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CHAPTER I 

 

INTRODUCTION 
 

Global Health Impact of Tuberculosis 

Tuberculosis (TB) is an infection caused by the bacteria Mycobacterium tuberculosis. 

It generally occurs within the lungs (pulmonary tuberculosis), though it can occur elsewhere 

in the body such as in the lymphatic system or central nervous system (extrapulmonary 

tuberculosis) (Frieden 2003). Disease symptoms include fever, night sweats, weight loss, 

persistent cough, and the production of blood-tinged sputum(Frieden 2003). The disease 

occurs in two states: latent and active tuberculosis. In the latent state of tuberculosis, the 

bacteria are contained within granulomas of the host and are not replicating or being 

disseminated. This state may persist throughout the host’s life without active TB ever 

developing; however, 10% of patients with latent tuberculosis will develop active 

tuberculosis within their lifetime. In the active state, the bacteria start replicating and the 

infection can spread to other parts of the body and to other people. According to the World 

Health Organization (WHO) Annual Report, one out of every three people is infected with 

the latent form of tuberculosis(WHO 2011). The risk of active tuberculosis disease increases 

dramatically for those infected with human immunodeficiency virus (HIV), from 10% over 

their lifetime to a 10% chance of developing active tuberculosis each year (Millet 2012). In 

HIV-infected individuals, the weakened immune system is not able to effectively isolate and 

contain the bacteria within granulomas. TB is the direct cause of death for half of those who 

die with HIV. In 2010, 350,000 people died from HIV coinfection with TB. There were also 

1.1 million tuberculosis deaths in HIV-negative individuals, making it the second leading 
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cause of death worldwide (WHO 2011). However in the United States, only 3.2% of the 

population is estimated to have latent tuberculosis (CDC 2010). The low rates of tuberculosis 

in the United States are partly due to the prevention programs in place (Gordin 2012) and 

greater access to healthcare (Millet 2012). TB more frequently occurs among those living in 

impoverished conditions, the elderly, and those who are immunocompromised (Millet 2012). 

The disease burden falls most heavily on developing countries that lack the healthcare 

infrastructure to properly diagnose and treat the disease.   

Mycobacterium tuberculosis 

The primary cause of tuberculosis is the bacterium Mycobacterium 

tuberculosis(Willey 2008). The bacteria Mycobacterium bovis and Mycobacterium africanum 

also cause the disease, but this is less common and occurs mainly in animals. M. tuberculosis 

is related to other mycobacterial species such as Mycobacterium leprae, the causative agent 

of leprosy, and the nonpathogenic Mycobacterium smegmatis.  M. tuberculosis is a rod-

shaped, gram-positive bacteria (Brennan 2003). Like other gram-positive bacteria, M. 

tuberculosis contains peptidoglycan, a cross-linked polymer of amino sugars and amino 

acids. However, the mycobacterial species are unique in that the peptidoglycan in their cell 

envelope is usually attached to lipids instead of to proteins, as is found in other gram-positive 

bacteria. The bacterial envelope is composed of two layers: a plasma membrane, and a cell 

wall that surrounds it (Brennan 2003). The cell wall contains mycolic acids such as 

lipoarabinomannan (LAM) or mannose-lipoarabinomannan (ManLAM), trehalose 

dimycolate, and phthiocerol dimycocerosate. These lipids are toxic to eukaryotic cells and 

are thought to form a hydrophobic barrier around the bacterium. This barrier inhibits the 

activity of anti-microbial agents by preventing their diffusion across the plasma membrane. It 
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also makes bacterial cell lysis difficult, as the wall is robust and inhibits the diffusion of lysis 

chemicals. Overall, the unique cell-wall lipids compose about 60% of the cell wall 

(Kolattukudy 1997). Mycobacteria also contain a large amount of different very long-chain 

saturated (C18-C32) and monosaturated n-fatty acids. A major cell-wall polysaccharide is 

arabinogalactan. The unique lipids and polysaccharides of M. tuberculosis give the species its 

robustness.  

Host Response to Bacteria 

Once M. tuberculosis enters the host via aerosolized droplets formed during 

coughing, the bacteria will activate the mannose receptors on macrophages causing the 

macrophages to phagocytose the bacteria. The ManLAM component of the cell wall is 

thought to play an important role in causing phagocytosis (Torrelles 2012). Inside the 

macrophage, the bacterium inhibits phagosome-lysosome fusion by altering the phagosome 

membrane (Willey 2008). Thus it is able to exist within the macrophages without being 

destroyed by the macrophage’s normal physiological processes. Once the bacteria cells are 

phagocytosed, the macrophages release cytokines and hypersensitivity results in small hard 

nodules being formed. These are called tubercles, and may show up on chest X-rays as lung 

infiltrates. The tubercles contain bacteria, macrophages, T-cells and human proteins. The 

disease usually stops at this stage, existing as latent tuberculosis. The tubercles may 

eventually develop a cheese-like consistency, called a caseous lesion, or harden into a Ghon 

complex. The tubercle lesions can liquefy and form pulmonary or tuberculous cavities within 

the lungs, which allow the bacteria to spread throughout the body. This is classified as 

miliary tuberculosis (Willey 2008).  
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The immune response to tuberculosis is not fully understood and a unique antibody or 

host biomarker has yet to be found. Much research has been devoted to this area because 

finding a unique biomarker would enable the development of an accurate diagnostic test and 

could lead to a reliable vaccine. Currently, the only vaccine is the bacilli Calmette-Guerin 

(BCG) vaccine, but this has demonstrated variable effectiveness. It is more commonly used 

outside the US where exposure is more likely. In specific cases, such as with children who 

cannot avoid exposure to an adult with a drug resistant TB or with health care workers who 

have frequent exposure to those with tuberculosis the vaccine may be administered.  

Spread of the Disease 

Once the bacteria begin to reproduce and spread within the host, the disease is 

classified as active tuberculosis. At this point, the disease is contagious and is spread through 

coughing which produces aerosolized droplets. The bacteria travel in these aerosolized 

droplets. They may persist for 30 minutes outside of the host and can travel through air ducts 

in building ventilation systems. This is particularly a problem in confined areas, such as 

prisons or hospitals. This affects low resource areas as well, as overcrowding is a problem 

(Millet 2012). It has been shown the disease is less likely to be transmitted in outdoor 

settings (Gordin 2012). When left untreated a person with active TB will infect 10-15 people 

per year on average (WHO 2002). Most commonly, the infection is contained initially by the 

host immune response and becomes latent. In rare cases, the disease progresses directly to the 

active form. 

Treatment of Tuberculosis 

The current standard treatment for the active form of tuberculosis is a six month 

regimen using isoniazid (INH), rifampin (RIF), ethambutol (EMB) and pyrazinamide (PZA) 
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for an initial two month period to stop the actively dividing bacteria. After this, a 

consolidation phase occurs for the subsequent four months where INH and RIF are 

continued. This is to ensure that the slow dividing bacteria are killed as well. Dosing 

frequency can vary depending on patient history and response, but in the initial phase daily or 

twice or thrice weekly treatments is common and in the consolidation phase twice or thrice 

weekly treatment continues (Gordin 2012). INH, RIF, EMB and PZA are considered the 

first-line of anti-tuberculosis treatment drugs (Blumberg 2003). Other drugs may be used 

subsequently if the patient does not respond to this initial pharmaceutical combination. The 

long treatment time of six months is a disadvantage. Patient compliance is low for 

completing the regiment, especially when symptoms of the active disease are relieved within 

the first few months. This is particularly noticeable in low resource settings, where access to 

medical facilities and pharmaceuticals are limited. Lack of treatment compliance has led to 

an increase in drug-resistant bacteria because treatment is often stopped prior to completing 

the six month regimen. 

Current Diagnostics for Tuberculosis 

Detection of the Active Form of Tuberculosis 

The most common form of detection for active tuberculosis is the use of sputum 

smear microscopy (Lawn 2011). A sputum sample is taken from the patient, is stained with a 

Ziehl-Neelsen stain, then analyzed under the microscope after being stained. A lab technician 

will examine the sputum sample for the presence of tuberculosis colonies. This technique has 

been used for detection of tuberculosis since the 1880s (Willey 2008). Sputum smear 

microscopy is most commonly used in low resource settings where hospitals and clinics have 

the infrastructure that supports this test. They have the resources to run the test, and many 
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technicians in low resource areas are trained to perform the technique. The patient is 

considered positive for tuberculosis when a concentration of 10,000 bacilli/mL is found 

(Willey 2008). However, this test is subject to interpretation by the technician and its 

accuracy can depend on how experienced the technician is. It is also inaccurate for those with 

a HIV and tuberculosis co-infection. The areas with high prevalence of tuberculosis also have 

a high prevalence of HIV. More than half of patients with a HIV and tuberculosis co-

infection receive a negative result using sputum smear microscopy (Lawn 2011). The amount 

of bacteria in sputum is directly proportional to pulmonary cavitation and in 

immunocompromised patients, there is less pulmonary cavitation. The test is also labor 

intensive and slow, taking about a week to perform (Frieden 2003).  

Detection for the Latent Form of TB 

There are multiple methods currently utilized for the detection of tuberculosis. For the 

latent form, the most common test is the tuberculin skin test (TST) (Gordin 2012). 

Tuberculin is a partially purified protein derivative isolated from the bacteria (Willey 2008). 

It consists of a variety of proteins found in the bacteria. The TST is administered 

intradermally. T-cells will migrate to the injection site, causing an increase in the redness of 

the area that correlates to the degree of hypersensitivity of the patient (Willey 2008). Thus, a 

person who has been exposed to tuberculosis will develop a hard, red area at the site of 

injection. Those who have not been exposed to tuberculosis will have naïve T-cells do not 

recognize the pathogen and as a result there will not be any migration or redness. This 

diagnostic test presents problems with patient compliance, because the patient must return 

within two days to have the test read. The skill of the administrator also affects the accuracy 

of the test. If the tuberculin is not injected properly, the patient may present with a false 
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negative. Furthermore, the test only demonstrates that a person has been exposed to 

tuberculosis at some point. A person may or may not have the active or latent form of the 

disease. Another test used for the detection of latent TB is the interferon-gamma release 

assay (IGRA). IGRAs measure the IFN-γ responses to ESAT-6 and CFP-10, two antigens 

that are relatively specific for TB (Lawn 2011). This test will generate results within two 

hours, ensuring higher patient compliance. The WHO has recommended that hospitals switch 

to using IGRA instead of TST (Gordin 2012).  

New Methods for Diagnostics 

New methods for diagnosing tuberculosis are needed, particularly in the form of 

accurate, point-of-care devices. Several groups have reported immunochromatography 

methods for tuberculosis detection. These tests use antibody-antigen binding reactions that 

when combined with enzymes will produce colorimetric changes in the presence of a specific 

substrate. These tests are limited by the accessibility of the target analyte and the strength of 

the bond between the antibody and antigen (McNerney 2011; Niemz 2011). The limited 

knowledge of biomarkers unique to tuberculosis also inhibits this technology (Wallis 2010). 

Detection methods that operate based on using an enzyme-linked immunosorbent assay 

(ELISA) that detects LAM (Lawn 2012) and optical methods such as Raman spectroscopy 

are also being investigated (McNerney 2011). Another method of detection involves the use 

of isothermal amplification technologies such as loop-mediated amplification (LAMP) or 

cross priming amplification (CPA) to amplify a target tuberculosis gene and thus enable 

detection. These methods operate at a constant temperature and do not require a thermal 

cycler, making them ideal for low resource settings (Fang 2009; Niemz 2011). Nucleic acid 

amplification tests using either isothermal amplification tests or traditional polymerase chain 
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reaction (PCR) have been studied for detection of tuberculosis as well as for detection of 

specific target sequences that indicate drug resistance. As PCR requires a thermal cycler and 

a trained technician, it is not ideal for point-of-care diagnosis.  

WHO has recently endorsed the use of the GeneXpert MTB/RIF assay system for the 

diagnosis of tuberculosis. This system, produced by Cepheid, uses real time PCR to detect 

Mycobacterium tuberculosis and markers for rifampin resistance simultaneously. It is a self-

contained automated system. However, the sputum must be processed beforehand. The 

GeneXpert generates results within two hours. A study by Lawn et al (Lawn 2011) showed 

the sensitivity of the GeneXpert MTB/RIF to be 73.3% compared to the 28% sensitivity of 

sputum smear microscopy (Boehme 2010; Helb 2010). It is not a point-of-care detection 

system because it requires hospital or laboratory infrastructure. However, its use has become 

more common. 
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Table 1: Lysis Methods 

Method of Lysis Mechanism 

Physical   

Glass Beads/Mini Bead Beater Use of beads to mechanically disrupt cell walls 

(Belisle 1998; Lanigan 2004; Aldous 2005; 

Rezwan 2007) 

French Press High pressure (Rezwan 2007; Gill 2008) 

Sonicator/ ultrasonic horn Acoustic energy (Lanigan 2004; Rezwan 2007) 

Freeze/thaw cycles Breakage of cell wall due to formation of ice 

crystals (Gonzalez-y-Merchand 1996; Amita 2002) 

    

Chemical   

Detergents Chemical disruption of cell membranes (Amita 

2002; Lanigan 2004; Aldous 2005) 

Enzymatic degradation Use of enzymes such as lysozyme, proteinase K, 

or lipase to degrade linkages in cell walls (Belisle 

1998; Amita 2002; Aldous 2005) 

Chaotropic agents Interferes with intramolecular forces to disrupt cell 

membranes (Gonzalez-y-Merchand 1996) 
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Lysis of Mycobacterium tuberculosis 

In order to perform a nucleic acid amplification test, the target DNA must first be 

isolated from the bacteria by lysing the bacteria and extracting the DNA genome. As the cell 

wall of Mycobacterium tuberculosis is particularly tough, lysing the bacteria can be difficult. 

There are various methods for lysing mycobacterium. Several involve using physical forces 

such as mechanical force, high pressure or ultrasonic waves. Others use chemicals to disrupt 

or enzymatically degrade the walls. A brief description of commonly used techniques is 

given in Table 1. There have been many studies to determine the most effective cell lysis 

process (Amita 2002; Lanigan 2004; Aldous 2005; Rezwan 2007). However, different 

applications require different standards, either needing a large quantity of DNA or high 

quality DNA. Methods must be chosen to be compatible with the needs of the subsequent 

diagnostic assay. In general, mechanical methods have been seen as more effective at 

releasing DNA from bacteria than chemical methods. Following lysis, extraction can 

eliminate contaminants from the patient sample.  



11 

 

Table 2: Principles of Isothermal Amplification (Gill 2008; Niemz 2011; Craw 2012) 

Technology Basic Principle Reference 

NASBA cDNA formed amplified by T7RNA Polymerase  (Compton 

1991; Niemz 

2011) 

HDA Helicase unwinds DNA, forward and reverse primers extended by 

polymerase 

(Vincent 

2004) 

RPA Recombinase filament formed by recombinase enzyme and primer, 

which inserts primer into target, after disassembly of filament, extension 

occurs by strand displacing polymerase 

(Piepenburg 

2006) 

LAMP Using strand displacing polymerase (Bst) and specially designed 

primers, form structures of loops (Notomi) 

(Notomi 

2000) 

SDA Bifunctional primers which have both target recognition and 

endonucleases target region, which incorporate restriction target. 

Knocked off by bumper primers. dsDNA produced has restriction sites, 

which when nicked allow polymerase to displace strand and amplify 

(Walker 

1992) 

NEAR Similar to SDA, uses nicking (Maples 

2009) 

RCA Using Phi29 polymerase on circular DNA targets. Primer anneals to 

circular ssDNA, goes in circle with new strand displacing old strand 

(concatenated) 

(Demidov 

2002) 

ICAN Chimeric primers bind and elongated by BcaBEST DNA polymerase, 

RNaseH nicks strand, which allows strand displacing DNA polymerase 

to release the new strand 

(Uemori 

2007) 

SMAP2 Similar enzymes to LAMP, assymetric primers (Mitani 

2007) 

SPIA Chimeric RNA/DNA primers bind target, RNase H degradation of RNA 

portion exposes binding site which let another primer anneal, strand 

displacing polymerase 

(Kurn 2005) 

CPA Multiple primers including a cross primer which incorporate another 

priming site. Strand displacing polymerase (Bst) able to knock off 

products, as primers anneal next to each other. Favorable reaction for 

hairpin structure to be removed from template over reannealing  

(Fang 2009) 
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Table 3: Comparison of Isothermal Amplification Methods (Niemz 2011; Craw 2012) 

Technology Template Product Amplification 

kinetics 

Fluorescence 

Detection 

Temperature 

of Operation 

(˚C) 

Time to 

Detection 

(min) 

NASBA RNA/ssD

NA 

RNA 

amplico

ns 

 Possibly, if 

used SYBR 

Gold 

41 105 

HDA dsDNA dsDNA exponential Yes 65 75-90 

RPA dsDNA DNA Geometric Use of special 

fluorescent 

probes  

30-42 20 

LAMP dsDNA dsDNA 

(in form 

of 

increasi

ng 

loops) 

exponential Yes, works 

with 

intercalating 

dyes 

60-65 60-90 

SDA ssDNA 

(could 

denature 

dsDNA) 

dsDNA  Must use 

specific 

probes  

37 120 

NEAR dsDNA ssDNA geometric  55 10 

RCA Circular 

ssDNA, 

can add 

reagents 

to work 

with 

dsDNA 

ssDNA, 

concaten

ated 

Linear, can be 

modified to 

have geometric 

 65 60 

ICAN dsDNA if 

heat 

denatured 

dsDNA  yes 55 60 

SMAP2 ssDNA dsDNA 

(concate

nated) 

 yes 60 15-30 

SPIA RNA/DN

A 

DNA linear no 45-50 240 

CPA dsDNA dsDNA exponential yes 63 60-90 
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Isothermal Amplification 

The development of polymerase chain reaction (PCR) revolutionized the field of 

molecular biology and subsequently diagnostics. Being able to easily amplify small amounts 

of DNA has enabled accurate detection of pathogens and the detection of genetic sequences 

which give information about drug resistance, such as mutations in the rpoB gene (Walter 

2012) for RIF resistance in M. tuberculosis. However, PCR still requires quality facilities, 

well-trained technicians, and a thermal cycler. In the developing countries that need detection 

of infectious diseases the most, these facilities are not always available. Thus, there has been 

a focus on developing technologies that have the potential to be taken out into the field and 

can easily detect pathogens by their DNA. Within the past two decades, several different 

methods for isothermal amplification of DNA have been developed. Table 2 and Table 3 

outline the principles and basic requirements of some common isothermal amplification 

methods. Isothermal amplification technologies are able to amplify a target DNA sequence at 

a constant temperature, eliminating the need for a thermal cycler. These technologies are 

compatible with point-of-care diagnostic tests. In this study, loop-mediated amplification and 

cross priming amplification were chosen because they can be detected with a simple 

intercalating dye, have exponential amplification, and can give results within an hour. These 

methods are similar, operating using a strand-displacing polymerase and specially designed 

primers.  
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Figure 1: Amplification schematic for LAMP. Primers 

F3 (green) and B3 (purple) release strands extended 

from FIP (blue) and BIP (orange) to form initial loops. 

FIP and BIP continue to anneal and extend to form 

loop structures.  

 

Loop-mediated Amplification 

This technique developed by Notomi et 

al in 2000 (Notomi 2000), has been widely 

studied for uses in isothermal amplification. It 

operates using primers which form cauliflower 

like structures when extended by a strand 

displacing polymerase. Two outer primers 

amplify the sequence and then two inner loop 

primers proceed with amplification as shown in 

Figure 1. LAMP is favored for its simplicity, 

robustness and ease of use. Amplification is 

measured with intercalating dyes or turbidity.  

 

Cross Priming Amplification 

Cross priming amplification (CPA) 

relies on specially designed primers and a 

strand-displacing polymerase to amplify DNA. 

Figure 2 outlines the basic process of CPA. In 

CPA, a cross primer is created with two sides: 

one being complementary to the DNA sequence 

and another non-complementary end. The cross 

primer will anneal and extend. Simultaneously, 

a primer upstream of the cross primer will 

 

Figure 2: Amplification schematic for CPA. Cross 

primer (red/blue) anneals first and when displaced by 4s 

(orange) forms a strand to which primers 2a (red), 3a 

(yellow), 5a (green), and F Bumper (purple) anneal in 

tandem. Formation of hairpin and continued annealing 

of primers forwards amplification.  
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anneal and extend, displacing the cross primer strand. The non-complementary end on the 

cross primer adds another annealing site for other primers. Another set of primers will anneal 

in tandem on this strand containing the cross primer. When extension occurs, these strands 

displace each other. This creates several shorter fragments which can then be amplified. A 

hairpin structure is created that energetically prefers the hairpin structure to reannealing, thus 

increasing open sites available for replication (Xu 2012). CPA demonstrates exponential 

amplification at a constant temperature. 

There are multiple factors to consider when choosing the most appropriate isothermal 

amplification method. The sensitivity or limit of detection, specificity, and time to 

amplification are important when determining if a technique is appropriate for detection. 

Limit of detection of the reaction refers to the lowest number of copies that the reaction 

amplifies. Specificity refers to the reaction accurately amplifying only target DNA. 

Nonspecific amplification may be due to the primers inaccurately amplifying non-target 

DNA or due to spontaneous amplification of primers.  

Overall Goals for Point-of-Care Diagnostics of Tuberculosis 

Point-of-care diagnostics are designed to operate simply and robustly in low resource 

settings. They should be easy to use and interpret and have repeatable results. In this study, 

we combine an easy-to-use lysis and extraction method (Bordelon 2011) with isothermal 

amplification to detect a specific target sequence for M. tuberculosis. This will enable easy 

detection of tuberculosis at the point-of-care. The easier and earlier tuberculosis is detected, 

the more likely the patient is to receive treatment. This helps to prevent the spread of the 

disease and lower the overall incidence and disease burden. In this study, we examine a 
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chemical lysis protocol with different nucleic acid amplification methods for their use in a 

point-of-care diagnostic in conjunction with a low resource extraction cassette.  
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CHAPTER II 

 

COMPARISON OF CPA AND LAMP FOR TUBERCULOSIS DETECTION IN AN 

INTEGRATED DIAGNOSTIC DEVICE 

 

Abstract 

Tuberculosis infects one out of three individuals worldwide. In order to control 

tuberculosis infection, accurate diagnostics are needed at the point-of-care. An ideal point-of-

care diagnostic for tuberculosis would include an integrated system for lysis of the bacteria, 

extraction of the DNA from the bacterial lysate and the sputum, and detection of a specific 

biomarker. We compared the use of two different isothermal amplification methods, cross 

priming amplification (CPA) and loop mediated amplification (LAMP), for the detection of 

tuberculosis within a previously developed extraction cassette designed for low resource 

areas. Under ideal laboratory conditions, CPA and LAMP had a limit of detection of 500 

copies and 50 copies respectively. As part of an integrated system, CPA and LAMP detected 

a concentration of bacteria at 1X10
3
 cells/mL at 46 ± 5.8 minutes and 57 ± 4.6 minutes. For 

the integrated system of tuberculosis detection, CPA generates faster results. However, 

LAMP was shown to have a lower limit of detection and more specificity under ideal 

conditions. Overall, this study supports the continued investigation of using isothermal 

amplification methods combined with a low resource extraction cassette as a point-of-care 

diagnostic test.  
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Introduction 

 According to the World Health Organization, tuberculosis infects one out of every 

three individuals and is the second leading cause of death worldwide (WHO 2011).  When 

left untreated a person with active TB will infect 10-15 people per year on average (WHO 

2002). Thus, early detection is crucial to preventing the spread of the disease. The standard 

method for diagnosis of active TB in low resource areas is sputum smear microscopy (Willey 

2008). This test is far from ideal. Its accuracy depends on the experience of the technician 

and it takes about a week to have results (Frieden 2003). An ideal diagnostic would reliably 

provide accurate results within an hour at the point-of-care. Isothermal amplification is one 

promising simple biomarker amplification method which may be integrated into a simple and 

sensitive TB test for point-of-care.  

There are multiple factors to consider when comparing isothermal amplification 

methods. The limit of detection, specificity, and time to amplification are important when 

determining if a technique is able to be used for detection. Limit of detection of the reaction 

refers to the lowest number of copies that the reaction amplifies. Specificity refers to the 

reaction accurately amplifying only target DNA. Nonspecific amplification may be due to the 

primers inaccurately amplifying non-target DNA or due to spontaneous amplification of 

primers.  

In this study, we combine an easy to use lysis and extraction method (Bordelon 2011) 

with isothermal amplification to detect a specific target sequence for M. tuberculosis as a 

simple integrated diagnostic for TB. This will enable easy detection of tuberculosis at the 

point-of-care. We examine CPA and LAMP for their use in a point-of-care diagnostic 

integrated with a chemical lysis protocol and low resource extraction cassette.  
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Materials and Methods 

Surrogate Sputum Samples 

Surrogate sputum samples were generously provided by Program for Appropriate 

Technology in Health (PATH), a nonprofit global health organization based in Seattle. As 

outlined by the Bill & Melinda Gates Foundation, these samples contained artificial sputum 

composed of 47 mg/mL of Type II porcine mucin, 6 mg/mL of salmon sperm DNA, 3.6 

mg/mL phosphatidylcholine, 33 mg/mL bovine serum albumin, 114 mM sodium chloride 

and 2 mM sodium azide. These concentrations are based on the component concentrations of 

sputum determined by Sanders et al (Sanders 2001). Artificial sputum was mixed overnight 

with known amounts of chemically inactivated Mycobacterium tuberculosis (Rif sensitive, 

clone H37Rv Johannesburg) at 4˚C to obtain a uniform slurry. Bacteria were provided to 

PATH from Drs. Wendy Stevens, Bavesh Kana and Lesley Scott at the University of 

Witwatersrand.  The bacteria were chemically inactivated using SR Buffer from Cepheid. No 

growth was confirmed for 42 days before being shipped to PATH. Bacteria were counted by 

a Guava Easycyte mini microcapillary flow cytometer after being gently rocked with 400 µm 

glass beads to disperse large aggregates. Surrogate sputum samples were spiked at three 

different concentrations of cells with high at 1X10
5
 cells/mL, medium at 1X10

4
 cells/mL and 

low at 1X10
3 

cells/mL. Surrogate sputum without bacteria was used as a negative sample, 

giving a total of four different concentrations.  

Chemical Lysis  

Chemical lysis was performed to release the bacterial DNA. 500 µL of the four 

individual concentrations were mixed with 500 µL of GuSCN at 4 M, sodium citrate at 25 

mM, Triton X-100 at 4.9% and sodium dodecyl sulfate at 0.2%  and 0.8 mg of MyOne Silane 
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Dynal beads. This mixture was agitated for 10 minutes on a Fisher Vortex Genie 2 at speed 4 

in Fisherbrand 2 mL tubes. After agitation, samples with the chemical lysis solution were 

introduced into the low resource extraction cassette.  

Low Resource Extraction Cassette 

A low resource extraction cassette technique previously developed in the lab 

(Bordelon 2011) was used to extract DNA from chemically lysed surrogate sputum samples. 

Extraction solutions were pipetted into fluorinated ethylene propylene (FEP) tubing with an 

inner diameter of 0.23 cm and an outer diameter of 0.31 cm. The GuSCN in the lysis solution 

enabled the binding of DNA to the silica-coated Dynal beads through a salt bridge. A large 

magnet was used to pull the DNA-bound magnetized beads from one solution to another. 

Extraction solutions after the lysis solution were a wash solution containing GuHCl at 4 M 

and sodium citrate at 25 mM, a precipitation solution of 80% ethanol and 5 mM KPO4, a 

wash solution of 70% ethanol, and an elution chamber. The elution chamber contained either 

50 µL of water, 40 µL of CPA reaction mix, or 50 µL of LAMP reaction mix. Ends of the 

FEP tubing were sealed with clay sealant to keep the solutions in place once the lysis/binding 

solution was introduced. The beads were thoroughly dispersed in each chamber of the 

extraction cassette before magnetically moving them to the next chamber. In the final 

chamber DNA on the beads was released in the elution solution. The DNA was subsequently 

amplified by PCR, CPA, and LAMP as described below.   

 

 

 

 



21 

 

 

 

 

Table 4: Primer designs for PCR, CPA, and LAMP amplification of IS6110 

Primer Sequence 

CPA 

CP TAGCAGACCTCACCTATGTGTCTTCGGTGACAAAGGCCACGT 

2a TAGCAGACCTCACCTATGTGTC 

3a CTGGGCAGGGTTCGCCT 

4s TGGCCATCGTGGAAGCGA 

5a ACAGCCCGTCCCGCCGAT 

F bumper AGGACCACGATCGCTGATC 

  

LAMP 

F3 TGATCCGGCCACAGCC 

B3 TCGTGGAAGCGACCCG 

FIP GCTACCCACAGCCGGTTAGGTGTCCCGCCGATCTCGT 

BIP TCACCTATGTGTCGACCTGGGCGCCCAGGATCCTGCGA 

  

PCR 

Forward ACCAGCACCTAACCGGCTGTGG 

Reverse CATCGTGGAAGCGACCCGCCAG 

IS6110 Target Genetic Sequence 

CTGATGACCAAACTCGGCCTGTCCGGGACCACCCGCGGCAAAGCCCGCAGGACCACGATCG 

CTGATCCGGCCACAGCCCGTCCCGCCGATCTCGTCCAGCGCCGCTTCGGACCACCAGCACCT 

AACCGGCTGTGGGTAGCAGACCTCACCTATGTGTCGACCTGGGCAGGGTTCGCCTACGTGGC 

CTTTGTCACCGACGCCTACGTCGCAGGATCCTGGGCTGGCGGGTCGCTTCCACGATGGCCA 
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Nucleic Acid Amplification Reactions 

CPA primers were designed by USTAR (Xu 2012). CPA reactions were performed in 

a final volume of 40 µL in 10 mM Tris HCl, pH 8.8, 10 mM KCl, 10 mM (NH4)2SO4, 4 mM 

MgSO4, 1 M Betaine, 0.6 mM dNTPs, 0.1% Tween 20, and 12 units Bst 2.0 DNA 

polymerase from New England Biolabs. Primers were at concentrations of 0.6 µM for CP, 

0.5 µM for 2a, 0.3 µM for 3a and 5a, and 0.06 µM for 4a and F bumper. CPA reactions were 

amplified at 63˚C. For LAMP, primers were designed using PrimerExplorer v4, available 

online (http://primerexplorer.jp/e/). Sequences for all primers are shown in Table 4. 

Reactions were performed for LAMP at a final volume of 50 µL in 10 mM Tris HCl, pH 8.8, 

10 mM KCl, 10 mM (NH4)2SO4, 4 mM MgSO4, 1 M Betaine, 0.6 mM dNTPs, 0.1% Tween 

20, and 12 units Bst 2.0 DNA polymerase . LAMP primers were at concentrations of 0.2 µM 

for F3 and B3, and 1.6 µM for FIP and BIP. Reactions were amplified at 65˚C. PCR was 

performed using primers from Cannas et al (Cannas 2008) and a QIAGEN QuantiTect Sybr 

Green PCR kit. Primer concentrations were 0.2 µM for forward and reverse primers.  

Isothermal Detection of Surrogate Sputum Samples with ESE Quant TubeScanner 

Isothermal reaction mixes were placed as the final chamber of the low resource 

extraction cassette. Chemical lysis was performed on surrogate sputum samples provided by 

PATH. After pulling through the extraction buffers, Dynal beads were placed within 

isothermal reaction mix for approximately 30 seconds to elute off DNA. The FEP tubing was 

then cut before the isothermal reaction mix and placed within a PCR tube, covered with 

parafilm and amplified in a Qiagen ESE Quant TubeScanner for 100 minutes as seen in 

Figure 3. The scanner took optical readings every minute. Fluorescence values were taken 

from the TubeScanner, normalized by dividing by the average of the first 5 scans, and Ct was 
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Figure 3: Diagram of integrated extraction and isothermal amplification detection using ESE Quant TubeScanner. 

calculated with a threshold of 2 RFU. The threshold value was chosen to be within the linear 

region of the normalized amplification curves when plotted on the log scale. The scan at  

which the normalized fluorescence was first above 2 relative fluorescence unit (RFU) was 

determined to be the Ct.  

 

Limit of Detection and Specificity of CPA and LAMP under Ideal Conditions 

PCR, CPA, and LAMP reactions were amplified using a Qiagen RotorGene Q 

thermal cycler instrument with the protocol described in Table 5. The limit of detection of 

the reaction was determined by running reactions on a pGEM-T Easy Vector plasmid 

(Promega) with an insert of the IS6110 genetic sequence (gift from USTAR) at 

concentrations of 5X10
8
 copies, 5X10

6
 copies, 5X10

4
 copies, 5X10

2
 copies, 50 copies and 5 

copies. Three runs of each nucleic acid amplification technique were performed. A threshold 

of 0.18 RFU was used to calculate the Ct for each run. The threshold was chosen to be within 

the linear range of the amplification curves and above the background fluorescence seen with 
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the isothermal amplification primers. Time to amplification was determined from Ct by 

multiplying the Ct value by 75/60 in the case of PCR, because there were 75 seconds in the 

cycle. An additional 15 minutes was added to include the initial hold step at 95˚C. For LAMP 

and CPA, Ct was multiplied by 85/75. This ratio was determined to account for the transition 

time between cycles were it remained at the amplification temperature.  

 

Specificity was determined by running reactions with 5X10
5
 copies of pGEM-T Easy 

vector without IS6110 target sequence, 1.25 µg of salmon sperm DNA, and 50 ng of salmon 

sperm DNA as nontarget DNA can cause amplification in nucleic acid amplification 

reactions. Amplification was determined to have taken place if the detection threshold was 

reached and the melt curve analysis showed a peak from amplification product because large 

amounts of background DNA can cause fluorescence to be over the threshold without 

Table 5: RotorGene Instrument Set Up 

 PCR CPA LAMP 

Step Temperature Time Temperature Time Temperature Time 

Hold 95 °C 15 min N/A N/A N/A N/A 

       

Cycles 40  80  80  

 95°C 15 sec 63°C 20 sec 65°C 20 sec 

 62°C 30 sec 63°C 20 sec 65°C 20 sec 

Read on Green 72°C 30 sec 63°C 20 sec 65°C 20 sec 

       

Melt Curve Analysis 55-95°C  50-95°C  50-95°C  
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amplification having occurred. To determine limit of detection and specificity of the reaction, 

three trials were performed with each trial containing duplicate samples.   

The time to nonspecific amplification for PCR, CPA, and LAMP reactions without 

DNA was determined by running the reactions for an extended number of cycles until 

reactions without DNA amplified. PCR was run for 144 cycles and CPA and LAMP were run 

for 180 cycles. Again, a threshold of 0.18 RFU was used. Six replicates were performed on 

n=3 trials for PCR, CPA, and LAMP.  

Statistical Analysis 

 In order to determine statistical significance between different data sets, an ANOVA 

test was performed. A p value of 5% was used to determined significance. If data sets were 

found to be significantly different, student T tests were performed between the different data 

sets.  A two tailed distribution with unequal variances was performed on sample sets. A p 

value of 5% was used to determine significance.  

Results 

Limit of Detection and Specificity of CPA and LAMP under Ideal Conditions 

 In order to compare the sensitivity of CPA and LAMP, isothermal amplification 

reactions were performed on DNA concentrations ranging from 5 copies to 5X10
8
 

copies/reaction. The limit of detection was determined and compared with PCR. As seen in 

Figure 4, the limit of detection for LAMP was about 50 copies/reaction whereas the limit of 

detection for CPA was 500 copies/reaction. The limit of detection of PCR was 5 

copies/reaction. This concentration amplified at 56 ± 2.6 minutes. LAMP amplified 50% of 

the 50 copies/reaction samples at 63 ± 9.1 minutes. CPA only amplifies one of the 50 

copies/reaction samples. At 500 copies, CPA amplifies  
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at 56 ± 18 minutes.  Its time to amplification varies greatly at this point. In general, as the 

concentration of DNA decreases, time to amplification increases and occurs over a wider 

range of time for all nucleic acid amplification techniques. All three techniques for nucleic 

acid amplification amplify 500 copies/reaction. For 500 copies/reaction, CPA amplifies at 56 

± 18 minutes, LAMP amplifies at 48 ± 6.4 minutes, and PCR amplifies at 47 ± 2.6 minutes. 

Thus, at lower concentrations on average LAMP amplifies faster than CPA.  

 To determine the specificity of CPA and LAMP, salmon sperm DNA at 1.25 µg and 

 

Figure 5: Nonspecific amplification of PCR (black), CPA (red) and LAMP (green) for nontarget background DNA (N=6) (A) 

and for no template controls run for 144 cycles for PCR and 180 cycles for isothermal amplification (N=18) (B). 

 

Figure 4: Time to amplification of DNA concentrations ranging from 5 copies to 

5X108 copies for PCR (black), CPA (red), and LAMP (green). Data points offset by 

shifting the x variable. 
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50 ng, and pGEM-T Easy Vector at 5X10
5
 copies were tested. Reactions without DNA were 

also run for an extended time to determine when nonspecific amplification would occur. As 

seen in Figure 5A, nonspecific amplification occurs for CPA and PCR, but not for LAMP. 

PCR shows nonspecific amplification for 16% of the pGEM-T Easy Vector samples at 5X10
5
 

copies/reaction. This is the only type of nontarget DNA tested that amplified for PCR. CPA 

shows nonspecific amplification for 33% of the pGEM-T Easy Vector samples, and for 16% 

of the salmon sperm DNA samples at 50 ng. Nonspecific amplification occurs for reactions 

without DNA for PCR on average at 118 ± 20 minutes, for CPA at 104 ± 16 minutes, and for 

LAMP at 132 ± 18 minutes as shown in Figure 5B. 

Chemically Lysed Surrogate Sputum Samples Detected with Nucleic Acid Amplification 

under Ideal Conditions 

 

 

Figure 6: Time to amplification for chemical lysis of surrogate sputum samples into a water 

elution for PCR (black), CPA (red) and LAMP (green). Data points offset by shifting the x 

variable. 
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 In order to ensure that the chosen chemical lysis and extraction protocol extracts 

DNA from sputum samples, surrogate sputum samples were chemically lysed and extracted 

with water as the final elution chamber. DNA from the elution was then amplified with all 

three nucleic acid amplification methods. As seen in Figure 6, all three nucleic acid 

amplification methods detected the three concentrations of bacteria tested. PCR amplified 

high, medium, and low samples at 42 ± 0.4 minutes, 46 ± 0.4 minutes, and at 50.0 ± 0.9 

minutes respectively. This corresponds to calculated concentrations of 3.2 ± 1.6X10
5
 

cells/mL, 2.9 ± 0.8X10
4
 cells/mL and 3.0 ± 2.0X10

3
 cells/mL. CPA amplified high, medium, 

and low samples at 31 ± 1.6 minutes, 36 ± 2.3 minutes, and 52 ± 19 minutes. It also 

amplified one negative sample at 84 minutes. LAMP amplified high, medium, and low 

samples at 41 ± 2.0 minutes, 46 ± 2.3 minutes, and 54 ± 3.7 minutes. Neither LAMP nor 

PCR amplified any of the negative samples.  

Isothermal Detection of Surrogate Sputum Samples in TubeScanner 

 Chemical lysis and extraction were combined with isothermal amplification detection 

to have an integrated system for TB diagnostics. When DNA from chemically lysed and  

 

Figure 7: Fluorescence amplification curves from TubeScanner for CPA (A) and LAMP (B) for high (black), medium (red), low 

(green) and negative (yellow). 
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extracted surrogate sputum samples was eluted directly into isothermal amplification reaction 

solution, high, medium, and low samples all amplified. The negative sample did not amplify. 

This was true for both CPA and LAMP. The fluorescence curves for one set of samples 

amplified by CPA and LAMP are shown in Figure 7A and Figure 7B respectively. When all 

of the data was analyzed for cycle threshold, CPA amplified on average at 42 ± 4.0 minutes 

for the high, 46 ± 7.5 minute for the medium, and 46 ± 5.8 minutes for the low as seen in 

Figure 8. LAMP amplified at 46 ± 3.2, 54 ± 5.1 and 57 ± 4.6 minutes for high, medium, and 

low. 

Discussion 

 An integrated system of lysis and extraction of DNA from surrogate sputum samples 

and amplification for detection is required for a point-of-care test. This study demonstrates 

the viability of such a test using the low resource extraction cassette and isothermal 

amplification. When DNA from lysed surrogate sputum samples was pulled into the final 

chamber of isothermal amplification reaction solution, it eluted off of the beads and 

amplified as seen in Figure 7 and Figure 8. This occurred with both LAMP and CPA for the 

 

Figure 8: Time to amplification for chemical lysis of surrogate sputum samples into isothermal 

reaction solution for CPA (red) and LAMP (green). 
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lowest level of bacteria tested. Importantly, neither technique amplified the patient negative 

control. Being able to correctly diagnose a negative result is as important as correctly 

diagnosing a positive result as an incorrect positive diagnosis will result in a patient being 

given a lengthy treatment regimen for no purpose. It will also put a strain on the resources of 

an area if too many patients are being needlessly treated for a disease they do not have.  

In Figure 8, it is shown that overall, CPA and LAMP were both able to detect the 

highest and lowest concentrations of the surrogate sputum samples tested. For the low 

concentration, CPA detected at 46 ± 5.8 minutes and LAMP detected at 57 ± 4.6 minutes. On 

average, it was shown that CPA amplified faster than LAMP for this application. CPA 

amplified faster because either the final concentration of DNA in the isothermal reaction 

solution was higher than the limit of detection of CPA or LAMP was more susceptible to 

negative effects from inhibitors from the lysis and extraction. As it was only near the CPA 

limit of detection under ideal conditions that CPA did not amplify before LAMP, it would be 

expected for CPA to amplify before LAMP at DNA concentrations higher than the CPA limit 

of detection. 

 For point-of-care detection of Mycobacterium tuberculosis from sputum samples, the 

expected lowest concentration for bacteria is 1X10
3
 cells/mL. As H37Rv has 17 copies of the 

IS6110 gene and 0.5 mL is required for chemical lysis, this suggests the final copy number 

will be about 8,500 copies eluted into 40 or 50 µL if 100% of the DNA is extracted from the 

cells. This is unlikely, as both lysis efficiency and extraction efficiency would have to be 

100% in order for this to occur. However, if only 10% of the available DNA was extracted 

from the cells, there would still be approximately 850 copies to detect. Thus, for our current 

system, either CPA or LAMP should detect the lowest concentration of bacteria expected.  
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An ideal system for TB detection would have results as soon as possible to decrease 

patient wait time. CPA and LAMP amplified  500 copies of target at 56 ± 18 minutes and 48 

± 6.4 minutes respectively under ideal conditions. Thus, both processes will detect the low 

concentration within an hour, but in ideal conditions LAMP will be faster. CPA will still be 

within the 80 minute cutoff determined by when nonspecific amplification is likely to occur.   

Chemical lysis of surrogate sputum samples followed by extraction and elution into 

water demonstrates the viability of the chemical lysis protocol as seen in Figure 6. All three 

amplification techniques were able to detect the lowest level of bacteria in the surrogate 

sputum samples. The final concentration for the lowest level of bacteria was calculated by 

PCR to be 3.0 ± 2.0 X10
3
 cells/mL. Amplification shows that the chemical lysis and 

extraction method were able to extract DNA from the surrogate sputum samples. It also 

shows that potential inhibitors from the lysis and extraction solutions do not prevent 

isothermal amplification from occurring if diluted. Under ideal conditions, CPA amplified at 

52 ± 19 minutes and LAMP amplified at 54 ± 3.4 minutes for the low concentration. These 

are not statistically different from one another. However, CPA had a much larger variation in 

its time to amplification.  

Each of the isothermal methods had strengths and weaknesses. Under ideal 

conditions, CPA had a limit of detection of 500 copies/reaction. At this copy number, CPA 

varies greatly in its time to amplification. While CPA amplified one reaction at 50 copies, it 

was not consistent. Also, CPA amplified the one 50 copies sample sooner than it amplified 

samples at higher concentrations of DNA. Its limit of detection does not include the lower 

concentrations it detected as these were inconsistent and in some cases occurred in the same 

time range that reactions without DNA amplified. As the concentration of DNA becomes 
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lower, CPA is not able to consistently amplify and when it does it takes a greater length of 

time.  

CPA demonstrated nonspecific amplification for salmon sperm DNA at 50 ng and for 

the pGEM-T Easy Vector at 5X10
5
 copies/reaction. It is possible that CPA would have 

demonstrated nonspecific amplification for salmon sperm DNA at 1.25 µg if more samples 

were tested. CPA amplifies without DNA at 104 ± 16 minutes. In theory, the multiple unique 

primers should give CPA a greater amount of specificity as the primers will anneal to a 

greater percentage of the target sequence. However, the primers of CPA are specifically 

designed to form a hairpin structure when extended which forwards the amplification 

process. This design also causes an increase in the amount of secondary structures seen in the 

primers and thus increases the amount of primer dimers formed. Primer dimers can lead to 

nonspecific amplification. Also, as there are more unique primers, there are more ways for 

the primers to anneal to one another in primer dimers.  

While CPA requires a greater number of unique primers, the overall concentration of 

primers within the reaction is lower than LAMP. It thus will have a lower level of initial 

fluorescence. If the detection modality used requires a low level of background fluorescence, 

CPA may be preferable. Ease of primer design is another factor to consider. CPA primers 

must be designed manually.   

On the other hand, under ideal laboratory conditions, LAMP has a better limit of 

detection than CPA of about 50 copies/reaction. On average, this concentration amplified at 

63 ± 9.1 minutes. 50% of the samples amplified at this concentration. At the lower 

concentration of 5 copies/reaction, only one sample amplified at 63 minutes. As with CPA, 

the time to amplification varies more as the concentration of DNA decreases.  
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A strength of LAMP was that it was shown to be very specific. It did not amplify any 

of the nontarget DNA samples tested. LAMP amplified without DNA present at 132 ± 18 

minutes. The multiple primers used meant more of the target sequence was covered and thus 

LAMP was specific. Like CPA, the primers of LAMP are designed to form secondary 

structures when extended. This would imply that there should be more primer dimers and 

thus more nonspecific amplification. However, there were not as many primers as seen in 

CPA, meaning there were less possible ways for the primers to anneal with each other in 

primer dimers. The combined concentration of all the primers of LAMP was 3.6 µM. This 

would give a high background fluorescence, making LAMP less suitable for detection 

modalities that require low background fluorescence. Primer design for LAMP is simple. 

There is software readily available online that will design the four essential LAMP primers 

for a given genetic sequence.  

When compared to PCR, neither isothermal amplification method was as sensitive. 

PCR consistently amplified at the lowest concentration tested of 5 copies/reaction. 

Amplification occurred for 5 copies at 56 ± 2.8 minutes. Therefore, PCR was shown to 

amplify faster than CPA or LAMP. PCR amplified 16% of the pGEM-T Easy Vector 

samples at 5X10
5
 copies, but it was more specific than CPA as it did not amplify either of the 

DNA concentrations of salmon sperm DNA. Therefore, PCR was shown to be more specific 

than CPA, but less specific than LAMP. As shown in Figure 5B, its overall time to 

nonspecific amplification without DNA was 118 ± 20 minutes. At this time, nonspecific 

amplification was caused by the primers forming primer dimers, generating a false positive.  

When the times to nonspecific amplification without DNA were analyzed with an 

ANOVA test it was shown that the reactions had significantly different times to 
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amplification. Individual T tests showed each reaction was different from the other. 

However, though statistically different from one another, they show nonspecific 

amplification within the same time range. Generally, after an hour and a half, nonspecific 

amplification began to occur for all reactions.  When used in the field, amplification should 

not be carried out for more than 80 minutes to ensure that all amplification that occurs is due 

to the presence of target DNA. Nonspecific amplification can lead to false positives and 

incorrect diagnosis of the disease. Therefore, carrying out amplification for only about 80 

minutes will limit false positives.   

 Overall, when choosing which type of nucleic acid amplification to use, the 

application must be considered. Requirements for the limit of detection, time to amplification 

and specificity will vary for different applications. While CPA is amplifies high 

concentrations of DNA sooner than LAMP, it has a higher limit of detection. CPA is less 

consistent in its time of amplification near its limit of detection. PCR has the lowest limit of 

detection, but it is not suitable for point-of-care diagnostics. The anticipated amount of target 

DNA must be taken into account. For applications with a high amount of target DNA and 

where faster results are needed, CPA may be preferable. This is especially true if background 

nontarget DNA is thought to be low. On the other hand, for applications with a low 

anticipated amount of target DNA, LAMP may be the better choice. It should be noted that 

CPA was less specific than LAMP under ideal conditions for this set of primers. However, 

when tested with the surrogate sputum samples, neither technique amplified the negative 

control. It should also be noted that primer design has a great influence on specificity. While 

the primers in this study were more specific with LAMP than with CPA, this may not hold 

true with a different primer design.    



35 

 

 In Figure 7, the raw fluorescence detected by the TubeScanner is shown. Towards 

the end of the run, the fluorescence fluctuates. The fluorescence profiles also have different 

initial and final fluorescence. The fluctuation of fluorescence can be partly explained by 

imperfections in the detection system. Pieces of FEP tubing were placed within PCR tubes 

and detection occurred from beneath. The FEP tubing pieces had the ability to shift during 

the run, which could lead to fluctuations. It was also shown that the height of the isothermal 

reaction mix had an effect on the fluorescence. If the reaction mix was lower, the 

fluorescence detected would be at a higher amplitude. The isothermal reaction mix height 

level was somewhat controlled by cutting at a certain length below where the isothermal 

amplification mix ended. However, this system was susceptible to small changes that could 

result in the differences in the overall fluorescence as seen above. Normalizing the data 

removed the effect of the different initial fluorescence values on the analysis for Ct.  

CPA did not demonstrate distinguishable differences among the high, medium, and 

low concentrations from PATH. LAMP only showed a significant different between high and 

low samples. This could be due to a variety of factors. After chemical lysis, reactions were 

left on ice while the other concentrations were being extracted. While the ice should have 

prevented most amplification from occurring, there could have still been some reacting 

occurring which gave the different times. Also, it is possible that only a certain amount of 

DNA was eluted into the isothermal reaction solution due to the salts and primers. Also, it is 

possible that trace amounts of inhibitors prevent the higher concentrations from reacting as 

soon as possible. LAMP was less affected by these factors a difference between high and 

low. For the purpose of this test, it is more important to give a consistent yes or no answer 
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rather than to distinguish the varying levels of bacterial concentration. Therefore, CPA is 

better for producing rapid results.  

 Thus far, it has been demonstrated that after chemical lysis and extraction of a 

surrogate sputum sample, isothermal amplification detects the anticipated range of bacteria 

within an integrated system. It can also distinguish between positive samples and negative 

samples. To fulfill the requirements of a point-of-care system, only a portable heating and 

optical detection system is required. For the integrated system, CPA gives faster results for 

detection of a positive result. However, overall LAMP has been shown to be more specific.  

This study supports the continued exploration of using isothermal amplification methods 

combined with a low resource extraction cassette as a point-of-care diagnostic test. 
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