-hold time for the flip-flop.    
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the transistor drive current. The R
2
 values of all the fits exceeded 0.90, indicating the 

goodness of fit as also justifying the assumption that the NMOS transistor, MN1, is 

mostly in the saturation region for the duration of the SET.   

The temporal masking factor depends on both SET pulse-width and setup-&-hold time 

as suggested by Equation (4). The difference of the SET pulse-width and setup-&-hold 

time is plotted in Figure A2-10. Both, the SET pulse-width and the setup-&-hold time 

have an inverse square relationship with supply voltage. Hence their difference also 

follows an inverse square relationship. However, the slope of the curve decreases as the 

charge deposited decreases. In other words, for higher values of charge deposition, the 

SET pulse-width varies at a rate much faster than the setup-&-hold time, as a function of 

supply voltage. As Table II shows, the slope of the difference of the SET pulse-width 

and setup-&-hold time increases as the charge deposited increases. For 5.5 MeV alpha 

particles, the charge collection is small (i.e., in the 5-10 fC range) [Dupo-02]. As a 

result, the increase in SET pulse-width as a function of decreasing voltage is not as 

dramatic compared to the setup-&-hold time. In effect, the two terms in Equation (4) 

compensate each other; as a result, the net impact on the temporal masking factor, and 

subsequently the logic SER, is negligible. 
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In contrast, as the charge deposition increases and approaches the charge deposited by 

heavy ions, the rate of change of SET pulse-width as function of supply voltage is much 

higher than that for the setup-&-hold time. Therefore, as the charge deposited is 

increased, the SET pulse-widths increase at a much faster rate with decreasing supply 

voltage than the setup-&-hold time, leading to strong supply voltage dependence for 

logic SER. Gadlage et. al observed that the logic error rate increases as the supply 

voltage is lowered [Gadl-07]. However, for alpha particles, the charge deposition is 

much smaller, resulting in relative supply voltage independence as far as logic error 

cross section is concerned. 

TABLE II.  

Fits to the SET pulse-width data and SH time data and slope for the difference between SET values and setup-

&-hold time 

Qdep   TSET  
Diff =  

TSET - TSH 
TSH 
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The other factor that influences the logic cross section is the electrical masking factor. 

Simulations used to quantify the modulation in the pulse-width as it propagates through 

10 uniformly loaded FO4 inverters, suggested that the attenuation was less than 6 ps at 

the 0.8 V. Hence, electrical masking introduces a small change in the original pulse-

width and the impact of electrical masking can be neglected, especially for modern 

circuits with short-logic depths. Thus, the voltage dependence of the logic cross section 

is a function of the deposited charge and can be different for different environments. For 

alpha particles that deposit less charge compared to heavy-ions, the supply voltage 

dependence of logic SER is weaker than that for flip-flops.  

2.6 Conclusion 

Logic SER is expected to dominate flip-flop SER for circuits operating in GHz range 

at the 28-nm technology node. Results presented in this work suggest that as the supply 

voltage is varied, the frequency at which logic SER could exceed flip-flop SER also 

varies. The key reason is that for alpha particle exposure, as supply voltage reduces, the 

 

Figure A2-10 Difference of the SET pulse-width value and the SH time for different values of 

charge deposition. The slope of these curves decreases as the amount of charge deposited 

decreases.   
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critical charge decreases, leading to an increase in flip-flop SER. On the other hand, 

logic SER shows a comparatively weaker dependence on supply voltage. As a result, at 

higher supply voltages, the cross-over frequency can be as low as 300 MHz, and logic 

soft errors from very few gates are enough to exceed the flip-flop soft errors. Also, as the 

cross-over frequency reduces, the impact of logical masking diminishes. The concept of 

the cross-over or threshold frequency will help designers to determine both frequency- 

and voltage-aware mitigation approaches. If the operating frequency is well beyond the 

cross-over frequency, then designers may be better off employing logic hardening 

techniques or reliability-aware synthesis [Limb-07]. Moreover, as higher voltages are 

needed to sustain higher operating frequencies and the cross-over frequency decreases 

for such operating conditions, it may be most beneficial to harden combinational logic 

circuits. Conversely, low voltage and low frequency operation ensures that the cross-

over frequency is very high, and the total SER is likely to be dominated by latch SER. In 

such cases flip-flop hardening will bring the most benefit. In contrast to alpha particles, 

simulations suggest that in the case of heavy-ions, which deposit more charge compared 

to alpha particles, a much stronger voltage dependence will be observed where the logic 

cross section also increases significantly as the voltage is decreased.   
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 Appendix C : Frequency Threshold for Combinational Logic Soft Errors 

 

In this section, the frequency threshold at which logic soft errors could exceed flip-

flop errors is identified. The frequency threshold is calculated for several benchmark 

circuits. 

1. Introduction 

Traditionally, in the terrestrial environment, soft error (SE) concerns have been limited 

to errors in storage elements, such as SRAMs and latches. However, while the flip-flop 

(FF) soft error rate (SER) per-bit, is saturating or even decreasing with scaling, higher 

operating frequencies facilitated by scaling could result in combinational logic soft 

errors dominating the chip-level SER [Buch-97], [Shiv-02]. This has two important 

implications. Firstly, efforts to harden flip-flops to achieve lower soft-error rates will be 

less effective if logic soft errors dominate the total soft error rate.  This could affect large 

ASIC and FPGA designs which implement dense logic structures. Secondly, the amount 

of control logic for large memory blocks is quite substantial. As memories are operated 

faster, single-events in the control circuitry will result in huge increases in memory soft 

error rates. Such single-events in the control logic have been correlated to significant 

increases in multiple bit upset rates in memory blocks [Nara-10]. Thus, it is necessary to 

characterize the frequency at which logic soft errors will be a significant contributor to 

chip-level soft error rates.  

The purpose of this study was threefold: 1) compare the 28 nm flip-flop and 

combinatorial logic SER, especially as a function of frequency; 2) characterize the 



 

 225 

threshold frequency at which logic soft errors exceed flip-flop soft errors, as a function 

of number of gates in the circuit and the logic area; 3) propose a simple metric to 

quantify and determine the threshold frequency for arbitrary circuits. Understanding the 

first two issues will help in quantifying the effect of logic circuit size (area, gate count) 

and frequency on the logic soft error rates. This could be used to develop frequency-

aware chip-level soft error mitigation schemes. The third objective will provide 

guidelines to designers about the general range of frequencies at which logic errors 

exceed flip-flop errors. Alpha-particle exposure results presented in this work suggest 

that logic soft errors contribute significantly to the total soft error rate for 28-nm 

technology node and may exceed flip-flop soft errors at frequencies close to 1 GHz. 

Also, total transistor sensitive area influences the logic SER more than gate count.   

2. Test Circuit Description & Experiments 

2.2 Circuit Description 

The test circuit description and test details are the same as described in earlier 

chapters. The circuit technique used to measure logic and flip-flop soft errors is similar 

to the approach based on Combinational Circuit for Radiation Effects Self Test (C-

CREST) [Ahlb-09]. Two variants of the basic structure based on a 2056 stage shift 

register design were built. The two variants differ only in the type of logic circuit used in 

the CUT. Each CUT consisted of 2056 standard NAND gate based flip-flops, one for 

each shift register stage. The logic block used in the first C-CREST structure, shown in 

Figure A3-1, consisted of 72 inverter gates (12 chains of 6 inverters each) OR’ed 

together using 11 OR gates. The OR gate consisted of 1 NOR gate + 1 inverter. The total 
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gate count was thus 94 (83 inverters, 11 NOR gates). A 4-bit ‘greater than or less than’ 

comparator, shown in Figure A3-2, was used in the second C-CREST structure because 

the logic depth in this circuit is similar to that used in modern ASIC designs [ARM-

11],[Inte-11],[Gunt-08]. The comparator consisted of 46 complex gates (2- and 3-input 

NAND, NOR and inverter gates).  

 

 

 

 

Figure A3-2 Each logic block consists of a group of a 4-bit comparator. The comparator consists of 

46 complex gates (2- and 3- input NAND and NOR gates respectively) in addition to inverters.  

 

 

 

 

 

Figure A3-1 Each logic block consists of a group of 12 chains each consisting of 6 inverters each. 

The OR gate shown in the above figure consisted of 11 separate OR gates and each OR gate is 

constructed using a NOR gate and an inverter.  
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The length of all transistors used in the designs was 30 nm and the minimum transistor 

width used in the designs was 100 nm. The gates were sized to achieve rise and fall time 

for all gates similar to a balanced minimum sized inverter (WN = 100 nm and WP = 250 

nm). Table I provides more information about the gate counts and total number of 

transistors for the two logic circuits. 
 

 

 

2.3 Test Details  

The flux of 5.5 MeV alpha particles from an Americium-241 source with an activity of 

10 µCi, was 430 particles/mm
2
-s at a distance of 1 mm from the alpha source. Testing 

was carried out with the alpha source at a height of 1 mm from the die. The relative size 

of the alpha source and the de-capped exposed die were 1 cm
2
 and 0.09 cm

2
 respectively. 

Testing was carried out in accordance with JEDEC specifications [JEDE-06]. 

Experiments were repeated at least 16 times at each data point to reduce experimental 

and inter-die variability.  

2.4 Experimentally Measuring FF and Logic Cross-Section 

The logic cross-sections were calculated as follows: The low-frequency (10 MHz) 

cross-section is assumed to yield the flip-flop cross-section alone. At very low 

frequencies logic contribution is extremely low and can be neglected [Buch-97]. The 

Number of gates, transistors and transistor total area for different circuit types. 

Circuit type Inverter Comparator  

Total # of gates 94 46 

Type of gates 
83 NOT 

11 NOR 

26 NOT 

12 2-input NAND 

2 3-input NAND 

6 2-input NOR 

Total # of transistors 210 136 
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frequency dependence of flip-flop errors can be neglected because logic blocks are 

present between each of the flip-flop stages.  Any errors due to single-event transients 

(SETs) in previous flip-flop stages are likely to be masked by the logic present between 

flip-flop stages. Besides, the size of the logic is much larger than the flip-flop latch 

stages. The average flip-flop cross-section resulting from several trials was calculated. 

Following this, the C-CREST chains were operated at higher frequencies. At high 

frequencies the total number of errors recorded is due to flip-flop SEUs and logic errors. 

The logic cross-section was obtained by subtracting the low-frequency flip-flop cross-

section from the high-frequency cross-section. This is summarized in the following 

Equations. 

FluencestagesofNumberTotal

ErrorsofNumberTotal
blockperSectionCross




         A3-1

 

 

MHz
blockperSectionCrossblockperSectionCross

blockperSectionCrossLogicFrequencyHigh

10@
)()( 



       A3-2
 

2.5 Results 

Figure A3-3 shows the alpha particle cross-section of the inverter and comparator 

circuits per (logic+flip-flop) stage, up to a frequency of 500 MHz. The input applied to 

the comparator was A = ‘0000’ and B = ‘0000’. The low frequency cross-section of the 

circuit was 2.1x10
-11

 cm
2
. This is plotted as a constant value across the frequency 

spectrum and is assumed to be the cross-section of the FF design. On the other hand the 

logic cross-section increases with frequency for both, the inverter and the comparator 

circuits. At 500 MHz, the comparator cross-section is about 0.6 times the flip-flop cross-

section, while the inverter is about 0.3 times the flip-flop cross-section. In other words 
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the comparator contributes about 40% of the total soft errors recorded at 500 MHz, while 

the inverter contributes about 25% of the total soft errors at 500 MHz.  

 

 

In order to calculate the frequency threshold at which logic soft errors will exceed flip-

flop soft errors, the cross-section of the comparator and inverter are extrapolated as a 

function of frequency. The resulting plot shown in Figure A3-4 predicts that the soft 

errors from the comparator circuit for this input would exceed those from the flip-flop at 

about 700 MHz, while the same for the inverter circuit would occur at about 1.6 GHz. 

Such frequencies are well within the operating region of modern processors, ASICs and 

even FPGAs. Both these results clearly illustrate that logic soft errors could form a 

significant proportion of the total soft errors recorded from complex circuits. Another 

key aspect about these results is that there isn’t a single value of the frequency threshold 

at which logic soft errors will exceed flip-flop errors. As shown in Figure A3-4, the 

threshold frequency for different circuits in the same technology can differ by as much 

as 900 MHz. In addition to this, logical masking may result in different threshold 

 

Figure A3-3 Logic cross-sections plotted as a function of frequency shows a clear increase. The 

low frequency cross-section of the flip-flop is plotted as being constant with frequency. The 

cross-section at 500 MHz for the comparator (inverter) is 0.6  (0.3) times the flip-flop cross-

section.  
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frequencies depending on the inputs applied. This will complicate the estimation of the 

threshold frequency for different circuits for different input conditions.  

 

 

In the past, the logic SER has been characterized using inverters. This approach 

involves calculating or measuring the logic soft error rate of inverters and then using this 

number to quantify the SER of other logic circuits. However this may underestimate the 

logic soft error contribution. This is shown in Figure A3-4 where the comparator circuit 

cross-section is actually higher than that of the inverter circuit, although the comparator 

circuit has fewer gates than the inverter circuit. In fact, since the comparator circuit has 

46 logic gates while the inverter circuit has 83 logic gates, the percentage contribution 

per logic gate for the comparator circuit is almost 4-5 times that for the inverter circuit as 

shown in Figure A3-6. Therefore there is a need to develop a simple yet robust technique 

to better characterize the frequency threshold at which logic soft errors will dominate the 

total SER of circuits.  

 

Figure A3-4 The frequency threshold for the comparator input with A = 0000 and B = 0000 is 

about 700 MHz. The threshold frequency for the inverter on the other and is about 1.6 GHz. A 

wide range of threshold frequencies is possible depending on the inputs and sensitive area 

exposed.  
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2.6 Characterizing the Frequency Threshold 

Since the approach to merely scale the logic soft-error rate according to inverter 

contribution tends to underestimate the logic error rate, an alternative approach is 

presented here. The approach involves characterizing the inverter and NAND/NOR 

contributions separately to account for the differences in transient pulse-widths as well. 

Intuitive as well as empirically verified models suggest that the logic cross-section can 

be modeled as shown in Equation 3 [Lide94], [Alex-11], [Wang-08],[Nguy-05].  

TMLMEMASectionCross estimated 
                       A3-3

 

where A is the transistor sensitive area. EM, LM and TM represent logical-, electrical- 

and temporal masking respectively. The cross-section is a function of the inputs applied, 

since the total area of the OFF transistors changes with the applied inputs. In other 

words, OFF transistor area is the sum of all drain areas of the transistors in the circuit, 

transients from which can propagate to the output. Electrical masking results in SETs 

being attenuated as they propagate through logic circuits. The temporal masking factor 

can be expressed as follows [Nguy-03].  

 

Figure A3-5 The per gate contribution of logic errors to the total SER is higher for the 

comparator than for the inverter. The comparator has 46 gates while the inverter has 94. 
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clkT

t
TM

WOV

                            
     A3-4

 

where tWOV and Tclk are the window of vulnerability (WOV) and the clock period 

respectively. The WOV depends on both the setup-and-hold time of the flip-flop as well 

as the SET pulse-width distribution. We now make two simplifying assumptions. The 

first assumes the electrical masking EM to be equal to 1. SPICE simulations were used 

to calculate the electrical masking for a 10 stage inverter chain. Each stage had a 

uniform Fo4 loading. The maximum pulse-width reduction due to propagation through 

10 stages, observed at the output, was only 6 ps. On the other hand experimentally 

observed SET pulse-widths for similar technologies have been reported in the 250 ps to 

1.5 ns range [Hara-08]-[Nara-08]. Thus, the SET pulse-width value is much larger 

compared to the electrical masking introduced by propagation.  In fact, the logic depth of 

most modern circuits is less than 10 (the maximum logic depth was 9 in this work) 

[ARM-11]-[Inte-11]. Therefore, in the case of modern circuits with few logic stages, 

electrical masking can be safely neglected without any loss of accuracy. Secondly a 

single effective value of the WOV is assumed for simplicity. This assumption is justified 

using experimental results, subsequently. Thus Equation 3 can be simplified as follows.  

       

clk
TLM

A
estimated

SectionCross



K

                         A3-5
 

 

                K




clk
F

LM
A

estimated
SectionCross

                                         A3-6 

 

Here ALM is the total OFF transistor drain area that is sensitive to transients for the 

particular input. K is the effective value of the WOV for each circuit node. Thus the 
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differences in WOV due to the transient distribution at each circuit node are replaced by 

a single value. This value need not necessarily be a constant. This value was calculated 

for different inputs of the comparator circuit and was compared to those of the inverter 

circuit. The experimentally measured cross-section for each input condition was divided 

by the total OFF transistor drain area and the clock frequency (500 MHz) to obtain K.  

As Figure A3-6 shows, the value of K is not significantly different for all the inputs at 

500 MHz. The error bars at each point represent the standard error of measurement at 

each point. The colored band represents the maximum variation in K for all the input 

conditions. As seen in Figure A3-6, the values of K for different inputs are not 

significantly different. This justifies the use of a single value of K within reasonable 

bounds. It also shows that the value of K, which includes the SET pulse-width, is slightly 

lower for inverters than it is for NAND/NOR gates. This is in agreement with [Cann-

09]-[Atki-11], where the lower restoring drive for NAND/NOR is cited as the reason 

behind longer SET pulse-widths for NAND and NOR gates compared to inverters. The 

OFF transistor drain area is a good estimate of the sensitive area for low-LET particles 

[Dasg-07]. This was also verified using 3D TCAD simulations where calibrated 28 nm 

models were struck with l Mev/cm
2
-mg low-LET alpha-like particles. The charge 

collection region was limited to the drain area and pulse-widths reduced to 0, when the 

transistor was struck outside the drain region. The values of K were calculated at 100 

MHz and 300 MHz and were found to be similar to those obtained at 500 MHz. This 

also confirms that K is independent of the frequency. There is no physical reason for the 

setup-and-hold window or the SET pulse-widths to be related to the frequency of 

operation.    
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Based on the value of K, the value of the frequency cross-over or the frequency 

threshold for a variety of circuits can be calculated. The ISCAS-85 Benchmark circuits 

analyzed in this work are listed in Table II [ISCA-85]. The underlying assumption is that 

these circuits would be synthesized using a similar process develop kit (PDK) as the one 

used in this analysis. Indeed the use of a different PDK would mean that some of the 

factors that affect K would change (WOV and area).  

 

 

The average value of K (4.8x10
-11

 for NAND/NOR and 2.7x10
-11

 for inverters) shown 

in Figure A3-6 was used to calculate the frequency threshold for all these circuits. The 

average value was defined separately for the NAND/NOR gates and separately for the 

TABLE II.  

Number of gates, inputs-outputs for the benchmark circuits analyzed.  

Circuit Name Number # gates # I/O 

4-bit ALU 74181 61 14/8 

16-bit Multiplier C6288 2406 32/32 

8-bit ALU C880 383 60/26 

27 channel interrupt controller C432 160 36/7 

32-bit adder/comparator C7552 3512 207/108 

 

 

 

Figure A3-6 The value of K is plotted for different input combinations of the comparator 

and the inverter. The comparator values are distinctly higher than that of the inverter. 

Moreover the values of K for the different inputs of the comparator are comparable to each 

other.  
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inverters. Detailed explanation of the technique to calculate the frequency threshold is 

provided below for the 4-bit ALU (74181). Since the circuit has 8 outputs, the flip-flops 

cross section was 8*nominal low frequency cross-section observed in the results for the 

comparator and the inverter circuits. The nominal low-frequency flip-flop cross-section 

was about 2.1x10
-11

 cm
2
 (observed experimentally, Figure A3-3). Thus the total flip-flop 

cross-section was about 16.8 x10
-11

 cm
2
. The total logic OFF-transistor area was 

calculated as follows. For each input, faults were injected at each node. If faults injected 

at a particular node appear at the output, then the OFF transistor area at that node (gate) 

is added to the sensitivity list. For each input, faults were injected at each node to 

determine the total OFF transistor drain area for that input combination. This was 

repeated for each input. The pseudo code shown below summarizes this technique.  

 

   

Start:  Describe circuit in Structural Verilog/VHDL. 

 

for (input = 1, input<= max_inputs, input++) 

{ 

for (m = 1, m<= max_nodes,m++) 

inject fault at node m 

observe output for error 

if (error observed at output) 

{ 

1. Calculate OFF drain area based 

on gate type 

2. Add to sensitivity list 

3. Update sum of area of list 

       } 

    } 

} 

End; 
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In order to calculate the cross-over frequency, Equation 6 was used. The estimated 

cross-section was replaced by the flip-flop cross-section (16.8x10
-11

 cm
2
). The sensitive 

area was obtained from the above analysis, and the appropriate value of K was used for 

NAND/NOR and inverter gates.  

Based on this, the threshold frequency for different inputs is plotted as a histogram in 

Figure A3-7. The threshold frequency for a majority of the input combinations is 

between 700 MHz and 2.1 GHz. Even after including the effects of logical masking, the 

logic error could exceed flip-flop errors in the 700 MHz to 2.1 GHz. Clearly, circuits 

fabricated using modern technology nodes are capable of operating at these frequencies 

and for most of the inputs applied, the threshold frequency is well within operating 

range.   

Exhaustive analysis was only possible for the ALU 74181 because of the limited size 

of the circuit. As such, the total number of combinations for fault injection is 2
N 

xm, 

where N and m are the number of inputs and nodes in the circuit respectively. Besides, 

the logical masking factor can be very different for different input combinations. As a 

result the frequency threshold varies widely for different inputs. In such circumstances it 

is hard to predict whether logic errors or flip-flop errors would dominate the total SER 

for the circuit in general. For the much larger circuits, at least 10
6
 combinations were 

evaluated to calculate the different sensitive areas for each combination.  
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However a useful metric that can be used to quantify the frequency threshold for the 

whole circuit is introduced below. In the case of the ALU 74181 described above, the 

frequency threshold was calculated for all the input vectors. The Cumulative 

Distribution Function (CDF) of the threshold frequencies is plotted in Figure A3-8. The 

median of the distribution is also shown on the plot. The median in this case represents 

the frequency threshold that is exceeded by half the input vectors applied. In other 

words, for 50 % of the inputs applied, the frequency threshold is less than 1.2 GHz. Thus 

for a designer, it indicates that for 50 % of the possible inputs to the circuit, the 

frequency threshold is 1.2 GHz. As more input vectors are included, the frequency 

threshold for the “circuit” increases. At 4 GHz, all input vectors applied would result in 

logic errors dominating flip-flop errors. Thus depending upon the frequency of operation 

and the threshold frequency at which logic errors would exceed flip-flop errors, 

designers can adopt suitable logic hardening strategies.   

 

 

Figure A3-7 Distribution of frequency thresholds for each input of the ALU 74181.  The 

frequency thresholds are distributed between 700 MHz and 4 GHz. Majority of the values lie 

between 700 MHZ and 2.1 GHz. The average value is 1.3 GHz.  
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The median value of the frequency threshold was similarly calculated for other ISCAS 

benchmark circuits as shown in Figure A3-9. As Figure A3-9 suggests, the threshold 

frequency at which logic errors could dominate for most circuits, lies in the 900 MHz - 2 

GHz range. One of the circuits; c432, has a frequency threshold that is much higher than 

the rest. This due to the fact that c432 is a 27 channel interrupt controller. Most parts of 

the logic circuitry are inactive for a large majority of the inputs. This underscores the 

point that different circuits can have very different threshold frequencies at which logic 

errors dominate the total SER.   

 

 

Figure A3-9 Median frequency thresholds for different benchmark circuits. The lowest value is 

900 MHz while the highest is about 3.5 GHz. Most of the threshold values lie well within the 

operating region of modern semiconductor devices and circuits.  
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Figure A3-8 CDF of the frequency threshold for all inputs to the ALU 74181. The median value 

of the frequency threshold is about 1.2 GHz. 50 % of the input vectors would result in a 

frequency threshold that is less than 1.2 GHz. 
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2.7 Conclusions 

For the terrestrial environment, logic soft errors are likely to dominate the total SER 

for future technology generations with ICs operating at multi-GHz range of frequencies. 

Through alpha particle exposure, it is shown that logic soft errors are a strong function 

of individual logic-gate sensitive area and not of gate count. Logic errors account for as 

much as 25 - 50% of the total errors recorded for the circuits tested at 500 MHz. The 

frequency threshold for ISCAS circuits was calculated using simple yet robust 

approximations of the logic SER. The frequency threshold beyond which logic soft 

errors will dominate overall soft-error rate is about 900 MHz to 2.1 GHz for most of the 

ISCAS circuits. The impact of this is that, if logic errors dominate, flip-flop hardening 

alone will not reduce system level SER. While scaling may result in a modest decrease 

in logic SER due to smaller active areas, as in the case of flip-flops, higher operating 

frequencies will mean that the frequency threshold will be easily within the operating 

range of even complex circuits.  
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