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CHAPTER I 

 

OVERVIEW 

Cardiovascular disease (CVD) is the leading cause of death worldwide1. Many 

clinical endpoints of CVD, such as myocardial infarction and ischemic stroke, involve 

thrombus formation and subsequent blood vessel occlusion. Individuals at risk for 

thrombotic events can be identified highly effectively by the presence of conditions such 

as obesity, hypertension, dyslipidemias, and insulin resistance. One recent study, for 

example, found that over 90% of CVD risk was attributable to only nine such risk 

factors.2 However, using these risk factors to infer etiology is not straightforward, in part 

because no single risk factor or combination of risk factors is a necessary or sufficient 

condition of CVD. Different patterns of risk factors are known to lead to similar clinical 

endpoints, while similar patterns may associate with different clinical endpoints by 

population, implying multiple modes of cellular or systems-level pathogenesis.3,4 In 

affected individuals, risk factors also tend to cluster together, making it challenging to 

discern the causative from the merely epiphenomenal. 

This phenotypic complexity, reflecting vast possibilities of interaction between the 

innumerable genetic and environmental factors that contribute to CVD over many years, 

can be simplified by identifying conditions (related to environment, sex, or ancestry) that 

favor the emergence of specific risk factor networks. Characterizing phenotypic 

heterogeneity in this way can provide insight into the genetic architecture of CVD, 

improve risk assessment, and increase the power of genetic epidemiologic studies. Thus, 

before seeking to identify genetic factors that may be involved in shaping observed 
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patterns of cardiovascular risk factors, we focus in the first part of this manuscript on 

characterizing their prevalence and interrelatedness. 

Towards this end, we have CVD-related data for a large cohort of urban and rural 

men and women in Ghana, participants of the Hypertension and ARterial Thrombosis 

(HeART) study.5 An epidemiological transition is underway in sub-Saharan Africa, 

marked by a rapid decline in infectious diseases and a rise in chronic non-communicable 

diseases6,7. This has created an urgent need to understand the conditions that promote 

CVD in low- and middle-income countries, particularly conditions related to 

urbanization. Rural-to-urban migrations typically lead to less physical activity, greater 

psychosocial stress, and poorer nutritional habits6. Because CVD risk factors, including 

genetic factors, can vary by ethnicity, an effective global strategy of CVD prevention will 

require large studies in different populations.8  

In addition to identifying the prevalence of CVD risk factors and their dependence 

on age, sex, and urbanization, in Chapter 3 we also assess the comparative relevance of 

individual risk factors to thrombosis within and across networks, by sex and environment.  

To gauge this relevance, we focus on two intermediate phenotypes of CVD, namely the 

plasma proteins plasminogen activator inhibitor type-1 (PAI-1) and tissue plasminogen 

activator (t-PA), which by virtue of their functional role and quantifiable expression 

provide a direct link between genetic and environmental variability on the one hand, and 

thrombotic clinical endpoints on the other.  PAI-1 extends the stability and size of 

developing thrombi by inhibiting t-PA, the enzyme that dissolves the clotting protein 

fibrin. High plasma concentrations of PAI-1 have been shown to associate with the 

development of myocardial infarction and other thrombotic disorders (discussed in detail 
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in Chapter 2). Our premise in this section is that the degree to which quantitative risk 

factors correlate with PAI-1 and t-PA concentrations serves as a proxy for relevance to 

thrombotic pathogenesis.  

In addition to environmental and behavioral variables, such as those associated with 

industrialization and urbanization, we know from heritability studies that genetic factors 

must explain a large fraction of the variation in CVD-related traits. However, the genetic 

loci discovered by genetic epidemiologic studies so far account for very little of this 

variation (as discussed in detail in Chapter 4). There is strong evidence that this “missing 

heritability” is due in part to an intrinsic quality of genetic architecture as such, namely 

the fact that most complex phenotypes are the product of many genes with often 

undetectably small physiological effects.9 However, we argue here that the small 

statistical effect sizes in genetic epidemiologic studies can also arise from the context-

dependence of genetic variants, with “context” comprising any number of environmental 

and physiological factors and genetic backgrounds. Addressing the fact that the statistical 

significance of a SNP at the population level may tell us little about its biological 

significance, we introduce novel, multivariate approaches to SNP discovery in Chapter 4 

that leverage (rather than disregard or adjust for) context-dependence; this in contrast to 

the standard, single-locus models used in most association studies. In  the first part of 

Chapter 4 we lay the theoretical groundwork for our methods,  illustrating how context-

dependent genetic effects may diminish the power of conventional, single-locus 

association tests, and how multivariate approaches, including those proposed here, can 

improve the power not only to detect biologically significant SNPs, but also to improve 

the biological characterization of SNPs deemed statistically significant, and to elucidate 
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the networks and pathways in which they are involved.  

Finally, in Chapter 5, we turn to real data, and apply our novel multivariate methods 

to the genotyped exomes of Ghanaian participants of the HeART study described above. 

Our first task in Chapter 5 is to compare the results and performance of our multivariate 

statistical methods to existing approaches to establish proof of concept. Thus, restricting 

genotypic data to SNPs that have previously been reported to have significant effects on 

biological processes, we assess their effects on lipid traits and the correlations among 

them. Next, we apply our methods to exome-wide data, seeking to discover genetic 

variants that mediate the relationship between conventional risk factors and PAI-1. 

Whereas previous studies seeking to identify genetic factors that influence PAI-1 levels 

have merely adjusted for other CVD risk factors, such as body mass index and plasma 

triglycerides, here we seek to identify genetic variants that may increase thrombotic risk 

by influencing the covariance between these risk factors and PAI-1.  
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CHAPTER II 

 

INTRODUCTION, BACKGROUND, AND SPECIFIC AIMS 

 

Introduction and Background 

 
Cardiovascular disease (CVD) and thrombosis 
 

Cardiovascular disease is a broad phenotype that generally progresses over 

decades, encompassing many conditions of vascular origin, including coronary heart 

disease, stroke, rheumatic heart disease and deep venous thrombosis. The most prevalent 

CVD conditions worldwide are coronary heart disease and stroke.10 The pathophysiology 

of both involves thrombosis, the process of clot formation inside of blood vessels. In a 

healthy individual, thrombosis contributes to the proper execution of hemostasis, a 

process that prevents excessive blood loss during mechanical vessel injury. However, 

certain conditions can promote thrombosis in the absence of mechanical damage, which 

in turn may lead to clinically adverse sequelae. When thrombi do not degrade properly, 

owing to an imbalance between the homeostatic processes of coagulation and lysis, they 

gradually become occlusive, as in a myocardial infarction, preventing the flow of blood 

through coronary arteries. Thrombi may also detach from the vascular surface on which 

they form, creating one of the many types of emboli, which can travel to the brain and 

cause ischemic strokes. A number of insults, such as atherosclerotic deposits on vessel 

surface, infection, or stagnant blood flow can lead to thromboembolic events, all of which 

would be associated with a different set of risk factors. The severity of these 
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prothrombogenic insults and the balance between clot formation and its destruction 

together determine cardiovascular fitness.  

 
Determinants of CVD risk 

 
Many studies have affirmed the efficacy of various risk factors in predicting 

CVD.11 The term "risk factor" (as distinguished from a "risk marker") implies a causal 

role in etiology in the sense that eliminating a risk factor is expected to reduce risk.12 In 

contrast, likely markers include cardiac troponins and homocysteine, as they appear be 

surrogates for causal physiological processes, and consequently inapt targets for 

intervention. CVD risk is typically estimated using statistical models such as the 

Framingham score, which take as inputs continuous measurements or discrete values of 

risk factors.13 Apart from age, sex, and family history, most conventional risk factors, 

such as high blood pressure, cholesterol, obesity, smoking, and diabetes, can be modified 

or treated. The widely cited study INTERHEART study concluded that over 90% of the 

global population attributable risk (PAR) of myocardial infarction is attributable to only 9 

potentially modifiable risk factors.2 The total PAR for specific countries ranged from 

75% to 100%. Eliminating these risk factors, then, should reduce the proportion of cases 

in a large population by the corresponding PAR. However, a PAR near 100% does not 

mean more powerful risk factors cannot be discovered. In fact, PAR can add up to greater 

than 100%, as when one factor is a necessary component of multiple causal sets of 

factors. When risk factors have the potential to generate overlapping sets of 

pathophysiological responses (e.g. dependent on conditions such as sex, environment, 

and genetic background), risk stratification can generally be improved.14 

The extent to which genetics contribute to CVD risk is a question of both 
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scientific and public interest. Certainly, many of the traditional CVD risk factors have 

strongly inherited bases. Heritability estimates for plasma levels of HDL cholesterol, for 

example, are 40-60%.15 Interestingly, genetic variants thought to have a causal role in 

raising lipid levels have been shown to associate with the first cardiovascular event (and 

moderately improve risk prediction) even after adjustment for actual lipid levels and all 

other risk factors.16 Recently, genome-wide association studies (GWAS) have identified 

hundreds of single nucleotide polymorphisms (SNPs) with evidence of association with 

various CVD-related traits; effect sizes are typically very small, as for most complex 

phenotypes, but nonetheless have substantial influence in aggregate.17,18 Family history 

is, accordingly, an important CVD risk factor: a history of premature atherosclerotic 

CVD in a parent confers a threefold increase in offspring risk,19 while having a close 

relative who has experienced a myocardial infarction increases risk sevenfold.20 Although 

a fraction of such risk may be attributable to a shared environment, a study of 21,000 

Swedish twins found that a male whose monozygotic twin died of CHD before age 55 

had a relative hazard of 8.1, while the relative hazard for dizygotic twins was 3.8. The 

analogous monozygotic/dizygotic relative hazards for women (with twin’s age of death 

increased to 65) were 15.0 and 2.6, respectively. These findings underscored the 

importance of genetic variation to CVD, while also suggesting that genetic factors may 

play a greater role in women than in men, and that genetic effects may decrease at older 

ages.21 

Indeed, as with most complex diseases, genetic susceptibility to CVD must be 

interpreted within an environmental context. With respect to its contribution to CVD risk, 

sex is best interpreted as an "environmental" risk factor in gene-environment space, 
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because genotype frequencies differ only trivially by sex within a population. As such, 

sex is perhaps the strongest “environmental” variable: CVD is known to present 

differently in males and females with respect to onset, prognosis, and response to 

treatment.22  

The parallel increase of CVD prevalence with urbanization also reflects the 

fundamental importance of gene-environment interactions. The repercussions of adopting 

a “Western lifestyle” (characterized among other things by reduced physical activity and 

an energy-dense diet) are well illustrated by examining the negative effects of rural-to-

urban migrations on cardiovascular health. One systematic review of such migrations in 

18 different countries found that CVD risk consistently increased in migrant populations 

to a level between that of the rural population left behind and the urban population 

joined.23 That this risk gradient recurred equally in men and women from many disparate 

populations (each with roughly homogenous genetic backgrounds) implicates the urban 

lifestyle as a major and universal risk factor for CVD. However, the consequences of 

migration in different populations proved to be quite variable with respect to specific risk 

factors, even when similar in terms of total risk. Most consistent were the effects on body 

mass index (BMI), total cholesterol, low-density lipoprotein levels (LDL), and blood 

pressure, while measures of high-density lipoprotein (HDL), hypertension, and fasting 

glucose exhibited the most variance between migrant populations. This heterogeneity 

likely stems from both genetic differences and environmental differences between the 

populations featured in the study.  

Just as risk factor measurements vary by population, so do the relative 

contributions of risk factors to total CVD risk. Noting that low- and middle-income 
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countries bear 80% of the global CVD burden (measured in disability-adjusted life 

years), but that most knowledge on CVD risk is derived from European populations, the 

INTERHEART study explored whether the effects of risk factors varied among countries 

and ethnic groups around the world. Whereas the 9 major risk factors (mentioned above) 

were found to account for a similarly high proportion of the PAR in every ethnic group 

from the 52 countries considered, the relative deleteriousness of every risk factor varied.2 

Other studies have drawn similar conclusions.24 For example, lipid levels appear to be 

less consequential in South Asian populations, while blood pressure contributes 

disproportionately to CVD risk in China.4  

Similar patterns of risk factors have also been shown to associate with different 

clinical endpoints by population. For example, in China and much of Africa, stroke risk 

far outweighs ischemic heart disease risk, all else equal,25 implying variable modes of 

cellular and systems-level pathogenesis. (See Figure 2-1). 
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Figure 2-1: Geographic distribution of relative mortality from stroke and ischemic 
heart disease (World Health Organization Global Burden of Disease Program, 2004). 
Figure borrowed from Kim et al. (2011) 25 
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t-PA and PAI-1  
  
 
 

 
Figure 2-2: Schematic of fibrinolytic pathways. Figure adapted from Kohler et al (2000)26. 
 
 

Tissue plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) are 

plasma proteins essential to maintaining hemostasis. Mechanical damage to a blood vessel 

triggers two concurrent processes to prevent bleeding into surrounding tissue: a temporary 

platelet plug rapidly forms, functioning to offer immediate protection of the exposed tissue, 

while the thrombin necessary to create a stable fibrin clot is generated. Damage to a vessel 

results in vascular smooth muscle spasm, or vasoconstriction, which reduces blood flow, 

allowing platelets to adhere via glycoprotein receptors to the exposed collagen at the site of 
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injury and to endothelial von Willebrand factors. Binding with platelets causes a steric change, 

and this alteration of shape leads to the release of additional vasoconstrictive factors 

(thromboxane A2 and serotonin). ADP is also released by activated platelets to recruit more 

platelets to the site of injury, and fibrinogen is sequestered from plasma to form bonds between 

activated platelets. These steps temporarily stabilize the platelet plug27.  

Concurrently, thrombin is generated by a separate mechanism. Mechanical damage to 

blood vessels exposes not only collagen but also tissue factor (TF), and interactions between TF 

and a circulating coagulation factor, Factor VIIa, initiate a coagulation cascade through the 

activation of a series of other plasma coagulation factors. The coagulation factors are serine 

proteases, circulating in plasma as inactive zymogens, but once they are converted into their 

active form, they activate other downstream zymogens. This cascade eventually leads to the 

conversion of prothrombin to its active form, thrombin, at high levels27.  

Thrombin is then allowed to act on the fibrinogen that formed bonds between activated 

platelets in the platelet plug, and convert it to fibrin. The fibrin, in turn, polymerizes and forms a 

stable clot through cross-linking with Factor XIII27. While the formation of this stable fibrin clot 

is essential during vessel injury, it needs to be tightly regulated so as not to cause myocardial 

infarctions, pulmonary emboli, ischemic strokes or other thrombotic conditions28,29. The main 

mechanism for controlling the amount of clot formation depends on plasmin’s ability to break 

fibrin down into soluble fibrin degradation products (FDPs).  

Plasmin is the active form of plasminogen. Plasminogen circulates in plasma in a closed 

conformation (an inactive form). However, upon binding to the fibrin in clots, it undergoes steric 

changes, allowing several enzymes to activate it into plasmin27. Tissue plasminogen activator (t-

PA) is one of the enzymes that can activate bound plasminogen. The circulating plasma 
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concentration of t-PA is very low, as most endogenous t-PA is found in vesicles of endothelial 

cells in its inactivated form. Like the coagulation factors, t-PA is a serine protease, and its 

production in endothelial cells and its release are stimulated by the presence of active thrombin. 

t-PA is released by the endothelial cells in its inactive form, and it is converted into its active 

state once it binds to fibrin30. Using fibrin as a cofactor in this capacity enhances the catalytic 

efficiency of t-PA over 100-fold31. However, access to fibrin is modulated by activated Factor 

XIII, which can mask the t-PA binding site of fibrin upon cross-linking. It has been demonstrated 

that t-PA is particularly efficient in degrading early stage fibrin, whereas the fully polymerized 

and cross-linked form is more resistant to t-PA fibrinolysis26.  

On account of its thrombolytic properties, t-PA is used in hospitals to re-perfuse any 

infarcted zones, with particular clinical applications to myocardial infarctions, pulmonary 

emboli, and ischemic strokes within 3 hours of first symptoms27,29.   

The main inhibitor of t-PA is plasminogen activator inhibitor-1 (PAI-1), a serine protease 

inhibitor. PAI-1 also serves to inhibit urokinase plasminogen activator, uPA. PAI-1 serves as a 

pseudo-substrate for both t-PA and uPA, forming a covalent complex with them in a one to one 

ratio, thereby preventing them from breaking down the fibrin clot. The t-PA:PAI-1 complex is 

eventually cleared from circulation by hepatic cells32. PAI-1 is found in endothelial cells, adipose 

tissue, and it is constitutively produced by activated platelets33. Its active form is very unstable, 

with a plasma half-life of 30 minutes; it has been demonstrated that active PAI-1 binds to 

vitronectin to form a more stable complex. The release of free active PAI-1 by platelets is 

important at the site and time of the vascular injury, where the concentration of the active form 

spikes locally and protects the clot from premature lysis. Like t-PA, PAI-1 can also bind fibrin, 

which stabilizes it while retaining its activity as an inhibitor of t-PA26,32. The inhibition of fibrin-
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bound t-PA is less efficient because the catalytic domain of t-PA bound to fibrin is less 

accessible to PAI-134. C-reactive protein, which is released from the liver upon stimulation by 

macrophages and adipose tissue during inflammatory states, has been shown to increase the 

levels of PAI-135. Other PAI-1 stimulants include TGF-beta, TNF-alpha, plasma glucose and 

insulin26,36. The vasopressive hormone angiotensin II increases both the production as well as the 

secretion of PAI-1, and inhibition of angiotensin-converting enzyme has been associated with 

decreased total plasma PAI-126.     

 
t-PA and PAI-1 assays 
 

The mechanisms described above apply mostly to local circulation at the time of the 

insult, and are thus essential in the response to vessel injury. Understanding the mechanisms of 

local hemostasis at the time of injury requires insight into the acute plasma dynamics of the 

active forms of the t-PA and PAI-1. However, the active forms are of less use when studying 

their contribution to chronic disease. The steady state levels of t-PA and PAI-1 are governed by a 

different set of factors. Since the Ghanaians in this study were not undergoing cardiovascular 

insult at the time of the blood draws (aside from the venipuncture), the phenotype of interest 

needs to be ascertained by a metric that can serve as a proxy for baseline, steady-state plasma 

levels, as opposed to measures that are important at the time of vascular injury. In this regard, 

there are three major forms of t-PA in human plasma: active t-PA, t-PA complexed with PAI-1, 

and t-PA complexed with C1-inhibitor. Therefore, there are three possible measurements of t-PA 

in the blood: active t-PA, complexed t-PA and total t-PA.  

In our protocol, samples of blood were drawn from each subject starting at 8 in the 

morning to limit the variability due to the diurnal release patterns of serum t-PA and PAI-1. 

These samples were used for ascertaining the plasma levels of t-PA and PAI-1 with the use of 
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the enzyme-linked immunosorbent assay (ELISA, Biopool AB, Umea). Samples were drawn in 

duplicate to provide back-ups. The measurements ascertained total t-PA in plasma; hence, they 

provided the sum of active t-PA and its complexed forms, whether bound to PAI-1 or C1-

inhibitor. There are several reasons for using total t-PA measures as opposed to active t-PA in 

this study. From an ascertainment perspective, total t-PA is the more reliable measure. It has 

been shown that active t-PA levels are particularly influenced by the length of veno-occlusion 

during the venipuncture used to obtain the sample37. This is a consequence of the above-

described processes in which a mechanical insult to the vessel causes the local release of active t-

PA, thereby inflating its steady state value. Furthermore, special processing, such as immediate 

sample acidification and freezing are required to obtain accurate measures of active t-PA; if 

those are not adhered to, the levels of the measured protein can decrease by as much as 25%37.  

The pharmacokinetics of t-PA plasma concentrations are contingent on the secretion of t-

PA from endothelial cells, inhibition of t-PA by PAI-1 or C-1, and clearance by the liver38. It is 

estimated that in the steady state, less than 20% of plasma t-PA is present as the active form, and 

that most t-PA in circulation is bound to PAI-126,32. Since active t-PA is present at such low 

levels, the effects of the phlebotomy issues described above could significantly increase 

measurement error. Measuring active t-PA alone also ignores the complexed levels covalently 

bound in the t-PA:PAI-1 form. Since the liver readily clears active t-PA, an elevated measure 

might be indicative of a temporary local response to any vascular injury, as opposed to chronic 

thrombotic disease predisposition. A measurement of the complexed t-PA as well as the free 

form version gives a better idea of the chronic condition in circulation, because it involves both 

the rapidly metabolized active component as well as the more stable covalently bound forms that 

take longer to clear.   
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The antigen PAI-1 assay used in this study measured free PAI-1, PAI-1 complexed with 

t-PA and urokinase plasminogen activator37. Studying total PAI-1 is more appropriate for the 

objectives of this study than examining free PAI-1 because of the short half-life of the active 

molecule in plasma. A measure of active PAI-1 alone is a better representation of the enzyme’s 

local, circumstance-dependent effects, because its half-life is less than 30 minutes. Total PAI-1 is 

a better approximation of the steady state levels over a prolonged period of time, because the t-

PA:PAI-1 complex takes longer to metabolize and to clear from circulation.  

 
t-PA and PAI-1 as CVD endophenotypes 
 

Endophenotypes are especially appropriate for the study of complex diseases like CVD in 

which many potential diagnoses reflecting multiple etiological pathways present with similar 

symptoms.39 PAI-1 and t-PA can be considered endophenotypes of CVD on account of their 

strong association with known cardiovascular factors on the one hand, and their direct 

biochemical connection to the process of thrombus formation and dissolution on the other. 

Compared to normal arterial tissue, severely atherosclerotic arterial tissue has been shown to 

have higher levels of PAI-1 messenger RNA.40 This may be expected, as PAI-1 extends the 

stability and size of thrombi.  

In addition to biomolecular data, epidemiologic evidence also supports the 

characterization of t-PA and PAI-1 as endophenotypes Supra-normal PAI-1 levels have been 

shown to associate with future adverse outcomes not only in CVD patients, but in healthy 

individuals as well.41,42 In one study, low levels of plasma fibrinolytic activity at enrollment 

predicted subsequent incidence of coronary artery disease in young men, suggesting that low 

fibrinolytic activity precedes heart disease.43 In an age- and sex-matched case-control study of 

520 acute coronary syndrome patients, plasma PAI-1 concentration was shown to be an 
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independent risk factor for future cardiac events.44 A prospective study similarly found baseline 

PAI-1 levels to associate significantly with adverse cardiac events, with a hazard ratio of 1.24 

between the highest and lowest third of participants.41   

Because PAI-1 inhibits the action of free t-PA by binding to it and forming an inactive 

complex, plasma concentrations of PAI-1 and t-PA correlate positively.45 Thus, despite its role in 

breaking down clots, plasma t-PA also associates with increased CVD risk and CVD 

progression. In one nested case-control study on ischemic heart disease progression, t-PA levels 

were found to be significantly higher in cases than controls (p <0.001).46 In a prospective case-

control study of 75,343 postmenopausal women without prior CVD, t-PA remained a significant 

predictor of coronary heart disease even after adjustment for lipid and non-lipid risk factors.47 

High t-PA levels have also been shown to associate with an increased risk of recurrent 

cardiovascular events in patients with established CVD.48 

 
Genetic epidemiology of CVD risk factors 
 

Before the sequencing of the human genome and the onset of genome-wide association 

studies (GWAS), the great majority of genes implicated in CVD by family studies and candidate-

gene studies were of rare Mendelian conditions.49 Since then, hundreds of genes related to 

polygenic CVD endpoints, such as myocardial infarction, have been identified by GWAS (Figure 

2-3). While a substantial number of these common variants had previously been shown to be 

involved in rare monogenic disorders,50 the majority reside in unexpected and often nongenic 

regions of the genome.17 
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Figure 2-3: Genomic locations of genetic variants associated with the risk of Myocardial 
Infarction. Figure from O’Donnell CJ et al. (2011).51  

 
With complex disease, defining the phenotype of interest is not always straightforward. In 

most cases, an inherently arbitrary decision has to be made between “lumping” and “splitting”; 

for, at some level of resolution, no two phenotypes are the same. Whereas the tendency in the 

field has been to err on the side of “lumping” (mainly because the value of GWAS depends to a 

large extent on sample size), the power to detect true genetic associations decreases with 

increased phenotypic heterogeneity. Compounding this problem is the unavoidable issue of 

genetic heterogeneity, i.e. the fact that the same heritable phenotype, however defined, can often 

be caused by different genetic loci in different people. The same loci may also have different 

effects based on extrinsic variables, such as environmental exposures. Cardiovascular genetic 

epidemiology thus faces the dual challenge of having to untangle the formidable genetic 

complexity of CVD while navigating the often cryptic phenotypic complexity inherent to it. Yet, 
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unless these challenges are overcome, insight into biological mechanisms will continue to be 

limited, while more ambitious goals, such as personalized medicine and drug development, will 

be even further off. Indeed, a remarkably small number of the hundreds of genome-wide 

significant loci associated with CVD risk factors (Figure 2-4) have led to functional or 

mechanistic insights that shed light on the statistical associations.51 There is, for example, 

surprisingly little overlap between the genes shown to associate with CVD risk factors and those 

that associate with CVD-related endpoints and physiological traits.52 

One way to deal with both phenotypic and genetic complexity is by using endophenotypes, 

or molecular phenotypic measures that are presumably links in the chain of physiological events 

leading to a broader phenotype. Because thrombosis is the major pathological step underlying 

coronary heart disease and stroke, coagulation and fibrinolytic factors in the bloodstream have 

been considered potential endophenotypes.53 In previous studies, a fundamental criterion for 

choosing endophenotypes has been high heritability54. PAI-1 and t-PA, for example, have 

estimated heritabilities of up to 0.83 and 0.67, respectively, in some twin studies.55,56 Many 

GWAS have been performed on coagulation factors, and novel genetic loci have been detected, 

including three each for PAI-157 and t-PA58. However, there has been virtually no overlap 

between the replicated genetic associations for these factors and those for other CVD-related 

traits, including endpoints.59 Paradoxically, then, although CVD risk factors and t-PA and PAI-1 

levels are known to be associated with CVD-related endpoints, as discussed above, genes that 

influence these phenotypes do not appear to contribute independently to CVD risk.  

We maintain that this paradox can be resolved, at least in part, by meeting the challenges 

posed by both phenotypic and genetic heterogeneity head on, rather than by ignoring them. As a 

first step, we should accept the growing likelihood that genetic factors acting on single traits 
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independently of environmental and physiological context play only a minor role in CVD. In this 

spirit, we explore the possibility that genetic variants that influence the covariance of multiple 

CVD-related traits may be informative of CVD etiology, and hence clinically significant. Before 

tackling the genetic complexity of CVD, however, we explore the correlational architecture of 

cardiovascular phenotypes themselves, keeping in mind that multivariate approaches will profit 

from a better characterization of the phenotypes studied, and in particular, from a clearer 

understanding of the conditions under which networks of these phenotypes may vary. 

 

Figure 2-4: SNPs discovered by GWAS of CVD risk factors, through 2011. Figure 
adapted from a table in O’Donnell CJ et al. (2011).51  
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Specific Aims 

Specific Aim #1  

To assess the correlational structure of cardiovascular risk factors and their association with PAI-

1 in a Ghanaian population. Before seeking to identify genes that influence the patterns of 

association among cardiovascular risk factors, our first aim is to develop a thorough 

understanding of those patterns and the non-genetic forces that shape them. We will assess how 

cardiovascular risk factors and their networks vary by sex and urban environment in our study 

population. A better understanding of the relationships among risk factors can also provide 

insight into their etiologies and the pathogenesis of acute cardiovascular events. The strength of a 

risk factor’s association with thrombogenic factors, for example, can be more informative of its 

contribution to ischemic risk than its mean level alone. With this in mind, we will examine the 

relationships between cardiovascular risk factors and PAI-1, and assess how these relationships 

may vary by sex and environment. We will approach these questions from multiple angles; for 

example, we will consider age-dependent effects and effects adjusted for body mass index; we 

will calculate partial correlations to identify possible direct or independent relationships among 

pairs of risk factors; and we will assess how the clustering of risk factor conditions (as in the 

metabolic syndrome) affects PAI-1 levels and varies with sex and environment. 

 

Specific Aim #2 

To establish a theoretical framework for understanding genetic effects on phenotypic 

correlations, and to develop multivariate genome-wide association methods that identify them. 

Few studies have looked for genetic variants that modify correlations between traits, and none 

has done so on a genome-wide basis. Our aim here is to develop methods towards that end, but 
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first we will need to explore this largely uncharted territory from a theoretical perspective. Given 

our present state of knowledge, how common should we expect correlation-modifying genetic 

elements to be? How would such elements “translate” back to biology? (For, correlation pertains 

only to populations.) Using these and related questions as a starting point, we will build 

theoretical models to guide both the development and the assessment of our statistical 

algorithms. An important consideration will be the pros and cons of methods sensitive only to 

genetic effects on correlation versus those that can detect genetic effects on individual traits as 

well. 

 

Specific Aim #3 

To identify genetic variants that influence cardiovascular risk factor correlations in the 

Ghanaian cohort. We will apply the methods developed above to the subset of 1105 Ghanaians 

genotyped by the Exome chip. We hope not only to discover genetic variants that influence the 

correlational networks of cardiovascular traits, but also to get an idea of their nature, relative 

abundance, and potential importance to genetic architecture. 
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CHAPTER III 

PREVALENCE AND INTERRELATION OF CVD RISK FACTORS IN GHANA 
 

 

CVD Risk Factors in Urban and Rural Ghana: a Cross-Sectional Analysis 

 

Introduction 

Urban populations in the developing world are growing rapidly and at an accelerating 

rate.60 Rural-to-urban transitions are often associated with marked changes in behavior and 

lifestyle, such as diminished physical activity, sedentary employment, poorer dietary habits, and 

increased psychosocial stress.61 In part because of these emerging risk factors, over 80% of the 

global burden of cardiovascular disease (CVD) has now shifted to low- and middle-income 

countries.2 While proper screening and preventive strategies have reduced CVD in higher 

income countries, individuals at risk in the developing world are much less likely to be identified 

and treated, for reasons that include poor infrastructure, inadequate resources, and a lack of 

awareness regarding CVD and its symptoms in general.62  

The fastest rate of urbanization worldwide is occurring in sub-Saharan Africa, driven by 

high fertility rates and rapid industrialization.60 As in most of the developing world, the transition 

from pre-industrial to industrialized economies has initiated an epidemiological transition from 

illnesses related to malnutrition, childbirth, and infection, towards chronic, non-communicable 

diseases, such as CVD.63 However, the epidemiological transition in sub-Saharan Africa is still 

in its early stages. As a consequence, diseases such as HIV and malaria continue to strain limited 

resources and dominate the public consciousness, while CVD and its often-subclinical symptoms 
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are overlooked.64 Thus, populations are becoming older and more vulnerable to CVD at a time 

when surveillance capacities remain poor and skilled health workers scarce.64,65 

Our knowledge of CVD epidemiology in sub-Saharan Africa is incomplete.66 Early 

surveys revealed that risk factors such as hypertension and diabetes were rare, fueling the 

hypothesis that CVD was not of substantial public health interest.67,68 More recently, this view 

has begun to change.65,69,70 Nonetheless, variation in study designs and the diversity of the 

populations being studied have generated an often-confusing picture.69,71 While some reports 

suggest that the proportion of disease burden attributed to CVD in sub-Saharan Africa may still 

be relatively low (primarily on account of persistent infectious disease-related mortality), the 

average age of death from CVD is the youngest in the world.72 Thus, all the makings of a CVD 

epidemic are in place, as both life expectancy and the urban share of the population continue to 

increase. 

Much of our understanding of CVD risk is based on studies of European populations, 

despite the fact that both the prevalence of risk factors and their relation to CVD endpoints differ 

among ethnic groups.8,73 Existing risk assessment algorithms, such as the Framingham score, 

may consequently be prone to error when applied globally. Moreover, while such algorithms are 

typically calculated separately for males and females,74 the effect of sex on CVD incidence and 

risk profile can also vary with culture and ethnicity.75 Indeed, sex-specific effects appear to be 

more pronounced in the developing world, perhaps owing to differences in cultural practices and 

social behavior.76,77 For example, men in sub-Saharan Africa are far more likely than women to 

smoke, whereas women are more likely to be overweight or obese.65,78 

Given these heterogeneities of CVD risk profiles by sex, environment, and population, a 

multifactorial approach to CVD assessment and intervention is essential. Here, we describe how 
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major CVD risk factors, including dyslipidemia, hypertension, obesity, and diabetes, are 

distributed among urban and rural Ghanaian men and women from a single ethnic group. In 

addition to the conventional CVD risk factors, we also assess plasma levels of two 

fibrinolytically active enzymes that may provide deeper insight into CVD risk at the biochemical 

level. Our overriding goal is to evaluate the prevalence of CVD risk factors in the region and to 

understand the conditions that give rise to them, establishing a baseline for future comparisons 

and setting guidelines for appropriate recommendations. 
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Materials and Methods 

 

Study Population 

Unrelated participants were identified from Sunyani, the capital of the Brong Ahafo 

region of Ghana, population 250,000 as of the 2012 census, and from surrounding rural villages 

of fewer than 5000 people. Urban recruitment for the study began in 2002 and ended in 2007. 

Rural participants were recruited in 2008. Participants learned about the study at public venues, 

including local churches and markets. Individuals were excluded from analyses if they had signs 

of acute illness (e.g. malarial infection), were under 18 years of age, or were a first or second 

degree relative of someone already enrolled in the study. Participants provided information via 

questionnaire regarding their previous medical histories and other demographic and socio-

economic variables, including age, sex, education, smoking status, alcohol consumption, and 

current medications. All participants provided informed consent. Institutional review boards at 

Vanderbilt University, Dartmouth College, and Regional Hospital, Sunyani approved all 

protocols. 

 

Anthropometric measurements and biochemical analyses 

Standing height and weight were measured to calculate body mass index (BMI). Blood 

pressure was measured twice; the means for both systolic blood pressure (SBP) and diastolic 

blood pressure (DBP) were used in subsequent statistical analyses. Blood was drawn between the 

hours of 8:00 AM and 10:00, after a minimum of 8 hours fast. These samples were used to assess 

fasting glucose, fasting lipids, and t-PA/PAI-1 levels. Fasting glucose levels were measured 

using a hand-held Sure Step glucose monitor by LifeScan, using blood drops from the blood 
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draw needles (LifeScan, Milpitas, California, USA). Total cholesterol (TC), triglycerides (TG) 

and high-density lipoprotein cholesterol (HDL) levels were measured in plasma; low-density 

lipoprotein cholesterol levels were calculated using the Friedewald equation (LDL=TC-HDL-

TG/5). Plasma samples were stored in liquid nitrogen prior to shipment to Vanderbilt University, 

where concentrations of t-PA and PAI-1 antigen were measured using a commercially available 

enzyme-linked immunoassay (ELISA, Biopool AB, Umea).  

 

Categorical outcomes 

Hypertension was defined as: SBP ≥140 mm Hg, DBP ≥90 mm Hg, or current use of 

antihypertensive medication prescribed by a physician.79,80 Diabetes was defined as a fasting 

glucose level ≥126 mg/dl or current use of an antidiabetic medication prescribed by a 

physician.81 Impaired fasting glucose (IFG) represents an intermediate state of abnormal glucose 

regulation, associated with abnormal glucose tolerance, and often termed “pre-diabetes.” The 

American Diabetes Association (ADA) now defines IFG as fasting glucose ≥100 mg/dl, having 

lowered the threshold from ≥110 mg/dl in 200382, whereas the World Health Organization 

(WHO) continues to recommend the 110 mg/dl cut point, citing a lack of evidence that lowering 

it offers any benefit with respect to reducing adverse outcomes.83 All analyses below were 

performed using both cut points, and are referred to accordingly. Total cholesterol (TC), low-

density lipoprotein (LDL), and triglycerides (TG) were considered high if they were ≥200 mg/dl, 

≥130 mg/dl, ≥110 mg/dl, respectively; while high-density lipoprotein (HDL) was considered low 

≤40 mg/dl84-87. Obesity was defined as BMI ≥30 kg/m2, while BMI ≥25 kg/m2 was deemed 

overweight.88 All participants who smoked in the last 30 days qualified as current smokers. 

Years of education were dichotomized into two different variables, one reflecting whether a 
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participant had any schooling, and the other, attendance beyond Junior Secondary School (JSS). 

Ghanaian students typically attend JSS until age 15 in preparation for the “Basic Education 

Certificate Examination.”89 90 

 

Statistical Methods 

Crude means and standard deviations (SD) or, where appropriate, medians and 

interquartile ranges (IQR) were calculated for all continuous variables after participants were 

stratified by sex and urban/rural environment into groups: urban males (UM, N=972), urban 

females (UF, N=1293), rural males (RM, N=469), and rural females (RF, N=583). Fasting 

glucose, TG, t-PA, PAI-1, and the ratio of TC to HDL were log transformed to obtain normal or 

near-normal distributions, and all continuous variables were adjusted for age, after which t-tests 

allowing for unequal variances were used to compare differences in means between sexes 

stratified by residence (UM vs. UF, RM vs. RF) and between urban and rural residents stratified 

by sex (UM vs. RM, UF vs. RF). For all continuous variables, differences in age- and sex-

adjusted means among urban and rural residents and differences in age- and residence-adjusted 

means among male and female participants were standardized by dividing by the pooled standard 

deviations of residuals to estimate the “effect sizes” of urban environment and sex, respectively, 

on cardiovascular risk factors. These analyses were also performed after adjustment for BMI. 

The effect size of education beyond JSS among urban residents on CVD risk factors was also 

assessed, using age- and sex-adjusted residuals. This analysis was not performed on rural 

residents as too few had such schooling to be included.  The “rules of thumb” for interpreting 

these effect sizes (i.e standard mean differences) are as follows: 0.2 = small, 0.5 = moderate, and 

0.8 = large effect.91 Similar analyses using logistic regression models that controlled for either 
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age and sex or age and environment were used to estimate the odds ratios of categorical clinical 

outcomes by environment or sex, respectively. The prevalence estimates of these outcomes were 

standardized according to the WHO 2000-2025 standard population, using recommended age 

bins that pertained to our data (18-24, 25-34, 35-44, 45-54, ≥55 years-old).92,93 Mean values of 

all categorical and continuous variables were also calculated separately for these age groups. 

Statistical analyses were performed using STATA (version 12) and JMP (version 11).   
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Results 

In total, 3317 individuals met all eligibility criteria, of which 2265 (68%) were urban 

dwellers (57% female), and 1293 rural (55% female). Ages ranged from 18-99 and were 

similarly distributed among urban males (UM), urban females (UF), rural males (RM), and rural 

females (RM) (p=0.23, Kruskal-Wallis test), with medians of 42.5, 43.5, 42, and 42, respectively 

(Table 1). Smoking was extremely rare among UW (0%), RW (2%) and UM (3%). The 16% of 

RM who qualified as smokers generally did not smoke cigarettes, but rather their own leaves, 

presumably tobacco (Table S1). Almost all UM (96%) and a similarly large proportion of UW 

(88%) reported some formal education (Table S1). Although this was true for only 64% of RM 

and 44% of RW, the difference was strongly related to age cohort (Table S1 and Figure S1). 

With education beyond JSS, the contrast between urban and rural was even greater, with 48% 

and 30% of UM and UW, respectively, meeting the criterion, but only 5% of RM and 2% of RW 

(Table S1 and Figure S1).  

(Table 1 here) 

Blood Pressure and Hypertension 

In within-sex analyses (UM vs. RM, UF vs. RF), the age-standardized prevalence of 

hypertension and age-adjusted mean SBP and DBP were significantly greater in the urban 

participants (Table 1 and Table S1). In comparisons between sexes stratified by residence (UM 

vs. UF, RM vs. RF), only SBP differed significantly, and was higher in men (p<0.001) (Table 1 

and Table S1). Male sex and urban environment both had small standardized effect sizes on 

SBP;  urban environment had a moderate effect on DBP and hypertension (Figure 2 and Figure 

3). There was a marked increase in the prevalence of hypertension with age, which started about 
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a decade earlier in the urban cohort than the rural (Figure 4). SBP and DBP increased with age 

as well, but less among rural participants (Figure S2).  

 

BMI, Overweight and Obesity 

Estimates of age-adjusted, mean BMI and age-standardized prevalences of overweight 

status (“overweight”) and obesity all differed significantly between urban and rural residents 

stratified by sex (UM vs. RM, UF vs. RF) and between sexes stratified by residence (UM vs UF, 

RM vs. RF) (p<0.001) (Table 1, Table S1, and Figure 1). The standardized effect size of urban 

residence on age- and sex-adjusted BMI was large, while that of female sex was moderate 

(Figure 2). These effects were exaggerated at the right tail of the BMI distribution, with the odds 

of being overweight (BMI ≥25) or obese (BMI ≥30) 4.8 and 7.6 times greater, respectively, 

among urban residents (Figure 3A). Females had 2.9 times greater odds of being overweight and 

5.2 times greater odds of being obese than males (Figure 3B). BMI, overweight and obesity 

increased with age chiefly among urban residents, continuing until 45 years of age among UW 

and until 55 years of age among UM (Figure 4 and Figure S3). By age 45, over 70% of urban 

women were overweight and over 35% obese. 

 

Fasting Glucose, Impaired Fasting Glucose, and Diabetes 

In the pairwise comparisons, differences in age-standardized prevalence of diabetes 

between urban and rural residents (UM vs. RM, UF vs. RF) were significant (p<0.001), and 

differences between sexes (UM vs. UF, RM vs. RF) were not (Figure 1 and Table S1). 

Differences in fasting glucose and IFG prevalence (using the ADA’s 100 mg/dL cut-point), on 

the other hand, were consistently significant only between sexes (UM vs. UF, RM vs. RF) 
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(p≤0.001) (Table 1, Table S1, and Figure 1). Comparisons using the WHO’s 110 mg/dL 

cutpoint yielded less generalizable results, differing significantly only between UM and RM 

(p=0.001) and RF and RM (p=0.003) (Table S1). The standardized effect size of sex on fasting 

glucose was small, while that of urban residence was even smaller (by roughly half) (Figure 2). 

However, urban residents had 3.6 times greater odds of diabetes (Figure 3). Mean fasting 

glucose increased similarly with age in all groups (Figure S4), whereas the prevalence of 

diabetes began to increase sharply only by  the 35-44 age group among UW, and the 45-54 age 

group among UM (Figure 4). Overall, the age-standardized prevalence of diabetes was 5.7% for 

urban men (95% CI: 4.4%-7.4%) and 6.6% (95% CI: 5.4%-8.1%) for urban women (Table S1). 

 

Lipid traits and Dyslipidemias 

Age-adjusted, mean TC and LDL were significantly higher in urban males and females 

than in their rural counterparts (p<0.001) (Table 1). The standardized effect size of urban 

environment on TC and LDL (adjusted for age and sex) was large, approaching one standard 

deviation. However, urban residence was not significantly associated with increased TG or lower 

HDL (Table 1 and Figure 2A). Female sex had a small deleterious effect on LDL and TC, and a 

small beneficial effect on HDL (Figure 2B). Among all continuous risk factors, TC and LDL 

were most robust to adjustment for BMI (Figure S7). TG and HDL profiles became significantly 

worse in the rural residents after such adjustment (Figure S7). The effects of sex and 

environment on dyslipidemias as dichotomous traits (Figure 3), and their age-standardized 

prevalences (Figure 1) were broadly similar to results for the continuous measurements. In 

general, the increase in TC, LDL, and TG with age was steady and similar regardless of sex or 

environment, with the exception that in men (both urban and rural), TG became inelastic by the 
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45-54 age group (Figure 5). HDL, on the other hand, was the only measure in this study that did 

not exhibit a significant change with age (Figure S5). 

 

PAI-1 and t-PA 

All four pairwise comparisons of age-adjusted, mean t-PA  (UM vs. RM, UF vs. RF, UM 

vs. UF, and RM vs. RF) were significant (p≤0.004), while only one of four tests yielded 

significant results for PAI-1 (UF vs. RF, p<0.001) (Table 1). Analyses of standard mean 

differences were consistent with these results: urban residence had a moderate effect on t-PA and 

a small effect on PAI-1, while (male) sex had a small effect on t-PA, but no effect on PAI-1 

(Figure 2). Mean t-PA increased with age in all groups, while the change in mean PAI-1 with 

age, though generally increasing, was more variable within and between groups (Figure S6). 
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Discussion 

Economic development in sub-Saharan Africa has fostered an epidemiological transition, 

marked by an increase in the burden of chronic diseases, including cardiovascular disease. In 

Ghana, where more than half of the population now lives in urban areas,94 recent epidemiologic 

studies have reported a rise in the prevalence of conditions such as hypertension, diabetes, and 

obesity.69,71,95,96 Here we have taken a broad view of these and other risk factors to present a 

more complete picture of cardiovascular disease risk in the region, both as it currently stands and 

as we may expect it to increase with continued urbanization. 

Once considered virtually absent in the sub-Saharan African region, hypertension has 

quickly emerged as a major epidemic.97-99 In the absence of adequate infrastructure for 

screening, prevention and control, high blood pressure is rarely diagnosed in its early stages, 

when it is most modifiable100. Untreated, it can lead to renal failure, coronary heart disease, and 

stroke, particularly hemorrhagic stroke, which is the leading cause of cardiovascular disease-

related death in people of African descent.72 In our study population, the age-standardized 

prevalence of hypertension among urban residents (33%) was in the upper range of estimates 

previously reported for West African cities, including Accra, the capital of Ghana (30%).69,95 

Also in keeping with previous reports, hypertension prevalence was the same in urban men and 

women (34% and 32% respectively).69 Urban residents were at significantly greater risk for 

hypertension than rural residents, primarily because mean urban DBP was almost one-half 

standard deviation greater than mean rural DBP. In contrast, urban residence was associated with 

a small increase in SBP. Male sex had a slightly larger effect than urban residence on SBP, but 

no significant effect on DBP. Notably, hypertension appeared to increase at similar rates among 

urban and rural participants by age 45.  
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 Few large studies have assessed hypertension prevalence in rural West African 

populations. Our age-standardized estimates of 20% prevalence for rural men and 21% for 

women were similar to results from recent cross-sectional studies of rural Nigerian 

populations101-103 (Figure 3-1 and Table S1), although those studies did not present age-

standardized, sex-specific prevalences, complicating comparison. Nonetheless, taken together 

with previous studies, including several smaller ones,99,104-106 our data indicate that hypertension 

should no longer be considered rare in rural West Africa. 

In contrast to early studies in Ghana, which estimated the prevalence of diabetes to be 

0.4%112 and 0.2%.113 the age-standardized prevalence in the urban Ghanaians in our study was 

much higher, and comparable to the estimated world prevalence among all adults of 6.4111 

Importantly, awareness of diabetes throughout sub-Saharan Africa is low, and undiagnosed cases 

common, such that affected individuals are at higher risk for complications than in the developed 

world.114 Thus, preventing a substantial escalation in diabetes-related morbidity and mortality in 

the face of continued urbanization and demographic ageing will be a major challenge in coming 

years.70  

Throughout this study, we analyzed not only dichotomous clinical outcomes, but also the 

continuous risk factors that underlie them. While dichotomous outcomes may have more 

interpretable clinical significance, continuous measures such as BMI, blood pressure, fasting 

glucose, and total cholesterol are also associated with clinical endpoints,107-110 and can provide 

complementary, often clinically useful information. and can provide complementary, often 

clinically useful information. This was evident in our analyses of diabetes and fasting glucose. 

Whereas urban residents were significantly more likely to have diabetes than rural residents, they 

did not have higher fasting glucose levels; in fact, median fasting glucose levels were highest 
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among rural females. Mean glucose was not significantly different between urban and rural 

participants even over the age of 55, when diabetes prevalence diverged considerably (15% 

urban vs. 4% rural, for both men and women). The increased risk of diabetes is therefore driven 

by the greater variance in the fasting glucose levels of urban participants (p-value = 0.0001; 

Levene’s test), as well as the joint effects of fasting glucose with other correlated risk factors in 

urban environments (see Section B of this chapter).  

Importantly, whether urban residence was a risk factor for impaired fasting glucose or not 

depended on which threshold (i.e. ADA or WHO) was used. When the ADA value (≥100 mg/dl) 

was used, urban and rural residents had roughly the same odds of impaired fasting glucose, or 

“pre-diabetes”. Thus, if the ADA criterion for intermediate hyperglycemia is taken as a reliable 

predictor of future diabetes, rural Ghanaians are more at risk than generally thought. In addition, 

our results indicate that using only a continuous measurement may underestimate the clinically 

important differences between groups with respect to glucose metabolism.    

Epidemiologic differences between sexes can be expected to reflect not only underlying 

pathophysiological and sociocultural factors, but also their interactions. To assess whether 

urbanization had sex-specific effects on the distribution of cardiovascular risk factors, we 

stratified participants in our initial analyses by both sex and environment, rather than 

categorically adjusting for sex. In fact, the changes in lifestyle that accompany urbanization are 

unlikely to be uniform across sexes, and even the same exposures may affect men and women 

differently.107,115-118 Our results for BMI support this; we found that the age-standardized 

prevalence of overweight or obesity among urban women was singularly high, at 60%.  These 

results are consistent with those of the Women’s Health Study of Accra (64.9%).119 Stratifying 

study participants by age as well as by sex and residence revealed that by age 45, over 70% of 
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urban women were overweight and over 35% obese. While urban residents (independent of sex) 

had 7.6 times higher odds of being obese than their rural counterparts, and women had 5.2 times 

higher odds than men, the combined effects of urban residence and female sex were greater than 

additive. Correspondingly, in a logistic regression model of obesity controlling for age, sex and 

residence, the sex-by-residence interaction term was highly significant (p<0.0001). The effect 

modifier here is likely sociocultural; it has been noted that increased body mass in sub-Saharan 

Africa has traditionally been recognized as a sign of social status and female attractiveness.78,120 

However, as excessive adiposity and its associated comorbidities impose enormous costs on 

quality of life and health-care systems121, this situation warrants sustained intervention and calls 

for strategies for prevention. 

The age-standardized prevalence of obesity among urban men in our study population 

was not particularly high (7%), but the percentage of those overweight was substantially greater, 

at 35%. This contrasted strongly with the rural men, among whom obesity was practically non-

existent, and the proportion of overweight was low (11%) and did not increase significantly with 

age. Obesity and overweight were also low among rural women, indicating that these conditions 

are driven almost entirely by factors related to urbanization.  Therefore, the fact that obesity is 

increasing faster in Ghana than in any other West African nation can probably be attributed to 

the rapid rate of urbanization there relative to other nations in the region.122,123 

Few studies have assessed lipid traits in West Africa, and to our knowledge, no large 

study (N>1000) has done so in Ghana.124,125 126 This may be partly because infectious and 

inflammatory causes of cardiovascular disease are relatively more common than atherosclerosis 

in sub-Saharan Africa, in contrast to other world regions.72 The relatively small number of 

studies that have measured lipid traits have also reported generally favorable profiles, creating 
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the impression that dyslipidemia is not a problem.127 For example, a 2011 survey of serum total 

cholesterol in 199 countries and territories found sub-Saharan Africa to have the lowest mean 

level among all world regions (158 mg/dl).126 However, currently only about one-third of sub-

Saharan Africa is living in urban areas. Because that number is rapidly increasing, with an 

inflection point projected for 2035,128 understanding the effects of urbanization on lipid profiles 

may be more important than estimating their present levels.  

Indeed, we found that urban residence had a stronger effect on age- and sex-adjusted total 

cholesterol and low-density lipoprotein cholesterol than on any other risk factor, raising them 

0.85 and 0.9 standard deviations, respectively. Moreover, total cholesterol was higher in both 

male and female urban participants in every age group. Remarkably, the urban/rural differences 

in total cholesterol appear to be driven entirely by differences in low density lipoprotein, as there 

were no differences in HDL or triglycerides among participants from urban or rural settings. 

Rates of hypercholesterolemia (total cholesterol ≥ 200 mg/dl) and high LDL (≥130 mg/dl) were 

likewise consistently higher among urban men and women across all age groups (data not 

shown). The effects on total cholesterol and LDL were fairly robust to a BMI adjustment, 

indicating that some, but not all of the observed differences can be attributed to the disparity in 

BMI. Differences in quality of diet (e.g. the consumption of highly processed foods or unhealthy 

macronutrient ratios) may therefore also contribute to differences in lipid profiles.  

Hypercholesterolemia, and in particular, high LDL levels, are strongly implicated in the 

pathogenesis of atherosclerotic plaque formation and consequent symptomatic cardiovascular 

disease. Within the context of oxidative stress and modification, oxidized LDL permits both 

intimal macrophage uptake (creating “foam cells”) and induces cytotoxic damage to surrounding 

endothelial and smooth muscle cells.129 Correspondingly, measures to decrease LDL have been 
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shown to reduce coronary events, peripheral vascular disease, and strokes, while slowing 

progression of atherosclerosis.130 131,132 With pharmacologic improvements in cardiovascular risk 

profiles, higher LDL in this population represents a modifiable risk factor regardless of 

triglyceride or HDL levels. 

Although mean total cholesterol levels among rural men (142.2 mg/dl) and women (152.3 

mg/dl) were low, median triglyceride levels were unexpectedly high (82.5 and 82 for men and 

women, respectively). The difference between urban and rural age- and sex-adjusted triglyceride 

levels was not significant. High-density lipoprotein profiles were even less favorable among 

rural participants, with close to 40% of men and women having levels ≤40 mg/dl (Figure 3-1 and 

Table S1). In fact, when adjusted for BMI as well as age and sex, the rural triglyceride and HDL 

profiles were both about 0.3 standard deviation worse than the urban, indicating the presence of 

underlying causal factors unique to the rural environment. Although we have seen no explicit 

references to this trend, we note that other studies have also reported poor triglyceride and HDL 

profiles in rural populations globally, including in India,133 Nigeria,134 Peru,135 Mexico,87 and 

Guatemala.136 This phenomenon deserves further study. 

The screening of risk factors for subclinical cardiovascular disease can help identify 

individuals at high risk of myocardial infarction and stroke.137 We assessed two such novel risk 

factors, plasminogen activator inhibitor-1 (PAI-1) and tissue plasminogen activator (t-PA). PAI-

1 impedes the removal of thrombi from the vascular system by bonding to t-PA and neutralizing 

its thrombolytic properties. Clinical evidence indicates that spikes in PAI-1 increase the risk of 

thromboembolic events, whereas t-PA is clinically administered after ischemic stroke to clear 

arterial occlusions (Chapter 2). Importantly, PAI-1 is a highly pleiotropic risk factor, also playing 

a role in atherosclerosis and participating in biochemical pathways related to inflammation and 
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the deterioration of metabolic homeostasis.138 Although t-PA and PAI-1 have opposite roles at 

the physiological level, plasma t-PA in epidemiologic studies is in fact positively correlated to 

PAI-1, because assays that measure t-PA typically detect it in bound form to PAI-1 (see Chapter 

2). Accordingly, both t-PA and PAI-1 levels have been shown to associate with cardiovascular 

risk factors and clinical endpoints. It is not, in fact, clear which is the better predictor.48 

Although rural men generally had the healthiest cardiovascular profiles in our study their 

plasma PAI-1 levels were comparable to those of urban men and women. This was unexpected, 

because PAI-1 is released by adipose tissue, making elevated plasma PAI-1 one of the hallmarks 

of obesity, whereas mean BMI among rural men was lower than that of urban men, and the 

prevalence of obesity was essentially zero. PAI-1 is also released by platelets and endothelial 

cells, and its expression is directly influenced by triglyceride levels[82], which were high among 

rural men; however, there was no significant difference in triglyceride levels between rural men 

and women, and rural women had the lowest PAI-1 levels among all groups. Thus, the reasons 

for higher PAI-1 among rural men are not clear, although they appear to be sex-specific. 

Interestingly, t-PA appeared to be substantially more sensitive to both urban residence 

and sex than PAI-1. Urban residents had a small increase in PAI-1 but moderately increased 

plasma t-PA concentrations, and mean t-PA levels were higher among urban men and women of 

every age group. This may be of interest as prior results have indicated that t-PA may be a better 

predictor of CVD risk than PAI-1 (ref). However, the results for PAI-1 and t-PA were, to a large 

extent, directionally consistent, allowing us to conclude that urbanization is likely increasing 

cardiovascular risk because of pro-thrombotic and pro-inflammatory risk factors in addition to 

the conventional risk factors described above.  
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The limitations of our study are primarily those that pertain to cross-sectional designs and 

convenience sampling. These include restrictions on our ability to elucidate causal relationships 

and the possible introduction of biases. Some of the prevalence changes we observed with age, 

for example, may be due to a birth cohort effect, but repeated measurements or information on 

secular trends would be required to confirm this. However, broadly speaking, our results were 

consistent with those reported for similar populations. Additionally, because we sampled from a 

relatively small city, the estimates of the effects of urbanization presented here are likely to be 

conservative. By sampling from rural villages of fewer than 5000 people (in most cases, much 

fewer), where subsistence farming is still the main occupation, we also hope to have limited the 

potentially confounding factors introduced by technological advances into more semi-rural 

settings.139 Finally, our conclusions have implicitly assumed that the risk factors we measured 

affect disease risk in African populations much as they do in populations of European descent, 

for whom most clinical studies thus far have been conducted.  

Our results, taken on the whole, underscore the dramatic role of urbanization in changing 

CVD risk profiles in Ghana. We note that urbanization appears to be the dominant factor in 

producing the less favorable risk profiles related to blood pressure, BMI, fasting glucose, lipids, 

PAI-1 and t-PA. However, there are important exceptions, such as triglycerides, and particularly 

HDL. Prospective studies in multiple venues will be required to clarify and build upon the results 

presented here, with the ultimate goal of understanding how CVD risk factors can act together to 

affect clinical disease. Nonetheless, we have described key transitions that are central to chronic 

disease etiology, the understanding of which will become increasingly important in sub-Saharan 

Africa. 
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Table 3-1. Physiologic and metabolic variables in the Ghanaian cohort.  

 Females      Males      Urban  Rural 

  Urban Rural p-value   Urban  Rural  p-value   
p-value  
by sex 

p-value  
by sex 

N 1293 583   972 469      
Age (years) 42.1 (11.3) 43.9 (15.9) 0.005  42.9 (12.6) 44.9 (17.2) 0.005  0.113  0.333 
BMI (kg/m2) 26.9 (5.6) 22.9 (3.9) <0.001  24.0 (3.9) 21.5 (2.7) <0.001  <0.001  <0.001 
SBP (mm Hg) 125.1 (18.3) 123.8 (20.2) 0.002  130.2 (18.9) 127.3 (16.9) 0.002  <0.001  <0.001 
DBP (mm Hg) 77.7 (10.7) 73.7 (11.6) <0.001  78.0 (12.4) 73.5 (10.8) <0.001  0.694  0.623 
TC (mg/dL) 181.8 (42.1) 152.3 (36.9) <0.001  170.6 (42.5) 142.2 (36.4) <0.001  <0.001  <0.001 
LDL-C (mg/dL) 113.9 (37.6)1 88.6 (32.3)2 <0.001  106.3 (34.1)3 76.4 (27.3)4 <0.001  <0.001  <0.001 
HDL-C (mg/dL) 49.2 (14.6)1 46.5 (15.9)2 0.002  43.5 (13.3)3 44.5 (14.7)4 0.002  <0.001  0.212 
TC/HDL-C  3.8 (1.6)1 3.3 (1.8)2 <0.001  3.9 (1.7)3 3.2 (1.5)4 <0.001  <0.001  0.097 
TG (mg/dL) 77 (47) 82 (52) 0.103  83 (57) 82.5 (53) 0.103  <0.001  0.084 
Glucose (mg/dL) 93 (15) 94 (14) 0.371  91 (15) 90 (14) 0.371  <0.001  <0.001 
t-PA (ng/mL) 6.4 (4.6) 4.3 (3.4) <0.001  6.7 (5.3) 5.6 (4.3) <0.001  0.004  <0.001 
PAI-1 (ng/mL) 3.9 (6.3) 2.9 (4.4) <0.001   3.7 (6.3) 3.5 (4.8) <0.001   0.282   0.253 
1n=955, 2n=317, 3n=722, 4n=225  
 
Data shown as: crude mean (standard deviation), except for TC/HDL-C, TG, glucose, t-PA, and PAI-1, shown as: median 
(interquartile range)  
 
BMI - body mass index; SBP - systolic blood pressure; DBP - diastolic blood pressure; TC - total cholesterol; LDL-C - low 
density lipoprotein cholesterol; HDL-C - high density lipoprotein cholesterol; TG – triglycerides; Glucose – fasting plasma 
glucose; t-PA - tissue plasminogen activator; PAI-1 - plasminogen activator inhibitor;  
p-value: t-test (allowing for unequal variances) was performed on age-adjusted residuals to evaluate significance of difference 
between means; TC/HDL, TG, glucose, t-PA, and PAI-1 were first log-transformed. 
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Figure 3-1. Age-standardized prevalence rates of dichotomous clinical outcomes by sex and urban/rural environment in 
Sunyani, Ghana. (A) Urban (purple) and rural (green) females; (B) urban (purple) and rural (green) males. Error bars denote 95% 
confidence intervals of estimates.  

 
 
Abbreviations: HTS – hypertension (SBP ≥140 or DBP ≥90); IFG – impaired fasting glucose (using the WHO cut-point of 110 
mg/dL); DIAB – diabetes (glucose ≥126 mg/dL); OVWT – overweight (BMI ≥25); OBS – obesity (BMI ≥30); HIGH TC – 
hypercholesterolemia (cholesterol ≥200 mg/dL); HIGH TG – elevated triglycerides (≥ 110 mg/dL); HIGH LDL – elevated low-density 
lipoprotein cholesterol (≥130 mg/dL); LOW HDL – low high-density lipoprotein cholesterol (≤40 mg/dL). For UF, RF, UM, and RM, 
N=1293, 583, 972, and 469 (except for HIGH LDL and LOW HDL: N=955, 317, 722, 225), respectively. All data age-standardized to 
the WHO 2000-2025 standard population. 
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Figure 3-2. The effect of urban/rural environment and sex on cardiovascular risk factors in Sunyani, Ghana. (A) Absolute 
differences between urban and rural standardized means (with 95% confidence intervals); colors represent the group with the higher 
mean (purple: urban; green: rural). Data were adjusted for age and sex. (B) Absolute differences between male and female 
standardized means (with 95% confidence intervals); colors represent the group with the higher mean (red: female; blue: male). Data 
were adjusted for age and urban/rural residence. 
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Figure 3-3. The effect of urban/rural environment and sex on dichotomous cardiovascular risk factors in Sunyani, Ghana. (A) 
The increased odds of each outcome (with 95% confidence intervals) are depicted for the group with the higher odds (urban: purple; 
rural: green). Data were adjusted for age and sex. (B) The increased odds of each outcome (with 95% confidence intervals) are 
depicted for the group with the higher odds (female: red; male: blue). Data were adjusted for age and environment. 
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Figure 3-4. Prevalence by age group of obesity, hypertension, and diabetes in urban and rural men and women from the 
Sunyani region of Ghana. Females (circles) are depicted in the left panels (A), (C), and (E); males (triangles) in the right panels (B), 
(D), and (F). Purple = urban; green = rural. Error bars denote 95% confidence intervals of estimates. 
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Figure 3-5. Mean lipid levels by age group in urban and rural men and women from the Sunyani region of Ghana. Females 
(circles) are depicted in the left panels (A), (C), and (E); males (triangles) in the right panels (B), (D), and (F). Purple = urban, green = 
rural. Error bars denote 95% confidence intervals of estimates. Note: in (E) and (F), vertical axis is logarithmic.  
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PAI-1 and the Risk Factors of the Metabolic Syndrome 
 
Introduction 

The metabolic syndrome (MetS) is a set of cardiometabolic abnormalities that tend to co-

occur in people at increased risk for coronary heart disease and type 2 diabetes. Although MetS 

is a complex disorder with no single factor for a cause, obesity typically plays a prominent role 

in its etiology, particularly in the form of metabolically active visceral fat.142,143 Less clear are 

the mechanisms by which adipocytes accelerate conditions such as insulin resistance, 

hypertension, and dyslipidemia, and how they, in turn, aggravate atheromatous degeneration and 

promote acute phase cardiovascular disease.140,141 

Given the uncertainty of its etiology and the still-evolving nature of its definition, the 

usefulness of MetS as a diagnosis, from both a clinical and an epidemiologic standpoint, has 

been questioned.144,145 Recent debate has centered on whether the increased cardiovascular risk 

associated with MetS can be wholly accounted for by the additive contributions of its component 

risk factors.146-148If so, it has been argued that the additional insight gained by studying the risk 

factors together rather than in isolation may be limited. However, quite apart from the question 

of whether MetS increases cardiovascular risk additively or exponentially is the question of why 

its component conditions co-occur in the first place. Elucidating the mechanisms of their co-

occurrence, including the environmental, behavioral, and genetic factors that give rise to them, 

will require a collective assessment.149-151  

MetS may also be distinguishable from isolated cases of its component conditions by a 

supra-normal level of clotting and anti-fibrinolytic factors, which generates a hypercoagulable 

state in the blood. 152,153Among the most prominent of these factors is plasminogen activator 

inhibitor-1 (PAI-1), which impairs the degradation of clots by inhibiting tissue-type plasminogen 
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activator (t-PA), a major thrombolytic enzyme in the fibrinolytic pathway.26 Clinical evidence 

suggests that spikes in PAI-1 trigger ischemic events,154 and epidemiologic studies have 

convincingly demonstrated a positive association between elevated plasma PAI-1 levels and 

cardiovascular risk.26,155,156 Because MetS not only accelerates atherosclerosis, but also increases 

the risk of thrombosis and subsequent thrombotic events, PAI-1 may be a natural link between 

the syndrome and acute phases of cardiovascular disease.157,158  

In fact, the role of PAI-1 in MetS likely goes beyond that of inhibiting fibrinolysis. It is a 

highly pleiotropic enzyme that predisposes patients to premature atherosclerosis by interfering 

with cell migration and promoting a chronic state of low-grade inflammation.159,160 Many of the 

component conditions of MetS increase PAI-1 gene expression and appear to be influenced by 

PAI-1 expression in turn.157,158 Adipocytes release PAI-1 directly, while some evidence indicates 

that PAI-1 itself may promote the accumulation of visceral fat.161 Adipocytokines also increase 

PAI-1 expression indirectly, such as via inflammatory pathways, making elevated plasma PAI-1 

one of the hallmarks of obesity.162 By mediating insulin signaling, PAI-1 may also provide a 

biochemical link between obesity and insulin resistance, the two most salient features of 

MetS.138,163,164 Finally, insulin resistance itself increases PAI-1 expression by accelerating 

lipolysis and releasing an excess of free fatty acids into the blood.165  

The PAI-1 promoter is also responsive to several other metabolic and endocrine factors, 

including very low-density lipoprotein (VLDL), which likely explains the association between 

PAI-1 and hypertriglyceridemia.166 A similar connection exists between PAI-1 and the renin-

angiotensin system, involved in hypertension167. Yet, despite the fact that no clinical 

measurement appears to be more strongly associated with the components of MetS than PAI-

1,149,152only a few large epidemiological studies have assessed the relationship between PAI-1 
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and multiple CVD risk factors in a systematic way. Moreover, all have done so using samples 

primarily from populations of European descent.149,168,169  

Here, we present a multivariate analysis of MetS and PAI-1, using cardiovascular data 

from 3331 men and women in Ghana from both urban and rural locales. We assess the 

correlational architecture of MetS risk factors, and estimate risk factor contributions to 

thrombotic endpoints, using intensity and independence of association with PAI-1 as a proxy. 

We also evaluate whether conditions related to sex and urbanization influence these 

relationships.  
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Materials and Methods 

 

Study Cohort Description 

Please see Section A of this chapter. 

 

Anthropometric measurements and biochemical analysis 

Height, weight, systolic and diastolic blood pressure, fasting plasma lipids, glucose, and plasma 

PAI-1 were measured as described in Section A of this chapter.  

 

Study variables 

Five categorical metabolic risk factors (hypertriglyceridemia, low HDL, hypertension, 

hyperglycemia, and obesity) were defined according to the updated National Cholesterol 

Education Program Adult Treatment Panel-III (NCEP ATP-III) criteria,171 as follows: 

triglycerides (TG) ≥ 150"mg/dl; high-density lipoprotein cholesterol (HDL) <40mg/dl in males or 

<50"mg/dl in females; systolic (SBP) and diastolic (DBP) blood pressure ≥ 130/85"mm Hg or on 

anti-hypertensive medication; fasting glucose (GLUC) ≥ 100"mg/dl or on antidiabetic 

medication; and body mass index (BMI) ≥ 30. MetS was defined as the presence of three of 

those five conditions.141 None of the study participants reported taking statins. Mean arterial 

pressure (MAP) was calculated using the formula: MAP = DBP + [(SBP-DBP)/3], which 

approximates the average arterial pressure during a single cardiac cycle. MAP was used in the 

correlational analyses instead of SBP and DBP to maintain a one-to-one correspondence between 

quantitative traits and the components of MetS. However, it is worth noting that MAP has been 
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shown to predict future metabolic syndrome more accurately than SBP, DBP, or pulse 

pressure.172  

 

Statistical methods 

Summary data of the quantitative risk factors used in this study are presented in Section A of this 

chapter. For calculating the prevalence of MetS by sex and urban/rural setting (“residence”), 

study participants for whom no data was missing (N=2220) and who had at least three of the five 

conditions (as per the NCEP ATP-III guidelines above) were deemed cases. Prevalence rates of 

MetS were age-standardized to the World Health Organization (WHO) standard population (see 

Section A of this chapter). Relative risks of MetS (urban vs. rural; female vs. male) were also 

estimated, with 95% confidence intervals derived using the anti-log of the formula 

 

Where ni is the sample size for group i, pi the sample probability of MetS, and zα/2 the critical z-

value, 1.96, for α=0.05. 

Log-transformation improved the approximations to normality of all of the quantitative 

variables in this study (among which only PAI-1, glucose, and triglycerides were highly 

skewed). Therefore, because statistical tests of Pearson’s product-moment correlations can be 

sensitive to violations of normality,173,174 all data were log transformed for the correlational 

analyses. For clarity of presentation, however, references in the text to the variables are not 

emended to reflect these transformations (e.g., as “ln-glucose,” “ln-PAI-1” etc.).  

All pairwise correlations between BMI, MAP, GLUC, TG, HDL, and PAI-1 were 

calculated after each measurement was adjusted for age, sex, and residence. The same pairwise 

correlations were calculated for (1) subjects stratified by residence, with variables adjusted only 
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for age and sex; and for (2) subjects stratified by sex, with variables adjusted only for age and 

residence. The homogeneity of correlation between groups (urban vs. rural, male vs. female) was 

then assessed by t-test after Fisher transformation of correlation coefficients.  

Partial correlation measures the strength of association between two variables after 

controlling for a set of other variables. Partial correlations were calculated for every pair of 

variables in the set of BMI, MAP, GLUC, TG, HDL, and PAI-1 after controlling for the 

remaining variables in the set (as well as age, sex, and residence, as above). These pairwise 

correlations were also calculated separately for subjects first stratified by sex and subjects first 

stratified by residence, as above, for evidence of heterogeneity of correlation.  

 The following approach was used to assess visually whether the strengths of association 

between MetS traits (BMI, MAP, GLUC, TG, and HDL) and PAI-1 were consistent over the 

entirety of their respective ranges, and to identify possible patterns of non-linear association 

therein. First, all six variables were adjusted for age, sex, and residence, and the residuals were 

standardized (variable names below refer to the standardized residuals). For each of the five 

MetS traits, values were ranked in ascending order and paired with their corresponding PAI-1 

values. The 25th percentile, median, and 75th percentile of PAI-1 (period=100) was then plotted 

against the corresponding median (period=100) of each MetS trait. 

 To capture the global features of these relationships, smooth curves of the plots were 

created using a cubic spline method. Briefly, for n observations, where  is the ith standardized 

median (period 100) of a risk factor, , and  the corresponding quantile value of 

PAI-1, such that , the smoothing function estimated  by minimizing 
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The first term represents the sum of squares error and the second term the penalty for 

“roughness.” The parameter  controls the bias-variance tradeoff, and was set to 10.175  

 To evaluate how severity of MetS influences PAI-1 levels, two approaches were taken. 

First, an ordinal measure of severity of MetS was defined as the number of component 

conditions with which an individual was diagnosed; the effect on mean PAI-1 was then assessed. 

Next, a continuous measure of severity of MetS was defined as the first principal component 

(PC) of the five quantitative risk factors, TG, HDL, MAP, GLUC, and BMI. The moving 

medians of the first three PCs versus the corresponding moving medians of PAI-1 were then 

graphically depicted, using the method described above.  

 Statistical analyses were performed using JMP (version 11) and STATA (version 12).  

 

λ
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Results 

 Of the 3331 participants in this study, 2276 (68%) were urban residents, of whom 1298 

(57%) were female and 978 male. Of the 1055 rural residents, 583 (55%) were female and 472 

male. Ages ranged from 18-99 and were similarly distributed among urban and rural men and 

women (p=0.23, Kruskal-Wallis test). For analyses based on diagnoses of dichotomous risk 

factors associated with MetS (hypertriglyceridemia, low HDL, hypertension, hyperglycemia, and 

obesity), participants with missing data were excluded, lowering sample size to 2220 (see Table 

S2 in Appendix A for the breakdown by group).  

 Urban residence increased the relative risk (RR) of MetS for both men (1.61; 95% CI: 

1.02-2.53) and women (1.72; 95% CI: 1.28-2.32). Urban women, who had by far the highest 

prevalence of obesity among all groups (Table S2), also had a significantly higher risk of MetS 

than urban men (RR: 1.68; 95% CI: 1.36-2.07). Among rural participants, risk did not differ 

significantly by sex. The age-standardized prevalences of MetS and the distribution of MetS risk 

factors are shown by group in Table S2 and Figure S6.  

 Mean PAI-1 (log normalized and adjusted for age, sex, and residence) rose exponentially 

as the number of MetS risk factor conditions increased linearly. The quadratic fit to the means 

was virtually perfect (R2 = 0.996) (Figure 3-6). PAI-1 was normally distributed within all five 

categories (Shapiro-Wilk test; p>0.05 for all). Participants diagnosed with ≤1 MetS risk factor 

did not have significantly different mean PAI-1 levels, and the 95% confidence intervals for both 

groups fell below the mean PAI-1 level for the study cohort as whole. In contrast, among 

participants who had two or more diagnoses of MetS risk factors, mean PAI-1 increased 

significantly with each incremental diagnosis, and 95% confidence intervals were above the 

mean PAI-1 level for the study cohort as whole (Figure 3-6).  
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 All pairwise correlations between quantitative risk factors associated with MetS (adjusted 

for age, sex, and residence) were highly significant (p<0.0001), except for the correlation 

between MAP and HDL (p=0.14) (Table 3-2 and Figure 3-7A). Despite being statistically 

significant, however, most of the correlations were relatively weak; those greater than 0.30 were 

between PAI-1 and BMI (r=0.43; 95% CI 0.40-0.45); PAI-1 and TG (r=0.35; 95% CI 0.32-0.38); 

and BMI and MAP (r=0.30; 95% CI 0.27-0.33). The strongest negative correlation was between 

TG and HDL (r=0.-27), with 95% confidence interval (-0.31, -0.23) (Table 3-2 and Figure 3-

7A).  

To assess whether urban residence had an effect on these correlations, the above analysis 

was repeated after stratifying participants by residence and adjusting for age and sex. The 

pairwise correlations between the quantitative risk factors that define MetS (BMI, MAP, HDL, 

TG, and GLUC) were similar for both urban and rural populations. Tests assessing heterogeneity 

of correlation were significant only for BMI-HDL (p=0.047) and BMI-TG (p=0.012) (Table 3-3 

and Figure 3-7B). However, three of the five correlations between PAI-1 and MetS risk factors 

exhibited highly significant heterogeneity: PAI-1 and BMI (p=4.9x10-9), PAI-1 and GLUC 

(p=9.9x10-4), and PAI-1 and TG (p=2.1x10-3) (Table 3-3 and Figure 3-7B). In all these cases, 

the correlation between risk factors was stronger in the urban population (Table 3-3). When 

participants were stratified by sex, no p-value for heterogeneity of correlation was below 0.01 

(Table S3 and Figure 3-7B). Two of the three comparisons that were significant at the 0.05 level 

featured PAI-1; the correlation between PAI-1 and MAP was stronger in men (0.27 vs. 0.20; 

p=0.024), whereas the correlation between PAI-1 and glucose was stronger in women (0.23 vs. 

0.15; p=0.012) (Table S3).  
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Partial correlations were also calculated to quantify the strength of association between 

every pair of MetS-related risk factors independent of the other risk factors. Although all partial 

correlations were statistically significant ( the majority at p<0.0001), only four pairs of partial 

correlations were greater than 0.15 in magnitude: PAI-1 and BMI, r=0.33 (0.29, 0.37); PAI-1 and 

TG, r=0.24 (0.20, 0.28); BMI and MAP, r=0.22 (0.18, 0.26); and TG and HDL, r= -0.22 (-0.26, -

0.18) (Table 3-4 and Figure 3-8A). When this analysis was repeated after stratifying participants 

either by sex or residence (as above), only one of fifteen partial correlations was significantly 

different between sexes (PAI-1 and GLUC, p=0.023), and three of fifteen partial correlations 

were significantly different between urban and rural residents (PAI-1 and GLUC, p=0.001; PAI-

1 and BMI, p=0.0002; and BMI and GLUC, p=0.0054) (Table 3-5, Table S4, and Figure 3-8B). 

The partial correlational analyses were repeated for MetS risk factors without PAI-1, and yielded 

comparable results (Table S5, S6, and S7). 

To complement the correlational analyses, which can mask non-linear or non-continuous 

patterns of association between variables, the change in median PAI-1 was assessed over “sliding 

windows” of the other risk factors. All variables were first adjusted for age, sex, and residence, 

and standardized (values reported below are Z-scores). Over the entire ranges of both BMI and 

triglycerides, median PAI-1 rose from about -0.5 to 1.0. However, for BMI less than one 

standard deviation below its mean, median PAI-1 did not change (Figure 3-9A). The 

relationship between PAI-1 quartiles and glucose displayed the most abrupt shift in association 

patterns: PAI-1 rose rapidly until glucose reached ~1.5 standard deviations above its mean, after 

which it was flat. Thus, the relatively low correlation between glucose and PAI-1 reported above 

(r=0.20) likely reflects the composite effects of two entirely different patterns of association, one 

strong, one weak, with the shift occurring at the far right tail of glucose values (Figure 3-9A).  
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The moving quartiles of PAI-1 were also evaluated for data stratified by sex and 

residence. The discordant behavior of PAI-1 at the right tails of the MAP and glucose 

distributions likely explains the male/female heterogeneity of correlation between those variables 

(Figure 3-10A). Overall, however, the male and female trajectories of PAI-1 quartiles were 

almost indistinguishable, regardless of risk factor (Figure 3-10A). In contrast, the moving 

quartiles were noticeably more discordant among urban and rural populations (Figure 3-11A). 

Median PAI-1 barely increased in the rural population when both BMI and glucose values below 

their respective means, median. The upper range of glucose values was also much greater in the 

urban population, likely driving the observed heterogeneity of correlation as well (Figure 3-

11A).  

The above analyses were also carried out for PAI-1 and each MetS risk factor using the 

standardized residuals after adjustment for all other MetS risk factors, providing insight into the 

partial correlations reported above. Whereas the partial correlations between PAI-1 and MAP, 

PAI-1 and HDL, and PAI-1 and glucose were all relatively weak in magnitude (r<0.10) and not 

significantly different from each other (Table 3-4), PAI-1 quartiles appeared to be more sensitive 

to glucose than MAP or HDL (Figure 3-9B). When participants were stratified by sex, there was 

a strong correspondence between male and female moving PAI-1 quartiles (Figure 3-10B). A 

similar correspondence was observed between the urban and rural PAI-1 quartiles for MAP, 

HDL, and TG. However, there were pronounced urban/rural differences for BMI and glucose 

(Figure 3-11B), explaining the heterogeneity of correlation observed therein.  
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Discussion 

It is well known that the cardiovascular risk factors associated with the metabolic 

syndrome tend to cluster, and in so doing increase the risk of coronary heart disease and stroke. 

Why they cluster, however, and the pathophysiological mechanisms by which their co-

occurrence increases ischemic risk, are not well understood. To what extent is the clustering of 

risk factors the effect of causal relationships among the risk factors themselves? Do factors such 

as ancestry, sex, and urban lifestyle, known to influence cardiovascular risk factors individually, 

also influence the patterns of association among them? Do co-occurring risk factors have joint 

effects on ischemic risk greater than the sum of their individual contributions, and if so, by what 

biochemical means? These and related questions motivated our present study. 

Apart from cardiometabolic abnormalities, one of the hallmarks of the metabolic 

syndrome is a prothrombotic state, characterized by elevated plasma levels of the anti-

fibrinolytic enzyme, PAI-1. Because PAI-1 plays a direct biochemical role in thrombosis, a risk 

factor’s relevance to the thrombotic stages of MetS strength of correlation with PAI-1 may be 

indicative of its. We found that the correlations between PAI-1 and the continuous risk factors 

used to define MetS (BMI, MAP, HDL, TG, and GLUC) were stronger, on average, than the 

correlations between the risk factors themselves. For example, BMI, TG, and GLUC were all 

most strongly correlated with PAI-1.  Given that MetS is essentially a descriptive term for the 

stochastically improbable correlation of five conventional risk factors, their consistently strong 

correlations with PAI-1 (regardless of sex or residence) raises the question of whether PAI-1 

should also be considered a definitional component of the syndrome. 

Whereas the distributions and mean values of the risk factors assessed in this study 

typically varied significantly with sex and/or residence, only a few of the pairwise correlations 
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among them did. The correlations with PAI-1 were the main exceptions; those with BMI, TG, 

and GLUC were markedly stronger in the urban population. To the extent that elevated PAI-1 

increases the risk of thrombotic endpoints, abnormally high BMI, TG, and GLUC may therefore 

confer greater risk in urban than in rural environments. In the same way, hypertension may pose 

a greater risk in Ghanaian men, and hyperglycemia in women, owing to the significantly stronger 

MAP-PAI-1 and GLUC-PAI-1 correlations in men and women respectively.  

A deeper understanding of the etiology and hierarchical architecture of MetS requires that 

we distinguish direct interactions among risk factors from merely incidental associations. Crude 

correlations among risk factors can provide insight into the topology of risk factor networks, but 

because the correlation between two risk factors may be driven entirely by their mutual 

association with other risk factors, such insight is limited. On the other hand, a strong partial 

correlation between two risk factors, independent of others, would indicate that they either cause 

each other directly, or share a “private” set of causal factors. We therefore also assessed the 

partial correlations between each pair of MetS risk factors conditioned on all others. Partial 

correlational analysis is more appropriate here than multivariate regression, because designating 

variables as “independent” and “dependent” would fail to take into account the dynamic 

relationships and feedback loops characteristic of metabolic systems. 

The statistical significance of all partial correlations (in analyses both with and without 

PAI-1) indicated that the relationships between all pairs of risk factors were partly independent. 

In general, PAI-1 had the strongest such relationships, and these larger partial correlations likely 

reflect known biochemical and physiological connections. For example, the strongest 

relationship was between PAI-1 and BMI (r=0.33), consistent with the fact that adipose tissue 

releases PAI-1. The second strongest was between PAI-1 and TG (r=0.24), likely influenced by 
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the fact that the PAI-1 promoter is responsive to VLDL. The only risk factor for which there is 

no evidence of a direct biochemical link with PAI-1, HDL, had the weakest partial correlation 

with PAI-1, with a 95% confidence interval between -0.09 and -0.01. We emphasize that 

independent associations with PAI-1 may be particularly indicative of a risk factor’s proximate 

relevance to thrombosis. 

When PAI-1 was excluded from analyses, there was no heterogeneity of partial 

correlation by either sex or residence for any of the pairs of MetS risk factors. Thus, to whatever 

extent these risk factors have direct causal relationships with each other, they appear to be 

consistent over a wide range of values, physiological backgrounds and environmental exposures. 

In contrast, partial correlations with PAI-1 were more likely to exhibit heterogeneity by sex and, 

particularly, residence. Although the p-values were consistently larger, the patterns of 

heterogeneity were similar to those observed for the crude correlations (i.e. correlations adjusted 

only for age and sex/residence). The reduced significance could be partly due to the smaller 

sample sizes (by ~1/3) in these analyses, since the higher order partial correlations required full 

data.  

Obesity is generally considered the primary causal component of MetS,140 but the partial 

correlations between BMI and the other continuous risk factors that define MetS were 

unexpectedly weak. Cause cannot be inferred from correlation, but it can, in a sense, be ruled 

out; if adiposity alone had strong independent effects on the other risk factors, the partial 

correlations with BMI should have been stronger. Thus, the connection between obesity and 

MetS may not be as straightforward as commonly accepted, and likely involves multiple 

simultaneous factors of susceptibility. The relationship between BMI and MAP may be 

somewhat of an exception, as the partial correlation was similar to the crude correlation. (The 
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association between TG and HDL also appeared to be similarly unrelated to other risk factors). 

The relatively weak partial correlations with BMI were surprising, because the connection 

between obesity and MetS in our study was evident in the small percentage (<1%) of participants 

who had isolated obesity, i.e. obesity in the absence of any other risk factor conditions. 

Moreover, among the 764 participants who had only a single risk factor condition, that condition 

was obesity for only 2.7%. In contrast, 27% had hypertension, and 55% low HDL. Also to 

expectations, given that the behavioral changes associated with urbanization are major factors in 

the emerging global obesity epidemic, we found that the urban population in our study was at 

significantly greater risk of MetS than the rural, and that urban women in particular, who had by 

far the highest prevalence of obesity, were at greater risk of MetS than urban men.  

On the other hand, the age-standardized prevalence of MetS among rural men (7.8%) was 

unexpectedly high, insofar as no participant had a BMI above the obesity-threshold of 30 kg/m2. 

While “metabolically obese” individuals of normal weight are not uncommon,177 often MetS 

without obesity reflects insulin resistance caused by means other than adipose tissue.178 

However, 40% of the rural men with MetS in our study did not have hyperglycemia in addition 

to hypertension and/or dyslipidemia (low HDL or high TG), making it unlikely that they were 

insulin resistant. MetS in the absence of obesity can also be caused by irregularly distributed 

adipose tissue, as when an excess of visceral fat is masked by waist circumference in the normal 

range,179,180 but there is no evidence for this phenomenon among the rural Ghanaian men with 

MetS. Thus, how comparable these rural participants are to others diagnosed with MetS is 

unclear, either from the standpoint of either pathophysiology or clinical prognosis.  

For any two variables, the correlation coefficient is the expected change in either variable 

as the other increases by one standard deviation. Because the correlation coefficient extracts a 
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single, linear relationship from bivariate data, it becomes less informative as the true relationship 

between those variables displays patterns of non-linearity or non-continuity. However, such 

patterns can be a particularly significant concern in the study of clinical conditions, such as 

MetS, for which risk often pertains only to the uppermost quantiles of variables (e.g., if ischemic 

risk is amplified when PAI-1 exceeds a certain threshold).  We therefore complemented our 

correlational analyses by graphically depicting the moving quartiles of PAI-1 over increasing 

values of MetS risk factors. The rationale for centering this analysis on PAI-1 quartiles rather 

than mean values was, first, to minimize the influence of relative outliers caused by the 

characteristic kurtosis of the PAI-1 distribution, and second, to gain insight into whether PAI-1 

levels in individuals at upper or lower quartiles responds differently to changes in the other risk 

factors. To our knowledge, this question, which can have clinical relevance, has not been 

previously addressed. 

Interestingly, although the correlation between PAI-1 and BMI was significantly greater 

than that for TG, the increase in PAI-1 quartiles with TG appeared to be more consistent and, on 

average, slightly greater in slope. In contrast, the median or 75th percentile of PAI-1 did not 

increase at all when BMI was less than -1σ, and began to decrease in slope when BMI was 

greater than 1σ. Similarly, median PAI-1 increased rapidly with glucose over most of its range, 

but stopped increasing as glucose approached 2σ. Because many glucose values exceeded 2σ 

(even after transformation and adjustment), the near-zero slope of median PAI-1 over that range 

likely had an outsized effect on the unexpectedly low GLUC-PAI-1 correlation. In theory, 

correlations can be attenuated not only by a weakening of the median PAI-1 slope but also by a 

greater dispersion of values around median PAI-1. In that respect, the relatively weak correlation 
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between PAI-1 and MAP (0.23) was likely influenced by the notable increase in the interquartile 

range of PAI-1 as MAP increased above 1σ.  

But correlation already said. The male and female trajectories of PAI-1 quartiles by risk 

factor were practically indistinguishable, indicating that the relationships between these traits are 

robust to a wide range of physiological differences. However, the two heterogeneities of 

correlation by sex that we did observe (GLUC-PAI-1 and MAP-PAI-1) clearly reflecting a tight 

relationship at the right tales of the appeared to be driven by shifts at the right tails of the GLUC 

and MAP distributions. As noted above, this may be particularly relevant to the etiology of 

MetS.  

The urban and rural moving quartiles of PAI-1 with BMI and with GLUC were extremely 

discordant, as expected, given the highly significant heterogeneities of correlation observed for 

those pairs of risk factors. Glucose had a much wider range of values in the urban population 

(despite standardization after stratification and age- and sex-adjustment), which likely influenced 

the urban-rural GLUC-PAI-1 heterogeneity of correlation to some extent. However, a 

pronounced difference in slopes between urban-rural quartiles of PAI-1 was also evident for 

glucose values below the mean.  

The moving quartile analyses using the residuals of the partial correlations showed that 

the strongest independent relationships involving PAI-1 were with BMI, TG, and GLUC. That 

between PAI-1 and TG was particularly strong for TG values greater than 1σ. Importantly, all 

independent relationships with PAI-1 were relatively weak when risk factors were less than 

approximately -1σ.  
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While we could not find similar studies with which to compare our higher order partial 

correlations, a recent meta-analysis of 85,000 people (of whom 7.8% were African American) 

reported pairwise correlations between MetS risk factors adjusted for age and sex.149 Among all 

of our pairwise correlations, only BMI-GLUC and BMI-HDL here (adjusted for age, sex, and 

residence) fell outside the 95% confidence intervals reported by the meta-analysis. That study 

reported r= -0.33 for BMI-HDL and r= 0.28 for BMI-GLUC, in contrast to our results of r= -0.15 

and r= 0.15, respectively. Why these two pairs of risk factors were anomalous in our study 

population, even among urban participants only, is not clear. However, many Ghanaians had low 

HDL in general (see Section A of this chapter), and the plot of the moving HDL median vs. BMI 

confirmed that low HDL levels are common in Ghana even with healthy BMI. More specifically, 

the observed (and expected) negative relationship between HDL levels and BMI disappeared 

when BMI was less than one standard deviation below its mean, as the interquartile range 

expanded. These trends likely weakened the correlation. The moving quartiles of GLUC vs. 

BMI, on the other hand, increased linearly throughout their entire ranges, making the weak 

correlation between BMI and GLUC in Ghanaians more enigmatic.  

We also examined the effect that the clustering of risk factor conditions had on PAI-1 

levels. We found that mean PAI-1 levels increased exponentially with the number of conditions 

present (regardless of which). In fact, the quadratic fit to the means was virtually perfect 

(R2=0.996). The greatest increase in mean PAI-1 occurred as the number of risk factor conditions 

increased from two to three, reflecting an intimate association between PAI-1 and MetS (as 

defined by NCEP ATP-III). With each incremental increase in the number of conditions over 

one, mean PAI-1 increased significantly. In contrast, mean PAI-1 was not significantly different 
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between participants with one risk factor or none, and was below the population mean for both 

groups. 

A much-discussed topic has been whether the clustering of risk factors associated with 

MetS increases total ischemic risk in an additive or exponential way.181-184 However, if mean 

PAI-1 increases exponentially as the number of risk factors increases linearly, as observed here, 

then the question of whether MetS is “more than the sum of its parts” rests to a large degree on 

the clinical consequences of elevated PAI-1. In fact, both clinical and epidemiologic studies have 

convincingly demonstrated a connection between elevated PAI-1 levels and increased 

cardiovascular risk, as discussed above. The observation here that PAI-1 rises in an exponential 

manner in patients most at risk for ischemic events also supports our recent recommendation that 

future epidemiologic studies of PAI-1 consider the risk profiles of patients in the upper quartile 

of the distribution.185 

Because the NCEP ATP-III definition of MetS is combinatorial, such that no risk factor 

is necessary and all are interchangeable, MetS can naturally be transformed from a binary 

variable into a continuous one by adding the Z-scores of the continuous risk factors underlying 

the condition. While several studies have adopted this approach,186-188 we found that using the 

first principal component (PC1) of the five risk factors offers important advantages. The two 

approaches were, in fact, very similar (leading to values correlated at r= 0.82 in men and r=0.80 

in women), because the loadings of all five risk factors for PC1 were relatively equal. However, 

using the first principal component has the additional merit of extracting the most information 

from the dataset (by definition). Moreover, because PC1 is uncorrelated to subsequent PCs, the 

loadings of the subsequent PCs reveal (in order of importance) the various combinations of risk 

factors that most differentiate the population with respect to how MetS (defined continuously as 
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PC1) is composed. We see, for example, that our study participants differed most with respect to 

the relative contributions of BMI and MAP vs. TG and (low) HDL, or more intuitively, 

obesity/hypertension versus dyslipidemia (see PC2).  

Confirming the strong connection between PAI-1 and MetS. we observed that the 

relationship between PC1 and PAI-1 was extremely strong. Specifically, their correlation was 

0.56, and PAI-1 quartiles increased by more than 2 standard deviations over the range of PC1. 

Notably, the relationship between median PAI-1 and PC1 was practically identical in men and 

women, and median PAI-1 did not vary at all with PC2 or PC3, signifying that PAI-1 increases 

with MetS per se, regardless of the physiological background or specific risk factor composition 

involved. 
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Conclusion 

We have explored the role of PAI-1 in the metabolic syndrome from multiple angles. 

Although we have previously published and also report here that urban residence and, to a lesser 

extent, sex have dramatic effects on the mean values of cardiovascular risk factors, our 

correlational analyses here reveal that the relationships among the risk factors remain 

remarkably robust. The relationships between risk factors and PAI-1, however, appear to be far 

more sensitive to differences in sex and environment. It will be interesting to see if the patterns 

we have identified here, such as the exponential relationship between mean PAI-1 and MetS 

diagnoses, and the non-linear relationships between PAI-1 and some of the MetS risk factors, are 

replicable and generalizable to other populations. 
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Figure 3-6. Mean PAI-1 concentrations (and 95% confidence intervals) by the number of components of the metabolic 
syndrome. PAI-1 levels were adjusted for age, sex, and urban/rural residence, then standardized. The best quadratic fit to the means is 
also depicted (R-square = 0.996). 
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Table 3-2. Pairwise correlations between cardiovascular risk factors associated with the metabolic syndrome.  
 
Trait 1 Trait 2 r CI N p-value 
BMI PAI-1 0.43 (0.40, 0.45) 3331 <.0001 
MAP PAI-1 0.23 (0.20, 0.26) 3331 <.0001 
HDL PAI-1 -0.17 (-0.21, -0.13) 2225 <.0001 
TG PAI-1 0.35 (0.32, 0.38) 3321 <.0001 
GLUC PAI-1 0.20 (0.16, 0.23) 3331 <.0001 
BMI MAP 0.30 (0.27, 0.33) 3331 <.0001 
MAP HDL 0.03 (-0.01, 0.07) 2225 0.1376 
HDL TG -0.27 (-0.31, -0.23) 2220 <.0001 
TG GLUC 0.17 (0.14, 0.21) 3321 <.0001 
BMI HDL -0.15 (-0.19, -0.11) 2225 <.0001 
MAP TG 0.16 (0.13, 0.20) 3321 <.0001 
HDL GLUC -0.12 (-0.16, -0.08) 2225 <.0001 
BMI TG 0.25 (0.22, 0.28) 3321 <.0001 
MAP GLUC 0.13 (0.10, 0.17) 3331 <.0001 
BMI GLUC 0.15 (0.12, 0.18) 3331 <.0001 

 
r = Pearson correlation coefficient, calculated using residuals after adjustment for age, sex, and residence; 
CI = 95% confidence interval;  
p-value = probability of r if true correlation is zero; 
Note: p-values > 0.05 have been grayed out. 
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Table 3-3. Pairwise correlations between cardiovascular risk factors associated with the metabolic syndrome, by urban or rural 
residence. 
 

  
Rural 

 
Urban Homogeneity 

of Correlation 
p-value Trait 1 Trait 2 r CI N p-value   r CI N p-value 

BMI PAI-1 0.29 (0.23, 0.34) 542 <.0001  0.47 (0.44, 0.51) 2276 <.0001 4.9E-09 
MAP PAI-1 0.24 (0.18, 0.29) 1055 <.0001  0.23 (0.19, 0.27) 2276 <.0001 0.7878 
MAP BMI 0.28 (0.22, 0.33) 1055 <.0001  0.31 (0.27, 0.34) 2276 <.0001 0.4186 
HDL PAI-1 -0.17 (-0.25, -0.08) 543 0.0001  -0.18 (-0.22, -0.13) 1682 <.0001 0.8302 
HDL BMI -0.08 (-0.17, 0.00) 543 0.0522  -0.18 (-0.23, -0.13) 1682 <.0001 0.0472 
HDL MAP 0.05 (-0.03, 0.14) 543 0.2110  0.03 (-0.02, 0.07) 1682 0.2752 0.5818 
TG PAI-1 0.28 (0.22, 0.33) 1051 <.0001  0.38 (0.35, 0.42) 2270 <.0001 2.1E-03 
TG BMI 0.18 (0.13, 0.24) 1051 <.0001  0.27 (0.23, 0.31) 2270 <.0001 0.0122 
TG MAP 0.19 (0.13, 0.25) 1051 <.0001  0.15 (0.11, 0.19) 2270 <.0001 0.2561 
TG HDL -0.30 (-0.37, -0.22) 542 <.0001  -0.26 (-0.31, -0.22) 1678 <.0001 0.4726 
GLUC PAI-1 0.11 (0.05, 0.17) 1055 0.0004  0.23 (0.19, 0.27) 2276 <.0001 9.9E-04 
GLUC BMI 0.20 (0.14, 0.25) 1055 <.0001  0.13 (0.09, 0.17) 2276 <.0001 0.0621 
GLUC MAP 0.17 (0.11, 0.23) 1055 <.0001  0.11 (0.07, 0.16) 2276 <.0001 0.1416 
GLUC HDL -0.14 (-0.22, -0.05) 543 0.0014  -0.12 (-0.16, -0.07) 1682 <.0001 0.6887 
GLUC TG 0.20 (0.14, 0.26) 1051 <.0001  0.16 (0.12, 0.20) 2270 <.0001 0.2878 

 
r = Pearson correlation coefficient, calculated using residuals after adjustment for age and sex, by residence; 
CI = 95% confidence interval;  
p-value = probability of r if true correlation is zero; 
Homogeneity of Correlation, p-value = probability of these data if true correlation is equal for urban & rural populations;  
Note: p-values > 0.05 have been grayed out. 
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Table 3-4. Partial correlations between components of the metabolic syndrome, including PAI-1, for the 2220 study participants with 
no missing data.  
 

Trait 1 Trait 2 r CI p-
value 

BMI PAI-1 0.33 (0.29, 0.37) <.0001 
MAP PAI-1 0.09 (0.05, 0.13) <.0001 
HDL PAI-1 -0.05 (-0.09, -0.01) 0.0156 
TG PAI-1 0.24 (0.20, 0.28) <.0001 
GLUC PAI-1 0.10 (0.06, 0.14) <.0001 
BMI MAP 0.22 (0.18, 0.26) <.0001 
MAP HDL 0.12 (0.08, 0.16) <.0001 
HDL TG -0.22 (-0.26, -0.18) <.0001 
TG GLUC 0.08 (0.04, 0.12) 0.0001 
BMI HDL -0.09 (-0.13, -0.04) <.0001 
MAP TG 0.08 (0.04, 0.12) <.0001 
HDL GLUC -0.08 (-0.12, -0.04) 0.0003 
BMI TG 0.07 (0.03, 0.11) 0.0007 
MAP GLUC 0.08 (0.04, 0.12) 0.0002 
BMI GLUC 0.04 (0.00, 0.08) 0.0564 
r = Pearson partial correlation coefficient, calculated using residuals after adjustment for age, sex, and residence; 
CI = 95% confidence interval;  
p-value = probability of r if true partial correlation is zero; 
Note: p-values > 0.05 have been grayed out. 
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Table 3-5. Partial correlations between components of the metabolic syndrome, including PAI-1, by urban or rural residence. 
 

  
Rural 

 
Urban Homogeneity 

of Correlation 
p-value Trait 1 Trait 2 r CI N p-value   r CI N p-value 

BMI PAI-1 0.21 (0.12, 0.29) 542 <.0001  0.37 (0.33, 0.41) 1678 <.0001 0.0002 
MAP PAI-1 0.15 (0.07, 0.23) 542 0.0004  0.07 (0.03, 0.12) 1678 0.0024 0.1068 
MAP BMI 0.20 (0.12, 0.28) 542 <.0001  0.23 (0.19, 0.28) 1678 <.0001 0.4607 
HDL PAI-1 -0.11 (-0.20, -0.03) 542 0.0085  -0.03 (-0.08, 0.01) 1678 0.1626 0.1090 
HDL BMI -0.03 (-0.12, 0.05) 542 0.4282  -0.12 (-0.16, -0.07) 1678 <.0001 0.1003 
HDL MAP 0.14 (0.05, 0.22) 542 0.0014  0.12 (0.07, 0.17) 1678 <.0001 0.7363 
TG PAI-1 0.18 (0.10, 0.26) 542 <.0001  0.26 (0.22, 0.31) 1678 <.0001 0.0810 
TG BMI 0.05 (-0.03, 0.14) 542 0.2241  0.07 (0.03, 0.12) 1678 0.0027 0.6733 
TG MAP 0.13 (0.04, 0.21) 542 0.0034  0.06 (0.02, 0.11) 1678 0.0094 0.2049 
TG HDL -0.26 (-0.33, -0.18) 542 <.0001  -0.21 (-0.25, -0.16) 1678 <.0001 0.3053 
GLUC PAI-1 -0.01 (-0.09, 0.07) 542 0.8199  0.15 (0.10, 0.20) 1678 <.0001 0.0010 
GLUC BMI 0.13 (0.05, 0.21) 542 0.0023  -0.01 (-0.05, 0.04) 1678 0.7965 0.0054 
GLUC MAP 0.11 (0.02, 0.19) 542 0.0113  0.07 (0.02, 0.11) 1678 0.0058 0.3994 
GLUC HDL -0.09 (-0.18, -0.01) 542 0.0299  -0.07 (-0.12, -0.02) 1678 0.0030 0.6723 
GLUC TG 0.12 (0.04, 0.20) 542 0.0046  0.06 (0.01, 0.11) 1678 0.0126 0.2171 

 
r = Pearson partial correlation coefficient, calculated using residuals after adjustment for age and sex, by residence; 
CI = 95% confidence interval;  
p-value = probability of r if true partial correlation is zero; 
Homogeneity of Correlation, p-value = probability of these data if true partial correlation is equal for urban & rural;  
Note: p-values > 0.05 have been grayed out.
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Figure 3-7. Heat maps of risk factor correlations and heterogeneity. (A) The strength of 
correlation between cardiovascular risk factors associated with the metabolic syndrome and (B) 
the significance of differences in correlation by sex (below diagonal) and urban/rural residence). 
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Figure 3-8. Heat maps of risk factor partial correlations and heterogeneity. (A) The strength 
of partial correlations between cardiovascular risk factors associated with the metabolic 
syndrome and (B) the significance of differences in partial correlation by sex (below diagonal) 
and urban/rural residence (above diagonal). 
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Figure 3-9. Moving medians and 1st and 3rd quartiles of standardized PAI-1 values as a function of standardized MetS risk 
factor values. (A) PAI-1 and MetS risk factors adjusted for age, sex, and residence; (B) PAI-1 and each risk factor also adjusted for 
the other 4 risk factors. Period for median = 100. Data smoothed using cubic spline (see Methods).  
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Figure 3-10. Moving medians and 1st and 3rd quartiles of standardized PAI-1 values as a function of standardized MetS risk 
factor values for men (blue) and women (red). (A) PAI-1 and MetS risk factors stratified by sex and adjusted for age and residence; 
(B) PAI-1 and each risk factor also adjusted for the other 4 risk factors. Period for median = 100. Data smoothed using cubic spline 
(see Methods).  
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Figure 3-11. Moving medians and 1st and 3rd quartiles of standardized PAI-1 values as a function of standardized MetS risk 
factor values for urban (red) and rural (blue) participants. (A) PAI-1 and MetS risk factors stratified by residence and adjusted for 
age and sex; (B) PAI-1 and each risk factor also adjusted for the other 4 risk factors. Period for median = 100. Data smoothed using 
cubic spline (see Methods).  
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CHAPTER IV 

 
MODELS OF CONTEXT-DEPENDENT GENETIC EFFECTS  

 
 

Overview of statistical models  

Throughout, we assume an additive, bi-allelic SNP in Hardy-Weinberg equilibrium that 

is distributed binomially with minor allele frequency . For genotype : 

  

 

Because the variance of , , will appear regularly in the following models and 

derivations, it will be denoted by the constant for simplicity. 

With no loss of generality, we can center  by subtracting mean genotype, , so that  

     

Consider the linear regression model for a quantitative trait with expected value equal to zero, 

which includes an additive interaction between genotype  and a covariate, , such 

that the ith individual has phenotype 

 

where  is an independent error term, and βX, βZ, and βXZ represent the marginal 

effects of X, Z, and the interaction of X and Z, respectively.  

Then,  
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To aid interpretability and/or simplify calculation, we can occasionally set  equal to 1 

and adjust  accordingly. Then, for example, the narrow-sense heritability of  with respect to 

 simplifies to  

  

Also, the correlation between trait  and the covariate  becomes  

  

because the covariance of Y and Z (regardless of the variance of Y or ) is 

 

Note that above, because we have centered , and that , the variance of the 

standard normal distribution. 

Much of the following discussion centers on ordinary least squares regression, primarily 

because CVD risk factors are quantitative traits.  However, many of the ideas presented here can 

be extended to other general linear models, including logistic regression models of case/control 

data.  
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Overview 

Evidence for context-dependent genetic effects  

Cardiovascular disease risk factors have strongly inherited bases: estimates of heritability for 

conventionally measured traits such as lipid levels, fasting glucose, and blood pressure typically 

range from 40-60%15,189,190. Genetic epidemiological studies have for many years attempted to 

identify the genetic variants that explain a meaningful fraction of this heritable variation. Despite 

bringing several advantages to this search, genome-wide association studies (GWAS) have been 

unable to discover many SNPs that account for >1 per cent of the population variance of typical 

complex traits9. However, GWAS findings have allowed us to draw some firm conclusions 

where previously only speculation was possible. Three conclusions that concern us here are that 

(1) a large number of common variants, distributed unpredictably across the genome, have small 

(but not infinitesimal) effects on complex phenotypes; (2) these common variants often associate 

with multiple (and sometimes seemingly unrelated) phenotypes17; and (3) common variants in 

aggregate do indeed capture a large proportion of the heritable variance of complex phenotypes. 

Small individual effect sizes, however, make identifying relevant loci a major challenge.191 

In theory, the power of GWAS to detect SNPs of biological interest is limited only by sample 

size, but inferences about genetic architecture from GWAS results are intrinsically limited. One 

reason for this is that genetic architecture, or a “genotype-phenotype map,” makes sense only at 

the level of the individual. So, for example, if a SNP’s contribution to a phenotype varies with 

environment or genetic background, its population-level effect-size may provide little insight 

into its physiological significance. Moreover, as sample size increases (as in meta-analyses), 

genotypic and phenotypic heterogeneity often increases with it, making the translation of GWAS 

results back to the level of the individual more challenging, even as the number of significant 
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hits increases. In the case of rare variants, we expect even highly deleterious SNPs to have 

negligible effect sizes at the population-level, so we exclude them from GWAS a priori on that 

account. In contrast, common variants susceptible to environmental or background-specific 

influences are cryptic. Thus, the degree to which small effect sizes are merely artifacts of 

heterogeneous genetic architecture remains an open question.  

The poor replicability of association studies and the failure of even replicated SNPs to 

offer much predictive power are certainly consistent with the hypothesis that context-dependent 

genetic effects are pervasive192. However, the most conclusive evidence in favor of the 

phenomenon can be found in studies of model organisms, particularly those of wild-derived, 

inbred lines raised under controlled environmental conditions, such as the Drosophila Genetic 

Reference Panel (DGRP)193. The large number of flies per isogenic line in the DGRP enables 

highly precise mean and heritability estimates for multiple phenotype, while the characterization 

of millions of fixed SNPs per line has made large association studies possible. In one such study 

on starvation resistance, 115 significant SNPs were used to derive a multiple regression model 

that explained >80% of the phenotypic variance193. When the inbred Drosophila lines were 

allowed to interbreed, however, and a follow-up association study was conducted on starvation 

resistance, not one of the 267 significant SNPs in the new study overlapped with the 115 loci of 

the previous study, even at the nominally significant p-value of 10^-5 194. These findings clearly 

underscored the importance of genetic background effects on the role of SNPs in genetic 

architecture.  

Similar conclusions about genetic architecture have been reached in many closely studied 

model organisms.195 In yeast, GWA-type studies have had the additional benefit of enormous 

sample sizes and uniform allele frequencies of 50% (obtained by crossing haploid isogenic 
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strains)196. Here, too, when sample sizes are sufficiently large, the additive contribution of 

genetic factors to ecologically relevant traits can often be entirely attributed to detectable loci197. 

So, for example, one study reported that only 4 SNPs accounted for 100% of the heritability in 

yeast sporulation efficiency198. However, a follow-up experiment found that the variance 

explained by these 4 SNPs depended to a large extent on the precise combination of substrate 

(glucose, fructose, etc.) and strain background (oak vs. vineyard) tested199. Simply put, the 

phenotypic impact of SNPs (and SNP combinations) could not be predicted without taking both 

environment and genetic background into account.  

Cardiovascular disease (CVD) in humans does not appear to be an exception in this 

regard. Epidemiological and quantitative genetic studies tell us that genetic factors taken together 

are a major component of CVD risk, while phenomena such as the parallel increase of CVD 

prevalence with urbanization indicate that genetic susceptibility must be understood within an 

environmental context. Sex, too, is a well-recognized modifier of genetic effects200,201. Figure 4-

1 depicts sex-based differences in heritability for a number of CVD-related risk factors. CVD-

related endpoints also present differently in males and females with respect to onset, prognosis, 

and response to treatment.22  
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Figure 4-1: Comparison of narrow-sense heritability estimates for human traits by sex. 
Only those traits related to CVD are labelled. Statistically significant differences in heritability 
between sexes are red (higher in women) or blue (higher in men). Figure adapted from Gilks et al 
(2014).202 
 

As a modifier of genetic effects, sex illustrates why “context” should be understood in the 

widest sense of the term. For, it is neither an environmental covariate, nor, strictly speaking, is it 

a genetic one, since loci involved in sex determination presumably have little direct connection 

to CVD risk downstream of development. Rather, sex represents a phenotypic background 

analogous to a genetic background—a physiological environment in which gene-“environment” 

interactions occur, leading to variation in trait expressivity and penetrance. It is unlikely that sex 

is unique among complex phenotypes in this regard, for the dynamic interdependence of 

physiological traits in general suggests that much genetic control occurs at the gene-phenotype 

interface. Nevertheless, genetic epidemiological studies have typically disregarded the possibility 

of gene-phenotype interactions. For example, the Catalog of Published GWAS hosted by the 
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National Human Genome Research Institute (NHGRI) lists ~100 entries on SNP-covariate 

interactions significant at the p< 10^-5 level, but only a handful of those covariates comprise 

physiological phenotypes. Two studies report interactions with BMI, three with age. 

Typical genetic association studies do, of course, typically adjust for other phenotypes as 

covariates, but it has been shown that adjusting for phenotypes that are themselves heritable adds 

bias to associations.203 Moreover, in the case of SNPs with covariate-contingent effects, mere 

adjustment without an allowance for possible interactions can weaken signals substantially. As a 

case in point, there is evidence that the dearth of significant loci related to insulin resistance in 

GWAS of type 2 diabetes (T2D) can be attributed in part to the standard procedure of adjusting 

for BMI204: by narrowing the search to loci that affect T2D independent of BMI, such studies 

have unwittingly diminished their power to detect the adiposity-mediated SNPs involved in 

insulin resistance.  

Another clue that gene-phenotype interactions (as distinct from gene-gene (GXG) or 

gene-environment (GXE) interactions) are common and consequential can be found in the 

growing number of SNPs reported to display quantile-specific penetrance, including those 

associated with BMI and lipid traits.205-207 That the effect sizes of many well-characterized SNPs 

are larger at the tails of phenotypic distributions suggests that the phenotypes themselves may 

increase SNP expression, or serve as surrogates (or modifiers) of others that do. Thus, an implicit 

assumption of GWAS—that the genotype-phenotype relationship holds across phenotypic 

distributions —is suspect. 

In contrast, statistical interactions have been sought frequently between pairs of SNPs. 

However, these efforts have met with little success208 and the search appears to rest on weak 

theoretical ground.209 Research on GXE interactions in relation to complex disease is active and 
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growing, but information about environmental exposures can be inconsistent (with respect to 

timing, duration, measurement, etc.) and difficult to collect prospectively.210,211 Phenotypic 

measurements, on the other hand, are commonly collected within single studies, following 

standardized protocols. Moreover, phenotypes such as CVD-related traits are often correlated, 

indicating that they share common influences that may also change gene expression. Thus, like 

sex and age, a large number of anthropometric and physiologic measurements can be considered 

proxies for a complex network of factors that direct gene expression and influence phenotypic 

plasticity.  
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Limitations of existing methods  

The routine statistical approach to detecting context-dependent genetic effects is to fit a 

regression model with a cross-product term (genotype*covariate) to phenotypic data. A 

significant nonzero coefficient for the interaction term is interpreted as evidence of departure 

from the linear model. In the context of genetic studies, however, the interaction beta coefficient 

can be interpreted more specifically, which we present here as motivation for what follows. 

Namely, if a SNP (X) has no effect on a covariate (Z), then the interaction coefficient is a 

measure of the expected change in covariance between Z and the outcome variable with each 

additional allele copy:  

Given the linear regression model, with parameters as defined in the Statistical Overview 

 

in which coefficients represent actual effects and not estimates, the covariance between outcome  
 
Y and covariate Z, conditioned on genotype g is  
  

 

With each additional allele, Δ Cov(Y,Z) is: 

 

We see that a SNP that has a context-dependent effect on an outcome (with Z as “context” and Y 

as outcome) is here conceptually equivalent to a SNP that additively changes the covariance 
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between the variables Y and Z.  

However, an additive change in covariance represents only a special case of a more 

general phenomenon. There are, in theory, a number of ways SNPs can influence covariance, yet 

not be detected (or only weakly detected) by the interaction coefficient of the standard linear 

regression model. Importantly, in the above derivation, the coefficients represent actual, not 

estimated effects; in practice, the ability of the SNP*covariate interaction coefficient to estimate 

changes in covariance between Y and Z will be sensitive to the “correct” characterization of the 

dependent versus the independent variable. When dealing with biological phenotypes (as 

opposed to, e.g., environmental exposures) this characterization is not always straightforward, 

and may in fact be unwarranted. For example, a genetic effect on the covariance between Y and 

Z can occur even when neither phenotype is biologically dependent on the other. It should also 

be evident that  becomes a less effective estimator of changes in covariance as the 

dominance deviation from additivity increases. If the heterozygote genotype changes the 

covariance between Y and Z, for instance, while the homozygote genotypes do not (i.e. 

incomplete dominance), the expected coefficient of interaction would be zero. In Chapter 5, we 

introduce a way to detect genetic effects on covariance without assuming additivity.  

There is also the case of pleiotropic SNPs, which influence the covariance among 

multiple traits in a way that the interaction coefficient and, in fact, the standard linear 

regression approach altogether, have no power to detect. Recently, several multivariate methods 

have been developed to address such cross-phenotype associations, with the basic objective of 

identifying genetic variants that associate with multiple traits simultaneously. These will be 

discussed in Chapter 5, where we introduce a statistical approach that expands upon them. 

Having (1) emphasized the likely importance of context-dependent genetic variants from 

!βXZ

!βXZ
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the standpoint of both pathophysiology and epidemiology; (2) presented a conceptual link 

between context-dependence and covariance modification; and (3) shown that the conventional 

interaction models used in association studies are limited in their ability to assess genetic effects 

on trait covariance, we can now ask whether improving the sensitivity of statistical models to 

such effects may increase our power to identify biologically meaningful genetic variants. The 

presentation of such methods will be the focus of the next chapter. Here, we have set for 

ourselves the preliminary goal of developing biologically plausible models of genetic context-

dependence. These models will serve as both a theoretical framework for assessing the 

performance of novel and conventional statistical methods, as well as a source of data generation 

to make such assessments empirically. 
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Introduction 

Genetic association studies that test for interaction typically have one of two aims. In 

some studies, the motivation is to enhance the genetic signal of a single-locus test by allowing 

for the possibility of an interaction. Such analyses require a joint test of both main and 

interaction effects. Other studies focus on the interaction term itself, with the objective of 

detecting SNP-covariate interactions that are statistically significant even in the absence of 

marginal genetic effects.  

It is worth illustrating just how exceptional significant interactions in the absence of 

marginal effects likely are in the context of genetic epidemiology. To do so, we can simulate data 

using the standard regression model with an interaction term 

 

setting the proportion of variance explained by the interaction equal to 1.5% (an unusually strong 

effect, for illustrative clarity), and the marginal effect of the SNP to zero. In Figure 4-2, we see 

graphically that there is no “good” or “bad” genotype, but context (i.e. covariate Z) makes it so.  

  

!Yi = βX Xi +βZZi +βXZ XiZi + ε i
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Figure 4-2 Simulated data illustrating the effect of a strong interaction effect with no 
marginal effect, arranged by genotype and by covariate-quartile. The covariate Z is 
standardized, normally distributed, and correlated to Y at r=0.10; N=5000. 
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In the next chapter we discuss a class of theoretical SNPs that would in fact leave such a 

fingerprint, namely genes directly involved in regulating the covariance between two biological 

traits. For an example of a more commonly observed type of interaction, however, we can turn to 

a recent study, which found that a lack of physical activity “accentuates” the effect of a variant in 

the gene FTO on BMI.212 The variant had already been shown by multiple studies to associate 

with increased BMI and obesity.213,214 If it had displayed only interaction effects and no marginal 

effects, individuals with 2 copies of the allele who exercised frequently would have had lower 

BMI than individuals with 1 or 0 copies who exercised the same amount. In other words, the 

FTO allele would reverse roles, switching from a risk-conferring factor to a risk-reducing one, 

depending on level of activity. We might expect such cases to be relatively rare, and in fact that 

expectation has led to recommendations that joint tests should be used when testing for 

interactions.215 208 
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In contrast, Figure 4-3 depicts a strong SNP-covariate interaction that also displays a 

marginal effect. Here, the relative status of the SNP as a “risk” allele does not change with the 

value of the covariate Z, as before. In these more “normal” scenarios, a marginal effect will 

accompany an interaction effect.  

 

 

Figure 4-3 Simulated data illustrating the effect of a strong interaction effect with marginal 
effect, arranged by genotype and by covariate-quartile. Note that the relative status of the 
SNP as a “risk” allele does not change with Z, as in Figure 2. When that does not happen, a 
marginal effect will accompany an interaction effect. The covariate Z is standardized, normally 
distributed, and correlated to Y at 0.10; N=5000. 
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However, the statistical marginal effects that frequently accompany significant gene-covariate 

interactions do not necessarily tell us anything about genetic architecture. In other words, 

however strong the marginal effect, one cannot infer that at the biological level, the gene has an 

effect independent of the covariate. It is entirely possible that reported main effects are merely 

the statistical artifacts of pure SNP-covariate interactions at the biological level. In fact, the data 

depicted in Figure 4-3 was simulated from a model of genetic effects completely dependent on a 

covariate’s value, which we will describe below.  

At present, it is commonly accepted that most statistical interaction effects will display 

marginal effects, but mostly in vague terms.208 It is not possible to estimate, for example, the 

degree to which the relative “share” of a biological gene-by-covariate interaction is captured by 

marginal or interaction effects in a regression analysis. It is thus impossible to quantify the 

advantage of using joint interaction tests over single tests, or to elucidate the conditions under 

which each may be most applicable. Moreover, to our knowledge, there is at present no way to 

simulate phenotypic data based on a realistic and specifiable basis of covariate-dependent genetic 

architecture. Thus, it is difficult to weigh the pros and cons of various methods for detecting such 

SNPs. Here, we present three general models based on more realistic mechanisms of genetic 

architecture.  
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Theoretical Model 1 

[Note: Although the terms “main effect” and “interaction effect” are statistical concepts and thus 

do not necessarily translate back to biology, we have borrowed them here to define underlying 

mechanisms. In brief, a genetic variant’s “main effect” as used here represents its baseline 

contribution to a quantitative trait at the individual level. A gene with only a main effect 

therefore has the same effect regardless of physiological context. An “interaction effect” 

represents an addition to the genetic variant’s “main effect” owing to some covariate.]  

 

Consider the scenario of a standardized covariate Z that amplifies (multiplicatively) a 

SNPs effect, but only after it (the covariate) passes a certain threshold. For mathematical 

tractability, we can set this threshold to the mean, zero. The covariate has no effect on the SNP 

otherwise. The SNP X may also have a “main effect” on outcome Y, where “main effect” is 

defined as an effect not influenced by Z  
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The expected proportion of variance explained by the marginal effect of the SNP is  

 

where k=Var(X)=2p(1-p) 

(see Appendix B-1 for derivation) 

We see here that even if the SNP has no main effect ( ), meaning that the effect of 

SNP X depends completely on a covariate’s value, a regression analysis would nonetheless detect 

a marginal effect, which would account for an expected of the variance of Y. 

We can similarly derive the expected proportion of variance explained by the interaction 

cross product (see Appendix B2): 

 

Note that the ratio :  tells us how the “significance” of the biological interaction would 

likely be distributed among the marginal and interaction effects in a standard regression model.  

 

We see that when a SNP’s effect on a quantitative trait completely depends on the value of a 

covariate, such that the SNP has no effect if the covariate is below its mean, and a multiplicative 

effect as the covariate increases above its mean, the expected proportion of variance explained 

by the marginal effect of the SNP is roughly 2/3 of the proportion of variance explained by the 

SNP-covariate interaction effect in a standard regression analysis. 

Using the formulae for  and , we can now specify one or the other to simulate data 
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structured by an underlying genetic architecture. The fully parameterizable R code for such 

simulations can be found in Appendix D Figure 4-4 was generated by setting =0; the 

correlation between Y and Z to 0.10; and to 1.5%, to match Figure 4-2.  
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2
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Figure 4-4 Data simulated using Model 1, illustrating the effect of a strong interaction 
effect with marginal effect, arranged by genotype and by covariate-quartile. The covariate Z 
is standardized, normally distributed, and correlated to Y at 0.10; N=5000. Note that because 
was set to 1.5%, the proportion of variance explained by the marginal effect  ≈ (3%)/ , as per 
the formula above. 
   
  

!!RXZ
2
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Theoretical Model 2 

In Theoretical Model 1, we arbitrarily set a threshold, Z=0, below which Z did not 

interact with SNP X. Moreover, Z had a multiplicative impact on the effect of X when Z>0. 

Here, we qualitatively change both those conditions: thresholds can be modified and the impact 

of Z on X is additive. 

Consider the scenario where the effect of SNP X on quantitative trait Y depends entirely 

on the value of Z, but in a stepwise, not continuous manner. So, for example, a SNP may have no 

effect until Z= -1 (i.e. quantitative trait Z is one standard deviation below its mean); then Z>-1 

might, for example, trigger a histone modification, such that SNP X has a small, constant effect 

until Z>1, when an enhancer is activated and the effect of X increases to its maximum. 

For mathematical tractability we set 2 simplifying constraints: (1) all stepwise changes in 

the genetic effect of X occur at quantiles of the distribution of Z (there is no constraint on the 

number of quantiles), and (2) the genetic effect of X increases by a constant increment, c. See 

Figure 4-5. 
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Figure 4-5 Schematic of the genetic architecture informing Model 2  
Distributions are of covariate Z~N(0,1). The effect of X on Y is represented by the darkness of 
the shaded regions: In panel (A), Z has no impact on the effect of X; in (B) the effect of X 
increases a fixed amount at Z=0, but afterwards does not vary with Z (an example might be a 
certain threshold of cigarettes that causes an epigenetic modification); (C) the effect of X 
increases by a fixed amount, c, after the first tertile, and by the same amount after the second 
tertile; (D) the effect of X increases by c at each quartile.  
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The outcome Y is modeled as a step function, divided into q quantiles of the covariate Z.  

So, for the first quantile of Z,  

 

where  (the minimal effect of SNP X).  

For the second quantile of Z,  

 

with  

In general: 

 

where  

 

As with Theoretical Model #1, the genetic effects here are also completely depdnet on the 

covariate Z. The fully parameterizable R code for generating data with this model can be found 

in Appendix D. 
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By calculating the variance of Y, we can define the value of c in terms of the heritability of X: 

      Note1 

 

 

(Note that is the formula for the sum of n consecutive squares.) 

To simplify, we can adjust so that Var(Y) = 1 (see Statistical Overview). 

Then, the heritability of X is  

 

and  

 

                                                
1 It is permissible to divide the variance terms of Y into q parts because the quantiles are contiguous, and the 

integrals for variance “telescope”; e.g. in general:     
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Thus, data can be simulated simply by specifying , as well as the parameters q (number of 

quantiles) and (desired correlation between Z and Y).  

As we did for Theoretical Model 1, we can derive the expected proportion of variance 

explained by marginal effects vs. interaction effects when a regression analysis is run on data 

generated by this model (see Appendix B-3 for derivations). The relative values will depend on 

the number of quantiles chosen for the model. Figure 4-6 depicts the ratio :  as the 

number of quantiles increases from 2 to 20. In contrast to Theoretical Model 1, where the 

expected proportion of variance explained by the marginal genetic effects was 2/  times the size 

of expected proportion of variance explained by the interaction, in Theoretical Model 2, is 

substantially larger than , converging quickly to .  
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Figure 4-6 Expected ratio of : for Model 2, plotted against the number of quantiles. 
As the number of quantiles increases from 2 to , the ratio between the expected proportion of 
variance explained by marginal genetic effects vs. the expected proportion of variance explained 
by the interaction falls from  to . 

  

!!RX
2
!!RXZ
2

∞

!
9π
2

π



!107 

Theoretical Model 3 

 
As we increase the number of quantiles in Theoretical Model 2, the step function 

becomes more continuous.  

 
Figure 4-7 Increasing the number of quantiles. As the number of quantiles increases to , the 
step function of Theoretical Model 2 transforms into the continuous function of Theoretical 
Model 3 without “main effects”. 

 

It may be helpful to imagine a biological scenario where this may be the case, such as X as a 

receptor variant sensitive to the concentration of a hormone Z. Increasing levels of Z may trigger 

more system-wide signal transductions by X in a manner that is continuous, not stepwise as in 

Theoretical Model 2; but the effect on Y may be proportional to the percentile of Z rather than its 

actual value, owing to rate-limiting factors. In other words, the interaction would not be captured 

by XZ, but rather by X : 

 

to which we can add a “main effect” term 

 

creating a hybrid of Theoretical Models 1 and 2. A benefit of defining the cross-product 

interaction as X  versus XZ is that the former maintains the direction of effect of a SNP, as 

∞
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in the other models. In other words, we can represent a deleterious (or beneficial) allele that is 

context-dependent, yet still more deleterious (or beneficial) than the other allele regardless of 

context.  

We also see that 

 

and  

 

(See Appendix B-4 for derivations) 

So that, when =0, the ratio  

:   

is equal to , just as we would expect, since when , this model is the same as Theoretical 

Model 2 with an infinite number of quantiles (see Figure 4-6, 4-7). 

 Note that Theoretical Model 3 generated data for Figure 4-3 above. A fully 

parameterizable R-code for generating data using this model can be found in Appendix D. 
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Discussion 

We have modeled multiple types of SNP-by-covariate interactions that may plausibly 

occur at the biological level, and the statistical (i.e. populational) parameters to which they 

would give rise. We have already discussed how these models allow us to estimate the relative 

importance of the interaction coefficient versus the coefficient of marginal effect in standard 

regression analyses under various conditions. An additional strength is that data generated by 

these models will be more realistic, and structured differently than data generated using standard 

regression models, even when the same R2 for marginal and/or interaction effects is specified. 

The joint distribution of the two phenotypes will be approximately bivariate normal, but not 

perfectly so; for instance, the effects of the interactions that shape the outcomes may be driven 

more by the tails of the two variables. Recently, the development of novel methods to detect 

interactions, especially GXE interactions, have become an active field of inquiry;216 testing them 

on data generated by these models should thus better predict their performance with real data.  

We have underscored that a statistical method will be more powered to identify context-

dependent genetic effects in proportion to its sensitivity to genetically induced changes in 

covariance between “context” and “outcome.” Here, two points must be addressed. First, 

changes in covariance can occur in multiple ways, such that statistical approaches should address 

differences in kind as well as degree (Figure 4-8). Second, the conceptualization of phenotypes 

as either “context” or “outcome” may not be apt. Physiological processes are complex, and the 

“feedback” mechanisms of trait interdependence are one likely reason. Thus, an ideal approach 

allows for ambiguity of directionality between putative “outcome” and “trait” variables.  

As a final note: although we have framed the utility of detecting genetic modifications 

covariance as a way to discover biologically meaningful SNPs, such approaches can also be used 
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to discover the biologically significant contexts for SNPs already deemed significant. Moreover, 

although the focus of the next chapter will be CVD-related phenotypes, the statistical concepts 

presented in this chapter can in theory be extended to covariates of all kinds, including to a 

number of environmental factors, as well as quantitative measurements of genetic background, 

such as those obtained by principal components analysis (PCA). It is worth noting here that PCs, 

like the phenotypic covariates discussed above, are typically “adjusted for” in epidemiological 

studies, while potential gene-background interactions are ignored, despite strong evidence of 

such effects in model organisms (e.g. the strain-background differences discussed above), and 

some evidence that such effects exist in humans.217 
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Figure 4-8: Schematic of ways SNPs can influence covariance between traits. The green 
brackets and arrows represent correlation between factors. Blue arrows denote independent 
effects. Orange arrows illustrate context-dependent genetic effects; the curved orange arrow 
represents the effect of a trait on the expression of a SNP in the direction of the straight orange 
arrow(s). Thus, (A) and (B) represent pleiotropy, with pleiotropic effects occurring in the (A) 
same and (B) opposite directions of the correlation. In (C), Trait 1 is influencing the expression 
of the SNP, which in turn affects Trait 2; while (D) shows that the situation can become far more 
complicated. Panel (E) depicts unknown factors that drive a correlation between two traits by 
influencing them to different degrees (denoted by the size of the arrow), including by changing 
the expression of a SNP. Finally,   in (F) context-dependent pleiotropy is added to the picture. 
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CHAPTER V 
 

GENETIC ANALYSES OF CVD RISK FACTORS INTERACTIONS IN A GHANAIAN 
POPULATION 

 
A Multivariate Method to Identify Pleiotropic and Context-Dependent Genes 

 
Introduction 

Many of the genetic variants identified by genome-wide association studies (GWAS) are 

associated with multiple traits.218 A conservative estimate of the number of cross-phenotypic 

associations in 2011 implicated 17% of genes, and the percentage for certain classes of 

phenotypes, such as autoimmune diseases, was even greater (44%).219 220 Estimates of genetic 

correlations derived using quantitative genetic techniques have confirmed these observations. 

For example, a recent application of genome-wide complex trait analysis (GCTA)221 found that 

the same genes accounted for ~39% of the heritability of several traits involved in the metabolic 

syndrome. 18 A similar analysis of case/control data concluded that the genetic correlation 

between type 2 diabetes and hypertension was 0.31.222 

These observations have inspired a wave of new methods designed to analyze multiple 

traits simultaneously.223 224 225,226 227 While these multivariate genome-wide association 

(mvGWA) methods share a common objective—improving SNP discovery by taking advantage 

of the additional information provided by multiple phenotypes—they have approached it from 

different angles, using diverse statistical tools, such as linear mixed models224, canonical 

correlational analysis223, and principal components regression.225 Nevertheless, they generally 

yield remarkably similar results, with minor comparative advantages among them usually 

relating to particular aspects of study design.225,227  

However, multivariate methods are not always more powered to detect pleiotropic SNPs 

than single-trait analyses run multiple times and adjusted for multiple testing. For example, they 
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perform worse than single-trait analyses when SNPs have equal effects on a number of equally 

correlated traits.225,227 Moreover, although mvGWA methods are typically applied to correlated 

phenotypes, and their ability to “leverage” correlation is often emphasized,225,227,228 the strength 

of correlation between phenotypes per se has no necessary bearing on their statistical power. 

Rather, multivariate tests have a comparative advantage over single-trait tests only when there is 

a contrast in size and direction between genetic effects on the one hand and residual trait 

correlations on the other.226,227,229 Residual correlations are the correlations between traits minus 

the genetic effects.  

Given that the comparative advantage of multivariate tests over univariate tests depends 

entirely on the strength of a gene’s effect on phenotypic correlation, improving the sensitivity of 

multivariate methods to such effects should improve their power. Indeed, there are a number of 

ways a gene can influence correlation that are missed completely by existing multivariate 

methods. Genetic loci might influence covariance directly, for example, by controlling the 

synchronization of two traits in a homeostatic pathway. Variants at such loci would have no 

expected “marginal” effects, and thus be completely missed by existing multivariate and 

univariate models. Such “covariance genes” are discussed in more detail in the next section. 

Context-dependent SNPs, such as those that increase the expression of one trait only when 

another trait is past a certain threshold, also influence trait covariance (Chapter 4). Although 

existing mvGWA methods can detect such SNPs, they are not optimized to do so. These SNPs 

will be the focus of this section. 
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The ordinal joint interaction method (OJIM)  

Perhaps the most straightforward of the recent multivariate methods, with regard to ease 

of applicability and interpretation of results, is MultiPhen226, which inverts the standard 

regression model used in GWAS, such that the genotype Xig (for individual i and SNP g) 

becomes the outcome variable and K phenotypes and/or covariates are modeled as predictor 

variables. Because genotype is an ordinal set, MultiPhen utilizes ordinal, not linear regression.  

 

 

Rather than estimating the linear change in an outcome variable caused by a predictor, the beta 

coefficients here correspond to the change in the probability that an individual (Xi) “moves up” 

to the next (genotype) class as the predictor variable increases by a unit. In the context of 

GWAS, m can equal 0, 1, or 2, with the simplifying constraint being that the odds of moving 

from 0 to 1 and from 1 to 2 are equal. The α-term is analogous to the intercept in linear 

regression. The null hypothesis tested to determine the significance of the overall model is that 

the beta coefficients of all predictor variables equal zero.   

 Here we propose that by adding an interaction term to this ordinal regression-based 

model, we can, under many conditions, increase its sensitivity to a wider spectrum of covariance-

modifying genetic effects. While any number of phenotypes and interactions may be assessed, 

we limit our consideration below to two phenotypes and one interaction (plus any covariates to 

be adjusted for). In its most basic form, the model we propose and refer to as the ordinal joint 

interaction model (OJIM) is: 
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GENOTYPE ~ TRAIT1 + TRAIT2 + TRAIT1*TRAIT2 

The interaction term above allows for the detection of heterogeneity of correlation by genotype.  

Existing mvGWA methods derive their power only by detecting genetically induced changes to 

the correlation between traits in the data as a whole, and not to differences in correlation among 

genotypic classes.  

This distinction is best illustrated by visualizing a scatterplot of two highly correlated 

traits (Figure 5-1). If a SNP that only affects one of the traits is “inserted” into the population, 

thereby shifting a (random) set of the points to the right, the correlation between the two traits 

will clearly be weakened. Existing multivariate methods are better powered than single-trait 

GWAS to identify such SNPs because of the difference between the direction of such genetic 

effects and that of the residual correlation. Note that in this particular example, the inserted SNP 

is not pleiotropic; in fact, had it increased both traits equally, the induced change in correlation 

would have been less pronounced, to the relative disadvantage of mvGWA methods. Note also 

that the correlation by genotype does not change with the introduction of this new SNP; 

therefore, the interaction term in the ordinal regression model above would not have improved 

power. On the other hand, if an introduced SNP has an effect on one trait that depends on the 

value of another trait, then both residual correlation and correlation by genotype will generally 

be modified. In these cases, adding the interaction term to the multivariate model will increase 

power (Figure 5-1).  
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Figure 5.1: Existing multivariate genome-wide association methods are sensitive to the 
genetic effects depicted only by residual correlational changes.  
 
          A         B       C 

 
 
Trait 1 (horizontal axis) and Trait 2 (vertical axis) are highly correlated, but have no causal 
relationship with each other. (A) Red points denote individuals with at least one copy of an allele 
that is neutral with respect to Traits 1 and 2; (B), the introduction of a new exposure has caused 
the allele to exert a strong, spontaneous effect on only Trait 1. Note that all points have been re-
standardized, such that the increased dispersion of all points taken together reflects the weakened 
correlation between Traits 1 and 2 in the population as a whole. Note also that the correlations by 
genotype (red vs. blue) are not significantly different. In (C), the introduction of a new exposure 
has similarly caused Trait 1 to increase dramatically in individuals with at least one copy of the 
allele, but in a way that depends on the value of Trait 2. Points have again been re-standardized, 
revealing a less pronounced change in total correlation (red and blue combined) than in (B), but a 
significant difference in correlation by genotype (red vs. blue).  
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How common these context-dependent genetic effects are in nature is an open question, 

as the influence of genetic variants on phenotypic covariance has not been adequately explored. 

On the face of it, however, the idea that genes should have predominantly static effects on 

dynamic systems, such as lipid metabolism, would seem unlikely. It is well known, for example, 

that individuals with higher levels of plasma triglycerides (TG) typically have lower levels of 

high-density lipoprotein cholesterol (HDL), and vice versa. TG levels in individuals (as well as 

in populations) may rise and fall over time, but the negative relationship between TG and HDL 

persists. Thus, the genetic loci involved in shaping this negative relationship are unlikely to have 

the same effect on HDL regardless of whether TG is high or low (and vice versa).  

We hypothesized that many of the cross-phenotypic associations previously reported for 

lipid-associated SNPs (Figure 5-2) reflect genetic effects that vary with the lipid trait values 

themselves. To the extent that this is true, the OJIM should outperform univariate and bivariate 

methods in detecting such loci. Using lipid measurements from1032 Ghanaian participants of the 

HeART study, we tested our hypothesis by assessing the ability of the OJIM to identify SNPs 

known to be associated with lipids and other complex phenotypes, and comparing the OJIM’s 

performance to that of conventional analyses. 
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Figure 5.2: Genes associated with multiple lipid traits. In parentheses: the number of loci 
associated with only one trait. Figure borrowed from Global Lipids Genetics Consortium 
(2012)230 
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Methods 

Power analyses 

To evaluate the power of the ordinal joint interaction model to detect SNPs with context-

dependent effects, and to compare its performance to that of other methods, we generated data 

for 5000 individuals using “Theoretical Model 1” from Chapter 4, setting =0 and to 0.5%. 

This model simulated phenotypic data for SNPs of moderately strong effect (expected R2=2/π 

*0.5=0.33 in univariate analysis) dependent on the value of an independent covariate (Z). 

Varying the correlation between Y and Z in increments of 0.1, we tested 1000 SNPs with the 

OJIM, with MultiPhen (i.e. the bivariate ordinal model without an interaction term), single-trait 

linear regression, and single-trait linear regression with a SNP-by-covariate interaction term. 

Because we knew beforehand that only the outcome variable (Y) associated with the SNP, we did 

not test the SNP for association with the covariate (Z) in any of the single-trait regression 

analyses (with or without interaction). Consequently, we did not correct results of the single-trait 

tests for multiple testing, making all comparisons with the multivariate methods conservative.  

 

Assessment of Type I error 

An advantage of a multivariate approach based on ordinal regression is that it does not assume 

normality of trait distributions or homoscedasticity. Ordinal regression is also far more robust to 

outliers than linear methods. To demonstrate this, we used a standard linear model to generate 10 

datasets of phenotypic data for 5000 samples, but with the error term set to a t-distribution with 8 

degrees of freedom to generate outliers (see Chapter 4). The simulated SNPs had no effect on the 

outcome and were not associated with the covariate. The correlation between the outcome and 

!βX !!RXZ
2
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covariate was set to 0.30. The distributions were controlled not to deviate too far from normality 

(Shapiro-Wilk, p>.001 for all cases).  
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Application of the OJIM to lipid traits 

Study Cohort Description 

Please see Section A of Chapter 3. 

 

Anthropometric measurements and biochemical analysis 

Please see Section A of Chapter 3. 

 

Genotyping 

A subset of 1105 urban participants from the Ghanaian HeART cohort was selected for 

genotyping. DNA was genotyped using the Illumina Infinium HumanExome BeadChip platform 

(Illumina Inc., San Diego, CA). This platform interrogates strictly exonic variants, covering 

~240,000 markers.  

 

Quality Control  

Approximately 250,000 variants from 1105 participants were available prior to quality controls. 

We removed all SNPs with a genotyping call rate < 95%. Individuals for whom < 95% of 

variants were called were removed from analyses. Variants with a minor allele frequency < 20% 

were also removed, as were variants with a Hardy Weinberg p value < 0.001. Cryptic relatedness 

was assessed in the data, and one participant in each pair of related individuals (pi-hat >0.2) was 

randomly removed.  Following quality control, 1032 participants and 15,890 variants remained 

All quality control procedures were performed in PLINK (version 1.07)231. 

 

Selection of SNPs 
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We used the Catalog of Published GWAS hosted by the National Human Genome Research 

Institute (NHGRI) to select SNPs. The regularly updated catalog lists ~15,000 annotated genetic 

associations from published GWAS for which p<10^-5. We culled all entries mapped to an rs-

numbered SNP, of which a final total of 2669 (1) overlapped with the ExomeChip data after QC, 

and (2) had MAF>0.20 in our samples. 

 

Statistical Analysis 

A code was written in R (Appendix D) to identify associations between the 2669 NHGRI SNPs 

and total cholesterol (TC), triglycerides (TG), HDL, and LDL, using all of the single-trait and 

multivariate analyses discussed above. In the multivariate analyses, traits were assessed in pairs. 

All analyses were adjusted for age and sex. 
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Results 

Using simulated data, we compared the power of single-trait and multivariate methods to 

detect SNPs with moderate effect sizes. The expected proportion of phenotypic variance 

explained by genotype was set to 2/π *0.5, or 0.33 (see Methods). The SNPs were entirely 

context-dependent, in that they had no expected effect when a normally distributed covariate was 

below its mean, and an effect that increased multiplicatively with the covariate above its mean 

(see Chapter 4). We used the genome-wide threshold of 5 X 10-8 to determine significance. 

Figure 5-5 displays the number of successes out of 1000 simulations over a wide range of 

correlations. MultiPhen did not generally perform better than single-trait regression. The OJIM 

performed most consistently, with a success rate of 60% or higher across all correlations. The 

standard linear SNP-by-covariate interaction model caught up to the OJIM at higher correlations, 

but this improvement likely reflected the susceptibility of such models to Type 1 error at high 

correlations, driven in part by increased heteroscedasticity (see Discussion). The linear 

interaction model also displayed extreme levels of Type 1 error when outliers were present, in 

contrast to the OJIM (Figure C-1, Appendix).  

Using exome data from 1032 Ghanaian men and women, we assessed 2669 SNPs from 

the NHGRI GWAS Catalog for association with TC, TG, LDL, and HDL. Lipid traits were 

tested individually (applying conventional single-trait regression analysis) and in pairs (applying 

a bivariate ordinal regression approach with and without an interaction term). Linear interaction 

models yielded highly inflated p-values (Figure C-2, Appendix) and are not presented below.  

The correlation between LDL and total cholesterol in our samples was 0.91. Thus, tests for the 

LDL-TC pairing suffered from high multicollinearity. Because TC had substantially less missing 

data than LDL, and because results for the pairings of LDL-TG and LDL-HDL were broadly 
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similar to those for TC-TG and TC-HDL, we focus our presentation and discussion below 

mainly on the results for TC-TG, TC-HDL, and TG-HDL. Results for tests with LDL are 

discussed where biologically interesting, and can be found in Tables C-1 and C-6.  

The TG-TC and TG-LDL tests provided strong support for the hypothesis that the genetic 

effects on lipid traits are mediated by other lipid traits. Superimposed QQ-plots of all p-values 

(Figure 5-6) and of p-values for only the 116 lipid SNPs that overlapped with our data (Figure 

C-3A) revealed that the OJIM yielded the most significant results, with Type I error comparable 

to that observed for the univariate tests. The most significant SNP was rs12740374 (p= 3.88 x 

10-7 for TG-LDL; p=5.77 x 10-6 for TG-TC), a locus in perfect or nearly perfect linkage 

disequilibrium with rs7499892, rs629301, rs646776, and rs660240 (Table C-1 and Table 5-1). 

The minor haplotype group formed by these five SNPs has been associated with lipids and 

cardiovascular phenotypes in multiple studies across several populations (see Discussion), and 

moreover, has been shown to increase the expression of SORT1 in the liver, which mediates LDL 

and very low-density lipoprotein (VLDL) production.232 The OJIM’s interaction p-values for the 

SNPs in the haplotype ranged from 0.001 to 0.0002 (TG-TC tests) and 0.006 to 0.002 (TG-LDL 

tests) (Table C-1 and Table 5-1). In accordance with the significant interaction, TG-TC and 

TG-LDL correlations differed by genotype. Figure 5-7 shows that the minor allele of 

rs12740374 attenuated the positive association between LDL and TG. More specifically, the 

LDL-lowering effect of rs12740374 became evident only in individuals with above-average TG 

(Figure 5-8).  

The OJIM also detected the lipoprotein lipase (LPL) gene, which converts VLDL to 

LDL. Although the interaction term was not significant for any of the four LPL SNPs, the joint 

interaction p-values were nonetheless most significant for two of them (Table 5-1). In the TG-
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TC tests, only one lipid-associated gene identified by either univariate or bivariate analysis was 

not among the top ten associations for the OJIM (BCHE-rs1803274). However, BCHE-

rs1803274 was the seventh most significant OJIM result in the TG-LDL tests (Table 5-1, Table 

C-1, and Table C-2). Six of the top ten results for the interaction term alone (including 

rs12740374 and rs646776) were associated with genes identified by GWAS of cardiovascular 

traits; in addition to rs12740374 and rs646776 described above: rs1829883, CACNB2-rs7076247, 

IGF2AS-rs1004446, and THADA-rs6732426 (Table C-3).233-236 

The added interaction term provided less of an overall power advantage for the TG-HDL 

tests (Figure C-2B and Figure C-3B), but the OJIM still displayed the most power to detect 

lipid-associated loci (Table 5-2, Table C-4, and Table C-5). In particular, the OJIM identified 

four lipid-associated genes (CETP, LIPC, APOA, and KLHL8) among its top ten results, while 

the other methods detected only CETP and LIPC. The top HDL-TG result was rs7499892 in the 

CETP gene, which encodes the fundamental enzyme in TG and HDL metabolism, cholesteryl 

ester transfer protein.  The interaction p-value for rs7499892 was only 0.06, but here, too, the 

joint interaction p-value was lowest of all methods tested (6.87 x 10-05) (Table C-2). Only the 

OJIM identified the fundamental APOA-cluster (APOA1, APOA3, APOA4, APOA5, ZNF259, 

and BUD13) among its top ten results (Table C-2 and Figure 5-4). The significant interaction p-

value (0.01) captured a recessive genetic effect on the correlation between TG and HDL (Figure 

5-9). Further exploration revealed that the association between rs4938303 and HDL in the 

univariate analysis (p=0.002) was driven almost entirely by homozygote recessive individuals in 

the fourth quartile of TG (Figure 5-10). 

The OJIM’s second best association was rs1532085 in the hepatic lipase gene LIPC, 

another key factor of HDL and TG metabolism. Although the joint interaction p-value for 
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rs1532085 (0.0001) was more significant than the univariate p-values (0.003 for HDL, 0.011 for 

TG, unadjusted), the interaction term was not significant (p=0.74). MultiPhen therefore had the 

most power (p=3.4 x 10-5), indicating that the effect was likely independently pleiotropic (Table 

5-2). The third best OJIM result was rs610604 in TNFAIP3, a gene previously associated with 

cardiac troponin-T levels and atherosclerosis in African Americans.237 Three of the top ten 

interaction p-values were for loci related to cardiovascular traits: NOS1AP-rs2880058,238 GHR-

rs13188386,239 and KLHL8-rs442177, a SNP previously associated with TG in multiple studies 

(discussed below). 

The HDL-TC and HDL-LDL did not provide evidence for context-dependent genetic 

effects (Figure C-3C). CETP and SORT1 were the two best associations for all methods, but no 

other lipid-associated genes were identified (Table 5-3). All methods performed comparably; the 

top ten MultiPhen and OJIM associations featured the same SNPs (in different orders), while 

only one of the top ten univariate results was unique, though unrelated to cardiovascular disease 

(Table 5-3 and Table C-7). 
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Discussion 

If a genetic variant (X) is introduced into a population, such that its effect on Trait Y 

depends on the value of Trait Z, then X will also modify the correlation between Traits Y and Z. 

Existing multivariate genome-wide association (mvGWA) methods derive their comparative 

advantage over single-trait analyses on account of their sensitivity to just such modifications. 

However, the correlation between Traits Y and Z will also differ by genotype, i.e. by the number 

of copies of X. We propose here that multivariate methods sensitive not only to the effects of X 

on residual correlation, but also to this correlational heterogeneity, will have increased power to 

detect context-dependent variants. The ordinal joint interaction model (OJIM) described here 

meets both criteria.  

 In Chapter 4, we developed biologically plausible models of context-dependent 

quantitative trait loci (QTL). Here, using the first of those models, we simulated data with which 

to assess the performance of the OJIM, bivariate ordinal regression (MultiPhen), univariate linear 

regression, and linear regression with a SNP-by-covariate interaction term. Because the effect of 

the QTL on the outcome phenotype was simulated to depend on a covariate, we expected the 

OJIM to outperform univariate and bivariate analyses. It did so, showing remarkable consistency 

over all correlations, and achieving genome-wide significance ~60% of the time (Figure 5-5). In 

contrast, the univariate analyses detected the simulated QTL at a genome-wide level of 

significance only about 10% of the time (as expected, given the QTL’s marginal effect size of 

2/π *0.5; see Methods) (Figure 5-5). Univariate results were approximately the same across all 

correlations, because there was no interacting covariate in these analyses. We ran only one 

univariate test per SNP, because we knew beforehand which the dependent variable was. Had we 



!128 

not known this, adjustment for multiple testing would have been required. Thus, all comparisons 

with single-trait tests here are conservative. 

 We did not expect MultiPhen to perform as well as the OJIM, because estimates of 

marginal effects capture only a fraction of the total effect of a context-dependent QTL. Indeed, 

MultiPhen detected the QTL at a genome-wide level of significance less than 10% of the time 

over most correlational classes (Figure 5-5). However, we expected its performance to improve 

as the correlation between the outcome and covariate increased. For, when a QTL is associated 

with only one of two traits, its effect on the residual correlation is stronger when that correlation 

is stronger. This was also observed (Figure 5-5). 

The conventional way to identify genetic variants with context-dependent effects is to 

assess the significance of a gene-by-covariate interaction term in a regression model. However, 

we saw in Chapter 4 that even when a genetic effect is highly dependent on a covariate, reliance 

on the SNP-by-covariate interaction term alone is often not sufficient. In contrast, the OJIM 

assesses marginal effects, while simultaneously allowing for genetic interactions with any 

number of traits, making it a simple but comprehensive joint test of interaction. Joint tests based 

on single-outcome regression are not nearly as straightforward to design or implement, and are 

further complicated by inflated Type 1 error, as described below.240,241 All single-outcome 

interaction models also require a priori selection of a dependent outcome variable. Such 

decisions may be straightforward enough with most gene-by-environment interactions, but with 

complex phenotypes, such as cardiovascular risk factors, the direction of interaction can often be 

counterintuitive. The very concept can also be misplaced, as when two phenotypes feed back into 

each other.  
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In our simulations, we knew beforehand that the modeled SNPs only interacted with one 

phenotype (Z), and, moreover, that they did not have pleiotropic effects (which single-outcome 

regression would not have had the power to detect). Despite these advantages, the interaction 

term achieved genome-wide significance less than 40% of the time when correlations between 

the outcome and covariate were 0.4 or below (Figure 5-5). P-values improved for the strongest 

correlations (>0.50), but inflation was likely a major factor. Attention has recently been drawn to 

the fact that conventional linear interaction models, such as gene-by-environment models, are 

highly susceptible to Type I error for structural, not empirical reasons.242,243 We observed 

massive inflation when the linear interaction model was tested on simulated data that contained 

outliers (Figure C1, Appendix). Moreover, when we tested the linear interaction model on real 

data, Type I error for the interaction term p-values was likewise extreme (Figure C2, Appendix). 

We have therefore omitted the results for these tests from the main body of presentation.  

The QTLs in the simulations above were not pleiotropic. In contrast, O’Reilly et al. tested 

MultiPhen by simulating QTLs that were pleiotropic (they affected two traits independently), but 

which did not have an interaction with either.226 In such cases, the OJIM would still be expected 

to pick up the pleiotropic effects, but the extra degree of freedom for the superfluous interaction 

term would diminish its power. We found that this loss of power rarely exceeded half an order of 

magnitude when we used the same range of trait correlations and simulation parameters as O’ 

Reilly et al (N=5000, MAF=0.2, expected variance explained per SNP ≤ 0.5%) (data not shown). 

For the reasons discussed above, MultiPhen performed worse than univariate regression (run 

separately for both traits and corrected for multiple testing) over some ranges of correlations 

between the traits (see O’Reilly et al.). For example, when the simulated pleiotropic SNP had 

equal, independent effects on two traits, univariate regression performed best for correlations 
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greater than 0.5. Expectedly, the OJIM performed worse than univariate linear regression over 

the same general ranges as MultiPhen in these simulations. 

Clearly, with respect to statistical power, no model is ideally suited for every situation. 

Standard GWAS will generally have the strongest power to detect SNPs that affect only one of 

two weakly correlated traits, or SNPs that have independent effects on two traits in the same 

direction as their residual correlation. On the other hand, a SNP with independent effects on two 

weakly correlated traits will be most amenable to discovery by a standard mvGWA approach, 

including MultiPhen. Even in these cases, however, when the OJIM does not increase statistical 

power, it does nonetheless offer the advantage of providing information about genetic 

architecture that would otherwise be unavailable. For, significant or not, the p-values for the 

interaction term, for each predictor variable, and for the overall model fit, are all potentially 

meaningful. A significant interaction term indicates that the phenotypes have different 

relationships with each other by genotype, possibly on account of context-dependent genetic 

effects. If only the overall model p-value, but not the interaction p-value, is significant, the SNP 

may have independent pleiotropic effects on multiple traits, but its effect is unlikely to be 

dependent on their relative values. If only the interaction term is significant, and not the beta 

coefficients of the traits themselves, then we can further conclude that the SNP strengthens (or 

weakens) the relationship between the traits in a general way (i.e., not only in one direction). 

Thus, when the covariates are carefully chosen and the p-values carefully considered, the OJIM 

can be used not only to discover meaningful SNPs, but also to gain insight into genetic 

architecture. 

 On the other hand, all but a handful of the variants listed in the NHGRI Catalog have 

been discovered by univariate GWAS, and consequently provide very little information about 
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genetic architecture. Because marginal effects can account for a large proportion of genetic 

variance even when genetic effects depend entirely on other covariates, the degree to which the 

SNPs in the NHGRI Catalog are context-dependent remains an open and empirical question. To 

address it, we compared the relative power of the OJIM, MultiPhen, and univariate regression to 

detect the NHGRI Catalog SNPs previously associated with lipid traits and related 

cardiovascular phenotypes. To the extent that a gene’s effect on lipid levels is mediated by other 

lipid levels (either directly or epiphenomenally), the OJIM’s results should reflect it. 

We chose lipid traits as our phenotypes for several reasons. First, SNPs associated with 

lipids are among the most numerous and best replicated in the NHGRI Catalog. Second, the 

complexity of lipid metabolism suggests that lipid traits are unlikely to be independent of each 

other at the physiological level. They may, for instance, interact in the context of metabolic 

pathways, or induce reciprocal changes at the level of gene expression. At the same time, lipid 

metabolism is not unmanageably complex. Many of its pathways and molecular mechanisms are 

well characterized, and much of the variation therein appears to be adequately (if crudely) 

captured by the four conventional lipid measurements244. It has also been suggested that 

pleiotropy is pervasive among SNPs associated with lipid traits. However, because they have 

generally been tested one at a time, some of these cross-trait associations may be merely 

artifactual. Alternately, some of these loci may truly have pleiotropic effects, but the pleiotropy 

may itself be context-dependent.245 For example, a variant may be involved in a pathway that 

simultaneously raises HDL and lowers TG, but it may require HDL or TG to reach certain levels 

before its expression is activated. The OJIM, being sensitive to both pleiotropy and context-

dependence, would correspondingly be most powered to identify them. 
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Lipid traits make up approximately 5% of the NHGRI Catalog of GWAS hits, while the 

proportion of traits related to cardiovascular disease (though a subjective calculation) make up 

approximately 20% when a wide set of criteria are applied. We did not limit our tests to only 

these SNPs, however, but considered all of the SNPs in the GWAS Catalog (that overlapped with 

our exome data), because functional variants tend to be pleiotropic, and pleiotropy can occur in 

unpredictable ways.219 Moreover, by testing even SNPs associated with those phenotypes 

furthest removed from cardiovascular disease, we can gain additional insight into the OJIM’s 

performance by assessing the overall distributions of p-values.  

In our analyses, the strongest support for the hypothesis that the genetic effects on lipid 

traits are mediated by other lipid traits was provided by the TG-TC and TG-LDL tests. A 

comparative distribution of p-values for all TG-TC tests revealed that the OJIM yielded the most 

significant results, with minimal Type I error (Figure 5-6). Moreover, its top associations were 

enriched for lipid-associated SNPs (Table 5-1 and Figure C-3A). Among the top ten 

associations for the TG-TC and TG-LDL univariate and bivariate analyses, only one lipid-

associated SNP (BCHE-rs1803274) was missed by the OJIM, and that only with the TG-TC 

pairing (Table 5-1, Table C-1, and Table C-2). 

The most significant SNP was rs12740374, which had a joint interaction p-value of 3.88 

x 10-7 for TG-LDL and 5.77 x 10-6 for TG-TC (Table C-1 and Table 5-1). The locus was in 

perfect linkage disequilibrium (LD) with rs7499892, and in nearly perfect LD with three other 

SNPs (rs629301, rs646776, and rs660240). The minor haplotype group formed by these five 

SNPs, located on chromosome 1p13.3, has been shown to be associated with lower LDL levels 

in many populations,246-253 as well as with reduced risk for coronary artery disease,254-258 

myocardial infarction,258,259 coronary artery calcification,260 and other cardiovascular 
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phenotypes. Although requiring Bonferroni multiple testing correction to the results of this study 

would be unreasonable in light of the widespread LD among the interrogated SNPs and the prior 

knowledge of function, the p-values for these OJIM associations were nonetheless well below 

that threshold (p=1.9 x 10-5). Importantly, the SNPs of 1p13.3 stood out in this study because of 

their highly significant joint interaction p-values. A study that assessed only the marginal effect 

of rs646776 on LDL (p=0.0002), for example, or only the interaction effect of 

rs646776*triglycerides on LDL (p=0.003), may have passed over the locus.  

Whereas the causal genes and functional roles of most lipid-related GWAS SNPs are still 

unknown, the five SNPs in 1p13.3 are notable exceptions, having been shown by a recent study 

to increase the expression of SORT1 in the liver.232 Fine mapping revealed that rs12740374 was 

in fact the functional variant, its minor allele creating an enhancer for SORT1.232 Studies 

assessing the connection between the gene product sortilin and LDL metabolism, however, have 

yielded conflicting results.232,261-265 In some studies, including human studies, increased 

expression of hepatic SORT1 resulted in lower VLDL production.232,266 Because VLDL is 

converted to LDL in the blood, VLDL reduction could explain the reduced plasma LDL levels in 

individuals with the minor allele rs12740374-T (as also observed here). However, mechanisms 

by which SORT1 overexpression leads to increased LDL, such as by facilitating VLDL secretion 

or by targeting LDL receptors for lysosomal destruction, have also been well characterized.262,264 

Moreover, studies in mice have found that sortilin deficiency, as by SORT1 knockout, reduced 

VLDL production, and drastically so.264,266 Thus, whereas all studies point to the 1p13 locus as a 

promising target for therapeutic intervention, the conditions under which SORT1 and its product 

sortilin (termed a “many-headed hydra” in a recent editorial267) lower LDL are far from clear 

(Figure 5-3).   
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Figure 5-3. Mechanisms by which sortilin can influence LDL levels. Figure adapted from 
Strong et al. (2012).263 
 
Very low-density lipoprotein (VLDL) synthesis begins in the rough endoplasmic reticulum 
(green) and is completed in the Golgi apparatus (blue). VLDL (orange) is either degraded or 
secreted. When secreted, VLDL is lipolyzed to generate LDL (purple) and taken up by the 
hepatic LDL receptor.  
 
(A) SORT1 overexpression decreases LDL by increasing hepatic uptake of LDL participles 
(Linsel-Nitschke et al.)265; 
 
(B) SORT1 overexpression decreases LDL by reducing production and/or secretion of VLDL 
(Musunuru et al.)232; 
 
(C) SORT1 overexpression increases LDL by facilitating secretion of VLDL (Kjolby et al.)264; 
 
(D) SORT1 overexpression increases LDL by targeting LDL receptors for destruction (Gustafsen 
et al).262 
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In that regard, the OJIM is not only sufficiently powered to detect a context-dependent 

gene like SORT1, but can also can provide insight into its mechanism. That 1p13.3 was detected 

in tests of TG-LDL and TG-TC is noteworthy, because SORT1 influences LDL (at least in part) 

by its more direct influence on VLDL (Figure 5-3), and almost all of the triglycerides in the 

blood are carried by VLDL. However, no study to date has found an association between 

rs12740374 and TG, despite the biological plausibility of such a connection.268 In our univariate 

tests of TG, the p-value for rs12740374 was 0.97 (N=1032, Table 5-1). Yet, while rs12740372 

may not influence TG, TG does appear to influence the effect of rs12740374 on LDL (interaction 

p-value= 0.0016) (Table 5-1).  

We mentioned that the interaction term of the OJIM is sensitive to heterogeneity of 

correlation by genotype. Indeed, we see in Figure 5-6 that the expected correlation between LDL 

and TG (r = 0.27 for major allele homozygotes at rs12740374), becomes statistically 

indistinguishable from zero when one or two copies of the minor allele are present. Figure 5-7 

provides additional insight into how the effect of rs12740374 on LDL may vary with TG. In 

individuals homozygous for the major allele, the increase in mean LDL by TG quartile is just as 

we would expect, given that increased TG implies increased VLDL, and VLDL is lipolyzed into 

LDL. In particular, individuals with the lowest TG levels (first quartile) had LDL levels almost 

one-half standard deviation below the mean, whereas those with above-average TG levels (third 

and fourth quartiles) had LDL levels approximately one-half standard deviation above the mean. 

However, the minor allele at rs12740374 appeared to disrupt this relationship. Interestingly, its 

LDL-lowering effect became evident only in the third and fourth quartiles of TG, when LDL 

“should” have been higher. These results suggest that the observed reduction in LDL may have 

more to do with accelerated LDL clearance (perhaps after VLDL reaches a certain level) than 
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with VLDL reduction or destruction per se (Figure 5-3). Future experiments assessing the 

directionality of sortilin’s effects should therefore factor in triglyceride levels. The contradictory 

conclusions of previous studies may be reconcilable if cryptic variation in background lipid 

levels are accounted for, such as may be caused by differences in experimental method (e.g. 

knockout, knockdown and overexpression protocols) or noted differences in diet and mouse 

models.263,267 

While the experimental evidence connecting SORT1 and VLDL makes it tempting to 

speculate that TG mediates the LDL-lowering effects of rs12740374 directly, the correlational 

patterns observed here may very well be the epiphenomena of other unknown factors. It is, in 

fact, a merit of the OJIM that the phenotypes being assessed need not be at all causally related, as 

such a requirement would severely limit its utility. Rather, its power is enhanced whenever there 

are differences in phenotypic correlation by genotype, whatever the mechanism, and regardless 

of whether the phenotypes are distant proxies for an underlying set of unknown factors. Such 

indirect genetic modifications to correlations may very well be ubiquitous, given that arbitrarily 

small perturbations in complex systems, such as physiological systems, typically propagate 

across entire networks of interactions.  

Interestingly, the other set of major lipid-associated SNPs identified by the TG-LDL and 

TG-TC tests were variants in the lipoprotein lipase (LPL) gene, which converts VLDL into LDL. 

Although the OJIM’s interaction term was not significant for any of the four associations 

(p=0.14, 0.08, 0.09, and 0.44 in the TG-TC tests), its full model p-value was nevertheless the 

most significant for two of them (Table 5-1). Somewhat surprisingly, MultiPhen did not 

significantly outperform even univariate analysis in detecting lipid-associated SNPs in the TG-
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TC and TG-LDL tests (Table 5-1, Table C-1, and Table C-2). It is possible, therefore, that 

genetic effects on TG, TC, and LDL are more context-dependent than pleiotropic. 

With the TG-HDL tests, MultiPhen’s performance improved, while the added interaction 

term provided less of a power advantage overall (Figure C-2B and Figure C-3B). Although this 

may provide nominal evidence that genetic effects on TG and HDL are not particularly 

dependent on relative TG and HDL levels, the small sample sizes for tests with HDL (N=869) 

preclude any strong conclusions. More importantly, when only the top results for each of the 

methods were considered, the OJIM still displayed the most power to detect lipid-associated loci 

(Table 5-2, Table C-4, and Table C-5). In particular, of the four lipid-associated genes (CETP, 

LIPC, APOA, and KLHL8) identified by at least one of the methods, only the OJIM identified all 

four; the others missed APOA and KLHL8.  

The top HDL-TG result, rs7499892, is a SNP in CETP, the gene that encodes the key 

HDL remodeling factor, cholesteryl ester transfer protein. A large number of studies have shown 

that CETP is strongly associated with lipid traits as well as with cardiovascular risk 

factors.50,269,270 Although the OJIM’s interaction p-value for rs7499892 was only 0.06, its full 

model p-value was nonetheless the lowest of all methods tested (6.87 x 10-05) (Table C-2). The 

enhanced power of the OJIM to detect CETP makes sense in light of the fact that cholesteryl 

ester transfer protein (CETP) facilitates transfer of cholesteryl ester (CE) from HDL to 

triglyceride-rich lipoprotein in exchange for triglycerides.269 Moreover, in vitro evidence 

indicates that CE transfer from HDL is increased in plasma from hypertriglyceridemic 

individuals. Accordingly, plasma TG levels have been shown to correlate with the rate of 

cholesterol esterification, net CE transfer, and HDL remodeling.271,272  
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The OJIM was also the only method to detect the important APOA-cluster (APOA1, 

APOA3, APOA4, APOA5, ZNF259, and BUD13) among its top ten results (Table C-2 and 

Figure 5-4). Apolipoprotein A1 (APOA1) is the major protein component of HDL in plasma (its 

deficiency is one of only three known Mendelian disorders of HDL metabolism),269 while 

APOA5 is also a major component of HDL as well as VLDL, which transports TG. Interestingly, 

the SNP detected here (rs4938303), which was approximately 35,000 base pairs upstream of the 

closest gene in the region (Figure 5-4), was only significantly associated with HDL in our 

univariate analyses (p=0.002), whereas it has previously been shown to associate with TG.273 

The OJIM’s TG-HDL interaction p-value was not especially significant (p=0.01), but it did point 

to a possible context-dependent effect, which we explored further.  

 

Figure 5-4. The ZNF259/BUD13 region of Chromosome 11 (q23.3), which includes the 
apolipoprotein genes APOA5, APOA4, APOC3, and APOA1.  

  



!139 

Stratifying participants by genotype revealed a recessive genetic effect on the correlation 

between TG and HDL (Figure 5-9). Specifically, the TG-HDL correlation was -0.20 among both 

major allele homozygotes and heterozygotes, but strengthened to -0.38 among minor allele 

heterozygotes. In contrast to the similar analysis of rs12740374 above, the sample sizes by 

genotype were more equitably distributed here, owing to the larger minor allele frequency of 

rs4938303 (48%). This allowed a meaningful pattern to emerge in the homozygote recessive 

group; namely, the stronger correlation therein appeared to be driven, at least in part, by the ~5% 

of individuals with very low HDL levels. In fact, an assessment of mean HDL by TG quartile for 

each genotype showed that the association between rs4938303 and HDL in the univariate 

analysis (Figure 5-10, top panel) was driven almost entirely by homozygote recessive 

individuals in the fourth quartile of TG (Figure 5-10, bottom panel).  

Although inferences drawn from statistical results that are disproportionately influenced 

by a relatively small number of samples should be treated cautiously, with the understanding that 

they may not be generalizable, the overwhelming abundance of epidemiologic and biological 

evidence linking the APOA cluster to lipid metabolism allows for some speculation. For, one 

may almost expect a SNP that tags this locus to associate with HDL. Thus, if the association 

observed here is completely artifactual, then it must be considered a remarkable coincidence. On 

the other hand, from a Bayesian perspective, if the association is not artifactual, then the context-

dependent effect we have observed is likely to be real. For, if TG actually has no influence on the 

genetic effect of rs4938303, then we have observed a true association driven almost entirely by 

an artifactual effect. 

The HDL-TC and HDL-LDL tests provided the weakest evidence for context-dependent 

genetic effects (Table 5-3 and Figure C-3C). Indeed, the small sample sizes (N=869) 
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notwithstanding, the distribution of p-values for the OJIM interactions were so far below the 

expected null distribution (Figure C-3C), that the results may be taken as evidence of a lack of 

such effects. While it is well established that changes in plasma HDL rarely occur without any 

concomitant changes in triglycerides,274 perhaps HDL and LDL are more independent, at least 

with respect to their genetic architecture. However, it is important to keep in mind that the 

NHGRI GWAS SNPs were discovered by virtue of their marginal effects. Thus, although strong 

marginal effects by no means rule out the possibility of context-dependence, SNPs with truly 

independent effects (to the extent they exist) will nonetheless be overrepresented in the NHGRI 

Catalog. 

For that reason, we particularly did not expect lipid-associated SNPs to have significant 

interaction effects in the complete absence of marginal effects. However, we did observe one 

such SNP (rs442177) in our HDL-TG tests, which multiple studies have shown to be associated 

with TG50,230,273 (Table C-5). The SNP would have been difficult to detect with traditional 

methods, as illustrated by Figure 5-11 (which may be compared to Figure 4-2 in the previous 

Chapter). We see that the minor allele of rs442177 was associated with lower TG when HDL 

was below average, and higher TG when HDL was above average, canceling out any net effect. 

If this context-dependent effect is in fact real, then the strong marginal associations with TG in 

previous studies would need to be explained. One possibility may relate to the fact that HDL 

levels were exceptionally low in our study population; in fact, 44% of urban men and 59% of 

urban women had clinically low levels (Table S2, Appendix A). If, in those studies that did 

detect a marginal association with TG, the HDL distributions were shifted to the right, then the 

TG-raising properties of rs442177 would have been more pronounced. While such an 
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explanation is highly speculative, it would at least be consistent with the direction of the minor 

allele’s effect in all studies.  

It is also worth noting that rs442177 was one of the “triglyceride-increasing alleles” that 

(collectively) associated with protection against Type 2 Diabetes (T2D) in a recent study275. 

Because low HDL may be considered a risk factor for T2D, a SNP that reduces TG—itself a risk 

factor for T2D—when HDL is low would indeed be expected to confer some protection to T2D. 

Thus, perhaps what we have observed for rs442177 is a more general phenomenon. Interestingly, 

the study also reported a significant interaction between the TG-increasing alleles and TG levels. 

Since higher TG levels imply lower HDL levels, this result would also be in line with our finding 

for rs442177. Future studies of this phenomenon should therefore take HDL concentrations into 

account.  
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Conclusion 

Our lipid trait analyses suggest that many of the cross-phenotypic associations identified by 

GWAS in recent years may reflect context-dependence as well as pleiotropy. Although the 

association of dyslipidemias with cardiovascular disease is well established, the mechanistic 

links between them are far from clear, and the SNPs that have strong marginal associations with 

cardiovascular disease may associate with lipids only via interactions. We have introduced a 

flexible tool that can detect such interactions, as well as provide insight into the degree to which 

they exist. Indeed, in addition to increasing power to detect genetic variants likely to be context-

dependent, the OJIM can be adapted to test specific hypotheses and answer different questions. 

Although in our analyses we have focused on identifying meaningful variants, perhaps a more 

pressing goal in genetic epidemiology is the elucidation of function, particularly of SNPs already 

known to be significant. Varying trait combinations rather than genetic loci could thus be highly 

informative. Such an approach may be extended into a phenome-wide screen, as a complement 

to phenome-wide association testing (PheWAS).276 
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Figure 5-5. Power comparison of single-trait and multivariate methods. The phenotypic data 
(N=5000) was simulated based on a locus with effects contingent on a normally distributed, 
independent variable correlated with the phenotype at levels denoted in legend. The expected 
proportions of variance explained by the locus and interaction were 0.33 and o0.5 respectively. 
The vertical axis depicts the number of times out of 1000 simulations results were significant at a 
genome-wide level.  
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Table 5-1. Triglycerides and total cholesterol: top ten associations for the ordinal joint interaction model. 2669 exonic SNPs 
from the NHGRI GWAS Catalog were assessed for 1032 Ghanaian participants. 

    p-value  
 

SNP Chr. Minor 
Allele MAF Single 

Trait TG 
Single 

Trait TC Bivariate OJIM Interaction Gene 

rs12740374 1 T 0.26 0.9658 0.0002 0.0003 5.77E-06 0.0010 SORT1* 
rs646776 1 C 0.37 0.7855 0.0018 0.0041 1.36E-05 0.0002 SORT1* 
rs204993 6 G 0.29 0.0002 0.9769 0.0004 9.92E-05 0.0199 PBX2 
rs9990343 3 G 0.49 0.0094 0.0011 0.0008 0.0003 0.0324 CCR3 
rs301 8 C 0.35 0.0001 0.6917 0.0003 0.0003 0.1436 LPL* 
rs3803064 12 A 0.28 0.4633 0.8875 0.6758 0.0004 2.70E-05 RPH3A 
rs326 8 A 0.39 0.0029 0.0150 0.0023 0.0017 0.0847 LPL* 
rs229527 22 A 0.34 0.2929 0.0036 0.0007 0.0021 0.7133 C1QTNF6 
rs331 8 A 0.42 0.0007 0.5991 0.0009 0.0021 0.4428 LPL* 
rs10096633 8 C 0.50 0.0068 0.0082 0.0035 0.0027 0.0920 LPL* 

Note: SNPs in perfect linkage disequilibrium were not listed: rs7528419 (with rs12740374); rs660240 and rs629301 (with rs646776); 
rs176095 (with rs204993). 
 
Genes marked with an asterisk have been previously associated with lipids by GWAS; p-values in bold were significant after 
Bonferroni correction; all tests were adjusted for age and sex; single trait tests were not adjusted for multiple testing (i.e. 2 tests). 
 
Columns: Chr. = chromosome; MA = minor allele; MAF = minor allele frequency; TG = triglycerides; TC = total cholesterol; 
Bivariate = MultiPhen, which models genotype as a function of TG and TC; OJIM adds an interaction term; Interaction = interaction 
term for the OJIM. 
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Table 5-2. HDL and triglycerides: top ten associations for the ordinal joint interaction model. 2669 exonic SNPs from the 
NHGRI GWAS Catalog were assessed for 869 Ghanaian participants. 

 

    p-value  
SNP Chr. Minor 

Allele MAF Single 
Trait HDL 

Single 
Trait TG Bivariate OJIM Interaction Gene 

rs7499892 16 T 0.44 8.83E-05 0.0146 9.83E-05 6.87E-05 0.0637 CETP* 
rs1532085 15 G 0.40 0.0027 0.0113 3.37E-05 0.0001 0.7394 LIPC* 
rs610604 6 T 0.29 0.1143 0.0025 0.0013 0.0003 0.0160 TNFAIP3 
rs247616 16 T 0.26 1.49E-05 0.0285 0.0002 0.0003 0.2219 CETP* 
rs4938303 11 T 0.48 0.0022 0.5235 0.0039 0.0007 0.0142 BUD13* 
rs1335532 1 A 0.40 0.0002 0.0336 0.0003 0.0009 0.4595 CD58 
rs2548145 5 G 0.29 0.0040 0.2453 0.0011 0.0012 0.1392 Loc285634 
rs204993 6 G 0.29 0.0416 0.0001 0.0005 0.0014 0.6017 PBX2 
rs7769051 6 A 0.38 0.0214 0.0071 0.0075 0.0014 0.0163 SNORA33 
rs9268877 6 A 0.35 0.3279 0.0012 0.0010 0.0014 0.1957 HLA-DRB9 

 
Genes marked with an asterisk have been previously associated with lipids by GWAS; p-values in bold were significant after 
Bonferroni correction; all tests were adjusted for age and sex; single trait tests were not adjusted for multiple testing (i.e. 2 tests). 
 
Columns: Chr. = chromosome; MA = minor allele; MAF = minor allele frequency; HDL = high-density lipoprotein cholesterol; TG = 
triglycerides;      Bivariate= MultiPhen, which models genotype as a function of HDL and TG; OJIM adds an interaction term; 
Interaction = interaction term for the OJIM. 
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Table 5-3. Total cholesterol and HDL: top ten associations for the ordinal joint interaction model; 2669 exonic SNPs from the 
NHGRI GWAS Catalog were assessed for 869 Ghanaian participants. 
 
    p-value  

 

SNP Chr. Minor 
Allele MAF Single 

Trait TC 
Single 

Trait HDL Bivariate OJIM Interaction Gene 

rs12740374 1 T 0.26 4.29E-06 0.7565 7.53E-06 1.99E-05 0.3485 SORT1* 
rs7499892 16 T 0.44 0.6321 6.59E-05 3.60E-05 0.0001 0.4816 CETP* 
rs646776 1 C 0.37 0.0003 0.5222 0.0001 0.0004 0.5391 SORT1* 
rs247616 16 T 0.26 0.1110 4.51E-05 0.0002 0.0006 0.3961 CETP* 
rs261360 20 A 0.41 0.8527 0.0004 0.0005 0.0013 0.4687 RPS21P7 
rs1335532 1 A 0.40 0.2243 0.0002 0.0008 0.0023 0.7354 CD58 
rs13361189 5 T 0.50 0.1378 0.0107 0.0011 0.0017 0.2126 IRGM 
rs1024020 4 T 0.44 0.0025 0.4817 0.0013 0.0033 0.5166 intergenic 
rs9990343 3 G 0.49 0.0003 0.0698 0.0013 0.0027 0.3296 CCR3 
rs1219648 10 G 0.44 0.0003 0.1994 0.0016 0.0048 0.7366 FGFR2 

Note: SNPs in perfect linkage disequilibrium were not listed: rs7528419 (with rs12740374); rs660240 and rs629301 (with rs646776). 
 
Genes marked with an asterisk have been previously associated with lipids in GWAS; p-values in bold were significant after 
Bonferroni correction; all tests were adjusted for age and sex; single trait tests were not adjusted for multiple testing (i.e. 2 tests). 
 
Columns: Chr. = chromosome; MA = minor allele; MAF = minor allele frequency; TC = total cholesterol; HDL = high-density 
lipoprotein cholesterol; Bivariate= MultiPhen, which models genotype as a function of TC and HDL; OJIM adds an interaction term; 
Interaction = interaction term for the OJIM. 
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Figure 5-6. QQ-plots of p-values for tests assessing 2269 NHGRI SNPs for association with 
triglycerides and/or total cholesterol in 1032 Ghanaian participants. Univariate tests of 
triglycerides (purple); univariate tests of total cholesterol (brown); joint tests of triglycerides and 
total cholesterol with MultiPhen (green) and the ordinal joint interaction model (OJIM) (black 
triangle); tests of the OJIM interaction term only (grey cross). 
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Figure 5-7. Correlation between LDL and TG by genotype at rs12740374; (GG=0, GT=1, 
TT=2). TG and LDL were standardized before stratification by genotype. 
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Figure 5-8. LDL measurements by rs12740374 genotype and mean LDL levels by 
rs12740374 genotype and triglycerides quartile; (GG=0, GT=1, TT=2). Error bars denote 95% 
confidence intervals. Note that triglycerides quartiles are based on the population distribution 
(not genotypic class). Points in top panel are randomly jittered. 
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Figure 5-9. Correlation between HDL and TG by genotype at rs4938303; (CC=0, CT=1, 
TT=2). TG and HDL were standardized before stratification by genotype. 
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Figure 5-10. HDL measurements by rs4938303 genotype (top panel), and mean HDL levels 
by rs4938303 genotype and triglycerides quartile (bottom panel); (CC=0, CT=1, TT=2). 
Error bars denote 95% confidence intervals. Note that triglycerides quartiles are based on the 
population distribution (not genotypic class). Points in top panel are randomly jittered. 
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Figure 5-11. The effect of rs442177 on triglycerides changes direction when HDL increases 
beyond its median value. Points denote mean TG by HDL quartile for genotypes CC (blue), CT 
(green), and TT (red), +/- standard error; N=869. 
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Genetic Variants with Conditional Effects on PAI-1 and CVD Risk Factors 

 

Introduction 

 

Endophenotypes and missing heritability 

 

Cardiovascular disease (CVD) is responsible for almost one-half of all non-

communicable disease-related deaths worldwide.277 It comprises multiple disorders of the 

circulatory system, among which venous and arterial thrombotic disorders are the most common. 

The enzyme plasminogen activator inhibitor-1 (PAI-1) plays a major role in the etiology of 

thrombosis by impeding fibrinolysis, or clot breakdown.278 Elevated plasma PAI-1 is accordingly 

a major risk factor for thrombotic events, such as deep vein thrombosis, myocardial infarction, 

and stroke.  

In genetic epidemiologic studies, plasma PAI-1 concentration has emerged as a 

promising endophenotype for CVD, because it provides a single heritable and quantitative 

measurement that is biochemically linked to heterogeneous clinical endpoints. By separating 

complex diseases into more precisely definable components with simpler genetic architectures, 

endophenotypes can improve the power of genetic association studies to find biologically and 

clinically meaningful variants. These advantages were recently demonstrated by a GWAS on 

serum-transferrin (a biomarker for iron deficiency), which identified two loci that accounted for 

40% of the genetic variation.279 Similar attempts to characterize the genetic architecture of PAI-

1, however, have not been nearly as successful. A recent meta-analysis identified only three 

genome-wide significant loci, which together explained less than 3% of the genetic variance.57 
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 A fundamental criterion for choosing endophenotypes for GWAS has been high 

heritability. For, if genes do not explain much of the endophenotypic variation, they will 

ultimately explain even less of the phenotypic variation. However, the heritability of PAI-1 has 

been estimated to be as high as 0.83,56 making the inability to identify any major genetic factors 

(beyond the well documented 4G/5G variant in the PAI-1 gene) rather puzzling.280 Moreover, the 

small number of variants that are associated with PAI-1 do not appear to be associated with 

CVD-related outcomes,281 although PAI-1 itself is. 

Thus, on the one hand, we see that PAI-1 satisfies all of the conventional criteria of an 

endophenotype: it is precisely measurable, heritable, and a biochemically integral component of 

an etiological pathway, and its genetic architecture (in terms of loci that influence its production 

directly) is undoubtedly simpler than that of the clinical endpoints with which it is associated. On 

the other hand, the variants discovered thus far that appear to affect PAI-1 levels, such as the 

4G/5G promoter polymorphism, explain only a small fraction of its total heritability and have no 

clinically meaningful effect on CVD.  

One explanation to this paradox is that the heritability of PAI-1 levels may mostly be due 

indirect genetic effects. In other words, it is possible that monozygotic twins have more highly 

correlated PAI-1 levels than dizygotic twins because the monozygotic pairs also share many of 

the heritable traits that increase PAI-1. We know that PAI-1 levels increase steadily with 

cardiometabolic risk factors such as BMI and triglycerides (Chapter 3), and that these risk factors 

are themselves highly heritable, as are most anthropometric traits.282,283 Even dietary habits, 

across a wide range of categories, are consistently heritable at 0.3-0.5.284,285 This being so, the 

thousands of loci that influence cardiovascular risk factors, anthropometric traits, and behavior 

may explain much of the heritability of PAI-1. 
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Put another way, even if the genes involved in the manufacture and release of PAI-1 were 

perfectly conserved and devoid of any variation, PAI-1 would still be a heritable trait, because 

conditions such as obesity, hypertriglyceridemia, hypertension, and nicotine addiction are 

heritable. It is worth mentioning that if these risk factor conditions were Mendelian traits, their 

causative loci could easily be detected by a GWAS of PAI-1 (despite having no direct influence 

on PAI-1). Yet, because their architecture is far from Mendelian, and, moreover, because any 

combination of such conditions can increase PAI-1 levels, their causative loci typically do not 

stand out among PAI-1 GWAS results. Vastly increasing sample size might change that, but the 

point of such an exercise would not be clear. 

Genetic association studies of PAI-1 typically adjust for triglycerides (TG) and BMI, and 

justifiably so, because every variant that increases TG and BMI should, on average, also increase 

PAI-1, and the point of a GWAS on PAI-1 is not to find such indirect and artifactual 

associations. Yet, direct associations that are mediated by TG and BMI likely also exist. For 

example, we saw in Chapter 3 that median PAI-1 does not increase at all with BMI until 

standardized BMI exceeds -1σ. If, correspondingly, the pathways by which adipocytes accelerate 

PAI-1 production are (to some degree) under genetic control, then variants that disrupt or 

enhance those pathways must exist. Similarly, a polymorphism in the gene that encodes VLDL-

inducible factor may increase its binding power to the PAI-1 promoter, such that PAI-1 

production rises faster than usual as triglyceride levels rise. In association studies, the signals of 

these direct but dependent genetic effects will (1) be relatively weak, since they only pertain to a 

fraction of the total population, (2) will vary with the underlying distributions of TG and BMI of 

each study, and (3) will not be improved (and may be made worse) by adjusting for TG and 

BMI. Thus, another explanation for the missing heritability may be that, although many variants 
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do indeed influence PAI-1 directly, their effects are highly context-dependent. 

We should expect to see small effect sizes, unpredictable replications, and wide ranges of 

heritability estimates whether the “missing heritability” of PAI-1 stems from indirect or context-

dependent genetic effects (two possibilities that are not mutually exclusive). A further 

implication of both explanations is that the loci with the largest independent effects on PAI-1 

have likely already been identified; only the loci with small independent effects and the loci with 

(potentially) strong, but context-dependent effects remain to be found. Because both types of 

variants can be expected to display weak marginal effects, finding them will require increased 

statistical power. The usual recommendations apply here: increased sample sizes and genomic 

coverage, better phenotypic measurements (PAI-1 assays being particularly variable)286, and 

more studies on diverse populations (particularly genetically homogenous populations). 

However, as mentioned above, if direct and independent genetic effects are truly rare, increasing 

power will also generate scores of indirect associations that are technically legitimate but often 

uninterpretable, ungeneralizable, and unreplicable. Thus, the continued improvement in 

sequencing technology and the trend towards meta-analyses, far from a cure-all, will require that 

particular care be taken to define the phenotype precisely and to adjust for many confounding 

covariates, lest artifactual associations of small effect size (including those deriving from cryptic 

population structure287) crowd out meaningful results. 

With regard to these issues, which beset GWAS in general, endophenotypes offer several 

particular advantages, such as their ability to be defined and quantified precisely, that are well 

known, but others which, in our view, have not yet been fully articulated or appreciated. First, 

because an endophenotype typically links risk factor “inputs” with multifactorial CVD “outputs,” 

many of the possible confounding factors are the risk factors themselves. Moreover, rather than 
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just adjusting for these risk factors, they can be exploited by assessing them jointly with the 

endophenotype in a multivariate model. Although independent pleiotropic effects on both the 

endophenotype and the risk factors may seem unlikely, the strengths of multivariate analysis are 

not confined to detecting pleiotropic variants.227 As discussed in the previous section, when 

variables are highly correlated (as endophenotypes and associated risk factors are, almost by 

definition), any gene with strong effects on only one of them will modify their correlational 

structure, and hence provide a stronger signal in a multivariate test. It is also straightforward to 

interpret which phenotype (or phenotypes) a SNP is associated with (e.g., using the R-based 

platform MultiPhen, one can simply compare the beta coefficients of each).226 Thus, multivariate 

analyses can simultaneously adjust for likely confounders, distinguish true from indirect 

associations with the endophenotype, and increase the power to detect loci with small, 

independent effects on any of the phenotypes. 

Knowledge of the risk factors upstream of an endophenotype can be even more beneficial 

for discovering context-dependent genetic effects. For, although such effects have frequently 

been found where sought (Chapter 4), identifying the germane “contexts” can be difficult. 

Genetic background, for example, though clearly a fundamental modifier of genetic effects, is 

difficult to define. However, the risk factors that precede an endophenotype on the etiological 

chain are natural candidates to test for SNP-by-phenotype interactions. The loci involved in such 

interactions may also be especially clinically relevant and biologically meaningful. In the case of 

PAI-1, for example, a hypothetical variant that causes its expression to spike abnormally when 

insulin secretion exceeds a certain threshold could be an important risk allele for ischemic events 

and provide insight into to the connection between diabetes and cardiovascular endpoints. Yet, 

such a variant could easily be missed by case-control studies, or buried among the false positives 
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and indirect associations, because any number of controls with lower insulin levels may carry it. 

It is therefore surprising that association studies of endophenotypes have not typically explored 

such interactions. This may partly be because using tests of the SNP-by-covariate interaction 

term alone to assess significance are highly underpowered, while joint interaction tests of single-

outcome models are not straightforward to implement (see Chapter 4 and previous section of this 

chapter).  

Here, using exome-wide data obtained from a cohort 1032 Ghanaians, we apply the 

ordinal joint interaction model (OJIM) to PAI-1 and the four cardiometabolic risk factors that are 

independently associated with it (as described in Chapter 3). We note that, with regard to the 

issues discussed above, the OJIM is particularly well suited to detect both context-dependent 

effects and small, independent effects, while distinguishing between likely indirect and direct 

associations, making it a powerful tool for the study of endophenotypes. Because it 

simultaneously assesses marginal genetic effects and conditional genetic effects, it does not 

require that the interaction term be highly significant for the context-dependent locus to be 

identified—only that an interaction exist. This is important, because the statistical significance of 

the interaction term is not a good proxy for the strength of a context dependent effect (Chapter 

4). Moreover, the OJIM does not force us to choose a priori which of the phenotypes the SNP 

interacts with, and which it influences. This may be especially important for studies of PAI-1, 

because the correlations between PAI-1 and cardiometabolic risk factors cannot be assumed to 

be causal, or unidirectionally causal. There is evidence, for example, that PAI-1 is not only 

released by adipocytes, but can promote adipogenesis itself.161 Similarly, although VLDL (which 

transports triglycerides in the blood) can induce PAI-1 expression, PAI-1 is also a ligand for the 

VLDL-receptor.288 
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In our lipid trait analysis of the previous section of this chapter, we did not expect to see 

many significant interactions in the absence of significant marginal effects, since the NHGRI 

SNPs were discovered on the basis of their marginal effects. By extending our analysis to the 

whole exome here, we hope to gain some insight into the significance and prevalence of such 

SNPs, regarding which there is a great deal of uncertainty.208 The brief discussion of the nature 

and expected statistical properties of such SNPs follows below. 

 

Heterogeneity of correlation by genotype as a complement to regression-based analyses 

 

In theory, a “purely” context-dependent gene would have an effect on one quantitative 

trait that always and entirely depended on the value of another. One example would be a gene 

involved in coordinating the values of two quantitative traits in relation to each other, 

functioning in the manner of a molecular thermostat. We could imagine this gene participating in 

an endocrine feedback circuit, for example, guiding one trait to rise or fall in response to another. 

There have been surprisingly few studies exploring genetic variants that directly influence 

changes in covariance in this way. Two decades ago, Reilly et al. found that the correlation 

structure between various apolipoproteins varied with apoliporotein E (ApoE) genotype, and in a 

gender-specific manner.289 This ability of ApoE to modulate lipid trait relationships was again 

demonstrated in a 2013 study, which concluded that the ApoE isoform genotype not only 

influenced the correlation between triglycerides and total cholesterol, but changed the 

relationship between both those traits and incident coronary heart disease as well, in a 

population-specific manner.290 No high-throughput study of genes influencing the covariance 

among traits has been performed. 
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A somewhat larger number of studies have looked for genes that affect trait variance. A 

recent study, for example, reported that the FTO gene, known to associate with mean BMI, also 

increases BMI variance, in a way that is possibly mediated by DNA methylation.291 The study 

did not find any other such variance genes for BMI despite a large sample size, but the authors 

were especially conservative in adjusting for multiple testing as well as in controlling for mean 

effects, potentially attenuating the signal of factors that increase both a trait’s mean and its 

variance. In contrast, a recent study on Arabidopsis concluded that genetic variance 

heterogeneity appeared to be as common as normal additive effects on a genome-wide scale.292 

A few other noteworthy examples of variance genes have been reported in human studies. One 

found that polymorphisms in the Apo E gene affected total cholesterol variance to such an extent 

that the genotype group with the lowest mean total cholesterol actually had among the largest 

fraction of its members above a “high risk” threshold.293 Variance in allele-specific expression 

has also been found to associate with colorectal cancer.294 

An important concept in evolutionary biology is canalization, which refers to the 

robustness of a phenotype to developmental and environmental conditions.295 It is hard to 

imagine that genetic factors do not play a major role in the phenotypic “buffering” that defines 

canalization. Indeed, there is growing evidence that the genetic basis of complex human disease 

centers on decanalization, its dissolution.296 Phenotypic buffering can be achieved by managing 

the phenotypic variance of a single trait, but it can also be achieved by controlling the covariance 

of multiple traits, as demonstrated by a seminal study on yeast. The expression profiles of 276 

single nucleotide deletion mutants were shown to induce expression changes in hundreds of 

genes–in effect compensating at the phenotypic level for the effect of the deletion.297 If changing 

a single factor has a “propagation effect” across a network that generates a compensatory 



!161 

response, biological insight will not be gained by looking for mean trait changes, but rather for 

the changes in connectivity that ensue. In that regard, a gene that modulates covariance may be 

the hub of a gene network, and variants of that gene may tighten or loosen the connections of 

both epistatic networks.298 From another angle, we can think of variants of such a gene as 

influencing the stochastic noise around the regression line of two standardized quantitative traits. 

Interestingly, a recent study on Arabidopsis noted that stochastic noise is a heritable trait, and 

identified genes altering its variation, many with no mean effects.299 

Although the interaction term of the OJIM is well suited to detect heterogeneity of correlation by 

genotype, as described in the previous section, it loses power with increasing dominance 

deviation, and completely misses instances of overdominance. Thus, we complemented the 

OJIM analysis here with a test for homogeneity of correlation by genotype (see Methods), which 

is only sensitive to the changes in covariance by genotype (and not, as the OJIM is, to changes in 

residual correlation that are caused by marginal effects). 
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Methods 

 

Study Population 

Please see Section A of Chapter 3. 

 

Anthropometric measurements and biochemical analysis 

Please see Section A of Chapter 3. 

 

Genotyping 

Please see previous section of this chapter. 

 

Quality Control  

Approximately 250,000 variants from 1105 participants were available prior to quality 

controls. We removed all SNPs with a genotyping call rate < 95%. Individuals for whom < 95% 

of variants were called were removed from analyses. Variants with a minor allele frequency < 

20% were also removed, as were variants with a Hardy Weinberg p value < 0.001. Cryptic 

relatedness was assessed in the data, and one participant in each pair of related individuals (pi-

hat >0.2) was randomly removed. Following quality control, 1032 participants and 15,890 

variants remained for analyses. All quality control procedures were performed in PLINK 

(version 1.07)231. 
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Statistical Analyses 

All statistical models and analyses are as described in the previous section of this chapter, 

except for the addition of tests for homogeneity of correlation by genotype (below). In the 

multivariate analyses, PAI-1 was paired with each of four cardiometabolic risk factors, namely, 

BMI, triglycerides (TG), fasting glucose (GLUC), and mean arterial pressure (MAP), that were 

chosen based on the partial correlational analysis of Chapter 3. All models were adjusted for age 

and sex. Associations with p-values below the 1x10-4 level in any model were annotated using 

SNPinfo300 and are presented in the results. Gene functions were ascertained using a literature 

search. 

 

Test for homogeneity of correlation by genotype 

The high-throughput screen for covariance-modifying genes that is proposed here is 

statistically straightforward. Individuals are grouped by genotype, the correlations between two 

traits are calculated for each group, and a test of homogeneity of correlation among the three 

groups (0,1,2) is applied to assess whether the three sample correlation coefficients could have 

been drawn from the same population.  

The variance of , the population parameter of correlation between two traits, decreases 

as its absolute value approaches 1. Fisher’s r-to-z transformation  stabilizes the 

variance at , and makes the distribution approximately normal, enabling conventional 

statistical tests. If we estimate correlation, ri, for k=3 genotypic groups, and transform each to zi,, 

the weighted sum of squares is then distributed approximately as  with k-1, or 2 degrees of 

freedom: 

ρ

!!
z = 12ln

1+ ρ
1− ρ

⎛
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The R-code for this approach allows for the adjustment for any number of covariates, 

making it essentially a test for partial correlation as well. The code also allows Spearman’s rank 

sum correlations to be used when deviation form normality is an issue. However, the variance 

term for the Z-transforms has to be adjusted by a factor of 1.06 (Appendix D).301 Although not 

implemented in this study, the code also allows for tests of dominant and recessive effects on 

correlation. 

  

!!
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Results and Discussion 

Endophenotypes such as PAI-1 have been considered promising targets for GWAS, 

because they exhibit less phenotypic heterogeneity and higher heritability than the complex 

disease-related endpoints with which they are associated. The theoretical rationale for their 

utility has been that (1) the genotype-endophenotype map should be substantially simpler than 

the genotype-phenotype map, allowing for the efficient detection of variants of relatively large 

effect size, and that (2) such variants should be especially likely to provide insight into complex 

disease. In the case of PAI-1, however, very few associations have been found, and those that 

have been found have not been clinically relevant. In our analyses, we demonstrate a novel way 

to study endophenotypes such as PAI-1 that do not fit the above model. 

Our guiding premise is that the intensity of association between PAI-1 and cardiovascular 

risk factors must, to some extent, be under genetic control. Since the nature of that control can be 

considered a phenotype in itself, it is likely characterized by heritable variation. We propose that 

the loci responsible for this variation are more likely to be biologically meaningful than those 

that influence PAI-1 independently. For, given the sensitivity of plasma PAI-1 concentration to 

many cardiovascular risk factors, a variant that raises it independently of those risk factors would 

need to have a very strong effect indeed before it had any bearing on CVD-related endpoints. On 

the other hand, because PAI-1 (in its capacity as an endophenotype) links CVD risk factors to 

CVD endpoints, variants that modulate how PAI-1 concentration responds to those risk factors 

may be of particular clinical and biological interest. 

 We have already discussed the theoretical strengths of the ordinal joint interaction 

method (OJIM) to discover context-dependent variants, and used it to demonstrate that such 

variants are likely abundant. In our preliminary study on lipid traits, the OJIM displayed the most 
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power to detect SNPs with well-known functional roles in lipid metabolism, and its top results 

were consistently lipid-associated. Yet, none of its associations achieved genome-wide 

significance at the conventional threshold of 5 x 10-8. We may attribute that failure to the rather 

small sample sizes as well as to the unreasonable strictness of the conventional threshold. 

Additionally, the SNPs of the Exome chip were chosen based on European genetic data, and 

consequently may not tag functional loci adequately in African populations. The signal of true 

associations may be further attenuated by the weaker linkage disequilibrium in African 

populations in general.302 Regardless of the reason, because the top lipid associations (which 

were almost certainly true associations) had p-values between 10-3 and 10-7 in our preliminary 

analyses (2,669 SNPs), we chose p=10-4 as our nominal threshold for significance in the exome-

wide tests (15,890 SNPs). 

The most significant regression-based association in this study was the OJIM’s top result 

for the TG-PAI-1 tests, rs29234, a SNP within the myelin oligodendrocyte glycoprotein gene 

(MOG) (p=1.06 x10-5) (Table 5-4). The univariate association with TG was nearly as significant 

(p=1.16x10-5, unadjusted for the two univariate tests), but here the additional insight afforded by 

the OJIM, even in cases when it provides only a marginal improvement in power, was well 

illustrated. The rs29234 association with PAI-1 (p=0.08) was not significant; therefore, running 

only univariate or bivariate tests (without an interaction) would have connected MOG only to 

TG. Yet, even a nominally significant interaction term (p=0.02) can provide qualitative 

information indicating that a connection between PAI-1 and MOG exists. And, whereas TG has 

no connection with MOG in the literature, PAI-1 has been shown to interact with it in vivo. 

Specifically, autoimmune encephalomyelitis (EAE) was experimentally induced by MOG in 

urokinase PA (u-PA) knockout and knockdown mice models, and rescued by PAI-1.303 We 
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cannot know, of course, whether even the marginal association between MOG and TG 

(p=1.16x10-5) is real. But, the fact that the interaction with PAI-1 was significant enough to give 

the OJIM the most power overall to detect rs29234, combined with prior evidence for a 

biological connection between PAI and MOG, suggests that if the association is true, PAI-1 may 

indeed be involved in the relationship between TG and MOG, and in a way that would have been 

missed by univariate tests.  

In the MAP-PAI tests, the top p-value (7.60 x 10-6 for rs10738554) was again yielded by 

a multivariate approach (the test for homogeneity of correlation by genotype). The highly 

significant p-value is compelling given (1) the high MAF (0.34) at the locus, which implies 

relatively stable estimates of correlation for each genotype, and (2) the fact that Spearman’s rank 

correlation was used for all tests, making it highly conservative. We chose Spearman’s rho to 

keep Type 1 error to the low levels observed for the OJIM’s interaction term, with which we 

aimed to compare its performance. In addition to the strong p-value, rs10738554 is located near 

SLC24A2 (also known as NCKX2), a gene previously associated with high blood pressure in 

African Americans.304 SLC24A2 belongs to a family of proteins that transport sodium, potassium 

and calcium ions to regulate homeostasis, and can thus be plausibly implicated in the improper 

regulation of blood solutes that characterizes hypertension. Additionally, in the context of the 

renin-angiotensin system, high blood pressure also promotes overexpression of PAI-1 levels.305 

While the biological relationship between PAI-1 and SLC24A2 has not been previously 

explored, a recent study found that the disruption of SLC24A2 (NCKX2) renders neurons more 

susceptible to ischemic insult. In particular, primary cortical neurons in SLC24A2 knockout 

models displayed a higher vulnerability and greater tendency to release Ca2+ ions under hypoxic 

conditions.306!Because hypoxia also stimulates PAI-1 expression,307 it is possible that in our 
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study, PAI-1-level is serving as a proxy for hypoxic conditions (or some other correlate thereof), 

such that its increase corresponds with abnormal ion exchange in individuals with poorly 

functioning SLC24A2. If so, this context-dependence would explain why rs10738554 had only a 

weak marginal effect on MAP in this study (p=0.24). This interpretation is also consistent with 

the!apparent!recessive!effect!of!rs10738554-C on the MAP-PAI-1 correlation (Figure 5-12). !

It is worth noting that the OJIM performed poorly with rs10738554; its interaction p-

value was 0.87 despite significant heterogeneity of correlation by genotype. However, as 

mentioned above, the OJIM interaction term detects only additive effects on correlation, whereas 

here, the correlation for the heterozygote genotype was lower than that for both homozygotes 

(Figure 5-12). Perhaps the deviation from additivity we observed was merely due to sampling 

error, and with larger sample size, the correlation among the major allele homozygotes would 

have equaled or exceeded that of the heterozygotes. But, because the observed genetic effect 

appeared to be overdominant, the OJIM had no power to detect it. Consistent with true 

overdominance is the fact that the minor allele frequency (MAF) of rs10738554 is close to 50% 

in all HapMap populations (in fact, its MAF of 36% in Yorubans is the lowest among continental 

populations), suggesting the possibility of balancing selection. Regardless of the true dominance 

deviation, we see here that complementing the OJIM with tests for homogeneity of correlation 

when sample sizes are not particularly large can be valuable. With the largest sample sizes, 

however, the OJIM will generally outperform the test for homogeneity of correlation in all cases 

except true overdominance. 

! !
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Figure 5-12. Correlation between PAI-1 and MAP by genotype at rs10738554; (TT=0, 
CT=1, CC=2). The Spearman’s correlations for genotypes TT, CT, and CC are 0.33, 0.13, and 
0.57, respectively. PAI-1 and MAP were adjusted for age and sex and standardized before 
stratification by genotype. 
 

 

 

!
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Of the seven p-values less than 10-4 in the BMI-PAI-1 tests, five had no significant 

marginal effects on either BMI or PAI-1 (Table 5-6). Two of them, rs199818197 (p=3.37 x 10-

05) and rs2233391 (p=7.87 x 10-05), are in genes that have been directly implicated in lysosomal 

storage disorders (LSD) (SUMF1 and NEU2, respectively). Lysosomal dysfunction is 

biologically associated with BMI, because it is known to affect energy balance and interfere with 

normal adipose storage.308 Mutations in SUMF1 cause the severe LSD multiple sulfatase 

deficiency309, while NEU2 belongs to a family of mammalian sialidases that are involved in the 

LSD sialidosis, as well as other conditions such as diabetes and arteriosclerosis.310,311 312 

Interestingly, a recent study found that NEU1, closely related to NEU2, was much more active in 

the epididymal fat of obese and diabetic mice, and concluded that fluctuations in NEU1 activity 

might be associated with the pathological states of excessive visceral fat.312 Importantly, PAI-1 is 

secreted by adipocytes and has a terminal sialic acid residue, the sialylation status of which 

should affect how much of it is released or activated.312,313_ENREF_312 Thus, a relationship 

wherein SUMF1 and/or NEU2 modulate the covariance of BMI and PAI-1 directly, i.e. such that 

low adiposity leads to reduced PAI-1 expression and high adiposity leads increased PAI-1 

expression, is both biologically plausible and consistent with the lack of main effects observed in 

our analyses. 

The!most!significant!joint!interaction!p=value!for!the!BMI=PAI=1!tests!was!for!

rs1420101!(p=8.66x10=5),!an!intronic!variant!of!IL1RL1,!a!gene!previously!associated!with!

inflammatory!responses!(Table&5(6).!IL1RL1!is!selectively!expressed!on!Th2!cells!and!mast!

cells,!and!binding!of!its!ligand,!IL33,!produces!an!IL4!mediated!response!in!allergic!airway!

inflammation!of!extrinsic!asthma.314!IL4!stimulates!isotype!switching!to!IgE!production,!

which!in!turn!leads!to!mast!cell!degranulation!and!the!release!of!histamine!and!other!
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mediators.!Resultant!bronchoconstriction,!mucous!production!and!pronounced!leukocyte!

response!in!the!airway!leads!to!symptoms!of!expiratory!wheezing!and!cough.315!

Importantly,!both!increased!BMI!and!elevated!PAI=1!levels!have!been!associated!with!

asthma!severity316.!PAI=1!is!believed!to!play!a!role!in!the!cell!adhesion,!chemotactic!

signaling!for!leukocytes!and!tissue!remodeling.316!The!BMI=dependent!increased!risk!of!

asthma!has!been!reported!for!patients!in!the!overweight!and!obese!categories!(i.e.!BMI>30!

and!>25,!respectively),!and!the!level!of!PAI=1!present!in!sputum!of!asthmatics!was!an!order!

of!magnitude!larger!than!that!observed!in!healthy!controls.!In!light!of!these!clinical!

findings,!the!interaction!p=value!that!links!rs1420101!to!both!BMI!and!PAI=1!is!biologically!

plausible,!even!though!it!was!barely!significant!(p=0.044).!Yet,!as!discussed!above,!it!would!

have!been!missed!by!univariate!analyses!alone.!It!is!also!worth!noting!that,!although!the!

univariate!association!with!BMI!was!nominally!better!(p=7.71!x!10=5)!than!the!joint!

interaction!p=value!(p=8.66x10=5),!it!was!not!adjusted!for!the!extra!univariate!test!with!PAI=

1.!

Variant rs404890 upstream of NOTCH4 on chromosome 6 was significant using the 

heterogeneity of correlation model (p=6.88x10-5) in the analysis of the glucose-PAI-1 pairing. 

Murine knockouts of NOTCH4 display severe angiogenic vascular remodeling defects, 

consistent with the well-known functional role of Notch4 in in promoting arterial endothelial cell 

specification.317 PAI-1 is also known to promote angiogenesis, although the exact mechanism 

has not been well described.318 Plasma glucose has been shown to have an inverse relationship 

with vascular endothelial growth factor (VEGF) expression.319 Furthermore, severe, chronic 

hyperglycemia as observed in cases of poorly controlled type 2 diabetes damages vessels by non-

enzymatic glycosylation, thereby increasing vessel permeability, atherogenesis and hyaline 
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arteriolosclerosis.315 Proliferative diabetic retinopathy is another endpoint of poorly managed 

diabetes, the hallmark of which is aberrant angiogenesis leading to abnormal, fragile vessels in 

the eye. In the early, non-proliferative phase of diabetic retinopathy, microaneurysms in retinal 

vessels occur, eventually leading to blockage, hemorrhages and, in some individuals, the 

proliferative, angiogenic stage of the disease. While threshold specific effects of Notch4 and 

PAI-1 are not well established, making it difficult to speculate on their physiological effects with 

respect to angiogenesis, the role of glucose is well known. The effects of clinical hyperglycemia, 

both through direct action on the vessels and indirect modulation of VEGF, fit the context-

dependent model, where they become active and pathogenic beyond a certain level of vessel 

injury.  

Overall, the multivariate methods that assessed or allowed for modifications to 

correlation (i.e., the OJIM, the OJIM interaction, and the test for heterogeneity of correlation by 

genotype) yielded by far the most results significant at the 10-4 level. Type I error for these 

multivariate tests was incredibly low, as illustrated by the QQ-plot in Figure 5-13 for the MAP-

PAI-1 tests, below. In fact, those analyses (as is also clear from Table 5-5) only the homogeneity 

of correlation tests appeared to have sufficient power. The strong performance of the 

homogeneity of correlation approach in general was one of the surprises of this study. For, we 

expected it only to complement the interaction term of the OJIM, providing more power in 

exceptional cases of strong dominance deviation. Perhaps such deviations from additivity are 

more common than generally appreciated. Alternately, the OJIM’s interaction term may require 

larger sample sizes to generate more consistent results (we note that the simulations in the 

previous section of this chapter were performed with N=5000).  
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Surprisingly, MultiPhen performed especially poorly. In fact, there was only one result in 

the entire study for which it provided a (minimal) advantage over the OJIM, namely rs1048347 

in the TG-PAI-1 analyses (p=2.03 x 10-05 vs. 3.54 x 10-05), a locus with no connection to either 

phenotype in the literature. Linear univariate tests did not fare much better; tests of glucose 

generated no p-values significant at the 10-4 level, and tests of BMI and PAI-1 generated one for 

each. Those were IL1RL1 for BMI (discussed above) and MGAM for PAI-1. MGAM has not 

previously been linked to PAI-1 in the literature, but its role in starch digestion may be relevant 

n.320  
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Conclusion 

While it is impossible to generalize from one study, in these analyses we noted 

essentially no disadvantages or tradeoffs to assessing traits in pairs and adding an interaction. 

There were, however, substantial advantages. Moreover, we performed a genome-wide scan for 

genetic effects on correlation by genotype, which to our knowledge had never been done before, 

and the results were encouraging. Allowing for interactions or seeking them directly generated 

the majority of significant associations in this study, with no evidence of inflation for Type 1 

error, further supporting our conclusions drawn from the lipid trait analyses. Context-dependent 

effects very well may be ubiquitous, and our methods are singularly suited to detect them. This is 

promising for future studies of CVD, because risk factors are generally not well understood from 

an etiological perspective, and their genetic architecture even less so. 
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Figure 5-13. QQ-plots of p-values for tests assessing 15,890 exonic SNPs for association 
with mean arterial pressure and PAI-1 in 1032 Ghanaian participants. Results of tests using 
the ordinal joint interaction model (OJIM) (black triangle), its interaction term alone (grey 
cross), and tests for homogeneity of (Spearman’s) correlation by genotype (purple) are depicted.  
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Table 5-4. Associations (p<10-4) with triglycerides and PAI-1 in 1032 Ghanaian participants; 15,890 exonic SNPs (MAF≥0.20) 
were tested for association using univariate and multivariate methods; all models were adjusted for age and sex.  
 
    p value  

SNP Chr. Minor 
Allele MAF Single 

Trait TG. 

Single 
Trait 

PAI-1 
Bivariate OJIM Interaction 

term 

Homogeneity 
of 

Correlation 
Gene 

rs29234 6 G 0.20 1.16E-05 0.078 3.47E-05 1.06E-05 0.022 0.343 MOG* 
rs29272 6 A 0.20 1.35E-05 0.090 3.99E-05 1.17E-05 0.021 0.323 MOG* 
rs1048347 10 C 0.33 1.98E-04 0.371 2.03E-05 3.54E-05 0.196 0.056 BTBD16 
rs9997165 4 G 0.33 0.628 0.753 0.682 0.073 0.013 8.95E-05 Loc100131135 
rs896999 15 A 0.27 1.59E-05 0.020 1.66E-04 3.68E-04 0.324 0.682 ANP32A* 
rs13165786 5 T 0.43 5.97E-05 0.653 1.31E-04 4.59E-04 0.867 0.919 EDIL3* 
rs3131875 6 G 0.29 9.81E-05 0.281 3.77E-04 0.001 0.880 0.627 ZFP57 
rs10266732 7 T 0.37 0.105 5.40E-05 2.63E-04 4.74E-04 0.245 0.400 MGAM* 

*previously associated with cardiovascular disease  
 
Column abbreviations: Chr.=chromosome; MAF=minor allele frequency; TG=triglycerides; Bivariate= MultiPhen, which models 
genotype as a function of TG and PAI-1; OJIM adds an interaction term.  
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Table 5-5. Associations (p<10-4) with mean arterial pressure and PAI-1 in 1032 Ghanaian participants; 15,890 exonic SNPs 
(MAF≥0.20) were tested for association using univariate and multivariate methods; all models were adjusted for age and sex.  
 
    p value  

SNP Chr. Minor 
Allele MAF 

Single 
Trait 
MAP 

Single 
Trait 

PAI-1 
Bivariate OJIM Interaction 

term  

Homogeneity 
of 

Correlation 
Gene 

rs10738554 9 C 0.34 0.246 0.217 0.116 0.225 0.819 7.60E-06 SLC24A2* 
rs3736582 10 G 0.38 6.04E-05 0.481 3.78E-04 0.001 0.911 0.966 PSTK 
rs16907312 11 T 0.31 8.54E-05 0.075 4.11E-04 0.001 0.446 0.857 OR51G2 
rs10266732 7 T 0.37 0.472 5.40E-05 2.60E-04 3.93E-04 0.189 0.518 MGAM* 

*previously associated with cardiovascular disease or hypertension 
 
Column abbreviations: Chr.=chromosome; MAF=minor allele frequency; MAP=mean arterial pressure; Bivariate= MultiPhen, which 
models genotype as a function of MAP and PAI-1; OJIM adds an interaction term. 
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Table 5-6. Associations (p<10-4) with body mass index and PAI-1 in 1032 Ghanaian participants; 15,890 exonic SNPs 
(MAF≥0.20) were tested for association using univariate and multivariate methods; all models were adjusted for age and sex.  
 
    p value  

SNP Chr. Minor 
Allele MAF 

Single 
Trait 
BMI 

Single 
Trait 

PAI-1 
Bivariate OJIM Interaction 

term 
Homogeneity 
of Correlation Gene 

rs1420101 2 A 0.32 7.71E-05 0.004 1.69E-04 8.66E-05 0.044 0.416 IL1RL1* 
rs28550932^ 9 A 0.29 0.932 0.479 0.858 1.17E-04 6.05E-06 9.21E-05 Loc286238 
rs7835830 8 T 0.34 0.319 0.716 0.569 1.82E-04 1.51E-05 4.62E-04 FAM135B 
rs199818197 3 T 0.33 0.879 0.345 0.643 4.24E-04 3.37E-05 0.035 SUMF1* 
rs2233391 2 A 0.18 0.462 0.790 0.544 7.74E-04 7.87E-05 7.45E-04 NEU2 
rs9880989 3 G 0.45 0.076 0.058 0.102 0.003 0.002 2.51E-05 IQCG 
rs10266732 7 T 0.37 0.048 5.40E-05 2.61E-04 5.57E-04 0.316 0.565 MGAM* 

*previously associated with cardiovascular disease or obesity 
^rs28429833, not listed, was in almost perfect linkage disequilibrium with rs28550932 
Column abbreviations: Chr.=chromosome; MAF=minor allele frequency; BMI=body mass index; Bivariate= MultiPhen, which 
models genotype as a function of BMI and PAI-1; OJIM adds an interaction term.  
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Table 5-7. Associations (p<10-4) with glucose and PAI-1 in 1032 Ghanaian participants; 15,890 exonic SNPs (MAF≥0.20) were 
tested for association using univariate and multivariate methods; all models were adjusted for age and sex.  
    p value  

SNP Chr. Minor 
Allele MAF 

Single 
Trait 

Glucose 

Single 
Trait 

PAI-1 
Bivariate OJIM Interaction 

term 

Homogeneity 
of 

Correlation 
Gene 

rs1649292 2 A 0.29 0.443 0.608 0.717 0.720 0.413 2.04E-05 Loc129293 
rs63111160 18 T 0.49 0.409 0.039 0.040 0.055 0.289 3.59E-05 SETBP1* 
rs404890 6 T 0.29 0.615 0.386 0.465 0.003 4.54E-04 6.88E-05 NOTCH4* 
rs10266732 7 T 0.37 0.122 5.40E-05 2.31E-04 7.03E-04 0.608 0.307 MGAM* 

*previously associated with cardiovascular disease, type 1 or type 2 diabetes mellitus  
 
Column abbreviations: Chr.=chromosome; MAF=minor allele frequency; Bivariate= MultiPhen, which models genotype as a function 
of glucose and PAI-1; OJIM adds an interaction term. 
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

It is well known that cardiovascular disease is caused by risk factors that tend to co-

occur, such as obesity, high blood pressure, dyslipidemia, and diabetes, and that these risk 

factors can be prevented or controlled by behavioral and dietary changes to a large extent. Yet, 

there is also a great deal of variation (among individuals and populations) in how these risk 

factors respond to lifestyle modifications, how they associate with each other, and how they 

contribute to clinical endpoints. Although we know that some of these differences are rooted in 

genetics, attempts to identify and characterize the genetic variants responsible for them have not 

been successful. The central premise of this work is that much insight into the genetics of 

cardiovascular disease can be gained by shifting focus away from genes that may influence risk 

factors and endpoints in isolation, to genes that may modify how they relate and interact with 

each other at different points in the etiological sequence. In our opinion, finding a genetic variant 

that increases the risk of myocardial infarction when cholesterol levels rise (to give an example) 

can offer more clinical insight and better guidance for future studies than finding a variant that is 

associated with either high cholesterol or myocardial infarction alone. 

This is the first study to address in a systematic way the genetics of cardiovascular risk 

factor correlations. We did not consider endpoints of cardiovascular disease in this study, but 

rather an endophenotype of cardiovascular disease, PAI-1. Because PAI-1 plays a direct role in 

thrombosis and subsequent ischemic events, identifying genetic variants that strengthen its 

correlation with other cardiovascular risk factors can improve assessment of risk, provide 
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etiological insight, and suggest targets for intervention. The strategy we have used here can be 

adapted to answer many different kinds of questions in genetic epidemiology.  

The phenotypes of interest in this study were not only cardiovascular risk factors, but the 

correlations among them. Cardiovascular risk factors such as systolic blood pressure and visceral 

adiposity are known to be, to some extent, under genetic control; if, as we propose here, the 

relationship between them is also under genetic control, then that relationship can be considered 

a phenotype in itself, which, like virtually all quantifiable phenotypes, is likely characterized by 

heritable variation. Accordingly, our first goal in this study was to understand these phenotypes 

in our Ghanaian study population as completely as possible. We aimed not only characterize 

correlational networks of cardiovascular risk factors, but (before introducing a whole new layer 

of genetic complexity into the picture) also to identify how non-genetic factors, particularly 

urban lifestyles, perturbed these networks.  

Although we found that urban residence and, to a lesser extent, sex had dramatic effects 

on the mean values of cardiovascular risk factors (Chapter 3A), our partial correlational analyses 

revealed that the relationships among the risk factors remained remarkably robust (Chapter 3B). 

To our knowledge, this had not been shown before. The relationships between risk factors and 

PAI-1, however, were far more sensitive to differences in sex and environment. We found that 

triglycerides and BMI had the strongest independent relationships with PAI-1, followed by 

glucose and mean arterial pressure (MAP). Although the relationships with glucose and MAP 

were substantially weaker overall, we noted that over certain parts of their range, their 

relationship with PAI-1 intensified. We hypothesized that these non-linear and non-continuous 

relationships might be under genetic control and have particular etiological (and potentially 

clinical) significance. We therefore paired PAI-1 with these four traits in our subsequent genetic 
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analyses. We believe that our findings in Chapter 3 represent a major step forward in studies of 

PAI-1 and its role in cardiovascular disease (and the metabolic syndrome in particular). We 

explored the relationship from multiple angles, and used novel methods to address open 

questions, such as whether co-occurring risk factors have an effect on ischemic risk greater than 

the sum of their individual contributions. It will be interesting to see if the patterns we have 

identified here are generalizable to other populations.  

Only a few studies, none of them recent, have reported genetic variants that modify 

correlations between traits, and none has sought to find them on a genome-wide basis. Because 

the genetics of correlations is, to a great extent, uncharted territory, we first explored the matter 

from a theoretical perspective in Chapter 4. The insight that a change in covariance between two 

traits by genotype is mathematically equivalent to a genotype-by-covariate interaction effect on 

an outcome allowed us to focus our attention provisionally on the more tractable class of linear 

regression equations. We modeled multiple types of biological SNP-by-covariate interactions 

and derived the statistical parameters to which they should give rise. In doing so, we 

demonstrated why it is a major error to assume that the significance of a statistical interaction 

term can capture the significance of a biological interaction. We demonstrated that even the 

strongest gene-by-covariate interactions at the biological level could have weak interaction 

effects when general linear models are used. Moreover, we quantified how strong we can expect 

the interaction effect to be relative to the marginal effect, depending on the nature of the 

biological interaction.  

The analyses of Chapter 4 laid the groundwork for the development of the ordinal joint 

interaction model (OJIM), which can identify both marginal effects and SNP-by-covariate 

interactions where they exist (i.e. changes in correlation by genotype), while leveraging the 
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change in residual correlation induced by marginal effects (i.e. changes to the total population 

correlation) into increased power. The OJIM had more power than univariate or bivariate 

analysis to detect lipid SNPs of known biological significance, indicating that context-dependent 

genetic effects are probably quite common, and that the OJIM can identify them where they 

exist.  

Although one of the strengths of the OJIM is that no a priori decision needs to be made 

regarding which is the interacting variable and which is the outcome, it can be used even when 

one of the covariates is (e.g.) an environmental exposure, and still outperform traditional tests of 

interaction, with minimal inflation for Type 1 error (as demonstrated in Chapter 5). We therefore 

recommend that future studies assessing gene-by-covariate interactions of any kind consider 

using the OJIM over the gene-by-covariate interaction term of the conventional single-outcome 

model. 
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APPENDIX 

Appendix A: Supplemental Figures and Tables, Chapter III 
 

Table S1. Age-standardized prevalence rates and 95% confidence intervals of dichotomous risk factors in the Ghanaian cohort. 
 

 Males      Females    Urban Rural 

 Urban Rural p-value  Urban  Rural p-value  
p-value  p-vaalue  
by sex by sex 

N 972 469   1293 583 
    Hypertension 0.34 (0.31, 0.37) 0.20 (0.16, 0.24) <.001  0.32 (0.30, 0.35)  0.21 (0.18, 0.24) <.001  0.316 0.690 

IFG (>100 mg/dL)  0.23 (0.20, 0.26) 0.19 (0.16, 0.23) 0.084  0.29 (0.27, 0.32)  0.31 (0.28, 0.35) 0.380  0.001 <.001 
IFG (>110 mg/dL) 0.10 (0.09, 0.12) 0.05 (0.03, 0.07) 0.001  0.12 (0.10, 0.14)  0.10 (0.08, 0.13) 0.207  0.133 0.003 
Diabetes 0.06 (0.04, 0.07) 0.02 (0.01, 0.03) <.001  0.07 (0.05, 0.08)  0.03 (0.02, 0.05) <.001  0.342 0.307 
Overweight or Obese 0.35 (0.32, 0.38) 0.11 (0.08, 0.14) <.001  0.60 (0.58, 0.63)  0.26 (0.22, 0.29) <.001  <.001 <.001 
Obese 0.07 (0.05, 0.09) 0.00 (0.00, 0.01) <.001  0.26 (0.24, 0.28)  0.05 (0.04, 0.07) <.001  <.001 <.001 
Hypercholesterolemia 0.22 (0.20, 0.25) 0.07 (0.05, 0.09) <.001  0.31 (0.28, 0.33)  0.10 (0.08, 0.13) <.001  <.001 0.086 
High TG 0.28 (0.25, 0.31) 0.27 (0.23, 0.31) 0.691  0.21 (0.19, 0.24)  0.26 (0.23, 0.30) 0.017  0.001 0.715 
Low HDL-C 0.40 (0.36, 0.44)* 0.38 (0.32, 0.45)^ 0.592  0.26 (0.23, 0.29)~  0.38 (0.32, 0.43)+ <.001  <.001 0.946 
High LDL-C 0.22 (0.19, 0.25)* 0.05 (0.03, 0.08)^ <.001  0.30 (0.27, 0.33)~  0.11 (0.08, 0.15)+ <.001  <.001 0.014 
Smoker 0.03 (0.02, 0.04)) 0.16 (0.13, 0.20) <.001  0.00 (0.00, 0.00)  0.02 (0.01, 0.03) <.001  <.001 <.001 
Any schooling 0.96 (0.95, 0.98) 0.64 (0.60, 0.68) <.001  0.88 (0.86, 0.90)  0.44 (0.40, 0.48) <.001  <.001 <.001 
Schooling >JSS 0.48 (0.45, 0.52) 0.05 (0.04, 0.08) <.001   0.30 (0.27, 0.33)  0.02 (0.01, 0.03) <.001   <.001 0.007 
*n=722 ^n=225 ~n=955 ⁷n=317.  
 

    Hypertension = SBP ≥140 or DBP ≥90 or self-reported diagnosis with current use of medication; IFG = impaired fasting glucose; Diabetes 
=glucose ≥126 mg/dL or self-reported diagnosis with current use of medication; Overweight = BMI ≥25; Obese = BMI ≥30; 
Hypercholesterolemia = TC ≥200; High TG = triglycerides ≥ 110; Low HDL-C = ≤40 mg/dL; High LDL-C = ≥130; Schooling >JSS = 
education beyond junior secondary school (usually attended through age 15). 
Prevalences age-standardized to WHO standard population. 
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Figure S1. Education by age group among urban and rural men and women in Brong Ahafo, Ghana. Left panels (A) and (C): 
estimates by age group are for urban females (purple circles) and rural females (green circles). Right panels (B) and (D): estimates by 
age group are for urban males (purple triangles) and rural males (green triangles). Error bars denote 95% confidence intervals. JSS = 
Junior Secondary School (usually attended through age 15). 
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Figure S2. Mean systolic and diastolic blood pressure by age group in urban and rural men and women in Brong Ahafo, 
Ghana. Left panels (A) and (C): mean estimates by age group for urban females (purple circles) and rural females (green circles). 
Right panels (B) and (D): mean estimates by age group for urban males (purple triangles) and rural males (green triangles). Error bars 
denote 95% confidence intervals. 
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Figure S3. Mean BMI and overweight prevalence by age group in urban and rural men and women in Brong Ahafo, Ghana. 
Left panels (A) and (C): estimates by age group for urban 
￼females (purple circles) and rural females (green circles). In the right panels (B) and (D), estimates by age group are depicted for 
urban males (purple triangles) and rural males (green triangles). Error bars denote 95% confidence intervals. Overweight is defined as 
BMI ≥ 25 23 kg/m2. 
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Figure S4. Mean fasting glucose and prevalence of impaired fasting glucose by age group. 
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Figure S5. Mean high-density lipoprotein cholesterol by age group. 
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Figure S6. Mean t-PA and PAI-1 levels by age group 
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Figure S7. The BMI-adjusted effect of urban/rural environment on cardiovascular risk. Absolute differences between urban and 
rural standardized means (with 95% confidence intervals) are depicted for each risk factor, with colors representing the group with the 
higher mean (purple: urban; green: rural). Data were adjusted for age, sex, and BMI.
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Table S2. Prevalence rates (and 95% confidence intervals) of the metabolic syndrome and its component risk factors among 
2220 Ghanaian men and women from urban and rural settings.  
 
  Males     Females   

 Urban Rural  Urban  Rural 
 N  721  225    957  317 
MetS*  0.126 (0.102, 0.151) 0.078 (0.043, 0.113) 

 
0.214 (0.188, 0.240) 0.112 (0.077, 0.147) 

     Obesity 0.065 (0.049, 0.086) 0.00 (0.00, 0.017)   0.265 (0.238, 0.294) 0.050 (0.031, 0.080) 
     Hypertension 0.130 (0.108, 0.157) 0.111 (0.076, 0.159) 

 
0.097 (0.080, 0.118) 0.088 (0.062, 0.125) 

     Hyperglycemia 0.413 (0.378, 0.450) 0.267 (0.213, 0.328)   0.389 (0.358, 0.420) 0.293 (0.246, 0.346) 
     High TG 0.239 (0.209, 0.271) 0.173 (0.129, 0.228) 

 
0.315 (0.286, 0.345) 0.293 (0.246, 0.346) 

     Low HDL-C 0.437 (0.401, 0.473) 0.391 (0.330, 0.456)   0.588 (0.557, 0.619) 0.612 (0.557, 0.664) 
 
*MetS= the metabolic syndrome; prevalence rates age-standardized to the WHO standard population 
N= sample size of participants for whom no data was missing 
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Table S3. Pairwise correlations between cardiovascular risk factors, by sex.  
 

  
Females 

 
Males Homogeneity 

of 
Correlation, 

p-value 
Trait 1 Trait 2 r CI N p-value   r CI N p-value 

BMI PAI-1 0.44 (0.41, 0.48) 1881 <.0001  0.41 (0.36, 0.45) 1450 <.0001 0.2008 
MAP PAI-1 0.20 (0.15, 0.24) 1881 <.0001  0.27 (0.22, 0.32) 1450 <.0001 0.0239 
MAP BMI 0.27 (0.23, 0.32) 1881 <.0001  0.35 (0.30, 0.39) 1450 <.0001 0.0186 
HDL PAI-1 -0.20 (-0.25, -0.15) 1275 <.0001  -0.14 (-0.20, -0.08) 950 <.0001 0.1569 
HDL BMI -0.15 (-0.20, -0.10) 1275 <.0001  -0.17 (-0.23, -0.11) 950 <.0001 0.6037 
HDL MAP 0.05 (0.00, 0.11) 1275 0.0604  0.01 (-0.06, 0.07) 950 0.8036 0.2993 
TG PAI-1 0.34 (0.30, 0.38) 1878 <.0001  0.36 (0.31, 0.40) 1443 <.0001 0.5472 
TG BMI 0.24 (0.19, 0.28) 1878 <.0001  0.27 (0.23, 0.32) 1443 <.0001 0.2610 
TG MAP 0.13 (0.09, 0.18) 1878 <.0001  0.19 (0.14, 0.24) 1443 <.0001 0.0830 
TG HDL -0.26 (-0.31, -0.20) 1274 <.0001  -0.28 (-0.34, -0.23) 946 <.0001 0.4758 
GLUC PAI-1 0.23 (0.19, 0.28) 1881 <.0001  0.15 (0.10, 0.20) 1450 <.0001 0.0116 
GLUC BMI 0.15 (0.10, 0.19) 1881 <.0001  0.17 (0.12, 0.22) 1450 <.0001 0.5756 
GLUC MAP 0.11 (0.07, 0.16) 1881 <.0001  0.16 (0.11, 0.21) 1450 <.0001 0.1371 
GLUC HDL -0.13 (-0.18, -0.07) 1275 <.0001  -0.12 (-0.18, -0.05) 950 0.0003 0.7984 
GLUC TG 0.19 (0.14, 0.23) 1878 <.0001  0.15 (0.10, 0.20) 1443 <.0001 0.3103 

 
r = Pearson correlation coefficient, calculated using residuals after adjustment for age and residence, by sex; 
CI = 95% confidence interval;  
p-value = probability of r if true correlation is zero; 
Homogeneity of Correlation, p-value = probability of these data if true correlation is equal for men & women;  
Note: p-values > 0.05 have been grayed out. 
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Table S4. Partial correlations between components of the metabolic syndrome, including PAI-1, by sex. 
 

  
Females 

 
Males Homogeneity 

of Correlation 
p-value Trait 1 Trait 2 r CI N p-value   r CI N p-value 

BMI PAI-1 0.35 (0.30, 0.40) 1274 <.0001  0.29 (0.23, 0.34) 946 <.0001 0.0814 
MAP PAI-1 0.07 (0.02, 0.13) 1274 0.0094  0.12 (0.06, 0.19) 946 0.0001 0.2363 
MAP BMI 0.21 (0.16, 0.26) 1274 <.0001  0.26 (0.20, 0.32) 946 <.0001 0.2487 
HDL PAI-1 -0.09 (-0.14, -0.03) 1274 0.002  -0.01 (-0.08, 0.05) 946 0.6987 0.0842 
HDL BMI -0.08 (-0.13, -0.02) 1274 0.0052  -0.11 (-0.17, -0.05) 946 0.0008 0.4682 
HDL MAP 0.13 (0.07, 0.18) 1274 <.0001  0.12 (0.05, 0.18) 946 0.0004 0.7427 
TG PAI-1 0.22 (0.17, 0.27) 1274 <.0001  0.25 (0.19, 0.31) 946 <.0001 0.4270 
TG BMI 0.07 (0.01, 0.12) 1274 0.0142  0.09 (0.02, 0.15) 946 0.0067 0.6497 
TG MAP 0.07 (0.01, 0.12) 1274 0.0134  0.09 (0.02, 0.15) 946 0.0078 0.6872 
TG HDL -0.20 (-0.25, -0.14) 1274 <.0001  -0.25 (-0.31, -0.19) 946 <.0001 0.2210 
GLUC PAI-1 0.14 (0.09, 0.20) 1274 <.0001  0.05 (-0.02, 0.11) 946 0.1410 0.0233 
GLUC BMI 0.02 (-0.03, 0.08) 1274 0.4626  0.07 (0.00, 0.13) 946 0.043 0.2920 
GLUC MAP 0.06 (0.01, 0.12) 1274 0.0241  0.10 (0.04, 0.17) 946 0.0014 0.3414 
GLUC HDL -0.07 (-0.12, -0.01) 1274 0.0128  -0.08 (-0.14, -0.01) 946 0.0202 0.8921 
GLUC TG 0.10 (0.04, 0.15) 1274 0.0006  0.07 (0.00, 0.13) 946 0.0447 0.4765 

 
r = Pearson partial correlation coefficient, calculated using residuals after adjustment for age and residence, by sex; 
CI = 95% confidence interval;  
p-value = probability of r if true partial correlation is zero; 
Homogeneity of Correlation, p-value = probability of these data if true partial correlation is equal for men & women;   
Note: p-values > 0.05 have been grayed out. 
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Table S5. Partial correlations between the five components of the metabolic syndrome.  
 
Trait  Trait  r CI N p-value 
MAP BMI 0.27 (0.23, 0.31) 2220 <.0001 
HDL BMI -0.11 (-0.15, -0.07) 2220 <.0001 
HDL MAP 0.12 (0.07, 0.16) 2220 <.0001 
TG BMI 0.16 (0.12, 0.20) 2220 <.0001 
TG MAP 0.11 (0.07, 0.15) 2220 <.0001 
TG HDL -0.24 (-0.28, -0.20) 2220 <.0001 

GLUC BMI 0.08 (0.04, 0.12) 2220 0.0002 
GLUC MAP 0.09 (0.05, 0.13) 2220 <.0001 
GLUC HDL -0.08 (-0.12, -0.04) 2220 <.0001 
GLUC TRIG 0.11 (0.07, 0.15) 2220 <.0001 

 
r = Pearson partial correlation coefficient, calculated using residuals after adjustment for age, sex, and residence; 
CI = 95% confidence interval;  
p-value = probability of r if true partial correlation is zero. 
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Table S6. Partial correlations between the five components of the metabolic syndrome, by urban or rural residence. 
 

  
Rural 

 
Urban Homogeneity 

of Correlation 
p-value Trait 1 Trait 2 r CI N p-value   r CI N p-value 

MAP BMI 0.24 (0.16, 0.32) 542 <.0001  0.28 (0.24, 0.33) 1678 <.0001 0.3335 
HDL BMI -0.06 (-0.14, 0.02) 542 0.1631  -0.14 (-0.19, -0.09) 1678 <.0001 0.1083 
HDL MAP 0.12 (0.04, 0.20) 542 0.0042  0.12 (0.07, 0.17) 1678 <.0001 0.9314 
TG BMI 0.09 (0.01, 0.18) 542 0.0297  0.19 (0.14, 0.24) 1678 <.0001 0.0430 
TG MAP 0.16 (0.07, 0.24) 542 0.0002  0.09 (0.04, 0.13) 1678 0.0004 0.1449 
TG HDL -0.28 (-0.36, -0.20) 542 <.0001  -0.23 (-0.27, -0.18) 1678 <.0001 0.2250 

GLUC BMI 0.13 (0.05, 0.21) 542 0.0021  0.05 (0.01, 0.10) 1678 0.0245 0.1180 
GLUC MAP 0.11 (0.02, 0.19) 542 0.0116  0.08 (0.03, 0.13) 1678 0.0011 0.5601 
GLUC HDL -0.09 (-0.17, -0.01) 542 0.0356  -0.08 (-0.13, -0.03) 1678 0.0011 0.8230 
GLUC TRIG 0.12 (0.04, 0.20) 542 0.0044  0.11 (0.06, 0.15) 1678 <.0001 0.7341 

 
r = Pearson partial correlation coefficient, calculated using residuals after adjustment for age and sex, by residence; 
CI = 95% confidence interval;  
p-value = probability that the true partial correlation is zero; 
Homogeneity of Correlation, p-value = probability of these data if true partial correlation is equal for urban & rural;  
Note: p-values > 0.05 have been grayed out. 
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Table S7. Partial correlations between the five components of the metabolic syndrome, by sex. 
 

  
Females 

 
Males Homogeneity 

of Correlation 
p-value Trait 1 Trait 2 r CI N p-value   r CI N p-value 

MAP BMI 0.26 (0.20, 0.31) 1274 <.0001  0.31 (0.25, 0.37) 946 <.0001 0.1710 
HDL BMI -0.12 (-0.17, -0.07) 1274 <.0001  -0.12 (-0.18, -0.05) 946 0.0003 0.9642 
HDL MAP 0.13 (0.07, 0.18) 1274 <.0001  0.11 (0.05, 0.18) 946 0.0004 0.7842 
TG BMI 0.16 (0.11, 0.21) 1274 <.0001  0.17 (0.11, 0.23) 946 <.0001 0.7575 
TG MAP 0.09 (0.03, 0.14) 1274 0.0016  0.12 (0.06, 0.18) 946 0.0002 0.4210 
TG HDL -0.22 (-0.27, -0.17) 1274 <.0001  -0.26 (-0.32, -0.20) 946 <.0001 0.3481 

GLUC BMI 0.08 (0.02, 0.13) 1274 0.0060  0.08 (0.02, 0.15) 946 0.0106 0.8846 
GLUC MAP 0.08 (0.02, 0.13) 1274 0.0074  0.11 (0.05, 0.17) 946 0.0006 0.4021 
GLUC HDL -0.09 (-0.14, -0.03) 1274 0.0023  -0.08 (-0.14, -0.01) 946 0.0189 0.8331 
GLUC TRIG 0.13 (0.08, 0.19) 1274 <.0001  0.08 (0.02, 0.14) 946 0.0141 0.2184 

 
r = Pearson partial correlation coefficient, calculated using residuals after adjustment for age and residence, by sex; 
CI = 95% confidence interval;  
p-value = probability of r if true partial correlation is zero; 
Homogeneity of Correlation, p-value = probability of these data if true partial correlation is equal for men & women;  
Note: p-values > 0.05 have been grayed out. 
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Figure S8. Proportions of participants with N�[0,5] component risk factors of the metabolic syndrome, by sex and 
environment. Length of rectangles represents the percentage of participants with N risk factors in each labeled group (UM = urban 
males; UF= urban females; RM= rural males; RF= rural females; Total= all 2220 participants for whom no data were missing). Areas 
of rectangles for UM, UF, RM, RF represent proportions with respect to all 2220 participants. 
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Figure S9: Isolated cases of risk factors associated with the metabolic syndrome. Among 764 subjects who had exactly one risk 
factor, the proportion for whom the isolated case was hypertension (green), impaired fasting glucose (pink), low high-density 
lipoprotein cholesterol (orange), or other (blue), by sex and urban/rural residence. Only samples with complete data for all five risk 
factors were considered for this analysis (N=2220). 
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Figure S10. Loadings of the first three principal components of the five risk factors that define the metabolic syndrome. 
Pink=glucose, yellow=HDL, purple=triglycerides, green=MAP, blue=BMI. Negative loadings are below zero on the vertical axis. The 
size of a “stack” of loadings is related to the variance explained by the particular principal component. The data were adjusted for age, 
sex, and residence. 

 
Note that because low values of HDL are associated with increased risk, HDL as a risk factor clusters with the risk factors of opposite 
sign.  
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Figure S11. Moving medians and 1st and 3rd quartiles of standardized PAI-1 values as a function of the first three standardized 
principal components of MetS risk factors, for men (blue) and women (red). PAI-1 and MetS risk factors were adjusted for age, 
sex, and residence. Period for quartiles = 100. Data smoothed using cubic spline (see Methods).  
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Figure S12 Moving medians and 1st and 3rd quartiles of standardized GLUC, HDL, MAP, and TG as a function of 
standardized BMI. Data adjusted for age, sex, and residence. Period for quartiles = 100. Data smoothed using cubic spline (see 
Methods).  
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Appendix B: Supplemental Material, Chapter IV 
 
B-1 
 

 

 
 
 

 

 

Recall from the Statistical Overview that the variance of Y can be set to 1 by adjusting the 

variance of the error term; note also that is the expected value of a truncated standard 

normal distribution, Z>0, as per the formula where the interval [ ) denotes 

support for Z . 
 
  

!!
Yi =

βX Xi +βZZi + ε i , Zi ≤0
βX Xi +βZZi + βXZ XiZi + ε i , Zi >0

⎧
⎨
⎪

⎩⎪

!!

Cov(X ,Y )= E(XY )−E(X )⋅E(Y )

= 12 E X ⋅ βX X +βZZ + ε |Z ≤0( )( )( )+ 12 E X ⋅ βX X +βZZ +βXZ XZ + ε |Z >0( )( )( )
= 12 βX ⋅E(X 2)+βZ ⋅E(XZ |Z ≤0)+E(Xε )( )+ 12 βX ⋅E(X 2)+βZ ⋅E(XZ |Z >0)+βXZ ⋅E(X ⋅XZ |Z >0)+E(Xε )( )
= βX ⋅E(X 2)+ βXZ

2 E(X 2)⋅E(Z |Z >0)

= βXk+ 2
π
⋅
βXZk
2

= k βX +
βXZ

2π
⎛

⎝⎜
⎞

⎠⎟

!!
RX
2 =

Cov(X ,Y )⎡⎣ ⎤⎦
2

Var(X )⋅Var(Y ) = k βX +
βXZ

2π
⎛

⎝⎜
⎞

⎠⎟

2

!
2
π
φ α( )−φ β( )
Φ β( )−Φ α( ) !α ,β
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B-2 
 
 

 

 
 
 

 

 
 
 

 

 
 
Note that  

 
 
  

!!
Yi =

βX Xi +βZZi + ε i , Zi ≤0
βX Xi +βZZi + βXZ XiZi + ε i , Zi >0

⎧
⎨
⎪

⎩⎪

!!

Cov(XZ ,Y )= E(XZY )−E(XZ)⋅E(Y )

= 12 E XZ ⋅ βX X +βZZ + ε |Z ≤0( )( )( )+ 12 E XZ ⋅ βX X +βZZ +βXZ XZ + ε |Z >0( )( )( )
= 12 βX ⋅E(X 2)⋅E(Z |Z ≤0)+βZ ⋅E(X )⋅E(Z2 |Z ≤0)+E(ε )⋅E(XZ |Z ≤0)( )
+12 βX ⋅E(X 2)⋅E(Z |Z >0)+βZ ⋅E(X )⋅E(Z2 |Z >0)+βXZ ⋅E(X 2)⋅E(Z2 |Z >0)+E(ε )⋅E(XZ |Z >0)( )
=
βXZ ⋅E(X 2)⋅E(Z2 |Z >0)

2 =
βXZk
2

!!
RXZ
2 =

Cov(XZ ,Y )⎡⎣ ⎤⎦
2

Var(XZ)⋅Var(Y ) =
βXZ
2 k
4

!!Var(XZ)= E(X
2Z2)− E(XZ)⎡⎣ ⎤⎦

2
= E(X 2)E(Z2)= k



!205 

B-3 

 

where  

 

 

 

Deriving Cov(XZ,Y) =E(XZY) - E(XZ)E(Y) is complicated by the fact that, after multiplying XZ 

with Y , each linear equation in the step function contains the term E(X2)E(Z), which varies based 

!! 

Y =

β1Xi + βZZi + ε i , 0<Φ Zi( ) < 1
q

β2Xi + βZZi + ε i , 1
q <Φ Zi( ) < 2

q

!
βqXi +

!
βZZi +

!
ε i ,
!
q−1
q <Φ Zi( ) <1

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

!! 

β j = jc ,
j∈ 1,2,…,q⎡⎣ ⎤⎦

!! 

Cov(X ,Y )= E(XY )−E(X )E(Y )=

= E(X
2)

q
β1 +β2 +…+βn( )

= k
q
c +2c +…+qc( ) = kc

q
⎛
⎝⎜

⎞
⎠⎟
⋅ q(q+1)2
⎛
⎝⎜

⎞
⎠⎟

= kc(q+1)2

!!
RX
2 =

Cov(X ,Y )⎡⎣ ⎤⎦
2

Var(X )⋅Var(Y ) =
k2c2(q+1)2

4
k ⋅1 = kc

2(q+1)2
4
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on the quantile of Z. However, note that whatever the value E(Z), it has the same magnitude but 

different sign for the first and last quantile, the second and second-to-last quantile, etc. 

 Thus  

 

Which can be expressed in closed form as,  
 

 

where

represents the floor function 

 

 

Cov(XZ ,Y )=
1

q
ck ⋅E Z |Φ Z

i( )∈ (0, 1q)( )( )+1
q
2ck ⋅E Z |Φ Z

i( )∈ (1q , 2q)( )( )+…

+
1

q
(q−1)ck ⋅E Z |Φ Z

i( )∈ ( q−2q ,
q−1

q
)( )( )+1

q
qck ⋅E Z |Φ Z

i( )∈ ( q−1q ,1)( )( )

=
ck

q
(q−1)⋅E Z |Φ Z

i( )∈ ( q−1q ,1)( )+(q−3)⋅E Z |Φ Z
i( )∈ ( q−2q ,

q−1

q
)( )+…( )

!!
Cov(XZ ,Y )= ck

2π
q− 2 j −1( )( ) φ Φ−1 1( − j

q )( )(
j=1

q
2
⎢
⎣⎢

⎥
⎦⎥

∑ −φ Φ−1 1( − j−1
q )( ))

!
x⎢⎣ ⎥⎦
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B-4 
 

 

Using the general formula:  

 

Note:   

derived using integration by parts: 

!!Y = βX Xi +βXΦ Xi ⋅Φ(Zi )( )+βZZi + ε i

!!

Var(Y )= E(Y 2)− E(Y )⎡⎣ ⎤⎦
2

= βX
2E(X 2)+βXΦ

2 ⋅E(X 2)⋅E Φ(Z)( )2⎛
⎝

⎞
⎠ +βZ

2E(Z2)+σε
2

= βX
2k+

βXΦ
2 k
3 +βZ

2 +σε
2

!!Cov(aX ,bX + cY )= ab ⋅Var(X )+ac ⋅Cov(X ,Y )

!!

= βXVar(X )+βXΦCov X ,X ⋅Φ(Z)( )+βZCov(X ,Z)+Cov(X ,ε )

= βXk+
βXΦk
2

= k βX +
βXΦ

2
⎛

⎝⎜
⎞

⎠⎟

RX
2 =

k2 βX +
βXΦ

2
⎛

⎝⎜
⎞
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2
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2
⎛

⎝⎜
⎞

⎠⎟

2
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⎣

⎤
⎦
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2 π
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2
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2
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Appendix C: Supplemental Figures and Tables, Chapter V 
 
Table C1. LDL and triglycerides: top ten associations for the ordinal joint interaction model; 2669 exonic SNPs from the 
NHGRI GWAS Catalog were assessed for 871 Ghanaian participants. 
 

    p-value  
SNP Chr. Minor 

Allele MAF Single Trait 
LDL 

Single Trait 
TG Bivariate OJIM Interaction Gene 

rs12740374 1 T 0.26 6.09E-06 0.7453 1.22E-05 3.88E-07 0.0016 SORT1* 
rs646776 1 C 0.37 0.0002 0.4420 0.0005 4.19E-05 0.0060 SORT1* 
rs9990343 3 G 0.49 0.0049 0.0196 0.0018 0.0005 0.0262 intergenic 
rs204993 6 G 0.29 0.8785 0.0001 0.0006 0.0006 0.1221 PBX2 
rs8005962 14 C 0.37 0.0694 0.7659 0.1894 0.0006 0.0002 intergenic 
rs176095 6 G 0.29 0.9678 0.0002 0.0012 0.0008 0.0664 PBX2 
rs1803274 3 T 0.21 0.0002 0.8707 0.0003 0.0009 0.5529 BCHE* 
rs301 8 C 0.35 0.3252 0.0003 0.0004 0.0014 0.9986 LPL* 
rs2660753 3 C 0.41 0.1188 0.9027 0.2614 0.0017 0.0004 intergenic 
rs1845344 4 T 0.27 0.0142 0.4472 0.0310 0.0021 0.0055 MAD2L1 

Note: SNPs in perfect linkage disequilibrium were not listed: rs7528419 (with rs12740374); rs660240 and rs629301 (with rs646776); 
rs6445035 (with rs1803274). 
 
Genes marked with an asterisk have been previously associated with lipids in GWAS; p-values in bold were significant after 
Bonferroni correction; all tests were adjusted for age and sex; single trait tests were not adjusted for multiple testing (i.e. 2 tests). 
 
Columns: Chr. = chromosome; MA = minor allele; MAF = minor allele frequency; LDL = low-density lipoprotein cholesterol; TG = 
triglycerides;        Bivariate= MultiPhen, which models genotype as a function of LDL and TG; OJIM adds an interaction term; 
Interaction = interaction term for the OJIM. 
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Table C2. Triglycerides and total cholesterol: top ten associations for the univariate (blue) and bivariate (green) tests not 
featured in Table 5-1; 2669 exonic SNPs from the NHGRI GWAS Catalog were assessed for 1032 Ghanaian participants. 
 

    p-value  
SNP Chr. Minor 

Allele MAF Single Trait 
TG 

Single Trait 
TC Bivariate OJIM Interaction Gene 

rs1803274 3 T 0.21 0.8121 0.0009 0.0024 0.0067 0.7528 BCHE* 
rs3884558 15 A 0.21 0.0011 0.8346 0.0015 0.0034 0.3960 RORα  
rs7769051 6 A 0.38 0.0012 0.0865 0.0044 0.0114 0.6733 RPS12 
rs11884476 2 G 0.25 0.3445 0.0012 0.0032 0.0049 0.2349 PARD3B 
rs229527 22 A 0.34 0.2929 0.0036 0.0007 0.0021 0.7133 C1QTNF6 

Note: rs180327, rs6445035, and rs3884558 were also in top 10 for bivariate model; not listed: rs6445035, which was in perfect 
linkage disequilibrium with rs1803274.  
 
Genes marked with an asterisk have been previously associated with lipids or atherosclerotic cardiovascular disease; all tests were 
adjusted for age and sex; single trait tests were not adjusted for multiple testing (i.e. 2 tests), and only top 10  
 
Columns: Chr. = chromosome; MA = minor allele; MAF = minor allele frequency; TG = triglycerides; TC = total cholesterol; 
Bivariate = MultiPhen, which models genotype as a function of TG and TC; OJIM adds an interaction term; Interaction = interaction 
term for the OJIM. 
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Table C3. Triglycerides and total cholesterol: top ten p-values for the interaction term of the ordinal joint interaction model; 
2669 exonic SNPs from the NHGRI GWAS Catalog were assessed for 1032 Ghanaian participants. 
 

    p-value  
SNP Chr. Minor 

Allele MAF Single Trait 
TG 

Single Trait 
TC Bivariate OJIM Interaction Gene 

rs3803064 12 A 0.28 0.4633 0.8875 0.6758 0.0004 2.70E-05 RPH3A 
rs646776 1 C 0.37 0.7855 0.0018 0.0041 1.36E-05 0.0002 SORT1* 
rs7076247 10 T 0.42 0.2001 0.2449 0.3339 0.0042 0.0010 CACNB2 
rs12740374 1 T 0.26 0.9658 0.0002 0.0003 5.77E-06 0.0010 SORT1* 
rs8041863 15 T 0.43 0.1649 0.3551 0.2859 0.0040 0.0010 ACAN 
rs1004446 11 A 0.45 0.6074 0.8572 0.8748 0.0181 0.0018 IGF2AS* 
rs1829883 5 T 0.29 0.2119 0.6276 0.4696 0.0102 0.0018 intergenic 
rs743777 22 A 0.41 0.2821 0.3814 0.289 0.0077 0.0021  IL2RB 
rs17039212 2 A 0.21 0.8952 0.3965 0.6716 0.0223 0.0030 intergenic 
rs6732426 2 C 0.30 0.0843 0.4082 0.1948 0.0080 0.0034 THADA 

Note: SNPs in perfect linkage disequilibrium were not listed: rs7528419 (with rs12740374); rs660240 and rs629301 (with rs646776). 
 
Genes marked with an asterisk have been previously associated with lipids in GWAS; p-values in bold were significant after 
Bonferroni correction; all tests were adjusted for age and sex; single trait tests were not adjusted for multiple testing (i.e. 2 tests). 
 
Columns: Chr. = chromosome; MA = minor allele; MAF = minor allele frequency; TG = triglycerides; TC = total cholesterol; 
Bivariate = MultiPhen, which models genotype as a function of TG and TC; OJIM adds an interaction term; Interaction = interaction 
term for the OJIM. 
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Table C4. HDL and triglycerides: top ten associations for the univariate (blue) and bivariate (green) tests not featured in 
Table 5-2; 2669 exonic SNPs from the NHGRI GWAS Catalog were assessed for 869 Ghanaian participants. 
 

    p-value  
SNP Chr. Minor 

Allele MAF Single Trait 
HDL 

Single Trait 
TG Bivariate OJIM Interaction Gene 

rs176095 6 G 0.29 0.0410 0.0002 0.0010 0.0021 0.3673 intergenic 
rs3129055 6 G 0.20 0.1922 0.0002 0.0009 0.0030 0.9927 HLA-F 
rs739401 11 T 0.25 0.0005 0.5889 0.0020 0.0045 0.4205 CARS 
rs261360 20 A 0.41 0.0006 0.1820 0.0016 0.0050 0.8750 intergenic 
rs12999542 2 C 0.25 0.2765 0.0007 0.0055 0.0049 0.1171 ILRL1 
rs2043085 15 C 0.28 0.0196 0.0354 0.0008 0.0018 0.3859 LIPC* 

Note: rs176095 and rs3129055 were also in top 10 for bivariate model. 
 
Genes marked with an asterisk have been previously associated with lipids in GWAS; all tests were adjusted for age and sex; single 
trait tests were not adjusted for multiple testing (i.e. 2 tests), and only top 10  
 
Columns: Chr. = chromosome; MA = minor allele; MAF = minor allele frequency; HDL = high-density lipoprotein cholesterol; TG = 
triglycerides;      Bivariate= MultiPhen, which models genotype as a function of HDL and TG; OJIM adds an interaction term; 
Interaction = interaction term for the OJIM. 
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Table C5. HDL and triglycerides: top ten p-values for the interaction term of the ordinal joint interaction model; 2669 exonic 
SNPs from the NHGRI GWAS Catalog were assessed for 869 Ghanaian participants. 
 

    p-value  
SNP Chr. Minor 

Allele MAF Single Trait 
HDL 

Single Trait 
TG Bivariate OJIM Interaction Gene 

rs7493138 14 T 0.29 0.1672 0.7369 0.3873 0.0020 0.0003 FOXG1 
rs1512268 8 C 0.28 0.4558 0.9887 0.7306 0.0068 0.0007 NKX3.1 
rs442177 4 T 0.47 0.1994 0.8760 0.4629 0.0065 0.0010 AFF1* 
rs774359 9 C 0.22 0.3969 0.0788 0.1605 0.0028 0.0012 c9orf72 
rs2880058 1 A 0.24 0.4610 0.4329 0.5508 0.0103 0.0015 NOS1AP 
rs13188386 5 A 0.37 0.8803 0.9249 0.9817 0.0191 0.0017 GHR 
rs1812175 4 A 0.35 0.6885 0.0673 0.1144 0.0028 0.0018 HHIP 
rs727088 18 A 0.22 0.6255 0.3390 0.5324 0.0141 0.0022 CD226 
rs6811556 4 C 0.46 0.7231 0.5182 0.7209 0.0226 0.0028 intergenic 
rs7689420 4 T 0.36 0.6504 0.0689 0.1115 0.0041 0.0029 HHIP 

 
Genes marked with an asterisk have been previously associated with lipids in GWAS; p-values in bold were significant after 
Bonferroni correction; all tests were adjusted for age and sex; single trait tests were not adjusted for multiple testing (i.e. 2 tests). 
 
Columns: Chr. = chromosome; MA = minor allele; MAF = minor allele frequency; HDL = high-density lipoprotein cholesterol; TG = 
triglycerides;      Bivariate= MultiPhen, which models genotype as a function of HDL and TG; OJIM adds an interaction term; 
Interaction = interaction term for the OJIM. 
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Table C6. HDL and LDL: top ten associations for the ordinal joint interaction model; 2669 exonic SNPs from the NHGRI 
GWAS Catalog were assessed for 869 Ghanaian participants. 
 
 

    p-value  
SNP Chr. Minor 

Allele MAF Single Trait 
HDL 

Single Trait 
LDL Bivariate OJIM Interaction Gene 

rs12740374 1 T 0.26 0.8309 6.09E-06 1.20E-05 2.77E-05 0.2898 SORT1* 
rs7528419 1 G 0.26 0.8309 6.09E-06 1.20E-05 2.77E-05 0.2898 SORT1* 
rs7499892 16 T 0.44 8.83E-05 0.1070 3.86E-05 0.0001 0.7899 CETP* 
rs629301 1 G 0.37 0.4601 0.0002 0.0003 0.0004 0.1802 SORT1* 
rs1803274 3 T 0.21 0.1531 0.0002 0.0002 0.0005 0.3780 BCHE* 
rs6445035 3 A 0.21 0.1531 0.0002 0.0002 0.0005 0.3780 BCHE* 
rs646776 1 C 0.37 0.6050 0.0002 0.0003 0.0005 0.2189 SORT1* 
rs660240 1 T 0.37 0.6050 0.0002 0.0003 0.0005 0.2189 SORT1* 
rs247616 16 T 0.26 1.49E-05 0.7736 0.0002 0.0007 0.8683 CETP* 
rs17197037 14 A 0.26 0.1752 0.0584 0.0671 0.0016 0.0016 HNRNPC 
rs1405069 6 A 0.26 0.3473 0.0089 0.0286 0.0018 0.0048 PI16 
rs9447004 6 A 0.32 0.0028 0.1872 0.0019 0.0019 0.1235 CD109* 
rs261360 20 A 0.41 0.0006 0.2208 0.0006 0.0020 0.8078 RPS21P7 

 
Genes marked with an asterisk have been previously associated with lipids in GWAS; p-values in bold were significant after 
Bonferroni correction; all tests were adjusted for age and sex; single trait tests were not adjusted for multiple testing (i.e. 2 tests). 
 
Columns: Chr. = chromosome; MA = minor allele; MAF = minor allele frequency; HDL = high-density lipoprotein cholesterol; LDL 
= low-density lipoprotein cholesterol; Bivariate= MultiPhen, which models genotype as a function of HDL and LDL; OJIM adds an 
interaction term; Interaction = interaction term for the OJIM. 
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Table C7. Total cholesterol and HDL: top ten associations for the univariate tests not featured in Table 5-3; 2669 exonic SNPs 
from the NHGRI GWAS Catalog were assessed for 869 Ghanaian participants. 
 

    p-value  
SNP Chr. Minor 

Allele MAF Single Trait 
TC 

Single Trait 
HDL Bivariate OJIM Interaction Gene 

rs739401 11 T 0.25 0.2376 0.0005 0.0022 0.0032 0.2152 CARS 
Note: the bivariate model had the same top 10 SNPs as the OJIM (although the order was different). 
 
Genes marked with an asterisk have been previously associated with lipids in GWAS; p-values in bold were significant after 
Bonferroni correction; all tests were adjusted for age and sex; single trait tests were not adjusted for multiple testing (i.e. 2 tests). 
 
Columns: Chr. = chromosome; MA = minor allele; MAF = minor allele frequency; TC = total cholesterol; HDL = high-density 
lipoprotein cholesterol; Bivariate= MultiPhen, which models genotype as a function of TC and HDL; OJIM adds an interaction term; 
Interaction = interaction term for the OJIM. 
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Table C8. Total cholesterol and HDL: top ten p-values for the interaction term of the ordinal joint interaction model; 2669 
exonic SNPs from the NHGRI GWAS Catalog were assessed for 869 Ghanaian participants. 
 

    p-value  
SNP Chr. Minor 

Allele MAF Single Trait 
TC 

Single Trait 
HDL Bivariate OJIM Interaction Gene 

rs1491942 12 C 0.28 0.3594 0.2937 0.2208 0.0012 0.0003 LRRK2 
rs9263871 6 G 0.38 0.4594 0.6837 0.7523 0.0155 0.0017 HCG27 * 
rs1537415 9 G 0.27 0.3163 0.5580 0.5896 0.0133 0.0019 GLT6D1 
rs7153703 14 G 0.38 0.8167 0.9323 0.9735 0.0250 0.0023 FRMD6 
rs17197037 14 A 0.26 0.2058 0.1961 0.0743 0.0024 0.0025 HNRNPC 
rs16889440 6 T 0.29 0.0505 0.4275 0.1474 0.0054 0.0029 KIAA0319 
rs667282 15 C 0.34 0.3948 0.3970 0.3158 0.0129 0.0036 CHRNA5 
rs1557351 18 C 0.25 0.8405 0.7114 0.8767 0.0328 0.0036 WDR7 
rs406936 6 A 0.38 0.0553 0.0682 0.0766 0.0043 0.0046 SKIV2L 
rs11888559 2 C 0.44 0.0531 0.9975 0.1153 0.0067 0.0049  CYP20A1 

 
Genes marked with an asterisk have been previously associated with lipids in GWAS; p-values in bold were significant after 
Bonferroni correction; all tests were adjusted for age and sex; single trait tests were not adjusted for multiple testing (i.e. 2 tests). 
 
Columns: Chr. = chromosome; MA = minor allele; MAF = minor allele frequency; TC = total cholesterol; HDL = high-density 
lipoprotein cholesterol; Bivariate= MultiPhen, which models genotype as a function of TC and HDL; OJIM adds an interaction term; 
Interaction = interaction term for the OJIM. 
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Figure C1. QQ-plot depicting robustness of ordinal and linear interaction models to 
outliers. Simulated data were approximately normally distributed, but with outliers, which were 
generated by replacing the normally distributed error term with one drawn from a t-distribution 
(df=8). The covariate (tested for interaction with the SNP) was correlated with the outcome at 
r=0.30. This plot is representative of results from 10 repeated runs.  
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Figure C2. QQ-plots of p-values for tests assessing 2269 NHGRI SNPs 
 

(A)!QQ-plots of p-values for tests assessing 2269 NHGRI SNPs for association with 
systolic blood pressure (SBP) and diastolic blood pressure (DBP) in 1032 Ghanaian 
participants. Joint tests of SBP and DBP with MultiPhen (green) and the ordinal joint 
interaction model (OJIM) (black triangle); tests of the SNP-by-DBP interaction term in a 
linear regression model with SBP as the outcome (purple). Results for the SNP-by-SBP 
interaction term were less inflated for Type 1 error (not shown). 

 

 
 

(B)!Similar QQ-plots for tests of HDL and triglycerides (TG). Joint tests of HDL and TG 
with MultiPhen (green) and the OJIM (black triangle); tests of the SNP-by-HDL 
interaction term in a linear regression model with TG as the outcome (purple). Results for 
the SNP-by-TG interaction term were less inflated for Type 1 error (not shown). 
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Figure C3. QQ-plots of p-values for tests assessing 116 lipid-associated SNPs for association 
with (A) triglycerides and total cholesterol; (B) HDL and triglycerides; and (C) total 
cholesterol and HDL in 1032 Ghanaian participants.  
A 

 
 
B 

 
 

C 



!220 

 

Figure C4. Six sets of ten randomly drawn phenotypes from the NHGRI GWAS Catalog. 
Asterisks denote phenotypes related to cardiovascular disease.  
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