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CHAPTER I 

 

INTRODUCTION 

 

 Dyscalculia is a learning disability that affects up to 6% of all children (Geary 

2004).  This condition interferes with a person’s ability to understand and manipulate 

numbers.  There are several cognitive and performance features displayed by children 

with dyscalculia, which include: 

1. Relatively frequent use of developmentally immature procedures 
2. Frequent errors in the execution of procedures 
3. Poor understanding of the concepts underlying procedural use 
4. Difficulties sequencing the multiple steps in complex procedures 
5. Difficulties retrieving mathematical facts, such as answers to simple 

arithmetic problems 
6. For facts that are retrieved, there is a high error rate 
7. For arithmetic, retrieval errors are often associates of numbers in the 

problem (e.g., retrieving 4 to 2 + 3 = ?; 4 is the counting-string 
associate that follows 2, 3) 

8. Reaction times for correct retrieval are unsystematic 
9. Difficulties in spatially representing numerical and other forms of 

mathematical information and relationships 
10. Frequent misinterpretation or misunderstanding of spatially 

represented information 
 
 Dyscalculia can occur as a consequence of prematurity and low birthweight and is 

frequently encountered in a variety of neurological disorders, such as attention-deficit 

hyperactivity disorder (ADHD), developmental language disorder, epilepsy, and fragile X 

syndrome (Shalev 2004).  Children with developmental dyscalculia benefit from early 

intervention, including programs that focus on basic numerical and conceptual 

knowledge (Kaufmann, Handl, and Thony 2003). 
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 This study uses diffusion tensor imaging (DTI) to assess white matter integrity in 

children with math difficulties.  The object is to determine if there is a structural 

difference in the white matter of children with math difficulties compared to children 

with normal math cognitive abilities.   

 

Diffusion Tensor Imaging 

 

Water Diffusion 

 Diffusion is a physical process that involves the translational movement of 

molecules via thermally driven random motions called Brownian motion. The mobility of 

the molecules can be characterized by a physical constant dubbed the diffusion 

coefficient, D, which is related to the root mean square displacement, RMS, of the 

molecules over a given time, tdif, via the Einstein equation 

! 

RMS = 2Dtdif                                                       (1) 

Several factors that influence diffusion in a solution are molecular weight, intermolecular 

interactions, and temperature (Beaulieu 2002) (Figure 1).   
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Figure 1. Brownian motion.  Four identical particles begin at the origin, however each follows a 
different path due to thermal energy (collision with other molecules) (Beaulieu 2002). 

 The distance a molecule diffuses in one direction may or may not be the same as 

in another direction.  In a pure liquid solution there are no obstructions or molecular 

hindrances, thus diffusion is equal in all directions.  A physical property that is equal in 

all directions is termed isotropic, so diffusion is isotropic in this case.  However, if 

diffusion is preferential by large in a certain direction, for example in a solution with 

oriented barriers, the diffusion is deemed anisotropic (Le Bihan et al. 2001) (Figure 2).  

This allows tissue subtypes to be identified simply by their diffusion characteristics, thus 

anisotropy is related to the underlying tissue geometry.  The degree of hindrance to water 

diffusion is determined by size, shape, and composition of any physical boundary, as well 

as the distance between obstructions.    
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Figure 2. Isotropic and anisotropic diffusion.  Molecules with equal diffusion in all directions 
experience isotropic diffusion.  Molecules that that prefer diffusion in one direction to others 
experience anisotropic diffusion (Beaulieu 2002).   

 White matter tissue is highly anisotropic.  This is mainly due to its specific 

organization into more or less myelinated axonal fibers running in parallel, however the 

underlying mechanisms are not fully understood.  The myelin sheath around the axons, 

the axonal membrane, and the neurofibrils are all longitudinally oriented microstructures 

that are barriers to diffusion and reduce diffusion in the perpendicular direction with 

respect to parallel diffusion.  DTI takes advantage of this directional dependence on 

diffusion and can map the orientation in space of white matter tracts assuming the 

direction of the fastest water diffusion indicates the overall orientation of the fibers 

(Basser PJ 1994) (Pierpaoli et al. 1996).   

 

Diffusion Tensor Imaging Acquisition 

 In the original diffusion MRI method, diffusion is fully described using the 

diffusion coefficient, D (Le Bihan 1991).  The effect of diffusion on the MRI signal is an 

attenuation A, which depends on D and on the “b factor” (Figure 3) which in turn depends 

on the gradient pulses used in the MRI sequence (Alexander et al. 2007). 
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Figure 3. Schematic of a diffusion weighted echo-planar imaging pulse sequence (Alexander et 
al. 2007).   

! 
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In the presence of anisotropy, diffusion cannot be characterized by a scalar coefficient, 

but requires a tensor matrix, D, to describe fully molecular mobility along each direction 

as well as the correlations between directions (Stejskal and Tanner 1965). The diffusion 

tensor is obtained from diffusion-weighted measurements in at least six non-collinear 

directions.  The tensor is symmetric with six degrees of freedom, such that a minimum of 

six diffusion-encoded measurements is required to accurately describe the tensor.  Using 

more than six directions will improve the accuracy of the tensor measurement for any 

orientation (Papadakis et al. 2000) (Hasan, Parker, and Alexander 2001).  The tensor can 

be written in matrix form as 
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Diagonalizing the matrix, the diffusion tensor can be written  
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where E is a matrix of the eigenvectors describing the major, medium and minor 

principle axes of the ellipsoid (Figure 4) fitted to the data, and 

! 

"
1
,"

2
,"

3
 are the 

eigenvalues for each eigenvector, which represent the diffusivity along each axis.   

 
Figure 4. Tensor ellipsoid.  Left, fiber tracts with an arbitrary orientation imposing anisotropic 
diffusion.  Right, diffusion tensor ellipsoid characterized by the eigenvectors (
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), and 

eigenvalues (
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,"

3
) (Jellison et al. 2004). 

Diffusion anisotropy can be described as how much the shape of the tensor ellipsoid 

deviates from a sphere (Jellison et al. 2004).  This is mathematically translated as to the 

degree which the three-tensor eigenvalues differ from one another.   

 Several invariant scalar indices made of combinations of the eigenvalues are used 

to characterize diffusion anisotropy, including apparent diffusion coefficient (ADC) and 

relative anisotropy (RA).  The most widely used invariant measure of anisotropy is 

fractional anisotropy (FA) (Pierpaoli and Basser 1996). 
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FA is a scalar value that ranges between 0 and 1.  Increasing FA values indicate a higher 

tensor ellipsoid anisotropy.    

 FA, with no other information, is a highly sensitive but fairly nonspecific 

biomarker of neuropathology and microstructural architecture.  This combination 

produces challenges to the interpretation of DTI measurements for both diagnostic and 

therapeutic applications.  However, most agree that FA is a marker of white matter 

integrity.   

 

Fibertracking  

 The orientation of the major eigenvector is assumed to be parallel to that of the 

local white matter tract, assuming the FA in the voxel of interest is above a certain 

threshold.  These directional patterns can be displayed using color maps representing the 

three basic directions: red representing right-left, green representing anterior-posterior, 

and blue representing superior-inferior (Figure 5).  Problems arise in regions of the white 

matter in which fibers cross or kiss.  This reduces FA in the voxel and can misrepresent 

the fiber orientation.  
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Figure 5.  Colormap showing major eigenvector direction indicated by color (red: right-left; 
green: anterior-posterior; blue: superior-inferior) 

 

 Despite these complications, fibertracking is an important application in the 

visualization of anatomic connections between different parts of the brain on an 

individual basis.  Connectivity studies are important for interpreting functional MRI data 

and establishing how activated foci are linked together through networks (Le Bihan et al. 

2001). 

 

Number Processing and Functional Magnetic Resonance Imaging 

 Several functional MRI studies have mapped the cognitive processes that occur 

during math visualization, comprehension, and computation.  These studies have given 

great insight into how the human brain processes numbers and arithmetic operations.   

 

Functional Imaging 

 Functional magnetic resonance imaging (fMRI) maps local physiological or 

metabolic consequences of altered brain electrical activity.  FMRI methods can be made 
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sensitive to changes in regional blood perfusion, blood volume, and blood oxygenation.  

The most popular functional imaging method is blood oxygenation level dependent 

(BOLD) fMRI.  The contrast in BOLD imaging is produced by the underlying metabolic 

activity of neurons, mainly from energy expended as a result of postsynaptic neuronal 

depolarization.  The increase in metabolic need is met by an increase in blood flow to the 

localized area.  It is unknown what exactly drives the increase in blood flow, however the 

most common belief is that it is a direct consequence of neurotransmitter action, thus 

reflecting local signaling (Matthews and Jezzard 2004).   

 BOLD imaging takes advantage of the fact that deoxyhemoglobin (deoxyHB) is 

slightly paramagnetic, which distorts the magnetic field in its vicinity.  Vessels carrying 

oxygenated blood cause negligible distortion to the magnetic field, while capillaries and 

veins containing partially deoxygenated blood will distort the field to a greater extent.  

These microscopic field distortions cause interference from spins within this location.  

However, in a BOLD dependent imaging sequence, activated brain regions show an 

increase in signal.  This is due to the local increase in blood supply, causing total oxygen 

extraction to decrease. This decrease in oxygen extraction increases the signal relative to 

baseline.   

 

Numbers and Cognitive Functioning 

  An interesting question in neuroscience is how the brain can differentiate 

between two quantities, determine which quantity is larger, and manipulate these two 

quantities in different ways to obtain a new quantity.  One theory suggests that evolution 

endowed the human brain with a predisposition to represent a number domain (Dehaene, 
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Dehaene-Lambertz, and Cohen 1998).  This can be seen in children possessing a capacity 

for elementary number processing early in their development, prior to schooling or even 

the development of language skills (Spelke and Dehaene 1999).   

 Functional imaging has proven to be an invaluable asset in localizing the many 

areas of the cortex that aid in numerical processing and arithmetic computation.  One of 

these regions is the horizontal segment of the intraparietal sulcus (HIPS), a major site of 

activation in studies of number processing (Chochon et al. 1999) (Pinel et al. 2001) . 

Chochon et al. showed HIPS activation when a subject was asked to subtract a one digit 

number from 11 and when asked to verbally name a number compared to verbally 

naming a letter.  Pinel et al. showed HIPS activation during a task in which the subject 

was asked to determine if a single digit number was greater than a target number.  

Interestingly, activation occurred when the number was much greater or much smaller 

than the target  (Figure 6).   

 
Figure 6. Activation of the horizontal segment of the intraparietal sulcus during number 
processing tasks   This is average activation across several studies localizing activation in the 
intraparietal sulcus during number processing  (Dehaene et al. 2003). 

These studies suggest the HIPS is activated during mental calculations and 

number comparisons, and displays specificity for the number domain.  The HIPS is more 

active when subjects calculate or compare two numerical magnitudes than when they 



 

11 

read numerical symbols (Cohen et al. 2000).  The activation is also greater when a 

subject is asked to approximate a solution to an addition problem than calculating the 

exact solution (Dehaene et al. 1999).  The HIPS has also been shown to have greater 

activation when processing numbers than processing other categories of objects on non-

numerical scales, such as ranking animal sizes (Pesenti et al. 2000).   

This activation of the HIPS is mostly bilateral, however the activation is greater in 

the right hemisphere during number comparison (Chochon et al. 1999).  This suggests a 

right hemisphere advantage in comparison and other tasks requiring an abstraction of 

numerical relations (Dehaene et al. 2003).   However, the parietal activation, although 

asymmetric, is usually present both hemispheres. 

 A second region, observed bilaterally in the posterior superior parietal lobule 

(PSPL), is also active in several tasks requiring number manipulations (Figure 7).  This 

region is posterior to the HIPS.  This regions has been shown to be active during number 

comparison (Pesenti et al. 2000), approximation (Dehaene et al. 1999), subtraction of two 

digits (Lee 2000), and counting (Piazza et al. 2002).  This region increases activation 

when subjects carry out two operations instead of one.  Although this region displays 

activation during many numerical tasks, it is not specific to the number domain.  It also 

plays a role in a variety of visuospatial tasks such as hand reaching, eye orientation, and 

spatial working memory (Corbetta et al. 2000). 
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Figure 7.  Representation of parietal region activation during number processing.  The left 
angular gyrus is mostly activated during verbal representation of numbers (Dehaene et al. 2003). 

 

 A study by O’Boyle et al. showed that mathematically gifted male adolescents 

showed a higher activation in these parietal brain regions during 3-dimensional mental 

rotations than a control group of male adolescents (O'Boyle et al. 2005) (Figure 8).  

Three-dimensional mental rotation is a complex visuospatial task that highlights the 

engagement of at least two fundamental cognitive processes: the creation and 

manipulation of mental images (Hill, O'Boyle, and Hathaway 1998).   These capacities 

have been shown to be useful when applied to mastery of high-level mathematical 

thinking and reasoning.   
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Figure 8.  Significant activation during mental rotation in two axial slices.  These images 
illustrate the regions having significantly greater activation in the math-gifted group.  The largest 
activation occurs in the left parietal cortex (O'Boyle et al. 2005).   

 

Diffusion Tensor Imaging and Reading  

 Although there are no current publications on mathematical processing and DTI, 

there are several papers relating reading ability and the microstructure of white matter 

using DTI.  These studies are important in that it is possible that numerical processing 

and reading may have similar cortical locations, but may utilize similar or different white 

matter tracts.  These neural pathways for reading and reading comprehension are better 

understood than the neural networks of number comprehension and mathematical 

computation, and thus give a foundation of how to study neural networks for number 

processing. 

 Klingberg et al. published the earliest paper relating reading ability and white 

matter microstructure (Klingberg et al. 2000).  This study was done as a result of findings 

that suggested that developmental dyslexia may represent a disconnection syndrome in 

which communication is impaired between cortical areas involved in reading.  Horwitz et 

al. found that dyslexic individuals exhibit decreased correlations of cortical activity 
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between the angular gyrus and inferior frontal, extrastriate occipital, and temporal areas 

(Horwitz, Rumsey, and Donohue 1998).  Klingberg et al. hypothesized this disruption 

was possibly located in white matter tracts connecting temporo-parietal and frontal 

cortices.  The study found that poor reading was associated with lower anisotropy in two 

regions of the brain, located bilaterally in the white matter of the temporo-parietal region  

(Figure 9).  The lower anisotropy in this region is presumably due to differences in the 

number of axons, thickness of axons, amount and integrity of myelin, or structural 

disruptions of the white matter tracts.   

 
Figure 9. Regions with group differences in anisotropy and correlations with reading scores.  (A) 
Sagittal projection of left hemisphere showing voxels with significant difference in anisotropy.  
(B) and (C) Two different axial slices showing voxels with significant differences.  (D) and (E) 
Regions of interest from (B) and (C) magnified (Klingberg et al. 2000).    
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 Once the group differences in anisotropy were found, a correlation analysis was 

done to find voxels in the white matter with significant correlation between anisotropy 

and performance on a reading test.  This analysis found only one cluster of voxels in the 

left hemisphere that overlapped with their cluster from the group anisotropy study (Figure 

10).  These results suggested that white matter underlying left temporo-parietal cortex 

plays a critical role in reading ability.   

 
Figure 10.  Plot of anisotropy versus reading score in the voxel with the highest correlation with 
reading score (Klingberg et al. 2000). 

  

Beaulieu et al. was the first group to study the relationship between reading ability 

and white matter microstructure using DTI in children (Beaulieu et al. 2005).  They 

believed that studying adults was informative, but the findings could be due to a lifetime 

of reduced reading or adaptive compensation mechanisms.  They wanted to determine 

whether the neural differences were present at an earlier age during neurodevelopment, 

which includes a critical period for intervention.  The 32 volunteers for the study had a 
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mean age of 11.1 years.  The group performed a voxel-by-voxel correlation analysis of 

FA with reading ability based on the Word Identification subtest of the Woodcock 

Reading Mastery Test.  They found five clusters of voxels that positively correlated with 

reading ability, the largest of which was located in the left temporo-parietal white matter  

(Figure 11) (Figure 12).   

 
Figure 11.  White matter correlation of FA and reading ability. (a) All voxels of the five 
significant clusters in red (circled). (b) Diffusion tensor derived color maps, arrow points to 
largest cluster comprised in tracts in the inferior-superior orientation (Beaulieu et al. 2004). 
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Figure 12. FA versus reading ability in the most correlated voxel.  Top image depicts anatomical 
location of voxel (Beaulieu et al. 2004).   

 Beaulieu et al. also provided tractography of white matter fibers that passed 

through each of the five significant clusters.  Three smaller clusters in the left hemisphere 

have anterior-posterior tracts consistent with the superior fronto-occipital fasciculus and 

anterior limb of the internal capsule or left-right tracts consistent with the corpus 

callosum. The largest cluster and the cluster in the right hemisphere have superior-

inferior tracts consistent with the posterior limb of the internal capsule.  The authors 

hypothesized that these two clusters are part of the superior longitudinal fasciculus (SLF), 

which is thought to be a critical white matter track connecting the language regions of 

Wernicke and Broca.  They found that the largest cluster was bordered on the lateral side 
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by the SLF.  They believe this cluster could have crossing white matter tracts inside of it, 

but their experiment could not resolve these fiber crossings  (Figure 13).   

 
Figure 13.  Fibertracts passing through clusters.  (a) The five clusters used as seed points. (b) 
Anterior-posterior fiber, (c) left-right fibers, and (d) superior-inferior fibers.  (e) Fibers directly 
medial (yellow) and lateral (green) to the largest cluster. The green fiber is the SLF. (f) Fibers 
passing through the largest cluster, which is part of the posterior limb of the internal capsule 
(Beaulieu et al. 2004). 

 Several investigators have used fiber tracking to determine the major white 

matter tracts that display correlations with reading ability.  These regions are the posterior 

limb of the internal capsule (Beaulieu et al. 2004), part of the corona radiata, the left SLF 

(Klingberg et al. 2000) (Niogi and McCandliss 2006), and the corpus callosum (Beaulieu 

et al. 2004) (Figure 14). 
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Figure 14. Major fibertracts in DTI studies of reading.  (a,b) Fibertracking estimates of the SLF 
(green), corona radiata (blue), and corpus callosum (red) from a sagittal view of left hemisphere 
and axial view from above.  Insets show diffusion tensor ellipsoid at the of the corona radiata (+) 
and in the posterior callosum (*) (Ben-Shacher et al. 2007). 

It is poorly understood why fibers in the corona radiata would be correlated with 

reading ability, however one study suggests that the corpus callosum plays a key role.  

One option is that there are differences in the corpus callosum in those with reading 

difficulties, including enlargement of the splenium (Rumsey et al. 1996) (Robichon and 

Habib 1998).  This enlargement causes fibers in the corona radiata to be displaced, 

altering the diffusivity in those voxels occupied by the corona radiata.  The second theory 

is that differences in callosal fibers that interdigitate with the corona radiata might change 

the diffusivity measurements inside the corona radiata.  Differences between poor and 

good readers in either size or number of these callosal fibers can produce FA differences 

in voxels where callosal fibers pass though the corona radiata (Ben-Shachar, Dougherty, 

and Wandell 2007).     
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Current Study 

 In this study, we evaluate regions of the white matter that may show 

microstructural differences between children with normal math abilities and those with 

math difficulties.  By evaluating these regions, we can begin to understand the neural 

pathways being used during math computation.  A better understanding of the white 

matter structures showing lower FA will help determine a course of intervention for 

children with similar math difficulties.  Fibertracking of these regions will aid in proper 

identification of white matter fibers and will determine connectivity profiles of cortical 

regions activated during certain math tasks.   

 This study also investigates white matter regions that show microstructural 

differences related to reading ability.  This is done to determine the microstructural 

relationship between reading and math computation abilities.   
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CHAPTER II 

 

METHODS 

 

Child Recruitment and Screening 

 Subjects were recruited to this study from a pool of children participating in a 

larger study investigating the effects of mathematics problem-solving instruction.  This 

larger study recruited children from seven schools in a southeastern metropolitan school 

district.  Parents of children participating in the larger study received a letter from the 

child’s teacher with information about the imaging study.  Parents interesting in having 

their child participate in the study gave consent to be contacted by the imaging 

researchers.  Thirty-three children were included in the imaging study. 

 Trained examiners administered the calculation and reading subtests of the Wide 

Range Achievement Test – Third Edition (WRAT-3) in the fall of the child’s third grade 

year (Gary Wilkenson 1993).  The WRAT-3 is a widely used standardized measure of 

achievement.  The calculation subtest involves many aspects of math computation, 

including number comparisons, counting, and number identification.  The reading subtest 

assesses the recognition and naming of letters and words out of context.   

 Performance on these tests was used to classify the children into three groups: 

control, math difficulty (MD), and reading and math difficulty (MD/RD).  Children who 

performed below the 20th percentile on the math test were placed in the MD group, while 

children who performed below the 20th percentile in both tests were placed in the MD/RD 

group(Table 1)(Table 2). 
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Table 1. The number of children in the control, math difficulty (MD), and math and reading 
difficulty (MD/RD) groups. 

Group                N

Control 21

MD 3

MD/RD 9  

Table 2. Mean scores on the WRAT-M and WRAT-R in control, math difficulty, and reading 
difficulty groups. 

Group WRAT-M Group WRAT-R

Control 108.6 +/- 6.1 Control 114.2 +/- 11.6

MD 81.7 +/- 12.9 RD 77.7 +/- 12.8  

 

Imaging 

 

Diffusion Tensor Imaging 

 To prepare for the MR scan, the participants were placed in a mock scanner to 

acquaint them with the scanning process.  They also practiced the types of math problems 

they would encounter during the fMRI scans.  Once the participants were comfortable 

with the setup, the actual scanning commenced in a 3 Tesla Philips Achieva MRI 

scanner.  An anatomical T1-weighted, 3D-TFE-SENSE sequence was done with a 

resolution of 256 x 256 x 170 mm and a voxel size of 1 x 1 x 1 mm.  An additional 

participant not involved with the current study also was scanned with this anatomical 

sequence; this dataset would be the target used for the registration process.  Diffusion 

Tensor images were obtained for each participant using an EPI-SENSE sequence with a 

matrix size of 128 x 128 x 60 mm and a voxel size of 2 x 2 x 2 mm.  The DTI sequence 

acquired images with diffusion-weighting applied in 32 non-collinear directions with a b-
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value of 1000 s/mm2 and another image with zero diffusion weighting.  Most of the 

participants had two full DTI scans, however a few had one DTI scan.   

 

Functional Imaging 

 The participants were asked to do several math tasks in the magnet (Figure 15).  

They were given a problem and asked to push a button that corresponded to the correct 

answer.  The fMRI run was five minutes in length and consisted of three 40-second 

blocks of each numerical task, three 40- second blocks of the control task, and three 20-

second blocks of rest.  During the blocks of numerical tasks, the math problem would 

appear on the screen and the possible answers would appear 1000 msec later.  The 

problem and possible answers remained on the screen until the participant responded or 

the imaging block ended after 40 seconds.   The control task consisted of two non-

numerical Greek symbols represented in the same manner as the numerical tasks and 

three other non-numerical Greek symbols appearing 1000 msec later.  The participant had 

to identify the matching symbol.  The participant’s answer and reaction time were 

recorded.   
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Figure 15. The four types of math tasks presented during fMRI scans.  Proximity judgment asks 
the participant to choose the number closest to that presented.  Approximation asks the child to 
add two numbers and choose the answer that is closest to the correct sum.  Exact calculation asks 
the participant to add two single-digit numbers and choose the answer that is the sum of the 
numbers.  Procedural calculation asks the participant to add two double-digit numbers and choose 
the answer that is the sum.     

 

 
Image Processing 

 Once the images were obtained, the datasets were uploaded from the scanner to 

the server.  The diffusion and anatomical datasets were pre-processed prior to making 

quantitative measurement.  Pre-processing included procedures that corrected for eddy 

current and motion artifacts, skull-stripping of the 3-D anatomical datasets, rigid and non-

rigid intra-subject registration, rigid and non-rigid inter-subject registration, and dataset 

mapping.  All of these steps are necessary to guarantee sufficient image quality for 

statistical analyses on the datasets.   
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Eddy Current and Motion Correction  

 Two of the largest problems associated with DTI are the artifacts created by eddy 

currents and bulk motion.  Eddy current induced geometric distortion depends on the 

magnitude and direction of the field gradients (Jezzard, Barnett, and Pierpaoli 1998).  

Eddy currents are produced when strong gradient pulses are switched rapidly (Le Bihan 

et al. 2006).  When diffusion gradient pulses are switched on and off, the time varying 

magnetic field results in current induction in the conducting surfaces of the MR scanner.  

This sets up magnetic field gradients that may persist after the primary diffusion 

gradients are off.  These added gradients are proportional to the strength of the primary 

diffusion gradients.  The result is that the actual gradients experienced by spins in the 

tissue are not exactly the same as those programmed to produce and reconstruct the 

image.  This creates three types of image distortions: image shearing, image scaling, and 

bulk shifting  (Figure 16).  These distortions of the individual diffusion weighted images 

produce misregistration artifacts in maps of diffusion parameters.  This results in lower 

spatial resolution of computed maps and an inaccurate estimation of diffusion parameters 

(FA, ADC) at boundaries between tissues. 
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Figure 16. Eddy current correction.  Each column represents a single dataset.  The bottom row 
represents the uncorrected images while the top row depicts the corrected images.  Arrows point 
to the regions most affected by eddy currents. 

 

 In order to create diffusion-weighted contrast, pulse sequences must be sensitive 

to molecular motion on the order of a few micrometers.  Because of this sensitivity, bulk 

motion is a large problem.  Small movements during the phase-encoding portion of the 

scan will cause large phase changes in the echo signal (Bammer 2003).  Because each 

echo will most likely capture different phase errors, patient motion produces ghosting 

errors. 

 Each dataset was corrected for motion and eddy current artifacts using PRIDE 

(Philips Research Integrated Development Environment) software written in Interactive 

Data Language (ITT Visual Information Solutions, Boulder CO).  This program corrects 

eddy current and motion artifacts in each image and performs registration of each image 

to a common space.  In the case that an exam had two DTI scans, the diffusion 
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registration program corrected for distortions, registered, and averaged the two scans 

together.   

 

Extraction of FA Maps 

 The distortion corrected datasets were then read by the Philips PRIDE 

fibertracking program.   This program calculated the tensor and associated diffusion 

parameters in each image voxel.  FA maps were generated for later statistical analyses.   

 

Skull Stripping of Anatomical Datasets 

 The 3-D anatomical datasets were skull-stripped using the Brain Extraction Tool 

(Smith 2002) from the freeware software MRIcro (Rorden and Brett 2000).  This tool 

enables the user to specify how much of the scalp, underlying fat, and skull they wish to 

remove simply by changing a factor between 0 (removes much tissue) and 1 (does not 

remove any tissue).  After trying several brain removal factors, most of the datasets were 

processed using a .4 factor, however some datasets required a .5 factor.   

 Skull stripping is necessary for image registration, specifically non-rigid 

registration.  The registration algorithm attempts to align the top of the non-diffusion 

weighted image (b=0), used to map the DTI dataset to the target space, with the top of the 

skull in the T1-weighted image, which will result in misalignment of the datasets.  Skull 

stripping ensures that the top of the brain from the b=0 dataset will align with the top of 

the brain in the anatomical dataset (Figure 17). 
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Figure 17. Skull-stripping.  (a) Skull-stripped image, (b) original T1-3D image, (c) attempt at 
registering a b-0 image to non-skull-stripped T1-3D image, (d) attempt at registering a b-0 image 
to skull-stripped T1-3D image.   

Image Registration 

 In order to make comparisons between subjects, the images must be mapped onto 

a common space.  That is, each voxel from each dataset must represent the same 

anatomical location on each participant.  For example a voxel in the corpus callosum in 

one dataset must have the same location in the corpus callosum across all datasets.  This 

is done by applying rigid and non-rigid registrations to transform each dataset to a 

commons space, represented by the anatomical dataset from the participant not in the 

remainder of the study.   



 

29 

 Rigid registration involves translation and rotation.  One image is translated and 

rotated to find the best fit to a target image.  There are many algorithms that try to 

minimize the registration error between the two images.  This study incorporated an 

algorithm that maximizes mutual information (Li 2001).  Mutual information (MI) 

measures the statistical dependence between two random variables or the amount 

information that one variable contains about the other.  The MI of the image intensity 

values of corresponding voxel pairs is maximal if the images are geometrically aligned 

(Maes et al. 1997).  There are many input paramters that control the program, including 

the minimum and maximum intensity of the target and reference images, number of bins 

to be used in the histogram, optimization order, and sampling intervals (Figure 18).   

 
Figure 18. Example of rigid registration.  (a) Original 3D image to be registered. (b) Target 
image. (c) Original image registered onto target image.   

 Non-rigid registration warps the image in a non-linear fashion and thus does not 

maintain the spatial coherence of the image.  This registration is much more complex and 

time consuming, however it is an essential step to ensure a homogenous map across all 

subjects.  This study uses the Adaptive Bases Algorithm developed at Vanderbilt 

University (Rohde, Aldroubi, and Dawant 2003) (Figure 19). 
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Figure 19. Example of non-rigid registration. (a) Original 3D image.  (b) Target 3D image. (c) 
Original 3D image after Adaptive Bases Registration.  The red lines depict the width of the 
original image to show how non-rigid registration warps. 

 The first step in the registration process is to obtain the non-diffusion weighted 

(b=0) image from the DTI data from each dataset.  This image is rigidly registered to the 

subject’s own anatomical 3D image.  This b=0 image has a resolution of 128 x 128 x 60 

mm and a voxel size of 2 x 2 x 2 mm, while the 3D anatomical images have a resolution 

of 256 x 256 x 170 mm and a voxel size of 1 x 1 x 1mm.  This registration program 

interpolates the b=0 image data so that it has the same resolution and voxel size as the 3D 

anatomical datasets.  The translation optimal vector and rotation matrix for rigid 

registration are saved for future use.  The output of this rigid transformation is then 

registered to the same 3D image using the non-rigid Adaptive Bases Algorithm.  The 

deformation fields obtained from the non-rigid registrations are saved for future mapping.  

After registration, each image is visually inspected to ensure accuracy.  If the registration 

errors are too large, the configurations for each registration algorithm are adjusted, 

usually by adjusting intensity values or the jacobian threshold, and the registrations are 

rerun.   

 The b=0 maps for each subject are now in the subject’s 3D anatomical space.  In 

order to get every subject’s dataset in the same space, the 3D anatomical images must be 
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registered to a common 3D anatomical space.  A 3D anatomical image was obtained from 

a child that was not a participant in the DTI study.  This dataset defines the common 3D 

anatomical space.  Each subject’s 3D anatomical dataset is rigidly and non-rigidly 

registered to this common 3D space.  The deformation field, translation vector, and 

rotation matrix are saved for future transformation of the FA maps (Figure 20).   

 
Figure 20. The registration process from the b=0 image to the common target space.  Each arrow 
indicates a rigid and non-rigid registration. 

 The saved deformation fields, translation vectors, and rotation matrices are 

important in that they define how the FA data are transformed onto the target space.  

Once each subject’s FA data are mapped onto the target space, the FA datasets from each 

subject are decimated back to a resolution of  128 x 128 x 85 mm and are averaged using 

MATLAB© to create an average FA map across all subjects.  This averaged FA map is 

then used as a target for another registration step.  This registration takes each subject’s 

original FA data and maps them onto this common, averaged FA space.  This step has 
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been shown to improve overall registration errors.  The deformation fields are applied to 

the subject’s original FA data.  The FA data are now in a common space and ready to be 

analyzed.   

 

Statistical Analysis 

Once each FA map is registered to a common space, the participants were 

separated according to their WRAT-Math (WRAT-M) scores.  Those that scored above 

100 were placed in the control group, while those that scored below 80 were placed in the 

math difficulty group (MD).  These groups were made so that a t-test comparison could 

be done between the two groups.  Those that had a WRAT-M score between 80 and 100 

were placed in a buffer group and were not included in the t-test.  A two-sample t-test 

was done on a voxel by voxel basis using MATLAB©.  The t-statistic and p-value were 

saved for each voxel in the image volume.  Regions-of-interest (ROIs) were found by 

applying a threshold on the statistical maps.  Those voxels that had p<.05 and a positive 

t-statistic were deemed voxels in which the control group had FA values that are 

statistically higher than the MD group.  Voxels that fit these criteria were placed into an 

ROI only if they were part of a cluster of at least six continuous voxels.  Any cluster 

smaller than 5 voxels was not included in further analysis.  These ROIs were then 

mapped onto the average FA map to determine the location of the ROI.  Any region that 

was in the middle of a large white matter tract was further analyzed, while those that 

were in gray matter, or on the edge of a white matter tract were discarded due to possible 

registration errors.  Once these regions were identified, the x-y-z coordinates of the ROI 

were found in order define as seed points for fibertracking.   
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To determine the relationship between FA and the WRAT-M scores, a linear 

correlation was performed with the entire cohort (MD, buffer, and control groups).  The 

correlation was done on a voxel by voxel basis using MATLAB©, which created maps of 

the p-value and correlation coefficient for each voxel.  To determine regions of interest, a 

threshold of p<.05 and r>.3 was placed on each voxel.  Voxels that fit these criteria were 

placed in an ROI only if it was part of a cluster that was at least six pixels in size.  This 

process was repeated to determine the relationship between FA and WRAT-R scores.  

The ROI’s for WRAT-M and WRAT-R were displayed with different colors on an 

average FA map to determine location and overlap.  Any ROI in gray matter or on the 

edge of a white matter tract was not included in further analysis.  Once these regions 

were identified, their x-y-z coordinates were found in order to define seed points for 

fibertracking.   

Correlation analysis was also performed relating each subject’s FA map to fMRI 

activation during the four in-magnet tasks performed by each participant.  The fMRI 

activation is quantified by the relative signal change in a particular region associated with 

task performance.  The higher the coefficient, the more activation there was in the region.  

Activation in several regions were taken from the parallel fMRI study to determine the 

relationship between FA and cortical function.  A voxel-by-voxel correlation was 

performed in MATLAB© between each subject’s activation and FA value.  A statistical 

p-value map was created and ROI’s were found using a threshold of p<.05 and a cluster 

size of 6.  Any ROI deemed to be in gray matter or on the edge of a white matter tract 

was not included in further analysis.  Once the regions were found, the spatial coordinates 

were found in order to define seed points for fibertracking.    
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Once all of the regions had been found for all tests, they are mapped onto each 

subject’s individual FA map in the common space.  This masks out each region in order 

to find the FA values for that particular region and subject.  The mean FA of the ROI for 

each subject is recorded.  These FA values are used to determine the relationship between 

FA scores and the participant’s performance on the in-magnet tasks using SPSS®. 

 

Fibertracking 

 It is often difficult to determine the anatomical location of an ROI judging from a 

two-dimensional image FA.  It is useful to use this ROI as a seed point for fibertracking.  

The ROI coordinates are found, and a backwards deformation field is applied.  This 

converts the ROI coordinates back into the subject’s native DTI space, where 

fibertracking can take place.  A control’s DTI dataset was used to do the fibertracking of 

all the seed points.  Once these regions are mapped onto the native DTI space, the PRIDE 

fibertracking tool takes the information from the DTI scans (direction vectors and FA 

values) and ‘steps’ in the direction of the fiber.  The program keeps tracking the fiber 

until either the fiber changes direction at an angle that is too steep, or the FA value falls 

below a certain threshold.  The FA threshold that was used for this study was .25.   

 Each region was used as a seed point and a tract was found for each case.  If there 

was reason to believe that two regions were connected by a fiber, then the two regions 

were entered as seed points and the program only found fibers that crossed through both 

seed points.  Fibertracking aided greatly in identifying the anatomy of the ROI’s found in 

the statistical analyses. 
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CHAPTER III 

 

RESULTS 

 

 Many white matter regions were found to correlate with WRAT-M scores, 

WRAT-R scores and functional imaging coefficients.  Each ROI is mapped onto a 

averaged FA map in the sagittal plane.  The slices are numbered from 1 to 85, with the 

first slice being the left side of the brain and 85 the right.   

 

Sagittal Slices 

 

Slice 24 

 The first region was found in the left parietal lobe of the brain, based on the linear 

correlation analysis (Figure 21).  The t-test between the control and math difficult groups 

confirms a region in the left parietal area that shows the FA values are significantly 

higher for the control group than the math difficult group (Figure 22).  An anatomical 

dataset confirms the location of the ROI (Figure 23).  Using this region as a seedpoint for 

fibertracking produces a fiber that runs in a horseshoe pattern into the cortex of the left 

parietal area of the brain (Figure 24).  A second branch protrudes from the seedpoints and 

is believed to be part of the inferior longitudinal fasciculus.  
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Figure 21. Region (red) in which FA correlates FA with WRAT-M scores. 

 
Figure 22. Group t-test and linear correlation analyses.  (a) Regions found using linear 
correlation technique correlating math score with FA, (b) regions found from both t-test and 
linear correlation with red regions indicating linear correlation test, blue regions found using the 
t-test, and pink regions indicating regions were there is a linear correlation between FA and math 
scores and the control group has a significantly higher FA score than the math difficult group 
according to the t-test, (c) regions where the control group has  significantly higher FA scores 
than the math difficult group. 
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Figure 23. Anatomical location in (a) sagittal, (b) axial, and (c) coronal planes of ROI in left 
parietal lobe where FA is correlated with WRAT-M. 

 
Figure 24. Fibertract (green) using left parietal region (see Figure 21) as seedpoint (yellow). (a) 
Sagittal view, (b) 3D view.  One fiber runs in a horseshoe orientation to the corttex of the left 
parietal lobe. A second fiber is part of the ILF.     

This same slice also included regions that showed a relationship between FA 

values and the WRAT-R scores (Figure 25).  One of the regions is found to be correlated 

with both WRAT-M and WRAT-R scores, which fibertracking confirms is part of the 

ILF.  A reading only region is also found in the superior longitudinal fasciculus, which is 

confirmed by fibertracking.   
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Figure 25. Regions in which FA correlated with math and reading, with corresponding 
fibertracts. (a) Regions correlated with reading (blue), math (red), and both reading and math 
(pink).  (b) Tract of math region in left posterior lobe, (c) tract of region correlating with both 
reading and math indicating inferior longitudinal fasciculus, the color of the tract indicates fiber 
direction, (d) sagittal view of tract through the reading region that is part of superior longitudinal 
fasciculus, (e) axial view of reading tract.  

 

Slices 26-28 

The second region found that correlates FA with WRAT-M scores is shown in the 

left occipital region of the brain (Figure 26).  This region is relatively large as it is found 

in three consecutive slices (Figure 27).  Fibertracking confirms the location of this ROI 

(Figure 28). 
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Figure 26. Anatomical location of region found in left occipital lobe correlating FA with WRAT-
M. 

 
Figure 27. Region correlated with WRAT-M in (a) slice 26, (b) slice 27, and (c) slice 28). 

 
Figure 28. Fibertract of region in occipital lobe. 
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Slice 29 

 Two regions correlating FA with WRAT-M were found in this particular slice  

(Figure 29).  These regions include a frontal and an occipital location (Figure 30).   

 
Figure 29. Regions in which FA was correlated with WRAT-M (red) and regions found to have a 
significant difference between control and MD groups (blue).  Pink voxels display overlap 
between the two analyses.  The red parietal region was disregarded due to low FA values (FA < 
0.2). 

 
Figure 30. Anatomical locations of regions correlated with WRAT-M.  (a),(b), and (c) show the 
sagittal, axial, and coronal views, respectively, of the frontal region, while (d),(e), and (f) show 
the location of the occipital region. 
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 This particular slice also displayed a relationship between FA values and the 

WRAT-R exam (Figure 31).  One of these regions overlapped with the frontal region 

found in the math correlation, while two other regions were found in the pre-frontal 

portion of the brain.   

 
Figure 31.  (a) Regions in which FA was correlated with WRAT-M (red), and WRAT-R (blue).  
Pink voxels display overlap between the two regions.  (b) Sagittal and (c) coronal views of the 
fibertract using the seedpoint from the circled reading region in (a).  

 

Slice 30 

 Slice 30 displayed regions that correlated with both WRAT-M and WRAT-R 

(Figure 32).  A frontal region shows overlap between regions that correlate with both 

WRAT-M and WRAT-R.  A prefrontal region is found that correlates with WRAT-R 

only.   
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Figure 32. (a) Regions correlated with WRAT-M (red), and WRAT-R (blue) in slice 30.  Pink 
voxels display overlay between the two regions.  (b) Sagittal view of the fibertract using the 
seedpoint from the circled reading region in (a). 

 

Frontal Region -  Slices 27-31 

 The frontal ROI in which FA was shown to correlate with both WRAT-M and 

WRAT-R is a large region that spans over five sagittal slices (Figure 33).  The two 

leftmost slices (27,28) show this frontal region is correlated to only the WRAT-M test, 

while the others (29-31) show the region correlates with both scores.  Fibertracking of 

this region shows that this is local fibertract, possibly terminated medially by partial 

volume averaging (Figure 34). 
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Figure 33. (a-e) Sagittal views of continuous slices with frontal ROI circled.  Red voxels show 
correlation with WRAT-M, blue voxels show correlation with WRAT-R, and pink voxels show 
overlap.   

 
Figure 34. (a) Coronal and (b) axial view of fibertract of frontal regions found in slices 27-31. 
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Math Region Correlations Between FA and In-Magnet Math Tasks 

Several of these math regions were found to correlate with  in-magnet math task 

performance.  Table 3 shows the correlation of the region found in the parietal area of 

slice 24, the occipital slices in 26-28, and the frontal regions in slices 27-31 (Table 3). 

Table 3.  Correlation of FA in ROI with in-magnet task performance.  Note: A=Approximation, 
PR=Procedural, EC=Exact Calculation, PJ=Proximal Judgment, RT=Reaction Time, PC=Percent 
Correct.  See Figure 15 for details. 

A RT A PC PR RT PR PC EC RT EC PC PJ RT PJ PC WRAT-M WRAT-R

Parietal 24 Pearson Correlation -0.07 .583** -0.04 .511** -0.096 .634** 0.108 .487** .570** .426*

Sig. (2-tailed) 0.73 0.00 0.84 0.01 0.63 0.00 0.58 0.01 0.00 0.02

Occipital 26 Pearson Correlation -0.024 .629** -0.04 .764** -0.195 .583** 0.023 .714** .594** .555**

Sig. (2-tailed) 0.91 0.00 0.84 0.00 0.32 0.00 0.91 0.00 0.00 0.00

N 27 28 27 26 28 28 28 28 28 28

Occipital 27 Pearson Correlation 0.004 .659** -0.084 .637** -0.232 .490** 0.081 .565** .519** .481**

Sig. (2-tailed) 0.99 0.00 0.68 0.00 0.24 0.01 0.68 0.00 0.01 0.01

N 27 28 27 26 28 28 28 28 28 28

Occipital 28 Pearson Correlation -0.108 .497** -0.09 .463* -0.327 .452* -0.115 .424* .534** .417*

Sig. (2-tailed) 0.59 0.01 0.66 0.02 0.09 0.02 0.56 0.02 0.00 0.03

N 27 28 27 26 28 28 28 28 28 28

Frontal 28 Pearson Correlation 0.04 .564** 0.061 .718** -0.119 .632** 0.083 .509** .588** .543**

Sig. (2-tailed) 0.84 0.00 0.76 0.00 0.55 0.00 0.68 0.01 0.00 0.00

N 27 28 27 26 28 28 28 28 28 28

Frontal 29 Pearson Correlation 0.162 .605** 0.025 .711** -0.205 .616** 0.012 .543** .592** .677**

Sig. (2-tailed) 0.42 0.00 0.90 0.00 0.30 0.00 0.95 0.00 0.00 0.00

N 27 28 27 26 28 28 28 28 28 28

Frontal 30 Pearson Correlation 0.216 .498** 0.021 .598** -0.275 .493** -0.119 .428* .528** .702**

Sig. (2-tailed) 0.28 0.01 0.92 0.00 0.16 0.01 0.55 0.02 0.00 0.00

N 27 28 27 26 28 28 28 28 28 28

Frontal 31 Pearson Correlation -0.062 .507** -0.012 .539** -0.252 .486** -0.217 0.347 .524** .566**

Sig. (2-tailed) 0.76 0.01 0.95 0.00 0.20 0.01 0.27 0.07 0.00 0.00

N 27 28 27 26 28 28 28 28 28 28

                **

                  *

FA REGION

Correlation is significant at the 0.01 level (2-tailed).

Correlation is significant at the 0.05 level (2-tailed).
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Reading Region 

 An additional reading region was found in the left hemisphere (Figure 35).This 

region is the most medial found and is connected to the corpus callosum.   

 
Figure 35 (a) Additional region to correlate with WRAT-R scores.  (b) Fibertract of circled 
region in (a). 

 

Correlations with fMRI 

 One region was found to correlate with fMRI activation (Figure .  This region was 

found in the left parietal cortex during the procedural in-magnet math task.  This is very 

similar to the region found to correlate with WRAT-M in slice 24.  Fibertracts were 

found that cross both regions, and extend to the left parietal cortex, where the fMRI 

activation occurred.  
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Figure 36. Correlation with fMRI.  (a) Left parietal ROI in which FA correlated with WRAT-M 
score.  (b) Left parietal ROI correlating with fMRI activation during the procedural in-magnet 
task.  (c) Fibertract that enters both regions found in (a) and (b). 
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CHAPTER IV 

 

DISCUSSION 

 

 This study found many regions in the white matter in which children with average 

math ability had a higher FA scores than those with math difficulty.  In most of these 

regions FA was correlated with math ability in the entire study population.  The largest 

regions were found in the left hemisphere, mainly in the parietal and occipital regions.  

These cortical areas had been previously linked to functional activation during mental 

math calculations, including the HIPS and posterior superior parietal lobe.  Fibertracking 

of these regions found tracts that terminate in the cortex of the parietal and occipital 

lobes, maintaining the possibility that there is communication between the two cortical 

areas during certain math tasks.  (Figure .  Each of these regions was significantly 

correlated with performance in all of the math tasks, however there was no correlation 

between FA and reaction time.   

 
Figure 37.  Parietal and occipital fibertracts.  (a) Parietal tract. (b) and (c) Occipital tract in 
sagittal and axial views.   
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 Using fMRI activation measures, it was found that there is a correlation in the left 

parietal lobe between FA and functional activation during a proximal judgment task.  

This cortical activation was also found in the left parietal lobe in the proximal judgment 

task, suggesting that the fMRI region supplies axons to the white matter region where the 

correlation is seen.  This confirms previous studies linking math ability and the left 

parietal lobe, as well as our hypothesis of a link between functional activation and white 

matter integrity in children with math difficulties.   

There was also a large region in the frontal lobe in which FA was correlated with 

math ability, with most of the region also correlating with in-magnet task performance.  

This is an unexpected result as it was hypothesized that there would only be correlation in 

the parietal and occipital regions.  Further analysis showed that these same frontal regions 

are also correlated with reading ability, suggesting that there is a relationship in the white 

matter tracts between reading procedures and math calculations.  This frontal region 

could provide a passage way connecting math areas in the parietal lobe with regions in 

the frontal lobe in order to access working memory needed in math computations.  

 In addition to the regions correlated with math ability, there were many regions 

found in the white matter that correlated with reading ability only.  Tractography 

confirms these lie in the superior longitudinal fasciculus (SLF), corona radiata, and 

corpus callosum.  This is encouraging because previous studies suggest these fibers are 

highly likely to be involved in reading  (Figure 38). 
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Figure 38.  Fibertracts of regions correlated with reading ability found in current study.  (a) 
Region (yellow) in SLF. (b) Region (yellow) in corona radiata. (c) Region (yellow) found in 
anterior corpus callosum.  These are similar to the regions in Figure 14.   

 

 Although both reading and math computations involved a complex system of 

cortical and white matter networks, there is evidence that they use independent white 

matter bundles in certain occasions and share common bundles in others.  This study 

found that math computation is highly related to white matter integrity in the left parietal 

and occipital regions of the brain, whereas reading is correlated with white matter FA in 

the SLF, corpus callosum, and corona radiata.  Math and reading share a white matter 

tract in the frontal lobe.  In order to understand the underlying problem in learning 

disabilities such as these, it is necessary to find how these two complex cognitive 

functions relate to one another, both in white matter structure and in cortical activation.    

There are many questions that need to be answered regarding white matter 

tractography, reading, and math ability.  The largest question is if this evidence is correct 

and if so, whether the white matter deficit can this be reversed.  Is there an intervention 

method that can repair neural networks so they function as well as in a child with average 
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ability?  At what age should intervention take place?  Although intervention is critical in 

advancing the skills of the child, especially those with difficulties, there is much 

skepticism that this intervention will change or repair neural networks.   

Regions in which FA was negatively correlated with math ability were not 

studied, although there is evidence that these regions exist in a limited number of white 

matter tracts.  These regions may give some insight into how children with math 

difficulties have adapted to having limited FA in key math regions.  These brains may 

have created alternative routes for cortical processing during math computations, which 

may result in difficulties in math computations.  If indeed there are such regions, where 

do they lead?  What cortical activation is alternatively taking place such that white matter 

tracts are ‘recruited’ in children with math difficulties?  Children with math difficulties 

must utilize an alternative neural network, but it remains to be seen exactly what network 

and to what extent it is utilized. 

 

Future Aims 

This study has given insight into the neural processes engaged during math 

computation, however it also provides many more questions requiring answers.  Certainly 

a high priority is to incorporate more children into the study, especially children 

predisposed to math difficulty in order to answer these questions.  The first aim is to 

work with fMRI results and determine the relationship between the DTI results and the 

cortical activations seen in functional imaging.   

The second aim is to determine the relationship between intervention and white 

matter integrity.  It has been proposed that a cohort of children with math difficulties be 
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imaged pre-intervention and then imaged again after a period of intense math 

intervention.  These data will be analyzed to determine if there is a physical difference in 

the white matter makeup between the pre-intervention scan and the post-intervention 

scan.    

A third aim is to find regions in the white matter that show a negative correlation 

with FA, or regions in which children with math difficulties show a higher FA than the 

controls.  This will provide information as to how children with math difficulties utilize 

alternative networks during math computation.  Along the same lines, it would be 

necessary to determine if there are higher functional activations during certain tasks in 

children with math difficulties by using fMRI.  These two imaging datasets can be 

combined to determine a relationship between cortical functioning and white matter 

microstructure.   
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CHAPTER V 

 

CONCLUSIONS 

 

The results found in this study suggest there are regions in the brain in which 

white matter integrity is compromised in children with math difficulties.  This was found 

by correlating FA values with math ability.  If these deficits in white matter can be found 

early in a child’s life, it may be possible to provide intervention, change the 

developmental trajectory of white matter pathways, and enable the white matter to 

become more like that in children with average math ability.  Several regions were also 

correlated with reading ability, mainly in the left SLF, coronal radiata, and anterior 

corpus callosum.  These findings were independent of math ability, although an 

underlying relationship has yet to be investigated.  Future work will investigate the 

relationship between reading and math ability and how their respective cortical 

processing utilizes white matter tracts.   
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APPENDIX A 
 
 
 

SAMPLE CONFIGURATION FILE FOR RIGID REGISTRATION 
 
 
 

[Number of image pairs (default: the number of reference images)] 
1 
 
[*File name of the reference image] 
/home/lorangct/craig/DTI_Rotate/Math_102_epiT2.img 
 
[*File name of the target image] 
/home/lorangct/craig/3D_Scans/Math_102_3D.REC 
 
[File name of the input transformation] 
 
 
[Format of the input transformation: 1-parameters 2-deformation field 3-initial position 
(default: 1)] 
 
[File name of the reference registered to the target] 
/home/lorangct/craig/DTI_Rigid_Registration/Trial_2/Math_102_3D_reg.REC 
 
[File name of the target registered to the reference] 
 
[File name of the output transformation from the reference to the target] 
/home/lorangct/craig/DTI_Rigid_Registration/Trial_2/Math_102_3D_reg.mat 
 
[File name of the output transformation from the target to the reference] 
 
[Format of the output transformation file: 1-parameter file 2-deformation field file 
(default: 1)] 
 
[*Dimensions of the reference image] 
128 128 60 
 
[*Dimensions of the target image] 
256 256 170 
 
[*Voxel sizes of the reference image in millimeters] 
2 2 2  
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[*Voxel sizes of the target image in millimeters] 
1 1 1 
 
[Orientation of the reference image in LRPASI (default: 2 -3 -1)] 
1 2 3 
 
[Orientation of the target image in LRPASI (default: 2 -3 -1)] 
 
[Header size of the reference image in bytes (default: 0)] 
 
[Header size of the target image in bytes (default: 0)] 
 
[Data type of the reference image: 1-uint8; 2-int16; 4-int32; 6-float; 7-double (default: 2)] 
 
[Data type of the target image: 1-uint8; 2-int16; 4-int32; 6-float; 7-double (default: 2)] 
 
[Byte order of the reference image: 0-big endian(Sun); 1-little endian(Intel) (default: 0)] 
1 
 
[Byte order of the target image: 0-big endian(Sun); 1-little endian(Intel) (default: 0)] 
1 
 
[Intensity window of the histogram of the reference image (default: min() max())] 
0 500 
 
[Intensity window of the histogram of the target image (default: min() max())] 
0 300 
 
[Intensity range of the background of the reference image (default: 0 0)] 
 
[Intensity range of the background of the target image (default: 0 0)] 
 
[ROI in the target image (default: 0 dx-1 0 dy-1 0 dz-1, given the dimensions are dx dy 
dz)] 
 
[Sampling intervals of the target image (default: 1 1 1)] 
 
[Reformat the target image before registration: 0-Auto; 1-Yes; 2-No (default: 0)] 
 
[Smooth the images before registration: 1-Yes; 2-No (default: 1)] 
 
[Number of bins in the reference and target image histograms (default: 64 64)] 
 
[Type of interpolation used in the reference image: 1-trilinear; 2-partial volume (default: 
2)] 
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[Optimization order (default: 1 2 4 5 6 3 0 0 0 0 0 0)] 
 
[Step sizes of optimization (default: 1 1 1 1 1 1 .1 .1 .1 .1 .1 .1)] 
 
[Powell parameters: pfTol pMaxIter bxTol bMaxIter (default: 1e-3 100 2e-4 200)] 
 
[Number of resolution levels (default: 2)] 
 
[Registration criterion: 0-MI; 1-NMI (default: 0)] 
1 
 
[Initial position: (default: 0 0 0 0 0 0 1 1 1 0 0 0)] 
 
[File name of the input evaluation points] 
 
[File name of the output evaluation points] 
 
[Mapping direction of the evaluation points: 0-reference=>target; 1-target=>reference 
(default: 1)] 
 
[Unit of the evaluation points: 0-pixel; 1-millimeter (default: 0)] 
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APPENDIX B 
 
 
 

SAMPLE CONFIGURATION FILE FOR NON-RIGID REGISTRATION 
 

 
 
SOURCE: 
c:\src1.vol 
c:\src2.vol 
0 
 
TARGET: 
c:\trg1.vol 
c:\trg2.vol 
0 
 
256 
256 
198 
1 
1 
 
PARAMETERS: 
15 
2 
2 
3 4 5 6 7 8 9 10 12 16 20 26 32 40 50 
3 4 5 6 7 8 9 10 12 16 20 26 32 40 50 
6 32 
0 127 
0 127 
32 
32 
0.3 
 
CONFIGURATION: 
1 
0 
1.6 
0.0001 
0.0005 
0.01 
0.1 
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0.0001 
1 1 1 
1 
 
OUTPUT: 
c:\src1_to_trg1.vol 
c:\src2_to_trg2.vol 
 
OUTPUT: 
c:\trg1_to_src1.vol 
c:\trg2_to_src2.vol 
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