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To the department of “no”.  Give it up.  There is always a way. 
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Chapter I  

Gene-Environment Interactions in Huntington’s Disease 

Note:  Portions of this chapter have been derived from the following publications: 
 

Bichell TJ. Gene-Environment Interactions in Huntington’s Disease. Vanderbilt Reviews 
Neuroscience 2012; 4(2012): 9. 

 
Tidball AM, Bichell TJ, Bowman AB. Manganese and Huntington's Disease. In: Costa L, 
Aschner M, eds. Manganese in Health and Disease: Royal Society of Chemistry; 2014. 
 
Bichell TJ, Uhouse M, Bradley E, Bowman AB. Gene-Environment Interactions in 
Huntington's Disease. In: Aschner M, Costa LG, eds. Environmental Factors in 
Neurodevelopmental and Neurodegenerative Disorders. London: Elsevier, Inc.; 2015: 451. 

 
Bichell TJ, Halbesma T, Tipps KG, Bowman AB. Metal Biology Associated with Huntington's 
Disease. In: White A, Aschner M, Costa L, Bush A, eds. Biometals in Neurodegenerative 
Diseases: Mechanisms and Therapeutics. In Press: Elsevier; 2016. 
 

Huntington’s disease 

Huntington’s disease (HD) is a severe autosomal dominant neurodegenerative disorder 

with a diverse, but devastating pathological course, and a median age of onset at 39.1 In the 

mid-1990’s, researchers studying an isolated community in Venezuela with a very high 

incidence of HD pinpointed the genetic cause.   The causative mutation is an expanded CAG 

repeat in the first exon of the Huntingtin gene (HTT), which results in an extended 

polyglutamine sequence in the huntingtin protein (HTT). This excess of CAG repeats leads to 

an expansion in the polyglutamine (polyQ) tract in the HTT protein.2   

Including Huntington’s disease, there are currently at least nine known 

neurodegenerative diseases that derive from excess CAG repeats, including spinal muscular 

atrophy, dentatorubral-pallidoluysian atrophy, and the spinocerebellar ataxias type 1, 2, 3, 6, 7 

and 17.3 These CAG repeat expansion diseases are characterized by severe chromosomal 

instability, specifically when inheritance is paternal, as expansions are frequent in the male 
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germline.4 The neuronal loss of each of these diseases is restricted to specific brain regions with 

similar intracellular manifestations such as modified metal processing, inclusions, aggregates, 

and protein misfolding.5 These molecular findings are also present in non-CAG repeat 

neurodegenerative diseases such as Alzheimer’s Disease and Parkinson’s Disease, both of 

which have a greater environmental over genetic attribution.6 In each of these 

neurodegenerative diseases, environmental enrichment, exercise, diet, and xenobiotic exposures 

have been shown to either exacerbate or alleviate disease.7,8  

Genetics of Huntington’s disease 

The HTT gene is highly conserved through evolution, but there is wide diversity 

between species in the number of CAG repeats.9-11 In humans, between 9 and 34 CAG repeats is 

thought to be normal, but there are cases of symptomatic HD developing within the range of 27-

34 CAG repeats,1,12,13 and yet it appears that 35-39 CAG repeats is not fully penetrant.14 A 

recent study found that 1 in 400 elderly individuals from cohorts in the UK and the US had 

alleles between 35-39 without HD symptoms,14 suggesting that the penetrance of disease with 

CAG repeats under 40 is not predictable, and may reflect the combined impact of CAG repeat 

length and environmental exposures. 

HD is a rare disease.  The approximate worldwide prevalence of HD is 2.71 cases per 

100,000 population.15 However, prevalence of HD around the globe ranges from 5.7 in the 

British Isles to only 0.40 per 100,000 in Asia15. While HD affects both men and women in equal 

numbers,16 gender appears to play a role in disease progression and HD brain metabolism,17 as 

females tend to experience more severe motor and functional symptoms along with a faster rate 

of disease progression.18 
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Though it has been two decades since the identification of the HD-associated mutation, 

the detailed mechanisms leading from expression of the mutant gene to neurodegeneration are 

still unknown, and no successful treatment that would slow disease progression has been 

described as yet. It remains unclear whether HD pathology is caused by loss of function of the 

normal HTT protein, or toxic gain of function from the mutant HTT protein, or a combination 

of both.19-21 Transgenic mouse models with one mutant allele as well as two functioning wild-

type alleles still develop symptoms of HD, suggesting that toxicity of the mutation is the root 

cause of pathology.22 Conditional mouse models expressing lower levels of mutant HTT in the 

cortex and striatum show no behavioral deficits, and neurodegeneration of these brain regions is 

ameliorated.23 Yet, over-expression of mutant HTT, as well as knockdown of wild-type HTT, 

alters vesicular transport, mitochondrial function, and macroautophagy in neurons, both in vitro 

and in vivo,24-28 making both the loss of wild-type function and the toxic gain of mutant function 

important to HD pathology related to neuronal metal homeostasis. However, a careful study of 

homozygous human patients, controlled for CAG repeat number on both alleles, demonstrated 

worsened disease progression compared to heterozygotes.29 The results from this study suggest 

that loss of function of normal HTT alone, as well as abnormal function caused by the mutant 

allele, may still play a role in disease pathology.   

Htt knockout mouse models cannot survive past embryonic day 7,21,30 but the essential 

role for HTT in embryological development remains unclear. Two recent papers uncovered rare 

loss of function mutations in the HTT gene outside of the HD critical area that cause a Rett’s 

syndrome-like phenotypes, suggesting that loss of wild-type HTT during development could 

also disrupt neurological function.31,32 
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Symptoms of Huntington’s disease 

The hallmark symptom of HD is chorea (uncontrolled movements),16 though 

psychological and cognitive changes are also common and can be equally as detrimental to 

quality of life.33 HD is described as having three phases, both in humans and mouse models:34  

(i) Pre-manifest, in which the gene mutation has been identified but there 

are no signs and symptoms;  

(ii) Prodromal, during which there are cognitive and emotional signs, but 

no loss of function; 

(iii) Manifest, in which motor symptoms become obvious and there is 

sharp functional decline.  

The prodromal phase is marked by family reports of increased apathy, anxiety, and 

depression.35,36 During the prodromal phase, the first losses are of cortical mass followed by 

degeneration of striatal γ-aminobutyric acid transmitting (GABAergic) medium spiny neurons 

(MSNs), which suggests that disease processes in cortical neurons may lead to the subsequent 

excitotoxic post-synaptic deterioration of MSN’s.37-39  In fact, decortication in an HD mouse 

model has been reported to ameliorate HD symptomology.37 Additionally, several peripheral 

tissues have been suggested to contribute to HD pathogenesis.40  

A clinical diagnosis of adult-onset HD generally relies on the observance of chorea,41 

but as the disease progresses, dystonia and rigidity occur. Overall, symptoms of HD and the 

disease progression are remarkably heterogeneous across patient populations. 



	 5	

The first symptoms of HD begin, on average, between the ages of 35 and 40,12 with the 

age of onset inversely correlated to the number of polyglutamine repeats, though timing varies 

even among patients with identical CAG number.  Sibling and twin studies reveal that modifier 

genes explain an additional 13% of the variability in age of onset in the studied patient 

populations, with the remainder attributed to environmental factors.42-44  This variability in age 

of onset suggests the possibility that metal toxicity or deficiency could be a factor. After the 

onset of motor symptoms, patients with HD typically live for 20 additional years, with 

aspiration pneumonia the most common cause of death, due to dysphagia.45,46 

The juvenile form of the disease, related to longer CAG repeat length (usually above 

~50 repeats, but invariably above 60 repeats) manifests with widespread neurodegeneration and 

involves different symptoms compared to adult-onset HD.47,48 Epilepsy, motor rigidity, 

cognitive issues and behavior issues are common, and are not seen in adult onset HD.49  

 

 

                Figure 1-1:  Proportion of Variability in Huntington’s Disease Age of Onset  
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Environmental factors such as environmental enrichment (EE), exercise, diet, and 

exposures to xenobiotics have been reported to worsen or ameliorate disease processes in all 

polyglutamine expansion diseases.50 

Neuropathology of HD 

Each of the nine neurodegenerative diseases caused by excess CAG repeats have 

neuronal loss restricted to specific brain regions5, though they all exhibit similar abnormal metal 

processing, protein misfolding resulting in inclusions and aggregates.6 These molecular 

manifestations are also present in non-CAG repeat neurodegenerative diseases, such as 

Alzheimer’s Disease (AD), and Parkinson’s Disease (PD).6  

The function of the wild-type HTT protein is still not fully explained, but wild-type HTT 

is part of essential cellular pathways which involve metals as co-factors, for ionic gradients, and 

for protein stability.  These include biological processes such as axonal transport,51 nuclear 

export,52 transcriptional regulation,52-54 apoptosis,55,56 autophagy,57 endocytosis,58 and the 

scaffolding of protein interactions.59,60 

The HTT protein is huge (over 348kDa) and ubiquitously expressed, with more than 300 

binding partners identified to date.19,61,62,63 The expanded polyQ tract takes on a labile 

conformation (helix, coil, loop) that enables it to function as a regulator of multiple protein 

interactions.64,65 The protein is modified post-translationally, primarily in the same N-terminal 

region as the polyQ expansion, which is also the region linked to the formation of aggregates 

and to mitochondrial dysfunction, which are molecular hallmarks of HD pathology.66,67 Post-

translational HTT modifications include phosphorylation,65 sumoylation,68 ubiquitination,69 

acetylation,70,71 palmitoylation72 and myristoylated.73  The HTT protein is also is cleaved in 

several different ways by caspases and calpain.74,75  
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HTT is expressed ubiquitously across various cell types and tissues,19 yet degeneration 

occurs in restricted brain regions, where it is especially marked in the striatal MSNs in the later 

phases of the disease. The MSNs make up 90% of the neurons in the striatum.76 Like the 

striatum, subtypes of cortical neurons are differentially affected by HD. Large pyramidal 

neurons originating in cortical layers III, V, and VI, and projecting directly to the striatum, 

primarily contribute to the loss of cortical volume in HD.77,78 Other brain regions, such as the 

hippocampus, thalamus and globus pallidus also degenerate in HD, but not to the extent seen in 

the striatum,79 so most studies focus on the neurons of the cortex and striatum.  

The striatal MSNs are subcategorized by dopamine receptor expression and projection 

targets. Those that project to the substantia nigra and the external segment of the globus pallidus 

and contain D2 dopamine receptors and met-enkephalin, form the indirect pathway, which is the 

pathway most affected in HD.80 MSNs projecting to the internal segment of the globus pallidus, 

expressing D1 receptors and substance P, make up the direct pathway, which is spared from 

neurodegeneration until later in the disease course.  Generally, the D1 containing neurons are 

thought to be involved with reward processing, while the D2 neurons mediate aversion, but 

these networks are mixed in some striatal regions81. The sequential loss of striatal MSN 

subtypes is partially related to metal uptake and deposition, and appears to correlate with onset 

of patient symptoms.82  

Biological function of wild-type and pathogenic HTT proteins 

The crystal structure of HTT has not been entirely elucidated, perhaps because the 

protein can take on many different structures.64 The polyQ tract, which is altered by the number 

of CAG repeats in exon 1, forms a flexible domain that regulates intramolecular proximity and 

substrate specificity.83  
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Wild-type HTT is located primarily in the cytoplasm,84,85 but plays a role in protein 

trafficking between nucleus and cytoplasm through transcriptional regulation of the nuclear 

pore protein.52 N-terminal HTT fragments interact with the protein’s translocated promoter 

region, and excessive polyQ expansion decreases this interaction.52 HTT is modified post-

translationally by acetylation, phosphorylation, ubiquitination, palmitoylation and sumoylation, 

with each modification having effects on function and activity.68,86,87 With the HD mutation, the 

HTT protein becomes much less soluble leading to misfolding of the extended polyQ sequences 

which then form a β-sheet structure, leading to abnormal post-translational modifications.12,88,89  

 Short fragments of mutant HTT form aggregates in the nucleus and cytoplasm, which 

may be the source of further pathology, but may also be a cellular defense process to sequester 

the toxic misfolded mutant HTT protein.90 Cu interacts with the polyQ fragment of HTT and 

increases aggregation,76 and Cu ions bind to HTT aggregates and induce oxidation, which 

increases neuronal oxidative stress,91 potentially leading to cell death and degeneration. These 

aggregates can be cleared either by autophagy or by the proteasome system.  A recent study 

indicates that macroautophagy may be more crucial to the clearance of HTT aggregates than the 

proteasomal process,92 and autophagy is known to be affected by metal homeostasis. 

HTT in vesicular transport 

HTT has been associated with both endocytic and microtubule-mediated vesicle 

transport, mechanisms which transport both the crucial cell survival signal, Brain Derived 

Neurotrophic Factor (BDNF), as well as various metals into cells and organelles. HTT is closely 

associated with vesicles and endosomes,84,93-95 microtubules,95,96 and directly with the plasma 

membrane.97 HTT interacts via HAP1 with an integral member of the microtubule transport 

system, the dynactin subunit p150Glued,98,99 and co-fractionates with the transferrin receptor 
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(TfR).100,101 Knockdown of HTT expression in zebrafish causes increased transferrin receptor 1 

transcription in the presence of hypochromic blood. Interestingly, this phenotype is reversed 

upon administration of bioavailable iron, demonstrating a functional role of normal HTT to 

make endocytosed iron accessible.102 The authors theorize that the function of normal HTT 

must be related to the release of iron from endocytic vesicles.  

HTT is found proximal to vesicles and endosomes94,96,97 and to microtubules96,99 and is 

directly associated with the plasma membrane.100 HTT is known to interact with a promotor of 

dynein-driven microtubule transport, dynactin subunit p150Glued, via primary interactions with 

HAP-1.71,99,103 Through this protein complex, the HTT protein has been associated with both 

endocytic and microtubule-mediated vesicle transport, transporting substances such as BDNF 

and metals into cells and organelles.27 Overall, mutant HTT impairs vesicular transport of 

numerous cellular goods, including BDNF.26  

Models of HD 

         Animal and cell models replicate many of the pathologies associated with HD, and 

include mouse, sheep, rat, zebrafish, Drosophila (fruit fly), C. elegans (worm) and 

Saccharomyces cerevisiae (yeast) models.104,105 Animal models lack the severe 

neurodegeneration that is seen in humans,106 which maybe due to the fact that there is a 

hominid-specific isoform with a phosphorylation site that does not exist in rodents.107 

Simple model organisms can be important tools in identifying disease-modifying genes 

and investigating Huntington’s disease mechanisms. For example, Drosophila models of 

polyglutamate expansion diseases display the same cell death and aggregation phenomenon that 

humans do.108-111 D. melanogaster models of Huntington’s disease utilize the UAS-GAL4 

system to express N-terminal fragments of mutant HTT in targeted cells.112 Fly models exhibit 
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progressive degeneration, motor abnormalities and reduced survival112. D. melanogaster models 

have been constructed to express human Huntingtin cDNA encoding both pathogenic proteins 

that result in progressive motor deterioration and decreased survival rates, and nonpathogenic 

proteins that have no perceptible effect on behavior.113 Such fly models have become useful in 

demonstrating the kinetics of protein aggregation in axonal transport disruption and in testing 

therapeutic approaches such as histone deacetylation inhibitors (HDAC) and protein abundance 

modulators such as NUB1.113-115 In testing environmental exposures, the simpler organisms 

provide an efficient way to study toxicities and mechanistic results of gene-environment 

interections because they retain molecular pathways that recapitulate those of higher mammals. 

A transgenic C. elegans model of HD expresses amino terminal fragments of Huntingtin 

in target neurons.116,117 The translucent body of C. elegans allows in vivo visualization of 

neuronal processes, particularly useful in the study of gene-environment interactions on the 

effects of metal on neurodegeneration.118 Even though C. elegans lacks an HTT orthologue, 

transgenic expression of mutant HTT yields age-dependent mechanosensory defects, 

neurodegeneration and neuronal dysfunction.116,117 Via insertion of a polyglutamine repeat of 40 

CAG repeats in length, researchers have used C. elegans models to examine the effect of 

diverse genetic backgrounds on HD pathology, as well as preclinical investigations of potential 

therapeutic targets such as the copper chelating drug, hydroxyquinolone (PBT2).119,120  A 

human clinical trial of PBT2 as a treatment for Huntington’s disease has shown that the drug is 

safe and tolerated well, but a study of its effectiveness in ameliorating symptoms was halted due 

to insufficient improvement.121,122  

Large animal models such as primates and sheep are particularly useful for studies in 

which it is vital to replicate the clinical phenotypes of human Huntington’s disease as closely as 
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possible. A transgenic primate model has been developed, but has not been well-studied, and at 

present, there is only one living transgenic HD rhesus monkey.  This animal expresses exon 1 of 

human HTT with only 29 CAG repeats, which should be in the normal range, but it displays 

dystonia, chorea, decreased hippocampal and striatal volume, and behavioral changes such as 

difficulty with cognitive abilities, impulsivity and spatial recognition.123  None of these 

symptoms developed until later ages, a progression that mirrors human Huntington’s disease 

motor degeneration.123 Other primate models have been produced by lesioning the striatal 

region,124 or by exposing the animals to medications which degenerate the striatal neurons such 

as 3-nitropropionic acid (3NP).125 Such non-human primate models have already become 

relevant in the study of Huntington’s disease gene x environment effects in a study that shows 

increases in spontaneous locomotor activity of both calorically restricted and supplemented 

primates, as well as increased spatial memory abilities of calorically supplemented animals.126 

Additionally, after chronic manganese exposure, non-human wildtype primate models have 

demonstrated damaged visuospatial associative learning, neurodegenerative aggregation 

activity, increases in microglia, and general neurodegeneration characteristic of disorders such 

as HD.127  These longterm studies of primates demonstrate that mutant human HTT may be 

unique in its mechanisms and ability to cause neurodegeneration, and that environmental 

exposures alone may be sufficient to cause an HD-like phenotype, even without the presence of 

the Huntington’s disease mutation. 

Researchers have also utilized sheep in the investigation of environmental effects such 

as sleep disruption on disease onset and progression of HD. Specifically, even young HD-model 

sheep that express juvenile expanded full-length transgenic human HTT display circadian 

abnormalities in behavior before any other HD-like changes appear, but environment is a crucial 
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element in this finding; the mutant sheep who were housed with other mutants exhibited 

aberrant behaviors, but those who were housed with wildtype sheep did not.128 All of these 

animal models of Huntington’s disease reveal the overlap between gene and environment in the 

cause and treatment of the disorder, but the molecular link between the Huntingtin protein and 

the environmental agents that affect symptoms has yet to be elucidated. 

A variety of rodent HD models have been developed, of which transgenic and knock-in 

mice appear to be the most relevant to human pathology (reviewed in 22,105,129). These mouse 

models can be divided into three groups: transgenic mice expressing the CAG-expanded N-

terminal fragment of human HTT (R6/1, R6/2, N171-82Q), transgenic mice expressing full-

length mutant HTT of human origin (YAC128, BACHD) and knock-in mice in which the CAG 

mutation was introduced into the endogenous mouse Htt gene (HdhQ72, HdhQ94, HdhQ111, 

HdhQ140).130 All these models differ from each other significantly with regard to spectrum of 

phenotype, severity alterations and progression of abnormalities, but the general observation is 

that knock-in mice display very mild symptoms over their whole life span, comparable with the 

presymptomatic stage of human HD.   

As opposed to mice with a full HTT gene knock-in, transgenic mice expressing the 

human N-terminal HTT fragment are characterized by an aggressive phenotype, resulting in 

rapid death at a young age.  The R6/1 and R6/2 transgenic mice carry a fragment of exon 1 from 

the 5’ end of human HTT with 113 and 144 CAG repeats, respectively.67 The R6/2 mouse has a 

pronounced HD phenotype, developing weight loss, aggregates, brain atrophy, and motor 

symptoms by 12 weeks. 

The YAC128 mouse has a transgene expressing the full-length human HTT gene with 

128 repeats.131 Though it lives a normal lifespan and has early increased weight132 (with later 
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weight loss), it develops motor abnormalities and has increased n-methyl-D-aspartate (NMDA), 

AMPA, and metabotropic glutamate receptor (mGluR) binding, and reduced striatal and cortical 

volume.  This YAC128 model appears to replicate human pathology more accurately than other 

models, with specific striatal and cortical neurodegeneration, and late, progressive motor 

impairment (reviewed by Crook and Housman129).  Increased expression of wild-type human 

HTT, even without an expanded CAG repeat, has also been shown to increase body weight.133  

In order to measure the effects of reductions of wild-type Htt versus the effects of the 

added toxicity of mutant HTT, our lab maintains a line with varying numbers of wild-type Htt 

alleles (0,1 or 2 alleles), along with the transgenic human HTT, on a C57B6/J background 

(Figure 1-2).  Baseline weights of these mice are taken just before exposure protocols, 

demonstrating that the toxicity of the human HTT transgene mutation causes a stronger effect on 

body weight than the loss of wild-type Htt alleles (Figures 1-3, 1-4, 1-5).  Interestingly, the 

expanded CAG repeat in the BAC225 mouse generated by our lab (discussed in Chapter II), 

does not increase weight at this age.  Over time, the BAC225 model experiences decreased 

weight compared to wild-type (Figure 2-5) as is seen in juvenile HD,134 but at this 12 week age-

point, the weight decrease is not yet apparent.  Our weight data is consistent with the literature 

that links human HTT with increased body weight, and may indicate the disease stage in the 

BAC225 (as weight loss is not severe in human adult-onset HD until the manifest stage135), or 

may indicate the different effect of human HTT vs. mouse Htt on this phenotype.  Interestingly, 

weight loss is correlated with CAG repeat number in human patients.136 
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Figure 1-2 Schematic representation of breeding strategy to generate differing numbers of 
wild-type Htt alleles with or without the YAC128 transgene. 
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Figure 1-3. The presence of mutant human HTT (YAC128) causes significant increase in 
weight, regardless of number of WT alleles, though expanded mouse Htt (BAC225) does 
not. (WT-C57 n=68, 128-C57 n=46, WT-BAC n=49, 225-BAC n=48, WT-YKO n=45, WT-
het-YKO n=63, 128-het-YKO n=70, 128-YKO n=27, 128-KO-YKO n=52, WT-FVB n=156, 
128-FVB n=102).	Difference between mutants is not significant. Data are presented as means 
+sem of weights in grams normalized to mean WT Veh from each line, t-tests *p< .05, ***p< 
.002, ****p< .0001, post-hoc binary comparisons by t-test following a significant (p=<.05) 
ANOVA.  
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Figure 1-4.  Weights in grams, same data as Fig. 1-3, not normalized, 12 week old 
mice in all lines.  Un-normalized difference between WTs not sig (except for BAC line to 
other C57 lines p=.0178) and all C57 lines to FVB line, diff between all muts and WTs 
highly significant (p=<.00001). Data are presented as means +sem, t-tests *p<.02, 
**p<.0085, ****p<.0001, post-hoc binary comparisons by t-test following a significant 
(p=<.05) ANOVA. 
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Figure 1-5  Change in weight from pre-exposure to 3 days after the second injections 
for each animal. Data are presented as means +sd, t-tests as indicated, post-hoc binary 
comparisons by t-test following a significant (p=<.05) ANOVA.  See Appendix D for 
ANOVA comparisons. 
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None of these models, however, display phenotypes that mimic all of the prominent 

observable abnormalities associated with HD. Moreover, many symptoms observed in one 

model are absent in another. A diverse spectrum of available transgenic / knock-in animal 

models differing in number of CAG repeats, transgene length, transgene locus and 

polyglutamine (polyQ) / wild-type (WT) Htt ratio may therefore be fundamental for successful 

studies of specific HD pathological mechanisms and to evaluate the efficacy of interventional 

strategies.  

To that end, we generated a transgenic Bacterial Artificial Chromosome (BAC) mouse, 

expressing full-length mouse Htt with ~225 CAG repeats under the control of the mouse Htt 

promoter (Chapter 2). This model, displays phenotypes that mimic several of the symptoms 

that are consistent with juvenile HD: motor abnormalities at a young age, early and widespread 

brain atrophy, and progressive loss of body weight. Additionally, general symptoms of both 

juvenile and adult-onset HD are present in these mice, including down-regulation of dopamine 

receptors in striatum and disturbances in plasma levels of metabolites related to energy 

metabolism and systemic inflammation. 

Environmental influences on HD 

Environmental influences have not been demonstrated to accelerate the pace of HD, 

though exposures that cause oxidative stress are assumed to worsen neuronal health.  However, 

many factors described below (including enriched environments, exercise and diets) have been 

shown to delay disease progression.  Most of these beneficial influences have been 

demonstrated to increase endogenous brain derived neurotrophic factor (BDNF) levels, with a 

concomitant delay in disease progression. The pace of neurodegeneration may be due to several 
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mechanisms, including diminished neurotrophic support and deranged essential metal ion 

homeostasis in vivo (Figure 1-6).  

 

            Figure 1-6:  Examples of environmental influences which may delay or hasten 
trajectory to HD onset.   

 

Lifestyle effects 

 Environmental exposures with an influence on the age of onset of HD include cognitive 

stimulation, exercise, nutrition, stress, toxic exposures, pollution and metals.  Some of these 

effects may be beneficial and some detrimental.  Those most studied will be discussed below. 

 Exercise and environmental enrichment  

Research mice are usually kept in small boxes with bedding, food and water. Under 

these standardized conditions, mice expressing full length or fragments of the mutant HTT 

protein develop motor and cognitive disease.67 However, when allowed access to exercise 

wheels, stimulating toys and novel objects, their healthy phase is prolonged.140-142 Exercise 
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alone prolongs the premanifest phase, as does environmental enrichment alone.141-145 

Like cognitive enrichment, exercise increases BDNF levels.146 The general function of 

BDNF is to promote neurogenesis and neuronal survival147,148 through binding to the tyrosine 

kinase B receptor (TrkB), thereby phosphorylating and activating neuroprotective 

pathways.147,149 Striatal neurons express TrkB to receive BDNF transported from the cortex or 

substantia nigra,27 but have substantially less BDNF when compared to other brain regions.148  

TrkB levels are increased with exercise along with BDNF.150,151 This addition to the reserve 

pool of healthy neurons may explain the protective effects observed in neurodegenerative 

diseases in general.145 However, BDNF protein levels are increased via EE even in the HD 

murine model152. In HD, BDNF protein levels are reduced in serum and brain tissue,152,153 as is 

BDNF gene transcription,154 with higher levels of BDNF linked to slowing of 

neurodegeneration.155 

The striatum relies on BDNF transported from the cortical neurons which produce it, but 

the vesicular transport system is negatively impacted by mutant HTT. The vesicular transport 

system depends upon an interaction between the HTT protein and Huntingtin-associated protein 

1 (HAP1),156 with HTT acting as a scaffold, bringing together the transport machinery, and 

enhancing vesicle travel speed and direction.157 This will be further discussed below.  

In addition HTT also regulates transcription of BDNF through interaction with its 

promoter and inhibits the neuron restrictive silencer element (NRSE), which inhibits BDNF 

transcription.158 Mutant HTT loses this inhibitory capability and thereby decreases BDNF 

transcription.158 Increasing BDNF through gene overexpression in mouse models159 or 

indirectly through exercise or enrichment145 protects MSNs and delays degeneration.  Links 

between BDNF and metal in HD will be discussed below. 
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 Emerging evidence has shown that increasing BDNF protein levels protects post-synaptic 

MSN’s even in the presence of mutant HTT.160 Furthermore, overexpression of cortical BDNF 

transcription ameliorates symptoms in HD model mice57 and protects mitochondria.159 

Increasing BDNF in the brain, either directly or indirectly, has been suggested to improve the 

symptoms observed in HD, AD, PD and Amylotrophic Lateral Sclerosis (ALS). 

Diet 

There is also a role for diet in delaying the inevitable genetic destiny of HD. Glucose 

metabolism is altered in HD, with early weight gain followed by hyperglycemia and severe 

weight loss.161 162,163 Leptin levels are normal in premanifest human patients,164 but levels do 

not increase appropriately with body mass index (BMI)136,163 and leptin is high in murine 

models compared to wildtype.165,166 The R6/2 mouse develops metabolic and motor symptoms 

similar to what is observed in HD human patients.167 Treating these mice with dietary 

supplements of essential fatty acids (linoleic and a-linoleic acids) reduced motor signs such as 

foot clasping and locomotor deficits, but did not correct weight loss or reduction in dopamine 

receptors.168 A randomized placebo-controlled double-blind study of fatty acid supplementation 

in humans with HD also showed a significant improvement compared to placebo.169 

Interestingly, restriction of a-linoleic acid reduces BDNF in a striatal specific manner in 

wildtype mice.170 Other dietary manipulations such as dietary restriction (DR) (fasting on 

alternate days), have been shown to be neuroprotective in wildtype animals,171 delaying 

locomotor dysfunction, reducing oxidative stress, restoring BDNF levels and glucose 

metabolism, and increasing lifespan in mice.166 The DR model has also been shown to increase 

longevity in C. elegans.172,173 Ironically, both DR and fatty acid supplementation increases 

BDNF, which may be the protective mechanism of dietary manipulation in HD.  
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Oxidative stress  

In addition to the factors that prolong the premanifest phase, oxidative stress and 

mitochondrial insults174 from either genetic and/or environmental factors may hasten HD 

pathology. HD post-mortem tissue exhibits severe reductions in mitochondrial complexes II – 

IV in the striatum with no effect in the blood.175 Furthermore, PET studies have revealed 

abnormalities in energy metabolism prior to striatal loss.176 Systemic treatment with the 

complex II inhibitor, 3-nitropropionic acid (3NP), causes HD-like abnormal motor behavior,177 

striatal-specific neurodegeneration178 and reduced phosphorylation of DARPP-32179 (a protein 

encoded by a modifier gene reported to affect HD onset). Interestingly, pre-treatment with 

BDNF protects neurons from the effects of 3NP.159  

 Mitochondria are abnormal in HD with alterations in enzymatic complexes180 and 

calcium (Ca2+) kinetics in HD models.176 In the YAC128 mouse, mutant HTT interacts with the 

NR2B subunit of the NMDA receptor, enhancing Ca2+ influx and increasing excitotoxicity in 

striatal MSN’s, which carry the NR2B subunit longer in adulthood than most other neurons.180 

Mitochondria are both a source and target of reactive oxygen species,181 and oxidative stress 

further hastens pathology, increasing apoptosis and aggregation in cultured cells expressing 

mutant HTT.182 Overexpression of the mitochondrial enzyme, superoxide dismutase 1 (SOD1), 

which binds Cu/Zn, reverses oxidative stress in cultured murine cells.182 Systemic 

supplementation with mitochondrial components, such as creatine and ubiquinone, also known 

as coenzymeQ10 (CoQ10), improved HD symptomology in both HD animal models and human 

clinical trials.183,184 Perhaps diets highly enriched with creatine and CoQ10 may contribute to 

delay in onset of HD, while exposure to toxins that target or accumulate in mitochondria may 

hasten onset.  
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Metals 

          Pollutants and heavy metals, such as copper (Cu), iron (Fe), and manganese (Mn), have 

been suggested to influence the pathology of many neurodegenerative diseases, via alterations 

in vesicular transport, mitochondrial dysfunction, protein aggregation, and induction of 

oxidative stress.Though it is well established that metal homeostasis is altered in 

neurodegenerative diseases, the regional metal deposition profile differs for each disorder.  In 

Huntington’s disease (HD), abnormalities have been found in the tissue or cellular deposition or 

handling of copper (Cu), iron (Fe), calcium (Ca) and manganese (Mn) and in their neuronal 

functions which are either the result of disease processes, or the cause of pathology.  

          In general, it is the toxicity of over-exposure, or excess accumulation of metals, that is 

associated with pathology, such as is seen with Mn or Fe intoxication in parkinsonian 

conditions.185 Recently it has been shown that deficiency or maldistribution of metals may be 

just as pathological as the toxicity of over-exposure.  In amyotrophic lateral sclerosis, there is a 

reduction of Cu and zinc (Zn), while lead exposure is surprisingly protective.186 In Alzheimer’s 

disease (AD), a deficiency of Cu has been found in AD models, but the Cu content of post-

mortem AD brain tissue did not differ from healthy controls, though the Cu stores were 

abnormally labile, or responsive to chelation.187  Cell and animal models of HD have shown a 

surprising resistance to Mn accumulation and uptake, with down-stream reductions in Mn-

dependent enzyme activity and metabolism, which will be described below.  In the case of HD, 

a sub-regional or sub-cellular maldistribution of metals may best describe the pathogenic 

contribution of metallostasis to HD neuropathology.  
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The influence of metals on HD 

Links between pollutants and heavy metals (especially Cu, Fe, and Mn), and 

neurodegenerative diseases have long been described,180,188-190 but the role of metal exposure in 

the progression and symptomology of HD is not yet well understood.  Because transition (or 

related) metals Cu, Fe, Zn, Ca and Mn, are essential to neurobiology, alterations in metallostasis 

can affect their roles as catalysts in reduction-oxidation reactions, cofactors for enzymes, and 

metabolism, all of which are important for neurological function.188 Toxic exposure to these 

metals has been linked to induction of oxidative stress, mitochondrial dysfunction, protein 

aggregation, and alterations in vesicular transport173,191,192 all of which play a part in 

neurodegenerative diseases.  The brain appears to be more vulnerable to the toxic effects of 

metals than other organs, and the striatum appears to be especially vulnerable to mitochondrial 

toxins.180 The presence of mutant HTT on mitochondrial membranes causes mitochondria to be 

even less resilient to excitotoxic insults than other tissues. 

Each of the transition metals plays a part in the pathology of HD, yet the role of Mn is 

surprisingly reversed. A screen of metals [Mn2+, Fe2+, Cu2+, Zn2+, lead (Pb2+), cadmium (Cd2+), 

cobalt (Co2+), and nickel (Ni2+)] on a striatal cell model of HD with cell survival as the outcome 

measure revealed a surprising interaction between mutant HTT and Mn.193  The HD cells took 

up less Mn than normal controls, and HD cells were protected from Mn2+ exposure.  This in 

vitro finding was recapitulated in vivo, i.e. mouse models of HD accumulated less striatal Mn 

than wild-type after subcutaneous exposure.193,194 
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Location of metal deposition in brain 

Regional accumulation of metals in brain differs by ion and by concentration and 

duration of exposures, suggesting that different transporters are invoked by acute and or chronic 

exposures.  

Excess exposure  

Following excess exposure in wild type rats, Fe accumulates in the globus pallidus, Cu in 

the striatum and thalamus, and Mn in the thalamus and substantia nigra.195  

Metal deposition in HD 

Emerging studies have demonstrated accumulation of Cu2+ and Fe2+ in HD196 and 

decreased serum ferritin in the striatum of HD.197 While Mn is surprisingly decreased in HD 

models, an increase of Fe and Cu is found in the affected brain regions (Figure 1-7) (described 

in each section below). Interestingly, increased striatal Zn concentrations have also been noted 

in post-mortem HD patient brain.198   
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Figure 1-7. Schematic representation of regional metal accumulation in HD.  Very few 
studies have investigated the localization of metal deposits in HD patients. Copper:  Post-
mortem increases in putamen in one study,199 no increase in another.198 Iron:  Post-mortem 
studies show increased Fe in caudate, putamen and globus pallidus.198-201 Correlations between 
imaging signal and atomic absorption assay of metal content200, and correlation of MRI phase 
evolution of susceptibility signals with ICPMS (FM/ICPMS)202 suggested increased Fe in 
caudate nucleus, putamen and globus pallidus, and also found decreased Fe in hippocampus 
and substantia nigra. Manganese: Post-mortem, no differences between HD and controls.198,199 
as well as FM/ICPMS suggested reductions in cortical subregions.198 Red indicates excess 
deposition compared to normal, blue indicates a deficit, dark grey indicates evidence of no 
change in regional accumulation, light gray indicates no or limited available data.   



	 27	

 

Recently, a drug targeted at an HTT-metal interaction was brought to clinical trial.  

Hydroxyquinoline (PBT2), a compound that reduces copper binding to the Huntingtin protein, 

progressed through Phase II clinical trials with 109 patients. The medication was considered 

safe and well received by subjects, but lack of significant improvement in cognition or function 

prevented the drug from continuing to Phase III trials.122,203 Yet, the influence of environmental 

factors on disease progression suggests that the aberrant properties of mutant HTT can be 

mitigated, and exploration of these factors, such as the gene environment interaction between 

HTT and metals, may reveal further therapeutic targets. 

Autophagy and metals in Huntington’s disease 

Disturbances in macroautophagy have recently been implicated as a cause of pathology 

in many neurodegenerative diseases, including HD.204 Cells transport waste products, including 

metalloproteins, between organelles and from within the cytoplasm to outside of the cell 

membrane via autophagosomes that envelope and contain toxic products such as misfolded 

proteins and damaged organelles.205 Interestingly, HTT shares structural similarity with a yeast 

autophagy gene, Atg11, which has similarities to both a GABA receptor and an autophagic 

scaffold.57 In HD, autophagosomes are frequently devoid of cargo,206 though their number and 

form is unaffected, suggesting that there is a defect in the cargo-recognition function.  This 

abnormality may allow for the buildup of aggregates of HTT and other toxic products, 

especially Fe-containing proteins, which may contribute to the metal dyshomeostasis seen in 

HD (described below). 

In a Drosophila model of HD, reducing wild-type HTT function disturbs 

macroautophagy, and conditionally knocking out Htt in adult mice also causes signs of 

autophagosomal dysfunction, including accumulation of p62, which is an autophagic  receptor 
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protein24. Selective autophagy is the process by which particular proteins are engulfed by 

double-membrane vesicles for transport between intracellular compartments.207  Ochaba et al., 

found that HTT is necessary for selective autophagy in both Drosophila and mouse, and that 

mutant HTT causes a deficit in protein clearance that is likely related to this reduction in 

selective autophagy.24,208  Htt knockout in wild-type mouse brain leads to accumulation of both 

p62- and ubiquitin- containing aggregates, which may indicate breakdown of the selective 

autophagic process which disposes of these products.24,209 Clearance of the Fe-binding protein 

ferritin occurs through selective autophagy, and ferritin clearance is impaired by mutant HTT in 

patients with HD and in mouse models.102,210,211 This obstruction of ferritin processing could 

lead to the increased intracellular Fe-storage abnormalities seen in HD (discussed below).  

One integral protein to the membrane of the autophagosome is the Clathrin Light Chain 

(CLC), which is known to be regulated by Huntingtin Interacting Protein-1 (HIP1).212  CLC 

forms clathrin-coated vesicles that are part of the endosomal recycling system as well as the 

autophagosome.  This pathway is also related to Fe homeostasis,  through transferrin, a protein 

that binds and transports Fe.  The transferrin receptor is taken up by the rapid recycling 

endosomal G-clathrin vesicles which are mediated by CLC,213 a pathway which links the HTT 

interacting proteins with both autophagy,  transferrin receptor recycling and metal homeostasis.   

Metal dyshomeostasis itself may be the root cause of macroautophagy alterations in HD.  

Zhang et al., found that Mn exposure increased autophagy acutely in wild-type rats post-

exposure, but thereafter inhibited autophagy, when measured up to 28 days later.214 And, in 

cultured dopaminergic neurons, Mn nanoparticles activated autophagic cell death.215  

Furthermore, Cu exposure leads to the autophagosomal destruction of mitochondria 

(mitophagy) and related apoptosis when Cu is complexed with dopamine.216 Fe also has an 
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effect on autophagy, with some studies showing autophagic increases after Fe accumulation, 

and other data demonstrating Fe-induced reductions.217 The interaction between metal 

homeostasis and macroautophagy has not yet been studied in the context of HD, though both 

pathways are clearly involved in the disease process.    

Macroautophagy proteins can regulate cell cycle progression, mitosis, and selective 

autophagic clearance.218-220 Other vesicular transport systems such as microvesicles and 

exosomes may also connect metal homeostasis with HD.  There is new interest in this interplay 

between metals, HTT and macroautophagy. 

Exosomes and metal in Huntington’s disease 

Exosomes are very small vesicles (50nm or less in diameter) in the extracellular space, 

that contain proteins and waste products, including metals.221  These exosomes originate in the 

endosome and contain transferrin receptors, among other proteins, and may also play a role in 

intracellular metal homeostasis and metal transport between organelles. In addition to carrying 

metals and metal receptors, exosomes have been found to deliver toxic trinucleotide RNA’s, 

and fragments of polyglutamine proteins from one cell to another, spreading these fragments in 

a prion-like fashion.222  HTT has been associated with exosomal protein in several studies, 

suggesting that it either plays a part in exosomal regulation, or that exosomes serve to recycle or 

dispose of HTT.222-224  Exosomal contents may prove to serve as a biomarker, both for metal 

exposure as well as for clinical treatment trials.   

Iron 

 HD has been associated with altered Fe homeostasis in a number of ex vivo and in vivo 

human studies, focusing mainly on the vulnerable basal ganglia structures. Post-mortem 

analysis of patient brains has shown increased Fe levels in HD caudate, putamen, and globus 
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pallidus,198-200 which is consistent with the macroautophagy deficits mentioned above. Mice 

expressing mutant HTT fragments show increased Fe buildup in brain as the disease 

progresses.225,226  In human patients with HD, there is also abnormal accumulation of striatal Fe 

and Cu as symptoms progress.201  

Correlation of MRI signal (field mapping evolution measurements) with ICPMS 

measurements of transition metals points to abnormal iron deposition in HD caudate, putamen, 

globus pallidus, and cortex at different disease stages, including pre-manifest HD, suggesting a 

role for Fe as a biomarker for the disease and implicating Fe dysregulation in HD 

pathogenesis198,202,227-234 (Figure 1-7). Imaging studies correlating T2 measures with CAG 

repeat number and clinical features in HD patients suggest that longer CAG tracts may be 

associated with higher amounts of toxic forms of Fe in certain vulnerable basal ganglia 

structures.230,231 Furthermore, nuclear inclusions of fragments of the mutant polyQ protein are 

associated with Fe-dependent oxidation.235 

More recent magnetic resonance studies have examined the relationship between brain 

atrophy and Fe deposition in HD. One study reported that increased Fe accumulation in early-

manifest HD basal ganglia and atrophy of those regions occurred independently of each 

other.232 Another study of pre-symptomatic HD subjects found that both excessive Fe 

accumulation and volumetric losses in the basal ganglia which began at the pre-symptomatic 

disease stage intensified with disease progression and CAG repeat number.234 A recent imaging 

study by van Bergen et al,202 confirmed increased Fe levels in the caudate nucleus, putamen, 

and globus pallidus of subjects with pre-manifest HD, showing significant atrophy in the 

caudate nucleus and putamen which was inversely correlated with Fe levels in those regions. 

The investigators also reported significantly decreased Fe in hippocampus and substantia nigra 
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of pre-manifest HD patients. Thus, while the role of Fe in HD neuropathology remains under 

investigation, the links between altered Fe homeostasis in HD brain and other clinical and 

biological features of the disease suggest that Fe may play a role in HD pathogenesis and/or 

serve as a tool for studying HD.    

The mechanisms leading to Fe accumulation in HD brain are unknown, but may be 

related to any or all of three known Fe-related proteins:  ferritin (the Fe storage protein), 

transferrin (a protein that binds Fe) or ferroportin (a transmembrane protein that moves Fe 

across membranes).  Ex vivo and imaging studies have shown increased levels of ferritin, in 

post-mortem and earlier-stage HD basal ganglia and cortex, particularly in microglia with 

morphologic abnormalities,200,210 though ferritin was decreased in the serum of patients.236 This 

low serum ferritin is characteristic of a similar autosomal dominant progressive movement 

disorder known as neuroferritinopathy, or adult-onset basal ganglia disease, which is caused by 

a mutation in the ferritin light chain (FTL) gene.  The FTL mutation results in abnormal Fe and 

ferritin accumulation in the basal ganglia, and the symptoms of motor dysfunction are very 

similar to thost of HD.237-241   

The HTT protein is intimately connected with cellular Fe metabolism, but the exact 

relationship and direction of the Fe-HTT regulation, is unclear.  HTT co-fractionates with the 

transferrin receptor (TfR)242 and some data indicates that HTT itself is an Fe-responsive 

protein.101 On the other hand, reduction of HTT expression in zebrafish leads to increased TfR1 

expression in hypochromic blood.102 Upon exposure to bioavailable Fe, this phenotype is 

reversed, suggesting a functional role of wild-type huntingtin in making endocytosed Fe 

accessible, perhaps releasing Fe from endocytic vesicles.  
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Supplemental Fe may be detrimental in HD, even in the prodromal phases, as it has been 

shown in two different HD mouse models that supplementation with Fe in the neonatal period 

causes more severe striatal degeneration to develop.243,244 Furthermore, HTT aggregates are 

increased with Fe-dependent oxidation and protected with deferoxamine, an Fe chelator.225 Cu 

is also implicated in HD pathology, as both Cu and Fe exposures have been linked to increased 

aggregation of mutant HTT226 and a Cu/Fe chelator, clioquinol, an anti-fungal drug, reduced 

mutant HTT aggregates while also rescuing the HD behavioral phenotype in R6/2 mice.245  

There is also a connection between Cu and Fe, in that Cu treatment induces ferroportin 

expression, allowing for Fe efflux from cultured macrophage cells,246 though Cu deficiency has 

no impact.247 

Copper 

The role of Cu and Cu-binding proteins in patients with HD is still under investigation. 

Dexter et al., reported increased Cu levels in post-mortem HD putamen,199 however, a more 

recent study by Rosas et al. using field mapping evolution measurements (obtained through 

MRI) correlated with direct ICPMS analysis of dissected tissue, did not find elevated Cu levels 

in HD brain198 (Figure 1-7). Indirect evidence that Cu accumulation may be high is found in 

analysis of gene expression data from post-mortem HD patient brain tissue revealed 

upregulation of genes encoding Cu-binding proteins, including metallothioneins 1 and 2 (MT1 

and MT2) and ceruloplasmin.248,249 Though those studies were post-mortem, another study of 

oxidative damage in the cerebrospinal fluid (CSF) of living patients found increased 

lipoperoxidation in the CSF of those with HD along with decreased Cu/Zn-dependent 

superoxide dismutase (SOD1) activity and decreased ceruloplasmin ferroxidase activity, which 
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was correlated to motor assessments.250  While these findings suggest that free Cu may be 

increased in HD CSF, the investigators did not report significantly higher levels of free Cu.  

Rodents exposed to quinolinic acid exhibit striatal deficits that resemble those seen in 

HD due to neuronal death by depletion of GABA.251 These QUIN-HD model rats accumulate 

excess Cu in the striatum, which may be linked to the agonistic effect of quinolinic acid on 

NMDA-type glutamate receptors.252  Cu is released after activation of NMDA receptors, and 

their stimulation increases trafficking of a Cu-specific transporter, ATP7A, from the late Golgi 

into neuronal dendrites, resulting in local Cu accumulation.253 Surprisingly, pre-treatment of rats 

with Cu-supplemented drinking water before exposure to quinolinic acid prevents some of the 

HD-related symptoms.254 

Though HTT interacts indirectly with Fe through Fe-binding proteins and transporters, 

the connection between HTT and Cu is direct.  Experiments in vitro show that Cu2+ interacts 

with wild-type HTT, decreasing the solubility of HTT protein fragments76, and increasing 

aggregation. Previously, aggregates were thought to be inert, but it has now been shown that Cu 

also binds with HTT after aggregation, possible further exacerbating their insolubility.91 Fewer 

aggregates form when Cu influx transporters (DmATP7 and Ctr1B) are blocked in Drosophila 

HD models.76,255 Furthermore, there are two residues on the HTT protein which may bind Cu 

(Met8 and His82), and when these sites are mutated in HD Drosophila models, the toxic effects 

of mutant HTT are prevented.255 Copper binds directly to the N-terminal region of the HTT 

protein226, but a correlation with number of repeats and the strength of Cu binding has not been 

found, It appears that neither the Cu alone, nor the polyQ extension on HTT exon 1 alone 

caused HD symptoms, but the combination of the HD mutation and Cu exposure was toxic, 

suggesting that Cu-related treatments could be of benefit to HD patients.   
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Calcium 

Ca is very important in HD, both on a regional and molecular level.  Intracellular Ca2+ 

modulates many biological functions through its role as a second messenger,256 thus it is tightly 

regulated by intracellular sequestration through Ca buffering proteins (such as calbindin), and 

by the presence of storage pools in the mitochondria and endoplasmic reticulum (ER).257  

Neuronal Ca levels were much higher in R6/2 mice (a mouse model which bears the first exon 

of mutant human HTT) than in their wild-type littermates after symptoms had begun.258 

Optimal intracellular Ca concentration is controlled by AMPA receptors, glutamate-

gated NMDA receptors, voltage-gated Ca channels, and Store-Operated Calcium Entry (SOCE) 

channels.257  In cultured neurons from HD model mice, there is increased intracellular Ca 

response to glutamate challenge, leading to oxidative stress which can cause apoptosis.259-263 

Interestingly, it is chiefly the duration of Ca response that is altered, rather than the total Ca, 

implicating abnormalities in cellular Ca handling rather than influx.257   

Subcellularly, Ca can be released from pools stored in the mitochondria or in the ER, 

and there is indirect evidence that HTT may be involved in the regulation of these Ca stores.   

The HTT protein directly binds with the mitochondrial membrane,264 and the polyQ expansion 

reduces mitochondrial sequestration of Ca, suggesting a role in controlling mitochondrial Ca 

transport.  There is also direct binding of the HTT protein with Huntington Associated Protein 1 

(HAP1) and inositol tri-phosphate (IP3) which causes IP3 to interact with the IP3 receptor on 

the ER membrane.265 The IP3 receptor is a Ca channel that is activated by IP3, allowing for the 

release of Ca in response to mGluR1/5 receptor activation. Mutant HTT binds to the type 1 IP3 

receptor (InsP3R1), increasing its activity and reducing Ca levels in the ER.262,266  
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The store-operated calcium (SOC) release pathway is also affected in HD.  Stroma 

Interacting Molecule 2 (STIM2) is a plasma membrane protein located in the ER that 

participates in SOC release as a Ca sensor.267 When ER Ca decreases, STIM2 interacts with 

SOC entry channels to resupply the ER with Ca. Bezprozvanny and colleagues found that 

STIM2 expression is elevated in HD model mouse striatum, possibly as a compensatory 

mechanism to release the excess Ca accumulation caused by the abnormal sensitivity of the 

InsP3R1 when it is bound to mutant HTT.268  Further, depletion of Ca from the ER activates the 

SOC pathway in neuronal spines in the HD mouse model, perhaps leading to the reduction in 

spine density found in aged HD model mice compared to wild-type.  Indeed, reducing 

expression of either InsP3R1 or STIM2 reversed the dendritic spine abnormalities in HD mouse 

cortical-striatal cell cultures compared to wild-type.  

Thus, the levels of Ca in neurons and within neuronal organelles contributes to HD 

abnormalities.  Ca dyshomeostsis may also play a role in the HD associated alterations in the 

bioavailabilities of other metals as well.  The homeostasis of both Ca and Mn are disrupted in 

HD, and the two metals are closely related in many biological pathways, often transported 

through the same channels, though sometimes moving in opposite directions 

Manganese  

Overexposure to Mn causes preferential accumulation in the mitochondria of the brain 

and liver,269 especially in the basal ganglia of rats270 and humans,191 the region also most 

affected in both HD and PD. This distribution is different than that depicted in Figure 1-7, 

which refers to metal accumulation in HD, rather than overexposure.  Mn also appears to 

selectively accumulate in the mitochondria of these regions269 and causes apoptosis from 

mitochondrial cytochrome c release271,272 in a caspase-dependent pathway.273 Subtoxic Mn 
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exposure causes greater susceptibility to 1-methyl-4-phenylpyridinium (MPP), a mitochondrial 

toxin which targets nigral dopaminergic neurons and is used to create a common PD model.  

This MPP+ related apoptosis can be reversed by n-acetyl creatine.274 In HD, it is possible that 

mutant HTT causes normal levels of bioactive agents to become neurotoxic to selected 

populations of neurons.  

 Overexposure to Mn increases risk of a Parkinsonian phenotype referred to as 

manganism.275,276 This condition is similar to HD in that it is a progressive neurodegenerative 

condition which primarily affects the basal ganglia motor pathways.  However, there is a loss of 

nigrostriatal dopaminergic pathways in PD, while there is deterioration of the striatal 

GABAergic MSN’s in HD, and motor symptoms differ.277 Surprisingly, in HD models, studies 

utilizing immortalized striatal cells and striatum of knock-in mouse models of HD have 

demonstrated a resistance to the toxic effects of Mn.193,278,279 Emerging evidence from our 

laboratory aimed at examining Mn transport dynamics in the immortalized striatal cell line 

model of HD has revealed a significant decrease in instantaneous Mn uptake and storage 

capablilites in mutant HTT cells compared to wildtype following Mn exposure, though efflux 

rate appears to be equal in both.280 It is possible that mutant HTT interacts with constituents of 

the neuronal Mn transport system and dysregulates Mn kinetics. This gene-environment 

interaction between mutant HTT and Mn may serve to explain how xenobiotics influence 

genetic functions. A reduction of Mn in neurons would alter the normal neuronal and glial 

functions of proteins that cannot function without sufficient Mn, and their byproducts would be 

reduced in HD. A review of studies on manganoproteins in Chapter III shows either directly or 

indirectly that they are all reduced in the presence of mutant HTT.   

 To study the effect of Mn on HD pathology, we generated a novel HD model which we 
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hypothesized would more rapidly show pathology than the existing mouse models. This model, 

the BAC225, will be described in Chapter II. 
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Chapter II  

Effect of Expanded CAG Repeat on BAC Mouse Model	

Note:  This chapter has been derived from the following publications: 
 
Wegrzynowicz M, Bichell TJ, Soares BD, Loth M, McGlothan J, Alikhan F, Hua 
K, Coughlin J, Holt H, Jetter C, Mori S, Pomper M, Osmand A, Guilarte T, 
Bowman AB. Novel BAC Mouse Model of Huntington's Disease with 225 CAG 
Repeats Exhibits an Early Widespread and Stable Degenerative Phenotype. J 
Huntingtons Dis 2015; 4(1): 17-36. (Wegrzynowicz and Bichell contributed 
equally to this manuscript).  
 
Author contributions: MW, TJVB and ABB wrote the manuscript.  MW and ABB 
generated the genetic construct.  MW, CJ and TJVB maintained the mouse 
colony.  BS, ML, JM, FA and TG performed the TSPO and DR binding 
experiments with tissue provided by MW.  KH and JC performed the MRIs with 
tissue provided by MW.  TJVB performed the PCR and the QRT-PCR on tissue 
collected by MW and TJVB. MW, TJVB, HH, CJ performed the behavior 
experiments and/or analyzed data.  SM, MP and AO performed the IHSC 
experiments with tissue collected and perfused by TJVB.  AO, TG and ABB 
conceptualized and advised on the study. 
	

Background 

Typical adult-onset HD is characterized by selective degeneration of neurons within the 

striatum, cortex and hypothalamus with relative sparing of the cerebellum and 

hippocampus.1Additionally, several peripheral tissues (endocrine tissues, cardiac and skeletal 

muscle) have been suggested to contribute to HD pathogenesis.2 The juvenile form of the disease, 

due to longer CAG repeat lengths (> ~60 repeats), presents with more extensive neuropathology 

that includes cerebellar degeneration and can display clinical manifestations distinct from adult-

onset HD.3,4 Surprisingly, published mouse models expressing the full-length Htt gene with CAG 

repeat lengths well beyond those associated with adult-onset HD, such as the YAC128 model, 

exhibit selective neurodegenerative phenotypes more similar to adult-onset HD than the juvenile 

form (for review see 5). Though the knock-in mouse models reported to date parallel the human 

genetic disorder, bearing mutations at the endogenous Htt locus, they display very mild 
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symptoms, akin to the pre-symptomatic stage of human adult-onset HD, and none of these models 

reproduce the full spectrum of HD symptoms and pathologies.  

A diverse collection of animal models available, differing in number of CAG repeats, 

transgene length, transgene locus and polyglutamine (polyQ)/wild-type (WT) HTT ratio may 

therefore be fundamental for successful studies of the pathological mechanisms of HD and for 

evaluating the efficacy of interventional strategies. To determine if very long repeat lengths in the 

mouse are capable of producing phenotypes associated with the juvenile form of HD we 

generated a novel model mouse expressing full-length mouse Htt with ~225 CAG repeats under 

the control of mouse Htt promoter, using a bacterial artificial chromosome (BAC) system.  

In many respects, the C57BL/6J-Tg(BAC225Htt)1Bow model we constructed (hereafter 

referred to as the BAC-225Q mouse) exhibits a phenotype consistent with juvenile-onset HD 

and/or late stage of adult-onset HD at a very early age.  The BAC-225Q mouse exhibits very early 

motor behavior abnormalities (the most rapid onset amongst full-length Htt models of HD), 

sudden and extreme loss of body weight, severe aggregate load, and widespread 

neurodegeneration. Very early striatal pathology was observed prior to detectable volume loss, 

including reactive gliosis and loss of dopamine receptors in medium spiny neurons. Additionally, 

an increase in plasma concentrations of markers of energy metabolism deficiency and systemic 

inflammation is observed in BAC-225Q mice. The model is also noteworthy as despite the early 

onset of neuropathological and motor phenotypes (<3 months), little or no progression of 

phenotypic severity was observed with age through at least 10 to 15 months of age. These features 

make BAC-225Q mice a reliable mouse model of HD, useful particularly in studies of the 

juvenile form of disease, the metabolic phenotypes in HD and on the relationship between 

regional neuropathology and general HD symptoms. 
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Method of generation of the C57BL/6J-Tg(BAC225Htt)1Bow mouse 

The BAC-225Q transgenic animals were generated by pronuclear injection of fertilized 

C57BL6/J eggs with a modified bacteria artificial chromosome (BAC RP24-165D1 obtained from 

CHORI BACPAC resources) covering ~202kb of the mus musculus Htt genomic locus 

(containing the entire Htt locus plus partial sequence of the flanking genes Grk4 (last 5 out of a 

total of 16 exons) and Rgs12 (first exon only) modified to expand the normal CAG repeat to a 

length of ~225 repeats within the full-length Htt gene by a subcloning/BAC recombineering 

strategy6 Detailed information on break points of BAC RP24-165D1 is available on the UCSC 

genome browser (http://genome.ucsc.edu/index.html).  

Briefly, the recombineering strategy began by subcloning a 266-CAG repeat from the 

mutant Atxn7 locus by PCR using genomic DNA of the SCA7 knock-in mouse model,7 HindIII 

and PvuII restriction enzyme recognition sites were engineered into the primers to allow 

restriction enzyme cloning into the genomic DNA flanking exon 1 of the mouse Htt gene. This 

construct was used as a targeting vector via BAC recombineering using GalK positive and 

negative selection in the RP24-165D1 BAC. Restriction mapping of BAC fragments and 

sequencing of the expanded CAG repeat from the BAC was used to validate appropriate targeting. 

The Vanderbilt Transgenic Shared Resource generated three female BAC positive transgenic 

founders that were mated to C57BL/6 male mice to test for germline transmission using uncut 

BAC vector prepared via the Qiagen Large Construct Kit (Qiagen). One of the three founders 

transmitted the transgenic allele to establish the BAC-225Q line.  Expression of full-length 

mutant Huntingtin protein was confirmed in transgene positive animals by western blotting. BAC-

225Q transgenic animals were maintained in their original genetic background (C57BL/6J ) and 
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the transgene was transmitted to the offspring from a hemizygous transgenic parent by crossing it 

with a non-transgenic animal. 

As only a single transgenic line was generated we were not able to test whether any 

particular phenotypes displayed position effects. To minimize position effects we used only 

hemizygous transgenic mice for all experiments to ensure at least one functional allele for any 

genes disrupted from the transgene insertion. Genotyping and analysis of CAG repeat length was 

performed using genomic DNA isolated from the tail with the following primers, flanking the 

CAG repeat within Htt: F: 5’-CCCATTCATTGCCTTGCTG-3’, and R: 5’-

GCGGCTGAGGGGGTTGA-3’. Agarose gel electrophoresis demonstrated a calculated CAG 

repeat length in the BAC-225Q animals of between 220–230 repeats. The length of the CAG 

repeat in the transgene has not detectably changed since transmission from the original founder 

across >10 generations, suggesting a stable repeat with no detectable intergenerational expansion 

or contraction (Figure 2-1). Furthermore, of over 1000 transgenic positive progeny we have seen 

only a handful of animals with an observable small increase or decrease in the CAG repeat 

containing PCR product used to genotype the animals. Thus, while expansions and contractions 

are still possible, they were rare events (less than 1 in 200 animals). The basis for the repeat 

stability is unclear though possible explanations include the genomic location of the transgene 

insertion site, or relatively low expression level of the transgene mRNA (see results section). 

Mice were weighed weekly, from four to 43 weeks of age, 2–4 hours before the end of the light 

phase of the light cycle. 
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Figure 2-1.  Representative PCR genotyping over the CAG repeat in Htt exon 1 
shows stable CAG repeat length.  Genomic DNA from progeny of a BAC-225Q 
transgenic animal crossed to WT C57Bl/6 animal in an early generation (Top panel) 
versus pups from a litter 10 generations later (Bottom panel).  Top panel DNA 
ladder is Life Technologies 100bp DNA ladder; bottom panel is Invitrogen 1Kb plus 
DNA ladder.  Note highly similar sizes of CAG expanded allele band from all 
transgenic animals; a consistent band mobility was seen in nearly all genotyping 
reactions across 5+ years maintaining this line.  

 
 

Methods and materials for phenotyping BAC225 mouse 

Western blotting 

          Western blotting was performed as described8. Briefly, tissue was homogenized on ice in 

RIPA buffer (50 mM Tris, 150 mM NaCl, 0.1% sodium dodecyl sulfate (SDS), 1% IGEPAL CA-

630, 12 mM deoxycholic acid, pH 8.0) supplemented with 1% protease inhibitor cocktail (Sigma). 

Homogenates were centrifuged at 14,000 x g, for 10 minutes, at 4OC. Protein content was 

measured by DC assay (Bio-Rad). Samples were mixed with sample buffer (60 mM Tris, 6% 

SDS, 30% glycerol, 15% β-mercaptoethanol, 0.015% bromophenol blue, pH 6.8) and incubated at 

95OC for 5 minutes. The electrophoresis was run using 15 x 22 cm, 10% polyacrylamide gels, 

overnight at 1050 V x hour with CBS Scientific Vertical Electrophoresis System in running buffer 

(0.1% SDS, 20 mM Tris-HCl and 192 mM glycine). Next, proteins were transferred to 0.2 µm 
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pore Protran nitrocellulose membrane (Whatman) in transfer buffer (20 mM Tris-HCl, 192 mM 

Glycine, 10% methanol), at 500 mA, at 4OC for 3 h, using CBS Scientific Electrophoretic 

Blotting System or the iBlot transfer system. The membrane was blocked with 5% milk in TBST 

buffer (150 mM NaCl, 56 mM Tris-HCl, 44 mM Trizma base, 0.05% Tween-20) for 3 hours at 

room temperature (RT) or with Odyssey Blocking Buffer (LI-COR part 927-400000) for 90 mins 

at RT. The blocked membranes were incubated with mouse anti-HTT 1HU-4C8 antibody 

(MAB2166, Millipore, 1:5,000 – 1:20,000) or mouse anti-polyglutamine expanded 1C2 antibody 

(MAB1574, Millipore, 1:5000) diluted in 5% milk in TBST overnight at room temperature. Anti-

mouse secondary antibody (Jackson ImmunoResearch Laboratories) was used at 1:10,000 – 

1:15,000 dilutions in 5% milk in TBST or in Odyssey Blocking Buffer with 0.1%Tween. The 

blots were visualized with West Dura Extended Duration Chemiluminescent Substrate (Thermo 

Fisher Scientific) or using the Li-Cor Odyssey infrared system. Blot quantification was performed 

with ImageJ (NIH), with the background correction calculated using a signal ratio error model.9 

Rotarod  

 Three cohorts of animals were used for the rotarod test (a rotating balance-beam-like rod 

which measures rodent abilities such as motor coordination and endurance). The first cohort was 

examined at 3, 4, 5, 6, 7, 8, 9, 12 and 15 months, the second cohort at 6, 7 and 12 months, and the 

third cohort at 1.5, 2 and 2.5 months of age. Animals were tested at Vanderbilt Murine 

Neurobehavioral Core using an Ugo Basile Accelerating Rotarod. Three 10-minute trials per day 

with a 30 minute interval were performed for 4 consecutive days during the light phase of the 

light cycle for a total of 12 trials per age point. A single trial consisted of 5 minutes of 

acceleration phase (from 2 to 40 rpm), followed by 5 minutes of constant phase (40 rpm). For 

each animal, the average of all the 12 trials was calculated per age point and this value was used 
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to calculate the average for each experimental group and for statistical purposes. ANOVA showed 

a significant effect of gender on rotarod performance, thus males and females were analyzed 

separately.  All experiments, designed to minimize animal pain, were carried out with the 

approval from Vanderbilt University Medical Center Institutional Animal Care and Use 

Committee. 

Open field 

 Open field behavior testing was performed during the dark phase of the light cycle at the 

Vanderbilt Murine Neurobehavioral Core. Male and female animals, at the age of 3, 6, 9 and 12 

months were placed in the ENV-510 open field test chambers (27 cm x 27 cm x 20.3 cm; MED 

Associates) and monitored for 30 minutes in the dark. The chambers housed 16 infrared beams 

monitoring X-Y-Z coordinates every 50 milliseconds. Animals were scored for total distance 

travelled, vertical counts, jump counts and average velocity. Data were recorded and analyzed in 

Activity Monitor 5.0 (MED Associates). There was no significant influence of gender by 

ANOVA on open field performance, thus male and female data were pooled for analysis. 

Leptin and cytokine measurements in plasma 

 Blood samples were collected using a submandibular bleeding method10 with Goldenrod 

mouse bleeding lancets from mice at 2, 3, 5, 6, 8 and 10 months of age, 2-4 hours before the end 

of the light phase of the light cycle. Blood was collected to EDTA coated tubes and samples were 

centrifuged at 1850 x g, for 15 minutes, at 4OC. Plasma was snap frozen in liquid nitrogen and 

stored at −80OC. Leptin and cytokines (IL-4, IL-6, MIP2, KC, IFNγ, TNFα) were measured by the 

Vanderbilt Hormone Assay Core using Mouse Adipokine Kit and Mouse Cytokine / Chemokine 

Kit Panel 1 (Millipore), respectively, according to the manufacturer’s recommendations. Luminex 

100 with Xponent 3.1 software was used to quantify the assays. ANOVA failed to find a 
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significant difference by gender, thus male and female data were combined for analysis to 

maximize statistical power. 

Volumetric MRI 

Mice were perfused with 4% PFA and heads were postfixed in PFA solution. Before 

imaging, samples were placed in a plastic tube with Fomblin Profludropolyether to prevent 

dehydration. Samples were imaged using a 9.4 Tesla scanner (vertical bore, Bruker Biospin) 

using a 15 mm volume coil. 3D T2-weighted Rapid Acquisition with Refocused Echoes (RARE) 

sequence was used, with the following parameters: RARE factor of 8, Effective Echo Time (TE) 

= 43.82 ms, Repetition Time = 2000 ms, FOV = 25.6 mm x 14.4 mm x 10 mm, number of 

average = 4. The image had a matrix size of 256 x 144 x 100, which was zero-filled to 256 x 256 

x 128. Signals from tissue outside of the brain were removed from acquired subject image by 

skull stripping. After initial affine alignment, the intensity-corrected subject T2-weighted image 

and the atlas T2-weighted image11 were submitted to a Linux cluster running Large Deformation 

Diffeomorphic Metric Mapping (LDDMM)12 using the DiffeoMap software package 

(www.mristudio.org, X. Li, H. Jiang, and S. Mori, Johns Hopkins University). A topology-

preserving mapping between the subject and atlas T2-weighted image was generated by single-

channel LDDMM, and inverse mapping (from atlas space to subject space) was applied to the 

predefined structural segmentations in the atlas space. The segmentation quality of striatum was 

inspected and manual touch-up was applied when necessary. The volume of the whole brain and 

the inverse transformed structures were reported in DiffeoMap. 

 

 

k 
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Immunohistochemistry 

Animals were anesthetized with isoflurane and transcardially perfused with 4% 

paraformaldehyde (PFA) in 0.1 M phosphate buffer, pH 7.4. The brains were post-fixed in 4% 

PFA at 4OC for 24 h, immersed in sucrose solutions (15%, 20% and 30%) and frozen. Frozen 

brains were thawed in cryoprotectant (20% glycerol/2% DMSO) and multiple brains were 

embedded in a gelatin block and post-fixed in formaldehyde containing cryoprotectant; sections 

were freeze cut at 35µm, transferred to cryoprotectant, and stored at −20°C (Neuroscience 

Associates). Sections were stained under free-floating conditions for GFAP (glial fibrillary acidic 

protein; DAKO, 1:100,000), for Iba-1 (WAKO, 1:40,000), and for polyglutamine, following 

formic acid antigen retrieval, with biotinylated-4H7H7 (80 ng/ml).13 The following general 

protocol was used: sections were blocked by reacting aldehyde sites with ethanolamine and 

reducing Schiff bases with ascorbic acid and treating with 0.5% Triton X-100 in PBS, followed 

by overnight incubation in primary antibody; for glial staining sections were washed, reacted with 

biotinylated anti-rabbit IgG (Vector), followed by Elite ABC reagent (Vector); peroxidase 

reactivity was detected with nickel-enhanced DAB using glucose-glucose oxidase to generate 

hydrogen peroxide in Tris-imidazole buffer. Biotinylated-4H7H7 localization was visualized by 

reaction with Elite ABC reagent followed by tyramide amplification using biotin-PEG-tyramide 

and a second reaction with Elite ABC reagent, and the peroxidase detected as above. Sections 

were mounted on glass slides, dehydrated and processed through alcohols and xylene substitute 

and cover-slipped with xylene substitute mountant (Shandon). When required mounted sections 

were lightly counterstained with thionin for Nissl substance. 

High resolution digital images were collected on a Nikon Eclipse Ni microscope and 

minimally manipulated in Photoshop CS5 using consistent adjustments. Staining intensity was 
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quantified in Photoshop by inverting gray scale images, selecting regions of interest with the lasso 

tool and using the median intensity determined by the Histogram tool. 

 Tissue preparation 

For Nissl and acetylcholinesterase staining, animals were sacrificed by cervical 

dislocation, and freshly isolated brains were quickly frozen on dry ice. For 

immunohistochemistry, animals were deeply anesthetized with isoflurane and transcardially 

perfused with 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer, pH 7.4. The brains were 

isolated from the skulls, post-fixed in 4% PFA at 4OC for 24 h, immersed in sucrose solutions 

(15%, 20% and 30%) and frozen on dry ice. Before sectioning, the brains were transferred to a 

cryostat and allowed to come to -150C for 30 min. Forty µm sections were collected on uncoated 

slides (for Nissl and acetylcholinesterase staining) or in PBS (for Htt immunostaining). 

Nissl staining 

Cresyl violet solution (0.5%) in 400 mM acetic buffer, pH 3.9 was stirred for 7 days at RT 

using a magnetic stirrer and filtered through filter paper prior to use. Sections collected on slides 

were incubated in histoclear (2 x 5 min.), 100% EtOH (2 x 5 min.), 95% EtOH (5 min.), 70% 

EtOH (5 min.), H2O (5 s), cresyl violet solution (45 min.), H2O (5 min.), 70% EtOH (5 min.), 

95% EtOH (5 min.), 100% EtOH (2 x 5 min.), histoclear (2 x 5 min.) and coverslipped using DPX 

mounting medium (Sigma). 

Acetylcholinesterase staining 

The sections collected on the slides were incubated overnight in the incubation solution (4 

mM S-acetylthiocholine iodide, 85 µM ethoproprazine, 50 mM sodium acetate, 4 mM CuSO4, 16 

mM Gly, pH 5.0) at RT. The next day, they were rinsed in H2O, incubated in 1% Na2S x 9 H2O in 

acetic buffer, pH 7.5 for 10 min., rinsed with H2O and incubated in formalin overnight. Next, the 
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slices were air-dried, dipped in 100% EtOH and histoclear and coverslipped using DPX mounting 

medium. 

HTT immunostaining 

Following 2 h blocking with 5% normal goat serum (NGS, Jackson ImmunoResearch) in 

PBS with 0.1% Tween-20 (PBST), free floating sections were incubated overnight at RT with 

primary antibodies diluted in PBST: mouse MAB 2166 (1:1000), mouse HU-4E6 (MAB 2170, 

Millipore, 1:1,000), mouse 3B5H10 (Sigma, 1:500) and mouse MW1 (DSHB, University of Iowa, 

1:1,000). Next, the sections were incubated for 3 h at RT with DyLight 488-conjugated goat anti-

mouse secondary antibody (Jackson ImmunoResearch) diluted at 1: 400 in PBST with NGS. 

Sections were mounted using ProLong Gold Antifade Reagent with DAPI (Invitrogen) and 

analyzed with a Zeiss Observer.Z1 epifluorescent microscope equipped with Axiovision software 

(Carl Zeiss). 

TSPO and dopamine receptor autoradiography 

Translocator Protein 18kDa (TSPO) and dopamine receptors (D1, D2) were visualized 

using quantitative receptor autoradiography. Fresh-frozen brains were sectioned (20 µm) on a 

freezing cryostat and thaw-mounted onto poly-L-lysine-coated slides (Sigma). [3H]-DPA-713 (83 

Ci/mmol; Quotient Bioresearch) autoradiography was used to measure TSPO. Slides were dried at 

37°C for 30 min, followed by a prewash in 50 mM Tris-HCl buffer (pH 7.4) for 5 minutes at 

room temperature. Sections were then incubated in 0.5 nM [3H]-DPA-713 buffer for 30 minutes 

at room temperature. Non-specific binding was assessed in adjacent sections incubated in the 

presence of 10 mM PK11195 (Sigma). The reaction was terminated by two 3-minute washes in 

cold buffer (4°C) and two dips in cold water (4°C). Sections were apposed to Kodak Bio-Max 

MR films (Sigma) with [3H]-Microscales (Perkin Elmer) for 4 weeks. 



	 65	

[H3]-SCH-23390 (84.3 Ci/mmol; Perkin Elmer) autoradiography was used to measure D1 

dopamine receptors. Sections were dried at 37°C for 30 min, followed by a preincubation for 20 

min. at room temperature in 50 mM Tris buffer, pH 7.4, containing 120 mM NaCl, 5 mM KCl, 2 

mM CaCl2, 1 mM MgCl2. Sections were then incubated at room temperature for 30 min in the 

same buffer (pH 7.4) containing 1 mM ascorbic acid, 40 nM ketanserin (Sigma), and 1 nM [H3]-

SCH-23390. Non-specific binding was defined in adjacent sections incubated in the presence of 5 

µM (+)-butaclamol (Sigma). After incubation, sections were rinsed twice for 20 seconds each in 

cold buffer containing 1 mM ascorbic acid (pH 7.4, 4°C), then dipped in cold distilled H2O (4°C), 

and dried under a stream of cool air. Sections were apposed to Kodak Bio-Max MR films (Sigma) 

with [3H]-Microscales (Perkin Elmer) for 5 weeks. 

[H3]-Spiperone (85.4 Ci/mmol; Perkin Elmer) autoradiography was used to measure D2 

dopamine receptors. Sections were dried at 37°C for 30 min, followed by a prewash for 5 minutes 

at 36°C in 50 mM Tris buffer, pH 7.1, containing 120 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM 

MgCl2. Sections were then incubated at 36°C for 30 min in the same buffer (pH 7.1) containing 

40 nM ketanserin (Sigma), and 1.4 nM [H3]-Spiperone. Non-specific binding was assessed in 

adjacent sections incubated in the presence of 1 µM (+)-butaclamol (Sigma). After incubation, 

sections were rinsed three times for 20 seconds each in cold buffer (4°C), then dipped in cold 

distilled H2O (4°C), and dried under a stream of cool air. Sections were apposed to Kodak Bio-

Max MR films (Sigma) with [3H]-Microscales (Perkin Elmer) for 4 weeks. All images were 

acquired and quantified using the MCID software (InterFocus Imaging Ltd.). 
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Statistics 

Two-way univariate and multivariate ANOVA was performed using SPSS Statistics 19 

(IBM). Student’s t-test was used for pairwise comparisons between experimental groups  (Excel 

2008; Microsoft).  

Results 

Mutant HTT protein is widely expressed in brain of BAC-225Q mice and forms abundant 
protein aggregates throughout the brain 

 
The polyQ-expanded HTT was identified by western blotting with 1HU-4C8 (MAB 2166) 

antibody as a novel band specific to transgenic tissue, retarded in migration above the WT HTT 

band, and was present in all examined brain regions of all the analyzed BAC-225Q animals, but 

not in WT littermates (Figure 2-2A). The levels of transgenic protein were approximately 50% 

lower than those of WT protein in BAC-225Q animals in all analyzed regions, when compared to 

full-length protein present as a monomer on SDS gel, and no difference in this ratio was found 

between striata from 3- and 12-month-old mice (Figure 2-2A), indicating that there is not a 

substantial decrease of the extractable expanded mutant Htt protein relative to WT HTT protein 

over this time frame. Examination of cortical protein extracts in full uncut western blots probed 

with anti-polyglutamine MAB1574 (1C2 clone) demonstrated the expression of mutant 

polyglutamine expanded HTT in the BAC-225Q animals, and no abundant HTT protein 

fragments were seen in either 3-month or 15-month BAC-225Q transgenic animals (Figure 2-

2B). Furthermore, the levels of extractable mutant HTT protein were similar between 3-month 

and 15-month BAC-225Q cortex. To determine how mRNA expression levels of the 

mutant Htt transgenic allele versus the endogenous WT Htt alleles compared to the relative 

expression levels of the mutant versus WT HTT protein seen by western, we assessed total 

mouse Htt mRNA levels in striata of 3-month and 15-month old animals by quantitative RT-PCR 
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(Figure 2-3). This also allowed us to test whether mRNA expression of the mutant Htt transgene 

was altered by age. Two-way ANOVA demonstrated a significant ~10% increase in total Htt 

mRNA expression in BAC-225Q animals versus WT (p=0.004), with no significant difference by 

age (p=0.834). 
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Figure 2-2. Transgenic polyQ HTT protein is widely expressed in brain of 
BAC-225Q mice, and accumulates as large neuropil aggregates, legend on 
following page. 
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Figure 2-2. Transgenic polyQ HTT protein is widely expressed in brain of 
BAC-225Q mice, and accumulates as large neuropil aggregates. (A) The levels 
of total HTT protein (MAB2166, n=3) were measured by western blotting for HTT 
protein. Transgenic polyQ HTT is expressed at about half the level of endogenous 
HTT in striatum (st) of 3-month old animals and cerebellum (ce), cortex (co), 
hippocampus (hi) and striatum of 12-month old animals. (B) Full uncut gel western 
blots of cortex extracts from 3-month-old animals were probed for poly-glutamine 
proteins (MAB1574, clone 1C2). Aside from the full-length mutant HTT protein 
band (indicated by arrow) no other abundant BAC-225Q specific protein 
fragments were detected between WT and BAC animals at either 3-months or 15-
months of age. Analysis of the same protein extracts with anti-Htt MAB2166 
confirmed the absence of mutant HTT protein fragments in the BAC-225Q cortex 
(data not shown). (C) Mutant HTT immunostaining was performed in cortex of 6-
month (left) and 12-month old (right) BAC-225Q mice and WT mice (not shown) 
with 4H7H7 antibody. Representative fields from two animals (upper and lower) 
are shown of cortical layers I, II and III. Animals in upper fields had a relatively 
lower aggregate abundance compared to the animals in the lower fields. Nuclear 
accumulation is abundant in 6-month old animals, with sparse neuropil aggregates; 
in contrast 12-month-old animals exhibit extensive and larger neuropil aggregates 
with concomitant decrease in nuclear immmunoreactivity. All fields are 225µm x 
170µm.   
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Figure 2-3. QRT-PCR for total mouse Htt expression in striatum at 3-months 
and 15-months of age.  Quantitative RT-PCR with random hexamers for the first 
strand reaction was performed on total RNA from striatum of WT and BAC-225Q 
striatum using the standard methods of our laboratory.  Primers for amplification 
were not over the CAG repeat in exon 1, Primer 1:  
5’-GGAGCTGCAGGTGTTCTTTC-3’, and Primer 2:  
5’-CTGTTGAAGGGCCAGAGAAG-3’.  Two-way ANOVA detects a significant 
increase in total Htt expression levels in the BAC-225Q mice versus WT 
(p=0.004); while no significant difference in age was observed.  The BAC-225Q 
transgenic animals have ~10% increase in total Htt expression. 
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Table 2-1. Distribution of mutant HTT aggregates at 6 months 

 
Diffuse nuclear or neuropil aggregate levels were scored from (-) absent, (tr) trace, to (+, ++, +++, or ++++) 
for increasing abundance. (High) and (Low) indicate representative animals with relatively high or low 
aggregate density representing the variability between animals of the same sex. 
 
Neuroanatomical location Male Female 

High Low High Low 
Nuclear Neuropil Nuclear Neuropil Nuclear Neuropil Nuclear Neuropil 

Olfactory 
system 

Anterior olfactory 
nucleus 

++ ++ + ++ ++ ++ tr ++ 

Lateral olfactory 
tract 

- ++++ - ++ - ++++ - +++ 

Cortex Frontal cortex +++ ++ tr + ++ + - ++ 
Primary motor 
cortex 

+++ ++ + + ++ + tr ++ 

Secondary motor 
cortex 

+++ +++ + + ++ ++ + ++ 

Cingulate cortex +++ +++ + + ++ ++ + ++ 
Primary 
somatosensory 
cortex 

+++ ++ + + +++ + tr + 

Piriform cortex ++++ ++ + + ++++ ++ +++ + 
Secondary 
somatosensory 
cortex 

++ ++ + + +++ + tr + 

Retrosplenial cortex +++ +++ + + ++ ++ tr +++ 
Temporal 
association cortex 

++ +++ tr ++ + +++ - +++ 

Primary visual 
cortex 

++ +++ + + ++ ++ - ++ 

Striatum Nucleus accumbens +++ + + + +++ + + + 
Ventral pallidum - ++ - tr - ++ - ++ 
Caudate/putamen ++++ tr ++ tr ++++ tr + tr 
Globus pallidus - tr - tr - + - + 

Septum Septohippocampal 
nucleus 

tr ++ - ++ - ++ - +++ 

Lateral septal 
nucleus 

tr ++ - + - ++ - ++ 

Bed 
nucleus of 
the stria 

Medial tr ++++ - ++ tr +++ - ++ 

Hypothala
mus 

Magnocellular 
preoptic nucleus 

++ + + + +++ ++ tr + 

Ventromedial 
hypothalamic nuclei 

- ++ - ++ - +++ - ++ 

Lateral 
hypothalamic area 

tr + - + - + - + 

Premammilary 
nucleus 

- ++ - +++ - ++ - ++ 

Thalamus Laterodorsal ++ ++ tr + ++ ++ ++ ++ 
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An important hallmark of HD is accumulation of HTT aggregates in brain. To identify Htt 

inclusions we carried out immunohistochemical analysis of brains of 6- and 12-month-old BAC-

225Q mice and WT littermates using 4H7H7 antibody (Figure 2-2C). We detected an extensive 

deposition of polyglutamine-containing aggregates in transgenic animals only; staining was 

variable but predominantly of neuropil aggregates, with additional neuronal nuclear staining only 

at 6 months of age. We noted a high degree of animal-to-animal variability in the relative 

abundance of mutant HTT aggregates (Table 2-1). We quantified the abundance of aggregates in 

two representative animals of both sexes, one with relatively high and another relatively low 

thalamic nuclei 
Ventral thalamic 
nuclei 

+++ + + ++ +++ ++ ++ ++ 

Medial habenular 
nucleus 

+ ++ tr - + + tr - 

Geniculate Dorsal lateral 
geniculate nucleus 

++ + + + ++ ++ + + 

Pregeniculate 
nucleus 

+ ++ - + - ++ - ++ 

Medial geniculate ++ + + + ++ + tr + 
Amygdala Central amygdaloid 

nucleus 
+ ++ - ++ tr +++ - +++ 

Basolateral 
amygdaloid nucleus 

+++ ++ + + ++ ++ - ++ 

Basomedial 
amygdaloid nucleus 

++ +++ + ++ + +++ - +++ 

Hippocam
pus 

CA1 ++++ - ++ - ++++ - tr - 
CA2 ++ - + - ++ - tr - 
CA3 +++ - + - +++ - - - 
Polymorphic layer 
(CA4) 

+ ++++ - +++ + ++++ + +++ 

Dentate gyrus + - - - + - - - 
Subiculum +++ +++ + +++ ++ +++ tr +++ 

Colliculi Superior colliculus 
superficial gray 

+ ++ - ++ tr ++ - ++ 

Inferior colliculus + ++ - ++ + +++ - ++ 
Mesenceph
alon 

Red nucleus + + - + - - - - 
Pontine nucleus + ++ + ++ + ++ tr ++ 
Olivary nuclei ++ + - + + ++ - ++ 

Cerebellu
m 

Purkinje cell layer +++ - ++ - +++ - +++ - 
Cerebellar nuclei - +++ - +++ - ++++ - +++ 
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aggregate loads at 6 months (Table 2-1). The most affected regions at 6 months were the 

hippocampus and associated cortex, and the bed nucleus of the stria terminalis, cerebellar nuclei 

and Purkinje cells, both superior and inferior colliculi. Striatum at 6 months, however, exhibited 

minimal neuropil aggregates, but widespread neuronal nuclear staining. These, and additional 

selected regions with semi-quantitative analysis are shown in (Figure 2-4 and Table 2-1). There 

are variable numbers of neuropil aggregates and some neuronal nuclear staining throughout the 

cerebrum. Studies at 12 months were limited to analysis of cortical regions where a marked 

reduction in the extent of neuronal nuclear staining was seen together with an increase in the 

number and size of neuropil aggregates (Figure 2-2C).   
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Figure 2-4 Mutant Htt immunostaining (4H7H7) in 6-month-old BAC-225Q 
mice, legend on following page . 



	 75	

 

Figure 2-4.  Mutant Htt immunostaining (4H7H7) in 6-month-old BAC-225Q 
mice; field and abbreviations defined: A1, agranular insular cortex (A), AOM, 
anterior olfactory area, medial (B)/ AcbSh, nucleus accumbens, shell (C); DTT, 
dorsal taenia tecta (D); CPu, caudate putamen (E); BSTM, bed nucleus of the stria 
terminalis, medial (F)/ CA1, CA1 field of hippocampus (G); VPM, ventral 
posteromedial thalamic nucleus (H); BMP, basomedial amygdaloid nucleus, 
posterior (I); VMH, ventromedial hypothalamic nucleus (J); DLG, dorsal lateral 
geniculate, and PGMC, pregeniculate nucleus, magnocellular (K); SNC, 
substantia nigra pars compacta (L); TeA, temporal association cortex (M); PoDG, 
polymorphic layer of the dentate gyrus, and DG, dentate gyrus of hippogampus 
(N)/ DS, dorsal subiculum (O)/ SuG, superficial gray layer of the superior 
colliculus, and Op, optic nerve layer of the superior colliculus (P)/ PRh, perirhinal 
cortex (Q); CIC, central nucleus of the inferior colliculus (R); 5N, motor 
trigeminal nucleus (S); 2Cb, lobule 2 of the cerebellar vermis (T); IntA, 
interposed cerebellar nucleus, anterior part (U); Lve, lateral vestibular nucleus 
(V); DC, dorsal cochlear nucleus (W); V1, primary visual cortex (X).  Field size:  
A-X: 450u x 340u; insets: 115u x 85u. 

 

BAC-225Q mice are characterized by reduced body weight and early behavioral abnormalities 
 

 HD patients experience weight loss14 and we observed marked reductions in body weight 

in BAC-225Q mice compared to WT littermates (Figure 2-5). In females this reduction was 

detected before 2 months of age, and was initially driven by slower weight gain and then by total 

arrest of weight gain. Weight deficiency in males appeared after body weight of BAC-225Q 

males had reached a plateau (~4.5 months) (Figure 2-5). In both WT males and females, body 

weight continuously increased until the tenth month of age, resulting in strong differences 

between WT and transgenic mice (transgenic males were 23% lighter and females were 16% 

lighter than WT). 
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Figure 2-5. Decreased body weight in BAC-225Q mice relative to WT. Body 
weight of BAC-225Q animals and their WT littermates was measured from 
1st to 10th month of age (n=9–15). Progressively decreased weight is observed in 
both BAC-225Q males (from 4.5 months, *t-test, p<0.05) and females (from 2 
months, #t-test, p<0.05), when compared to WT mice. Three-way ANOVA 
reveals effect of genotype (F(1,1862)=737.03, p<0.001), effect of gender 
(F(1,1862)=1877.94, p<0.001), effect of age (F(38,1862)=63.856, p<0.001 and 
genotype-age interaction (F(38, 1862)=7.742, p<0.001).  

 

 To monitor motor performance of BAC-225Q animals we used the accelerating rotarod 

test. The first cohort of animals was examined at 3, 4, 5, 6, 7, 8, 9, 12 and 15 months of age. We 

identified a deficiency in rotarod performance beginning at 3 months of age (performance time 

loss by 28% in males (Figure 2-6A) and 19% in females (data not shown)), but unexpectedly 

this phenotype was found to be static until 6 to 7 months of age, then regressive at later ages 

(Figure 2-6A). Nevertheless, ANOVA analyses showed a strong effect of genotype on rotarod 

performance for both males and females. We also found a difference between genders in age-

dependent regress of motor deficiency – females were significantly impaired only at 3 and 4 
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months of age (data not shown). In males the difference between BAC-225Q and WT mice was 

observed until 9 months of age, but was absent in 12- and 15-month-old animals (Figure 2-6A). 

Despite this apparent recovery in older animals, no genotype-age interaction was found by 

ANOVA, suggesting that a continued trend toward motor deficiency was present. The loss of 

rotarod phenotype in BAC-225Q mice at older ages could suggest a training effect, however, we 

performed rotarod with another cohort of animals, in which the first session was carried out 

using 6-month-old, rotarod-naïve mice, and then these animals were further tested only at 7 and 

12 months of age. In this case, despite a different experimental paradigm than in the first cohort, 

we obtained the same results – a decreased latency to fall at 6 and 7, but not at 12 months of age 

in BAC-225Q males, and normal rotarod performance at 6, 7 and 12 months in BAC-225Q 

females (data not shown). This strongly suggests that factors other than motor skill learning are 

responsible for the loss of rotarod impairment at later ages in BAC-225Q animals. One 

possibility is the reduced body weight of the mutant animals compared with WT, as lower body 

weight is known to be associated with improved performance on rotarod.15,16 
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Figure 2-6. Behavioral abnormalities in BAC-225Q mice, legend on following page. 
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Figure 2-6. Behavioral abnormalities in BAC-225Q mice. (A) Motor 
performance was evaluated using accelerating rotarod in 3- to 15-month-old 
males (n=9–10). Performance of BAC-225Q animals is impaired relative to WT 
littermates starting from 3 months of age (*t-test, p<0.05). Unexpectedly, this 
impairment is absent in the aged mice, at 12 and 15 months, and at the earlier 
time points, between 3rd and 9th month, the rotarod performance deficiency, 
though present, is not progressive. These observations are confirmed by ANOVA 
that identifies effect of genotype (F(1,170)=44.744, p<0.001), but not effect of 
age or genotype-age interaction. (B) Since the rotarod deficit was identified at 
the earliest examined time point, 3 months of age, another cohort of animals was 
assessed from 1.5 to 2.5 months (n=9–13). Of the three examined time points, 
statistically significant difference between BAC-225Q and WT mice is found 
only at 2 months of age (*t-test, p=0.021), however two-way ANOVA reveals 
strong effect of genotype on rotarod performance between 1.5 and 2.5 months 
(F(1,66)=8.048, p=0.006). (C–F) Early hyperactive behavior followed by 
normalization of the symptoms in BAC-225Q mice. Spontaneous locomotor 
activity of 3- to 12-month-old mice was examined in open field test (n=16–27). 
At 3 months of age, (C) longer distance travelled (*t-test, p=0.42) as well as (D) 
increased vertical counts (*t-test, p=0.023), (E) jump counts (*t-test, p=0.023), 
and (F) average velocity (*t-test, p=0.022) are observed in BAC-225Q animals 
compared to WT littermates. These alterations, except (F) average velocity at 6 
and 9 months of age (*t-test, p=0.12, p<0.001, respectively) are not found in the 
later time points. Two-way multivariate ANOVA reveals effect of age on total 
distance travelled (F(3,151)=10.015, p<0.001), vertical counts (F(3,151)=5.454, 
p=0.001), jump counts (F(3,151)=13.939, p<0.001), and average velocity 
(F(1,151)=20.099, p<0.001). Effect of genotype is found for vertical counts 
(F(1,151)=8.964, p=0.003) and average velocity (F(3,151)=3.356, p=0.021).  
 

 
Because we identified a rotarod performance decline at age 3 months, we examined one 

more cohort of mice at a younger age. The analyses at 1.5, 2 and 2.5 months also showed strong 

effects of genotype for both genders, however the impairment was stronger in females 

(significant differences at all the three analyzed time points; data not shown) than in males 

(significant differences were restricted to the 2 months time point only, but the trend was 

present at 1.5 and 2.5 months) (Figure 2-6B). Of note, the rotarod performance impairment in 

these younger BAC-225Q mice occurs prior to the significant differences in body weight 

between genotypes. 
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To determine if there was a relationship between Htt aggregate load and rotarod 

performance within the BAC-225Q animals we assessed aggregate load in three paired sets of 

transgenic animals for which we had acquired rotarod data ahead of sacrificing for 

immunohistochemical analysis. We examined two pairs of animals at 6-months of age (rotarod 

performance between 1.5 and 2.5 months of age), and one pair of animals at 12 months of age 

(rotarod performance at 6 and 7 months of age). We focused on the aggregate load of the lateral 

olfactory tract – as unlike other regions of the brain the lateral olfactory tract had almost 

exclusively neuropil aggregates at both ages, with minimal nuclear accumulation. In all instances 

the animal with the higher aggregate load had relatively poor rotarod performance in the 

preceding months. Paired t-test analysis demonstrated a significant (p=0.011) difference in the 

ratio of average aggregate load over the average rotarod performance in the animals with 

relatively higher aggregate load versus the animal with a lower intensity aggregate staining. 

To examine spontaneous motor activity we performed the open field test. At 3 months we 

observed hyperactivity as reflected by increase in total distance travelled, vertical and jump 

counts, and average velocity in BAC-225Q mice (Figure 2-6C-F). This early spontaneous 

behavioral impairment regressed in older animals. 

Summarizing, we identified very early abnormalities in BAC-225Q mice, represented by 

reduced body weight and behavioral impairment. The body weight deficiency was progressive, 

and may have been responsible for regression of behavioral impairment, observed at later time 

points. 
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Blood markers of HD in BAC-225Q mice 

Two important groups of markers identified in blood of HD patients are those related to 

inflammation and disturbed energy metabolism.17-19 We analyzed the levels of several such 

biomarkers in BAC-225Q mouse plasma versus WT between 2 and 10 months of age to 

determine if they show an association with pathology in this HD model. Of six cytokines 

measured, two (IL-4 and MIP2) were below the detection limit in BAC-225Q mice and WT 

littermates, and we did not observe any genotype-dependent alterations for three others (IFNγ, 

IL-6 and TNFα) between 2 and 10 months of age (data not shown). However, we identified 

alterations in the concentrations of keratinocyte chemoattractant (KC), a murine functional 

homologue of human IL-8.20 We observed increased levels of KC in plasma of 10-month-old 

BAC-225Q mice compared to WT littermates, and trend toward an increase at 6 months mice 

(Figure 2-7A).     

Besides cytokines, we examined plasma levels of leptin, a central regulator of energy 

metabolism,21 and found its levels increased in BAC-225Q mice starting from 6 months of age 

(Figure 2-7B). The significant changes in leptin levels (6 months) occur after a decrease in body 

weight is observed in BAC-225Q mice (5 months or younger), though whether it represents a 

cause or effect of the weight phenotype is unclear. 
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Figure 2-7. Increase in plasma levels of KC and leptin in BAC-225Q mice. 
The levels of seven HD-associated blood markers were measured in plasma of 
BAC-225Q mice. IL-4 and MIP2 are below detection limit, for IFNγ, IL-6 and 
TNFα no differences are found between BAC-225Q and WT mice, but levels of 
pro-inflammatory chemokine, KC (mouse homologue of human IL-8), and of 
energy metabolism-regulating hormone, leptin, are altered (n=12-18, n=12–17, 
respectively, gender balanced). (A) Plasma concentrations of KC are elevated in 
10-month-old BAC-225Q animals (*t-test, p=0.014). (B) Leptin levels are 
increased in BAC-225Q mice at 6, 8 and 10 months of age (*t-test, p<0.001, 
p=0.002, p=0.038, respectively).  

 
 
BAC-225Q mice display widespread brain atrophy 

To investigate the effect of transgene expression on brain volume we analyzed fixed 

brains from 3- and 10-month-old female mice using volumetric MRI measurements. We found 

that total brain volume was decreased by 6.4% in 3 month-old BAC-225Q animals (Figure 2-

8A). This was an effect of widespread atrophy as we were not able to distinguish any particularly 

affected region(s). At this age, 13 of a total of 27 brain regions examined, exhibited significantly 
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decreased volumes in BAC-225Q mice compared to WT littermates (Figure 2-7A). The affected 

regions included both gray and white matter. Importantly, volume of the striatum, a primary site 

of neurodegeneration in adult-onset HD in humans,22 was not changed at this age. The 

widespread brain atrophy was progressive – at 10 months we observed total brain volume loss by 

12% and found 19 of 27 regions to be significantly reduced (Figure 2-8B). At this time point we 

also observed a 10% loss of striatal volume in striatum as well as decreased neocortex volume 

(another prominent site of neurodegeneration in HD.23-25 Other regions affected at 10 months, 

but not at 3 months included cingulum, stria medullaris, fasciculus retroflexus, fornix, anterior 

commissure and corpus callosum/external capsule, suggesting a pronounced effect on white 

matter tracts (Figure 2-8). This early, widespread pathology suggest that this mouse model 

recapitulates features of juvenile-onset HD more so than adult-onset HD. 
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Figure 2-8. Progressive loss of brain volume in BAC-225Q mice  
(legend on following page). 
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Figure 2-8. Progressive loss of brain volume in BAC-225Q mice. Brain 
volumes were measured using MRI volumetric analysis in BAC-225Q mice at 3 
and 10 months of age (n=4). (A) Total brain volume (*t-test, p=0.039) and 
volumes of 13 out of 27 analyzed brain regions (*t-test, p<0.05) are decreased in 
BAC-225Q mice compared to WT littermates at 3 months of age. (B) At 10 
months of age a loss of total brain volume is more prominent (*t-test, p=0.001) 
and 19 brain regions with decreased volumes (*t-test, p<0.05) are identified. 

 

Glial cell activation and neuroinflammation often accompanies neurodegeneration. We 

analyzed gliosis in BAC-225Q mouse brain by immunohistochemical detection of astrocyte- and 

microglia-specific markers, GFAP and Iba1, respectively. This analysis revealed no significant 

increase in gliosis at 6 months (data not shown), but showed a significant increase in staining for 

markers of both astrogliosis and microgliosis in cortex at 12 months (Figure 2-9). 
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Figure 2-9. Gliosis in 12-month old BAC-225Q mouse brain versus WT 
mouse brain. Microgliosis and astrogliosis were analyzed by 
immunohistochemical detection of Iba1 and GFAP, respectively. S1 cortex is 
shown, with quantification in arbitrary units (* p<0.01 t-test, n=6, 3 animals per 
genotype, left and right hemispheres). All fields are 200µm x 160µm.  

 

 In addition to conventional immunohistochemistry we performed TSPO (Translocator 

Protein 18 kDA, formerly known as Peripheral Benzodiazepine Receptor (PBR)) autoradiography 

in several brain regions of BAC-225Q animals. TSPO is a sensitive marker of neuroinflammation 

and active gliosis.26 Additionally, to confirm and validate TSPO autoradiography as a marker of 

neurodegeneration in HD animals, we also performed this assay in an established HD mouse 

model, YAC128 (JAX, #004938, Bar Harbor, ME, USA), and compared region- and age-specific 

changes in TSPO activation between both models. YAC128 mice have been shown to display 

late, adult-onset HD-like pathology characterized by loss of striatal and cortical volumes 
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beginning at 9 to 12 months, respectively, selective striatal neuronal loss from 12 months, rotarod 

performance deficits from 6 months, and hypoactivity on open field from 12 months27. In 

contrast, as shown in this manuscript, the BAC-225Q animals display early (< 3 months) and 

more widespread neuropathology. The YAC128 mice are in an FVB genetic background,27 so 

each line was compared to WT littermates of its own background strain. In BAC-225Q mice, we 

observed TSPO up-regulation in every analyzed region except hippocampus (Figure 2-10A). 

Interestingly, in some of these regions, the TSPO phenotype was present in spite of an absence of 

volume loss as measured by MRI (striatum at 3 months and periaqueductal gray and 

hypothalamus at both time points); in contrast, other regions with volume loss were not 

accompanied by TSPO up-regulation (thalamus and globus pallidus at 3 months, hippocampus at 

both time points). These findings suggest that despite widespread and uniform volume loss, there 

may be regional differences in the mechanisms contributing/accompanying neurodegeneration in 

BAC-225Q animals. In YAC128 mice, TSPO was up-regulated in striatum at 10 months and 

thalamus at 6 and 10 months (Figure 2-10B). These results indicate a juvenile-like, widespread 

and early pathology in the BAC-225Q HD model, and validate adult-like, region-specific and late 

pathology in the YAC128 HD model. 
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Figure 2-10. Early, widespread up-regulation of TSPO, a neuroinflammation 
biomarker, in brain of BAC-225Q animals, and late, region-specific up-regulation in 
YAC128 mice, an established model of adult-onset HD (legend on following page). 
 
 
 
 



	 89	

Figure 2-10. Early, widespread up-regulation of TSPO, a neuroinflammation 
biomarker, in brain of BAC-225Q animals, and late, region-specific up-regulation in 
YAC128 mice, an established model of adult-onset HD. (A) Binding of [3H]-DPA-713, 
a ligand of neuroinflammation biomarker, TSPO, was measured in BAC-225Q mice 
using autoradiography (n=6-8). TSPO is up-regulated in all examined regions except 
hippocampus. In most of the analyzed regions TSPO pathology starts early – increased 
ligand binding is observed at 3, 6 and 10 months in periaqueductal gray (*t-test, p=0.017, 
p<0.001, p<0.001, respectively), hypothalamus (p=0.013, p=0.021, p=0.015, 
respectively), motor cortex (p=0.018, p<0.001, p<0.001, respectively) and striatum, 
(p=0.011, p=0.003, p<0.001, respectively) and at 6 and 9 months in globus pallidus 
(p<0.001, p=0.017, respectively) and thalamus (p<0.001, p=0.003, respectively). (B) To 
validate TSPO as a marker of ongoing neurodegeneration in HD models, autoradiography 
experiments were performed also in the most commonly used transgenic model of adult-
onset HD, YAC128 mice (n=7–10). Only three regions with increased binding of [3H]-
DPA-713 are found, and TSPO phenotype is observed later than in BAC-225Q animals – 
at 6 months in hypothalamus (*t-test, p=0.026), at 6 and 10 months in thalamus (*t-test, 
p=0.021, p=0.036, respectively) and at 10 months in striatum (p=0.048). These findings 
confirm juvenile-like, widespread degeneration in BAC225Q mice and more specific, 
adult-like degeneration in YAC128 mice.   
 
 
Striatum is a primary site of pathology in HD22,28 and we observed a two-stage pattern of 

neurodegeneration of this region in the BAC-225Q model (TSPO activation starting at 3 months 

and volume loss at 10 months). Striatal medium spiny neurons (MSNs) are particularly prone to 

degeneration in HD.22 Two main subtypes of MSNs are distinguished by expression of D1 or D2 

dopamine receptors, with the latter being more vulnerable in adult-onset HD. To examine MSN 

subtype involvement in BAC-225Q mouse pathology, we performed a radioligand binding assay 

in striata of 3, 6 and 10-month-old animals (Figure 2-11A). YAC128 mice, characterized by 

striatal MSN loss27, were also included in this experiment as a positive control and comparison. 

D1 receptor ligand binding was found to be decreased in BAC-225Q mice at 6 months, however 

not significantly different than control at 10 months. No alteration in D1 receptor binding was 

observed in YAC128 mice (Figure 2-11) at either age point. In both models we observed a 

statistically significant decrease in D2 receptor levels at 6 and 10 months, however BAC-225Q 

mice exhibited a greater change at both time points (loss of ~30% signal vs loss of ~15% signal 
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in YAC128 mice). In HD patients, striatal neuropathology follows a specific pattern – from 

caudal to rostral striatum22. We analyzed dopamine receptors in striatal subdivisions in BAC-

225Q mice, and found a similar spatio-temporal pattern of changes in radioligand binding - 

starting with D1 loss at 3 months in caudal striatum, followed by a decrease in both receptors at 

6 months in all the subdivisions, and a loss of D2 ligand binding at 10 months in the rostral 

subdivision (Figure 2-11B). In YAC128 animals similar changes were seen, but limited only to 

D2 receptors, and delayed compared to BAC-225Q mice (Figure 2-11B). 
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Figure 2-11. Loss of ligand binding to dopamine receptors in HD mice, 
(legend on following page). 
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Figure 2-11. Loss of ligand binding to dopamine receptors in HD mice. (A) 
Autoradiography experiments using [3H]-SCH1337, D1 receptor ligand and [3H]-
spiperone, D2 receptor ligand, were performed in striata of BAC-225Q (n=4-12) 
and YAC128 animals (n=5–12). In BAC-225Q mice loss of ligand binding to D1 
receptor is found at 6 months of age (*t-test, p=0.002), and to D2 receptor - at 6 
and 10 months of age (*t-test, p<0.001; p=0.035, respectively). In YAC128 
animals only loss of D2 ligand binding is observed (*t-test, p=0.011; p=0.03, at 6 
and 10 months respectively). (B) Dopamine receptor ligand binding in striatum 
was assessed also in spatiotemporal manner. In BAC-225Q mice, the impairment 
of either receptor is age- and subregion-dependent, starting from D1 ligand 
binding decrease at 3 months in caudal striatum (*t-test, p=0.039), followed by 
loss of both receptor types at 6 months in all the three subdivisions (*t-test, 
p=0.021; p<0.001; p=0.003 for D1, and p<0.001; p<0.001; p=0.006 for D2 in 
respectively, caudal, medial and rostral striatum), and finally D2 loss at 10 
months in rostral striatum (*t-test, p=0.014). In YAC128 animals the pattern of D2 
receptor pathology appeared to be similar, but delayed compared to BAC-225Q 
mice. Loss of D2 ligand binding is observed at 6 months of age in caudal and 
medial striatum (*t-test, p=0.024, p=0.022, respectively), and at 10 months in 
medial striatum (*t-test, p=0.012). No changes in D2 receptor binding in rostral 
subdivision is found up to 10 months of age and no D1 pathology is observed in 
any part of striatum.  

 
To summarize, we observed early, widespread and progressive loss of brain volumes and 

found activation of the neuroinflammation marker, TSPO, in BAC-225Q mice. Striatal volume 

was not affected to a greater degree than other brain regions, though early loss of D1 and D2 

dopamine receptors was observed in this region. 

Discussion 

In this study, we generated and characterized a novel transgenic model of HD, BAC-

225Q, that expresses full-length murine Htt with ~225 CAG repeats under control of the 

mouse Htt promoter/enhancer contained within the BAC transgene. Expression of CAG-repeat 

expanded full-length mouse Htt under the native mouse promoter ensures that expression of the 

transgene is controlled by the same cellular mechanisms as expression of WT Htt in the same 

animal (as it is in HD patients); contrary to other models in which the human HTT promoter 

(R6/1, R6/2,29 YAC72,30 YAC128,27 BACHD31 or the prion promoter (N171-82Q)32 is used. 
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Additionally, by using mouse Htt rather than the human gene, this model avoids the potential 

confounder of unexpected protein-protein interactions between human HTT and native mouse 

proteins. Of note, other models that express CAG-expanded mouse Htt, like the KI HD models, 

exhibit late behavioral and neuropathological phenotype.33-36 By expressing the mouse Htt gene 

with an expanded repeat of ~225 CAGs, we hypothesized that this new model would exhibit 

earlier phenotypes than previously published full-length mouse Htt models with shorter CAG 

repeat lengths. We demonstrate here early and widespread neuropathological phenotypes, with 

similarities to the neurodegenerative features of juvenile HD. The phenotypes in BAC-225Q 

animals are detected much earlier than in the Q200 heterozygous knock-in model.36 Similar to 

BAC-225Q, the Q200 model expresses mouse transgenic Htt with comparable CAG repeat 

length under the mouse promoter, and would be expected to exhibit similar pathology. Q200 

mice are characterized by weight loss (observed only in females) and some locomotor deficits at 

11 months of age (but not rotarod performance which was unaffected up to 18 months). Similar 

to BAC-225Q animals, Q200 mice displayed loss of both D1 and D2 receptors, but without loss 

of striatal volume or MSN number up to 18 months of age. Also gliosis was observed later in the 

Q200 mice, with minimal astrogliosis at 9 months of age. Interestingly, inconsistent with CAG 

repeat length, but consistent with late phenotype onset, Q200 knock-in mice exhibit specific 

striatal and cortical, adult-onset pathology in contrast to the widespread pathology observed in 

the BAC-225Q animals.36 

Despite many juvenile onset HD-like phenotypes, the early motor phenotypes of BAC-

225Q mice have similarity to the adult-onset form of HD. The initial hyperactivity of BAC-225Q 

mice (Figure 2-6C-F) is consistent with the initial motor changes observed in adult-onset HD 

patients who typically display chorea, restlessness and involuntary movements as the first motor 
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symptoms of HD37(Roos 2010). In HD patients, this is believed to be a consequence of 

impairment to the indirect pathway (D2-receptor expressing MSNs) at early stages of adult-onset 

HD that precedes impairment of the direct pathway (D1-receptor expressing MSNs).22,38-41 

Juvenile HD is typically not associated with early hyperactivity – instead motor deficits 

in these patients manifest more often as bradykinesia and dystonia correlating with early 

degeneration of MSNs in both the direct and indirect pathways.38,42,43 Juvenile HD is similar 

though to late stage adult-onset HD, at which time both populations of MSNs are degenerating 

and hypokinetic motor symptoms prevail.22,38 Despite the initial hyperactivity, the BAC-225Q 

model showed concurrent and similarly decreased binding of both D1- and D2-receptor ligands 

in the striatum consistent with neuropathology of both direct and indirect pathways, while the 

YAC128 model demonstrated a more selective decrease in D2-receptor ligand binding (Figure 

2-11). Loss of both D1- and D2-receptor classes is more consistent with juvenile HD-like striatal 

pathology in the BAC-225Q model, in contrast to early adult HD-like striatal pathology (D2-

receptor selective loss) in the YAC128 model. Thus the basis for the hyperactive motor 

phenotypes in the BAC-225Q model in face of concurrent direct and indirect pathway 

involvement is unclear, but may represent differences in basal ganglia function in humans versus 

mice. 

In addition to hyperactivity, BAC-225Q mice also displayed early locomotor deficiency, 

detected by the rotarod test, which, however, unexpectedly was found to be regressive with age 

(Figure 2-6A). Similarly, spontaneous motor behavior, after initial hyperactivity, was restored at 

6 months (Figure 2-6C-E). This is in contrast with HD patients, who display worsening of motor 

symptoms over time.1 One factor that may influence the motor phenotype of BAC-225Q mice is 

body weight loss (Figure 2-5). It was shown that decreased body weight correlates negatively 
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with latency to fall in rotarod experiments15 and is associated with higher motor performance in 

open field testing.15 Finally, high levels of neuropil HTT aggregates and loss of diffuse nuclear 

Htt aggregate staining between 6 months and 12 months (Figure 2-2C) correlates with the 

amelioration of the motor phenotype in BAC-225Q mice. It has been hypothesized that 

formation of large inclusions of polyglutamine expanded HTT is a mechanism of cellular 

defense against a more toxic oligomeric species rather than a direct cause of pathology44,45. 

BAC-225Q mice display extensive aggregation compared to many full-length Htt models, and 

the aggregates are notably larger in size. For example BACHD animals, in which the transgene is 

expressed under the human HTT promoter, have much lower aggregate density and are 

characterized by progressive behavioral and neuropathological phenotypes31 despite a regional 

distribution pattern of aggregates similar to what we observed in BAC-225Q mice. In this 

context, we hypothesize that after reaching toxic levels of HTT accumulation, manifesting as 

locomotor impairment and neuropathological phenotypes, BAC-225Q animals initiate efficient 

sequestration of toxic intermediates into neuropil aggregates between 6 months and 12 months of 

age, protecting them against further progression of pathological phenotypes. This mechanism 

may be related to the very large Htt CAG repeat in BAC-225Q animals, as it was previously 

demonstrated in the R6/2 mouse model that there exists a limit to which the relationship between 

length of polyQ tract and severity of the phenotype is linearly proportional, with the possibility 

that exceptionally long CAG repeats result in less severe pathogenicity accompanied by 

increased formation of large aggregates.46 However, given the observation that individual BAC-

225Q animals with more extensive neuropil aggregation have relatively poor rotarod 

performance, a role for clearing total mutant HTT accumulation also appears to correlate with 

improved performance. 
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The body weight phenotype in BAC-225Q mice, manifested as a failure to gain weight 

from about 4 months of age onward, is consistent with human HD pathology, where progressive 

inexplicable loss of weight is a non-neurological hallmark of HD.14,47,48 Of note, our data on the 

surface contradicts reports showing that expression of full-length human HTT increases body 

weight in a level-dependent but polyQ tract length-independent manner.49,50 Despite over-

expression of total Htt in our model (two WT alleles, and the mutant transgenic allele) we do not 

observe a weight gain phenotype. In fact, our model expressing mutant mouse Htt, in addition to 

both copies of the endogenous mouse Htt gene, results in failure to gain appropriate weight 

(Figure 2-5), consistent with human weight loss phenotype, suggests the weight gain phenotype 

of mouse models expressing human HTT31,49,51 may be attributed specifically to the expression of 

the human isoform of HTT in the mouse. In support of this idea, a weight loss phenotype is also 

observed in the zQ175 knock-in model.52 Furthermore, the weight gain phenotype of transgenic 

mouse models may also be mouse strain-dependent, as the YAC128 transgenic construct in the 

C57BL/6 strain does not alter body weight.53 

Leptin is a major regulator of body weight, a hormone which induces a long-term 

inhibition of food intake, and whose levels are often altered in diseases manifested by body 

weight alterations.54,55 There are conflicting reports on the levels of circulating leptin in HD 

patients, with both decreases17,19 and increases (in a CAG length dependent manner being 

reported56. We found that leptin concentrations were elevated in the plasma of BAC-225Q mice 

(Figure 2-7), which may be partially responsible for the decrease in body weight in this model. 

However it should be noted that weight deficiency was observed starting from an earlier time 

point (Figure 2-5) than the increase in leptin levels (Figure 2-7). Leptin acts in the brain on the 

hypothalamus and it was recently suggested that this region may also exhibit early changes in 
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HD pathology.57,58 In BAC-225Q mice, we identified up-regulation of TSPO in the 

hypothalamus (Figure 2-10) suggestive of neuropathology in this region, which may be related 

to impaired leptin homeostasis. 

Despite widespread HTT expression throughout the brain59 adult-onset HD is 

characterized by brain region selectivity with striatal degeneration being the most prominent.22 

However, as more sensitive techniques of brain imaging are employed, other regions of 

degeneration have been identified including cerebral cortex, globus pallidus, thalamus, 

hypothalamus, white matter and others, even at the presymptomatic stage.58,60-62 Additionally, it 

was shown that longer CAG repeat number correlates with more widespread neurodegeneration 

and that in juvenile HD, the extent of the atrophy in other brain regions, including cerebral 

cortex, hippocampus, amygdala, brainstem and cerebellum, is comparable to that seen in 

striatum.63 In BAC-225Q mice we found predominant aggregation of Htt in hippocampus and 

cerebellum (Figure 2-4), and using volumetric MRI, we identified early and widespread volume 

loss in several brain regions affected in the juvenile form of HD (Figure 2-8). We also detected 

astrogliosis and microgliosis by immunohistochemistry (Figure 2-9) as well as TSPO up-

regulation with autoradiography in most of the analyzed brain regions (Figure 2-10A), often 

prior to detection of regional brain volume loss by MRI (Figure 2-8). This suggests that gliosis 

and neuroinflammation, may precede loss of brain volume in HD pathobiology. Importantly, the 

TSPO data are consistent with human studies in which patients show elevated TSPO levels not 

only at symptomatic,64,65 but also at presymptomatic stages of HD.66 Importantly, the extent of 

TSPO activation in HD patient striatum was similar to the values found in BAC-225Q mice 

(increases of 30–85% versus 25–60%, respectively). Therefore, TSPO up-regulation appears to 

be an early and sensitive marker of regional brain impairment in HD. This relationship is also 
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confirmed by our findings in the YAC128 model, where increased TSPO levels were found in 

striatum at 10 months (Figure 2-10B), which is proximate to the age when striatal loss is first 

observed in this model.27 Additionally, our TSPO analysis in YAC128 mice confirmed that this 

model has a later, milder and less widespread neurodegenerative pathology compared to the 

BAC-225Q. Summarizing, TSPO up-regulation clearly elucidates a widespread, 

neurodegenerative-like phenotype in BAC-225Q mice. 

To summarize, we have characterized a novel mouse model expressing mouse Htt with 

~225 CAG repeats. This model reveals an early phenotype including body weight deficiency, 

motor behavioral abnormalities, widespread Htt aggregation especially in hippocampus and 

associated cortex, brain atrophy and gliosis, as well as striatal pathology in both direct, and 

indirect pathway MSNs. Additionally, neurological symptoms in these animals are accompanied 

by changes in specific blood biomarkers of HD. These features of the BAC-225Q model suggest 

it may have utility for studies on the juvenile form or possibly late-stages of adult-onset HD, as 

well as the metabolic disturbances, regional vulnerability to mutant HTT pathology, and early 

striatal dysfunction prior to neurodegeneration. Consistent with its large CAG-repeat length, this 

model shows an earlier age-of-onset relative to previously published full-length Htt mouse 

models. Despite this early onset and continued expression of the mutant Htt transgene, the BAC-

225Q model shows a predominantly non-progressive phenotype, which may provide a stable 

early time point for the study of wide-spread HD-associated neuropathology relative to existing 

full-length Htt models with much later ages-of-onset. 
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Chapter III 
 

Manganese in HD 
 

Note:  Much of this chapter has been derived from the following publications: 
 
Bichell TJ. Gene-Environment Interactions in Huntington’s Disease. Vanderbilt 
Reviews Neuroscience 2012; 4(2012): 9. 
 
Tidball AM, Bichell TJ, Bowman AB. Manganese and Huntington's Disease. In: 
Costa L, Aschner M, eds. Manganese in Health and Disease: Royal Society of 
Chemistry; 2014. 
 
Bichell TJ, Uhouse M, Bradley E, Bowman AB. Gene-Environment Interactions in 
Huntington's Disease. In: Aschner M, Costa LG, eds. Environmental Factors in 
Neurodevelopmental and Neurodegenerative Disorders. London: Elsevier, Inc.; 2015: 451. 

 
Bichell TJ, Halbesma T, Tipps KG, Bowman AB. Metal Biology Associated with 
Huntington's Disease. In: White A, Aschner M, Costa L, Bush A, eds. Biometals in 
Neurodegenerative Diseases: Mechanisms and Therapeutics. In Press: Elsevier; 
2016. 
 
 

Background on metals in HD and pilot data 
 

Mn exposure has long been associated with motor pathway damage, suggesting that the 

metal is involved in the functioning of neuronal systems that control movement.  In general, it is 

an excess of Mn that is considered to be pathogenic.  For example, chronic exposure to Mn 

through vocations such as welding or smelting increases the risk of Manganism, a 

neurodegenerative Parkinsonian condition affecting the nigrostriatal dopaminergic pathways.1,2 

Even populations exposed to subtoxic levels of airborne Mn from nearby industries exhibit subtle, 

though not significant, effects on motor pathways, as measured by postural sway score.3 In HD, it 

is likely the inverse.  Interestingly though excess Cu and Fe are associated with the toxicity of 

mutant HTT, it is most likely a deficit of Mn that is associated with HD, especially in the crucial 

brain regions that are most susceptible to neurodegeneration in the disorder.   
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Confusingly, there is overlap between the symptoms of Mn toxicity and the toxicity of 

mutant HTT. For example, mutant HTT decreases BDNF transcription4 and reduces BDNF 

transport.5  Mn exposure decreases phosphorylation of serine 421 on HTT, which controls BDNF 

transport6.  In wild-type mice, Mn exposure decreases BDNF production,6 and Mn exposure also 

causes reduction in the spine density and dendritic length of MSNs.7  These BDNF and dendritic 

spine alterations caused by the toxicity of Mn exposure are the same phenotypes which are seen 

in HD, suggesting that an inverted U-curve of dose response, may explain the relationship 

between Mn exposure and neuronal function8,9 (Figure 3-1).   

 

Figure 3-1. The biological response to metal concentration in neuronal tissues 
follows an inverted U.   Low concentrations as well as high concentrations 
cause damage or dysfunction, and the efficacy of biological functions is only 
optimal at a narrow range. 

 

There is evidence that the deficiency portion of the homeostasis curve is invoked in HD.  

In the presence of mutant HTT, Mn bioavailability decreases: cultured striatal cell models of HD 

reveal a deficiency of Mn and studies of mouse models find a reduction of striatal Mn 
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bioavailabilty.10,11 Still, though these HD models reveal Mn dyshomeostasis, there is limited 

evidence of a brain regional Mn deficit in human HD patients.  Post-mortem analysis by Dexter et 

al., did not reveal significant alterations of Mn levels in the basal ganglia compared to normal 

controls,12,13 but the sample size included only six females and 4 males, and the study was done 

before genetic confirmation of HD was possible. More recently, Rosas et al., reported decreased 

Mn in cortical regions of post mortem HD brain,13 but not striatum. This suggests a sub-regional, 

cell-type, or even sub-cellular Mn dyshomeostasis.   

In any case, there is substantial disagreement in the literature about the regional location 

of Mn in normal brain, chiefly because most methods for measuring Mn in tissues have resolution 

which is too low.14  For this reason, most studies measure regional Mn deposition following 

excess exposure, with almost no studies of Mn localizations in conditions of a deficiency of the 

metal, and the distribution may be very different depending upon tissue concentration.   

Bowman lab members found no difference between genotypes in baseline accumulation of 

Mn between striatum and cortex, though excess exposure revealed a Mn accumulation deficit in 

the HD striatum, but not in cortex (Figure 3-2).  Mn exposure did not affect the deposition of 

other metals in striatum, except that Fe accumulation increased along with Mn exposure in wild-

type, but that increase was not seen in the HD mutants (Figure 3-3).  To obtain dry weight 

measurements, tubes were weighed, then frozen tissue added, and exposed to 95oC for 48 hours, 

or until constant mass was obtained.  Manganese levels were measured by ICPMS. 
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  Figure 3-2.  The decrease in net striatal Mn accumulation in the YAC128Q 

mouse model of HD at age 12 weeks was not seen in cortex. Experiment by M. 
Wegrzynowicz 

 
 
 

 

 

Figure 3-3. The alterations in Mn bioavailability were not reflected in similar 
reductions in other metals at baseline, but Mn exposure increased net striatal 
Fe accumulation in the WT mouse exposed to Mn at age 12 weeks but not the 
YAC128Q.  There was no striatal increase in other metals. Experiment by M. 
Wegrzynowicz 
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Manganese deposition:  brain regions, cell-types and cellular organelles 

Regional deposition 

Mn is paramagnetic, and therefore provides enhanced signal intensity in T1-weighted 

MRI,15 allowing for imaging of Mn deposits in vivo, but the resolution of these images is not fine 

enough to distinguish deposits of manganese in deficiency conditions.14  The results gathered 

through MRI16 are different from those seen via other techniques such as x-ray fluorescence,14 

atomic absorption spectroscopy17, or inductively coupled plasma mass spectroscopy18.  This 

discrepancy may be due to the speciation of manganese (Mn2+ vs. Mn3+) or to Mn-binding 

interactions,15 MRI measurements following Mn exposure generally document elevated Mn 

accumulating in the hippocampus, while other methods record Mn deposits to be chiefly in the 

globus pallidus and substantia nigra.16  

In normal human brain without excess Mn exposure, most studies agree that there is more 

Mn found in the basal ganglia than in other brain regions, particularly in the caudate and 

putamen,19 which is the region of most profound degeneration in HD.  In the hippocampus, Mn is 

most concentrated (often with Zn) in the CA2/3 region, while Fe was localized in CA1 and 

Dentate Gyrus, with a negative correlation between the depositions of Cu and Mn.15 

In normal rats there are slight differences, ie, the highest levels of Mn are thought to be in 

the globus pallidus and the striatum, followed by the hypothalamus.17,20 After chronic Mn 

treatment, the globus pallidus collects the most Mn, with cortex and striatum collecting slightly 

less.21 An ICP-MS study of HD patients found a slight decrease in Mn deposition in two 

subregions of the cortex, but not in the basal ganglia, whereas another study found no differences 

in Mn deposition between HD and controls12,13 (Figure 1-7). Robison et al., exposed rats to one 

month of Mn, either by injection or in the diet, and found a specific accumulation of Mn in the 
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dopaminergic neurons of the substantia nigra pars compacta (SNc),20 which are the neurons that 

degenerate in Parkinson’s disease. 

Aside from the difficulty in measuring Mn deposits at the sub-regional level, it has been 

even more difficult to tease out whether Mn bioavailability is altered in particular subregions or 

cell types in HD. The cell-type or subcellular localization under condition of Mn deficiency has 

not been studied. 

Cell-type deposition 

In general, it had been thought that astrocytes accounted for most of the Mn in brain, 

primarily because astrocytes are rich in glutamine synthetase (GS), a glia-specific enzyme that 

can bind as many as 4 Mn2+ ions per subunit, with 15 subunits in each enzyme.22 However, GS 

can also bind Mg2+, and other ions, as well as Mn2+ as a co-factor.23 With over-exposure to Mn, as 

when Mn is injected intra-cerebrally in rats, the metal collects in astrocyte-rich regions, but 

immunohistochemical images show that the most intense staining for astrocytes co-localizes with 

the lowest concentrations of Mn.15  

Morello et al., found that, under normal conditions, Mn accumulates equally in rat neurons 

and astrocytes.21 In chick embryos, Wedler found that neurons store more Mn than astrocytes24 

and Tholey et al., found that there is more Mn and Cu in neurons than astrocytes, but more Fe and 

Zn in astrocytes than neurons.25 Robison found that sites of high Mn accumulation do not 

correspond to the sites where Cu accumulates, postulating that this anti-correlation suggests that 

astrocytes are not the storehouse for Mn under normal conditions,15 though they may accumulate 

more Mn under toxic exposures.   However, technical limitations have prevented robust 

quantitative measurements of cellular Mn levels (e.g. astrocytes versus neuron) in vivo, and the 

above studies rely on ex vivo or cultured brain cells. 
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Because manganese is biologically important, both as an enzymatic cofactor and in 

reduction of reactive oxygen species, knowing where Mn is located in cells, cell types and brain 

regions is crucial to elucidating its role in HD pathology. There is no known direct reporter 

protein for Mn, like there is for Fe (the iron storage protein ferritin), but diverse methodologies 

have been used to measure the metal in tissues and cell cultures, including graphite furnace, 

inductively-coupled mass spectroscopy (ICPMS),21,26 energy dispersive X-ray fluorescence,25 x-

ray fluorescence,20 synchrotron radiation X-ray and fluorescence (SRXRF).27 As tissues and cells 

are prepared for assay, subcellular conditions change and may cause movement of metals between 

compartments, or changes in Mn levels within organelles, which might also alter measurement.   

Sub-cellular deposition 

There is also disagreement in the literature about where Mn collects within cells.  Many 

studies indicate that Mn preferentially accumulates in mitochondria, but other data show that Mn 

is found primarily in the Golgi apparatus, the ER, or the nucleus.  These differences can partially 

be explained by the relative amounts of Mn in experimental conditions, because different 

biological transport and storage mechanisms may be activated when excessive Mn exposure 

occurs.   Acute vs. chronic exposure to Mn may also stimulate alternative homeostatic processes. 

Several researchers agree that exposure to excess Mn results in preferential accumulation 

in mitochondria in both liver and brain,18 with greatest mitochondrial accumulation in the basal 

ganglia.28,29  This excess of Mn leads to mitochondrial cytochrome c release,30,31 which activates 

caspase-dependent apoptotic pathways32 leading to increased cell death.    

In cases of normal Mn levels, most studies agree that Mn is not stored in mitochondria.  It 

appears that Mn is lowest in the mitochondria, intermediate in the cytoplasm and highest in the 

Golgi26,33,34 in yeast studies under normal conditions. In rats, without excess Mn exposure, Mn is 
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highest in the nucleolus, and lowest in the mitochondria.20,21  In chick embryos Mn is 

concentrated in the cytosol and microsomes25, rather than the mitochondria. In hippocampal CA3, 

Mn was distributed diffusely and localized separately from Fe, which was found in small foci.15   

In fact, the Golgi may be the site of Mn storage under normal conditions.  In cultured 

dopaminergic cells and in cultured pheochromocytoma cells, Mn accumulated preferentially in 

the Golgi apparatus.35,36  In cultured PC12 cells, Mn was observed in the Golgi apparatus at 

100uM exposures, which was confirmed when the Golgi was ruptured with brefeldin A, 

redistributing Mn into the cytosol.20 

As with excess exposure to Mn, chronic exposure to Mn also causes a shift in Mn storage, 

with the mitochondria of astrocytes accumulating the most Mn, followed by neuronal 

mitochondria, with the lowest accumulation in the nuclei of both cell types.21,37  Because the level 

and duration of Mn exposure clearly affects the intracellular localization of Mn deposits, this 

suggests that there is tight biological regulation of Mn transport and storage pools. 

Manganese transporters 

At least 15 metal transporters are known to move Mn across cell membranes,38 usually 

along with other metals.  Mn often travels through the same channels as Fe, including the divalent 

metal transporter 1 (DMT1) and the transferrin receptor. Indeed, Mn exposure causes alterations 

in protein expression of ferroportin-a (FPN), a cytoplasmic Fe2+ exporter, as well as inducing FPN 

to localize to the cell membrane.39 Further evidence that Mn is moved with Fe comes from 

“flatiron mice: which are ferroportin deficient.  Flatiron mice have both increased Mn and Fe in 

the olfactory bulb, and both reduced Mn and Fe in bone.40 There is a further association between 

Mn and Fe in HD, through the cell stress response. Nath et al, established that HTT plays a role in 

the cell stress pathway, by observing the accumulation of HTT in the early endosomes of live 
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cells under conditions of stress,41 arresting recycling endosome function.  During this process, 

HTT localized in cytosolic puncta, called Hungtingtin stress bodies (HSB’s).  HSBs colocalize 

with transferrin as well as Rab5C, a protein of the early endosome.  This sequestration of 

transferrin in the early endosome blocks it from moving to the recycling endosome with its cargo 

of Fe.  Though there seem to be many connections between Fe transport and Mn dyshomeostasis, 

Williams et al found no increase in net Mn uptake even when cultured HD model cells were 

exposed to saturating levels of Fe.11  The relationship between Fe transporters and Mn in HD 

remains enigmatic. 

Mn2+ is also transported by the divalent metal/bicarbonate ion symporters ZIP8 and 

ZIP14, several Ca channels, the solute carrier-39 (SLC39) family of Zn transporters, by the Mg 

transporter hip14 and the transient receptor potential melastatin 7 (TRPM7) channel.38 It is 

thought that Mn2+ is transported into the mitochondria via the Ca2+ uniporter.42,43 Efflux of Mn 

from the mitochondria is processed through both slow and fast mechanisms (reviewed by 

Bowman et al29) in addition to the ferroportin-1 iron transporter. Surprisingly, there were no 

significant alterations in gene expression for transferrin in the blood of HD patients, nor for 

SLC11A2 (DMT1), though there was a trend towards reduced expression in patients compared to 

controls,44 and if there are mRNA expression differences in brain subregions, these might not be 

detectable in blood samples. In addition, the same study found no changes in expression of the 

transferrin receptor (TfR), nor SLC39A8 (ZIP8).    

Definitive links to other neurodegenerative disorders, but not to HD, have been found 

between mutations in many of these metal transporters,38,45 for example in the case of PARK9 

(also known as ATP13A2) and SLC30A1, which are both associated with forms of Parkinson’s 

disease.  Mutations in PARK9 cause a severe parkinsonian condition, Kufor-Rakeb syndrome,46 
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and mutations in SLC30A10 cause Parkinson’s disease,47 but neither are associated with HD.  

Two other known metal transporters, Huntington Interacting Protein-14 (HIP14) and Huntington 

Interacting Protein-14-Like (HIP14L) may prove to connect Mn transport issues to HD pathology 

because these proteins are known to palmitoylate HTT which is necessary for its proper 

function,48 and mutant HTT has reduced palmytoylation.49,50 

Many valuable studies of Mn transporters have been performed in yeast models.  PARK9 

is a mammalian homologue to the yeast protein, Ypk1, which was first identified in 

Sacchromyces cerevisiae as a Mn transporter on the vacuole.51  There is evidence that another 

yeast protein, Spf1 (mammalian homologue is ATP13A1), located on the ER of Sacchromyces 

cerevisiae, influences Mn homeostasis,26 but it is only now being characterized.   

Mtm1p is another interesting carrier protein with a mammalian homolog SLC25A39, 

which was first identified in yeast. Mtm1p was originally thought to be the Mn chaperone for 

mitochondrial Sod2 based on impaired activation of MnSOD in a genetic yeast knockout.52,53 

Mtm1p has now been shown to be involved in mitochondrial Fe homeostasis as well, in complex 

with pyridoxal 5′-phosphate (PLP) or Vitamin B6 as the carrier substrate.54,55  Vitamin B6 is an 

electrophilic catalyst, which stabilizes reactions by binding to substrates covalently.  Interestingly, 

the harmonizome database indeed shows SLC25A39 to be reduced in HD.56  

The Drosophila ortholog for SLC25A39 (shawn) is a susceptibility loci for epilepsy, and 

mutants display vesicle trafficking defects, as well as changes in metal homeostasis.57  Cytosolic 

Mn was increased in shawn mutants while mitochondrial Ca was increased, free Fe2+ 

accumulated, and aconitase activity was decreased. Aconitase is an interesting enzyme with two 

distinct functions: in mitochondria it converts citrate into isocitrate with Fe/S as a cofactor, but in 

the cytosol, it acts as an iron regulatory protein.58  As cytosolic Fe levels drop, aconitase unbinds 
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from its Fe/S cofactor and binds instead to the messenger RNA for ferritin and the transferrin 

receptor, inhibiting the formation of ferritin so that iron can be released from storage.59,60 

Furthermore, aconitase is a transglutaminase 2 substrate, and increased transglutaminase activity 

in HD may incorporate aconitase into inactive polymers, causing further mitochondrial 

dysfunction.61 

 Though aconitase is an Fe-dependent enzyme that may impact Mn homeostasis, there are 

many other enzymes that are Mn-dependent, and may be impacted by metal dysregulation.  

Striatal Mn deficiency in HD may restrict the activity of these essential enzymatic functions. 

Mn-dependent and Mn-utilizing enzymes 

        Enzymes known to use Mn as a co-factor include glutamine synthetase (GS), superoxide 

dismutase 2 (SOD2), arginase 1 and 2 (ARG1, ARG2), ataxia telangiectasia mutated (ATM), 

meiotic recombination 11 (MRE-11) and Fanconi’s associated nuclease 1 (FAN1).62A reduction 

of bioavailable Mn would alter the normal neuronal and glial functions of proteins that cannot 

function without sufficient Mn. Indeed, all manganoproteins that have been examined to date 

show reductions in the presence of mutant HTT, either directly or indirectly. Most eukaryotic 

enzymes bind to both Cu and Zn, while those from mitochondria and prokaryotes rely on Mn and 

Fe as co-factors, suggesting that Mn and Fe dyshomeostasis may be much more influential than 

that of other metals in HD, though some enzymes can substitute for other transition metals as 

cofactors in deficiency conditions. If derangement of Mn homeostasis is one of the root causes of 

HD, the fact that the symptoms take so long to develop may be because so many of the Mn-

utilizing enzymes can function with other metals, albeit less efficiently, or less effectively. 

The following enzymes are known to incorporate Mn as a cofactor, although some of 

these enzymes also bind to other metals as well. 
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GS - glutamine synthetase  
 

GS converts glutamate to glutamine in astrocytes, and glial dysfunction is a recognized 

part of the pathogenesis of HD.63,64 A reduction in GS activity may contribute to the increased 

neurotoxicity in medium spiny neurons65. Indeed, there is reduced GS in both HD animal models 

and patients66,67 and decreased activity of GS, has been reported in post-mortem HD patient 

brain66.  GS is reduced in HD patients even when the glial marker, GFAP, is not reduced.66 

Insufficient manganese may increase glutamate trafficking, glutamatergic signaling, and 

excitotoxicity,65 leading to the increased seizure susceptibility observed in Mn-deficient 

individuals.68  

A study in cultured rat astrocytes found that acute exposure to Mn reduced GS activity and 

increased GS protein,69 while another 3-week exposure showed no change between exposed rats 

and controls,70 and a 13-week chronic exposure reduced GS immunostaining and enzyme activity 

in striatum and globus pallidus, but not in motor cortex.37 The investigators of this last study 

controlled for GFAP and did not see a commensurate decrease in astrocyte number, suggesting 

that the reduction in GS was due to enzymatic insufficiency rather than astrocytic cell death.  

Other studies in rats exposed to airborne Mn2+ for 90 days or more did not show significant 

changes in protein or mRNA expression of GS, even though Mn2+ accumulation increased.71  This 

suggests that in a condition of Mn deficit GS activity may revert to another cofactor, if necessary. 

Interestingly, many other metals, such as Mg, Fe and cobalt (Co) are able to bind with 

GS,23 but at different pH levels, with Fe binding at a lower pH than the other metals.  The optimal 

pH for GS enzymatic activity varies between 4.8 and 8.5, depending on the concentration and 

combination of metals present, and Ca inhibits GS activity at all pH values,23  However, GS can 
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also bind Mg, cadmium, and Fe as well as Mn as a co-factor, and though Mg2+ binds less tightly 

than Mn2+ to the enzyme, it speeds its activity, depending upon the pH.23 

Unpublished work in our lab by Michal Wegrzynowycz and Hunter Holt did not find a 

difference in GS activity after the same Mn treatment protocol peformed in the ARG experiments 

described below. 

SOD2 - Mn-dependent superoxide dismutase  

SOD2 (also known as MnSOD) acts to detoxify superoxides into hydrogen peroxide and 

O2.
72  MnSOD is a mitochondrial protein that requires four Mn ions per tetramer.  In HD brain 

tissue, a reduction in SOD2 is known to cause oxidative stress and worsen the severity of HD 

symptoms73 and the expression level of MnSOD drastically changes its redox capacity.74 Loss of 

Mn-SOD activity increases sensitivity to mitochondrial complex 2 inhibitors (such as 3-

nitroproprionic acid), which is associated with HD-like striatal degeneration.75,76 HD models are 

hypersensitive to 3-nitroproprionic acid (3-NPA) and other complex II inhibitors,245 an effect 

which is especially pronounced in older HD model mice.77 These SOD2-related alterations further 

implicate a reduction in the bioavailability of Mn as an enzymatic co-factor, as a cause for the 

HD-related susceptibility to neuronal death. 

 Interestingly, Luk et al found that Mn2+ can only bind to MnSOD when the peptide is 

newly synthesized and unfolded, and it is only the newly synthesized form of MnSOD that can 

enter mitochondria.53  This suggests that Mn2+ associates with MnSOD as part of its import into 

mitochondria in an unfolded state.  MnSOD is twice as active at a pH of 10 that at a pH of 7.8,78 

suggesting that gradations in acid-base balance could have an effect on efficiency of the enzyme.  
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PC - pyruvate carboxylase 

 (PC) catalyzes the conversion of pyruvate to oxaloacetate and is implicated as an 

intermediary in many pathways, including gluconeogenesis and the TCA cycle, earning the 

classification of an anaplerotic enzyme.79-81 Pyruvate carboxylase relies on either Mn or Mg, as 

well as thiamine pyrophosphate as cofactors, and dysregulated activity of the enzyme has wide-

ranging implications. Deficiencies of pyruvate carboxylase activity can cause acidosis through a 

build up of lactate in the blood,82 a serious medical condition.  Minor reductions in pyruvate 

carboxylase can reduce the availability of TCA cycle precursors, which has been hypothesized to 

contribute to the reduced ATP levels seen in Huntington’s disease models.83-86 In patients, two 

downstream metabolites have been identified as potential biomarkers for Huntington’s disease; N-

acetyl aspartate (a metabolite of oxaloacetate), and lactate.  The concentration of both N-acetyl 

aspartate and lactate together have been identified as potential biomarkers for HD, as the 

concentration of both increases in correlation with the duration since symptom onset.87,88 Pyruvate 

carboxylase deficiency has also been linked to dysfunction of the urea cycle,89 as has arginase. A 

region specific deficiency of manganese could reduce the availability of pyruvate carboxylase in 

the fragile medium spiny neurons of the striatum, leading to derangements in these basic energetic 

cycles, which may explain some of the degeneration of neurons in this region.   

PPMs - metalloprotein phosphatases  

PPMs include a subset of serine/threonine protein phosphatases that require both Mn2+ and 

Mg2+ ions to perform the vital function of dephosphorylation at the serine and threonine sites, 

which is a crucial regulatory step for myriad neuronal proteins.90 One such manganese-dependent 

enzyme, protein phosphatase 1 (PP1) dephosphorylates serine in AKT and P53, two signaling 

pathways implicated in Huntington’s disease.91,92 In addition, some of PPM/PP2C family 
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members have been identified as mediators in a G-protein coupled receptor dopamine signaling 

pathway, through the striatal dopamine D2 receptor (D2R),93 D2R activation decreases 

dephosporylation of Huntingtin on its AKT site through the PPM/PP2C family, independent of B-

arrestin, and this can then downregulate AKT activation and reduce AKT's phosphorylation of 

Huntingtin at Serine-421, known to be necessary fro proper anterograde vesicular transport,93 

This connection between the manganese-dependent PPM and the AKT pathway through 

Huntingtin could have far ranging downstream effects, and AKT is already known to have 

reduced phosphorylation in HD models.94 Exposure to 3-nitroproprionic acid which causes 

neurodegeneration similar to Huntington’s disease, also results in reduced striatal PPM gene 

expression.95 Evidence that metalloprotein phosphatases are reduced in Huntington’s disease is 

lacking, but pathways that would be affected by such a reduction in dephosphatase activity have 

shown derangements that could stem from such a deficiency 

ATM – ataxia telangiectasia mutated 

A mutation in ATM causes ataxia telangiectasia (A-T), a disorder that leads to impaired 

immune system and motor skills, as well as cancer from DNA damage.  Notably, Cu levels are 

significantly higher and Zn levels significantly lower in patients with A-T. The normal role of 

ATM is in repairing DNA damage and reacting to persistent oxidative stress.96,97 ATM functions 

by phosphorylating either H2AX (which activates the DNA repair machinery) or p53 (which 

activates the cell death pathway), depending on the extent of DNA damage detected. In HD 

neuroprogenitor cell culture, a deficit of Mn-dependent activation of ATM kinase can be 

corrected by increasing Mn bioavailability pharmacologically.98 This correction in ATM 

activation leads to normalization of the p53 signaling pathway, which has broad implications for 
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HD pathology. Interestingly, acidic pH not only induces DNA damage, but also appears to induce 

ATM kinase activity as measured by H2AX phosphorylation.99   

Improper ATM signaling could invoke the p53 response over the DNA repair response, 

over-inducing the cell death pathway and leading to neurodegeneration.  In fact recent work 

shows that reducing ATM expression (in cells, flies and mice) prevents symptoms of HD, 

suggesting that the Mn deficit in HD striatum might actually have a paradoxical protective 

effect.100 

MRE-11 – meiotic recombination 11, and FAN1 – Fanconi’s associated nuclease 1 

            Like ATM, MRE-11 and FAN1 are part of the DNA repair pathway, and both are Mn 

dependent enzymes linked with DNA damage in HD. MRE-11 associates with ATM and 

complexes with Ras-Proximate 1 (RAP1) to maintain telomere length,101 while FAN1 functions to 

remove the interstrand DNA crosslinks that impede double-stranded repair.62,102 Pathological 

double-stranded DNA repair is found in HD and in other polyglutamine expansion diseases.103  

Recently, a genome wide association study of 1462 patients with HD and other polyglutamine 

spinocerebellar ataxias (SCAs) revealed that a single-nucleotide polymorphisms (SNP) from 

FAN1 was a genetic modifier for the age of onset.104 Both Mn and Mg can serve as co-factors for 

FAN1,62 but MRE-11 is not active when Mg is substituted for Mn.105  

MRE11 is a manganese binding nuclear enzyme that is an integral part of the protein 

complex of Rad50- Mre11A- Nbs1 known as the MRN complex.106 This MRN complex is 

another part of the DNA damage repair mechanism, correcting double stranded breaks through the 

homologous recombination pathway.107 The Mre11A protein functions as a nuclease by cleaving 

DNA with both exonuclease and endonuclease activity, required for both DNA repair and 

genomic stability.108,109 As part of the MRN complex, Mre11A also assists in DNA damage 
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response signaling by activating ATM kinase.109,110  Research has shown that Mre11A can also be 

activated by magnesium, but nuclease activity appears to be highly variable and limited in regards 

to temperature, direction of nuclease activity, and substrate length.106-108,111 In response to 

irradiation, Mre11 expression is higher in HD fibroblasts, and takes a longer time to return to 

baseline.112 It appears that manganese is crucial to Mre11a’s activity, and decreased manganese 

availability in Huntington’s disease may result in the reduced ability to repair DNA double-strand 

breaks, and thus lead to increased genomic instability. 

POLI - DNA polymerase iota 

POLI is yet another manganese dependent enzyme that is involved with translesion 

synthesis.113 When a DNA lesion is present, translesion synthesis is necessary for a cell to 

continue DNA replication.   POLI marks the site by inserting a nucleotide directly across from the 

DNA lesion.113  Although historically it was thought that DNA polymerases utilized the divalent 

cation of magnesium, it is now apparent that certain polymerases, such as DNA polymerase iota, 

may preferentially utilize manganese, as shown by greater activation in Mn2+-containing rather 

than Mg2+-containing solutions.114 Additionally, when Mn was substituted for Mg, the efficiency 

of nucleotide incorporation in DNA translesion synthesis was enhanced.115 This increased kinetic 

activity may be the result of a stronger stabilizing effect by Mn2+, allowing an enhanced rate of 

conformational change.115 In theory, HD models may have altered translesion synthesis resulting 

from a deficiency of available manganese. If reduced manganese leads to inefficiency in DNA 

repair, these lesions can lead to senescence or apoptosis in affected cells.   

AGMAT- agmatinase  

Agmatine has recently been identified as a neurotransmitter, which binds to the 

imidazoline receptor and may be especially important in the cortex in the context of 
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schizophrenia,116 though it is most abundant in hypothalamus and hippocampus.117  Agmatine is a 

result of the decarboxylation of L-arginine, and is hydrolyzed by agmatinases into urea and 

putrecine, which is further metabolized into the other polyamines.117 

Though agmatine and polyamines are found in brain, they may be synthesized by other 

routes, as the mitochondrial enzyme agmatinase was shown to have very scant brain activity.118 

Morris et al predicted that mouse agmatinase would be inactive because it lacks the catalytically 

active domains on the enzyme,119 though these domains are conserved in the human protein. 

Bernstein et al., found agmatinase to be present in rodent interneurons, highly expressed in 

purkinje cells120 and in the post-mortem hippocampi of patients with affective disorders.121  In 

addition, an agmatinase-like protein (ALP) was discovered by Uribe et al., in rodent brain,122k 

and was later identified as a truncated isoform of Lim and Calponin Homology Domain 1 

(LIMCH1).117  Both AGMAT and LIMCH1 require Mn as a cofactor.123 122,124  

Because agmatinase is a regulator of polyamines, and polyamines have been connected to 

aggregate load,125 agmatinases may prove to be important Mn-dependent enzymes in HD though 

the polyamines may also be synthesized through ornithine decarboxylase activity to cleave 

arginine.126  The maximal activity of agmatinase is at a pH of 8.5,118  

ARG1 and ARG2 – arginases  
 

ARG1 and ARG2:  Arginase 1 (ARG1) and Arginase 2 (ARG2) are manganese-dependent 

urea cycle enzyme isoforms that both convert L-arginine to L-ornithine and urea, but each has 

unique tissue and subcellular distribution and localization. ARG1 is highly concentrated in the 

cytosol of the liver and serves as an integral part of the urea cycle, whereas ARG2 is broadly 

expressed across the body and is located in the mitochondria. Both isoforms require two Mn2+ 

ions to form the activated binuclear manganese complex, and perform at maximal velocity 
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between pH 9.0-9.5.127  ARG2 is implicated in the neuronal metabolism of arginine, where it 

competes with nitric oxide synthase for substrate, thereby regulating nitric oxide production.128  

Metabolic pathways downstream of arginase are known to be disrupted in Huntington’s disease 

models.  For example, arginine is metabolized by either nitric oxide synthase or arginase, so a 

lack of arginase could push the balance towards the nitric oxide synthase pathway and alterations 

in nitric oxide signaling and nitric oxide synthase have been identified in Huntington’s disease 

models.129-131 The urea cycle is deficient in Huntington’s disease and has been linked to increased 

blood citrulline levels.132 Patients with Huntington’s disease have an abnormal growth hormone 

response to arginine infusion,133 and a Huntington’s disease mouse model fed with diets high in 

arginine has an earlier disease onset,134 suggesting that arginine is not being metabolized properly. 

The only study which directly measured arginase in Huntington’s disease models focused on 

circadian gene transcription, but not in striatum.  Interestingly, ARG1 is transcribed in a circadian 

manner by the liver, but in R6/2 model mice, the gene transcription becomes arrhythmic.135 

Arginase 1 also has a neuroprotective role; it has been found to prevent neuronal death in trophic 

factor-deprived cell cultures.136 All of these indirect links between arginase levels and 

Huntington’s disease point to arginase as a potential regional indicator for manganese. All of the 

evidence linking abnormalities in Mn-dependent enzymes to HD mentioned above strongly 

supports the data showing that there is reduced Mn bioavailability contributing to pathologies 

seen in the disease. 

Although it is not yet clear which of these known manganoproteins are most affected by 

manganese deficiency, a striatal specific reduction in manganese such as is indicated by current 

evidence in Huntington’s disease models clearly could have widespread repercussions for cellular 

processes.  A proteomics study of gene-environmental interactions between manganese and 
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mutant HTT in the YAC128 model mouse showed that manganese exposure caused disruptions in 

proteins involved in glycolysis, excitotoxicity and cytoskeletal dynamics, but the enzymes listed 

above were not amongst the affected proteins.137  The proteins which were most likely to 

represent markers of the mutant HTT/manganese interaction were UBQLN1 (a ubiquilin), ENO1 

(enolase) and SAE1 (a sumoylation factor).  Beyond the proteins that are directly affected by 

changes in the availability of manganese in Huntington’s disease, it is important to understand 

how manganese is transported and handled between and inside neurons, to understand the gene-

environment interaction between manganese and mutant HTT.   

For a further discussion of the arginases, agmatinases and the urea cycle in HD, please see 

Chapter 5. 
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Chapter IV 

Validation of Key Methods and Resources  
for Analysis of the Arginase Pathway in the HD x Mn Interaction 

 
Note:  Portions this chapter have been submitted for publication under review as 
the following: 
 
Bichell TJV, Wegrzynowicz M, Tipps KG, Bradley EM, Uhouse MA, Bryan M, 
Horning K, Fisher N, Dudek K, Halbesma T, Umashanker P., Stubbs AD, Holt H, 
Kwakye G, Tidball AM, Colbran RJ, Aschner M, Neely MD, Di Pardo A, 
Maglione V, Osmand A, Bowman AB.  Reduced bioavailable manganese causes 
striatal urea cycle pathology in Huntington’s disease mouse model.  Under 
Review. 

 
 
 

     To explore the downstream effects of striatal Mn dyshomeostasis in living HD model 

mice, we used 3 different mouse models (one of which we bred in two different strains) and we 

optimized an arginase enzyme assay to use with tissues from these mice.  The following chapter 

describes the methods employed in the gene-by-environment exploration of arginase in HD. 

HD mouse models employed 

  We had expected the BAC225 mouse model to exhibit more extreme symptoms than other 

models of HD, but in a more biologically relevant way than the R6/2 mouse (which bears the 

very toxic exon 1 from human HTT only).  We identified unique differences between the 

BAC225 and previous models, including widespread early development of HTT aggregates, but 

the model did not sicken more rapidly than other, more commonly used models with expanded 

CAG repeats.  Because members of our lab had already made the surprising discovery of Mn 

dyshomeostasis in HD striatal cell culture models1-3 as well as in the striatum of the YAC128 

mouse model4, our lab also investigated Mn accumulation in the BAC225 model we had 

generated as well, but did not find a significant reduction in Mn accumulation in the mutants at 

the same age (Figure 4-1).   This finding could be related to progression of disease, as there was 
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evidence of gliosis via TSPO ligand binding in the BAC225 model before 12 weeks of age and 

the YAC128 model at 10 months of age (Figure 2-10)5. The Mn dyshomeostasis seen at 12 

weeks in the YAC128 was not seen in the same model at 52 weeks of age, after the onset of 

symptoms, and after gliotic changes have occurred as well (Figure 4-2). This suggests that 

gliosis may mask a neuronal deficit of Mn accumulation, especially if glia prove to accumulate 

more Mn than neurons, but evidence is lacking for glial accumulation of Mn in the absence of 

excess exposure (see discussion below). Though we were unable to detect a deficit of Mn in the 

region as a whole, we hypothesized that there would be evidence of reduction in Mn-dependent 

neuronal processes, if there were indeed a reduction of Mn bioavailability in the striatum.   

 

 

Figure 4-1. The significant decrease in net striatal Mn accumulation in the 
YAC128Q mouse model of HD at age 12 weeks was not significant in BAC 
mice at the same age To obtain dry weight measurements, tubes were weighed, 
then frozen tissue added, and exposed to 95oC for 48 hours, or until constant mass 
was obtained.  Manganese levels were measured by ICPMS.Experiment by M. 
Wegrzynowicz. 
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Figure 4-2. The decrease in net striatal Mn accumulation in the YAC128Q 
mouse model of HD at age 12 weeks was not seen at 52 weeks, see methods in 
Figure 4-1, experiment by M. Wegrzynowicz. 

 

Because we had uncovered Mn dyshomeostasis in the YAC128 model at 12 weeks of 

age, not in other models, and not in other ages, we proceeded to utizlize the YAC128 for all 

subsequent experiments.  The YAC128 transgene mouse expresses the full-length human HTT 

gene with 128 repeats, inserted via a yeast artificial chromosome6-8. The large size of the full-

length transgenic model construct allows HTT mRNA and protein expression levels to 

correspond better to the number of transgene copies inserted8. Although the YAC128 mouse 

survives for a normal life span, it has increased weight, develops motor deterioration, has 

increased N-methyl-D-aspartate (NMDA), AMPA, and metabotropic glutamate receptor 

(mGluR) binding, and reduced striatal and cortical volume9.  
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We duplicated our experiments in both the C57B6/J (C57) strain and the Friends virus 

B (FVB) strain to insure that our gene-environment effects were not a result of any background 

genetics or epigenetics.  The strains are known to differ in certain traits, for example, the C57 

mice develop deafness in adulthood, increase latency to fall from rotarod better, and reduce 

time to freezing in fear conditioning than FVB10.  In our experience, the FVB pups have a 1-2 

day shorter gestation than the C57 pups, and the FVB dams are excellent mothers, and can 

foster the C57 orphan pups, but the reverse is not true.  Adult male FVB mice often must be 

housed alone because they become aggressive and are known to injure and kill each other, but 

that is rare in the C57 strain.  C57 mice are known to be more susceptible to pentobarbital, 

ketamine and nitrous oxide, but not isoflurane11, while FVB mice are known to be more 

tumorigenic12.  We also performed our experiments in males only, because we had seen more 

variability in Mn accumulation in females in pilot experiments (data not shown), although it 

would be important to replicate these experiments in females in the future. 

Because environmental influences, even minor enhancements to mouse habitats, have 

been shown to affect the Huntington’s disease course, it is crucial that mouse husbandry is 

uniform across experiments, especially in pre-clinical trials.  To this end, Males were weaned 

with Diet Gel 76A (ClearH2O 72-07-5022) and housed in groups of 2-4, with disposable 

cardboard houses.  

The FVB-Tg(YAC128)53Hay/J mouse line (YAC128Q) was purchased from Jackson 

Laboratory (Bar Harbor, ME). The C57-YAC128Q line was generated by crossing YAC128Q 

mice with WT C57BL/6J animals followed by backcrossing with C57BL/6J mice for more 

than 10 generations. Both lines were maintained in their genetic backgrounds by crossing 

hemizygous transgenic animals with their WT littermates. Mice were genotyped by PCR 
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according to the protocol provided by the company (#004938; Jackson Laboratory) and/or by 

Transnetyx for qPCR-based genotyping (Htt Wildtype Forward Primer: 

GAGAAAGAGAATGTTTAACTCTCCAAGAGA, Reverse Primer: 

CACATGCACTTTCTACAGCTAGGT, Reporter 1: AAGCAGCTCCAATATC; Htt mutant 

Forward Primer: CCACTTCCCTCTTCTAGTCTGAGA, Reverse Primer: 

CCACATCTCTCCAGCTCCAAA, Reporter 1: CCCCGCCTCCTCTCG). WT and transgenic 

littermates were used for experiments. All animal experiments were approved by the 

Vanderbilt University Medical Center Institutional Animal Care and Use Committee and were 

designed to minimize pain.  

We also collaborated with the Vittorio Magione lab (at the Centre for Neurogenetics 

and Rare Diseases, IRCC Neuromed, Pozzilli (IS), Italy) to obtain dissected frozen brain tissue 

from another HD model, the R6/2.  These mice were not exposed to Mn, but were dissected at 

the same 12 week age as previously described in the other lines.  The R6/2 and B6CBA 

colonies were maintained in the animal facility at IRCCS Neuromed. Mice were sacrificed by 

cervical dislocation and all the procedures were performed in accordance with approved 

protocols by the IRCCS Neuromed Animal Care Review Board and by “Instituto Superiore di 

Sanità” (permit number: 1163/2015- PR) and were conducted according to EU Directive 

2010/63/EU for animal experiments.  

Mn exposure protocol 
 

Manganese exposure followed the previously published sub chronic, 7-day 

paradigm13,14. Briefly, 12-week-old male animals which are at an age that is prior to 

neurodegeneration and neurogliosis15 were injected subcutaneously with a 1% solution of 

MnCl2 x 4H2O in filtered MilliQ water at 50 mg/kg body weight, or with vehicle (filtered 
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water), on experimental days 0, 3 and 6. Though the HD mice take up less striatal Mn than 

WT, this exposure paradigm increases Mn levels in both mutant and WT more than 5-fold in 

the striatum at the time of tissue collection 3. Mice were then sacrificed by cervical dislocation 

on day 7, during their 13th week of life; the brain was removed, and placed on ice, rinsed with 

PBS and rapidly dissected by hemisphere, with all regions kept on ice.  First, cerebellum was 

removed, then hippocampus rolled diagonally away from the midline and removed, revealing 

the striatum.  Striatum was outlined with tips of forceps, and then scooped out.  A section of 

cortex immediately frontal to the striatum was removed and labeled as pre-frontal cortex, and 

the remaining crescent-shaped edge of visible cortex without attachments to white matter or 

other layers was also removed. Kidney, heart and liver were also isolated and all tissues were 

snap-frozen in liquid nitrogen and thereafter stored at -80OC. 

Experimental design 

Mice were chosen for exposure in a balanced paradigm, as litter size and genotype 

allowed, so that half of the wild-type littermates and half of the mutants were exposed to Mn,  

Almost all experiments were performed in male mice only, but some were replicated in female 

mice. 

In addition, for each enzyme activity experiment, samples were chosen to be balanced 

for weight of dissected frozen striatum as well as for matching to littermates.  This helped to 

control for slightly different dissection techniques that may have removed slightly larger or 

smaller subsections of striata. 
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Statistics 

          General Linear Model (GLM) multivariate or univariate ANOVA was performed using 

Graphpad Prism or SPSS Statistics 19 (IBM, Armonk, NY). For post-hoc pairwise 

comparisons between experimental groups, a Student’s t-test was used (Excel 2008; Microsoft, 

Redmond, WA). 

Protein experiments 

For western blotting, tissue was kept on dry ice and then homogenized in RIPA lysis 

buffer (50 mM Tris pH8.0, 1mM Ethylenediaminetetraacetic acid [EDTA], 150 mM NaCl, 

.01% Triton X-100, 1% SDS, 1% sodium deoxycholate, protease inhibitor cocktail [Sigma 

P8340], 1:100 and phosphatase inhibitor cocktails 2 and 3 [Sigma P5726 and P0044], 1:100) 

using a 23G x 1 needle for brain tissue, and glass homogenizers for liver and kidney. 

Homogenates were then centrifugated at 4° at 13000 rcf for 5 min and supernatant was 

collected and kept on ice.   

Protein content for all experiments was measured using either the DC protein assay kit 

(Bio-Rad, Hercules, CA) and/or the BCA protein assay (PierceTM BCA Protein Assay Kit, 

Thermo), in pellet solubilized with 0.5 M NaOH in the samples prepared for metabolite 

measurements and in aliquots of supernatants for the samples prepared for activity assays and 

Western blotting. 

Tissue homogenates in RIPA lysis buffer were diluted with sample buffer (4x Laemmlli 

sample buffer [Bio-Rad 061-0747, 5% β-mercaptoethanol added]), heated for 5 min. at 95OC 

and 40 mg of protein of each sample loaded onto Mini-Protean TGX Pre-cast gels (4-20% 456-

1094). Proteins were transferred for 7-9 min to 0.22µm nitrocellulose membrane (IB301002) 

using the iBlotTM system. Gels were rinsed with MilliQ water and stained with Coomassie 
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(Bio-Rad 161-0786) for 45 min, then rinsed 3-5 times with MilliQ water. Membranes were 

dried, blocked with Odyssey blocking buffer (927-40000 PBS) for 1 hour, and incubated 

overnight in primary antibodies (in Odyssey blocking buffer with 0.1% Tween-20) at room 

temperature.  

After incubation, antibodies were saved to be re-used.  Blots were washed 5 times for 5 

min each with 1x TBST buffer (150mM NaCl, 56mM Tris-HCl, 44mM Tris base, 0.05% 

Tween-20) and incubated in secondary antibodies (in Odyssey blocking buffer with 0.1% 

Tween-20) for 90 min then washed again with TBST as above.  Primary antibodies used are 

listed in Table 4-1. 

Table 4-1:  Primary Antibodies Used for HD-Urea Cycle Experiments 

Protein Company Number Concentration 

ARG1 Abcam ab912795 1:1000 

ARG1 Proteintech 16001-1-AP 1:1000 

ARG1 Millipore ABS535 1:1000 

ARG2 Abcam ab81505 1:4000 

ARG2 Santa Cruz sc-20151 1:1000 

ARG2 Proteintech 14825-1-AP 1:2000 

AGMAT Santa Cruz sc-46716 1:1000 

LIMCH1 Abcam ab96178 1:1000 

Anti-Polyglutamine-
Expansion Diseases Marker 
(5TF1-1C2) 

Millipore MAB1574 1:5000 

ACTIN Millipore MAB1501 1:10,000 

ACTIN Sigma A5441 1:10,000 
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Secondary antibodies: anti-rabbit, anti-mouse, anti-chicken or anti-goat (Licor IRDye 

700 or 800CW) were diluted in Odyssey blocking buffer (previously vortexed with 0.1% 

Tween-20) at 1:10000. Protein was detected using the Odyssey infrared system and analyzed 

with ImageStudio (www.licor.com) and normalized to total protein quantified from Coomassie 

stained gel, or ACTIN signal.   

Experiments were performed to assess whether or not GAPDH, UBE3A or ACTIN was 

most appropriate as a loading control, as there is some evidence that all are affected by mutant 

HTT or Mn.  ACTIN has been used most often in the literature, and it proved to be the most 

consistent loading control, although it was slightly increased by Mn exposure (representative 

data Figure 4-3).  In the case of ARG2, which was increased 2-3 fold after Mn-exposure, an 

increase in ACTIN would have over-corrected this finding, rather than exaggerating it. Most 

westerns were normalized to both coomassie and ACTIN to check the accuracy of ACTIN 

normalization, which did not differ from coomassie  

 

Figure 4-3.  Coumassie vs. Actin as a loading control. (Sample data, from western 
for BDNF blot 2, 3-10-15). 
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Arginase isoforms in rodent brain 

When we began the line of investigation on arginase protein, there were more studies 

listing ARG1 in mammalian brain than ARG2, although the literature was divided (Table 4-2). 

Many investigators have found ARG1 in mammalian brain tissue, though it is possible that 

their methods were flawed.  Liu et al., showed stable ARG1 protein in human AD brain, and 

increased ARG2 protein (as well as arginase activity) in post-mortem AD cortex)16.  Liu’s 

manuscript shows a strong band of ARG1 by western, but they used an antibody that we did 

not test (Santa Cruz Biotechnology, sc-166920), and the entire blot is not displayed. Using in 

situ hybridization and immunohistochemistry, Yu et al., found ARG1 to be much more highly 

expressed than ARG2 in brain, and both arginases were located only in neurons and not in glial 

cells17. Peters et al., found more ARG1 than ARG2 in rat brain with Western blots, but could 

not locate ARG1 via northern blot18, suggesting a potential cross-reactivity in the antibody 

used.  Bernstein found that ARG1 was widely expressed in rat brain, especially in interneurons 

of the hippocampus, but he also found AGMAT (which is likely not expressed in rat brain, and 

did not double-check for cross-reactivity to ARG2. 
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Table 4-2: Literature citing brain localization of ARG1 and ARG2 

Year Author ARG1 ARG2 Species Notes 
2014 Liu et al16 Stable in brain Increased in 

cortex in AD 
Human Santa Cruz 

ARG1 antibody 
2013 Peters et al18 High in brain Lower than 

ARG1 in brain 
Rat Not consistent 

with Northern 
blot 

2012 Choi et al19 Not in brain Yes in brain Rat Also in 
cerebellum 

2011 Bernstein et 
al20 

High in brain Not 
investigated 

Rat Also found 
AGMAT! 

2010  Hansmannel et 
al21 

mRNA low in 
brain 

mRNA in 
brain, 
increased in 
AD 

Human  

2004 Cederbaum et 
al22 

Only embryonic Yes in brain Mouse  

2001 Yu et al17 Very high in 
brain 

Low in brain Mouse Not specific? 

1999 Braissant et 
al23 

Not much in 
brain 

Yes in brain, 
esp in Hip 

Rat Also found 
ARG2 in 
cerebellum 

1997 Morris et al24 Not in brain Yes in brain Human and 
rodent 

Also found 
ARG2 in many 
other tissues 

 

Other investigators have not found ARG1 to be located in brain.  For example, 

Hansmannel et al., showed very low ARG1 mRNA expression in human brain but found that 

ARG2 increased in Alzheimer’s disease (AD) (while glutamine synthetase (GS) was 

unchanged)21. Choi et al found ARG2 in rat brain (including cerebellum) but not ARG119. A 

2004 review by Cederbaum et al. noted ARG1 to be relegated to liver and red blood cells, 

while only ARG2 was the only isozyme found in brain, as well as kidney, gastrointestinal 

tissue and the prostate.  However, this manuscript cites unpublished studies showing 

expression of ARG1 protein in all brain regions in embryonic rodents, with ARG2 appearing 

after post-natal day 1, and they do not mention further expression in brain. Morris et al., found 
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ARG2 in almost every human and rodent tissue, and found ARG1 only in liver24 

Furthermore, westerns performed by previous Bowman lab personnel had demonstrated 

the presence of ARG1 in striatum, primarily via the Proteintech antibody (Figure 4-4).  

Unfortunately, we were unable to replicate these experiments.   

 

 

Figure 4-4.  Previous western data showed erroneous significant 
genotype/treatment interaction in ARG1 protein in striatum, but not ARG2 
by western blot. Proteintech antibody (experiment by M. Wegrynowicz). 
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Figure 4-5. ARG2 using liver as control reveals a band at 37kDa in the liver 
lane as well as a Mn-responsive band in the striatal lanes (Proteintech 14825-
1-AP).  
 
 
Attempts to repeat the original ARG westerns with the Proteintech antibody and with 

liver as a control revealed a strong, non-specific band at 50kDa, but for both ARG1 and ARG2, 

though ARG2 is not thought to be present in liver (Figure 4-5).  It is possible that many 

published studies locating ARG1 in brain as well as ARG2 were quantifying the nonspecific 

band located at 50kDa rather than the correct band at 37kDa.  It is also possible that many of 

the antibodies used in the literature bind to both of the isoforms of ARG because they share 

59% identical amino acids18.  In fact, the Proteintech antibody recognizes 354 amino acids of 

human ARG2, a region which overlaps much of the homologous sequences.   

Furthermore, indications that the antibody was binding to both ARG1 and ARG2 came 

from previous westerns in our lab performed on liver tissue that had noted very similar ARG1 

and ARG2 levels, while most studies acknowledge that there is no detectable ARG2 in liver 

(Figure 4-6). 



	 144	

 

Figure 4-6. ARG1 and ARG2 non-specifically bound in liver, ARG1 
Proteintech 16001-1-AP ,ARG2 Proteintech 14825-1-AP,ARG1 Proteintech 
16001-1-AP (Experiment by M. Wegrynowicz). 
 

 
It is also possible that the Proteintech antibody for ARG2 had been contaminated by 

ARG1 antibody.  When we attempted to replicate the significant ARG1 HD x Mn interaction 

finding shown in Figure 4-4, using other antibodies and liver as a control, we were not able to 

detect ARG1 in striatum (Figure 4-7 and Figure 4-8), though it was abundant in liver.  

Surprisingly though, ARG2 was present in striatum and appeared to be Mn-responsive (Figure 

4-9)! 
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Figure 4-7.  ARG1 was detectable in liver at the expected molecular weight, 
but was not detectable in striatum lanes (Millipore ABS535). 
 
 

 

Figure 4-8.  ARG1 protein is expressed in liver but not in striatum.  The first 8 
lanes are loaded with striatal samples, followed by 4 lanes with liver samples.  There is 
a strong 37kDa band in liver lane, no detectable band in striatum lanes (Abcam 
ab912795). 
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Figure 4-9.  ARG2 protein is expressed in striatum and is Mn-responsive, 
but also appears in liver with abcam antibody  There are non-specific bands at 
50kDa and at 25kDa as well, Abcam ab81505.  
 

Interestingly, the Allen Brain Atlas shows scant ARG2 in brain, but no ARG1, and 

there is a strong signal in hippocampal CA2, though not mentioned (Figure 4-11), which will 

be further discussed in Chapter VI. 

 

A. B. Image credit: Allen Institute. 

Figure 4-10. Allen Brain Atlas25 shows ARG2 present in striatum and not in 
other rodent brain regions, while ARG1 is not detectable. A) ARG2, B) 
ARG1. © 2015 Allen Institute for Brain Science. Allen Brain Atlas API. Available from: brain-
map.org/api/index.html  
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RNA-SEQ evidence on ARG expression in striatum 

Subsequent RNA-SEQ studies on striatal samples from mice at the same age following 

the same Mn-exposure protocol confirmed that ARG1 gene expression was undetectable in the 

striatum of this model (Figure 4-11), further supporting the idea that the previous western blots 

had been inaccurate.   

 

Figure 4-11. There is no detectable ARG1 gene expression in striatum. ARG2 
gene expression is present.  Raw RNA-SEQ data on ARG1 and ARG2 gene 
expression, n=3.   
 
 

Regional detection of ARG1 and ARG2 protein in mouse tissue 

Because ARG1 is known to be present in liver, and ARG2 is known to be located in 

kidney, those tissues were used as controls to verify the specificity of new protein antibodies 

for both ARG1 and ARG2 (Figure 4-12, 4-13).  We found that the Santa Cruz antibody was 

surprisingly the most specific for ARG2, and the Abcam antibody was most specific for 

ARG1.  The molecular weights of ARG1 and ARG2 are virtually identical, so blots could not 

be re-used.  These controlled westerns confirmed that ARG1 was abundant in liver and was 



	 148	

virtually undetectable in kidney and striatum of both the C57 and FVB background mice 

dissected at 12 weeks of age (Figure 4-13). 

Our westerns also confirmed that ARG2 protein was abundantly expressed in kidney, 

and was easily detectable in striatum (Figure 4-13).  Surprisingly, ARG2 protein was Mn-

responsive, increasing 2-3 fold with Mn-exposure in every tissue where it was detected. 
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Figure 4-12. ARG1 protein is undetectable in striatum and 
unaffected by Mn in liver.   Shown in (A) and (B) are the same 
samples of WT, FVB, vehicle-exposed striatum (Str), liver (Liv) and 
kidney (Kid) run on different gels with two different ARG1 antibodies 
(A) Abcam, (B) Proteintech, and additional striatal samples exposed to 
Millipore shown in (C), ladder (lad). ARG1 protein is observed as a 
doublet band at approximately 35-37kDa with all three antibodies in 
liver tissue and is absent from kidney and striatum. There were strong, 
non-specific bands at other molecular weights with the Proteintech 
antibody. (D) Mn exposure did not affect hepatic ARG1 protein levels 
(Abcam ab91279). (E) Quantification of ARG1/ACTIN normalized to 
WT-Vehicle (Veh), n=3.  Data presented as +sem. 
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Figure 4-13. ARG2 protein is detectable in striatum with protein levels 
similar between HD and wild-type; and elevated by Mn-exposure in both 
genotypes. Shown are representative blots on the same samples run on three 
different gels and exposed to three different antibodies (A) Abcam, (B) 
Proteintech, (C) and (D) Santa Cruz; vehicle (Veh). These blots have only one 
band in common, at 37kDa, and this band shows the same pattern of change for 
all three after in vivo Mn exposure, suggesting that all other bands are non-
specific and may be cross-reacting with ARG1.  (D) Striatal tissue (40mg) from 
ARG1 heterozygous knockout26 and ARG2 homozygous knockout27 mouse with 
WT kidney (Kid) (20mg) and striatum for controls.  For experiments shown in 
Figures 5-9, 5-10, 5-11 and 5-12.we used sc-20151 because it had no evidence of 
cross-reactivity. Quantifications are ARG/ACTIN, normed to WT Veh, FVB, 
+sem, post-hoc binary comparisons by t-test following a significant (p=<.05) 
ANOVA, *p=<.05, ***p<.001.  
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 Through a recent collaboration with the William and Ruth Caldwell lab, Georgia Regents 

University, Augusta, GA, we were able to obtain dissected whole brain from two different 

transgenic arginase deficiency mouse models:  an ARG1 heterozygous knockout26 and an 

ARG2 homozygous knockout27.  The Santa Cruz sc-20151 ARG2 antibody was demonstrated 

to be accurate for ARG2 protein detection with a visible band in the ARG1 het and an absent 

band in the ARG2 homozygous knockout (Figure 4-13 D). 

Immunohistochemical experiments 

         Hoping to visualize a subregional difference in ARG2 protein expression, we continued 

our collaboration with the Alexander Osmand lab, Department of Biochemistry, University of 

Tennessee, Knoxville, TN.  Mn-exposed 12-week old mice were perfused and whole brains 

were dissected and fixed in paraformaldehyde and transferred to the Osmand lab for slice 

preparation and staining. 

Free floating formalin-fixed 35m sections were washed and treated with 88% formic 

acid for 30 min., aldehydes were blocked with ethanolamine acetate pH 9.5 for 1 h followed by 

the addition of 10 mM ascorbic acid for 10 min. Sections were treated with 0.5% Triton X-100 

in PBS (TxPBS) for 50 min. and incubated overnight with a polyclonal rabbit antibody to 

arginase-2 at 1:5,000 in TxPBS. Sections were washed and incubated with for 90 min in 

biotinylated anti-rabbit IgG (Vector) at 1 µg/ml in TxPBS. Peroxidase detection of biotinylated 

secondary antibody was performed with ABC Elite Kit (Vector) with nickel enhanced DAB in 

the presence of glucose and glucose oxidase in Tris-imidazole buffer after a single round of 

tyramide amplification using biotin-PEG-tyramide. Sections were mounted on gelatinized glass 

slides, dried and cover-slipped using Xylene substitute mountant. Digital images of striatum 

were collected on a Nikon Eclipse Ni microscope equipped with a DS camera.  
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Gene expression experiments 

Arginase 1 (Arg1), arginase 2 (Arg2), agmatinase (Agmat) and the agmatinase-like 

protein predicted domain of Limch1 (Limch1) transcript levels were measured by quantitative 

reverse-transcriptase polymerase chain reaction (QRT-PCR). Previous QRT-PCR experiments 

performed by previous Bowman lab personnel had quantified Arg1 in striatum, but these 

experiments, as well as the protein expression experiments detecting ARG1 in striatum, were 

not replicable.  We hypothesized that the standard curve might not have had enough Arg1 gene 

expression to be reliable, and in addition, that the primer sequences may have been non-

specific. 

We redesigned the primer sequences for Arg1, Arg2, and Actin, as well as Agmat and 

Limch1.  The primers were designed specifically to: 

1) cross exon boundaries 

2) be 18-20 base pairs in size  

3) product between 50-120 base pairs 

4) Tm 58oC-60oC 

5) GC min 30%, max 70%, optimal 50% 

6) Max self-complementary 

7) Max 3’ stability (can only have 1 or 2 Gs or Cs) 

8) Max poly x (3-4) 

The Limch1 primer was specifically designed to target the domain which had been 

shown to transcribe the Agmatinase-Like Protein. 

Knowing that Arg1 might only be present in liver, and Arg2 might only be present in 

kidney, we used a mixture of vehicle treated WT liver, kidney and striatal tissue lysates 
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calculated at a concentration ratio of 1xliver/5xkidney/100xstriatum to prepare the standard for 

relative quantitation based on estimates of arginase activity in the various tissues.28,29 Tissue 

was homogenized in RLT Plus Buffer (Qiagen 1053393) using the needle method as described 

in the protein preparation methods, and flash frozen in liquid nitrogen. Primer sequences used 

are listed in Table 4-3. 

Table 4-3:  Primer Sequences Used for QRT-PCR Experiments 

Gene Forward Reverse 

Arg1 5'-TGGCTTGCGAGACGTAGA-3’ 5'-CCAATCCCCAGCTTGTCT-3' 

Arg2 5'-GGGATGCCACCTAAAAGAC-3' 5'-GCCCACTGAACGAGGATAC-3' 

Agmat 5'-CTCTGACCTTGGGTGGAGAC-3' 5'-GAGGTTTGTCCGTGGTGTT-3' 

Limch1 5'-GCAGCAACAGCATCGAGATC-3' 5'-CATCCTCTTGGCCGTTCGAT-3' 

Actin 5'-CAGCCTTCCTTCTTGGGTAT-3' 5’-CGGATGTCAACGTCACACTT-3’ 

 

Frozen homogenates were subjected to RNA purification using RNAeasy Plus Mini kit 

(QIAGEN 74134) according to manufacturer’s protocol. RNA concentrations were determined 

by absorbance measurements at 260 nm and 280 nm using NanoDrop spectrophotometer (ND-

1000 Thermo Fisher Scientific, Waltham, MA). cDNA was reverse-transcribed from isolated 

RNA with SuperScript III Reverse Transcriptase kit (Invitrogen 18080044), using Mycycler 

thermocycler (Bio-Rad) according to manufacturer’s directions for random hexamers. The 

qPCR reaction was run on an ABI 7900HT real-time PCR detections system (Invitrogen) using 

Power SYBR Green Master Mix (Life Technologies Applied Biosystems 4367659) according 

to the manufacturer’s instructions, and the results were analyzed using SDS software 

(Invitrogen). Arg1, Arg2, Agmat, Limch1 transcript levels were normalized to the levels of 

Actin as the endogenous active reference control. 
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Measurement of metabolites via LC-MS 

For metabolite measurements, frozen tissues were added to ice cold buffer (100 mM 

trichloroacetic acid, 10 mM CH3COONa, 100 µM EDTA, 10.5% MetOH, pH 3.8) and 

homogenized in Potter-Elvehjem glass/PTFE tissue grinders (Kimble Kontes, Vineland, NJ). 

           Arginine and its metabolites were measured by liquid chromatography-mass 

spectrometry (LC-MS). Prior to the analysis, samples were supplemented with internal 

standard, homoagmatine (hAgm)30, and purified by centrifugation with Amicon centrifugal 

filters (Millipore) at 14000 x g, for 10 min., at room temp. The resulting filtrate was then 

evaporated under N2 gas and reconstituted with 50% acetonitrile containing 100 mM NaHCO3 

(pH 8.0) and derivatized with 20 mM dansyl chloride (Sigma) at 50OC for 20 min. Next, 

samples were diluted with H2O, centrifuged at 18000 x g, for 10 min at room temp, and 

transferred to autosampler vials. The LC-MS system was equipped with ThermoPal 

autosampler, Accela UHP quaternary pump (Thermo Fisher Scientific), Zorbax SB-C18 Rapid 

Resolution HT column (2.1 mm x 50 mm, 1.8 µm, Agilent Technologies, Santa Clara, CA) 

with Acquity UPLC in-line 0.2 µm steel filter unit (Waters, Milford, MA), TSQ Quantum 

Access triple-stage quadrupole mass spectrometer with an electrospray ion source and a 100 

µm ID deactivated fused silica capillary (Thermo Fisher Scientific). The autosampler was set at 

10OC and separations were performed at RT. Mobile phases were composed of 0.5% formic 

acid in (A) 5% acetonitrile and in (B) 10% 2-propanol / 85% acetonitrile. The flow rate was set 

at 350 µl/min and the gradient was as follows: B=0%, 3 min; B=0-90%, 3 min; B=90%, 3 min; 

B=90-0%, 1 min; B=0%, 5 min. MS/MS detection was performed in positive-ion mode. 

Quantification was based on multiple reaction monitoring detection at a collision energy of 30 

V (agmatine (Agm): m/z 364 → 347; hAgm: m/z 378 → 361; Arg: m/z 408 → 391; Orn: m/z 
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599 → 303; Cit: m/z 409 → 392; putrescine (Put): m/z 555 → 304; spermine (Spm): m/z 1135 

→ 360, 669, 900; spermidine (Spmd): m/z 845 → 360). Data were acquired with Xcalibur 

2.0.7, and analyzed with LCQuan 2.5.6 (Thermo Fisher Scientific).  

Development of an optimized arginase enzyme activity assay for striatal tissue 

 To measure arginase enzymatic activity in dissected striatal tissue samples it was 

necessary to identify non-radiolabeled assays which had previously been used successfully, 

ideally with mouse brain tissue.  The tiny size of these dissected tissues and the fact that the 

specific activity of arginase is much lower in brain than in liver or kidney required an 

exquisitely sensitive assay.31   From a search of the literature, it was apparent that few arginase 

assays had been used on mouse brain tissue.  Most had relied on liver, or utilized purified 

enzyme, and in much larger quantities.  The assays that had been used with small amounts of 

tissue were all based on urea (rather than ornithine) as the product of the ARG enzymatic 

reaction and included protocols from Chan et al. (2009) and Wynn et al. (2011), both derived 

from Corriza et al..(1994) 31 which had been optimized from an earlier version by.32  An 

additional proprietary assay developed by Sigma was directly derived from Jung et al. 

 Prior members of our lab had measured arginase enzyme activity in pilot experiments 

with striatal samples using an ornithine output assay (Figure 4-14) that included ninhydrin as a 

colorimetric agent.   
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Figure 4-14. Prior data from the Bowman lab showed a significant effect of 
Mn-exposure in striatal arginase activity as measured by an ornithine assay, 
with a trend towards an interaction effect, and this interaction effect was also 
seen in cortex.  

 
Our metabolite experiments had demonstrated an increase of ornithine in the HD model 

striatum, which resolved after Mn-exposure (See Figure 5-4, Chapter 5), a factor which may 

have interfered with enzyme activity measurement, so we sought to use the byproduct urea as 

an output instead of ornithine.  In addition, a commercial urea assay was available, and had 

begun to be commonly used. 

Summary of existing arginase assays 

Corraliza arginase activity assay 
 

The Corraliza assay31 was developed specifically to measure ARG activity in 

macrophage cell cultures (approximately 25000 macrophages per sample).  The Corraliza 

assay uses saturating amounts of substrate with small amounts of tissue and is not affected by 

the presence of citrulline or arginine as previous assays had been.32. Activated macrophages 

express ARG1 and produce citrulline. 

As described by Corraliza,et al., previous ARG enzyme assays had used non-saturating 
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concentrations of arginine or were affected by citrulline, a metabolite of activated 

macrophages. This is a crucial factor because excess arginine is shunted through the nitric 

oxide synthase (NOS) pathway where it is metabolized by NOS into NO and citrulline.  The 

optimum pH for ARG activity is very basic: pH 9.7,33 but prior methods had also been affected 

by the precipitation of MnCl2 which occurs at the pH of 9.7, and thus to avoid MnCl2 

precipitation the reaction was set up to occur at pH 7.5.  Co 

To increase the sensitivity of detection, Corraliza et al., reduced the reaction volume 

and eliminated the previously used stop reagent of perchloric acid.  They also reduced the 

volume of α-isonitrosopropiophenone (ISPF), by increasing its concentration.  To stop the 

reaction they used a small volume of a different acid mixture, instead of perchloric acid.  With 

these modifications, they were able to detect urea concentrations as low as 0.02-0.05/zmol.   
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Corraliza Arginase Activity Protocol 
 

Reagents 
L-arginine, urea and Tris-(hydroxymethyl)-aminomethane (Merck, Darmstadt, Germany).  
Protease inhibitors, pepstatin antipain and aprotinin (Boehringer-Mannheim, Mannheim, 
Germany).  
Triton X-100 and ISPF (Sigma, St. Louis, MO 63178, USA) 
Sulfuric acid 96% 
Ortho-phosphoric acid 85%,  
Manganese II chloride and Ethanol absolute (Panreac, Barcelona, Spain). 
 
Method: 
1)Wash harvested cells with PBS 
2)Add 50ul of 0.1% Triton X-100 containing 5ug pepstatin, 5ug aprotinin and 5ug antipain as 
protease inhibitors and stir for 30 mins at room temperature 
3)Add 50ul of 10mM MnC12, 50 mM Tris-HCl, pH 7.5  
4)Activate enzyme for 10 minutes at 55°C in Eppendorf tubes 
5)Initiate reaction by adding 25u1 of 0.5 M arginine, pH 9.7 to a 25ul aliquot of the previously 
activated lysate.  
6)Incubate at 37°C for 60 minutes  
7)Stop reaction by the addition of 400ul of an acid mixture containing H2SO4, H3PO4 and H2O 
(1:3:7) 
8)Add 25uL 9% ISPF (dissolved in 100% ethanol) 
9)Heat at 100°C for 45 min 
10)Place in dark for 10 min.  
11)Aliquot 200uL samples into 96 well plate 
12)Quantify urea produced via colorimetric signal at 540 nm on microplate reader  
13)Prepare a calibration curve with increasing amounts of urea between 1.5 and 30ug.  Add 
400uL of H2SO4, H3PO4 and H2O (1:3:7) acid mixture and 25uL ISPF to 100uL urea solution 
and then aliquot. 
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Chan arginase activity assay 
 

Chan, et al34 modified the Corraliza  assay to better measure arginase activity in the 

central nervous system of a mouse model for juvenile Batten disease.  Interestingly, like HD, 

Batten disease is another neurodenerative disorder with a known genetic mutation, though the 

onset is in childhood and the gene is Ceroid-Lipofuscinosis Neuronal 3 (CLN3).  At the time 

that Chan and colleagues developed their assay, CLN3 was known to be located on the 

lysosome and was thought to regulate arginine transport.  Subsequent research showed that 

CLN3 is involved in microtubule-dependent, anterograde transport of late endosomes and 

lysosomes. http://www.genecards.org/cgi-bin/carddisp.pl?gene=CLN3 

 Using this modified assay, Chan and colleagues found a significant increase in ARG 

activity in CLN3 mutant mouse cortex compared to wild-type, but only at post-natal day 14 

(P14), while they found a decrease in liver ARG activity, but only at P90.  These results are 

questionable, as our arginase gene and protein expression results will demonstrate below 

(Chapter 5).  Furthermore, Chan et al., measured OTC activity and protein in mouse cortical 

tissue, demonstrating a misunderstanding of the urea cycle in brain, which lacks OTC35.   

Interestingly, arginine is transported through the Cationic-transporter family (CAT-1, CAT-3), 

which are regulated by NMDA receptor activation (and influence the mTOR pathway)36 and 

Chan’s group did find a large decrease in CAT-1 protein in mutant animals. 

The Chan arginase assay protocol differed from the Corraliza protocol slightly at 

almost every step.  These differences may well have affected the sensitivity or reliability of 

urea detection. While the cells used in the Corraliza protocol were lysed in 0.1% Triton with 

protease inhibitor cocktail, the tissues used in the Chan protocol were homogenized in 50 mM 

Tris-HCl, pH 7.4 with the Triton added afterward. Like the Corraliza protocol, the Chan 
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protocol added 0.1% Triton X-100, but the concentration of Triton was double that of the 

Corraliza protocol. The Chan protocol activated the ARG with a lower concentration of Mn 

and used more arginine to start the reaction and incubated longer. The Chan protocol described 

using a blank reactions, with 25 mM Tris-HCl, pH 9.7 in place of L-arginine to determine 

background activity. In the Chan protocol, the enzymatic reaction was terminated with a 

similar addition of 450 ml of acid solution and a similar  addition of 9% 

α−isonitrosopropiophenone then incubated at slightly lower temp 95°C for 30 min instead of 

45 min.  
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Chan Arginase Activity Protocol 
 
1)Homogenize tissue samples in 50 mM Tris-HCl, pH 7.4 containing protease inhibitor 
cocktail using an Ultra-Turrax T8 disperser (IKA Works, Wilmington, NC, USA) and place on 
ice.  
 
2)Remove 25uLs tissue homogenate and mix with 50 ul of 0.1% Triton X-100 and incubate at 
room temperature (RT) for 30 min with shaking.  
 
3)Activate arginase by addition of 50 ul of 25 mMTris-HCl, pH 7.4 and 10 ul of 10 mM MnCl2 
and heat at 56°C for 10 min.  
 
4)Start the reaction by the addition of 50 ul of 0.5 M L-arginine (pH 9.7) and incubate for 60–
120 min at 37°C.  
 
5)For blank reactions, add 25 uM Tris- HCl, pH 9.7 in place of L-arginine to determine 
background activity.  
 
6)Terminate reactions by the addition of 450 ul of acid solution (1 H2SO4 : 3 H3PO4 : 7 H2O) 
followed by the  
 
7)Add colorimetric reagent of 20 ul of 9% aisonitrosopropiophenone (ISPF) (dissolved in 
100% ethanol) and incubate at 95°C for 30 min.  

 
8)Cool to RT and determine urea concentration spectrophotometrically by absorbance at 540 
nm using a microplate reader (Spectramax M5, Molecular Devices, Sunnyvale, CA, USA) 
against a standard curve. Express activity as mmol of urea produced per mg of total protein per 
min. 
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Wynn arginase activity assay 
 
 Like the Chan assay, the Wynn assay was also developed for use in macrophages37.  

Researchers sought a reliable arginase assay to detect enzymatic activity in activated 

macrophages because ARG1 is a gene that has been used to identify alternative activated 

macrophages (AAM or M2) and transcription of ARG1 is tightly regulated by exogenous 

stimuli, including the Th2 cytokines IL-4 and IL-13.  Of course, because enzyme activity 

assays do not differentiate between ARG1 and ARG2, protein and gene expression assays must 

also be performed to identify which isoform is involved. 

 The Wynn protocol is optimized (from the Corraliza protocol) to measure urea and 

therefore indirectly determine arginase activity in whole tissue lysates using a 96 well format.  

Wynn et al suggested that the hydrolysis portion of the assay can have a variable duration 

depending on amounts of arginase in the sample, with an extended incubation with substrate 

for low levels of the arginase enzyme.  Wynn and colleagues advised pilot experiments to 

optimize sample quantity and reaction times, which will differ depending on the type and 

amount of arginase enzyme in novel cell types and tissues.  After extended incubation periods 

(more than 6 hours), a brown precipitate may form, but Wynn and colleagues did not find this 

precipitate to interfere with the enzymatic reaction or the detection of urea.     

Wynn also advised the use of a multi-channel pipettor to add/mix reagents to improve 

the uniformity of the colorimetric signal, especially when high concentrations of urea cause the 

colorimetric assay to develop rapidly. Air bubbles interfere with the readings of the 

spectrophotometer and should be avoided by careful pipetting 

Wynn found that differences in the hydrolysis of arginine have been observed as 

quickly as 5 to 10 min after incubating activated lysate with arginine substrate solution, and 
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1 hr is usually more than sufficient. The reaction can be slowed down by diluting all of the 

activated lysate solutions. The linear range of detection for urea in this assay is reported by 

the manufacturer of proprietary reagents A and B as 0.01 to 10 mg/ml, but a less sensitive 0.1 

mg/ml threshold of detection is common. 

 According to the Quantichrom packet insert, when the reagents A and B are added to 

the samples, the reaction proceeds with two steps, 1)the condensation reaction of ortho-

phthaldialdedyde with urea, and 2)the rapid reaction with primaquine diphosphate that 

undergoes rearrangement to yield an intensely colored product, based on a method developed 

by Jung et al.38 Ammonium does not interfere with the assay, but high concentrations of 

hydrogen peroxide (1%) completely block color development and lower concentrations have 

not been tested. 

 The Wynn protocol differs from Corraliza in several respects:   

1)Activation solution is 1M Mn rather than 10M Mn. 

2)Lysis buffer is 0.001% Triton rather than 0.1% Triton x100 

3)Colorimetric agent is Quantichrom solution A and B rather than ISPF 
 

4)Standard curve ranges from 20 to 0.04 mg/ml urea rather than 30 to 1.5ug/mL and is 

made from mixture of lysis buffer, activation solution and substrate solution as well as added 

urea. 
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Wynn Arginase Activity Protocol 
 
Reagents 
Cultured cells of interest  
Iscove’s modified DMEM supplemented with 10% fetal bovine serum, penicillin/streptomycin, 
and L-arginine 
1 x PBS  
 
Lysis buffer (see recipe) 
Arginase activation solution (see recipe) 
Arginase substrate solution (see recipe) 
Urea standard solution (see recipe) 
Quantichrom urea assay kit (Bioassay Systems, cat. no. DIUR-500) 
 
Whole tissue samples (~100-mg samples) 
24-well tissue culture plates 
Platform rocker 
96-well PCR reaction plate 
Thermal cycler 
Standard ELISA and PCR plates 
Spectrophotometer 
 
To measure arginase activity in cultured cells 
1) Set up cultures with ~5 x 105 cells per well in Iscove’s modified DMEM in 24-well plates. 
Culture 24 to 48 hr, depending upon arginase expression levels. 
2) Remove dead/non-adherent cells by gently aspirating the medium. Rinse wells with 1 ml of 
PBS and aspirate. Repeat PBS rinse and aspirate fluid completely. Healthy macrophages and 
fibroblasts should be tightly adherent. If the protocol is done on non-adherent cells such as 
splenocytes, centrifuge the plate 5 min at 200 x g for each wash/rinse step. After final spin and 
aspiration, proceed to next step. Supernatants may be retained for other assays. 
3) To lyse the cells, add 100 µl lysis buffer per well and gently rock the plate for 15 min at 
room temperature. Once the cells are lysed, pipet up and down several times and transfer the 
entire lysate to a 96-well PCR reaction plate. Note:  The tissue culture plate with lysis buffer 
can be frozen overnight at −20°C and thawed at 37°C to enhance the lysis step. Alternatively, 
the plate can be sealed with paraffin and stored for up to 1 year at −20°C for later use 
4) Proceed to Urea Quantification 
 
To measure arginase activity in whole tissues 
1)  Collect ~100-mg samples of whole tissue and homogenize in 500 µ l of lysis buffer 
(including the protease inhibitor cocktail). Wynn et al., describe routinely using this technique 
with normal and fibrotic liver tissues. In theory, it should work with any other tissue of interest. 
A Precellys 24 (Bertin Technologies) is used to homogenize tissue in MK28 plastic tubes 
(Bertin Technologies) containing stainless-steel beads. The Precellys is set at 5000 for 15 sec. 
Other techniques, such as freezing the tissue on dry ice and pulverizing with a mortar and 
pestle or grinding with a polytron at maximum speed, should also work. 
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2)  Remove debris by centrifuging 20 sec at 5000 x g, room temperature. 
3)  Dilute samples appropriately in lysis buffer, and proceed to step 4. Homogenized tissue 
samples, like cell lysates, may be frozen up to 1 year at − 20°C until ready for use. 
4) Proceed to Urea Quantification 
 
Urea Quantification  
4) Transfer 50 µl of each lysate sample to a new 96-well PCR plate. Add 50 µl of arginase 
activation solution to each well (providing manganese as a cofactor) and incubate 10 min at 
55°C in a thermal cycler. 
5) Transfer 25 µl of each activated lysate sample to a new 96-well PCR plate. Add 25 µl 
arginase substrate solution to each well (providing L-arginine for the enzyme to hydrolyze) and 
incubate 1hr at 37°C in a thermal cycler. This incubation can be extended up to 24 hr to detect 
low levels of arginase activity, as long as all samples are incubated for the same duration. A 
brown precipitate may form after 6 hr of incubation at 37°C, presumably due to reactions with 
manganese, but does not interfere with enzymatic activity or the subsequent detection of urea. 
6) Prepare a blank solution control and a serially diluted urea standard. Use a mix of 1 part 
lysis buffer, 1 part arginase activation solution, and 2 parts arginase substrate solution as a 
diluent to match the content of the experimental samples. The concentration of the urea 
standard must span the range to be measured in the experimental samples. A range from 20 to 
0.04 mg/ml, in twofold dilutions, is usually sufficient. 
7) Add 5 µl of each reacted sample, the serially diluted urea standard, and the blank solution 
control to replicate wells of an ELISA plate. Mix together the Quantichrom urea assay kit 
reagents following manufacturer’s instructions at room temperatre (not accurate when chilled), 
and add 200 µl per well to the ELISA plate. 
8) To measure urea concentrations, incubate 2 to 20 min at room temperature in the dark and 
use a spectrophotometer to read the absorbance at 520 nm. For optimal results, measure 
absorbance at several time points over the course of the colorimetric reaction. 
 
Arginase activation solution 
Mix 50 µl of 1 M MnCl2 (Sigma-Aldrich)  
and 250 µl of 1 M Tris·Cl, pH 7.5  
in 4.7 ml water to make up a 10 mM MnCl2/50 mM Tris·Cl, pH 7.5 solution.  
Store indefinitely at room temperature. 
 
Arginine substrate solution 
Add 871 mg of L-arginine to 8.5 ml water.  
Adjust pH with ~1 ml of 1 M HCl to pH 9.7 to make up a 0.5 M L-arginine, pH 9.7 solution.  
Adjust volume with water to 10 ml.  
Store indefinitely at room temperature. 
 
Lysis buffer 
0.001% Triton X-100 (Sigma-Aldrich) 
1:1000 protease inhibitor cocktail 
Mix 5 µl of Triton X-100 in 4.8 ml distilled water and add 200 µl of 25x protease inhibitor 
cocktail solution (see recipe). Prepare fresh. 
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Protease inhibitor cocktail solution, 25x 
Dissolve 1 Complete Protease Inhibitor Cocktail tablet (Roche) in 2 ml water, vortexing 
occasionally, to make a 25x solution. Store up to 2 weeks at 4°C, or up to 3 months at −20°C. 
The protease inhibitor cocktail solution is used for inhibiting serine, cysteine, and 
metalloproteases. 
 
Solution A 
Add 1 part chloramine T solution (Dissolve 7 g of chloramine T in 100 ml deionized water. 
May be stored for 6 months in the dark at 4°C.) with 4 parts citrate-acetate buffer (to make 
citrate-acetate buffer: add 57 g sodium acetate.3H2O, 37.5 g sodium citrate.2H2O, 5.5 g 
H3citrate. H2O to 385 ml of isopropanol (2-propanol), Bring final volume to 1 liter with 
deionized water.  May store indefinitely at room temperature). Prepare fresh before 
colorization step. 
 
Solution B 
Prepare Ehrlich’s solution by dissolving 25 g of p-dimethylaminobenzaldehyde  
with 37.5 ml of 60% perchloric acid. This solution can be stored for up to 8 weeks at 4°C. 
Mix 15 ml Ehrlich’s solution with 65 ml isopropanol. Prepare solution B fresh. 
Perchloric acid is hazardous and unstable. Consult with the institute’s safety officer for 
appropriate handling and disposal of the solution. 
 
Urea standard solution 
Dissolve 500 mg urea (Sigma-Aldrich) into 5 ml of water to make up a 100 mg/ml urea 
solution. This solution can be stored for up to 1 year at room temperature. Adjust the highest, 
starting concentration of the urea standard from 100 to 5 mg/ml to match the experimental 
samples. 
 
Note examples of urea concentrations in biological samples:   
The urea concentration (mg/dL) was 12.5 ± 0.9 for commercial 2% reduced fat milk 
(Kirkland), 35.7 ± 0.1 for Invitrogen fetal bovine serum, 22.1 ± 0.9 for human serum, 22.3 ± 
0.2 for human plasma, 31.8 ± 1.1 for rat serum, 42.6 ± 0.1 for rat plasma and 1501 ± 52 for a 
fresh human urine sample, 0.21 ± 0.03 in a human BAL sample, 0.15 to 2.7 mg/dL in cell 
culture (from Sigma Quantichrom package insert). 
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Optimization of the Wynn arginase assay for mouse striatal tissue 
 

Because the literature was in conflict about which arginase was present in brain, it was 

also not clear what the specific activity of the enzyme might be in our samples.  We used the 

Wynn assay to measure urea in cells and in tissue samples, but obtained unexpected and 

inconsistent results in both cells and tissue samples between experiments. In retrospect these 

inconsistent results were due to the lack of arginase in cortical tissue, which is the tissue we 

had first used, and the very low level of arginase in cells, very close to the limit of detection. 

We used cortical tissue in these early optimization experiments because it is more abundant, 

and we did not realize until after the protein experiments, that arginase expression was much 

lower in cortex than striatum.  The cells used were immortalized medium spiny neuron MSN 

precursers (known as Q7’s for the number of CAG repeats in the Htt gene) and showed a 

higher signal for arginase activity than the striatal samples (Figure 4-15).  

For the arginase enzymatic activity assay, tissue was disrupted on ice with 23G x 1 

needle in lysis buffer (10mM Tris-HCl, in 0.4% Triton-X100 at pH 7.4, supplemented with 

protease inhibitors: Leupeptin (leupeptin hydrochloride, microbial, Sigma-Aldrich at 1:1000) 

and Pepstatin-A (microbial, Sigma-Aldrich at 1:1000). The homogenate was centrifuged at 

13000 rcf (relative centrifugal force) for 5 min at 4OC and supernatant was used for the activity 

analysis.  

We subsequently realized that the colorimetric reagent continued to change color over 

time, even when lysate had not been activated or incubated with substrate, though relative 

amounts of raw absorbance readings did not change.   
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Figure 4-15.  Q7 cell lysates and cortical tissue lysates incubated for 30, 60 
or 90 mins with substrate at 37oC, then read at either 30, 45 or 60 minutes 
after plating with colorimetric reagent.  Blanks were lysates with activation 
solution and substrate added just before addition of colorimetric agent, without 
incubation.  Blank tissue sample was not kept on ice. 

 

We then performed an experiment with urea spiked into cell lysates and cortical tissue 

lysates, read at 30, 45 and 60 mins after addition of the colorimetric assay (Figure 4-16).  We 
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found that the 30 minute read was most accurate, with the curve flattening over time after 

addition of the colorimentric agent, and subsequently determined that a 15 min read was more 

accurate than a 30 min read.  All subsequent experiments were read 15 min after addition of 

colorimetric agent. 

 

Figure 4-16.  Cells lysates and tissue lysates with urea spiked in, read at 
30min, 45min or 60min after addition of colorimetric assay. 

 

To account for the amount of biological interference in the OD readings we prepared 

samples with two kinds of activation solution, one with added Mn (Mn-Supp) and one without 

Mn (Mn-Unsupp). We then subtracted the readings from the Mn-Unsupp samples from the Mn-

Supp samples to obtain the difference (Figure 4-17). Again, we confirmed that the earliest 

reading was the most accurate, as subsequent readings flattened out over time.  We also 

confirmed that the assay was time-dependent (over the time incubated with substrate at 37o) and 

that signal was higher in cells than in tissue. 
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Figure 4-17.  Q7 cell lysates and cortical tissue lysates calculated from urea 
standard curve/protein, read at 30min, 45min or 60min after addition of 
colorimetric assay. 

 

 Striatal samples proved to have more specific enzymatic activity than cortical samples 

(later confirmed by western blot of protein expression). Ironically, our optimization experiments 

may have been much more fruitful if we had used kidney instead of cortex, but at that point, we 

did not realize that the protein in striatum would be ARG2, and we knew that there was much 

less specific activity of arginase in brain than liver, so we wanted to use brain tissue rather than 

liver to optimize. 

 In early optimization experiments, we found that there was an increase in urea over time, 

in all of the samples, even in the Mn-Unsupp (with only endogenous Mn in the lysate (Figure 

4-18).  We also found that, indeed, activation with Mn-Supp solution ex vivo (ie., added to the 

lysates) produced 2-3 times more enzymatic activity than Mn-Unsupp. Mn-exposure in vivo (ie., 
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injections to living mice) produced more enzymatic activity as well, but not to the extent that 

Mn-Supp ex vivo could do. 

 

Figure 4-18.  Striatal tissue lysates from animals exposed to either Veh or 
Mn in vivo, and either Mn or no Mn supplemented into the activation 
solution ex vivo.  

 

We began to suspect that temperature and time played a larger role than expected in the 

production of urea, so we began to keep all lysates and reagents on ice, except when they were 
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in the incubation steps. On the other hand, the colorimetric reagents must be removed from 

storage in -4o and returned to room temperature, with Reagents A and B kept separately, and 

mixed shortly before adding to the plate. We had found that the accuracy of the read was also 

reduced if the colorimetric reagents were too cold (data not shown). 

Because timing was so crucial, we realized that loading the plates by genotype could 

create spurious results.  To control for timing and edge effects, we altered the plate design so 

that genotypes would be intermixed with each other and loaded simulataneously (Figure 4-19). 

The standard wells with the most concentrated urea (2, 3 and 4) were the only wells loaded on 

an edge.  The plates were loaded by column, so Unsupplemented-Vehicle-Treated columns 

were loaded first, and Supplemented-Mn-Treated columns were loaded last, giving the samples 

with the most presumed activity, the least amount of time to incubate before reading. 

 

 

Figure 4-19.  Plate designs to control for time.  A. Badly designed upper plate 
and B. well-designed lower plate.  The upper plate shows an example of a plate 
design which could give spurious results if loaded by column, because all 
wildtype samples precede all mutant samples, and standard wells with the lowest 
urea have the least time to incubate.  The lower plate is well-designed for loading 
by column to avoid edge effects, and to alternate genotypes to control for timing, 
duplicating each sample in adjacent columns.   
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We had been surprised that there were not larger differences in the amounts of urea 

produced in Mn-exposed animals compared to Veh-exposed animals, so we sought to dialyze 

out any urea which may have been produced prior to dissection.  We used Slide-A-Lyzer® 

MINI Dialysis Devices, 10K MWCO, 0.5 mL pre-loaded with 14 mL of ice-cold Tris lysis 

buffer (including the phosphatase cocktails).  We added the entire lysed sample in buffer to the 

dialysis filter tubes, and placed them on ice in -4o on a rocker for 45 min, then transferred each 

filter tube and contents to a 15cc conical filled with fresh ice-cold Tris lysis buffer, and 

dialyzed a second time for 45 min.  

We found that our experimental results were still sometimes inconsistent, and we 

attribute some of those inconsistencies to slightly differing pH of our reagents.  Arginase binds 

most tightly to its co-factor Mn and is most efficient at a very basic pH of 9.733.  As pH drops, 

even slightly, it can reduce the output of the enzyme.  Future experiments may need to lyse the 

tissue samples in higher pH and thereby retain the endogenous Mn on the enzyme.  This 

important issue needs further exploration. 

To optimize the Wynn assay, we found that the urea standard, including blanks, must 

be made in dialyzed tissue, because non-tissue blanks (including Lysing buffer, Activation 

solution and Substrate solution) and changed absorbance over time, and at times had a higher 

OD than lysates did.  After many repeated experiments, we realized that it would have been 

preferable to use mutant vehicle exposed striatal tissue for the standard curve, as that would 

have had the lowest endogenous arginase activity, but there was insufficient tissue to make the 

entire standard curve from the mutant samples.  Instead, we mixed all of the vehicle-exposed 

wild-type and vehicle-exposed mutant lysate which remained after production of the samples, 

and diluted it to use in the standard curve.  Then, we subtracted the value from the wells 
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without added urea from all of the other values in the standard, and in the sample, as a way to 

subtract background before the enzymatic activity produced during the assay itself.  

Using the optimized Wynn assay, we compared baseline arginase activity in tissue from 

mice on the FVB background which had neither been exposed in vivo, nor supplemented ex 

vivo, and found that striatum exhibited 2-5 times as much arginase activity as cortex, though 

cortical activity was very close to the bottom of the detectable range (Figure 4-20).  

Furthermore, striatal tissue from mice on the C57B6 background with the HD mutation 

demonstrated an amount of arginase activity that was below the detectable range, though tissue 

from wild-types had twice as much arginase activity as that from FVB wild-type mice.  In 

optimizing the Wynn assay, we had attempted to use cortical tissue to optimize the assay 

because the tissue was more abundant, but in retrospect, this made the task much more 

difficult, as the amount of enzymatic activity was so low in that tissue. 
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Figure 4-20. Basal deficit in arginase activity in HD striata is significant in both 
FVB and C57 backgrounds. n=6 for C57 striata, n=12 for FVB striata, n=1 
experiment with samples of 3 striata merged for each genotype.  These samples were 
unsupplemented in vitro and unexposed to Mn in vivo. 

 

     We also found that cortical arginase activity increased with Mn-exposure in vivo and 

even more so with Mn-supplementation ex vivo, indicating the presence of the very small 

amount of the enzyme, which was supported by our subsequent protein experiments.  Mn-

activated cortical arginase activity remained lower than striatal baseline, even when mice had 

been Mn-exposed in vivo (Figure 4-21). 
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Figure 4-21. Cortical arginase activity less than striatal activity, even in Mn-
exposed and Mn-Supplemented. n=6 for C57 striata, and for cortex n=1 experiment 
with samples of 3 striata merged for each genotype and exposure. These samples were 
unsupplemented in vitro and unexposed to Mn in vivo. 

 
Our assay was optimized from the Wynn assay in the following ways:   

1)We added a dialysis step to remove pre-existing urea 

2)We kept all samples and reagents on ice until the stop reaction mix was added 

3)We added a Mn-negative (Mn-Unsupp) activation solution so that each sample was 
measured with only endogenous Mn as well as with the Mn-positive (Mn-Supp) 
activation solution.   

4)We made the urea standard with a mixture of all untreated samples, because we found 
that there was some kind of biological interference between the lysate and the 
colorimetric readout, so we wanted to standardize all wells.   

5)We loaded duplicate wells for each sample, in a longitudinal design, avoiding edge 
rows, and used an alternating well design so that we had alternating WT and 128 in 
each row, with loading horizontal to the row to minimize loading/time effects. 

6)We read the plate exactly 15 mins after adding the colorimetric reagent.  We read the 
plate twice, once right side up and once upside down, to be sure that the plate-reader 
was not dysfunctional.  We discarded outlier wells. 

7)We subtracted the average zero urea well from every other well when constructing 
the standard equation and from the samples. 
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Modified Wynn Arginase Activity Assay Protocol 
 
Reagents 
 
Lysis buffer 
1:1000 Protease inhibitor cocktail 
10mM Tris-HCl, in 0.4% Triton-X100 at pH 7.4 
 
Protease inhibitor cocktail solution, 25x 
Dissolve one Complete Protease Inhibitor Cocktail tablet (Roche 11697498001) in 2 ml water, 
vortexing occasionally, to make a 25x stock solution. Store up to 2 weeks at 4°C, or up to 3 
months at −20°C. The protease inhibitor cocktail solution is used for inhibiting serine, cysteine, 
and metalloproteases.  (Any protease cocktail used should include Leupeptin (leupeptin 
hydrochloride, microbial, Sigma-Aldrich at 1:1000) and Pepstatin-A (microbial, Sigma-Aldrich 
at1:1000) 
 
Mn-Supp Arginase activation solution (10 mM MnCl2-4(H2O)/50 mM Tris-HCl pH 7.5) 
Mix 50 µl of 1 M MnCl2-4(H2O) (Sigma-Aldrich)  
and 250 µl of 1 M Tris·Cl, pH 7.5  
in 4.7 ml water to make up a 10 mM MnCl2-4(H2O /50 mM Tris·Cl, pH 7.5 solution.  
Store indefinitely at room temperature. 
 
Mn-UnSupp Arginase activation solution (50 mM Tris-HCl ph 7.5) 
(50 mM Tris-HCl ph 7.5 
Store indefinitely at room temperature. 
 
Arginine substrate solution (0.5 M L-arginine/H20 pH 9.7) 
Add 871 mg of L-arginine to 8.5 ml water.  
Adjust pH with ~1 ml of 1 M HCl to pH 9.7 to make up a 0.5 M L-arginine, pH 9.7 solution.  
Adjust volume with water to 10 ml.  
Store indefinitely at room temperature. 
 
96-well plates (Costar 3370) 

Instructions 

This assay measures arginase activity on the basis of urea produced from arginine added to 
tissue homogenate, according to a previously described assay37, with optimization for mouse 
striatal tissue homogenates, to permit assessment of enzyme activity in the absence of ex vivo 
supplemented Mn.  
 
Disrupt tissue on ice with 23G x 1 needle in lysis buffer (10mM Tris-HCl, in 0.4% Triton-X100 
at pH 7.4, supplemented with protease inhibitors: Leupeptin (leupeptin hydrochloride, 
microbial, Sigma-Aldrich at 1:1000) and Pepstatin-A (microbial, Sigma-Aldrich at 1:1000).  
 
Centrifuge homogenates at 13000 rcf for 5 min at 4OC and remove supernatant for the activity 
analysis.  
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Perform all procedures  as quickly as possible, with a maximum of 12 samples (n=3) in a 
single experiment to minimize the effect of time spent loading plates and tubes.  To reduce 
time: 
 

Design plates to minimize plate- and time-loading effects by alternating wells between 
genotypes.  

 
Preset two heating blocks to 56oC and 37oC.  

 
Pre-load microcentrifuge tubes with either 20uL of Mn-pos Activation Solution, or 
20uL Mn-neg Activation Solution, or 30uL of Arginase Substrate Solution and keep on 
ice.  
 
Pre-label microcentrifuge tubes and 96-well plates to be loaded quickly with variable-
width pipettes.  
 

Prepare tissue samples of approximately 12 mg in 190 uL of lysis buffer (described 
above), and keep on ice.  

Add entire lysed sample in buffer to dialysis filter tubes (Slide-A-Lyzer® MINI Dialysis 
Devices, 10K MWCO, 0.5 mL) pre-loaded with 14 mL of ice-cold Tris lysis buffer (10mM 
Tris-HCl, in 0.4% Triton-X100 at pH 7.4) 
.  
Dialyze samples on a rocker on ice for 45 min, then transfer filter tubes to fresh Tris 
lysis buffer and dialyze a second time for 45 min.   

During dialysis pre-load duplicate micrcentrifuge tubes with one of the following, and 
keep on ice: 

20uL of Mn-pos Activation Solution (10 mM MnCl2-4(H2O)/50 mM Tris-HCl 
pH 7.5),  

20uL Mn-neg Activation Solution (50 mM Tris-HCl ph 7.5),  

30uL of Arginase Substrate Solution (0.5 M L-arginine/H20 pH 9.7). 

After dialysis, move samples into microcentrifuge tubes and keep on ice,  

Remove an aliquot and dilute 1:3 into lysis buffer for protein assay.  

Begin the enzyme assay by simultaneously adding 20uL of each sample with a 
variable-width pipette to the microcentrifuge tubes, which had been pre-loaded with 
20uL of Mn-pos Activation Solution (Mn-Supp).   

Place these tubes immediately in the 56oC heating block for 10 mins.  

Add another aliquot of 20uL of each sample to the tubes which had been pre-loaded 
with 20mL of Mn-neg Activation Solution (Mn-Unsupp), and then place on ice.  
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At the end of the 10 min incubation period, place both Mn-Supp and Mn-Unsupp tubes 
in a rack with matching tubes pre-loaded with 30uL of Arginase Substrate Solution 

With mulit-channel variable-width pipette, load 30uL from each activated sample (both 
Mn-Supp and Mn-Unsupp) rapidly into the substrate tubes, and place immediately into 
the 37oC heating block, to be incubated for 30min.  

During this incubation period, prepare the urea standard. Prepare standard on ice in 
diluted lysate (1:2) from equal amounts of each vehicle-treated sample lysate spiked 
with urea prepared in Tris lysis buffer and subsequently diluted 1:2 for a range of 
1.92mg/mL urea to 0.0075mg/mL with 0mg/mL urea in the final standard tube.  

Five minutes before the end of the 37o C incubation period, transfer 20uL of each 
standard to tubes pre-loaded with 20uL of Mn-neg Activation Solution (Mn-Unsupp) 
and mix well.  

Prepare the Urea Assay Kit mixture A and B (QuantiChromTM ABIN1000249) and 
keep at room temperature.  Do not chill this mixture 

Immediately after mixing, transfer 30uL of each mixture to tubes pre-loaded with 30uL 
of Arginase Substrate Solution and mix well on ice.  

At the end of the 37oC incubation period, arrange sample tubes and standard tubes into 
a rack matching the design of the 96-well plate. Using multi-channel pipettes transfer 
25uL of each sample (and each standard) into duplicate wells. 

Add 200uL of the freshly prepared Urea Assay Kit mixture (QuantiChromTM 
ABIN1000249) to each well.  

Incubate plates in the dark at room temperature for 10-12 min, bubbles were then 
popped with a needle, and the absorbance was read at 520 nm, exactly 15 min after 
loading.  
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 After optimization of the modified Wynn assay, we validated it by testing for time-

dependence, substrate-dependence and co-factor dependence in kidney and liver tissue 

homgenates (Figure 4-22). We found that this assay was reliable at detecting arginase activity 

in very small tissue samples within Michaelis-Menten parameters. 
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Figure 4-22. The modified Wynn arginase assay37 is time-, substrate- 
and co-factor-dependent in tissue lysates. Red arrows in (a-c) indicate 
parameters used in the assay. (A) Arginase activity is time-dependent 
(liver tissue, thus primarily ARG1) incubated at 0, 30, and 90 minutes at 
37o after addition of substrate solution, subtracting background (raw 
value at zero time point) from all data points.  Significant effect of time 
by univariate ANOVA: WT Mn [F(2,6)=146.2, p<.0001], WT Veh 
[F(2,6)=15.53, p<.0042]. (B) Arginase activity is arginine-dependent 
(kidney tissue, thus primarily ARG2), Km=324.8 mM Arg, Vmax=608.5 
mM urea/mg/hr, urea standards completed without added arginine. (C) 
Arginase activity is dependent on the co-factor Mn (kidney tissue, thus 
primarily ARG2). Data shown is arginase activity induced by 
supplemental Mn, Ka=0.377mM Mn, Vmax=106.4 mM urea/mg/hr. The 
increase in arginase activity is not explained simply by the amount of 
striatal Mn in Mn-exposed animals, because in vivo Mn exposure itself 
is not calculated to raise the concentration of endogenous Mn in the ex 
vivo striatal extracts higher than 0.8 µM in striatum3. We used 2.5 mM 
Mn as in the published assay,37

 which is well above the amount needed 
to stimulate arginase activity.39  (D) Extracted urea concentration 
measured in undialysed striatal samples, FVB, n=3, not significant by 
two-way ANOVA. Michaelis-Menten parameters calculated with 
GraphPad Prism. 
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Figure 4-23.  Correlation of Mn content as measured by graphite furnace to 
arginase enzymatic activity as measured by the the Modified Wynn Assay in 
striatal tissue from FVB mice. 
 

 
We also found that arginase enzyme activity appears to correlate with Mn content 

(calculated for different mice with the same genotypes via graphite furnace in prior studies) 

(Figure 4-23).   

Agmatinase assay development 

 We were aware that agmatinase (AGMAT) could play a role in the same pathway as 

arginase, as a Mn-dependent enzyme, but the literature on agmatinase in rodent brain was even 

more scanty and conflicting than arginase. By LCMS, we found very low abundance of 

agmatine (Figure 5-5), and by QRT-PCR, we had found almost no mRNA expression of 

AGMAT in striatal samples although there was detectable genotype-dependent expression of 

LIMCH1 (Figure 4-24) (see discussion about AGMAT and LIMCH1 in Chapter III).  Still, 

because agmatinase hydrolyzes agmatine into urea and putrecine, we hoped to optimize the 
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Wynn urea assay to measure agmatinase activity as well as arginase activity in our striatal 

samples. 

 

Figure 4-24. AGMAT mRNA expression was undetectable in striatal 
samples, though LIMCH1 was abundant and increased by genotype, but not 
affected by Mn exposure.  QRT-PCR, n=6, males.  Anova for LIMCH1 
significant for genotype p=<001. Data presented as means +/- sem. 

 
 

Most of the handful of researchers studying agmatinase in rodent brain used radioactive 

14CO trapping systems to measure agmatinase activity in rodent brain tissue, but Uribe et 

al,40.routinely used a urea assay with purified enzyme.  The Uribe group uses a protocol with a 

substrate buffer of 80mM agmatine in 50 mM glycine NaOH at a pH of 9.0, an activation 

buffer of 2 mM MnCl2 and α-isonitrosopropiophenone as the colorimetric agent,41 measured by 

absorbance at 540nm.  Incubation is at 37oC.  In other papers, the same group used a substrate 

buffer of 50mM agmatine in 50 mM glycine NaOH at a slightly more basic pH of 9.5.40.   

Because this method was quite similar to the Wynn assay, we altered the arginase protocol to 

include these an activation buffer of 10mM  MnCl2/50mM Tris-Cl, pH 7.5, and a substrate 

solution of 80 mM agmatine in 50 mM Glycine-NaOH, at a pH of 9.0, but we were 
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unsuccessful in producing reliable agmatinase activity in striatal samples with this method, 

However, because of the low agmatine availability and the low agmatinase abundance, it is 

possible that there is little to no agmatinase activity in striatal tissue from this rodent model. 
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Chapter V 
 

Impact of Mn and HD on the Urea Pathway 
 

Note:  Much of this chapter have been submitted for publication and is under 
review as the following: 

 
Bichell TJV, Wegrzynowicz M, Tipps KG, Bradley EM, Uhouse MA, Bryan M, 
Horning K, Fisher N, Dudek K, Halbesma T, Umashanker P., Stubbs AD, Holt H, 
Kwakye G, Tidball AM, Colbran RJ, Aschner M, Neely MD, Di Pardo A, 
Maglione V, Osmand A, Bowman ABB.  Reduced bioavailable manganese causes 
striatal urea cycle pathology in Huntington’s disease mouse model.  Under Review. 
 
Author contributions. Studies were conceived and designed by T.J.V.B., M.W., R.C., 
M.A., A.O. and A.B.B.  Experiments were performed by T.J.V.B., M.W., K.G.T., 
E.M.B., M.A.U., N.F., K.D., T.H., P.U., A.D.S., H.K.H. and A.O. with contributions 
from R.C. for enzyme assays; G.K. for western blots; A.M.T. for QRT-PCR; and A.D. 
and V.M. for R6/2 experiments.  Data analysis, interpretation and hypotheses by 
T.J.V.B., M.W., M.B., K.H., M.D.N., R.C., M.A., A.O. and A.B.B.  The paper was 
written by T.J.V.B., M.W. and A.B.B. and was edited by the other authors.  

 
Urea cycle disruption in HD 

 
 Urea, one of the major end products of protein catabolism, is primarily produced in the 

mammalian liver, and secreted by the kidneys.   However, a partial urea cycle also exists in 

brain. Alterations in Mn bioavailability have the potential to disrupt the urea cycle, affecting at 

least three of the enzymes involved in the pathway.  The neuronal urea cycle contains the Mn2+-

dependent enzymes; ARG1, ARG2 and AGMAT. In brain, the urea cycle is only partial; 

neurons lack the mitochondrial enzymes carbamoylphosphate synthetase (CPS) and ornithine 

carbamoyltransferase (also known as ornithine transcarbomolase, OTC) and thus brain tissue is 

incapable synthesizing arginine de novo.  Neurons are also unable to dispose of waste nitrogen 

(reviewed by Wiesinger1), and urea must be transported out of the region via urea transporters. 

Arginase hydrolyzes arginine into ornithine and urea, but arginine can also be converted into the 

signaling peptide, nitric oxide, by nitric oxide synthase (NOS), which will be discussed below 

(Figure 5-1).  
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Indeed, recent studies have shown dysregulation of urea cycle metabolites in HD 

patients, both peripherally2-4 and in post-mortem brain samples5. Because of the lack of OTC 

and CPS in brain, one of the main functions of the neuronal urea cycle is the regulation of nitric 

oxide1, which has been shown to be altered in HD1,6,7. An HD mouse model on a high-arginine 

diet exhibits earlier onset of symptoms8 and patients with HD infused with arginine demonstrate 

an abnormal growth hormone response9. These studies suggest neuronal urea cycle 

abnormalities in the presence of mutant HTT, however brain arginases and agmatinases have 

not been examined in HD models (Figure 5-2 A, B).  

 

Figure 5-1. The partial urea cycle as it exists in brain, with related nitric 
oxide and polyamine pathways. Metabolites abbreviated as:  Nitric oxide (NO), 
Citrulline(Cit), Arginine (Arg), Ornithine (Orn), Agmatine (Agm), Putrecine 
(Put), Spermidine (Spmd), Spermine (Spm).   
 

The urea cycle disregulations found in HD patients reveal an excess of neuronal urea 

and deficient ornithine5,10, while a reduction would be expected if deficiency of Mn caused a 

reduction in ARG activity (Figure 5-3).  This contradiction could be explained by an alteration 
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in the ability of urea transporters to remove neuronal urea effectively. Indeed, Solute Carrier 

Family 14 Member 1 (SLC14A1) a gene for a urea transporter is the most overexpressed gene 

in HD post-mortem caudate and cortex11.  In fact, it is possible that excess urea is a signaling 

mechanism to restrict the influx of Mn, and thereby reduce ARG activity.  This issue has not 

been studied. 

 

Figure 5-2. The urea cycle is influenced by Mn, which is an essential cofactor 
for three associated enzymes:  Arginases (ARG), Agmatinases (AGM) and 
Glutamine Synthetase (GS). Arginase pathway related metabolites are 
altered in HD striatum; and Mn exposure ameliorates this phenotype. (A) 
Representation of the urea cycle in WT striatum with the presence of adequate 
Mn (Note: ARG is a homotrimer with 2 Mn ions per monomer, AGM is a 
hexamer composed of dimers, and GS is composed of 8-12 identical subunits, 
each with two Mn ions, though Mg can substitute for Mn in GS).  
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Figure 5-3. In HD, reduced Mn bioavailabilty causes alterations in part of the 
neuronal urea cycle. Representation of the striatal urea cycle in the HD model 
with reduced bioavailable Mn, resulting in increased metabolites (indicated in 
pink).  
 

Agmatine has recently been implicated as a signaling molecule with connections to 

mood disorders, schizophrenia and aging12,13, but agmatinase may not be functional in rodent 

brain, even if it does play a role in human tissue14.  At any rate, it is unlikely that a Mn-

deficiency would affect agmatine levels because the polyamine pathway is so tightly regulated 

(Figure 5-2 and Figure 5-3).  The production and activity of ornithine decarboxylase (ODC) is 

triply controlled: by the polyamines themselves15, as well as by agmatine16, and even more so 

by an antizyme17 (reviewed by Perez-Leal18).  ODC is induced by growth-promoting stimuli 

(insulin, EGF and others) to decarboxylate ornithine to produce putrecine.  The polyamines 

exert a direct translational inhibition on ODC18 and they also induce synthesis of antizyme 
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(through an unusual ribosomal frameshift), which binds to ODC and leads to its proteasomal 

degradation19.  

The location of ARG1 and ARG2 in neurons and brain tissue is disputed, with some 

studies describing ARG1 in brain, and others ARG2 (see Chapter 4 for a full discussion of this 

issue), although many protein antibodies may have cross-reactivity between the two isoforms, 

which share almost 50% homology20.  ARG1 is cytosolic and is a marker for microglial 

activation in many models (though not in mice) and it is found primarily in liver, though it has 

been implicated in the cortical degeneration in Alzheimer’s disease21. ARG2 is mitochondrial, 

and is found primarily in kidney, though ARG2 mRNA expression is upregulated in D2-

containing neurons, which are the first to degenerate in HD22. 

Arginase requires six Mn2+ ions per homotrimer, and except for Co2+, other essential 

metals cannot substitute for the co-factor, as they do for most of the other Mn-dependent 

enzymes. The optimal pH for arginase activity is very alkaline (9.5), with activity dropping 

precipitously as pH drops, causing the enzyme to become relatively inactive at cytosolic pH 

(7.2)23.  

AGMAT is difficult to detect in rodent brain but there is an agmatinase-like protein 

(ALP) that has recently been identified by Uribe, et al24.  ALP is likely to be an isoform of the 

protein LIM and Calponin Homology Domains 1 (LIMCH1)24, which is ubiquitous in brain 

tissue, and may or may not be Mn-dependent25,26. 

We sought to identify whether or not an early, pre-gliostic Mn-deficiency would reduce 

striatal ARG activity, a condition which could lead to much of the degeneration seen in HD 

through the disruption of processes downstream of the neuronal urea pathway.  We used a well-

studied mouse model, the YAC128 to investigate this phenotype in vivo.   To assure that the 
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background of the mouse was not a factor, we replicated all of our experiments in two different 

mouse backgrounds, described in Chapter 4.   

Indeed, the data contained in experiments described in this chapter link the 

bioavailability manganese to the neuropathology of HD. This is the first evidence demonstrating 

that an isolated regional deficit in the bioavailability of an essential nutrient contributes to the 

selective neuropathology of that region; and further suggests the novel idea that Mn-repletion 

may be therapeutic for HD patients.  

Previous studies have shown that the pathogenic mutation in HD is associated with stark 

resistance to Mn accumulation/toxicity and reduced molecular responses to Mn in striatal 

neurons and striatal cell models following Mn exposure (see Chapter 3). With this new work, 

we have sought to understand whether the decreased responsiveness to Mn exposure is a 

consequence of a basal deficit in bioavailable manganese that contributes to HD 

neuropathology. 

Here we report in vivo and ex vivo evidence of a urea cycle metabolic phenotype in a 

prodromal HD mouse model. Further, either in vivo or in vitro Mn supplementation reverses the 

urea-cycle pathology by restoring arginase activity. We show that ARG2 is the arginase enzyme 

present in these mouse brain models, with ARG2 protein levels directly increased by Mn 

exposure. ARG2 protein is not reduced in the prodromal stage, though enzyme activity is 

reduced, indicating that altered Mn bioavailability as a cofactor leads to the deficient enzymatic 

activity. These data support a hypothesis that mutant HTT leads to a selective deficiency of 

neuronal Mn at an early disease stage, contributing to HD striatal urea-cycle pathophysiology 

through an effect on ARG2. 
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This is the first study to uncover altered neuronal manganese biology in the absence of 

an exogenous Mn exposure.  This study further identifies a specific neuropathological feature of 

HD that is reversed by increasing brain Mn levels and directly links this recovery to restoration 

of a Mn-dependent enzymatic activity.  Finally, our findings contribute to an understanding of 

the importance of neuronal metal handling in general, and in particular, as to its effect on the 

arginase pathway/urea cycle in the brain.  

Urea cycle metabolites are increased in HD model striata 
and normalized with Mn exposure. 

 
We measured urea cycle related metabolites in striatal brain tissue via liquid 

chromatography mass spectroscopy (LCMS). We found significantly increased arginine (Arg), 

citrulline (Cit) and ornithine (Orn) levels in vehicle-exposed HD versus WT striatum (Figure 5-

4). All three of these metabolites were normalized in HD striatum by Mn exposure. Mn evoked 

no change in Cit or Orn in WT, but both WT and HD animals had significantly reduced Arg 

with Mn. Metabolites further downstream from arginase, including agmatine (Agm), were not 

affected (Figure 5-5).  We hypothesized that reduced Mn bioavailability in HD striatum 

underlies this metabolic phenotype by restricting arginase activity, and that in vivo exposure of 

the HD mice to its cofactor Mn would restore arginase enzymatic activity.  
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Figure 5-4. Urea cycle metabolites are altered in an HD mouse model and 
normalized following either in vivo Mn exposure or ex vivo Mn 
supplementation.  Metabolites measured by LCMS, striatum, n=6-8. Data 
presented as +sem, *p< .05, **p< .01, ***p< .001, ****p< .0001, post-hoc binary 
comparisons by t-test following a significant (p=< .05) ANOVA. 

 

 
 

Figure 5-5. Arginine (Arg) is the most abundant of the direct urea cycle 
metabolites found in striatum and agmatine (Agm) is the least [citrulline 
(Cit), ornithine (Orn), putrecine (Put)].  Related metabolites, spermidine 
(Spmd), spermine (Spm), though more abundant, were not significantly 
affected by genotype or exposure.  WT, vehicle-exposed, measured by Laser 
Coupled Mass Spectroscopy (LCMS), normalized to homo-agmatine, fmol/ug, 
n=6-8.  Data are presented as means +sem on log2 scale. 
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Striatal arginase enzyme activity is reduced in the HD model mice 

We directly assessed ex vivo arginase activity by customizing an established assay 27 to 

allow measurement of basal arginase activity in mouse striatal tissue extracts in the absence of 

added Mn (See Chapter 4). Basal arginase activity was approximately 10-fold higher in striatal 

extracts than in cortical extracts (Figure 5-6).  Consistent with our hypothesis, basal arginase 

activity was reduced in striatal extracts from HD mice in both FVB/NJ (FVB) and C57BL/6J 

(C57) backgrounds (Figure 5-6 and Figure 5-7A), but not in cortical extracts. The deficit in 

HD striatal arginase activity was rescued by in vivo Mn exposure, which increased enzymatic 

activity in the HD model to levels observed in WT mice (Figure 5-7 A). An inadequate 

bioavailability of Mn in HD striatum likely underlies this enzymatic deficit, as in vitro addition 

of Mn after tissue extraction eliminated the genotype difference in enzyme activity, increasing 

arginase activity in both vehicle and Mn exposed animals (Figure 5-7B, Figure 5-8). 

 

 
 

Figure 5-6.  Arginase enzymatic activity is altered at baseline in HD model 
striatum but is higher in striatum than cortex.  Vehicle-only striatal arginase 
activity (n=6 mice, 2 experiments, C57), and cortical (n=2 experiments, mixed 
C57, FVB, ns). Data presented as +sem, *p< .05, **p< .01, ***p< .001, ****p< 
.0001, post-hoc binary comparisons by t-test following a significant (p=< .05) 
ANOVA. 
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A.                                                             B. 
 

 
 

 
Figure 5-7. Arginase enzyme activity is altered in HD mouse model and 
normalized following either in vivo Mn exposure or ex vivo Mn 
supplementation. (A) Arginase activity, Vehicle (Veh): n=18 mice, 6 
experiments), Mn-exposed: n=12 mice, 4 experiments, FVB. (B) Same samples 
subsequently activated with Mn ex vivo. Data presented as +sem, *p< .05, **p< 
.01, ***p< .001, ****p< .0001, post-hoc binary comparisons by t-test following 
a significant (p=< .05) ANOVA. 

 
 

 

 
 

Figure 5-8. Reduced striatal arginase enzyme activity at baseline is also 
normalized in C57 background following either in vivo Mn exposure or ex 
vivo Mn supplementation. (A) Arginase activity, Vehicle (Veh): n=6 mice, 2 
experiments). (B) Same samples subsequently activated with Mn ex vivo. Data 
presented as +sem, *p<.05, **p<.01, ***p<.001, ****p<.0001, post-hoc binary 
comparisons by t-test following a significant (p=<.05) ANOVA. 
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ARG2 protein increased with Mn exposure, but was not reduced at baseline  

To ascertain whether changes in arginase protein levels contribute to changes in enzyme 

activities at this prodomal stage, we measured striatal ARG1 and ARG2 by western blot. ARG1 

was undetectable in all tested brain tissues, while ARG2 was detected in all but cerebellum 

(Figure 5-9 A-D, Figure 5-11). Striatal ARG2 levels were unaltered in HD mice at this 

prodromal stage; though surprisingly, in vivo Mn exposure increased ARG2 levels in both WT 

and HD mice (~3-fold in striatum) (Figure 5-9, A-D, Figure 5-10, Figure 5-11). Reflecting the 

increased enzyme activity levels, ARG2 protein was much more abundant in striatum than in 

cortex (Figure 5-9, B). The level of ARG2 protein was almost as high in hippocampus as in 

striatum, and ARG2 was significantly increased by Mn exposure across all brain regions where 

it was detected. AGMAT was undetectable in these mouse brain tissues, and LIMCH1 was 

unchanged by Mn-exposure and genotype, corroborating findings on ALP 28 (Figure 5-9 B, C, 

Figure 5-11).  
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Figure 5-9. ARG2 protein levels are similar in brains of HD and WT mice 
and elevated by Mn-exposure; ARG1 is undetectable. (A) ARG2, C57 striatum 
(str). (B) Relative ARG2 protein; WT kidney (Kid), Str, cortex (Ctx), 
hippocampus (Hip), prefrontal cortex (Pfctx), cerebellum (Cer), FVB, n=6-9. 
LIMCH1 protein expression is similar across tissues, though neglible in kidney. 
(C) ARG2 and LIMCH1, FVB. 40mgs each lane. (D) Quantification of 
ARG2/ACTIN, normed to WT Veh, FVB Str n=7, C57 Str n=4. IHC, 
representative striatal images closest to average for genotype. (E) 
Immunohistochemistry (IHC) for ARG2 revealed a substantially increased signal 
in Mn-exposed striatum in both genotypes and a punctate pattern consistent with 
its reported mitochondrial localization in other tissues 29. Data presented as +sem, 
*p< .05, **p< .01, ***p< .001, ****p< .0001, post-hoc binary comparisons by t-
test following a significant (p=< .05) ANOVA. 

. 

 
Figure 5-10. Immunohistochemistry (IHC) for ARG2 revealed a substantially 
increased signal in Mn-exposed striatum in both genotypes and a punctate 
pattern consistent with its reported mitochondrial localization in other 
tissues29,30. 
 



	 200	

 

 
 

Figure 5-11. Neither ARG1 nor ARG2 protein detectable in cerebellum 
(Cer). LIMCH1 detectable in all brain regions tested but protein levels are 
unaffected by genotype or Mn exposure. (A) ARG1 (ab91279) and ARG2 (sc-
20151) in cerebellum. LIMCH1 (Abcam ab96178 at 150kDa).  Striatal tissue used 
as control. (B) LIMCH1 in cortex (Ctx), Pfctx, and hippocampus (Hip), 
40mgs/lane of each tissue, striatal tissue used as control (Abcam ab96178). (C) 
Quantification of LIMCH1 vs. ARG2 in cortex, normalized to Str WT Veh, n=3. 
(D) Quantification of ARG2 protein (sc-20151), FVB kid (n=6, *p=.05), FVB 
pfctx (n=3, ***p=.001), FVB ctx (n=3 *p=.01, #p=.028), FVB hip (n=6, 
*p=.0253, **p=.0013, #p=.0076), representative blots shown in Figure. 5-9 C.  
Ctx and Pfctx protein levels very low relative to Str (see Figure. 5-9 B). Data are 
presented as means +s.e.m post-hoc binary comparisons by t-test following a 
significant (p=<.05). 
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Though ARG2 protein levels were not reduced in the prodromal stage of this YAC128Q 

HD model, ARG2 protein was significantly reduced in another HD mouse model (the R6/2) at a 

more advanced disease stage (Figure 5-12) in both striatum and hippocampus.  LIMCH1 protein 

was unchanged by genotype in these tissues.   

 

Figure 5-12. Model of HD at a symptomatic stage [the R6/2 at 12 weeks31,32] 
exhibits reduced ARG2 protein in striatum and hippocampus, while 
LIMCH1 protein is unchanged by genotype. (A) R6/2 striatum (str) and 
hippocampus (hip), same mice both regions, unexposed, 13 weeks, mixed 
gender, 40mgs, Poly-Q (MAB1574/IC2), ARG2 protein (sc-20151), LIMCH1 
(ab96178). Representative blots. (b) Quantification of ARG2 in samples 
described in (a) normed to ACTIN and FVB-WT-Str-Veh on each blot. Data 
shown as +sem, post-hoc binary comparisons by t-test following a significant 
(p=<.05), **p=<.01, ****p<.0001.  

 

Arg2 mRNA expression did not increase with Mn exposure 

We next explored whether the Mn-induced increase in ARG2 protein levels correlated 

with changes in mRNA by performing QRT-PCR on striatal extracts. There was no increase in 
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striatal Arg2 mRNA expression after Mn exposure in the HD model, and striatal Arg2 mRNA 

decreased following Mn exposure in WT (Figure 5-13 A), suggesting that the reduction in 

enzyme activity, as well as the increase in ARG2 protein after Mn exposure, were due to post-

transcriptional mechanisms. Baseline Limch1 was increased only in the HD model and expression 

levels were unaffected by Mn exposure (Figure 5-13, B).  While both Arg2 and Limch1 were 

detectable in striatum, neither Arg1 nor Agmat were present, although both were expressed in 

liver, (Figure 5-13, C-E).  

 
 

Figure 5-13. Striatal Arg2 mRNA expression is reduced after Mn exposure in 
WT only, while Limch1 is affected by genotype but not treatment, and Arg1 and 
Agmat are undetectable. (A) Striatal Arg2, n=12. (B) Striatal Limch1, n=6. (C) 
Baseline striatal Arg1 (n=6), Arg2 (n=12), Agmat (n=3), Limch1 (n=3).  (D) Liver 
and, (E) Kidney baseline Arg1 (n=6), Arg2 (n=6), Agmat (n=3), Limch1 (n=3).  Data 
presented as +sem, *p< .05, **p< .01, post-hoc binary comparisons by t-test 
following a significant (p=< .05) ANOVA. 
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Discussion 
 

We report a prodromal HD striatal metabolic phenotype due to an apparent deficit in 

striatal Mn bioavailability, an essential cofactor for arginase enzymatic activity. Our data, for 

the first time, directly implicate Mn biology in HD pathogenesis. Though Mn exposure 

mitigated the metabolic alterations in the HD model, a robust homeostatic mechanism in the 

WT appears to tightly regulate the urea cycle in brain, as upregulation of arginase by ~3-fold 

caused a reduction of arginine without significant change in other metabolites (Figure 5-4 and 

Figure 5-5). Given the near absence of ARG1 in striatum at this age in both genotypes, our 

findings strongly suggest that ARG2 is the isoform responsible for striatal arginase enzymatic 

activity deficits in this HD model at this early stage that precedes neuroinflammation 33.  

The difference in arginase enzyme activity between WT and HD at baseline is most 

likely explained by insufficient bioavailable Mn, because supplementation of the extract with 

this co-factor ex vivo equalized activity between genotypes, suggesting a pool of dormant ARG2 

in the mutant.  In contrast, the increase in arginase activity after Mn-exposure in vivo is 

consistent with the increase of ARG2 protein; arginase is known to be stabilized in vitro by 

incorporation of Mn into each homomer.34 Because the striatum exhibited more ARG2 than any 

other brain region, and because striatum normally accumulates Mn preferentially,35 the region 

may be especially vulnerable to Mn deficiency,36 though there is not a detectable difference in 

total striatal Mn levels between WT and YAC128Q at this stage.37 The reduction in arginase 

enzyme activity in this HD model therefore suggests a specific cellular or subcellular deficit in 

Mn bioavailability for this enzyme.  

The substantial technical hurdles to measuring Mn, or Mn-bound proteins, at sub-

regional and sub-cellular resolution limits analysis of brain Mn bioavailability.  Astrocytes have 
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very low Arg2 expression,38 but sequester more Mn than neurons,39 which could cause total 

regional measures of Mn content to be increased with gliosis despite lower neuronal levels. 

ARG1 is primarily cytosolic, while ARG2 is primarily mitochondrial,40 and Mn accumulates 

preferentially in the mitochondria,41 so a change in the subcellular location of either Mn or 

ARG2 could change both enzyme activity and Mn accumulation. Changes in arginase activity 

may be exacerbated at symptomatic stages with further reductions in brain ARG2 protein levels 

in both striatum and hippocampus (Figure 5-12). A recent publication by Langfelder, et al42 

included large data sets of gene expression and protein levels identified in genomics and 

proteomics performed on an allelic series of mice with varying numbers of CAG repeats. 

Examination of these primary data sets with searches on the genes and proteins relevant to our 

work supported our findings, revealing that striatal ARG2 protein was reduced in mouse knock-

in models with reductions inversely correlated to increasing CAG length, while gene expression 

remained unchanged until a more advanced age42 (Figure 5-14, Table 5-1).  In addition the 

stability of LIMCH1 protein in both early stage HD models (Figure 5-11) and late stage 

(Figure 5-13, Figure 5-14, Table 5-1) suggests that the changes to ARG2 are specific.  

Furthermore, Arg2 is among the most abundant transcripts in D2-receptor containing MSNs, 

those most susceptible to HD neuropathology22. 
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Figure 5-14. Analysis of proteomics data from Langfelder, et al42 from later-
stage HD models shows a decrease in ARG2 protein with increasing number of 
CAG repeats.  (A) and (B) Z-score change in protein by CAG repeat length 
compared to 20 CAG repeats, using striatal tissue from 6 month old mice with CAG 
repeats inserted into exon 1 of a human/mouse Htt. (A) Striatal ARG2 and (B) 
Striatal LIMCH1. Table of results and significance for data shown in Table 5-1.  
 
 

Table 5-1. Statistical description for ARG2 and LIMCH1 protein expression, 
striatum, 6 months of age, Langfelder, et al42 

 
 ARG2 LIMCH1 
#CAGs Z-CAGs.v.20 p-value FDR Z-CAGs.v.20 p-value FDR 
80 0.443 0.665 1 -0.611 0.551 1 
92 -2.11 0.0442 0.66 0.414 0.685 0.978 
111 -2.53 0.0166 0.27 1.22 0.237 0.765 
140 -3.19 0.00307 0.0663 0.0559 0.956 0.991 
175 -3.76 0.000612 0.0145 0.497 0.626 0.837 
ContQ -4.34 0.0000301 0.000805 0.672 0.504 0.741 
 

Table of results and significance for data shown in Figure 5-14 (primary 
large dataset from Langfelder, et al.42 reanalyzed for relevant proteins). 
ContQ indicates a differential comparison of Q as a continuous variable, revealing 
an effect of any and all CAG expansions on the tested protein.  FDR refers to the 
calculated false discovery rate. 
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The process by which mutant HTT may cause alteration of Mn homeostasis is unknown.  

Systemic treatment with Mn could cause toxic levels of Mn in regions or cells less affected in 

HD, though delivery of bioavailable Mn to specific cells may be a future treatment strategy. It is 

noteworthy that several Mn-dependent enzymes are mechanistically tied to HD pathobiology 

(e.g. Mre11, Glutamine synthetase, SOD2), and in all cases, observed HD phenotypes are 

consistent with a loss of activity in the Mn-dependent enzyme.39 The findings in the present 

study provide the first direct evidence that a deficiency in bioavailable Mn contributes to HD 

striatal pathology, manifested early as a urea cycle deficit (Figure 5-3). 
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Chapter VI 
 

Mn and HD: Conclusions and Future Directions 
 

Note:  A portion of this chapter has been derived from the following publication: 
 
Bichell TJ, Halbesma T, Tipps KG, Bowman AB. Metal Biology Associated 
with Huntington's Disease. In: White A, Aschner M, Costa L, Bush A, eds. 
Biometals in Neurodegenerative Diseases: Mechanisms and Therapeutics. In 
Press: Elsevier; 2016. 

 
Summary of findings 

 
 The novel findings described in this work add to the field of Huntington’s disease 

research, the field of neurotoxicology, and the study of gene-environment interactions.  The role 

of the HTT protein is vague but pervasive, perhaps involving an overarching function that would 

link the many crucial cellular pathways which are altered in HD, such as autophagy, vesicular 

transport, transcription regulation and metal homeostasis.  The physical structure of the HTT 

protein has only recently been published,1and it makes clear that the polyglutamine expansion on 

the N terminal alters the entire three-dimensional structure. In humans, a relatively small 

increase in CAG repeats, changes the structure enough to cause debilitating functional deficits, 

Our work described in Chapter II, in which we lengthened the mouse polyQ sequence to an 

extreme of 225 repeats without substantially worsening an early-onset phenotype suggests that 

the mouse protein may have a slightly different conformation or function than the human protein, 

as longer sequences quickly become lethal in the human condition.  These findings also suggest 

that the structurally-dependent function of HTT is changed by a lengthened polyglutamine 

sequence, but the toxicity of the mutant protein is not proportional to the size of the repeat.   

 Our separate work, on the Mn-dependent enzyme arginase, provides the first direct link 

between reduced metal accumulation and intracellular neuronal function.  The neurotoxic effects 

of overexposure to heavy metals have been well-studied (See Chapter I), but there was 
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previously no evidence that a mutant gene could decrease metal accumulation in a region-

specific manner which would lead to malfunction in a crucial biological pathway in live animals.  

Previous research in our lab showed that the HD mutation leads to a deficiency of Mn in cell 

culture models,2,3 and our lab had also shown that Mn exposure altered neuronal biology4,5 and 

structure,6,7 but a direct link between Mn-deficiency in vivo and neuronal biology had not been 

demonstrated until now. Our exciting finding, that reductions in arginase activity is present in 

regions with reduced Mn accumulation, and that ARG2 directly increases with Mn exposre, 

suggests that the delivery of Mn to the striatum is a possible treatment strategy for HD,  

 Our work also contributes to the general fund of knowledge about the urea cycle in brain, 

a relatively unexplored pathway. We showed that ARG2 is the arginase present in non-gliotic 

mouse brain, though many previous researchers had thought that ARG1 was the neuronally 

active enzyme.  We also showed that an acute Mn exposure increases ARG2 protein, without 

increasing ARG2 gene transcription, suggesting that the structural stability conferred by the 

metal co-factor could be the rate-limiting factor in the neuronal urea cycle.  Further experiments 

to explore this possibility are described below. 

In summary, our findings include: (1) generation of a novel mouse model of HD with 

characteristics reflecting human juvenile HD, (2) detection of altered urea pathway metabolites 

in HD striatum that are reversed with Mn exposure, (3) demonstration that ARG2, and not 

ARG1, is the arginase isozyme functioning in mouse brain, (4)) optimization of an enzymatic 

assay to measure arginase activity in mouse striatal tissue, (5) detection of a prodromal baseline 

reduction in a Mn-dependent enzyme activity in the striatum of an HD mouse model in two 

different strains that is reversible with Mn exposure, (6) demonstration of a Mn-dependent 
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increase in ARG2 protein, (7) detection of a decrease of both striatal and hippocampal ARG2 

protein in the manifest disease stage of another HD mouse model.   

 The finding that arginase activity is reduced in prodromal HD model mouse striatum at 

baseline (Chapter V) confirms the over-arching hypothesis that Mn-dyshomeostasis in HD leads 

to pathological repercussions.  Though mishandling of Mn had previously been identified in cell 

and mouse models, this is the first confirmation of downstream effects of this phenomenon.  The 

explanation of this HD x Mn interaction effect, may fit into one of the following paradigms: 

A) Striatal Mn dyshomeostasis is one minor result of major alterations caused by mutant 
HTT; 
 

B) Stiatal Mn dyshomeostasis may be one of the major pathways altered by mutant HTT;   

C) Striatal Mn dyshomeostasis is the major pathway impacted by mutant HTT, with all 
other pathologies resulting directly or indirectly from this alteration. 

Our findings on arginase emphasize the importance of identifying which of these 

underlying hypothesis is in place in order to understand and treat HD. Our findings also help to 

explain the basic functioning of metal handling in the neuronal urea pathway, especially the 

unique characteristics of striatal MSNs. Future efforts suggested by this work will focus on the 

(1) mechanism by which mutant HD causes Mn dyshomeostasis, (2) the role of arginase in HD, 

and 3) the response of arginase to Mn concentration and pH.   

Our findings on arginase in HD models leads directly to several lines of new inquiry 

which will help to uncover which of the three major hypotheses above is in force.  Each of these 

potential future directions will be discussed below. 
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Future directions 
 

Hypothesis I. If other Mn-dependent enzymes are also affected in HD, Mn-dyshomeostasis 
might be the central root of HD pathology 

 
Working Hypothesis:  Arginase is just one Mn-dependent enzyme affected by Mn-deficit in 
HD.  Other enzymes which require Mn as a specific cofactor will also have reduced activity in 
HD at baseline.  
 
 If striatally restricted Mn deficit is the root cause of the regional pathology, it will be 

important to test whether other Mn-dependent enzymes are reduced in a regionally dependent 

manner as well.  Current literature would suggest that striatal glutamine synthetase (GS), another 

Mn-dependent enzyme, is not affected.8-10  The resilience of GS in conditions of Mn 

dyshomeostasis may be due to the fact that the enzyme can function with alternative co-factors, 

such as Mg.11  Compensatory mechanisms which arise to allow biologically essential reactions to 

occur may also mask the Mn-related alterations in the activity of other enzymes.  And, tight 

regulation of essential pathways may respond to metal influx, which would explain the fact that 

GS activity decreases over time with chronic Mn exposure.10 One would expect Mn-dependent 

enzymes, such as MRE-11, which are strictly dependent on Mn as a co-factor, would be more 

strongly affected by Mn dyshomeostasis than the more promiscuous enzymes. 

 Our findings on arginase in HD models are novel because we demonstrate an abnormal 

phenotype which is directly related to striatal Mn dyshomeostasis. Furthermore, we pinpointed 

ARG2 as the isoform of arginase in the brain of this mouse model, and showed that arginase 

protein increased with exposure to its co-factor, unrelated to gene expression.  Interestingly, one 

paper has shown the same Mn-induced protein increase phenomenon to occur with GS8, but gene 

expression of GS following Mn exposure was not measured, so it is not clear if this GS increase 

is post-transcriptional. 
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Most importantly, the mechanism behind the Mn mishandling in HD striatal models is 

unexplained.  Direct interference between mutant HTT and Mn transporters, especially if 

relegated to a receptor specific to the D2 containing MSNs, would clearly lead to a striatal Mn 

deficit.  In the future, it will be important to identify the cell type or subregional localization of 

Mn pools under normal and Mn-deficit conditions to assist in pinpointing the mechanism behind 

the HD-related Mn dyshomeostasis, though the methodologies are lacking (Chapter III).  Mn 

dyshomeostasis might be related to the interference of mutant HTT with inter- or intra- cellular 

Mn transporters blocking influx or storage, or increasing efflux, but a Mn-specific mechanism 

has not been shown.  Our finding that arginase protein increases with Mn exposure may provide 

a surrogate Mn sensor in cell types or subcellular compartments where arginase is known to 

localize.  

 Arginase, itself, may serve as a repository of Mn, because the metal is tightly bound to 

the enzyme in a deep cleft,12 a bind which is especially tight at a basic pH.13  ARG2 resides in 

mitochondria14 and the intra-organelle pH of mitochondria is very basic (Figure 6-1).   As pH 

drops, Mn comes unbound from the enzyme,15 and if the mitochondrial pH became unstable, this 

might allow the metal to efflux out of mitochondria.   
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Hypothesis II. If Mutant HTT causes abnormal intracellular pH, this would lead to metal 
mishandling, resulting in many altered pathways 

 
Working Hypothesis A:  HTT regulates ionic channels with regulate intracellular pH, and 
mutant HTT leads to disruption of this system which disrupts multiple enzymatic pathways 

 
Working Hypothesis B:  Mutant HTT causes dysregulation of pH which causes reduced Mn 
binding to ARG2 
 

The involvement of the HTT protein in so many diverse biological functions suggests 

that the wild-type protein serves as an overarching regulator of an aspect of neuronal biology that 

leads to the myriad dysfunctional processes seen in the disease. Maintenance of the acid-base 

balance between cells and within organelles is one such possibility, and an imbalance could lead 

to the dysregulation of metals seen in HD.  Acid-Alkaline gradients drive intracellular metal 

homeostasis in many ways, including regulating the direction of metal transport as well as the 

binding between metal cofactors and their associated enzymes.  Each of the dysregulated metals 

described in Chapter III binds to enzymes that reside in specific organelles and function best 

within a very narrow pH range.  Changes in pH can weaken or strengthen the intra- and 

intermolecular bonds with metal cofactors by changing the conformation of enzymes, thereby 

altering their enzymatic activity.  For example, the ARG2 homotrimer binds tightly to six ions of 

Mn at a pH greater than 8,15 which is the normal pH within mitochondria, where arginase2 is 

stored (Figure 6-1).  As the pH drops, Mn disassociates from the ARG enzyme, reducing its 

activity and destabilizing the protein,16 which could lead to downstream disturbances in both the 

urea cycle and nitric oxide signaling.  

Each subcellular organelle maintains a specific pH, ranging from 4.7 in the lysosome to 8 

in the mitochondria17 (Figure 6-1). 
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Figure 6-1. Each subcellular compartment and organelle maintains a specific 
pH, with mitochondrial matrix being the most alkaline while lysosome being 
most acidic.  Adapted from Casey, et al17.  

 
Benzamil, an amiloride-derivative that blocks epithelial sodium channels (thereby 

stabilizing the cytosolic pH)18 significantly reduces HTT aggregation in vitro and had therapeutic 

effect in live R6/2 model mice.19 Several ion channels known to regulate pH are associated with 

the HTT protein. Chloride Channels (ClC channels) exchange protons for chloride on plasma 

membranes, which have only recently been described in brain.  ClC channels have been recently 

linked to epilepsy20 as well as to Myotonia Congenita, a rare skeletal muscle disease,21,22 and 

they are found to be reduced in HD in skeletal muscle.21 In a mouse model of HD, the CLC-1 

channel has reduced chloride currents in skeletal muscles.23 
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 Another possible HTT interactor that could control pH is the Acid Sensing Ion Channel 

(ASIC1a) is one of the subunits that forms the major acid-sensing calcium channels in neurons.24 

These ASIC channels sense extracellular H+ ions, and maintain intercellular pH by the 

movement of Ca2+ across membranes. Blocking ASIC1a activity with RNA interference, 

prevents intracellular Ca overload and reduces aggregates and pathogenesis.25 

 In yeast, a pH regulator, the Golgi Ca receptor 1-dependent translation factor 1 protein 

(Gdt1) is a suppressor of mutant Htt toxicity,26 suggesting that there may be a connection 

between intracellular pH and HD pathology, though direct links have not yet been found. The 

homolog for Gdt1 is Transmembrane Protein 165 (TMEM165), a novel protein involved in Golgi 

trafficking and pH homeostasis that has very recently been characterized.27  Mutations in 

TMEM165 cause a congenital disorder of glycosylation.  Experiments with the yeast ortholog 

demonstrate that it functions as a Ca2+/H+ antiporter, which regulates both Golgi calcium levels 

and pH.  Mn treatment reverses the glycosylation disorder seen in the presence of high Ca 

concentrations in cells in which TMEM165 is knocked out.  Interestingly, because lysosomal pH 

is altered in patients with TMEM165 mutation,28 the counter ion for Mn2+ entry into the 

lysosome is said to be Ca2+ in yeast and H+ in mammalian cells.27   

It is possible that an abnormal ionic gradient importing Ca2+ into lysosomes could 

potentially drive Mn2+ export. The stability of a protein known as Golgi Phosphoprotein 4 

(GPP130) is directly related to Mn concentration in Golgi,27 i.e. GPP130 degrades in the 

presence of Mn, and is targeted for lysosomal degradation in cultured cells exposed to excess 

Mn2+
,
29 though it has no such reaction when exposed to other transition metals.30 In HeLA cells 

in which TMEM165 has been knocked down with shRNA, GPP130 is insensitive to Mn2+ 
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treatment. Together, these studies indicate that TMEM165, or another pH driver, may be the 

connection between Mn dyshomeostasis and HD pathology. 

 Yet another potential intracellular acid-base driver that may link metal homeostasis to 

HD is the Sodium Proton Exchanger 9 (NHE9) or Solute Carrier Family 9 (SLC9A9).  NHE9 is 

a sodium-proton exchanger localized to recycling endosomes, that has recently been 

characterized as an autism susceptibility gene.31  The function of NHE9 is to alkalinize luminal 

pH, which increases the uptake of transferrin as well as glutamate, and it also stabilizes the 

surface expression of the transferrin receptor.31  It is found in both astrocytes and neurons. 

Interestingly, NHE9 interacts with HIP14 (known to be a metal transporter), as well as Vesicle 

Associated Membrane Protein-7 (VAMP7), two proteins which form complexes with HTT.32  An 

alteration in the function of NHE9 by aberrant interaction with mutant HTT would help to 

explain both the Fe and Mn dyshomeostasis seen in HD. 

 In summary, mutations in HTT may cause alterations in the transporters and channels that 

control acid-base balance by regulating the movement of ions between organelles or cells.  This 

pH dysregulation could have downstream effects on metal homeostasis that would lead to 

enzymatic failure and resultant HD pathology. 

Hypothesis III. Mutant HTT causes inappropriate translocation of ARG2, resulting in 
reduction in Mn bioavailability  

  
Working Hypothesis A:  Mn exposure will cause a translocation of ARG2 from the 
mitochondria to the cytoplasm.   
 
Working Hypothesis B:  Mn deficit will influence ARG2 to remain in mitochondria 
 
Working Hypothesis C: ARG2 is a Mn transporter, or storage compartment, affected by 
mutant HTT 
 

Our findings in the HD models, that baseline striatal arginase activity is reduced and urea 

pathway metabolites are altered, both of which can be reversed with Mn exposure, demonstrate 
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that reduced Mn bioavailability is severe enough to cause biological harm.  It is possible that 

ARG2 itself could serve as a crude sort of Mn transporter.  Sastre, et al33 used a radioactive CO 

trapping system to measure arginase and agmatinase activity in rat brain. They found that 

agmatinase activity was enriched in the synaptosomal-mitochondrial fraction about fourfold over 

that of the whole homogenate. In contrast, arginase activity was mostly enriched in cytoplasm 

and microsomes with lower activities in mitochondrial and synaptosomal fractions.  

A study by Pandey, et al., showed that when aortic epithileal cells in culture are exposed 

to oxidized low-density lipoprotein (OxLDL), which causes oxidative stress, ARG2 moves from 

mitochondria into cytoplasm.14  This intracellular translocation increases ARG2 enzymatic 

activity, which is surprising because the pH of the cytosol (pH7.2) is much lower than 

mitochondria and should reduce ARG activity, but the increase may relate more to the 

availability of arginine as a substrate.  The translocation of ARG2 out of the mitochondria leads 

to reduced NO production (presumably due to reduced available arginine as a substrate for NO) 

and this increases the production of reactive oxygen species. The compartmentalization of 

arginine within cells has been shown not to play a role in NO production,34 but those 

experiments were concentrated on ARG1 rather than ARG2 in fibroblasts, and as such, may not 

be relevant to neurons. The arginine paradox is described as the phenomenon where additional 

L-arginine is required for maximal NO release even when cytosolic concentration of L-arginine 

is well above saturation for NOS.35  This is partially explained by the differing kinetics of the 

two enzymes; the affinity of NOS for arginine is much higher than that of arginase, but the Vmax 

of arginase is much higher than that of NOS, meaning that the two pathways compete for free L-

arginine. Interestingly, Elms, et al., found that arginase activity was much higher in cytosol than 

in mitochondria,34 but Pandey, et al found that enzyme activity was completely inhibited when 
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the mitochondrial transport sequence on the arginase protein was mutated (the mitochondrial 

processing peptidase, or MPP), suggesting that arginiase must be processed in the mitochondria 

even to become active in the cytosol.14 This translocation from mitochondria to cytoplasm may 

also allow for cellular efflux of Mn, as ARG2 could serve as a crude sort of Mn transporter. 

Pandey suggests that Heat Shock Protein 60 (Hsp60), a mitochondrial chaperone protein that has 

been shown to bind to ARG2, may regulate ARG2 folding, as it is also translocated from the 

mitochondria to the cytoplasm with exposure to OxLDL.14  A connection with HD already exists, 

as overexpression of HTT causes Hsp60 to accumulate in mitochondria, and Hsp60 

mitochondrial localization mitigates oxidative stress following rotenone exposure36 and HTT has 

a domain which has been shown to control mitochondrial protein traffic.37  If mutant HTT 

dysregulates the mitochondrial trafficking of arginase, this could lead to the altered arginase 

activity.   

 On the other hand, mutant HTT is known to cause oxidative stress.  If oxidative stress 

causes mitochondria to eject ARG2, a translocation which decouples it from NO production and 

causes further damage from reactive oxygen species, then the HD-related Mn dyshomeostasis 

may be a result of HD mediated oxidative stress, and not the reverse. Pandey et al., noted that 

this type of reverse translocation-based dual targeting of proteins between mitochondria and 

cytosol in response to cellular stress represented a novel mechanism of cellular regulation that 

had not been previously been described in mammalian cells.14 

 To tease out the intracellular location of ARG2, experiments could be designed with 

cultured cells expressing mutant HTT and/or ARG2, exposed to Mn or vehicle and then 

fractionated.  Subcellular fractions could then be measured for ARG2 protein by western blot, 

arginase enzymatic activity by the modified Wynn assay, and Mn content by ICPMS, or graphite 
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furnace.  Animals cross-bred to bear both the YAC128 and a conditional ARG2 knockout (which 

could be activated at weaning to avoid any developmental compensation for lack of embryonic 

ARG2), would be expected to have an HD-like striatal phenotype in the ARG2 knockouts, and a 

worsened HD-like phenotype in the double-mutants. We are currently aging YAC128 animals to 

10 months, which is just past the onset of HD symptoms in this animal, to measure ARG2 

protein.  We would expect to see a reduction in ARG2 protein in the HD model, as we found in 

the R6-2 model at 3 months (Figure 5-12), and in the proteomics data from Langfelder et al.38 

These animals, both the aged YAC128s and potential cross-bred ARG2-/- x YAC128, would be 

invaluable for study of gene and protein expression for other potential Mn transporters as well. 

Hypothesis IV. Mutant HTT causes disregulation of urea transporters,which interferes with 
the neuronal urea cycle, causing arginase dysfunction and Mn mishandling 
 
Working Hypothesis A:  Excess urea is part of a feedback mechanism that causes reduced 
ARG2 activity 

 
Working Hypothesis B:  Excess urea is caused by the influence of mutant HTT on urea 
transporters, reducing their ability to efflux urea from neurons 
 

Our finding, that there was increased ornithine in striatal samples, agrees with the 

findings of Patassini et al.39, seeming to refute our discovery of reduced arginase activity in 

striatum.  A reduction in arginase activity should result in a reduction in both ornithine and urea, 

but an elevation of urea was found in all brain regions studied, obtained from post-mortem HD 

patients.  As the authors suggest, this excess urea could be due to local over-production, or to 

defective urea export, though this has not been measured in prodromal stage patients.  The fact 

that a gene for a urea transporter (SLC14A1) is the most highly expressed gene in HD MSN’s40 

indicates that alterations in the pathways for urea clearance may precede the elevation. It is 

conceivable that a build-up of urea would activate arginase regulatory feedback pathways in 



	 222	

brain, but this has not been studied.  Blocking the urea transporter, and then measuring ARG2 

protein and enzyme activity could help to confirm this mechanism. 

Hypothesis V. Mutant HTT causes disregulation of arginase, which increases HTT 
aggregation 
 
Working Hypothesis A:  Enrichment of ARG2 leads to reduction in aggregates, possibly 
through increased polyamines 

 
Working Hypothesis B:  Mutant HTT is not able to reduce Mn accumulation in CA2 neurons, 
possibly because of unique compensatory transporters 
 

Our conclusion, that ARG2 is the arginase isozyme in mouse brain was drawn from 

mRNA expression as well as protein findings in western blots and immunohistochemistry.  

Collaboration with the Alexander Osmand lab, Department of Biochemistry, University of 

Tennessee, Knoxville, TN began with immunohistochemistry studies of HTT aggregates in our 

BAC225 model and subsequently extended to an assay of aggregates and ARG2 in the Mn-

exposed YAC128 mouse.  These experiments uncovered an unexpected finding in our mouse 

brain slices: a strikingly visible enrichment of ARG2 in the CA2 region of hippocampus (Figure 

6-2 and Figure 6-3).  The CA2 area was first described as distinct from CA1 and CA3 in the 

1940’s by Lorente de Nó, but has been overlooked until recently.41 CA2 neurons have been 

found to fire at high rates to encode location in stationary animals42 and link to both CA1 and 

CA3 regions in a newly identified network.   Recent characterizations of the region show that it 

is crucial for social memory and is uniquely altered in schizophrenia and in age-related dementia, 

and neurodenerative disorders including Lewy body dementia, PD, AD and transmissible 

spongiform encephalopathies.42   
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Figure 6-2. Low power image of ARG2 staining of YAC128-Mn showing 
dense staining of CA2 region of hippocampus and selective staining of cells in 
medial amygdala, ventromedial hypothalamus and retrosplenial cortex.   All 
IHC images stained with sc-20151 as described in methods, Chapter IV. 

 
  

 
 

Figure 6-3. Intermediate power image of ARG2 staining of YAC128-Mn 
showing dense staining of CA2 neurons in hippocampus and of their 
processes extending into the lateral region of the molecular layer  
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There is a clear correlation between the number of Lewy bodies in cortex and 

degeneration of neurites in CA2,43 which is especially interesting given the oppositional metal 

homeostasis between PD and HD.  Expression of hippocampal arginase has not been linked to 

HD, nor to aggregate formation.  Liu et al., plotted the regional localization of arginase, but those 

studies used a protein antibody which may be nonspecific (see discussion in Chapter IV), and 

quantitative analysis in that study merged CA2 and CA3 data together, as most researchers have 

done.44   

 Though the finding of ARG2 enrichment was unexpected, a connection with reduced  

aggregates in the region was even more interesting (Figure 6-4).  This absence of HTT 

aggregates in the CA2 region was noted in four different HD mouse models, though aggregates 

are clearly stained in surrounding regions. 

 
 

Figure 6-4. There is a remarkable lack of aggregates in the CA2 hippocampal 
region of HD mouse models.   
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Surprisingly, neurons in the CA2 region are resistant to long-term potentiation (LTP), 

which requires NO,45 and presumably, an enrichment of ARG2 would result in reduced 

production of NO.  CA2 has been shown to be both resistant to injury and synaptic plasticity,41 

which may partially be due to limited calcium levels and strong calcium buffering capacity in the 

region.46  Interestingly, CA2 neurons are highly enriched for the IGF-1 receptor47 and for IGF-

binding protein48, which may make the region especially sensitive to the beneficial effects of 

IGF-1.   

 Exposure to Mn appeared to increase the ARG2 staining in the CA2 region (Figure 6-5), 

as it did in the striatum (Figure 5-10), more so in HD than in WT in these pilot experiments, 

which remain to be quantified. 

 
 

Figure 6-5. ARG2 is enriched in CA2 and increases with Mn exposure in 
vivo.  CA2 cells and terminals in the hippocampus of Mn-treated YAC128 (top 
row), YAC128 (upper middle row), Mn-treated WT (lower middle row), and WT 
(lower row) mouse brains. Lower density of staining was due to the higher 
number of sections stained in the presence of limiting amounts of primary 
antibody. These images demonstrate a degree of variability within groups while 
showing the high induction of ARG2 staining in the terminal region of Mn-treated 
YAC128. ARG2 1:5,000.  
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 Future work to explore the relationship between ARG2, Mn, mutant HTT and IGF-1 in 

hippocampal CA2 may prove to be very fruitful.  The expression of certain receptors and 

transporters which are unique to CA2 may also provide clues to Mn homeostatic mechanisms.  

For example, TREK1 (also known as KCNK2) is much more abundant in CA2 than in 

surrounding hippocampal regions.49  Interestingly, TREK1 is sensitively influenced by 

temperature and lipids as well as pH,50 which could be an over-arching factor in HD 

neuropathology.   

Hypothesis VI. If mutant HTT causes striatal-specific Mn-dyshomeostasis, then delivery of 
Mn to the region could correct HD neuropathology 

 
Working hypothesis:  Mn-dyshomeostasis in the striatum alone causes most of the 
neuropathology of HD 

 
 As mentioned in Chapter I, one metal-related medication, PBT2, has already moved 

through clinical trials for HD, without significant beneficial effect. The failure of PBT2 Cu 

chelators may have been due in part because these chelators also alter Mn levels, maybe even 

more than Cu levels, in the organ most vulnerable in HD. Moldovan et al., found that Cu 

chelation with cuprizone reduced Cu levels in blood and periphery, but not in brain, though it 

reduced Mn in striatum and cerebellum.51  The balance of metals is exquisitely fine-tuned 

between brain regions, cell types and organelles, so metal-related therapeutic approach to HD 

may need to be designed for regional or even cell-type specific drug delivery. 
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Conclusions 

In summary, our findings, especially those concerning ARG2, directly suggest further 

lines of inquiry to elucidate the role of metals and HTT in neuronal function.  Divalent metal 

cations are involved in almost every aspect of HD on an anatomical and molecular level.  

Exactly how the excesss polyQ sequence on mutant HTT protein causes the derangements seen 

in metal homeostasis is not well understood.  Our findings, together with the previous work from 

our lab showing reduced Mn bioavailability in HD striatal models, demonstrate that there is a 

strong Mn x HD interaction which may help to explain mechanisms of disease as well as point to 

possible treatments.  Mn and other metal dysregulation can explain many, if not all, of the 

pathological effects seen in the presence of mutant HTT. The loss of function of wild-type HTT 

may contribute to some of the metal-related pathological effects, such as autophagosomal 

defects, at the same time that the toxic gain of function of mutant HTT may be contributing to 

the alterations in neuronal ionic channels or metal transporters. Recently, it has been shown that 

senescent fibroblasts in culture show increased Mn2+ uptake and utilization, suggesting that 

aging, even without disease, may require additional Mn, perhaps as a way to increase the activity 

of Mn-dependent enzymes to counteract aging-related increases in oxidative stress.52 

By exploring the experimental directions described above; 1) the effect of Mn-

dyshomeostasis on other enzymatic pathways, 2) the role of HTT in controlling intracellular pH, 

3) the sub-cellular localization of Mn in non-excess conditions, 4) the subcellular translocation of 

ARG2 in differing Mn concentrations, 5) the role of urea transporters in arginase alterations, and 

6) the connection between ARG2, Mn and HTT aggregates in hippocampus, it may be possible 

to elucidate whether Mn-dyshomeostasis is the root cause or the end result of HD pathology. 

There is, as yet, no evidence to show that metal-related treatments or exposures will ameliorate 
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any of the symptoms of HD, however, the gene-environment interaction between mutant HTT 

and Mn uncovered in our work may help to explain the functions of the wild-type protein, and 

point to additional therapeutic targets for HD. 
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Joint HDBuzz Prizewinner: Pennies for your
neurons — copper’s bad influence on
Huntington’s disease

There is copper in your brain! Check out how copper and the
Huntington’s disease protein are partners in crime.
By Terry Jo Bichell on January 30, 2014
Edited by Dr Jeff Carroll

Copper, the metal, may play a role in worsening the symptoms of
Huntington’s disease. Bing Zhou and his team looked for connections
between HD and the amount of copper in neurons. They report that
reducing copper in neurons or keeping it from binding to the HD protein
improves symptoms.

This article was the joint winner of the 2013 HDBuzz Prize for Young
Science Writers. Congratulations to Terry Jo Bichell of Vanderbilt
University on her success.

Copper and HD
It is hard to imagine that a metal would
have anything to do with Huntington’s
disease, but actually every cell in the
brain needs metal to function. Tiny
metal particles, called ions, carry
electrical charges, and electricity is the
currency of neurons. The brain needs
metals like an economy needs money.
And copper, among other metals like
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tell us directly about human
Huntington’s disease

iron and manganese, is saved and
spent differently in Huntington’s
disease brains.

For one thing, copper collects in abnormally high amounts in HD brains,
especially in the striatum, which is the part of the brain that is affected
earliest in HD. Copper also increases aggregates, those globs of protein

that show up in HD and Alzheimer’s disease. In addition, fans of HDBuzz
know about PBT2, a new drug in the early phase of clinical trials as a

treatment for HD. PBT2 acts by keeping copper from sticking to the
huntingtin protein, that is made by the mutant HD gene, and it reduces the
toxic effects of aggregates. A new paper from the team of Bing Xhou, of
Tsinghua University, China, reports on experiments that help explain these
connections between copper and HD.

Copper is an essential nutrient, like other vitamins and minerals, and it is
found in a variety of foods, from oysters to pumpkin seeds. It would be
unhealthy to mess with copper in the human diet, so to study copper in HD,
the researchers used genetically engineered fruit flies.

Why flies?
There are lots of great reasons to use fruit flies for research. Flies eat fly
chow, so it is easy to change the recipe to add ingredients like copper. It is
also faster to alter genes in a fly than in mice. Most importantly, fruit flies
get symptoms similar to those of Huntington’s disease when they have a
mutation in the HD gene. Like people, flies with the HD mutation have
more copper deposits in their heads, and they also develop aggregates in
their brains.

The Zhou team used two different Huntington’s disease model flies to
compare the human and fly HD genes. One of them had its HD gene
replaced with a mutant human HD gene. The other fly had the HD mutation
inserted directly into the fly HD gene. Both of these flies developed
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So it wasn’t the copper
or HD mutation alone
that caused symptoms –
it was both of them
working together!

symptoms of ‘fly HD’, including shorter lifespan and movement difficulties.
These symptoms changed when copper was kept in or out of their
neurons.

Transporter proteins
How does copper get into and out of
neurons? Neurons, like all cells, have
proteins that serve as gatekeepers,
called transporters. Transporters often

act like doormen at a party, allowing
partygoers with the right invitation to
enter, while blocking the door to
everyone else. Transporters can also
kick out unwanted customers. To understand the effect of copper on HD,
the researchers identified one transporter that brings copper into neurons
and another that kicks copper out. Then they used genetic tools like keys
to lock or unlock all the copper entrances and exits, one by one.

When Zhou’s team increased copper inside neurons by locking the exits or
opening more entrances, HD symptoms got worse. When they decreased
the entry transporter, or increased the exit transporter, the symptoms got
better. In other words, boarding up the neuron’s entrances to copper so it
can’t get in, or building extra exits so the copper quickly departs, improved
the symptoms caused by the HD mutation.

How does copper cause problems?
Kicking copper out of the brain sounds like a good way to treat HD, but it is
tricky, because cells need just the right amount of copper to be healthy. In
fact, when the exit transporter was increased, it helped the HD flies with
the human gene live longer, but it also caused them to have more
abnormal movements. There’s no free lunch.
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Perhaps the bad influence of copper on mutant HD has something to do
with aggregates. If you put a bunch of HD protein fragments in a dish and
add copper, they form more of the pesky globs. To investigate the
influence of copper on aggregates in HD, the Zhou team used another fly
with a glowing green protein attached to the HD protein. As these flies age,
there are more glowing green spots visible under a microscope, meaning
that more aggregates are forming. But, when the copper was ushered out
of the neurons (by blocking entrances or increasing exits), fewer
aggregates formed! And when copper was forced to stay inside neurons
(by blocking the exits), aggregates increased.

Partners in crime?
So it seemed like the huntingtin protein might be the actual doorman,
turning the doorknob on the copper entrances and exits. Nope. Nothing
with HD is ever simple, and it turned out Zhou’s team couldn’t find any
evidence that the HD protein directly controlled the copper transporters.
They were never caught physically holding hands, so to speak. On the
other hand, there could be a direct criminal relationship between copper
and the HD protein. Previous research showed that copper binds to two
spots on the first chunk of the HD protein. Suspiciously, that is the same
part of the protein made by the HD mutation.

Perhaps the mutant HD protein needs a copper accomplice to do its dirty
work. To investigate this idea, the authors created yet another fly,
neutralizing the two copper binding sites near the HD mutation. It’s as if
they eliminated copper’s two seats on a plane. Without a place to sit,
copper can’t catch a ride on the HD protein. Sure enough, with the copper
binding sites blocked, the fly lived longer, even with the HD mutation! So,
the point is that it wasn’t the copper alone, nor the HD mutation alone that
caused symptoms – it was the HD mutation and the copper working
together!
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Copper and the mutant huntingtin
protein may act as partners in
crime, this research suggests.

To push this idea to the limit, the Zhou team blocked copper transporters in
the fly with the neutralized copper binding sites. This time, when they
pushed extra copper in or out of
neurons, there was no change in HD
symptoms and no increase in
aggregates. In other words, copper
needs to stick directly to the mutant HD
protein to worsen symptoms.

What does this mean
for patients?
Let’s not forget that this is a study of
flies, not people. This work can’t tell us
directly about Huntington’s disease in
humans. But it can give us clues.

In case you’re wondering whether
Zhou’s report means that people with HD should avoid copper in their
diets, remember that humans need copper to be healthy, so excluding
copper from your diet is not the right thing to do.

What this study suggests is that copper has a bad influence on the HD
mutation. These results help to explain why PBT2 might be a good
medication to test in Huntington’s disease. Maybe other drugs can be
designed to block the copper entrances into neurons, or keep copper and
mutant HD apart.

One key to HD might be made of copper!

The authors have no conflicts of interest to declare.  For more information
about our disclosure policy see our FAQ...

Glossary
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huntingtin protein The protein produced by the HD gene.

aggregate Lumps of protein that form inside cells in Huntington’s

disease and some other degenerative diseases
neuron Brain cells that store and transmit information

© HDBuzz 2011-2015. HDBuzz content is free to share, under a Creative
Commons Attribution-ShareAlike 3.0 Unported License.
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Huntington’s disease research news. In plain language. Written by
scientists. For the global HD community.

A starring role for astrocytes in Huntington's
disease?

Brain cells called astrocytes might play a bigger role than previously
thought in Huntington's disease
By Terry Jo Bichell on July 29, 2014
Edited by Dr Ed Wild

We know those famous cells called neurons are important in Huntington’s
disease. But the brain has other cell types with ‘supporting actor’ roles.
New research has shown that brain cells called astrocytes may misbehave
in HD, allowing the neurons to malfunction.

Not all brain cells are neurons
Neurons are famous. They are the stars of the brain show and get all the
attention. Neurons are known for sending and receiving electrical signals to
each other, and they get all the credit for forming memories and thoughts.
However, like any movie star knows, the academy awards wouldn’t be
possible without a huge number of other players behind the curtains,
working in the costume — makeup and scenery crews, for example.

The types of cells that play the supporting roles in the brain are called glia.

Because glia don’t do fancy electrical tricks, they are not front and center
on stage, but they are the glue that keeps the whole brain working properly.
In fact, the word ‘glia’ actually means glue. The most common kind of glia
is astrocytes, which means ‘star’ cells. They’re called that because they

have a vaguely star-like shape. But, even though astrocytes are so
important to the whole show behind the scenes, it still isn’t clear exactly
what they’re doing to keep things running properly, especially in
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Neurons are the ‘movie star’ cells
of the brain… but let’s not forget

the other brain cells like
astrocytes, that have important

jobs in the background.

Huntington’s disease.

Huntington’s disease
and the striatum
Huntington’s disease particularly
attacks neurons in an area of the brain
called the striatum. That’s a part of the
brain that’s important for movement.
HD causes neurons in the striatum to
gradually wither and then disappear. It
isn’t clear yet how HD does harm to
neurons in the striatum, or why HD
picks on those neurons in particular,
but there are a few signs of trouble
ahead of time. For example, the striatal
neurons with HD act differently than
normal neurons. They’re more
excitable, in an electrical sort of way.
Downright jumpy, in fact.

And, striatal neurons with HD look a little different than expected — they
have tiny blobs in them that can be seen under the microscope. The gene
mutation that causes HD creates a protein that is stickier than the normal
Huntingtin protein, so it clumps together into blobs, called inclusions,

which given the striatal neurons a freckled appearance under a
microscope. So these neurons act slightly different and look slightly
different, even before they start to degenerate.

Studying microglia in HD
A new paper, produced by the teams of Drs. Sorfoniew and Khakh at
University of California Los Angeles, describes experiments which try to
tease out what HD does in astrocytes separately from their accompanying
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neurons. They focused on the astrocytes in the striatum, because of its
known importance in HD.

In a prequel, another group had shown that putting the HD mutation only in
astrocytes, caused them to develop inclusions just like neurons do, even
though glia are a completely different type of cell. Even more surprising,
putting the HD mutation into astrocytes caused neighboring neurons
without the HD mutation to degenerate! This suggested that astrocytes do
something very important to keep nearby neurons alive, even healthy
neurons. Somehow, the HD mutation interfered with the ability of
astrocytes to keep neurons healthy.

In the new paper, Sorfoniew and Khakh used two different mouse models
of HD to explore the astrocyte story. In both of these mouse models, they
found that the HD mutations caused astrocytes to act up, electrically. The
astrocytes got very excitable, in fact, but only in the striatum — not in other
parts of the brain. This was important to the storyline, because it showed
that astrocytes were affected by the HD mutation before they caused the
neurons to die.

Astrocytes, sucking up potassium with Kir4.1
Excitability is good in movie stars, but not so good in the brain. Too much
excitability can actually cause a form of neuronal burnout, which leads to
neuronal death. One thing that makes neurons excitable is too much free-
wheeling potassium. Extra potassium needs to be cleared out from
between the neurons, like smoke in a crowded bar, or it will make the
neurons too excitable.

Astrocytes to the rescue! Astrocytes have a special ‘channel’ protein, a bit
like an exhaust fan, that sucks potassium out of the space between cells.
This channel has the catchy stage-name of Kir4.1. Astrocytes with the HD

mutation have less Kir4.1 than is expected. That means that they can’t

remove extra potassium from between the cells. It is as if the neurons are
partying in a smoky room, and the fan is broken, making the neurons
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The astrocyte protein Kir4.1
functions like an extractor fan,

removing excess potassium from
around neurons and helping

prevent them getting too excited.

gradually sicker and sicker.

Topping up the Kir4.1
The researchers wondered what would
happen if they put more Kir4.1 into the
astrocytes in the striatum. Would it
remove the excess potassium and help
the neurons stay healthy? They found
a way to deliver Kir4.1 into the
astrocytes of living mice. Not to their
neurons, just to their astrocytes. Sure
enough, the exhaust fan function was
restored, and the extra potassium was removed, allowing the neurons in
these mice to calm down and stop being so excitable.

These cellular changes were very promising, but what about the whole
animal? It is important to find out if treating the astrocytes alone would
actually help the HD mice to stay healthier and live longer. After delivering
extra Kir4.1 to the astrocytes, the mice did not seem substantially healthier
in tests of their movement and agility, but they did have a more normal
walking pattern. So, treating astrocytes, the ‘supporting players’, somehow
improved one of the movement symptoms.

Most importantly, the treated mice lived longer. Quite a bit longer. So, even
though their movement symptoms did not substantially improve, treating
the astrocytes helped the mice with HD live longer.

A starring role for astrocytes in HD?
This experiment was really interesting because it showed that astrocytes
might have more of a starring role than previously thought. Maybe,
treatments that are focused on neurons alone may be pointing the camera
in the wrong direction.
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There are a lot of loose ends to the story, so a sequel is expected. This
study did not explain how the HD gene mutation caused problems in the

astrocytes, or how it reduced Kir4.1. It also did not explain how the Kir4.1
treatment helped the mice live longer, despite not improving most of their
movement symptoms. This study used mice with very extreme HD
mutations that might not do the same things that human gene mutations
do. But, what it did was to change the storyline and bring the supporting
actors into the forefront. It moved astrocytes into a starring role. The next
installment will be very interesting.

The authors have no conflicts of interest to declare.  For more information
about our disclosure policy see our FAQ...

Glossary

huntingtin protein The protein produced by the HD gene.

microglia the brain's immune cells

neuron Brain cells that store and transmit information
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Huntington’s disease research news. In plain language. Written by
scientists. For the global HD community.

Taking new targets to the bank: the DNA
repair protein ‘ATM’ is overactive in
Huntington's disease

HD causes the normally helpful protein "ATM" to get a little
overzealous. Now we can look for drugs to settle it down
By Terry Jo Bichell on March 09, 2015
Edited by Dr Tamara Maiuri

A recent study by the Yang lab at UCLA points to a new idea for preventing
damage to neurons in Huntington’s disease. The strategy is to tone down
an overly helpful protein called ATM. Inside neurons, ATM provides a
crucial role in repairing the cell’s infrastructure, somewhat like that of a
bridge inspector, but the expanded HD protein may be causing ATM to
misjudge DNA damage.

Nature’s inspectors, repair team, and
demolition crew
ATM actually has nothing to do with a bank machine. ATM is an
abbreviation for ‘Ataxia Telangiectasia Mutated’ because it is a gene that
can cause a movement disorder called Ataxia Telangiectasia, but it may
also play a role in Huntington’s disease.

The function of ATM in the cell is something like a building inspector. When
bridges get old they often rust, and parts need to be replaced to keep
roads safe. Most bridges are inspected at least once a year by intrepid
engineers with climbing equipment who determine whether or not a bridge
can be repaired, or will need to be condemned.
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Much like bridge inspectors, the
job of the ATM protein is to detect

structural cracks and breaks in
DNA, and decide whether it

should be repaired or
condemned.

Inside our cells, DNA shows wear and tear with age too, developing cracks
and even breaks in the structure. This
DNA damage occurs as part of the
normal aging process, but it is seen
earlier than expected, or more often
than expected, in Huntington’s disease
patients. DNA damage is also seen in
HD cell and animal models.

The job of the ATM protein is to detect
this sort of DNA damage, and then
hang around the damage site, calling in
a team of specialized proteins to do the
repairs. If the damage is too great,
ATM activates a different set of
proteins, a sort of demolition crew,
which condemns and removes the cells
harboring the damaged DNA. It is a
tricky business—an overzealous
inspector could actually condemn a
structure prematurely, while an
unobservant inspector might fail to detect and repair structural damage.

Making the right call
Actual bridge inspectors usually communicate with their teams via walkie-
talkie. In cells, communication is done by fastening chemical tags known
as phosphate groups to the right proteins. ATM calls in the repair team by
‘phosphorylating’ a protein called H2AX. H2AX then settles down at the site
of the structural DNA break and gets the repair started. If the damage is
too far-gone, ATM can phosphorylate a different protein, called p53, which
brings in the demolition crew instead of the repair team. The demolition
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At this point, we don’t
know how the HD
protein causes abnormal
ATM signaling. But
reducing ATM may be a
promising new way to
treat HD, and perhaps to
prevent damage caused
by the HD mutation.

crew shuts down the entire cell in a process called apoptosis, or
programmed cell death. Needless to say, a lot of problems can arise if the
demolition crew is called in by mistake.

The work done in the Yang lab shows that ATM signaling is increased in
Huntington’s disease, and this signaling may be going awry. When cells
with the HD mutation were stressed, they showed more H2AX
phosphorylation, and more cell death than expected. Excess H2AX
phosphorylation was also found in brain tissue from HD patients, especially
the portions of the brain that are known to be vulnerable in HD.

The question is whether extra ATM
signaling in HD is a good thing, or a
bad thing: in vulnerable brain regions,
HD might cause more DNA damage, so
ATM might be doing the right thing by
signaling H2AX to make repairs. On the
other hand, if overzealous ATM
signaling is one of the detrimental
effects caused by the expanded HD
protein, then it could make a good
target for a potential therapy.

Less is more
ATM is essential to normal health—patients with mutations in both copies
of their ATM gene have a serious disorder called Ataxia Telangiectasia.
Yet having only one functional copy of the ATM gene, a half dosage,
doesn’t seem to cause any symptoms at all.

With this in mind, the Yang lab set out to study ATM signaling in several
ways. They started by reducing the amount of ATM produced in HD cells
grown in a dish, and found that blocking ATM signaling actually made the
cells healthier. Somehow, ATM signaling may have been calling in the
demolition team rather than the repair crew in the HD cells.
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While bridge inspectors usually
communicate with their teams via

walkie-talkie, cells coordinate
signals by fastening chemical

tags known as phosphate groups
to the right proteins.

The research team then looked at fruit flies with the HD mutation, which
have trouble with their coordination when climbing up test tubes. They
generated HD flies with a half dose of ATM (only one copy of the fly ATM
gene). These flies were much better climbers than the regular HD flies.

Finally, when the researchers bred ‘half
dosage ATM’ mice with HD mice, they
found the most convincing results of all
—the HD mice appeared healthy! HD
mice with reduced ATM moved better,
showed fewer signs of depression, had
fewer aggregates, and less brain
atrophy than the HD mice with normal
amounts of ATM. In other words,
having half of the normal ATM
prevented some of the problems
caused by HD.

Taking the ATM target to the bank
It is possible to reduce the activity of ATM with a small molecule drug,
called an inhibitor. The researchers put ATM inhibitors on neurons grown in
a dish and they found that it protected the cells from damage done by the
HD protein. This opens the possibility for the development of an ATM
inhibitor medication to treat HD.

At this point, we don’t know how the HD protein causes abnormal ATM
signaling. But two other studies have noticed the same thing, and this type
of independent replication goes a long way to boost our confidence that
we’re on the right track. Together, the results of these studies suggest that
reducing ATM may be a promising new way to treat HD, and perhaps to
prevent damage caused by the HD mutation.

The authors have no conflicts of interest to declare.  For more information
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about our disclosure policy see our FAQ...

Glossary

aggregate Lumps of protein that form inside cells in Huntington’s

disease and some other degenerative diseases
apoptosis A type of cell death where the cell uses specialized signals

to kill itself
neuron Brain cells that store and transmit information
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