
HybrIDS: EMBEDDABLE HYBRID INTRUSION DETECTION SYSTEM

By

Adrian Peter Lauf

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

December, 2007

Nashville, Tennessee

Approved:

Professor William H. Robinson

Professor Richard A. Peters

ii

TABLE OF CONTENTS

Page

TABLE OF FIGURES ... iv

LIST OF ACRONYMS ... vi

ACKNOWLEDGMENTS .. vii

ABSTRACT ... viii

Chapter

I. INTRODUCTION ..1

 Organization ...5

II. CONCEPT PRIMITIVES AND SCENARIO ...6

 Scenario: ADS-B ...6

 Changes to the ADS-B Model ...7

 System Integration ...9

 Reputation Systems ..11

 Operational Cycle Division and Scalability ...11

III. MAXIMA DETECTION ..14

 Ordering of Data ..17

 DPC Configuration ..18

 Implementation ..19

 Performance ...20

IV. CROSS-CORRELATIVE IDS ...24

 Thresholding ..25

 Implementation ..26

 Performance ...28

 False Positives ..31

iii

V. HYBRID IDS ..32

 Hybrid State Control Flow and MDS/CCIDS Transition35

 Implementation and Architecture ..37

 Performance ...40

 Hybridized Outlook and Discussion ..45

VI. CONCLUSION..48

APPENDIX A – Trial Run Data ..51

REFERENCES ..54

iv

TABLE OF FIGURES

Figure Page

1. Example of one IDS per node ...9

2. Example behavioral PDF ..15

3. Behavioral Abstraction Level (#1 used) ...16

4. Detected Local Maximum - possible indicator of deviant behavior17

5. MATLAB-based implementation system diagram ...18

6. Variation of the single detected node number over time (as DPCs increase)21

7. CCIDS Java component diagram ..27

8 Average required threshold for CCIDS convergence ...28

9. Required threshold for CCIDS convergence with varied deviant node pervasion

and network size ..30

10. Represents the returned gamma function value to yield IDS transition33

11. Surface of possible Tau values (for IDS transition)..34

12. Normalized surface representing IDS transitions based on selected Tau

(dependent on environmental configuration).. 35

13. IDS transition logic flowchart ...36

14. HybrIDS Java component diagram ...38

15. Enumerated transition cycles vs. percentage of deviant nodes40

16. Average transition cycles vs. percentage of deviant nodes40

17. Surface of required transition cycles vs. percentage of deviant nodes and size of

network ...41

18. Enumerated number of DPCs (total) vs. deviant node pervasion42

19. Average number of DPCs (total) vs. deviant node pervasion42

v

20. Surface of total IDS DPCs vs. percentage of deviant nodes vs. total network

size; High peaks occurring above 22% pervasion indicate significant

instability/low rate of convergence. Some non-converged values were averaged.42

vi

LIST OF ACRONYMS

ARM9 – ARM embedded processor version 4 variant 920T

AES – Advanced Encryption Standard

CCIDS – Cross-Correlative Intrusion Detection System

(3)DES – Digital Encryption Standard

DCC – Data Collection Cycle

DPC – Data Processing Cycle

HybrIDS – Hybrid Intrusion Detection System

IDS – Intrusion Detection System

MDS – Maxima Detection System

WEP – Wired Equivalency Protection

vii

ACKNOWLEDGMENTS

 It is with sincere gratitude that I wish to thank my advisor, Dr. William H.

Robinson, for his continued support and guidance during the development of the IDS

systems and accompanying documents. Without his help, this work would not exist. I

also thank Dr. Richard A. Peters for his guidance in algorithmic development and

methodology – key to developing the cross-correlative IDS section of this work. To my

parents, Drs. Peter K. and Norma C. Adragna Lauf my gratitude for their constant care

and their professional revision of my work. To my girlfriend Carrie, I give my thanks for

her continued support and help during the development of this work. Finally, I wish to

thank TRUST (The Team for Research in Ubiquitous Secure Technology), which

receives support from the National Science Foundation (NSF award number CCF-

0424422) and the following organizations: AFOSR (#FA9550-06-1-0244) Cisco, British

Telecom, ESCHER, HP, IBM, iCAST, Intel, Microsoft, ORNL, Pirelli, Qualcomm, Sun,

Symantec, Telecom Italia and United Technologies.

viii

ABSTRACT

 In order to provide preventative security to a homogeneous device network,

techniques in addition to static encryption must be implemented to assure network

integrity by identifying possible deviant nodes within the collective. This thesis proposes

a set of algorithms and techniques for an intrusion detection system, which when

combined, provide a two-stage approach that seeks to reduce or eliminate training period

requirements, while providing multiple anomaly detection and a degree of self tuning. By

utilizing a high level of behavioral abstraction, these intrusion detection techniques can

be applied to a broad range of devices, network implementations, and scenarios. Each

device node is supplied with an embedded intrusion detection system which allows it to

monitor inter-device requests, enabling machine learning techniques for purposes of

deviant node analysis. The two principal methods, a maxima detection scheme, and a

cross-correlative detection scheme, are combined to create a two-phase detection scheme

that can successfully determine deviant node pervasion percentages of up to 22% within

the homogeneous device network.

1

CHAPTER I

INTRODUCTION

 When analyzing the broad range and applications utilizing concepts and designs

for embedded systems, the importance of inter-device communications becomes

extremely clear: communication and collaboration among devices serve as the backbone

for system productivity in a highly networked environment. For this reason, there are

implications in the methods, protocols and design considerations whereby

communication is established, and arguably just as important, protected. Thus,

information security, in its many forms, provides a needed level of protection to

communications protocols present within the scope of interconnected devices. For the

most part, information security relies on preventive methods to protect content, using

static techniques such as obfuscation of source, encryption of data (satisfying the need for

confidentiality), and source integrity by means such as digital signatures. As a first line of

defense, static security methods are steadfast and proven methods of protecting data; The

RSA[1-4] encryption standard, 3DES[4, 5], and AES[6, 7] all remain, at the time of this

writing, effective and secure.

 Perhaps the biggest obstacle to providing accurate information security using

static methods is that a point of trust is always required; at some point, there must exist a

trusted resource relationship, whether it is in the transmission of a public key
1
, or a

1
 RSA encryption relies on the difficulty of factoring near-prime numbers; because a common public key

combined with a strong private key yields a nearly un-factorable challenge, RSA is considered safe.

2

shared secret. Because of this trusted relationship, there always exists the possibility that

despite the integrity and strength of the algorithm being used, the static method can be

defeated, however unlikely the scenario may be. For instance, WEP
2
 [8, 9] encryption

commonly used to secure wireless networks relies on a solid, trustworthy encryption

method that is traditionally known to be safe. However, the particular implementation of

the algorithm within the scope of the wireless network protocol is flawed [10], allowing

the security protocol to be cracked within minutes, given enough data, time and

resources.

 Because of this point-of-trust issue, the most disturbing problem with static

protection methods is that once broken, they are no longer able to ensure the

trustworthiness of the system to which they are applied. Even more problematic is

providing any sort of detection that the security implementation has been broken in the

first place. Although temporal breach protection solutions exist, such as

encryption/decryption key rotations and replacement algorithms, it would not be

unforeseen that broken once, the security scheme can be broken again. To ameliorate the

damage from such breaches, measures containing dynamic approaches to security must

be considered. In particular, intrusion detection provides means by which anomalies in

general system behaviors can be analyzed and graded on the threat they pose.

 Such a dynamic system would have the capabilities of securing a wide variety of

applications, from general networked computing to specialized, applied embedded

Recently, a commonly-held public key used for 1024-bit RSA encryption was defeated (indicating that the

private key could be factored without prior knowledge).
2
 Wired Equivalency Protection

3

devices sharing a network connection. An Intrusion Detection System
3
 may operate in a

variety of methods, such as performing individual packet-level analysis of incoming and

outgoing network traffic. Indeed, IDSs typically use packet monitoring [1, 7, 11-23] with

the aid of a probabilistic model to determine whether or not a network is the subject of an

intrusion. Primarily effective in determining intrusions in protocol-specific environments

where the range of input data is unbounded
4
, traffic-based IDSs are not as applicable to

the embedded systems paradigm. In this case, an applied computational scenario has been

established and localized to a set of known behaviors and parameters.

 This work describes an embeddable IDS that utilizes the known aspects of an

applied system’s communications network, whether present in an autonomous vehicle

collective or mobile sensor device network, to form the basis for accurate intrusion

detection in a low-power, high-level context. Two principal methods of intrusion

detection are proposed and analyzed, and ultimately hybridized to create a resultant IDS

that delivers the capability of detecting multiple intrusions along with low-resource

utilization and a desirable level of system accuracy.

 In order to provide a desirable level of intrusion detection, and of equal

importance, resistance to attempts to defeat the IDSs functionality and accuracy, the IDS

mechanisms presented in this work seek to thwart intrusion by making an attack much

more difficult to plan and execute. Of course, no IDS is perfect unless the operational

context is static and exactly prescribed before runtime, a case scenario that is not

considered as it is impractical to consider for real-world applications. Therefore, the IDS

3
 This document shall refer to an Intrusion Detection System with the acronym IDS

4
 Considered unbounded as the data contained in packets is not analyzed; the content is not considered

4

mechanisms presented here, and summarized by a hybridized approach, offer resistance

in various forms:

1. Requiring the attacker to have intimate knowledge of the system it is

attacking: In order to escape detection by an IDS, an attacker would need to

know all operational details with a high level of precision and determinism. This

is often information that is not accessible or available, and thus lack of intimate

knowledge makes planning difficult for an attacker.

2. Extending the attack time window to impractical lengths: Because the IDSs

use machine learning and statistical analysis methods over time, the attacker

would need to expand its mission timeframe so severely that the attack may not be

successful.

3. Requiring timed injections: An attacker must be able to time its injections and

pad its behavior with “normal” system behaviors so that its behavior does not trip

thresholds and monitoring techniques that rely on statistical inference and

temporal study. To do this, the attacker would need to master the “intimate

knowledge” point in this list, further complicating an attack.

 The points listed above present reasons by which a successful IDS can

thwart an attacker – by making the possible attack very difficult to plan, time, and

implement. The methods seen in the next chapters help to mitigate attack potential by: (1)

complicating a potential attack, (2) making it unfeasible, and (3) reducing the possibility

of network compromise.

5

Organization

 This thesis work will be organized as follows:

• Chapter Two: Necessary concepts for understanding IDS methodology,

constructs, and an example scenario

• Chapter Three: Description of the first IDS method, called Maxima Detection

• Chapter Four: Description of the second IDS method, called the Cross-Correlative

Intrusion Detection System

• Chapter Five: A description of a hybridized IDS, called HybrIDS

• Chapter Six: A conclusion detailing the overall implications of the methodologies

6

CHAPTER II

CONCEPT PRIMITIVES AND SCENARIO

 To better illustrate the functional aspects of the IDSs that will be described in the

next few chapters, it is worthwhile to introduce an operational scenario to examine the

application and contextual aspects of the IDS. In particular, this document will focus on

the benefits provided to an ad-hoc network comprised of homogeneous networked nodes.

Such a collective may be defined as a group of autonomous aircraft, ground vehicles,

networked media players capable of sharing and transmitting data, joint attack smart

munitions (such as the U.S. Military’s JDAM – Joint Directed Attack Munitions [24]), or

any other configuration of networked nodes that comply with the ad-hoc, homogeneous

requirement.

Scenario: ADS-B

 The case scenario presented here involves a modified version of the Automatic

Dependent Surveillance – Broadcast (ADS-B) system used to provide flight status

information and collision avoidance to a network of interconnected aircraft and ground-

based receiver stations. For this thesis, the focus will only be on inter-aircraft

communications.

7

 To gain an understanding of how an IDS might be integrated into such a broadcast

mechanism, it is useful to characterize the existing system. ADS-B broadcast messages

contain five unique, aircraft-centric data points and/or vectors, specifying:

• GPS Position information

• Altitude of the aircraft

• Rate of climb

• Velocity vector

• Aircraft ID tag

 These data points are broadcast typically at intervals of 2 Hz [25-28], and are

received by any nearby aircraft. Software implemented on various other modules aboard

the aircraft is then responsible for decoding the broadcast stream and performing

decisions according to the information presented.

Changes to the ADS-B Model

 Because IDSs are typically implemented in scenarios where bidirectional

communications is required, the current ADS-B specification is therefore not a proper

application of IDS technology. Because of this, the ADS-B specification has been

adapted to include the need for inter-aircraft requests, and two specific directives for

theoretical use in autonomous aircraft missions were added. The modifications are as

follows:

• GPS Position information request

8

• Altitude of the aircraft request

• Rate of climb request

• Velocity vector request

• Mission update request

• Redirection request

• Mission start request

• Mission end request

• Emergency/evasive action request

• Priority/dominance leader/follower change request

 The reader will notice that the “ID Tag” item has been removed from the previous

specification. It is assumed therefore that in performing bidirectional communications

with other aircraft nodes, the notion of the need for a specific aircraft identifier is handled

by the communications protocol itself, and thus abstracted away from the purposes of this

research.

 Six additional functions have been added to the ADS-B system specification,

along with the requirement that instead of a non-directed broadcast, each connected

aircraft node makes specific requests of other devices according to the newly-proposed

items listed above. The first new addition, that of a mission update request, simply is a

query to other connected aircraft to supply the requester with an updated profile of its

mission information. This allows for dissemination of group policy and provides an

updated group dynamics model to each node as time progresses. For instance, should one

9

aircraft identify a hazardous condition that is not immediately apparent to the rest of the

collective, subsequent update requests may provide a warning to the rest of the group as

the update request is propagated from device to device. The second action is a simple

direction change request. This may have several purposes, including collision avoidance

should sensor data to each of the nodes become unavailable, compromised, or obscured.

Other actions include emergency evasive actions, mission start/end changes, and the last

request, to change ordering or dominance in a series of aircraft, allowing for a change in

designated roles from one aircraft to another.

 This updated system model now represents a small-scale control protocol for a

network of autonomous aircraft. The aim of this thesis is not to explore this example

system; for reference purposes, it is simply stating a scenario to which the IDS may be

applied.

System Integration

 As stated in the introductory

material, an IDS employing traffic

analysis at a single point in a device

network is neither scalable (i.e., resists

performance degradation as the number of

devices increases) nor applicable to an ad-

hoc network setup, especially one

consisting of power-restricted devices Figure 1 - Example of one IDS per node

10

where strenuous computational power requirements yield a major disadvantage in

implementation. To combat this issue, all of the IDS systems and strategies discussed in

this document will circumvent a single point of analysis by allowing each connected

device node to run a specific hardware/software implementation of the IDS mechanism,

as seen in Figure 1. By using a parallel approach, we can enable multiple-agent feedback,

if required (though not discussed as a solution in this document) to provide data to a

variety of intrusion control methods (separate from detection in that it is a solution to a

detection) such as a reputation system
5
.

 Parallelism increases system scalability by removing the burden of analysis from

one machine monitoring the entire collective, to multiple devices monitoring only their

relevant intercommunications. For instance, in a traffic-based IDS, a collective of eight

nodes requires that the IDS monitors all eight nodes. In contrast, in a parallel IDS

strategy, let us assume that of those eight nodes, nodes A, B and C communicate. In this

case, the implemented IDS models, with reference to the IDS onboard node A, will only

need to monitor communications with nodes B and C, assuming that no other

communications occur. This brings up the important point that none of the methods

outlined in the next few sections self-monitor behavior – this would be more or less

redundant when considering a significantly large set of communicating nodes. Self-

referenced IDS mechanisms therefore will not be addressed in this document.

5
 Reputation Systems will be discussed shortly

11

Reputation Systems

 Buchegger and Le Boudec [29] introduce and detail different methods used to

form the basis for reputation systems, applicable to the ad-hoc network scenario. Their

work focuses primarily on developing a system of node-based reputations for

determining optimal and safe strategies for routing data among the nodes. In their work,

they show a variety of different trust-based reputation-building mechanisms by which

nodes that previously have not interacted with each other can determine whether or not

the nodes are trustworthy based on prior accumulated information about each respective

node.

 Central to their work is the propagation of reputation information among nodes

which forms the basis for the group-wide consensus about the trustworthiness of the

interconnected nodes. The IDS mechanisms detailed in this thesis focus not on trust

propagation and group decision making. Rather, the focus is on detection of an intrusion

based on the observations of a single node with reference to the collective in such a way

that for N nodes in the network there exist N different system state observations. For this

reason, the work presented here is not adherent to the concepts of a reputation system.

Operational Cycle Division and Scalability

 When considering performance issues related to embedded device networks,

scalability becomes of paramount importance in the determinacy of response time. To

this end, the methods proposed in this document utilize mechanisms to minimize

12

computational overhead and allow for expanded scalability through the implementation

of a division between data acquisition cycles of the various IDSs, and data processing and

analysis cycles. A cycle
6
 is defined as a “run” of the IDS during which either data is

collected or analysis is performed.

 Data Collection Cycles
7
 are dedicated to handling input requests from connected

agent nodes. These cycles are of low computational intensity, as they simply map

received requests to a predefined structure maintaining a history of external requests. In

the case of the IDSs mentioned here, this structure will be referred to as the Agent

History Table, which contains all requests received during the IDS runtime. A data

collection cycle is run for every input data point, since the update process is lightweight,

using only an increment operation and a node information update request. The vast

majority of all cycles performed by the IDS fall under the DCC category. This allows for

stabilization of input data patterns for purposes of statistical analysis.

 In contrast to a DCC, a Data Processing Cycle
8
 is a CPU-intensive IDS run that

performs the analysis required to identify deviant agents from the node collective.

Performing a meaningful analysis is dependent on the data collected. This has two

ramifications; First, it means that power and computational resources can be saved by not

performing analysis cycles before sufficient data input has been received. Second,

modifying the execution point of a DPC enables system flexibility by allowing a

statistically significant change in observed behavior to occur before performing a new

analysis on the received request inputs. Utilizing the same data structure updated by the

6
 Cycle and Iteration will be used interchangeably

7
 Abbreviated as DCC, or DC if using the word “cycle” verbosely

8
 Abbreviated DPC or DP if using the word “cycle” verbosely

13

DCC, the DPC portion of the IDSs determines deviant nodes based on the IDS methods

described in the following chapters. Typically, the DPC is run based on the number of

inputs received and the number of nodes in the collective. For all three IDS scenarios,

excluding the initial exploratory maxima detection system implementation, the DPC is

run when a counter measuring the number of DCCs exceeds a value computed by the

product of the number of known, locally connected nodes and the number of possible

discrete system behaviors.

 The performance aspects, accuracy, and power/overhead concerns are directly

affected by the DCC/DPC execution ratios as the IDS runtime progresses. More DPC

executions cause more computational overhead, but are necessary for any data analysis to

occur. When properly spaced with enough DCC executions, the IDS’s performance can

be shaped to scale linearly, or even negligibly as the size of the networked node

cluster is linearly increased.

14

CHAPTER III

MAXIMA DETECTION

 This section of the document will explain in detail the single-anomaly-detection

mechanism mentioned in the introduction, and hereby referred to as a Maxima Detection

System
9
 [30]. The purpose of this detection algorithm is to provide an accurate

mechanism for detecting single anomalies within the context of the embedded systems

platform, while maintaining a simple and lightweight execution profile. Within the scope

of the Hybrid IDS (as seen in Chapter Five), the MDS allows for identification of either

one or zero suspicious nodes for calibrating the sensitivity of the Cross-Correlative

Intrusion Detection System.
10

 Therefore, the MDS is designed primarily as a first-defense

and calibration stage for CCIDS to remove the large number of false positives inherent to

that approach.

 MDS relies on the creation and updating of probability density functions that

approximate the observed behavior between nodes interacting with a specific host node.

To simplify a behavior-based model for purposes of creating an experimental version of

the MDS, behaviors were categorized statistically and represented by integral data values,

one per integer, creating an enumerated list of actions and methods. For instance, in the

scenario of a series of networked autonomous aircraft, a request for position data might

be assigned logically to integer value ‘1’, a request for attitude data might map to a value

of ‘2’, and so on. Each of the behaviors is generated according to a probability density

9
 Abbreviated as MDS

10
 Abbreviated as CCIDS

15

function (PDF) attributed to the frequency of that behavior’s occurrence in an actual

embedded, real-time system. All probabilities add to 1 to completely represent the

possible behavior space of the system. Figure 2 demonstrates this concept within the

scope of a system containing nine separate behaviors. This capability allows the IDS to

move beyond the scope of a system-specific implementation, abstracting operations at

one of the highest possible levels, (level 1 is used in this paper) as seen in Figure 3.

 The classification of an agent as

deviant is a two-fold process. The first step

involves the individual, or local-scope

determination of deviant behavior by each

agent. This is computed by calculating the

mean probability of a behavior for the entire set of agents. Let γ be the number of agents

in the system and let β represent the number of behaviors present in the system. Let η� × �

represent a matrix of dimensions γ × β containing the historically and temporally-updated

probabilities of a certain behavior ξ. The local-scope mean probability vector, φ is

computed for each node � in (1).

�� = ∑ η� × �

��
 (1)

Figure 2 – Example behavioral PDF

16

 The

vector φ is

then

analyzed for

global and

local

maxima.

Since

most of

the behaviors will likely be statistically represented by a larger maximum peak, deviation

in the system behavior will likely manifest itself eventually over time as a smaller, local

maximum, as seen in Figure 4. This smaller local maximum can be correlated to a

particular behavior, ξ, as the maxima-finding algorithm is set to return a discrete location

of the occurrence of the maxima.

 The agent corresponding to the maximally-defined deviant behavior ξd is then

found by analyzing the column of data in the probability matrix η� × � corresponding to ξd

and then finding the row within that column containing the maximum value for the given

ξd with in a certain tolerance value τ, representing a probability value.

Figure 3 – Behavioral Abstraction Level (#1 used)

17

 The detection strategy

implemented by MDS therefore

allows for the detection of a

single anomaly within a minimal

requirement for time – a threshold

is used to detect whether the local

maximum should be flagged as

suspicious or not.

Ordering of Data

 MDS, because of its maxima detection mechanism, has an inherent requirement

for normalization of input data. This means that all the theory and methodology presented

here assumes Gaussian or other normalization of the data set. Figure 4 shows common

data represented by a Chi-Squared distribution, which allows detected maxima to be

much more easily distinguished, as far as the eye can see. To an extent, a Chi-Squared

distribution will yield optimal results, as “normal” behaviors are skewed to the left (or

right) while deviant behaviors, in an ideal circumstance, will be represented on the

opposite side of the mean behavioral vector PDF.

 Of course, theory differs from actual implementation and operation, and thus

deviant behaviors will not always be skewed properly. However, a generalized attempt at

ordering is essential to the proper functionality of MDS. The specific ordering

methodology is not discussed here, as the result data is generated using a pre-ordered set

Figure 4 - Detected Local Maximum - possible indicator of deviant

behavior

18

(the interactive requests are generated

such that the input results will have

some form of normalized ordering.)

However, it would not be difficult to

implement an ordering technique

based on simply tracking action/label

frequencies and then re-ordering the

behavioral frequency column labels

appropriately.

DPC Configuration

 Because maxima detection is based on accumulating a statistically significant

number of requests over time, having a greater number of nodes in the device network

will decrease the time required to stabilize the detected maximum. This is because a

greater collection of nodes yields more request data points and subsequently more

uniform average representation. Therefore, the smaller the node collective, the more

DCCs are required per DPC for stabilization purposes. Furthermore, more DPCs will

need to be run to converge accurately. This behavior is analyzed in the hybridized IDS

chapter.

Figure 5 - MATLAB-based implementation system diagram

19

Implementation

 The MDS was originally implemented in an exploratory phase using MATLAB 7

to determine its viability and performance. The detection system was comprised of nine

core modules, consisting of an agent controller execution program, followed by data

handling units, machine learning aspects, the maxima detection system itself, and the

simulated data generation portion. These components can be seen in Figure 5. Two

objects maintained the status of the system, and are identified by the shaded, three-

dimensional boxes. The first of which is referred to as a “behavior” unit, containing the

basic abstraction data including requesting node and the actual request made. The

behavior units themselves, corresponding over time to the average system state, were

managed though a behavior stack, containing a set of pushed behaviors received from the

interconnected nodes. The purpose of the stack was to delay an overall update to the state

of the system, allowing for a more stable, characteristic update containing more data

points, thereby eliminating the impact of a single data point on the stability of the system.

Once a preset number of behaviors was collected in the stack, the stack contents were

popped and averaged into the overall system profile. As an intermediary between the

average system representation and the behavioral stacks, a matrix representing individual

nodes and their behavioral labels is used to maintain the total number of interactions

present within the system. Useful for debugging purposes, this history matrix eventually

became one of the most important foundations in hybridizing MDS, and the cross-

correlating IDS, as will be seen in the section referring to the two-system hybridization.

20

 Because of promising results and a general degree of operability within the

simulation environment, MDS was ported to the Java 5 runtime standard, allowing for

ubiquitous device integration provided a Java Runtime Environment
11

 that could be run

on the platform in question. The Java implementation was added only within the context

of the hybridized IDS, so a free-form Java implementation of the MDS is not available

for evaluation as it relies heavily on an implementation framework comprising the two

systems, and derived from the cross-correlative IDS to be discussed in the next section.

Performance

 This section will discuss the performance of MDS with respect to deviant agent

pervasion – the density of malicious nodes expressed as a percentage of the homogeneous

device network. In order to maintain similar metrics through the course of this document,

the original MATLAB implementation will not be used as the benchmark case

application; rather, the efficacy of MDS will be analyzed as a performance component of

the hybridized IDS discussed in Chapter 5.

 Because MDS can only detect at most one malicious agent, it does not make sense

to discuss MDS performance in the case of more than one anomalous agent per device

network. This constraint leads to a very small measurable amount of description and

performance evaluation, so the metrics utilized for MDS performance will relate the

number of fluctuations MDS undergoes during its detection algorithm as the pervasion

density increases. To clarify this a bit, consider a case in which 30 device nodes exist on

11

 JRE

21

the homogeneous device network. If on this network, there exists a malicious node

pervasion of 20%, (i.e., six deviant agents exist), MDS will detect at least one of the six

nodes within its first iteration. However, during subsequent cycles, the exact detected

node may shift between any of the six potentially deviant nodes. This is expected

behavior, since the local maximum will shift among the various deviant nodes as time

progresses and more data is gathered.

 Because the most viable MDS implementation exists within the hybrid IDS

context discussed in Chapter 5, the discussion and data generated for and collected from

MDS mechanisms will be sourced from the hybrid IDS scenario. Despite this, the

performance and specifications are unique, in component context, to MDS behaviors and

system performance. For more information regarding actual data obtained from the MDS

component of the hybridized system, the reader is directed to Appendix A for raw data

and performance statistics.

22

 Figure 6 - Variation of the single detected node number over time (as DPCs increase)

 Figure 6 demonstrates that MDS is relatively stable in selecting a node to identify

with a fixed node cluster size of 20 agents, with a varying percentage of deviant nodes

from five to 27%. The number of nodes representing the deviant nodes always included

node number 20, and included more nodes progressively, adding 19, 18, 17, 16 and

eventually 15 as the pervasion percentage increased. Ironically, the greatest instability

occurs in one of the simplest test cases, yielding an incorrect initial identification of node

number 2. This initial identification anomaly shows that it is important to alter the

number of MDS cycles based on the context of the application. All other trials identified

correct nodes at all times, typically selecting node number n or (n-1) for a scenario

23

consisting of n nodes. This is primarily due to the statistical distribution of the PDF, and

is not a characteristic of MDS.

 Let it be noted that Figure 6 does not identify the number of detected nodes, but

rather identifies a single detected node number as the MDS progresses through DPCs. It

should be mentioned that the deviant node number index value is predetermined by the

dataset, and is not influenced by position; node number 20 was always detected in this

dataset because input conditions always specified the deviant behavior as occurring under

node 20, among others, for instance. MDS would just as easily identify a deviant node

placed at any other index (e.g., the deviant nodes being represented by node numbers 4, 5

and 6 in the collective of 20. Node 4, 5 or 6 would then be conclusively detected by the

MDS.)

24

CHAPTER IV

CROSS-CORRELATIVE IDS

 This section of the document will detail the system and methods of the cross-

correlative IDS portion, hereby referred to as a CCIDS
12

. Based on using the properties of

vector/matrix cross correlation[22], the CCIDS provides features not present in MDS

such as a greater response flexibility, and more importantly, the ability to detect multiple

anomalies within a collective of nodes. This is accomplished through the implementation

of a mathematical cross-correlation operation that assigns scores to individual node

behavior averages with respect to the overall system behavior. Like MDS, the CCIDS

utilizes the same level of abstraction to represent behaviors in the system. This allows

CCIDS to later be integrated and hybridized with MDS and allowing them to share

similar historical information that accurately and homogeneously represents the system

state. Also like MDS, the CCIDS utilizes a similar data structure, the agent history table,

to record and organize input system behaviors for eventual analysis. To see how CCIDS

uses this datastructure, let Λ represent a matrix of dimensions m x n containing the

binned, recorded request histories for m nodes and n classification labels. Let η represent

the row-summed and averaged vector derived from Λ containing an overall probability

distribution representing the overall state of the system according to the classification

labels. Lastly, let �� represent a transposed vector containing the individual averaged

probability distribution of a behavior for a particular node number � ∈ �. The scores ��

from the resulting cross-correlation are obtained by �� = � ∙ �� ∀ � ∈ �. (2)

12

 Cross-Correlative Intrusion Detection System

25

 The resulting vector containing the cross-correlation scores for each node is

analyzed according to a threshold specified in the IDS runtime environment. Although

the vector product operations are not significantly process-intensive for smaller number

of agents because the cross-correlation is performed on linear vectors, the nature of the

embedded platform requires the minimization of unnecessary computations to save on

power and resource requirements. To meet this goal, and to allow for the system to

experience change on a global basis without severely affecting the model’s integrity and

anomaly detection resolution, the cross-correlations are performed based on the number

of input requests received, regardless of their origins. This allows for the accumulation of

a statistically relevant number of request classifications to be added to each correlation

run, and minimizes the impact of a smaller-scale anomaly within a node that may not be

malicious but rather the result of an unforeseen consequence of the task being processed

at the time.

 With this control mechanism in place, the scores are analyzed by comparing each

score in (2) to an average composite score generated from all the score entries. Should

one or more nodes deviate from the average score according to a specified tolerance

value, the node is flagged as suspicious and added to a list containing suspected nodes,

maintained separately by each device.

Thresholding

 Central to permitting CCIDS deviant node identification, threshold-based

detection sets a point at which an individual node score must deviate from the

26

average/composite score to be flagged as suspicious. The selected threshold must be

particular to the application context in which the CCIDS is deployed, and thus must be

selected manually (or via a hybridized approach as detailed later in Chapter 5). The

results of selected thresholding are seen later on in this chapter, in Figure 9.

 The initial threshold values, ��, selected for CCIDS (and primarily the hybrid

approach in Chapter 5) stem from a 100% deviation in the average node score. For this

entire document, the dataset in use created an average score, ����, of approximately 0.2.

The determination of a deviant node is made if � ≥ ����� − ��� where ψ represents the

selected threshold, is true. Therefore, to create the initial threshold ��, the value was

originally set to 0.2 to represent the 100% deviation. This implies that only scores

exceeding the average by plus or minus 100% would register as suspicious. Of course,

such a case would be rare, and thus Figures 8 and 9 demonstrate initial thresholds

required for detection to converge via CCIDS, implying that 100% deviation is too

extreme a condition for most general purposes.

Implementation

 The CCIDS portion was originally implemented in the Java 1.5 framework, with

the intention of execution on a lightweight ARM9 development platform. The

implementation structure itself is designed to maximize modularity and implementation

flexibility. This also permitted integration of MDS to form the hybridized IDS discussed

in the next chapter with minimal modifications due to the object-oriented nature of the

IDS implementation.

27

 The IDS itself is composed of seven core class modules and a number of 3
rd

-party

helper objects. The modules are broken down as follows:

1. Manager application – responsible for instantiating the IDS environment and

managing its operation

2. NodeManager class – responsible for instantiating objects relating to each node’s

interaction histories. Spawns associated AgentHistoryTable instances, as well as

HistoryObjects.

3. HistoryObject – contains a vector mapping request instances for each node for

which the IDS is logging activity. For example, if the IDS is running on aircraft

A, HistoryObject instances are created for nodes B, C, and so on.

4. AgentHistoryTable – each IDS maintains one such object containing the overall

binned histories for all nodes versus all requests. Represented by Λ.

5. IDSEngine – This object is instantiated by the Manager to perform single or

multiple-anomaly detection based on data contained in the AgentHistoryTable

object instance. This unit is the

most critical component and

analytical tool of the IDS

system.

6. ScoreUnit – A helper

class used by IDSEngine

7. IOManager – used for

file-based or network-based

retrieval of requests made to the
Figure 7 - CCIDS Java component diagram

28

IDS’s host system.

Figure 7 shows the derivative arrangement of the CCIDS, with the Manager application

controlling overall execution and instantiating calls to the data collection, data

management, and score analysis modules.

Performance

 Unlike MDS, the CCIDS portion does not require a logical ordering of labeled

data into a Gaussian or other normalized distribution. This reduces dependence on input

data ordering and organization, but results in an extreme dependence on tuning/tolerance

factors. While MDS remains sturdier as far as tuning requirements are concerned,

CCIDS’s efficacy varies greatly based on the selected tolerance values.

 To measure IDS performance based on CCIDS performance alone, this section

will focus on tuning thresholds required to achieve convergence from the CCIDS. A

properly tuned CCIDS mechanism

will properly identify the deviant

agents within its first performance

iteration (DPC). In addition to the

tuning thresholds, convergence versus

deviant node pervasion (the

percentage proportion of deviant

Figure 8 - Average required threshold for CCIDS convergence

29

nodes vs. all the nodes in the homogeneous device network) becomes a factor in

assessing system performance. The reader will note that the data used in these results was

generated from the hybrid IDS approach detailed in the next chapter. While the hybrid

IDS will alter the tunings for CCIDS dynamically, the data from the upcoming section

still represents accurate runtime information, in its component breakdown, for a CCIDS-

only implementation provided that only CCIDS data is analyzed in context with the

optimized tuning parameters.

 Figure 8 represents the average threshold required for convergence of the CCIDS

based on a varying pervasion of deviant nodes within the node network. The surface plot,

shown in Figure 9, illustrates the varying required threshold for convergence based on not

only pervasion, but also the number of nodes in the collective as a whole. The behavior

can generally be regarded as linearly dependent on pervasion, not the number of nodes.

30

Figure 9 - Required threshold for CCIDS convergence with varied deviant node pervasion and network size

 It is noted that in some circumstances (when the threshold exceeded 22%, for

instance), despite having selected a threshold, CCIDS never converged upon a solution,

or did so poorly. For information regarding these cases, the reader is invited to examine

trial data presented in Appendix A.

31

False Positives

 Because of the multiple anomaly detection capability, CCIDS consequently

suffers from its tendency to detect false positives more frequently than MDS. Because the

criterion for selecting and identifying a malicious node is completely based upon the

selection of a proper threshold, this consequently requires careful tuning of this threshold

within the execution context of the functioning system. This raises the question of how

such a threshold should be applied if false positives are detected within the first execution

iteration of the CCIDS. The answer to this lies in the provision of training data and

intelligent tuning of the threshold such that only true positives (actual deviant nodes) are

found within the behavioral dataset.

 Training data is defined quantitatively and proportionally dependent on the

number of connected nodes in the collective, and the number of overall

behaviors/interactions possible within the system context. For a large number of

connected nodes, the behavior, theoretically, becomes established more rapidly, since

more devices will be exhibiting similar behaviors. Similarly, a smaller number of

behaviors requires less time for the system to stabilize, since the statistical representation

of a larger number of behavior classes will take longer to receive data points as the

number of behaviors increases towards infinity. This leads to a conclusion that the

threshold must be tuned according to several factors present within the system context at

initialization time of the homogeneous device network. The complexity arising from the

requirement for training data is resolved in the next chapter.

32

CHAPTER V

HYBRID IDS

 The individual approaches to homogeneous device network security, as presented

by the intrusion detection tactics of MDS and CCIDS, provide a partial solution to the

overall issue of identifying deviant nodes in a homogeneous device network. Each system

is tailored to provide a particular benefit, such as not needing training data in the MDS

case, or providing multiple anomaly detection, in the CCIDS case. However, neither

solution can offer the full protection of a combined approach, drawing from the strengths

of both systems to surmount their respective weaknesses in a symbiotic manner. This IDS

approach will be referred to as a Hybrid IDS or HybrIDS for the purposes of this

document.

 The primary principle governing the operation of HybrIDS consists of the

sequential operation of MDS and CCIDS. More specifically, the lack of temporal

requirements for single-anomaly detection specified in MDS can be used to tune the

detection threshold for the CCIDS portion of the system. This produces accurate results

that are found almost immediately, which can be used to actively remove instances of

false positives present in the multiple results from CCIDS. To do so, HybrIDS

implements a switching algorithm that determines whether conditions have been met to

transition from the primary to secondary stage of the IDS (MDS to CCIDS). This

algorithm will be referred to as the Hybrid State. The end product of the Hybrid State is a

33

timing value, Tau, which determines how many DCCs are required before transition from

first to second stage.

 The Hybrid State is an elementary data structure that computes the value of Tau in

DCCs by taking into account three critical system components that are the most

influential in determining transition requirements for the homogeneous device network.

The first is the number of connected nodes. As the number of nodes � increases, there is

a higher likelihood that an increased device presence will stabilize the overall system

behavior. The second component involves the number of overall system behaviors

present in the system. As the number of behaviors increases, so does the time (in cycles)

for all the behaviors to experience a representative number of data points. If β represents

the number of behaviors present in the system (represented by a set of behavior-separated

bins into which collected data points can fall into), and ! represents the number of

DCCs required for an average stabilization, then the function �� = "#$%| $ → ∞ is a

constantly increasing function. The third component is a variable function,)#�% that

returns a constant multiplicand that modifies the effect of the two prior systems to

determine Tau in terms of !.

The resulting Tau in number of

DCCs �� can be expressed as:

* = +� × $ × ,#-%

where +� is a pre-determined

software-related constant issued

before run-time and where the
Figure 10 - Represents the returned gamma function value to yield

IDS transition

34

function)#�% can be expressed by a non-linear function based on the number of input

node agents. Seen in Figure 10, the function was derived experimentally and

approximates a logarithmic increase, such that agent groups with larger numbers of nodes

do not immediately transition IDS stages.

 The returned value of)#�% allows the overall function *#+�, $, -% to exhibit a

surface of values for the Hybrid State in terms of ! as shown

Figure 11 - Surface of possible Tau values (for IDS transition) versus number of nodes (Gamma) and number of

behaviors (Beta)

in Figure 11 when the value of +� = 4 (selected to reduce runtime and increase

accuracy.) Because of an algorithm implemented in CCIDS, the number of DPC

35

executions performed is proportional to the system behaviors and nodes as well, so while

there is a significant overall increase in the number of DC cycles as nodes increase, the

number of DCCs per DPC decreases. This can be seen in Figure 12.

Hybrid State Control Flow and MDS/CCIDS Transition

 HybrIDS relies on the Boolean state of the Hybrid State object. Should the correct

number of DCCs have passed according to the Tau function detailed in the previous

section, the MDS state will be false and the CCIDS state will resolve to true. Following

Figure 12 - Normalized surface representing IDS transitions based on selected Tau (dependent on environmental

configuration)

36

this state change, the IDS will begin a transitory phase in which the long-term results of

MDS are used to calibrate the evaluative results of the initial set of CCIDS iterations.

 This transitory phase involves an output

suspected agent vector, λ, which contains the

findings of the MDS phase. It is noted that

max#dim #5%% = 1, since MDS can at most yield

one suspected agent vector. Else, λ may be null.

Also critical to the transitory phase is the suspected

agent vector ξ, which contains the evaluative

findings of the CCIDS phase. Given the set of all n

possible agent nodes, 78, the relationship between

ξ and α is such that 9 ⊆ ;<=
. This implies that the

maximal set of possible deviant nodes can be some

or all of the connected nodes except for one, which must exist for the cross correlation to

have any meaning. Given sets λ and ξ, the transition phase involves the constant changing

of the tuning threshold until the condition 5 ⊆ 9 is satisfied. The threshold value begins

at a default state and is tuned either positively or negatively until the desired subset

condition is reached. The logical flow of the transitioning mechanism can be seen in

Figure 13.

Figure 13 - IDS transition logic flowchart

37

Implementation and Architecture

 HybrIDS is implemented according to the Java 2 version 1.5 Standard Edition

API, according to the design and previous implementation of CCIDS. In fact, the

hybridization component and MDS engine were added onto the existing CCIDS

framework, though their integration effects a critical and fundamental change in the

nature and properties of the system. Many concepts and execution primitives from

CCIDS were maintained, and added to the Java port of the MDS portion of the HybrIDS.

The resulting framework yielded a number of important properties: modularity,

homogeneity, and a shared data infrastructure.

 The most significant changes to the architecture is the addition of the MDS

engine, and the conversion of the primary IDS Engine to the CCIDS subcomponent, as

shown in Figure 14. Other minor changes include changes to the IDS management

system and the application management system, both of which were altered to allow for

IDS phase transitioning and sequential execution. Sequential execution is still governed

by the same DCC/DPC cycle management scheme originally developed for the stand-

alone CCIDS.

38

Figure 14 - HybrIDS Java component diagram

39

 One of the largest benefits of the Java-based implementation and concurrency

with previous development practices is the resulting data sharing occurring between the

two IDS systems – the sharing of the Agent History Table. This data structure,

originating from the CCIDS Java implementation, but also present in the original

MATLAB 7 implementation of the MDS, contains the machine-learning elements critical

to temporal and statistical system behavior determination. A single instance of this object

is created and passed by reference to the various subcomponents and engines of the IDS,

minimizing the required memory footprint. Let θ represent the resident memory size of

the Agent History Table in bytes, and ε represent the memory footprint of a 64-bit double

datatype. The total resident memory size is then

> = $ × ;< ×
?
8

 For a typical agent history table consisting of 35 agents and 10 behaviors, the

memory footprint of the associated IDS’s Agent History Table would be a maximum of

2.73 kilobytes. Because the Agent History Table is the most memory-intensive portion of

the entire IDS, maintaining the historical and machine learning components required to

track system behaviors, it is easy to see why this HybrIDS model is extremely adaptable

to real-time and embedded system architectures, where memory and computational

resources are at a minimum. Further design considerations include compact compiled

application size (compiled as a Java JAR file), not exceeding 46 kilobytes of required

storage space.

40

Performance

 The as-tested performance of the HybrIDS showed significant improvements in

the detection accuracy over the single IDS case of either MDS or CCIDS. The

improvements were so vast that each and every system trial resulted in a 100% accurate

detection at the transition intervals selected within a certain range of deviant node

pervasion. The number of transitioning iterations and number of iterations before

accurate detection for either MDS or CCIDS were utilized as performance metrics to

evaluate the efficiency of the HybrIDS. The test scenarios varied in the percentage of

malicious node pervasion, as well as the number of nodes used in the test. An overall

figure representing the total number of DPCs for all portions (MDS, CCIDS and

transition) was also included during evaluation. Approximately 383MB of trial scenario

data was generated to be used as the basis for inter-node device requests seen from the

perspective of a single node.

 Two sets of graphs will be presented in this section: The first set contains three

Figure 15 - Average transition cycles vs. percentage of deviant

nodes
Figure 16 - Enumerated transition cycles vs. percentage of

deviant nodes

41

graphs with data about the number of tuning cycles required between the MDS and

CCIDS phases such that CCIDS may be properly tuned to avoid false positives while

accurately detecting the multiple anomalous nodes. The graphs will display this

information as 1.) an average, 2.) as an interpolated multi-trace plot, and 3.) as an

interpolated three-dimensional surface plot. The second set of graphs will represent in

various ways the total number of DPCs consumed by the entire IDS process, including

the MDS, CCIDS and transition portions. The same graph methodology from the first set

will also be observed.

Figure 17 - Surface of required transition cycles vs. percentage of deviant nodes and size of network

42

Figure 20 - Surface of total IDS DPCs vs. percentage of deviant nodes vs. total network size; High peaks

occurring above 22% pervasion indicate significant instability/low rate of convergence. Some non-converged

values were averaged.

Figure 18 - Average number of DPCs (total) vs. deviant node

pervasion

Figure 19 - Enumerated number of DPCs (total) vs.

deviant node pervasion

43

 Figure 17 demonstrates that the number of tuning cycles necessitated by a

particular concentration of deviant nodes within the device network is based almost

exclusively and linearly by the percentage of deviant nodes. The number of transition

cycles is also linearly dependent on the starting value for the CCIDS threshold, which is

not seen in any of the figures. It is feasible to reduce the number of overall iterations by

starting with a lower threshold, but this may be ill advised given that some CCIDS

threshold are very close to the starting threshold value of 0.20. Figure 15 demonstrates,

when taken into account with Figure 16, that the number of DPCs dedicated to tuning

CCIDS is relatively independent of the total number of agents on the device network. In

this case, the single-most deciding factor is the percentage of pervasion. It is notable that

there are some differences between the behavioral curves when considering the number

of tuning cycles, which can be attributed to non-convergence in a few particular cases,

necessitating an interpolation so that the graphs may be comparable in nature.

 During the data generation phase, trials were generated with differing numbers of

deviant agents, to create the different pervasion scenarios depicted in the figures. Because

the number of agents must correspond to an integral number, it is noted that not all of the

percentages are exact. To illustrate this, given a collective of 30 nodes with a 15%

pervasion, the returned requirement of the test data indicates a need for 4.5 deviant nodes.

Since a fractional node is an impossible scenario, in this case, the actual selected dataset

corresponded to 5 deviant nodes out of a total of 30 nodes. This is relatively close to

16.7%, which means that the computation of 30 nodes for the 17% pervasion case also

computed 5/30 deviant nodes. This explains some of the discrepancies in Figure 18,

44

especially where the stair-step-like behavior of some of the cluster sizes is observed. The

stair-step nature is due mostly to some replication of scenario data between pervasion

percentages. A uniform rounding and computation algorithm was applied to indicate

which trial datasets should be used, such that the overall test scenario would tend to

behave more or less the same way, despite replications among datasets.

 Figure 20 shows a three-dimensional surface representation, interpolated, of the

number of transition cycles required to set MDS properly. This surface yields a more

palpable view of the pervasion density impact on the number transition cycles required to

tune the HybrIDS.

 Figures 18 and 19 paint a very different picture from the transition cycle graphs.

Here we see the real-world effects of the higher pervasion percentages. Because the

tuning-based graphs will always display a somewhat linear response, due to a threshold

limit of how low or high the IDS can be tuned, non-convergent systems will still display

an upper bound in terms of tuning cycles. This is not the case with the overall system

behavior. As seen in Figure 19, where it is labeled “Start of CCIDS convergence

anomalies”, the number of total cycles begins to deteriorate with respect to previous

system performance. This is in a large part due to CCIDS tuning factors not being able to

go lower – in essence, the CCIDS is “on its own” despite MDS’s best efforts to calibrate

it. In some cases, despite the most flexible tuning, CCIDS can converge, but only after an

unusually long and generally impractical period of time. The symptoms of this begin

right around 22% pervasion, and fluctuate significantly as the system approaches 27%

pervasion. In other cases, the CCIDS portion simply did not converge at all. Because of

plotting software, discontinuities are unsupported, and therefore average total cycle

45

response times were interpolated into cases which did not converge. Please see Appendix

A for a complete table detailing cases in which convergence was not possible.

 In several cases, the convergence period became unreliably large – sometimes

exceeding 100 DPCs (a number indicating that ten or a hundred thousand data points

have been accumulated before convergence has resulted.) Because data processing cycles

are dependent on the influx of a relatively large number of input data, a detection

convergence requirement of this many DPCs is generally deemed unacceptable. This

arises from the fact that it is difficult to tell whether or not a dataset would converge or

not after so many cycles, representing a generally long period of time during a

homogeneous device network’s “mission span.”

Hybridized Outlook and Discussion

 As described earlier in the CCIDS chapter of this document, one of the goals in

terms of system-wide efficiency is the independence of the system from the number of

devices present in the system. This goal is met by MDS, and further continued by the

HybrIDS version, as seen in Figure 20. It is apparent that as the number of nodes

increases, there is generally no increase, but rather even a slight decrease, in the number

of DPCs required for convergence. Other expected findings, such as the increase in

transition cycles corresponding to changes in pervasion, are to be expected. When

viewing this from a broader perspective, the tuning threshold has a maximum possible

impact on the system’s overall convergence time requirement. Therefore, in the long run,

46

the transition performance is not as detrimental with respect to a worst-case scenario as

the individual performance of CCIDS.

 For the scenario setup described in the concepts and CCIDS sections, it can be

concluded that the HybrIDS mechanism is effective, therefore, with pervasion

percentages reaching approximately 22% before system-wide behavior and response

becomes non-deterministic, or at least non-representative of a reasonable performance

envelope. There is some room for improvement, as tuning specific methods and

mechanisms in both MDS and CCIDS phases can yield a higher degree of sensitivity,

situational forgiveness, and accuracy. One such proposed method would be to add a

method of tracking the positives that are detected. It is very worthwhile to note that

during the CCIDS portion, all of the malicious nodes were properly identified at all times.

It is the inclusion of false positives for excessive periods of time that defined whether, for

testing purposes, the system converged or not. Therefore, by keeping track of the

dynamic nature of the positives identifications generated, false-positives included, it is

theoretically possible to eliminate contenders representing the false positive occurrence

from the suspected node list based on its temporal manifestations on said list.

 Given its observed behavior using the generated datasets, HybrIDS demonstrates

its adaptability to the embedded device platform. By representing interactions with a

scheme employing a high level of abstraction, it minimizes computational intensity

through mediation via DPC data management and transitional IDS process mediation. It

is capable of accurately identifying anomalous networked nodes with a pervasion density

of up to 22%, and is scalable to a large number of networked nodes with minimal impact

on response time and performance. Finally, a compact implementation form factor (46

47

kilobytes when compiled as a JAR file) coupled with a small memory footprint (the

largest data structure occupies 2.73 kilobytes) and a ubiquitous port and runtime

environment as supplied by the Java 1.5 standard, ensures seamless integration and a

large degree of applicability to various device classes and categories.

48

CHAPTER VI

CONCLUSION

 The increasing presence of specialized, embedded devices within the context of a

networked scenario, such as in the case of a collective of specialized autonomous

vehicles, including tactical and civilian aircraft, automobiles and aquatic vehicles,

requires an updated perspective on security and network integrity protection. To this end,

equipping traditional methods of data confidentiality, source authentication and data

integrity with methods of intrusion detection can bolster the security of networked agents,

especially in the case scenario of a network of homogeneous device nodes.

 Important to integrating an IDS to an embedded device architecture is creating a

system methodology in which a high level of operational abstraction provides a

contextual detachment and an isometric system of analysis between all nodes of the

device network. Likewise, a small system footprint (both in memory and executable

storage space) along with a reduction in the number of overall computations is required to

satisfy power requirements and computational resource limitation. The single and hybrid

IDS systems outlined in this thesis represent a combinational approach to meeting the

requirements stated above. By utilizing a small memory footprint, and discretizing

processor-intensive tasks to deterministic time points, the IDSs provide an optimized

approach to lightweight intrusion detection.

 MDS and CCIDS represent cases where two different approaches have respective

strengths in resource utilization, a requirement or lack thereof of training data, and the

49

ability or lack thereof of multiple agent detection. MDS has demonstrated its speed in

detecting the presence of an intrusion, without the need for training data, and in a manner

that almost always detects the intrusion accurately. When tuned properly, MDS proves to

be the most effective in finding the occurrence of an intrusion, when presented with a

homogeneous device network and a pre-existing set of behaviors and network size. MDS

takes its inherent speed from a thresholded analysis of an averaged PDF representing the

overall state of the system. Because the detected local maximum, excluding the global

maximum, are only representative of one node, MDS cannot be used to detect the

presence of more than one deviant node in the network. This does not exclude the fact

that vacillations in the detected suspect node can be used to appropriately identify

potential offenders. However, because of the nature of the PDF distribution, a reasonable

number of MDS cycles is required to yield the desired suspected agent resolution.

HybrIDS recognizes this requirement and bases the number of MDS iterations on the

speed of accumulated data as the system receives request inputs.

 In contrast to MDS, CCIDS resolves the single-detection deficiency by providing

multiple suspected agent resolution. This comes at the cost of requiring precise tuning of

internal thresholding levels to achieve accurate detection. CCIDS is flexible to responses

in system changes as a mission might update. However, because of the tuning

requirement, CCIDS must be provided with an array of sample training data that may not

be available in a dynamic system-wide execution context. The lack of this training data

yields an unstable and non-deterministic IDS strategy that on its own is incapable of

providing significant results to IDS functionality.

50

 With these various strengths and weaknesses, it is therefore logical to consider a

hybridized approach, in an attempt to reduce the deficiencies of either system by using

combined identification capabilities to provide an overall solution to intrusion detection.

HybrIDS provides this solution by integrating the single intrusion detection, high-speed

case as a reference point to tune the secondary IDS stage, making use of the multiple

anomaly detection capabilities that work well when tuned properly by the first stage. A

transitioning system allows for the system to perform in a deterministic, expected

manner. As the data demonstrates, an increase in the number of connected nodes does not

contribute to an increase in overall execution and convergence time. This yields an

important advantage for scalability reasons. The only performance penalty comes in the

form of advanced pervasion, affecting only the number of DPCs required for tuning the

CCIDS stage. The overall convergence and runtime is largely unaffected.

 Coupled with a small executable file size, in a platform-independent

implementation utilizing minimal memory resources for optimal resource management,

the HybrIDS approach yields a practical IDS methodology applicable to a range of

embedded devices within the networked context. Together with existing intrusion

prevention mechanisms such as encryption, authentication and signature methods, the

proposed HybrIDS can provide an extra, necessary level of dynamic protection to both

established and yet undeveloped embedded device network architectures.

51

APPENDIX A

TRIAL RUN DATA

0% Deviant Agents Category

#Nodes MDS DPCs CCIDS DPCS HybrIDS DPCs Transition Cycles

10 10 1 11 0

20 7 1 8 0

30 6 1 7 0

40 5 1 6 0

50 4 1 5 0

60 3 1 4 0

70 3 1 4 0

80 3 1 4 0

90 3 1 4 0

5%

Deviant

7%

Deviant

MDS CCIDS HybrIDS T-Cycles MDS CCIDS HybrIDS T-Cycles

10 1 18 7 10 1 18 7

7 1 13 5 7 1 16 8

6 1 12 5 6 1 14 7

5 1 10 4 5 1 12 6

4 1 9 4 4 1 11 6

3 1 8 4 3 1 10 6

3 1 9 5 3 1 10 6

3 1 7 3 3 1 9 5

3 1 8 4 3 1 9 5

52

12%

Deviant

15%

Deviant

MDS CCIDS HybrIDS T-Cycles MDS CCIDS HybrIDS T-Cycles

10 1 24 13 10 1 24 13

7 1 19 11 7 1 19 11

6 1 17 10 6 1 19 12

5 1 16 10 5 1 17 11

4 1 13 8 4 1 16 11

3 1 14 10 3 1 15 11

3 1 13 9 3 1 15 11

3 1 13 9 3 1 15 11

3 1 13 9 3 1 16 12

17%

Deviant

20%

Deviant

MDS CCIDS HybrIDS T-Cycles MDS CCIDS HybrIDS T-Cycles

10 1 24 13 10 1 24 13

7 1 22 14 7 1 22 14

6 1 21 14 6 1 21 14

5 1 19 13 5 1 20 14

4 1 18 13 4 1 19 14

3 1 17 13 3 1 18 14

3 1 16 12 3 1 19 15

3 1 16 12 3 1 18 14

3 1 17 13 3 1 19 15

22%

Deviant
25%

Deviant

MDS CCIDS HybrIDS T-Cycles MDS CCIDS HybrIDS T-Cycles

10 N/C 19 10 N/C 19

7 1 24 16 7 1 24 16

6 3 25 16 6 37 61 18

5 1 21 15 5 3 24 16

4 1 20 15 4 2 23 17

3 2 21 16 3 5 24 16

3 1 20 16 3 54 75 18

3 2 21 16 3 4 24 17

3 2 21 16 3 84 105 18

53

27%

Deviant

MDS CCIDS HybrIDS T-Cycles

10 N/C 19

7 1 27 19

6 N/C N/A

5 9 32 18

4 16 38 18

3 19 40 18

3 N/C 19

3 N/C 19

3 N/C 19

54

REFERENCES

1. Zhenwei, Y., J.J.P. Tsai, and T. Weigert, An Automatically Tuning Intrusion

Detection System. Systems, Man and Cybernetics, Part B, IEEE Transactions on,

2007. 37(2): p. 373-384.

2. Freeman, W. and E. Miller. An experimental analysis of cryptographic overhead

in performance-critical systems. in Modeling, Analysis and Simulation of

Computer and Telecommunication Systems, 1999. Proceedings. 7th International

Symposium on. 1999.

3. He, G. and S.R. Tate. Efficient Authenticated Key-Exchange for Devices with a

Trusted Manager. in Information Technology: New Generations, 2006. ITNG

2006. Third International Conference on. 2006.

4. Yang, Q., et al. An embedded RSA processor for encryption and decryption. in

ASIC, 2001. Proceedings. 4th International Conference on. 2001.

5. Seung-Jo, H., O. Heang-Soo, and P. Jongan. The improved data encryption

standard (DES) algorithm. in Spread Spectrum Techniques and Applications

Proceedings, 1996., IEEE 4th International Symposium on. 1996.

6. Chih-Chung, L. and T. Shau-Yin. Integrated design of AES (Advanced Encryption

Standard) encrypter and decrypter. in Application-Specific Systems, Architectures

and Processors, 2002. Proceedings. The IEEE International Conference on. 2002.

7. Naess, E., et al. Configurable middleware-level intrusion detection for embedded

systems. in Distributed Computing Systems Workshops, 2005. 25th IEEE

International Conference on. 2005.

8. Borsc, M. and H. Shinde. Wireless security & privacy. in Personal Wireless

Communications, 2005. ICPWC 2005. 2005 IEEE International Conference on.

2005.

9. Guyot, V. Using WEP in ad-hoc networks. in Wireless and Optical

Communications Networks, 2006 IFIP International Conference on. 2006.

10. Bittau, A., M. Handley, and J. Lackey. The final nail in WEP's coffin. in Security

and Privacy, 2006 IEEE Symposium on. 2006.

11. Cabrera, J.B.D., C. Gutierrez, and R.K. Mehra. Infrastructures and algorithms for

distributed anomaly-based intrusion detection in mobile ad-hoc networks. in

Military Communications Conference, 2005. MILCOM 2005. IEEE. 2005.

12. Brutch, P. and C. Ko. Challenges in intrusion detection for wireless ad-hoc

networks. in Applications and the Internet Workshops, 2003. Proceedings. 2003

Symposium on. 2003.

13. Dwen-Ren, T., T. Wen-Pin, and C. Chi-Fang. A hybrid intelligent intrusion

detection system to recognize novel attacks. in Security Technology, 2003.

55

Proceedings. IEEE 37th Annual 2003 International Carnahan Conference on.

2003.

14. Kachirski, O. and R. Guha. Effective intrusion detection using multiple sensors in

wireless ad hoc networks. in System Sciences, 2003. Proceedings of the 36th

Annual Hawaii International Conference on. 2003.

15. Keum-Chang, L. and L. Mikhailov. Intelligent intrusion detection system. in

Intelligent Systems, 2004. Proceedings. 2004 2nd International IEEE Conference.

2004.

16. Mishra, A., K. Nadkarni, and A. Patcha, Intrusion detection in wireless ad hoc

networks. Wireless Communications, IEEE [see also IEEE Personal

Communications], 2004. 11(1): p. 48-60.

17. Ran, Z., et al. Multi-agent based intrusion detection architecture. in Computer

Networks and Mobile Computing, 2001. Proceedings. 2001 International

Conference on. 2001.

18. Siraj, A., S.M. Bridges, and R.B. Vaughn. Fuzzy cognitive maps for decision

support in an intelligent intrusion detection system. in IFSA World Congress and

20th NAFIPS International Conference, 2001. Joint 9th. 2001.

19. Watkins, D. and C. Scott. Methodology for evaluating the effectiveness of

intrusion detection in tactical mobile ad-hoc networks. in Wireless

Communications and Networking Conference, 2004. WCNC. 2004 IEEE. 2004.

20. Xia, W. Intrusion Detection Techniques in Wireless Ad Hoc Networks. in

Computer Software and Applications Conference, 2006. COMPSAC '06. 30th

Annual International. 2006.

21. Xiaodong, Z., H. Zhiqiu, and Z. Hang. Design of a Multi-agent Based Intelligent

Intrusion Detection System. in Pervasive Computing and Applications, 2006 1st

International Symposium on. 2006.

22. Xiaoqiang, Z., Z. Zhongliang, and F. Pingzhi. Intrusion detection based on cross-

correlation of system call sequences. in Tools with Artificial Intelligence, 2005.

ICTAI 05. 17th IEEE International Conference on. 2005.

23. Yamada, A., et al. Intrusion detection system to detect variant attacks using

learning algorithms with automatic generation of training data. in Information

Technology: Coding and Computing, 2005. ITCC 2005. International Conference

on. 2005.

24. United States. General Accounting Office. National Security and International

Affairs Division., Air Force rationale for JDAM production decision. 1997, The

Office ;

The Office, [distributor,: Washington, D.C.

Gaithersburg, MD (P.O. Box 6015, Gaithersburg 20884-6015).

25. Daskalakis, C. and P. Martone. Alternative surveillance technology for the Gulf of

Mexico. in Digital Avionics Systems Conference, 2004. DASC 04. The 23rd. 2004.

26. Harman, W.H. ADS-B airborne measurements in Frankfurt. in Digital Avionics

Systems Conference, 2002. Proceedings. The 21st. 2002.

27. Hicok, D.S. and D. Lee. Application of ADS-B for airport surface surveillance. in

Digital Avionics Systems Conference, 1998. Proceedings., 17th DASC. The

AIAA/IEEE/SAE. 1998.

56

28. Nichols, R., et al. Testing of traffic information service broadcast (TIS-B) and

ADS-B at Memphis International Airport. in Digital Avionics Systems

Conference, 2002. Proceedings. The 21st. 2002.

29. Buchegger, S. and J.Y. Le Boudee, Self-policing mobile ad hoc networks by

reputation systems. Communications Magazine, IEEE, 2005. 43(7): p. 101-107.

30. Lauf, A. P., Peters, R. A. and Robinson, W. H. Intelligent Intrusion Detection: A

Behavior-Based Approach. in Advanced Information Networking and

Applications: Symposium for Embedded Computing, 2007. Proceedings. The 21st.

2007.

