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CHAPTER I 

 

I. CHIRAL BRØNSTED BASE-PROMOTED NITROALKANE ALKYLATION: 

ENANTIOSELECTIVE SYNTHESIS OF SEC-ALKYL-3-SUBSTITUTED 

INDOLES
1
 

 

1.1 Current Approaches Toward Indole Products Containing sec-Alkyl-3-

Substitutions 

 

Background and Relevance of Indoles 

Indole and pyrrole containing alkaloids of natural and synthetic origin have 

garnered a significant amount of attention for their value as potential drugs. These 

alkaloids, produced by both terrestrial and marine organisms, are presumed to have 

evolved as defense mechanisms, explaining their high levels of potency and toxicity.
2
 

Over the years, the diversity and potency of these alkaloids have allowed a significant 

number to become viable drug leads.
3
  

The significance of indoles and pyrroles in medicinal chemistry is validated by 

their recurring presence in top-grossing pharmaceuticals (Figure 1).
4
 

 

                                                                                                                                                 
1 Dobish, M. C.; Johnston, J. N. Org. Lett. 2010, 12, 5744-5747. 
2 Fattorusso, E. and Taglialatela-Scafati, O. Eds. Modern Alkaloids. Structure, Isolation, Synthesis and Biology; 

Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008. 
3 Kochanowska-Karamyan, A. J.; Hamann, M. T. Chem. Rev. 2010, 110, 4489-4497. 
4 Midas World Review (TM), January 2009-December 2009, IMS Health Incorporated. 
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Lipitor (1), the top grossing drug for 2007, is a pyrrole containing statin that is used to 

treat high levels of cholesterol. Cialis (2) is an indole-containing drug used to treat 

erectile dysfunction. Maxalt (3) is a selective serotonin reuptake inhibitor (SSRI) that 

treats the symptoms of migraines. Indole and pyrrole moieties are also present in 

compounds that demonstrate antiviral, antimicrobial, calcium releasing, enzyme 

inhibition, and cytotoxic properties, to name but a few.
5
 

Indole-containing compounds can be categorized into two structurally related 

classes based on the substitution at C3: (1) those bearing n-alkyl substitution and (2) 

those bearing sec-alkyl substitution.  

 

The majority of naturally occurring indole alkaloids contain C3 n-alkyl substitution as 

this fits with their proposed biosynthetic origin from tryptophan (Figure 2). For example, 

reserpine (4), isolated in 1952
6
 and synthesized by R. B. Woodward in 1956,

7
 was 

                                                                                                                                                 
5 Gul, W.; Hamann, M. T. Life Sci. 2005, 78, 442-453. 
6 Muller, J. M.; Schlittler, E.; Bein, H. J. Experienlia, 1952, 8, 338. 

Figure 1. Representative Indole- and Pyrrole-Containing Pharmaceuticals in the Top 200 of Sales for the 

Year 2007 
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recognized for treatment of hypertensive, nervous and mental health disorders. In the 

same year, Woodward also reported the total synthesis of lysergic acid (5), an alkaloid 

recognized for centuries to have mind altering properties.
8
 Danishefsky and coworkers 

reported the total synthesis of tryprostatin B (6) in 1996, a compound targeted as a 

potential cell cycle inhibitor.
9
 E. J. Corey reported the total synthesis of bisindole 

okaramine N (7) in 2003, a natural product with unknown biological properties.
10

 This 

list is not all encompassing and only seeks to demonstrate the complexity and utility of 

naturally-occurring indole containing compounds. Interest in the synthesis of indole 

containing compounds continues to grow and is only highlighted in the examples below. 

 

 

                                                                                                                                                 
7 Woodward, R. B.; Bader, F. E.; Bickel, H.; Frey, A. J.; Kierstead, R. W. J. Am. Chem. Soc. 1956, 78, 2023-2025. 

Woodward, R. B.; Bader, F. E.; Bickel, H.; Frey, A. J.; Kierstead, R. W. Tetrahedron 1958, 2, 1-57. 
8 Kornfeld, E. C.; Fornefeld, E. J.; Kline, G. B.; Mann, M. J.; Morrison, D. E.; Jones, R. G.; Woodward, R. B. J. Am. 

Chem. Soc. 1956, 78, 3087-3114. 
9 Depew, K. M.; Danishefsky, S. J.; Rosen, N.; Sepp-Lorenzino, L. J. Am. Chem. Soc. 1996, 118, 12463-12464. 
10 Baran, P. S.; Guerrero, C. A.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 5628-5629. 

Figure 2. Indole Alkaloids with C3 n-Alkyl Substitution 
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More recently, indole alkaloids with C3 sec-alkyl substitution have emerged as 

targets of interest (Figure 3).  

 

 

The gonadotropin releasing hormone (GnRH 1, 8) antagonist developed by Merck
11

 and 

the potent plant-growth inhibitor acremoauxin A (9)
12

 both have a methyl substituent at 

the 3’-carbon. The potent analgesic pemedolac (11) (a close analog of the anti-

inflammatory agent etodolac)
13

 and the large class of synthetically challenging 

                                                                                                                                                 
11 Farr, R. N.; Alabaster, R. J.; Chung, J. Y. L.; Craig, B.; Edwards, J. S.; Gibson, A. W.; Ho, G.-J.; Humphrey, G. 

R.; Johnson, S. A.; Grabowski, E. J. J. Tetrahedron: Asymmetry 2003, 14, 3503-3515. 
12 Richter, J. M.; Whitefield, B. W.; Maimone, T. J.; Lin, D. W.; Castroviejo, M. P.; Baran, P. S. J. Am. Chem. Soc. 

2007, 129, 12857-12869. 
13 Katz, A. H.; Demerson, C. A.; Shaw, C. C.; Asselin, A. A.; Humber, L. G.; Conway, K. M.; Gavin, G.; Guinosso, 

C.; Jensen, N. P. J. Med. Chem. 1988, 31, 1244-1250. 

Figure 3. Representative Indole and Pyrrole Heterocycles Bearing Chiral C3 sec-Alkyl Substitution 
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hapalindoles (10)
14

 are examples of indole alkaloids with more complicated alkyl 

substituents at the 3-carbon of indoles. Previously isolated and synthesized 

spirotryprostatin A & B
9
 lack substitution at the C3’ position; however efforts to exploit 

the antimitotic activity of the spirotryprostatin class of compounds resulted in the 

addition of an aromatic substituent at this position to give potent analogs (12).
15

 

Gelliusines (14), isolated from the marine sponge Orina sp., are another class of natural 

products with a chiral 3’-carbon bearing an aryl substituent.
16

 There are also a number of 

compounds with a pyrrole backbone containing sec-alkyl substitution, for example, the 

antibiotic roseophilin (15)
17

 and the “trimer like” class of myrmicarins (13).
18

  

These high interest natural products are often in low supply and, as a result, 

chemical syntheses are developed to make them available for biological testing and 

derivatization. The synthesis of these complex targets often requires development of new 

methodologies which in turn, opens the door to a never-ending supply of potential 

targets. In spite of the significant number of targets containing indole and pyrrole motifs, 

access to the chiral non-racemic versions is not as well established. 

To synthesize these compounds one can envision disconnection between the C3-

C3’ bond or the C3’-C3” bond (Figure 4). 

 

                                                                                                                                                 
14 Richter, J. M.; Ishihara, Y.; Masuda, T.; Whitefield, B. W.; Llamas, T. s.; Pohjakallio, A.; Baran, P. S. J. Am. 

Chem. Soc. 2008, 130, 17938-17954. 
15 Wang, S.; Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Wang, G.; Qin, D.; Shangary, S.  2006, p 216 pp. 
16 Bifulco, G.; Bruno, I.; Minale, L.; Riccio, R.; Calignano, A.; Debitus, C. c. J. Nat. Prod. 1994, 57, 1294-1299. 
17 Kayakawa, Y.; Kawakami, K.; Seto, H.; Furihata, K. Tetrahedron Lett. 1992, 33, 2701-2704. Fuerstner, A.; 

Weintritt, H. J. Am. Chem. Soc. 1997, 119, 2944-2945. 
18 Schröder, F.; Sinnwell, V.; Baumann, H.; Kaib, M.; Francke, W. Angew. Chem. Int. Ed. 1997, 36, 77-80. 
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In the forward sense, this would represent a new carbon-carbon bond formation between 

either an sp
3 

and sp
2 

center or two sp
3
 centers. In terms of nucleophile and electrophile 

partners, most reactions that have been developed thus far take advantage of either the 

nucleophilicity of the indole at C3 or the electrophilicity of the indole at C3’. Most of the 

reactions that will be discussed can be categorized as such: C3-C3’ bond formation for 

nucleophilic indoles and C3’-C3” for electrophilic indoles.  

Nucleophilic Indoles and C3-C3’ Bond Formation 

Since its discovery in 1877,
19

 the Friedel-Crafts reaction has been one of the most 

extensively studied carbon-carbon bond forming reactions.
20

 Since the first reaction of 

amyl chloride and aluminum was discovered to give n-decane, a variety of nucleophiles 

and electrophiles have been extensively studied and reviewed.
21

 Specifically, our interest 

is in the products that arise from the Friedel-Crafts alkylation between indole and 

nitroalkenes, resulting in substituted tryptamine precursors. 

                                                                                                                                                 
19 Friedel, P.; Crafts, J. M. Compt. Rend. 1877, 84, 1392. 
20 A Sci-Finder search of Friedel-Crafts yields over 18,000 references. 
21 Calloway, N. O. Chem. Rev. 1935, 17, 327-392. Gore, P. H. Chem. Rev. 1955, 55, 229-281. Groves, J. K. Chem. 

Soc. Rev. 1972, 1, 73-97. 

Figure 4. Different Disconnections for the Synthesis of Alkyl Indoles 
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The first known report using nitroalkenes as Michael-acceptors was by Noland in 

1954 (Scheme 1).
22

 

 

 

Treatment of indole with ethyl magnesium iodide to form the indolemagnesium iodide 

species, and subsequent addition to the nitroolefin (17) gave adduct 18 in good yield 

(55%). Using more sterically hindered α,β-disubstituted nitrostyrene also gave the desired 

product, albeit in low yield (16%). Fifty years after this initial report, the Friedel-Crafts 

reaction between indole and nitrostyrene still draws considerable interest, now for its 

asymmetric variant catalyzed by both metal- and organo-catalysts.
23

 

Metal-Catalyzed Friedel-Crafts Reaction between Indole and Nitrostyrene  

A number of Lewis Acid bisoxazoline (BOX) complexes (21-24) have been 

developed to catalyze the enantioselective Friedel-Crafts (FC) reaction of indole and 

nitrostyrene (Figure 5). 

 

                                                                                                                                                 
22 Noland, W. E.; Hartman, P. J. J. Am. Chem. Soc. 1954, 76, 3227-3228. Noland, W. E.; Christensen, G. M.; Sauer, 

G. L.; Dutton, G. G. S. J. Am. Chem. Soc. 1955, 77, 456-457. 
23 Jørgensen, K. A. Synthesis 2003, 1117-1125. Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem. Int. Ed. 

2004, 43, 550-556. Poulsen, T. B.; Jørgensen, K. A. Chem. Rev. 2008, 108, 2903-2915. 

Scheme 1. First Reported Use of Nitrostyrenes as Michael Acceptors 
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In all of the separate reports highlighted above,
24

 a variety of Lewis Acids were screened 

only to reveal that the zinc and copper triflates gave the highest reactivity and selectivity. 

The addition of a wide range of indole nucleophiles to β-substituted styrene was 

performed in good yields with these ligands. A small number of other metal-based 

catalysts (such as SalenAlCl)
25

 have had little success in this reaction. 

Organocatalyzed Friedel-Crafts Reaction between Indole and Nitrostyrene  

In 2005, Ricci and coworkers reported the first enantioselective organocatalytic 

version of this transformation using a chiral thiourea (Scheme 2).
26

  

 

                                                                                                                                                 
24 Jia, Y.-X.; Zhu, S.-F.; Yang, Y.; Zhou, Q.-L. J. Org. Chem. 2005, 71, 75-80. Lu, S.-F.; Du, D.-M.; Xu, J. Org. 

Lett. 2006, 8, 2115-2118. Singh, P. K.; Bisai, A.; Singh, V. K. Tetrahedron Lett. 2007, 48, 1127-1129. Liu, H.; Lu, S.-
F.; Xu, J.; Du, D.-M. Chemistry – An Asian Journal 2008, 3, 1111-1121. 

25 Bandini, M.; Garelli, A.; Rovinetti, M.; Tommasi, S.; Umani-Ronchi, A. Chirality 2005, 17, 522-529. 
26 Herrera, R. P.; Sgarzani, V.; Bernardi, L.; Ricci, A. Angew. Chem. Int. Ed. 2005, 44, 6576-6579. 

Figure 5. Chiral BOX-ligands for the Asymmetric Friedel-Crafts Reaction between Indole and 

Nitrostyrene 
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Thioureas are known for their bifunctional binding of both the nucleophile and 

electrophile, with the nitroalkene binding to the thiourea moiety and the indole binding to 

the alcohol of the catalyst. After a screen of thiourea catalysts, the catalyst derived from 

indanol (27) was found to be the most selective. Reactivity and selectivity increased 

when an electron donating group (MeO-) was placed on the indole ring. The reaction was 

tolerant of other aryl rings as the enantioselection saw little change between substrates. 

Shortly after the work by Ricci, Jørgensen and coworkers reported their 

enantioselective Friedel-Crafts reaction using a chiral diamine catalyst (Scheme 3).
27

 

 

 

Using chiral bis(sulfonamide) stilbene diamine (30) as the catalyst, indole addition to 

nitrostyrene occurred with low enantioselection (15% ee). A methoxy group (R2) on the 

                                                                                                                                                 
27 Jørgensen, K. A. Synthesis 2003, 1117-1125. 

Scheme 2. Chiral Thiourea Catalyzed Addition of Indole to Nitrostyrene 

 

Scheme 3. Chiral Stilbene Diamine Catalyzed Addition of Indole to Nitrostyrene  

 



10 

protected N-methyl indole increased the enantioselection dramatically, but the high ee 

levels obtained by Ricci were not matched.  

The use of chiral phosphoric acids to catalyze the Friedel-Crafts addition to 

nitrostyrenes was first reported in 2008 by Akiyama and coworkers (Scheme 4).
28

 

 

 

High values of enantioselection were reported for a variety of substrates. Most notably, 

aliphatic substituted nitroalkenes also gave good yields and high ee despite longer 

reaction times (10 days). Molecular sieves proved to be essential for conversion in this 

reaction as very little product (5%), though still with good selectivity (75% ee), was 

isolated without sieves.  

In 2008, the Seidel group had a breakthrough and reported on the use of hydrogen 

bonding catalysts for the enantioselective Friedel-Crafts reaction (Scheme 5).
29

 

 

                                                                                                                                                 
28 Itoh, J.; Fuchibe, K.; Akiyama, T. Angew. Chem. Int. Ed. 2008, 47, 4016-4018. 
29 Ganesh, M.; Seidel, D. J. Am. Chem. Soc. 2008, 130, 16464-16465. 

Scheme 4. Chiral Phosphoric Acid Catalyzed Addition of Indole to Nitroalkenes 
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When they used the Ricci thiourea (27), the reaction delivered product that was only 36% 

ee. When the catalyst was protonated with the “BArF acid”, they not only observed 

acceleration in the reaction rate, but an increase in enantioselection. Further catalyst 

development led to the development of 36, which when protonated delivered the standard 

adduct 35 in 92% ee and 94% ee. The reaction scope was extremely broad, tolerating a 

variety of substrates at multiple positions on the indole, as well as different substitutions 

on the nitrostyrene. This reaction is currently the most selective and general for the 

addition of indole to nitrostyrene for all reported organocatalysts. 

Friedel-Crafts Reaction between Indole and α,β-Disubstituted Nitrostyrenes  

Though significant strides have been made in the enantioselective Friedel-Crafts 

reaction of indole and β-nitrostyrenes, the enantioselective variant between indole and 

α,β-disubstituted nitrostyrenes remains unexplored (eq 7). The reported racemic versions 

often require relatively harsh conditions, resulting in chiral racemic material.
30

 

                                                                                                                                                 
30 Gore, P. H. Chem. Rev. 1955, 55, 229-281. Bandini, M.; Melchiorre, P.; Melloni, A.; Umani-Ronchi, A. Synthesis 

2002, 1110-1114. Ballini, R.; Clemente, R. R.; Palmieri, A.; Petrini, M. Adv. Synth. Catal. 2006, 348, 191-196. 

Kusurkar, R.; Alkobati, N.; Gokule, A.; Chaudhari, P.; Waghchaure, P. Synth. Commun. 2006, 36, 1075-1081. Kantam, 

M. L.; Laha, S.; Yadav, J.; Srinivas, P. Synth. Commun. 2009, 39, 4100-4108. Ye, M.-C.; Yang, Y.-Y.; Tang, Y.; Sun, 

X.-L.; Ma, Z.; Qin, W.-M. Synlett 2006, 1240-1244. Habib, P. M.; Kavala, V.; Raju, B. R.; Kuo, C.-W.; Huang, W.-C.; 
Yao, C.-F. Eur. J. Org. Chem. 2009, 4503-4514. 

Scheme 5. Protonated Thioureas as Highly Reactive and Selective Catalysts 
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The use of a second activating group (ester) on the nitroolefin has allowed for the 

synthesis of chiral non-racemic products. The asymmetric Friedel-Crafts reaction 

between indole and nitroacrylates has been successfully executed using a DiPh-BOX(41)-

copper triflate complex (Scheme 6).
31

 

 

 

The reaction occurred diastereoselectively (up to 3:1 favoring the anti-diastereomer) with 

the anti-diastereomer giving the highest values of enantioselection (94% ee). To the best 

of our knowledge, this is the first report of an enantioselective addition to α,β-

disubstituted nitroolefins, while asymmetric versions where the α-substituent is non-

activating (alkyl, etc.) are nonexistent. 

Electrophilic Indole and C3’-C3” Bond Formation 

Carbon-carbon bond formation also occurs when an electrophilic indole moiety is 

reacted with a nucleophile. The key intermediate in this step is the α,β-unsaturated 

indolenine, often formed in situ due to its high reactivity (Scheme 7). 

                                                                                                                                                 
31 Sui, Y.; Liu, L.; Zhao, J.-L.; Wang, D.; Chen, Y.-J. Tetrahedron 2007, 63, 5173-5183. 

 

Scheme 6. Enantioselective Friedel-Crafts Alkylation with α,β-Disubstituted Nitroalkenes 
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Upon treatment of indole 42 with acid or base, elimination of the leaving group reveals 

the indolenine intermediate (43). This highly reactive intermediate can then undergo 

nucleophilic addition to form a highly functionalized indole (44). This sequence has been 

exploited with a variety of leaving groups and electrophiles.  

Gramine as an Indolenine Precursor 

One of the earliest examples of indolenine formation, reported by Snyder in 1944, 

was accessed by forming the quaternary ammonium salts of gramine (Scheme 8).
32

 

 

 

These stable precursors to indolenine are formed by treatment of gramine with methyl 

iodide to give quaternary ammonium salt 46. Subsequent treatment with sodium ethoxide 

and diethyl malonate gave the desired product (47) in high yields. This was demonstrated 

with a variety of malonic ester derivatives as well as indole analogs. The use of gramine 

                                                                                                                                                 
32 Snyder, H. R.; Smith, C. W.; Stewart, J. M. J. Am. Chem. Soc. 1944, 66, 200-204. 

Scheme 7. Nucleophilic Addition to Indolenines 

 

Scheme 8. Gramine as an Indolenine Precursor 
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and other derivatives have been extensively studied and reviewed since this initial 

report.
33

 

A recent example illustrates the use of gramine derivatives in the synthesis of 

highly substituted tryptamine analogs (Scheme 9).
34

 

 

 

Substituted gramine analog (48) was refluxed with aqueous potassium carbonate to form 

the indolenine intermediate (49) in situ with elimination of dimethylamine. Addition of 

various nitroalkanes produced substituted tryptamine precursors (50) in high yields, 

though with limited functionality. 

Arylsulfonyl Indoles as Indolenine Precursors 

Indolenine formation via other leaving groups, such as halogens and alcohols, has 

also been explored. However, our interest is focused on the use of arylsulfonyl indoles as 

stable precursors to indolenines. In 2006, Petrini reported the synthesis and use of 3-

arylsulfonylalkyl indoles as indolenine precursors (Scheme 10).
35

 

 

                                                                                                                                                 
33 Semenov, B. B.; Granik, V. G. Pharm. Chem. J. 2004, 38, 287-310. 
34 Semenov, B. B.; Smushkevich, Y. I. Rus. Chem. Bull. 2002, 51, 185. 
35 Ballini, R.; Palmieri, A.; Petrini, M.; Torregiani, E. Org. Lett. 2006, 8, 4093-4096. 

Scheme 9. Addition of Nitroalkanes to Gramine-derived Indolenine Intermediates 
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They envisioned an in situ acid-catalyzed aldimine formation with loss of the tosyl group 

followed by nucleophilic attack of indole to yield 51. However, the isolated product (52) 

had incorporated the tosyl group instead of the carbamate group. Subsequent addition of 

three equivalents of butyllithium resulted in elimination to form the indolenine (54) and 

butyllithium addition to give 53 in high yield. 

A more direct synthesis of arylsulfonyl indoles was later reported using the desired 

aldehyde and an arylsulfinic acid under catalytic acid conditions (Scheme 11).
36

 

 

 

                                                                                                                                                 
36 Palmieri, A.; Petrini, M. J. Org. Chem. 2007, 72, 1863-1866. 

Scheme 10. Petrini’s Synthesis of Arylsulfonyl Indoles 

 

 

Scheme 11. Modified Synthesis of Arylsulfonyl Indoles 
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Under these conditions, it is hypothesized that the indole adds to the aldehyde to form the 

indolyl alcohol (56), which then eliminates the elements of water to form the indolenine 

intermediate (57). The arylsulfinic acid then traps this intermediate affording the 

arylsulfonyl alkyl indoles (55) in good yields. Alternatively, using a second equivalent of 

indole as the trapping agent yields the bis(indole) compound.
37

  

These arylsulfonyl indoles have been used extensively since the initial reports 

under a variety of reaction conditions.
38

 The reaction with Reformatsky-enolates was one 

of the first applications of these precursors (eq 14).  

 

The α-bromo ester was treated with zinc metal, iodine, and the arylsulfonyl indole, and 

refluxed in THF. One equivalent of the Reformatsky-enolate effects the elimination and 

the second equivalent then adds to the formed indolenine (similar to the alkyl lithium in 

Scheme 10) to give 59 in good yields.  

Shortly after this report, the use of an exogenous base eliminated the need for 

excess nucleophile (Scheme 12).
39

 

 

                                                                                                                                                 
37 Deb, M. L.; Bhuyan, P. J. Tetrahedron Lett. 2006, 47, 1441-1443. 
38 For a review see Palmieri, A.; Petrini, M.; Shaikh, R. R. Org. Biomol. Chem. 2010, 8, 1259-1270. 
39 Ballini, R.; Palmieri, A.; Petrini, M.; Shaikh, R. Adv. Synth. Catal. 2008, 350, 129-134. 
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Initial attempts used sodium hydride (not shown) as the exogenous base, and upon 

heating provided the adducts of type 61 in good yields. However, sodium hydride was not 

compatible with several functional groups so other exogenous bases were examined. 

Examination of potassium fluoride on alumina in methylene chloride at room temperature 

revealed facile elimination to the indolenine and catalyzed addition of the nucleophile. 

Both primary and secondary nitroalkanes, as well as symmetrical and unsymmetrical 

malonate derivatives gave the desired products (61 and 62) in high yields.  

An alternate synthesis of arylsulfonyl alkyl indoles takes advantage of the increased 

acidity of the α-proton of sulfonyl groups. The starting indole (65) is synthesized in three 

steps from 3-methylindole by protection of the indole with a Boc group, bromination and 

nucleophilic attack of the tosylsulfinate (Scheme 13).
40

 

 

                                                                                                                                                 
40 Palmieri, A.; Petrini, M.; Shaikh, R. R. Synlett 2008, 1845,1851. 

Scheme 12. Additions of Nitroalkanes and Malonates 
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The sulfonyl α-proton of indole 65 is then deprotonated using DMAP and quenched with 

an electrophile, providing the protected indole adducts (66) in good yields (Scheme 14). 

Deprotection with TFA and subsequent addition of base and the nucleophile affords the 

desired doubly functionalized indoles (67). This synthetic strategy requires additional 

synthetic operations than the previously discussed conditions (Scheme 11), but is useful 

when the aldehydes are not easily obtained or do not react under the previously discussed 

conditions.  

Scheme 13. Synthesis of Indole Starting Material for Further Functionalization 

 

 

Scheme 14. Double Functionalization of N-Boc Protected Indoles 
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Enantioselective Additions to Indolenines  

One of the first reported instances of indolenine intermediates in asymmetric 

catalysis is the α-alkylation of aldehydes by Petrini and coworkers in 2008 (Scheme 

15).
41

 

 

 

After screening a variety of bases, solvents and catalysts, it was realized that when 

sulfone 68 was stirred with KF on solid supported alumina, L-proline catalyzed addition 

of the aldehyde via an enamine intermediate gave good yields of the desired product (70) 

with high diastereo- and enantioselection. This reaction performed best when the α-

substituent (R1) of the aldehyde was an alkyl chain, R2 was an aryl group and R3 was 

either methyl or phenyl. The steric bulk at the 2-position proved to be important as 

enantioselection was almost nonexistent (11% ee) with no substituent (R3=H). Petrini and 

coworkers established this new reaction with acceptable values of enantioselection and 

reactivity that has since been exploited in other catalytic systems. 

Indolyl alcohols were also utilized in this transformation under acidic conditions 

(Scheme 16).
42

 

 

                                                                                                                                                 
41 Shaikh, R.; Mazzanti, A.; Petrini, M.; Bartoli, G.; Melchiorre, P. Angew. Chem. Int. Ed. 2008, 47, 8707-8710. 
42 Cozzi, P.; Benfatti, F.; Zoli, L. Angew. Chem. Int. Ed. 2009, 48, 1313-1316. 

Scheme 15. Proline-Catalyzed Asymmetric Formal α-Alkylation of Aldehydes  
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Catalyzed by imidazolidinone 73, propionaldehyde (72) was added to arylindole 71 with 

good enantioselectivity and moderate diastereoselection via an enamine addition. The 

acid promoted elimination of water allowed for the indolenine intermediate to form in 

situ without the need of base, allowing for the compatibility of base-labile functionalities 

on the starting indoles. 

Shortly after the report by Petrini, You and coworkers reported additions to these 

highly reactive indolenine intermediates using N-heterocyclic carbene (NHC) catalysis 

(Scheme 17).
43

 

 

                                                                                                                                                 
43 Li, Y.; Shi, F. Q.; He, Q. L.; You, S. L. Org. Lett. 2009, 11, 3182-3185. 

Scheme 16. Imidazolidinone Catalyzed Addition of Aldehydes to Indolenine 

 

Scheme 17. N-Heterocyclic Carbene Catalyzed Additions of Aldehydes to Indolenines 
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The NHC cross-coupling of aryl aldehydes with arylsulfonyl indoles was demonstrated in 

good yields and high tolerance for a variety of sterically and electronically diverse 

substrates in both the R1 and Ar positions. The reaction was not as efficient when either 

the aldehyde or R1 was aliphatic (30-50% yields). Of greater interest is their initial 

exploration into an enantioselective variant. Using NHC catalyst 82, developed by Rovis 

and coworkers,
44

 the reactions proceeded with high enantioselection but suffered from 

low conversion. With a more reactive catalyst, this reaction may prove to be a viable 

method for accessing enantiopure indoles (81).  

Enantioselectivity can also be obtained using a chiral catalyst to bind to the 

electrophile through a catalyst/electrophile complex or chelation. Gong and coworkers 

reported the addition of enamides under chiral Brønsted acidic conditions (Scheme 18).
45

 

 

 

Using chiral phosphoric acid 86, the addition of enamides (84) to indolyl alcohols (83) 

occurred with good enantioselection and yields. Under acidic conditions, the reactive 

indolenine intermediate is formed with the loss of the elements of water. Most variations 

                                                                                                                                                 
44 Kerr, M. S.; Read de Alaniz, J.; Rovis, T. J. Org. Chem. 2005, 70, 5725-5728. 
45 Guo, Q.-X.; Peng, Y.-G.; Zhang, J.-W.; Song, L.; Feng, Z.; Gong, L.-Z. Org. Lett. 2009, 11, 4620-4623. 

Scheme 18. Enantioselective Alkylation Reaction of Enamides by Chiral Phosphoric Acid Catalysis 
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at R1, R2, and R3 were well tolerated with the exception of an aliphatic group at R3 (no 

desired product was observed). This could be the result of the aliphatic group’s inability 

to stabilize the carbocation proposed in the transition state (TS-1). 

 

The authors propose two transition states or possible modes of binding for the catalyst, 

accounting for either a stabilized benzylic cation (TS-1) or an α,β-unsaturated indolenine 

intermediate (TS-2). Both transition states allow for a chiral ion pair to form acting as the 

point of chiral induction. 

In 2010, Zhou and coworkers reported the first use of a chiral Brønsted-base 

catalyst to promote addition to the highly reactive indolenine intermediate (Scheme 19).
46

 

 

 

The addition of malononitrile proceeded with chiral thiourea 89 (10 mol %) and 

potassium phosphate in good enantioselection for a variety of aryl indole derivatives. 

Enantioselection was also observed for benzyl and tert-butyl analogs (R position), while 

                                                                                                                                                 
46 Jing, L.; Wei, J.; Zhou, L.; Huang, Z.; Li, Z.; Wu, D.; Xiang, H.; Zhou, X. Chem.—Eur. J. 2010, 16, 10955-10958. 

 

 

Scheme 19. Chiral Brønsted-Base Catalyzed Addition of Malononitriles 
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no n-alkyl derivatives were reported. Further variations in the nucleophile and 2-position 

were not explored. The presence of the indole 2-methyl might be important for 

enantioselection because of the influence of steric bulk on the double bond configuration, 

as seen in the proposed binding model with the E-configured double bond. 

 

If the methyl group is not present, the double bond may be present as both E- and 

Z-isomers, thereby decreasing the enantioselection. Despite the limited substrate scope, 

this marked the first report of Brønsted base catalyzed enantioselective addition of 

malononitrile and has further opened avenues to other asymmetric transformations. 
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1.2 Chiral Bisamidine-Promoted Nitroalkane Alkylations 

 

Previous Work in BAM Catalyzed Additions 

Our group has achieved success in the highly enantioselective, Bis(AMidine) 

(BAM) catalyzed addition of nitroalkanes to imine analogs (Scheme 20). 

 

 

Scheme 20. Enantioselective aza-Henry Additions Using BAM Catalysis 
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High selectivity has been observed with a variety of nitroalkanes containing different 

substitutions.
47,48,49,50,51,52

 More notably, an increase in reactivity has also been realized 

from the first generation catalyst 
4
H,QuinBAM (92)

47
 to a more Brønsted basic catalyst 

H,
4
PyrrolidineQuin-BAM (PBAM, 100)

52
 allowing for additions of simple nitroalkanes 

in stoichiometric amounts in contrast to the large excess originally needed. The increased 

reactivity of this catalyst has encouraged us to investigate other combinations of 

electrophiles and nucleophiles.  

Preliminary Results from Bisamidine Catalyzed Additions 

Shortly after Petrini reported the L-proline catalyzed alkylation of aldehydes, we 

began our work on the enantioselective addition of nitroalkanes to indolenine 

intermediates using our BAM catalysts (Figure 6).  

 

                                                                                                                                                 
47 Nugent, B. M.; Yoder, R. A.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 3418-3419. 
48 Singh, A.; Yoder, R. A.; Shen, B.; Johnston, J. N. J. Am. Chem. Soc. 2007, 129, 3466-3467. 
49 Shen, B.; Johnston, J. N. Org. Lett. 2008, 10, 4397-4400. 
50 Singh, A.; Johnston, J. N. J. Am. Chem. Soc. 2008, 130, 5866-5867. 
51 Wilt, J. C.; Pink, M.; Johnston, J. N. Chem. Commun. 2008, 4177-4179. 
52 Davis, T. A.; Wilt, J. C.; Johnston, J. N. J. Am. Chem. Soc. 2010, 132, 2880-2882. 
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We hypothesized that we could selectively add nitroalkanes in a 1,4-manner if our 

catalyst provided a chiral proton binding element to the indolenine intermediate. All 

previous works utilize BAM catalysts for 1,2-additions of nitroalkanes to N-Boc aryl 

aldimines, so expected an amount of optimization to be required. 

In order to gauge selectivity in the 1,4-additions to indolenines, we initially used 

the Petrini protocol for a direct comparison (Table 1).
41

 

 

Figure 6. Previously Reported BAM Reactivity and Desired Additions of Phenylnitromethane to 

Indolenine Intermediates 
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Before the selectivity of the BAM catalysts was examined, the racemic adducts were 

formed using DMAP, an achiral catalyst deemed similar to PBAM in terms of reactivity. 

Using nitromethane and phenylnitromethane, progress of the reaction was monitored 

after stirring overnight, and phenylnitromethane gave full conversion to indole 102 

(Table 1, entry 2) while nitromethane gave low conversion (Table 1, entry 1). Thus 

phenylnitromethane was used as the nucleophile of choice for reaction optimization using 

PBAM as the chiral Brønsted base. Phenylnitromethane added to indole 101 and gave the 

desired adduct in 20% ee (Table 1, entry 3). In order to increase selectivity, the reaction 

was run under cryogenic conditions. However, the conversion and enantioselection of the 

product dropped dramatically (Table 1, entry 4).  

The enantioselectivity (20% ee) observed at room temperature was low but 

encouraging as this is the first enantioselective 1,4-addition of nitroalkanes using a BAM 

catalyst. Additionally, this is the first successful use of a substrate lacking an N-Boc 

protecting group for this class of catalysts. The ee was believed to be tunable so we 

sought other means of increasing the enantioselection (Table 2).  

Table 1. Reaction Optimization from Petrini’s Protocol 
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Previously reported BAM catalyzed additions demonstrated higher enantioselection in 

toluene. We were pleased to see that this reaction was no different as switching the 

solvent to toluene resulted in a large increase in enantioselection, from 20% to 60% 

(Table 2, entry 1). The reaction was subjected to cryogenic conditions again, but as 

observed previously, the enantioselectivity dropped (Table 2, entries 2-4). The poor 

selectivity at low temperatures is believed to be due to the sluggish elimination step (to 

be discussed in detail later in the chapter). Decreasing the equivalents of base gave 

decreased enantioselection (Table 2, entry 5). In order to evaluate the background rate, 

the reaction was run with PBAM but no exogenous base (Table 2, entry 6). Clearly a full 

equivalent of base is necessary to effect the elimination of the tosyl group, as is 

evidenced by poor conversion of starting material. When the reaction was performed with 

Table 2. Further Reaction Optimization 
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only KF/Al (Table 2, entry 7) it was realized that KF/Al promoted the elimination as well 

as the nucleophilic addition. This high background rate would explain the lower 

enantioselection. As a result, a less reactive inorganic base was sought. Potassium 

carbonate was chosen and demonstrated lower conversion to product when used as the 

sole source of base in the reaction (Table 2, entry 8). An increase in ee was observed 

when using potassium carbonate and PBAM in the reaction (Table 2, entry 9). When the 

reaction was run under more dilute conditions (0.1 M) we saw a further increase in ee to 

78% (Table 2, entry 10). The diastereoselection remained constant throughout reaction 

optimization (<1.5:1). Traditional efforts to increase the diastereoselection were 

unsuccessful and will be revisited in future work. 

Reaction Optimization 

With the optimal concentration and a satisfactory base in hand the effect of the 

nucleophile stoichiometry was examined (Table 3). 

 

 

Table 3. Investigations into the Equivalents of Phenylnitromethane 
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A clear trend was observed with decreasing amounts of nucleophile (Table 3, entries 1-

7). This showed that excess nucleophile has a negative effect on the enantioselection. 

This may be a reflection of the ratio of catalyst to nucleophile. At higher equivalents 

(Table 3, entries 1-2) the catalyst may be saturated with nucleophile resulting in increased 

addition catalyzed by the achiral exogenous base through a non-selective pathway. 

Therefore, aliquot addition of the nucleophile was performed (Table 3, entry 8) and found 

to increase the ee slightly. Since the ee was not as high as using only 0.5 equiv (Table 3, 

entry 6), this suggests that the active catalyst may be more complex than just the nitronate 

salt.  

Though toluene has thus far proved to be the most effective solvent in BAM 

catalyzed reactions, a thorough solvent screen was conducted (Table 4). 

 

 

Table 4. Phenylnitromethane Addition: Solvent Screen 
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A variety of aromatic solvents were examined (Table 4, entries 2-7) and found to give 

similar enantioselectivities to toluene. Chlorohydrocarbons (Table 4, entries 8-9) gave 

significantly different values of enantioselection, with carbon tetrachloride giving results 

similar to toluene. Acyclic and cyclic ethers gave lower enantioselection (Table 4, entries 

11-13) with THF giving the lowest at 18% ee. The more polar solvents gave essentially 

no enantioselection (Table 4, entries 15-17). 

 

 

A base screen demonstrated that potassium carbonate was still the best inorganic 

base in this reaction (Table 5, entry 1). KF and KF/Al performed similarly (Table 5, 

entries 2-3) while the presence of molecular sieves with potassium carbonate led to a 

decrease in enantioselection (Table 5, entry 4). Sodium bicarbonate (Table 5, entry 7) and 

sodium hydroxide (Table 5, entry 8) gave low conversion. 

Table 5. Phenylnitromethane Addition: Exogenous Base Screen 
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Reaction Optimization: Catalyst Screen 

Having determined the optimal stoichiometry (one equivalent of 

phenylnitromethane), concentration (0.1 M), solvent (toluene) and base (potassium 

carbonate), a plethora of BAM catalysts from our library were screened (Table 6). 

 

 

The first generation catalyst H,QuinBAM (92) catalyzed the addition with good 

enantioselectivity (56% ee) (Table 6, entry 1). We were surprised to see this as 

H,QuinBAM has been deemed significantly less basic than PBAM. The unsymmetrical 

version of H,QuinBAM (105, H,
2
Quin(

3
Quin)BAM) and the sterically hindered 

BenzoQuinBAM (Table 6, entries 2-3) gave no enantioselectivity. The slightly more 

basic 
4
MeO-BAM (104) gave increased enantioselection, but did not reach the levels of 

Table 6. Catalyst Screen: H,QuinBAM analogs 
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the most basic catalyst PBAM (81% ee). This suggested that increases in catalyst basicity 

increase the enantioselection (Table 6, entry 4).  

 

 

The unsymmetrical BAM catalysts with bulky substituents on the 6-position of the 

pyridine (Table 7) have performed very well in other additions,
48,49,50

 but performed 

poorly in this reaction. This is postulated to be due to the steric congestion in the binding 

pocket.  

The absolute stereochemistry of the addition products was determined to be of the 

(S)-configuration by chemical correlation (debromination of 138e).
53

 The hypothesized 

                                                                                                                                                 
53 Debromination of the bromonitromethane adduct was used to match known compound: ref. 26 

Table 7. Catalyst Screen: Unsymmetrical PBAM Derivatives 
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catalyst binding model (Figure 7) is based on previous models of BAM catalysts and 

imine electrophiles, and accounts for the absolute stereochemistry of the products.
54

 

 

 

We propose that the electrophile is oriented so that the indole nitrogen is interacting with 

the chiral proton and the rest of the indole rising out of the pocket. The quinoline ring 

system of the catalyst would then block attack from the Si face. Due to the additional 

distance between the 1,4-addition site and the chiral pocket (compared to 1,2-addition for 

an imine), catalysts with more steric influence (extension of quinoline ring versus pocket 

sterics [Table 7]) were tested in an attempt to further block nucleophilic attack to the Si 

face (Table 8).  

 

                                                                                                                                                 
54 Singh, A.; Johnston, J. N. unpublished results 

Figure 7. Proposed Catalyst Binding Model 
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Extending the length of the quinoline ring was found to have little effect on ee. Bulky 

alkyl substituents at the 7 position of the quinoline ring (Table 8, entries 2-3) gave 

slightly lower ee than the methyl group (Table 8, entry 1). An electron donating 

substituent at the 7 position (Table 8, entry 4) gave lower enantioselection than an 

electron donating substituent at the 8-position (Table 8, entry 5). The influence of 

substituents at the 8-position is being investigated further. Results in the addition of aryl 

nitroalkanes to N-Boc aryl aldimines show an increase in ee, compared to PBAM, when 

substitution is at the 8-position.
55

 When the catalyst backbone was changed from 

cyclohexyl diamine to stilbene diamine (StilbPBAM), the enantioselection dropped 

(Table 8, entry 6). Since the reactivity was the same as PBAM, this drop in 

enantioselection could be a direct result of a smaller, more hindered pocket.
56

  

                                                                                                                                                 
55 Davis, T. A.; Johnston, J. N. Chemical Science 2011, 2, 1076-1079. Davis, T. A.; Vara, B. A.; Johnston, J. N. 

unpublished results. 
56 Kim, H.; Yen, C.; Preston, P.; Chin, J. Org. Lett. 2006, 8, 5239-5242. 

Table 8. Catalyst Screen: Steric Analogs of PBAM 
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BAM catalysts have demonstrated similar reactivity and selectivity to the class of 

chiral thiourea catalysts (Scheme 21).  

 

 

Using the Takemoto catalyst (116, eq 32)
57

 and the Deng catalyst (117, eq 33),
58

 good 

enantioselection was observed. The Takemoto thiourea gave the desired adduct in up to 

67% ee and Deng’s cinchonidine-based thiourea gave the product in up to 84% ee. This is 

the first time that a significant difference in enantioselection was observed between the 

major and minor diastereomers.  

Encouraged by the comparable enantioselection to PBAM, the BAM thiourea 

analogs were synthesized (Scheme 22). 

 

                                                                                                                                                 
57 Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672-12673. 
58 Li, H.; Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004, 126, 9906-9907. 

Scheme 21. Catalyst Screen: Thiourea Catalysts 
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The quinoline rings were coupled to the trans-(R,R)-cyclohexyl-diamine under 

Buchwald-Hartwig type conditions. This occurred in low yields (33-34%) due to the 

formation of a significant amount of the bis-coupled diamine. In future reactions, this can 

be avoided using a mono-protected amine, followed by coupling and deprotection. With 

the mono-coupled diamine in hand, the free amine was treated with one equivalent of the 

isothiocyanate 119 at room temperature. Both desired catalysts (120 and 122) were 

isolated in acceptable yields (53-80%) and were used in the addition of 

phenylnitromethane to indole (Scheme 23). 

 

Scheme 22. Synthesis of UreaBAM Analogs 
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Treatment of indole 101 with the modified Takemoto catalyst resulted in an increase in 

the enantioselection by about 20%. More interestingly, the enantioselection was inverted 

from the Takemoto catalyst, even though the diamine backbone remained the same, 

suggesting a significant change in binding between the catalysts. Adding a methoxy 

group to the quinoline ring (catalyst 122) to increase the Brønsted basicity of the catalyst 

resulted in very small changes in enantioselection, inferring that the amidine participates 

less in the binding than the thiourea moiety (a steric over electronic influence). Despite 

the small increase in enantioselection of the UreaBAM catalysts compared to the known 

catalysts, the average for both diastereomers (78% ee) was still lower than the average for 

PBAM (81% ee), therefore the thioureas were not pursued further.  

Reaction Scope: Electrophile Screen 

With highly optimized reaction conditions, a screen of both electronically and 

sterically diverse electrophiles was completed. Previous indole electrophiles utilized in 

similar reactions were simple arylsulfonyl indoles. To increase diversity, a larger variety 

of electrophiles was synthesized using an adaptation of the Petrini protocol (Scheme 24). 

 

Scheme 23. Catalyst Screen: UreaBAM Analogs  
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The aldehydes were reacted with methyl indole to give a variety of electrophiles [ortho-

substitution (125), methyl ester (127), pyrroles (130)] isolated in moderate (30%) to good 

(80%) yields. The arylsulfonyl group was also moved to the 2-position, though the 

product (132) was isolated in low yield (20%). With these new substrates in hand, a 

thorough electrophile screen commenced (Table 9). 

 

Scheme 24. Synthesis of a Larger Variety of Electrophiles 
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The first array of substrates examined contained additional functionality on the phenyl 

ring at the indole C3’ position. The reaction exhibits good tolerance for both electron 

donating and electron withdrawing groups (Table 9, entries 2-4). An ortho-tolyl results in 

a drop in reactivity and requires longer reaction times, but the ee is mostly conserved 

(Table 9, entry 5). Substituting the phenyl ring at C3’ with alkyl chains returns the 

product with good ee (Table 9, entry 7), unlike substitution with a methyl group (Table 9, 

entry 8). In an attempt to increase the dr by using an ester as a directing group for the 

nitronate, the methyl ester indole was subjected to the reaction conditions (Table 9, entry 

9) and gave good enantioselection with modest dr (3:1). A bulkier ester group was also 

used, but resulted in similar values of enantioselection and diastereoselection (Table 9, 

entry 10).  

Table 9. Reaction Scope: Initial Electrophile Screen 
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Trying to establish the influence of the indole ring, the next screen varied the 

substrate at the 2-position of the indole (Table 10). 

 

 

When the methyl group of the indole was replaced with a hydrogen (Table 10, entry 1), 

the enantioselection dropped significantly, suggesting the need for a steric influence at 

the C2 carbon, possibly influencing the E/Z ratio of the indolenine. This same trend was 

also seen in the initial work by Petrini and coworkers (Scheme 15) and was reaffirmed 

when a phenyl ring was placed at the C2 (Table 10, entry 2). Hoping to combine the high 

enantioselectivity of the aromatic indole substrates and the good diastereoselection in the 

ester substrates (3:1 dr, Table 9, entries 9-10), an ester was placed at the C2 position 

(Table 10, entry 3). Unfortunately, even after stirring the reaction for days, very little 

conversion to product was observed suggesting that electron withdrawing groups at the 

C2 are detrimental to the reactivity and selectivity. In order to set up the indole product 

for a Hiyama coupling, a TMS group was placed at the 2-position of the indole but did 

Table 10. Reaction Scope: Variations at the Indole 2-Position 
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not yield any product (Table 10, entry 4). Attempts to investigate the effect of a halogen 

or a boronic acid at the 2-position failed because of the inability to prepare the starting 

arylsulfonyl indole.  

To probe the reaction mechanism and catalyst binding, the N-Boc protected indole 

was synthesized. If the reaction occurred with enantioselection, then the proposed 

binding model of the chiral proton would have to be reexamined (Figure 7). However, 

when the indole was N-Boc protected, no reaction was seen, even after prolonged 

reaction times and heating (Table 10, entry 5). Evidently, the N-Boc indole was 

nucleophilic enough to form the starting arylsulfonyl indole (133o), but not nucleophilic 

enough to eliminate the sulfinate group. A final variation of the indole electrophile was 

envisioned by changing the C3 and C2 substituents (134p).  

 

As seen in the figure above, switching the indole substituents would hypothetically 

bring the reaction site closer to the bound catalyst, and thereby increase ee and possibly 

influence dr, by formally making it a 1,3-addition (135). However, attempts to perform 

this reaction in multiple solvents with a variety of bases under prolonged reaction time 

and heat only returned starting material. Finally, removal of the indole aromatic ring to 

leave a pyrrole analog (Table 10, entry 7) still allowed formation of the adduct with good 

enantioselection (72% ee). 
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Reaction Scope: Nucleophile Screen 

BAM catalyzed reactions have historically performed well when the pronucleophile 

was either a simple or modified nitroalkane. This observation was thoroughly examined 

in this new reaction (Table 11). 

 

 

A variety of aryl nitroalkanes were tested after substantial success with 

phenylnitromethane. An electron rich substituent on the phenyl ring (Table 11, entry 2) 

increased the enantioselection, though a slight drop in conversion and yield was 

observed. A strong electron withdrawing substituent on the phenyl ring resulted in a 

drastic drop in enantioselection (Table 11, entry 3). This is presumably due to the 

increased acidity of the α-proton, allowing for the achiral exogenous base to catalyze the 

reaction, rather than PBAM. Nitromethane performed very poorly (14% ee) while 

Table 11. Nucleophile Screen 
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nitroethane only saw a small drop in ee from the aryl analogs (Table 11, entry 5). When 

bromonitromethane was used in the reaction (Table 11, entry 6), the desired product was 

isolated along with the debrominated product, with equal values of enantioselection 

(50% ee). 

 

This was our first opportunity to confirm that the products were indeed homochiral at the 

benzylic carbon, as both diastereomers converged to one enantiomer (138c), as observed 

in equation 44. If the stereocenter was set at the α-nitro carbon, loss of bromine should 

return product that was 1:1 in diastereomers to start, with 0% ee (eq 45). Lastly, both α-

nitro esters and malonates (Table 11, entries 7-8) exhibited poor reactivity and low 

enantioselection.  

After a significant amount of optimization and a thorough nucleophile/electrophile 

screen was completed, further efforts to increase enantioselection were initiated by 

examining the proposed mechanism.  
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Mechanistic Studies and the Development of New Reaction Protocol 

When traditional efforts (solvent, base, catalyst, temperature, etc.) to increase 

enantioselection were exhausted, the proposed mechanism (Figure 8) was reexamined for 

other routes to increase selectivity. 

 

 

Both PBAM and potassium carbonate are capable of catalyzing the elimination of the 

sulfonyl group (Table 2, entries 6,8). However, we believe that PBAM catalyzes the 

elimination at a faster rate to give the indolenine intermediate, even though there is a 

significant excess of potassium carbonate relative to the catalytic amount of PBAM. 

Following nucleophile formation (base deprotonation to the nitronate), the addition 

occurs in either the presence of a chiral complex such as 142, or an achiral complex such 

as 144. When the amount of product that is formed via PBAM catalyzed addition 

(complex 142) increases, so does the enantioselection. We also recognize that the active 

Figure 8. Proposed Mechanism by Chiral and Achiral Routes 
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catalyst may be PBAM with another counter ion, such as sulfinate. Modifications that 

could influence this shift of selectivity were then investigated. 

Influence of Water in the Reaction 

During the solvent screen, it was determined that the reaction was capable of 

happening in, or “on water”,
59

 with no selectivity (Table 4, entry 17). However, when 

water was used as a cosolvent with toluene, very encouraging results were observed (eq 

46). 

 

A large increase in yield (from 83% to 96%) and moderate increase in enantioselection 

(from 81% ee to 86% ee) was observed in the test reaction with water as a cosolvent. We 

then further optimized the reaction with water as a cosolvent (Table 12). 

 

                                                                                                                                                 
59 Guo, C.; Song, J.; Luo, S.-W.; Gong, L.-Z. Angew. Chem. Int. Ed., 49, 5558-5562. Hayashi, Y. Angew. Chem. Int. 

Ed. 2006, 45, 8103-8104. Woodward, R. B.; Cava, M. P.; Ollis, W. D.; Hunger, A.; Daeniker, H. U.; Schenker, K. 
Tetrahedron 1963, 19, 247-288. 
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A decrease in enantioselection was observed when the amount of water was decreased 

(Table 12, entry 2), and a plateau was reached at 0.5 mL (0.2 M) of water (Table 12, 

entry 3). Small changes were also observed when the amount of toluene was increased 

and decreased (Table 12, entries 4-5). Other carbonate bases performed similarly when 

solubilized by water (Table 12, entries 6-7), a change from previously run anhydrous 

reaction conditions. The other bases tested performed poorly (Table 12, entries 8-9).  

The increase in yield is believed to be a direct result of (a) increased reactivity and 

(b) solvation of both the inorganic base and the inorganic by-products (sulfinate salts, 

bicarbonate products, etc.). When the reaction is run without water, the reaction starts as 

a free stirring reaction of soluble starting materials and heterogeneous base (though not 

soluble, it does not appear to impede the reaction). As the reaction progresses and the 

sulfinate group is eliminated as the inorganic salt, the reaction becomes a thick slurry of 

Table 12. Reaction Optimization with Water as a Cosolvent 
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non-soluble components. This may hinder efficient dispersion of reaction components, 

specifically the catalyst, resulting in low conversions and enantioselection. Previously, 

the workup involved filtering the reaction mixture through silica gel to remove the 

catalyst, and washing with ethyl acetate to solubilize any product trapped in the solid by-

products. The modified reaction workup involved adding water and extracting, followed 

by silica gel filtration, and gave higher yields.  

In addition to elimination of the thick reaction mixture, the increase in 

enantioselection may also be a result of increasing the interactions between the chiral 

catalyst and indolenine intermediate, while limiting those of the indolenine with achiral 

promoters of the reaction. We propose that the starting material, indolenine intermediate 

and nucleophile remain in the organic layer, promoting addition through the chiral 

pathway (Figure 8) while limiting the interactions with the large excess of achiral, 

inorganic that resides primarily in the aqueous layer. This shift towards the chiral 

pathway is evident with the significant jump in enantioselection.  

Knowing that the presence of water was positive, the one-pot formation of the 

arylsulfonyl indole, indolenine and phenylnitromethane addition was attempted (Scheme 

25). 

 

 

Scheme 25. One Pot Addition from 2-Me-Indole 
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Under acidic conditions (PBAM•HOTf) we attempted to form the indolyl alcohol, which 

could form the indolenine intermediate with the loss of the elements of water, similar to 

previously reported work (Scheme 16 and Scheme 18). The phenylnitromethane addition 

catalyzed by PBAM could then occur. Unfortunately we saw no product formed by this 

simplified route. However, the arylsulfonyl indole was formed under acidic conditions 

and water was added with extra potassium carbonate to quench the acid following 

completion by thin-layer chromatography (TLC). The catalyst and nucleophile were 

added, and adduct 103 was formed in remarkably good yield and moderate 

enantioselection (72% ee). This was not investigated further, but remains an option for 

arylsulfonyl indoles that are difficult to isolate.  

Preforming the Indolenine Intermediate 

In the proposed reaction mechanism, the slow step of the reaction is the elimination 

of the sulfinate group. While PBAM may be involved in this step, it makes it less 

available to catalyze the phenylnitromethane addition. We sought to isolate the 

intermediate indolenine in order remove the inorganic base from the reaction (the source 

of chiral-racemic product formation).  

  

A variety of bases and conditions was used in the elimination to afford the presumed 

product with consumption of the starting material. This highly reactive intermediate was 

difficult to purify and characterize with certainty, as the NMR was complicated with 
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minor impurities and baseline noise. In spite of these issues, the presumed isolated 

indolenine intermediate was submitted to the reaction conditions (Table 13). 

 

 

When the isolated intermediate was treated with catalyst and the nucleophile, the 

enantioselectivity increased at both room temperature and under cryogenic conditions. 

The differences in ee may be a direct result of the inability to properly quantify the 

amount of electrophile (99% conversion and yield was assumed following intermediate 

formation) as some may have remained trapped in the heterogeneous base during 

filtration. More interestingly, when the reaction was also run in the presence of potassium 

carbonate as well as PBAM, the enantioselection did not change (Table 13, entry 3). This 

reaffirmed our hypothesis that PBAM catalyzes the elimination and the addition more 

efficiently than potassium carbonate, subsequently requiring the potassium carbonate for 

regeneration of PBAM after the elimination step.  

Since the isolation of the indolenine intermediate was complicated, not 

reproducible at times and would not easily translate to other substrates, we attempted to 

first form the intermediate in situ before addition of the nucleophile (Chart 1). 

Table 13. Phenylnitromethane Addition to Isolated Indolenine Intermediate 
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Since PBAM aids in the elimination step, we were hopeful that combining all reactants 

except the nucleophile would facilitate the formation of the indolenine intermediate. 

After three days of stirring, the starting material was consumed and the nucleophile was 

added. The addition product was isolated in good yield and similar enantioselectivity at 

both room temperature and -20 ºC. The high conversion and enantioselection sharply 

contrast with the initial attempts under cryogenic conditions, which gave low conversion 

(48%) and low ee (57% ee) (Table 2, entry 3). Formation of the intermediate without 

isolation presents a new protocol for enantioselective nitroalkane additions to indolenine 

intermediates. 

Application and Comparison of the Three Reaction Protocols 

With three possible reaction protocols, a selection of catalysts was reexamined and 

the results were compared across all three methods for each catalyst (Table 14). 

 

Chart 1. Reaction Optimization of in situ Indolenine Formation 
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The catalysts that had performed well in the original method (method A) were tested. The 

PBAM analogs with methoxy groups at varying positions (Table 14, entries 2-4) 

generally performed better in the presence of water (method B). The reason for the 

different values in enantioselectivity for the PBAM analogs when the indolenine 

intermediate is preformed may be a direct result of the catalyst reactivity. The 7-alkyl 

PBAM analog also performed better in water (Table 14, entry 5). There was very little 

change in enantioselection when water was added to the Deng thiourea catalyst, with a 

slight drop when the indolenine was formed before addition of nucleophile (Table 14, 

entry 6). Following this brief catalyst screen, it was determined that PBAM remained the 

best catalyst across all methods. 

A selection of substrates was also reexamined and the results were compared across 

all three methods, with the best highlighted (Table 15). 

 

Table 14. Comparison of BAM Catalysts in the Three Protocols 
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All of the aryl analogs performed best when the intermediate was formed before addition 

of nucleophile (Table 15, entries 1-4, method C), with an average increase of 6% ee from 

the original method (method A). Certain substrates, such as the pyrrole and aliphatic 

analogs (Table 15, entries 5-6), exhibited no significant increase in enantioselection with 

the new methods. Both the ester (Table 15, entry 7) and furyl (Table 15, entry 8) analogs 

performed better under the semi-aqueous conditions (method B). Interestingly, the furyl 

analog was the substrate that benefitted most from the new protocol, providing an 

increase of almost 40% ee from the original method. The para-methoxy 

phenylnitromethane analog saw very little change across the three methods, however 

there was a large difference in the enantioselection of the diastereomers for method C 

(Table 15, entry 9, method C). The new methods did not help the enantioselections when 

Table 15. Substrate Screen Implementing all Three Methods  
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the nucleophile was nitroethane. In fact, reaction progress was severely hindered in water 

and gave no selectivity with the preformed electrophile (Table 15, entry 10). Overall, for 

the aryl analogs, method C gave the best enantioselectivity across the board. The data 

does not support any other trends for predicting the best method for a certain substrate. 

Nitro Group Modification of the Indole Adducts 

Nitroalkanes offer many opportunities for functionalization through reduction, 

oxidation and denitration. Using modified conditions for the cleavage of benzylic nitro 

bonds by Carreira, we attempted to denitrate the phenylnitromethane addition product (eq 

52).
60

 

 

Using material with 84% ee for both diastereomers, we successfully denitrated to give 

146 with no loss in enantiomeric excess. This confirms that the benzylic carbon is 

homochiral, as both diastereomers converge to the same enantiomer with good yield. 

There are a large number of catalysts for the Friedel-Crafts reaction of indole with 

nitrostyrene, while there are currently no known ways to add indole to stilbene analogs. 

These denitration products (146) represent the products obtained from the 

enantioselective reaction with stilbene analogs.  

  

                                                                                                                                                 
60 Fessard, T.; Motoyoshi, H.; Carreira, E. Angew. Chem. Int. Ed. 2007, 46, 2078-2081. 
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Future Work 

This new reaction is a significant extension of previous work with our BAM 

catalysts. Through significant reaction optimization and redesign, we were able to 

increase enantioselectivity from 20% ee to 90% ee in the best cases. More notably, we 

also realized that water has a positive effect on the reaction, in terms of reactivity, 

isolation and enantioselection. Further work on this reaction would involve increasing 

diastereoselection, expanding the scope of nucleophiles and applying this methodology to 

a target. 

Low dr of the final product was observed for all examples (except when the aryl 

group was an ester group). To determine if this was a result of thermodynamics or 

kinetics, the isolated product was resubmitted to column chromatography to separate the 

diastereomers (Scheme 26). 

 

 

Subjecting the high dr product to the reaction conditions returned product with the same 

dr, suggesting that the low dr was not a result of a thermodynamic equilibrium, but of low 

selectivity in the addition. This can be rationalized since the nucleophile is so far away 

from the binding pocket that the catalyst has very little influence on the orientation of the 

nucleophile, even though facial selectivity is attained (high ee).  

Scheme 26. Exposure of High dr Material to Reaction Conditions 
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One area for further investigation involves installation of a directing group on the 

catalyst that might orient the attack of the nucleophile while maintaining the quinoline 

ring responsible for facial selectivity (Figure 9). 

 

 

Groups with differing electronics may be able to coordinate with the charged species and 

orient the nucleophile along a specific trajectory. Other attempts to further block the face 

by extending the quinoline further may also increase diastereoselection. 

In addition to the substrates already synthesized, one could envision conversion of 

the nitro group to a ketone (Scheme 27).  

 

 

Basic Nef conditions may lead to epimerization of the C3’ carbon, but an acidic Nef 

would allow for conversion without epimerization, followed by the diastereoselective 

addition of a nucleophile. This would allow us to set the C3’ stereocenter in high ee and 

give highly functionalized indole products.  

Figure 9. Model for Further Catalyst Development 

 

Scheme 27. Further Manipulation of Indole Adducts 

 



57 

 

 

CHAPTER II 

 

II. THE ENANTIOSELECTIVE SYNTHESIS OF VNI: A CURE FOR THE 

NEGLECTED TROPICAL CHAGAS DISEASE
61,62

 

 

2.1 Chagas Disease and the Limitations to Parasite Eradication 

 

Background of Chagas Disease 

Chagas disease, also known as American trypanosomiasis, is a disease that affects 

10-12 million people in Latin America and causes over 15,000 deaths each year.
63

 

Chagas disease is listed as one of the World Health Organization’s Neglected Tropical 

Diseases
64

 but human migration has caused the disease to spread to parts of Europe, the 

United States, Japan, and Australia.
65

 This migration of a disease once confined to 

underrepresented populations and low resource areas has sparked new research into better 

treatments, as the current options that have been around for decades are not ideal.
63

  

Chagas disease is caused by the parasite Trypanosoma cruzi and was first 

discovered by Carlos Chagas in 1909.
63

 The significance of this discovery is recognized 

by the Brazilian 10,000 cruzados banknote (Figure 10).
66

 

                                                                                                                                                 
61 Dobish, M. C.; Villalta, F.; Waterman, M. R.; Lepesheva, G. I.; Johnston, J. N. Org. Lett. 2012, in press.  
62 Villalta, F.; Dobish, M. C.; Nde, P. N.; Kleshchenko, Y. Y.; Hargrove, T. Y.; Johnson, C. A.; Waterman, M. R.; 

Johnston, J. N.; Lepesheva, G. I. Journal of Infectious Disease, 2012, in press. 
63 Clayton, J. Nature, 465, S4-S5. 
64 http://www.who.int/neglected_diseases/en/ 
65 Coura, J. R.; Vinas, P. A. Nature, 465, S6-S7. 
66 http://www.banknotes.com/br.htm 
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Carlos Chagas (pictured) determined the clinical manifestations, epidemiology and entire 

life cycle of the parasite before his death in 1934. In the center of the bill, the blood 

feeding insect is resting on the human skin. The insect, also known as the kissing bug, 

bites its host and deposits its feces containing the parasite responsible for the disease. 

When the host scratches the bite, the parasite is transported into the blood system, and the 

life cycle of the parasite begins. Though this is the most common transmission vector, 

other contaminated subjects include crops, food, and drinks, and the parasite can also be 

passed congenitally from mother to child and through blood transfusions and organ 

transplantations.
67

 The transition from the acute phase to the chronic phase is also 

pictured in the final stages of the lifecycle with the parasite entering cardiomyocytes.  

Clinical Chagas disease is classified into acute and chronic phases.
63

 The acute 

phase begins when the body is first infiltrated by the causative parasite, T. cruzi, and it 

starts multiplying within different organs and tissues. The acute phase often goes 

unnoticed because of the normally mild, non-specific symptoms: fever, swelling of 

lymph nodes and tissues, as well as skin lesions and conjunctivitis. However, in a small 

                                                                                                                                                 
67 Kirchhoff, L. V. Advances in Parasitology, Vol 75: Chagas Disease, Pt A 2011, 75, 1-18. 

Figure 10. Brazilian banknote recognizing Carlos Chagas and the life cycle of the deadly parasite. 
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number of acute cases (~0.5%), the symptoms can be severe and lead to death.
68

 The 

acute infection usually lasts 4 to 8 weeks, depending on the parasite burden and host 

immune system. If the infection is undetected, symptoms usually cease and the parasite 

then enters the chronic phase, where the parasitemia levels are undetectable by 

microscopy.  

When an acute infection is detected, the drugs that are available to treat the parasite 

are limited. There are currently two treatments for the acute phase of Chagas disease: 

benznidazole (149) and nifurtimox (150), which have been available for over 50 years 

(Figure 11).
69

 

 

 

These drugs are efficient at treating patients in the early, acute phase with cure rates up to 

80% for those completing the 2-3 month dosing regimen. Unfortunately, there are many 

reasons unrelated to the cell biology for the failure associated with these treatments. Not 

all areas that are susceptible to parasite transmission have the appropriate infrastructure to 

administer treatment. In areas where treatment is available, the high cost of these drugs 

often prevents patients from completing the full treatment, leading to the evolution of 

                                                                                                                                                 
68 Bern, C. N. Engl. J. Med. 2011, 364, 2527-2534. 
69 Clayton, J. Nature, 465, S12-S15. 

Figure 11. Benznidazole and Nifurtimox 
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drug resistant strains.
70

 These drugs also have severe side effects, including skin rashes, 

nausea, and kidney and liver failure. Nifurtimox has also been shown to cause seizures 

and other nervous-system disorders, leading to patient noncompliance for a drug that has 

such a long dosing period. If the parasite is not eradicated in the acute phase, the parasite 

buries itself into vital organ systems and appears dormant for years or even decades 

before it manifests itself as a more severe condition. 

One in three patients that are not cured in the acute phase will experience the 

symptoms related to the chronic phase of the disease: abnormal heart rhythm, heart 

failure, digestive problems, and sudden cardiac death. These symptoms are the result of 

the parasite infiltrating the vital organs of the patient. These conditions may not present 

until 5-15 years after infection, after which it is too late to begin treatment of the parasite. 

There are currently no known treatments for chronic Chagas that lead to complete 

parasite eradication; only the symptoms from the conditions can be treated. Additionally, 

the drugs that have been developed for the acute phase have shown very little efficacy in 

the more problematic chronic stage of the disease. Drug development has been lethargic, 

as there is insufficient incentive for industrial and commercial development.  

Chagas Therapy and Sterol Biosynthesis 

There are currently two approaches to curing Chagas disease: inhibition of protease 

activity and sterol biosynthesis.
71

 It has been demonstrated that proteases are successful 

druggable targets for some cancers, diabetes, and infectious diseases.
72

 The major T. cruzi 

protease cruzain, also known as cruzipain, is found in all phases of the T. cruzi lifecycle. 

                                                                                                                                                 
70 Wilkinson, S. R.; Taylor, M. C.; Horn, D.; Kelly, J. M.; Cheeseman, I. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 

5022-5027. 
71 McKerrow, J. H.; Doyle, P. S.; Engel, J. C.; Podust, L. M.; Robertson, S. A.; Ferreira, R.; Saxton, T.; Arkin, M.; 

Kerr, I. D.; Brinen, L. S.; Craik, C. S. Memorias Do Instituto Oswaldo Cruz 2009, 104, 263-269. 
72 Renslo, A. R.; McKerrow, J. H. Nat. Chem. Biol. 2006, 2, 701-710. 
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It is believed to be involved in the degradation of proteins from the blood meal of the 

insect vector. However, the location of the protease changes, depending on the stage of 

the lifecycle, operating in environments with pH 5.5-7.4. Developing drugs that can exist 

in both environments can be challenging. This is one of the issues that must be 

considered when designing therapeutics for cruzain inhibition. Though certain factors 

need to be considered, cruzain has been validated as a drug target in preclinical 

experiments.
72

  

The other approach is targeting the production of sterols. Sterols are known to be a 

necessary component of eukaryotic cells, playing key roles in controlling fluidity and 

permeability of plasma membranes. While some eukaryotic phyla (e.g. insects) have 

developed the ability to scavenge sterols from exogenous sources for survival, others rely 

solely on endogenously synthesized sterols. This difference can be critical when 

considering treatment of certain diseases. In both cases, a sterol deficiency can be lethal 

to the cell. For example, a close parasitic cousin of T. cruzi is Trypanasoma brucei, the 

causative parasite of African sleeping sickness. Since it can scavenge sterols from 

exogenous sources, shutting down the sterol biosynthesis only slows growth of the 

parasite. However, because T. cruzi relies solely on endogenously produced sterols, 

shutting down the sterol biosynthesis pathway prevents further replication and is a viable 

approach to parasite eradication. The inhibition of sterol biosynthesis is also used for the 

treatment of human infections with fungi.  

One of the most efficient and druggable targets in sterol biosynthesis is the sterol 

14α-demethylase (CYP51), a cytochrome P450 monooxygenase that catalyzes oxidative 
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removal of the 14α-methyl group from cyclized sterol precursors.
73

 CYP51 is present, 

and conserved in all biological kingdoms, including animal, plants, yeast/fungi, most 

protozoa and some bacteria. In higher order kingdoms, for example human and other 

animals, cholesterol serves as a precursor for other biologically important processes, such 

as production of hormones, nerve tissues, and bile acids, as well as in the conversion to 

vitamin D. 

In T. cruzi, the CYP51 that is targeted is important for the conversion of squalene 

to ergosterol. More specifically, this enzyme is responsible for the three step process that 

converts eburicol (M) to 14α-demethyl-14-dehydro-eburicol (Figure 12).
74

 Each step of 

the three step process requires a molecule of oxygen, two electrons, and two protons. The 

methyl is oxidized three times, sequentially, from the alcohol to formic acid, where 

elimination, or loss of formic acid, yields an olefin. It is both the buildup of toxic 

methylated sterols and cell membrane damage (lack of ergosterol), that ultimately leads 

to cell death.
75

  

                                                                                                                                                 
73 Lepesheva, G. I.; Villalta, F.; Waterman, M. R. Advances in Parasitology, Vol 75: Chagas Disease, Pt A 2011, 75, 

65-87. 
74 Lepesheva, G. I.; Waterman, M. R. Biochimica et Biophysica Acta (BBA) - General Subjects 2007, 1770, 467-477. 
75 Maertens, J. A. Clinical Microbiology and Infection 2004, 10, 1-10. 
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After 40 years of a dry pipeline, recent reports suggest that the antifungal drug 

posaconazole (151) may be effective in the treatment of Chagas disease.
76

 Posaconazole, 

a drug developed by the Schering-Plough Research Institute, showed efficacy in curing 

both acute and chronic Chagas disease in murine models. In an isolated case in Spain, a 

                                                                                                                                                 
76 Urbina, J. A.; Docampo, R. Trends Parasitol. 2003, 19, 495-501. 

Figure 12. CYP51 reaction in sterol biosynthesis across the kingdoms (from ref. 74)  
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patient with both lupus and Chagas disease was treated with Posaconazole when 

conventional methods failed.
69

 Though this was done unethically (no scientific basis for 

treatment) and as a final resort, there was no sign of the parasite three years after 

treatment, even using the most sensitive of detection techniques. Phase II clinical trials 

have begun on the use of Posaconazole to treat chronic Chagas disease. 

Posaconazole, even if successful in clinical trials, may not be the answer since a course of 

treatment is estimated to be well over $1000 per patient. However, posaconazole will 

validate CYP51 as a druggable target (or mechanism of action) in humans and may open 

the door for similar compounds that can be more easily attained. Unfortunately, 

ketoconazole (152), a cheaper but similar version of posaconazole, has proven to be 

drastically less effective in the treatment of benznidazole- and nifurtimox-resistant strains 

of T. cruzi.
77

 Drugs with the same mechanism of action, an improved safety profile, and 

available at low cost are urgently needed.  

Industrial Synthesis of Posaconazole 

One of the reasons that posaconazole is such a costly treatment is the lengthy and 

linear sequence. The synthesis of posaconazole, as extracted from available patents, is 

                                                                                                                                                 
77 Molina, J.; Martins-Filho, O.; Brener, Z.; Romanha, A. J.; Loebenberg, D.; Urbina, J. A. Antimicrob. Agents 

Chemother. 2000, 44, 150-155. 
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between 20 and 24 steps. The tricyclic core, which contains two stereocenters, is 

synthesized in 12-16 steps from achiral ketone 153 (Scheme 28).
78

 

 

 

Allyl alcohol 154 is prepared from ketone 153 by a sodium acetate displacement of the 

chloride, followed by a Wittig reaction and alcohol deprotection. The allyl alcohol is then 

submitted to the Sharpless epoxidation conditions followed by epoxide ring opening with 

triazole to give 155 as a single enantiomer. The epoxide is reformed by alcohol 

mesylation and base promoted cyclization to give epoxide 156, which is then converted 

to tricyclic triazole 157 in 5-9 steps.  

The tricyclic side chain is synthesized in two steps starting from phenol 158 

(Scheme 29). 

                                                                                                                                                 
78 Saksena, Anil K.; Girijavallabhan, Viyyoor M.; Lovey, Raymond G.; Pike, Russell E.; Wang, Haiyan Liu Yi-tsung 

Ganguly Ashit K.; Bennett, Frank Tetrhydrofuran Antifungals. WO/95/17407, 29 June 2995. 

Scheme 28. Synthesis of Tricyclic Core of Posaconazole 
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Hydrolysis of the acetamide portion of bicycle 158 to reveal the secondary amine, 

followed by reaction of para-chloronitrobenzene and potassium carbonate yields the 

phenol 159. The sodium salt of phenol 159 displaces the tosyl alcohol to give the main 

core of posaconazole (160). The final heterocycle was formed in five steps to give 

posaconazole.  

VNI as a Treatment for Chagas Disease 

Waterman and Lepesheva at Vanderbilt University have published extensively on 

the role of 14α-demethylase cytochrome P450 (CYP51) in sterol biosynthesis
79

 and its 

availability as a druggable target.
80

 Specifically, they have published on the 14α-

demethylase (14DM) of the parasites Trypanosoma cruzi (TC)
81

 and Trypanosoma brucei 

                                                                                                                                                 
79 Lepesheva, G. I.; Waterman, M. R. Biochimica et Biophysica Acta (BBA) - General Subjects 2007, 1770, 467-

477., Konkle, M. E.; Hargrove, T. Y.; Kleshchenko, Y. Y.; von Kries, J. P.; Ridenour, W.; Uddin, M. J.; Caprioli, R. 

M.; Marnett, L. J.; Nes, W. D.; Villalta, F.; Waterman, M. R.; Lepesheva, G. I. J. Med. Chem. 2009, 52, 2846-2853., 

Lamb, D. C.; Lei, L.; Warrilow, A. G. S.; Lepesheva, G. I.; Mullins, J. G. L.; Waterman, M. R.; Kelly, S. L. J. Virol. 

2009, 83, 8266-8269. 
80 Lepesheva, G.; Hargrove, T.; Kleshchenko, Y.; Nes, W.; Villalta, F.; Waterman, M. Lipids 2008, 43, 1117-1125. 
81 Lepesheva, G. I.; Ott, R. D.; Hargrove, T. Y.; Kleshchenko, Y. Y.; Schuster, I.; Nes, W. D.; Hill, G. C.; Villalta, 

F.; Waterman, M. R. Chem. Biol. 2007, 14, 1283-1293., Lepesheva, G. I.; Hargrove, T. Y.; Anderson, S.; Kleshchenko, 
Y.; Futak, V.; Wawrzak, Z.; Villalta, F.; Waterman, M. R. J. Biol. Chem. 2010, 285, 25582-25590. 

Scheme 29. Side Chain Synthesis and Completion of Posaconazole  
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(TB),
82

 responsible for Chagas disease and African sleeping sickness, respectively. They 

were able to obtain crystal structures of 14DM from both pathogens in the ligand-free and 

ligand-bound forms. Using the ligand-free crystal structure of CYP51 from T. cruzi, 

molecular modeling showed the substrate docked in the enzyme cavity (Figure 13).
83

 

 

 

Eburicol, the sterol precursor that is converted to 14α-demethyl-14-dehydro-eburicol in 

the CYP51, is shown in magenta. The blue arrow depicts the proposed entry of the 

substrate via a hydrophobic channel.  

By measuring inhibition of sterol biosynthesis, defined here by the conversion of 

eburicol to 14α-demethyl-14-dehydro-eburicol, potential inhibitors could be identified 

and their co-crystallization with the enzyme could lead to a rational structure-based lead 

optimization. To test for inhibition, the CYP51 from T. cruzi was combined with 

potential inhibitors, and the production of sterols (14DM activity) was monitored.
81

 

                                                                                                                                                 
82 Lepesheva, G. I.; Park, H.-W.; Hargrove, T. Y.; Vanhollebeke, B.; Wawrzak, Z.; Harp, J. M.; Sundaramoorthy, 

M.; Nes, W. D.; Pays, E.; Chaudhuri, M.; Villalta, F.; Waterman, M. R. J. Biol. Chem. 2009, 285, 1773-1780. 
83 Lepesheva, G. I.; Waterman, M. R. BBA-Proteins Proteom. 2011, 1814, 88-93. 

Figure 13. Modeled docking of eburicol in T. cruzi CYP51 (from ref. 83) 
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Initially, common antifungals (posaconazole, fluconazole, ketoconazole) and a selection 

from a library of azole-inhibitors from Novartis (Switzerland) were screened (Figure 14).  

 

 

It was determined that posaconazole (Pos), VNI, and VNF were competent inhibitors of 

sterol biosynthesis when the ratio of inhibitor:enzyme:substrate was 1:1:50. The other 

commercial antifungals tested, ketoconazole (Ket) and fluconazole (Fluc) There was a 

difference of inhibition between VNI and its enantiomer, with the dextrorotatory having 

Figure 14. Small Molecule Inhibitors of T. cruzi  CYP51 (from ref. 73) 
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stronger inhibitory effects (5x more potent). These inhibitors were then cocrystallized 

with the CYP51 of T. cruzi and the crystal structures were overlayed to show the relative 

orientations in the enzyme cavity (Figure 15).  

 

 

They found that posaconazole (green) and VNI (cyan) bound in a similar orientation, 

with the dihaloaryl ring buried deep into the pocket and the azole coordinated to the 

heme. Additionally, both long chain arms were aligned in the hydrophobic access 

channel. Interestingly, VNF (salmon) is the same configuration of VNI but is oriented in 

the opposite direction.  

Preliminary results from the Waterman Lab were encouraging: VNI is a potent 

inhibitor of CYP51 in sterol biosynthesis and VNI binds to the enzyme in a similar 

fashion to posaconazole. Unfortunately, the compounds from Novartis were obtained in 

only small amounts, so a new source of VNI was needed to complete further testing. 

  

Figure 15. Overlay of Potential Inhibitors of T. cruzi CYP51 Crystal Structures (from ref. 81) 
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2.2 The Short, Enantioselective Synthesis of VNI  

 

Background and Project Goals 

In 2007, Lepesheva and Waterman identified VNI (161) as a potent experimental 

inhibitor of trypanosomal CYP51.
81

 Unfortunately, the initial quantity of VNI was 

obtained from a nonrenewable source (Novartis library of compounds) and there are no 

preparative details. Both VNI
84

 and its enantiomer were provided for the initial screen, 

suggesting the racemate was prepared and separated by chiral chromatography. We 

sought to develop a synthesis that was not only efficient and selective, but easily 

diversified for other analogs. As illustrated in Scheme 30, our proposed synthesis utilizes 

a BisAMidine (BAM) catalyzed, enantioselective aza-Henry reaction to set the 

benzylamine stereocenter. 

 

                                                                                                                                                 
84 The abbreviation ‘VNI’ refers specifically to the (R)-enantiomer, the more potent inhibitor of CYP51. An X-ray 

crystal structure of VNI bound to CYP51 has been reported (ref. 81). VNI is the dextrorotatory (+) enantiomer. 

Scheme 30. Retrosynthetic Analysis of VNI 
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First, we envisioned that the amide bond could be formed through a coupling reaction, of 

chiral amine (162) with the appropriate carboxylic acid (163). The tricyclic carboxylic 

acid could be formed via a condensation of 4-(chlorocarbonyl)benzoic acid (164) and 

benzoic hydrazide (165). The desired imidazole (162) could be formed by a series of 

condensations with glyoxal, formaldehyde, and ammonia after reduction of the aza-Henry 

adduct (166). To obtain the chiral, non-racemic aza-Henry adduct, we envisioned the 

addition of nitromethane to the N-Boc aryl aldimine (167) using a BAM catalyst. 

At the same time we began our investigations, the synthesis core at Vanderbilt was 

contracted to synthesize VNI for further biological testing (Figure 16).
85

  

 

 

                                                                                                                                                 
85 Hargrove, T. Y.; Kim, K.; de Nazaré Correia Soeiro, M.; da Silva, C. F.; da Gama Jaen Batista, D.; Batista, M. M.; 

Yazlovitskaya, E. M.; Waterman, M. R.; Sulikowski, G. A.; Lepesheva, G. I. International Journal for Parasitology: 
Drugs and Drug Resistance 2012, 2, 178-186. 

Figure 16. Racemic synthesis of VNI and epi-VNI 
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Starting from commercially available racemic alcohol 168, with the dichloroaryl ring and 

imidazole already in place, a three step functional group manipulation gave the free 

amine rac-162. The side chain was made through a three step sequence from 

benzohydrazide (165) and monoprotected benzoate 169. An amide bond forming reaction 

using PyBoP gave a mixture of VNI and the enantiomer of VNI. The enantiomers were 

separated by preparative chiral chromatography to give VNI.  

Though this route was sufficient for preparation of small quantities of material, this 

is an inefficient means for synthesis on a large scale, or for the synthesis of other 

derivatives. The use of chiral chromatography on racemic material is expensive and 

inefficient, as 50% of the material is discarded. The highly functionalized alcohol that 

was purchased may not be available for other desired analogs, requiring a new route to 

obtain a similarly functionalized intermediate. The time and cost of such a route is not 

conducive to a medicinal chemistry campaign where the goal is to rapidly develop a large 

library of compounds for biological testing. An enantioselective route from commercially 

available materials might provide the rapid access to analogs that a medicinal chemistry 

project needs.  

BAM Catalyzed aza-Henry 

The required N-Boc aryl aldimine 167 was synthesized using known procedures 

from the requisite aldehyde (Scheme 31).
86

 

 

                                                                                                                                                 
86 Kanazawa, A. M.; Denis, J.-N.; Greene, A. E. J. Org. Chem. 1994, 59, 1238-1240. 
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The commercially available aldehyde was stirred with tert-butylcarbamate and benzene 

sulfinic acid to give α-amido sulfone 171 in low conversion. We believe the low 

conversion stemmed from poor solubility of the aldehyde, but were able to recover the 

starting material and increase the efficiency of our first step. The imine was formed in 

quantitative yields to give pure imine 167, with the largest scale yielding 13 grams (48 

mmol) of material. The imine was then submitted to the aza-Henry reaction. 

We have shown that H,QuinBAM (92) can catalyze the addition of simple 

nitroalkanes to N-Boc aryl aldimines when the nitroalkane is used as solvent (56 equiv) 

and stirred for days.
47

 With the development of the more Brønsted-basic catalyst PBAM 

(100), we hoped that the addition could take place with a shorter reaction time using 

stoichiometric amounts of nucleophile. Recently, it was shown that reaction of aliphatic 

nitroalkanes with N-Boc aryl aldimines is most selective when the triflic acid salt of 

PBAM [(PBAM)2(HOTf)3] is used.
52

 We used similar conditions for this crucial 

transformation (Scheme 32). 

 

Scheme 31. Synthesis of N-Boc-2,4-Dichlorobenzaldimine 

 

Scheme 32. PBAM Catalyzed aza-Henry Reaction of Nitromethane: A Double Addition 
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The desired product (166) formed with high enantioselection (86% ee) and good yields 

(74%). Unfortunately, a minor by-product determined to be the double addition product 

(172) was also isolated. When H,QuinBAM was used for nitroalkane additions, 

negligible amounts of the double addition products were seen, which is most likely due to 

the decreased reactivity of the catalyst.  

To minimize the double addition product and increase enantioselection, different 

reaction conditions were evaluated (Table 16). 

 

 

When the reaction concentration was increased, a slight increase in ee was observed, with 

nominal change in the ratio (Table 16, entry 2). A screen of catalysts (varying ratios of 

triflic acid to PBAM) showed very little change in ee or influence in the ratios of mono-

addition (167) to double addition (172) products (Table 16, entries 3-5). An increase in 

Table 16. Reaction Optimization for the PBAM-Catalyzed Addition of Nitromethane 
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the equivalents of nitromethane corresponded to an increase in the ratio of 166 to 172 

(Table 16, entries 6-8), with a lowering of enantioselection. Use of nitromethane as the 

solvent (Table 16, entry 8) suppressed the double addition, but enantioselection dropped 

to 49% ee. Unable to optimize this addition any further, we considered a more hindered 

nucleophile that could be converted to the same desired intermediate after the 

enantioselective addition. 

In 2010, we reported the addition of bromonitromethane to N-Boc aryl aldimines 

using an unsymmetrical BAM catalyst (Scheme 33).
87

 

 

 

Under these conditions the para-chloro adduct 173 was isolated in high yield and 98% 

ee. Even though the anti-and syn-diastereomers were isolated as a 1:1 ratio, subsequent 

experiments showed that they were homochiral at the benzylic carbon. Further 

optimization showed the more robust catalyst PBAM (100) could catalyze the addition of 

bromonitromethane in higher yields (94%) and enantioselection (99% ee for both 

diastereomers).
88

  

                                                                                                                                                 
87 Shen, B.; Makley, D. M.; Johnston, J. N. Nature 2010, 465, 1027-1032. 
88 Makley, D. M.; Johnston, J. N. unpublished results 

Scheme 33. Bromonitromethane aza-Henry Addition using an Unsymmetrical BAM Catalyst 
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We hypothesized that the bromine functions as a removable blocking group to slow 

the double addition, so the addition of bromonitromethane was tested under similar 

conditions (Table 17). 

 

 

On a small scale, the free base of PBAM (Table 17, entry 1) gave the desired 

bromonitromethane adduct 174 in marginally higher ee than the triflic acid salt of the 

catalyst (Table 17, entry 2). The reaction was also concentration dependent, as lower 

concentrations gave slightly higher values of enantioselection, as well as less 

debrominated side product 166 (the formal addition of nitromethane). More of the 

debrominated side product (up to 8%) was seen at higher temperatures and with larger 

catalyst loadings. This side product may arise from the debromination of the product by 

the catalyst, as more is present as the catalyst loading increases, rather than a 

nitromethane impurity in the bromonitromethane. The selectivity for the addition of 

bromonitromethane appeared robust as the enantiomeric excess was unchanged by slight 

Table 17. Optimization of Bromonitromethane Additions to N-Boc-2,4-Dichloroaldimine 
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variations in the reaction conditions (Table 17, entries 3-6). The catalyst loading was 

further decreased from 10 mol % to 2 mol %, and the desired product was still delivered 

in equally high enantioselection. Further scaling up of the reaction was accompanied by a 

drop in the yield (Table 17, entry 7), which was a result of complications from column 

chromatography corresponding to incomplete recovery of product.  

Attempts were made to complete the reaction on a large scale, testing limits that 

had not been previously examined with a BAM catalyzed addition (Table 18). 

 

 

When the reaction was run at three times the scale with a lower catalyst loading, a slight 

increase in enantioselection of the product was observed (Table 18, entry 2). More 

importantly, the low level of catalyst loading and larger scale produced the product with 

greater than 98% purity before column chromatography, leading to an increase in yield 

(98%). An almost 500 fold increase in scale from initial experiments (from 0.1 mmol 

scale) returned favorable results (Table 18, entry 3); filtration provided 19.2 grams of 

analytically and enantiomerically pure product in nearly quantitative yield using only 1 

mol % PBAM. The use of this highly reactive organocatalyst (>100 turnovers) in a large 

Table 18. Large Scale Optimization of BAM Catalyzed aza-Henry 
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scale preparation to deliver the scaffold is punctuated by the ability to recover and recycle 

the catalyst without loss of activity. This is the largest PBAM reaction completed in the 

Johnston group to date and demonstrates the robustness of the transformation for even 

larger scale applications. With a large amount of enantioenriched aza-Henry adduct (174) 

in hand, the tandem debromination/denitration was performed using a procedure 

commonly exploited in this group. 

Reduction of the aza-Henry Adduct 

In 2008, the group reported the sequential BAM catalyzed addition of nitroacetates 

and nitro reduction using cobalt chloride and sodium borohydride.
50,89

 Using the same 

conditions, we attempted to reduce the bromonitromethane aza-Henry adduct (Table 19). 

 

 

The reaction occurred with high yields (75%) on small scale (Table 19, entry 1) 

corresponding with isolation of a trace amount of the ortho-deschloro adduct 176. When 

the reaction scale was increased, the yield of amine 175 decreased (Table 19, entry 2) 

                                                                                                                                                 
89 Mechanism: Heinzman, S. W.; Ganem, B. J. Am. Chem. Soc. 1982, 104, 6801-6802. Osby, J. O.; Heinzman, S. 

W.; Ganem, B. J. Am. Chem. Soc. 1986, 108, 67-72. 

Table 19. Large-Scale Optimization of One-pot Debromination/Nitro Reduction 
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while the amount of undesired amine 176 increased. The small reduction in yield is 

attributed to the necessary chromatography separation of two amines that have similar Rf 

values. Gratifyingly, at the largest scale we were able to isolate almost 7.5 grams of pure 

amine 175 (Table 19, entry 3).  

Imidazole Formation 

To form the imidazole portion of the compound, we looked to work reported by 

Saigo in 2006 on the synthesis of imidazoles from chiral non-racemic amines (Scheme 

34).
90

 

 

 

Refluxing primary 1,2-amino alcohol 177 in methanol with glyoxal, formaldehyde, and 

ammonium acetate, resulted in the isolation of enantiopure imidazole 178 in 71% yield. 

This reaction is valuable because it allows many heterocycles to be accessed from a 

common amine just by varying the reactants (substituted glyoxals and aldehydes). When 

these conditions were applied to the VNI 1,2-diamine, we isolated the adduct in 

moderate, but synthetically useful yields (Scheme 35). 

 

                                                                                                                                                 
90 Matsuoka, Y.; Ishida, Y.; Sasaki, D.; Saigo, K. Tetrahedron 2006, 62, 8199-8206. 

Scheme 34. Synthesis of Imidazoles from Chiral Non-Racemic 1,2-Amino Alcohols 
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This robust reaction gave similar yields of imidazole 179 on most of the scales tested 

(from 0.5-24 mmol). Column chromatography often proved difficult because of the poor 

solubility of the crude reaction mixture in dichloromethane, which may have led to lower 

recovery of product. The highest yield was obtained on the largest scale reaction, with 

49% of the material being recovered by precipitation from dichloromethane with 

hexanes, and an additional 10% isolated via column chromatography. The enantiomeric 

excess of imidazole 179 was found to be the same as the starting aza-Henry adduct (174), 

showing that no stereochemical scrambling took place during any of the previous 

reactions. We then embarked on the synthesis of the carboxylic acid side chain. 

Side Chain Synthesis and Completion of VNI 

It was reported that aryl acid hydrazides and benzoyl chlorides could be condensed 

to form oxadiazoles (such as 180) at room temperature under phosphorous pentoxide 

conditions in excellent yields (>85%).
91

 A synthesis was developed for the tri-aryl side 

chain starting from commercially available starting materials (Scheme 36). 

 

                                                                                                                                                 
91 Rostamizadeh, S.; Ghamkhar, S. Chin. Chem. Lett. 2008, 19, 639-642. 

Scheme 35. Scalable Imidazole Formation from Reduced aza-Henry Adduct 
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Unfortunately, using conditions developed for similar substrates, the yields of the 

oxadiazole (180) only reached 20%, which was a fraction of the reported yields. A 

significant amount of the bisamide 181 was recovered and resubmitted to the reaction 

conditions to give complete conversion to the desired oxadiazole (180). We believe that 

the bisamide precipitated out of solution and prevented full conversion. In two high 

yielding steps, the bisamide 181 was formed using triethylamine in 90% yield and the 

oxadiazole was then formed in >95% yield. Saponification gave the desired carboxylic 

acid (163) in high yields. 

With the amine and carboxylic acid portions in hand, all that remained was the 

coupling to form the desired amide bond (Scheme 37). 

 

Scheme 36. Synthesis of the Tri-Aryl Side Chain. 

 

Scheme 37. Endgame: The Synthesis of VNI. 
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Following N-Boc deprotection of amine 179 in quantitative yield, the amine and 

carboxylic acid were coupled under standard conditions using EDC. The transformation 

occurred to give VNI in up to 54% yield over two steps, producing 27 mg of product. We 

were able to develop an assay for the separation of the prepared racemate and aid the 

Vanderbilt Synthesis Core with their separation needs. Since assignment of absolute 

configuration to aza-Henry adduct 174 could be made confidently by analogy to 

numerous BAM-catalyzed reactions, the retention times of VNI prepared by our sequence 

could be used to identify VNI among the racemate peaks.  

We were able to increase the scale of the coupling to obtain 330 mg of VNI (65% 

yield). However, attempts to increase the scale any further were thwarted by the presence 

of an unavoidable byproduct, a possible rearrangement product from the EDC and 

carboxylic acid fragment to the N-acylurea 182.  

 

Our immediate concerns were with the delivery of the compound, so rather than 

screening numerous other combinations of coupling reagents, we decided to form the 

amide bond reaction using an acylation of the amine with the requisite acid chloride (183) 

(Scheme 38).  
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Though we were able to increase the scale of the reaction, delivering grams of VNI in 

one reaction, the yield (29-44%) and crude purity varied between the reactions. At this 

point we had reached our target of 4 grams of VNI needed for the initial mouse studies, 

so further reaction optimization is reserved for second generation routes. To optimize this 

step, we would look at a number of conditions for the coupling of the carboxylic acid and 

free amine (e.g. PyBoP
85

).  

This highly enantioselective and efficient synthesis, completed on a gram scale, has 

allowed for the production of enough VNI to complete studies of T. cruzi eradication in 

the murine model. Our first generation route relied heavily on chromatographic 

purification. Since most of the reactions were scaled and optimized further, we were able 

to eliminate most columns and use precipitations and filtrations to purify most 

intermediates. This bodes well for the potential scalability of our route, where our largest 

scale route required only two chromatographic purifications. Additionally, we have 

estimated the cost of materials to be less than $0.10/mg (Appendix I).  

 

Scheme 38. Large Scale Acylation to give VNI 
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VNI Analog Synthesis 

One of the goals of our synthesis was to develop a route that was amenable to 

further analog development, highlighted in color below (Figure 17). 

 

 

The aryl ring (circled in red) can be varied using different N-Boc-aryl aldimines in the 

PBAM catalyzed bromonitromethane additions. The imidazole ring (green) can be 

modified with different functional groups by using substituted glyoxal and formaldehyde 

equivalents. Other heterocycles can also be accessed from the amine resulting from 

reduction of the aza-Henry adducts. Finally, any carboxylic acid portion (blue) could 

conceivably be coupled in the last step of the synthesis, allowing for a quick screen of 

various analogs. 

To demonstrate the generality and scope of the scale of the bromonitromethane 

additions, we looked at a number of differentially substituted N-Boc-aryl aldimines 

(Chart 2). 

 

Figure 17. Achievable Points of Diversity in the Synthesis of VNI and other Analogs 
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The 2,4-difluorinated analog (185b) gave comparable results to the 2,4-dichloro analog 

of VNI. Removing the ortho-chloro (173) or installing a para-methoxy group (185c) 

returned over 10.5 grams of product in greater than 96% ee for both diastereomers. When 

a methyl group was in the para-position (185d) or a bromine was in the meta-position 

(185e), a slight drop in enantioselection was observed, but product with greater than 90% 

ee was recovered. Overall, the additions show that the scalemic scaffold can be quickly 

accessed, on scale, for a variety of aryl rings.  

The use of PBAM on large scale has been advanced by our recent report of an 

Organic Syntheses preparation (Figure 18).
92

 

 

                                                                                                                                                 
92 Davis, T. A.; Dobish, M. C.; Schwieter, K. E.; Chun, A. C.; Johnston, J. N. Org. Synth. 2012, 89, 380-393. 

Chart 2. Large Scale Bromonitromethane Additions to Imines Catalyzed by PBAM. 

 



86 

 

Improving on our first generation route, we were able to remove column chromatography 

at each transformation, replacing them with a hot solvent extraction of quinoline 186, 

filtration of 
4
Cl-BAM (187), and recrystallization of the final catalyst (PBAM). 

Additionally, two undergraduate students (NSF-REU) aided in the manuscript 

preparation, demonstrating the straightforwardness of the catalyst synthesis. With this 

publication, the availability and access to this catalyst has increased as we move forward 

towards making it commercially available.  

To demonstrate the brevity of the route, analogs of VNI were prepared for 

evaluation (Figure 19).  

 

Figure 18. Organic Syntheses Preparation of PBAM. 
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The first analogs made were synthesized by coupling the free amine to fluoro-pyridines 

in an attempt to both establish the influence of the side chain and possibly slow drug 

metabolism (188 & 189). Slight modifications to the side chain (190 & 191) were made 

to determine the interactions of the substrate access channel. Of the four side chain 

analogs examined, no significant improvement was observed in the T. cruzi CYP51 

inhibition assay. The des-chloro-VNI compound 192 (recovered from reduction of 174 in 

large scale VNI synthesis) was also submitted for testing. The final analog that was 

synthesized contained a 2,4-difluoroaryl ring in the western portion of the molecule, 

similar to posaconazole (151). The synthesis of FF-VNI was completed on large scale 

and only required a single chromatographic purification in the last step of the synthesis. 

Gratifyingly, this exchange of chlorines for fluorines on the VNI backbone resulted in a 

four-fold improvement in binding to the CYP51.
85

 (The relative efficacy of CYP51 

Figure 19. Prepared VNI analogs.  
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ligands is estimated through the use of several measurements in addition to Kd, so VNI 

still remains the best lead.)  

VNI Cures the Murine Model of Acute and Chronic Chagas Disease 

One goal of this project was to provide enough material to establish the curative 

effect of VNI in a murine model of both the acute and chronic stages of Chagas disease 

(Figure 20). 

 

 

For the acute model, two groups of mice were infected with a lethal dose of parasite, and 

treatment for one group began three days post infection. They were given 25 mg/kg of 

VNI, twice a day for 30 days, which is a relatively low dose compared to posaconazole 

(up to 300 mg/kg). Gratifyingly, the parasitological clearance was 100%, with 100% 

survival of the treated mice while there were no detectable toxic side effects (after VNI-

treatment, mice did not lose weight and appeared normal). In the chronic mouse model of 

Chagas disease, treatment with VNI for 30 days started 90 days post-infection (a small 

number of parasites), and was followed by six rounds of immunosuppression to induce 

chronicity. After immunosuppression, all untreated animals visually presented high 

Figure 20. VNI Eradicates Parasite in vivo for Both Phases of Chagas Disease (ref. 62). 
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parasitemia, whereas all VNI-treated mice showed complete eradication of the parasite. 

In both the acute and chronic models of the disease, qPCR analysis (Table 20) confirmed 

parasitological clearance: blood and all tested tissues of the VNI treated animals were 

free of T. cruzi.  

 

 

We have demonstrated that VNI, prepared through chemical synthesis, cures acute 

and chronic Chagas in a murine model of the infection. The low cost of materials 

highlights the promise that the VNI scaffold can serve as a small molecule therapeutic for 

a disease endemic to low resource areas. Though VNI is orally bioavailable, non-toxic 

and has favorable pharmacokinetics, we believe the convergency of our route can deliver 

straightforward access to derivatives as we move towards a candidate for preclinical 

testing.  

  

Table 20. T. cruzi Detection by qPCR (ref. 62). 
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CHAPTER III 

 

III. BISAMIDINE CATALYZED ENANTIOSELECTIVE HALOGENATIONS
93,94

 

 

3.1 Enantioselective Halogenations and Asymmetric Organocatalysis 

 

History of Enantioselective Halocarboxylations 

The alkene halocarboxylation reaction was resistant to the application of proven 

approaches to enantioselective catalysis since its early realization, a shortcoming both 

unfortunate and notorious considering the practical value of the ester/lactone products.
95

 

Reports finally surfaced in 2010, more than 10 years after the first promising results, that 

enantioselective halogenative addition reactions were possible.
96

  

In 1998, Grossman reported the first reagent-controlled enantioselective 

halolactonization (Scheme 39, eq 70).
97

 

                                                                                                                                                 
93 Dobish, M. C.; Johnston, J. N. J. Am. Chem. Soc. 2012, 134, 6068-6071. 
94 Dobish, M. C.; Johnston, J. N. unpublished results. 
95 Hatano, M.; Sugiura, Y.; Akakura, M.; Ishihara, K. Synlett 2011, 2011, 1247,1250. 
96 Reviews: Chen, G.; Ma, S. Angew. Chem. Int. Ed. 2010, 49, 8306-8308. Castellanos, A.; Fletcher, S. P. Chem.--

Eur. J. 2011, 17, 5766-5776. Tan, C. K.; Zhou, L.; Yeung, Y.-Y. Synlett 2011, 1335-1339. Hennecke, U. Chemistry-an 
Asian Journal 2012, 7, 456-465. 
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Using dihydroquinidine-halogen complexes [(196)2I
+
BF4], the iodolactones (195) were 

isolated in up to 7% ee. Most of the amine analogs tested gave racemic lactone, though 

all was not lost as the chiral amines were able to be recovered. Further dilution of the 

reaction mixture, gave the lactones in up to 15% ee, a common trend observed in 

enantioselective halolactonizations. Shortly after this initial report, Wirth reported the use 

of chiral, primary amines to afford γ-lactones from 1,1-disubstituted acids (Scheme 39, 

eq 71).
98

 Screening a variety of primary amines, they were eventually able to obtain 

lactone 198 in up to 45% ee using chiral amine 199. Gratifyingly, it was general for a 

variety of electronically diverse aromatic rings as well as tetrasubstituted olefins, though 

aliphatic analogs produced only the racemate.  

Looking to expand on the work of Grossman, Gao further investigated the use of 

cinchona based alkaloids as stoichiometric, chiral halogen equivalents in reagent-

controlled asymmetric iodolactonizations (Scheme 40).  

                                                                                                                                                 
97Grossman, R. B.; Trupp, R. J. Can. J. Chem. 1998, 76, 1233-1237. 
98 Haas, J.; Piguel, S.; Wirth, T. Org. Lett. 2001, 4, 297-300. Haas, J.; Bissmire, S.; Wirth, T. Chem.--Eur. J. 2005, 

11, 5777-5785. 

Scheme 39. Initial Reports of Enantioselective Halolactonizations using Chiral, Soichiometric Halogen 

Complexes. 
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The use of 1,2-disubstituted olefinic acids (200) gives both γ- and δ-lactones, requiring 

control of both regio- and enantioselectivity. Under these conditions, the results of the 

reaction proved to be very dependent on the catalyst used and aromatic ring of the acid. 

The highest enantioselectivity (19% ee) for the γ-lactone (5-exo) was obtained with the 

ortho-tolyl analog of 202 (though it only forming in a 2:1 diastereoselective ratio). When 

the more sterically congested anthracenyl-analog of the olefinic acid was used, the 

resulting reaction gave only the δ-lactone (6-endo, 201) in the highest enantioselection 

observed (35%). In most cases, amine 203 used at 110 mol % loading was recovered with 

about a 90% recovery. Though the values of enantioselection were low, this publication 

and results helped to further the first organocatalytic halolactonization. 

Substoichiometric, catalytic halocyclizations  

While the work with stoichiometric chiral halogen reagents in lactonizations was 

limited, Gao published the first substoichiometric, catalytic halolactonization of trans-5-

aryl-4-pentenoic acids in the presence of iodine and 30 mol % of ligand (Scheme 41).
99

  

 

                                                                                                                                                 
99 Wang, M.; Gao, L. X.; Mai, W. P.; Xia, A. X.; Wang, F.; Zhang, S. B. J. Org. Chem. 2004, 69, 2874-2876. 

Scheme 40. Cinchona Based Chiral Iodine Sources in Enantioselective Iodolactonization. 
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Using a chiral non racemic, quaternary ammonium salt derived from cinchonidine, a 

mixture of the γ- lactone (206) and δ-lactone (205) was isolated. Catalyst and substrate 

manipulation gave a variety of endo-/exo- and enantioselectivities. The highest observed 

selectivity was 42% ee (for the product formed in a minor amount). Though low 

enantioselectivities were observed, this was the first time that a substoichiometric catalyst 

was used with some success. 

Highly Enantioselective, Organocatalytic Halocyclizations  

Finally in 2010, Borhan published the first highly enantioselective and sub-

stoichiometric chlorolactonization (Scheme 42).
100

 

 

 

                                                                                                                                                 
100 Whitehead, D. C.; Yousefi, R.; Jaganathan, A.; Borhan, B. J. Am. Chem. Soc. 2010, 132, 3298-3300. 

Scheme 41. First Catalytic, Enantioselective Halolactonization with a Chiral Ammonium Derived from 

Cinchonidine. 

 

Scheme 42 Enantioselective Chlorolactonization Reported by Borhan. 
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Using low catalyst loadings of (DHQD)2PHAL (10 mol %), a stoichiometric amount of 

benzoic acid, and dichlorodiphenylhydantoin (DCDPH, 209) in an optimal mixture of 

chloroform and hexanes (1:1), the γ-lactone 210 was obtained in up to 90% ee. For a 

select number of substrates, decreasing the catalyst loading to 1 mol % gave relatively 

similar levels of enantioselection and yield, though with slightly diminished values (~3% 

ee). They also examined a variety of substituted hydantoin sources (Scheme 43). 

 

 

During reaction optimization, a trend emerged that highlighted the structural features of 

the chloronium source. The enantioselectivity increased as the steric bulk at the C5 

position increased. For example, the diphenyl analog 209 (DCDPH) performed 

significantly better than the dihydrogen analog (213). Additional testing with the mono-

methylated hydantoins (216 and 217) revealed that the chlorine on N1 does not readily 

transfer, giving only 7% product. They hypothesized that the electronic nature of the 

chlorinated nitrogen (N1) helps to activate the chlorine at N3 for transfer. This was 

further investigated with other substituents having similar electronic profiles.
101

 The 

                                                                                                                                                 
101 Yousefi, R.; Whitehead, D. C.; Mueller, J. M.; Staples, R. J.; Borhan, B. Org. Lett. 2011, 13, 608-611. 

Scheme 43. Effect of Halogen Source on Enantioselection and Yield. 
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authors proposed two possible modes of binding using 
1
H NMR studies of a 1:1 mixture 

of catalyst and hydantoin (Figure 21). 

 

 

When the two were mixed together, an AB quartet was observed, suggesting the two 

components could form a complex or tight-ion pair. Though the mechanism was not 

further examined, this publication served as the floodgate for the field of enantioselective 

halolactonizations, as other research groups quickly followed suit and investigated a 

variety of catalyst systems and halogen sources.  

Shortly after Borhan’s report, Jacobsen revealed the tertiary aminourea-catalyzed 

enantioselective iodolactonization (Scheme 44).
102

  

 

 

                                                                                                                                                 
102 Veitch, G. E.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2010, 49, 7332-7335. 

Figure 21. Proposed Mode of Binding in Enantioselective Chlorolactonization. 

 

Scheme 44. Urea/iodine Catalyzed Enantioselective Iodocyclization of δ-Unsaturated Acids. 
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Following a large screen of iodine sources, including NIS (95% yield, 92% ee), DIDMH 

(5% yield, 60% ee), and other substituted phthalimides, N-iodo-4-fluorophthalimide 

(221) was determined to be the most optimal source of I
+
. Surprisingly, an equimolar 

amount of iodine relative to the urea catalyst was necessary for high levels of 

enantioselection and yield. The authors speculate that the combination of the N-

iodoimides and iodine in the presence of a protic acid, reveal the active (presumably 

more selective) triiodide cation. The triiodide then facilitates transfer of the I
+
 source to 

the tertiary amine, regenerating iodine in the catalytic cycle. This is also observed in their 

proposed mechanism and transition state (Figure 22).  

 

 

The authors speculate that the fluoro-phthalmide 221 and I2 react to form the triiodide, 

which then transfers an I
+
 to the catalyst, regenerating I2 to continue the catalytic cycle. 

The proposed complex 224 was observed by NMR, as the shifts were characteristic to the 

combination of catalyst 223 with a strong acid. There is also computational support for 

the intermediacy of the tertiary amino-iodonium ion complex 225 when combined with 

the olefinic acid. A screen of approximately 10 substrates was completed using 15 mol% 

of the urea catalyst (223), delivering product in varying enantioselection (48% to 96%) 

after stirring at -80 ºC for 5 days.  

Figure 22. Proposed Transition State and Mechanism for Enantioselective Iodolactonization. 
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Almost simultaneously, Yeung
103

 and Fujioka
104

 reported on the asymmetric 

bromolactonizations using an amino-thiocarbamate catalyst (228) and C3-symmetric 

chiral trisimidazoline (231) respectively (Figure 23).  

 

 

Both groups were able to synthesize the adducts with good levels of enantioselection (up 

to 93% ee) and yield. For Yeung, the nosylamine was deemed necessary, even though a 

small increase in enantioselection (3% ee) was observed for the standard substrate, along 

with prolonged reaction times. They also completed a screen of catalysts to determine the 

importance of each functionality (thiocarbamate vs. thiourea or carbamate, -NH vs. -

NMe, etc). The large reaction scope of aliphatic and aromatic acids (>20 examples) was 

impressive, returning the lactones in 41-93% ee. Fujioka, similar to Borhan, used the 

                                                                                                                                                 
103 Zhou, L.; Tan, C. K.; Jiang, X.; Chen, F.; Yeung, Y.-Y. J. Am. Chem. Soc. 2010, 132, 15474-15476. 
104 Murai, K.; Matsushita, T.; Nakamura, A.; Fukushima, S.; Shimura, M.; Fujioka, H. Angew. Chem. Int. Ed. 2010, 

49, 9174-9177, S9174/1-S9174/129. 

Figure 23. First Catalytic and Highly Enantioselective Bromolactonizations. 
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halohydantoin to obtain the highest levels of enantioselection (up to 91% ee) when 10 

mol % of the chiral trisimidazoline was used. Additionally, they showed the tolerance of 

other heteroatoms in the lactone ring. Both also demonstrated that the reactions with NIS 

and NCS gave low yields and enantioselection.  

The Yeung laboratory has reported on a number of halocyclization reactions since 

their seminal publication (Figure 24). Using quinidine derived aminothiocarbamate 

catalysts, they were able to complete the bromoaminocyclizations of 1,1-disubstituted
105

 

and 1,2-disubstituted
106

 olefins, bromolactonizations of trans- and cis-olefins,
107

 and the 

synthesis of 3,4-dihydroisocoumarin analogs.
108

  

                                                                                                                                                 
105 Zhou, L.; Chen, J.; Tan, C. K.; Yeung, Y.-Y. J. Am. Chem. Soc. 2011, 133, 9164-9167. 
106 Chen, J.; Zhou, L.; Yeung, Y.-Y. Org. Biomol. Chem. 2012, 10, 3808-3811. 
107 trans-olefins: Tan, C. K.; Zhou, L.; Yeung, Y.-Y. Org. Lett. 2011, 13, 2738-2741. cis-olefins:Tan, C. K.; Le, C.; 

Yeung, Y.-Y. Chem. Commun. 2012, 48, 5793-5795. 
108 Chen, J.; Zhou, L.; Tan, C. K.; Yeung, Y.-Y. J. Org. Chem. 2011, 77, 999-1009. 
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Characteristics of all the transformations were high levels of enantioselection and yield. 

Additionally, a number of synthetically useful transformations for all of the bromolactone 

products have been demonstrated (Figure 25).  

 

Figure 24. Enantioselective Bromocyclization Work from the Yeung Laboratory.  
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These reactions, specifically with 1,1-disubstituted acids, served as precursors to a 

variety of other enantioselective halocyclization reactions, reported by the same groups 

and opened the door for advances by other research groups. 

 

Current limitations in enantioselective halocyclizations 

While a number of different reaction conditions for a variety of halogens and 

olefinic acids have been investigated, a few limitations to the methodology are apparent. 

Most of the reactions work well with disubstituted olefins (1,1- and 1,2-), while tri- and 

tetra-substituted olefins have limited representation. Additionally, there appears to be 

significant differences between halogens that prevent obstacles to the development of a 

“one size fits all” catalyst system, as most reports state that other halogens performed 

poorly under their specific reaction conditions.  

Very recently, the Fujioka lab reported on the highly enantioselective 

bromolactonization of tri- and tetrasubstituted olefins using their previously reported 

trisimidazoline (Scheme 45).
109

  

                                                                                                                                                 
109 Murai, K.; Nakamura, A.; Matsushita, T.; Shimura, M.; Fujioka, H. Chemistry – A European Journal 2012, 18, 

8448-8453. 

Figure 25. Synthetically Useful Transformations of Products from Halocyclization Reactions.  
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A number of substrates were examined, all isolated in 76-90% ee. As expected, only the 

exo-lactone (6- over 7-membered ring) product was isolated, though they did not examine 

the use of the nor-homolog which would have compared 5- over 6-membered ring 

selectivity. The tetrasubstituted olefinic acid (R = Me and Z = Me) was isolated in 85% 

ee and 65% yield, an encouraging result for such a hindered substrate. They also 

determined that the facial delivery of the bromine was the same for both the Z-olefin (in 

88% ee) and the E-olefin (in 47% ee), as debromination gave the same product with the 

same absolute configuration. This also suggests that the Z-olefin is the preferred 

geometry for the trisimidazoline catalyzed bromolactonization.  

One of the more impressive solutions for the use of different halogens in the same 

system was recently reported by the Toste group (Scheme 46).
110

  

 

                                                                                                                                                 
110 Wang, Y.-M.; Wu, J.; Hoong, C.; Rauniyar, V.; Toste, F. D. J. Am. Chem. Soc. 2012, 134, 12928-12931. 

Scheme 45. Fujioka Bromolactonization of Tri- and Tetra-substituted Olefins. 
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Amides (252) were exposed to the reaction conditions (5 mol % of catalyst 256 at room 

temperature) to provide bromo-benzoxazines (253) in high yield and enantioselection. A 

variety of substrates, including trisubstituted olefins and oxygen/nitrogen functional 

groups, were well tolerated. It is hypothesized that the halogen source remains insoluble 

until it reacts with the chiral phosphate, rendering it active and affording enantioselective 

delivery of the halogen. This tuning of the halogen source allows for the same reaction to 

be completed using iodine (255), instead of bromine, with little loss in enantioselectivity. 

  

Scheme 46. Tailored Cationic Halogenating Reagents in Halocyclization Reactions. 
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3.2 Bisamidine Catalyzed Enantioselective Iodolactonization 

 

Preliminary Results  

Having demonstrated the use of bisamidine catalysis to effect transformations using 

a chiral proton complex, we sought similar electrophiles that could be rendered chiral 

through bisamidine catalysis. We first combined a BAM ligand and an electrophilic 

source of halogen, seeking evidence for halogen complexation by 
1
H NMR (Figure 26).  

 

 

By combining PBAM (100) and 1 equivalent of N-iodosuccinimide in CDCl3, we hoped 

to observe a symmetrical shift in the catalyst signals (eq 87), representing an averaged 

structure that is complexing the halogen. Unfortunately, we only saw desymmetrization 

of the catalyst. An additional equivalent of the N-halosuccinimide returned symmetry to 

the catalyst (eq 88). It was determined that instead of halogen complexation, electrophilic 

aromatic substitution led to halogenation of the C3 and C3’ positions. Unfortunately, the 

Figure 26. Proposal for Bisamidine and Electrophilic Halogen Complexation. 
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catalysts were not stable to column chromatography. Though shifts in the 
1
H NMR 

suggesting complexation (without reaction) between the halogen and catalyst were not 

observed, we thought catalyst modification may be slower or thwarted at colder 

temperatures. To test the feasibility of a BAM•halogen system as a chiral halogen source, 

the iodolactonization of 1,1-disubstituted acids was examined (eq 89).  

 

Starting with conditions similar to those of Jacobsen (Scheme 44) reported earlier, both 

the free base of PBAM and the triflic acid salt of PBAM (PBAM•HOTf) gratifyingly 

imparted selectivity, in 19% and 46% ee respectively. We were initially surprised that the 

catalyst:acid salt gave higher enantioselection, though this may be rationalized through 

acid activation of the succinimide (to be discussed in detail in upcoming sections). 

Furthermore, the difference in enantioselection between the free base and acid salt 

highlighted a variable in the reaction that could be easily modified (acid equivalents, 

types of acids, etc.). Attempting to increase the enantioselection and reactivity, a catalytic 

amount of iodine was added in an attempt to form the triiodide species (eq 90). 
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The extra iodine activation did not help the reaction; instead, it slightly decreased the 

enantioselectivity. The extra iodine may increase the rate of the background 

(nonselective) reaction. Satisfied the reaction did not need additional iodine activation, 

we looked to further examine other reaction parameters that may have an influence on the 

enantioselection and yield.  

Though toluene has previously given the best results for BAM reactions, 1,2-

dichloroethane has given similar selectivities in some reactions. A variety of chlorinated 

solvents were tested, resulting in high yields (>95%) but low selectivity (<10% ee). 

Moving forward with toluene, we then looked at the effect the amount of catalyst present 

may have on the reaction (Table 21).  

 

 

Decreasing the catalyst loading from 20 to 10 mol % showed a favorable increase in 

enantioselection (entry 2). Further drops in the loading of catalyst (entries 3-4) only 

slowed the reaction and returned product with lower enantioselection (50% and 46% ee). 

We hypothesized that the uncatalyzed background reaction may be competing and 

Table 21. Initial Catalyst Loading Studies with PBAM.  
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contributing to the low enantioselection. However, running the reaction with no catalyst 

at -20 ºC showed very little conversion by 
1
H NMR after 48 hours of stirring (entry 5). 

These results may suggest that there are multiple pathways to the product, while the 

optimal control is achieved when 10 mol % of catalyst is used.  

To further examine the role of the achiral acid in the catalyst system, different 

equivalents of the PBAM:acid salts were examined (Table 22). 

 

 

The catalyst PBAM2HOTf (entry 2), where there are two equivalents of BAM to each 

equivalent of acid, lies on the continuum between the free base (entry 1) and 1:1 salt 

(entry 3) for selectivity. This suggests the catalyst may exist independently of each other, 

half as the free base and half as the 1:1 salt. Further increasing the equivalents of BAM to 

acid (1:2) had a negative effect on the enantioselection (entry 6) to 19% ee. Though we 

have previously demonstrated that higher ratios of acid relative to BAM
52

 can 

significantly influence diastereoselectivity (with small influence on enantioselectivity), 

we did not observe any trends for this system, as the 1:1.25 and 1:1.5 gave similar results 

Table 22. Role of Triflic Acid Equivalents. 
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to the 1:1 salt. It was quickly determined that the optimal ratio of BAM to acid was the 

1:1 salt.  

Catalyst and Achiral Acid Screen 

Surveying a small and diverse selection of other BAM catalysts at our disposal, we 

began a screen of catalysts and counterions (Table 23). 

 

 

The less basic catalysts H,QuinBAM (92) and 
4
MeOBAM (104) gave very low 

enantioselection (entries 2-3), while the sterically hindered 
7i

PrPBAM (111) and 

sterically hindered/electron rich 
8
MeOPBAM (114) gave no improvement in the 

enantioselection. Both the basicity of the catalyst and sterically available nature of the 

chiral pocket appears to be necessary for high enantioselection.  

 

Table 23. Catalyst Screen of BAM-Triflic Acid Salts.  
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In addition to the Brønsted basic catalyst, modification of the strong acid used to 

form the chiral proton complex can be varied. Though the proton would remain 

unchanged, the achiral counterion can be “modified” electronically or sterically. Use of a 

stronger acid encourages a more dissociated counterion, potentially changing the 

orientation of the amidine rings in the chiral pocket. In the same way, increasing the bulk 

of the achiral counterion may also influence the cavity size while functioning as a 

blocking element, offering a more selective catalyst-acid system. A large screen of 

achiral counterions, from their requisite acids, was tested in this system (Chart 3).  

 

 

 



109 

 

Starting with the HCl and HBr salts of PBAM (entries 2-3), we were surprised to see that 

these counterions gave relatively good levels of enantioselection compared to triflic acid. 

Switching to sulfonate counterions, derived from relatively weaker sulfonic acids, gave 

lower enantioselection than triflic acid (entries 4-6). For the weaker acids, we consider 

that starting carboxylate (entry 1), present in much higher amounts, may be a competitive 

counterion when the acid strengths are similar. The enantioselection is also similar to the 

selectivities observed when the free base of PBAM was used, furthering the hypothesis of 

counterion competition. The fluorosulfonates, analogous to triflic acid, (entries 7-9) all 

Chart 3. Catalyst Screen of BAM-Protic Acid Salts.  
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gave relatively similar enantioselection. It appeared that the strength of the acid was not 

the only determining factor in the enantioselection. However, when we looked at 

bistrifluoromethanesulfonamide (entry 12), we saw a significant increase to 84% ee. The 

less acidic trifluoromethanesulfonamide (entry 10) gave enantioselection similar to the 

free base of PBAM. Additionally, the carbon acid analog (entry 11) gave higher 

enantioselection than triflic acid, but lower than sulfonimide, while a cyclic triflimide 

counterion (entry 13) showed no significant increase in enantioselection or yield. The 

response of enantioselection to counterions with varying electronic and steric character 

suggests that the role of the achiral counterion, despite its presence down to 1 mol % (see 

below), is not simply to provide a resting state for the catalyst but instead to affect the 

catalyst reactivity and structure directly as it interacts with the substrate. 

Cognizant of the electronic and steric component each counterion presented, we 

wanted to look for trends that may help guide further reaction optimization. The 

enantioselection of the product was plotted against the strength of the acid (Chart 4).  
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Unfortunately, not all of the pKa values of the acids are known in the same solvent. The 

pKa values of the acids in MeCN are either known experimentally or extrapolated from 

the pKa measurement in dichloroethane.
111

 It appears that the enantioselection of the 

product slightly increases as the acid strength increases, plateauing at triflic acid. 

However, the results with triflic acid, triflimide, and the cyclic triflimide, which are all 

relatively equal in acid strength, show significant variation in the enantioselection. 

Though a direct relationship (albeit not linear) is evident between achiral acid pKa and 

enantioselection, it is unclear whether these values hold more useful predictive value. We 

                                                                                                                                                 
111   tt       o i a  T    aa e       aa at        e ets  V    al  ran   I    oppel  I       arlya s ayte         

Yagupolskii, Y. L.; Yagupolskii, L. M.; Bernhardt, E.; Willner, H.; Leito, I. J. Org. Chem. 2011, 76, 391-395. 

Chart 4. The pKa Values of Achiral Acids used in BAM Catalyzed Iodolactonizations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

achiral acid pKa H2O pKa DCE % ee product

expt. calc.*

MeCOOH 23.5 4.76 19

CSA 8.5 -2.7 29

TosOH 8.5 -2.7 20

FSO3H 1.5 -10.5 40

TfOH 0.7 -14 -11.4 53

Tf2NH 0.3 -11.9 84

CF2(CF2SO2)NH -0.8 -13.1 82

TfNH2 6.3 24

pKa MeCN

*calculated based on experimentally determined values in DCE
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have measured the pKa’s of various BAM-HX salts, but have not found this information 

to be terribly helpful.
112

 This may not be surprising since it is an attempt to correlate a 

thermodynamic measurement to a kinetically-controlled phenomenon. It appears that the 

role of the counterion in influencing enantioselection may be a combination of acid 

strength and sterics, where an appropriately dissociated and sterically defined counterion 

is necessary for highest levels of enantioselection. With this new phenomenon of 

enantioselection being so dramatically altered by an achiral counterion, we wanted to 

reexamine other reaction parameters that were previously investigated with the 

PBAM•HOTf catalyst system.  

We sought to establish optimal parameters of the reaction with the new catalyst 

system, by again looking at the catalyst loading and reaction concentration (Table 24).  

 

 

                                                                                                                                                 
112 Hess, A. S.; Yoder, R. A.; Johnston, J. N. Synlett 2006, 147-149. 

Table 24. Optimization Studies and Reaction Parameter Limits for PBAM•HNTf 
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As we had observed before with the triflic acid salt of PBAM, doubling the catalyst 

loading decreased the enantioselectivity of the reaction slightly (entry 2), while the 

difference between 15, 10, and 5 mol % was not significant. As expected, yields 

increased with greater catalyst loadings, suggesting that the reactions at lower catalyst 

loadings did not go to completion. Running the reaction at higher concentration (entry 5) 

resulted in increased yields while giving similar levels of enantioselection. Gratifyingly, 

decreasing the concentration to 0.05 M gave an increase in selectivity to 90% ee (entry 

6). Further decreasing the concentration returned the product in similar enantioselection, 

suggesting a plateau for the concentration effect (entry 7).  

A significant number of reactions have very precise parameters, or a small 

operating window for delivering maximum efficiency, for example small amounts of 

water might drastically change a reaction mechanism or pathway.
59

 In an attempt to 

establish the maximum operating parameters, the amount of NIS, water content, and acid 

equivalents were examined (Table 25).  

 



114 

 

When the amount of NIS was limited in the reaction (0.6 equivalents), a small drop in the 

enantioselection and yield was observed (entry 2), while increasing the amount of NIS to 

2.4 equivalents did not decrease enantioselection (entry 3). We believe this lends to the 

observation that the background reaction is very slow in comparison to the catalyzed, 

enantioselective pathway. We also confirmed that when iodine is used, only racemic 

product is isolated in low yield (entry 4). Small amounts of water in the reaction do not 

influence enantioselection (entry 5) while the presence of molecular sieves sharply 

decreases the enantioselection (entry 6), possibly due to the decreased efficiency in 

stirring. Small variations in the equivalents of the counterion (entries 7-8) were tolerated, 

as there was little dependence on the exact ratio. The reaction so far proves to be 

relatively tolerant of water and excess NIS, while the highest selectivity can be attributed 

to a careful balance of the reaction concentration and catalyst loading.  

Prior to this point, reactions were completed with an additional quantity of NIS (2 

equivalents of NIS/1 equivalent of catalyst) in the reaction to correct for possible 

Table 25. Study of Operating Parameters for the Iodolactonization Reaction. 
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iodination of the catalyst, as observed in initial experiments (Figure 26). Furthering this 

hypothesis, when 0.6 equivalents of NIS was used, the product was only isolated in 40% 

yield. This suggests that 0.2 equivalents of the NIS are consumed in other parts of the 

reaction. If the catalyst is iodinated under the reaction conditions, it is also necessary to 

determine which of the catalysts is most selective and active. To test this, PBAM was 

combined with 2 equivalents total of NIS at room temperature (Figure 27).  

 

 

Evidence of the di-iodination was gathered using 
1
H NMR by monitoring the 

disappearance of the quinoline singlet at the 3/3’ position. When one equivalent of NIS 

was added, a mixture of the non-/mono-/di-iodinated ligands was observed. After the 

Figure 27. Evidence by NMR of PBAM Iodination.  
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addition of a second equivalent, all three merged to the presumed di-iodinated ligand 259. 

The di-iodinated ligand was also observed by HRMS [(ESI): Exact mass calcd for 

C32H37I2N6 [M+H]
+
 759.1169, found 759.1134.] Unfortunately, attempts to purify this 

catalyst via flash column chromatography only returned impure material. Following a 

sodium thiosulfate and subsequent sodium hydroxide wash, the unpurified catalyst was 

immediately combined with 1 equivalent of bistriflimide to give the putative di-iodinated 

catalyst (259•HNTf2) which was submitted to the standard reaction conditions (eq 98). 

 

After stirring for 22 hours under normal reaction conditions at -20 °C with 259•HNTf2, 

75% ee material was recovered in 70% yield, which can be compared to 84% ee and 90% 

yield for PBAM•HNTf2 (not pretreated with NIS as above). The lower selectivity 

observed may be a result of the impurities that arise from the unpurified catalyst. 

Nevertheless, the reactivity and selectivity observed were only a small deviation from the 

ligand not pretreated with NIS, demonstrating that the active catalyst may exist anywhere 

on the iodinated ligand continuum (non-, mono-, or di-iodinated). With these 

observations, we moved forward using an excess of NIS relative to the catalyst for all 

reactions. Additionally, other reports for enantioselective halo-functionalization use an 

excess of the halogenating agents, possibly representing catalyst modification.  

A solvent screen was then completed with the new catalyst system to probe the 

association that the solvent and achiral counterion may have on each other, with the 

ultimate goal of increasing enantioselection (Table 26). 
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Unfortunately, none of the solvents tested increased the enantioselection of the adduct 

(entries 2-5). This may be due to the more favorable solubility profile for the reaction, 

which in turn increases the background rate. However, when a mixture of toluene and 

chloroform (3:1) was used, a slight drop in enantioselection to 79% was observed (entry 

6). This method of using a mixture of solvents could help to increase starting material 

solubility if some are only partially soluble in toluene. 

To further validate and exploit the observed achiral counterion effect, a diverse set 

of pyrrolidine-derived BAM catalysts from our library was reexamined (Chart 5).  

 

Table 26. Solvent Screen with PBAM•HNTf2 as the Optimal Catalyst.  
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The triflimide salts of the catalysts were easily synthesized by mixing equimolar amounts 

of triflimidic acid and the BAM free base in DCM, followed by removal of the solvent in 

vacuo. The more electron deficient analog 
6
F3C-PBAM (260) showed lower reactivity 

and selectivity, while increasing the electron density with a methoxy group at the same 

position (
6
MeO-PBAM, 261) gave the adduct in high enantioselection and yields (85% 

ee, 95% yield). As previously observed, 
8
MeO-PBAM (114) severely diminished the 

catalyst’s selectivity by disrupting the chiral pocket and delivering the product in 39% ee. 

In addition to the steric congestion 
8
MeO-PBAM contributes, the electronic congestion 

also is pertinent, as 
8
Et-PBAM (262) gave vastly better selectivity (70% ee). Sterically, 

the ethyl group and methoxy group are similar in size, but the difference in the 

electronics of the group may play a role in the enantioselection. Interestingly, 

Chart 5. Screen of Electronically and Sterically Diverse Pyrrolidine Bisamidine Ligands. 
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6,8
Me-PBAM (263) gave the adduct in lower enantioselection (60% ee) than 

8
Et-PBAM. 

However, when StilbPBAM (115), derived from stilbene diamine instead of cyclohexane 

diamine, was used high yield (89%) and a large increase in selectivity to 95% ee was 

observed. This catalyst was initially developed for the enantioselective additions of 

nitroalkanes to aliphatic imines (Scheme 47).
113

  

 

 

It was hypothesized that the smaller NCCN dihedral angle of the stilbene diamine (52º) 

relative to cyclohexane diamine (69º) may offer a smaller pocket for the aliphatic 

electrophile to bind.
114

 Though StilbPBAM gave promising results (55% yield, 92/93% 

ee), the optimal catalyst has since been identified as the less Brønsted basic 
4
MeO-

StilbBAM (266), delivering the aza-Henry adduct in >95% yield and >96% ee for both 

diastereomers. These adducts can be further manipulated to useful amide products by 

applying the Umpolung Amide Synthesis previously developed in our group.
87

  

                                                                                                                                                 
113 Schweiter, K. E.; Dobish, M. C.; Singh, A. S., Johnston, J. N. unpublished results 
114 Calculations of NCCN dihedral angle from: Kim, H.; Yen, C.; Preston, P.; Chin, J. Org. Lett. 2006, 8, 5239-5242. 

Scheme 47. Bromonitromethane Additions to Aliphatic Imines. 
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StilbPBAM: A More Reactive and Selective Catalyst 

To further validate the effect of the stilbene diamine backbone for the 

iodolactonization reaction, we submitted the free base and triflic acid salts of the catalyst 

to the reaction conditions (Chart 6).  

 

 

StilbPBAM in its free base form delivered the lactone 222 in 57% ee, while its triflic acid 

salt delivered product in 87% ee and 95% yield. These trends for the counterions were 

also observed for PBAM, suggesting that the influence of the backbone is a real effect 

and can be exploited for further increase in enantioselection.  

In previous halofunctionalization reports, a stoichiometric amount of acid was 

needed to maintain high reactivity and selectivity. Experiments were completed to 

determine the optimal ratio of chiral catalyst to achiral acid (Table 27). 

 

Chart 6. StilbPBAM and PBAM Comparison: Effect of Diamine Backbone on Enantioselection 
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The reaction with the 2:1 catalyst (chiral base:achiral acid) gave the adduct in 76% yield 

and 83% ee (entry 2). As expected, the selectivity of the reaction lies somewhere on the 

continuum between the free base and 1:1 salt, as there is approximately 50% of each 

catalyst in solution. The reactivity for the 1:2 catalyst complex (entry 5) was sluggish and 

returned nearly racemic material. For the 2:1 catalyst complex, we hypothesize that both 

basic nitrogen sites are protonated rendering the catalyst inactive. Alternatively, very 

little change was observed when the 1:1.5 salt was used (entry 4). This may be due to the 

fact that there is still 5 mol % of the active catalyst available while the other 5 mol % is 

inactive. This is additional evidence that the achiral acid is important in the transition 

state and doesn’t function to only provide a resting state for the catalyst, as an excess 

shuts down all reactivity.  

Further reaction optimization with the ligand revealed an interesting trend in 

catalyst loading (Table 28). 

 

Table 27. Changing the Ratio of the Chiral, Brønsted Basic Catalyst to the Achiral Acid.  
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Running the reaction under more dilute conditions delivered the adduct (222) in slightly 

higher yield and similar enantioselection (entry 2). Further decreasing the catalyst loading 

(entries 3-5) required longer reaction times, but a slight increase in enantioselection was 

observed when the catalyst loading was lowered to 2 mol %. Running the reaction at 1 

mol % catalyst loading (entries 5-6) delivered highly enantioenriched material, 

independent of the reaction concentration. This effect of increase in enantioselection with 

decrease in catalyst loading provides some interesting insight to the reaction mechanism, 

possibly suggesting that there may be multiple catalysts involved in the most selective 

transition state. 

To probe whether the lower catalyst loading was a result of higher polymorphs of 

the catalyst, we completed a nonlinear effect study (Graph 1).  

 

Table 28. Final Reaction Optimization of the Most Selective Catalyst System. 
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When catalysts with varying enantioselection (20%, 40%, 60%, 80% ee) were used (0.05 

M, 10 mol % StilbPBAM•HNTf2), a non-linear effect was not observed (R
2
=0.99).

115
 Of 

course, this does not preclude the possibility of dimers/oligomers, as they may not have 

significantly different reactivity relative to their homochiral counterparts. The dimeric 

nature of the free base StilbPBAM in the solid state was observed in a crystal structure 

obtained during purification (Figure 28).  

 

                                                                                                                                                 
115 Satyanarayana, T.; Abraham, S.; Kagan, H. B. Angew. Chem. Int. Ed. 2009, 48, 456-494. 

Graph 1. StilbPBAM Nonlinear Effect.  
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One molecule of catalyst is highlighted in gray (carbon) and blue (nitrogen), while the 

other molecule is light blue for clarity. Though the solid state of the catalyst is not a 

direct representation of the catalyst in solution, it presents possible interactions that may 

be observed in solution. Interestingly, the dihedral angles (NCCN) of both molecules of 

catalyst were measured to be 62º and 69º, larger than the 52º that was previously 

calculated for this diamine in another system.
56

 This increased flexibility in the diamine 

backbone may be the reason for the increase in reactivity and enantioselectivity.  

Substrate Scope for 1,1-Disubstituted Olefinic Acids 

Before a full substrate scope could be examined in this transformation, the 

synthesis of the starting materials needed to be completed, as not all of the keto-acids 

were readily available (Chart 7).  

 

Figure 28. Crystal structure of StilbPBAM dimer. 
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The opening of glutaric anhydride with organocuprates to give the desired ketoacids was 

carried out using a modified procedure from Rovis
116

 and Ishihara.
117

 The use of the 

organocuprate was incorporated to minimize the double addition, which results in an 

undesired alcohol. The yields for this step are variable (from 8-53%), but most were run 

only once and in some instances the yield was sacrificed for purity. The ketoacids were 

then submitted to the Wittig reaction with much better success. Most of the yields to form 

the olefin were over 70%, while the lower yields were a result of semipure starting 

                                                                                                                                                 
116 Lee, E. E.; Rovis, T. Org. Lett. 2008, 10, 1231-1234. 
117 Uyanik, M.; Yasui, T.; Ishihara, K. Bioorg. Med. Chem. Lett. 2009, 19, 3848-3851. 

Chart 7. Synthesis of Desired Olefinic Acids for Idolactonization. 
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ketoacid or incomplete conversion. Further optimization could increase the yields for 

both steps, but the route provided enough material (from inexpensive starting materials) 

to establish a substrate scope.  

Though previous experiments demonstrated the reactivity of the iodolactonization 

using only 1 mol % catalyst, initial experiments for the substrate screen established that 5 

mol % catalyst loading was most general across the board (Chart 8). 

 

Chart 8. Substrate Scope in Enantioselective Iodolactonization of 1,1-Disubstituted Acids. 
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Encouraged by the results with the formation of the δ-lactone, we first looked at 

variations in the ring size. Removing one carbon from the chain gave the γ-lactone 

(271b) with low enantioselection (67% ee), possibly due to a more reactive species and 

background reaction. Conversely, the addition of a carbon (desired ε-lactone) severely 

hindered reactivity, giving only trace product (271c) after four days of stirring, though 

the racemic product formed with only slightly diminished reactivity. Halogens at the 

para-position (271d and 271e) returned product with high enantioselection and yield. 

However, moving both halogens to the meta-position (271f and 271g) severely hindered 

the reaction progress, stalling after 48 hours of stirring, but still maintaining the high 

selectivity (96 and 97% ee). A similar trend in reactivity and selectivity was observed 

with the para-trifluoromethyl analog (271h), as product was recovered in 96% ee and 

only 42% yield (low conversion). Running the same reaction with a higher catalyst 

loading only slightly increased the yields, while giving the same selectivity. The 

reactivity was recovered when the electron withdrawing substituent was replaced with an 

electron donating substituent (MeO-) to give lactone 271i in higher yields (87%) but with 

lower enantioselection (74% ee). Methyl substituents at the para- and meta-position 

(271j and 271k) returned product that was >91% yield and >96% ee, while no difference 

in reactivity was observed, a stark contrast to the meta-halogen substrates. Moving the 

methyl group one position to the sterically encumbering position completely stymied the 

reactivity, as only a trace amount of the desired lactone (271l) was observed after three 

days of stirring. The same drop in reactivity was observed with the 1-naphthyl analog 

(271n), but reactivity was restored for the 2-naphthyl lactone 271m, as product was 
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isolated in 96% yield and 96% ee. The aliphatic analogs performed well if the olefin was 

doubly substituted. Commercially available 6-hexenoic acid was significantly less 

selective, affording the desired lactone (271q) with only 33% ee. The n-butyl derivative 

(271o) was isolated with 95% yield and 89% ee, while increasing the steric bulk to the 

isopropyl derivative provided lactone 271p in 86% yield and 81% ee. Though the scope 

improves on the previously reported iodolactonizations, further optimization on some of 

the lower performing substrates was necessary. 

Lower performing substrate optimization 

The para-methoxy analog produced product in 74% ee under standard conditions, 

which still represents a large increase from previously reported examples (Figure 29).  

 

 

In the (DHQD)2PHAL catalyzed chlorolactonization,
100

 the para-methoxy substrate 272 

was obtained in quantitative yield and essentially no enantioselectivity. The authors 

hypothesized that the para-methoxy substrate promotes the chloronium ring opening, 

while the closure of the acid occurs independently of the catalyst. This higher rate of 

background reaction was also observed for the γ-bromolactonization
103

 and δ-

iodolactonization.
102

 One successful approach to increasing the enantioselectivity for 

para-substituted electron rich acids was demonstrated in the trisimidazoline catalyzed δ-

Figure 29. The Problematic para-Methoxy Substrate. 
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bromolactonization.
104

 The authors decreased the temperature from -40 ºC to -78 ºC and 

added extra halonium source to deliver the adduct in 74% yield and 80% ee [where the 

standard substrate (R=H) was isolated in 99% yield and 91% ee].  

We investigated different reaction conditions in an attempt to increase the 

selectivity for the para-methoxy substrate (Table 29).  

 

 

Decreasing the catalyst loading to 2 mol % (entry 2) was ineffective while increasing the 

catalyst loading to 15 mol % (entry 3) gave similar results at 70% yield and 72% ee. 

Running the reaction more dilute did not increase the enantioselection (entry 4). We then 

looked at other commercial sources of I
+
. Unfortunately, the commercial availability for 

sources of electrophilic iodine are limited, while there are a number of available sources 

of chlorine and bromine (Cl
+
>Br

+
>>>I

+
). Of the milder sources, 1,3-diiodo-5,5-

dimethylhydantoin (DIDMH) was previously explored by Jacobsen (with added iodine) 

to give the lactone in 5% yield and 60% ee. In our system with the standard olefinic acid 

Table 29. Increasing Enantioselection for the Lactonization for the para-Methoxy Acid. 
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(Ar = Ph) and using 1.1 equivalents of DIDMH (entry 5), we recovered product in 89% 

yield and 92% ee, a slight drop from NIS. Since DIDMH has two equivalents of I
+
, 

decreasing the equivalents to 0.6 (entry 6) increased the enantioselection to 96% ee, 

similar to the optimal conditions with NIS. Gratifyingly, switching the source of iodine 

from NIS to DIDMH for the para-methoxy substrate (entry 7) increased the 

enantioselection to 85% ee without a loss in yield. This selectivity is one of the highest 

reported for a para-methoxy acid thus far.  

The pentenoic acid substrate also proved problematic for Jacobsen in the initial 

report.
102

 Two observations were made when looking at the pentenoic acid, or nor-

homolog, derivatives (Scheme 48).  

 

 

When their initial conditions using 15 mol % of iodine additive were applied, the adduct 

(276) was obtained in 86% yield and only 31% ee. Decreasing the amount of iodine 

additive to 0.1 mol % gave the adduct in 45% yield and 90% ee. The low yield was 

corrected when an additional equivalent of the N-iodo-4-fluorophthalimide (221) was 

added. It was believed that the low enantioselectivity was a result of the more reactive 

lactone formation. This was confirmed when the gem-dimethyl analog was submitted to 

the reaction and the product formed in 0% ee. Additionally, the pentenoic acid analog 

Scheme 48. Jacobsen’s Modification of Conditions for Pentenoic Acid Derivatives. 
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was isolated in the opposite absolute configuration as the hexenoic acid analogs, 

suggesting a slightly different model for enantioinduction.  

We sought to increase the enantioselection by looking at similar reaction 

optimization without dramatic changes in reaction conditions (Table 30). 

 

 

Earlier experiments that probed the catalyst loading and reaction concentration using 

PBAM•HNTf2 as a catalyst (not listed) were not fruitful. Similar experiments with 

StilbPBAM were completed to determine the role the catalyst may have on the substrate. 

Decreasing the reaction temperature to -78 ºC (entry 2) slightly increased 

enantioselection to 70% ee, while sacrificing time (4 days) and yield (60%). 

Unfortunately, using DIDMH did not increase enantioselection for the γ-lactone (entry 

3), delivering product in 89% yield and 58% ee. It is still believed that the background 

rate is the primary source of low enantioselection. An interesting observation is that the 

same sense of enantioselection was observed, suggesting that the mechanism for the γ-

lactone is very similar to that of the δ-lactone formation.  

 

Table 30. Attempts to Increase the Enantioselection of the γ-Iodolactonization Product.  
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Mechanistic Observations 

A few observations about the bisamidine catalyzed enantioselective 

iodolactonization reaction have been made thus far:  

1. The acidity and sterics of the achiral counterion both influence enantioselection. 

2. Lower catalyst loadings (to 1 mol %) and more dilute concentrations (0.05M) 

give product with higher enantioselection.  

3. A non-linear effect has not yet been observed.  

4. The BAM:HNTf2 ratio (1:1) is important to maintaining enantioselection, where 

a 1:2 ratio delivers product as the racemate. 

The influence of the solvent and reaction conditions on the enantioselection has been 

extensively studied, in addition to the catalyst system. One component that has not been 

fully explored is the starting carboxylic acid.  

To determine the importance of the carboxylic acid in the reaction, different 

functional groups were investigated in the iodocyclization reaction (Chart 9). 

 

Chart 9. BAM Catalyzed Cyclizations of other Functional Groups. 
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Attempts were made to access the lactone directly from ester 277, though no conversion 

of the ester was observed by TLC (eq 111). Using a better leaving group such as the tert-

butyl ester may better facilitate product formation. The alcohol, using both PBAM and 

StilbPBAM, gave the etherification product 279, but as racemic material. The lactam 281 

was formed in low yield and with low selectivity, with neither BAM catalyst showing a 

preference. This suggests that the carboxylic acid is necessary for enantioselection, 

possibly through a pre-coordination with the catalyst prior to iodine delivery.  

Early on in the study, minor observations suggested that the enantioselection may 

change as the reaction progresses. To probe this, we wanted to look at the enantiomeric 

excess of the product as a function of reaction time. Initial experiments using 2 mol % of 

catalyst were quenched at 1, 2, 4, and 24 hours. However, significant conversion (
1
H 

NMR) to product was observed at just 1 hour, and it was realized that quenches at earlier 

time points were needed. Additionally, monitoring reaction completion by 
1
H NMR was 

inconsistent due to the partial solubility of the starting material in the aqueous layer 

(existing as sodium salt) after the sodium thiosulfate quench. The reactions were set up 

again on a 0.2 mmol scale and quenched at 15 minute intervals for the first hour, then at 2 

and 4 hours, while one was allowed to reach full conversion after three days (Table 31).  
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Interestingly, we saw that the enantiomeric excess of the product increased as the reaction 

progressed. Further calculations (using the isolated yield and enantioselection of each 

reaction) showed the amount of each lactone enantiomer present and suggested that all of 

the minor enantiomer (S-configuration) was produced in the first 15 minutes of the 

reaction! In other words, the reaction that occurs after the first 15 minutes returns product 

that is >99% ee. There are few explanations that can account for this behavior, but 

intrigued by this phenomenon, we attempted to isolate the variable.  

As the reaction progresses, there are variables that are dynamic and may contribute 

to the drastic change in enantioselection observed from the beginning to end of the 

reaction. 

1. Acid concentration changes as starting material is consumed. 

2. Catalyst loading increases from an initial concentration of 2 mol % (cat 115). 

3. Succinimide (N-H) is not available or limited for the first few catalyst turnovers. 

4. Product concentration is the inverse of the olefinic acid concentration. 

 

Table 31. Monitoring Enantiomeric Excess over Reaction Progress.  
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We wanted to only look at changes in the first 10% of the reaction (gray area), 

which become evident when plotted as a function of conversion (Graph 2).  

 

 

The graph shows that in the first 10% of the reaction, there is little change in the amount 

of olefinic acid available (100% to 90%) and in catalyst loading (2 mol % to 2.2 mol %). 

For the first catalyst turnovers, succinimide concentration is low, as the 

catalyst:succinimide ratio is 2:0. At 10% conversion, the ratio decreases to 2:10 

(catalyst:succinimide), presenting a very different combination of reagents. Another 

component that undergoes significant change is the product, which is not present for the 

first catalyst turnovers in the reaction.  

Experiments were completed to determine the influence of succinimide on the 

reaction. First the catalyst (5 mol %) and NIS (10 mol %) were stirred for 16 hours at -20 

ºC, to represent the course of a reaction (eq 115).  

Graph 2. Mapping Out Reaction Progress and Variables that Change Most in First 10% of Reaction. 
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If the catalyst is modified or other interactions are necessary, this allows time for those to 

occur. After adding the starting acid and remainder of NIS (1.0 equiv), material was 

isolated in 97% ee, which was similar to normal conditions. Second, a reaction was 

completed with 50 mol % of succinimide (representing the 50% conversion mark) and 

this resulted in no change in enantioselection (eq 116).  

 

This suggests that the coproduct succinimide has little influence on enantioselection in 

the reaction. Other reactions completed with depleted (0.6 equiv) or excess (2.4 equiv) 

NIS showed little change in enantioselection. Having thoroughly investigated the role of 

NIS and succinimide, we looked at the role the product may have on enantioselection.  

The first turnover of catalyst takes place without any product present (0:1, product: 

ligand), where the fifth turnover of the catalyst is completed with approximately a 5:1 

ratio of product:ligand. To simulate this, the reaction was spiked with an iodolactone 

product (Chart 10).  
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To ensure an accurate calculation of enantioselection, we used a different lactone than 

what would arrive from the starting acid, as well as one that would not overlap in the 

HPLC assay. Gratifyingly, one of our more problematic substrates (para-methoxy) and 

best substrates (para-trifluoromethyl) paired nicely for ease of HPLC analysis as all four 

enantiomers were separated. This allowed us to complete the reaction without having to 

separate the two lactones. Under our standard conditions, we were able to obtain the 

para-methoxy adduct (271i) in 74% ee. Surprisingly, when we combined the starting acid 

(270i) and the para-trifluoromethyliodolactone (271h), we saw a significant increase in 

enantioselection for the para-methoxylactone 271i to 89%. When the reaction was 

completed with the opposite enantiomer of the para-trifluoromethyliodolactone (epi-

271h), we saw a similar influence on enantioselection, returning the product in 84% ee. 

The reaction was also done in the presence of rac-271i, where the product was 

determined to form in 84% ee (after calculations). This influence of the product on the 

Chart 10. Role of the Product in Influencing Enantioselection.  
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most selective pathway paves the way for additional research into the involvement of the 

product in the transition state. Additionally, a thorough investigation into the lactone’s 

simplest functionality, the ester, may reveal a more general additive that can be used to 

increase enantioselection for this, and other reactions. 

Development of Reagent-Substrate Assembly Models for Enantioselection 

The catalyst is bifunctional, acting as both a Brønsted acid and a Brønsted base. 

Although these experiments clearly outline a conceptually unique catalyst system with 

practical importance, the catalyst-reagent-substrate assemblies depicted in Figure 30 

illustrate two possible models for enantioselection. 

 

 

The assumptions common to each of these include: 1) anti-addition to the alkene, 2) a 

1:1:1:1 complex of Tf2NH:chiral ligand:NIS:substrate, 3) a coplanar arrangement 

between the quinolinium ring and NIS based on double hydrogen bonding to the NIS 

carbonyl, and 4) orientation of the iodine toward the chiral backbone. It is almost certain 

that a linear relationship along the succinimide-iodine-alkene axis does not exist, but 

twisting of the quinolinium ring toward the interior would help. Each of these assemblies 

Figure 30. Proposed Reagent-Substrate Assemblies.  
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also hypothesizes a hydrogen bond (or ion pair) between the quinoline and the substrate 

carboxylic acid, supported by the necessity of the carboxylic acid for high selectivity. It is 

also possible that this pre-coordination of the carboxylate is important for high facial 

selectivity in the iodine delivery step. Assembly 282-E depicts the substrate orientation 

with an equatorial placement of the phenyl, whereas 282-A differs primarily by the axial 

orientation of the phenyl. No specific orientation of the counterion is depicted relative to 

the substrate, but it may provide either a more enveloped pocket or provide helpful 

hydrogen bond acceptor contacts. Each of these assemblies leads to the observed 

enantiomer but are not exclusive of alternatives. Although we can’t establish exactly the 

reason for the achiral counterion control or enantioinduction, we do identify and 

characterize the unique composition and behavior of the catalyst system described as an 

important first step. 

Application to endo-Iodolactonization 

Having demonstrated the 6-exo-iodocyclization of 1,1-disubstituted δ-unsaturated 

acids and equipped with a knowledge of the subtleties this reaction offers, we sought to 

apply it to 1,2-disubstituted γ-unsaturated acids. Using this class of acids, two lactones 

can form, either in a 5-exo or 6-endo fashion. We sought a catalyst system that would not 

only deliver the desired adduct in high enantiomeric excess, but also with high 

regioselectivity. 

Initial reaction optimization was completed on this system using our BisAMidine 

library of catalysts (Table 32).  
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The previously optimized conditions were first applied at -20 ºC using StilbPBAM (115) 

as the catalyst in toluene (0.05 M). A mixture (88:12) of the δ- and γ-lactone 284 was 

isolated in 60% yield, while the endo-lactone formed in 88% ee and the exo-lactone 

formed in <30% ee. Unfortunately, the γ-lactone enantiomers did not consistently resolve 

by chiral HPLC and could not be determined with certainty. However, enantioselection is 

clearly low (less than 30% in most cases). The slight preference (2:1) for the endo-

lactone was also observed when DMAP was used for the racemic reaction. PBAM gave 

similar selectivities for the endo-/exo-lactones, with the major lactone isolated in 88% ee, 

Table 32. Catalyst Screen for endo-Iodolactonization. 
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but the catalyst was significantly less reactive. A variety of stilbene derived BAM 

catalysts were synthesized and screened in the reaction. When 
8
Et-StilbPBAM (285) was 

used, a sharp drop in reactivity and enantioselectivity was observed, with product isolated 

in 20% yield and 61% ee. We hypothesize that this steric bulk blocks the chiral pocket 

and slows the reaction while crowding the binding pocket which decreases the 

enantioselection. The more electron rich catalyst, 
6,7

MeOStilbPBAM (286), presented the 

desired adduct in 66% yield and 81% ee. The electronically similar, but sterically less 

hindered 
6,7

Dioxol-StilbPBAM (287) gave the product in 92% ee and 66% yield. 

Gratifyingly, when the methoxy or oxygen substituent at the 7-position was removed 

(
6
MeO-StilbPBAM, 288), we isolated the product in 70% yield and 92% ee for the major 

lactone which formed as a 90:10 ratio.  

Using the optimal 
6
MeO-StilbPBAM catalyst, other reaction parameters were 

examined (Table 33). 

 

 

Table 33. Reaction Optimization for the endo-Iodolactonization. 
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Increasing the concentration of the reaction corresponded to an increase in the yield, with 

no loss in enantioselection (entry 2). Attempts to further increase the enantioselection by 

running the reaction at -78 ºC only returned trace amounts of product (entry 3). The 

reaction was run in d8-toluene at -20 ºC without catalyst (entry 4) to establish if there is a 

significant background rate, possibly accounting for the low selectivity of the exo-

lactone. No product was observed, possibly due to the limited solubility of NIS without 

the catalyst present. Further increasing the catalyst loading to 10 mol % led to a decrease 

in enantioselection (entry 5), while decreasing the catalyst loading to 2 mol % was 

favorable (entry 6), delivering the major product in 94% ee, with a 91:9 ratio of the endo-

:exo-lactone.  

To assess the generality of the reaction, a substrate scope of varying electronics and 

sterics was completed (Chart 11). 

 



143 

 

Methyl groups were tolerated at all positions of the aromatic ring (entries 2-4) with very 

little difference in yield or selectivity between the para- and meta-substituted rings (91% 

and 92% ee). The ortho-methyl analog gave the lactone (284d) in slightly lower 

enantioselection (84% ee), but good yield after 3 days of stirring, a stark contrast to the 

Chart 11. Substrate Scope for the endo-Iodolactonization. 
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result with 1,1-disubstituted olefins (trace product after days of stirring). This may result 

from catalyst-NIS binding to the homobenzylic carbon instead of the benzylic carbon, 

making the ortho-position substitution less cumbersome. The starting acids of the para-

phenyl and 2-naphthyl were very insoluble in toluene and returned very little product 

(entries 5-6). However, when they were run in a toluene/trifluorotoluene mixture (4/1), 

both the para-phenyl lactone (284e) and the 2-naphthyl lactone (284f) were isolated in 

good yield (89% and 72% yield) and moderate enantioselection (75% ee and 76% ee). 

(Reactions run in only trifluorotoluene returned product that was significantly lower in 

enantioselection.) The enantioselection for the electron rich rings was heavily dependent 

on the position of the substituent, as the para-methoxy gave lactone 284g in 78% ee and 

72% yield (entry 7) while the meta-methoxy gave lactone 284h in 90% ee and 95% yield 

(entry 8). For the para-methoxy analog, none of the γ-lactone was observed by 
1
H NMR, 

a trend observed with other electron rich aromatic rings. The para-halogenated rings 

maintained high levels of enantioselection (entries 9-11), but were slower and produced 

variable amounts of the γ-lactone. The para-fluoro lactone 284i (entry 9) was isolated in 

87% yield (93/7) and 96% ee, while the para-chloro lactone 284j (entry 10) was isolated 

in 91% yield (81/19) and 93% ee. The decrease in enantioselection and endo-/exo- ratio 

continued with the para-bromo lactone 284k (entry 11), isolated in 66% yield and 90% 

ee for the major lactone while producing 23% of the undesired lactone. When the 

chlorine was moved to the meta-position, the δ- and γ-lactone 284l were both produced 

equally (entry 12). Fortunately, the endo-lactone 284l was still enriched with one 

enantiomer (88% ee). The solubility of the starting meta-chloro acid and the meta-chloro 

product might have played a role in the low lactone ratio. The para-trifluoromethoxy acid 
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delivered lactone 284m in 79% yield and 95% ee (entry 13), the highest for any of the 

substrates. The cinnamyl lactone 284n (entry 14) and 2-thiophene lactone 284o (entry 15) 

performed similarly to the para-methoxy analog, delivering the adducts in lower 

enantioselection (67% and 29%, respectively) and only one regioisomer. Surprisingly, 

moving the sulfur one position (284p, entry 16) increased enantioselection to 85%, while 

still producing only the desired isomer in 79% yield. Pleased with the scope and 

enantioselection for the endo-lactone, we wanted to further investigate the driving force 

for the exo-lactone formation. 

Throughout our studies we saw that the regioselectivity of the product, though 

>85% in most cases, was dependent on the aromatic ring of the acid. The electron rich 

rings gave mostly the endo-lactone. Additionally, as the halogens moved from fluorine to 

bromine, the amount of exo-lactone production also increased. Based on the work of 

Denmark, it has been suggested that these systems allow for catalyst control of the endo-

/exo-product formation (Scheme 49).
118

  

 

 

When acid 283 was combined with NIS in dichloromethane, the ratio of lactones 284 was 

25:1. Adding Ph3P=S as a catalyst increased the ratio to 91:1, while Br2 increased the 

                                                                                                                                                 
118 Denmark, S. E.; Burk, M. T. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20655-20660. 

Scheme 49. Lewis Base Catalysis and Control of endo-/exo-Selectivity in Halolactonizations 
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ratio of lactone 289 to 400:1. Running the same reaction with NIS in dichloromethane at -

45 ºC, significantly less control was observed when only NIS was used (9.5:1). Using 

(Me2N)3P=O as a catalyst imparted some selectivity for the endo-lactone, though it was 

not much different from using only I2. Though the catalyst imparts some control over the 

regioselectivity, it is also apparent that the halonium source also plays a role, with NBS 

offering more opportunity for control. This was also demonstrated in the endo-

bromolactonization by Yeung where most examples gave exclusively the endo-lactone.
107

  

To assess our catalyst system in the bromolactonizations, we combined the para-

chloroacid 204 with NBS under the standard BAM conditions (Scheme 50).  

 

 

The resulting bromo-lactone 290 from the bisamidine catalyst formed as the endo-lactone 

(>96:4 by 
1
H NMR analysis of crude reaction mixture) while the iodo-lactone 284j was 

isolated as an 81:19 mixture of lactones (Chart 11, entry 10). Unfortunately, the 

bromolactone was isolated with very low enantioselection (11%), lending credibility to 

the hypothesis that the catalyst/reagent systems are not general for all halonium sources. 

This also suggests that NBS, when used as the halonium source, imparts some preference 

for the endo-lactone.  

Scheme 50. BAM Catalyzed endo-Bromolactonization. 
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To further quantify the effect the electronics of the aromatic ring have on the 

reaction, Hammett plots were constructed to assess both enantioselection and 

regioselection for the trans-1,2-disubstituted olefins (Graph 3).  

 

 

When the enantiomeric ratio of seven para-substituted lactones were plotted against the 

functional group 
+
 values, no correlation was observed (R

2
 = 0.23). Though this data 

does not provide a quantitative statement about the electronic effects, it does suggest that 

a carbocation is not involved in the enantiodetermining step of lactone formation. This is 

contrary to the work of Borhan, where they gathered evidence for a carbocation 

Graph 3. Hammett Plots for Enantiomeric Ratio and Regioisomeric Ratio. 
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intermediate in the chlorolactonization.
119

 The lack of trend may also be due to other 

factors that are not considered, such as solubility of starting materials and products. 

However, we believe that for most cases, the catalyst is overriding the electronic effects 

of the aromatic ring for the enantiodetermining step (halogen delivery). 

More interestingly, when the regioisomeric ratio was plotted against 
+
 values, a 

linear free energy relationship for the points was evident. The more electron rich analog 

(para-methoxy 284g) showed trace amounts of the exo-lactone by 
1
H NMR while the 

para-bromo lactone 284k delivered the highest amount of exo-lactone for the series. The 

negative -value (slope) supports a carbocation-like intermediate in the course of the 

reaction, even more specifically, the regiodetermining step. This also contributes to the 

hypothesis that the exo-/endo-selectivity is more dependent on the halogen source and 

electronics of the aromatic ring than lies under control of the catalyst.  

Further mechanistic studies and catalyst optimization may reveal strategies to 

control the endo-/exo-selectivity, as well as allow for enantiocontrol in the exo-lactone 

formation. 

 

  

                                                                                                                                                 
119 Yousefi, S. R. Mechanistic Insights into the Origin of Enantioselecvitity of the Organocatalytic Asymmetric 

Chlorolactonization. Ph.D. Thesis, Michigan State University, 2012. 
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Future Work 

Tri- and Tetra-Substituted Olefinic Acids 

Applying this methodology to tri- and tetra-substituted olefins has been briefly 

explored (Scheme 51).  

 

 

Unfortunately, the tetra-substituted olefin could not be synthesized from 269a under a 

variety of Wittig conditions. The tri-substituted olefin (291) was synthesized in high yield 

but with low E:Z selectivity (~1.3:1). This mixture of olefins was then submitted to the 

reaction conditions to deliver iodolactone 292 in low yield (20% ee) and moderate ee (40-

64% ee). Though selectivity was seen, it appears that one olefin undergoes a faster 

cyclization, as the starting material was isolated as an enriched mixture of olefins. A 

more reactive system may be able to deliver the adducts in higher yields while tuning the 

catalyst pocket could increase the enantioselection. 

Cascade Reactions  

In 2007, Ishihara reported on the use of chiral non-racemic, nucleophilic 

phosphoramidites as promoters of enantioselective polycyclizations (Scheme 52).
120

 

 

                                                                                                                                                 
120 Sakakura, A.; Ukai, A.; Ishihara, K. Nature 2007, 445, 900-903. 

Scheme 51. Initial Attemps to Study Tri-Substitued Olefinic Acids.  
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They hypothesized that instead of activating the halogen source using a Lewis acid, they 

could activate NIS with a chiral nucleophile to give enantioselective delivery of a 

halogen (NBS performed poorly). When NIS was combined with a phosphoramidite of 

type 295 a number of polyenes were cyclized to the tricyclic compounds. The use of 

chlorosulfonic acid was used to ensure full completion at the final cyclization (between 

aromatic ring and final double bond). Perhaps one of the more impressive examples was 

accomplished with 4-(homofarnesyl)toluene (293), to give the tetracyclic compound 

(294) in 52% yield and 99% ee. Though elegant, one of the drawbacks is the use of 100 

mol % of the chiral promoter. The use of substoichiometric catalyst (a chiral 

phosphonous acid) was demonstrated in the protocyclization of 2-geranylphenols using a 

chiral Lewis base assisted Brønsted acid catalyst system.
121

  

We envision that a cyclization may also be accomplished using our chiral proton 

catalyst–NIS reagent system by extending the olefinic acid by one unit.  

 

                                                                                                                                                 
121 Sakakura, A.; Sakuma, M.; Ishihara, K. Org. Lett. 2011, 13, 3130-3133. 

Scheme 52. Ishihara’s Enantioselective Halocyclization of Polyprenoids. 
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However, one of the immediate drawbacks of this approach is the synthesis of the starting 

di-olefinic acid 296. While we were exploring this synthesis, we also looked at a simpler 

system, using an ortho-olefin styrene analog, knowing that similar olefins were 

previously activated by our BAM-NIS catalyst system (Scheme 53). 

 

 

The starting olefin was made using a Wittig reaction from 2-formylstyrene. 

Unfortunately, it was isolated as 1.4:1 ratio of a mixture of olefins. Submitting acid 298 

to the reaction conditions only produced the mono-cyclic ring products 299 and 300. By 

analysis of the 
1
H NMR, no bis-closure (301) was seen. Other factors may have 

contributed to the lack of cascade, but further efforts to make 297 may reveal that it is a 

suitable substrate for this system.  

Enantioselective capture of carbon dioxide 

Realization that the carboxylic acid functionality is crucial for enantioselectivity, 

we sought to extend it to carbonic acids. A quick literature search confirmed that as 

starting materials, these are not easily isolated due to stability concerns. We envisioned 

Scheme 53. Initial Attempts at a Cascade Reaction: Looking for Double Ring Closure. 
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forming the carbonate in situ with an alcohol and carbon dioxide. Fortunately, this has 

been previously demonstrated (Scheme 54).
122

 

 

 

Minakata has reported on the trapping of olefinic and propargylic alcohols and amines by 

forming 
t
BuOI in situ (from NaI and 

t
BuOCl) under relatively neutral reaction conditions. 

They acknowledge that the equilibrium for carbon dioxide trapping heavily favors the 

starting materials, but iodination of the carbonic acid intermediate changes the 

equilibrium to favor the products. High yields and conversions were reported for most 

substrates while other iodine reagents (IPy2BF4, NIS, I2, etc.) did not provide the desired 

product.  

No enantioselective variant of the above reaction has been reported, so we sought 

to carry out a similar reaction using our chiral proton catalyst-NIS reagent system 

(Scheme 55). 

 

                                                                                                                                                 
122 Minakata, S.; Sasaki, I.; Ide, T. Angew. Chem. Int. Ed. 2010, 49, 1309-1311. Takeda, Y.; Okumura, S.; Tone, S.; 

Sasaki, I.; Minakata, S. Org. Lett. 2012, 14, 4874-4877. 

Scheme 54. Carbon Dioxide Capture Using Alcohols and Amines. 
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Combining 3-methyl-butene-1-ol (302) in toluene with (PBAM)4(HNTf2)5 under an 

atmosphere of carbon dioxide, the desired adduct was isolated in 37% ee and 43% yield. 

Further reaction optimization was completed with a visiting undergraduate researcher 

from Kalamazoo College.
123

 A number of experiments looking at conversion, yield and 

enantioselectivity were completed. One of the most promising results came when 

6,7
MeOStilbPBAM•HNTf2 (5 mol %) was used in the reaction, delivering product in 

moderate enantiomeric excess (73% ee) but low yield (22%). Additionally, the observed 

yield and conversion were variable between reactions; it was hypothesized that one 

contributing factor is the timing of the introduction of CO2. Though more reaction 

optimization needs to be completed (to increase yields and enantioselection), this work 

serves as a framework to build the methodology.  

Additional modes of catalyst binding 

The observed effect of the enantiocontrol imparted by the achiral counterion is in 

fact very interesting. However, the influence of a relatively dissociated achiral counterion 

in a transition state is reason to explore modifications outside of the chiral pocket (Figure 

31).  

                                                                                                                                                 
123 Dobish, M. C.; Wang, W.; Johnston, J. N. unpublished results. 

Scheme 55. Preliminary Results for the Enantioselective Iodocarboxylation of Homoallylic Alcohols.  
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We envision making the stilbene derived catalyst from the commercially available bis-

pyridine stilbene diamine (2- or 3-substituted). The addition of additives which differ in 

sterics and electronics while chelating with the pyridine rings can in turn modify the 

catalyst pocket. This approach may lead to a more selective system in other 

transformations where the size and electronics of the chiral pocket need to be tuned.  

 

  

Figure 31. Catalyst Modification Leading to Additional Chelation Control in Diamine Backbone. 
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CHAPTER IV 

 

IV. EXPERIMENTALS

 

Glassware was flame-dried under vacuum for all non-aqueous reactions. All reagents 

and solvents were commercial grade and purified prior to use when necessary. 

Tetrahydrofuran (THF), dichloromethane (CH2Cl2) and toluene was dried by passage 

through a column of activated alumina as described by Grubbs.
124

 This was done to 

accurately quantitate the amount of water in each reaction. All organic layers collected 

from extractions were dried over MgSO4 unless otherwise indicated.  

Thin layer chromatography (TLC) was performed using glass-backed silica gel (250 

μm) plates and flash chromatography utilized 230–400 mesh silica gel from Sorbent 

Technologies. UV light, and/or the use of potassium iodoplatinate and potassium 

permanganate solutions were used to visualize products. 

IR spectra were recorded on a Nicolet Avatar 360 spectrophotometer and are reported 

in wavenumbers (cm
-1

). All compounds were analyzed as neat films on a NaCl plate 

(transmission). Nuclear magnetic resonance spectra (NMR) were acquired on a Bruker 

DRX-500 (500 MHz), Bruker AV-400 (400 MHz) or Bruker AV II-600 (600 MHz) 

instrument. Chemical shifts are measured relative to residual solvent peaks as an internal 

                                                                                                                                                 
124 Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518-

1520. 



156 

standard set to δ 7.26 and δ 77.0 for CDCl3 and δ 2.50 and δ 39.5 for d6-DMSO. Mass 

spectra were recorded on a Thermo Electron Corporation MAT 95XP-Trap mass 

spectrometer by use of chemical ionization (CI), electron impact ionization (EI) or 

electrospray ionization (ESI) by the Indiana University Mass Spectrometry Facility. A 

post-acquisition gain correction was applied using sodium formate or sodium iodide as 

the lock mass. Optical rotations were measured on a Perkin Elmer-341 polarimeter. 

Chiral HPLC analysis was conducted on an Agilent 1100 series instrument using the 

designated ChiralPak column. 
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General Procedure for Arylsulfonylalkyl Indoles:
 125

 2-Methylindole (0.42 g, 3.2 

mmol), toluenesulfinic acid (0.56 g, 3.6 mmol) and toluenesulfonic acid monohydrate 

(0.29 g, 1.5 mmol) were combined in a round-bottomed flask and suspended in ethyl 

acetate or CH2Cl2 (10 mL). The aldehyde (3.0 mmol) was added and the pot stirred for 

2.5 h. The reaction was quenched with satd aq NaHCO3 (7 mL), extracted with solvent, 

dried (Na2SO4) and passed through a plug of decolorizing carbon and Celite. 

Concentration provided crude material that could be purified by flash column 

chromatography. 

 

 

2-Methyl-3-(tosyl(4-(trifluoromethyl)phenyl)methyl)-1H-indole (133d). 2-Me-indole 

(420 mg, 3.20 mmol) and para-(trifluoromethyl)benzaldehyde (522 mg, 3.00 mmol) were 

combined in CH2Cl2 according to the general procedure. Precipitation from CH2Cl2 with 

hexanes yielded a yellow solid (1.2 g, 95%). IR (film) 3372, 2918, 1618 cm
-1

; 
1
H NMR 

(400 MHz, CDCl3) δ 7.98 (br s, 1H), 7.92 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 7.9 Hz, 1H), 

7.59 (d, J = 8.3 Hz, 2H), 7.41 (d, J = 8.3 Hz, 2H), 7.22 (d, J = 7.8 Hz, 1H), 7.15-7.09 (m, 

2H), 7.06 (d, J = 8.1 Hz, 2H), 5.66 (s, 1H), 2.33 (s, 3H), 2.02 (s, 3H); 
13

C NMR (100 

MHz, CDCl3) ppm 144.4, 137.2, 135.6, 135.5, 135.0, 130.3, 129.1, 128.6, 126.9, 125.3, 

125.3, 121.8, 120.9, 120.3, 110.4, 103.7, 69.0, 21.5, 11.9; HRMS (ESI): Exact mass calcd 

for C24H21F3NO2S [M+H]
+
 444.1245, found 444.1256.  

                                                                                                                                                 
125 Adapted from: Palmieri, A.; Petrini, M. J. Org. Chem. 2007, 72, 1863-1866. 
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2-Methyl-3-(o-tolyl(tosyl)methyl)-1H-indole (133e). 2-Me-indole (420 mg, 3.20 mmol) 

and ortho-tolualdehyde (360 mg, 3.00 mmol) were combined in ethyl acetate and 

refluxed for 2.5 h according to the general procedure. Flash column chromatography 

(SiO2, 10-33% ethyl acetate in hexanes) yielded a tan solid (790 mg, 68%). Rf = 0.2 (20% 

EtOAc/hexanes); IR (film) 3341, 3055, 1460 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 8.54 

(d, J = 7.7 Hz, 1H), 7.85 (br s, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.48 (d, J = 8.2 Hz, 2H), 

7.35-7.29 (m, 1H), 7.21-7.17 (m, 2H), 7.10 (d, J = 8.0 Hz, 2H), 7.09-7.04 (m, 2H), 7.00-

6.99 (m, 1H), 5.67 (s, 1H), 2.35 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H); 
13

C NMR (100 MHz, 

CDCl3) ppm 144.2, 136.8, 136.1, 135.5, 134.8, 132.2, 130.9, 129.2, 129.2, 128.9, 127.9, 

127.7, 125.9, 121.3, 120.0, 119.8, 110.2, 103.4, 65.9, 21.5, 19.7, 12.1; HRMS (ESI): 

Exact mass calcd for C24H23NNaO2S [M+Na]
+
 412.1347, found 412.1356. 
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3-(Furan-2-yl(tosyl)methyl)-2-methyl-1H-indole (133f). 2-Me-indole (420 mg, 3.20 

mmol) and 2-furaldehyde (288 mg, 3.00 mmol) were combined in CH2Cl2 according to 

the general procedure. The tan solid was used without further purification (930 mg, 85%). 

IR (film) 3366, 1595 cm
-1

; 
1
H NMR (600 MHz, CDCl3) δ 8.03 (s, 1H), 7.69 (d, J = 8.0 

Hz, 1H), 7.44-7.43 (m, 3H), 7.22 (d, J = 8.0 Hz, 1H), 7.12-7.10 (m, 3H), 7.05 (dd, J = 

8.0, 8.0 Hz, 1H), 6.67 (d, J = 3.4 Hz, 1H), 6.38 (dd, J = 3.2, 1.8, 1H), 5.67 (s, 1H), 2.35 

(s, 3H), 2.12 (s, 3H); 
13

C NMR (150 MHz, CDCl3) ppm 146.1, 144.3, 143.0, 135.8, 

135.3, 135.0, 129.1, 128.9, 127.1, 121.6, 121.0, 120.0, 111.9, 110.8, 110.2, 102.0, 64.5, 

21.6, 11.9; HRMS (CI): Exact mass calcd for C21H18NO3S [M-H]
-
 366.1002, found 

366.1019. 
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2-Methyl-3-(1-tosylpentyl)-1H-indole (133g). 2-Me-indole (420 mg, 3.20 mmol) and 

valeraldehyde (258 mg, 3.00 mmol) were combined in ethyl acetate and refluxed 

according to the general procedure. Flash column chromatography (SiO2, 10-30% ethyl 

acetate in hexanes) yielded a tan solid (700 mg, 62%). Rf = 0.3 (20% EtOAc/hexanes); IR 

(film) 3352, 2958, 1461 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 7.92 (br s, 1H), 7.63 (d, J = 

7.5 Hz, 1H), 7.37 (d, J = 7.6 Hz, 2H), 7.23 (d, J = 7.7 Hz, 1H), 7.10-7.03 (m, 4H), 4.20 

(d, J = 8.0 Hz, 1H), 2.56-2.45 (m, 2H), 2.38 (s, 3H), 1.87 (s, 3H), 1.34-1.17 (m, 4H), 0.80 

(t, J = 7.0 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) ppm 143.9, 135.8, 135.1, 129.1, 128.9, 

121.3, 120.7, 119.9, 110.3, 103.0, 65.6, 29.3, 25.4, 22.3, 21.5, 13.8, 11.2; HRMS (CI): 

Exact mass calcd for C21H25NNaO2S [M+Na]
+
 378.1504, found 378.1516. 
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2-methyl-3-(1-tosylethyl)-1H-indole (133h). See general procedure for aryl-indoles. Trituration 

from DCM with hexanes yielded a yellow solid (200 mg, 22%); IR (film) 3348, 3054, 2917, 

2849, 1596 cm
-1

; 
1
H NMR (400 MHz, DMSO)  10.96 (br s, 1H), 7.54 (d, J = 7.7 Hz, 1H), 7.44 

(d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 7.9 Hz, 1H), 6.99 (dd, J = 7.2, 7.7 Hz, 

1H), 6.91 (dd, J = 7.5, 7.3 Hz, 1H), 4.67 (q, J = 7.0 Hz, 1H), 2.34 (s, 3H), 1.95 (s, 3H), 1.77 (d, J 

= 7.2 Hz, 3H); 
13

C NMR (100 MHz, DMSO) 143.8, 136.0, 135.2, 135.1, 129.3, 128.4, 120.2, 

119.8, 118.6, 112.8, 110.6, 102.8, 58.4, 54.9, 21.0, 13.0, 11.2 ppm; HRMS (ESI): Exact mass 

calcd for C18H19NO2S [M+Na]
+
 336.1034, found 336.1041. 
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Methyl 2-(2-methyl-1H-indol-3-yl)-2-tosylacetate (133i). 2-Me-indole (420 mg, 3.20 

mmol) and methyl 2-hydroxy-2-methoxyacetate (360 mg, 3.00 mmol) were combined in 

CH2Cl2 according to the general procedure. Flash column chromatography (SiO2, 10-50% 

ethyl acetate in hexanes) yielded an off-white solid (850 mg, 80%). Rf = 0.3 (50% 

EtOAc/hexanes); IR (film) 3385, 2953, 1743 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 8.29 

(br s, 1H), 7.53 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 8.1 Hz, 1H), 7.21 (d, J = 8.1 Hz, 1H), 

7.12 (d, J = 8.1 Hz, 2H), 7.08-7.05 (m, 1H), 6.97-6.93 (m, 1H), 5.30 (s, 1H), 3.74 (s, 3H), 

2.36 (s, 3H), 2.14 (s, 3H); 
13

C NMR (100 MHz, CDCl3) ppm 165.9, 144.9, 136.9, 134.8, 

134.4, 129.7, 129.2, 126.9, 121.6, 120.2, 119.6, 110.4, 99.0, 68.6, 52.9, 21.6, 11.7; 

HRMS (ESI): Exact mass calcd for C19H19KNO4S [M+K]
+
 396.0672, found 396.0678. 
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tert-Butyl 2-(2-methyl-1H-indol-3-yl)-2-tosylacetate (133j). 2-Me-indole (420 mg, 3.20 

mmol) and tert-butyl 2-oxoacetate (390 mg, 3.00 mmol) were combined in CH2Cl2 

according to the general procedure. Flash column chromatography (SiO2, 20% ethyl 

acetate in hexanes) yielded a colorless solid (390 mg, 33%). Rf = 0.2 (33% 

EtOAc/hexanes); IR (film) 3379, 2978, 1734 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 8.04 

(br s, 1H), 7.53 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 8.1 Hz, 1H), 7.22 (d, J = 8.2 Hz, 1H), 

7.13 (d, J = 8.1 Hz, 2H), 7.09-7.06 (m, 1H), 6.98-6.94 (m, 1H), 5.20 (s, 1H), 2.36 (s, 3H), 

2.21 (s, 3H), 1.45 (s, 9H); 
13

C NMR (100 MHz, CDCl3) ppm 164.3, 144.6, 136.9, 134.9, 

134.9, 129.5, 129.1, 121.3, 120.0, 119.8, 110.4, 99.1, 83.6, 69.9, 27.8, 21.5, 11.7; HRMS 

(ESI): Exact mass calcd for C22H26NO4S [M+H]
+
 400.1583, found 400.1574. 
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2-Phenyl-3-(phenyl(tosyl)methyl)-1H-indole (133l). 2-Phenyl-indole (618 mg, 3.20 

mmol) and benzaldehyde (318 mg, 3.00 mmol) were combined in ethyl acetate according 

to the general procedure. The solid that precipitated before workup was washed with 

ethyl acetate to provide the desired product as a brown solid (690 mg, 53%). IR (film) 

3338, 3058, 1494 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 8.27-8.26 (m, 1H), 8.10 (s, 1H), 

7.80 (dd, J = 7.3, 1.8, 2H), 7.40-7.30 (m, 7H), 7.25-7.22 (m, 2H), 7.19 (d, J = 8.2 Hz, 

2H), 7.00-6.98 (m, 2H), 6.95 (d, J = 8.0 Hz, 2H), 5.79 (s, 1H), 2.33 (s, 3H); 
13

C NMR 

(100 MHz, CDCl3) ppm 143.7, 139.4, 135.9, 133.0, 131.3, 130.2, 128.9, 128.8, 128.7, 

128.5, 128.4, 128.3, 126.9, 123.6, 122.7, 120.7, 110.8, 105.2, 70.0, 21.5; HRMS (CI): 

Exact mass calcd for C28H24NO2S [M+H]
+
 438.1522, found 438.1501. 
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methyl 3-(phenyl(tosyl)methyl)-1H-indole-2-carboxylate (133m). See general 

procedure for aryl-indoles. Flash column chromatography (SiO2, 20% ethyl acetate in 

hexanes) yielded a white solid (330 mg, 27%); Rf = 0.21 (33% EtOAc/hexanes); IR (film) 

3337, 2360, 2341, 1706 cm
-1

; 
1
H NMR (400 MHz, CDCl3) d 9.00 (br s, 1H), 8.43 (d, J = 

8.3 Hz, 1H), 7.69-7.66 (m, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.36-7.21 (m, 6H), 7.15 (s, 1H), 

7.12 (d, J = 8.1 Hz, 2H), 3.76 (s, 3H), 2.35 (s, 3H); 
13

C NMR (100 MHz, CDCl3) 161.3, 

144.2 ,135.8, 135.8, 133.1, 130.1, 129.0, 128.7, 128.4, 128.2, 126.2, 125.9, 125.0, 124.8, 

121.5, 115.6, 111.9, 67.0, 51.8, 21.6 ppm; HRMS (ESI): Exact mass calcd for 

C24H21NO4S [M+Na]
+
 442.1089, found 442.1089. 
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3-(phenyl(tosyl)methyl)-2-(trimethylsilyl)-1H-indole (133n). See general procedure for 

aryl-indoles. Flash column chromatography (SiO2, 5-10-15% ethyl acetate in hexanes) 

and a crystallization yielded a white crystalline solid (50 mg, 8%); Rf = 0.37 (20% 

EtOAc/hexanes); IR (film) 3381, 3063, 2954, 1597, 1494 cm
-1

; 
1
H NMR (400 MHz, 

CDCl3) d 8.47-8.44 (m, 1H), 8.06 (br s, 1H), 7.67-7.65 (m, 2H), 7.44 (d, J = 8.2 Hz, 2H), 

7.36-7.34 (m, 1H), 7.30-7.22 (m, 5H), 7.08 (d, J = 8.1 Hz, 2H), 5.73 (s, 1H), 2.33 (s, 3H), 

0.21 (s, 9H); 
13

C NMR (100 MHz, CDCl3) 144.1, 138.7, 138.2, 135.9, 133.4, 130.4, 

129.2, 129.0, 128.3, 128.3, 127.3, 123.7, 122.8, 120.5, 116.7, 110.9, 73.0, 21.5, -0.67 

ppm; HRMS (ESI): Exact mass calcd for C25H27NO2SSi [M+K]
+
 472.1169, found 

472.1149. 

  

 



167 

  

tert-butyl 2-methyl-3-(phenyl(tosyl)methyl)-1H-indole-1-carboxylate (133o). See 

general procedure for aryl-indoles. Flash column chromatography (SiO2, 10-20% ethyl 

acetate in hexanes) yielded an orange solid (323 mg, 20%); Rf = 0.27 (20% 

EtOAc/hexanes); IR (film) 2979, 2933, 1733, 1458 cm
-1

; 
1
H NMR (400 MHz, CDCl3) d 

8.06 (d, J = 8.3 Hz, 1H), 7.77 (d, J = 7.9 Hz, 1H), 7.70 (dd, J = 7.9. 2.2 Hz, 2H), 7.47 (d, 

J = 8.2 Hz, 2H), 7.34-7.31 (m, 3H), 7.25-7.22 (m, 1H), 7.17 (d, J = 7.43 Hz, 1H), 7.14-

7.11 (m, 2H), 5.75 (s, 1H), 2.36 (s, 3H), 2.25 (s, 3H), 1.65 (s, 9H); 
13

C NMR (100 MHz, 

CDCl3) 150.1, 144.4, 137.7, 135.8, 135.7, 132.6, 129.5, 129.2, 128.7, 128.5, 128.2, 

127.7, 123.7, 122.7, 121.4, 114.9, 111.4, 84.3, 68.8, 28.2, 21.5, 13.9 ppm; HRMS (ESI): 

Exact mass calcd for C28H29NO4S [M+Na]
+
 498.1715, found 498.1723. 
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3-methyl-2-(phenyl(tosyl)methyl)-1H-indole (133p). 3-Methylindole (420 mg, 3.2 

mmol), toluenesulfinic acid (560 mg, 3.6 mmol), toluenesulfonic acid monhydrate (290 

mg, 1.5 mmol) were combined in a round bottom flask and suspended in 

dichloromethane (10 mL). The benzaldehyde (320 mg, 3.0 mmol) was added and the pot 

was stirred for 4 h. The reaction was quenched with sat aq NaHCO3 (7 mL), extracted 

with dichloromethane, dried over Na2SO4 and passed through a plug of decolourishing 

carbon and Celite to give a brown solid. Flash column chromatography (SiO2, 10-20% 

ethyl acetate in hexanes) yielded a gray solid (230 mg, 21%); Rf = 0.3 (16% 

EtOAc/hexanes); IR (film) 3395, 3060, 2919, 1597, 1494, 1455 cm
-1

; 
1
H NMR (400 

MHz, CDCl3)  9.15 (s, 1H), 7.59 (dd, J = 7.3, 3.5 Hz, 2H), 7.53 (d, J =8.2, 2H), 7.44 

(dd, J =7.8, 2.1 Hz, 2H), 7.36-7.35 (m, 3H), 7.23 (t, J =7.8 Hz, 1H), 7.14 (d, J =8.1 Hz, 

2H), 7.10 (t, J =7.8 Hz, 1H), 5.61 (s, 1H), 2.36 (s, 3H), 2.95 (s, 3H); 
13

C NMR (100 

MHz, CDCl3) 144.9, 136.2, 134.9, 131.7, 129.8, 129.5, 128.8, 128.4, 127.9, 124.9, 122.8, 

119.4, 118.9, 112.6, 111.3, 67.9, 21.6, 8.1 ppm; HRMS (ESI): Exact mass calcd for 

C23H21NO2SK [M+K]
+
 414.0930, found 414.0931. 
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2,5-Dimethyl-3-(phenyl(tosyl)methyl)-1H-pyrrole (133q). 2,5-Dimethylpyrrole (304 

mg, 3.20 mmol) and benzaldehyde (318 mg, 3.00 mmol) were combined in CH2Cl2 

according to the general procedure. Flash column chromatography (SiO2, 20-33% ethyl 

acetate in hexanes) yielded a tan solid (300 mg, 30%). Rf = 0.2 (20% EtOAc/hexanes); IR 

(film) 3368, 2923, 1597 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 7.66 (br s, 1H), 7.56-7.53 

(m, 2H), 7.48 (d, J = 8.2, 2H), 7.31-7.27 (m, 3H), 7.14 (d, J = 8.1 Hz, 2H), 6.26 (d, J = 

2.0 Hz, 1H), 5.10 (s, 1H), 2.37 (s, 3H), 2.20 (s, 3H), 1.89 (s, 3H); 
13

C NMR (100 MHz, 

CDCl3) ppm 143.8, 135.6, 134.1, 130.0, 129.0, 128.9, 128.4, 128.1, 126.0, 125.9, 110.2, 

106.6, 69.7, 21.5, 12.9, 10.6; HRMS (ESI): Exact mass calcd for C20H21KNO2S [M+K]
+
 

378.0930, found 378.0937. 
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(1R,2R)-N
1
-(4-chloropyridin-2-yl)cyclohexane-1,2-diamine (108SI). A flame dried 

microwave vessel (10-20 mL) was charged with Pd(dba)2 (58 mg, 0.10 mmol), rac-

BINAP (125 mg, 0.200 mmol) and NaOtBu (1.44 g, 15.0 mmol) in a glove box. To the 

vessel was added cyclohexyl diamine (1.98 g, 10.0 mmol), 2,4-chloropyridine (740 mg, 

5.00 mmol) and PhCF3 (10 mL), followed by heating in a Biotage Initiator at 70 °C for 

30 min. The reaction was filtered through Celite and concentrated to afford a crude 

brown oil. Flash column chromatography (SiO2, 3-10-25% MeOH in DCM) yielded a tan 

solid (0.66 g, 58%); Rf = 0.18 (10% MeOH/DCM); IR (film) 3258 (br), 2931, 2857, 

1593, 1513, 1480 cm
-1

; 
1
H NMR (400 MHz, CDCl3) d 7.92 (d, J = 5.5 Hz, 1H), 6.54 (dd, 

J = 5.5, 1.7 Hz, 1H), 6.46 (d, J = 1.5 Hz, 1H), 4.60 (d, J = 8.8 Hz, 1H), 3.38-3.29 (m, 

1H), 2.55 (ddd, J = 10.1, 10.1, 4.1 Hz, 1H), 2.09-1.97 (m, 4H), 1.75-1.73 (m, 2H), 1.41-

1.12 (m, 4H); 
13

C NMR (100 MHz, CDCl3) ppm 160.0, 149.1, 144.9, 116.5, 107.0, 58.3, 

56.1, 35.0, 32.7, 25.3, 25.0; HRMS (ESI): Exact mass calcd for C11H17ClN3 [M+H]
+
, 

226.1111, found 226.1107. 
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(1R,2R)-N
1
-(6-(anthracen-9-yl)pyridin-2-yl)-N

2
-(4-chloropyridin-2-yl)cyclohexane-

1,2-diamine (
4
Cl-108). A flame dried microwave vessel (2-5 mL) was charged with 

Pd(dba)2 (5 mg, 0.009 mmol), rac-BINAP (10 mg, 0.016 mmol) and NaOtBu (29 mg, 

0.30 mmol) in a glove box. To the vessel was added mono-protected diamine (45 mg, 

0.20 mmol), 2-(anthracenyl)-6-bromopyridine (66 mg, 0.20 mmol) and PhCF3 (1.5 mL), 

followed by heating in a Biotage Initiator at 80 °C for 40 min, 100 °C for 15 min, 120 °C 

for 30 min and 140 °C for 30 min (to be optimized at a later time). The reaction was 

filtered through Celite/Silica and concentrated to afford a crude brown oil. Flash column 

chromatography (SiO2, 10-20% EtOAc in Hexanes) yielded a yellow solid (79 mg, 83%); 

Rf = 0.39 (20% EtOAc in Hexanes); IR (film) 3051, 2930, 2855, 1592, 1500, 1454 cm
-1

; 

1
H NMR (400 MHz, CDCl3) d 8.53 (s, 1H), 8.08-8.05 (m, 2H), 7.86 (d, J = 5.5 Hz, 1H), 

7.79 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 8.8 Hz, 1H), 7.55-7.45 (m, 4H), 7.39 (m, 1H), 6.73 

(d, J = 6.9 Hz, 1H), 6.44 (d, J = 8.3 Hz, 1H), 6.38 (dd, J = 5.5, 1.7 Hz, 1H), 5.86 (d, J = 

1.4 Hz, 1H), 5.64 (d, J = 6.5 Hz, 1H), 4.67 (d, J = 7.5 Hz, 1H), 3.88-3.80 (m, 1H), 3.71-

3.63 (m, 1H), 2.20-2.16 (m, 2H), 1.78-1.65 (m, 2H), 1.46-1.27 (m, 5H), 1.12-1.02 (m, 

1H); 
13

C NMR (100 MHz, CDCl3) ppm 159.1, 158.7, 155.8, 148.5, 143.7, 137.2, 136.2, 

131.4, 129.9, 129.8, 128.4, 128.3, 127.0, 127.7, 126.3, 126.1, 125.3, 125.3, 125.0, 115.7, 

112.2, 107.9, 106.9, 57.2, 54.3, 33.2, 32.1, 24.9, 24.4; HRMS (ESI): Exact mass calcd for 

C30H28ClN4 [M+H]
+
 479.2002, found 479.1993.  
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(1R,2R)-N
1
-(6-(anthracen-9-yl)pyridin-2-yl)-N

2
-(4-(pyrrolidin-1-yl)pyridin-2-

yl)cyclohexane-1,2-diamine (108). A solution of catalyst (192 mg, 0.400 mmol) and 

pyrrolidine (0.8 mL, 8 mmol) in a microwave vessel was heated in a Biotage Initiator at 

180 °C for 2 h, diluted with DCM, and washed with sat aq Na2CO3, water and Brine. 

Flash column chromatography (SiO2, 0.5/3-10 % acetic acid/MeOH in DCM) yielded a 

solid that was washed with 3M NaOH and dried to give a yellow solid (0.13 g, 63%); IR 

(film) 2927, 2852, 1606, 1522, 1484, 1458 cm
-1

; 
1
H NMR (400 MHz, CDCl3) d 8.48 (s, 

1H), 8.02 (d, J = 8.5, 2H), 7.86 (d, J = 8.8, 1H), 7.82 (d, J = 9.0), 1 H), 7.78 (d, J = 6.0, 

1H), 7.49 (t, J = 7.8, 1H), 7.45-7.41 (m, 2H), 7.38-7.33 (m, 2H), 6.67 (d, J =7.0, 1H), 

6.43 (d, J =8.4, 1H), 5.85 (dd, J =6.0, 2.0, 1H), 5.51 (d, J = 6.7, 1H), 5.25 (d, J =1.8, 1H), 

4.46 (d, J = 5.3, 1H), 3.82-3.74 (m, 1H), 3.70-3.63 (m, 1H), 3.15 (t, J = 6.56, 4H), 2.34-

2.32 (m, 1 H), 2.15-2.12 (m, 1 H), 1.95-1.90 (m, 4H), 1.67-1.24 (m, 8H); 
13

C NMR (100 

MHz, CDCl3) ppm 159.6, 158.9, 155.9, 153.2, 147.7, 137.0, 136.7, 131.6, 130.4, 130.0, 

128.4, 128.3, 127.1, 126.9, 125.4, 125.3, 125.1, 125.0, 115.5, 106.7, 99.79, 88.53, 56.3, 

55.1, 47.0, 33.0, 32.7, 29.8, 25.4, 24.9, 24.6; HRMS (ESI): Exact mass calcd for 

C34H36N5 [M+H]
+
 514.2971, found 514.2957. 
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ThioureaBAM (120) [(1-(3,5-bis(trifluoromethyl)phenyl)-3-((1R,2R)-2-(quinolin-2-

ylamino)cyclohexyl)thiourea]. A round bottomed flask fitted with a stir bar was charged 

with the mono-quinoline diamine (100 mg, 414 μmol), THF (2 mL) and 3,5-

trifluoromethyl-phenylisothiocyanate (76 μL, 414 μmol) was added slowly. The reaction 

was stirred at room temperature for 16 h. The reaction mixture was concentrated to an oil. 

Flash column chromatography (SiO2, 10-20-40% ethyl acetate in hexanes) of the residue 

yielded a white solid (0.17 g, 80%). Rf = 0.3 (20% EtOAc in Hexanes); [α]
20

D  +360 (c 

0.54, CHCl3); IR (film) 3271, 3049, 2936, 2860, 1619, 1532, 1472 cm
-1

; 
1
H NMR (400 

MHz, CDCl3) δ 8.91 (br s, 1H), 7.76 (d, J = 8.8 Hz, 1H), 7.56 (d, J = 7.9 Hz, 1H), 7.45 

(br s, 1H), 7.39 (br s, 2H), 7.20 (dd, J = 7.5, 7,5 Hz, 1H), 7.16 (br s, 1H), 6.57 (d, J = 8.8 

Hz, 1H), 4.80 (br s, 1H), 4.23 (br s, 2H), 2.56 (br s, 1H), 2.22-2.04 (m, 2H), 1.82 (br s, 

2H), 1.47 (br s, 4H); 
13

C NMR (150 MHz, CDCl3) 180.6, 156.5, 145.5, 139.9, 138.1, 

132.0 (q, 
2
JCF = 28.2 Hz, -CF3), 130.3, 127.8, 125.1, 123.1, 123.0, 122.8 (q, 

1
JCF = 273 

Hz, -CF3), 122.3, 117.8, 113.1, 62.2, 54.3, 32.8, 31.6, 25.0, 24.3 ppm; 
19

F NMR (376 

MHz, CDCl3) -61.2; HRMS (ESI): Exact mass calcd for C24H23F6N4S [M+H]
+
 513.1548, 

found 513.1552. 

 

  

 



174 

 

4
MeO-ThioureaBAM (122) 1-(3,5-bis(trifluoromethyl)phenyl)-3-((1R,2R)-2-((4-

methoxyquinolin-2-yl)amino)cyclohexyl)thiourea]. A round bottomed flask fitted with 

a stir bar was charged with the mono-quinoline diamine (220 mg, 810 μmol), THF (3 

mL) and 3,5-trifluoromethyl-phenylisothiocyanate (165 μL, 900 μmol) was added slowly. 

The reaction was stirred at room temperature for 2 days. The reaction mixture was 

concentrated to an oil. Flash column chromatography (SiO2, 10-20-40% ethyl acetate in 

hexanes) of the residue yielded a yellow solid (0.23 g, 53%). Rf = 0.3 (5% MeOH in 

DCM); [α]
20

D  +187 (c 0.71 CHCl3); IR (film) 3149, 2937, 2859, 1623, 1533, 1467 cm
-1

; 

1
H NMR (400 MHz, CDCl3) δ 9.25 (br s, 1H), 7.92 (d, J = 4.3 Hz, 1H), 7.45 (br s, 2H), 

7.38 (br s, 1H), 7.17 (dd, J = 7.5, 7,5 Hz, 2H), 5.87 (br s, 1H), 4.83 (br s, 1H), 4.19 (br s, 

2H), 3.92 (s, 3H), 2.56 (br s, 1H), 2.07 (br s, 2H), ,1.81 (br s, 2H), 1.44 (br s, 4H); 
13

C 

NMR (150 MHz, CDCl3) 180.7, 163.3, 157.7, 145.3, 140.2, 131.8 (q, 
2
JCF = 33.4 Hz, -

CF3), 130.9, 127.5, 124.2, 122.9 (q, 
1
JCF = 273 Hz, -CF3), 122.5, 122.2, 117.5, 90.2, 61.6, 

55.7, 54.7, 32.3, 31.4, 24.8, 24.3 ppm; 
19

F NMR (376 MHz, CDCl3) -61.2; HRMS (ESI): 

Exact mass calcd for C25H25F6N4OS [M+H]
+
 543.1653, found 543.1663. 
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2-Methyl-3-(2-nitro-1,2-diphenylethyl)-1H-indole (103). General Procedure (Method 

A): To a flame dried vial equipped with a stir bar was added the sulfone (38 mg, 0.10 

mmol), PBAM (5.1 mg, 0.010 mmol) and potassium carbonate (96 mg, 0.70 mmol). The 

solid was suspended in toluene (1 mL) with stirring and phenylnitromethane (14 mg, 0.10 

mmol) was added immediately. The mixture was stirred for 22 hours before dilution with 

water and extraction with ethyl acetate. The organic layer was filtered through silica gel, 

concentrated and determined to be 1.2:1 dr by NMR. Flash column chromatography 

(SiO2, 10-20% ethyl acetate in hexanes) yielded a yellow-pink solid (28 mg, 78%). The 

major diastereomer was determined to be 81% ee and the minor diastereomer was 

determined to be 81% ee by chiral HPLC analysis (see HPLC data below). 

Method B: To a vial equipped with a stir bar was added the sulfone (38 mg, 0.10 mmol), 

PBAM (5.1 mg, 0.010 mmol) and potassium carbonate (96 mg, 0.70 mmol). The solid 

was suspended in toluene (1 mL) and water (500 µL) with stirring and 

phenylnitromethane (14 mg, 0.10 mmol) was added immediately. The mixture was stirred 

for 22 hours before dilution with water and extraction with ethyl acetate. The organic 

layer was filtered through silica gel, concentrated and determined to be 1.4:1 dr by NMR. 

Flash column chromatography (SiO2, 10-20% ethyl acetate in hexanes) yielded a yellow-

pink solid (34 mg, 95%). The major diastereomer was determined to be 86% ee and the 

minor diastereomer was determined to be 86% ee by chiral HPLC analysis (see HPLC 

data below). 
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Method C: To a flame dried vial equipped with a stir bar was added the sulfone (36 mg, 

0.10 mmol), PBAM (5 mg, 0.01 mmol) and potassium carbonate (96 mg, 0.70 mmol). 

The solid was suspended in toluene (1 mL) and stirred for 3 days. Phenylnitromethane 

(14 mg, 0.10 mmol) was added and stirred for 16 hours before dilution with water and 

extraction with ethyl acetate. The organic layer was filtered through silica gel, 

concentrated and determined to be 1.25:1 dr by NMR. Flash column chromatography 

(SiO2, 10-20% ethyl acetate in hexanes) yielded a yellow-pink solid (33 mg, 93%). The 

major diastereomer was determined to be 88% ee and the minor diastereomer was 

determined to be 89% ee by chiral HPLC analysis (see HPLC data below). 

Chiral HPLC analysis (Chiralcel IA, 8% EtOH/hexanes, 1 mL/min, tr(d2e1, minor) = 9.3 

min, tr(d2e2, minor) = 10.7 min, tr(d1e1, major) = 13.0 min, tr(d1e2, major) = 14.8 min); Rf 

= 0.3 (25% EtOAc/hexanes); IR (film) 3411, 2922, 1552 cm
-1

; HRMS (ESI): Exact mass 

calcd for C23H21N2O2 [M+H]
+
 357.1603, found 357.1607. d1, major: (85% ee) [α] 20

D
 -31 

(c 0.20, CHCl3); 
1
H NMR (600 MHz, CDCl3) δ 7.66 (dd, J = 6.1, 1.9 Hz, 1H), 7.59 (s, 

1H), 7.52 (d, J = 7.4, 2H), 7.39 (d, J = 7.1 Hz, 2H), 7.30 (dd, J = 7.9, 7.6 Hz, 2H), 7.21-

7.15 (m, 4H), 7.12-7.11 (m, 1H), 7.06-7.02 (m, 2H), 6.68 (d, J = 12.2 Hz, 1H), 5.34 (d, J 

= 12.2 Hz, 1H), 2.29 (s, 3H); 
13

C NMR (150 MHz, CDCl3) ppm 140.2, 135.2, 133.8, 

131.8, 129.5, 128.8, 128.4, 127.6, 127.3, 127.1, 121.1, 119.6, 118.7, 110.5, 109.3, 93.1, 

46.8, 29.7, 12.2; d2, minor: (recrystallized, 94% ee) [α] 20

D
 -66 (c 0.10, CHCl3); 

1
H NMR 

(600 MHz, CDCl3) δ 7.83 (s, 1H), 7.77 (dd, J = 5.9, 3.1 Hz, 1H), 7.61 (dd, J = 7.0, 3.5 

Hz, 2H), 7.34-7.33 (m, 3H), 7.24-7.23 (m, 1H), 7.18 (d, J = 7.5 Hz, 2H), 7.11-7.07 (m, 

4H), 7.02 (dd, J = 7.3, 7.3 Hz, 1H), 6.68 (d, J = 12.2 Hz, 1H), 5.38 (d, J = 12.2 Hz, 1H), 



177 

2.57 (s, 3H); 
13

C NMR (150 MHz, CDCl3) ppm 138.9, 135.4, 133.6, 132.4, 129.8, 128.9, 

128.5, 128.4, 128.3, 126.7, 126.5, 121.2, 119.8, 118.8, 110.7, 110.0, 93.5, 46.4, 12.3.  
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3-(1-(4-Bromophenyl)-2-nitro-2-phenylethyl)-2-methyl-1H-indole (134b). Sulfone (45 

mg, 0.10 mmol) and phenylnitromethane (14 mg, 0.10 mmol) were combined and stirred 

for 22 hours according to the general procedure. Flash column chromatography (SiO2, 

10-20% ethyl acetate in hexanes) yielded the title compound (32 mg, 74%). Rf = 0.3 

(20% EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 10% IPA/hexanes, 1 

mL/min, tr(d1e1, major) = 14.0 min, tr(d1e2, major) = 18.2 min, tr(d2e1, minor) = 16.1 min, 

tr(d2e2, minor) = 32.1 min); IR (film) 3408, 3059, 2924, 1552 cm
-1

; 
1
H NMR (600 MHz, 

CDCl3)
126

 d1, major
 
δ 7.85-7.05 (14H), 6.61 (d, J = 12.2 Hz, 1H), 5.34 (d, J = 12.2 Hz, 

1H), 2.55 (s, 3H); d2, minor
 
δ 7.85-7.05 (14H), 6.62 (d, J = 12.1 Hz, 1H), 5.29 (d, J = 

12.1 Hz, 1H), 2.27 (s, 3H); 
13

C NMR (150 MHz, CDCl3)
127

 ppm 139.3, 138.0, 135.4, 

135.2, 133.5, 133.3, 132.6, 131.9, 131.4, 130.2, 130.0, 129.6, 129.1, 129.0, 128.5, 128.4, 

127.5, 126.5, 121.4, 121.3, 121.0, 120.4, 119.9, 119.8, 118.5, 118.4, 110.8, 110.6, 109.3, 

108.7, 93.2, 92.9, 46.4, 45.8, 12.2, 12.1; HRMS (ESI): Exact mass calcd for 

C23H20BrN2O2 [M+H]
+
 435.0708, found 435.0687. 

                                                                                                                                                 
126 Due to isolation as a mixture of diastereomers, overlapping peaks in the aromatic region are not listed 

individually, but are listed as a number of hydrogens over a range (ppm). Peaks that could be assigned to their 

respective diastereomer with confidence are listed with proper integration and splitting. Please see spectra in 

Supporting Information II.  

127 Due to isolation as a mixture of diastereomers, all carbons are listed and are not assigned to one specific 

diastereomer. Please see spectra in Supporting Information II. 
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3-(1-(4-Methoxyphenyl)-2-nitro-2-phenylethyl)-2-methyl-1H-indole (134c). Sulfone 

(39 mg, 0.10 mmol) and phenylnitromethane (14 mg, 0.10 mmol) were combined and 

stirred for 22 hours according to the general procedure. Flash column chromatography 

(SiO2, 10-20% ethyl acetate in hexanes) yielded the title compound (26 mg, 68%). Rf = 

0.3 (20% EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 10% EtOH/hexanes, 1 

mL/min, tr(d1e1, major) = 10.5 min, tr(d1e2, major) = 11.9 min, tr(d2e1, minor) = 13.6 min, 

tr(d2e2, minor) = 18.6 min); IR (film) 3410, 3032, 2932, 1610 cm
-1

; 
1
H NMR (600 MHz, 

CDCl3) d1, major
 
δ 7.67 (d, J = 7.6 Hz, 1H), 7.58 (br s, 1H), 7.44 (d, J = 8.7 Hz, 2H), 

7.41 (d, J = 7.0 Hz, 2H), 7.22-7.02 (6H), 6.83 (d, J = 8.7 Hz, 2H), 6.65 (d, J = 7.1 Hz, 

1H), 5.29 (d, J = 12.0 Hz, 1H), 3.74 (s, 3H), 2.27 (s, 3H); d2, minor
 
δ 7.81 (br s, 1H), 

7.77-7.76 (m, 1H), 7.62-7.60 (m, 2H), 7.35-7.34 (m, 3H), 7.22-7.02 (5H), 6.63-6.61 (m, 

3H) 5.32 (d, J = 12.6 Hz, 1H), 3.64 (s, 3H), 2.52 (s, 3H); 
13

C NMR (150 MHz, CDCl3) 

ppm 158.4, 157.9, 135.4, 135.2, 133.8, 133.7, 132.4, 132.3, 131.7, 131.0, 129.8, 129.5, 

128.9, 128.4, 128.4, 127.6, 126.7, 121.1, 1121.0, 119.7, 119.6, 118.8, 118.7, 114.2, 113.7, 

110.7, 110.5, 110.1, 109.5, 93.8, 93.6, 55.2, 55.0, 46.1, 45.7, 12.2, 12.1; HRMS (ESI): 

Exact mass calcd for C24H23N2O3 [M+H]
+
 387.1709, found 387.1693. 
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2-Methyl-3-(2-nitro-2-phenyl-1-(4-(trifluoromethyl)phenyl)ethyl)-1H-indole (134d). 

Sulfone (42 mg, 0.10 mmol) and phenylnitromethane (14 mg, 0.10 mmol) were combined 

and stirred for 22 hours according to the general procedure. Flash column 

chromatography (SiO2, 10-20% ethyl acetate in hexanes) yielded the title compound (30 

mg, 71%). Rf = 0.3 (20% EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 8% 

EtOH/hexanes, 1 mL/min, tr(d2e1, minor) = 8.2 min, tr(d2e2, minor) = 9.6 min, tr(d1e1, 

major) = 10.4 min, tr(d1e2, major) = 13.3 min); IR (film) 3408, 1619 cm
-1

; 
1
H NMR (600 

MHz, CDCl3) d1, major
 
δ 7.64-7.04 (14H), 6.69 (d, J = 12.0 Hz, 1H), 5.39 (d, J = 12.0 

Hz, 1H), 2.29 (s, 3H); d2, minor
 
δ 7.90 (br s, 1H), 7.72-7.71 (m, 1H), 7.64-7.04 (12H), 

6.68 (d, J = 12.0 Hz, 1H), 5.45 (d, J = 12.0 Hz, 1H), 2.56 (s, 3H); 
13

C NMR (150 MHz, 

CDCl3) ppm 144.3, 143.0, 135.4, 135.2, 133.4, 133.1, 132.8, 132.1, 130.2, 129.7, 129.4, 

129.2, 129.1, 128.8, 128.5, 128.3, 127.6, 127.5, 126.4, 125.8, 125.8, 125.3, 125.3, 121.5, 

121.4, 120.0, 119.9, 118.4, 118.3, 110.9, 110.7, 109.0, 108.3, 93.1, 92.6, 46.7, 46.1, 12.2, 

12.1; HRMS (ESI): Exact mass calcd for C24H20F3N2O2 [M+H]
+
 425.1477, found 

425.1485. 
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2-Methyl-3-(2-nitro-2-phenyl-1-(o-tolyl)ethyl)-1H-indole (134e). Sulfone (37 mg, 0.10 

mmol) and phenylnitromethane (14 mg, 0.10 mmol) were combined and stirred for 72 

hours according to the general procedure. Flash column chromatography (SiO2, 10-20% 

ethyl acetate in hexanes) yielded the title compound (28 mg, 76%). Rf = 0.4 (20% 

EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 10% EtOH/hexanes, 1 mL/min, 

tr(d1e1, major) = 11.2 min, tr(d2e1, minor) = 13.0 min, tr(d2e2, minor) = 14.0 min, tr(d1e2, 

major) = 16.6 min; IR (film) 3409, 2922, 1552 cm
-1

; 
1
H NMR (600 MHz, CDCl3) d1, 

major
 
δ 7.86-7.01 (14H), 6.64 (d, J = 12.0 Hz, 1H), 5.26 (d, J = 12.0 Hz, 1H), 2.30 (s, 

3H), 2.03 (s, 3H); d2, minor δ 7.86-7.01 (14H), 6.72 (d, J = 12.1 Hz, 1H), 5.52 (d, J = 

12.1 Hz, 1H), 2.52 (s, 3H), 2.26 (s, 3H); 
13

C NMR (150 MHz, CDCl3) ppm 137.6, 136.7, 

136.2, 135.4, 135.1, 134.1, 133.3, 132.9, 132.7, 131.4, 131.0, 129.7, 129.3, 128.9, 128.4, 

128.3, 128.0, 127.2, 126.9, 126.8, 126.4, 125.9, 125.3, 124.8, 121.1, 120.9, 119.5, 119.4, 

118.8, 110.5, 110.3, 107.6, 106.3, 94.2, 92.0, 44.0, 41.5, 20.0, 19.8, 12.4, 12.1; HRMS 

(ESI): Exact mass calcd for C24H21N2O2 [M-H]
-
 369.1603, found 369.1596. 
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3-(1-(Furan-2-yl)-2-nitro-2-phenylethyl)-2-methyl-1H-indole (134f). Sulfone (35 mg, 

0.10 mmol) and phenylnitromethane (14 mg, 0.10 mmol) were combined and stirred for 

22 hours according to the general procedure. Flash column chromatography (SiO2, 10-

20% ethyl acetate in hexanes) yielded the title compound (24 mg, 69%). Rf = 0.2 (25% 

EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 5% EtOH/hexanes, 1 mL/min, 

tr(d1e1, major) = 11.8 min, tr(d1e2, major) = 13.5 min, tr(d2e1, minor) = 15.5 min, tr(d2e2, 

minor) = 16.5 min); IR (film) 3408, 2923, 1553 cm
-1

; 
1
H NMR (600 MHz, CDCl3) d1, 

major δ 7.86 (br s, 1H), 7.84-7.82 (m, 1H), 7.64-7.05 (9H), 6.52 (d, J = 11.8 Hz, 1H), 

6.07 (dd, J = 3.2, 1.9 Hz, 1H), 5.90 (d, J = 3.2 Hz, 1H), 5.40 (d, J = 11.8, 1H), 2.54 (s, 

3H); d2, minor δ 7.64-7.05 (10H), 7.60 (br s, 1H), 6.46 (d, J = 11.8 Hz, 1H), 6.29 (dd, J = 

3.2, 2.0 Hz, 1H), 6.25 (d, J = 3.2 Hz, 1H), 5.39 (d, J = 11.7, 1H), 2.19 (s, 3H); 
13

C NMR 

(150 MHz, CDCl3) ppm 153.0, 151.6, 141.8, 141.6, 135.3, 135.1, 133.4, 133.3, 133.0, 

132.5, 129.9, 129.5, 128.8, 128.5, 128.3, 128.1, 127.4, 126.8, 126.7, 121.3, 121.2, 119.8, 

119.6, 118.9, 118.8, 110.6, 110.4, 110.4, 110.1, 107.7, 107.3, 106.8, 106.5, 92.5, 92.0, 

40.9, 29.7, 12.0, 11.9; HRMS (ESI): Exact mass calcd for C21H19N2O3 [M+H]
+
 347.1396, 

found 347.1401.  
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2-Methyl-3-(1-nitro-1-phenylhexan-2-yl)-1H-indole (134g). Sulfone (36 mg, 0.10 

mmol) and phenylnitromethane (14 mg, 0.10 mmol) were combined and stirred for 22 

hours according to the general procedure. Flash column chromatography (SiO2, 10-20% 

ethyl acetate in hexanes) yielded the title compound (17 mg, 51%). Rf = 0.5 (20% 

EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 2% IPA/hexanes, 1 mL/min, 

tr(d1e1, major) = 17.3 min, tr(d1e2, major) = 19.2 min, tr(d2e1, minor) = 24.1 min, tr(d2e2, 

minor) = 29.2 min); IR (film) 3407, 2955, 1549 cm
-1

; 
1
H NMR (600 MHz, CDCl3) d1, 

major δ 7.55 (br s, 1H), 7.48-7.08 (9H), 6.03 (d, J = 9.9 Hz, 1H), 3.86 (br s, 1H), 2.17 

(br s, 1H) 2.09 (s, 3H), 1.76-0.99 (5H), 0.79 (t, J = 7.2 Hz, 3H); d2, minor δ 7.82 (br s, 

1H), 7.69 (dd, J = 7.6, 2.3 Hz, 2H), 7.65 (d, J = 7.5 Hz, 2H), 7.48-7.08 (5H), 6.03 (d, J = 

9.9 Hz, 1H), 3.86 (br s, 1H), 2.45 (s, 3H) 1.85 (br s, 1H), 1.76-0.99 (5H), 0.67 (t, J = 7.2 

Hz, 3H); 
13

C NMR (150 MHz, CDCl3) ppm 135.4, 134.3, 134.0, 129.9, 129.1, 129.1, 

128.3, 128.1, 127.5, 121.0, 120.9, 119.3, 118.5, 110.8, 110.6, 95.3, 95.2, 42.7, 41.5, 30.8, 

29.6, 29.2, 22.4, 22.2, 13.9, 13.8, 11.7; HRMS (ESI): Exact mass calcd for C21H25N2O2 

[M+H]
+
 337.1916, found 337.1917.  
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Methyl 2-(2-methyl-1H-indol-3-yl)-3-nitro-3-phenylpropanoate (134i). Sulfone (36 

mg, 0.10 mmol) and phenylnitromethane (14 mg, 0.10 mmol) were combined and stirred 

for 22 hours according to the general procedure. Flash column chromatography (SiO2, 

10-20% ethyl acetate in hexanes) yielded the title compound (16 mg, 47%). Rf = 0.2 

(20% EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 5% IPA/hexanes, 1 mL/min, 

tr(d2e1, minor) = 19.0 min, tr(d1e1, major) = 20.2 min, tr(d2e2, minor) = 22.0 min, tr(d1e2, 

major) = 25.2 min); IR (film) 3399, 2952, 2922, 1735, 1554 cm
-1

; d1, major: 
1
H NMR 

(400 MHz, CDCl3) δ 7.97 (br s, 1H), 7.88-7.85 (m, 1H), 7.75-7.73 (m, 2H), 7.47-7.44 (m, 

3H), 7.28-7.24 (m, 1H), 7.18-7.13 (m, 2H), 6.48 (d, J = 11.8 Hz, 1H), 5.02 (d, J = 11.8 

Hz, 1H), 3.46 (s, 3H), 2.53 (s, 3H); 
13

C NMR (100 MHz, CDCl3) ppm 169.7, 135.2, 

134.6, 133.1, 130.2, 129.1, 128.2, 126.4, 121.6, 120.2, 118.8, 110.6, 103.4, 90.7, 52.2, 

47.1, 11.8; HRMS (ESI): Exact mass calcd for C19H17N2O4 [M-H]
-
 337.1188, found 

337.1180. 
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tert-Butyl 2-(2-methyl-1H-indol-3-yl)-3-nitro-3-phenylpropanoate (134j). Sulfone (38 

mg, 0.10 mmol) and phenylnitromethane (14 mg, 0.10 mmol) were combined and stirred 

for 72 hours according to the general procedure. Flash column chromatography (SiO2, 

10-20% ethyl acetate in hexanes) yielded the title compound (21 mg, 55%). Rf = 0.4 

(20% EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 2% IPA/hexanes, 1 mL/min, 

tr(d2e1, minor) = 26.5 min, tr(d2e2, minor) = 30.4 min, tr(d1e1, major) = 46.0 min, tr(d1e2, 

major) = 57.7 min); IR (film) 3403, 2979, 1722, 1556 cm
-1

; 
1
H NMR (600 MHz, CDCl3) 

d1, major, δ 7.92 (br s, 1H), 7.91-7.89 (m, 1H), 7.75-7.73 (m, 2H), 7.47-7.08 (6H), 6.39 

(d, J = 11.8 Hz, 1H), 4.93 (d, J = 11.8 Hz, 1H), 2.55 (s, 3H), 1.13 (s, 9H); d2, minor, δ 

7.66 (br s, 1H), 7.47-7.08 (9H), 6.30 (d, J = 11.8 Hz, 1H), 4.71 (br s, 1H), 2.02 (s, 3H), 

1.42 (s, 9H); 
13

C NMR (150 MHz, CDCl3) ppm 168.1, 133.6, 130.1, 128.9, 128.5, 128.4, 

121.4, 121.3, 119.9, 119.1, 110.5, 103.9, 90.7, 82.2, 48.6, 27.8, 27.6; HRMS (ESI): Exact 

mass calcd for C22H24N2NaO4 [M+Na]
+
 403.1634, found 403.1623. 
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3-(2-Nitro-1,2-diphenylethyl)-1H-indole (134k). Sulfone (34 mg, 0.10 mmol) and 

phenylnitromethane (14 mg, 0.10 mmol) were combined and stirred for 22 hours 

according to the general procedure. Flash column chromatography (SiO2, 10-20% ethyl 

acetate in hexanes) yielded the title compound (22 mg, 65%). Rf = 0.2 (20% 

EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 15% EtOH/hexanes, 1 mL/min, 

tr(d2e1, minor) = 9.9 min, tr(d1e1, major) = 12.4 min, tr(d2e2, minor) = 14.4 min, tr(d1e2, 

major) = 16.2 min); IR (film) 3419, 1549 cm
-1

; 
1
H NMR (600 MHz, CDCl3) d1, major

 
δ 

8.13 (br s, 1H), 7.59-6.99 (15H), 6.18 (d, J = 12.0 Hz, 1H), 5.39 (d, J = 11.9 Hz, 1H); d2, 

minor
 
δ 7.90 (br s, 1H), 7.59-6.99 (14H), 6.84 (d, J = 1.5 Hz, 1H), 6.30 (d, J = 12.1 Hz, 

1H), 5.42 (d, J = 12.0 Hz, 1H); 
13

C NMR (150 MHz, CDCl3) ppm 139.9, 138.4, 136.2, 

133.2, 129.8, 129.7, 128.8, 128.8, 128.7, 128.6, 128.3, 128.2, 128.1, 127.9, 127.5, 126.9, 

126.5, 122.6, 122.4, 121.7, 120.2, 119.8, 119.7, 119.0, 118.9, 115.6, 111.2, 111.0, 95.6, 

95.0, 47.3, 46.1; HRMS (ESI): Exact mass calcd for C22H18N2NaO2 [M+Na]
+
 365.1266, 

found 365.1273.  
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3-(2-Nitro-1,2-diphenylethyl)-2-phenyl-1H-indole (134l). Sulfone (44 mg, 0.10 mmol) 

and phenylnitromethane (14 mg, 0.10 mmol) were combined and stirred for 72 hours 

according to the general procedure. Flash column chromatography (SiO2, 10-20% ethyl 

acetate in hexanes) yielded the title compound (20 mg, 49%). Rf = 0.5 (20% 

EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 10% EtOH/hexanes, 1 mL/min, 

tr(d2e1, minor) = 8.4 min, tr(d2e2, minor) = 11.5 min, tr(d1e1, major) = 13.6 min, tr(d1e2, 

major) = 26.4 min; IR (film) 3409, 3062, 1552 cm
-1

; 
1
H NMR (600 MHz, CDCl3) d1, 

major
 
δ 8.13-7.01 (20H), 6.74 (d, J = 12.0 Hz, 1H), 5.43 (d, J = 12.0 Hz, 1H); d2, minor 

δ 8.13-7.01 (20H), 6.63 (d, J = 12.0 Hz, 1H), 5.42 (d, J = 12.0 Hz, 1H); 
13

C NMR (150 

MHz, CDCl3) ppm 140.4, 139.2, 136.9, 136.9, 136.0, 135.8, 133.6, 133.3, 132.6, 132.2, 

129.7, 129.3, 129.1, 129.1, 128.9, 128.8, 128.8, 128.7, 128.6, 128.6, 128.5, 128.4, 128.3, 

128.3, 128.2, 127.8, 127.7, 127.2, 126.7, 126.7, 122.3, 122.1, 120.3, 120.3, 120.2, 120.1, 

111.4, 111.2, 110.5, 109.8, 93.9, 93.9, 47.4, 46.6; HRMS (ESI): Exact mass calcd for 

C28H23N2O2 [M+H]
+
 419.1760, found 419.1750. 

  

 



188 

 

2,5-Dimethyl-3-(2-nitro-1,2-diphenylethyl)-1H-pyrrole (134q). Sulfonyl pyrrole (34 

mg, 0.10 mmol) and phenylnitromethane (14 mg, 0.10 mmol) were combined and stirred 

for 22 hours according to the general procedure. Flash column chromatography (SiO2, 

10-20% ethyl acetate in hexanes) yielded the title compound (22 mg, 69%). Rf = 0.4 

(20% EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 5% EtOH/hexanes, 1 

mL/min, tr(d2e1, minor) = 9.9 min, tr(d2e2, minor) = 11.1 min, tr(d1e1, major) = 12.1 min, 

tr(d1e2, major) = 18.1 min); IR (film) 3428, 1652, 1646 cm
-1

; 
1
H NMR (600 MHz, CDCl3) 

d1, major δ 7.51-7.00 (m, 11H), 6.11 (d, J = 11.9 Hz, 1H), 5.66 (d, J = 2.2 Hz, 1H), 4.83 

(d, J = 11.9 Hz, 1H), 2.04 (s, 3H), 1.90 (s, 3H); d2, minor δ 7.51-7.00 (m, 11H), 6.08 (d, 

J = 11.9 Hz, 1H), 5.98 (d, J = 1.1 Hz, 1H), 4.88 (d, J = 11.9 Hz, 1H), 2.21 (s, 3H), 2.18 

(s, 3H); 
13

C NMR (150 MHz, CDCl3) ppm 141.1, 139.9, 133.9, 133.5, 129.4, 129.4, 

128.8, 128.6, 128.4, 128.3, 128.1, 127.3, 127.0, 126.4, 125.8, 125.7, 122.8, 122.5, 117.4, 

116.0, 104.2, 103.6, 95.7, 95.5, 47.2, 47.1, 13.1, 13.0, 10.9, 10.8; HRMS (ESI): Exact 

mass calcd for C20H21N2O2 [M+H]
+
 321.1603, found 321.1604.  
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3-(2-(4-Methoxyphenyl)-2-nitro-1-phenylethyl)-2-methyl-1H-indole (138a). Sulfone 

(38 mg, 0.10 mmol) and arylnitromethane (17 mg, 0.10 mmol) were combined and stirred 

for 22 hours according to the general procedure. Flash column chromatography (SiO2, 

10-20% ethyl acetate in hexanes) yielded the title compound (20 mg, 52%). Rf = 0.3 

(25% EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 8% EtOH/hexanes, 1 

mL/min, tr(d2e1, minor) = 13.4 min, tr(d2e2, minor) = 15.0 min, tr(d1e1, major) = 19.7 min, 

tr(d1e2, major) = 27.3 min); IR (film) 3409, 2925, 1609, 1549 cm
-1

; 
1
H NMR (600 MHz, 

CDCl3) d1, major
 
δ 7.68 (d, J = 7.5 Hz, 1H), 7.61 (br s, 1H), 7.52 (d, J = 7.5 Hz, 2H), 

7.35 (d, J = 8.7 Hz, 2H), 7.28 (dd, J = 7.6, 7.6 Hz, 2H), 7.20-7.17 (m, 1H), 7.12-7.09 (m, 

1H), 7.08-7.01 (m, 2H), 6.67 (d, J = 8.7 Hz, 2H), 6.66-6.63 (m, 1H), 5.32 (d, J = 12 Hz, 1 

H), 3.68 (s, 3H), 2.33 (s, 3H), 
1
H NMR (600 MHz, CDCl3); d2, minor

 
δ 7.81 (br s, 1H), 

7.75 (dd, J = 4.8, 3.0 Hz, 1H), 7.55 (d, J = 8.7 Hz, 2H), 7.21 (dd, J = 6.1, 3.0 Hz, 1H), 

7.20-7.17 (m, 2H), 7.12-7.09 (m, 4H), 7.08-7.01 (m, 1H), 6.85 (d, J = 8.7 Hz, 2H), 6.66-

6.63 (m, 1H), 5.35 (d, J = 12 Hz, 1H), 3.77 (s, 3H), 2.54 (s, 3H); 
13

C NMR (150 MHz, 

CDCl3) ppm 160.6, 160.3, 140.4, 139.1, 135.4, 135.2, 132.4, 131.8, 129.8, 129.0, 128.8, 

128.5, 128.3, 127.3, 127.0, 126.7, 126.4, 126.0, 125.8, 121.2, 121.0, 119.7, 119.6, 118.7, 

118.7. 114.2, 113.8, 110.6, 110.5, 110.0, 109.5, 93.0, 92.9, 55.3, 55.1, 46.8, 46.1, 12.3, 

12.2; HRMS (ESI): Exact mass calcd for C24H23N2O3 [M+H]
+
 387.1709, found 387.1690.  
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2-Methyl-3-(2-nitro-2-(4-nitrophenyl)-1-phenylethyl)-1H-indole (138b). Sulfone (38 

mg, 0.10 mmol) and arylnitromethane (18 mg, 0.10 mmol) were combined and stirred for 

22 hours according to the general procedure. Flash column chromatography (SiO2, 10-

20% ethyl acetate in hexanes) yielded the title compound (25 mg, 52%). Rf = 0.4 (25% 

EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 15% IPA/hexanes, 1 mL/min, 

tr(d1e1, major) = 9.1 min, tr(d1e2, major) = 9.6 min, tr(d2e1, minor) = 22.5 min, tr(d2e2, 

minor) = 39.5 min); IR (film) 3409, 1557 cm
-1

; 
1
H NMR (600 MHz, CDCl3) d1, major

 
δ 

8.20-7.04 (13H), 7.69 (br s, 1H), 6.79 (d, J = 12.1 Hz, 1H), 5.31 (d, J = 12.6 Hz, 1H), 

2.30 (s, 3H); d2, minor
 
δ 8.20-7.04 (13H), 7.92 (br s, 1H), 6.79 (d, J = 12.1 Hz, 1H), 5.33 

(d, J = 12.0 Hz, 1H), 2.56 (s, 3H); 
13

C NMR (150 MHz, CDCl3) ppm 148.5, 148.3, 140.2, 

140.0, 139.3, 137.9, 135.3, 132.6, 131.9, 129.5, 129.0, 128.7, 128.6, 128.3, 127.4, 127.1, 

127.0, 126.3, 126.2, 124.0, 123.5, 121.5, 121.4, 120.0, 119.9, 118.5, 118.3, 110.8, 109.0, 

108.3, 92.4, 92.1, 47.3, 47.2, 12.3, 12.1; HRMS (ESI): Exact mass calcd for C23H20N3O4 

[M+H]
+
 402.1454, found 402.1437.  
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(S)-2-Methyl-3-(2-nitro-1-phenylethyl)-1H-indole (138c). To a flame dried vial 

equipped with a stir bar, was added sulfone 5a (38 mg, 0.10 mmol), PBAM (5.1 mg, 

0.010 mmol) and potassium carbonate (96 mg, 0.70 mmol). The solid was suspended in 

toluene (1 mL) and stirred, immediately followed by addition of bromonitromethane (21 

mg, 0.15 mmol). The reaction was stirred at room temperature for 72 hours, diluted with 

water and extracted with ethyl acetate. The organic layer was filtered through silica gel 

and resuspended in THF (1 mL). SnCl2•2H2O (36 mg, 0.15 mmol) was added to the 

solution and the reaction was stirred for 5 min. The crude reaction mixture was diluted 

with H2O and extracted with Et2O. The organic layer was dried over MgSO4, filtered and 

concentrated. Flash column chromatography of the residue (SiO2, 10-20% ethyl acetate in 

hexanes) yielded the title compound as a yellow oil (11 mg, 40%) and sulfone 5a (10 mg, 

25%). Rf = 0.3 (20% EtOAc/hexanes); [α] 20

D
 -13.5 (c 0.37, CHCl3). Stereochemistry 

determined to be (S) by correlation to the literature value.
128

 

  

                                                                                                                                                 
128 Herrera, R. P.; Sgarzani, V.; Bernardi, L.; Ricci, A. Angew. Chem. Int. Ed. 2005, 44, 6576-6579. 
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2-Methyl-3-(2-nitro-1-phenylpropyl)-1H-indole (138d). Sulfone (38 mg, 0.10 mmol) 

and nitroethane (11 mg, 0.15 mmol) were combined and stirred for 72 hours according to 

the general procedure. Flash column chromatography (SiO2, 10-20% ethyl acetate in 

hexanes) yielded the title compound (19 mg, 65%). Rf = 0.3 (20% EtOAc/hexanes); 

chiral HPLC analysis (Chiralcel IA, 3% IPA/hexanes, 1 mL/min, tr(d1e1, major) = 30.2, 

tr(d2e1, minor) = 35.2 min, tr(d2e2, minor) = 45.7 min, tr(d1e2, major) = 48.8 min); IR 

(film) 3408, 2924, 1549 cm
-1

; 
1
H NMR (600 MHz, CDCl3) d1, major

 
δ 7.91 (br s, 1H), 

7.60 (d, J = 7.7 Hz, 1H), 7.76-7.09 (8H), 5.83-5.76 (m, 1H), 4.75 (d, J = 11.4 Hz, 1H), 

2.47 (s, 3H), 1.51 (d, J = 6.6 Hz, 3H); d2, minor
 
δ 7.76-7.09 (10H), 5.83-5.76 (m, 1H), 

4.66 (d, J = 12.0 Hz, 1H), 2.43 (s, 3H), 1.63 (d, J = 6.6 Hz, 3H); 
13

C NMR (150 MHz, 

CDCl3) ppm 140.3, 139.7, 135.3, 135.2, 132.5, 132.2, 128.8, 128.6, 128.2, 127.3, 127.0, 

127.0, 126.6, 126.6, 121.4, 121.0, 119.9, 119.6, 118.8, 118.7, 110.7, 110.6, 110.0, 109.6, 

86.1, 85.6, 48.4, 47.6, 19.7, 19.4, 12.3, 12.2; HRMS (ESI): Exact mass calcd for 

C18H19N2O2 [M+H]
+
 295.1447, found 295.1458.  
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3-(1,2-Diphenylethyl)-2-methyl-1H-indole (146). To a flame dried vial equipped with a 

stir bar was added 6a (17 mg, 50 µmol, 84% ee), Pd(OH)2/C (20 wt %, 37 mg) and EtOH 

(1mL). The reaction was purged twice with hydrogen gas and then placed under 1 bar of 

hydrogen gas at 60 °C for 1 hour. The reaction was filtered through Celite and 

concentrated. Flash column chromatography (SiO2, 9% ethyl acetate in hexanes) yielded 

a yellow oil (13 mg, 84%). Rf = 0.5 (20% EtOAc/hexanes); [α] 20

D
 -42 (c 0.80, CHCl3); IR 

(film) 3414, 3059, 2922 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 7.58 (br s, 1H), 7.46-7.42 

(m, 3H), 7.30-7.27 (m, 2H), 7.25-7.18 (m, 2H), 7.16-7.06 (m, 4H), 7.01-6.97 (m, 1H), 

6.94-6.91 (m, 2H), 4.42 (dd, J = 10.0, 5.6 Hz, 1H), 3.62 (dd, J = 13.0, 5.6 Hz, 1H), 3.49 

(dd, J = 12.9, 10.1 Hz, 1H), 2.00 (s, 3H); 
13

C NMR (100 MHz, CDCl3) ppm 144.7, 141.3, 

135.4, 131.8, 129.0, 128.1, 127.8, 127.6, 125.8, 125.6, 120.6, 119.6, 119.0, 113.3, 110.2, 

44.2, 40.2, 11.7; HRMS (CI): Exact mass calcd for C23H22N [M+H]
+
 312.1705, found 

312.1752. 
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VNI (161). tert-Butyl (1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl) (356 mg, 1.00 

mmol) was dissolved in CH2Cl2 (10 mL). TFA (1.5 mL, 20 mmol) was added and the 

mixture was stirred at room temperature for 14 hours. The reaction was poured over sat. 

aq. NaHCO3 and extracted with CH2Cl2. The combined organic layers were dried over 

MgSO4, filtered, and concentrated. The oil was dissolved in CH2Cl2 (10 mL) and 4-(5-

phenyl-1,3,4-oxadiazol-2-yl)benzoic acid (234 mg, 0.88 mmol) was added to the flask. 

The flask was cooled to 0 °C and EDC/HCl (220 mg, 1.2 mmol) and DMAP (20 mg, 0.10 

mmol) was added. The reaction was allowed to warm to room temperature and monitored 

by TLC. Following reaction completion, the reaction was diluted with CH2Cl2, washed 

with water, dried over MgSO4, and concentrated to an oil. Flash column chromatography 

(SiO2, 1-4% methanol in dichloromethane) yielded a yellow solid (330 mg, 65%). The 

solid was then washed with DCM to give an analytically pure white solid (220 mg, 44%). 

Stereochemistry was conserved as the product was determined to be 97% ee by chiral 

HPLC analysis (Chiralcel OD-H, 20% EtOH/hexanes, 1 mL/min, tr(S-enantiomer) = 21.5 

min, tr(R-enantiomer) = 31.4 min; [α]
20

D  +34 (c 0.60, CHCl3); Rf = 0.31 (10% 

MeOH/DCM); IR (film) 3271, 2923, 2851, 1661, 1579 cm
-1

; 
1
H NMR (600 MHz, 

CDCl3) δ 8.14-8.11 (m, 4H), 7.89 (d, J = 8.2 Hz, 2H), 7.58-7.52 (m, 3H), 7.47 (s, 1H), 

7.35 (br s, 1 H), 7.23 (br s, 2H), 7.03 (br s, 1H), 6.91 (br s, 1H), 5.82 (dd, J = 13.7, 7.0, 

1H), 4.57 (dd, J = 14.3, 7.2, 1H), 4.50 (dd, J = 14.2, 5.8, 1H), 1.88 (br s, 1H); 
13

C NMR 
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(150 MHz, CDCl3) ppm 166.3, 165.1, 163.7, 136.3, 135.2, 133.8, 133.5, 132.1, 130.3, 

129.5, 129.5, 129.2, 128.0, 127.1, 127.0, 126.9, 123.5, 52.8, 49.1; HRMS (ESI): Exact 

mass calcd for C26H20Cl2N5O2 [M+H]
+
 504.0994, found 504.0970. 
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(R)-tert-Butyl (1-(2,4-dichlorophenyl)-2-nitroethyl)carbamate (166). A 2-dram vial 

was charged with imine (27.4 mg, 100 µmol), PBAM4(HOTf)5 (6.9 mg, 10 µmol) and 

toluene (0.1 mL) and cooled to -20 °C. Nitromethane (11 µL, 200 µmol) was added and 

the reaction was stirred for 24 h. The reaction was filtered through a silica gel plug using 

ethyl acetate and concentrated to a white solid and determined to be a 74:26 mixture of 

single- to double-addition by NMR. The major product (single addition) was determined 

to be 90% ee by chiral HPLC analysis (Chiralcel IA, 5% 
i
PrOH/hexanes, 1 mL/min, tr(e1, 

major) = 14.3 min, tr(e2, minor) = 18.5) and was further recrystallized to 99% ee 

(ethanol/water); [α] 20

D
 -7.0 (c 0.10, CHCl3); IR (film) 3344, 2981, 2926, 1690, 1554, 

1532 cm
-1

; 
1
H NMR (600 MHz, CDCl3) δ 7.43 (d, J = 1.5 Hz, 1H), 7.31-7.27 (m, 2H), 

5.67 (br s, 2H), 4.85 (br s, 1H), 4.77 (br d, J = 11.8 Hz, 1H), 1.43 (s, 9H); 
13

C NMR (150 

MHz, CDCl3) ppm 154.4, 135.2, 133.2, 132.9, 130.1, 128.9, 127.8, 81.0, 77.1, 50.0, 28.2; 

HRMS (ESI): Exact mass calcd for C13H16Cl2N2NaO4 [M+Na]
+
 357.0385, found 

357.0400. 
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tert-Butyl 2,4-dichlorobenzylidenecarbamate (167). A 1-L round-bottomed flask was 

charged with tert-butyl ((2,4-dichlorophenyl)(phenylsulfonyl)methyl)carbamate (20.0 g, 

48.0 mmol), K2CO3 (53.0 g, 384 mmol), Na2SO4 (61.4 g, 432 mmol) and THF (500 mL). 

The pot was refluxed for 5 h until completion (checked by NMR). The reaction mixture 

was filtered through Celite, washed with diethyl ether and concentrated on low heat to 

yield the title compound as a pure white solid [12.9 g, 98% (<2% aldehyde)]. Mp 48-50 

°C; IR (film) 2979, 1717, 1622, 1584 cm
-1

; 
1
H NMR (600 MHz, CDCl3) δ 9.20 (s, 1H), 

8.14 (d, J = 8.5 Hz, 1H), 7.46 (d, J = 2.0, 1H), 7.33 (ddd, J = 8.5, 1.9, 0.5, 1H), 1.59 (s, 

9H); 
13

C NMR (150 MHz, CDCl3) ppm 164.6, 162.1, 140.0, 138.4, 130.0, 130.0, 129.9, 

127.8, 82.9, 27.9; HRMS (ESI): Exact mass calcd for C12H14Cl2NO2 [M+H]
+
 274.0402, 

found 274.0391. 
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tert-Butyl ((2,4-dichlorophenyl)(phenylsulfonyl)methyl)carbamate (171). A 500-mL 

Erlenmeyer flask was charged with 2,4-chlorobenzaldehyde (16.8 g, 96.0 mmol), 

benzenesulfinic acid sodium salt (26.3 g, 160 mmol), tert-butyl carbamate (9.38 g, 80.0 

mmol), formic acid (6.1 mL, 160 mmol), methanol (70 mL) and water (140 mL) and 

stirred for 3 days. The solid was filtered and rinsed with water. The washed solid was 

added to diethyl ether and stirred overnight. Filtration and washing with diethyl ether 

afforded the pure product as two rotamers (5:1) as a white solid (13.0 grams, 81% based 

on recovered starting material). Mp 160-162 °C; IR (film) 3387, 3340, 3332, 3301, 3268, 

2977, 1722, 1704, 1588 cm
-1

; 
1
H NMR (600 MHz, CDCl3) δ 7.93 (d, J = 7.6 Hz, 2H), 

7.67 (t, J = 7.0 Hz, 1H), 7.57-7.55 (m, 2H), 7.50 (d, J = 8.3 Hz, 1H), 7.45 (d, J = 1.2 Hz, 

1H), 7.35 (dd, J = 8.4, 2.1 Hz, 1H), 6.53 (d, J = 10.7 Hz, 1H), 5.82 (d, J = 10.7 Hz, 1H), 

1.28 (s, 9H); 
13

C NMR (150 MHz, CDCl3) ppm 153.3, 136.9, 136.5, 136.1, 134.3, 130.1, 

129.8, 129.3, 129.2, 127.7, 81.6, 69.6, 28.0; HRMS (ESI): Exact mass calcd for 

C18H19Cl2NNaO4S [M+Na]
+
 438.0310, found 438.0327. 
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tert-Butyl ((1R)-2-bromo-1-(4-chlorophenyl)-2-nitroethyl)carbamate (173). A 250-

mL round-bottomed flask was charged with imine (7.19 g, 30.0 mmol), (+)-PBAM (152 

mg, 300 µmol) and toluene (150 mL) and cooled to -78 °C. Bromonitromethane (6.30 g, 

45.0 mmol) was added over 1 minute and the reaction was stirred for 48 h at -20 °C. The 

reaction was filtered through a silica gel plug using ethyl acetate, concentrated to a white 

solid (11.0 g, 97%), and determined to be 3:1 dr by 
1
H NMR. The white solid was 

determined to be pure and required no further purification. The major diastereomer was 

determined to be 97% ee and the minor diastereomer was determined to be 96% ee by 

chiral HPLC analysis (Chiralcel AD-H, 10% 
i
PrOH/hexanes, 1 mL/min, tr(d1e1, major) = 

18.9 min, tr(d1e2, minor) = 14.6 min, tr(d2e1, major) = 24.8 min, tr(d2e2, minor) = 15.9 

min). Remainder of analytical data matched previously reported.
129

  

 

  

                                                                                                                                                 
129 Shen, B.; Makley, D. M.; Johnston, J. N. Nature 2010, 465, 1027-1032. 
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tert-Butyl ((1R)-2-bromo-1-(2,4-dichlorophenyl)-2-nitroethyl)carbamate (174). A 

500-mL round-bottomed flask was charged with imine (12.9 g, 47.0 mmol), (+)-PBAM 

(238 mg, 470 µmol) and toluene (240 mL) and cooled to -78 °C. Bromonitromethane 

(9.21 g, 65.8 mmol) was added and the reaction was stirred for 48 h at -20 °C until the 

reaction was complete. The reaction was filtered through a silica gel plug using ethyl 

acetate and concentrated to a white solid determined to be 1:1 dr by NMR. The solid 

recovered (19.2 g, 99%) was used without further purification. Mp 108-110 °C; the major 

diastereomer was determined to be 98% ee and the minor diastereomer was determined to 

be 98% ee by chiral HPLC analysis (Chiralcel IA, 3% 
i
PrOH/hexanes, 1 mL/min, tr(d1e1, 

major) = 12.9 min, tr(d1e2, minor) = 24.4 min, tr(d2e1, major) = 16.3 min, tr(d2e2, minor) = 

20.2 min); Rf = 0.48 (25% EtOAc/hexanes); IR (film) 3423, 3331, 2980, 1705, 1589 cm
-

1
; d1, major:

 1
H NMR (600 MHz, CDCl3) δ 7.44 (s, 1H), 7.31-7.28 (m, 2H), 6.43 (br s, 

1H), 6.03-6.02 (m, 1H), 5.71 (d, J = 3.0 Hz, 1H), 1.45 (s, 9H); 
13

C NMR (150 MHz, 

CDCl3) ppm 154.6, 136.0, 133.4, 131.2, 130.1, 128.1, 81.4, 78.0, 55.6, 28.2. d2, minor: 

1
H NMR (600 MHz, CDCl3) δ 7.45 (s, 1H), 7.31-7.28 (m, 2H), 6.46 (br s, 1H), 6.03-6.02 

(m, 1H), 5.50 (d, J = 6.0 Hz, 1H), 1.43 (s, 9H); 
13

C NMR (150 MHz, CDCl3) ppm 154.1, 

135.8, 133.2, 131.9, 129.7, 127.8, 83.0, 81.5, 55.0, 28.2. HRMS (ESI): Exact mass calcd 

for C13H15BrCl2N2NaO4 [M+Na]
+
 434.9490, found 434.9486. 
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(R)-tert-Butyl (2-amino-1-(2,4-dichlorophenyl)ethyl)carbamate (175). A flame dried 1 

L round bottom was charged with tert-butyl (2-bromo-1-(2,4-dichlorophenyl)-2-

nitroethyl)carbamate (19.2 g, 46.4 mmol), CoCl2 (6.02 g, 46.4 mmol) and MeOH (230 

mL). The pot was cooled to 0 °C and NaBH4 (8.76 g, 231.9 mmol) was added in portions 

over 5 minutes with the final evolution of H2 contained in a balloon. The reaction stirred 

at 0 °C for 20 min and was warmed to rt and the progress was monitored by TLC. Sat. aq. 

NH4Cl (~100 mL) was added to the flask and it was brought to pH 9 with slow addition 

of 1 M NH4OH. The reaction was filtered with MeOH and DCM, concentrated to remove 

the organics then extracted with DCM (significant amount of emulsions). The combined 

organic layers were washed with brine, dried over MgSO4, filtered, and concentrated to a 

yellow oil. Flash column chromatography (SiO2, 1-3-5-10% methanol in 

dichloromethane with 0.5% acetic acid) yielded an oil/solid depending on water content 

(7.42 g, 52%). Mp 86-88 °C; Rf = 0.11 (10% MeOH/DCM); IR (film) 3316, 3002, 2977, 

2932, 1703, 1698, 1694 cm
-1

; 
1
H NMR (600 MHz, CDCl3) δ 7.36 (d, J = 2.0 Hz, 1H), 

7.32 (d, J = 8.0 Hz, 1H), 7.22 (dd, J = 8.3, 2.0, 1H), 5.7 (br s, 1H), 5.02 (br s, 1H), 2.98 

(br s, 2H), 1.41 (br s, 9H), 1.12 (br s, 2H); 
13

C NMR (150 MHz, CDCl3) ppm 155.3, 

137.2, 133.3, 129.6, 128.3, 127.2, 127.1, 79.7, 53.1, 44.8, 28.3; HRMS (ESI: Exact mass 

calcd for C13H19Cl2N2O2 [M+H]
+
 305.0824, found 305.0826. 

 

 

 

 



202 

 

(R)-tert-Butyl (1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)carbamate (179).
130

 

To a 250 mL round bottom containing the amine (7.41 g, 24.2 mmol) was added aqueous 

glyoxal (40% w/v, 6.88 mL, 48.4 mmol), ammonium acetate (3.74 g, 48.4 mmol), 

aqueous formaldehyde (37% w/v, 4.00 mL, 48.4 mmol) and methanol (60 mL). The 

reaction was refluxed with stirring for 20 hrs. The reaction was concentrated and 

redissolved in 3 M NaOH and was extracted with DCM. The combined organic layers 

were washed with brine, dried over MgSO4, filtered, and concentrated to a brown oil. The 

oil was dissolved in DCM (~100 mL) and was added to stirring hexanes (~400 mL). The 

solid that precipitated was filtered and washed with hexanes to give the product as a 

beige solid (4.21 g, 49%). Flash column chromatography (SiO2, 1-5% methanol in 

dichloromethane) of the remaining organic yielded a beige solid (0.86 g, 10%). Mp 166-

168 °C; [α] 20

D
 -8.5 (c 0.60, CHCl3); Rf = 0.31 (visualized with PIP) (10% MeOH/DCM); 

IR (film) 3212, 2977, 2934, 1707, 1507 cm
-1

; 
1
H NMR (600 MHz, CDCl3) δ 7.60 (s, 1H), 

7.43 (d, J = 2.1 Hz, 1H), 7.28 (br s, 1H), 7.21 (d, J = 6.6 Hz, 1H), 7.01 (br s, 2H), 6.75 

(br s, 1H), 5.35 (br s, 2H), 4.34-4.27 (m, 2H), 1.40 (s, 9H); 
13

C NMR (150 MHz, CDCl3) 

ppm 154.8, 137.5, 134.7, 134.5, 133.3, 130.0, 129.7, 128.8, 127.7, 119.4, 80.7, 52.8, 

49.7, 28.2; HRMS (ESI): Exact mass calcd for C16H20Cl2N3O2 [M+H]
+
 356.0933, found 

356.0924.  

                                                                                                                                                 
130 Adapted from: Matsuoka, Y.; Ishida, Y.; Sasaki, D.; Saigo, K. Tetrahedron 2006, 62, 8199-8206 

 

 



203 

 

tert-Butyl ((1R)-2-bromo-1-(2,4-difluorophenyl)-2-nitroethyl)carbamate (185b). A 

250-mL round-bottomed flask was charged with imine (7.00 g, 29.0 mmol), (+)-PBAM 

(147 mg, 290 µmol) and toluene (145 mL) and cooled to -78 °C. Bromonitromethane 

(6.02 g, 43.0 mmol) was added over 1 minute and the reaction was stirred for 48 h at -20 

°C. The reaction was filtered through a silica gel plug using ethyl acetate, concentrated to 

a white solid (10.8 g, 97%), and determined to be 1:1 dr by 
1
H NMR. The white solid was 

determined to be pure and required no further purification. The major diastereomer was 

determined to be 95% ee and the minor diastereomer was determined to be 94% ee by 

chiral HPLC analysis (Chiralcel AD-H, 4% 
i
PrOH/hexanes, 1 mL/min, tr(d1e1, major) = 

20.7 min, tr(d1e2, minor) = 29.6 min, tr(d2e1, major) = 22.8 min, tr(d2e2, minor) = 25.5 

min); IR (film) 3355, 2985, 1690, 1607, 1566, 1506 cm
-1

; 
1
H NMR (600 MHz, CDCl3, 

1:1 mixture of diastereomers) δ 7.35-7.28 (m, 2H), 6.91 (dd, J = 8.7, 8.7 Hz, 2H), 6.88 

(dd, J = 9.7, 9.7 Hz, 2H), 6.29 (br s, 2H), 5.81 (br s, 1H), 5.73 (br s, 1H), 5.65 (br s, 1H), 

5.40 (br d, J = 8.7 Hz, 1H), 1.43 (s, 18 H); 
13

C NMR (150 MHz, CDCl3, 1:1 mixture of 

diastereomers) ppm 163.41 (dd, JCF = 253, 12.1 Hz), 163.37 (dd, JCF = 252, 12.6 Hz), 

160.4 (dd, JCF = 249, 12.2 Hz), 154.4, 154.3, 130.5 (m), 118.5, 112.23 (dd, JCF = 21.6, 

3.3 Hz), 112.17 (dd, JCF = 21.5, 3.2 Hz), 104.7 (dd, JCF = 25.8, 25.8 Hz), 104.6 (dd, JCF = 

25.5, 25.5 Hz), 82.6, 81.4, 79.1, 53.9, 28.1; 
19

F NMR (282 MHz, CDCl3, 1:1 mixture of 

diastereomers) ppm -106, -110, -111; HRMS (ESI): Exact mass calcd for 

C13H15BrF2N2NaO4 [M+Na]
+
 403.0081, found 403.0065.  

 

 



204 

 

tert-Butyl ((1R)-2-bromo-1-(4-methoxyphenyl)-2-nitroethyl)carbamate (185c). A 

250-mL round-bottomed flask was charged with imine (6.82 g, 29.0 mmol), (+)-PBAM 

(147 mg, 290 µmol) and toluene (145 mL) and cooled to -78 °C. Bromonitromethane 

(6.02 g, 43.0 mmol) was added over 1 minute and the reaction was stirred for 48 h at -20 

°C. The reaction was filtered through a silica gel plug using ethyl acetate, concentrated to 

a white solid (10.6 g, 97%), and determined to be 5:1 dr by 
1
H NMR. The white solid was 

determined to be pure and required no further purification. The major diastereomer was 

determined to be 96% ee and the minor diastereomer was determined to be 96% ee by 

chiral HPLC analysis (Chiralcel AD-H, 20% 
i
PrOH/hexanes, 1 mL/min, tr(d1e1, major) = 

13.4 min, tr(d1e2, minor) = 16.0 min, tr(d2e1, major) = 21.6 min, tr(d2e2, minor) = 17.5 

min); IR (film) 3366, 2977, 1681, 1561, 1515 cm
-1

; 
1
H NMR (600 MHz, CDCl3, 1:1 

mixture of diastereomers) δ 7.24 (d, J = 8.6 Hz, 2H), 7.21 (d, J = 8.7 Hz, 2H), 6.90 (d, J 

= 8.8 Hz, 2H), 6.89 (d, J = 8.7 Hz, 2H), 6.30 (br s, 1H), 6.27 (br s, 1H), 5.64 (br s, 1H), 

5.56 (br m, 1H), 5.41 (br s, 1H), 5.31 (br s, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 1.45 (s, 9H), 

1.44 (s, 9H); 
13

C NMR (150 MHz, CDCl3, 1:1 mixture of diastereomers) ppm 160.1, 

160.0, 154.5 (2C), 128.2, 128.1, 126.5 (2C), 114.41, 114.38, 85.1, 82.0, 81.1, 80.9, 57.7 

(2C), 55.2 (2C), 28.15, 28.12; HRMS (ESI): Exact mass calcd for C14H20BrN2O5 [M+H]
+
 

375.0550, found 375.0551. 

  

 

 



205 

 

tert-Butyl ((1R)-2-bromo-1-(4-methylphenyl)-2-nitroethyl)carbamate (185d). A 250-

mL round-bottomed flask was charged with imine (6.58 g, 30.0 mmol), (+)-PBAM (152 

mg, 300 µmol) and toluene (150 mL) and cooled to -78 °C. Bromonitromethane (6.30 g, 

45.0 mmol) was added over 1 minute and the reaction was stirred for 48 h at -20 °C. The 

reaction was filtered through a silica gel plug using ethyl acetate, concentrated to a white 

solid (10.6 g, 97%), and determined to be 3:1 dr by 
1
H NMR. The white solid was 

determined to be pure and required no further purification. The major diastereomer was 

determined to be 91% ee and the minor diastereomer was determined to be 87% ee by 

chiral HPLC analysis (Chiralcel AD-H, 25% 
i
PrOH/hexanes, 0.4 mL/min, tr(d1e1, major) 

= 15.8 min, tr(d1e2, minor) = 17.5 min, tr(d2e1, major) = 23.2 min, tr(d2e2, minor) = 19.2 

min); IR (film) 3391, 2981, 1690, 1562, 1516 cm
-1

; 
1
H NMR (600 MHz, CDCl3, major 

diastereomer) δ 7.21-7.15 (m, 4H), 6.28 (br s, 1H), 5.60 (br s, 1H), 5.36 (br d, J = 8.0 Hz, 

1H), 2.35 (s, 3H), 1.44 (s, 9H); 
1
H NMR (600 MHz, CDCl3, minor diastereomer) δ 7.21-

7.15 (m, 4H), 6.31 (br s, 1H), 5.68 (br s, 1H), 5.43 (br s, 1H), 2.34 (s, 3H), 1.45 (s, 9H); 

13
C NMR (150 MHz, CDCl3, 3:1 mixture of diastereomers) ppm 154.7, 154.5, 139.2, 

139.1, 132.1, 131.6, 129.80, 129.75, 129.2, 128.8, 126.8, 126.6, 85.2, 81.9, 81.1, 57.9, 

28.19, 28.16, 21.1; HRMS (ESI): Exact mass calcd for C14H19BrN2NaO4 [M+Na]
+
 

381.0426, found 381.0432. 

  

 

 



206 

 

tert-Butyl ((1R)-2-bromo-1-(3-bromophenyl)-2-nitroethyl)carbamate (185e). A 250-

mL round-bottomed flask was charged with imine (8.53 g, 30.0 mmol), (+)-PBAM (152 

mg, 300 µmol) and toluene (150 mL) and cooled to -78 °C. Bromonitromethane (6.30 g, 

45.0 mmol) was added over 1 minute and the reaction was stirred for 60 h at -20 °C. The 

reaction was filtered through a silica gel plug using ethyl acetate, concentrated to a white 

solid (12.5 g, 98%), and determined to be 1:1 dr by 
1
H NMR. The white solid was 

determined to be pure and required no further purification. The major diastereomer was 

determined to be 91% ee and the minor diastereomer was determined to be 91% ee by 

chiral HPLC analysis (Chiralcel AD-H, 7% EtOH/hexanes, 0.6 mL/min, tr(d1e1, major) = 

20.9 min, tr(d1e2, minor) = 16.5 min, tr(d2e1, major) = 19.2 min, tr(d2e2, minor) = 17.7 

min); IR (film) 3348, 2980, 1701, 1567, 1504 cm
-1

; 
1
H NMR (600 MHz, CDCl3, 1:1 

mixture of diastereomers) δ 7.51-7.46 (m, 4H), 7.27-7.22 (m, 4H), 6.28 (br s, 2H), 5.76 

(br d, J = 8.9 Hz, 1H), 5.65 (br s, 1H), 5.43 (br s, 2H), 1.46 (s, 9H), 1.44 (s, 9H); 
13

C 

NMR (150 MHz, CDCl3, 1:1 mixture of diastereomers) ppm 154.6, 154.3, 137.6, 136.9, 

132.4, 132.3, 130.64, 130.60, 130.1, 129.9, 125.7, 125.4, 123.17, 123.15, 84.8, 81.3, 81.0, 

57.5, 28.2, 28.1; HRMS (ESI): Exact mass calcd for C13H16Br2N2NaO4 [M+Na]
+
 

444.9374, found 444.9393. 
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(R)-N-(1-(2,4-Dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-2-fluoronicotinamide 

(188). Prepared according to the general procedure. [α] 20

D
 +4.0 (c 0.30, CHCl3); Rf = 0.3 

(10% MeOH/CH2Cl2); IR (film) 3287, 2923, 2853, 1650, 1605, 1609, 1572, 1548, 1510, 

1432 cm
-1

; 
1
H NMR (600 MHz, CDCl3) δ 8.50 (ddd, J = 9.6, 7.6, 1.8 Hz, 1H), 8.35 (d, J 

= 4.1 Hz, 1H), 7.63-7.60 (br m, 1H), 7.48 (d, J = 2.1 Hz, 1H), 7.38-7.36 (br m, 2H), 7.23 

(dd, J = 8.3, 2.1 Hz, 1H), 7.05 (d, J = 8.5 Hz, 1H), 7.04 (br s, 1H), 6.82 (br s, 1H), 5.84 

(ddd, J = 6.3, 6.3, 6.3 Hz, 1H), 4.50 (dd, J = 14.4, 6.0 Hz, 1H), 4.46 (dd, J = 14.3, 6.5 Hz, 

1H); 
13

C NMR (150 MHz, CDCl3) ppm 161.4 (d, JCF = 7.4 Hz), 160.0 (d, JCF = 235 Hz), 

151.0 (d, JCF = 16.7 Hz), 143.5, 137.4, 135.3, 133.3 (d, JCF = 14.5 Hz), 130.4, 129.9, 

129.4, 128.0, 122.7 (d, JCF = 3.9 Hz), 119.2, 115.1 (d, JCF = 27.6 Hz), 52.7, 49.3; HRMS 

(ESI): Exact mass calcd for C17H14Cl2FN4O [M+H]
+
 379.0529, found 379.0538. 

  

 

 



208 

 

(R)-N-(1-(2,4-Dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-2,6-difluoronicotinamide 

(189). Prepared according to the general procedu191re.[α] 20

D
 +6.6 (c 0.65, CHCl3); Rf = 

0.3 (10% MeOH/CH2Cl2); IR (film) 3287, 1658, 1652, 1609, 1590, 1470, 1409 cm
-1

; 
1
H 

NMR (600 MHz, CDCl3) δ 8.60 (ddd, J = 8.1, 8.1, 8.1 Hz, 1H), 7.48 (d, J = 2.1 Hz, 1H), 

7.47-7.45 (br m, 1H), 7.30 (br s, 1H), 7.23 (dd, J = 8.3, 2.0 Hz, 1H), 7.04 (d, J = 8.3 Hz, 

1H), 7.02 (br s, 1H), 6.99 (dd, J = 8.3, 2.2 Hz, 1H), 6.84 (br s, 1H), 5.81 (ddd, J = 7.8, 

7.8, 7.8 Hz, 1H), 4.49 (dd, J = 14.4, 6.1 Hz, 1H), 4.44 (dd, J = 14.3, 6.6 Hz, 1H); 
13

C 

NMR (150 MHz, CDCl3) ppm 162.8 (dd, JCF = 254, 17.8 Hz), 160.5 (d, JCF = 7.2 Hz), 

158.3 (dd, JCF = 243, 15.4 Hz), 148.3 (d, JCF = 8.8 Hz), 137.4, 135.4, 133.4, 133.1, 130.5, 

130.1, 129.4, 128.0, 119.2, 112.3 (dd, JCF = 24.9, 5.5 Hz), 108.0 (dd, JCF = 34.2, 5.4 Hz), 

52.8, 49.2; HRMS (ESI): Exact mass calcd for C17H13Cl2F2N4O [M+H]
+
 397.0434, found 

397.0439. 

 

  

 

 



209 

 

(R)-N-(1-(2,4-Dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-(4-fluorophenyl)-

1,3,4-oxadiazol-2-yl)benzamide (190). [α]
20

D  +30 (c 0.30, CHCl3); IR (film) 3255, 

2925, 1661, 1551, 1495 cm
-1

; 
1
H NMR (600 MHz, CDCl3) δ 8.21 (d, J = 8.3 Hz, 2H), 

8.16 (dd, J = 8.9, 5.2 Hz, 2H), 7.89 (d, J = 8.3 Hz, 2H), 7.50 (d, J = 2.1 Hz, 1H), 7.34 (br 

s, 1H), 7.26-7.23 (m, 3H), 7.10 (d, J = 8.3 Hz, 1H), 7.05 (br s, 1H), 6.92 (d, J = 7.4 Hz, 

1H), 6.85 (br s, 1H), 5.79 (ddd, J = 6.5, 6.5, 6.5 Hz, 1H), 4.54 (d, J = 6.4 Hz, 2H); 
13

C 

NMR (150 MHz, CDCl3) ppm 166.0, 165.0 (d, JCF = 254 Hz), 164.3, 163.6, 137.5, 136.1, 

135.4, 133.4 (d, JCF = 11.9 Hz), 130.5, 129.8, 129.4, 129.3, 128.0, 127.8, 127.3, 127.0, 

119.9, 119.3, 116.7, 116.5, 53.0, 49.0; 
19

F NMR (282 MHz, CDCl3) ppm -104; HRMS 

(ESI): Exact mass calcd for C26H19Cl2FN5O2 [M+H]
+
 522.0900, found 522.0903. 

  

 

 



210 

 

(R)-N-(1-(2,4-Dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-(3-fluorophenyl)-

1,3,4-oxadiazol-2-yl)benzamide (191). [α]
20

D  +47 (c 0.27, CHCl3); IR (film) 3261, 

1657, 1554, 1493 cm
-1

; 
1
H NMR (600 MHz, CDCl3) δ 8.19 (d, J = 8.4 Hz, 2H), 7.94 (d, J 

= 7.8 Hz, 1H), 7.90 (d, J = 8.3 Hz, 2H), 7.84-7.83 (m, 1H), 7.53 (ddd, J = 8.1, 8.1, 5.6 

Hz, 1H), 7.49 (d, J = 2.0 Hz, 1H), 7.33 (br s, 1H), 7.28 (ddd, J = 8.3, 8.3, 2.3 Hz, 1H), 

7.25 (dd, J = 8.4, 2.0 Hz, 1H), 7.14 (d, J = 8.3 Hz, 1H), 7.13 (br s, 1H), 7.03 (br s, 1H), 

6.87 (br s, 1H), 5.79 (ddd, J = 6.4, 6.4, 6.4 Hz, 1H), 4.56 (dd, J = 14.2, 6.6 Hz, 1H), 4.52 

(dd, J = 14.2, 6.4 Hz, 1H); 
13

C NMR (150 MHz, CDCl3) ppm 166.1, 164.1, 163.9, 162.8 

(d, JCF = 248 Hz), 137.5, 136.3, 135.4, 133.4, 131.1 (d, JCF = 7.9 Hz), 130.4, 129.9, 

129.7, 128.0, 127.9, 127.3, 126.8, 125.4 (d, JCF = 8.3 Hz), 122.8 (d, JCF = 3.3 Hz), 119.4, 

119.2 (d, JCF = 21.3 Hz), 114.1 (d, JCF = 24.5 Hz), 52.9, 49.0; 
19

F NMR (282 MHz, 

CDCl3) ppm -109; HRMS (ESI): Exact mass calcd for C26H19Cl2FN5O2 [M+H]
+
 

522.0900, found 522.0879.  

  

 

 



211 

 

 

(R)-tert-Butyl (1-(4-chlorophenyl)-2-(1H-imidazol-1-yl)ethyl)carbamate (192SI). 

Recovered from large scale reduction of 2,4-dichloro adduct (10:1 mixture) and used in 

coupling reaction to make VNI analog. [α] 20

D
 -19 (c 0.73, CHCl3); IR (film) 3211, 2978, 

1703, 1509 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 7.31 (d, J = 8.5 Hz, 2H), 7.20 (s, 1H), 

7.04 (d, J = 8.8 Hz, 2H), 6.99 (s, 1H), 6.69 (s, 1H), 4.97 (br s, 1H), 4.91 (br s, 1H), 4.30-

4.25 (br m, 2H), 1.43 (s, 9H); 
13

C NMR (100 MHz, CDCl3) ppm 154.9, 137.6, 136.8, 

134.3, 129.5, 129.3, 127.8, 119.4, 80.6, 55.1, 51.6, 28.3; HRMS (ESI): Exact mass calcd 

for C16H21ClN3O2 [M+H]
+
 322.1322, found 322.1312. 

  

 

 



212 

 

(R)-N-(1-(4-Chlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-

yl)benzamide (192). Prepared according to the general procedure. [α] 20

D
 +11 (c 0.19, 

CHCl3); Rf = 0.3 (10% MeOH/CH2Cl2); mp 124-126 °C; IR (film) 3319, 2923, 1651, 

1549, 1491 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 8.15 (d, J = 7.8 Hz, 1H), 8.04 (d, J = 7.0 

Hz, 2H), 7.98 (d, J = 8.3 Hz, 2H), 7.84 (d, J = 8.4 Hz, 2H), 7.56-7.47 (m, 3H), 7.32 (br s, 

1H), 7.29 (s, 4H), 6.95 (br s, 1H), 6.90 (br s, 1H), 5.50 (ddd, J = 7.3, 7.3, 7.3 Hz, 1H), 

4.57 (dd, J = 14.1, 7.5 Hz, 1H), 4.39 (dd, J = 14.0, 6.6 Hz, 1H); 
13

C NMR (100 MHz, 

CDCl3) ppm 166.7, 165.0, 163.7, 137.6, 136.73, 136.71, 134.4, 132.1, 129.3, 129.1, 

128.2, 128.1, 126.92, 126.86, 126.4, 123.3, 119.6, 54.4, 50.8; HRMS (ESI): Exact mass 

calcd for C26H21ClN5O2 [M+H]
+
 470.1384, found 470.1371. 

  

 

 



213 

 

 

tert-Butyl ((2,4-difluorophenyl)(phenylsulfonyl)methyl)carbamate (193SI). A 1-L 

round-bottomed flask was charged with 2,4-difluorobenzaldehyde (11.2 mL, 102 mmol), 

benzenesulfinic acid sodium salt (28.0 g, 170 mmol), tert-butyl carbamate (10.0 g, 85.4 

mmol), formic acid (6.5 mL, 170 mmol), methanol (70 mL), and water (140 mL) and 

stirred for 3 days. The solid was filtered and rinsed with water. The washed solid was 

added to diethyl ether and stirred overnight. Filtration and washing with diethyl ether 

afforded the pure product as a white solid (28.7 grams, 88% yield). Mp 144-146 °C; IR 

(film) 3342, 2979, 1705, 1619, 1505 cm
-1

; 
1
H NMR (600 MHz, CDCl3) δ 7.93 (d, J = 7.3 

Hz, 2H), 7.66 (t, J = 7.3 Hz, 1H), 7.55 (d, J = 7.6, 7.6 Hz, 2H), 7.45 (ddd, J = 7.9, 7.9, 7.9 

Hz, 1H), 6.96 (ddd, J = 8.1, 8.1, 1.9 Hz, 1H), 6.87 (ddd, J = 10.6, 8.7, 2.5 Hz, 1H), 6.19 

(d, J = 10.9 Hz, 1H), 5.90 (d, J = 10.5 Hz, 1H), 1.27 (s, 9H); 
13

C NMR (150 MHz, 

CDCl3) ppm 163.9 (dd, JCF = 253, 12.3 Hz), 161.4 (dd, JCF = 252, 11.7 Hz), 153.4, 136.5, 

134.2, 131.3 (d, JCF = 10.3 Hz), 129.4, 129.2, 114.1 (d, JCF = 14.5 Hz), 112.1 (d, JCF = 

20.0 Hz), 104.6 (dd, JCF = 25.7, 25.7 Hz), 81.5, 68.7, 28.0; 
19

F NMR (282 MHz, CDCl3) 

ppm -104, -109 (d, JHF = 8.5 Hz); HRMS (ESI): decomposed to imine during analysis (M 

= 242). 

 

  

 

 



214 

 

tert-Butyl 2,4-difluorobenzylidenecarbamate (193SI). A 500-mL round-bottomed flask 

was charged with tert-butyl ((2,4-difluorophenyl)(phenylsulfonyl)methyl)carbamate 

(11.9 g, 31.0 mmol), K2CO3 (30.0 g, 217 mmol), Na2SO4 (35.2 g, 248 mmol) and THF 

(260 mL). The pot was refluxed for 4 h until completion (checked by 
1
H NMR). The 

reaction mixture was filtered through Celite, washed with diethyl ether and concentrated 

on low heat to yield the title compound as a colorless oil [7.15 g, 96% (<2% aldehyde)]. 

IR (film) 3079, 2982, 2936, 1718, 1619, 1502 cm
-1

; 
1
H NMR (600 MHz, CDCl3) δ 9.08 

(s, 1H), 8.16 (ddd, J = 8.5, 8.5, 6.7 Hz, 1H), 6.96 (ddd, J = 8.9, 8.9, 2.3 Hz, 1H), 6.88 

(ddd, J = 10.7, 8.8, 2.4 Hz, 1H), 1.58 (s, 9H); 
13

C NMR (150 MHz, CDCl3) ppm 166.5 

(dd, JCF = 258, 12.5 Hz), 164.4 (dd, JCF = 260, 12.8 Hz), 162.3, 161.7 (d, JCF = 4.6 Hz), 

130.2 (dd, JCF = 10.5, 3.1 Hz), 118.7 (dd, JCF = 8.9, 3.5 Hz), 112.6 (dd, JCF = 22.0, 3.3 

Hz), 104.4 (dd, JCF = 25.0, 25.0 Hz), 82.7, 27.9; 
19

F NMR (282 MHz, CDCl3) ppm -98, -

112; HRMS (ESI): Exact mass calcd for C12H14F2NO2 [M+H]
+
 242.0987, found 

242.0989. 
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(R)-N-(1-(2,4-Difluorophenyl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-

oxadiazol-2yl)benzamide (193, FF-VNI). Prepared according to the general procedure. 

[α] 20

D
 +18 (c 0.20, CHCl3); Rf = 0.28 (10% MeOH/CH2Cl2); IR (film) 3261, 3064, 1657, 

1617, 1550, 1503 cm
-1

; 
1
H NMR (600 MHz, CDCl3) δ 8.17 (d, J = 8.2 Hz, 2H), 8.13 (d, J 

= 6.9 Hz, 2H), 7.90 (d, J = 8.2 Hz, 2H), 7.59-7.52 (m, 3H), 7.32 (br d, 2H), 7.20 (ddd, J = 

8.3, 8.3, 8.3 Hz, 1H), 7.00 (br s, 1H), 6.91 (ddd, J = 10.9, 8.6, 2.3 Hz, 1H), 6.87-6.84 (m, 

2H), 5.67 (ddd, J = 7.2, 7.2, 7.2 Hz, 1H), 4.54 (dd, J = 14.1, 6.8 Hz, 1H), 4.39 (dd, J = 

14.1, 7.0 Hz, 1H);
13

C NMR (150 MHz, CDCl3) ppm 166.2, 165.1, 163.6, 162.9 (dd, JCF = 

252, 12.5 Hz), 160.8 (dd, JCF = 247, 11.9 Hz), 137.4, 136.2, 132.1, 130.4, 129.7, 129.2, 

127.9, 127.1, 127.0, 126.9, 123.4, 120.6 (d, JCF = 13.8 Hz), 119.3, 112.2 (dd, JCF = 21.3, 

3.5 Hz), 104.8 (dd, JCF = 25.4, 25.4 Hz), 51.2, 49.9; 
19

F NMR (282 MHz, CDCl3) ppm -

106, -112; HRMS (ESI): Exact mass calcd for C26H20F2N5O2 [M+H]
+
 472.1585, found 

472.1572. 
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4
ClStilbBAM ((1R,2R)-N1,N2-bis(4-Chloroquinolin-2-yl)-1,2-diphenylethane-1,2-

diamine) (115SI). A 50-mL, round-bottomed flask equipped with a stir bar was charged 

with (1R,2R)-(+)-1,2-diphenylethylenediamine (859 mg, 4.00 mmol), Pd(dba)2 (34 mg, 

60 μmol), rac-BINAP (74 mg, 120 μmol), sodium tert-butoxide (961 mg, 10.0 mmol), 

and 2,4-dichloroquinoline (1.58 g, 8.00 mmol). The reaction vessel was placed under an 

argon atmosphere, toluene (23 mL) was dispensed into the flask, and the resulting 

solution was placed into an oil bath heated to 80 °C with stirring. The reaction was 

monitored by TLC and after 1 h nearly complete conversion was observed. The reaction 

was stirred for an additional 1 hour, and cooled to 25 °C, diluted with ethyl acetate, and 

filtered through plug of Celite. The organic mixture was concentrated and the crude solid 

was triturated with 40 mL of a benzene/pentane (25/75) mixture. The solid was filtered 

and dried under vacuum to give a light yellow solid (1.70 g, 79%), which was used in the 

next step without further purification. Rf = 0.45 (20% EtOAc/hexanes); [α]
20

D  +3.3 (c 

1.0, CHCl3); IR (film) 3239, 3060, 1602 cm
-1

; 
1
H NMR (45 °C, 600 MHz, CDCl3) δ 7.96 

(d, J = 8.4 Hz, 2H), 7.83 (br s, 2H), 7.63 (dd, J = 7.8, 7.2 Hz, 2H), 7.30 (dd, J = 7.8, 7.2 

Hz, 2H), 7.23-7.18 (m, 10H), 6.56 (br s, 2H), 6.31 (br s, 2H), 5.62 (br s, 2H); 
13

C NMR 

(45 °C, 150 MHz, CDCl3) ppm 156.5, 148.4, 142.9, 140.0, 130.5, 128.4, 127.8, 127.6, 

126.4, 124.3, 122.8. 121.9, 111.7, 62.1; HRMS (ESI): Exact mass calcd for C32H25Cl2N4 

[M+H]
+
 535.1456, found 535.1432.  
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StilbPBAM (115) [(1R,2R)-1,2-Diphenyl-N1,N2-bis(4-(pyrrolidin-1-yl)quinolin-2-

yl)ethane-1,2-diamine] (115) /updated from submitted manuscript. A 2-5 mL 

microwave vial equipped with a stir bar was charged with 
4
ClStilb-BAM (803 mg, 1.50 

mmol), pyrrolidine (493 μL, 6.00 mmol), and trifluoromethylbenzene (1.5 mL). The vial 

was sealed, and this suspension was heated with stirring at 120 °C in the microwave for 

10+10 min. The reaction mixture was diluted with dichloromethane and transferred to a 

round-bottomed flask for evaporation. Flash column chromatography (SiO2, 2-5-10% 

methanol in dichloromethane) yielded a brown solid that was washed with 3M NaOH to 

give a yellow solid (707 mg, 78%). Rf = 0.66 (20% MeOH/CH2Cl2); [α]
20

D  +92 (c 1.0, 

CHCl3); IR (film) 3238, 3060, 2971, 1584 cm
-1

; 
1
H NMR (50 °C, 600 MHz, CDCl3) δ 

7.90 (d, J = 6.6 Hz, 2H), 7.75 (br s, 2H), 7.43 (dd, J = 7.2, 7.2 Hz, 2H), 7.30 (br s, 4H), 

7.26 (s, 2H), 7.19 (br m, 4H), 7.14 (d, J = 6.6 Hz, 2H), 7.02 (br s, 2H), 5.52 (br m, 4H), 

3.33 (br s, 4H), 3.22 (br s, 4H), 1.86 (s, 8H); 
13

C NMR (150 MHz, CDCl3) 157.7, 153.5, 

149.7, 141.4, 128.3, 128.0, 127.9, 126.8, 126.6, 124.7, 119.3, 118.6, 92.0, 62.1, 51.5, 25.5 

ppm; HRMS (ESI): Exact mass calcd for C40H41N6 [M+H]
+
 605.3393, found 605.3372. A 

crystal structure of the catalyst dimer was obtained. See Appendix.  
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StilbPBAM•HNTf2 (115•HNTf2) A flame dried vial equipped with a stir bar was 

charged with bistrifluoromethanesulfonimide (141 mg, 500 µmol) and dichloromethane 

(5 mL), cooled to 0 °C , and Stilb-PBAM (302 mg, 500 µmol) was added. The solution 

was stirred for 30 minutes before the solvent was removed in vacuo to give the catalyst as 

a beige solid that was used without any purification. Other acid salts used in reaction 

optimization were made in a similar fashion using the corresponding acids and 

equivalents. 

  

FIGURE SI. Crystal Structure of StilbPBAM. See Appendix for complete details. 

 

 

 



219 

Preparation of unsaturated acids. Known compounds were synthesized according to 

known procedures. A modified procedure (from Ishihara
131

 and Rovis
132

) was used to 

synthesize the keto-acids using an organocuprate addition to minimize double aryllithium 

addition leading to the alcohol. 

 

 

5-(3-Fluorophenyl)hex-5-enoic acid (270f). A flame dried, round-bottomed flask, 

equipped with a stir bar and condenser, was charged with magnesium turnings (0.292 g, 

12.0 mmol) and a catalytic amount of iodine. A small amount of heat was applied to 

produce iodine vapor and tetrahydrofuran (15 mL) was added, followed by dropwise 

addition of 3-bromofluorobenzene (1.75 g, 10.0 mmol). After a mild reflux, the reaction 

was allowed to cool to room temperature. The Grignard reagent was then transferred via 

cannulation to a suspension of copper(I) iodide (952 mg, 5.00 mmol) in tetrahydrofuran 

(10 mL) at 0 ºC. The solution was stirred for 1 hour at room temperature, then cooled to 0 

ºC before addition of glutaric anhydride (571 mg, 5.00 mmol). The reaction was warmed 

to room temperature and stirred for 1.5 h, then quenched with 3M HCl and concentrated 

in vacuo to remove tetrahydrofuran. The aqueous layer was diluted with diethyl ether and 

filtered into a separatory funnel. The aqueous layer was extracted with diethyl ether and 

the combined organic layers were washed with brine and dried over magnesium sulfate. 

                                                                                                                                                 
131 Uyanik, M.; Yasui, T.; Ishihara, K. Bioorg. Med. Chem. Lett. 2009, 19, 3848-3851. 

132   tt       o i a  T    aa e       aa at        e ets  V    al  ran   I    oppel  I       arlya s ayte         

Yagupolskii, Y. L.; Yagupolskii, L. M.; Bernhardt, E.; Willner, H.; Leito, I. J. Org. Chem. 2011, 76, 391-395. 
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Flash column chromatography (SiO2, 10-30-50% ethyl acetate in hexanes) yielded a 

colorless oil (0.90 g, 86%) that was determined to be >90% pure (contaminated with 

double Grignard addition product) and used without further purification. Rf = 0.10 (50% 

EtOAc/hexanes).  

The title compound was prepared according to the general procedure described by 

Hartwig
133

 using the synthetic keto-acid. Flash column chromatography (SiO2, 10-25-

40% ethyl acetate in hexanes) yielded a colorless solid (0.24 g, 73%). Rf = 0.33 (50% 

EtOAc/hexanes) visualized with CAM; IR (film) 3083, 2931, 1708 cm
-1

; 
1
H NMR (400 

MHz, CDCl3) δ 7.28 (ddd, J = 7.9, 7.9, 6.2 Hz, 1H), 7.17 (d, J = 7.8 Hz, 1H), 7.09 (ddd, J 

= 10.5, 2.2, 2.2 Hz, 1H), 6.97 (ddd, J = 8.2, 8.2, 2.0 Hz, 1H), 5.34 (s, 1H), 5.12 (s, 1H), 

2.55 (t, J = 7.6 Hz, 2H), 2.39 (t, J = 7.4 Hz, 2H), 1.80 (tt, J = 7.5, 7.5 Hz, 2H); 
13

C NMR 

(100 MHz, CDCl3) ppm 179.6, 162.9 (d, 
1
JCF = 244 Hz), 146.2, 143.1 (d, 

3
JCF = 8.0 Hz), 

129.8 (d, 
3
JCF = 8.0 Hz), 121.7 (d, 

4
JCF = 2.0 Hz), 114.2 (d, 

2
JCF = 21 Hz), 114.1, 113.0 

(d, 
2
JCF = 22 Hz), 34.3, 33.2, 22.9; 

19
F NMR (282 MHz, CDCl3) ppm -111.6 (dd, JHF = 

14.1, 8.5 Hz); HRMS (ESI): Exact mass calcd for C12H13FNaO2 [M+Na]
+
 208.0894, 

found 208.0888. 
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5-(m-Tolyl)hex-5-enoic acid (270k). A flame dried, round-bottomed flask, equipped 

with a stir bar and condenser, was charged with magnesium turnings (0.92 g, 38 mmol) 

and a catalytic amount of iodine. A small amount of heat was applied to produce iodine 

vapor and tetrahydrofuran (15 mL) was added, followed by dropwise addition of meta-

bromotoluene (1.21 mL, 10.0 mmol). After a mild reflux, the reaction was allowed to 

cool to room temperature. The Grignard reagent was then transferred via cannulation to a 

suspension of copper(I) iodide (950 mg, 5.00 mmol) in tetrahydrofuran (10 mL) at 0 ºC. 

The solution was stirred for 1 hour at room temperature, then cooled to 0 ºC before 

addition of glutaric anhydride (571 mg, 5.00 mmol). The reaction was warmed to room 

temperature and stirred for 1.5 h, then quenched with 3M HCl and concentrated in vacuo 

to remove tetrahydrofuran. The aqueous layer was diluted with diethyl ether and filtered 

into a separatory funnel. The aqueous layer was extracted with diethyl ether and the 

combined organic layers were washed with brine and dried over magnesium sulfate. 

Flash column chromatography (SiO2, 10-30-50% ethyl acetate in hexanes) yielded a 

colorless oil (158 mg, 15%) that was determined to be >90% pure (contaminated with 

double Grignard addition product) and used without further purification. Rf = 0.16 (50% 

EtOAc/hexanes).  
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The title compound was prepared according to the general procedure described by 

Hartwig
133

 using the synthetic keto-acid. Flash column chromatography (SiO2, 10-25-

50% ethyl acetate in hexanes) yielded a colorless oil (88 mg, 72%). Rf = 0.40 (50% 

EtOAc/hexanes) visualized with CAM; IR (film) 3081, 2928, 1708 cm
-1

; 
1
H NMR (400 

MHz, CDCl3) δ 7.24-7.18 (m, 3H), 7.09 (d, J = 6.7 Hz, 1H), 5.29 (d, J = 1.1 Hz, 1H), 

5.06 (d, J = 1.1 Hz, 1H), 2.57 (t, J = 7.6 Hz, 2H), 2.38 (t, J = 7.4 Hz, 2H), 2.36 (s, 3H), 

1.80 (tt, J = 7.5, 7.5 Hz, 2H); 
13

C NMR (100 MHz, CDCl3) ppm 179.6, 147.4, 140.7, 

137.9, 128.23, 128.22, 126.9, 123.2, 112.9, 34.5, 33.2, 23.0, 21.5; HRMS (ESI): Exact 

mass calcd for C13H16O2 [M+H]
+
 204.1145, found 204.1146. 

  

                                                                                                                                                 
133 Hatano, M.; Maki, T.; Moriyama, K.; Arinobe, M.; Ishihara, K. J. Am. Chem. Soc. 2008, 130, 16858-16860. 
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5-(3-Chlorophenyl)hex-5-enoic acid (270g). A flame dried, round-bottomed flask, 

equipped with a stir bar and condenser, was charged with magnesium turnings (0.466 g, 

19.2 mmol) and a catalytic amount of iodine. A small amount of heat was applied to 

produce iodine vapor and tetrahydrofuran (20 mL) was added, followed by dropwise 

addition of 3-chlorofluorobenzene (3.06 g, 16.0 mmol). After a mild reflux, the reaction 

was allowed to cool to room temperature. The Grignard reagent was then transferred via 

cannulation to a suspension of copper(I) iodide (1.52 g, 8.00 mmol) in tetrahydrofuran 

(10 mL) at 0 ºC. The solution was stirred for 1 hour at room temperature, then cooled to 0 

ºC before addition of glutaric anhydride (912 mg, 8.00 mmol). The reaction was warmed 

to room temperature and stirred for 1.5 h, then quenched with 3M HCl and concentrated 

in vacuo to remove tetrahydrofuran. The aqueous layer was diluted with diethyl ether and 

filtered into a separatory funnel. The aqueous layer was extracted with diethyl ether and 

the combined organic layers were washed with brine and dried over magnesium sulfate. 

Flash column chromatography (SiO2, 10-30-50% ethyl acetate in hexanes) yielded a 

colorless oil (0.40 g, 22%) that was determined to be >90% pure (contaminated with 

double Grignard addition product) and used without further purification. Rf = 0.20 (60% 

EtOAc/hexanes).  

The title compound was prepared according to the general procedure described by 

Hartwig
133

 using the synthetic keto-acid. Flash column chromatography (SiO2, 10-20-

50% ethyl acetate in hexanes) yielded a white solid (0.25 g, 78%). Rf = 0.12 (50% 

 



224 

EtOAc/hexanes) visualized with CAM; IR (film) 3414, 2934, 1708 cm
-1

; 
1
H NMR (400 

MHz, CDCl3) δ 7.38 (s, 1H), 7.27-7.24 (m, 3H), 5.33 (s, 1H), 5.12 (s, 1H), 2.54 (t, J = 7.4 

Hz, 2H), 2.39 (t, J = 7.4 Hz, 2H), 1.79 (tt, J = 7.4, 7.4 Hz, 2H); 
13

C NMR (100 MHz, 

CDCl3) ppm 179.9, 146.2, 142.6, 134.3, 129.6, 127.5, 126.3, 124.2, 114.2, 34.3, 33.2, 

22.9; HRMS (EI): Exact mass calcd for C12H13ClO2 [M]
+
 224.0599, found 224.0597. 
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6-Phenylhept-6-enoic acid (270c). The title compound was prepared according to the 

general procedure described by Hartwig using the commercial keto-acid. Flash column 

chromatography (SiO2, 10-40% ethyl acetate in hexanes) yielded a white solid (1.92 g, 

94%). Mp 52-53 ºC; Rf = 0.46 (50% EtOAc/hexanes);IR (film) 3033, 2933, 1698 cm
-1

; 

1
H NMR (400 MHz, CDCl3) δ 7.39 (d, J = 7.2 Hz, 2H), 7.31 (dd, J = 7.7, 7.0 Hz, 2H), 

7.25 (t, J = 7.3 Hz, 1 H), 5.27 (s, 1H), 5.06 (s, 1H), 2.53 (t, J = 7.5 Hz, 2H), 2.34 (t, J = 

7.6 Hz, 2H), 1.67 (dt, J = 15.2, 7.6 Hz, 2H), 1.50 (dt, J = 15.2 Hz, 7.6 Hz, 2H); 
13

C NMR 

(100 MHz, CDCl3) ppm 180.2, 148.0, 141.1, 128.3, 127.3, 126.1, 112.5, 34.9, 33.8, 27.5, 

24.2; HRMS (CI): Exact mass calcd for C13H16O2 [M]
+
 204.1145, found 204.1147. 
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General procedure for enantioselective esterifications: To a flame dried vial equipped 

with a stir bar was added PBAM•HNTf2 (4.4 mg, 2.0 µmol), 5-phenylhex-5-enoic acid 

(19.0 mg, 100 µmol) and toluene (2 mL), and the reaction was cooled to -20 ºC. NIS 

(23.3 mg, 104 µmol) was added and the reaction mixture was stirred without light for 12 

h. The mixture was treated with 20% aq sodium thiosulfate (2 mL) and then partitioned 

between dichloromethane (15 mL) and 3 M NaOH (15 mL). The aqueous layer was 

extracted twice and the organic layers were combined, dried over magnesium sulfate and 

concentrated. Flash column chromatography (SiO2, 10-25-50% ethyl acetate in hexanes) 

yielded an oil (30 mg, 95%). The product was determined to be 98% ee by chiral HPLC 

analysis (Chiralcel OD-H, 15% 
i
PrOH/hexanes, 1 mL/min, tr(e1, minor) = 9.1 min, tr(e2, 

major) = 12.0 min); Rf = 0.30 (25% EtOAc/hexanes) visualized with CAM; [α]
20

D  -27 (c 

1.2, CHCl3); Remainder of physical data matched with literature values.
134

 

  

                                                                                                                                                 
134 Shackleford, J. P.; Shen, B.; Johnston, J. N. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 44-46. 
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General procedure for racemic esterification: To a flame dried vial equipped with a 

stir bar was added DMAP (2.4 mg, 2.0 µmol), 5-phenylhex-5-enoic acid (19.0 mg, 100 

µmol) and dichloromethane (1 mL). NIS (31.3 mg, 0.140 mmol) was added and the 

reaction mixture was stirred without light for 30 min at room temperature. The mixture 

was treated with 20% aq sodium thiosulfate (2 mL) and then partitioned between 

dichloromethane (15 mL) and 3 M NaOH (15 mL). The aqueous layer was extracted 

twice and the organic layers were combined, dried over magnesium sulfate and 

concentrated. The mixture was dissolved in dichloromethane and passed through a pipet 

silica plug with 5 mL of mobile phase (50% EtOAc/hexanes). The solvent was removed 

in vacuo to give the product. 
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(R)-5-(Iodomethyl)-5-phenyldihydrofuran-2(3H)-one (271b). Prepared according to 

the general procedure using 4-phenylpent-4-enoic acid
132

 (17.6 mg, 0.100 mmol), 

PBAM•HNTf2 (4.4 mg, 5.0 µmol) and NIS (24.6 mg, 0.110 mmol) over 24 hours. Flash 

column chromatography (SiO2, 10-25-50% ethyl acetate in hexanes) yielded a colorless 

oil (30 mg, 99%). The product was determined to be 67% ee by chiral HPLC analysis 

(Chiralcel AD-H, 10% 
i
PrOH/hexanes, 1 mL/min, tr(e1, major) = 9.0 min, tr(e2, minor) = 

10.0 min); Rf = 0.31 (50% EtOAc/hexanes) visualized with CAM. Remainder of physical 

data matched with literature values.
134
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7-(Iodomethyl)-7-phenyloxepan-2-one (271c). To a flame dried vial equipped with a 

stir bar was added DMAP (6 mg, 50 µmol), 6-phenylhept-6-enoic acid (20 mg, 100 

µmol) and dichloromethane (1 mL). NIS (34 mg, 0.15 mmol) was added and the reaction 

was stirred without light for 16 h. The reaction as quenched with 2 mL of 20% aq sodium 

thiosulfate. The mixture was treated with 20% aq sodium thiosulfate (3 mL) and then 

partitioned between dichloromethane (15 mL) and 3 M NaOH (15 mL). The aqueous 

layer was extracted twice and the organic layers were combined, dried over magnesium 

sulfate and concentrated. Flash column chromatography (SiO2, 3-20% ethyl acetate in 

hexanes) yielded a yellow oil (15 mg, 45%). Chiral HPLC analysis revealed two peaks of 

equal area (Chiralcel AD-H, 10% 
i
PrOH/hexanes, 1 mL/min, tr(e1) = 8.2 min, tr(e2) = 9.3 

min); Rf = 0.37 (20% EtOAc/hexanes) visualized with CAM; IR (film) 3451, 2931, 2860, 

1727 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 7.43 (dd, J = 7.7, 6.9 Hz, 2H), 7.36 (t, J = 7.2 

Hz, 1H), 7.33 (d, J = 7.0 Hz, 2H), 3.53 (d, J = 10.6 Hz, 1H), 3.42 (d, J = 10.6 Hz, 1H), 

2.66 (ddd, J = 15.6, 3.1, 3.1 Hz, 1H), 2.59-2.53 (m, 1H), 2.39 (ddd, J = 16.0, 12.9, 3.3 

Hz, 1H), 1.97 (ddd, J = 13.4, 13.4, 2.4 Hz, 1H), 1.92-1.51 (m, 4H);
13

C NMR (100 MHz, 

CDCl3) ppm 174.3, 138.9, 129.2, 128.4, 126.0, 82.9, 37.3, 36.6, 24.4, 22.8, 21.2; HRMS 

(ESI): Exact mass calcd for C13H15INaO2 [M]
+
 353.0015, found 353.0003. 
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(R)-6-(4-Fluorophenyl)-6-(iodomethyl)tetrahydro-2H-pyran-2-one (271d). Prepared 

according to the general procedure using 4-(4-fluorophenyl)hex-5-enoic acid
134

 (20.8 mg, 

0.100 mmol), PBAM•HNTf2 (4.4 mg, 5.0 µmol) and NIS (24.6 mg, 0.110 mmol) over 24 

hours. Flash column chromatography (SiO2, 10-25-50% ethyl acetate in hexanes) yielded 

a yellow solid (32 mg, 96%). The product was determined to be 98% ee by chiral HPLC 

analysis (Chiralcel AD-H, 10% 
i
PrOH/hexanes, 1 mL/min, tr(e1, minor) = 10.6 min, tr(e2, 

major) = 11.9 min); Rf = 0.50 (50% EtOAc/hexanes) visualized with CAM. Remainder of 

physical data matched with literature values.
134
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(R)-6-(4-Chlorophenyl)-6-(iodomethyl)tetrahydro-2H-pyran-2-one (271e). Prepared 

according to the general procedure using 5-(4-chlorophenyl)hex-5-enoic acid
134

 (22.5 mg, 

0.100 mmol), PBAM•HNTf2 (4.4 mg, 5.0 µmol) and NIS (24.6 mg, 0.110 mmol) over 24 

hours. Flash column chromatography (SiO2, 10-25-50% ethyl acetate in hexanes) yielded 

a yellow solid (32 mg, 91%). The product was determined to be 97% ee by chiral HPLC 

analysis (Chiralcel AD-H, 10% 
i
PrOH/hexanes, 1 mL/min, tr(e1, minor) = 10.4 min, tr(e2, 

major) = 13.0 min); Rf = 0.27 (25% EtOAc/hexanes) visualized with CAM. Remainder of 

physical data matched with literature values.
134
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(R)-6-(3-Fluorophenyl)-6-(iodomethyl)tetrahydro-2H-pyran-2-one (271f). Prepared 

according to the general procedure using 5-(3-fluorophenyl)hex-5-enoic acid (20.8 mg, 

0.100 mmol), PBAM•HNTf2 (4.4 mg, 5.0 µmol) and NIS (24.6 mg, 0.110 mmol) over 48 

hours. Flash column chromatography (SiO2, 10-25-50% ethyl acetate in hexanes) yielded 

an oil (17 mg, 52%). The product was determined to be 96% ee by chiral HPLC analysis 

(Chiralcel OD-H, 10% 
i
PrOH/hexanes, 1 mL/min, tr(e1, minor) = 12.2 min, tr(e2, major) = 

15.0 min); Rf = 0.47 (50% EtOAc/hexanes) visualized with CAM; [α]
20

D  -23 (c 0.80, 

CHCl3); IR (film) 2958, 1740 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 7.37 (ddd, J = 8.0, 8.0, 

6.0 Hz, 1H), 7.14 (dd, J = 7.9 Hz, 0.2 Hz, 1H), 7.09 (ddd, J = 10.0, 2.1, 2.1 Hz, 1H), 7.05 

(ddd, J = 8.7, 8.7, 2.4 Hz, 1H), 3.55 (s, 2H), 2.55-2.30 (m, 4H), 1.85 (ddddd, J = 13.6, 

8.4, 4.4, 4.4, 4.4 Hz, 1H), 1.64-1.53 (m, 1H); 
13

C NMR (100 MHz, CDCl3) ppm 169.9, 

163.0 (d, 
1
JCF = 247 Hz), 143.0 (d, 

3
JCF = 7.0 Hz), 130.6 (d, 

3
JCF = 8.0 Hz), 120.9 (d, 

4
JCF 

= 3.0 Hz), 115.4 (d, 
2
JCF = 19 Hz), 112.7 (d, 

2
JCF = 17 Hz), 84.0, 32.1, 29.0, 16.8, 16.5; 

19
F NMR (282 MHz, CDCl3) ppm -109.1 (dd, JHF = 14.1, 8.5 Hz); HRMS (ESI): Exact 

mass calcd for C12H12FINaO2 [M+Na]
+
 356.9764, found 356.9781. 

  

 

 



233 

 

(R)-6-(3-Chlorophenyl)-6-(iodomethyl)tetrahydro-2H-pyran-2-one (271g). Prepared 

according to the general procedure using 5-(3-chlorophenyl)hex-5-enoic acid (22.5 mg, 

0.100 mmol), PBAM•HNTf2 (4.4 mg, 5.0 µmol) and NIS (24.6 mg, 0.110 mmol) over 48 

hours. Flash column chromatography (SiO2, 10-25-50% ethyl acetate in hexanes) yielded 

an oil (18 mg, 51%). The product was determined to be 97% ee by chiral HPLC analysis 

(Chiralcel OD-H, 10% 
i
PrOH/hexanes, 1 mL/min, tr(e1, minor) = 12.0 min, tr(e2, major) = 

13.9 min); Rf = 0.62 (50% EtOAc/hexanes) visualized with CAM; [α]
20

D  -20 (c 0.75, 

CHCl3); IR (film) 2925, 1740 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 7.37-7.31 (m, 3H), 

7.29-7.25 (m, 1H), 3.54 (s, 2H), 2.55-2.30 (m, 4H), 1.85 (ddddd, J = 13.7, 8.5, 4.2, 4.2, 

4.2 Hz, 1H), 1.65-1.57 (m, 1H); 
13

C NMR (100 MHz, CDCl3) ppm 169.8, 142.4, 135.1, 

130.3, 128.7, 125.6, 123.5, 83.9, 32.1, 29.0, 16.9, 16.5; HRMS (ESI): Exact mass calcd 

for C12H12ClINaO2 [M+Na]
+
 372.9468, found 372.9482. 
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(R)-6-(Iodomethyl)-6-(4-(trifluoromethyl)phenyl)tetrahydro-2H-pyran-2-one (271h). 

Prepared according to the general procedure using 5-(4-(trifluoromethyl)phenyl)hex-5-

enoic acid
135

 (25.8 mg, 0.100 mmol), PBAM•HNTf2 (4.4 mg, 5.0 µmol) and NIS (24.6 

mg, 0.110 mmol) over 48 hours. Flash column chromatography (SiO2, 10-25-50% ethyl 

acetate in hexanes) yielded a yellow oil (10 mg, 26%). The product was determined to be 

96% ee by chiral HPLC analysis (Chiralcel AD-H, 7% 
i
PrOH/hexanes, 1 mL/min, tr(e1, 

minor) = 10.4 min, tr(e2, major) = 14.0 min); Rf = 0.53 (50% EtOAc/hexanes) visualized 

with CAM; [α]
20

D  -14 (c 0.55, CHCl3); IR (film) 2926, 1741 cm
-1

; 
1
H NMR (400 MHz, 

CDCl3) δ 7.67 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 3.56 (s, 2H), 2.57-2.33 (m, 

4H), 1.86 (ddddd, J = 13.6, 8.0, 4.0, 4.0, 4.0 Hz, 1H), 1.63-1.55 (m, 1H); 
13

C NMR (100 

MHz, CDCl3) ppm 169.7, 144.4, 130.7 (q, 
2
JCF = 33 Hz), 126.0 (q, 

3
JCF = 4.0 Hz), 125.8, 

123.7 (q, 
1
JCF = 272 Hz), 84.1, 32.2, 29.0, 16.6, 16.5; 

19
F NMR (282 MHz, CDCl3) ppm -

60.9; HRMS (ESI): Exact mass calcd for C13H12F3INaO2 [M+Na]
+
 406.9732, found 

406.9745. 
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(R)-6-(Iodomethyl)-6-(4-methoxyphenyl)tetrahydro-2H-pyran-2-one (271i). Prepared 

according to the general procedure using 5-(4-methoxyphenyl)hex-5-enoic acid
134

 (22.0 

mg, 0.100 mmol), PBAM•HNTf2 (4.4 mg, 5.0 µmol) and 1,3-diiodo-5,5-

dimethylhydantoin (22.8 mg, 60.0 µmol) over 2 hours. Flash column chromatography 

(SiO2, 10-30% ethyl acetate in hexanes) yielded a yellow solid (29 mg, 84%) that was 

quick to decompose. The product was determined to be 85% ee by chiral HPLC analysis 

(Chiralcel OD-H, 15% 
i
PrOH/hexanes, 1 mL/min, tr(e1, minor) = 11.7 min, tr(e2, major) = 

12.9 min); Rf = 0.5 (40% EtOAc/hexanes) visualized with CAM. Remainder of physical 

data matched with literature values.
134

  

Alternatively, the reaction was prepared according to the general procedure using 5-(4-

methoxyphenyl)hex-5-enoic acid (22.0 mg, 0.100 mmol), PBAM•HNTf2 (4.4 mg, 5.0 

µmol) and NIS (24.6 mg, 0.11 mmol) over 16 hours. Flash column chromatography 

(SiO2, 10-30% ethyl acetate in hexanes) yielded a yellow solid (30 mg, 87%) that was 

quick to decompose. The product was determined to be 74% ee by the chiral HPLC 

analysis listed above. 
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(R)-6-(Iodomethyl)-6-(p-tolyl)tetrahydro-2H-pyran-2-one (271j). Prepared according 

to the general procedure using 4-(p-tolyl)hex-5-enoic acid
134

 (20.4 mg, 0.100 mmol), 

PBAM•HNTf2 (4.4 mg, 5.0 µmol) and NIS (24.6 mg, 0.110 mmol) over 24 hours. Flash 

column chromatography (SiO2, 10-25-50% ethyl acetate in hexanes) yielded a yellow oil 

(32 mg, 97%). The product was determined to be 96% ee by chiral HPLC analysis 

(Chiralcel OD-H, 7% 
i
PrOH/hexanes, 1 mL/min, tr(e1, minor) = 10.8 min, tr(e2, major) = 

12.9 min); Rf = 0.45 (25% EtOAc/hexanes) visualized with CAM. Remainder of physical 

data matched with literature values.
134
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(R)-6-(Iodomethyl)-6-(m-tolyl)tetrahydro-2H-pyran-2-one (271k). Prepared according 

to the general procedure using 5-(m-tolyl)hex-5-enoic acid (20.4 mg, 0.100 mmol), 

PBAM•HNTf2 (4.4 mg, 5.0 µmol) and NIS (24.6 mg, 0.110 mmol) over 24 hours. Flash 

column chromatography (SiO2, 10-25-50% ethyl acetate in hexanes) yielded an oil (30 

mg, 91%). The product was determined to be 97% ee by chiral HPLC analysis (Chiralcel 

OD-H, 7% 
i
PrOH/hexanes, 1 mL/min, tr(e1, minor) = 10.3 min, tr(e2, major) = 11.7 min); 

Rf = 0.28 (25% EtOAc/hexanes) visualized with CAM; [α]
20

D  -30 (c 1.3, CHCl3); IR 

(film) 2954, 2921, 1738 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 7.24 (dd, J = 7.6, 7.6 Hz, 

1H), 7.17 (s, 1H), 7.15 (d, J = 7.6 Hz, 1H), 7.14 (d, J = 7.6 Hz, 1H), 3.56 (s, 2H), 2.52-

2.40 (m, 2H), 2.37 (s, 3H), 2.35-2.29 (m, 2H), 1.81 (ddddd, J = 13.6, 8.2, 4.1, 4.1, 4.1 Hz, 

1H), 1.63-1.56 (m, 1H); 
13

C NMR (100 MHz, CDCl3) ppm 170.5, 140.1, 138.8, 129.1, 

128.8, 125.8, 122.2, 84.4, 32.0, 29.0, 21.6, 17.8, 16.5; HRMS (ESI): Exact mass calcd for 

C13H15INaO2 [M+Na]
+
 353.0015, found 352.9999.  
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6-(Iodomethyl)-6-(o-tolyl)tetrahydro-2H-pyran-2-one (271l). Prepared according to 

the general procedure with DMAP (2.4 mg, 20 µmol), 5-(o-tolyl)hex-5-enoic acid (20.4 

mg, 0.100 mmol), and dichloromethane (1 mL), and NIS (31.3 mg, 0.140 mmol) without 

light for 40 min at room temperature. The mixture was treated with 20% aq sodium 

thiosulfate (2 mL) and then partitioned between dichloromethane (15 mL) and 3 M 

NaOH (15 mL). The aqueous layer was extracted twice and the organic layers were 

combined, dried over magnesium sulfate and concentrated. The mixture was dissolved in 

dichloromethane and passed through a pipet silica plug with 5 mL of mobile phase (50% 

EtOAc/hexanes). The solvent was removed in vacuo to give the product as an oil (29 mg, 

88% yield). Chiral HPLC analysis revealed two peaks of equal area (Chiralcel OD-H, 

15% 
i
PrOH/hexanes, 1 mL/min, tr(e1) = 8.3 min, tr(e2) = 9.4 min); Rf = 0.41 (25% 

EtOAc/hexanes) visualized with CAM; IR (film) 2957, 1738 cm
-1

; 
1
H NMR (400 MHz, 

CDCl3) δ 7.32 (d, J = 7.5 Hz, 1H), 7.26-7.19 (m, 3H), 3.70 (d, J = 11.1 Hz, 1H), 3.65 (d, 

J = 11.2 Hz, 1H), 2.62 (ddd, J = 14.4, 4.2, 4.2 Hz, 1H), 2.52-2.44 (m, 1H), 2.48 (s, 3H), 

2.32-2.25 (m, 2H), 1.91-1.83 (m, 1H), 1.75-1.64 (m, 1H); 
13

C NMR (100 MHz, CDCl3) 

ppm 170.8, 137.0, 135.0, 133.6, 128.6, 126.9, 126.4, 85.3, 31.5, 28.4, 22.5, 16.2, 15.6; 

HRMS (ESI): Exact mass calcd for C13H15INaO2 [M+Na]
+
 353.0015, found 353.0029.  

  

 

 



239 

 

(R)-6-(Iodomethyl)-6-(naphthalen-2-yl)tetrahydro-2H-pyran-2-one (271m). Prepared 

according to the general procedure using 4-(naphthalen-2-yl)hex-5-enoic acid
135

 (24.0 

mg, 0.100 mmol), PBAM•HNTf2 (4.4 mg, 5.0 µmol) and NIS (24.6 mg, 0.110 mmol) 

over 24 hours. Flash column chromatography (SiO2, 10-25-50% ethyl acetate in hexanes) 

yielded an oil (35 mg, 96%). The product was determined to be 96% ee by chiral HPLC 

analysis (Chiralcel OD-H, 15% 
i
PrOH/hexanes, 1 mL/min, tr(e1, minor) = 13.1 min, tr(e2, 

major) = 15.4 min); Rf = 0.40 (25% EtOAc/hexanes) visualized with CAM. Remainder of 

physical data matched with literature values.
134

 

  

                                                                                                                                                 
135 Murai, K.; Matsushita, T.; Nakamura, A.; Fukushima, S.; Shimura, M.; Fujioka, H. Angew. Chem., Int. Ed. 2010, 

49, 9174-9177, S9174/1-S9174/129. 
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(S)-6-(Iodomethyl)tetrahydro-2H-pyran-2-one (271q). Prepared according to the 

general procedure using hex-5-enoic acid (11.4 mg, 0.100 mmol), PBAM•HNTf2 (4.4 

mg, 5.0 µmol) and NIS (24.6 mg, 0.110 mmol) over 24 hours. Flash column 

chromatography (SiO2, 10-25-50% ethyl acetate in hexanes) yielded an oil (6.0 mg, 

25%). The product was determined to be 33% ee by chiral HPLC analysis (Chiralcel AD-

H, 10% 
i
PrOH/hexanes, 1 mL/min, tr(e1, minor) = 11.0 min, tr(e2, major) = 12.5 min); Rf 

= 0.16 (20% EtOAc/hexanes) visualized with CAM; [α]
20

D  -3.5 (c 0.60, CHCl3); IR 

(film) 2922, 1730 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 4.28 (dddd, J = 10.7, 6.6, 4.4, 4.4 

Hz, 1H), 3.36 (dd, J = 10.5, 4.6 Hz, 1H), 3.30 (dd, J = 10.5, 6.5 Hz, 1H), 2.63-2.56 (m, 

1H), 2.45 (ddd, J = 16.6, 9.5, 7.0 Hz, 1H), 2.17 (dddd, J = 12.7, 8.0, 3.7, 3.7 Hz, 1H), 

2.00-1.82 (m, 2H), 1.68-1.61 (m, 1H); 
13

C NMR (100 MHz, CDCl3) ppm 170.4, 78.7, 

29.2, 28.0, 18.1, 7.3; HRMS (ESI): Exact mass calcd for C6H10IO2 [M+H]
+
 240.9720, 

found 240.9712. 
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(S)-6-Butyl-6-(iodomethyl)tetrahydro-2H-pyran-2-one (271o). Prepared according to 

the general procedure using 5-methylenenonanoic acid
132

 (17.0 mg, 0.100 mmol), 

PBAM•HNTf2 (4.4 mg, 5.0 µmol) and NIS (24.6 mg, 0.110 mmol) over 12 hours. Flash 

column chromatography (SiO2, 10-25-50% ethyl acetate in hexanes) yielded a colorless 

oil (28 mg, 95%). The product was determined to be 89% ee by chiral HPLC analysis 

(Chiralcel OD-H, 4% 
i
PrOH/hexanes, 1 mL/min, tr(e1, minor) = 12.3 min, tr(e2, major) = 

13.3 min); Rf = 0.45 (20% EtOAc/hexanes) visualized with CAM; [α]
20

D  -24 (c 1.0, 

CHCl3); IR (film) 2955, 2867, 1734 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 3.38 (d, J =10.9 

Hz, 1H), 3.37 (d, J = 10.9 Hz, 1H), 2.50-2.48 (m, 2H), 2.08-2.02 (m, 1H), 1.89-1.77 (m, 

5H), 1.45-1.24 (m, 4H), 0.92 (dd, J = 6.9, 6.9 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) ppm 

170.3, 83.4, 38.7, 29.9, 29.3, 25.0, 22.7, 16.5, 13.9, 12.8; HRMS (ESI): Exact mass calcd 

for C10H17INaO2 [M+Na]
+
 319.0171, found 319.0180. 
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(R)-6-(Iodomethyl)-6-isopropyltetrahydro-2H-pyran-2-one (271p). Prepared 

according to the general procedure using 6-methyl-5-methyleneheptanoic acid
132

 (15.6 

mg, 0.100 mmol), PBAM•HNTf2 (4.4 mg, 5.0 µmol) and NIS (24.6 mg, 0.110 mmol) 

over 48 hours. Flash column chromatography (SiO2, 10-25-50% ethyl acetate in hexanes) 

yielded a colorless oil (24 mg, 86%). The product was determined to be 81% ee by chiral 

HPLC analysis (Chiralcel IA, 3% EtOH/hexanes, 1 mL/min, tr(e1, minor) = 18.2 min, 

tr(e2, major) = 16.9 min); Rf = 0.24 (25% EtOAc/hexanes) visualized with CAM. 

Remainder of physical data matched with literature values.
134
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2-(iodomethyl)-2-phenyltetrahydro-2H-pyran (279). Prepared according to the general 

procedure using 5-phenylhex-5-en-1-ol (17.6 mg, 0.100 mmol), DMAP (2.4 mg, 20.0 

µmol) and NIS (31.3 mg, 0.140 mmol) in dichloromethane over 1 hour. Flash column 

chromatography (SiO2, 10-25-50% ethyl acetate in hexanes) yielded an oil (20 mg, 66%). 

Chiral HPLC analysis revealed two peaks of equal area (Chiralcel OD-H, 2% 

i
PrOH/hexanes, 0.4 mL/min, tr(e1) = 11.6 min, tr(e2) = 12.4 min); Rf = 0.76 (25% 

EtOAc/hexanes) visualized with CAM; IR (film) 2939, 2863, 1447 cm
-1

; 
1
H NMR (400 

MHz, CDCl3) δ 7.43-7.37 (m, 4H), 7.32-7.29 (m, 1H), 3.81-3.77 (m, 1H), 3.51 (ddd, J = 

11.5, 11.5, 2.7 Hz, 1H), 3.39 (d, J = 10.3 Hz, 1H), 3.35 (d, J = 10.4 Hz, 1H), 2.33 (ddd, J 

= 13.8, 4.1, 4.1 Hz, 1H), 2.02 (ddd, J = 13.8, 12.1, 3.9), 1.75-1.60 (m, 2H), 1.53-1.37 (m, 

2H); 
13

C NMR (100 MHz, CDCl3) ppm 140.2, 128.6, 127.5, 126.9, 75.8, 63.4, 32.3, 25.4, 

21.4, 19.9; HRMS (ESI): Exact mass calcd for C12H15IO [M+Na]
+
 302.0162, found 

302.0164.  
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4
Cl-

8
EtStilbBAM (

4
Cl-285) [(1R,2R)-N1,N2-Bis(4-chloro-8-ethylquinolin-2-yl)-1,2-

diphenylethane-1,2-diamine]. A 25-mL, round-bottomed flask equipped with a stir bar 

was charged with (1R,2R)-(+)-1,2-diphenylethylenediamine (318 mg, 1.50 mmol), 

Pd(dba)2 (13 mg, 22 μmol), rac-BINAP (28 mg, 45 μmol), sodium tert-butoxide (360 

mg, 3.75 mmol), and 2,4-dichloro-8-ethylquinoline (678 mg, 3.00 mmol). The reaction 

vessel was placed under an argon atmosphere, toluene (8 mL) was dispensed into the 

flask, and the resulting solution was placed into an oil bath heated to 80 °C with stirring. 

The reaction was monitored by TLC and after 1 h nearly complete conversion was 

observed. The reaction was cooled to 25 °C, diluted with ethyl acetate, and filtered 

through a plug of Celite. Flash column chromatography (SiO2, 1-3% ethyl acetate in 

hexanes) of the residue yielded a yellow solid (800 mg, 90%). Rf = 0.72 (20% 

EtOAc/hexanes); [α]
20

D  +37.4 (c 1.09, CHCl3); IR (film) 3421, 3280, 3030, 2964, 2927, 

1605, 1517, 1467 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 7.84 (dd, J = 8.2, 0.8 Hz, 2H), 

7.47 (d, J = 7.0 Hz, 2H), 7.28-7.15 (m, 12H), 6.59 (s, 2H), 6.43 (br s, 2H), 5.62 (br s, 

2H), 3.28 (dq, J =14.7, 7.5 Hz, 2H), 3.10 (dq, J =14.8, 7.5 Hz, 2H), 1.34 (dd, J = 7.5, 7.5 

Hz, 6H); 
13

C NMR (100 MHz, CDCl3) ppm 155.2, 146.5, 143.0, 140.7, 140.1, 129.3, 

128.4, 127.6, 127.4, 122.7, 121.9, 121.7, 111.6, 62.9, 25.1, 14.9; HRMS (ESI): Exact 

mass calcd for C36H33Cl2N4 [M+H]
+
 591.2082, found 591.2062.  
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8
EtStilbPBAM (285) [(1R,2R)-N1,N2-Bis(8-ethyl-4-(pyrrolidin-1-yl)quinolin-2-yl)-

1,2-diphenylethane-1,2-diamine]. A 0.5-2 mL microwave vial equipped with a stir bar 

was charged with 
4
Cl-

8
EtStilbBAM (660 mg, 1.12 mmol), pyrrolidine (367 μL, 4.46 

mmol), and trifluoromethylbenzene (1 mL). The vial was sealed, and this suspension was 

heated with stirring at 150 °C in the microwave for 20 m. The reaction mixture was 

diluted with dichloromethane and transferred to a round-bottomed flask for evaporation. 

The resulting solid was dissolved in dichloromethane and washed with 3M NaOH (3 x 50 

mL), water (3 x 50 mL) and dried over magnesium sulfate. The solvent was removed in 

vacuo to provide a light brown powder. Flash column chromatography (SiO2, 1-3-10-

20% methanol in dichloromethane) of the residue yielded a yellow solid (622 mg, 84%). 

Rf = 0.38 (10% MeOH/CH2Cl2); [α]
20

D  +44.1 (c 1.0, CHCl3); IR (film) 3417, 3260, 2964, 

2869, 1588, 1525, 1485, 1424 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 7.78 (d, J = 8.3 Hz, 

2H), 7.35-7.30 (m, 6H), 7.20 (dd, J = 7.3 Hz, 4H), 7.15-7.09 (m, 2H), 7.00 (dd, J = 7.7, 

7.7 Hz, 2H), 6.32 (br s, 2H), 5.65 (s, 2H), 5.57 (s, 2H), 3.37-3.28 (m, 10H), 3.14 (dq, J = 

14.6, 7.4 Hz, 2H), 1.88 (br s, 8H), 1.37 (dd, J = 7.4, 7.4 Hz, 6H); 
13

C NMR (100 MHz, 

CDCl3) 156.9, 154.3, 147.7, 142.1, 140.0, 128.1, 127.8, 127.2, 126.8, 122.6, 119.1, 

118.6, 92.8, 62.9, 51.9, 25.6, 25.5, 15.0 ppm; HRMS (ESI): Exact mass calcd for 

C44H49N6 [M+H]
+
 661.4019, found 661.4001.  
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4
Cl-

6,7
MeOStilbBAM (

4
Cl-286) [(1R,2R)-N1,N2-Bis(4-chloro-6,7-dimethoxyquinolin-

2-yl)-1,2-diphenylethane-1,2-diamine]. A 25-mL, round-bottomed flask equipped with 

a stir bar was charged with (1R,2R)-(+)-1,2-diphenylethylenediamine (318 mg, 1.50 

mmol), Pd(dba)2 (13 mg, 22 μmol), rac-BINAP (28 mg, 45 μmol), sodium tert-butoxide 

(360 mg, 3.75 mmol), and 2,4-dichloro-6,7-dimethoxyquinoline (774 mg, 3.00 mmol). 

The reaction vessel was placed under an argon atmosphere, toluene (8 mL) was dispensed 

into the flask, and the resulting solution was placed into an oil bath heated to 80 °C with 

stirring. The reaction was monitored by TLC and after 1 h nearly complete conversion 

was observed. The reaction was cooled to 25 °C, diluted with ethyl acetate, and filtered 

through a plug of Celite. Flash column chromatography (SiO2, 20-40% ethyl acetate in 

hexanes) of the residue yielded a yellow solid (600 mg, 92%). Rf = 0.10 (20% 

EtOAc/hexanes); [α]
20

D  +23.7 (c 1.12, CHCl3); IR (film) 3241, 3027, 1599, 1502, 1380, 

1257 cm
-1

; 
1
H NMR (600 MHz, DMSO) δ 7.65 (br s, 2H), 7.34 (d, J = 7.6 Hz, 4H), 7.17 

(dd, J = 7.6, 7.6 Hz, 4H), 7.12 (s, 2H), 7.08 (t, J = 7.3 Hz, 2H), 6.92 (s, 2H), 6.84 (s, 2H), 

5.57 (br s, 2H), 3.85 (s, 6H), 3.82 (s, 6H); 
13

C NMR (150 MHz, DMSO) ppm 155.4, 

152.6, 146.4, 144.7, 141.8, 139.1, 127.7, 127.6, 126.6, 114.4, 109.2, 106.4, 102.4, 59.2, 

55.6, 55.5; HRMS (ESI): Exact mass calcd for C36H33Cl2N4O4 [M+H]
+
 655.1879, found 

655.1849.  
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6,7
MeOStilbPBAM (286) [(1R,2R)-N1,N2-Bis(6,7-dimethoxy-4-(pyrrolidin-1-

yl)quinolin-2-yl)-1,2-diphenylethane-1,2-diamine]. A 0.5-2 mL microwave vial 

equipped with a stir bar was charged with 
4
Cl-

6,7
MeOStilbBAM (393 mg, 600 μmol), 

pyrrolidine (200 μL, 2.40 mmol), and trifluoromethylbenzene (800 μL). The vial was 

sealed, and this suspension was heated with stirring at 110 °C in the microwave for 20 m. 

The reaction mixture was diluted with dichloromethane and transferred to a round-

bottomed flask for evaporation. The resulting solid was dissolved in dichloromethane and 

washed with 3M NaOH (3 x 50 mL), water (3 x 50 mL) and dried over magnesium 

sulfate. The solvent was removed in vacuo to provide a light brown powder. Flash 

column chromatography (SiO2, 1-3-10-20% methanol in dichloromethane) of the residue 

yielded a yellow solid (407 mg, 94%). Rf = 0.34 (10% MeOH/CH2Cl2); [α]
20

D  +92.0 (c 

1.00, CHCl3); IR (film) 3241, 2961, 1586, 1515, 1427 cm
-1

; 
1
H NMR (600 MHz, DMSO) 

δ 7.38 (d, J = 7.6 Hz, 4H), 7.22 (s, 2H), 7.18 (dd, J = 7.7, 7.7 Hz, 4H), 7.08 (dd, J = 7.3, 

7.3 Hz, 4H), 6.80 (s, 2H), 5.79 (s, 2H), 5.51 (br s, 2H), 3.81 (s, 6H), 3.75 (s, 6H), 3.81-

3.75 (m, 4H), 3.33 (br s, 4H), 1.89 (br s, 8H); 
13

C NMR (150 MHz, DMSO) 156.7, 152.4, 

150.6, 145.7, 143.4, 142.9, 127.64, 127.57, 126.3, 111.2, 106.7, 105.4, 91.2, 59.9, 55.5, 

55.2, 51.2, 25.2 ppm; HRMS (ESI): Exact mass calcd for C44H49N6O4 [M+H]
+
 725.3815, 

found 725.3789.  
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6,7
DioxolStilbPBAM (287) [(1R,2R)-N1,N2-Bis(6,7-dimethoxy-4-(pyrrolidin-1-

yl)quinolin-2-yl)-1,2-diphenylethane-1,2-diamine]. A 0.5-2 mL microwave vial 

equipped with a stir bar was charged with 
4
Cl-

6,7
DioxolStilbBAM (semi-pure, 250 mg, 

400 μmol), pyrrolidine (165 μL, 2.00 mmol), and trifluoromethylbenzene (1.4 mL). The 

vial was sealed, and this suspension was heated with stirring at 110 °C in the microwave 

for 10 m and then 130 °C in the microwave for 10 m. The reaction mixture was diluted 

with dichloromethane and transferred to a round-bottomed flask for evaporation. The 

resulting solid was dissolved in dichloromethane and washed with 3M NaOH (3 x 50 

mL), water (3 x 50 mL) and dried over magnesium sulfate. The solvent was removed in 

vacuo to provide a light brown powder. Flash column chromatography (SiO2, 1-3-10-

20% methanol in dichloromethane) of the residue yielded a yellow solid (90 mg, 32%). 

Rf = 0.1 (10% MeOH/CH2Cl2); [α]
20

D  +84 (c 0.71, CHCl3); IR (film) 3244, 2967, 2874, 

1617, 1574, 1538, 1503 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 7.27 (s, 2H), 7.25-7.23 (m, 

4H), 7.20-7.11 (m, 6H), 7.06 (s, 2H), 5.96 (d, J = 1.6 Hz, 4H), 5.78 (br s, 2H), 5.52 (br s, 

2H), 5.38 (br s, 2H), 3.32 (br m, 4H), 3.22 (br m, 4H), 1.89 (br m, 8H); 
13

C NMR (150 

MHz, CDCl3) 156.7, 153.9, 149.1, 147.1, 142.6, 141.1, 128.1, 127.9, 127.0, 112.7, 104.3, 

101.8, 100.9, 91.2, 62.1, 51.6, 25.5ppm; HRMS (ESI): Exact mass calcd for C42H41N6O4 

[M+H]
+
 693.3189, found 693.3172.  

 

 



249 

 

4
Cl-

6
MeOStilbBAM (

4
Cl-288) [(1R,2R)-N1,N2-Bis(4-chloro-6-methoxyquinolin-2-

yl)-1,2-diphenylethane-1,2-diamine]. A 25-mL, round-bottomed flask equipped with a 

stir bar was charged with (1R,2R)-(+)-1,2-diphenylethylenediamine (235 mg, 1.11 

mmol), Pd(dba)2 (13 mg, 22 μmol), rac-BINAP (28 mg, 45 μmol), sodium tert-butoxide 

(265 mg, 2.76 mmol), and 2,4-dichloro-6-dimethoxyquinoline (505 mg, 2.21 mmol). The 

reaction vessel was placed under an argon atmosphere, toluene (8 mL) was dispensed into 

the flask, and the resulting solution was placed into an oil bath heated to 80 °C with 

stirring. The reaction was monitored by TLC and after 45 m nearly complete conversion 

was observed. The reaction was cooled to 25 °C, diluted with ethyl acetate, and filtered 

through a plug of Celite. Flash column chromatography (SiO2, 5-10-20% ethyl acetate in 

hexanes) of the residue yielded a yellow solid (570 mg, 87%). Rf = 0.42 (20% 

EtOAc/hexanes); [α]
20

D  +15.9 (c 1.12, CHCl3); IR (film) 3242, 3028, 1600, 1490, 1462, 

1404 cm
-1

; 
1
H NMR (600 MHz, DMSO) δ 7.80 (br s, 2H), 7.45 (d, J = 9.0 Hz, 4H), 7.30 

(d, J = 7.6 Hz, 4H), 7.21 (dd, J = 9.1, 2.8 Hz, 2H), 7.18 (d, J = 2.8 Hz, 2H), 7.14 (dd, J = 

7.6, 7.6 Hz, 4H), 7.05 (t, J = 7.3 Hz, 2H), 7.02 (s, 2H), 5.30 (d, J = 4.8 Hz, 2H), 3.81 (s, 

6H); 
13

C NMR (150 MHz, DMSO) ppm 154.9, 154.7, 143.6, 141.7, 139.5, 127.9, 127.7, 

127.64, 126.55, 121.6, 120.8, 112.3, 102.6, 59.3, 55.3; HRMS (ESI): Exact mass calcd 

for C34H29Cl2N4O2 [M+H]
+
 595.1668, found 595.1653.  
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6
MeOStilbPBAM (288) [(1R,2R)-N1,N2-Bis(6-methoxy-4-(pyrrolidin-1-yl)quinolin-

2-yl)-1,2-diphenylethane-1,2-diamine]. A 0.5-2 mL microwave vial equipped with a stir 

bar was charged with 
4
Cl-

6
MeOStilbBAM (550 mg, 924 μmol), pyrrolidine (341 μL, 4.16 

mmol), and trifluoromethylbenzene (800 μL). The vial was sealed, and this suspension 

was heated with stirring at 110 °C in the microwave for 20 m. The reaction mixture was 

diluted with dichloromethane and transferred to a round-bottomed flask for evaporation. 

The solvent was removed in vacuo to provide a light brown powder. Flash column 

chromatography (SiO2, 1-2-5-10% methanol in dichloromethane) of the residue yielded a 

yellow solid that was washed with 3M NaOH to give a yellow solid (490 mg, 80%). Rf = 

0.35 (10% MeOH/CH2Cl2); [α]
20

D  +54.4 (c 1.10, CHCl3); IR (film) 3242, 2965, 1586, 

1529, 1428 cm
-1

; 
1
H NMR (600 MHz, DMSO) δ 7.37 (d, J = 7.3 Hz, 4H), 7.33 (d, J = 9.0 

Hz, 2H), 7.26 (d, J = 2.5 Hz, 2H), 7.16 (dd, J = 7.6, 7.6 Hz, 4H), 7.07-7.03 (m, 4H), 5.89 

(br s, 2H), 5.51 (br s, 2H), 3.76 (s, 6H), 3.41 (br s, 4H), 3.32 (br s, 4H), 1.89 (br s, 8H); 

13
C NMR (150 MHz, DMSO) 156.2, 152.6, 152.2, 144.3, 142.7, 127.7, 127.62, 127.60, 

126.3, 118.7, 118.2, 105.3, 93.2, 60.0, 55.1, 51.3, 25.2 ppm; HRMS (ESI): Exact mass 

calcd for C42H45N6O2 [M+H]
+
 665.3604, found 665.3610. 
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Preparation of unsaturated acids
136

 

 

(E)-5-([1,1'-Biphenyl]-4-yl)pent-4-enoic acid (283e). Prepared according to the known 

procedure.
137

 The resulting solid was washed with DCM and recrystallized from ethyl 

acetate to give a white solid (500 mg, 43% yield). Mp 194-195 °C; Rf = 0.17 (40% 

EtOAc/hexanes) visualized with KMnO4; IR (film) 3057, 2907, 1693 cm
-1

; 
1
H NMR (400 

MHz, DMSO) δ 7.66 (d, J = 7.3 Hz, 2H), 7.62 (d, J = 8.2 Hz, 2H), 7.46 (d, J =7.9 Hz, 

2H), 7.44 (d, J =7.5 Hz, 2H), 7.35 (t, J = 7.3 Hz, 1H), 6.48 (d, J = 15.9 Hz, 1H), 6.37-

6.30 (m, 1H), 2.47-2.38 (m, 4H); 
13

C NMR (100 MHz, DMSO) ppm 174.3, 140.1, 139.0, 

136.7, 130.0, 129.9, 129.3, 127.8, 127.2, 126.84, 126.79, 33.8, 28.3; HRMS (EI): Exact 

mass calcd for C17H16O2 [M]
+
 252.1145, found 252.1137. 

  

                                                                                                                                                 
136 Prepared by analogy to: Davis, T. A.; Wilt, J. C.; Johnston, J. N. J. Am. Chem. Soc. 2010, 132, 2880-2882. Davis, 

T. A.; Dobish, M. C.; Schwieter, K. E.; Chun, A. C.; Johnston, J. N. Org. Synth. 2012, 89, 380. 

137 Tan, C. K.; Zhou, L.; Yeung, Y.-Y. Org. Lett. 2011, 13, 2738-2741. 

 



252 

 

(4E,6E)-7-Phenylhepta-4,6-dienoic acid (283n). Prepared according to the known 

procedure.
137

 Flash column chromatography (SiO2, 10-30% ethyl acetate in hexanes) of 

the residue yielded a white solid (490 mg, 53%) further recrystallized from hexanes and 

ethyl acetate. Mp 128-130 °C; Rf = 0.23 (40% EtOAc/hexanes) visualized with KMnO4; 

IR (film) 3025, 2917, 1699 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 7.39 (d, J = 7.5 Hz, 2H), 

7.19 (dd, J = 7.4, 7.4 Hz, 2H), 7.22 (t, J =7.3 Hz, 1H), 6.75 (dd, J = 15.6, 10.4 Hz, 1H), 

6.49 (d, J = 15.7 Hz, 1H), 6.49 (d, J = 15.7 Hz, 1H), 6.27 (dd, J = 15.0, 10.4 Hz, 1H), 

5.85-5.59 (m, 1H), 2.53-2.47 (m, 4H); 
13

C NMR (150 MHz, CDCl3) ppm 179.3, 137.3, 

132.3, 131.8, 131.2, 128.7, 128.6, 127.3, 126.2, 33.7, 27.7; HRMS (EI): Exact mass calcd 

for C13H14O2 [M]
+
 202.0988, found 202.0984. 
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Enantioselective iodolactonization 

 

General procedure for enantioselective iodolactonizations: To a flame dried vial 

equipped with a stir bar was added 
6
MeOStilbPBAM•HNTf2 (1.9 mg, 2.0 µmol), (E)-5-

phenylpent-4-enoic acid (17.6 mg, 100 µmol) and toluene (1 mL), and the reaction was 

cooled to -20 ºC. NIS (23.5 mg, 105 µmol) was added and the reaction mixture was 

stirred without light until complete by TLC. The mixture was treated with 20% aq 

sodium thiosulfate (2 mL) and then partitioned between dichloromethane (15 mL) and 3 

M NaOH (15 mL). The aqueous layer was extracted twice and the organic layers were 

combined, dried over magnesium sulfate and concentrated. Flash column 

chromatography (SiO2, 10-30% ethyl acetate in hexanes) of the residue yielded the 

product. All compounds were treated as temperature and light sensitive, never being left 

on high vacuum for more than 10 minutes. (Decomposition was seen as a solid [white 

solid to black tar] and in solvent [from colorless to pink solution]) The ratio of δ-lactone 

to γ-lactone of the isolated material was determined using 
1
H NMR. The enantiomeric 

excess of the product was determined by chiral HPLC analysis. 
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General procedure for racemic iodolactonization: To a flame dried vial equipped with 

a stir bar was added DMAP (2.4 mg, 2.0 µmol), (E)-5-phenylpent-4-enoic acid (17.6 mg, 

100 µmol) and dichloromethane (1 mL). NIS (31.3 mg, 0.140 mmol) was added and the 

reaction mixture was stirred without light for 30 min at room temperature. The mixture 

was treated with 20% aq sodium thiosulfate (2 mL) and then partitioned between 

dichloromethane (15 mL) and 3 M NaOH (15 mL). The aqueous layer was extracted 

twice and the organic layers were combined, dried over magnesium sulfate and 

concentrated. Flash column chromatography (SiO2, 10-30% ethyl acetate in hexanes) 

yielded the product. 
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(5R,6S)-5-Iodo-6-phenyltetrahydro-2H-pyran-2-one (284). Prepared according to the 

general procedure using the parent acid (17.6 mg, 100 µmol), 
6
MeOStilbPBAM•HNTf2 

(1.9 mg, 2.0 µmol) and NIS (23.5 mg, 105 µmol) over 24 hours. Flash column 

chromatography (SiO2, 10-30% ethyl acetate in hexanes) of the residue yielded a white 

solid (23.0 mg, 76%). The ratio of δ-lactone to γ-lactone of the isolated material was 

determined to be 91:9 (
1
H NMR). The major product was determined to be 94% ee by 

chiral HPLC analysis (Chiralcel IA, 6% 
i
PrOH/hexanes, 1 mL/min, tr(exo-major/minor) = 

14.9 min, tr(e1, endo-minor) = 19.7 min, tr(e2, endo-major) = 24.5 min); Rf = 0.66 (40% 

EtOAc/hexanes) visualized with KMnO4; IR (film) 2921, 1721 cm
-1

; 
1
H NMR (600 MHz, 

CDCl3) δ 7.42-7.38 (m, 3H), 7.33 (dd, J = 7.9, 2.0 Hz, 2H), 5.56 (d, J =7.9 Hz, 1H), 4.43 

(ddd, J = 8.0, 8.0, 4.6 Hz, 1H), 2.87 (ddd, J = 18.1, 6.9, 6.9 Hz, 1H), 2.72 (ddd, J = 18.2, 

7.0, 7.0 Hz, 1H), 2.46 (dddd, J = 14.4, 6.7, 6.7, 4.6 Hz, 1H), 2.39 (dddd, J = 14.9, 7.1, 

7.1, 7.1 Hz, 1H); 
13

C NMR (150 MHz, CDCl3) ppm 169.1, 137.7, 129.2, 128.7, 126.8, 

87.1, 30.6, 30.5, 24.3; HRMS (ESI): Exact mass calcd for C11H11INaO2 [M+Na]
+
 

324.9702, found 324.9703. 
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(5R,6S)-5-Iodo-6-(p-tolyl)tetrahydro-2H-pyran-2-one (284b). Prepared according to 

the general procedure using the parent acid (19.0 mg, 100 µmol), 

6
MeOStilbPBAM•HNTf2 (1.9 mg, 2.0 µmol) and NIS (23.5 mg, 105 µmol) over 48 

hours. Flash column chromatography (SiO2, 10-30% ethyl acetate in hexanes) of the 

residue yielded a white solid (27.2 mg, 86%). The ratio of δ-lactone to γ-lactone of the 

isolated material was determined to be 95:5 (
1
H NMR). The major product was 

determined to be 91% ee by chiral HPLC analysis (Chiralcel IA, 4% 
i
PrOH/hexanes, 1 

mL/min, tr(e1, minor) = 25.7 min, tr(e2, major) = 29.6 min); Rf = 0.54 (40% 

EtOAc/hexanes) visualized with KMnO4; IR (film) 2920, 1740 cm
-1

; 
1
H NMR (600 MHz, 

CDCl3) δ 7.21 (d, J = 9.0 Hz, 2H), 7.19 (d, J = 8.9 Hz, 2H), 5.52 (d, J =7.9 Hz, 1H), 4.41 

(ddd, J = 8.0, 8.0, 4.6 Hz, 1H), 2.84 (ddd, J = 18.1, 6.9, 6.9 Hz, 1H), 2.70 (ddd, J = 18.1, 

7.0, 7.0 Hz, 1H), 2.46 (dddd, J = 14.2, 6.7, 6.7, 4.6 Hz, 1H), 2.37 (dddd, J = 14.9, 7.3, 

7.3, 7.3 Hz, 1H), 2.36 (s, 3H); 
13

C NMR (150 MHz, CDCl3) ppm 169.2, 139.1, 134.7, 

129.4, 126.7, 87.0, 30.6, 30.5, 24.6, 21.2; HRMS: sample decomposed. 
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(5R,6S)-5-Iodo-6-(m-tolyl)tetrahydro-2H-pyran-2-one (284c). Prepared according to 

the general procedure using the parent acid (19.0 mg, 100 µmol), 

6
MeOStilbPBAM•HNTf2 (1.9 mg, 2.0 µmol) and NIS (23.5 mg, 105 µmol) over 72 

hours. Flash column chromatography (SiO2, 10-30% ethyl acetate in hexanes) of the 

residue yielded a white solid (26.7 mg, 84%). The ratio of δ-lactone to γ-lactone of the 

isolated material was determined to be 93:7 (
1
H NMR). The product was determined to 

be 92% ee by chiral HPLC analysis (Chiralcel OD-H, 5% EtOH/hexanes, 1 mL/min, tr(e1, 

major) = 23.2 min, tr(e2, minor) = 26.0 min); Rf = 0.48 (40% EtOAc/hexanes) visualized 

with KMnO4; IR (film) 3029, 2920, 1740 cm
-1

; 
1
H NMR (600 MHz, CDCl3) δ 7.28 (dd, J 

= 7.6, 7.6 Hz, 1H), 7.18 (d, J = 7.6 Hz, 1H), 7.11 (d, J = 9.0 Hz, 2H), 5.53 (d, J = 7.9 Hz, 

1H), 4.44 (ddd, J = 7.8, 7.8, 4.6 Hz, 1H), 2.85 (ddd, J = 18.2, 7.0, 7.0 Hz, 1H), 2.71 (ddd, 

J = 18.2, 6.8, 6.8 Hz, 1H), 2.43 (dddd, J = 14.3, 6.8, 6.8, 4.6 Hz, 1H), 2.37 (s, 3H), 2.35 

(dddd, J = 14.8, 7.3, 7.3, 7.3 Hz, 1H); 
13

C NMR (150 MHz, CDCl3) ppm 169.1, 138.6, 

137.6, 129.9, 128.6, 127.2, 123.9, 87.2, 30.5, 30.4, 24.5, 21.4; HRMS (ESI): Exact mass 

calcd for C12H13INaO2 [M+Na]
+
 338.9858, found 338.9874.  
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(5R,6S)-5-Iodo-6-(o-tolyl)tetrahydro-2H-pyran-2-one (284d). Prepared according to 

the general procedure using the parent acid (19.0 mg, 100 µmol), 

6
MeOStilbPBAM•HNTf2 (1.9 mg, 2.0 µmol) and NIS (23.5 mg, 105 µmol) over 48 

hours. Flash column chromatography (SiO2, 10-30% ethyl acetate in hexanes) of the 

residue yielded a white solid (30.1 mg, 95%). The ratio of δ-lactone to γ-lactone of the 

isolated material was determined to be 85:15 (
1
H NMR). The product was determined to 

be 84% ee by chiral HPLC analysis (Chiralcel IA, 5% 
i
PrOH/hexanes, 1 mL/min, tr(e1, 

major) = 15.9 min, tr(e2, minor) = 17.7 min); Rf = 0.66 (40% EtOAc/hexanes) visualized 

with KMnO4; IR (film) 2928, 1739 cm
-1

; 
1
H NMR (600 MHz, CDCl3) δ 7.28-7.20 (m, 

5H), 5.81 (d, J = 7.6 Hz, 1H), 4.46 (ddd, J = 7.8, 7.8, 4.4 Hz, 1H), 2.88 (ddd, J = 18.3, 

7.0, 7.0 Hz, 1H), 2.76 (ddd, J = 18.2, 7.1, 7.1 Hz, 1H), 2.46 (dddd, J = 14.3, 6.7, 6.7, 4.4 

Hz, 1H), 2.43 (s, 3H), 2.38 (dddd, J = 14.9, 7.1, 7.1, 7.1 Hz, 1H); 
13

C NMR (150 MHz, 

CDCl3) ppm 169.2, 135.9, 135.6, 130.9, 129.1, 126.5, 126.0, 84.1, 30.6, 30.4, 23.2, 19.5; 

HRMS (ESI): Exact mass calcd for C12H13INaO2 [M+Na]
+
 338.9858, found 338.9847.  
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(5R,6S)-6-([1,1'-Biphenyl]-4-yl)-5-iodotetrahydro-2H-pyran-2-one (284e). Prepared 

according to the general procedure using the parent acid (25.2 mg, 100 µmol), 

6
MeOStilbPBAM•HNTf2 (4.7 mg, 5.0 µmol) and NIS (24.6 mg, 110 µmol) in a 

toluene:trifluorotoluene (4:1, 1 mL) mixture over 72 hours. Flash column 

chromatography (SiO2, 10-30% ethyl acetate in hexanes) of the residue yielded a white 

solid (34.0 mg, 89%). The ratio of δ-lactone to γ-lactone of the isolated material was 

determined to be 87:13 (
1
H NMR). The product was determined to be 75% ee by chiral 

HPLC analysis (Chiralcel IA, 25% EtOH/hexanes, 1 mL/min, tr(e1, minor) = 28.5 min, 

tr(e2, major) = 39.1 min); Rf = 0.43 (40% EtOAc/hexanes) visualized with KMnO4; IR 

(film) 3030, 2924, 1738 cm
-1

; 
1
H NMR (600 MHz, CDCl3) δ 7.63 (d, J = 8.3 Hz, 2H), 

7.60 (d, J = 7.3 Hz, 2H), 7.45 (dd, J = 7.5, 7.5 Hz, 2H), 7.41 (d, J = 8.2 Hz, 2H), 7.37 (t, J 

= 7.4 Hz, 1H), 5.61 (d, J =7.9 Hz, 1H), 4.47 (ddd, J = 8.0, 8.0, 4.6 Hz, 1H), 2.88 (ddd, J = 

18.2, 6.9, 6.9 Hz, 1H), 2.74 (ddd, J = 18.2, 7.0, 7.0 Hz, 1H), 2.50 (dddd, J = 14.3, 6.7, 

6.7, 4.6 Hz, 1H), 2.41 (dddd, J = 14.9, 7.3, 7.3, 7.3 Hz, 1H); 
13

C NMR (150 MHz, 

CDCl3) ppm 169.1, 142.1, 140.2, 136.7, 128.9, 127.7, 127.4, 127.2, 127.1, 86.9, 30.62, 

30.57, 24.3; HRMS (ESI): Exact mass calcd for C17H15INaO2 [M+Na]
+
 401.0015, found 

401.0034.  
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(5R,6S)-5-Iodo-6-(naphthalen-2-yl)tetrahydro-2H-pyran-2-one (284f). Prepared 

according to the general procedure using the parent acid (22.6 mg, 100 µmol), 

6
MeOStilbPBAM•HNTf2 (4.7 mg, 5.0 µmol) and NIS (24.6 mg, 110 µmol) in a 

toluene:trifluorotoluene (4:1, 1 mL) mixture over 72 hours. Flash column 

chromatography (SiO2, 10-30% ethyl acetate in hexanes) of the residue yielded a white 

solid (33.1 mg, 94%). The ratio of δ-lactone to γ-lactone of the isolated material was 

determined to be 85:15 (
1
H NMR). The product was determined to be 76% ee by chiral 

HPLC analysis (Chiralcel IA, 15% EtOH/hexanes, 1 mL/min, tr(e1, minor) = 18.7 min, 

tr(e2, major) = 24.1 min); Rf = 0.39 (40% EtOAc/hexanes) visualized with KMnO4; IR 

(film) 2922, 1740 cm
-1

; δ-lactone 
1
H NMR (600 MHz, CDCl3) δ 7.89-7.81 (m, 4H), 7.54 

(d, J = 6.2 Hz, 1H), 7.53 (d, J = 6.2 Hz, 1H), 7.42 (dd, J = 8.5, 1.8 Hz, 1H), 5.74 (d, J = 

7.8 Hz, 1H), 4.55 (ddd, J = 7.9, 7.9, 4.6 Hz, 1H), 2.90 (ddd, J = 18.2, 7.0, 7.0 Hz, 1H), 

2.77 (ddd, J = 18.2, 6.8, 6.8 Hz, 1H), 2.48 (dddd, J = 14.4, 6.8, 6.8, 4.6 Hz, 1H), 2.41 

(dddd, J = 14.8, 7.2, 7.2, 7.2 Hz, 1H); 
13

C NMR (150 MHz, CDCl3) ppm 169.1, 134.9, 

133.5, 132.9, 128.8, 128.2, 127.8, 126.8, 126.73, 126.70, 123.5, 87.3, 30.6, 30.5, 24.2; γ-

lactone 
1
H NMR (600 MHz, CDCl3) δ 7.89-7.81 (m, 4H), 7.55-7.49 (m, 3H), 5.31 (d, J = 

8.2 Hz, 1H), 5.03 (ddd, J = 7.9, 7.9, 6.7 Hz, 1H), 2.71-2.66 (m, 1H), 2.61-2.56 (m, 2H), 

2.21 (dddd, J = 13.0, 9.7, 9.7, 8.0 Hz, 1H); 
13

C NMR (150 MHz, CDCl3) ppm 176.0, 

136.4, 133.2, 133.0, 128.9, 128.0, 127.7, 126.9, 126.78, 126.76, 125.8, 82.4, 34.9, 29.3, 
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29.0; HRMS (ESI): Exact mass calcd for C15H13INaO2 [M+Na]
+
 374.9858, found 

374.9863.  
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(5R,6S)-5-Iodo-6-(4-methoxyphenyl)tetrahydro-2H-pyran-2-one (284g). Prepared 

according to the general procedure using the parent acid (20.6 mg, 100 µmol), 

6
MeOStilbPBAM•HNTf2 (1.9 mg, 2.0 µmol) and NIS (23.5 mg, 105 µmol) over 24 

hours. Flash column chromatography (SiO2, 10-30% ethyl acetate in hexanes) of the 

residue yielded a white solid (24.0 mg, 72%). The ratio of δ-lactone to γ-lactone of the 

isolated material was determined to be >95:5 (
1
H NMR). The product was determined to 

be 78% ee by chiral HPLC analysis (Chiralcel IA, 6% 
i
PrOH/hexanes, 1 mL/min, tr(e1, 

minor) = 30.6 min, tr(e2, major) = 36.1 min); Rf = 0.59 (40% EtOAc/hexanes) visualized 

with KMnO4; IR (film) 2930, 1738, 1612, 1515 cm
-1

; 
1
H NMR (600 MHz, CDCl3) δ 7.25 

(d, J = 8.7 Hz, 2H), 6.91 (d, J = 8.7 Hz, 2H), 5.49 (d, J = 8.4 Hz, 1H), 4.38 (ddd, J = 8.5, 

8.5, 4.7 Hz, 1H), 3.82 (s, 3H), 2.82 (ddd, J = 18.1, 6.7, 6.7 Hz, 1H), 2.70 (ddd, J = 18.1, 

7.6, 7.6 Hz, 1H), 2.50 (ddd, J = 14.3, 6.5, 6.5, 4.7 Hz, 1H), 2.41 (dddd, 14.7, 7.9, 7.9, 7.9 

Hz, 1H); 
13

C NMR (150 MHz, CDCl3) ppm 169.4, 160.1, 129.8, 128.2, 114.0, 86.9, 55.3, 

31.0, 30.7, 24.8; HRMS: sample decomposed. 
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(5R,6S)-5-Iodo-6-(3-methoxyphenyl)tetrahydro-2H-pyran-2-one (284h). Prepared 

according to the general procedure using the parent acid (20.6 mg, 100 µmol), 

6
MeOStilbPBAM•HNTf2 (1.9 mg, 2.0 µmol) and NIS (23.5 mg, 105 µmol) over 72 

hours. Flash column chromatography (SiO2, 10-30% ethyl acetate in hexanes) of the 

residue yielded a white solid (31.5 mg, 95%). The ratio of δ-lactone to γ-lactone of the 

isolated material was determined to be 85:15 (
1
H NMR). The product was determined to 

be 90% ee by chiral HPLC analysis (Chiralcel IA, 9% 
i
PrOH/hexanes, 1 mL/min, tr(e1, 

major) = 22.6 min, tr(e2, minor) = 25.8 min); Rf = 0.46 (40% EtOAc/hexanes) visualized 

with KMnO4; IR (film) 2935, 2837, 1740, 1602 cm
-1

; δ-lactone 
1
H NMR (600 MHz, 

CDCl3) δ 7.31 (dd, J = 8.0, 8.0 Hz, 1H), 6.91 (dd, J = 8.1, 2.2 Hz, 2H), 6.84 (dd, J = 2.0, 

2.0 Hz, 1H), 5.53 (d, J = 7.6 Hz, 1H), 4.43 (ddd, J = 7.7, 7.7, 4.5 Hz, 1H), 3.80 (s, 3H), 

2.85 (ddd, J = 18.2, 7.1, 7.1 Hz, 1H), 2.71 (ddd, J = 18.2, 6.8, 6.8 Hz, 1H), 2.43 (dddd, J 

= 14.3, 6.8, 6.8, 4.6 Hz, 1H), 2.35 (dddd, J = 14.6, 7.1, 7.1, 7.1 Hz, 1H);
13

C NMR (150 

MHz, CDCl3) ppm 169.0, 159.8, 139.1, 129.8, 119.0, 114.4, 112.5, 86.9, 55.3, 30.43, 

30.36, 24.2; γ -lactone 
1
H NMR (600 MHz, CDCl3) δ 7.23 (dd, J = 7.8, 7.8 Hz, 1H), 6.99 

(d, J = 7.2 Hz, 1H), 6.95 (dd, J = 1.8, 1.8 Hz, 1H), 6.81 (dd, J = 7.8, 1.2 Hz, 1H), 5.09 (d, 

J = 7.8 Hz, 1H), 4.87 (ddd, J = 7.8, 7.8, 7.8 Hz, 1H), 3.79 (s, 3H), 2.63-2.49 (m, 3H), 

2.16-2.11 (m, 1H);
13

C NMR (150 MHz, CDCl3) ppm 176.0, 159.6, 140.5, 129.9, 120.4, 

114.14, 114.11, 82.5, 55.3, 34.0, 29.2, 28.8; HRMS (ESI): Exact mass calcd for 

C12H13INaO3 [M+Na]
+
 354.9807, found 354.9805.   
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(5R,6S)-6-(4-Fluorophenyl)-5-iodotetrahydro-2H-pyran-2-one (284i). Prepared 

according to the general procedure using the parent acid (19.4 mg, 100 µmol), 

6
MeOStilbPBAM•HNTf2 (1.9 mg, 2.0 µmol) and NIS (23.5 mg, 105 µmol) over 72 

hours. Flash column chromatography (SiO2, 10-30% ethyl acetate in hexanes) of the 

residue yielded a white solid (27.7 mg, 87%). The ratio of δ-lactone to γ-lactone of the 

isolated material was determined to be 93:7 (
1
H NMR). The product was determined to 

be 95% ee by chiral HPLC analysis (Chiralcel IA, 9% 
i
PrOH/hexanes, 1 mL/min, tr(e1, 

major) = 28.5 min, tr(e2, minor) = 33.3 min); Rf = 0.53 (40% EtOAc/hexanes) visualized 

with KMnO4; IR (film) 2919, 1740, 1605, 1512 cm
-1

; 
1
H NMR (600 MHz, CDCl3) δ 7.33 

(dd, J = 8.7, 5.1 Hz, 2H), 7.09 (dd, J = 8.6, 8.6 Hz, 2H), 5.49 (d, J = 8.9 Hz, 1H), 4.32 

(ddd, J = 8.9, 8.9, 4.7 Hz, 1H), 2.83 (ddd, J = 18.1, 6.5, 6.5 Hz, 1H), 2.72 (ddd, J = 18.1, 

8.3, 6.7 Hz, 1H), 2.57-2.51 (m, 1H), 2.48-2.42 (m, 1H); 
13

C NMR (150 MHz, CDCl3) 

ppm 169.1, 163.5 (d, 
1
JCF = 249 Hz), 133.4 (d, 

4
JCF = 3.2 Hz), 128.9 (d, 

3
JCF = 8.6 Hz), 

115.7 (d, 
2
JCF = 22 Hz), 86.4, 31.3, 30.8, 24.1;

 19
F NMR (376 MHz, CDCl3) -109.9; 

HRMS (ESI): Exact mass calcd for C11H10FINaO2 [M+Na]
+
 342.9607, found 342.9614.  
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(5R,6S)-6-(4-Chlorophenyl)-5-iodotetrahydro-2H-pyran-2-one (284j). Prepared 

according to the general procedure using the parent acid (21.0 mg, 100 µmol), 

6
MeOStilbPBAM•HNTf2 (4.7 mg, 5.0 µmol) and NIS (24.6 mg, 110 µmol) over 72 

hours. Flash column chromatography (SiO2, 10-30% ethyl acetate in hexanes) of the 

residue yielded a yellow solid (30.6 mg, 91%). The ratio of δ-lactone to γ-lactone of the 

isolated material was determined to be 81:19 (
1
H NMR). The product was determined to 

be 93% ee by chiral HPLC analysis (Chiralcel IA, 6% 
i
PrOH/hexanes, 1 mL/min, tr(e1, 

minor) = 23.1 min, tr(e2, major) = 26.3 min); Rf = 0.53 (40% EtOAc/hexanes) visualized 

with KMnO4; IR (film) 2923, 1742 cm
-1

; δ-lactone 
1
H NMR (600 MHz, CDCl3) δ 7.38 

(d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 5.49 (d, J = 8.6 Hz, 1H), 4.32 (ddd, J = 8.8, 

8.8, 4.7 Hz, 1H), 2.84 (ddd, J = 18.2, 6.6, 6.6 Hz, 1H), 2.73 (ddd, J = 18.2, 8.1, 6.7 Hz, 

1H), 2.54-2.49 (m, 1H), 2.44 (dddd, J = 16.9, 8.4, 8.4, 6.8 Hz, 1H); 
13

C NMR (150 MHz, 

CDCl3) ppm 169.1, 136.0, 135.1, 128.9, 128.4, 86.4, 31.1, 30.8, 23.8; γ-lactone 
1
H NMR 

(600 MHz, CDCl3) δ 7.35 (d, J = 9.0 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 5.04 (d, J = 8.4 

Hz, 1H), 4.91 (ddd, J = 8.4, 8.4, 6.6 Hz, 1H), 2.68-2.63 (m, 1H), 2.62-2.56 (m, 2H), 2.11 

(dddd, J = 12.9, 9.9, 9.9, 8.3 Hz, 1H); 
13

C NMR (150 MHz, CDCl3) ppm 176.0, 137.9, 

134.4, 129.4, 129.1, 82.3, 32.5, 29.3, 29.0; HRMS (ESI): Exact mass calcd for 

C11H10ClINaO2 [M+Na]
+
 358.9312, found 358.9318.  
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(5R,6S)-6-(4-Bromophenyl)-5-iodotetrahydro-2H-pyran-2-one (284k). Prepared 

according to the general procedure using the parent acid (25.5 mg, 100 µmol), 

6
MeOStilbPBAM•HNTf2 (4.7 mg, 5.0 µmol) and NIS (24.6 mg, 110 µmol) over 72 

hours. Flash column chromatography (SiO2, 10-30% ethyl acetate in hexanes) of the 

residue yielded a yellow solid (25.1 mg, 66%). The ratio of δ-lactone to γ-lactone of the 

isolated material was determined to be 77:23 (
1
H NMR). The product was determined to 

be 91% ee by chiral HPLC analysis (Chiralcel IA, 9% 
i
PrOH/hexanes, 1 mL/min, tr(e1, 

minor) = 18.2 min, tr(e2, major) = 20.8 min); Rf = 0.52 (40% EtOAc/hexanes) visualized 

with KMnO4; IR (film) 2921, 1741 cm
-1

; δ-lactone 
1
H NMR (600 MHz, CDCl3) δ 7.53 

(d, J = 8.5 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 5.48 (d, J = 8.6 Hz, 1H), 4.32 (ddd, J = 8.6, 

8.6, 4.7 Hz, 1H), 2.83 (ddd, J = 18.1, 6.6, 6.6 Hz, 1H), 2.71 (ddd, J = 18.1, 7.9, 6.6 Hz, 

1H), 2.53-2.48 (m, 1H), 2.43 (dddd, J = 16.5, 8.2, 8.2, 7.0 Hz, 1H); 
13

C NMR (150 MHz, 

CDCl3) ppm 168.8, 136.6, 131.9, 128.6, 123.3, 86.4, 31.1, 30.7, 23.6; γ-lactone 
1
H NMR 

(600 MHz, CDCl3) δ 7.45 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 5.03 (d, J = 8.4 

Hz, 1H), 4.88 (ddd, J = 7.8, 7.8, 6.6 Hz, 1H), 2.67-2.61 (m, 1H), 2.60-2.56 (m, 2H), 2.10 

(dddd, J = 12.8, 9.9, 9.9, 8.2 Hz, 1H); 
13

C NMR (150 MHz, CDCl3) ppm 175.8, 138.4, 

132.0, 129.7, 122.5, 82.2, 32.6, 29.3, 28.9; HRMS (EI): Exact mass calcd for 

C11H10BrIO2 [M]
+
 379.8903, found 379.8904.  
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(5R,6S)-6-(3-Chlorophenyl)-5-iodotetrahydro-2H-pyran-2-one (284l). Prepared 

according to the general procedure using the parent acid (21.0 mg, 100 µmol), 

6
MeOStilbPBAM•HNTf2 (4.7 mg, 5.0 µmol) and NIS (24.6 mg, 110 µmol) over 72 

hours. Flash column chromatography (SiO2, 10-30% ethyl acetate in hexanes) of the 

residue yielded a yellow solid (17.2 mg, 51%). The ratio of δ-lactone to γ-lactone of the 

isolated material was determined to be 48:52 (
1
H NMR). The product was determined to 

be 88% ee by chiral HPLC analysis (Chiralcel IA, 8% EtOH/hexanes, 1 mL/min, tr(e1, 

minor) = 24.6 min, tr(e2, major) = 27.6 min); Rf = 0.39 (40% EtOAc/hexanes) visualized 

with KMnO4; IR (film) 2920, 1775, 1741 cm
-1

; δ-lactone 
1
H NMR (600 MHz, CDCl3) δ 

7.40-7.23 (m, 4H), 5.49 (d, J = 8.4 Hz, 1H), 4.35 (ddd, J = 8.5, 8.5, 4.7 Hz, 1H), 2.84 

(ddd, J = 18.2, 6.7, 6.7 Hz, 1H), 2.73 (ddd, J = 18.1, 7.7, 6.6 Hz, 1H), 2.52-2.47 (m, 1H), 

2.42 (dddd, J = 14.9, 8.0, 8.0, 8.0 Hz, 1H); γ-lactone 
1
H NMR (600 MHz, CDCl3) δ 7.40-

7.23 (m, 4H), 5.02 (d, J = 8.6 Hz, 1H), 4.89 (ddd, J = 8.0, 8.0, 6.4 Hz, 1H), 2.67 (dddd, J 

= 13.6, 6.4, 6.4, 6.4 Hz, 1H), 2.61-2.58 (m, 2H), 2.14 (dddd, J = 14.5, 12.9, 12.9, 4.7 Hz, 

1H); mixture of δ-lactone & γ-lactone 
13

C NMR (150 MHz, CDCl3) ppm 175.8, 168.7, 

141.3, 139.5, 134.7, 134.6, 130.2, 130.0, 129.5, 128.9, 128.2, 127.1, 126.4, 125.3, 86.3, 

82.2, 32.3, 31.0, 30.7, 29.3, 29.1, 23.5; HRMS (ESI): Exact mass calcd for 

C11H10ClINaO2 [M+Na]
+
 358.9312, found 358.9308.  
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(5R,6S)-5-Iodo-6-(4-(trifluoromethoxy)phenyl)tetrahydro-2H-pyran-2-one (284m). 

Prepared according to the general procedure using the parent acid (26.0 mg, 100 µmol), 

6
MeOStilbPBAM•HNTf2 (4.7 mg, 5.0 µmol) and NIS (24.6 mg, 110 µmol) over 72 

hours. Flash column chromatography (SiO2, 10-30% ethyl acetate in hexanes) of the 

residue yielded an oil (30.6 mg, 79%). The ratio of δ-lactone to γ-lactone of the isolated 

material was determined to be 76:24 (
1
H NMR). The product was determined to be 95% 

ee by chiral HPLC analysis (Chiralcel IA, 7% EtOH/hexanes, 1 mL/min, tr(e1, minor) = 

18.5 min, tr(e2, major) = 27.8 min); Rf = 0.53 (40% EtOAc/hexanes) visualized with 

KMnO4; IR (film) 2921, 1744, 1511 cm
-1

; δ-lactone 
1
H NMR (600 MHz, CDCl3) δ 7.38 

(d, J = 8.6 Hz, 2H), 7.25 (d, J = 8.3 Hz, 2H), 5.53 (d, J = 8.8 Hz, 1H), 4.32 (ddd, J = 8.8, 

8.8, 4.7 Hz, 1H), 2.84 (ddd, J = 18.1, 6.5, 6.5 Hz, 1H), 2.73 (ddd, J = 18.1, 8.1, 6.6 Hz, 

1H), 2.56-2.50 (m, 1H), 2.45 (dddd, J = 16.9, 8.5, 8.5, 7.0 Hz, 1H); 
13

C NMR (150 MHz, 

CDCl3) ppm 168.9, 149.6, 136.1, 128.6, 121.0, 120.3 (q, 
1
JCF = 258 Hz), 86.2, 31.2, 30.8, 

23.6;
 19

F NMR (376 MHz, CDCl3) -55.98; γ-lactone 
1
H NMR (600 MHz, CDCl3) δ 7.45 

(d, J = 8.6 Hz, 2H), 7.17 (d, J = 8.3 Hz, 2H), 5.06 (d, J = 8.7 Hz, 1H), 4.92 (ddd, J = 8.2, 

8.2, 6.4 Hz, 1H), 2.69-2.65 (m, 1H), 2.61-2.58 (m, 2H), 2.15-2.09 (m, 1H); 
13

C NMR 

(150 MHz, CDCl3) ppm 176.0, 148.9, 138.0, 129.6, 121.2, 120.2 (q, 
1
JCF = 258 Hz), 82.3, 

32.1, 29.4, 29.1;
 19

F NMR (376 MHz, CDCl3) -55.96; HRMS (ESI): Exact mass calcd for 

C12H10F3INaO3 [M+Na]
+
 408.9525, found 408.9544.  
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(5R,6S)-5-Iodo-6-((E)-styryl)tetrahydro-2H-pyran-2-one (284n). Prepared according 

to the general procedure using the parent acid (20.2 mg, 100 µmol), 

6
MeOStilbPBAM•HNTf2 (4.7 mg, 5.0 µmol) and NIS (24.6 mg, 110 µmol) over 24 

hours. Flash column chromatography (SiO2, 10-30% ethyl acetate in hexanes) of the 

residue yielded a white solid (29.6 mg, 90%). The ratio of δ-lactone to γ-lactone of the 

isolated material was determined to be >95:5 (
1
H NMR). The product was determined to 

be 67% ee by chiral HPLC analysis (Chiralcel IA, 9% 
i
PrOH/hexanes, 1 mL/min, tr(e1, 

minor) = 15.0 min, tr(e2, major) = 18.2 min); Rf = 0.43 (40% EtOAc/hexanes) visualized 

with KMnO4; IR (film) 3025, 1738 cm
-1

; 
1
H NMR (600 MHz, CDCl3) δ 7.41 (d, J = 7.2 

Hz, 2H), 7.35 (dd, J = 7.2, 7.2 Hz, 2H), 7.30 (t, J = 7.3 Hz, 1H), 6.75 (d, J = 15.8 Hz, 

1H), 6.19 (dd, J = 15.8, 6.5 Hz, 1H), 5.19 (dd, J =7.6, 7.6 Hz, 1H), 4.25 (ddd, J = 8.2, 

8.2, 4.5 Hz, 1H), 2.80 (ddd, J = 18.2, 6.8, 6.8 Hz, 1H), 2.65 (ddd, J = 18.1, 7.2, 7.2 Hz, 

1H), 2.53 (dddd, J = 14.3, 6.6, 6.6, 4.5 Hz, 1H), 2.38 (dddd, J = 14.7, 7.4, 7.4, 7.4 Hz, 

1H); 
13

C NMR (150 MHz, CDCl3) ppm 168.9, 135.38, 135.37, 128.7, 128.6, 126.9, 

124.7, 85.5, 30.8, 30.6, 23.1; HRMS: sample decomposed. 
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(5R,6S)-5-Iodo-6-(thiophen-2-yl)tetrahydro-2H-pyran-2-one (284o). Prepared 

according to the general procedure using the parent acid (18.2 mg, 100 µmol), 

6
MeOStilbPBAM•HNTf2 (4.7 mg, 5.0 µmol) and NIS (24.6 mg, 110 µmol) over 24 

hours. Flash column chromatography (SiO2, 10-30% ethyl acetate in hexanes) of the 

residue yielded a white solid (24.7 mg, 80%). The ratio of δ-lactone to γ-lactone of the 

isolated material was determined to be >95:5 (
1
H NMR . The product was determined to 

be 29% ee by chiral HPLC analysis (Chiralcel IA, 9% 
i
PrOH/hexanes, 1 mL/min, tr(e1, 

minor) = 15.9 min, tr(e2, major) = 17.4 min); Rf = 0.52 (40% EtOAc/hexanes) visualized 

with KMnO4; IR (film) 2927, 1740 cm
-1

; 
1
H NMR (600 MHz, CDCl3) δ 7.37 (dd, J = 5.0, 

1.1 Hz, 1H), 7.12 (d, J = 3.6 Hz, 1H), 7.02 (dd, J = 5.0, 3.6 Hz, 1H), 5.80 (d, J = 7.7 Hz, 

1H), 4.48 (ddd, J = 8.0, 8.0, 4.6 Hz, 1H), 2.82 (ddd, J = 18.2, 6.9, 6.9 Hz, 1H), 2.68 (ddd, 

J = 18.1, 7.1, 6.7 Hz, 1H), 2.52 (dddd, J = 14.4, 6.7, 6.7, 4.5 Hz, 1H), 2.40 (dddd, J = 

14.7, 7.4, 7.4, 7.4 Hz, 1H); 
13

C NMR (150 MHz, CDCl3) ppm 168.4, 140.6, 127.2, 126.9, 

126.5, 83.1, 30.8, 30.4, 24.1; HRMS: sample decomposed. 
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(5R,6S)-5-Iodo-6-(thiophen-3-yl)tetrahydro-2H-pyran-2-one (284p). Prepared 

according to the general procedure using the parent acid (18.2 mg, 100 µmol), 

6
MeOStilbPBAM•HNTf2 (4.7 mg, 5.0 µmol) and NIS (24.6 mg, 110 µmol) over 24 

hours. Flash column chromatography (SiO2, 10-30% ethyl acetate in hexanes) of the 

residue yielded a white solid (24.2 mg, 79%). The ratio of δ-lactone to γ-lactone of the 

isolated material was determined to be 97:3 (
1
H NMR). The product was determined to 

be 85% ee by chiral HPLC analysis (Chiralcel IA, 9% 
i
PrOH/hexanes, 1 mL/min, tr(e1, 

minor) = 19.9 min, tr(e2, major) = 23.9 min); Rf = 0.66 (40% EtOAc/hexanes) visualized 

with KMnO4; IR (film) 2926, 1735 cm
-1

; 
1
H NMR (600 MHz, CDCl3) δ 7.37 (dd, J = 5.0, 

2.9 Hz, 1H), 7.32 (d, J = 2.8 Hz, 1H), 7.06 (dd, J = 5.0, 1.2 Hz, 1H), 5.67 (d, J = 7.2 Hz, 

1H), 4.48 (ddd, J = 7.4, 7.4, 4.6 Hz, 1H), 2.84 (ddd, J = 18.2, 7.3, 7.3 Hz, 1H), 2.67 (ddd, 

J = 18.2, 6.6, 6.6 Hz, 1H), 2.41 (dddd, J = 14.4, 6.7, 6.7, 4.6 Hz, 1H), 2.34 (dddd, J = 

14.3, 7.0, 7.0, 7.0 Hz, 1H); 
13

C NMR (150 MHz, CDCl3) ppm 168.9, 138.9, 127.1, 125.1, 

124.1, 83.5, 30.24, 30.21, 23.8; HRMS: sample decomposed. 
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Determination of Absolute Stereochemistry  

 

(R)-6-phenyltetrahydro-2H-pyran-2-one. Procedure adapted from a previous report.
138

 

A 15-mL, round-bottomed flask equipped with a stir bar was charged with (5R,6S)-5-

iodo-6-phenyltetrahydro-2H-pyran-2-one [88 δ-lactone (93% ee)/12 γ-lactone, 60.4 mg, 

200 μmol], benzene (5 mL) and tributyltin hydride (65 μL, 240 μmol). The reaction was 

brought to reflux and recrystallized AIBN (6.5 mg, 40 μmol) was added. The reaction 

was monitored by TLC and after 30 m complete conversion was observed. The reaction 

mixture was concentrated to an oil. Flash column chromatography (SiO2, 5-20% ethyl 

acetate in hexanes) yielded a white solid (23.0 mg, 65%) as only the δ-lactone. Rf = 0.43 

(20% EtOAc/hexanes); [α]
20

D  +29.0 (c 1.00, CHCl3) [reported for 47% ee of (S)-material, 

[α]
26

D  -19.1 (c 0.3, CHCl3)].
139

 Remainder of analytical data matched literature values. 

  

                                                                                                                                                 
138 Wang, M.; Gao, L. X.; Mai, W. P.; Xia, A. X.; Wang, F.; Zhang, S. B. J. Org. Chem. 2004, 69, 2874-2876. 

139 Hsu, J.-L.; Fang, J.-M. J. Org. Chem. 2001, 66, 8573-8584. 
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(5S,6R)-5-bromo-6-(4-chlorophenyl)tetrahydro-2H-pyran-2-one (290). To a flame 

dried vial equipped with a stir bar was added StilbPBAM•HNTf2 (8.8 mg, 10 µmol), (E)-

5-(4-chlorophenyl)pent-4-enoic acid (21.0 mg, 100 µmol), toluene (1 mL), and the 

reaction mixture was cooled to -20 ºC. NIS (26.9 mg, 120 µmol) was added and the 

mixture was stirred for 6 hours (protected from light). The mixture was treated with 20% 

aq sodium thiosulfate (2 mL) and then partitioned between dichloromethane (15 mL) and 

3 M NaOH (15 mL). The aqueous layer was extracted twice and the organic layers were 

combined, dried, and concentrated. Flash column chromatography (SiO2, 10-25-50% 

ethyl acetate in hexanes) yielded the product as a white solid (29 mg, 90%). Remainder 

of analytical data matched literature values and the ee of the product was determined by 

chiral HPLC analysis.  
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Appendix I. Cost of VNI. 
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Appendix II. StilbPBAM Crystal Structure 

The sample was submitted by Mark Dobish (research group of Jeff Johnston, Department 

of Chemistry, Vanderbilt University). A colorless needle (approximate dimensions 0.20  

0.12  0.10 mm3) was placed onto the tip of a 0.1 mm diameter glass capillary and 

mounted on a Bruker APEX II Kappa Duo diffractometer equipped with an APEX II 

detector at 150(2) K. 

 

Data collection 

 The data collection was carried out using Mo Kα radiation (graphite 

monochromator) with a frame time of 10 seconds and a detector distance of 5.00 cm. A 

collection strategy was calculated and complete data to a resolution of 0.70 Å with a 

redundancy of 4 were collected. Four major sections of frames were collected with 0.50º 

ω and ϕ scans. Data to a resolution of 0.77 Å were considered in the reduction. Final cell 

constants were calculated from the xyz centroids of 9863 strong reflections from the 

actual data collection after integration (SAINT).
140

 The intensity data were corrected for 

absorption (SADABS).
141

 Please refer to Table 1 for additional crystal and refinement 

information. 

 

Structure solution and refinement 

 The space group P212121 was determined based on intensity statistics and 

systematic absences. The structure was solved using SIR-2004
142

 and refined with 

                                                                                                                                                 
140 SAINT, Bruker Analytical X-Ray Systems, Madison, WI, current version. 
141 An empirical correction for absorption anisotropy. 
142 Sir2004, A Program for Automatic Solution and Refinement of Crystal Structures. M. C. Burla, R. Caliandro, M. 

Carnalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Sagna. Vers. 1.0 (2004). 
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SHELXL-97.
143

 A direct-methods solution was calculated, which provided most non-

hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles 

were performed, which located the remaining non-hydrogen atoms. All non-hydrogen 

atoms were refined with anisotropic displacement parameters. The hydrogen atoms were 

placed in ideal positions and refined as riding atoms with relative isotropic displacement 

parameters with the exception of N-bound hydrogen atoms which were refined for all 

parameters. The final full matrix least squares refinement converged to R1 = 0.0668 and 

wR2 = 0.1959 (F
2
, all data). The remaining electron density is minuscule and located near 

the disordered solvent.   

 

Structure description 

 The structure was found as proposed and its absolute configuration was 

determined by anomalous dispersion. Two crystallographically independent molecules 

and three solvent molecules are in the asymmetric unit. A least-squares fit of the 

independent molecules (named A and B) are included in the tables. The solvent 

molecules (DCM) are disordered over two sites each and were refined with a set of 

restraints.  

  

                                                                                                                                                 
143 A short history of SHELX.G. M. Sheldrick, Acta Cryst. A64, 112 - 122 (2008). 
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Formula unit. 
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Molecule A. 

 

 

Molecule B 
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Cell plot, view along a. 

 

 

 

Cell plot, view along b. 
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Cell plot, view along c. 
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Table 1.  Crystal data and structure refinement for 12021. 

 

Empirical formula  C41.50 H43 Cl3 N6 

Formula weight  732.17 

Crystal color, shape, size  colorless needle,  0.20 x 0.12 x 0.10 mm3 

Temperature  150(2) K 

Wavelength  0.71073 Å 

Crystal system, space group  Orthorhombic, P2(1)2(1)2(1) 

Unit cell dimensions a = 14.4917(6) Å = 90°. 

 b = 21.8382(9) Å = 90°. 

 c = 23.6418(11) Å  = 90°. 

Volume 7482.0(6) Å3 

Z 8 

Density (calculated) 1.300 Mg/m3 

Absorption coefficient 0.284 mm-1 

F(000) 3080 

 

Data collection 

Diffractometer APEX II Kappa Duo, Bruker 

Theta range for data collection 1.27 to 26.40°. 

Index ranges -18<=h<=18, -27<=k<=26, -29<=l<=29 

Reflections collected 66156 

Independent reflections 15315 [R(int) = 0.0470] 

Observed Reflections 11840 

Completeness to theta = 26.40° 99.8 %  

 

Solution and Refinement 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9722 and 0.9454 

Solution Direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting scheme w = [2Fo2+ AP2+ BP]-1, with  

 P = (Fo2+ 2 Fc2)/3, A = 0.1127, B = 3.9350 

Data / restraints / parameters 15315 / 155 / 965 

Goodness-of-fit on F2 1.022 

Final R indices [I>2sigma(I)] R1 = 0.0668, wR2 = 0.1786 

R indices (all data) R1 = 0.0894, wR2 = 0.1959 

Absolute structure parameter 0.04(9) 

Largest diff. peak and hole 0.893 and -0.535 e.Å-3 

_______________________________________________________ 

Goodness-of-fit = [[w(Fo
2
  Fc

2
)

2
]/Nobservns  Nparams)]

1/2
, all data. 

R1 = (|Fo|  |Fc|) /  |Fo|.       wR2 = [[w(Fo
2
  Fc

2
)

2
] /  [w(Fo

2
)

2
]]

1/2
. 
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Table 2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for 12021.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   

N1A 4423(2) -41(2) 1353(1) 34(1) 

N2A 3222(2) -425(2) 835(1) 34(1) 

N3A 3107(2) -1958(2) 1920(1) 39(1) 

N4A 6174(2) 127(1) 905(1) 32(1) 

N5A 6543(2) 202(1) -33(1) 31(1) 

N6A 7333(2) 2049(1) 233(1) 33(1) 

C1A 5232(2) -94(2) 1714(1) 31(1) 

C2A 5024(2) 39(2) 2338(2) 32(1) 

C3A 5494(3) -272(2) 2759(2) 40(1) 

C4A 5348(3) -137(2) 3326(2) 48(1) 

C5A 4715(3) 310(2) 3472(2) 52(1) 

C6A 4239(3) 614(2) 3059(2) 49(1) 

C7A 4381(3) 482(2) 2495(2) 41(1) 

C8A 3809(2) -502(2) 1267(1) 30(1) 

C9A 3778(2) -1013(2) 1630(1) 32(1) 

C10A 3142(2) -1476(2) 1548(1) 33(1) 

C11A 2549(2) -1427(2) 1053(2) 35(1) 

C12A 1966(3) -1896(2) 852(2) 48(1) 

C13A 1428(3) -1824(2) 379(2) 58(1) 

C14A 1435(3) -1268(2) 87(2) 54(1) 

C15A 2016(3) -815(2) 258(2) 47(1) 

C16A 2607(2) -882(2) 738(2) 35(1) 

C17A 2251(3) -2290(2) 2079(2) 55(1) 

C18A 2374(3) -2461(3) 2686(2) 62(1) 

C19A 3418(3) -2516(2) 2741(2) 54(1) 

C20A 3750(3) -1972(2) 2399(2) 38(1) 

C21A 5975(2) 345(2) 1464(1) 30(1) 

C22A 6842(2) 419(2) 1831(1) 32(1) 

C23A 6846(3) 809(2) 2298(2) 46(1) 

C24A 7640(3) 894(2) 2616(2) 57(1) 

C25A 8443(3) 603(2) 2473(2) 59(1) 

C26A 8450(3) 210(2) 2006(2) 59(1) 

C27A 7648(3) 119(2) 1692(2) 44(1) 

C28A 6506(2) 478(2) 467(1) 30(1) 

C29A 6770(2) 1087(2) 564(1) 30(1) 

C30A 7095(2) 1452(2) 124(2) 31(1) 

C31A 7177(2) 1166(2) -430(1) 30(1) 

C32A 7579(3) 1435(2) -913(2) 39(1) 
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C33A 7620(3) 1145(2) -1425(2) 47(1) 

C34A 7282(3) 550(2) -1478(2) 42(1) 

C35A 6928(3) 260(2) -1009(2) 38(1) 

C36A 6880(2) 547(2) -476(2) 31(1) 

C37A 7362(2) 2562(2) -176(2) 36(1) 

C38A 7244(3) 3139(2) 172(2) 43(1) 

C39A 7534(3) 2947(2) 772(2) 43(1) 

C40A 7222(3) 2284(2) 809(2) 37(1) 

N1B 5134(2) -843(2) -81(1) 37(1) 

N2B 5752(2) -1258(1) 725(1) 31(1) 

N3B 4047(2) -2815(2) 481(2) 49(1) 

N4B 4178(2) 296(2) -66(1) 35(1) 

N5B 4266(2) 1070(1) 589(1) 32(1) 

N6B 5080(2) 2278(2) -720(1) 44(1) 

C1B 4363(2) -712(2) -450(1) 33(1) 

C2B 4332(3) -1126(2) -965(2) 38(1) 

C3B 3472(3) -1324(2) -1160(2) 57(1) 

C4B 3397(5) -1710(3) -1613(2) 82(2) 

C5B 4178(5) -1899(3) -1892(2) 86(2) 

C6B 5039(4) -1718(3) -1707(2) 71(2) 

C7B 5113(3) -1323(2) -1237(2) 50(1) 

C8B 5154(2) -1311(2) 301(1) 33(1) 

C9B 4574(2) -1827(2) 228(2) 34(1) 

C10B 4595(2) -2316(2) 596(2) 36(1) 

C11B 5244(3) -2278(2) 1063(2) 34(1) 

C12B 5409(3) -2738(2) 1476(2) 42(1) 

C13B 6026(3) -2662(2) 1906(2) 51(1) 

C14B 6522(3) -2118(2) 1958(2) 43(1) 

C15B 6419(3) -1668(2) 1559(2) 40(1) 

C16B 5789(2) -1734(2) 1102(2) 33(1) 

C17B 3723(4) -3285(2) 881(2) 68(1) 

C18B 2860(4) -3538(3) 595(3) 87(2) 

C19B 3047(5) -3470(3) -10(3) 92(2) 

C20B 3519(4) -2840(2) -44(2) 63(1) 

C21B 4399(2) -19(2) -587(1) 35(1) 

C22B 3801(3) 174(2) -1087(2) 43(1) 

C23B 4193(4) 190(3) -1627(2) 71(2) 

C24B 3693(6) 368(3) -2095(2) 100(3) 

C25B 2792(5) 513(3) -2040(3) 88(2) 

C26B 2373(4) 514(2) -1518(3) 73(2) 

C27B 2886(3) 346(2) -1026(2) 52(1) 

C28B 4405(2) 887(2) 52(1) 30(1) 

C29B 4720(2) 1284(2) -376(1) 32(1) 
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C30B 4852(2) 1898(2) -278(1) 33(1) 

C31B 4733(2) 2116(2) 302(1) 32(1) 

C32B 4894(2) 2713(2) 496(2) 37(1) 

C33B 4779(3) 2888(2) 1042(2) 39(1) 

C34B 4471(3) 2451(2) 1440(2) 40(1) 

C35B 4319(3) 1861(2) 1274(2) 37(1) 

C36B 4442(2) 1670(2) 708(1) 30(1) 

C37B 4843(3) 2936(2) -774(2) 55(1) 

C38B 4735(4) 3043(3) -1399(2) 73(2) 

C39B 5333(5) 2565(3) -1662(2) 90(2) 

C40B 5210(4) 2007(3) -1288(2) 61(1) 

Cl1S 2139(2) 1202(1) 2022(1) 96(1) 

Cl2S 1175(2) 448(2) 1273(2) 188(2) 

C1S 2230(12) 679(5) 1496(8) 133(2) 

Cl1D 2187(6) 1428(5) 1594(5) 96(1) 

Cl2D 1404(11) 656(9) 838(9) 188(2) 

C1D 2090(60) 679(12) 1420(30) 133(2) 

Cl3S 6206(2) 1379(1) 7362(1) 93(1) 

Cl4S 5036(4) 1337(8) 6399(2) 182(3) 

C2S 6133(19) 1460(20) 6643(7) 160(3) 

Cl3D 6183(8) 1446(10) 6447(4) 160(3) 

Cl4D 4712(8) 1216(5) 7192(4) 233(7) 

C2D 5040(20) 1250(50) 6497(10) 182(3) 

Cl5S 5477(2) 4386(1) 246(1) 65(1) 

Cl6S 4001(2) 4627(2) -505(2) 131(1) 

C3S 4329(8) 4575(11) 189(5) 151(2) 

Cl5D 4651(7) 4308(3) 156(3) 151(2) 

Cl6D 4474(5) 5297(3) -561(4) 158(3) 

C3D 3957(12) 4927(8) -7(8) 131(1) 

________________________________________________________________________________ 
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Table 3.   Bond lengths [Å] and angles [°] for  12021. 

 

N1A-C8A 1.359(5)  N1A-C1A 1.454(4) 

 N1A-H1AN 0.80(5)  N2A-C8A 1.338(4) 

 N2A-C16A 1.358(5)  N3A-C10A 1.372(5) 

 N3A-C20A 1.466(5)  N3A-C17A 1.485(5) 

 N4A-C28A 1.375(4)  N4A-C21A 1.436(4) 

 N4A-H4AN 0.9000  N5A-C28A 1.328(4) 

 N5A-C36A 1.379(5)  N6A-C30A 1.374(5) 

 N6A-C40A 1.464(5)  N6A-C37A 1.479(5) 

 C1A-C2A 1.535(5)  C1A-C21A 1.557(5) 

 C1A-H1A 1.0000  C2A-C3A 1.384(5) 

 C2A-C7A 1.395(5)  C3A-C4A 1.389(5) 

 C3A-H3A 0.9500  C4A-C5A 1.384(7) 

 C4A-H4A 0.9500  C5A-C6A 1.368(7) 

 C5A-H5A 0.9500  C6A-C7A 1.378(6) 

 C6A-H6A 0.9500  C7A-H7A 0.9500 

 C8A-C9A 1.410(5)  C9A-C10A 1.383(5) 

 C9A-H9A 0.9500  C10A-C11A 1.455(5) 

 C11A-C16A 1.408(5)  C11A-C12A 1.410(6) 

 C12A-C13A 1.373(6)  C12A-H12A 0.9500 

 C13A-C14A 1.395(7)  C13A-H13A 0.9500 

 C14A-C15A 1.361(6)  C14A-H14A 0.9500 

 C15A-C16A 1.428(5)  C15A-H15A 0.9500 

 C17A-C18A 1.493(6)  C17A-H17A 0.9900 

 C17A-H17B 0.9900  C18A-C19A 1.524(7) 

 C18A-H18A 0.9900  C18A-H18B 0.9900 

 C19A-C20A 1.515(5)  C19A-H19A 0.9900 

 C19A-H19B 0.9900  C20A-H20A 0.9900 

 C20A-H20B 0.9900  C21A-C22A 1.534(5) 

 C21A-H21A 1.0000  C22A-C27A 1.378(5) 

 C22A-C23A 1.395(5)  C23A-C24A 1.387(6) 

 C23A-H23A 0.9500  C24A-C25A 1.369(7) 

 C24A-H24A 0.9500  C25A-C26A 1.399(8) 

 C25A-H25A 0.9500  C26A-C27A 1.394(6) 

 C26A-H26A 0.9500  C27A-H27A 0.9500 

 C28A-C29A 1.403(5)  C29A-C30A 1.391(5) 

 C29A-H29A 0.9500  C30A-C31A 1.456(5) 

 C31A-C32A 1.412(5)  C31A-C36A 1.423(5) 

 C32A-C33A 1.368(6)  C32A-H32A 0.9500 

 C33A-C34A 1.395(6)  C33A-H33A 0.9500 

 C34A-C35A 1.376(6)  C34A-H34A 0.9500 

 C35A-C36A 1.408(5)  C35A-H35A 0.9500 
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 C37A-C38A 1.513(6)  C37A-H37A 0.9900 

 C37A-H37B 0.9900  C38A-C39A 1.538(6) 

 C38A-H38A 0.9900  C38A-H38B 0.9900 

 C39A-C40A 1.518(5)  C39A-H39A 0.9900 

 C39A-H39B 0.9900  C40A-H40A 0.9900 

 C40A-H40B 0.9900  N1B-C8B 1.363(5) 

 N1B-C1B 1.446(5)  N1B-H1BN 0.72(4) 

 N2B-C8B 1.331(4)  N2B-C16B 1.369(5) 

 N3B-C10B 1.375(5)  N3B-C20B 1.461(6) 

 N3B-C17B 1.472(6)  N4B-C28B 1.361(5) 

 N4B-C21B 1.445(4)  N4B-H4BN 0.91(4) 

 N5B-C28B 1.346(4)  N5B-C36B 1.364(5) 

 N6B-C30B 1.375(5)  N6B-C40B 1.479(6) 

 N6B-C37B 1.485(6)  C1B-C2B 1.518(5) 

 C1B-C21B 1.549(5)  C1B-H1BA 1.0000 

 C2B-C7B 1.371(6)  C2B-C3B 1.397(6) 

 C3B-C4B 1.367(7)  C3B-H3B 0.9500 

 C4B-C5B 1.374(9)  C4B-H4B 0.9500 

 C5B-C6B 1.380(9)  C5B-H5B 0.9500 

 C6B-C7B 1.409(7)  C6B-H6B 0.9500 

 C7B-H7B 0.9500  C8B-C9B 1.416(5) 

 C9B-C10B 1.377(5)  C9B-H9B 0.9500 

 C10B-C11B 1.454(5)  C11B-C12B 1.421(5) 

 C11B-C16B 1.430(5)  C12B-C13B 1.365(6) 

 C12B-H12B 0.9500  C13B-C14B 1.395(6) 

 C13B-H13B 0.9500  C14B-C15B 1.369(5) 

 C14B-H14B 0.9500  C15B-C16B 1.422(5) 

 C15B-H15B 0.9500  C17B-C18B 1.526(8) 

 C17B-H17C 0.9900  C17B-H17D 0.9900 

 C18B-C19B 1.464(9)  C18B-H18C 0.9900 

 C18B-H18D 0.9900  C19B-C20B 1.538(7) 

 C19B-H19C 0.9900  C19B-H19D 0.9900 

 C20B-H20C 0.9900  C20B-H20D 0.9900 

 C21B-C22B 1.524(5)  C21B-H21B 1.0000 

 C22B-C27B 1.386(6)  C22B-C23B 1.398(7) 

 C23B-C24B 1.379(7)  C23B-H23B 0.9500 

 C24B-C25B 1.350(10)  C24B-H24B 0.9500 

 C25B-C26B 1.375(9)  C25B-H25B 0.9500 

 C26B-C27B 1.428(7)  C26B-H26B 0.9500 

 C27B-H27B 0.9500  C28B-C29B 1.410(5) 

 C29B-C30B 1.374(5)  C29B-H29B 0.9500 

 C30B-C31B 1.462(5)  C31B-C32B 1.402(5) 

 C31B-C36B 1.431(5)  C32B-C33B 1.357(5) 
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 C32B-H32B 0.9500  C33B-C34B 1.411(6) 

 C33B-H33B 0.9500  C34B-C35B 1.366(6) 

 C34B-H34B 0.9500  C35B-C36B 1.413(5) 

 C35B-H35B 0.9500  C37B-C38B 1.504(6) 

 C37B-H37C 0.9900  C37B-H37D 0.9900 

 C38B-C39B 1.493(10)  C38B-H38C 0.9900 

 C38B-H38D 0.9900  C39B-C40B 1.515(8) 

 C39B-H39C 0.9900  C39B-H39D 0.9900 

 C40B-H40C 0.9900  C40B-H40D 0.9900 

 Cl1S-C1S 1.694(12)  Cl2S-C1S 1.694(12) 

 C1S-H1S1 0.9900  C1S-H1S2 0.9900 

 Cl1D-C1D 1.694(12)  Cl2D-C1D 1.693(12) 

 C1D-H1D1 0.9900  C1D-H1D2 0.9900 

 Cl3S-C2S 1.711(15)  Cl4S-C2S 1.712(15) 

 C2S-H2S1 0.9900  C2S-H2S2 0.9900 

 Cl3D-C2D 1.714(15)  Cl4D-C2D 1.713(15) 

 C2D-H2D1 0.9900  C2D-H2D2 0.9900 

 Cl5S-C3S 1.719(9)  Cl6S-C3S 1.712(9) 

 C3S-H3S1 0.9900  C3S-H3S2 0.9900 

 Cl5D-C3D 1.728(9)  Cl6D-C3D 1.711(9) 

 C3D-H3D1 0.9900  C3D-H3D2 0.9900  

 

C8A-N1A-C1A 124.0(3)  C8A-N1A-H1AN 115(4) 

 C1A-N1A-H1AN 121(4)  C8A-N2A-C16A 117.0(3) 

 C10A-N3A-C20A 119.2(3)  C10A-N3A-C17A 124.6(3) 

 C20A-N3A-C17A 109.0(3)  C28A-N4A-C21A 125.3(3) 

 C28A-N4A-H4AN 112.0  C21A-N4A-H4AN 122.7 

 C28A-N5A-C36A 116.4(3)  C30A-N6A-C40A 118.7(3) 

 C30A-N6A-C37A 127.1(3)  C40A-N6A-C37A 110.2(3) 

 N1A-C1A-C2A 113.0(3)  N1A-C1A-C21A 106.7(3) 

 C2A-C1A-C21A 112.6(3)  N1A-C1A-H1A 108.1 

 C2A-C1A-H1A 108.1  C21A-C1A-H1A 108.1 

 C3A-C2A-C7A 118.6(3)  C3A-C2A-C1A 120.1(3) 

 C7A-C2A-C1A 121.2(3)  C2A-C3A-C4A 120.9(4) 

 C2A-C3A-H3A 119.5  C4A-C3A-H3A 119.5 

 C5A-C4A-C3A 119.5(4)  C5A-C4A-H4A 120.3 

 C3A-C4A-H4A 120.3  C6A-C5A-C4A 119.9(4) 

 C6A-C5A-H5A 120.1  C4A-C5A-H5A 120.1 

 C5A-C6A-C7A 120.9(4)  C5A-C6A-H6A 119.5 

 C7A-C6A-H6A 119.5  C6A-C7A-C2A 120.1(4) 

 C6A-C7A-H7A 119.9  C2A-C7A-H7A 119.9 

 N2A-C8A-N1A 116.0(3)  N2A-C8A-C9A 123.0(3) 

 N1A-C8A-C9A 121.0(3)  C10A-C9A-C8A 121.0(3) 
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 C10A-C9A-H9A 119.5  C8A-C9A-H9A 119.5 

 N3A-C10A-C9A 119.7(3)  N3A-C10A-C11A 123.3(3) 

 C9A-C10A-C11A 116.9(3)  C16A-C11A-C12A 118.2(3) 

 C16A-C11A-C10A 116.9(3)  C12A-C11A-C10A 124.8(4) 

 C13A-C12A-C11A 122.1(4)  C13A-C12A-H12A 119.0 

 C11A-C12A-H12A 119.0  C12A-C13A-C14A 119.9(4) 

 C12A-C13A-H13A 120.1  C14A-C13A-H13A 120.1 

 C15A-C14A-C13A 119.4(4)  C15A-C14A-H14A 120.3 

 C13A-C14A-H14A 120.3  C14A-C15A-C16A 122.1(4) 

 C14A-C15A-H15A 119.0  C16A-C15A-H15A 119.0 

 N2A-C16A-C11A 124.9(3)  N2A-C16A-C15A 116.9(4) 

 C11A-C16A-C15A 118.1(4)  N3A-C17A-C18A 105.4(3) 

 N3A-C17A-H17A 110.7  C18A-C17A-H17A 110.7 

 N3A-C17A-H17B 110.7  C18A-C17A-H17B 110.7 

 H17A-C17A-H17B 108.8  C17A-C18A-C19A 102.8(4) 

 C17A-C18A-H18A 111.2  C19A-C18A-H18A 111.2 

 C17A-C18A-H18B 111.2  C19A-C18A-H18B 111.2 

 H18A-C18A-H18B 109.1  C20A-C19A-C18A 102.0(4) 

 C20A-C19A-H19A 111.4  C18A-C19A-H19A 111.4 

 C20A-C19A-H19B 111.4  C18A-C19A-H19B 111.4 

 H19A-C19A-H19B 109.2  N3A-C20A-C19A 103.1(3) 

 N3A-C20A-H20A 111.1  C19A-C20A-H20A 111.1 

 N3A-C20A-H20B 111.1  C19A-C20A-H20B 111.1 

 H20A-C20A-H20B 109.1  N4A-C21A-C22A 113.0(3) 

 N4A-C21A-C1A 106.4(3)  C22A-C21A-C1A 114.7(3) 

 N4A-C21A-H21A 107.5  C22A-C21A-H21A 107.5 

 C1A-C21A-H21A 107.5  C27A-C22A-C23A 118.3(3) 

 C27A-C22A-C21A 120.6(3)  C23A-C22A-C21A 121.0(3) 

 C24A-C23A-C22A 121.0(4)  C24A-C23A-H23A 119.5 

 C22A-C23A-H23A 119.5  C25A-C24A-C23A 120.6(4) 

 C25A-C24A-H24A 119.7  C23A-C24A-H24A 119.7 

 C24A-C25A-C26A 119.1(4)  C24A-C25A-H25A 120.4 

 C26A-C25A-H25A 120.4  C27A-C26A-C25A 120.1(4) 

 C27A-C26A-H26A 120.0  C25A-C26A-H26A 120.0 

 C22A-C27A-C26A 120.9(4)  C22A-C27A-H27A 119.6 

 C26A-C27A-H27A 119.6  N5A-C28A-N4A 115.5(3) 

 N5A-C28A-C29A 124.3(3)  N4A-C28A-C29A 120.2(3) 

 C30A-C29A-C28A 120.9(3)  C30A-C29A-H29A 119.6 

 C28A-C29A-H29A 119.6  N6A-C30A-C29A 119.2(3) 

 N6A-C30A-C31A 123.8(3)  C29A-C30A-C31A 117.0(3) 

 C32A-C31A-C36A 117.3(3)  C32A-C31A-C30A 125.7(3) 

 C36A-C31A-C30A 116.9(3)  C33A-C32A-C31A 122.8(4) 

 C33A-C32A-H32A 118.6  C31A-C32A-H32A 118.6 
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 C32A-C33A-C34A 119.7(4)  C32A-C33A-H33A 120.1 

 C34A-C33A-H33A 120.1  C35A-C34A-C33A 119.1(4) 

 C35A-C34A-H34A 120.4  C33A-C34A-H34A 120.4 

 C34A-C35A-C36A 122.4(4)  C34A-C35A-H35A 118.8 

 C36A-C35A-H35A 118.8  N5A-C36A-C35A 117.1(3) 

 N5A-C36A-C31A 124.5(3)  C35A-C36A-C31A 118.4(3) 

 N6A-C37A-C38A 105.8(3)  N6A-C37A-H37A 110.6 

 C38A-C37A-H37A 110.6  N6A-C37A-H37B 110.6 

 C38A-C37A-H37B 110.6  H37A-C37A-H37B 108.7 

 C37A-C38A-C39A 104.1(3)  C37A-C38A-H38A 110.9 

 C39A-C38A-H38A 110.9  C37A-C38A-H38B 110.9 

 C39A-C38A-H38B 110.9  H38A-C38A-H38B 109.0 

 C40A-C39A-C38A 103.4(3)  C40A-C39A-H39A 111.1 

 C38A-C39A-H39A 111.1  C40A-C39A-H39B 111.1 

 C38A-C39A-H39B 111.1  H39A-C39A-H39B 109.0 

 N6A-C40A-C39A 104.3(3)  N6A-C40A-H40A 110.9 

 C39A-C40A-H40A 110.9  N6A-C40A-H40B 110.9 

 C39A-C40A-H40B 110.9  H40A-C40A-H40B 108.9 

 C8B-N1B-C1B 124.3(3)  C8B-N1B-H1BN 115(3) 

 C1B-N1B-H1BN 120(3)  C8B-N2B-C16B 116.7(3) 

 C10B-N3B-C20B 120.0(4)  C10B-N3B-C17B 127.6(4) 

 C20B-N3B-C17B 110.7(4)  C28B-N4B-C21B 124.9(3) 

 C28B-N4B-H4BN 123.2(13)  C21B-N4B-H4BN 111.7(14) 

 C28B-N5B-C36B 116.8(3)  C30B-N6B-C40B 118.7(4) 

 C30B-N6B-C37B 126.5(4)  C40B-N6B-C37B 109.8(4) 

 N1B-C1B-C2B 112.9(3)  N1B-C1B-C21B 107.1(3) 

 C2B-C1B-C21B 114.5(3)  N1B-C1B-H1BA 107.3 

 C2B-C1B-H1BA 107.3  C21B-C1B-H1BA 107.3 

 C7B-C2B-C3B 119.0(4)  C7B-C2B-C1B 122.6(4) 

 C3B-C2B-C1B 118.4(3)  C4B-C3B-C2B 121.3(5) 

 C4B-C3B-H3B 119.3  C2B-C3B-H3B 119.3 

 C3B-C4B-C5B 119.8(5)  C3B-C4B-H4B 120.1 

 C5B-C4B-H4B 120.1  C4B-C5B-C6B 120.3(5) 

 C4B-C5B-H5B 119.9  C6B-C5B-H5B 119.9 

 C5B-C6B-C7B 119.7(5)  C5B-C6B-H6B 120.2 

 C7B-C6B-H6B 120.2  C2B-C7B-C6B 119.9(4) 

 C2B-C7B-H7B 120.0  C6B-C7B-H7B 120.0 

 N2B-C8B-N1B 116.6(3)  N2B-C8B-C9B 123.2(3) 

 N1B-C8B-C9B 120.3(3)  C10B-C9B-C8B 121.9(3) 

 C10B-C9B-H9B 119.1  C8B-C9B-H9B 119.1 

 N3B-C10B-C9B 118.5(3)  N3B-C10B-C11B 124.7(3) 

 C9B-C10B-C11B 116.7(3)  C12B-C11B-C16B 116.8(3) 

 C12B-C11B-C10B 126.2(3)  C16B-C11B-C10B 117.0(3) 
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 C13B-C12B-C11B 122.4(4)  C13B-C12B-H12B 118.8 

 C11B-C12B-H12B 118.8  C12B-C13B-C14B 120.4(4) 

 C12B-C13B-H13B 119.8  C14B-C13B-H13B 119.8 

 C15B-C14B-C13B 119.7(4)  C15B-C14B-H14B 120.2 

 C13B-C14B-H14B 120.2  C14B-C15B-C16B 121.4(4) 

 C14B-C15B-H15B 119.3  C16B-C15B-H15B 119.3 

 N2B-C16B-C15B 116.3(3)  N2B-C16B-C11B 124.5(3) 

 C15B-C16B-C11B 119.1(3)  N3B-C17B-C18B 103.3(4) 

 N3B-C17B-H17C 111.1  C18B-C17B-H17C 111.1 

 N3B-C17B-H17D 111.1  C18B-C17B-H17D 111.1 

 H17C-C17B-H17D 109.1  C19B-C18B-C17B 104.1(5) 

 C19B-C18B-H18C 110.9  C17B-C18B-H18C 110.9 

 C19B-C18B-H18D 110.9  C17B-C18B-H18D 110.9 

 H18C-C18B-H18D 109.0  C18B-C19B-C20B 103.0(5) 

 C18B-C19B-H19C 111.2  C20B-C19B-H19C 111.2 

 C18B-C19B-H19D 111.2  C20B-C19B-H19D 111.2 

 H19C-C19B-H19D 109.1  N3B-C20B-C19B 102.8(5) 

 N3B-C20B-H20C 111.2  C19B-C20B-H20C 111.2 

 N3B-C20B-H20D 111.2  C19B-C20B-H20D 111.2 

 H20C-C20B-H20D 109.1  N4B-C21B-C22B 113.8(3) 

 N4B-C21B-C1B 106.2(3)  C22B-C21B-C1B 114.5(3) 

 N4B-C21B-H21B 107.3  C22B-C21B-H21B 107.3 

 C1B-C21B-H21B 107.3  C27B-C22B-C23B 118.4(4) 

 C27B-C22B-C21B 122.6(4)  C23B-C22B-C21B 119.0(4) 

 C24B-C23B-C22B 121.9(6)  C24B-C23B-H23B 119.1 

 C22B-C23B-H23B 119.1  C25B-C24B-C23B 119.8(7) 

 C25B-C24B-H24B 120.1  C23B-C24B-H24B 120.1 

 C24B-C25B-C26B 120.9(5)  C24B-C25B-H25B 119.5 

 C26B-C25B-H25B 119.5  C25B-C26B-C27B 120.1(5) 

 C25B-C26B-H26B 120.0  C27B-C26B-H26B 120.0 

 C22B-C27B-C26B 118.9(5)  C22B-C27B-H27B 120.5 

 C26B-C27B-H27B 120.5  N5B-C28B-N4B 116.1(3) 

 N5B-C28B-C29B 122.9(3)  N4B-C28B-C29B 120.9(3) 

 C30B-C29B-C28B 121.6(3)  C30B-C29B-H29B 119.2 

 C28B-C29B-H29B 119.2  N6B-C30B-C29B 119.6(3) 

 N6B-C30B-C31B 123.0(3)  C29B-C30B-C31B 117.5(3) 

 C32B-C31B-C36B 117.6(3)  C32B-C31B-C30B 126.3(3) 

 C36B-C31B-C30B 116.1(3)  C33B-C32B-C31B 123.6(3) 

 C33B-C32B-H32B 118.2  C31B-C32B-H32B 118.2 

 C32B-C33B-C34B 118.8(4)  C32B-C33B-H33B 120.6 

 C34B-C33B-H33B 120.6  C35B-C34B-C33B 119.9(4) 

 C35B-C34B-H34B 120.1  C33B-C34B-H34B 120.1 

 C34B-C35B-C36B 122.0(3)  C34B-C35B-H35B 119.0 
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 C36B-C35B-H35B 119.0  N5B-C36B-C35B 117.0(3) 

 N5B-C36B-C31B 124.9(3)  C35B-C36B-C31B 118.1(3) 

 N6B-C37B-C38B 105.0(4)  N6B-C37B-H37C 110.8 

 C38B-C37B-H37C 110.8  N6B-C37B-H37D 110.8 

 C38B-C37B-H37D 110.8  H37C-C37B-H37D 108.8 

 C39B-C38B-C37B 103.9(5)  C39B-C38B-H38C 111.0 

 C37B-C38B-H38C 111.0  C39B-C38B-H38D 111.0 

 C37B-C38B-H38D 111.0  H38C-C38B-H38D 109.0 

 C38B-C39B-C40B 104.6(4)  C38B-C39B-H39C 110.8 

 C40B-C39B-H39C 110.8  C38B-C39B-H39D 110.8 

 C40B-C39B-H39D 110.8  H39C-C39B-H39D 108.9 

 N6B-C40B-C39B 102.9(5)  N6B-C40B-H40C 111.2 

 C39B-C40B-H40C 111.2  N6B-C40B-H40D 111.2 

 C39B-C40B-H40D 111.2  H40C-C40B-H40D 109.1 

 Cl2S-C1S-Cl1S 111.1(11)  Cl2S-C1S-H1S1 109.4 

 Cl1S-C1S-H1S1 109.4  Cl2S-C1S-H1S2 109.4 

 Cl1S-C1S-H1S2 109.4  H1S1-C1S-H1S2 108.0 

 Cl2D-C1D-Cl1D 106.1(12)  Cl2D-C1D-H1D1 110.5 

 Cl1D-C1D-H1D1 110.5  Cl2D-C1D-H1D2 110.5 

 Cl1D-C1D-H1D2 110.5  H1D1-C1D-H1D2 108.7 

 Cl3S-C2S-Cl4S 112.0(17)  Cl3S-C2S-H2S1 109.2 

 Cl4S-C2S-H2S1 109.2  Cl3S-C2S-H2S2 109.2 

 Cl4S-C2S-H2S2 109.2  H2S1-C2S-H2S2 107.9 

 Cl4D-C2D-Cl3D 110.3(18)  Cl4D-C2D-H2D1 109.6 

 Cl3D-C2D-H2D1 109.6  Cl4D-C2D-H2D2 109.6 

 Cl3D-C2D-H2D2 109.6  H2D1-C2D-H2D2 108.1 

 Cl6S-C3S-Cl5S 111.1(9)  Cl6S-C3S-H3S1 109.4 

 Cl5S-C3S-H3S1 109.4  Cl6S-C3S-H3S2 109.4 

 Cl5S-C3S-H3S2 109.4  H3S1-C3S-H3S2 108.0 

 Cl6D-C3D-Cl5D 106.6(9)  Cl6D-C3D-H3D1 110.4 

 Cl5D-C3D-H3D1 110.4  Cl6D-C3D-H3D2 110.4 

 Cl5D-C3D-H3D2 110.4  H3D1-C3D-H3D2 108.6  

______________________________________________________________________________________

_____  
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 Table 4.   Anisotropic displacement parameters  (Å2x 103) for 12021.  The anisotropic 

displacement factor exponent takes the form:  -22[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

N1A 35(2)  32(2) 36(2)  4(1) -8(1)  -4(1) 

N2A 23(1)  43(2) 36(2)  1(1) -2(1)  1(1) 

N3A 33(2)  44(2) 41(2)  4(1) 4(1)  -11(1) 

N4A 36(2)  26(2) 33(2)  0(1) -1(1)  -5(1) 

N5A 26(1)  35(2) 33(1)  0(1) 0(1)  -1(1) 

N6A 34(1)  31(2) 34(2)  0(1) 3(1)  -9(1) 

C1A 32(2)  26(2) 36(2)  4(1) -3(1)  -2(1) 

C2A 33(2)  28(2) 37(2)  1(1) 0(1)  -8(1) 

C3A 37(2)  46(2) 37(2)  3(2) 0(2)  0(2) 

C4A 49(2)  58(3) 37(2)  8(2) -1(2)  0(2) 

C5A 62(3)  51(3) 44(2)  -6(2) 11(2)  -11(2) 

C6A 57(2)  37(2) 53(2)  -6(2) 12(2)  -2(2) 

C7A 43(2)  34(2) 47(2)  6(2) 2(2)  0(2) 

C8A 28(2)  33(2) 30(2)  -4(1) 3(1)  0(1) 

C9A 31(2)  35(2) 30(2)  -5(1) 0(1)  -1(2) 

C10A 30(2)  39(2) 31(2)  -2(1) 12(1)  -3(2) 

C11A 26(2)  46(2) 33(2)  -5(2) 4(1)  0(2) 

C12A 45(2)  55(3) 45(2)  0(2) 1(2)  -18(2) 

C13A 48(2)  72(3) 54(3)  -8(2) -11(2)  -22(2) 

C14A 40(2)  72(3) 52(2)  -6(2) -12(2)  -4(2) 

C15A 32(2)  65(3) 45(2)  3(2) -6(2)  -1(2) 

C16A 24(2)  49(2) 33(2)  -1(2) 5(1)  -1(2) 

C17A 44(2)  65(3) 56(3)  9(2) 8(2)  -25(2) 

C18A 55(3)  77(4) 55(3)  15(2) 5(2)  -24(3) 

C19A 54(3)  55(3) 52(2)  18(2) 1(2)  -14(2) 

C20A 39(2)  37(2) 37(2)  4(2) 4(2)  -4(2) 

C21A 32(2)  27(2) 32(2)  6(1) 0(1)  -2(1) 

C22A 32(2)  30(2) 36(2)  9(2) -4(1)  -5(2) 

C23A 46(2)  45(2) 47(2)  -2(2) -5(2)  -9(2) 

C24A 65(3)  56(3) 50(2)  -2(2) -13(2)  -15(2) 

C25A 51(3)  63(3) 65(3)  19(2) -27(2)  -19(2) 

C26A 34(2)  64(3) 80(3)  21(3) -11(2)  1(2) 

C27A 37(2)  47(2) 48(2)  9(2) -4(2)  -1(2) 

C28A 23(2)  32(2) 34(2)  2(1) -7(1)  1(1) 

C29A 26(2)  34(2) 29(2)  -3(1) -4(1)  0(1) 

C30A 19(1)  34(2) 39(2)  0(1) 0(1)  -5(1) 

C31A 22(2)  33(2) 36(2)  -1(1) 1(1)  -2(1) 

C32A 37(2)  41(2) 40(2)  0(2) 9(2)  -6(2) 
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C33A 46(2)  51(3) 44(2)  -1(2) 13(2)  -7(2) 

C34A 44(2)  47(2) 36(2)  -8(2) 8(2)  -1(2) 

C35A 34(2)  39(2) 40(2)  -5(2) 2(2)  2(2) 

C36A 23(2)  36(2) 35(2)  -2(2) -1(1)  3(1) 

C37A 30(2)  36(2) 42(2)  8(2) 2(2)  -8(2) 

C38A 33(2)  37(2) 60(2)  1(2) 7(2)  -9(2) 

C39A 41(2)  38(2) 51(2)  -6(2) 8(2)  -12(2) 

C40A 38(2)  33(2) 40(2)  -5(2) 5(2)  -10(2) 

N1B 34(2)  35(2) 42(2)  2(1) -8(1)  -8(2) 

N2B 31(1)  28(2) 36(2)  0(1) -2(1)  0(1) 

N3B 46(2)  42(2) 60(2)  0(2) 5(2)  -12(2) 

N4B 39(2)  35(2) 30(1)  -3(1) 2(1)  -4(1) 

N5B 34(2)  31(2) 31(1)  2(1) -4(1)  5(1) 

N6B 38(2)  54(2) 39(2)  6(2) 2(1)  -13(2) 

C1B 27(2)  41(2) 31(2)  -3(1) -3(1)  1(2) 

C2B 39(2)  38(2) 37(2)  -6(2) 0(2)  2(2) 

C3B 47(2)  69(3) 56(3)  -21(2) -9(2)  3(2) 

C4B 81(4)  92(4) 74(4)  -43(3) -12(3)  -9(3) 

C5B 101(5)  92(4) 65(3)  -47(3) 1(3)  -2(4) 

C6B 85(4)  65(3) 63(3)  -14(3) 27(3)  19(3) 

C7B 51(2)  47(2) 51(2)  -5(2) 11(2)  6(2) 

C8B 30(2)  33(2) 36(2)  -1(2) 5(1)  3(2) 

C9B 30(2)  37(2) 36(2)  -4(2) 3(1)  -2(2) 

C10B 31(2)  33(2) 45(2)  -3(2) 9(2)  -1(2) 

C11B 36(2)  29(2) 38(2)  -2(2) 6(2)  5(2) 

C12B 46(2)  35(2) 47(2)  6(2) 6(2)  2(2) 

C13B 58(3)  44(2) 50(2)  14(2) 8(2)  10(2) 

C14B 46(2)  45(2) 37(2)  2(2) -1(2)  10(2) 

C15B 41(2)  35(2) 44(2)  1(2) -1(2)  5(2) 

C16B 29(2)  33(2) 37(2)  -2(2) 4(1)  2(1) 

C17B 60(3)  56(3) 86(4)  11(3) 11(3)  -25(2) 

C18B 70(4)  75(4) 116(5)  13(4) 0(3)  -43(3) 

C19B 87(4)  71(4) 118(5)  0(4) -14(4)  -44(3) 

C20B 60(3)  58(3) 72(3)  -6(2) -6(2)  -23(2) 

C21B 34(2)  41(2) 31(2)  -6(2) -4(1)  3(2) 

C22B 46(2)  32(2) 50(2)  -5(2) -17(2)  8(2) 

C23B 91(4)  86(4) 37(2)  -6(2) -14(2)  32(3) 

C24B 149(7)  106(5) 44(3)  -5(3) -34(3)  60(5) 

C25B 120(6)  75(4) 70(4)  -15(3) -51(4)  23(4) 

C26B 61(3)  35(3) 123(5)  -2(3) -43(3)  4(2) 

C27B 44(2)  32(2) 80(3)  -3(2) -20(2)  1(2) 

C28B 24(2)  35(2) 33(2)  0(1) -4(1)  6(1) 

C29B 25(2)  44(2) 26(2)  0(2) -1(1)  0(2) 
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C30B 22(2)  45(2) 33(2)  4(2) -5(1)  -4(1) 

C31B 21(1)  39(2) 34(2)  5(2) -4(1)  0(1) 

C32B 26(2)  37(2) 48(2)  8(2) -3(2)  -4(2) 

C33B 38(2)  33(2) 47(2)  -4(2) -7(2)  2(2) 

C34B 44(2)  38(2) 39(2)  -7(2) 0(2)  6(2) 

C35B 41(2)  37(2) 33(2)  4(2) 0(2)  4(2) 

C36B 26(2)  30(2) 34(2)  1(1) -2(1)  4(1) 

C37B 50(2)  57(3) 58(3)  21(2) -19(2)  -20(2) 

C38B 80(4)  81(4) 57(3)  31(3) -24(3)  -36(3) 

C39B 100(5)  127(6) 42(3)  22(3) 5(3)  -57(4) 

C40B 56(3)  93(4) 34(2)  7(2) 8(2)  -19(3) 

Cl1S 83(1)  109(2) 97(2)  -19(1) -4(1)  40(1) 

Cl2S 116(2)  228(4) 220(4)  -141(4) -83(3)  87(2) 

C1S 95(5)  148(5) 157(5)  -71(4) -16(4)  40(4) 

Cl1D 83(1)  109(2) 97(2)  -19(1) -4(1)  40(1) 

Cl2D 116(2)  228(4) 220(4)  -141(4) -83(3)  87(2) 

C1D 95(5)  148(5) 157(5)  -71(4) -16(4)  40(4) 

Cl3S 146(3)  67(2) 66(1)  2(1) -1(2)  -2(2) 

Cl4S 87(2)  336(7) 123(3)  41(4) -33(2)  29(3) 

C2S 120(3)  174(5) 187(6)  81(8) 5(5)  25(3) 

Cl3D 120(3)  174(5) 187(6)  81(8) 5(5)  25(3) 

Cl4D 357(16)  171(8) 171(7)  31(6) 143(10)  98(9) 

C2D 87(2)  336(7) 123(3)  41(4) -33(2)  29(3) 

Cl5S 67(1)  55(1) 72(1)  9(1) -6(1)  1(1) 

Cl6S 74(2)  171(4) 148(3)  8(3) -19(2)  -11(2) 

C3S 173(5)  131(5) 148(4)  -4(4) 33(4)  34(4) 

Cl5D 173(5)  131(5) 148(4)  -4(4) 33(4)  34(4) 

Cl6D 143(5)  94(4) 238(7)  11(4) -39(5)  32(4) 

C3D 74(2)  171(4) 148(3)  8(3) -19(2)  -11(2) 

______________________________________________________________________________ 
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Table 5.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) for 12021. 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  

H1AN 4320(40) 270(20) 1180(20) 58(15) 

H4AN 6102 -268 804 43(12) 

H1A 5471 -522 1684 38 

H3A 5923 -583 2658 48 

H4A 5681 -350 3611 58 

H5A 4612 406 3859 62 

H6A 3804 920 3161 58 

H7A 4041 695 2213 50 

H9A 4202 -1040 1936 38 

H12A 1945 -2274 1051 58 

H13A 1051 -2152 250 70 

H14A 1039 -1207 -228 65 

H15A 2028 -441 52 57 

H17A 2172 -2661 1842 66 

H17B 1704 -2024 2031 66 

H18A 2066 -2854 2773 75 

H18B 2128 -2139 2939 75 

H19A 3616 -2485 3141 64 

H19B 3645 -2906 2580 64 

H20A 3716 -1589 2622 45 

H20B 4393 -2033 2268 45 

H21A 5685 759 1426 36 

H23A 6297 1019 2400 55 

H24A 7625 1156 2937 68 

H25A 8989 668 2687 71 

H26A 9003 4 1903 71 

H27A 7656 -153 1378 53 

H29A 6727 1253 935 36 

H32A 7832 1835 -882 47 

H33A 7877 1348 -1744 56 

H34A 7297 346 -1833 51 

H35A 6708 -148 -1046 45 

H37A 6858 2523 -456 43 

H37B 7960 2568 -379 43 

H38A 6595 3279 165 52 

H38B 7645 3471 27 52 

H39A 8211 2981 821 52 

H39B 7223 3202 1061 52 
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H40A 7611 2052 1079 44 

H40B 6571 2258 932 44 

H1BN 5510(30) -628(18) -61(16) 26(10) 

H4BN 3900(20) 43(11) 186(14) 25(9) 

H1BA 3786 -787 -228 39 

H3B 2929 -1189 -973 69 

H4B 2807 -1847 -1734 99 

H5B 4126 -2157 -2215 103 

H6B 5578 -1858 -1894 85 

H7B 5703 -1194 -1110 60 

H9B 4159 -1836 -83 41 

H12B 5078 -3113 1451 51 

H13B 6118 -2982 2173 61 

H14B 6930 -2059 2267 51 

H15B 6775 -1304 1589 48 

H17C 3574 -3103 1253 81 

H17D 4193 -3609 933 81 

H18C 2764 -3973 695 104 

H18D 2306 -3301 707 104 

H19C 2469 -3476 -233 111 

H19D 3461 -3798 -148 111 

H20C 3930 -2814 -378 76 

H20D 3059 -2506 -62 76 

H21B 5052 84 -684 42 

H23B 4820 75 -1673 85 

H24B 3981 388 -2456 120 

H25B 2442 616 -2366 106 

H26B 1742 626 -1484 87 

H27B 2605 353 -663 63 

H29B 4843 1123 -742 38 

H32B 5095 3012 231 45 

H33B 4902 3298 1155 47 

H34B 4371 2567 1822 49 

H35B 4123 1570 1547 45 

H37C 5342 3196 -618 66 

H37D 4262 3030 -571 66 

H38C 4083 2992 -1516 87 

H38D 4944 3459 -1505 87 

H39C 5986 2697 -1667 108 

H39D 5133 2477 -2054 108 

H40C 4663 1766 -1403 73 

H40D 5763 1741 -1299 73 

H1S1 2573 859 1175 160 
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H1S2 2582 320 1634 160 

H1D1 2700 502 1335 160 

H1D2 1803 446 1733 160 

H2S1 6558 1165 6460 192 

H2S2 6331 1878 6537 192 

H2D1 4660 1560 6297 218 

H2D2 4937 849 6315 218 

H3S1 3951 4260 381 181 

H3S2 4218 4972 379 181 

H3D1 3332 4788 -115 157 

H3D2 3903 5205 323 157 

________________________________________________________________________________ 
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Table 6.  Torsion angles [°] for 12021. 

 

C8A-N1A-C1A-C2A -85.3(4)  C8A-N1A-C1A-C21A 150.5(3) 

 N1A-C1A-C2A-C3A 146.1(3)  C21A-C1A-C2A-C3A -92.9(4) 

 N1A-C1A-C2A-C7A -35.6(5)  C21A-C1A-C2A-C7A 85.3(4) 

 C7A-C2A-C3A-C4A -1.5(6)  C1A-C2A-C3A-C4A 176.8(4) 

 C2A-C3A-C4A-C5A 0.8(6)  C3A-C4A-C5A-C6A 0.1(7) 

 C4A-C5A-C6A-C7A -0.2(7)  C5A-C6A-C7A-C2A -0.6(6) 

 C3A-C2A-C7A-C6A 1.4(6)  C1A-C2A-C7A-C6A -176.8(3) 

 C16A-N2A-C8A-N1A 179.4(3)  C16A-N2A-C8A-C9A -3.2(5) 

 C1A-N1A-C8A-N2A -166.2(3)  C1A-N1A-C8A-C9A 16.4(5) 

 N2A-C8A-C9A-C10A 1.6(5)  N1A-C8A-C9A-C10A 178.8(3) 

 C20A-N3A-C10A-C9A -0.2(5)  C17A-N3A-C10A-C9A 146.7(4) 

 C20A-N3A-C10A-C11A 178.5(3)  C17A-N3A-C10A-C11A -34.6(6) 

 C8A-C9A-C10A-N3A -177.7(3)  C8A-C9A-C10A-C11A 3.6(5) 

 N3A-C10A-C11A-C16A 174.6(3)  C9A-C10A-C11A-C16A -6.7(5) 

 N3A-C10A-C11A-C12A -9.2(6)  C9A-C10A-C11A-C12A 169.6(4) 

 C16A-C11A-C12A-C13A -3.1(6)  C10A-C11A-C12A-C13A -179.4(4) 

 C11A-C12A-C13A-C14A -1.2(7)  C12A-C13A-C14A-C15A 3.6(7) 

 C13A-C14A-C15A-C16A -1.5(7)  C8A-N2A-C16A-C11A -0.5(5) 

 C8A-N2A-C16A-C15A -176.6(3)  C12A-C11A-C16A-N2A -171.0(4) 

 C10A-C11A-C16A-N2A 5.5(5)  C12A-C11A-C16A-C15A 5.0(5) 

 C10A-C11A-C16A-C15A -178.4(3)  C14A-C15A-C16A-N2A 173.5(4) 

 C14A-C15A-C16A-C11A -2.8(6)  C10A-N3A-C17A-C18A -145.3(4) 

 C20A-N3A-C17A-C18A 4.4(5)  N3A-C17A-C18A-C19A -28.3(5) 

 C17A-C18A-C19A-C20A 41.3(5)  C10A-N3A-C20A-C19A 173.1(3) 

 C17A-N3A-C20A-C19A 21.5(5)  C18A-C19A-C20A-N3A -38.4(4) 

 C28A-N4A-C21A-C22A -78.7(4)  C28A-N4A-C21A-C1A 154.6(3) 

 N1A-C1A-C21A-N4A -61.9(3)  C2A-C1A-C21A-N4A 173.7(3) 

 N1A-C1A-C21A-C22A 172.4(3)  C2A-C1A-C21A-C22A 48.0(4) 

 N4A-C21A-C22A-C27A -19.6(5)  C1A-C21A-C22A-C27A 102.6(4) 

 N4A-C21A-C22A-C23A 157.9(3)  C1A-C21A-C22A-C23A -79.9(4) 

 C27A-C22A-C23A-C24A 0.0(6)  C21A-C22A-C23A-C24A -177.5(4) 

 C22A-C23A-C24A-C25A 1.0(7)  C23A-C24A-C25A-C26A -1.2(7) 

 C24A-C25A-C26A-C27A 0.3(7)  C23A-C22A-C27A-C26A -0.9(6) 

 C21A-C22A-C27A-C26A 176.6(4)  C25A-C26A-C27A-C22A 0.8(7) 

 C36A-N5A-C28A-N4A -179.6(3)  C36A-N5A-C28A-C29A 1.0(5) 

 C21A-N4A-C28A-N5A -172.7(3)  C21A-N4A-C28A-C29A 6.8(5) 

 N5A-C28A-C29A-C30A 0.3(5)  N4A-C28A-C29A-C30A -179.0(3) 

 C40A-N6A-C30A-C29A -0.9(5)  C37A-N6A-C30A-C29A -156.1(3) 

 C40A-N6A-C30A-C31A -179.7(3)  C37A-N6A-C30A-C31A 25.1(5) 

 C28A-C29A-C30A-N6A 178.9(3)  C28A-C29A-C30A-C31A -2.2(5) 

 N6A-C30A-C31A-C32A 5.8(5)  C29A-C30A-C31A-C32A -173.0(3) 
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 N6A-C30A-C31A-C36A -178.5(3)  C29A-C30A-C31A-C36A 2.7(4) 

 C36A-C31A-C32A-C33A 5.6(5)  C30A-C31A-C32A-C33A -178.7(4) 

 C31A-C32A-C33A-C34A -2.2(6)  C32A-C33A-C34A-C35A -1.1(6) 

 C33A-C34A-C35A-C36A 0.9(6)  C28A-N5A-C36A-C35A 179.7(3) 

 C28A-N5A-C36A-C31A -0.3(5)  C34A-C35A-C36A-N5A -177.6(3) 

 C34A-C35A-C36A-C31A 2.5(5)  C32A-C31A-C36A-N5A 174.6(3) 

 C30A-C31A-C36A-N5A -1.5(5)  C32A-C31A-C36A-C35A -5.5(5) 

 C30A-C31A-C36A-C35A 178.4(3)  C30A-N6A-C37A-C38A 155.7(3) 

 C40A-N6A-C37A-C38A -1.1(4)  N6A-C37A-C38A-C39A 21.7(3) 

 C37A-C38A-C39A-C40A -33.8(4)  C30A-N6A-C40A-C39A -179.3(3) 

 C37A-N6A-C40A-C39A -20.2(4)  C38A-C39A-C40A-N6A 33.0(4) 

 C8B-N1B-C1B-C2B -79.9(4)  C8B-N1B-C1B-C21B 153.1(3) 

 N1B-C1B-C2B-C7B -36.1(5)  C21B-C1B-C2B-C7B 86.9(5) 

 N1B-C1B-C2B-C3B 142.2(4)  C21B-C1B-C2B-C3B -94.8(5) 

 C7B-C2B-C3B-C4B 0.1(8)  C1B-C2B-C3B-C4B -178.3(5) 

 C2B-C3B-C4B-C5B -1.3(10)  C3B-C4B-C5B-C6B 2.1(11) 

 C4B-C5B-C6B-C7B -1.7(10)  C3B-C2B-C7B-C6B 0.3(7) 

 C1B-C2B-C7B-C6B 178.6(4)  C5B-C6B-C7B-C2B 0.5(8) 

 C16B-N2B-C8B-N1B -178.5(3)  C16B-N2B-C8B-C9B -0.1(5) 

 C1B-N1B-C8B-N2B -158.8(3)  C1B-N1B-C8B-C9B 22.8(5) 

 N2B-C8B-C9B-C10B -0.3(5)  N1B-C8B-C9B-C10B 178.0(3) 

 C20B-N3B-C10B-C9B 5.2(6)  C17B-N3B-C10B-C9B -158.4(4) 

 C20B-N3B-C10B-C11B -171.1(4)  C17B-N3B-C10B-C11B 25.2(6) 

 C8B-C9B-C10B-N3B -176.7(3)  C8B-C9B-C10B-C11B -0.1(5) 

 N3B-C10B-C11B-C12B -0.7(6)  C9B-C10B-C11B-C12B -177.1(3) 

 N3B-C10B-C11B-C16B 177.2(3)  C9B-C10B-C11B-C16B 0.8(5) 

 C16B-C11B-C12B-C13B 2.9(5)  C10B-C11B-C12B-C13B -179.3(4) 

 C11B-C12B-C13B-C14B 0.2(6)  C12B-C13B-C14B-C15B -2.9(6) 

 C13B-C14B-C15B-C16B 2.3(6)  C8B-N2B-C16B-C15B -179.0(3) 

 C8B-N2B-C16B-C11B 0.9(5)  C14B-C15B-C16B-N2B -179.2(3) 

 C14B-C15B-C16B-C11B 0.9(5)  C12B-C11B-C16B-N2B 176.8(3) 

 C10B-C11B-C16B-N2B -1.2(5)  C12B-C11B-C16B-C15B -3.4(5) 

 C10B-C11B-C16B-C15B 178.6(3)  C10B-N3B-C17B-C18B 156.6(5) 

 C20B-N3B-C17B-C18B -8.3(6)  N3B-C17B-C18B-C19B 30.5(7) 

 C17B-C18B-C19B-C20B -40.4(7)  C10B-N3B-C20B-C19B 177.9(4) 

 C17B-N3B-C20B-C19B -15.9(6)  C18B-C19B-C20B-N3B 34.8(6) 

 C28B-N4B-C21B-C22B -74.8(4)  C28B-N4B-C21B-C1B 158.4(3) 

 N1B-C1B-C21B-N4B -68.9(3)  C2B-C1B-C21B-N4B 165.1(3) 

 N1B-C1B-C21B-C22B 164.7(3)  C2B-C1B-C21B-C22B 38.7(4) 

 N4B-C21B-C22B-C27B -33.2(5)  C1B-C21B-C22B-C27B 89.2(5) 

 N4B-C21B-C22B-C23B 145.6(4)  C1B-C21B-C22B-C23B -92.0(5) 

 C27B-C22B-C23B-C24B -0.3(8)  C21B-C22B-C23B-C24B -179.2(6) 

 C22B-C23B-C24B-C25B -2.2(11)  C23B-C24B-C25B-C26B 3.0(11) 
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 C24B-C25B-C26B-C27B -1.4(9)  C23B-C22B-C27B-C26B 1.9(6) 

 C21B-C22B-C27B-C26B -179.3(4)  C25B-C26B-C27B-C22B -1.1(7) 

 C36B-N5B-C28B-N4B -176.6(3)  C36B-N5B-C28B-C29B 0.1(5) 

 C21B-N4B-C28B-N5B -170.3(3)  C21B-N4B-C28B-C29B 13.0(5) 

 N5B-C28B-C29B-C30B -3.9(5)  N4B-C28B-C29B-C30B 172.6(3) 

 C40B-N6B-C30B-C29B -2.2(5)  C37B-N6B-C30B-C29B 149.9(4) 

 C40B-N6B-C30B-C31B 178.3(3)  C37B-N6B-C30B-C31B -29.5(5) 

 C28B-C29B-C30B-N6B -174.2(3)  C28B-C29B-C30B-C31B 5.3(5) 

 N6B-C30B-C31B-C32B -4.9(5)  C29B-C30B-C31B-C32B 175.6(3) 

 N6B-C30B-C31B-C36B 176.4(3)  C29B-C30B-C31B-C36B -3.1(4) 

 C36B-C31B-C32B-C33B -0.8(5)  C30B-C31B-C32B-C33B -179.4(3) 

 C31B-C32B-C33B-C34B -0.6(6)  C32B-C33B-C34B-C35B 1.6(6) 

 C33B-C34B-C35B-C36B -1.2(6)  C28B-N5B-C36B-C35B -178.5(3) 

 C28B-N5B-C36B-C31B 2.1(5)  C34B-C35B-C36B-N5B -179.7(3) 

 C34B-C35B-C36B-C31B -0.2(5)  C32B-C31B-C36B-N5B -179.4(3) 

 C30B-C31B-C36B-N5B -0.6(5)  C32B-C31B-C36B-C35B 1.2(5) 

 C30B-C31B-C36B-C35B 180.0(3)  C30B-N6B-C37B-C38B -148.4(4) 

 C40B-N6B-C37B-C38B 5.8(5)  N6B-C37B-C38B-C39B -26.6(5) 

 C37B-C38B-C39B-C40B 37.5(5)  C30B-N6B-C40B-C39B 173.4(4) 

 C37B-N6B-C40B-C39B 16.9(5)  C38B-C39B-C40B-N6B -33.5(5)  

______________________________________________________________________________________

______  
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 Table 7.  Least-squares fir of molecule A and B for 12021. 

 

ATOM MODEL DEVIATION 

  

 N1A   N1B   0.044 

 N4A   N4B   0.045 

 C1A   C1B   0.038 

 C21A  C21B  0.036 

  

 WEIGHTED R.M.S. DEVIATION =  0.0409 Å 

  

 

 IDEALIZED CRYSTAL COORDINATES FOR MODEL ATOMS 

  

 NAME  SFAC     X         Y         Z   NEAREST ATOM   DEVIATION 

 _________________________________________________________ 

 N1B     3   0.44069  -0.00377   0.13685     N1A      0.044 

 N2B     3   0.32214  -0.04358   0.08425     N2A      0.030 

 N3B     3   0.29979  -0.18752   0.20399     N3A      0.371 

 N4B     3   0.62042   0.01253   0.09069     N4A      0.045 

 N5B     3   0.66328   0.01999  -0.00262     N5A      0.131 

 N6B     3   0.77931   0.19373   0.03284     N6A      0.745 

 C1B     1   0.52384  -0.01039   0.17008     C1A      0.038 

 C2B     1   0.50680  -0.00433   0.23320     C2A      0.191 

 C3B     1   0.55641  -0.04212   0.26994     C3A      0.368 
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 C4B     1   0.54259  -0.04009   0.32709     C4A      0.601 

 C5B     1   0.48009   0.00062   0.34939     C5A      0.677 

 C6B     1   0.42912   0.03803   0.31421     C6A      0.552 

 C7B     1   0.44320   0.03551   0.25528     C7A      0.318 

 C8B     1   0.37717  -0.04904   0.12905     C8A      0.082 

 C9B     1   0.37041  -0.09786   0.16828     C9A      0.181 

 C10B    1   0.30527  -0.14335   0.16269     C10A     0.246 

 C11B    1   0.24341  -0.13887   0.11446     C11A     0.286 

 C12B    1   0.16898  -0.17900   0.10193     C12A     0.608 

 C13B    1   0.11463  -0.17183   0.05524     C13A     0.623 

 C14B    1   0.13093  -0.12403   0.01741     C14A     0.281 

 C15B    1   0.19936  -0.08251   0.02853     C15A     0.075 

 C16B    1   0.25676  -0.08817   0.07703     C16A     0.096 

 C17B    1   0.25968  -0.24921   0.19922     C17A     0.698 

 C18B    1   0.30804  -0.28485   0.24615     C19A     1.097 

 C19B    1   0.32673  -0.23868   0.28960     C19A     0.511 

 C20B    1   0.35678  -0.18266   0.25475     C20A     0.543 

 C21B    1   0.59549   0.03529   0.14599     C21A     0.036 

 C22B    1   0.67789   0.04706   0.18454     C22A     0.149 

 C23B    1   0.67425   0.09590   0.22272     C23A     0.398 

 C24B    1   0.74690   0.10941   0.25824     C24A     0.509 

 C25B    1   0.82296   0.07374   0.25791     C25A     0.495 

 C26B    1   0.83096   0.02559   0.22074     C26A     0.528 

 C27B    1   0.75739   0.01184   0.18262     C27A     0.335 

 C28B    1   0.65770   0.04696   0.04848     C28A     0.113 

 C29B    1   0.69247   0.10609   0.05938     C29A     0.242 

 C30B    1   0.73953   0.13864   0.01886     C30A     0.483 

 C31B    1   0.74533   0.11201  -0.03776     C31A     0.430 

 C32B    1   0.78469   0.13951  -0.08558     C32A     0.420 

 C33B    1   0.78736   0.11265  -0.13730     C33A     0.390 

 C34B    1   0.74944   0.05353  -0.14375     C34A     0.324 

 C35B    1   0.70896   0.02514  -0.09866     C35A     0.241 

 C36B    1   0.70500   0.05264  -0.04463     C36A     0.260 

 C37B    1   0.86345   0.22080   0.00716     N6A      1.956 

 C38B    1   0.90784   0.25688   0.05403     C39A     2.447 

 C39B    1   0.82908   0.27332   0.09180     C39A     1.241 

 C40B    1   0.76714   0.21743   0.09096     C40A     0.733 

 

 

 


