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CHAPTER I

GABA AND NEURODEGENERATION IN HUMAN DISEASE AND MODEL
ORGANISMS

Introduction

Formation of the astoundingly complex circuitry of the human brain requires

neurons with different communicative properties.  For example, excitatory and inhibitory

neurons, arranged in different patterns, form circuits with different outputs.  Neurons

expressing the neurotransmitter γ-amminobutyric acid (GABA) are the major inhibitory

neurons in brain circuitry.  The many morphologically and electrophysiologically diverse

subtypes of GABA neurons are needed to build circuits that drive the many advanced

tasks of the brain, including coordinated movement and cognition.  The importance of

these cells is apparent in the consequences of GABA neuron dysfunction. Developmental

impairment can result in psychiatric diseases as diverse as schizophrenia, epilepsy,

Tourette’s syndrome and autism, whereas degeneration of GABA neuron populations in

the adult brain results in the symptoms of Huntington’s disease and Spinocerebellar

ataxia.

To understand these diseases, science faces the challenge of solving the molecular

and cellular components that dictate GABA neuron function starting from neuron birth

and continuing throughout development and aging.  Such a quest requires the integration

of systems-level biology with cellular and molecular research from many laboratories,
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and must involve the union of developmental biology with the molecular neuroscience of

aging.  Most of the progress toward this issue has been made using model systems,

especially the laboratory mouse.  Mice have been used to identify some of the genes

involved in GABA neuron identity, migration, connectivity and survival (Anderson et al.,

1997; Fode et al., 2000).

Many GABA genes are highly conserved. Therefore, invertebrate model systems,

such as Caenorhabditis elegans, have also been useful for identifying genes that function

in GABA neurons.  C. elegans is a free-living nematode, which has been developed for

genetic manipulation.  These microscopic animals have a completely sequenced genome,

and are amenable to genetic manipulations, including transgenic over-expression,

knockout of genes and gene silencing by RNAi.  The worm also has a relatively simple

nervous system, which nonetheless contains a complement of many of the same neuronal

sub-classes found in humans.  These neurons can be visualized with GFP reporters in the

intact animal throughout its life.  Finally, C. elegans has a short life span, which makes it

ideal for studies of the development and aging of neurons.

We used C. elegans to study GABA neurons in development and aging.  The first

line of research involves genomic and RNAi screening approaches to identify genes that

are important for GABA neurons throughout the life cycle.  The second involves the

study of the Coenzyme Q metabolic gene, coq-1, in GABA neuron degeneration through

apoptosis in aging animals.  This introduction will review the literature on apoptosis in

degenerative diseases, focusing on diseases with important roles for GABA neurons.

Additionally, to introduce the relationship between Coenzyme Q and GABA neuron
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degeneration, the current literature on Coenzyme Q in aging and disease will be

reviewed.

GABA neurons from humans to worms

 Diverse GABAergic neuron subtypes are present in human brain, each with

distinct morphologies and synaptic connectivities.  Having multiple subclasses with

unique features allows for creation of elaborate circuitry (fig 1.1a) (Kubota et al., 2007).

It is not surprising, therefore, that perturbations in GABA neuron development, function

or survival are implicated in a variety of psychiatric diseases, including epilepsy, autism,

schizophrenia and Huntington’s disease.

 Whereas GABA neurons act in the CNS in mammals, worm GABA neurons act

peripherally to control movement, defecation, and foraging behavior in the worm.  The

majority of the 26 GABA neurons (73%) in C. elegans are the embryonically-derived DD

and larvally-derived VD neurons, which reside in the ventral nerve cord.  D class neurons

send out single axons along the ventral cord, which branch once to send a commissure to

the dorsal nerve cord of the animal.  These axons synapse directly onto muscle, and the

inhibitory activity of these synapses serves to prevent the simultaneous contraction of

opposing muscle groups (Fig 1.1b) (White, 1986; Schuske et al., 2004).   Laser ablation

studies have shown that the deletion of GABA neurons has little effect on resting

movement, but, when touched to elicit backward movement, these animals display a

‘shrinker’ phenotype, caused by the simultaneous excitation of muscles on both sides of

the body (fig 1.1c) (McIntire et al., 1993b).



Figure 1.1  GABA Neurons from mammals to worms.  (a) Cortical GABA
interneuron subclasses.  Reprinted from Kubota et al., 2007.  (b)  GABA neurons in
C. elegans.  (c) Function of GABA motor neurons of the ventral cord. Adapted from
Schuske et al., 2004.

a

b

c

4
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Many of the molecular components necessary for GABA neuron identity and

function are conserved between nematodes and humans (McIntire et al., 1993a).  Because

of this, and because dysfunction of GABA neurons produces a readily visible phenotype,

the nematode is useful for discovering genes that are important for GABA neuron

function.  In addition, C. elegans has been useful for studying neurodegeneration that

results from various insults, including oxidative stress, genetic mutation and

excitotoxicity.  The utility of such a model for studying degeneration of GABA neurons

has distinct advantages, and is ideal for addressing certain types of questions about

disease.  A discussion of degeneration studies in mammals and worms may bring into

perspective the advantages and shortcomings of such a model.

Mammalian neurodegenerative disease with roles for GABA neurons

A common feature of neurodegenerative diseases is the occurrence of a specific

age range during which symptoms of the disease appear.  The factors that dictate the age

of onset of disease symptoms are of interest in these diseases.  Insults may build up over

time, only reaching a certain threshold at the age of symptom onset.  Alternatively, age-

dependent changes in gene expression may create the ideal environment for pathology

only at certain time points.  Model systems may be useful in distinguishing such

possibilities, if they recapitulate the age-dependence of the disease.

The cerebellum and basal ganglia are brain regions important for the control and

coordination of complex movements and posture in humans (Kandel and Schwartz,

2000).  The cerebellum governs balance, posture, motor learning and coordination.  To

do this, it integrates signals of intent and memory from the cerebral cortex, adjusts
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movements accordingly, and communicates its modifications through efferent tracts to

the motor cortex and brain stem.  Similarly, the basal ganglia processes information

received from the cortex, through communication between its interconnected nuclei (the

striatum, globus pallidus, substantia nigra, and subthalamic nucleus), and returns output

to the brainstem or the cortex for further modulation.

The importance of these two structures is illustrated by the effects of

neurodegenerative diseases that result in lesions in these areas.  Parkinson’s Disease (PD)

and Huntington’s disease (HD) are degenerative disorders of the basal ganglia, which

result in movement disturbances such as bradykinesia (slow movement), resting tremor,

and rigidity in the case of PD (Parkinson, 2002), and uncontrolled choreoform

movements in HD (Huntington, 2003).  Spinocerebellar ataxias (SCAs) are a group of

cerebellar neurodegenerative diseases, characterized by a gradual loss of balance and

motor coordination (Duenas et al., 2006).

The symptoms of these diseases can be explained by their different pathologies.

In each disease, specific brain areas and cell types within those areas are selectively

vulnerable to degeneration.  HD and the SCAs are both characterized by the primary

degeneration of GABAergic projection neurons, which are the sole output of the affected

brain region.  In the case of HD, the medium spiny projection neurons of the striatum are

the most vulnerable (Huntington's_Disease_Collaborative_Research_Group, 1993).

Spinocerebellar ataxias are characterized by somewhat heterogeneous pathology, the

best-studied being SCA type 1.  The GABAergic Purkinje cells (PCs) that project from

the cerebellum are the primary and most severely affected population of neurons in SCA1

(Zoghbi and Orr, 1995), and likely in many other forms of cerebellar ataxia.
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The hereditary Spinocerebellar ataxias can be caused by dysfunction of a number

of genes with different roles, including ion channels, protein kinase C, protein

phosphatase 2 and the iron-binding protein frataxin (Duenas et al., 2006; Fogel and

Perlman, 2007).  In addition to the identified genetic causes, there are several metabolic,

environmental, and idiopathic origins of ataxia, illustrating that many paths can lead to

degeneration of cerebellar Purkinje cells.  Several naturally occurring mutations in mice

have also been identified, which lead to cerebellar disease.  These include mouse lines

such as the purkinje cell degeneration, lurcher, weaver, and staggerer mice (Grusser-

Cornehls and Baurle, 2001).  These mutants further emphasize an evolutionarily

conserved sensitivity of these neurons to degeneration.

Degeneration: From endoplasmic reticulum to mitochondria by way of calcium

Molecular studies in the above diseases and models have provided much

information about the susceptibility of GABA neurons to disease.  Unifying many of

these diseases are defects in the relationship between the endoplasmic reticulum and

mitochondrial metabolism (Demaurex and Distelhorst, 2003; Schapira, 2006).  Neurons

are excitable, dynamic cells that inter-communicate to execute functions such as

movement, cognition and emotion.  To perform these functions, they must possess

specific morphological, chemical and electrical properties, and be capable of adapting

these properties in response to stimuli.  Such demands result in high metabolic needs,

which are met by mitochondria.  Healthy mitochondria respond to electrical or

morphological changes in neurons by increasing production of ATP, the energy currency

of the cell.  However, compromising mitochondrial function can lead to cell death (Chan,
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2006).  The high metabolic need of neurons may make them particularly susceptible to

death as insults to our metabolic machinery accumulate during aging.  This is the basis

for many theories of aging and degenerative disease.

Protein folding in the endoplasmic reticulum

The relationship between neuronal metabolic need and mitochondrial energy output is

mediated in part by ER calcium (Berridge, 2002; Demaurex and Distelhorst, 2003).

However, the various functions of the ER are inter-connected, complicating the ER-

mitochondria relationship.  The endoplasmic reticulum serves three main purposes in

cells.  First, the cytosolic face of the ER membrane is the major site of lipid synthesis.

Second, the ER is where many of the proteins made in the cell are folded and where some

post-translational modifications take place.  Finally, the ER is a major storage reservoir

for calcium.  Much research has focused on the link between ER protein folding and

calcium signaling.

Eukaryotic cells have developed a highly complex series of signal transduction

pathways, which monitor the status of protein folding, and adjust ER conditions

accordingly.  An excess of unfolded proteins is linked to the cell death pathway, such that

death precedes the secretion or membrane expression of misfolded proteins.  Nascent

proteins are transported into the ER, where they interact with chaperones, which foster

disulfide bond formation and protein folding.  Several ER transmembrane proteins sense

protein mysfolding with their luminal domains, and respond through their cytosolic

domains by activating the unfolded protein response (UPR) (Ron and Walter, 2007).  The

UPR includes up-regulation of chaperones to assist in protein folding, decreasing
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translation and translocation of ER proteins to reduce workload, and an increase in

ERAD (ER-associated protein degradation), which exports unfolded proteins from the

ER for proteasomal degradation.  Failure in any one of these pathways can lead to

accumulation of misfolded proteins, which can lead to cell death (figure 1.2).

ER calcium homeostasis

The exact pathways that lead from protein misfolding to degeneration are poorly

understood.  However, some clarity is provided by understanding another major ER

function, that of calcium homeostasis.  Calcium is perhaps one of the most diverse

signaling molecules in the cell.  However, as free calcium precipitates phosphates, the

principal energy source of the cell, it is necessary to contain it for use only in distinct

microdomains (Clapham, 1995).  The ER performs this service for the cell, collecting

Ca2+ from the cytosol through SERCA (Sarcoplasmic and Endoplasmic Reticular Ca)

pumps, and effecting InsP3 and ryanodine receptor-mediated release.  Inside the lumen of

the ER, the majority of Ca2+ is not free, but is buffered by Ca2+-binding proteins.  Among

these are the important chaperones calreticulin and calnexin.  These proteins sense

protein misfolding and bind proteins accordingly to help them fold.  They also act as high

capacity Ca2+-binding proteins, and thereby control luminal Ca2+ capacity (Ostwald and

MacLennan, 1974; Bastianutto et al., 1995; Mery et al., 1996; Corbett et al., 1999;

Mesaeli et al., 1999; Michalak et al., 1999).  Knockout of calreticulin therefore decreases

[Ca2+]ER, whereas its over-expression increases [Ca2+].  The Ca2+ concentration in the ER

lumen affects the chaperone function of these proteins and vice-versa (figure 1.2).



Figure 1.2 ER homeostasis pathways.  Protein folding is monitored by chaperones in
the ER that control the Unfolded Protein Response (UPR).  This includes 1) increasing
transcription of chaperones and 2) increasing the ER-Associated degradation pathway
(ERAD) to remove and degrade unfolded proteins.   The chaperone burden is reflected
in the Ca2+ levels in the ER and vice-versa. Ca2+ levels are also controlled by anti-
apoptotic Bcl-2, whereas pro-apoptotic Bax and Bak increase Ca2+ stores. Ca2+ released
from the ER acts on mitochondria, which both shuttle Ca2+ back, and send retrograde
signals such as ROS, which reflect the mitochondrial workload and further signal the
need for protein production to the ER.

UPR

10
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Ca2+ levels in the ER lumen are important not only for cell signaling, but also dictate

the apoptotic decision.  High [Ca2+]ER is known to sensitize cells to apoptosis, whereas

low [Ca2+] is protective.  Therefore, over-expression of calreticulin sensitizes cells to

apoptosis (Arnaudeau et al., 2002), whereas calreticulin knockout is protective

(Nakamura et al., 2000).  The link between protein folding and [Ca2+] is proposed to

explain the degenerative effects of many mutations that affect protein folding and

degradation.

Mitochondria as energy producers of the cell

Ca2+ exerts its apoptotic effects though mitochondria (Mattson et al., 2000).

Mitochondria are the energy factories of cells, and excitable cells such as neurons have

more mitochondria than other cells.  Mitochondria are composed of an outer membrane

and an inner membrane, which is extensively folded into structures called cristae.  The

inner mitochondrial membrane is relatively impermeable, whereas the outer membrane is

highly permeable and renders the intermembrane space practically continuous with the

cytosol.  The cristae of the inner membrane allow ample surface area in which to embed

the components of the electron transport chain (ETC).  These include complexes I-V,

cytochrome c and coenzyme Q.  NADH and FADH2 are the ETC’s electron donors and

are produced by metabolic reactions like those of the TCA cycle.  Electrons are passed

along the ETC and ultimately are added to molecular oxygen to make water. The

movement of electrons through the assembly line allows protons to be pumped across the

inner membrane, establishing a proton gradient between the enclosed matrix and

intermembrane space.  This gradient (denoted ΔΨm) provides potential energy to drive
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protons back into the mitochondrial matrix, which drives the conversion of ADP to ATP

by complex V/ATP synthase (Alberts, 2002).

Mitochondrial Ca2+ in apoptosis

Cell signaling and membrane activity can induce Ca2+ release from the ER.

Normally, ER-released Ca2+ is taken up by nearby mitochondria, where it translates the

activity of the cell into a need for increased energy production. Ca2+, either through direct

binding or indirect means, activates several rate-limiting metabolic enzymes and

components of the ETC to boost ATP production (McCormack et al., 1990; Rizzuto et

al., 1993; Hajnoczky et al., 1995; Rizzuto et al., 1998; Jouaville et al., 1999).

Mitochondria recycle Ca2+ back to the ER, thus contributing to Ca2+ buffering.

Mitochondria also communicate the increased burden on their resources through

retrograde signals to the ER.  Some of these may include the reactive oxygen species

(ROS/free radicals) that are produced as by-products of the ETC.  As electrons are passed

through the complexes of the ETC, it is estimated that as much as 2% of them are passed

in a side-reaction to oxygen, producing partially reduced free oxygen radicals (Adam-

Vizi and Chinopoulos, 2006).  These are highly reactive molecules capable of damaging

the macromolecules that make up the cell.  High ROS levels are dangerous to cells, but

small increases in ROS may signal the ER to up-regulate stress response genes and

increase protein folding and lipid synthesis.  In this way, small increases in a cellular

activity prepare the ER for additional stress and are actually cyto-protective (Kaufman,

1999).
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 Release of high levels of Ca2+ from the ER, or Ca2+ signals to an already stressed

mitochondrion, however, act as pro-apoptotic signals (Szalai et al., 1999; Pacher and

Hajnoczky, 2001; Hajnoczky et al., 2002; Rapizzi et al., 2002).  This occurs through an

increase in mitochondrial permeability, a process referred to as the permeability transition

(PT).  Scientists have long hypothesized that the formation of a pore complex

(permeability transition pore, PTP) is responsible for the transition.  However, the

molecular components of this pore have been elusive, and permeability transition has

been shown to persist in knockout mice for candidate pore-forming proteins, such as

VDAC and ANT (Kokoszka et al., 2004; Krauskopf et al., 2006).  Whatever the

mechanism, PT causes a disruption of inner membrane cristae structure, dissipation of

ΔΨm and release of cytochrome c, one of the electron carriers in the ETC, into the

cytoplasm (Norenberg and Rao, 2007).  Cytochrome c binds to a protein called apoptotic

protease activating factor-1 (Apaf-1), forming the ‘apoptosome.’  This complex then

starts a cascade of activation of caspase enzymes that execute the cell death program.

This is the basic pathway of apoptosis, but the complete story is more complex.  In

reality, mitochondria integrate information from several sources before making the

decision to execute the cell.  Our knowledge of factors that influence the apoptotic

decision is ever growing.  A few that are relevant to this work are described below and in

figure 1.3.

Apoptosis-regulating pathways

Among regulators of apoptosis, Bcl-2 and the Bcl family of proteins are among the

best studied.  Bcl-2 was originally discovered as an oncogene mutated in B cell



a

b

Figure 2.3 Mitochondrial response to Ca2+.  (a) Normally, when the ER releases
Ca2+, this acts as a signal to increase energy production.  A low level of ROS is
released, which acts as a retrograde signal to the ER.  Bcl-2 proteins maintain
cristae structure, through modulation of fusion proteins, such as OPA-1 and
PARL.  (b) When Ca2+ release is very high, ROS levels increase, which can
damage the cell, activating damage pathways, such as the p53 pathway, which up-
regulates BH3-only proteins.  Also, high Ca2+ results in DRP-1 translocation to the
mitochondria, and activation of outer membrane fission. BH3-only proteins
antagonize Bcl-2, causing activation of PARL and OPA-1, and cristae remodeling
to release pro-apoptotic proteins, such as cytochrome c.
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lymphomas (Bcl) (Bakhshi et al., 1985; Cleary and Sklar, 1985; Tsujimoto et al., 1985).

Cancer promotion by Bcl-2 was subsequently linked to its anti-apoptotic properties

(Vaux et al., 1988; McDonnell et al., 1989).  Bcl-2 and other anti-apoptotic members of

its family contain 4 domains (BH1-4), which create a hydrophobic pocket.  Pro-apoptotic,

‘multidomain’ members of this family, like Bax and Bak, are sequestered by the binding

of their BH3 domain in this pocket (Muchmore et al., 1996; Sattler et al., 1997).  ‘BH3-

only’ members, like Bid, Bad, and Bim, contain only the BH3 domain, and can bind

competitively in this pocket, releasing the Bax/Bak members of the family, and are thus

pro-apoptotic as well.  In addition to Bcl-2 binding, the BH3-only proteins are controlled

by numerous mechanisms, including through transcriptional control and phosphorylation.

For example, the increased ROS released by stressed or compromised mitochondria

damages macromolecules in the cell, including DNA.  DNA damage can activate the

oncogene p53, which can promote transcription of BH3-only proteins, leading to

apoptosis.  The involvement of Bax and Bak in apoptosis is apparently complex.  They

are known to act either in mitochondria to promote permeability transition (Shimizu et

al., 1999) or in the ER to increase releasable Ca2+ (Pinton et al., 2000; Scorrano et al.,

2003) or both.  The pathways leading to activation of any given arm of the apoptotic

machinery appears to depend on the original apoptotic stimuli.

An additional pathway linking Ca2+ to apoptosis through the mitochondrial fission

and fusion machinery is currently being elucidated.  Mitochondria are often depicted as

solitary organelles within the cell.  However, they are actually dynamic structures,

dividing by a process called fission and are often connected to one another by fusion into

a tubular network of organelles, allowing for the intercommunication between
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mitochondria in different regions of the cell (Nakada et al., 2001; Ono et al., 2001).  The

proteins involved in fission and fusion have not all been elucidated, but some of the

major players have been discovered.  One of the key players in fission is dynamin-related

protein 1 (drp-1).  Dynamin is a GTPase, which acts during vesicle endocytosis to help

pinch off vesicles budding from the membrane.  Drp-1 may act in a similar manner to

effect fission of the outer mitochondrial membrane.  Drp-1 is normally found in the

cytoplasm.  In response to Ca2+ release from the ER (Hinshaw, 2000; Breckenridge et al.,

2003), another fission protein, Fis-1, escorts Drp-1 to selected sites on the mitochondrial

outer membrane (Mozdy et al., 2000; Yoon et al., 2003).  Another dynamin-related

GTPase, OPA-1 is involved in fusion of mitochondria and may be activated by the fusion

protein Presenilin-associated rhomboid-like protease (PARL) (McQuibban et al., 2003).

These fusion proteins are thought to reside at cristae junctions, holding the junction

closed to inhibit the release of apoptotic factors, such as cytochrome c (Wong et al.,

2000; Olichon et al., 2002).

The links between the fission/fusion machinery and apoptosis are numerous.

Taken together, there seems to be a balance between fission and fusion, such that an

increase in fission proteins is pro-apoptotic, whereas an increase in fusion proteins is

protective against apoptosis (Frank et al., 2001; Scorrano et al., 2002; Olichon et al.,

2003; Lee et al., 2004; Sugioka et al., 2004; Cipolat et al., 2006; Frezza et al., 2006).  ER-

to-Mitochondrial Ca2+ has recently been shown to stimulate mitochondrial fission-related

apoptosis (Breckenridge et al., 2003).  Furthermore, Bcl-2 family members, such as Bax,

have been associated with this process, indicating yet another means by which these
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proteins can carry out apoptosis and an additional link between Ca2+ and fission/fusion-

related apoptosis (Karbowski et al., 2002; Youle and Karbowski, 2005).

The changes in membrane permeability and cristae structure that are governed by

fission/fusion proteins may finally explain the permeability transition phenomenon, and

replace or complement the idea of the transition pore as the true mechanism of

mitochondrial release of apoptogenic factors.  This is a novel viewpoint, and the

involvement of the fission/fusion machinery in apoptosis is still a young and

controversial field.  One model even suggests that fission of the tubular mitochondrial

network protects cells from some pro-apoptotic insults by preventing the efficient

conductance of Ca2+ waves throughout all mitochondria in the cell (Szabadkai et al.,

2004).  However, it is clear that the fusion/fission pathways, or some of the components

thereof can be party to the mitochondria’s decision to either undergo apoptosis or

maintain survival.

Developmental and pathological apoptosis in C. elegans

The mammalian apoptotic pathways described above are summarized in figures

1.2 and 1.3.  The degree to which these pathways are conserved throughout evolution is

debated, but it is becoming increasingly clear that many of these pathways, or similar

ones, are in fact shared between mammals and nematodes.  The original programmed cell

death pathway elucidated in the nematode is employed during developmental patterning.

In this model, C. elegans CED-4/Apaf-1 is sequestered at the mitochondrial outer

membrane by the Bcl-2 ortholog, CED-9.  In cells destined to die, EGL-1, a BH3-only

protein, is up-regulated and binds to CED-9/Bcl-2, thereby freeing CED-4/Apaf-1 to
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activate CED-3, the only known caspase in C. elegans.  This well-established

developmental apoptosis model does not involve Ca2+ or cytochrome c release.  In fact,

cytochrome c is hypothesized to be irrelevant to the worm apoptotic pathway, as CED-

4/Apaf-1 lacks the canonical cyto c binding site and has been shown to form the

apoptosome in vitro (Rolland and Conradt, 2006).

Since the discovery of developmental apoptosis, several examples of pathological

apoptosis have been identified in C. elegans.  Pathological apoptosis, which occurs in

response to disruption of certain genes or environmental insults, can be distinguished

from developmental apoptosis.  While this form of cell death uses the basic machinery

described above, it also shares many of the known mammalian modulating pathways.

For example, DNA damage can activate the worm ortholog of p53, CEP-1, which

activates transcription of BH3-only proteins EGL-1 and CED-13, resulting in apoptosis

(Schumacher et al., 2005).  Furthermore, DRP-1 in C. elegans has been shown to be

necessary for apoptosis in response to certain insults (Jagasia et al., 2005).   In addition,

worm CED-9 (Bcl) has been shown to antagonize fission-related death in mammalian

cells, whereas EGL-1 (BH3-only) promotes it, indicating a highly conserved role for

these proteins in apoptotic fission (Delivani et al., 2006).  While cytochrome c may not

be downstream of fission-related mitochondrial changes (although it has never been

tested), it is possible that some other factors are released, which mediate this form of

apoptosis in the worm, such as the apoptosis inducing factor (AIF) orthologs F20D6.11

and WAH-1.  An alternative possibility is that the structural changes in the mitochondrial

membrane themselves are sufficient to disrupt CED-4 (Apaf-1) binding to CED-9 (Bcl).
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Interestingly, while the role of calcium has been extensively studied in

pathological apoptosis in mammals, few studies of apoptosis exist in the worm literature

in which a role for Ca2+ has been probed.  One notable example is the sel-12 (ar131)

mutant.  SEL-12 is the C. elegans homolog of human Presenilin-1, an ER protease that

has been implicated in Alzheimer’s disease.  The ar131 allele of sel-12 causes ectopic

apoptosis in embryogenesis, which is blocked by the inhibitor of ER Ca2+ release,

dantrolene (Kitagawa et al., 2003).  This provides an example of Ca2+-dependent

pathological apoptosis in the worm.

Apoptosis in neurodegenerative disease

Apoptotic cell death is associated with at least some of the degeneration that

occurs in these diseases.  For example, mutant ataxin-3 and ataxin-7 cause up-regulation

of Bax and down-regulation of Bcl-2-like Bcl-XL, leading to caspase activation and

apoptotic death of cerebellar neurons (Chou et al., 2006; Wang et al., 2006).  Use of

chemical caspase inhibitors or expression of dominant negative caspases delays symptom

onset in mouse models of HD (Ona et al., 1999; Chen et al., 2000).   As outlined above,

nuclear (p53), cytosolic (proteasome), ER (UPR and ERAD), and mitochondrial

(PTP/fusion/fission) components all contribute to apoptosis. Mutations or toxins that

target elements of ER-Mitochondria-Ca cycle can cause pathological apoptosis, and are

associated with neurodegenerative disease.  Examples of the disruption of these pathways

are summarized Table 1.1.

One major point of disruption in degenerative diseases is thought to be the area of

protein folding and degradation (Aigelsreiter et al., 2007).  For example, in the case of



Disease gene Mechanism

Heritable Parkinsonism parkin
parkin  is an E3 Ubiquitin ligase-deletion may lead 
to accumulation of unfolded proteins

PINK1
Kinase activity of PINK1 effects mitochondrial 
membrane structure and cytochrome c release

Alzheimer's Disease presenilin
mutant presenilin-1 affects amyloid peptide levels 
and ER calcium release

Friedreich's ataxia frataxin

frataxin mutation affects Iron homeostatsis in 
mitochondria, which is devastating to 
mitochondrial function

SCA3 ataxin-3
ataxin-3 is a ubiquitin protease associated with the 
unfolded protein response

SCA6 CACNA1A
CACNA1A encodes a calcium channel; it's mutation 
is thought to perturb calcium homeostasis

Coenzyme Q deficiency coq-1 and coq-2
mutation in these genes leads to a reduction in 
CoQ and reduced electron transport

Huntington's disease huntingtin/htt

The function of htt is unknown, but calcium, 
protein folding and mitochondrial function are all 
compromised in this disease

ALS Superoxide Dismutase
SOD mutation decreases cellular defenses against 
ROS

Table 1.1 Degenerative diseases affecting the ER-mitochondrial calcium cycle

20
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HD and some SCAs, expansions of polyglutamine tracts within the coding region of the

disease-related genes are associated with the formation of multi-protein aggregates.  This

aggregation is currently thought to be protective in many such diseases, as expansion of

polyglutamines may confer a toxic gain-of function, and aggregation may sequester these

dysfunctioning proteins.  Consistent with this idea, aggregates form more readily in

surviving neurons,  and less so in degenerating populations in SCA1 (Klement et al.,

1998), SCA7 (Bowman et al., 2005) and HD (Saudou et al., 1998). Differences in either

protein folding or proteasomal degradation in sensitive cell populations may be the cause

of selective aggregate formation.  In keeping with this idea, the over-expression of

chaperones has been shown to reduce SCA1-associated toxicity in a number of models

(Cummings et al., 1998; Cummings et al., 2001; Bonini, 2002).  Furthermore,

proteasomal degradation and ubiquitination are directly affected in SCA3, as Ataxin 3 is

a proteasomal cysteine protease involved in de-ubiquitination (Chai et al., 2004; Nicastro

et al., 2005).

The ER has been implicated in degenerative disease not only at the protein

folding level, but also at the level of Ca2+ storage and release. Ca2+ homeostasis has been

shown to be disrupted in several forms of SCA (Duenas et al., 2006) as well as in HD

(Bezprozvanny and Hayden, 2004).  For example, several Ca2+ homeostasis genes have

been shown to be down-regulated in Purkinje cells in both a mouse model of

Spinocerebellar ataxia type1, and in human patients post-mortem (Lin et al., 2000).  In

addition, the polyglutamine expansion in SCA6 occurs in a voltage-dependent Ca2+

channel (Zhuchenko et al., 1997), and may alter channel function to affect cellular Ca2+

levels (Matsuyama et al., 1999; Restituito et al., 2000; Toru et al., 2000).  GABAergic



22

PCs are highly sensitive to degeneration in SCA types 1 and 6, perhaps indicating an

importance for Ca2+ in GABA neuron sensitivity.  Furthermore, mitochondria isolated

from lymphoblasts of Huntington’s disease (HD) patients and brains from a mouse model

show heightened sensitivity to Ca2+, as manifested by an increased tendency to undergo

permeability transition (Panov et al., 2002).

It should be noted that Ca2+ does not only signal apoptotic cell death.  Excessive

release of Ca2+ from the ER can also result in necrosis, through activation of cytosolic

Ca2+-dependent enzymes, such as calpain proteases and phospholipases.  This process has

been extensively studied in mammals and in C. elegans, particularly in the paradigm of

glutamate excitotoxicity (Choi, 1992; Coyle and Puttfarcken, 1993; Driscoll and

Gerstbrein, 2003).  Apoptosis may be less damaging to the cell than necrosis, which ends

in cell rupture, and the release of its toxic contents into the surrounding tissue.  In

contrast, apoptotic cells activate both autophagic and phagocytic engulfment pathways,

which contain their toxic contents.  The choice of cell death mode depends on the

intensity of the insult (Bonfoco et al., 1995).  Contribution of both necrotic and apoptotic

cell death is likely in the neurodegenerative diseases discussed above (Beal, 1994; Serra

et al., 2004).

Finally, sensitivity to degeneration can also be conferred at the level of the

mitochondria. As the mediators of ROS release, aging and apoptosis, mitochondrial

dysfunction is prominent in most neurodegenerative diseases.  This may be because,

regardless of the molecular insult that triggers disease, death pathways converge on the

mitochondria.  For example, much evidence links mitochondrial dysfunction with

Huntington’s disease.  First, the neurotoxin 3-nitropropionic acid (3-NP) targets complex
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II of the ETC, and poisoning with 3-NP recapitulates many of the symptoms of HD (Beal

et al., 1993; Wullner et al., 1994; Brouillet et al., 1995). Ca2+-induced mitochondrial

permeability transition has been shown to be a consequence of huntingtin mutation in

mouse models of HD (Choo et al., 2004).  PGC-1α, a master regulator of mitochondrial

biogenesis is down-regulated in HD patients and animal models, and PGC-1α over-

expression in cultured cells or in HD mouse models protects neurons from 3-NP toxicity

or mutant huntingtin protein (Cui et al., 2006; St-Pierre et al., 2006; Weydt et al., 2006).

Coenzyme Q and its role in mitochondrial function and disease

Coenzyme Q in human disease

One notable example of mitochondria-related neurodegeneration is the form of

cerebellar ataxia, which results from deficiency of Coenzyme Q (CoQ).  Human CoQ10

deficiency is a rare genetic disease that is caused by mutation in one of the synthetic

enzymes in the CoQ pathway. The most common outcome of this deficiency is cerebellar

ataxia (Quinzii et al., 2007), but symptoms can also be the result of myopathy (Ogasahara

et al., 1989; Lalani et al., 2005; Horvath et al., 2006).  Thus far, only mutations in the

coq-2 gene have been positively identified as causes of CoQ deficiency, although coq-1

dysfunction is suspected to underlie some cases (Rotig et al., 2000). CoQ deficiency can

also participate in the pathology of diseases, in which it is not the primary feature.  For

example, patients carrying mutations of the apraxin gene (APTX) display secondary

CoQ10 deficiency and cerebellar ataxia, which improves with CoQ10 supplementation

(Quinzii et al., 2005).  These human genetic disorders provide powerful evidence that
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CoQ10, though important for respiration in all cells, seems to be most vital for the survival

of neurons or muscle, which have high metabolic needs.  Furthermore, the symptoms of

the disorders associated with loss of CoQ reveal that some regions of the brain are more

sensitive than others to metabolic compromise.  The common loss of function of the

cerebellum, the output of which is exclusively GABAergic, may indicate selective

sensitivity of the efferent Purkinje neurons from this region, similar to that observed in

SCA.

CoQ structure and biosynthesis

CoEnzymeQ (also ubiquinone, CoQ or Q), is a ubiquitous molecule found in the

membranes of all cells.  CoQ is composed of a benzoquinone ring attached to an

isoprenoid side chain (fig 1.5a).  The hydroxy groups on the quinone ring act as the

acceptors and donors of electrons, making this part of the molecule ideal for electron

transport.  The side chain makes CoQ highly lipophillic, and varies in length from species

to species.  The predominant form in humans is 10 isoprenoid units in length (denoted

CoQ10), whereas CoQ9 predominates in rats and nematodes, and CoQ8 is made

preferentially by bacteria.

The 8 ‘COQ’ enzymes responsible for synthesis of CoQ were originally

discovered in yeast.  Yeast mutants of these enzymes arrest due to respiratory failure in

the absence of CoQ.  Although each gene is important for CoQ synthesis, a direct

biochemical mechanism has not been established for most of these enzymes (Tran and

Clarke, 2007).  For example, COQ-4 and COQ-8 have no known or predicted

biochemical function.  COQ-1 is a polyprenyl synthetase important for the metabolism of

many different species of lipids.  coq-2 encodes a polyprenyl-transferase that joins the
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Benzoquinone ring

Lipophilllic isoprenyl
chain

*hydroxyl electron acceptors

Figure 1.4  Structure and Synthesis of Coenzyme Q
a.  Structure of CoQ adapted from http://home.caregroup.org
b.  Synthesis of CoQ adapted from Tran and Clarke, 2007.
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isoprenyl tail to the electron-transferring portion of the molecule, 4-hydroxybenzoic acid.

COQ-3 is an O-methyltransferase, and transfers two methoxy groups to make the quinone

ring.  The current understanding of CoQ synthesis is shown in figure 1.5b.

Roles of CoQ in the cell

CoQ plays many roles in the cell, but it is perhaps best known for its role in the

electron transport chain to produce energy in mitochondria.  CoQ in the mitochondrial

inner membrane accepts electrons from complex I and II of the electron transport chain,

and transfers them to complex III.   This makes CoQ essential for ATP production in the

cell.  Also, because complex I, and to a lesser degree complex II, may also pass electrons

out of the ETC to create free radicals, CoQ must be present at appropriate levels to

counteract creation of ROS.

CoQ also prevents ROS damage by acting as an antioxidant itself.  CoQ is found,

not only in mitochondria, but in all membranes of the cell.  Thus, CoQ is strategically

placed in all organelles, where it acts as an important antioxidant.  CoQ has been shown

to block oxidative damage of lipids, proteins, and DNA (Bentinger et al., 2007).  For this

reason, it has been tested as a therapeutic agent in a number of disorders in which

mitochondrial dysfunction and reactive oxygen species have been implicated.  For

example, prolonged, high dose, CoQ10 treatment has been shown to protect dopaminergic

neurons from MPTP toxicity in mice (Beal et al., 1998) and primates (Horvath et al.,

2003) and to slow the progression of Parkinson’s disease early on in humans (Shults et

al., 2002).  CoQ10 treatment has also been shown to slow disease progression in mouse
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models of HD (Matthews et al., 1998; Ferrante et al., 2002) and human patients

(Huntington_Study_Group, 2001).

There is some evidence to suggest that CoQ inhibits the Ca2+-dependent opening

of the mitochondrial permeability transition pore through a mechanism that is

independent of its roles in electron transport or as an anti-oxidant (Fontaine et al., 1998;

Fontaine and Bernardi, 1999; Martinucci et al., 2000; Walter et al., 2000).  This finding

indicates that CoQ deficiency may sensitize mitochondria to opening of the PTP and

subsequent apoptosis directly.

 Because CoQ has many functions, the molecular mechanisms of cell death in

CoQ deficiency may be complex.  The use of a simple, easily-manipulated model of CoQ

deficiency could be useful in sorting out this complexity.  The work in Chapter IV will

describe the establishment of such a model in the nematode C. elegans.

Studies of CoQ in C. elegans

C. elegans expresses 8 genes homologous to those which have been shown to be

responsible for CoQ synthesis in yeast. Only mutants of the coq-7 homolog are viable.

COQ-7 catalyzes the second-to-last step in CoQ biosynthesis, the monooxygenation of 2-

polyprenyl-3-methyl-6-methoxy-1,4-benzoquinone (DMQ) to produce 2-polyprenyl-3-

methyl-5-hydroxy-1,4-benzoquinone (see fig 1.5b).  Deletion of this enzyme causes the

build up of the DMQ precursor, which appears to have some activity of its own, as these

animals do not die, but live with reduced mitochondrial metabolic rates (Kayser et al.,

2004; Nakai et al., 2004).  The lowered metabolic rates of coq-7 leads to an increase in

lifespan, and coq-7 is thus also referred to as the ‘Clock’ gene, clk-1 (Wong et al., 1995).
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Deletion of the gene responsible for the step in synthesis after the coq-7/clk-1 step, coq-3,

is lethal, likely because the COQ-3 gene product is also responsible for an earlier

synthesis step (Hihi et al., 2002).  Likewise, mutants for other genes responsible for

earlier steps in synthesis are reported to result in arrest at larval stages and death, due to

massive breakdown of vital tissues, such as pharyngeal muscle (which ultimately leads to

starvation) and intestine (Gavilan et al., 2005).  Prior to larval arrest, some of these

mutants (coq-1 and coq-2) show slowed movement that progresses into paralysis.  The

mechanism of this paralysis may simply be the tissue atrophy seen in these animals, but

has never been studied.

RNAi knockdown of the coq genes has been achieved in C. elegans. Whereas

knockdown animals show a drastic (though not complete) reduction on CoQ

concentrations, they do not die or show defects in pharyngeal pumping or development,

but are, on the contrary, long-lived (Asencio et al., 2003).  This again emphasizes the fact

that, although ablation of key genes for mitochondrial function is lethal, a reduction in

metabolism positively affects lifespan.  However, a long life is not necessarily a quality

life.  The organism may pay for these metabolic reductions by losing tissues that are

dependent on high metabolic rates to function and survive, namely neurons and muscles.

Both the aforementioned human diseases and the result of CoQ knockdown in worms

support this idea.

In the process of genomic and RNAi screening approaches to better understand

GABA neuron genes in development and aging (described in chapters II and III), we

discovered that knockdown of the coq-1 gene, resulted in the progressive degeneration of

GABA neurons in C. elegans.  We have developed this discovery to establish a useful
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model for CoQ deficiency in humans.  Chapter IV will describe this research.  Chapter V

will discuss the implications of this work and possible directions for future research.
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CHAPTER II

MICROARRAY STUDIES OF GABA NEURONS AND THE ARISTALESS
TRANSCRIPTION FACTOR IN C. ELEGANS

Introduction

The majority of GABA neurons in the human brain are local circuit interneurons.

In the developing brain, GABA expressing cells migrate tangentially from their

birthplace in the medial germinal eminence to the intermediate and subventricular zones

of the neocortex.  From here, they migrate radially into the layers of the cortex (Wonders

and Anderson, 2006).  Although it is unclear at what point or by what mechanism, these

neurons become further fated to be specific subclasses of GABAergic neurons.  These

vary greatly in both morphology and synaptic features (Fig 1.1a).  Once situated in the

cortex, these neurons begin morphologic and synaptic maturation, an extensive process

that isn’t completed until late adolescence in mice and primates (Morales et al., 2002;

Chattopadhyaya et al., 2004; Jiao et al., 2006).  GABA released from GABA neurons

early in development acts on other neuronal populations affecting proliferation, migration

and differentiation throughout the brain (Ben-Ari, 2002).  Therefore, disruption of GABA

neuron development has widespread consequences (Di Cristo, 2007).

Aristaless-related homeobox domain (ARX) is a paired-like homeodomain

transcription factor that has been shown to both repress and activate gene transcription

throughout development (Schneitz et al., 1993; Seufert et al., 2005; McKenzie et al.,
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2007). Several lines of evidence have linked ARX to GABA neurons.  First, ARX

expression has been localized at the transcript and protein levels to areas rich in GABA

neuron progenitor proliferation and migration throughout development in mice (Miura et

al., 1997; Bienvenu et al., 2002; Colombo et al., 2004; Poirier et al., 2004).  Second, co-

staining against ARX and GABA neuron markers has shown the presence of ARX in

~70% of GABA-containing cells in situ (Colombo et al., 2004), and in ~90% of primary

cultured GABA neurons (Poirier et al., 2004).  Third, numerous human genetic studies

have linked mutations in ARX to a range of neural and reproductive deficits, including

mental retardation, epilepsy, autism, and abnormal genitalia development (fig2.3g)

(Bienvenu et al., 2002; Scheffer et al., 2002; Stromme et al., 2002a; Stromme et al.,

2002b; Uyanik et al., 2003; Hartmann et al., 2004; Stepp et al., 2005; Wohlrab et al.,

2005; Spinosa et al., 2006; Chaste et al., 2007).  Finally, the creation of a knock-out

mouse has provided more detailed cellular information as to what occurs when ARX is

lost.  Arx-mutant males display decreased migration of GABA neurons both from the

MGE to the intermediate zone of the neocortex and from the intermediate and

subventricular zones to the cortical plate, resulting in small brain size (fig 2.3e-f,b).

These mice also have smaller testes and hypoplasia of the seminal vesicles (fig 2.3c-d),

reminiscent of the reproductive defects seen in some human patients with lesions in the

ARX gene (Kitamura et al., 2002).  Taken together, these data suggest that the ARX

transcription factor plays an important role in the development of the mammalian

GABAergic system.

Though C. elegans GABA neurons are simplified in comparison to mammalian

GABA neurons, the nematode has the advantage over the mouse that is is highly
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genetically tractable, and has a short life cycle.  Some of the key genes needed for GABA

neuron identity have been discovered in the worm.  unc-30 (Pitx-2), for example, encodes

a homeodomain transcription factor that regulates the transcription of GABA-specific

genes (McIntire et al., 1993a).  unc-25 encodes the glutamic acid decarboxylase enzyme

necessary for GABA synthesis (Jin et al., 1999).   The vesicular transporter for GABA,

unc-47, and GABA receptors (eg unc-49) have also been characterized in the worm

(McIntire et al., 1997; Bamber et al., 1999).

A previous postdoctoral fellow in the lab, Dr. Susan Barlow, developed a list of

genes that are enriched in GABA neurons through genomic profiling. Importantly, she

found a high degree of conservation in the genomic profile of GABA neurons.  As shown

in fig 2.1i, close to 50% of genes in C. elegans show conservation with human genes

(conservation being determined by a human BLAST hit with an E-value of e-10 or lower).

Whereas previously published panneural (Von Stetina et al., 2007a) and DA cholinergic

neuron (Fox et al., 2005)-specific datasets are also around 50% conserved, the

GABAergic dataset showed 68% conservation.  This distinguishes C. elegans as a good

model system for studying GABA neurons.  Consequently, I have used bioinformatics to

mine this dataset for interesting trends and hypothesis development (see below).

A previously-described C. elegans homolog of ARX, termed alr-1, for ARX/al-

related-1, is expressed in 24 of the 26 GABAergic neurons of the worm.   Three mutants

of this gene have been created; a point mutation in the splice site for the first exon, alr-

1(oy56); a deletion mutation in which part of the homeodomain is deleted, alr-1(ok545);

and a complex rearrangement which abolishes alr-1 gene function, alr-1(oy42).  These

mutant lines have chemosensory defects, and their larvally-derived VD GABAergic
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neurons are partially mis-fated, expressing a marker normally specific to embryonic-born

DD GABA neurons (Melkman and Sengupta, 2005).  The Barlow micro-array profile

verified alr-1 enrichment in GABA neurons.  Dr. Barlow also discovered that alr-1

mutations cause morphological defects in the D-class GABA motor neurons (fig2.3h).

This is a significant finding, as it suggests a conservation of the role for alr-1 in GABA

neuron development.

The search for aristaless target genes is essential for understanding the cellular

events that lead to the devastating pathogenesis of aristaless-associated syndromes in

humans.  C. elegans may be an ideal organism in which to conduct this search, due to the

high conservation of its GABAergic system, the apparently related role of the aristaless

ortholog, and the ease with which GFP-labeled GABA neurons can be observed in vivo

and isolated for micro-array profiling. By comparing expression profiles of cells that

express mutant alr-1 with those in which the alr-1 gene is wildtype, we can identify

transcripts that are up- or down-regulated in the alr-1 mutant.  To this end, I attempted a

similar micro-array strategy to determine alr-1 transcriptional targets.  I also performed

additional phenotypic characterization of alr-1 mutant worms.  Along with the

aforementioned bioinformatic studies, these experiments are described below.

Materials and Methods

Strains:  Nematode strains were maintained at 20-25°C using standard culture methods

(Brenner, 1974).  The wild type strain was N2. Strains included unc-25::GFP  (juIs76),

C04G2.1::GFP(NC916), and alr-1 alleles oy56(PY3019), ok545(RB762), and

oy42(PY1598).
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MAPCel profiling of GABA neurons:  Cell culture, sorting, RNA isolation and micro-

array experiments were performed as previously described, with slight modifications

(Christensen et al., 2002; Fox et al., 2005).   Briefly, adult worms were bleached to

release eggs.  Chitinase was used to dissolve egg shells, and cells were dissociated and

plated in L-15-10 media and incubated overnight at 25°C.  Cells were washed off plates

with M9 buffer, filtered to remove debris and clumps, and then sorted by FACS to an 80-

90% GFP-positive population of cells.  RNA was isolated from sorted cells using the

Absolutely microRNA isolation kit® (Stratagene), and amplified by the pico-low kit, a

proprietary technology under development by NuGen, prior to hybridization on a C.

elegans affimetrix gene array.

Data Analysis: Robust Multi-Array Analysis (RMA) was used to normalize

hybridization intensities to an average signal intensity for each experiment.  Where

applicable, genes showing significant differences in intensity from baseline were

identified by Significance Analysis of Micro-array (SAM).  For the GABA dataset, genes

showing 1.7 fold change or better at a 1% false discovery rate, were kept as up or down-

regulated.  The resulting lists were annotated and compared with previously described

PERL scripts using wormbase 170 (wb170) (Von Stetina et al., 2007a).  To develop a list

of genes with known GABA expression patterns, we searched WormMart under the term

‘cell group’ for genes whose expression are associated with the terms VD, DD, RME,

AVL, DVB, or RIS.  We also searched WormBase for gene descriptions, listing

expression in GABA neurons, all neurons, or ventral nerve cord.  This list was then hand
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annotated to confirm GABA-specific expression for these genes.  The ‘stress gene’ list

was created by searching WormMart for genes connected with the gene ontology (GO)

terms ‘response to oxidative stress’, ‘DNA repair’, ‘chaperone’, ‘autophagy’, or

‘unfolded protein response.’  This list was then supplemented with orthologs of known

stress-response genes in mammals, such as mitochondrial biogenesis regulators, GSTs,

and stress-response transcription factors.

Brood size determination.  Single, L4 hermaphrodites were placed on NGM agar plates

(1 worm per plate) and incubated at 20oC.  Each day for 5 days, worms were transferred

to new plates, and the offspring were allowed to hatch and grow overnight, and counted

the following day.

Male mating behavior assay.  Young, alr-1 or N2, reproductively mature males were

placed in a drop of egg salt on an agar pad, along with a young, adult N2 hermaphrodite.

Upon evaporation of the buffer, worms were observed for 3 minutes, and any tracking of

the male along the hermaphrodite including at least 1 turn was scored as positive for

mating behavior.  Pairs that did not make contact were discarded (Dan Ruley and David

Greenstein, personal communication).

 Microscopy.  Transgenic animals and cultured cells were visualized by differential

interference contrast (DIC), or epifluorescence microscopy using either a Zeiss Axioplan

or compound microscope.  Images were recorded with CCD cameras (ORCA I, ORCA

ER, Hamamatsu Corporation, Bridgewater, NJ).
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Results

Bioinformatic strategies to validate the GABA micro-array list and discover trends
in the data.

In collaboration with Dr. Joseph Watson, I used bioinformatics both to validate

the GABA-enriched dataset generated by Dr. Barlow, as well as to search for interesting

trends in the data.  We first used WormBase to generate a list of 161 genes known to be

expressed in GABA neurons in C. elegans (see Methods).  We found 86% of these genes

to be expressed in our GABA dataset, with 20% of them listed as enriched.  In addition to

surveying published results, the lab created a series of GFP reporter constructs using

promoters of genes identified as enriched in each dataset.  The expression patterns of

selected reporters can be seen in figure 2.1.  GFP expression for promoters from the

GABA dataset ranged from complete specificity for only the VD and DD neurons, as

with C04G2.1::GFP (Fig2.1e-f), to expression in every neuron along the ventral cord, as

in the case of tsp-7::GFP (Fig 2.1a-b).  Eighty percent of selected transcripts from the

GABAergic dataset were present in GABA neurons by GFP reporter analysis.  This result

demonstrates that the GABA dataset contains novel GABA-enriched transcripts that may

be important for GABA neuron function.

Comparison of GABA dataset with published micro-array profiles

With an ever-growing number of cell-specific profiles, we are afforded the

opportunity of comparing different cell types, as they are defined by their profile of

expressed or enriched genes. Genes enriched or expressed in our GABA dataset were



Figure 2.1 Validation of GABA enriched microarray dataset
(a-f) GFP reporters for genes predicted to be enriched in GABA
neurons by micro-array.  VD and DD GABA neurons are marked
in red, while cholineric neurons are labeled in white (g) Overlap
between GABA neuron enriched and Chemosensory neuron
enriched genes shows high percentage of pan-neuronal genes.
(h) Comparison of GABA dataset with published dataset shows
known GABA genes in common. (i) GABA genes are highly
conserved between C. elegans and humans

g h
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compared with numerous published datasets to identify any trends among the lists (data

not shown).  Venn diagrams summarizing some of these results are shown in figure 2.1g-

h.  Comparison of our GABA profile with published profiles for other neuronal subtypes

showed that the overlap in gene expression for any two neuron types is highly enriched

for pan-neural genes (Von Stetina et al., 2007a) (Fig 2.1g).  For example, synaptic vesicle

proteins, such as ric-4/SNAP25 and snt-1/synaptotagmin were often found in the

intersection of two neuron-specific profiles.  This is expected, as genes important for

basic neuronal function would be shared among neuronal subtypes.  We also compared

our GABA gene list with one previously published by the Jin lab (Cinar et al., 2005)

(Fig2.1h).  The overlapping list of 81 transcripts included many key GABA genes, such

as unc-30 and unc-25.  However, our experiments detected 454 genes that were not

included in the Jin dataset.  This may be the result of the high enrichment for GFP-

positive cells that Dr. Barlow obtained.  It also may be due to variations in experimental

technique.  Interestingly, 91.4% of genes from the Barlow dataset shown in chapter III to

have effects on movement were from the ‘Barlow only’ subset of genes, rather than the

shared genes.  We believe that this is an indication that the 454 ‘Barlow only’ genes

contain many previously unknown factors relevant to neuronal function.

Antioxidants are expressed at reduced levels in GABA neurons

An alternative approach to searching micro-array data for trends is to use these

data to answer a specific question about GABA neurons.  As mentioned in chapter I,

relatively selective death of medium spiny GABA neurons in the striatum occurs in

Huntington’s disease (Martin and Gusella, 1986), whereas GABAergic purkinje cells are



39

significant targets for degeneration in cerebellar ataxias.  The source of this sensitivity of

GABA neurons remains unexplained in these diseases.  One possibility is that GABA

neurons express lower levels of genes involved in protection against stressors, rendering

them sensitive to degeneration upon certain insults.

To test this hypothesis, we created a list of 299 known defense genes, including

antioxidants, chaperones, DNA repair enzymes, and autophagy genes (table 2.1).  We

then identified genes with altered expression in the GABA profile relative to a published

embryonic Pan-neuronal profile.  A comparison of these genes to the protective gene list

identified 42 protective genes that are differentially expressed in GABA neurons (Fig

2.2).  64% of these genes were reduced, suggesting that GABA neurons may have a

generalized reduction in cellular defenses.  Some notable anti-oxidants are diminished in

GABA neurons, including transcripts encoding the superoxide dismutase sod-4 and the

catalase ctl-3.  The most striking reduction, however, was that of glutathione-S-

transferase (GST) genes.  GSTs are a large family of enzymes, which are well known for

their role in detoxifying both intra-cellular (e.g. Radical Oxygen Species (ROS)) and

environmental toxins.  13 of the known GST genes were reduced in GABA neurons

compared to all neurons. The finding that so many GST transcripts are reduced in GABA

neurons may suggest a role for GSTs in the sensitivity of GABA neurons to degeneration

in diseases such as Huntington’s disease and cerebellar ataxias.   A role for GSTs in

susceptibility to degeneration is not unprecedented. Pharmacological inhibition or RNAi

knockdown of GSTpi has been shown to sensitize dopaminergic neurons to degeneration

in the MPTP model of Parkinson’s disease (Smeyne et al., 2007).  Similarly, the basal



Gene Class Examples
Autophagy genes TOR, unc-51, bec-1, sir2.1, pqn-5,29,35,54,74,76,78,91,95,abu-2-11  
Oxidative stress transcription factors jnk-1, cep-1,hsf-1
anti-oxidant enzymes superoxide dismutases(sod-1-5), catalses(ctl-1-3) 
glutathione-S-transferases gst-1-44
Glycolysis F14B4.2,C50F4.2,fbp-1,tpi-1,pgk-1
Mitochondrial Biogenesis regulators Daf-16,kin-29,aak-1,aak-2,pmk-1,pmk-3,sir2.1-2,3,cmk-1,unc-43
Peroxiredoxin/peroxidase prdx-2,3,6,mlt-7
Unfolded Protein Response ire-1,xbp-1,tor-1,tor-2
GO-term response to oxidative stress axl-1,bli-3,che-11,ctl-1-3,mlt-7,pmr-1,pxn-1-2,skn-1,smk-1,srd-71-72,sto-1…
Heat-shock proteins hsp-1-70 (~30 genes)
DNA repair ubc-1,smc-3,smc-4lig-1,lig-4,mix-1,mrt-2,msh-6,nth-1,polh-1,polk-1,hpr-9,17

Stress Response Genes

Table 2.1 Stress response genes.  A search for Gene Ontology terms (GO) related to stress response in C. elegans,
and a search for gene classes that are known to be important for stress response yielded a list of 299 genes, many of
which are listed above.  Relative depletion of genes in this list was used as a way of determining vulnerability to
stress in GABA neurons.
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Figure 2.2 Comparison of stress-response gene expression between GABA and Pan-neural datasets.
Embryonic GABA neuron array was compared to embryonic pan-neural dataset, to determine genes that were
up/down-regulated in GABA neurons versus all neurons.  These genes were then compared to a list of stress-
response genes (Table 2.1), to determine differential expression of these genes in GABA neurons. Many genes
for GSTs, highlighted in red, were relatively reduced in GABA neurons.
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reduction of GSTs in GABA neurons may weaken defenses against mitochondrial stress,

causing selective loss of these neurons in HD and SCA.

Additional phenotypic characterization of alr-1 mutants

Axon outgrowth defects in VD-class GABA neurons

As mentioned, previous work in the lab had shown that alr-1 mutants display

defects in axon outgrowth of the embryonically-derived DD subclass of GABA neurons.

To follow up on this we first repeated the experiment labeling GABA neurons with

C04G2.1::GFP to show that the axonal outgrowth effect was not an artifact of the unc-

25::GFP transgene.   We saw the same axon outgrowth defect in DD neurons with this

reporter.  Furthermore, because C04G2.1::GFP is not integrated, we took advantage of

mosaicism in the strain to analyze the post-embryonically derived VD neurons for the

defect.  Because VD and DD neuronal processed overlap, it is currently impossible to

separate these processes in an integrated strain.  We found animals in which

C04G2.1::GFP expression in some DD neurons was off, so that the VD neuron processes

in that region could be viewed.  As seen in Figure 2.4d, the axon outgrowth defect was

also found in VD neurons, indicating that alr-1 is important for the development of both

embryonic and larval-born GABA neurons.

Thrashing

The effect of alr-1 mutation on outgrowth of DD GABA axons was ~40%

penetrant.  Because only a portion of GABA neurons was affected, we could not predict



Figure 2.3 Aristaless/ARX/ALR-1 functions in GABA neuron development in
mammals and in C. elegans.  (a-g) Mammalian ARX phenotypes. (a) lissencephaly in
a child with ARX mutation, (a) and (g) from Shambhu et al., 2005. (b-f) ARX mutant
mice (right) compared to wildtype littermates (left) reveal smaller-sized brains (b),
testes (c), and seminiferous tubules (d), and decreased proliferation in the ventricular
zone at E14.5, from Kitamura et al., 2002.  (g) Mutations in ARX that have been linked
to mental retardation or seizure disorders in humans.  (h) DD GABA neurons in alr-1
mutant worms display axon guidance defects, from Barlow et al., unpublished.
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alr-1;fkh-10  L4 worms show thrashing defects
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Figure 2.4 Further phenotypic  studies of alr-1 mutants    (A-B) alr-1
reproductive defects: alr-1 hermaphrodites produce smaller broodsizes (A) and
alr-1 males display a lower percentage of tracking/mating behavior (B).  (C)
Slight movement defect is detectable in alr-1 adults by thrashing assay. (D)
Mosaic analysis of alr-1;C04G2.1::GFP reveals defects in axons of VD
neurons.  Arrowhead points to break in the VD axon.  Arrows indicate VD cell
somas
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whether the alr-1 mutation would affect normal movement.  Forward and backward

movement appeared normal in these animals, and they did not display the ‘shrinker’

phenotype normally associated with GABA neuron ablation.  To determine whether

subtle defects were present, we tested alr-1(oy42) mutants in a thrashing assay, and

measured a slight, but statistically significant, decrease in thrashing in these mutants

(figure 2.4c).

Aristaless mutants display reproductive defects

Like mouse and human ARX mutants, aristaless mutants in C. elegans expressed

reproductive deficits.  alr-1 mutant hermaphrodites laid fewer eggs than wildtype

counterparts (Fig 2.4a).  We also noticed that alr-1 male animals did not produce progeny

in genetic crosses.  Male worms undergo a series of specific behavioral steps in order to

mate with hermaphrodites.  One of these behaviors involves the male’s tail tracking along

the hermaphrodite body to locate the vulva (Liu and Sternberg, 1995).  We found that

wildtype males placed with hermaphrodites perform this behavior 95% of the time, if

contact is made with the hermaphrodite.  alr-1 mutant males, however, showed a ~66%

decrease in tracking behavior when contacting hermaphrodites (fig2.4b), which may

explain their inability to mate.   Though the nematode reproductive system differs greatly

from that of mammals, the effects of alr-1 mutation on reproduction may provide clues to

its function in the mammalian reproductive system.



N2 C04G2.1::GFP Alr-1;C04G2.1::GFP

C

Figure 2.5 Strategy 1 to identify targets of the alr-1 transcription factor
(A-B) GABA neurons in culture (A) C04G2.1::GFP and (B) alr-
1;C04G2.1::GFP-expressing GABA neurons cultured for 72 hours  (C)
FACS sorting of GFP-positive cells cultured from wildtype (N2-background),
C04G2.1::GFP, or alr-1;C04G2.1::GFP animals.  (D-E) Post-FACS sort
C04G2.1::GFP expressing GABA neurons DIC (D) and GFP overlay(E),
showing enrichment of GFP-positive cells after sorting
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Figure 2.6 Strategy 2 for identification of alr-1 target genes  (A-B) alr-1;unc-
25::GFP cells in culture before (A) and after (B) sorting to show enrichment of
GFP-positive cells (C-E) Scatter plots of fluorescence intensities of genes from 2
different data points for N2 (C), unc-25::GFP-labeled GABA neurons (D), or alr-
1;unc-25::GFP-labeled GABA neurons (E).  Scaling factors (background) for
each micro-array experiment are listed on the right side.  (F) Venn diagram of
overlap between previously developed GABA enriched dataset with new alr-
1;unc-25::GFP dataset shows some genes in common.
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Search for targets of alr-1 using micro-array profiling

The determination of alr-1 transcriptional targets is central to understanding its

role in GABA neuron development and disease.  To do this, we designed experiments to

sort GABA neurons, labeled with GFP, cultured from wildtype and alr-1 mutant embryos

as described above.  We then attempted to isolate RNA from the sorted cells, amplify and

determine differential gene expression levels using micro-array.

Because the observed phenotype occurs in ventral cord GABA neurons, we first

attempted a culture strategy that utilized the C04G2.1::GFP reporter, which shows

expression only in those neurons.  As shown in figure 2.5, cells from C04G2.1::GFP

embryos can be cultured and have been profiled through FACS, showing that the GFP-

positive population of cells can be sorted from other cells and debris.  We sorted and

isolated RNA from cells of both the C04G2.1::GFP, and alr-1;C04G2.1::GFP lines.

However, we were unable to significantly amplify this RNA for hybridization.

Our second approach used the unc-25::GFP reporter that had previously been

used in the lab to generate the GABA-enriched micro-array list.  We were able to obtain

RNA from three independent background (N2, all cells) and alr-1;unc-25::GFP samples.

However, we were unable to obtain enough wildtype unc-25::GFP RNA samples for

comparison with the mutant cell samples.  Scatter plots in figure 2.6 show reasonable

agreement between the mutant and background samples obtained.  However, the wildtype

unc-25::GFP RNA samples collected consistently gave high scaling factors, and showed

little similarity between samples.  After multiple tries, we were only able to obtain a

single wildtype unc-25::GFP sample with a low scaling factor.  This is not enough to

make the statistical comparisons necessary to predict alr-1 target genes.
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Discussion

The identification of targets of alr-1 remains an incomplete endeavor.  We are not

sure why we were unable to get good RNA from sorted C04G2.1::GFP-labeled neurons.

Based on other projects in the lab that involve profiling rare populations of cells by the

sorting method, it seems that the RNA isolated from such sorts tends to contain a

contaminant that leads to over-estimation of RNA concentration.  C04G2.1::GFP labels

only 6 cells per embryo, and, since it is not integrated, even that is an over-estimation.

The unc-25::GFP line may have worked better for sorting because it is integrated

and labels more cells per worm.  In addition, our previous success with this sorting and

profiling this strain was promising for this project.  However, we still were unable to

obtain a complete GABA profile with this reporter strain, due to high background in the

affymetrix chip data.  Again, we have no good explanation for this.  Both isolation and

amplification protocols were changed prior to beginning this study.  Either change may

have introduced the difficulties faced with this attempt at sorting from this strain.  Also,

working with an amplification protocol that is still under development may have caused

unforeseen issues, though the same version of the kit was supposed to be used

throughout.  Since we are so close to a complete dataset, solutions to these issues could

bring about useful data rather quickly.  If these issues cannot be worked out, one

alternative would be to amplify alr-1;unc-25::GFP RNA by the previous method, and

compare the resulting micro-array profile with the existing, validated GABA dataset.

Bioinformatic studies of the GABA enriched geneset have shown that the GABA

transcriptome of C. elegans contains a high percentage of conserved genes.  Analysis of
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the dataset led us to studies of the alr-1 transcription factor in GABA neuron

development. Scrutiny of the geneset also led to the hypothesis that the relative depletion

of defense genes, especially GSTs, may contribute to the susceptibility of GABA neurons

to degenerative disease.  The use of the model system C. elegans will allow for ready

pursuit of such hypotheses.  The nematode is also ideal for the systematic study of genes

in this list, and may reveal unexpected insights into GABA neuron function.  An example

of such a study is described in the next chapter.
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CHAPTER III

RNAi SCREEN TO IDENTIFY GENES IMPORTANT FOR GABA NEURON
FUNCTION AND MOVEMENT IN C. ELEGANS

Introduction

In chapter II, I described informatic approaches to search for trends in genomic

data.  Such manipulations of large datasets are undertaken with the aim of developing

hypotheses for future research.  For example, we chose the candidate gene aristaless for

follow-up, based on its well-known function in mammalian GABA neuron fate.  In

addition, we used bioinformatic comparison to generate the hypothesis that GABA

neurons may be vulnerable to cell stresses, based on their relative reduction of

glutathione-S-transferase enzymes.  Although choosing noticeable trends in datasets is

useful for generating hypotheses, the interests and expertise of the researcher naturally

bias the genes chosen for further study.  For example, we would not have discovered the

relative depletion of GSTs in GABA neurons had we not been interested in stress-

response genes.  In addition, many genes that are differentially expressed in GABA

neurons have no known function, and thus would not likely be chosen in a candidate

approach.  An unbiased strategy to test genes in these datasets for functional importance

can therefore complement a candidate gene approach.  One advantage to model systems

such as C. elegans, is that entire datasets, such as the GABA-enriched list discussed
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above, can be screened for function using the available RNA interference (RNAi)

technology.

In 1998, Craig Mello and Andrew Fire published their Nobel Prize-winning

discovery in C. elegans that injection of double-stranded RNA specific to a given gene’s

transcript sequence can interfere with the expression of the subsequent protein (Fire et al.,

1998).  Although gene mutation and knockout are powerful tools for understanding the

function of specific genes, only ~25% of the C. elegans genome is associated with

knockouts or mutants to date (Mark Edgley, personal communication).  In contrast, RNAi

constructs have been generated for nearly all of C. elegans genes (Kamath et al., 2001).

Knockdown can now be easily accomplished by feeding worms bacteria, which contain

plasmids encoding double-stranded RNAs specific for a given target gene.  RNAi has the

additional advantage that knockdown may reduce gene levels only partially, and can

therefore be used to study the function of genes whose ablation is lethal.   This can also

be a disadvantage, however, as knockdown of a gene may be insufficient to produce a

phenotype.

Over the past ten years, the RNAi pathway has been studied in depth, and several

discoveries have been made that optimize the potential of this methodology.   For

example, some tissues are more sensitive to RNAi knockdown than others.  Neurons have

been shown to be refractory to RNAi in wildtype C. elegans.  This has been an obstacle

for scientists who wish to use RNAi to study neuronal gene function.  A recent genetic

screen revealed that the eri-1;lin-15B double mutant enhances sensitivity to RNAi, even

in neurons (Kennedy et al., 2004; Wang et al., 2005).  We have exploited this mutant



53

strain to conduct an RNAi screen of 508 of the GABA-enriched genes from the

microarray list discussed in Chapter II.

Materials and Methods

The general strategy for the screen is outlined in Fig 3.1a. The unc-25 gene is the

ortholog of mammalian glutamate decarboxylase (GAD) (Jin et al., 1999).  GAD is

required for synthesis of GABA, and thus expression of GFP under the control of the

unc-25 promoter specifically marks GABA neurons.  We crossed unc-25::GFP into the

eri-1;lin-15B RNAi-hyper-sensitive background.  We then fed unc-25::GFP;eri-1;lin-

15B worms with bacteria expressing dsRNA for 508 genes that had previously been

shown by micro-array to be enriched in GABA neurons (chapter II).  RNAi assays were

performed by feeding as previously described (Fire et al., 1998; Timmons and Fire,

1998), using clones from the Ahringer library (Fraser et al., 2000; Kamath et al., 2003).

After 5 days of feeding, we scored worms for movement phenotypes by tapping on the

head and tail and observing the resultant forward and backward movement.  Putative

phenotypes were verified by at least 2 independent researchers.  Gene identity was

always unknown to the experimenter.  unc-25::GFP fluorescence was then observed

through a compound microscope to detect any effects of RNAi treatment on GABA

neuron morphology.



Figure 3.1 RNAi strategy to identify genes important for GABA neuron function
and movement in C. elegans.  (a) Strategy for RNAi screen (b) Suppression of unc-
25::GFP by unc-30 RNAi images show cleargaps in unc-25::GFP labeled neurons.
Graph shows quantification in 18 worms of %unc-25::GFP neurons in which GFP was
observed to be normal, dimmed, or off in response to unc-30 RNAi  (c) Unc phenotype
of vab-8 knockdown animals validates sensitivity of neurons to RNAi in the eri-1;lin-
15B strain.  * indicates point of touch, and animal’s position at 1, 2, and 3 seconds is
shown.
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Results

RNAi screen detects novel genes required in neurons for locomotion

Mutation of unc-30, the pitx-2 transcription factor ortholog (Westmoreland et al.,

2001), which controls unc-25 expression, causes both an uncoordinated phenotype and a

reduction in unc-25::GFP expression (Eastman et al., 1999).  RNAi of unc-30 in

wildtype animals does not produce a phenotype, presumably due to neuronal resistance to

RNAi.  However, we observed both an Unc phenotype and loss of unc-25::GFP

expression with knockdown of unc-30  in the unc-25::GFP;eri-1;lin-15B  animal (Fig

3.1b).  This result validates the neuronal sensitivity of the screen, and unc-30 was

subsequently used as our positive control.  Like unc-30, genes such as vab-8 (Manser and

Wood, 1990) and unc-11 (Brenner, 1974; Hosono and Kamiya, 1991) had not previously

displayed movement phenotypes by RNAi, but knockout of these genes results in an Unc

phenotype.  Furthermore, the function of these genes specifically in neurons is important

for the Unc phenotype in both cases.  Knockdown of vab-8 and unc-11 also produced

movement defects in our screen (fig3.1c), further confirming the increased sensitivity to

RNAi in neurons.

We also validated the screen by calculating the percent detection of certain known

RNAi phenotypes among our dataset.  We identified 81% of genes that had previously

been shown to have movement phenotypes by RNAi.  We also identified 87% of genes

whose knockdown produces sterile or lethal phenotypes.  This allows us to estimate the

sensitivity of our screen at ~80-87%.

We detected ~30 genes whose knockdown resulted in various movement

phenotypes (Table 3.1).  We tested 28 of these genes for quantifiable movement deficits



Gene Predicted Function Observed RNAi Phenotype
Receptor Trafficking
unc-11 Clathrin Adaptor Protein unc
aps-2 Clathrin Adaptor Protein unc
apt-10 Regulator of clathrin adaptor complexes unc
F57B10.5 Membrane trafficking protein slow
odr-4 7TM receptor localizing protein fwd unc

unc-108 Small G protein fainter/fwd unc
C26F1.7 Protein Kinase C Inhibitor-like ~slo
lin-18 Rik/Derailed family of RPTKs poss axon gdnce
tyra-3 tyramine receptor poss axon gdnce
C56A3.6 EF Hand Ca2+ binding protein unc/slogro~sick)

T03F1.3 Phosphoglycerete Kinase 1 Ortholog slow
coq-1 CoQ Synthesis unc-cell death
gpd-2 GAPDH unc/slo/inc defasciculation
dhs-17 short chain dehydrogenase/reductase slo/slogro
M01F1.7 Phosphatodylinositol transfer protein fwd slo
ubc-20 Ubiquitin protein ligase long/pale
M04B2.4 Possible Oxidoreductase unc/lpy

F23C8.5 Electron Transfer Flavoprotein β Subunit unc/slo
F43E2.7 Mitochondrial carrier protein ex amp/ste

F10E7.9 Na+/K+ Symporter goofy/lpy mvmt
vha-14 Vacuolar proton-translocating ATPase long/ex amp/fig 8/hyper
C53B4.6 UDP-N-acetylglucosamine transporter ~slo

F25H9.6 Halotolerance protein HAL3 ~sick/examp/spdy/some unc
C56C10.11 DnaJ Family Molecular Chaperone unc
vab-8 Cell migration/axon pathfinding lpy/coiler
F43D2.1 None slogro/long/snaky/examp/ste
C14A11.6 None poss cell fate
F46B6.2 None ~slo/ste/sick/fwd unc
T22F7.4 None slo(2XNP)
W03F9.2 None ~sick/examp/spdy/pvul
R10H10.4 None fwd unc/jerky
C35D10.1 None sick/fwd unc/let
R10E4.1 None fwd slo
T04A8.13 None unc
K02B12.5 None ~slo
R05D7.3 None bk unc

Mitochondrial

Transporters

Other

Table 3.1 Results of RNAi Screen

Signaling

Metabolism
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Figure 3.2 Quantification of movement defects for RNAi Hits. Movement defects discovered in the
RNAi screen were quantified by thrashing assay. Bars represent avg +/- S.E.M., * P < 0.05, Students T test,
n=10.
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by a thrashing assay (Miller et al., 1996), of which 11 showed statistically significant

(P<.05, Student’s T) changes in thrashing (fig 3.2).  One explanation for why the other 17

hits were not measurably altered in the thrashing assay is that RNAi shows variable

penetrance.  Knockdown sufficient to affect a high percentage of animals on the plate

may not have been achieved for these genes, though deficits in some small portion might

have been readily apparent.  Additionally, not all movement abnormalities on the plate

may translate to swimming deficiencies.

Due to the presence of cross-contamination in the RNAi library, it was necessary

to sequence clones of all hits, to be sure that phenotypes produced were the result of

treatment with the expected dsRNA-expressing bacteria.  Although the identity of most

hits were confirmed in this process, we discovered that the gene that produced the most

severe Unc phenotype was not the expected clone, C32F10.8, but a contaminating

colony.  The actual clone producing the phenotype in this case was specific to the coq-1

gene.  Whereas coq-1 was not among the enriched genes in the GABA microarray list,

we decided to follow up on it anyway, as it produced such a prominent phenotype.  The

ensuing experiments are discussed in chapter IV.

RNAi hits were divided into categories, depending on their known function, or the

function of putative orthologs.  A brief discussion of the importance of selected

categories is followed by descriptions of specific hits.  Some of these may be interesting

candidate genes for future studies.
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Trafficking/endocytosis/exocytosis genes

The expression and clustering of specific receptors is necessary for synapse

function.  Endocytosis and exocytosis are necessary both at the presynapse for vescicle

release and at post-synaptic sites for receptor internalization and sorting as part of the

adaptive responses to neurotransmitter signaling (Kandel and Schwartz, 2000).

Disruption of any of these processes could affect motor circuit function.  Therefore, it is

not surprising that RNAi for genes involved in endo/exocytosis and receptor trafficking

resulted in Unc phenotypes in this screen.

Adaptin complex proteins

Adaptins mediate the formation of clathrin-coated vesicles at cellular membrane

and contribute to sorting of vesicles once separated from the membrane surface (fig3.3b)

(Ross et al., 1995). This process contributes to synaptic vesicle function, receptor

trafficking, and vesicle budding from organelles, such as the golgi apparatus.  Adaptin

proteins combine to form adaptor protein (AP) complexes, which target specific

membrane proteins, and assemble the machinery necessary for vesicle formation

(fig3.3b).  There are 4 such complexes in mammals (AP-1 through AP-4).  AP-2 is

involved in rapid endocytosis at the plasma membrane (Boehm and Bonifacino, 2001).

One of the genes that produced an Unc phenotype in our screen was aps-2, the C. elegans

ortholog of the adaptinσ2 component of AP-2.  aps-2 was recently identified in an RNAi

screen in the eri-1;lin-15B background for genes that confer resistance to aldicarb,

indicating that knockdown of aps-2 results in decreased ACh release or decreased



Figure 3.3: Adaptins in movement and neuronal function (a) Uncoordinated
movement in C. elegans treated with RNAi to adaptin AP-2 complex member
aps-2/AP-2σ or adaptin complex AP-1 and AP-2 regulator apt-10/Stonin. *
indicates point of touch, and animal’s position at 1, 2, and 3 seconds is shown.
(b) Diagram of adaptin complex function in vesicle endocytosis, adapted from
Ross et al, 1995.

a

b
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response to ACh (Sieburth et al., 2005).  This validates a role for this gene in neuronal

communication in C. elegans.

A closely–related family of proteins, known as stonins, act as regulators of AP

complexes.  A member of this family, apt-10, was also found to display an Unc

phenotype by RNAi.  C. elegans apt-10 shares 41% homology with mammalian stonin 2

and 45% homology with drosophila stoned B.  Both stoned B and stonin 2 have been

shown to be important at presynaptic sites for recycling and sorting of the synaptic

vesicle fusion protein synaptotagmin.  Stonins do this through their interaction with and

regulation of the AP-2 complex. (Fergestad et al., 1999; Walther et al., 2004; Diril et al.,

2006). Both apt-10 and aps-2 are expressed throughout the nervous system in C. elegans.

Therefore, the Unc phenotype produced by RNAi of these genes may be due to defects in

many neuronal subtypes.

Metabolic and Mitochondrial genes

Nine genes important for metabolic and mitochondrial function were found by

this screen to produce movement phenotypes.  Genes in this category are interesting

because, whereas null alleles of such vital genes are likely lethal, knockdown may not be.

As emphasized in chapter I, metabolic genes are precious to neurons, because of their

unique energy needs.  Therefore, it is not surprising that such genes were found to have

roles in movement.
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T03F1.3/Phosphoglycerate Kinase-1

T03F1.3 encodes a gene that shares 69% identity with human phosphoglycerate

kinase-1 (pgk-1) (fig3.4d).  PGK-1 catalyzes the transfer of phosphate from 1,2-

diphosphoglycerate to ADP, yielding ATP and 3-phosphoglycerate as part of glycolysis

(fig3.4a).  Therefore, PGK-1 is important for energy production in all cells.  In addition,

PGK-1 has been shown to be associated with synaptic vesicles in glutamatergic neurons,

where the ATP that it produces is necessary for the uptake of transmitter into the vesicle

(Ikemoto et al., 2003)(fig 3.4b).  This finding suggests an additional, neuron-specific, role

for PGK-1.  Whereas null alleles of such an important metabolic gene are likely lethal,

several alleles of PGK that reduce its function have been identified in humans.  The three

major manifestations of PGK deficiency are myopathy, anemia, and brain disorders,

specifically seizure and mental retardation syndromes (Tsujino et al., 1995).  Because the

improper development of GABA neurons in the brain has long been associated with

mental retardation and seizures, the development of such conditions in PGK deficiency

may signify an important role for PGK in the development, function, or survival of

GABA neurons in humans.

Studies in drosophila have discovered a temperature sensitive pgk-1 mutation that

causes inducible seizures at the restrictive temperature.  Subsequent experiments have

shown that reducing PGK-1 activity results in reduced resting membrane potentials and

decreased endocytosis in the fly brain.  The authors hypothesized that GABA neurons

have a higher need for glycolytic ATP for vesicle endocytosis, as GABA neurons have

smaller vesicle cycling pools.   They believe that that pgk-1 mutation produces seizures

because of this preferential affect on GABA neurons (Wang et al., 2004).  This work



a

b

c

* ***

pgk-1 0s 1s 2s 3s

d

Figure 3.4: Phosphoglycerete kinase-1 (pgk-1)  (a-b) pgk-1’s role in glycolysis and
ATP production (a), adapted from http://fig.cox.miami.edu/~cmallery/ and vescicular
neurotransmitter loading (b), adapted from Ikemoto et al, 2003.  (c) alignment of C.
elegans PGK-1 with human reveals 69% identity.  (d) movement defects in worms fed
RNAi for pgk-1. * indicates point of touch, and animal’s position at 1, 2, and 3
seconds is shown.
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demonstrates not only a highly conserved neuronal function for PGK-1, but also suggests

a critical role in GABA neurons.

Consistent with an important and conserved role for PGK-1 in GABA neurons,

this transcript was 2.5-fold enriched in our C. elegans GABA microarray dataset.

Movement of animals treated with RNAi for PGK-1 was slow, especially backward

movement (fig3.4c).  The knockdown of PGK in C. elegans, like the ts allele in

drosophila, could be used to better understand the molecular function of this gene in

neurons, and may be an excellent model for the developmental abnormalities in the

human PGK-1 deficient brain.

Unclassified Genes

~30% of the hits from the screen were genes whose functions have not been

studied in C. elegans.  Some of these genes are homologous with disease-relevant genes

in humans, including some of the degenerative diseases previously discussed.   The

phenotypes produced by RNAi knockdown of these genes may make them useful tools

for studying the molecular mechanisms of their involvement in disease.

C56C10.11/DNAJ

Knockdown of C56C10.11 produced one of the most severe and highly penetrant

Unc phenotypes of all genes screened (Fig 3.2b).  This gene encodes a protein with

similarity to the DNAJ/HSP40 class of chaperone proteins, which are preferentially

expressed in neurons (Cheetham et al., 1992).  DnaJ family proteins recognize and bind

misfolded proteins.  Interestingly, DNAJ is mis-expressed in the degenerating neurons of
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the wobbler mouse (Boillee et al., 2002), and over-expression of DNAJ family members

has been shown to protect against degeneration in drosophila models of polyglutamine

toxicity (Fayazi et al., 2006), in a cell culture model of huntingtin-induced degeneration

(Chuang et al., 2002) and in cell culture and mouse models of SCA1 (Cummings et al.,

1998).  This emphasizes a possible role for DNAJ in the protein folding checkpoint for

cell survival discussed in chapter I.

C56C10.11 was ~2.5 fold up-regulated in the GABA neuron microarray profile,

indicating a possible role for this chaperone in C. elegans GABA neurons.  Because of

the severity of its RNAi phenotype, we studied the morphology of GABAergic,

cholinergic, and dopaminergic neurons and muscle in C56C10.11 knockdown animals

throughout the life-cycle.  Whereas animals were severely uncoordinated (Fig 3.5a), we

observed no major morphological disturbances in any of these tissues.  Only a subtle

difference in the placement of the ADE dopaminergic neuron cell bodies was detected.

Measurement of the distance between the ADE neuronal cell bodies and the RME head

neurons showed a statistically significant increase in this distance in C56C10.11

knockdown animals (fig 3.5b-c).  Dopamine is known to be important for normal

movement in the worm, as application of Dopamine to worms causes a flaccid paralysis

similar to that produced by treatment with the GABA agonist muscimol (Schafer and

Kenyon, 1995; McDonald et al., 2006).  While ADE neurons are important for

movement, these studies do not resolve whether this slight difference in ADE placement

is the root of the Unc phenotype associated with C56C10.11 knockdown, nor whether it

is symptomatic of some greater defect in the development of dopaminergic neurons or

other tissue types.  These are interesting questions for future studies.
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Figure 3.5  C56C10.11/DNAJ in movement and dopaminergic
neuron fate.  (a) RNAi knockdown of C56C10.11 causes severe Unc
phenotype.  (b) Position of ADE dopaminergic neuron in reference to
RME GABAergic neuron in control and C56C10.11 knockdown
animals.  (c) Quantification of ADE to RME distance.  Bars represent
average +/- std dev, *P < 0.01, Student’s T test, n=16.
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R10E4.1/kelch-like protein

Knockdown of R10E4.1 produced an Unc phenotype that was characterized as

‘forward slow’ in our screen.  This phenotype was highly reproducible, appearing in three

independent trials.  RNAi of this gene also produced a statistically significant decrease in

thrashing (fig 3.2b).  This phenotype is presumably neuronal in nature, as it has not

previously been identified by RNAi studies in the wildtype background.  R10E4.1 is

predicted to encode a kelch-like protein, a member of a family of proteins defined by

repeats of ‘kelch’ motifs, named for their founding member in drosphila.  Expanded

gultamine repeats in a non-coding RNA for a kelch-like gene, klhl1, are responsible for

Spinocerebellar ataxia type 8 (Nemes et al., 2000).  Mouse knockouts of the klhl1 locus

either in all tissues or specifically in Purkinje cells produces a nearly identical phenotype:

progressive ataxia with Purkinje cell dysfunction without cell loss (Friocourt et al., 2006).

These studies have shown that the non-coding klhll1 RNA is important for normal PC

function, leading to the hypothesis that CTG expansion in this RNA may cause decreases

in KLHL1 expression, resulting in the disease state.  RNAi knockdown of R10E4.1 in C.

elegans may act similarly to the klhl1 antisense RNA in mammals, to produce GABA

neuronal dysfunction.  Studies of this phenomenon in the worm may shed light on the

molecular function of both the KLHL protein and the non-coding RNA in humans.

R05D7.3/KIAA1319

R05D7.3 encodes a putative protein of unknown function, which is worth

mentioning, as knockdown of this gene was the only one in the screen to produce an

exclusively backward Unc phenotype (Fig 3.6a).  Because the ablation of GABA neurons
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Figure 3.6: R05D7.3/KIAA1319. (a) Backward Unc
phenotype of R05D7.3 knockdown worms.  (b) Model for
sonic hedgehog signaling in normal cerebellar development.
Aberrant Shh signaling results in Medulloblastoma, the
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is associated with loss of backward, but not forward locomotion, the backward Unc

phenotype potentially indicates a specific role for this gene in GABAergic function.

R05D7.3 is homologous with a gene known only as KIAA1913 in mammals.  This gene

is of interest, as its expression has been shown to be commonly down-regulated in

primary medulloblastomas (Hui et al., 2005).  Medulloblastomas are the most common

childhood brain tumor, and arise in the cerebellum due to abnormal signaling between

Purkinje cells and granular cells.  Normally, Purkinje cells secrete sonic hedgehog (Shh),

which signals to granular precursors in the external granular layer to proliferate and

migrate to the internal germinal layer, where these precursors differentiate into terminal

granular cells (Wallace, 1999; Wechsler-Reya and Scott, 1999; Lewis et al.,

2004)(fig3.6b).  Aberrant Shh signals lead to transformation of these granular cells, and

results in tumorogenesis (Grimmer and Weiss, 2006).  Whether the down-regulation of

KIAA1913 is cause or result of tumor formation is unknown.  It is also unknown whether

the Shh signal that affects tumorigenesis also modulates KIAA1913 expression.  C.

elegans could be used to study the effects of mutants of conserved hedgehog pathway

components on R05D7.3-mediated movement defects.  Furthermore, because nothing is

known of the function of KIAA1913, its worm ortholog may be useful for understanding

its role in normal GABA neuron function.  These studies could provide insight into the

molecular role of KIAA1913 in cerebellar development and tumor formation.

Discussion

RNAi screens can complement bioinformatics in the generation of hypotheses

from large datasets obtained by genomic approaches.  This RNAi screen has provided



70

several avenues for hypothesis-driven research.  However, there are potential caveats to

pursuing any of these hits.  For example, although sequencing confirmed the intended

target of each RNAi construct, dsRNAs may have unintended effects on off-target genes.

Therefore, careful follow-up to rule out off-target effects is necessary when studying

gene function using RNAi.  Such follow-up might include rescue by over-expressing the

candidate gene, particularly an allele that is resistant to the RNAi construct.  In addition,

we can request that mutants be isolated by the C. elegans consortia to validate the RNAi

results.

Several genes produced movement phenotypes when knocked down, and are

interesting candidates for future research.  Some genes, like pgk-1 and R05D7.3 are

appealing because their putative orthologs have known roles in disease.  The

conservation of gene function will be a critical first step in choosing genes to examine

further.  If expression of proposed mammalian orthologs rescues the Unc phenotypes

associated with RNAi, these candidates may be studied as models for human disease.

Such studies might include genetic screens to discover additional pathway components.

This type of study is readily performed in the worm, and candidates can then be tested in

more complex organisms for relevance to the disease process.  RNAi screening in

cultured mammalian neurons has recently become feasible (Paradis et al., 2007).

Knockdown of the mammalian orthologs of these hits in neurons may also be a useful

strategy to study conservation of function.

As mentioned, few hits in the screen produced a purely backward Unc phenotype,

indicating probable effects in other neurons or muscle.  One drawback of this screen is

that movement phenotypes found cannot be directly attributed to the gene’s function
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specifically in GABA neurons.  Although roles in GABA neurons are hypothesized

above, additional studies with each gene are needed to determine in which cells these

genes actually function to affect movement.  Such questions can be answered using

neuron subtype-specific promoters to drive expression of rescue constructs.
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CHAPTER IV

THE COENZYME Q SYNTHESIS GENE COQ-1 PROTECTS C. ELEGANS GABA
NEURONS FROM CALCIUM-DEPENDENT APOPTOSIS

Introduction

Coenzyme Q (CoQ) transfers electrons from complexes I and II to complex III in

mitochondrial electron transport (Crane et al., 1957).  Human CoQ deficiency is a rare

genetic disease, caused by mutation in one of the CoQ synthetic enzymes (COQ1-10),

and results in cerebellar ataxia with atrophy (Musumeci et al., 2001; Lamperti et al.,

2003; Artuch et al., 2006) and/or myopathy (Ogasahara et al., 1989; Lalani et al., 2005;

Horvath et al., 2006).   Cerebellar ataxia can also arise from other genetic causes,

including mutations in genes important for protein folding, calcium homeostasis,

mitochondrial function and apoptosis (Duenas et al., 2006).  Hallmarks of this disease

include the age-dependent dysfunction and/or loss of the GABAergic cerebellar Purkinje

cells (PCs), as well as degeneration in other brain regions and muscle.  The occurrence of

cerebellar ataxia and myopathy in CoQ deficiency provides evidence that cells with high

metabolic needs, such as neurons and muscle, are especially sensitive to the reduction of

CoQ.  Furthermore, the symptoms associated with CoQ deficiency reveal that some brain

regions and neuronal subtypes are selectively sensitive to metabolic compromise.

Because of its short life span, anatomic simplicity and genetic tractability, the

nematode C. elegans is a useful model for studying phenomena associated with aging.
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We used RNA interference (RNAi) to knock down the first gene in the CoQ synthesis

pathway, coq-1, in order to mimic CoQ deficiency.  We observed that reduction of coq-1

levels in C. elegans results in an age-dependent loss of motor coordination that is

correlated with progressive degeneration of GABA neurons.  Exogenous CoQ10 rescues

neurodegeneration.  CoQ deficiency-associated GABA neuron death is executed through

an apoptotic program, and depends on Ca2+ release from ER stores. This model of CoQ

deficiency in nematodes may be useful for delineating the mechanism of GABA neuron

degeneration in CoQ deficient humans and in related neurodegenerative diseases.

Materials and Methods

Strains and Maintenance.  C. elegans strains were maintained at 20o C according to

standard methods (Brenner, 1974).  glr-1(n2461), crt-1(bz30), eat-4(ky-5), coq-1(VC479),

ced-3(n717), and ced-4(n1162) strains were obtained from the Caenorhabditis Genetics

Center (University of Minnesota, Minneapolis).  All GFP-reporters were crossed into the

RNAi-hypersensitive strain eri-1(mg366);lin-15B(n744).  GFP reporter strains were dat-

1::GFP(pRN2003), tph-1::GFP(GR1366), eat-4::GFP(adIs1240), acr-2::GFP(CZ631),

and myo-3::myo-3-GFP(stEx30), unc-25::GFP(juIs76).

RNAi.  RNAi assays were performed by feeding (Fire et al., 1998; Timmons and Fire,

1998), using clones from the Ahringer library (Fraser et al., 2000; Kamath et al., 2003).

Briefly, 3mL LB/ampicillin (50µg/mL) was inoculated with 30µL overnight culture.

Culture was grown in a 37°C shaker incubator to OD600 ~0.800, then diluted to 6mL
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with LB/amp + IPTG (40mM final concentration) and incubated at 37°C for another 4

hours.  Bacteria were pelleted, brought up in 250µl M9/IPTG, and spread onto NGM

plates.  L4 larvae were added to plates and incubated at 20°C for 5 days before scoring

progeny.  Cultures for Co-RNAi experiments (i.e. coq-1 + cep-1 and coq-1 + drp-1) were

grown separately, and then mixed just prior to plating.

Degeneration Assay. Animals were anesthetized in a drop of 0.1% tricaine/tetramisole

on 2% agar pads (McCarter et al., 1997).  The number of either axon intervals or

commissures showing signs of degeneration was counted and divided by the total number

of visible intervals or commissures (the number of visible processes varies slightly

depending on the position of a given animal) to yield the percent degeneration. Scoring

was done at 63X magnification. The experimenter was blinded to experimental versus

control samples to avoid bias. Neighboring cholinergic neurons acr-2::GFP;eri-1;lin-

15B animals were quantified in the same manner, and no significant degeneration was

scored for these neurons (data not shown).   Additional neuronal classes were studied, but

no differences between control and knockdown animals were observed in these neurons.

Microscopy. Animals were visualized by Differential Interference Contrast (DIC) and

epifluorescence microscopy using a Zeiss Axioplan compound microscope or a Zeiss

LSM 510 confocal microscope.  Images in the Zeiss Axioplan were recorded with CCD

cameras (ORCA I, ORCA ER, Hamamatsu Corporation, Bridgewater, NJ). Confocal

optical slices (40X) were 1µm. For GFP knockdown in reporter strains, quantification of
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fluorescence in Z series of confocal optically sectioned images was done using histogram

analysis in ImageJ (Rasband, 1997-2007).

Plasmid Construction.  pC04G2.1::EGL-36 was made by PCR of the C04G2.1

promoter, using the primers pC04G21_3-5’atgattttttgttttaac and pC04G21_5-

5’attattatttctatcggct.  PCR product was ligated backward into TOPO® TA pcr2.1 vector

(Invitrogen).   pmyo-3::egl-36(gf) and (lf) plasmids were a kind gift from Michael Nonet.

egl-36 was cut from these plasmids using BamHI/ApaI sites, and ligated into pSL1180

with the C04G2.1 promoter (cut w/NotI/XbaI).

Transgenic Strains.  Transgenic animals were obtained by injecting 25-75ng/µl of

plasmid and [dpy-20(pMH86)] into unc-25::GFP;eri-1;dpy-20;lin-15B animals using

standard techniques (Mello and Fire, 1995).

Results

Knockdown of coq-1 results in age-dependent loss of coordinated movement

COQ-1 catalyzes the first step in CoQ synthesis, the assembly of the lipophillic

polyisoprenoid tail (Tran and Clarke, 2007).  RNAi knockdown of coq-1 is reported to

induce uncoordinated (Unc) and Egg-laying defective (Egl) phenotypes, but the

mechanism of these effects has not been studied (Simmer et al., 2003).  We replicated

this experiment, using the RNAi “feeding” method to expose an RNAi hyper-sensitive

strain (Wang et al., 2005) to bacteria expressing coq-1 double-stranded RNA (dsRNA).

When treated with RNAi to coq-1, animals in the first three larval stages showed no



0

20

40

60

80

100

120

140

160

L1 L2 L3 L4 Adult

Developmental Stage

#
th

ra
sh

e
s/

m
in

control
coq-1 RNAi

L3 L4 Adult

a

**

**

b

Figure 4.1 RNAi knockdown of C. elegans coq-1 results in
progressive loss of motor coordination.  (a) Abnormalities in
normal sinusoidal movement in L4 larvae and adults treated with
RNAi to coq-1.  (b) thrashing assay quantifying movement defects
(Avg +/-s.d., **P<0.005, n=10)

76



77

apparent defects.  A loss of motor coordination first appeared at the L4 larval stage as a

kink in the normal sinusoidal wave that drives locomotion.  Movement then gradually

declined in adults, often culminating in paralysis (Fig 4.1a).  Quantification of movement

loss with a thrashing assay (Miller et al., 1996) verified the developmental progression of

the Unc phenotype (Fig 4.1b).

RNAi or genetic depletion of CoQ induces age-dependent degeneration of GABA
neurons

Observation of GABA motor neurons in the ventral nerve cord, labeled with the

unc-25::GFP reporter, suggested a possible explanation for the loss in motor

coordination. These neurons degenerate in coq-1 knockdown animals, and cell bodies,

viewed under DIC, demonstrated the raised “button-like” morphology characteristic of

apoptotic cell death (Fig 4.2d).  GABAergic axons in the ventral nerve cord, as well as

circumferential commissures and dorsal cord processes appear discontinuous with

apparent breaks (Fig 4.2b-c). These morphological defects first appeared in late larval

development and progressed as animals aged (fig 4.2e-f) thereby mirroring the age-

dependent pattern of the Unc phenotype.

We also tested RNAi clones for coq-3, 4, 5, 7, and 8 to determine whether

knockdown of other CoQ synthetic pathway genes phenocopies coq-1.  Animals treated

with dsRNA specific to coq-8 develop both the Unc and degenerative defects. Although

penetrance is low (~10%), this phenotype is indistinguishable from that coq-1 RNAi-

treated animals.  RNAi of other CoQ pathway genes produced no visible effects.  This

finding may be explained by earlier results showing that RNAi of coq-1 reduces CoQ
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Figure 4.2 coq-1 knockdown causes age-dependent, tissue-specific degeneration,
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Dose-response curve showing rescue of neurodegeneration with exogenous CoQ10
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levels to a greater extent than does RNAi knockdown of other CoQ pathway genes

(Asencio et al., 2003).  The similar phenotypes displayed by RNAi of coq-8 and coq-1

substantiate the idea that the movement and degenerative defects result from loss of CoQ

synthesis, rather than off-target effects or additional roles of these coq-1 pathway

enzymes.

We also validated our RNAi results by examining coq-1(ok749) mutant animals.

The ok749 allele is a deletion that removes the C-terminal region comprising

approximately 70% of the coding sequence.  Homozygous coq-1(ok749) progeny of

heterozygous adults are viable but produce dead embryos. This finding indicates that the

coq-1(ok749) mutation results in a maternal effect lethal phenotype in which the first

generation of viable offspring progress through larval development with maternally

provided CoQ.   These homozygous coq-1 mutants appear  Unc at the L3 larval stage.

Degeneration of GABA neurons is not seen until the adult stage (Fig 4.3a-c) and appears

to affect GABA neurons preferentially, although neighboring cholinergic neurons were

also missing on rare occasions. The similar degenerative pattern and age dependence

shown by the coq-1 knockout animal validated the specificity of the coq-1 RNAi

treatment.  Prior studies of the coq-1(ok749) mutant reported paralysis and early larval

lethality associated with destruction of vital tissues, such as pharynx and intestine

(Gavilan et al., 2005).  Although coq-1(ok749) animals were slow-growing, we did not

observe early larval arrest and vital tissues were intact  (Fig 4.3d)

Treatment with exogenous CoQ10 has successfully slowed disease progression of

some cases of human CoQ deficiency (Salviati et al., 2005; Quinzii et al., 2006). To

verify that CoQ deficiency was the cause of the uncoordinated phenotype in C. elegans,



Figure 4.3 Analysis of coq-1 knockout animals.  (a-c) DIC and
unc-25::GFP labeled GABA neurons in homozygous coq-1 mutant
at the L3 (a) and adult (b-c) stages, showing degeneration of VNC
GABA neurons (b) and RME GABA neuron (c) in adult animals (d)
DIC images of gut and pharynx of coq-1 adult mutant verifying
general health of animal.
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we incubated coq-1 RNAi treated animals with different concentrations of CoQ10. We

found that supplemental Coenzyme Q10 rescued degeneration in a dose-dependent

manner, with an EC50 of 72 µg/mL (Fig 4.2h).  A requirement for high CoQ doses for

efficacy has also been observed in human patients, and may reflect poor uptake of the

drug by neurons (Ibrahim et al., 2000).

coq-1-dependent degeneration is specific to GABA neurons

Having observed that CoQ deficiency results in GABA neuron degeneration in C.

elegans, we next utilized GFP reporters for other neuronal subtypes to evaluate their

sensitivity to coq-1 knockdown.  Neuronal populations tested were, cholinergic (acr-

2::GFP), serotonergic (tph-1::GFP), glutamatergic (eat-4::GFP), and dopaminergic (dat-

1::GFP) neurons. Although all animals showed the age-dependent Unc phenotype, none

of these neuron classes showed signs of degeneration comparable to that observed for

GABA neurons (Fig 4.4). We considered the possibility that this differential effect could

be due to the relative insensitivity of these neuron classes to RNAi.   This does not appear

to be the case, however, as all neuronal types were equally vulnerable to RNAi to GFP

(Fig 4.4, graph).

Like neurons, muscle is also a highly metabolic tissue,  and muscle degeneration

is seen in some cases of CoQ deficiency (Lalani et al., 2005). Therefore, we used a GFP-

labeled myosin heavy chain protein (MYO-3::GFP) to examine muscle structure in the

coq-1 knockdown animals.  As seen in figure 4.2g, we detected no morphological

abnormalities in body wall muscle, verifying that the Unc phenotype associated with this
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RNAi construct is not the result of muscle degeneration.  We also examined vulval

muscle, reasoning that defects in these muscles might explain the Egl phenotype.

However, we observed no structural differences between vulval muscles in control versus

RNAi-treated animals (data not shown).

While these results do not preclude the possibility that these neuronal types or

muscle are functionally affected by coq-1 knockdown, the degenerative phenotype was

exclusively observed in GABA neurons. In fact, functional deficits in other neurons or

muscle are likely as the movement defects of mutants in which GABA neurons are

selectively disabled are less severe than the paralyzed adult phenotype that results from

RNAi ablation of coq-1 (McIntire et al., 1993b).

coq-1-mediated degeneration is Ca2+ dependent

Calcium is a key effector of neurodegenerative diseases involving mitochondrial

dysfunction (Mattson, 2007).  Calreticulin (crt-1) is a chaperone protein localized to the

ER lumen where it maintains Ca2+ levels for ready release upon appropriate stimuli

(Ostwald and MacLennan, 1974; Bastianutto et al., 1995; Mery et al., 1996; Corbett et

al., 1999; Mesaeli et al., 1999; Michalak et al., 1999). Reducing ER [Ca2+] by calreticulin

knock-out is anti-apoptotic (Nakamura et al., 2000), whereas calreticulin over-expression

promotes apoptotic cell death in mammalian systems (Arnaudeau et al., 2002).  In C.

elegans, mutants of crt-1 block necrotic degeneration of motor neurons (Xu et al., 2001).

We tested a crt-1 null mutant (bz30) in our paradigm, and found that it prevented the

progressive degeneration of GABA neurons in coq-1 RNAi-treated animals (fig 4.5a).

The calcium chelating agent, EGTA (0.5mM), was similarly protective (fig 4.5a).  Taken



84

together, these results demonstrate that Ca2+ release from the ER is important for coq-1

RNAi-mediated degeneration of GABA neurons.

Mutants of the apoptosis pathway suppress cell death in coq-1 knockdown animals

Ca2+ release from the endoplasmic reticulum can result in necrotic (Driscoll and

Gerstbrein, 2003) or apoptotic (Demaurex and Distelhorst, 2003) cell death. To

distinguish between these possibilities, we tested mutants that block the C. elegans

programmed cell death pathway for effects on GABA neuron degeneration.  Mutants of

ced-4, the worm ortholog of the caspase activator Apaf-1, and of the caspase gene, ced-3,

blocked coq-1-dependent degeneration (fig 4.5a).  These results indicate that loss of coq-

1 activity triggers an apoptotic pathway in GABA neurons.

Whereas mutants that disable the apoptotic machinery blocked degeneration,

mutants of genes important for the necrotic glutamate excitotoxicity pathway (Driscoll

and Gerstbrein, 2003) did not. Mutants of the glr-1 glutamate receptor and the glutamate

vesicular uptake transporter eat-4 did not protect neurons from coq-1 RNAi-induced

death (fig 4.5a).  These results are consistent with the idea that CoQ-deficient GABA

neurons die through apoptosis rather than necrosis.

CoQ-dependent apoptosis depends on the mitochondrial fission gene drp-1

We found the calcium dependence of apoptosis in this model intriguing, as

calcium is not known to play a role in developmental apoptosis in C. elegans (see

discussion). Ca2+ has been shown, however, to stimulate mitochondrial fission

(Breckenridge et al., 2003), which, in turn, has been linked to apoptosis in mammals
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(Cipolat et al., 2006; Frezza et al., 2006) and in C. elegans (Jagasia et al., 2005).  We

reasoned that CoQ deficiency might sensitize mitochondria to Ca2+-dependent fission

related apoptosis.  To test this idea, we performed co-RNAi knockdown of coq-1 with

drp-1, a gene that is necessary for fission-related apoptosis (Jagasia et al., 2005).  RNAi

of drp-1 blocked degeneration of GABA neurons (fig 4.5b), thereby implicating the

fission machinery in the pathology associated with coq-1 knockdown in C. elegans.

Ca2+ uptake by mitochondria can also lead to apoptosis through oxidative damage

signaling.  This pathway involves the generation of reactive oxygen species (ROS),

which normally occurs at a low level as a by-product of mitochondrial electron transport

(Adam-Vizi and Chinopoulos, 2006).  Loss of CoQ, a vital electron carrier, would be

expected to reduce electron transport, which likely results in an increase in the alternative

passage of electrons to molecular oxygen to create ROS.  Transcriptional regulation by

p53 plays a central role in oxidative stress-induced apoptosis in mammals (Culmsee and

Mattson, 2005) and CEP-1, a primordial p53-like protein in C. elegans is required for

DNA damage induced apoptosis in germ line cells (Derry et al., 2001; Schumacher et al.,

2001). As shown in figure 4.5b, co-RNAi of coq-1 with cep-1, inhibits GABA neuron

degeneration. This result indicates that CEP-1/p53 functions in the soma as well as in the

germ line to protect C. elegans cells from stress-induced apoptosis. The incomplete

penetrance of cep-1 knockdown on coq-1 RNAi induced GABA neuron degeneration,

however, indicates that additional pathways may function in parallel to CEP-1 to trigger

the cell death cascade.



0%

10%

20%

30%

40%

50%

W
T

ea
t-

4

gl
r-

1

cr
t-

1

EG
TA

ce
d-

4

ce
d-

3

%
 D

e
g

e
n

e
ra

ti
o

n
 i
n

 V
N

C control
coq-1 RNAi

0%

5%

10%

15%

20%

25%

30%

35%

coq-1+ EV
control

cep-1+coq-1 drp-1+coq-1 gar-2+coq-1 kap-1+coq-1

RNAi treatment

%
 d

e
g

e
n

e
ra

ti
o

n
 V

N
C

b

** ** **

**

*

**

Figure 4.5 Mechanism of degeneration (a) Indicated mutants or EGTA were
tested for their ability to block coq-1-knockdown-induced neurodegeneration.
GABA neurons were scored in adults as in Fig1. (b) Co-RNAi of coq-1 with cep-
1, drp-1 or controls (gray bars).  Results are composites of 3 or more
experiments, error bars representing SEM. *P<0.01,**P < 0.0001.

a

86



Figure 4.6 Model of COQ-1
involvement in degeneration
of GABA neurons.  coq-1
knockdown reduces levels of
CoQ, which backs up
mitochondrial electron
transport.  This produces a
higher sensitivity of the
mitochondrion to Ca2+ released
from the ER, and higher ROS
release.  Ca2+ may act through
activation of drp-1-mediated
mitochondrial fission,
contributing to the permeability
transition, and release of
apoptogenic factors.  ROS can
also activate cep-1, which can
transcriptionally activate egl-1,
contributing to apoptosis.
Factors such as high membrane
activity or low defense
mechanisms (chapter II) may
contribute to the selective
demise of GABA neurons.
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Degeneration is independent of GABA neuron activity.

Since all cells would be affected by coq-1 knockdown, the question of why

GABA neurons selectively die remains.  Some additional insult(s) must exist which

makes these neurons more vulnerable to changes in CoQ levels.  Although nothing is

known about the elecrophysiological properties of GABA neurons in C. elegans, studies

have shown that some GABA neurons in mammals have extremely high intrinsic firing

rates.  Cerebellar purkinje cells, for example, can discharge at rates of up to 125 Hz in the

conscious monkey (Thach, 1968; Thach, 1970b; Thach, 1970a). Since membrane activity

results in Ca2+ release from intracellular stores, firing of the cell could heighten the Ca2+

signaling which drives these neurons to perish.  In order to test whether this is the case,

we utilized a neuron-silencing mutant of the potassium channel egl-36 (E142K).

EGL-36 is a Shaw-type voltage-gated K+ channel, which is important for egg-

laying behavior in C. elegans (Johnstone et al., 1997).  A gain of function mutation of

glutamate 142 to lysine in this gene shifts the voltage dependence of activation, so that

the channel activates at hyperpolarized membrane potentials.  Premature activation leads

to an influx of K+ ions, thwarting any would-be action potential, effectively silencing the

neuron (Johnstone et al., 1997; Zhao and Nonet, 2000).  We created a transgenic animal

that expresses this gain-of-function channel under the control of a GABA motoneuron-

specific promoter, pC04G2.1.  These animals displayed a severe backward Unc

phenotype (Figure 4.7a) that is reminiscent of the shrinker phenotype which occurs when

GABA neurons are laser ablated (McIntire et al., 1993a). This phenotype is evidence that

pC04G2.1::egl-36(E142K) is greatly reducing, if not silencing, the firing of GABA

neurons. Over-expression of a loss-of-function channel, egl-36(E142K, G408E), a
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mutant in which ion conductance is lost, resulted in wildtype movement. This result

indicates that the blockage of GABA neuron activity by EGL-36(gf) is due to its K+

conductance, rather than an artifact of expression of the channel itself.

We tested the EGL-36 channel-expressing transgenics for GABA

neurodegeneration upon coq-1 knockdown.  As shown in figure 4.7b, reducing GABA

neuron activity had no effect on degeneration.  This suggests that normal excitation of

ventral cord GABA neurons in C. elegans does not predispose them to degeneration, as

has been proposed in some human degenerative diseases.  However, these experiments

must be repeated in an integrated line, before we make a final conclusion.  It is possible

that mosaicism in the strain resulted in a false negative result.

Discussion

Model for CoQ deficiency-related neurodegeneration in C. elegans

The model in figure 4.6 summarizes our results.  We have shown that genetically

induced reduction of Coenzyme Q leads to progressive loss of motor coordination and

preferential degeneration of GABA neurons.  The mechanism of cell death depends on

the apoptotic genes ced-4 (Apaf-1) and ced-3 (caspase). The GABA neuron pathology

that accompanies coq-1 knockdown also relies on Ca2+ release from the ER and the

mitochondrial fission protein DRP-1.  These results emphasize an important role for CoQ

in neuron survival and demonstrate a mechanism for pathological apoptosis in C. elegans

which depends on ER-to-mitochondrial Ca2+ signaling.
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ER-to-mitochondrial Ca2+ signaling has been the focus of apoptosis research in

mammalian systems (Szalai et al., 1999; Pacher and Hajnoczky, 2001; Hajnoczky et al.,

2002; Rapizzi et al., 2002). Dysregulation of this pathway is linked to neurodegenerative

disease.  For example, Ca2+ homeostasis genes are down-regulated in GABAergic

cerebellar Purkinje cells in both a mouse model of Spinocerebellar ataxia type1 and in

human patients (Lin et al., 2000). Furthermore, mitochondria isolated from lymphoblasts

of Huntington’s disease (HD) patients and and from brains of a mouse model of HD

show heightened sensitivity to Ca2+ (Panov et al., 2002). Although mitochondria are

compromised in all cells in these diseases, only selected neuronal populations, especially

GABAergic neurons, respond by activating death pathways. We observe similar

selectivity in the C. elegans model of CoQ deficiency  described in this work.

The calcium-apoptosis connection in C. elegans

The Ca2+-dependence of apoptosis with CoQ deficiency in C. elegans brings to

light a long-standing difference between apoptotic models in mammals versus

nematodes. Whereas the role for Ca2+ in apoptosis is well-established in mammals, an

apoptotic function for this key molecule in C. elegans has not been previously described.

In mammals, ER Ca2+ levels are kept in check by the ER-localized pool of the anti-

apoptotic proteins Bcl-2 (Foyouzi-Youssefi et al., 2000; Pinton et al., 2000; Palmer et al.,

2004) or BAP-31 (Breckenridge et al., 2003)  In certain pathological situations, excessive

cytoplasmic Ca2+ from the ER triggers mitochondrial fragmentation and consequent

release of cytochrome c from the mitochondrial inner membrane.  Liberated cytochrome

c interacts with Apaf-1, which in turn activates caspases, thereby triggering apoptosis.
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A cytochrome c–independent pathway is hypothesized to drive apopotosis in

nematode cells (Rolland and Conradt, 2006).  In this case, CED-4/Apaf-1 is sequestered

at the mitochondrial outer membrane by the Bcl-2 ortholog, CED-9.  In cells fated to die,

EGL-1, a BH3-only Bcl-family member, is up-regulated and binds to CED-9/Bcl-2,

thereby freeing CED-4/Apaf-1 to activate the caspase CED-3.  Our results indicate a

requirement not only for CED-3 and CED-4, but also for Ca2+ in CoQ-dependent

apoptosis.

Although cytochrome c may not activate CED-3/caspase function, recent work

has confirmed that mitochondrial fragmentation can trigger apoptosis in C. elegans

(Jagasia et al., 2005).  These results suggest that mitochondrial fragmentation in the

nematode must release other apoptotic components that activate the cell death pathway.

Because Ca2+ is known to trigger mitochondrial fragmentation in mammals, we asked if

the Ca2+-dependent killing of GABA neurons that we observe in coq-1 RNAi treated

animals also involves mitochondrial fragmentation. The dynamin-related protein, Drp1,

mediates normal mitochondrial fission and is also necessary for induced mitochondrial

fragmentation in mammals (Breckenridge et al., 2003). Recent studies have confirmed

that the C. elegans homolog, DRP-1, is both necessary and sufficient for mitochondrial

fragmentation but a role for Ca2+ in this mechanism was not explored. Here we have

shown that both ER Ca2+ release and DRP-1 are required for the death of GABA neurons

in CoQ deficient animals. We therefore suggest that the mechanism of cell killing

induced by CoQ deficiency in C. elegans is likely to employ an evolutionarily conserved

pathway in which Ca2+ release from the ER activates mitochrondrial fragmentation. This

finding adds to a growing number of examples of degenerative conditions, in which the
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mitochondrial fission/fusion machinery has been implicated (Alexander et al., 2000;

Delettre et al., 2000; Cipolat et al., 2006).

Because of the common association between mitochondrial dysfunction and

oxidative stress, we also tested the p53 ortholog, CEP-1, for a role in degeneration.

RNAi mediated knockdown of cep-1/p53 partially rescued the coq-1 RNAi degenerative

phenotype (fig 4.5b).  This result could be indicative of a parallel pathway to cep-1/p53

that is necessary for complete activation of apoptosis.  Alternatively, cep-1/p53 could

mediate some of the degenerative events, but is not involved in the final apoptotic

decision.  A similar role for p53 in GABA neuron degeneration has been reported in a

mouse model of Spinocerebellar ataxia type 1 in which p53 mediates morphological

changes associated with degeneration of Purkinje cells, such as dendritic arbor loss,

without causing apoptosis (Shahbazian et al., 2001).

CoQ deficiency in C. elegans as a model for human disease

The selective and age-dependent death of GABA neurons and loss of coordinated

movement seen in coq-1 knockdown worms are shared features of CoQ deficiency in

humans.  The most common outcome of this deficiency is cerebellar ataxia (Quinzii et

al., 2007).  Thus far, only mutations in the COQ-2 gene have been positively identified as

causes of CoQ deficiency, although COQ-1 dysfunction is suspected to underlie some

cases (Rotig et al., 2000). CoQ deficiency can also participate in the pathology of

diseases, in which it is not the primary feature.  For example, patients carrying mutations

of the apraxin gene (APTX) display secondary CoQ10 deficiency and cerebellar ataxia,

which improves with CoQ10 supplementation (Quinzii et al., 2005).
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Although CoQ deficiency is rare in humans, it shares important pathologies with

prevalent glutamine repeat diseases.  These include the autosomal dominant

Spinocerebellar ataxias (SCAs) and Huntington’s disease (HD).  The age-related death of

medium spiny GABAergic efferents of the striatum occurs in HD (Martin and Gusella,

1986) and GABAergic Purkinje cells are significant targets for degeneration in the

cerebellar ataxias (Zoghbi and Orr, 1995).  GABA neuron sensitivity, mitochondrial

dysfunction, altered Ca2+ homeostasis, and apoptosis are all shared features of these and

other degenerative diseases (Duenas et al., 2006; Kwong et al., 2006).

The coq-1 knockdown model of neurodegeneration in C. elegans can be used to

study the genetic and environmental influences which sensitize GABA neurons to

disease.  Genetic screening for enhancers or suppressors of this RNAi phenotype (or of a

hypomorphic allele of coq-1) could be used to determine additional genes in the pathway.

Activity of these candidate genes could then be studied in mouse models and humans

with CoQ deficiency.

Additionally, supplementation with exogenous CoQ has been shown to slow the

progression of degeneration in only a subset of CoQ deficiency cases in humans.

Therefore, additional therapies which increase the efficacy of CoQ supplements, or which

target alternative components of the degenerative pathway, are needed. To this end, this

C. elegans model could be employed for pharmacologic screening for small molecules

that inhibit degenerative pathology.  Such agents may then be developed as therapeutics

for CoQ deficiency, as well as for related neurodegenerative conditions.
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CHAPTER V

GENERAL DISCUSSION AND FUTURE DIRECTIONS

Chapter IV described a model of coq-1 deficient GABA neuron degeneration, and

preliminary characterization of the molecular pathways involved.  However, many

additional experiments could be done to further characterize the pathology involved in

coq-1 mediated degenerating GABA neurons.  In addition, this model could be used to

discover novel genes involved in degenerative pathology and neuroprotective therapies.

Further descriptive studies and potential applications of the coq-1 model are discussed

below.

Characterization of mitochondria in coq-1 knockdown animals

Because of the apoptotic nature of degeneration and the involvement of drp-1, we

can predict that mitochondrial structure changes and permeability transition are part of

the degenerative process.  However, we have not yet directly studied these events.

Several dyes, derived from rhodamine 123, are taken up into mitochondria, and fluoresce

in a way that is dependent on mitochondrial potential, ΔΨm.  Since ΔΨm is directly

related to electron transport and membrane permeability, such dyes can be used to

measure mitochondrial dysfunction in vivo (Foster et al., 2006).  In addition,

mitochondria can be isolated either from whole worms or sorted GABA neurons, and
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ETC function can be assayed directly in the CoQ deficient condition (Kayser et al.,

2004).  Showing direct effects on mitochondrial function would greatly strengthen the

model, as mitochondria are thought to be central of the pathological process.  Since CoQ

plays many roles in the cell, as discussed in chapter I, it will also be important to

distinguish its mitochondrial functions as important to disease.

Involvement of mitochondrial fission/fusion pathways in degeneration

In addition to studies of mitochondrial function, we must also further elucidate the

specific molecular players in the apoptotic pathway.  While we have information on the

involvement of ced-3 and ced-4, for example, we may also want to show roles for CED-

9/Bcl, and BH3-only proteins, such as EGL-1 and CED-13.  Similarly, while we believe

the dynamin-related fission protein, DRP-1 to be essential for degeneration, we could

confirm this result, by showing that FIS-1, which escorts DRP-1 to mitochondria, is also

involved.  We could also corroborate these results by over-expressing fusion proteins,

such as OPA-1 and PARL, to see if they are protective, as in previous studies (Cipolat et

al., 2006; Frezza et al., 2006).  Finally, the co-RNAi experiments testing for drp-1

involvement are preliminary.  Repeating these results with drp-1 mutants would be ideal.

While a drp-1 null mutation is lethal, several constructs encoding dominant interfering

mutants of drp-1 have been created (Labrousse et al., 1999).  Expression of these

mutants, which are deficient in GTP hydrolysis, should flood the cell with inactive drp-1,

which will compete with endogenous drp-1.  If our preliminary conclusions are correct,

GABA-specific expression of these constructs would be predicted to confer resistance to

coq-1 knockdown.
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While the involvement of fission/fusion proteins in mitochondrial permeability

transition is an exciting finding, it is not thought to be the ultimate cause of cell death in

apoptosis.  Release of apoptogenic factors is still believed to act downstream of fission-

related structural changes to the mitochondria.  In C. elegans, the identity of such factors

is a mystery.  While cytochrome c is not thought to be the culprit, additional factors may

still be involved.  For example, the AIF ortholog WAH-1 has been shown to be released

form mitochondria during apoptosis, although its release is thought to occur downstream

of ced-3 activation (Wang et al., 2002).  One of the advantages of working with C.

elegans, is that we can readily use genetic screens to identify these factors.  Loss of

function mutations in apoptogenic genes released from the mitochondria would be

expected to rescue the degenerative phenotype.  By employing such a screen, we may be

able to use this system to discover novel genes involved in fission-related apoptosis.

CEP-1/p53 in neurodegeneration

In addition to the cell fission machinery, we also tested a role for p53-mediated

DNA damage pathway in apoptosis.  p53 has been shown to mediate huntingtin toxicity

in cell culture and Drosophila and mouse models of Huntington’s disease (Bae et al.,

2005), and has also been shown to mediate some of the degenerative events in a mouse

model of SCA (Shahbazian et al., 2001).  Preliminary data using co-knockdown of coq-1

with cep-1/p53 suggests a role for cep-1 in degeneration.  However, rescue by cep-1

knockdown was incomplete, either because reduction of cep-1/p53 was insufficient, or

because it is important for only some of the degenerative events, as discussed in chapter

IV.  We now have a cep-1 mutant, so we can address the first issue.  The mechanism by
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which p53 modulates these degenerative events is an interesting problem, and could be a

rich source of future research.  The transcriptional targets of p53 have been extensively

studied in mammals (Vogelstein et al., 2000), but non-transcriptional mechanisms of the

p53 response to stress have also been identified (Erster and Moll, 2005).   Follow-up on

this arm of the degenerative pathway could include testing known transcriptional and

non-transcriptional targets of cep-1/p53 to determine their involvement in degeneration.

Also, non-biased approaches, such as mutagenic screening, could be employed to identify

suppressors of the cep-1/p53 arm of the pathway.

Dysfunction in other neuronal populations

Genetic screening can also be used to identify additional genes, which are

important for the movement phenotype in neuronal populations other than GABAergic

neurons.  One feature of the coq-1 knockdown phenotype that makes it ideal for

screening is the readily visible movement defect.  Unfortunately, as mentioned in chapter

IV, the Unc phenotype of these worms is not exclusively backward Unc.  This means

that, while GABA neurons seem to degenerate preferentially, other neuronal subtypes are

likely affected functionally.  We may be able to separate out GABA-specific effects with

those of other neuronal subclasses through pharmacological analyses.  For example, if

treatment with the cholinesterase inhibitor aldicarb or the ACh agonist levamisole rescues

forward movement, this would indicate that cholinergic neurons are dysfunctional in

these animals.  We could then determine whether the pathway for cholinergic dysfunction

is separate from that of GABA neurodegeneration, by performing a mutagenic screen for

genes that exclusively rescue the forward movement defect.  Likewise, we could also
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look for genes that only rescue the backward movement defect, and then determine

whether those genes do so because of effects on GABA neurodegeneration.  If effects on

cholinergic or other neurons were not of interest, we could also likely separate out these

effects by expressing a coq-1 ds-RNA specifically in GABA neurons.  This should

recapitulate the degenerative phenotype, without affecting other neuronal subtypes

(unless effects on other neurons is secondary to GABA degeneration).

Understanding the apparent age-dependence of phenotypes

This age-dependent degenerative paradigm in C. elegans joins many similar

examples in this and other organisms, emphasizing that the susceptibility of neurons to

degenerative disease appears to increase as animals age.  This can be the result of both

the build up environmental exposure and age-dependent alterations in gene expression.

The question of how both factors change as we age is important to the ultimate

understanding of these diseases.  Due to its short lifespan and well-established

methodologies, C. elegans is an excellent model system for studying lifespan-dependent

genomic changes.  Microarray profiling throughout development has been performed in

the whole worm (Hill et al., 2000).  In these experiments, coq-1 levels appear to decrease

steadily throughout life.  This natural decline may combine with RNAi knockdown to

deplete coq-1 levels below a survival threshold by the L4 larval stage, resulting in cell

loss that increases with advancing age.

A deeper understanding of this issue may be forthcoming with the generation of

expression profiles for specific cell types taken throughout the aging process.  This is a

long-standing goal for the C. elegans community.  Recently, a pan-neuronal profile has
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been obtained for both the embryonic and L2 larval stages (Von Stetina et al., 2007b).

Additional profiles of specific neuronal subtypes at different stages are currently being

performed in our labs and others.  The ability to obtain age-dependent profiles of specific

neuron classes may help us determine what pathways change during aging to render these

neuronal subtypes sensitive in degenerative diseases.  For example, the stress gene

analysis performed in chapter II could be repeated for GABA neurons at each stage of

development.  This analysis may identify factors which betray GABA neurons by

abandoning their protective posts as the animal ages.

Since the coq-1 mutant studied was maternal-effect sterile, it is likewise not

possible to tell whether degeneration of GABA neurons with aging in the mutant is a

consequence of the exhaustion of maternal protein stores, or an age-dependent

phenomenon.  To settle this issue, coq-1 could be rescued in tissues other than GABA

neurons in the knockout, to create a coq-1 mutant animal that is viable through multiple

generations.  GABA neurodegeneration could then be studied in animals upon which no

maternal COQ-1 protein has been bestowed.

Understanding the selective vulnerability of GABA neurons

As with the age-dependence issue, the question of why GABA neurons are

selectively sensitive to degeneration in coq-1 knockdown animals is an important topic

for future research.  We have proposed two potential explanations for this phenomenon.

First, as discussed in chapter IV, GABA neurons may be selectively vulnerable due to a

high activity-related metabolic load, which translates into sensitivity to metabolic loss.

While decreasing GABA neuron activity with the pC04G2.1::egl-36(gf) construct did not
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affect degeneration, these experiments need to be repeated in an integrated line.  This will

ensure that the lack of a result was not due to incomplete penetrance of expression of the

silencing channel.

In addition to activity-dependent effects, we also hypothesized in chapter II that

GABA neurons may be rendered more vulnerable due to a cell-specific genetically-

programmed lack of protective measures.  Specifically, we showed a reduction in

expression of GST genes relative to other neurons.  Future experiments may seek to

answer this question, by over-expressing one or more GSTs in GABA neurons using the

C04G2.1 promoter to determine whether this protects against loss of coq-1.

Use for pharmacologic screening

It is important to note that CoQ treatment has been shown to delay or reduce, but

not to rescue, symptoms in the many diseases for which it has been tried as a treatment,

including CoQ deficiency (Beal et al., 1998; Huntington_Study_Group, 2001; Ferrante et

al., 2002; Artuch et al., 2006).  Therefore, the search for additional targets for therapy in

these diseases could lead to the design of efficacy-boosting add-ons to CoQ therapy.  The

mutagenic screens described above could be very helpful in this search.  However, we

need not know the target to discover a useful drug.  Therefore, this model could be used

for pharmacologic screening for small molecules which inhibit the pathology.  In

comparison to such screens in mouse models, our model, with a readily visible movement

phenotype, could be quickly and inexpensively screened using a large number of small

molecules (Burns et al., 2006).  Automated movement tracking software with high

throughput formats has been developed (Feng et al., 2004; Cronin et al., 2005), which
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would add to the feasibility of such a screen.  The use of C. elegans for screening also has

an advantage over cell culture models of degeneration in that it is an intact animal with

networked neurons in their normal physiologic environment.

Much work still remains to fully understand the CoQ-dependent degeneration

described herein.  It is clear from this model, however, that the vulnerability of neurons to

metabolic changes is an ancient feature of these cells.  Likewise, we have learned in the

course of these studies that the molecular mechanisms involved in degeneration may be

more conserved than originally thought.  Moving forward with this model may reveal

important insights in the degenerative process, and may also be useful in determining

treatments for such diseases in humans.
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