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CHAPTER I

INTRODUCTION

I.1 Emerging Trends and Technologies

Developing distributed real-time and embedded (DRE) systems whose quality of ser-
vice (QoS) can be assured even in the face of changes in available resources or QoS re-
quirements is an important and challenging R&D problem. Systems with such character-
istics are called open DRE systems [29] since they operate in an open environment and
must be prepared to accommodate changing operating conditions or requirements, such as
power levels, CPU/network bandwidth or mission modes. Examples of open DRE systems
include shipboard computing environments [109], next-generation coordinated unmanned
air vehicle systems [44], intelligence, surveillance and reconnaissance systems [111], and
large-scale warehouse inventory tracking systems [19].

Such systems operate in open environments where system operational conditions, input
workload, and resource availability cannot be characterized accurately a priori. As aresult,

the requirements of open DRE systems can be characterized as follows:

* Multiple quality of service (QoS) properties, such as predictable latency/jitter/through-
put, scalability, dependability, and security, must be satisfied simultaneously and of-

ten in real-time;

* Different levels of service will occur under different configurations, environmental
conditions, and cost, and must be handled judiciously by system infrastructure and

applications;

* The need for autonomous and time-critical application behavior requires flexible sys-

tem infrastructure and application components that can be dynamically deployed at



run-time in a predictable manner to accommodate mission mode changes or environ-

mental changes.

Due to these characteristics, open DRE systems become more large in scale, complex,
and hard to control, which often results in high development cost, low productivity and
unmanageable software quality. Consequently, there is a growing demand for a new, effi-
cient, and cost-effective software development paradigm. One of the most promising ap-
proaches for open DRE systems is component based software engineering (CBSE), which
is a promising software engineering paradigm for achieving systematic reuse and compo-
sition of software artifacts [37].

CBSE promises to reduce development cost and time-to-market, and improve maintain-
ability, reliability and overall quality of software systems [34]. This paradigm has raised a
tremendous amount of interest both in the research community and in the software industry.
It significantly differs from the traditional functional software design approach in the way
that large-scale software systems are assembled from commercial off-the-shelf (COTS)
components, which were in turn developed by different software organizations, rather than
developed from scratch. The key concept of CBSE is “component”. A component in
CBSE has three main features. First, a component is an independent and replaceable part
of a system that fulfills a well-defined function. Second, a component works in the con-
text of well-defined system architecture. Finally, a component communicates with other
components through its interfaces.

The lifecycle of CBSE is shown in Figure 1.1, where COTS components can be obtained
from a component repository, assembled together through certain well-defined interfaces,
configured based on given functional requirements (e.g., feature requirements) and non-
functional requirements (e.g., QoS requirements), and then deployed into the target execu-
tion platforms.

Although CBSE is a very promising software engineering paradigm for DRE sys-

tems, to ensure DRE systems can be effectively developed, packaged and assembled, a
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system architecture that supports the CBSE process must be present. According to prior
research [10, 33, 53], system architectures of component-based software systems are often
in the form of a layered and modular architecture. Over the past decade, various system
architectures have been devised to alleviate many complexities associated with developing
and applying execution environments to DRE systems. Their successes have added a new
category of software to the familiar operating system, programming language, and net-

working offerings of prior generations. In particular, some of the most successful emerging



execution environment technologies have centered on middleware, which is software that
resides between the applications and the underlying operating systems, network protocol
stacks, and hardware.

Middleware technologies were invented originally to help simplify the development,
execution, and management of distributed computing systems [7, 102], and bring those ca-
pabilities within the reach of many more developers than the few experts at the time who
could master the complexities of these environments. Middleware was necessary since
complex system integration requirements were not being met from either the application
perspective, where it was too hard for most application developers and not reusable, or
the network or host operating system perspectives, which were focused on providing the
communication and endsystem resource management layers, respectively, rather than the
distributed computing and communication layers. The primary role of middleware is to
(1) functionally bridge the gap between application programs and the lower-level hard-
ware and software infrastructure to coordinate how parts of applications are connected and
how they execute and interoperate, (2) enable and simplify the integration of components
developed by multiple technology suppliers, and (3) provide a common reusable accessi-
bility for functionality and patterns that formerly were placed directly in applications, but
in actuality are application-independent and need not be developed separately for each new
application.

Middleware isolates DRE applications from lower-level infrastructure complexities,
such as heterogeneous platforms and error-prone network programming mechanisms. It
also enforces essential end-to-end quality of service (QoS) properties, such as low latency
and bounded jitter; fault propagation/recovery across distribution boundaries; authentica-
tion and authorization; and weight, power consumption, and memory footprint constraints.

Over the past decade, middleware has evolved to support the creation of applications via
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composition of reusable and flexible software components. Components are implement-
ation/integration units with precisely-defined interfaces that can be installed in applica-
tion server run-time environments. Examples of COTS component middleware include the
CORBA Component Model (CCM) [78], Enterprise Java Beans (EJB) [68], and Microsoft
NET [121].

.2 Overview of Component Middleware and Deployment and Configuration

Component middleware technologies raise the level of abstraction by providing higher-
level entities like components and containers. Components encapsulate “business” logic,
and interact with other components via ports.

As shown in Figure 1.2, key elements and benefits of component middleware technolo-

gies include:

* Component, which is the basic building block used to encapsulate an element of



cohesive functionality. Components separate application logic from the underlying

middleware infrastructure.

* Component ports, which allow a component to expose multiple views to clients.
Component ports provide the primary means for connecting components together to

form assemblies.

* Component Assembly, which is an abstraction for composing components into
larger reusable entities. A component assembly typically includes a number of com-
ponents connected together in an application-specific fashion. Unlike the other enti-
ties described here, there is no run-time entity corresponding to a component assem-

bly.

* Container, which is a high-level execution environment that hosts components and
provides them with an abstraction of the underlying middleware. Containers provide
clear boundaries for QoS policy configuration and enforcement, and are also the low-
est unit at which policy is enforced and it regulates shared access to the middleware

infrastructure by the components.

* Component server, which aggregates multiple containers and the components hosted
in them in a single address space, e.g., an OS process. Component servers facilitate

management at the level of entire applications.

Components interact with clients (including other components) via component ports.
Component ports implement the Extension Interface pattern [108], which allows a single
component to expose multiple views to clients. For example, CCM defines four different

kinds of ports:

» Facets, which are distinct named interfaces provided by the component. Facets en-
able a component to export a set of distinct—though often related—functional roles

to its clients.



* Receptacles, which are interfaces used to specify relationships between components.
Receptacles allow a component to accept references to other components and invoke
operations upon these references. They enable a component to use the functionality

provided by facets of other components.

* Event sources and sinks, which define a standard interface for the Publish/Subscribe
pattern [9]. Event sources/sinks are named connection points that send/receive speci-
fied types of events to/from one or more interested consumers/suppliers. These ports
also hide the details of establishing and configuring event channels [35] needed to

support the publish/subscribe pattern.

* Attributes, which are named values exposed via accessor and mutator operations.
Attributes can be used to expose the properties of a component to tools, such as
application deployment wizards that interact with the component to extract these
properties and guide decisions made during installation of these components, based
on the values of these properties. Attributes typically maintain state about the com-
ponent and can be modified by clients to trigger an action based on the value of the

attributes.

After components are developed and component assemblies are defined, they must be
deployed and configured properly by deployment and configuration (D&C) services. The
D&C process of component-based systems usually involves a number of service objects
that must collaborate with each other. Figure 1.3 gives an overview of the OMG D&C
model, which is standardized by OMG to promote component reuse and allow complex
applications to be built by assembling existing components. As shown in the figure, since
a component-based system often consists of many components that are distributed across
multiple nodes, in order to automate the D&C process, these service objects must be dis-
tributed across the targeted infrastructure and collaborate remotely.

The run-time of the OMC D&C model standardizes the D&C process into a number of
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serialized phases. The OMG D&C Model defines the D&C process as a two-level architec-
ture, one at the domain level and one at the node level. Since each deployment task involves
a number of subtasks that have explicit dependencies with each other, these subtasks must
be serialized and finished in different phases. Meanwhile, each deployment task involves a

number of node-specific tasks, so each task is distributed.

I.3 Research Challenges

Although component middleware and the associated D&C model provide a number of
advantages over previous technologies, several new challenges arise. Some of the key chal-

lenges in deploying and configuring component-based large-scale DRE systems include:

1. Complexities associated with deploying and configuration components to meet

real-time QoS.



Conventional middleware D&C platforms are poorly suited for assembling DRE sys-
tems from pre-existing components that must meet real-time QoS requirements. For
example, these D&C platforms do not separate real-time QoS concerns (such as com-
ponent server threading and priority models) from application business logic and
lifecycle management. It is therefore hard to reuse components for DRE systems,
and the onus is on humans to manage these crosscutting concerns manually via ad
hoc techniques, which impedes productivity and quality. Furthermore, for open DRE
systems where system resources are both constrained and variable in time, having
the ability to dynamically deploy components and system resources at run-time to
provide desired QoS becomes an essential requirement. Existing QoS-enabled mid-
dleware technologies lack dynamic deployment and configuration capabilities so they
are not suitable for open DRE systems. Thus, a key research challenge is the lack of
D&C middleware that focuses on systemic QoS issues and allows components and
system resources to be deployed and configured at both initial deployment time and

run-time.

. Complexities associated with deploying and configuring real-time publish/sub-

scribe services in component middleware.

The increasing use of QoS-enabled component middleware in DRE systems comp-
ounded by the need for real-time publish/subscribe services to support a large class
of DRE systems requires the integration of the real-time publish/subscribe paradigm
within QoS-enabled component middleware. Although QoS-enabled publish/subscribe
middleware services are available in distributed object computing (DOC) middleware
platforms such as CORBA 2.x [74], unfortunately standards-based component mid-
dleware do not yet specify how publish/subscribe services can be robustly supported
within component middleware. Moreover, to date there is a general lack of systematic
studies that address these concerns. Instead, developers rely on ad hoc techniques

(such as writing code using third-generation programming languages like C++ or



Java) to provision real-time publish/subscribe capabilities in DRE systems. Thus, a
key research challenge is the lack of D&C middleware that allows different real-time
publish/subscribe services to be integrated seamlessly into component-based DRE

systems without sacrificing system performance and component reusability.

3. Lack of assurance to meet the predictability requirement of D&C middleware.

The predictability requirement of D&C mechanisms is a key factor for open DRE
systems to meet their QoS requirements due to mission mode changes or environ-
mental changes. Open DRE systems are often large and complex. To manage the
overall complexity of such systems, open DRE system are often decomposed into
many domain-related tasks that can be modeled as operational strings [59]. Opera-
tional strings are assemblies of software components designed by software architects
that accomplish certain domain specific tasks. Unfortunately, when multiple oper-
ational strings need to be dynamically deployed and if dependencies exist among
these operational strings, priority inversion can happen at deployment time. Ex-
isting D&C techniques only take the dependency between operational strings into
account while ignoring their priorities, which can cause deployment priority inver-
sions for open DRE systems, which adversely affects the predictability of D&C of
component-based DRE systems. Thus, a key research challenge is the lack of a D&C
middleware framework that can ensure the predictability when a number of opera-

tional strings need to be deployed at run-time.

I.4 Research Approach

To address the challenges in the previous section, this dissertation has developed an
approach centered around QoS-enabled deployment and configuration of DRE systems.

The different dimensions of this approach are shown in Figure 1.4 and described below.

10
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1. QoS-enabled Component Deployment and Configuration Technique. To effec-
tively enforce real-time QoS requirements of component-based DRE systems based on par-
ticular deployment and configuration scenarios, we treat real-time QoS concerns as “extrin-
sic” concerns and decouple them from the “intrinsic” core business logic of components.
The run-time D&C framework can then be used to automate the deployment and config-
uration of such systemic QoS concerns by treating them as an integral part of the D&C
process. Since real-time QoS concern is highly configurable and can be affected by many
real-time policies, our approach raises the abstraction level of these real-time QoS policies
by defining them as first-class elements in the D&C middleware and allowing them to be
specified declaratively via high-level configuration languages. The novelty of this approach
stems from the separation of concerns [23, 120] technique it uses to decouple orthogonal
non-functional system concerns from core functional concerns as part of the D&C process.
These concerns can be manipulated at both initial deployment time and run-time to en-
sure system real-time QoS. Chapter III describes the approach for QoS-enabled component
deployment and configuration in detail.

2. Publish/Subscribe Service Integration, Configuration and Deployment Technique.
By analyzing the benefits and limitations of different design choices for integrating real-
time publish/subscribe services into QoS-enabled component middleware, we take a container-
managed integration approach for real-time publish/subscribe services and present a pat-
tern language for its architectural design. This approach leverages the benefits of the
component-oriented software development paradigm and promotes the reusability of com-
ponents without sacrificing the performance of the system. In addition, by leveraging a
model-driven engineering (MDE) tool called Event QoS Aspect Language (EQAL), this ap-
proach further simplifies the deployment and configuration of real-time publish/subscribe
services. Chapter IV describes the approach for publish/subscribe service integration, con-
figuration and deployment in detail.

3. D&C Predictability Assurance Technique. To address the challenge of lacking
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assurance of D&C service, we have developed a technique based on an algorithm called
partial priority inheritance via graph recomposition (PARIGE). The PARIGE algorithm
analyzes the dependency relationships between operational strings, and removes all the de-
pendencies causing priority inversions by promoting components and connections between
them from higher priority operational strings to lower priority ones. By applying PARIGE,
the D&C framework can avoid deployment priority inversions between operational strings
when multiple operational strings need to be deployed at the same time dynamically. Chap-

ter V describes this approach in detail.

I.5 Research Contributions

Our research on deployment and configuration techniques for component-based DRE
systems has resulted in an improved D&C middleware platform with better system D&C
productivity as well as better D&C predictability than conventional D&C technologies. The
key research contributions of this dissertation are summarized in Table I.1.

The research contributions of this dissertation can be divided into three categories,

which are described as follows:

1. Automated D&C for Component-based DRE Systems In our work on automated
deployment and configuration techniques for QoS-enabled component based DRE
systems, we describe how we design and develop the DAnCE D&C framework to
separate various real-time QoS concerns from component implementations to pro-
mote component reuse. The DAnCE framework enables different real-time systemic
concerns to be meta-programmable and declaratively specified through higher-level
representation, i.e., XML-based metadata, to simplify real-time QoS configuration
and deployment. In addition, the DAnCE framework approach also automatically
configures and manages the lifecycle of components and its resources as an integral

part of the D&C process at both initial deployment phase and run-time phase.
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2. Integration, Configuration, and Deployment Techniques for Publish/Subscribe
Services In our work on provisioning real-time publish/subscribe services for comp-
onent-based DRE systems, we developed a novel approach to integrate real-time
publish/subscribe services within component middleware to address various publish/-
subscribe service provisioning challenges. Our approach allows different publish/-
subscribe services to be plugged interchangeably without sacrificing performance
while significantly improving component reuse. Furthermore, to simplify the config-
uration of publish/subscribe services, we developed a MDE tool called Event QoS
Aspect Language (EQAL), which simplifies the D&C of publish/subscribe services
by enforcing both syntactic and semantic correctness of service configuration poli-
cies. Finally, we empirically demonstrate the benefits of the approach through a
representative case study and compare the performance of our approach with con-

ventional object-oriented middleware approaches.

3. Predictable D&C for Component-based DRE Systems In our work on ensur-
ing the predictability of deployment and configuration for component-based DRE
systems, we describe how D&C predictability of component-based systems can be
affected by the complex dependency relationships among components and priori-
ties by analyzing different dependency relationships. We then develop a multi-graph
algorithm called “partial priority inheritance via graph recomposition” to avoid de-
ployment priority inversion, hence improving D&C predictability. Finally, we em-
pirically demonstrate the benefits and effectiveness of the approach and analyze its

performance overhead through a representative DRE system case study.
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1.6 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter II describes the
research related to our work on deployment and configuration for component-based sys-
tems and points out the limitations in existing research; Chapter III describes the DAnCE
toolchain, our approach to automate the deployment and configuration process for QoS-
enabled component middleware-based DRE systems; Chapter IV describes the challenges
and solution for integration, configuration, and deployment of real-time publish/subscribe
services for QoS-enabled component-based DRE systems; Chapter V describes how we
apply the PARIGE algorithm to the DAnCE tool chain to avoid priority inversion when
deploying component-based DRE systems; and Chapter VI provides a summary of the

research contributions, presents concluding remarks and outlines future research work.

15



Table I.1: Summary Of Research Contributions

Category

Benefits

Automated Deployment and
Configuration Techniques
for QoS-enabled Component
Middleware

1.

Describes how to separate real-time QoS concern
from core component business logic to promote com-
ponent reuse.

Enables these systemic concerns to be meta-
programmable and declaratively specified through
higher-level representation (i.e., XML-based meta-
data) to simplify the QoS configuration.
Automatically configures and manages the lifecycle
of components and its resources as an integral part
of the D&C process at both initial deployment phase
and run-time phase.

Integration,  Configuration,
and Deployment Techniques
for Publish/Subscribe Ser-
vices

5y

. Evaluates the benefits and limitations of different ar-

chitectural choices for integrating different publish/-
subscribe services into component middleware.
Develops a novel pattern-oriented approach to inte-
grate publish/subscribe services within component
middleware to allow different publish/subscribe ser-
vices to be plugged in for component-based DRE
systems.

. Designed a MDE-based design tool called Event

QoS Aspect Language (EQAL) to simplify the D&C
of different publish/subscribe services by enforce the
syntactic and semantic correctness of the configura-
tion.

Empirically demonstrates the benefits of the ap-
proach and its performance overhead.

Predictable D&C  Service
Techniques for Component-
based DRE Systems

. Describe how D&C predictability of component-

based systems can be affected by their dependency
relationships and priorities by analyzing different de-
pendency relationships.

2. Develops a solution approach based on a multi-

graph algorithm called PARIGE to improve D&C
predictability.

Empirically demonstrates the benefits of the ap-
proach and its performance overhead through a rep-
resentative DRE system case study.
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CHAPTER 11

EVALUATION OF ALTERNATE APPROACHES TO DEPLOYMENT AND
CONFIGURATION

This section summarizes alternate approaches to D&C for component-based DRE sys-
tems. The goal in this chapter is to survey the existing approaches and present unresolved
challenges. The subsequent chapters of this dissertation describe how the unresolved chal-

lenges are addressed.

II.1 QoS-enabled Component Deployment and Configuration
As component middleware becomes more pervasive, there has been an increase in re-
search on technologies, platforms, and tools for deploying components effectively within
distributed systems. This section describes related work in this field and presents unre-

solved challenges.

II.1.1 QoS-enabled Component Deployment and Configuration: Alternative Ap-
proaches

To structure the discussion, a taxonomy, i.e., classification, is presented that categorizes

related research across the following two dimensions shown in Figure II.1:

* QoS Provisioning Time, which determines when QoS provisioning techniques are

applied, i.e., system design/development-time, deployment-time or run-time.

* Abstraction Level, which determines at which abstraction level QoS provisioning
techniques are applied, i.e., programming language level, DOC middleware level or

component middleware level.
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Figure Il.1: Research Taxonomy and Research Evolution

Since this dissertation is focused on component-based systems, this section explores
a representative sample of the research that has been applied to deploy and configure
component-based DRE systems based on the dimension of QoS provisioning time, which

can be summarized as follows:

1. Design/development-time approaches.

Design-time QoS provisioning techniques allow system QoS settings to be bound
statically at system development time only. Separation of concerns [22, 23, 39] have
long been adopted in software engineering community to simplify software devel-
opment and maintenance, while promoting software reuse. Researchers have been
successfully using various separation of concerns techniques to enable the composi-
tion of QoS aspects into the application code by leveraging advanced programming

language features. The key idea of development-time QoS provisioning techniques
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is to apply aspect-oriented programming (AOP) techniques [48] to weave QoS cross-
cutting concerns into application business logic. Some AOP-enabled programming
languages include Aspect] [57] and AspectC++ [116]. AOP techniques result in
more modular code, lower development costs, and better real-time predictability. The
methodology and benefits of applying AOP to address non-functional requirements

such as distribution, real-time, and fault tolerance are also documented [27].

Design/development-time QoS provisioning approaches do not provide any dynamic
capabilities because applications cannot modify its QoS settings once the initial set-
tings are bound to the application. Therefore, they are mainly suited for closed DRE

systems but not open DRE systems.

. Deployment-time approaches.

Deployment-time QoS provisioning techniques allow system QoS settings and chang-
ing rules to be bounded at deployment time in response to changes in its operating
environment. Open DRE systems built upon deployment-time QoS provisioning
techniques are self-contained and not able to support the addition of new applica-
tion behaviors and changing rules once systems are deployed. With the increasing
popularity of component-based software development, some deployment-time QoS

provisioning techniques have been applied to component middleware.

Researchers from BBN Technologies [66, 101] proposed to package QoS aspects
into components known as “qoskets” for reuse because the limitations of the current
implementations of adaptive QoS behaviors complicate their insertion into common
application contexts and restrict reusability across applications. FCS/nORB [64] and
ControlWare [125] enable real-time behavior to be controlled by adopting feedback
control theory. Both Open ORB [8, 31] and dynamicTAO [49, 50] use reflective
techniques in middleware to provide a greater degree of configurability and dynamic

adaptability.
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The key idea of deployment-time QoS provisioning techniques is to allow adaptation
rules to be specified explicitly and allow these adaptation rules to be composed into
the application through generative tools. Some of the adaptation rules are in the form
of declarative QoS contracts, while others are in the form of control algorithms or

dynamic scheduling mechanisms.

3. Run-time approaches. Run-time QoS provisioning techniques could allow both
new application behaviors and adaptation rules to be introduced during run-time,
even after systems are deployed. Generally speaking, run-time QoS provisioning
supports the most powerful dynamic capabilities, but the system execution environ-

ments are also much more complex.

Dynamic Aspect-Oriented Programming (Dynamic AOP) has been identified as one
technique to address run-time QoS provisioning problem [6], focusing in particular
on promoting separations of concerns where dynamic aspects involve plugging and

unplugging aspects without stopping, and restarting a running system.

PROSE [90] is a just-in-time weaver of aspects which allows to weave an application
at run-time. Pointcuts and aspect advice are defined in an aspect class. Such an
aspect can be woven at run-time without previously woven joinpoints. By using the
debugger interface, the joinpoints can be set as breakpoints. When a breakpoint is
reached, the PROSE engine will execute the appropriate aspect advice. JAsCo [123]
is an aspect-oriented programming language originally tailored for component-based
systems, in particular the EJB component model. This technique allows aspects to
be defined for Java Beans. Other related research [13, 16, 41, 43, 58, 89] also rely on

dynamic aspects to introduce QoS provisioning behavior at run-time.

From a system lifecycle perspective, decisions for provisioning system QoS for DRE

systems can be made at multiple phases, i.e., at design/development time, deployment time,
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or run-time. The run-time requirements are the most challenging since they occur dynam-
ically and thus have the shortest time scales for decision-making. Moreover, open DRE
system integrators and researchers have the least experience with developing, validating,
and optimizing appropriate run-time solutions. Section II.1.2 describes the key unresolved

challenges in related research that forms the basis for our research.

I1.1.2 QoS-enabled Component Deployment and Configuration: Unresolved Chal-
lenges

The majority of existing approaches of QoS provisioning for component-based open
DRE systems rely on dynamic AOP techniques, but unfortunately these approaches are
all programming language dependent. Open DRE systems typically involve system-wide
heterogeneity, e.g., platform and language heterogeneity. Therefore, it is often not feasible
to realize an aspect as a simple piece of code to be inserted always in the same fashion.
Instead, such QoS concerns must be realized differently in different parts of the system,
depending upon platform, language and the dynamics of program execution.

The following is a list of the unresolved challenges with QoS provisioning for component-
based DRE systems:

1. Eliminating complexities for deploying and configuring component server re-
sources to meet real-time requirements. Conventional middleware D&C platforms
are manual and ad hoc, which makes them poorly suited for assembling DRE systems
from pre-existing COTS components that must meet QoS requirements based on a
specific deployment environment. In other words, pre-existing COTS components
are not able to have different real-time behaviors based on different system com-
puting resources or mission requirements. It is therefore hard to reuse pre-existing
components for DRE systems, and the onus is on humans to manage such con-

cerns manually via ad hoc techniques, such as modifying component source code,
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which impedes productivity and quality. Furthermore, existing QoS-enabled middle-
ware technologies and D&C technologies lack dynamic reconfiguration capabilities
so they are not suitable for open DRE systems. The challenge ahead is to design
and implement some form and degree of run-time reconfiguration capabilities while

simultaneously ensuring system QoS.

. Lack of capability to activate, passivate, and deactivate component assemblies at
run-time. To manage shared resources in a DRE system effectively, components in
an assembly need to be activated to become functional, passivated when they will not
be accessed for an extended period of time, and deactivated when they are no longer
needed. A key challenge is to coordinate these operations in a complete assembly,
rather than in an individual component or node. For example, components in an
assembly that collaborate by sending messages or events must be preactivated to
configure the necessary environment and resources so that messages are exchanged
in the intended fashion. In particular, all collaborating components in an assembly
must be preactivated before any component is activated. Similarly, all collaborating
components need to be passivated before any component is deactivated so that no

component tries to communicate after its recipient has been deactivated.

Chapter III describes the design and implementation of the DAnCE D&C framework

in detail, which addresses the above challenges.

II.2 Deployment and Configuration of Publish/Subscribe Services

This section surveys literature on some available real-time publish/subscribe systems,

both standards-based and proprietary, concentrating on the abstraction layers these publish/-

subscribe mechanisms are based on and the QoS capabilities they support. Some of the

prior work provides real-time QoS support for DRE systems. However, their QoS as-

surance mechanisms are based on the traditional object-oriented middleware layer, which
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hinders system reusability and maintainability and makes complex DRE systems hard to
develop. On the other hand, some other related research takes advantage of the strengths
of component middleware, but they are not yet suitable for DRE systems due to the limited

real-time QoS support, which is the focus of our work.

I1.2.1 Deployment and Configuration of Publish/Subscribe Services: Alternate Ap-
proaches

We first describe alternative approaches in standards-based publish/subscribe architec-

tures, then present alternative approaches in proprietary publish/subscribe architectures.

I1.2.1.1 Standards-based Publish/Subscribe Architectures for DRE Systems

The OMG Data Distribution Service. The OMG Data Distribution Service (DDS)
specification [73] is a standard for QoS-enabled publish/subscribe communication aiming
at mission-critical DRE systems. It is designed to provide (1) location independence via
anonymous publish/subscribe protocols that enable communication between collocated or
remote publishers and subscribers, (2) scalability by supporting large numbers of topics,
data readers, and data writers, and (3) platform portability and interoperability via standard
interfaces and transport protocols. Multiple implementations of DDS are now available
ranging from high-end COTS products to open-source community-supported projects, such
as OpenSplice [91] and TAO DDS [84]. The OMG DDS standard is based on object-
oriented middleware rather than component middleware.

The CORBA Distributed Notification Service. The OMG has also issued a specifica-
tion to build distributed versions of the Notification Service via its “Management of Event
Domains Specification” [76]. This document describes how multiple instances of the No-
tification Service can be interconnected to avoid the excessive overhead and eliminate the
single point of failure represented by the event channel object. This specification, however,

does not incorporate any mechanisms to reduce event delivery based on filters. Similar
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to DDS, both the CORBA Notification Service and the CORBA Distributed Notification
Service are based on object-oriented middleware rather than component middleware, and
are a target of our integration approach.

The Java Message Service. The Java Message Service (JMS) [69] is a messaging stan-
dard that allows Java applications based on the J2EE standard to create, send, receive, and
read messages. It enables distributed communication that is loosely coupled, reliable, and
asynchronous. JMS supports both object-oriented and component-based mechanisms for
client connections and QoS configurations (such as transaction, fault tolerance and persis-
tency). The object-oriented mechanism allows pure Java clients to play the role of event
publisher or event subscribe and the component-based mechanism allows Java Message-
Driven Beans (MDBs) to be activated through a metadata-based mechanism called activa-
tion specification. The richness of delivery semantics of JMS makes it a powerful pub/sub
mechanism for enterprise business applications. However, since JMS incurs much larger
memory footprint and only provides limited real-time QoS support, it is not yet suitable
for DRE systems. Moreover, JMS-based J2EE applications are typically bundled with
large, complex scripts to handle the configuration of their messaging infrastructure because
there is no deployment and configuration tools that could automatically handle the services

among a large number of application components.

I1.2.1.2 Proprietary Publish/Subscribe Architectures for DRE Systems

Cadena Event Channel Framework. Cadena Event Communication Framework [115]
includes a CORBA-based event channel which has been integrated into the OpenCCM [122]
component middleware infrastructure. The framework implements a number of features of
the event service middleware, such as event filtering and event correlation. Although this
work comes close to our work, however, it does not address the problems such as event
channel federation, real-time event scheduling and dispatching and periodic event process-

ing, which are crucial for a number of mission-critical real-time applications. Our work, on
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the other hand, leverages the real-time event channels and QoS-enabled component mid-
dleware to provide the properties outlined above.

SIENA. SIENA [11, 12] is a notification service architecture for Internet-scale event
distribution. The architecture is based on content-based networking, where a network of
routers propagate packets based not on a specific destination address, but on the contents
of the packet. The authors propose using an event format similar to the CORBA Notifi-
cation Service, i.e., a sequence of (name,value) tuples. Using this format, consumers use
a boolean predicate on the tuple values to describe the set of events they are interested in.
The authors describe algorithms to reduce the use of network resources. For example, the
authors propagate filtering information as close to the sources as possible; likewise, filter-
ing constraints are combined and simplified to minimize the use of computation resources
in the routers.

ECO. The Distributed Systems Group at Trinity College, Dublin has developed ECO
(“Events, Constraints and Objects”) [117]. The authors propose building programs out of
cooperating objects that publish or subscribe to events as needed. Filtering, concurrency
and timeliness constraints are expressed as constraints on the events that a particular object
publishes or subscribes.

The authors propose extending general-purpose programming languages, such as C++
or Java, to include explicit declarations for events, as well as the types of events that a
class can subscribe or publish. Naturally, this static publication or subscription can be
further restricted at run-time. The authors propose using new language statements for this
purpose.

Objects can add Notify constraints to limit the objects that they subscribe to. These
conditions are evaluated at the source of the event and thus are limited to constraints on the
event parameters or the source identity. Objects can also define Pre and Post constraints,

which are evaluated on the destination object and can use the state of the receiving object
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to affect the event processing. Pre constraints are evaluated before the event is delivered
and can determine if the event is dropped, enqueued or processed immediately.

CMU Real-time Publish/Subscribe. Rajkumar, et al., describe a real-time publish/sub-
scribe prototype developed at CMU/SEI [94]. Their Publish/Subscribe model is function-
ally similar to the CORBA RTES, though it defines its own programming APIs and commu-
nication protocols. The authors detail how real-time threads and adequate synchronization
primitives can be used to implement the RT publish/subscribe model without undue prior-
ity inversions. However, the authors do not consider the fact that adequate synchronization
primitives are a necessary condition to address unbounded priority inversions, but it is not
a sufficient condition.

Section I1.2.2 describes the key unresolved challenges in related research that forms the

basis for our research.

I1.2.2 Deployment and Configuration of Publish/Subscribe Services: Unresolved Chal-
lenges

Much has been written about real-time publish/subscribe systems, but little effort has
been expended in documenting the patterns, optimizations and architectures required to de-
sign and implement QoS-enabled publish/subscribe models in component-based software
architectures. Also, there is very little or no empirical evidence to support the performance
and predictability claims of several of these systems when used in component-based sys-
tems, even when research concentrates on real-time applications.

The following is a list of key unresolved challenges with respect to deploying and con-
figuring real-time publish/subscribe services when using standards-based component mid-

dleware:

1. Integration Challenges. Traditional object-oriented middleware (such as CORBA
2.x) provides DRE systems with access to various publish/subscribe middleware

services (such as CORBA Event Service [75] and Real-time Event Service [35])
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through the underlying Object Request Broker (ORB) and Portable Object Adapter
(POA) [82]. Component-based middleware, such as Lightweight CORBA Compo-
nent Model (CCM) [72] enables (1) reusability of components by implementing only
application logic and (2) easier integration into different applications and run-time
contexts. Component deployers thus need to support the integration of common mid-
dleware services into component-based systems for which no standard mechanisms
yet exist. Although directly using object-oriented real-time publish/subscribe ser-
vices is viable for small-scale DRE systems with a couple of components, however,
there are enormous amount of complexities involved to develop large-scale, complex

DRE systems, which might consist of hundreds or even thousands of components.

. Configuration Challenges. For large-scale, complex DRE system which are com-
posed of many components developed by different component vendors, there is no
mechanism to centralize the QoS management end-to-end for the entire DRE sys-
tem, since each component developed by a particular vendor only has a “local” view
of the entire system. Furthermore, most publish/subscribe services based on DOC
middleware (including the CORBA Event and Notification Services) do not validate
QoS specifications automatically. It is hard, moreover, to manually validate QoS
configurations for semantic compatibility. This process is particularly daunting for
large-scale, mission-/safety-critical DRE systems, where the cost of human error is

most egregious.

. Deployment Challenges. Since different components are developed by different
parties, to deploy these components into a common publish/subscribe architecture
is usually very hard since there is no standards-based deployment tools that can un-
derstand all different configurations of all different components. As a result, DRE
system deployers must custom-build their deployment and configuration solutions

to marriage different component configurations together. Such customized solutions
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are often tightly coupled with particular deployment settings and hard to evolve, be-
cause a lot of configurable options are only available at the component middleware

infrastructure level, i.e., container and component server level.

Chapter IV describes how we apply pattern-based system design and MDE tech-

niques to address the above challenges.

IL3 QoS Assurance of D&C Service

As component middleware becomes more pervasive, there has been an increase in re-
search on technologies, platforms, and tools to ensure components are deployed correctly,
effectively and efficiently. This section describes related work in this field then presents

unresolved challenges.

I1.3.1 QoS Assurance of D&C Services: Alternative Approaches

We classify the related work into two categories. The first category includes formal
models using various formal method techniques to ensure consistency and dependency
correctness issues of software deployment. The second category includes related works that

aims to provide architectural support to address various QoS issues of software deployment.

I1.3.1.1 Dependency Management Approaches

Much prior research has been conducted on dependency management of software com-
ponents. Most literature in this area analyzes deployment installability via formal models
that explicitly express dependencies of software components or software packages. For ex-
ample, [5] present a model to formalize deployment dependencies of software components.
These dependencies are expressed in a logical language associated with a D&C framework
that allows proving properties (such as whether the dependency is mandatory, optional, or

negative) of the deployment plan.
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Liu, et al. [62] define an application buildbox as a software deployed environment and
defines a formal Labeled Transition System (LTS) on the buildbox with transitions for de-
ployment operations that include build, install, ship, and update. Formal properties of the
LTS are introduced, including version dependency and software component dependencies.
This prior work, however, does not address deployment predictability, which makes it un-
suited for DRE systems.

Rigole, et al. [97] present a strategy for deploying component-based systems incre-
mentally to match the functionality of pervasive computing applications. This deployment
strategy is accomplished by linking component composition models with task models at
design-time, from which a run-time deployment plan can be deduced.

Some software frameworks have been developed to support software component de-
ployment or redeployment. For example, Chen, et al. [13] and Kon, et al. [51] use framework-
guided reconfiguration mechanisms for component-based distributed systems. These frame-
works offer mechanisms to analyze dependencies between peer components to deal with
reconfiguration consistency. However, this work does not consider how to improve the

predictability of the deployment process, but instead focuses only on consistency.

I1.3.1.2 Deployment Planning Approaches

Various component deployment techniques have been proposed to improve system QoS
which are centered around a deployment planning algorithm. Typically, a deployment plan-
ning technique requires a goal to produce a deployment plan.

Some planning algorithms aim to optimize system resource usages, such as the ap-
proaches proposed in [38, 46]. Other approaches, such as [47], aim to resolve multiple
constraints at the same time, such as constraints resulting from application semantic re-
quirements, network resource limitations, and interactions between the two.

Some planning techniques can be applied not only at initial deployment phase, but also
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at run-time for redeployment. For example, Planit [1] manages the deployment and recon-
figuration of a software system through a temporal planner. Given a model of the structure
of a software system, the network upon which the system should be hosted, and a goal
configuration, Planit can use the temporal planner to devise possible deployments of the
system. Ivan, et al. [40] provide run-time support for dynamic component deployment in
conjunction with planning policies, which steer the deployment to accommodate underly-

ing running environment characteristics.

I1.3.1.3  Architectural Support Approaches

Various architectural support approaches have been proposed to ensure different QoS
aspects of D&C for component-based systems.

The OpenCCM (corbaweb.1ifl.fr/OpenCCM/) Distributed Computing Infras-
tructure (DCI) federates a set of distributed services to form a unified distributed deploy-
ment domain for CCM applications. The OpenCCM DCI allows systems to be configured
through XML-based metadata. Similarly, [93] proposes using an architecture descriptive
language (ADL) that allows assembly-level activation of components and describes as-
sembly hierarchically. The asynchronous and hierarchical techniques in this approach can
enhance the parallelism among different nodes to enhance D&C performance.

The work reported in [100] proposes the use of the Globus Toolkit [26] to deploy CCM
components on a computational grid to take advantage of high bandwidth wide-area net-
works. The work reported in [95] relies on pre-allocating resource (e.g., pre-load compo-
nents in .NET dynamic reconfiguration framework) to make the D&C process of compo-
nents more predictable. However, this approach only concerns improving the response time
within a single deployment unit, rather than of managing multiple deployment units at the
same time.

The approach described in [56] uses a virtual machine (VM) technique that provides

automated D&C of flexible VMs that can be configured to meet application needs and then
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subsequently cloned and dynamically instantiated to improve the predictability of deploy-
ments. This approach supports a graph-based model for the definition of customized VM
configuration actions.

Subramonian, et al. [118] propose a technique for static component configuration and
deployment, which enhances configurability by avoiding features that are not supported by
key real-time platforms, while reducing run-time overhead and footprint. However, this
technique must trade off component deployment flexility for performance, therefore it is

not suitable for open DRE systems.

I1.3.2 QoS Assurance of D&C Services: Unresolved Challenges

All the related work in the dimension of dependency management does not take the
predictability issue into account, which makes them unsuited for DRE systems. Likewise,
all the related work in QoS assurance for D&C dimension does not address the issue of
D&C predictability but focusing on improving D&C performance.

The following is a list of key unresolved challenges with respect to ensuring the pre-

dictability of deployment and configuration of DRE systems:

1. Avoid deployment priority inversion and its propagation effect. For large-scale
DRE systems, components can have very complex dependency relationships among
each other, which can conflict with real-time QoS configuration of components, such
as priority assignments. The conflict between component deployment priorities and
their dependencies can cause deployment priority inversions because components
with lower priority must be deployed before a higher priority component if the higher
priority has a dependency to it. Moreover, when a circular dependency exists among
operational strings, the central coordinated phased deployment technique will fail
because the deployment of each operational string is a primitive task and cannot be

interleaved with each other.
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2. Lack of mechanism to improve the overall utility of DRE systems while com-
ponents are being deployed. The dynamic nature of open DRE systems requires
on-demand deployment of a number of components which cooperate with each other
to ensure DRE systems are kept synchronized with changing mission goals or envi-
ronmental changes. Since a number of components with different importance to the
entire DRE system need to be deployed at the same time, the goal of D&C mech-
anisms is therefore to deploy these components in an effective way to improve the

overall QoS of DRE systems in two different aspects.

Chapter V describes how we apply the PARIGE algorithm to improve D&C pre-

dictability in detail.

II.4 Summary
This chapter provided a survey of work related to the research described in this disserta-
tion. Chapter I1I describes in detail how the QoS provisioning capabilities of a QoS-enabled
deployment and configuration engine resolves these limitations. Chapter IV describes the
challenges with integration, configuration and deployment of publish/subscribe services in
component-based systems in detail and explains how they are addressed by this disserta-
tion. Chapter V describes how we address the predictability of D&C for large-scale DRE

systems when a large number of components must be deployed at run-time.
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CHAPTER III

TECHNIQUES FOR QOS-ENABLED COMPONENT DEPLOYMENT AND
CONFIGURATION

In large-scale distributed real-time and embedded (DRE) systems, component middle-
ware features can help make the software more flexible by separating application function-
ality from system lifecycle activities, such as component configuration and deployment.
Conventional component middleware platforms, such as J2EE and .NET, is not well-suited
for these types of DRE systems since they do not provide real-time QoS support. QoS-
enabled component middleware, such as Component Integrated ACE ORB (CIAO) [124],
Qedo [98], and PRiSm [114], have been developed to address these limitations by combin-
ing the flexibility of component middleware with the predictability of Real-Time CORBA.

QoS-enabled component middleware, however, also introduces new complexities that
stem from the need to (1) deploy component assemblies into the appropriate DRE system
target nodes, (2) activate and deactivate component assemblies automatically, (3) initial-
ize and configure component server resources to enforce end-to-end QoS requirements of
component assemblies, and (4) simplify the configuration, deployment, and management of
common services used by applications and middleware. The lack of portable, reusable, and
standard mechanisms to address these challenges is hindering the adoption of component
middleware technologies for DRE systems.

To meet these challenges, we have developed the Deployment and Configuration En-
gine (DAnCE) ( www.dre.vanderbilt.edu/CIAO), which is an open-source QoS-
enabled middleware framework compliant with the OMG Deployment and Configuration
specification [79] that enables the deployment of DRE system component assemblies by

addressing various QoS-related concerns, such as collocation, memory constraints, and

33


www.dre.vanderbilt.edu/CIAO

processor loading. The deployment and configuration of components in DAnCE, there-
fore, involves mapping known variations in the application requirements space (such as
variations in QoS requirements) to known variations in the software solution space (such
as configuring the underlying network, OS, middleware, and application parameters to sat-
isfy the end-to-end QoS requirements).

To support effective deployment and configuration of component-based DRE systems,

the key capabilities provided by DAnCE include:

* One-time parsing and storing of component configuration and deployment descrip-
tions (which are represented as metadata in XML format) so that run-time parsing

overhead is not incurred during component deployment.

* Automatic downloading of component packages so that the implementations can be
changed seamlessly as components migrate from one node to another, even in a het-

erogeneous target domains.

* Automatic configuration of object request brokers (ORBs), containers, and compo-
nent servers to (1) meet the desired QoS requirements and (2) reduce human operator

mistakes introduced while configuring middleware and application components.

« Automatic connection' of component ports so that developers need not be concerned

with these low-level details.

III.1 Deployment and Configuration Challenges in Component-based DRE Systems
To illustrate the deployment and configuration challenges in DRE systems, this section
presents a case study of a representative component-based DRE system called the inventory

tracking system (ITS) [71]. AnITS is a warehouse management infrastructure that monitors

'In the context of this dissertation, a connection refers to the high-level binding between an object refer-
ence and its target component, rather than a lower-level transport (e.g., TCP) connection.
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and controls the flow of goods and assets within a storage facility. Users of an ITS include
couriers (such as UPS, DHL, and Fedex), airport baggage handling systems, and retailers
(such as Walmart and Target). This section first provides an overview of the structure/-
functionality of our ITS case study and then uses the case study to describe configuration

and deployment challenges.

III.1.1 Overview of ITS

An ITS provides mechanisms for managing the storage and movement of goods in a
timely and reliable manner. For example, an ITS should enable human operators to main-
tain the inventory throughout a highly distributed system (which may span organizational
boundaries), and track warehouse assets using decentralized operator consoles. In conjunc-
tion with colleagues at Siemens [71], we have developed the ITS shown in Figure III.1 and
deployed it using the DAnCE framework.

Figure III.1 shows how our ITS consists of the following three subsystems:
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Figure lll.1: Key Components in the ITS Case Study
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* Warehouse management, whose high-level functionality and decision-making com-
ponents calculate the destination locations of goods and delegate the remaining de-

tails to other ITS subsystems.

e Material flow control, which handles all the details (such as route calculation and
transportation facility reservation) needed to transport goods to their destinations.
The primary task of this subsystem is to execute the high-level decisions calculated

by the warehouse management subsystem.

* Warehouse hardware, which deals with physical devices (such as sensors) and

transportation units (such as conveyor belts, forklifts, and cranes).

After the ITS components comprising the ITS subsystems described above are devel-
oped, they must be configured and deployed to meet warehouse operating requirements. In
our ITS case study, ~200 components must be deployed into 26 physical nodes in the ware-
house. We focus on a portion of this system to motivate key challenges DAnCE faced when
deploying and configuring the ITS. Figure III.2 shows a subset of key component interac-
tions in the ITS case study shown in Figure III.1. As shown in this figure, the Work f1ow—
Manager component of the material flow control subsystem is connected to the conveyor
belt and crane transportation units of the warehouse hardware subsystem. We focus on
the scenario where the WorkflowManager contacts the ConveyorBelt and Crane
components using the move_1item () operation to move an item from a source (such as a
loading dock) to a destination (such as a warehouse storage location). The move_item ()
operation takes source and destination locations as its input arguments. When the item is
moved to its destination successfully, the ConveyorBelt and the Crane inform the
WorkflowManager via the finish_mov () event operation. ConveyorBelt and
Crane components are also connected to various ITtemLocationSensor components,

which periodically inform the other components of the location of moving items.
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III.1.2 Challenges in Configuring and Deploying ITS

Using the ITS case study described in Section III.1.1, we now illustrate the deployment
and configuration challenges in component-based DRE systems.
Challenge 1: Efficiently storing and retrieving component implementations. Large-
scale DRE systems need capabilities that enable application developers and deployment
run-time tools to (1) upload component implementations to storage sites and/or (2) fetch
component implementations from storage sites for installation. These capabilities should
allow multiple implementations of a component written in different programming lan-
guages and run on different OS platforms. Moreover, it should be possible to pre-stage
component implementations to avoid downloading selected implementations from central
storage sites during the deployment process.

It is conceivable for an ITS ConveyorBelt component to have implementations for
Linux in Java and Windows in C++, which will require that these implementations be
fetched and deployed appropriately on a particular node in a small and bounded amount of

time. Section II1.2.2.1 describes how DAnCE addresses this challenge.
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Challenge 2: Activation, passivation, and deactivation of component assemblies. To
manage shared resources in a DRE system effectively, components in an assembly need
to be activated to become functional, passivated when they will not be accessed for an ex-
tended period of time, and deactivated when they are no longer needed. A key challenge is
to coordinate these operations in a complete assembly, rather than in an individual compo-
nent or node to coordinate different components running on different nodes. For example,
components in an assembly that collaborate by sending messages or events must be preacti-
vated to configure the necessary environment and resources so that messages are exchanged
in the intended fashion. In particular, all collaborating components in an assembly must be
preactivated before any component is activated. Similarly, all collaborating components
need to be passivated before any component is deactivated so that no component tries to
communicate after its recipient has been deactivated.

For instance, when the ConveyorBelt component in Figure I11.2 is being removed,
the WorkflowManager component must already be passivated since otherwise it could
continue to make move_item () invocations on the ConveyorBelt. Section I11.2.2.2
describes how DAnCE addresses this challenge.

Challenge 3: Configuring NodeApplication component server resources. In large-scale
DRE systems, QoS requirements (such as low latency and bounded jitter) are often impor-
tant considerations during the deployment process since component (re)deployment may
occur throughout the lifecycle of a large-scale system. To enforce these QoS requirements,
component servers and containers must be configured in accordance with QoS properties,
such as those defined in Real-Time CORBA [83]. Component deployment and configu-
ration tools must therefore be able to (1) specify the middleware configurations needed to
configure components, containers, and component servers and (2) set the QoS policy op-

tions provided by the underlying middleware into semantically consistent configurations.
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For instance, in the ITS case study (Figure 111.2), whenever a ConveyorBelt compo-
nent’s hardware fails, it should notify the Work f1owManager in real-time to minimize/-
avoid damage. Likewise, ITS ConveyorBelt and Crane components may need to be
collocated with the WorkflowManager in some assemblies to minimize latency. Sec-

tion II1.2.2.3 describes how DAnCE addresses this challenge.

III.2 The Design of DAnCE

This section describes the design of the DAnCE D&C framework based on the OMG’s
Deployment and Configuration (D&C) specification [79]. This specification standardizes
many aspects of deployment and configuration for component-based distributed systems,
including component configuration, component assembly, component packaging, package
configuration, package deployment, and target domain resource management. These as-
pects are handled via a data model and a run-time model. The data model can be used to
define/generate XML schemas for storing and interchanging metadata that describe com-
ponent assemblies and their configuration and deployment characteristics. The run-time
model defines a set of managers that process the metadata described in the data model dur-
ing system deployment. This section shows how the design and implementation of DAnCE
has been tailored to address the D&C challenges of component-based DRE systems de-

scribed in Section I11.1.2.

I11.2.1 The Structure and Functionality of DAnCE

The architecture of the Deployment and Configuration Engine (DAnCE) is shown in
Figure III1.3. This section describes how DAnCE provides a reusable middleware frame-
work for deploying and configuring components in a distributed target environment, using

the ITS case study in Section III.1.1 to motivate its key capabilities. DAnCE is built atop
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Figure 111.3: Overview of DAnCE

The ACE ORB (TAO) [107] and CIAO [124], which makes it portable to most hardware
and OS platforms in use today.

As shown in Figure II1.3, an ITS deployer creates XML descriptors that convey ap-
plication deployment and configuration metadata, using external model-driven engineering
(MDE) tools [4] such as PICML [3]. PICML is a MDE tool that enables developers to de-
fine component interfaces, QoS parameters and software building rules, and also generates
deployment and configuration metadata that facilitates system deployment. PIMCL gener-
ated metadata is compliant with the data model defined by the OMG D&C specification.
To support additional deployment and configuration concerns not addressed by this spec-
ification, we enhanced the spec-defined data model by describing additional deployment
concerns (such as real-time QoS requirements and middleware service configuration and
deployment) discussed in Section II1.2.2.

All the metadata to describe these concerns is captured in an XML file called the deploy-

ment plan, which describes (1) the DRE system component instances to deploy, (2) what
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properties of these components should be initialized, (3) what QoS policies these compo-
nents must contain, (4) what middleware services the components use, and (5) how the
components are connected to form component assemblies. The various entities of DAnCE
shown in Figure II1.3 are implemented as CORBA objects that collaborate as follows:
ExecutionManager runs as a daemon and is used to manage the deployment process for
one or more domains. In accordance with the D&C specification, DAnCE defines a do-
main as a target environment composed of nodes, interconnects, bridges, and resources.
An ExecutionManager uses the factory and finder design patterns to manage a set of
DomainApplicationManagers.

DomainApplicationManager manages the deployment of components within a single do-
main (to manage multiple domains, an ExecutionManager can coordinate with mul-
tiple DomainApplicationManagers). A DomainApplicationManager splits
a deployment plan into multiple sub-plans, one for each node in a domain. In DAnCE,
the ExecutionManager and DomainApplicationManager objects reside in the
same daemon process to improve deployment performance by leveraging the collocation
optimizations provided by TAO. If the target deployment environment has multiple do-
mains, then multiple DomainApplicationManager objects will be activated inside
the daemon process, one for each domain.

NodeManager runs as a daemon on each node and manages the deployment of all com-
ponents that reside on that node, irrespective of which application they are associated with.
Components are created by containers, which are hosted in component server processes
called NodeApplications. The NodeManager creates the NodeApplication-—
Manager, which in turn creates the NodeApplication processes that host containers,

thereby enhancing the reuse of components shared between applications on a node.

>The DAnCE deployment infrastructure is implemented as CORBA objects to avoid the circular depen-
dencies that would ensue if it was implemented as components, which would have to be deployed by DAnCE
itself.
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NodeApplicationManager is collocated with a NodeManager to manage the deploy-
ment of all components within a NodeApplication which is a server process that hosts
a group of related components in a particular application. To differentiate deployments in
a node, DAnCE’s DomainApplicationManager uses the node’s NodeManager to
create a NodeApplicationManager for each deployment and sends it the metadata it
needs to deploy components.

NodeApplication plays the role of a component server process that provisions the com-
puting resources (e.g., CPU, memory and network bandwidth) for the components it hosts.
Based on metadata provided by other DAnCE managers in the deployment process, the
NodeApplication creates the initial containers that provide an environment for creat-
ing and instantiating application components. Components in a node are thus deployed in
one or more NodeApplications in accordance with a deployment plan.
RepositoryManager runs as a daemon dedicated to a domain and is used by (1) deployer
agents to store component implementations and (2) DAnCE’s NodeApplicationMana—
ger to fetch necessary component implementations on demand. Each NodeApplication—
Manager uses its RepositoryManager to search component implementation binaries
(stored in the form of dynamic linking libraries) and fetches them into the local node’s

storage cache.

I11.2.2 Applying DAnCE to Address DRE Systems D&C Challenges

The remainder of this section describes how (1) the DAnCE managers in Figure I11.3
address key DRE systems D&C challenges described in Section III.1.2 and (2) our solutions

are applied to the ITS case study presented in Section III.1.1.
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I11.2.2.1 Resolving Challenge 1: Storing and Retrieving Component Implementa-
tions via a Repository Manager.

DAnCE’s RepositoryManager provides efficient mechanisms where applications
can (1) store component implementations at any time during the system lifecycle and (2)
retrieve different versions of implementations as components are (re)deployed on various
types of nodes. As shown in Figure II1.4, the RepositoryManager can also act as an
HTTP client and download component implementations specified as URLs in a deployment
plan. It caches these implementations in the local host where the RepositoryManager
runs so they can be retrieved by NodeApplicationManagers.

Over a system’s lifetime, a component could be migrated and redeployed on a node
whose type is different than its earlier host(s), in which case a different component imple-
mentation must be provided. To support efficient deployment, DAnCE’s NodeApplic—
ationManagers periodically contact the RepositoryManager to download the lat-
est implementations of designated components. When a component is redeployed, there-
fore, all its implementations can be cached locally on the target nodes, so downloading
overhead need not be incurred during the deployment process.

DAnCE’s RepositoryManager uses ZIP compression and file archiving mecha-
nisms [126] to provide an efficient representation of the contents of a ZIP archive and
(de)compress all the implementations in a packaged format. It uses CORBA operation
invocations to transfer the ZIP-encoded component assembly packages to the node(s) in
a domain that run NodeApplicationManagers. In the ITS case study, an initial de-
ployment might write the ConveyorBelt component in Java and host the component on
an Embedded Linux node. As the system runs, ITS developers could create a C++-based
Win32 implementation of ConveyorBelt and submit it to DAnCE’s Repository—
Manager. At some point during the ITS lifecycle, the ConveyorBelt could be stopped
at the current Linux node and moved to a Windows node. To execute that deployment

request, DAnCE’s NodeApplicationManager running on the Windows node could
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Figure lll.4: Downloading implementations using the Repository Manager

contact the RepositoryManager to retrieve the Windows implementation of the Con—
veyorBelt component and deploy it. The RepositoryManager thus helps decouple
when and how ITS component implementations are developed from when they are de-

ployed.

I11.2.2.2 Resolving Challenge 2: Using the DomainApplicationManager to Coordi-
nate the Component Assembly Lifecycle.

The OMG D&C standard only defines how the initial D&C of a component assembly
should be performed and how it can be undeployed, but does not define how the lifecy-
cles of components should be managed. Therefore, during the lifecycle of the component
assembly, DAnCE’s DomainApplicationManager maintains PREACTIVE, ACTIVE,
PASSIVE, and DEACTIVATED run-time state information on each component in the compo-
nent assembly, as shown in Figure II1.5. The PREACTIVE state indicates that the component
has been created and has been provided its environment settings. The ACTIVE state indi-

cates that the component has been activated with the underlying middleware. The PASSIVE
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state indicates that the component is idle and all its resources can be used by other com-
ponents. The DEACTIVATED state means that the component has been deactivated and

removed from the system. During the deployment process, DAnCE’s DomainApplic—

Preactive Deactiv-
ated

Figure II.5: Different States of a Component

ationManager ensures that components are not connected and activated until all the
components are in the preactive state. Similarly, during assembly deactivation, DAnCE’s
DomainApplicationManager ensures that components in an assembly are deacti-
vated only when all the components are in the passive state.

To ensure that a component’s ongoing invocations are processed completely before
it is passivated, all operation invocations on a component in CIAO are dispatched by the
standard Lightweight CCM Portable Object Adapter (POA), which maintains a dispatching
table that tracks how many requests are being processed by each component in a thread.
CIAO uses standard POA reference counting and deactivation mechanisms [61] to keep
track of the number of clients making invocations on a component. After a server thread
finishes processing the invocation, it decrements the reference count in the dispatching
table. Only when the count is zero, is the component passivated. CIAO therefore ensures

that the system is always in a consistent state to ensure that no invocations are lost. To
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prevent new invocations from arriving at the component while it is being passivated, the
container blocks new invocations for this component in the server ORB using standard
CORBA portable interceptors [70].

In the ITS case study, DAnCE’s DomainApplicationManager ensures that the
ItemLocationSensor components do not make operation invocations on the Con—
veyorBelt components unless both are active. Similarly, during the deactivation of the
ConveyorBelt component, the DomainApplicationManager ensures that Work—
flowManager components are passivated, which ensures that all move_item () re-
quests are handled properly. Finally, the ConveyorBelt component’s POA ensures that
all requests being processed by the component are dispatched before deactivating the com-

ponent.

I11.2.2.3 Resolving Challenge 3: Configuring NodeApplication Component Server
Resources.

To enforce QoS requirements, DAnCE extends the OMG D&C [79] specification to
define NodeApplication server resource configurations, which heavily influence end-
to-end QoS behavior. Figure II1.6 shows the different categories of server configurations
that can be specified using the DAnCE server resources XML schema, which are related to
system end-to-end QoS enforcement. In particular, each server resource specification can
set the following options: (1) ORB command-line options, which control TAO’s connection
management models, protocol selection, and optimized request processing, (2) ORB service
configuration option, which specify ORB resource factories that control server concurrency
and demultiplexing models. Using this XML schema, a system deployer can specify the
designated ORB configurations.

As described in Section III.2.1, components are hosted in containers created by the
NodeApplication process, which provides the run-time environment and resources for com-

ponents to execute and communicate with other components in a component assembly.
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Figure 111.6: Specifying RT-QoS requirements

The ORB configurations defined by the server resources XML schema are used to con-
figure NodeApplication processes that host components, thereby providing the necessary
resources for the components to operate. Since the deployment plan describes the com-
ponents and the artifacts required to deploy the components, DAnCE extends the standard
OMG D&C deployment plan to specify the server resource configuration options.

As shown in Figure III.3, XMLConfigurationHandler parses the deployment
plan and stores the information as IDL data structures that can transfer information between
processes efficiently and enables the rest of DAnCE to avoid the run-time overhead of pars-
ing XML files repeatedly. The IDL data structure output of the XMLConfiguration-
Handler is input to the Execut ionManager, which propagates the information to
the DomainApplicationManager and NodeApplicationManager. The Node—
ApplicationManager uses the server resource-related options in the deployment plan
to customize the containers in the NodeApplication it creates. These containers then

use other options in the deployment plan to configure TAO’s Real-Time CORBA support,
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including thread pool configurations, priority propagation models, and priority-banded con-

nection models.

An example server resources specification document:

<ServerResourceDef id="ITS_HIGH_PRIORITY_SETTING">
<ServerCmdlineOptions>
<l-- No command line options when starting the NodeApplication -->
</ServerCmdlineOptions>

<ACESvcConf URI="RTSvc.conf">
<l-- an external service configruation file -->

</ACESvcConf>
<ORBConfigs>
<resources>
<threadpool id="high_prio_pool"
stacksize="0"
static_threads="5"
dynamic_threads="0"/>
</resources>
</ORBConfigs>
</ServerResourceDef>

Figure 11.7: Example Server Resources Specification

ITS components, such as TtemLocationSensor and WorkflowManager, have
stringent QoS requirements since they handle real-time item delivery activities. The server
resource configurations for all nodes hosting these components are specified via an MDE
tool. Figure III.7 shows an example XML document that specifies the server resource
configurations defined by a system deployer. The XMLConfigurationHandler parses
the descriptors produced by the MDE tool to notify the NodeApplicationManager.
To honor all the specified configurations, the component servers hosting these components
are configured with server-declared priority model with the highest CORBA priority, thread

pools with preset static threads, as well as priority-banded connections.
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III.3 Summary

Component middleware is intended to enhance the quality and productivity of software
and software developers by elevating the level of abstraction used to develop distributed
systems. Conventional middleware, however, generally lacks mechanisms to handle de-
ployment concerns for distributed real-time and embedded (DRE) systems. This chapter
described how we addressed these concerns in DAnCE, which is an open-source imple-
mentation of the OMG’s D&C specification targeted for deploying and configuring DRE
systems based on Lightweight CCM. DAnCE leverages MDE tools and QoS-enabled com-
ponent middleware features to support (1) the efficient storage and retrieval of compo-
nent implementations, (2) component activation, passivation, and removal semantics within
component assemblies, (3) configuring QoS-related client/server resources, and (4) inte-

grating common middleware services into applications.
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CHAPTER IV

TECHNIQUES FOR DEPLOYMENT AND CONFIGURATION OF
PUBLISH/SUBSCRIBE SERVICES

An increasing number of distributed real-time and embedded (DRE) systems require
middleware support for real-time transfer of control and data among a large number of
heterogeneous entities that coordinate with each other in a loosely coupled fashion. Ex-
amples of such systems include military systems like the Joint Battlespace Infosphere
(JBI), telecommunications systems involving large-scale network monitoring and man-
agement, environmental emergency response systems requiring real-time coordination be-
tween various civilian emergency response units, and supervisory control and data acquisi-
tion (SCADA) systems requiring real-time robust control and data communication.

Perhaps the most critical middleware service for the types of DRE systems outlined
above are asynchronous, event-based publish/subscribe services [9]. The publish/subscribe
architecture is a powerful paradigm for event-based communication because it provides
anonymity, by decoupling the interfaces between event publishers and subscribers; and
asynchronism, by automatically notifying subscribers when a specified event is generated.
These design principles reduce software dependencies and support the loose coupling re-
quirements of these DRE systems.

Some widely used real-time publish/subscribe services for DRE systems based on
object-oriented middleware include CORBA Real-Time Event Service (RTES) [35], CORBA
Real-Time Notification Service (RTNS) [32] and OMG’s Data Distribution Service (DDS) [73].
For example, the CORBA RTES is based on OMG’s Real-Time CORBA [83] and provides
low-latency/jitter event dispatching, support for periodic processing, dynamic client con-
nection management, centralized event filtering, and efficient use of network and computa-

tional resources, which are well-suited for DRE systems with stringent QoS requirements.
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DDS exploits topic-based anonymous publish/subscribe mechanisms for DRE systems run-
ning in a dynamic environment. Additionally, many of the requirements of the DRE sys-
tems can be met scalably and robustly via federations of real-time event channels across
the communication network.

Recent trends [42, 63, 112] indicate that QoS-enabled component middleware plat-
forms, such as CIAO [124], PRiSM [99], and Qedo [98], are increasingly used to develop
and deploy next-generation DRE systems. The increasing use of QoS-enabled compo-
nent middleware in DRE systems compounded by the need for real-time publish/subscribe
services to support a large class of DRE systems requires the integration of the real-time
publish/subscribe paradigm within QoS-enabled component middleware. Unfortunately,
standards-based component middleware do not yet specify how publish/subscribe services
can be robustly supported within component middleware. Moreover, to date there is a
general lack of systematic studies that address these concerns.

Although performance evaluation metrics for real-time publish/subscribe object-oriented
middleware services are available [105], there is a general lack of information and in-
sights into the design and performance evaluation of real-time publish/subscribe services
within QoS-enabled component middleware. In this chapter, we systematically evaluate the
benefits and limitations of different design alternatives for integrating real-time publish/-
subscribe services within QoS-enabled component middleware architectures. We describe
how we applied pattern-driven design and meta-programming techniques in realizing the
most promising choice among these alternatives, which is based on the container program-
ming model. Our study shows that the container-managed real-time publish/subscribe ser-
vices provide predictable and comparable performance when compared to their object-
oriented counterparts, which provides key guidance in the suitability of real-time publish/-

subscribe services in component technologies for DRE systems.
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IV.1 Architectural Design Choices for Integrating Real-Time Publish/Subscribe
Services

In this section we describe three different design choices for integrating real-time publish/-
subscribe services within QoS-enabled component middleware. To make our discussions
concrete, we describe these choices in the context of OMG’s Lightweight CORBA Com-
ponent Model (LwCCM) [80], which is an emerging component middleware standard for
DRE systems and implemented by our CIAO QoS-enabled component middleware. It is
worth noting that many of our discussions here are also applicable to other component

models as well.

IV.1.1 Evaluating Publish/Subscribe Service Integration Design Choices

Before we delve into describing the design choices, we first provide an intuitive descrip-
tion of how CCM components in a QoS-enabled component middleware use the publish/-
subscribe paradigm for event communication. Figure IV.1 illustrates how CCM compo-
nents can publish and subscribe events through real-time event channels. As illustrated
in the figure, QoS configurations for the event dispatching are available at three different
scopes, i.e., channel scope, port scope, and event scope, which should ideally be config-
ured and integrated into the component middleware architecture in an intuitive manner.
The goal of this chapter is to evaluate different design choices for integrating real-time
publish/subscribe mechanisms within QoS-enabled component middleware.

Although directly using object-oriented real-time publish/subscribe services is viable
for small-scale DRE systems with a small number of components, such an approach will
not scale for complex DRE systems with hundreds or even thousands of components, since
the OO-based approach requires imperative-based programming interfaces to implement

DRE systems which makes components sensitive to changes. On the other hand, the CCM
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Figure IV.1: Using Publish/Subscribe Services in QoS-enabled Component Middle-
ware

standard does not specify how publish/subscribe services can be composed within com-
ponent middleware. This issue is further complicated by the need for real-time publish/-
subscribe services to be integrated within QoS-enabled implementations of CCM, such as
our Component Integrated ACE ORB (CIAO) [124].

Based on this information, this section describes three possible architectural choices
for integrating real-time publish/subscribe services within LwCCM. Figure IV.2 illustrates
different architectural choices for integrating publish/subscribe services. The three archi-
tectural choices include (1) component-managed — where the event channel can be repre-
sented as an application-level component, (2) container-managed — where the event chan-
nel can be encapsulated within the container, and (3) component server-managed — where
the publish/subscribe service can reside within the component server. This section de-
scribes each architecture choice in detail and analyzes the advantages and disadvantages of

each approach.
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IV.1.1.1 Component-Managed Publish/Subscribe Services

Design: The first architecture choice for providing real-time publish/subscribe services
in component middleware is to instantiate them as application-level CCM components as
illustrated in Figure IV.3. In this architecture, the interfaces provided by the publish/-
subscribe services are exposed as component facet ports. These ports contain methods to
connect component event sources/sinks to the event channel, configure event service real-
time properties, and push events.

Analysis: The primary advantage of this approach is its simplicity. The complexity needed
to implement a publish/subscribe service component is rudimentary since the encapsulated
service already implements the publish/subscribe service functionalities, making the full
set of service features readily available to other components. Instantiating and deploying
multiple publish/subscribe service components follows the same rules that apply to stan-

dard components.
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However, there are a number of disadvantages of using component-managed publish/-
subscribe mechanisms. Generally speaking, the shortcomings of the object-oriented model
still manifest in this architecture. First, the component glue-code, or servant, must manipu-
late publish/subscribe interfaces directly, which exposes low-level CORBA programmatic
details thereby defeating the declarative approaches used by component middleware. Sec-
ond, the component servant logic must encapsulate QoS and real-time properties, which
inhibits the flexibility and reusability of components across different operating contexts
and environments. Third, it is impossible to substitute or interchange different real-time
publish/subscribe services without recompilation of components because the servant imple-
mentation within a component is tightly coupled with a specific type of publish/subscribe
service. Finally, application-level components must now be responsible for managing the
publish/subscribe lifecycles.

In conclusion, this architecture tightly couples the service provisioning behaviors into
the component implementation thereby hampering the reusability and evolution of DRE
systems. Additionally, the component-based publish/subscribe architecture conflicts with
the standard CCM container programming model, which makes the container a mediator
between application-level components and common middleware services. Ironically, in
this case the publish/subscribe service itself is encapsulated within the component. Finally,

this architecture results in a remote call to transmit an event to the publish/subscribe service
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component, which must be handled by the ORB and hence requires additional processing
and levels of indirection. Given the number of unfavorable consequences of utilizing this
architecture, it is not appropriate for the majority of component-based DRE systems, espe-
cially large-scale systems that require highly flexible and customizable QoS guarantees at

a low cost.

IV.1.1.2 Container-Managed Publish/Subscribe Services
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Figure IV.4: Publish/Subscribe Services Within Container

Design: Figure IV.4 depicts a second architecture for providing real-time publish/subscribe
services in component middleware where a publish/subscribe service is encapsulated within
the CCM container. In this architecture, the container is responsible for managing publish/-
subscribe service lifecycles and their clients, initializing channels and gateways, connecting
publishers and subscribers, configuring QoS and real-time properties, managing publisher
and subscriber component servants, and setting up the federation among multiple event
channels across different containers. In this design, the container exposes two distinct in-
terfaces. One interface provides configuration methods and is invoked by the component
deployment framework based on the properties specified in XML-based metadata descrip-
tors that describe configuration decisions. The second interface provides a push method

and is invoked by application-level components.
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Analysis: There are many advantages to this architecture. First, since the publish/subscribe
services are managed by the container, the business logic of application components are
decoupled from the publish/subscribe service configuration. This decoupling enables real-
time publish/subscribe service configurations and specifications to be validated and syn-
thesized via high-level model-driven engineering (MDE) tools [24] prior to system deploy-
ment time, which increases the level of abstraction and automation of the DRE system
development process. This separation of concerns maximizes the flexibility and reusability
of components by allowing them to be reconfigured with different QoS properties and/or
services as required by new and changing operating contexts without making any changes
to the application component logic or glue-code thereby obviating the need for recompila-
tion.

Second, this design reduces the memory footprint of individual components and pre-
serves their lightweight nature. Although the component deployment framework is ex-
posed to the implementation details of the real-time publish/subscribe services (since the
deployment framework must instantiate and configure the channels) rather than component
servant glue code, it is not important for the deployment framework to be as lightweight
as the CCM components because the deployment framework is not part of the run-time
system and does not consume resources after a DRE system is deployed.

Third, this architecture aligns with the CCM container programming model and de-
fers publish/subscribe configuration-related decisions until deployment time, which allows
additional optimizations to be incorporated depending on knowledge of the deployment
context. For example, it may not be known until deployment time which network links
have high latency or low reliability, yet this information is critical to determining the best
possible real-time publish/subscribe service configuration.

The disadvantage of container-managed event channel architecture is the difficulty en-
countered in actually implementing it effectively and efficiently due to the complexity of

the CCM container architecture and its programming model. There are a number of design
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challenges that arise when pursuing this design choice. We discuss in Section IV.2 how we

resolve these design challenges based on our patterns-driven solutions.

IV.1.1.3 Component Server-Managed Publish/Subscribe Services

Design: The third alternative architecture for providing real-time publish/subscribe ser-
vices in component middleware is to host them within the component server, which is
similar to existing approaches of supporting services in object-oriented middleware. In this
architecture, publish/subscribe services are still accessed and manipulated via the container.
However, the component server-managed architecture is fundamentally different from the
container-managed architecture in that the component server is a lower-level entity which

hosts all the components, which in turn end up sharing the same publish/subscribe service.
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Figure IV.5: Publish/Subscribe Services Within Component Server
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Analysis: The advantages present in the container-managed architecture are also appli-
cable to the component server-managed architecture: components are still isolated from
publish/subscribe services in such a way that they remain configurable after compilation,
and push operations result in only local method invocations. However, the component
server-managed architecture is more coarse-grained i.e., a large number of components
may be required to share a single service thereby affecting differentiated treatment to ap-
plication components depending on their real-time needs.

For applications that require either multiple publish/subscribe services on a single host

or those who wish to maximize component flexibility to allow for future enhancements or
modifications, the component server-managed architecture may be too restrictive. On the
other hand, for applications that do not require these capabilities, the component server-
managed architecture results in a simpler configuration and deployment process, which
reduces development effort. In the case of very large-scale DRE systems, the savings may
be substantial if sharing is desired. However, for DRE systems that require partitioning and
configuring the system capabilities based on priorities, load balancing and reliability, this
coarse-grained approach is not suitable.
Summary: Based on our analysis of the benefits and limitations of each design choice, we
have selected the container-managed architecture as our design choice to obtain additional
guidance on its applicability and performance. The container-managed architecture pro-
vides the most flexible real-time publish/subscribe services while preserving the benefits
of the CCM container programming model; hence, it is applicable for the widest range of
DRE systems and especially useful for developing large-scale complex DRE systems.

Due to the complexity of the CCM container architecture, component programming
model, and the associated D&C model, there are a number of challenges in the context
of this design architecture. In Section IV.2, we show how this architecture can be imple-
mented in a way that is very efficient, lightweight, and flexible enough to accommodate

new services to be plugged in with little modification.
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IV.2 Challenges and Solution of Integration, Configuration, and Deployment of
Publish/Subscribe Services in Component Middleware

This section describes the design and implementation of a container-based approach
to provision of real-time publish/subscribe services in CIAO, which draws on the com-
bined strength of pattern-driven design [28], model-driven engineering (MDE) [103], and
meta-programming techniques [17]. We divide this section into three parts. First, we dis-
cuss the integration design goals and our implementation strategies. We follow this by the
configuration issues, which arise due to the complexities to ensure syntactic and semantic
correctness of configuring various publish/subscribe services. Finally, we discuss deploy-
ment issues, which arise due to the declarative as opposed to imperative approaches used

for deployment in component middleware.

IV.2.1 Addressing Integration Challenges of Publish/Subscribe Services in Compo-
nent Middleware

Figure I'V.6 gives an overview of the design of the container-managed real-time publish/-
subscribe service architecture as outlined in Section IV.1. The fundamental objective of this
design is to increase the efficiency and flexibility of large-scale DRE systems, while pre-
serving the lightweight nature of CCM components and the CIAO middleware framework.
The numbered bullets in this diagram depict the flow of control among different entities in
the CIAO QoS-enabled component middleware architecture [124].

Design goal 1, which calls for providing a service-independent representation of real-time
properties since different publish/subscribe services depend on different representations of
real-time properties.

Solution approach — Adapter pattern: We apply the adapter pattern that converts service-
specific representations of real-time properties into service-independent representations.
The benefits of this design are twofold: (1) component developers need not concern them-

selves with peculiar configuration interfaces, and (2) no matter what changes occur to
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Figure IV.6: CIAO Publish/Subscribe Architecture

the underlying publish/subscribe services, the interface exposed to components does not
change.

Design goal 2, which requires enhancing reuse and extensibility by allowing new publish/-
subscribe services to be easily plugged-in.

Solution approach — Strategy pattern: This design goal is satisfied using the strategy
pattern, which results in service implementations that are interchangeable from the con-
tainer perspective. After object creation, the container has no knowledge of the actual
algorithm being used, which enables fast operation delegations and simplifies container
design.

Design goal 3, which emphasizes reduction in the memory footprint of the container by
decoupling the creation of publish/subscribe service instances from their representation.
Solution approach — Builder pattern: The creation of most real-time publish/subscribe
service instances is complex since a lot of objects must be instantiated and configured
properly. A CIAO container defines a builder class that encapsulates the complexity, which

results in finer control of the construction process, isolation of construction code, and the

ability to vary the service configurations.
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Design Goal 4, which requires ensuring that the components incur only the cost of ser-
vices that are required by deferring publish/subscribe service selection and configuration
decisions until run time instead of design time.

Solution approach — Component Configurator pattern: In CIAO, a component config-
urator enables publish/subscribe service libraries to be loaded dynamically on-demand to
avoid encumbering the application with unused services, while still allowing components
to wait until deployment time to select a particular service. This mechanism provides the
flexibility to initiate, suspend, resume, and terminate services.

Design Goal 5, which requires a component be able to access the full set of QoS fea-
tures available in real-time publish/subscribe services by encapsulating service-specific
QoS specification operations within a high-level interface.

Solution approach — Wrapper Facade pattern: The CIAO container framework imple-
ments a high-level configuration interface based on wrapper facades that forwards invoca-
tions to the corresponding service-specific operations for each publish/subscribe service.
This design results in a concise and robust common programming interface capable of con-

figuring the QoS features in multiple dissimilar publish/subscribe services.
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IV.2.2 Addressing Configuration Challenges of Publish/Subscribe Services in Com-
ponent Middleware

To derive benefits from QoS-enabled component middleware for event-based DRE sys-
tems, the complexities associated with configuring publish/subscribe services must be ad-
dressed. This section explains the context in which each challenge arises, identifies the

specific problems, and then presents solution approaches that help resolve these challenges.

IV.2.2.1 Challenge 1: Configuring Publish/Subscribe Quality-of-Service

Context. Configurability is an important requirement for many publish/subscribe services
developed using middleware. For example, various operating policies (such as thread-
ing and buffering strategy) of the CORBA publish/subscribe services can be customized
programmatically via invocations on a configuration interface. The drawbacks with DOC
middleware approaches to configurability, however, are (1) reduced flexibility due to tight
coupling of application logic with crosscutting configuration and deployment concerns,
such as publish/subscribe relationships and choice of various types of publish/subscribe
services, such as the CORBA-based Event, Real-Time Event, and Notification Services,
and (2) impeded reuse due to tight coupling of application logic with specific QoS proper-
ties, such as event latency thresholds and priorities.

In contrast, component middleware publish/subscribe services enhance flexibility and
reuse by using meta-programming techniques (such as the XML descriptor files in CCM)
to specify component configuration and deployment concerns. This approach enables QoS
requirements to be specified later (i.e., just before run-time deployment) in a system’s life-
cycle, rather than earlier (i.e., during component development). For example, the configu-
ration framework provided by the CIAO component middleware parses XML configuration
files and make appropriate invocations on a publish/subscribe service configuration inter-

face. This approach is useful for DRE systems that require custom QoS configurations
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for various target OS, network, and hardware platforms that have different capabilities and
properties.

Problem. Conventional component middleware relies upon ad hoc techniques based on
manually specifying the QoS requirements for DRE component systems. Unfortunately,
configuring component middleware manually is hard [67] due to the number and com-
plexity of operating policies, such as transaction and security properties, persistence and
lifecycle management, and publish/subscribe QoS configurations. These policies exist at
multiple layers of middleware and often employ non-standard legacy specification mecha-
nisms, such as configuration files that use proprietary text-based formats.

Moreover, given component interoperability needs across various platforms (e.g., CCM
and J2EE) and the existence of multiple publish/subscribe services within individual plat-
forms (e.g., the CORBA Event Service and Notification Service), a component-based ap-
plication may use several publish/subscribe services. To further complicate matters, certain
combinations of policies are semantically invalid and can result in system failure. For ex-
ample, if multiple levels of priorities for events are supported, a priority-based thread pool
model should be used rather than a reactive threading model [104]. Care should be taken to
ensure that lower level configurations support end-to-end priorities, e.g., using Real-Time
CORBA priority-banded connections [92].

Most publish/subscribe services based on DOC middleware (including the CORBA
Event and Notification Services) do not validate QoS specifications automatically. More-
over, it is hard to manually validate QoS configurations for semantic compatibility. This
process is particularly daunting for large-scale, mission-/safety-critical DRE systems.
Solution approach — Develop MDE tools to create publish/subscribe service configu-

ration models. MDE tools can help application developers create QoS specifications for
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DRE systems more rapidly and correctly by automatically generating configuration de-
scriptor files and enforcing constraints among publish/subscribe policies via model check-
ers [36]. These benefits are particularly important when component applications are main-
tained and evolved over an extended period of time since (1) QoS configurations can be
modified more easily to reflect changing OS, network, and hardware platforms and (2)
QoS configurations for system enhancements can be checked systematically for compati-
bility with legacy specifications.

To attain these benefits, we developed the Event QoS Aspect Language (EQAL), which
1s an MDE tool that models configurations for three CORBA-based publish/subscribe ser-
vices: (1) the Event Service [75], (2) Real-Time Event Service [35, 105], and (3) Noti-
fication Service [77]. EQAL informs users if invalid combinations of QoS policies are
specified. After publish/subscribe QoS models are complete and validated, EQAL can also
synthesize the XML configuration files used by the underlying component middleware to
configure itself. Section IV.2.2.3 gives a detailed description about how we address this

challenges in the context of the EQAL MDE tool.

IV.2.2.2 Challenge 2: Configuring Publish/Subscribe Services in Target Networks

Context. Scalability is another important requirement for many publish/subscribe systems.
Large-scale publish/subscribe systems consist of many components and event channels dis-
tributed across network boundaries and possibly different administrative domains, and each
event channel may have many consumers. Naive implementations of publish/subscribe
services send a separate event across the network for each remote consumer, which can
transmit the same data multiple times (often to the same target host) and incur network and
host overhead that is excessive for many resource-constrained DRE applications. As the
number of channels and/or consumers grows, these types of publish/subscribe services can
become a bottleneck.

To minimize the overhead of publish/subscribe services, multiple event channels can
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be linked together to form federated configurations [88, 105], where event channels are as-
signed to particular hosts and events received by one channel are propagated automatically
to other channels in the federation. Figure I1V.8 illustrates how CIAQO’s publish/subscribe

services support federated event channels. In CIAO’s federated publish/subscribe services,

Host A PushCansumer Host B PushCansumer
PushSupplier PushConsumer
EventChannel EventChannel
CORBA/IICP
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PushSup PushSupplier PushSupp_Iie; Tonsumer

Figure IV.8: Federated Event Channels in CIAO

suppliers and consumers that are collocated on the same host connect to a local event chan-
nel. Each local event channel communicates with other event channels when events sent
by suppliers are destined for consumers on remote hosts. This design reduces latency in
large-scale DRE systems when consumers and suppliers exhibit locality-of-reference, i.e.,
where event consumers are on the same host as event suppliers. In such cases, only local
C++ method calls are needed instead of remote CORBA operation calls. Moreover, if mul-
tiple remote consumers are interested in the same event, only one message is sent to each
remote event channel, thereby reducing network utilization.

In CIAO’s federated publish/subscribe services, event channel gateways are used to me-

diate the communication between remote event channels, while suppliers and consumers

66



communicate with each other via local event channels. Each gateway is a CORBA compo-
nent that connects to the local event channel as a supplier and connects to the remote event
channel as a consumer. CIAO supports three types of event channel gateways: CORBA
Internet Inter-ORB Protocol (IIOP), User Datagram Protocol (UDP), and IP multicast. In
CIAO’s federated publish/subscribe services, application developers need not write tedious
and error-prone code manually to perform bookkeeping operations, such as creating and
initializing gateways that federate event channels.

CCM deployment tools install individual components and assemblies of components on
target sites, which are normally a set of hosts on a network. Similarly, event channels must
be assigned to hosts in the target network. CIAO’s federated publish/subscribe services are
integrated via its DAnCE component deployment tool. The input to DAnCE is an XML
data file that (1) specifies the event channel deployment sites and (2) automatically creates
and initializes the event channel gateways at the appropriate sites.

Problem. Although the DAnCE CCM deployment tool provided by CIAO shields applica-
tion developers from having to write bookkeeping code for its federated publish/subscribe
services, application developers still must hand-craft federation deployment descriptor
metadata using an XML schema based on the OMG Deployment and Configuration spec-
ification [79]. Hand-crafting descriptor metadata involves determining information about
the type of federations (i.e., CORBA IIOP, UDP, or IP multicast), identifying remote event
channels, and identifying local event channels. Moreover, the metadata must address the
following deployment requirements: (1) each host could have its own event channels, event
consumers, event suppliers, and event channel gateways, (2) each event consumer and
event supplier only communicates with an event channel collocated in the same host, (3)
event channels distributed across network boundaries are connected through event channel
gateways, (4) each connection between an event channel and an event supplier should be
uniquely identified, (5) each connection between an event channel and an event consumer

should be identified by using existing events, as defined in step (4), and (6) each connection
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between an event channel and an event channel gateway should also be identified by using
existing events, as defined in step (4).

Experience has shown [112, 113] that it is hard for DRE developers to keep track of
many complex dependencies when deploying federated publish/subscribe services. With-
out tool support, the effort required to deploy a federation involves hand-crafting deploy-
ment descriptor metadata in an ad hoc fashion. Since large-scale DRE systems may in-
volve many different types of events and event channels, ad hoc ways of writing metadata
to deploy publish/subscribe services are tedious and error-prone. Addressing this challenge
requires techniques that can analyze, validate, and verify the correctness and robustness of
federated event channel deployments.

Solution approach — Develop MDE tools to deploy event channel federations in a
visual, intuitive way. MDE tools can synthesize the metadata for deploying a federated
publish/subscribe service from models of the interactions among different event-related
components (e.g., event suppliers, event consumers, event channels, and various types of
event channel gateways). MDE tools can also generate the metadata needed to deploy
federated publish/subscribe services that are syntactically and semantically valid. Sec-
tion IV.2.2.3 gives a detailed description about how we address these challenges in the

context of our EQAL MDE tool.

IV.2.2.3 Design of Event QoS Aspect Language (EQAL)

EQAL is developed using the Generic Modeling Environment (GME) [60], which is
a generative technology for creating domain-specific modeling languages and tools [45].
GME can be programmed via metamodels and model interpreters. Metamodels define
modeling languages (called paradigms) that specify the syntax and semantics of the mod-
eling element types, their properties and relationships, and presentation abstractions de-

fined by a domain-specific modeling language (DSML). Model interpreters can traverse
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a paradigm’s modeling elements and perform various actions, such as analyzing model
properties and generating code.

The EQAL paradigm in GME consists of the two complementary entities described

below:
e EQAL metamodel , which defines a modeling paradigm in which engineers specify the
desired publish/subscribe service (e.g., the CORBA Event Service, Notification Service, or
Real-Time Event Service) and the configuration of that service for each component event
connection. Based on application needs, engineers can also specify how event channels are
assigned to different hosts and whether/how they must be linked together to form federa-
tions.

To address the publish/subscribe service configuration challenges describe above, the

EQAL configuration paradigm in the EQAL metamodel specifies publish/subscribe QoS
configurations, parameters, and constraints. For example, the EQAL metamodel contains a
distinct set of modeling constructs for each publish/subscribe service supported by CIAO.
Example policies and strategies that can be modeled include filtering, correlation, timeouts,
locking, disconnect control, and priority.
e EQAL model interpreters that can (1) validate configuration and deployment models
and (2) synthesize text-based middleware publish/subscribe service and federation service
configuration- and deployment-specific descriptor files from models of a given component
assembly. Engineers can build publish/subscribe service configurations for component ap-
plications using the EQAL modeling paradigm and its model interpreters.

Dependencies among publish/subscribe QoS policies, strategies, and configurations
can be complex. Ensuring coherency among policies and configurations is therefore a
non-trivial source of complexity in component middleware [114]. During the modeling
phase, EQAL ensures that dependencies between configuration parameters are enforced by
declaring constraints on the contexts in which individual options are valid, e.g., priority-

based thread allocation policies are only valid with component event connections that

69



have assigned priorities. EQAL can then automatically validate configurations and notify
users of incompatible QoS properties during model validation, rather than at component
deployment- and run-time.

To ensure semantically consistent configurations, violation of constraint rules should be
detected early in the modeling phase rather than later in the component deployment phase.
To support this capability, EQAL provides a constraint model checker that validates the
syntactic and semantic compatibility of event channel configurations to ensure the proper
functioning of publish/subscribe services. EQAL’s model checker is developed based on
GME’s constraint manager, which is a lightweight model checker that implements the stan-
dard OMG Object Constraint Language (OCL) specification [81].

EQAL’s model interpreters perform the following two distinct configuration aspects:

e XML descriptor generation. EQAL contains an interpreter that synthesizes XML de-
scriptors used by the DAnCE component deployment framework to indicate the QoS re-
quirements of individual component event connections. Since the CCM specification does
not explicitly address the mechanisms for ensuring component QoS properties, the EQAL-
generated descriptors are based on a schema developed for the Boeing Bold Stroke project
for their Prism [114] extensions to CCM (the XML descriptors remain compliant with the
CCM specifications, however). Boeing’s Bold Stroke schema has been carefully crafted,
refined, tested, and optimized in the context of production DRE avionics mission comput-
ing systems [112, 113].

EQAL generates the XML descriptors for one service at a time. To complete the inter-
pretation process, EQAL makes multiple passes through the model hierarchy, correspond-
ing to each different type of publish/subscribe service, until all the service connections are
configured. To simplify the interpreter implementation, EQAL [25] uses the Visitor pat-
tern [28], which utilizes a double-dispatch mechanism to apply file-generation operations

to different types of modeling elements.
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e Service configuration file generation. EQAL also contains an interpreter that gener-
ates event channel service configuration files, called svc. conf files, that are used by the
underlying publish/subscribe services to select the appropriate behaviors of event channel
resource factories [88]. These factories are responsible for creating many strategy ob-
jects that control the behavior of event channels. CIAO supports many (i.e., more than
40) options/policies for different types of publish/subscribe services, which increases the
complexity for application developers who must consider numerous design choices when
configuring the publish/subscribe services. Interactions between event channel policies are
complex due to the possibility of incompatible groupings of options, making hand-crafting
these files hard, e.g., priority-based thread allocation policies are only valid with component
event connections that have assigned priorities.

Much of the complexity associated with validating event channel QoS configurations
is accomplished by EQAL’s modeling constraints and GME’s lightweight model checker.
These constraints prevent application developers from specifying inconsistent or invalid
combinations of policies. After a set of policy settings is validated via modeling constraints,
EQAL generates an event channel descriptor (. ecd) file that contains valid combinations
of policy settings chosen for a particular service configuration.

To address the publish/subscribe federation service deployment challenges, the EQAL
deployment paradigm specifies how components and event channels are assigned to hosts
on a target network. To address the scalability problem in any large-scale event-based ar-
chitecture, CIAO provides publish/subscribe services that support event channel federation.
With CIAQO’s publish/subscribe services, an event channel federation can be implemented
via CORBA gateways. Application developers can configure the location of the gateways
to utilize network resources effectively.

For example, collocating a gateway with its consumer event channel (i.e., the one it

connects to as a supplier) eliminates the need to transmit events that have no consumer
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event channel subscribers. Application developers can also choose different types of gate-
ways based on different application deployment scenarios with different networking and
computing resources. These deployment decisions have no coupling with, or bearing on,
component application logic. The same set of components can therefore be reused and
deployed into different scenarios without modifying application code manually.

The EQAL modeling paradigm allows three types of federation (i.e., CORBA IIOP,
UDP, or IP multicast) to be configured in a deployment. For event channel federation

models, the EQAL metamodel defines two levels of syntactic elements:

* The outer-level, which contains the host elements as basic building blocks and allows

users to define the hosts present in the DRE system and

* The inner-level, which represents a host containing a set of elements (including event
channels, CORBA IIOP gateways, UDP senders and receivers, IP multicast senders
and receivers, and event type references) that allow users to configure the deployment

of these artifacts inside a host.

These two levels are associated with each other via link parts, which act as connection
points between two different views of a model (such as adjacent layers of a hierarchical
model) to indicate some form of association, relationship, or dataflow between two or more
models. The inner-level elements are exposed to the outer-level in the form of link parts
from the outside view, which can be used to connect them to form a federation.

Figure IV.9 is a screenshot that illustrates how we used EQAL to model the outer-level
view of CIAO federated publish/subscribe service in a real-time avionics mission comput-
ing application. This figure shows the outer-level model of the deployment of the federated
publish/subscribe service, which includes nine physically distributed locations that host
CCM components. Figure IV.10 shows the inner-level of the federation configurations,
which establish four CORBA gateways in the track center module to form a federation that

reduces network traffic.
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To ensure the validity of event channel federation models during the deployment phase,
each event channel’s configurations and settings must be model-checked to ensure that
they are consistent with the federation types. For example, IP multicast uses the Observer
pattern [28] capabilities of CIAO’s event channels. When a user chooses IP multicast as
the type of event channel federation, this observer functionality must be enabled for IP

multicast to work properly. These constraints can be checked automatically using EQAL.

IV.2.2.4 Empirical Evaluation of EQAL

We applied EQAL MDE tool to the OEP’s Medium-sized (MediumSP) scenario, which
is a product scenario in the DARPA PCES OEP [85]. The MediumSP scenario is a repre-
sentative real-time avionics mission computing system that employs event-driven data flow
and control [112, 113]. This scenario consists of 50+ components with complex event de-
pendencies that control embedded sensors and perform calculations to maintain displays.
In this type of mission-critical DRE system, reliability and stringent QoS assurance are
essential.

The assembly of 50+ components for the MediumSP scenario requires a complicated
component assembly file that stores the connection information between component ports
as XML descriptors, partitions for process collocation, and interrelationships with other
descriptors (e.g., the relationship between the interface definitions and component imple-
mentations) whose details are spread across other assembly files, such as the implemen-
tation artifact descriptor (. 1ad) file. EQAL shields DRE system developers from these
low-level details by ensuring that all this metadata and dependencies are captured appropri-
ately in various descriptor files it generates in conjunction with other CoSMIC tools, such
as PICML [30].

Every component requires two descriptor files: (1) the software package descriptor for
the component, which contains general information about the software (such as author, de-

scription, license information, and dependencies on other software packages), followed by
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one or more sections describing implementations of that software, and (2) the servant soft-
ware descriptor, which CIAO deployment tools use to load the desired servant library. For
~50 components, ~100 files are therefore required. Once again, EQAL shields DRE sys-
tem developer from these low-level details by generating these files automatically, thereby
ensuring that all interdependencies are captured appropriately in the descriptor files.

For the publish/subscribe service in the MediumSP component assembly, a component
property descriptor (CPF file) is generated for each component event port, an event channel
descriptor (ECD file) will be generated for each real-time event channel filter, and CIAO’s
service configuration file (svc. conf) file) will be generated for each event channel con-
figuration. As a result, 12 ECD files, 53 CPD files, and 1 svc. conf file are generated by

EQAL. Figure IV.11 summarizes the lines of code saved by not having to hand-craft these

files.

File Type # of Files ﬁi\g;?:iel: Iiont:L
CAD 1 750 750
CSD 50 46 2300
SSD 50 43 2150
CONF 3 6 18
ECD 12 8.58 103
CPF 53 43 2279
Total 169 44.97 7600

CAD: Component Assembly Descriptor || CONF: Service Configuration File

SSD: Servant Softwars Descriptor | CPF: Gomponent Property Fie

Figure IV.11: Amount of Code Reduction for Metadata by EQAL in Bold Stroke Medi-
umSP Scenario
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Each component, event service, and their servants are distinguished via a unique identi-
fier (called a UUID) within the descriptor files mentioned above. Moreover, it is necessary
to ensure that when referring to a specific component or event service, the same UUID
is referenced across the different descriptor files. This requirement can yield accidental
complexities when descriptor files are hand-crafted manually. In the MediumSP scenario,
this results in ~100 UUIDs that are referred to across the ~100 descriptor files. EQAL’s
generative tools eliminate these accidental complexities by synthesizing the proper UUID

references in the descriptor files.

IV.2.3 Addressing Deployment Challenges of Publish/Subscribe Services in Compo-
nent Middleware

Component-based DRE systems require real-time publish/subscribe services to be de-
ployed and configured onto the target execution environment. Common D&C concerns
include (1) choices of publish/subscribe services and their bindings to the CCM compo-
nents (2) process-collocation strategies between CCM components and publish/subscribe
services, (3) host-collocation strategy between CCM components and these services, (4)
real-time properties on event channels, event ports, and individual events, (5) choices of
event channel federation strategies, such as using IIOP based CORBA gateways or UDP
based unicast or multicast. To further simplify the DRE system D&C tasks, the real-time
publish/subscribe service should ideally be automatically deployed and configured within
the container and bound to components as an integral part of the standardized D&C pro-
cess as defined by the OMG Deployment and Configuration (D&C) [86], and even using
the same set of D&C tools based on the above standard.

Although the container-based publish/subscribe service integration approach decouples
the functional aspect of CCM components from their publish/subscribe QoS requirements,
there is a lack of a mechanism to automate and orchestrate the deployment and configura-

tion process of publish/subscribe services. This section describes how we have employed
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meta-programming techniques to automate the D&C process of real-time publish/subscribe
services for DRE systems. Our solution is based on the OMG Deployment and Configura-
tion (D&C) specification and consists of two complementary abstraction models, one called
the data model based on XML representation and one called the run-time model based on
CORBA 2.x IDL.

Data Model. The data model uses XML descriptors to describe the real-time publish/-
subscribe service configurations. In order to make our data model compatible with the
OMG standard D&C model, we decouple DRE system publish/subscribe service configura-
tion concerns from standards-based component assembly, and then capture these concerns
using a different set of XML descriptors. These descriptors are based on our proprietary
XML schema called CIAO Events Descriptors, which define a rich set of elements called
policies that capture different D&C concerns of dissimilar real-time publish/subscribe ser-
vices. Figure 1V.12 shows the policies available for the CORBA Real-Time Event Service

(RTES) that can be specified based on this data model.

| Dispatching Strategy
(Reactive or multi-threaded)

Event Dispatching
[ Configuration

Multi-threading Strategy

Channel Scope

| l Configuration | Obeserver Strategy
( ? For Federation

RT Event Channel L—) RAT12 AL L T

— Feature Control
Resource Factory ———— Scheduling Strategy
Locking
Strategy
CIAO RT Event Service Proxy Scope Filtering Strategy
QoS Configuration Configuration
Definition Client Control Timeout Dispatching
| Strategy Strategy
Scheduler Scope Client Disconnection
[ ) (Global or Local) Strategy
Command Line
Options
Channel Servant
L—) Implementation
Selection

Figure IV.12: RTES QoS Configuration Dimensions in Data Model
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On the other hand, system functional aspects are captured through a set of standards-
based Component Deployment Plan Descriptors, which describe the interaction among a
set of CCM components. The Component Deployment Plan Descriptors can refer to any
CIAO Events Descriptors and any elements defined in them through two generic, standards-
based XML elements called deployRequirement and InfoProperty. The Info-
Property element specifies which CIAO Events Descriptor files to use within this de-
ployment plan, and the deployRequirement elements can specify which policies to
be associated with which entities in the deployment plan, including components, connec-
tions and ports. Figure IV.13 shows an example where we associate a CCM event sink port

with a particular event filter, which is defined in a separate XML file.

<connection>

<deployRequirement>
<resourceType>EventFilter</resourceType>
<name>source_filter_id_01</name>
<property>
<name>EventFilter</name>
<value>
<type>
<kind>tk_string</kind>
</type>
<value>
<string>source_filter id_01</string>
</value>
</value>
</property>
</deployRequirement>

</connection>

Figure IV.13: Example QoS Configuration for a CCM Connection

This declarative approach offers a much more powerful and flexible reconfiguration
mechanism than traditional object-oriented approaches. For example, when some deploy-
ment and configuration concerns of publish/subscribe services in an existing DRE system
need to be modified to accommodate a different set of system deployment and configu-

ration requirements, e.g., due to the changes of target infrastructure resources, operating
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conditions or mission goals, a system deployer can easily modify the Component Deploy-
ment Plan Descriptors by referring to another set of publish/subscribe configuration policy
elements because all the XML-based configuration elements in CIAO Events Descriptors

can be predefined and reused through the lazy instantiation [65] idiom.

/// Create one CIAOEventService object in
/// the container, which will be used to mediate
/// the communication of CCM events
module Deployment
{
/// Extension interface pattern
interface CIAOContainer : Container

{

readonly attribute
::Deployment: :Properties properties;

// installs event service
CIAO::CIAQOEventService install_es (
in CIAO::EventServiceDeploymentDescription
es_info)
raises (InstallationFailure);

Figure 1V.14: IDL for CIAO Pub/Sub Service Deployment and Configuration

Run-time Model. To deploy the data model as described above into the target environ-
ment, we extend the standards-based run-time model of the OMG D&C Specification as
a set of CORBA 2.x IDL interfaces to compose real-time publish/subscribe QoS concerns
into the system functional concerns. Our extended run-time model applies the Extension
Interface pattern [108] to make our implementation capable of handling various publish/-
subscribe service QoS management yet are strictly compatible to the standardized inter-
faces. Figure I'V.14 shows part of the CORBA 2.x IDL interfaces of the run-time model.
The D&C framework and tools we developed based on this run-time model are inte-
grated as part of DAnCE, which consists of a set of daemon processes plus a utility pro-
gram called plan launcher. The daemon processes include a global-level daemon process

called the ExecutionManager, which acts as the central portal for the the deployment
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and configuration of different DRE systems within a particular domain. Also, there is an-
other type of daemon process called NodeManager, which serves the deployment and
configuration within an individual node.

All daemon processes can be deployed onto a set of distributed nodes and then coop-
eratively deploy the publish/subscribe services as an integral part of the standards-based
deployment process, all driven by the plan launcher utility. The numbered bullets show
the flow of control among different DAnCE entities, starting from a system deployer us-
ing the plan launcher utility to invoke the service on the ExecutionManager, which
conforms to the standardized D&C process. The design goals and implementation of the
meta-programmable architecture are summarized in Table IV.1.

To design and implement the meta-programmable architecture for publish/subscribe
services for DRE systems, we address the following design goals:

Design Goal 1: Eliminate the need for manually writing code to bridge the CCM Event-
type with ORB publish/subscribe service event types.

Solution approach — Component Implementation Definition Language (CIDL) Com-
piler: We modified the CIAO CIDL compiler so it can automatically generate the servant
code for each CCM component port, which handles many low-level tedious and error-prone
details, such as registering a CCM Event valuetype factory with the ORB, marshaling and
demarshaling different event types, and converting a CCM event type between publish/-
service typed events. Moreover, to reduce the memory footprint of CCM components,
we allow some of such code to be suppressed or conditionally generated through CIDL
compiler command line options.

Design Goal 2: Eliminate the need for manually writing code to identify the event pub-
lishers and subscribers, and set up QoS configurations based on them, such as constructing

event filters based on the event source ID.
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Design Goal 1: Eliminate the
need for manually writing code
to bridge the CCM event type
with ORB publish/subscribe
service event types.

Solution approach — Automatic Code Gener-
ation: We enhanced the CIAO CIDL compiler to
automatically generate the necessary servant code
for each CCM component port, which handles
many low-level tedious and error-prone details,
such as registering CCM Event valuetype factory
with the ORB, marshaling and demarshaling dif-
ferent event types, and converting CCM Event-
type between publish/service typed events.

Design Goal 2: Eliminate the
need for manually writing code
to identify the event publish-
ers and subscribers which are
necessary for certain QoS con-
figurations such as constructing
event filters.

Solution approach — DAnCE Orchestration:
When DAnCE performs deployment, it automat-
ically generates unique identifiers for every event
publisher and subscriber, and maps them to the
specific event types of the corresponding object-
oriented services. This will eliminate the depen-
dencies between the event filters we constructed
and the event sources we declared.

Design Goal 3: Eliminate the
need for manually writing code
to set up event channel feder-
ations, which involves tedious
and error-prone details such as
instantiating gateway objects,
activating gateway endpoints,
and binding them with event
channels.

Solution approach — Service-based Event
Channel Federation We developed a reusable
Event Channel Federation Service within the
CIAO-container framework to allow different
event channel federation mechanisms to be plug-
gable. For example, a UDP Unicast based federa-
tion mechanism can be replaced easily with UDP
Multicast based federation or CORBA IIOP based
federation.

Table IV.1: Meta-programming Design Goals and Solutions

Solution approach — DAnCE: Since DAnCE has a global view of the entire system, it
automatically generates unique identifiers for every event publisher and every event sub-
scriber based on the component instance ID and event port ID string pair. This will elim-
inate the the dependencies between the event filters we constructed and the event sources
we declared.

Design Goal 3: Eliminate the need for manually writing code to set up event channel

federations, which involves a lot of tedious and error-prone details such as instantiating
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gateway objects, activating the endpoints of these objects, and binding them with event
channels.

Solution approach — Service-based Event Channel Federation Mechanism We de-
velop a reusable Event Channel Federation Service within the CIAO-container framework,
which allows different event channel federation mechanisms to be pluggable based on spe-
cific target running environment and system requirements. For example, UDP Unicast
based federation mechanism can easily be replaced with UDP Multicast based federation
or CORBA IIOP based federation by configuring the descriptors based on the enhanced

data model.

IV.3 Empirical Performance Evaluation

The success of QoS-enabled component middleware technologies to develop and de-
ploy DRE systems depends on the real-time performance of the publish/subscribe mecha-
nisms supported by them. This section provides empirical results for the container-managed
CORBA real-time event service (RTES) integrated within our CIAO QoS-enabled compo-
nent middleware. We choose RTES as a vehicle to evaluate our design because it is a
mature real-time publish/subscribe implementation based on real-time CORBA and has
been widely used in many DRE systems [87].

Our performance evaluation of container-managed RTES focuses on answering two
key questions: (1) how well does the performance of container-managed RTES in CIAO
middleware compare with that of the widely used CORBA 2.x RTES implementation in
TAO object-oriented middleware, which is used as a baseline for RTES performance, and
(2) how well does the container-managed RTES in CIAO scale with the different number
of publishers and subscribers under different QoS configurations. We illustrate how the
flexible configuration capabilities of CIAO’s container-managed RTES can provide desired

event delivery QoS without modifications to the component implementations.
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IV.3.1 Experimental Testbed

All our benchmarks were conducted on ISISlab (www.isislab.vanderbilt.
edu), which is a testbed of computers and network switches powered by Emulab software
suite that can be arranged in many configurations. ISISlab consists of 6 Cisco 3750G-24TS
switches, 1 Cisco 3750G-48TS switch, 4 IBM Blade Centers each consisting of 14 blades
(for a total of 56 blades), 4 gigabit network IO modules and 1 management module. Each
blade has two 2.8 GHz Xeon CPUs, 1GB of RAM, 40GB HDD, and 4 independent Gbps
network interfaces. The underlying hardware used by ISISlab can be configured to provide
a virtual network topology and configure various parameters of that network including link
bandwidth capacities, node characteristics for use in routing, traffic shaping or traffic gen-
eration, and link error rates.

In our tests, we used up to 5 blade nodes. Each blade ran Fedora Core 4 Linux, version
2.6.16-1.2108_FC4smp. All our benchmark applications were run in the Linux real-time
scheduling class to minimize extraneous sources of memory, CPU, and network load. For

each test, we run the iteration at least 10,000 times.

IV.3.2 Experiment Approach

The most important metric for any publish/subscribe service is the event latency, i.e., the
time elapsed from when a publisher sends an event until the last subscriber interested in the
event receives it. Compared with measuring the latency in the event delivery within a single
node, measuring the latency for a distributed case where multiple nodes are involved is hard
since events are delivered via a uni-directional flow of communication from publishers
to subscribers. Event delivery time and jitter is comparable to the network propagation
delay, because a distributed clock precision is bounded by the jitter [52]. Measuring the
latency of event propagation, where event publisher and event subscriber are deployed in

different nodes, is impossible. Fortunately, the latency for the centralized configuration
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can be measured directly using a subscriber located in the same node as the publisher and

measuring the roundtrip delay as shown in Figure IV.15.

Host A Host B

N

PushSuppher\ 1

EventChannel

Adua1eT

PushConsumer

Figure IV.15: Experimental Setup to Measure Event Latency

The next section presents our experimental results with different event service QoS
settings, illustrating their effects on the provisioning of event communication QoS for dif-
ferent DRE system deployment scenarios, including one-to-one, one-to-many, collocated
deployment, distributed deployment, as well as varying event payload size. For each test,

we run the iteration for 10,000 times, then measure the average latency.

IV.3.3 Comparing Performance of CIAO’s Container-Managed RTES and TAO’s
RTES

In this test we measure the end-to-end latency introduced between publishers and sub-
scribers. In order to measure the performance of CIAO’s container-managed RTES, both
the publishers and subscribers are developed as reusable CCM components, which can be
deployed by DAnCE for different test cases. On the other hand, for TAO’s RTES both the
publishers and subscribers are developed in the form of CORBA objects. To ensure an
accurate comparison between the CIAO container-managed RTES and TAO’s RTES im-
plementations, we designed both tests using the same set of QoS configuration settings on

publishers, subscribers and event channels. The subscriber does nothing with the events
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it receives other than storing the data in a preallocated array. Both tests are configured to
measure the end-to-end publish/subscribe latency using the IIOP communication mecha-
nism, which uses point-to-multipoint event delivery rather than IP multicast. We measure
the end-to-end latency based on different event payload size as well as increasing number
of subscribers.

In many real-world DRE systems, it is common that multiple components are deployed

within the same component server but still communicate with each other through CCM
ports, i.e., facets, receptacles, event sources, and event sinks. As a result, it is important to
measure the performance of process-collocated cases. Our performance evaluation in this
dimension is described below.
Latency Results for Process Collocated Event Processing. In this test all the event pub-
lishers, subscribers, and the event channel are collocated in the same process, which elim-
inates effects of ORB remote communication overhead. In the container-managed RTES
case, both the publisher and subscriber components are deployed into the same container
which in turn is hosted in a single CIAO component server. The end-to-end latency is
determined by the publisher sending out the timestamp right before the push call and sub-
sequently the subscribers calculating the difference between the timestamp at the publisher
side and the subscriber side. We also use variable-sized octet sequence as the payload so
that we can easily control the volume of the payload.

One important fact worth mentioning concerns the event data type we used in TAO’s
RTES benchmarking test. Since all the event source and event sink ports of CCM compo-
nents are defined as Eventtype, which is a specialized valuetype, it is unavoidable to
eliminate the additional overhead incurred due to marshaling/demarshaling of such a data
type. To ensure a fair comparison between the performance of TAO’s RTES and CIAO’s
container-managed RTES, we send valuet ype data in both test cases, and make the octet
sequence payload as the member of this data type.

Figure I'V.16 shows the latency results for point-to-point (i.e., one-to-one) configuration.
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In this test, there is only one publisher and one subscriber both of which are collocated
within the same event channel in a single OS process.

Figure IV.17 shows the latency results for the one-to-many case. In this test, we increase
both the number of subscribers and the payload size to see how the end-to-end latency is
affected. For the one-to-many case, the measured end-to-end latency is determined by the
publisher sending out the timestamp then calculating the difference between the timestamp

at the publisher side and the last subscriber that receives it.
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Figure IV.16: Collocated Point-to-Point Latency

Analysis. Our collocation experimental results indicate that the event dispatching overhead
in CIAO’s container-managed RTES incurs about 20~25% latency performance overhead
consistently over the TAO’s RTES implementation. This overhead is primarily due to two
reasons: (1) in contrast to programming with CORBA RTES, where the publisher CORBA

objects and the subscriber CORBA objects can directly interact with the event channel as
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Figure IV.17: Collocated One-to-Many Latency

RTES clients, the OMG CCM standard introduces multiple indirections involving com-
ponent executors that must communicate through their individual contexts, which in turn
interact with the component servants and CORBA RTES, and (2) the additional indirection
introduced with the higher-level container mediation interface as described in Section I'V.2.

While it is inevitable to avoid the overhead caused by the indirection defined in the
OMG CCM standard without breaking standards-based interfaces, we applied process-
collocation optimization to CIAO’s implementation to improve the performance and pre-
dictability of collocated component communication. The process-collocation optimization
we conducted improves the performance and predictability for objects that reside in the
same address space as the servant implementation, while maintaining locality transparency.

Our process-collocated experimental results demonstrate that the performance opti-
mizations of object-oriented real-time event dispatching are preserved within a container-
based solution. It is also interesting to observe that as the number of subscribers increase,

the increase in latency is less than linear in both TAO’s CORBA RTES implementation and
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CIAO’s container-managed RTES implementation, due in large part to the Handle/Body
idiom used to optimize the processing of CORBA Any data types in TAO’s RTES imple-
mentation [105], which is inherited by CIAO RTES. This idiom presents multiple logical
copies of the same data while sharing the same physical copy.

CIAO’s container-managed RTES implementation still preserves the performance of
this optimization, which makes our solution scalable and hence suitable for large-scale
DRE systems where there exist a large number of subscribers.

Latency Results for Remote Event Processing. ! In this test, we run the experiment
by creating two different processes within a single node to allow the events to be sent
remotely. The event publisher and the event channel are collocated in one process, while
the subscribers are in the other process. Figure IV.18 and Figure IV.19 show the latency

results of point-to-point and one-to-many configurations, respectively.
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Figure 1V.18: Two Process Point-to-Point Latency

Analysis. The results indicate that the remote event processing latency in both CIAO’s
container-managed RTES and TAO’s RTES are much higher than that of process-collocated

cases (both incurring about 6~10 times overhead) due to the process boundary crossing,

'In this test configuration, a "remote" event is one intended for a subscriber located in the other process.
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Figure IV.19: Two Process One-to-Many Latency

though they are close to the performance of a remote operation invocation. With increasing
number of event subscribers and payload size, the results still show that the event dispatch-
ing performance in container-managed RTES in CIAO consistently has about 70~80%
performance of TAO’s RTES in all test cases. In conjunction with the results of process-
collocated tests, these results further confirm that the CIAO container-based RTES solution
has predictable performance which is comparable with TAO’s RTES, and is thus suitable

for DRE systems.

IV.3.4 Evaluating Scalability of CIAO’s Container-Managed RTES

Another important characteristic of real-time publish/subscribe services is scalability.
As discussed in Section IV.2, CIAO’s container-managed RTES provides support for both
single event channel dispatching as well as federated event channels across multiple con-
tainers. To evaluate scalability in this test we measure the throughput of CIAO RTES’ event
dispatching under different configuration settings. Our goal is to demonstrate the efficiency
of remote event processing using federated event channels where there are multiple remote

subscribers or multiple distributed nodes. As a result, we split our tests into two parts, one
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with multiple subscribers on the same node but different processes, and one with multiple
subscribers distributed on different nodes, and observe how different configurations can

affect scalability.
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Figure 1V.20: Host Collocated Throughput Measurement: All Subscriber on a Differ-
ent Component Server

Scalability Results for Host Collocated Remote Event Processing. This test measures
the throughput of CIAO’s container-managed RTES where all the subscriber components
are hosted in a remote container, while the publisher component is hosted in another con-
tainer. Both containers are hosted in different CIAO component server processes but on
the same node. We send a fixed number of events on the publisher side and measure the
rate of the number of events dispatched per second. Figure 1V.20 shows the throughput
results for this configuration. The bottom two curves show the throughput results when
there is no container-managed event channel configured on the subscriber side, and all the
subscriber components are directly connected to the real-time event channel hosted in the

publisher side container. The upper two curves show the throughput results where both

90



go0o

oo W

Taoo

gooa
5000

4000
3000

2000

L e e e e e e =

4 B 18 a2 B4 128 286 Bl2 1024 2048 4088
Payload Size (Bytes)

=1 pub 2 =ub/=zingle/TCP =1 puh 4 sub/zingle/TCP
a==w==] pub 2 sub/federated/TIF multicast ==se=] pub 4 sub/federated/UDP multicast

Throughput (events/second)
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Node

containers have a real-time event channel configured locally and they are federated through
UDP unicast gateway objects [88].

Analysis. For many DRE systems it is quite common that there are many subscriber com-
ponents collocated in a single process but remote to the publisher components. Our results
indicate that a federated group of event channels can improve the throughput performance
dramatically because publishers and subscribers connect only to their local event channel,
while event channel instances talk to each other via the CORBA bus. When multiple sub-
scribers are collocated in the same process, instead of making multiple remote calls (one
for each subscriber), only one remote call is necessary from the publisher process to the
subscriber process. This configuration improves the total throughput by reducing the aver-
age latency for all the subscribers in the system because subscribers and publishers exhibit
locality of reference, i.e., most subscribers for any event are in the same domain as the
publisher generating the event. We can imagine that in a networked environment, when
multiple remote subscribers are interested in the same event only one message is sent to

each remote event channel thereby also minimizing the waste of network resources.
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Scalability Results for Distributed Event Processing. This test measures the through-
put of CIAO’s container-managed RTES when the subscriber components are hosted in
different containers on different physical nodes, while the publisher component is hosted
in another remote node. Again, we send a fixed number of events on the publisher side,
and measure the dispatching rate of number of events per second. Figure IV.21 shows
the throughput results for this configuration. The bottom two curves show the through-
put results when there is no container-managed event channel configured on the subscriber
side, and all the subscriber components are directly connected to the real-time event chan-
nel hosted in the publisher’s side container through TCP-based IIOP protocol. The upper
two curves show the throughput results where all the containers have their own real-time
event channel configured locally and they are federated through UDP multicast gateway
objects [88].

Analysis. The results indicate that the throughput performance improves substantially due
to the UDP multicast federation settings among different container-managed event channels
distributed across different nodes. Using a multicast protocol can avoid duplicate network
traffic, and offload event dispatching workload from the CPU to the network infrastruc-
ture. The use of multicast is ideal for the scenario where many subscribers are distributed
across different nodes in a networked environment since increasing the number of nodes
distributed across the network has little effect on UDP multicast. Since currently TAO’s
RTES only supports unreliable multicast, we are working on a reliable multicast solution
within TAO’s RTES design so components using CIAO’s container-managed RTES can

take advantage of this feature.
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IV.4 Summary

R&D over the past decade on object-oriented standards-based middleware, such as real-
time CORBA and various real-time publish/subscribe services built atop it, has demon-
strated its effectiveness in developing and supporting QoS requirements of DRE systems.
However, building flexible and robust software for large-scale DRE systems with such an
approach is still challenging because the need for determinism and predictability often
results in tightly-coupled designs. For instance, conventional mission-critical applications
built with object-oriented middleware consist of closely integrated responsibilities; for each
component, application developers still have to write code to handle multiple aspects, such
as real-time event dispatching, scheduling, connection management and periodic event pro-
cessing. Tight coupling often yields inflexibility and thus can substantially increase the
effort and cost of integrating new and improved system features.

Component middleware has already received widespread acceptance in the enterprise
business and desktop application domains. However, developers of DRE systems have
encountered limitations with the available component middleware platforms, such as the
CCM and J2EE. In particular, component middleware platforms lack standards-based real-
time publish/subscribe communication mechanisms that support key QoS requirements of
DRE systems, such as low latency, bounded jitter, and end-to-end event propagation. This
chapter provides guidance to establish the feasibility of integrating mature object-oriented
real-time publish/subscribe services in QoS-enabled component middleware architectures.
In particular, our results indicate that the approach of using container-managed real-time
publish/subscribe service not only provides the most flexible way to developing DRE sys-
tems by taking advantage of standards-based component models, and the deployment and

configuration model, but also provide predictable end-to-end performance and scalability.

93



CHAPTER V

TECHNIQUES FOR ENSURING PREDICTABILITY OF DEPLOYMENT AND
CONFIGURATION

Developing distributed real-time and embedded (DRE) systems whose quality of ser-
vice (QoS) can be assured even in the face of changes in available resources or QoS require-
ments is an important and challenging R&D problem. Systems with such characteristics
are called open DRE systems [29] since they operate in an open environment and must be
prepared to accommodate changing operating conditions or requirements, such as power
levels, CPU/network bandwidth or mission modes. Examples of open DRE systems include
shipboard computing environment [109], and intelligence, surveillance and reconnaissance
systems [111].

Open DRE system are often large and complex, e.g., a shipboard computing system
may consist of thousands of software components that run a wide range of missions, such
as ship navigation, ship structural health monitoring, vision-based object tracking and ob-
ject characterization. To manage the overall complexity of such systems, the missions
are often decomposed into many domain-related tasks that can be modeled as operational
strings [59], which are assemblies of software components that capture the partial order
and workflow of a set of executing software capabilities for particular domain tasks.

Operational strings have the following properties that make them useful building blocks

for open DRE systems:

* Distributable, i.e., operational strings can be deployed onto multiple nodes of the
target running environment, and different components in operational strings can com-

municate remotely with each other.
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* Concurrent, i.e., operational strings can run concurrently in the same target en-
vironment and share many system resources, such as CPU, memory, and network

bandwidth.

* On-demand, i.e., operational strings can be dynamically populated at system run-
time and then deployed into the target running environment on-demand to accommo-

date changing mission goals.

* Cooperative, i.e., to achieve certain mission goals different operational strings can
cooperate with each other through their ports, which delegate to the ports of mono-

lithic components that consist of the operational strings.

* Prioritized, i.e., different operational strings can be assigned with different priorities
by system architects or online planners to reflect their importance to certain mission

tasks or to the overall system.

The dynamic nature of open DRE systems requires the deployment and configuration
(D&C) of scores of operational strings at run-time to ensure that executing systems keep in
sync with changing mission goals and resource availability. The run-time management of
operational strings in DRE systems is hard since the D&C framework must be scalable and
predicable. It is therefore essential that D&C frameworks be able to dynamically deploy
and configure operational strings in a timely and predictable manner.

In complex DRE systems, many operational strings may be deployed dynamically, e.g.,
in response to mission mode or environmental changes. If dependencies exist among these
operational strings, deployment priority inversions can occur at run-time. A deployment
priority inversion occurs when a higher priority operational string cannot be deployed be-
fore lower priority operational string(s) because of the dependencies between them. Ex-
isting D&C frameworks [20, 21, 93] only consider the dependency between operational
strings and ignore their priorities, which can cause unbounded deployment priority inver-

sions for DRE systems.
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Solution Approach — Partial Priority Inheritance via Graph Recomposition.

To address the challenges of open DRE systems described above, we developed a tech-
nique based on an algorithm called partial priority inheritance via graph recomposition
(PARIGE). This algorithm analyzes the dependencies between operational strings and re-
moves all the dependencies from higher priority operational strings to lower priority ones
by promoting! components from lower priority operational strings to higher priority ones.
By applying our technique, a D&C framework can avoid potential priority inversions when
multiple operational strings are deployed at run-time.

Figure V.1 shows the three three main steps of our approach:

» Step 1 converts a deployment descriptor (which contains metadata describing a set of
operational strings) into an in-memory directed graph representation. Each vertex in
the graph represents a component in the operational string and each edge represents

a connection between two components.

* Since a deployment plan may have multiple operational strings with different pri-
orities having dependencies among each other, step 2 analyzes the dependency re-
lationship between all the operational strings by perform a graph-based algorithm
called partial priority inheritance via graph recomposition. This algorithm removes
all the priority inverted dependencies between operational strings by promoting com-

ponent(s) from the lower priority operational string to the higher priority string.

» After graphs are recomposed, step 3 converts them back to deployment descriptor
format and fed to the D&C framework for deployment. For the operational strings
with dependencies with each other, the D&C framework can then deploy the opera-

tional strings from the highest priority to the lowest priority.

When a DRE system has many operational strings with complex dependencies it is

'In the context of this paper, promoting a component means that before this component is deployed
it is temporarily moved from a lower priority operational string to a higher priority operational string for
deployment purpose only.
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hard to determine manually which components in which operational strings should be pro-
moted and which priority to promote to. This chapter therefore makes the following three

contributions to the research on D&C for component-based DRE systems:

* Analyze dependency relationships among operational strings to determine how each

relationship can affect deployment predictability.

* Present a multi-graph algorithm called “partial priority inheritance via graph recom-

position” to avoid deployment priority inversion.

* Empirically evaluate the multi-graph algorithm to determine how effective it is on a

representative DRE system.

V.1 Challenges of Ensuring Predictability of D&C

This section describes different configurations of operational strings in DRE systems
that can cause deployment priority inversion to occur due to the dependencies among the
strings. To make our discussion concrete, we use NASA’s Magnetospheric Multi-Scale
(MMS) mission system [119] as a case study. We first present the case study and then
identify key challenges that must be addressed to ensure D&C predictability for the case

study.

V.1.1 Overview of NASA MMS Mission System

The NASA Earth Science Enterprise’s MMS mission system system uses five satellites
with multiple sensors on each satellite to perform solar-terrestrial probe task. The satellites
orbit the earth in formation and collect electromagnetic and particle data in the earth’s mag-
netosphere. The MMS mission operates in three data modes: slow, fast, and burst. These
data modes may also include different goals, orbits, and data priorities. Each satellite must

be capable of determining the necessary task sequences to achieve prescribed goals based
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on the current environmental and system conditions, as well as revising task sequences in
response to changing conditions.

To achieve autonomy, an automated planner is deployed within the MMS system to han-
dle autonomous mode changes driven by the satellite position and the results of analyzing
collected data. The task sequences are implemented by components for coordinating the
trajectory and orientation of satellites, sensor selection and data collection for individual
satellites, and data integration and compression to create telemetry streams that are beamed
down to earth stations.

Figure V.2 shows three operational strings that a planner generates for a mission task of

one of the satellites. Each operational string has different deployment priority (i.e., high,
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Figure V.2: Operational Strings Generated by Planner

medium, and low) that are determined by how each operational string is accessed by the

overall MMS system. The three operational strings are briefly described as follows:

* Operational string A defines a mission-critical task that collects field data when
a satellite moves to particular locations. To ensure this task is performed properly,

the operational string must be deployed as fast as possible to avoid loss of data.
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Operational string A can store the collected data in its own data store, but can also

send the data to other operational strings through its event sources.

* Operational string B is designed for a domain-centric data analysis. Different sci-
entific analysis tasks can be configured through the facets of components of this
operational string. For example, Science Agent components can be configured to
achieve scientific objectives, such as analyzing models of complex phenomena like

extended weather forecasting.

* Operational string C is for less essential data analysis task and can collect auxiliary
field data, such as Sun zenith, satellite view zenith [96], which can serve as additional
input for analysis. This operational string only operates occasionally, e.g., when
the data analysis component in operational string B explicitly issues a request to
request such data as additional input for scientific analysis models. The components
in operational string C are driven by events exchanged through their event sources

and sinks.

Operational strings are organized from domain perspective, e.g., each operational string
is designed to accomplish certain domain tasks, such as collecting certain field data, or
perform certain analysis on different data models. In our MMS scenario, operational string
A services (e.g., collecting essential field data for scientific analysis) are most important
for the MMS system, so it has the highest deployment priority among the three operational
strings. Conversely, operational string C has the lowest deployment priority among the
three since it is designed as a less essential service, i.e., collecting auxiliary data only
when necessary. Finally, operational string B is designed to have medium deployment
priority because its scientific analysis role is less important than operational string A, but
more important than operational string C. Operational string B, however, needs to send

events to operational C to notify it to collect auxiliary field data and perform analysis when
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necessary. The deployment priorities of operational strings are not the same as execution
priorities because the latter deals with real-time QoS at run-time.

As shown in Figure V.2, there are two dependencies between operational strings: from
A to B and from B fo C. These dependencies cross the boundary of an individual operational
string. We therefore call them external dependencies, in contrast to those dependencies

within an operational string.

V.1.2 Challenges of Ensuring D&C Predictability in the MMS Case Study

Below we describe four challenges that arise when operational strings are deployed

dynamically in open DRE systems, such as the NASA MMS mission case study described
above.
Challenge 1: Avoid deployment priority inversion between two operational strings.
In conventional D&C technologies, such as the OMG D&C specification [79, 93], when
a component of an operational string has a connection (either facet/receptacle or event
sink/source) to another component in a separate operational string, an external reference
must be specified to indicate the remote component and the provided port in the other
operational string upon which it depends. To deploy this operational string successfully,
the external reference endpoint of the other operational string must be activated before the
deployment of source operational string can occur. When such a dependency is from a
higher priority operational string to a lower priority operational string, however, the low
priority operational string must be deployed before the high priority operational string can
be deployed to avoid deployment failure caused by the dependency, which results in a
priority inversion at deployment-time.

For example, in our MMS system case study described in Section V.1.1 the dependency
from operational string B (medium priority) to operational C (low priority) can cause a de-

ployment priority inversion between operational strings B and C. This dependency requires
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the deployment of operational string C before operational string B to resolve the depen-
dency. Not all components in operational string C need be deployed to resolve the external
dependency between B and C.

Subsection V.2.2.1 describe how we address this challenge by promoting components

from the lower priority string to the higher priority string.
Challenge 2: Avoid deployment priority inversion propagation effect. A more general
priority inversion situation involves multiple operational strings. In this case, to resolve
a dependency from a higher priority string to a lower priority string, not only must the
lower priority string be deployed before the high priority operational string, but also the
operational strings the lower priority string depends on. When these operational strings
have lower priority than the high priority string, however, deployment priority inversion
will occur between operational strings.

For example, in our MMS system case study operational string A has a high prior-
ity and an external dependency on operational string B. More specifically, it is the Data
Analysis component of operational string B that A depends on. The Data Analysis
component further depends on the Messaging component in operational string C, how-
ever, which can cause another deployment priority inversion between A and C.

Subsection V.2.2.2 describes how we address this challenge by recursively tracing de-
pendencies from the high priority string to all lower priority strings by finding the transitive
closure.

Challenge 3: Avoid deployment failure when circular dependency exists among mul-
tiple operational strings. Conventional D&C techniques [79, 93] will fail if a circular de-
pendency exists among multiple operational strings. The central, coordinated and phased
deployment technique applied in conventional D&C technologies can effectively address
the circular dependency problem within a single operational string. Conventional D&C
technologies cannot handle cases, however, where a D&C request involves multiple opera-

tional strings and if a circular dependency exists among these operational strings.
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Limitations with circular dependencies arise because the deployment of an operational
string is treated as an indivisible process, i.e., conventional D&C technologies treat oper-
ational strings as primitive units. If a dependency exists between two operational strings,
therefore, one must be deployed before another to resolve such dependency requirements.
Such treatment, however, makes it hard to handle circular dependencies among different
operational strings.

For example, in our MMS system case study a circular dependency will exist between
A, B, and C if the less essential operational string C depends on operational string A because
it needs to access a type of service provided by A. Since conventional D&C approaches treat
each operational string deployment as an indivisible process, such deployments cannot be
handled properly.

Subsection V.2.2.3 describes how we address this challenge by promoting components
in the circular dependency trace among operational strings.

Challenge 4: Improve the overall utility of the operational strings being deployed. The
dynamic nature of open DRE systems require on-demand deployment of many operational
strings that cooperate with each other to ensure the system is kept in sync with changing
mission goals or environmental changes. Since multiple operational strings with different
importance to the entire DRE system may be deployed at the same time, the goal of a D&C
framework is to deploy these operational strings in an effective way to improve the overall

QoS of DRE systems in the following two dimensions:

* Since operational strings with the highest priority are the most important to the entire
DRE system, these operational strings should be deployed as early as possible to
ensure the DRE system responsiveness due to the changing environment or mission
modes. For example, in our MMS system case study, operational string A should

always be deployed immediately since it has the highest priority.

 Since each operational string has a utility value associated with it, a D&C frame-

work should try to finish deployment of each individual operational string as early as
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possible by taking its utility value into account. For example, in our MMS system
case study there is a dependency from operational string A to operational string B.
Although the deployment of operational string A should finish first due to its higher
priority, the time to finish deploying operational string B is also a contributing factor

to the overall system utility and should thus be considered.

Subsection V.2.2.4 describes how we address this challenge by selectively applying the

PARIGE algorithm to the input of operational strings.

V.2 A Partial Priority Inheritance via Graph Recomposition Algorithm

This section describes how we resolved the challenges described in Section V.1.2 using
an algorithm called partial priority inheritance via graph recomposition (PARIGE). This
algorithm converts each operational string into a graph, where each vertex and edge of
the graph represent a component and a connection/dependency between two components,
respectively. If there is an external dependency between operational strings, then the graph
converted from one operational string will have a special type of vertex that represents
the external dependency. This special vertex type contains information about the actual
refereed operational string and the component in the operational string that it depends on.

The PARIGE algorithm promotes components from one graph to another based on op-
erational string characteristics, including their priorities and their dependency relationships
with other operational strings in the same deployment request. After graphs for all the
operational string are recomposed to account for the component promotion, a new set of
operational strings will be populated from these recomposed graphs. These new strings
avoid deployment priority inversion between operational strings and break the circular de-
pendency among all the operational strings. These new set of operational strings can then

be deployed by conventional D&C technologies, such as J2EE or OMG D&C models.
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To demonstrate the effectiveness of PARIGE, we integrated the algorithm into the cen-
tral coordinator Execut ionManager of OMG D&C model to perform experimental
analysis. The Execut ionManager runs as a daemon and is used to manage the deploy-
ment process for a domain. In accordance with the D&C specification, a domain is a target
environment composed of nodes, interconnects, bridges, and resources. An Execution-—
Manager plays the role of central coordinator that manages the nodes in the DRE system
environment. On each node, a NodeManager runs as a daemon process and manages the
deployment of all components that reside on that node, irrespective of which application

they are associated with.

V.2.1 Overview of the PARIGE Algorithm

Although the PARIGE algorithm recomposes operational strings by promoting com-
ponents from one operational to another, it has also the following properties that makes it
well-suited for D&C of DRE systems:

1. The PARIGE algorithm does not affect the functional behavior of component-
based DRE systems. Component-based DRE systems are deployed in the form of opera-
tional strings that consist of multiple monolithic components connected with each other via
their ports. Two operational strings can have dependencies with each other. A dependency
between two operational strings is essentially a connection from a monolithic component
in one operational string to a port of a monolithic component in the other operational string.

The PARIGE algorithm evaluates the component dependency relationships and their
priorities and recomposes these operational strings to avoid deployment priority inversion.
From the perspective of all operational strings to be deployed, however, the individual
monolithic components and their connections among each other are not modified by the
algorithm. In particular, the effect of the PARIGE algorithm on operational string recom-
position is only visible for the D&C framework, which does not affect the running system’s

functional behavior. This algorithm thus does not affect the functionally of operational
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strings because the topology of all the operational strings (including all the monolithic
components and connections) that fulfills functional behavior of the system remains un-
changed.

2. The PARIGE algorithm does not affect the QoS behavior of operational strings.
When components are promoted from a lower priority operational string to a higher priority
operational strings, the priority of the components is also bumped up to match the priority
of the higher priority string, which is essential for a task to avoid priority inversion at
deployment-time. Since the PARIGE algorithm only promotes components that one or
more higher priority operational strings have dependencies on at deployment time, it does
not change the actual real-time priorities or other real-time QoS configurations designed for
run-time. Therefore, the PARIGE algorithm does not affect the QoS behavior of operational

strings.
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Figure V.3 presents an overview of the PARIGE algorithm by showing an example with
three operational strings having priorities high, medium, and low.

The dotted and solid arrows represent dependencies between operational strings. In
particular, the dotted arrows in the figure represent priority inverted dependencies, i.e., de-
pendencies from higher priority operational strings to lower priority operational strings.
Likewise, the solid arrows represents external dependencies without causing priority inver-
sion.

The numbered vertices in Figure V.3 denote the vertices promoted from one graph into
another. For example, in the first iteration of the algorithm, one vertex is promoted from
the medium priority operational string to the high priority operational string and another
vertex is promoted from the low priority operational string to the high priority string. In
the second iteration, another vertex is promoted from the low priority operational string to
the medium priority string.

The PARIGE algorithm recomposes the graphs by parsing the input set of graphs and
removing dotted arrows by promoting some component(s) from a lower priority operational
string to a higher priority string. This process may introduce some new dependencies
between operational strings due to component promotion. The algorithm, however, only
introduces solid arrows, i.e., only dependencies from lower priority operational strings to
higher priority strings exist after the recomposition.

When the algorithm finishes, all dotted arrows in the graphs will be removed and there
will be no dependencies from higher priority operational strings to lower priority opera-
tional strings. As a result, both priority inversions at run-time and deployment-time can be
avoided. Moreover, all circular dependencies among operational strings, if any, will also

be removed in the recomposition process.
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V.2.2 Analysis of Operational String Dependencies with Deployment Priority Inver-
sions

The goal of the PARIGE algorithm is to remove al/l dependencies from higher priority
operational strings to lower priority operational strings. To accomplish this, the algorithm
starts with the operational string having the highest priority and processes all the external
dependencies of this operational string. After all external dependencies from the highest
priority operational string are removed, the algorithm then processes the operational string
with the next highest priority. When multiple operational strings have the same priority, we
apply the following tie-breaking policies sequentially: (1) evaluating the second metric of
each operational string, if given, (2) evaluating the number of external dependencies to the
same priority operational strings and treating the operational string with the least number of
external dependencies as the higher priority than others, and (3) breaking the tie randomly
if such a tie still exists.

When processing an external dependency from a higher priority operational string to
a lower priority operational string, the algorithm must trace the dependency into other
operational strings and promote components from them if the lower priority operational
string has dependencies to them. For example, if a high priority operational string depends
on a component X in a medium priority operational string, and if component X also has
dependency on a component in a low priority operational string, then the component in the
low priority string also must be promoted into the high priority string.

We define a dependency trace as a totally ordered sequence S. Each element in the
sequence is a component of an operational string that has a priority value associated with
it. The starting element of the sequence is the source component of the external dependency
of interest. The PARIGE algorithm analyzes all the dependency traces in the operational
strings and recomposes the operational strings based on dependency trace characteristics.

To analyze the dependency trace we classify the operational dependency relationships into
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the three categories described below, which will be used to address the first three challenges

in Section V.1.2.

V.2.2.1 Handling Challenge 1 — Promotion of Components Between Two Opera-
tional Strings (Non-circular)

In this case, a dependency occurs between two operational strings, where a high priority
operational string has a dependency on a lower priority operational string, as shown in
Figure V.4. We assume no circular dependency exists in this case (circular dependencies
will be discussed in Section V.2.2.3).

As shown in Figure V.4, the unique characteristic of this category is that the dependency

trace does not cross the boundary of the lower priority operational string. Since no other

High Priority ) Low Priority

----------- » Dependency from Higher Priority to Lower Priority

Figure V.4: A Dependency Trace Spanning Two Operational Strings Only

operational strings are involved besides the two operational strings of interest, removing
such a priority inverted external dependency only requires promoting all components in the
dependency trace from the lower priority operational string to the high priority one.

In the context of MMS case study, a priority inverted external dependency exists be-

tween operational string B and operational string C, as illustrated in the upper half of
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Figure V.5. Our solution removes this priority inverted external dependency by promot-
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Figure V.5: A Dependency Trace across Two Operational Strings

ing components Messaging and Data Fusion from operational C to operational B,
as illustrated in the bottom half of Figure V.5. After the promotion, operational string B
does not have any dependencies to operational string C. The two newly created external de-
pendencies from the two Filtering components in operational string C to operational
B are essential to make sure the functional behavior of the MMS system is not changed.
Since these two newly created external dependencies are not priority inverted, deployment

priority inversion between the two operational strings can be avoided.
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V.2.2.2 Handling Challenge 2 — Promotion of Components Across Multiple Opera-
tional Strings (Non-circular)

This more general case involves multiple operational strings, with a dependency trace
that spans across the operational strings. As before, we assume no circular dependency
exists since that will be discussed as a separate case in Section V.2.2.3.

A dependency trace that spans across multiple operational strings can be further cate-
gorized into the following two situations.

1. Ordered dependency trace. Figure V.6 shows an ordered dependency trace. In

Can have other external Can have other external
dependencies. dependencies.

High Priority 1 [ Medium Priority 1 Low Priority

---------- » Dependency from Higher Priority to Lower Priority
— Dependency from Lower Priority to Higher Priority

Figure V.6: An Ordered Dependency Trace

an ordered dependency trace the priorities of each element in the sequence have a non-
increasing order, i.e., all external dependencies in the sequence are priority-inverted. As a
result, all the priority-inverted external dependencies must be removed through the com-
ponent promotion mechanism described in Section V.2.1. The category described in Sec-
tion V.2.2.1 where only two operational strings are involved is a special case of an ordered
dependency trace. To remove all priority-inverted external dependencies, the PARIGE al-
gorithm simply promotes all components in the dependency trace into the operational string

where the first component of the dependency trace is located.
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2. Unordered dependency trace. Figure V.7 shows an unordered dependency trace,
where the priorities of the elements in the dependency trace do not have a particular order,
i.e., some external dependencies are priority-inverted (shown as dotted lines), whereas oth-

ers are not (shown as solid lines). The PARIGE algorithm always starts with the highest

Can have other external Cannot have other
dependencies. external dependencies.
Medium Priority 1 [ Low Priority 1 High Priority
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---------- > Dependency from Higher Priority to Lower Priority
—_— Dependency from Lower Priority to Higher Priority

Figure V.7: An Unordered Dependency Trace

priority operational string and removes all external dependencies on it before moving to the
next operational string. The algorithm therefore ensures that in an unordered dependency
trace, the elements whose priorities are higher than that of the starting element will have
no external dependencies, which ensures the convergence of the algorithm.

For example, given the three operational strings from Section V.1, if the high priority
operational string has an external dependency on a component in low priority operational
string and this component must be promoted into the medium priority operational string.
When this promotion happens, the high priority string will depend on the medium priority
string, which introduces additional priority-inverted external dependencies.

To remove all priority-inverted external dependencies of an unordered dependency
trace, we break the entire dependency trace into two concatenated segments. As shown

in Figure V.8, the first segment is a priority unordered subsequence, where all the priorities
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of operational strings are lower than the priority of the source of the dependency trace. The

Priority X Priority Y ) Priority U Priority V
LI "
JRN
A ’ ) X ’
Unordered subsequence, but all the priorities Ordered subsequence, but all the priorities
are lower than the priority of the source of the are higher than the priority of the source of
entire dependency trace. the entire dependency trace.

---------- +» Dependency from Higher Priority to Lower Priority
— Dependency from Lower Priority to Higher Priority

Figure V.8: Two Partitions of An Unordered Dependency Trace

second segment is a priority ordered subsequence, where all priorities are higher than the
priority of the source of the dependency trace. For the first segment, we can promote all the
components in the subsequence into the operational string where the first component of the
dependency trace is located, which will ultimately result in an ordered dependency trace.
In the context of MMS case study, a priority inverted external dependency exists be-
tween operational string B and operational string C, and another priority inverted external
dependency exists between operational string A and operational string B, as illustrated in
the upper half of Figure V.9. Our solution traverses the dependency trace across all the
three operational strings, and removes both priority inverted external dependencies. By
doing this, components Messaging and Data Fusion are promoted from operational
C to operational A, and components Data Analysis and Monitor are promoted from
operational B to operational A, as illustrated in the bottom half of Figure V.9. In our MMS
case study, only one priority inverted external dependency exists from operational string A,
so after traversing it, operational string A does not have any more priority inverted external

dependency remaining. The D&C service can then deploy operational string A before other
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Figure V.9: A Dependency Trace across Three Operational Strings
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operational strings due to its highest priority, therefore avoiding priority inversion between

operational string A and other operational strings.

V.2.2.3 Handling Challenge 3 — Promotion of Components in the Circular Depen-
dency Trace Among Operational Strings

Circular dependencies may exist among two or more operational strings, as shown in

Figure V.10. When we discussed how the PARIGE algorithm processed an unordered de-

Priority X Priority Y 11( Priority U Priority V
A
J | U
\\§ J \ X J
Unordered subsequence — cycles may exist Ordered subsequence — no cycles can exist

----------- » Dependency from Higher Priority to Lower Priority
—  Dependency from Lower Priority to Higher Priority

Figure V.10: Circular Dependencies in a Dependency Trace

pendency trace in Section V.2.2.2, we showed that a dependency trace can be divided into
two subsequences. The priority of each element in the first subsequence is less than or
equal to the priority of the source element of the dependency trace. Likewise, the priority
of each element in the second subsequence is greater than that of the source elements of
the dependency trace.

Since no components in the second subsequence can have priority inverted external de-
pendencies, cycles among operational strings can only occur in the first subsequence, as
shown in Figure V.10. To remove cycles across multiple operational strings, only compo-

nents in the first subsequence must be promoted. The PARIGE algorithm therefore only
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needs to promote components existing the first subsequence to bring cycles into the same

operational string.

In the context of MMS case study, a circular dependency exists between operational

string A and operational string B, as illustrated in the upper half of Figure V.11. Our so-
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Figure V.11: A Circular Dependency Trace Case

lution traverses the dependency trace across from the operational string A, and promoting
components Data Analysis and Monitor from operational B to operational A, as il-

lustrated in the bottom half of Figure V.11. After such promotion, the circular decadency
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trace still exists but it is contained within the operational string A rater than across the

boundary operational strings, thereby avoiding deployment failure.

V.2.2.4 Handling Challenge 4 — Selectively Applying the Algorithm to Operational
Strings

The deployment latency of an operational string is affected by the size of the opera-
tional string. The dependency trace technique described above will promote components
from lower priority operational strings to higher priority operational strings. Although this
technique can ensure operational strings with the highest priority be deployed as early as
possible, it may reduce the overall utility by delaying the deployment of lower priority op-
erational strings in the worst case, as described as Challenge 4 in Section V.1.2. This delay
occurs when all components in the lower priority operational strings must be promoted into
the higher priority operational string, which makes both operational strings merge together
and hence finish their deployment at the same time. Merging operational strings can ad-
versely affect the responsiveness of lower priority operational strings since these strings
could have been deployed earlier to serve their peers or clients, but still satisfying the de-
pendency requirements without affecting the responsiveness of higher priority operational
strings.

To overcome this difficulty, we apply an optimization technique that is based on the
results produced by all the dependency traces of an operational string, as described in Sub-
sections V.2.2.1, V.2.2.2, and V.2.2.3. If the dependency traces of an operational string
promote all the components of a lower priority operational string into the higher priority
operational string, the PARIGE algorithm simply chooses the cached graph representation
of these two operational strings before the dependency traces techniques are applied. This
optimization improves the overall utility of the operational strings by finishing the deploy-

ment of lower priority operational string first. The deployment of lower priority string can
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thus be finished earlier rather than at the moment when all components in both operational

strings are deployed.

V.2.3 Design of the PARIGE Algorithm

The PARIGE algorithm uses multi-graph breadth first search (BFS) to trace dependen-
cies and graph reconstruction to promote components and connections between compo-

nents. Each graph corresponds to an operational string and can have two types of vertices:

* A regular vertex, which refers to a component within the operational string.

* A reference vertex, which refers to a component in another operational string on

which it has a dependency.

For example, two operational strings have dependencies shown in Figure V.12. Based on

High Priority Low Priority
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---------- -» Dependency from Higher Priority to Lower Priority

—» Dependency from Lower Priority to Higher Priority

Figure V.12: Convert External Dependencies into Reference Type Vertices
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the dependency relationship between these two operational strings, the PARIGE algorithm
converts them into two graphs with one reference type vertex in each graph, with reference
type shown as shaded vertices in the figure. Given a reference type vertex, in O(1) time
we can find the referred operational string and referred component within the operational
string.

In our algorithm, we define the following two types of operators against vertices in the

graph:
* Promote(V): Promote a reference type vertex to a regular type vertex.

* Demote(Vy,G1,V,,G3): Demote a regular type vertex V; in graph G in to a reference

type vertex, and the referred graph and vertex will be G, and V», respectively.

Algorithm 1 presents the PARIGE algorithm, which uses a recursive procedure defined

in Algorithm 2 to process each dependency trace.

Algorithm 1 PARIGE Algorithm
Input: Set of Operational Strings (Represented as Graphs)

Output: Set of Operational Strings (Represented as Graphs)

Sort strings with decreasing priority;

foreach String G; in the sorted array do

foreach External Dependency j of String G; do

Get the source vertex Vj; of j;

Get the destination vertex Vj, of j;

if priority(V;1) > priority(Vj;) then
Get the referenced string G, and vertex V,;
process_dependency_edge (G;, V2, G, Ve);

end
end
end
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Algorithm 2 A Recursive Procedure to Process a Dependency Trace
Input: G;: source graph with higher priority
G»: destination graph with lower priority
V1: source vertex (reference type)
V,: destination vertex (regular type)
Output: Recomposed graphs G| and G,
Promote (V});
Demote (V2, Gy, Vi, G1);
Do a BFS (G», V») and foreach visited edge E; do
Get the source vertex V;;;
Get the destination vertex Vjp;
if Vjp is regular type then
Remove_Vertex (G2, V»);
Add_Vertex (Gq, V»);
Remove_Edge (G, E);
Add_Edge (G, E);
end
else
Get the referred graph Gje of Vjp;
Get the referred vertex V;, of Vjp;
process_dependency_edge (G, Vi1, Gie, Vie);

end
end

V.2.4 Analysis of the Algorithm

To show that it is possible to apply the PARIGE algorithm at run-time to deploy opera-
tional strings dynamically, we now analyze the time complexity of the PARIGE algorithm
and evaluate different effects of applying this algorithm to different configurations of oper-

ational string.

V.2.4.1 Time Complexity Analysis
The input of the PARIGE algorithm is defined as follows:
N: Total number of operational strings
C: Total number of dependencies between operational strings

|V|: Average number of components within an operational string
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|E|: Average number of connections within an operational string

As shown in Algorithm 1, the sort of all external dependencies has a complexity of
O(Cxlog(M)). The recursive procedure shown in Algorithm 2 shows that processing each
dependency trace has a time complexity of O(N* (|V |+ |E|)). The overall time complexity
of the PARIGE algorithm exhibits a linear complexity of O(C*N x (|[V|+|E|). In practice,
C tends to be much smaller compared with |V | and |E|.

In summary, the linear property of our algorithm makes it possible to apply it dynami-
cally at run-time. Section V.3 evaluate the performance overhead empirically in the context

of the NASA MMS mission system case study.

V.2.4.2 PARIGE Algorithm Effects on Operational String Deployment

Two effects that the PARIGE algorithm could have on the predictability of operational
string deployment are described below.

Operational string growth effect. This effect measures the cost of promoting a num-
ber of components from lower priority operational strings to higher priority operational
strings. Since the deployment of each component takes time and consumes resources, the
fewer components that are promoted, the more benefits the algorithm can provide since
priority-inverted dependencies can be satisfied without deploying many components in
lower priority operational strings.

In the worst case, all components from lower priority operational strings could be pro-
moted to higher priority operational strings, which essentially merges different operational
strings together. In production DRE systems, such worst cases happen rarely, i.e., all the
components in all operational strings have just only one dependence trace. Even in such
situations, the PARIGE algorithm still performs the same as a conventional approach that
does not take priority into account and only accounts for dependencies among operational
strings.

Component host distribution effect. This effect means that due to the promotion of
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components, components that can be deployed by contacting the NodeManager once
now contacts the same NodeManager multiple times during deployment. For example, if
an operational string A has 1 component to deploy on Node, and operational string B has 2
components to deploy on Nodep these two operational strings can be deployed by contact-
ing the NodeManager on each node only once. If the algorithm moves one component
from operational string B to operational string A, then the NodeManager on Nodep must
be contacted twice, once when deploying the promoted component in operational string A
and once when deploying the remaining component in operational string B.

Such an effect can increase the overall deployment time due to the increasing number
of round trip delays. One way to alleviate this problem is to increase the parallelism among
different nodes by using asynchronous techniques between the Execut ionManager and
NodeManagers, such as the Asynchronous Method Invocation (AMI) messaging policy
provided by CORBA [106]. For example, AMI can coordinate all the NodeManagers in
the domain parallelism deployment can be achieved among all the nodes, therefore allevi-

ating the component host distribution effects.

V.3 Empirical Results

To evaluate the benefits of the PARIGE algorithm, we applied it to a representative DRE
system prototype of the NASA MMS mission system described in Section V.1. This section
first describes the characteristics of the hardware and software testbed and explains our ex-
periment design. We then empirically evaluate the effectiveness of the PARIGE algorithm
in three dimensions: (1) Sections V.3.2 and V.3.3 empirically measure the effectiveness of
PARIGE to address challenges 1, 2, and 3 in Section V.1, Section V.3.4 empirically mea-
sures the effectiveness of PARIGE to address challenge 4 in Section V.1, which uses higher
level metrics to measure the DRE system D&C QoS, and (3) Section V.3.5 empirically

measures the performance overhead of the PARIGE algorithm.
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V.3.1 Hardware and Software Testbed

We used the ISISlab open testbed (www . dre .vanderbilt.edu/ISIS1lab) forall
our experiments. Our experiments used up to 6 nodes running Linux FC4 with Ingo Mol-
nar’s real-time kernel patches. When operational strings are deployed we use one node to
run the central coordinator Execut ionManager and the rest of the nodes as the deploy-
ment targets.

The NASA MMS mission system prototyped used for our experiments was developed
using the CIAO [124] and DAnCE [20] component middleware. This application consists
of 45 components grouped together into 3 operational strings Figure V.13 shows an exam-

ple operational string consisting of a science agent component that decomposes mission
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Figure V.13: A Sample Operational String of the Experiments
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goals into navigation, control, data gathering, and data processing applications. Multiple
gizmo components are connected to the science agent and are also connected to differ-
ent payload sensors. Each gizmo component collects data from the sensors, which have
varying data rate, data size, and compression requirements.

The collected data is passed through filter components, which remove noise from the
data. The filter components pass the data onto analysis components, which compute a

quality value indicating the likelihood of a transient plasma event. Finally, the analyzed
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data from each analysis component is passed to a comm (communication) component,
which transmits the data to the ground component at an appropriate time.

An operational string can span across multiple physical nodes. The assignment of com-
ponents to nodes is determined by a planner using high-level resource planning algorithms,
and was available as input to the PARIGE algorithm. We intentionally choose different
assignments for our experiments to compare how they could affect the predictability and

performance different operational strings deployments.

V.3.2 Effects of Operational String Recomposition

Hypothesis. The hypothesis of this experiment is that the PARIGE algorithm should
not change the functional correctness of the input operational strings but should produce
correct dependencies between operational strings. In particular, the PARIGE algorithm
must ensure (1) all the dependencies between components of original operational strings
should remain the same after the recomposition and (2) the dependencies between opera-
tional strings must be changed such that no dependencies exist from higher priority opera-
tional strings to lower priority operational strings.

Experimental design. The experiments consist of 3 operational strings with each op-
erational string having 15 components. The high priority operational string has one de-
pendency to the medium priority operational string and the medium operational string has
one dependency to the low priority operational string. We measure the total number of
components, number of nodes, and number of dependencies (both internal and external) of
each operational string before and after applying the PARIGE algorithm.

Empirical results and analysis. Table V.1 summarizes the number of components,
number of nodes, and number of dependencies for each operational string before and after
we run the PARIGE algorithm.

The results in the figure indicate that the number of components of high priority opera-

tional string increases from 15 to 19, while that of both medium priority and low priority
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Table V.1: PARIGE Effect on Operational Strings

Hi | Med | Lo Total
Components 15 15 15 45
Before
Components 19 13 13 45
After
Dependencies Before | 1/0 | 1/0 | 0/0 2
(H->L/L->H)
Dependencies After 0/0 | 0/3 | 0/3 6
(H->L/L->H)
Dependencies Before 53 (51+2)
(Internal + External)
Dependencies After 53 (47+6)
(Internal + External)

operational strings decreases from 15 to 13, so the total number of components do not
change. In addition, before the experiment, the 3 operational strings have 51 internal
dependencies and 2 external dependencies, with 53 dependencies in total. After the exper-
iment, the number of internal dependencies decreases by 4 to 47 and the total number of
dependencies increase by 4 to 6, with the total number still remains the same, which is in
accord with the first part of our hypothesis. Finally, after applying the PARIGE algorithm,
all dependencies from higher priority to lower priority operational strings are removed,

which validates the second part of our hypothesis.

V.3.3 Deployment Latency vs. Deployment Priority

Hypothesis. The hypothesis of this experiment is that the PARIGE algorithm can avoid
priority inversion when deploying multiple operational strings where higher priority oper-
ational strings have dependencies on lower priority operational strings.

Experimental design. We conducted two experiments on different configurations of
operational string dependencies. Our first experiment consisted of 3 operational strings,
each of which having 15 components evenly distributed into 5 nodes. Therefore, each node

has 9 components. The high priority operational string has one dependency on the medium
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priority operational string, which in turn has one dependency on the low priority operational

string. The dependency between two operational strings is shown in Figure V.14.
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Figure V.14: Operational String Configuration with Low Growth Rate

Next we conducted another experiment with the external dependency between two
different components in the operational strings, as shown in Figure V.15. We measured
how the end-to-end deployment latency of each operational string can be affected in this
configuration. In this experiment, there are only two operational strings, each having 15
components. The high priority operational string has one dependency on the low priority
operational string, as shown in Figure V.15.

Both experiments first measured the end-to-end latency for deploying each operational

string without applying the PARIGE algorithm. We then measured the end-to-end latency
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Figure V.15: Operational String Configuration with High Growth Rate

for deploying each operational strings with the PARIGE algorithm to see how latency re-
lates to their priorities.

Empirical results and analysis.

Figures V.16 and V.17 shows the end-to-end latency of D&C request for each opera-
tional string in the two experiments described above. As shown in the Figure V.16, without
applying the PARIGE algorithm, the high priority operational string yields the highest la-
tency while the low priority operational string yields the lowest latency, while the latency
of medium priority operational string lies in between.

In our experiments, there is one dependency from high priority operational string to
medium priority operational string and another dependency from medium priority opera-

tional string to low priority operational string. Without applying the PARIGE algorithm,
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Figure V.16: D&C Latency Changes by the PARIGE Algorithm

therefore, the low priority operational string must be deployed first among the three, fol-
lowed by medium priority and high priority operational strings, respectively. The PARIGE
algorithm removes the priority inverted dependencies which avoids deployment priority
inversion, as illustrated in the figure.

Figures V.16 also shows how the component host distribution effect introduced by the
PARIGE algorithm is masked by applying AMI messaging policy, as described in Sec-
tion V.2.4.2. In our experiment, applying AMI improves the performance of the deploy-
ment in two aspects. First, the deployment latency of each operational string is reduced
because of the ExecutionManager can coordinate the NodeManagers to do deploy-
ment in parallel. Second, it masks the component host distribution effect, which results in
a reduced total latency of all operational strings, as shown in the figure.

Figure V.17 shows that after applying the PARIGE algorithm the high priority opera-
tional string has the lowest latency since it has no external dependency on any other opera-
tional strings. The size change of each operational string is also minimal since the number

of promoted components is small due to the dependency trace characteristics.

128



Operational String Growth Rate Worst Case Scenario
700
> 600 —
e
[
S 500 |
[¢]
4 |
E 400 O Low Priority
~ 300 [ OHigh Priority
5
s 200 [ —
et
[oo]
— 100 [ —
0 .
Without PARIGE w/o PARIGE w/
PARIGE Optimization | Optimization
O Low Priority 216942 629922 220942
OHigh Priority 636233 629922 625662

Figure V.17: D&C Latency Changes by the Algorithm

On the other hand, the dependency between the two operational strings in our second
experiment caused all components from the low priority operational string to promote to
the high priority string, essentially merging the two operational strings together. As a result,
the latency of deploying the high priority operational string is nearly the same as deploying
it without applying the PARIGE algorithm. However, in a DRE system with multiple oper-
ational strings to deploy, it is rare that all components have only one dependence trace, as

described in Section V.2.4.2.

V.3.4 Effectiveness of the PARIGE Algorithm Based on High Level Metrics
Hypothesis. The hypothesis of this experiment is to reduce the quiescence time of
operational strings during the period when these operational strings are deployed. This ex-
periment measures the effectiveness of the PARIGE algorithm based on human-perceivable
metrics. As described in Section V.1, the dynamic nature of open DRE systems require on-

demand injection of certain operational strings to ensure systems are kept in sync with
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changing mission goals. When operational strings with different importance to the entire
DRE system must be deployed at the same time, the D&C framework must deploy these
operational strings in effectively to ensure the overall system QoS. In this experiment,
therefore, each operational string is assigned with a mission effectiveness value (MEV)
to quantitatively represent its utility value for the entire system, using two utility metrics
described below.

Metric M1: average MEYV loss. The following utility function M/ measures the aver-

age MEV loss caused by the operational string deployment cost.

™ Depl tTime(S;
M — Z eploymen lme( z) xMEV(Si)7 i=1..m
i=1

TotalDeployment Time
Since each operational string has an associated deployment cost (measured by its deploy-
ment latency), this cost will necessarily cause a period of quiescence time, which results in
a MEV loss.

M1 is computed by first dividing the deployment time of each operational string by the
total end-to-end deployment time for all operational strings and then multiply by the MEV
of that operational string to produce the weighted MEV loss for that operational string.
Next, we sum up all weighted MEV loss of each operational string. In the context of our
MMS case study as descried in Section V.1, M1 measures the weighted quiescence time
of the the three operational strings and their peer components during the period when the
three operational strings are deployed.

Metric M2: Highest priority operational string MEV loss. The following utility

function M2 is similar to M1.

M2 — Z Deployment Time(S,ax)
& TotalDeploymentTime

Rather than measuring the weighted MEV loss of all operational strings, however, M2

measures the MEV loss the highest priority operational string(s) caused by the deployment.
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M?2 is computed by dividing the total deployment time of the highest priority operational
string by total end-to-end deployment time for all operational strings. In the context of
our MMS case study as descried in Section V.1, M measures the quiescence time of the
highest priority operational string A and its peer components during the period when the
three operational strings are deployed.

Experimental design. These experiments consisted of 3 operational strings having pri-
orities high, medium, and low, respectively, with each string having 15 components. The
high priority operational string has one dependency on the medium priority operational
string, which in turn has one dependency on the low priority operational string. The mis-
sion effectiveness values of the three operational string are summarized in Table V.2. In
general, higher priority operational strings provide higher mission effectiveness values to

DRE system than lower priority operational strings.

Table V.2: Mission Effectiveness Values of Operational Strings

String Priority || High | Medium | Low
MEV 3 2 1

The first experiment has a high promotion growth effect, and the second experiment
has a low promotion growth effect, as described in Section V.2.4. The exact configuration
of external dependencies in the experiment are the same as those in Section V.3.3.

Empirical results and analysis. Table V.3 shows that when the operational growth
effect is low, M1 was reduced by 40% and M2 was reduced by 69%, which indicates that
the PARIGE algorithm can significantly reduce the mission effectiveness loss for all op-
erational strings. In the high growth effect situation, however, the worst case scenario
happens when operational strings are merged together. The result in such worst case sce-
nario shows that M2 is the same as our baseline case, i.e., without applying the PARIGE

algorithm. This operational string merge effect indicates that the utility to the entire DRE
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Table V.3: Impact of Operational String Growth Effect

Ml | M2

Baseline (without PARIGE algorithm) || 4.71 1
Low growth effect 2.83 | 0.31

High growth effect 5.79 1

High growth effect w/ optimization 471 1

system by the highest priority operational string(s) remains the same, but M/ (which mea-
sures the weighted MEV of all operational strings) is worse than before. To overcome this
shortcoming, we applied an optimization technique that selectively chooses the deployment
descriptor before applying the PARIGE algorithm, as described in Section V.2.2.4, thereby

avoiding the degradation of M1, as shown in Table V.3.

V.3.5 Performance Overhead of the PARIGE Algorithm

Hypothesis. The hypothesis of this experiment is that the performance overhead of
the PARIGE algorithm is small enough so it can be applied to deploy operational strings
at run-time. In contrast to off-line analysis techniques, the PARIGE algorithm must be
deployed by Execut ionManager to handle requests at run-time, therefore, the PARIGE
algorithm should not incur excessive performance overhead to the end-to-end latency of
deployment of operational strings.

Experimental design. The experiments consist of 3 operational strings each having
15 components and 2 external dependencies in total. The high priority operational string
has one dependency on the medium priority operational string, which in turn has one de-
pendency on the low priority operational string. We first measured the end-to-end latency
for deploying all the operational strings without applying the PARIGE algorithm. We then
measured the end-to-end latency for deploying increasing number of operational strings
with the PARIGE algorithm to measure how much latency overhead was contributed by
running the algorithm.

Empirical results and analysis. We first measure the PARIGE algorithm performance
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itself to determine how its performance is affected by the size of the problem, i.e., num-
ber of components (determined by number of operational strings) and number of priority-
inverted external dependencies. We then measure its performance overhead against an
actual example with 3 operational strings and 2 external dependencies, as described above.

Figure V.18 shows the performance result of the PARIGE algorithm itself with increas-

ing number of components and number of external dependencies. The results show that the
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Figure V.18: Running Time of the PARIGE Algorithm

performance of the PARIGE algorithm is roughly linear to both the number of components
and number of external dependencies, which is consistent with the analysis performed in
Section V.2.4.1. The linear run-time performance characteristics of the PARIGE algorithm
makes it suitable for dynamically deploying operational strings online at run-time because
the deployment latency of all operational strings exhibits a linear time complexity to the
number of components in the operational strings.

As long as the performance overhead of the PARIGE algorithm is acceptable to deploy
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one component, therefore, it should be acceptable to deploy any number of components. To
validate this claim, we conducted an experiment that deployed up to 64 operational strings
with 960 total components. The results in Figure V.19 shows that the deployment latency
of all operational strings with and without the PARIGE algorithm. The experiment mea-
sures different number of operational strings and different number of components, ranging
from 1 operational string with 15 components to 64 operational strings with 960 compo-

nents. These results show that the actual performance overhead of the PARIGE algorithm
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Figure V.19: Performance Overhead of the PARIGE Algorithm

for our experiment is consistently less than ~1%, which further validates our earlier anal-

ysis.

134



V4 Summary

The predictability and scalability of D&C frameworks is essential to support the QoS
requirements of open DRE systems. This chapter describes a multi-graph algorithm that
helps ensure the predictability of deploying multiple operational strings. We first analyze
how deployment priority inversion can occur when operational strings have various depen-
dency relationships. We then empirically show how the partial priority inheritance via
graph recomposition (PARIGE) algorithm can effectively avoid deployment priority inver-
sions and thus improve the predictability of component deployment in DRE systems.

The PARIGE algorithm has many similarities to the canonical priority inheritance pro-
tocol (PIP) [110] used for synchronization in real-time systems. The PIP ensures that when
a thread blocks one or more high priority threads, it executes its critical section at the high-
est priority level of all the threads it blocks, i.e., it inherits the highest threads priority. After
executing its critical section, the thread returns to its original priority level.

In the PARIGE algorithm, lower priority operational strings are promoted to execute at
the priority of higher priority operational strings to avoid deployment priority inversions.
The “critical section” in the PIP is thus similar to the “deployment and configuration”
activities in the PARIGE algorithm. Our work on the PARIGE algorithm, however, differs

from the PIP in the following ways:

* The PARIGE algorithm avoid deadlocks because (1) it removes all priority inverted
dependencies between operational strings and then deploy operational strings from
the highest priority to the lowest priority sequentially, and (2) it recompose opera-
tional strings so circular dependency trace does not cross the boundary of operational

strings. In contrast, the PIP may incur deadlocks because of nested resource locks.

* Only part of the operational string is affected, i.e., the PARIGE algorithm just in-
creases the deployment priorities of components with dependencies from higher pri-
ority operational strings. In contrast, the PIP does not have such fine-grained level of

control because it is a general-purpose scheduling mechanism for resource sharing.
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* The PARIGE algorithm is more sophisticated than the priority inheritance protocol
because it traverses multiple graphs to identify which components require promotion.
In contrast, the PIP is much simpler since it is locality-constrained, i.e., it applies only

to one resource and does not concern about how other resources are scheduled.
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CHAPTER VI

CONCLUDING REMARKS

QoS-enabled component middleware is increasingly being adopted for large-scale soft-
ware systems, particularly for DRE systems. Although QoS-enabled component middle-
ware provides a higher layer of abstraction to build large-scale systems by composing
reusable components, existing deployment and configuration techniques suffer from two
major problems: (1) lack of capability to integrate, configure, and deploy systemic QoS
concerns, and (2) lack of predictability while performing on-demand deployment at run-
time for open DRE systems to accommodate changing environment or mission goals.

To address these problems, this dissertation focuses on improving both computing per-
formance and human productivity associated with the D&C of component-based DRE sys-
tems. To improve human performance, this dissertation applies various meta-programming
techniques, model-driven engineering techniques and architectural frameworks to alleviate
key inherent and accidental complexities in the D&C process. To improve predictability,
this dissertation has systematically identified sources of deployment priority inversion, and
provides a multi-graph based algorithm called PARIGE to address these challenges.

The following is a summary of lessons learned thus far from our work developing and
applying various deployment and configuration techniques for component-based DRE sys-

tems.

VI.1 Lessons Learned
VI.1.1 Automated D&C for Component-based DRE Systems

The following is a summary of lessons learned from our work developing and applying

DAnCE to compose component-based DRE systems:
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1. Separating real-time QoS concerns from component business logic is essential
for large-scale component-based DRE systems. Conventional middleware gener-
ally lacks mechanisms to handle deployment concerns for DRE systems to meet their
real-time requirements. The results of applying DAnCE to build a variety of systems
in diverse DRE system domains including avionics mission computing, warehouse
inventory tracking and shipboard computing by different users, underscore the impor-
tance of separating real-time QoS concerns from component business logic. In par-
ticular, DAnCE’s automated real-time QoS provisioning capabilities greatly improve

productivity of large-scale DRE systems development, integration, and deployment.

2. Large-scale component-based DRE systems can be developed using standards-
based component middleware and D&C platforms. Existing standards-based
component middleware and D&C frameworks do not address real-time QoS pro-
visioning issues. Our experience of developing DAnCE and applying DAnCE to a
variety of DRE systems reveals that component-based DRE systems can be indeed
developed using standards-based component middleware and D&C frameworks. In
fact, all the application components developed using CIAO and DAnCE are standard
CCM components, and DAnCE can automatically provision real-time QoS capabili-

ties to them without violating standards-based D&C profile schema.

3. Raising the level of abstraction allows additional analysis to be performed on
DRE systems. In large-scale component-based DRE systems, many components
need to interact with each other to accomplish certain tasks. Therefore, it is essential
to have a central view of the DRE system such that the entire DRE system can be
analyzed in a coordinated fashion. Unlike conventional D&C frameworks, DAnCE
allows real-time QoS concerns to be configured later, (i.e., just before system deploy-
ment phase), which allows the entire DRE system to be analyzed based on particular

deployment scenarios.
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VI.1.2 Publish/Subscribe Services Provisioning for Component-based DRE Systems

The following is a summary of lessons learned from our work developing and applying
CIAO’s publish/subscribe framework, EQAL MDE tool, and DAnCE D&C framework to

provision publish/subscribe services for component-based DRE systems:

1. Publish/Subscribe service configuration concerns should be separated from com-
ponent implementation. Our experience of developing a publish/subscribe frame-
work within component middleware allows us to decouple publish/subscribe ser-
vice configuration and deployment decisions from application logic, which enhances
component reusability by allowing different publish/subscribe services and their QoS
specifications (and their associated implementations) to change based on particular
deployment scenarios. In particular, the container-managed architecture we devel-
oped provides the most flexible real-time publish/subscribe service configuration ca-
pabilities while preserving the benefits of the container programming model; hence,
it is applicable for the widest range of DRE systems and especially useful for devel-

oping large-scale complex DRE systems.

2. Early detection of errors improves productivity significantly. The EQAL MDE
tool allows DRE system deployers to rapidly create and synthesize publish/subscribe
QoS configurations and federation configurations via models that are much easier to
understand and analyze than hand-crafted code. EQAL helps alleviate the complex-
ity of validating the QoS policies of publish/subscribe services for DRE component
applications, which is particularly important for large-scale DRE systems that evolve
over long periods of time. EQAL reduces the amount of code written by applica-
tion developers for event-based DRE systems by employing a configurable publish/-
subscribe service framework, which eliminates the need to write code that handles

event channel lifecycles, QoS configurations, and supplier/consumer connections.
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3. Further optimizations are required for integrating COTS publish/subscribe ser-
vices in component middleware. Our lessons learned in provisioning publish/-
subscribe services indicate that component middleware standards often introduce
some event dispatching overhead compared to the object-oriented middleware. For
example, the CCM standard inevitably introduces some performance overheads for
event dispatching caused mainly by valuetype based CCM event type marshaling/de-
marshaling costs and some levels of indirection between different entities including
component executors, servants, contexts and containers. It is worth noting that dis-
cussion of these overheads is orthogonal to the focus of this dissertation. One pos-
sible solution approach to optimize away such overheads is through a model-based

component optimization technique called fusion [2].

VI.1.3 Ensuring Deployment Predictability of DRE Systems
The following is a summary of lessons learned from our work developing and apply-

ing the PARIGE algorithm to ensure the predictability of D&C of component-based DRE

systems:

1. The overlap of deployment-time with run-time makes D&C frameworks essen-
tial to ensure system QoS. The benefits provided by component middleware signif-
icantly change the lifecycle of DRE system development. Due to the complexities
of open DRE systems, D&C frameworks assume more responsibilities to ensure sys-
tem QoS because deployment of system services/components occurs throughout the
lifecycle of the systems. By using information available at deployment time, D&C
frameworks can effectively identify the complex dependency relationships among
operational strings and perform various on-line optimizations, such as the operational
string recomposition technique of the PARIGE algorithm presented in this disserta-

tion.
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2. Automated recomposition of operational strings can help ensure deployment
predictability of DRE systems. Although operational strings can simplify the de-
sign of DRE systemes, it is hard to manually ensure deployment predictability of all
operational strings due to the complex dependencies among many operational strings.
The PARIGE algorithm presented in this dissertation enhances the deployment pre-
dictability of different operational strings by recomposing operational strings auto-
matically based on the input to the D&C framework and transparently to system

deployers.

3. Recomposition of operational strings by the PARIGE algorithm is orthogonal
to later management of operational strings. Component-based DRE systems are
often designed, deployed and managed in the form of operational strings that are
first class entities whose lifecycles are managed by D&C frameworks. Although
the PARIGE algorithm recomposes operational strings and modifies their topologies
to avoid deployment priority inversion, it does not change the behavior of the op-
erational strings once the algorithm-modified operational strings are deployed. In
particular, the D&C framework’s ExecutionManager only recomposes opera-
tional strings for its initial deployment, but once deployed the metadata descriptors
for the operational strings are still the original ones without any modification. Sub-
sequent management of operational strings will thus not be affected by the PARIGE

algorithm.

4. The effectiveness of the PARIGE algorithm depends on operational string char-
acteristics and their dependencies. The PARIGE algorithm can improve deploy-
ment predictability of operational strings with negligible performance overhead, as
demonstrated in Section V.3.5. The effectiveness of the PARIGE algorithm varies for
different configurations of operational strings and the external dependencies among

them. As shown by the empirical results in Section V.3.3, the PARIGE algorithm is
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most effective when operational string growth is minimal and least effective when
growth is large. In the worst case scenario—when there exists only a single depen-
dency trace across all the operational strings—all operational strings are merged into
a single operational string. In this case, the PARIGE algorithm provides no pre-
dictability improvement. Since the performance overhead of the PARIGE algorithm
is negligible, however, it will perform approximately the same as without the algo-
rithm being applied. Our future work will investigate how to quantify the gain of the
PARIGE algorithm by measuring the operational string growth effect and the deploy-

ment cost of different components based on the input of the operational strings.

5. Advanced operating system and middleware features are important comple-
ments to the PARIGE algorithm. The PARIGE algorithm can incur certain effects
when recomposing operational strings, such as the component host distribution effect
discussed in Section V.2.4. Our experience shows that modifying the multi-graph
based PARIGE algorithm itself alone is insufficient to address this undesired effect
because the algorithm introduces constraints on host collocation/distribution, which
affects its performance. One way to alleviate this problem is to apply asynchronous

method invocations, as presented in Section V.3.3.

V1.2 Future Research Directions

This section presents some future research directions based on our experience in de-
veloping various deployment and configuration techniques for component-based DRE sys-

tems.

* Formalize Deployment and Configuration Planning via D&C Patterns.

Different components consume different amounts of resources, such as memory,

CPU, file descriptors, and I/O handlers. Therefore, the target running environment
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must be configured properly to provide an efficient environment for solution com-
ponents. Different servers have different scalability profiles that are determined by
the type of components they host. For example, the size of a database may increase
at a different rate than the number of users of the system. Also, different servers
have different security requirements that are determined by the type of components
they host. For example, components that present information to the user often have
different security requirements than components that implement business logic. Fur-
thermore, the techniques for meeting availability and reliability requirements vary
by type of component. Finally, every host boundary that a component invocation
crosses adversely affects performance. Component invocations that cross the net-
work are much slower than component invocations in the same application domain

Or process.

As aresult, how to structure the servers and distribute component functionality across
them to efficiently meet the operational requirements of the solution becomes a chal-
lenging task. As of today system designers still mostly rely on ad hoc techniques to
do such D&C planning. A promising solution approach is to capture the best practice
of such D&C planning in the form of formalized D&C patterns. The D&C of dif-
ferent types of systems can be guided by different D&C patterns, which can not only
provide efficient D&C solution approaches but also identify potential design faults

in earlier phase, i.e., deployment-time phase rather than run-time phase.

Apply PARIGE to Improve DRE System D&C Planning. Our future work will
determine whether/how the results from the PARIGE algorithm runs can provide
feedback to system designers. For example, the D&C framework can analyze the
input and output to the PARIGE algorithm for each deployment request. Using this

historical input/output information, a D&C framework can potentially identify those
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operational strings responsible for most deployment priority inversion. We conjec-
ture that this approach will help improve DRE system D&C by reorganizing opera-

tional strings more effectively.

Improve System Performance via D&C-Driven Middleware Specialization. Gene-
ral-purpose implementations of standard middleware are designed to be reusable
since they need to satisfy a broad range of functional and QoS application require-
ments. Unfortunately, diversified features and capabilities provided by general pur-
pose middleware often result in heavy-weight middleware infrastructure that ad-
versely affects computing performance of DRE systems [54, 55]. The D&C phase
provides a promising opportunity to make it possible to perform various analysis
to reason about the right set of customizations and configurations to middleware to
improve the overall DRE system performance. Therefore, it is beneficial to apply
specialization techniques (such as partial evaluation [15] and generative program-
ming [18]) to optimize DRE systems by using metadata contained in a DRE system

deployment profile.

D&C for Internet Scale Networks and Grid Computing. With the advent of grid
computing and Internet computing, emerging technologies centered around these ar-
eas promise to change the way we tackle complex problems. These technologies
will enable large-scale aggregation and sharing of computational, data and other re-
sources across institutional boundaries. One future research direction in D&C is to
investigate how to deploy and configure such complex applications efficiently and
effectively while taking into account challenges such as Internet content delivery,
mobility of computing resources, security and fault tolerance. For grid computing
systems, how to achieve effective content delivery becomes a major challenge in
D&C, and one promising solution approach to this is to leverage various point-to-

point (P2P) techniques [14].
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* Dynamic Publish/Subscribe Service Provisioning within Component Middle-
ware. It is still a challenging problem to deploy and configure publish/subscribe
services like Data Distribution Service (DDS) within component middleware be-
cause of its “dynamic” QoS behavior. Two main issues exist in integrating DDS

into component middleware such as CCM.

The first issue is how to reconcile different interfaces and APIs between the DDS
model and CCM event communication model. For example, to increase scalabil-
ity, DDS topics may contain multiple independent data channels identified by keys,
which allows nodes to subscribe to many, possibly thousands, of similar data streams
with a single subscription. However, the CCM event communication model only
supports simple event t ype definition. On the other hand, the CCM event commu-
nication model still relies on declarative specification to specify the communication
channel between a publisher and a subscriber, while DDS hides all the details about
how such communication channels should be established. Because these two mod-
els have quite different semantics in defining publishers, consumers and mediation
layers, how to map the concepts of one model to another becomes a challenging task
because the mapping many affect many aspects of the CCM, including component

programming models, container models, and D&C models.

The second issue is how to integrate DDS to component middleware without affect-
ing a real-time QoS guarantee provided by DDS even at run-time. To reconcile the
differences between the two communication models, some adapter layer must be in-
troduced, which should not affect QoS which DDS provides. Therefore, a future
research direction is to investigate how to provide D&C services at run-time to allow
CCM components to be dynamically deployed and undeployed which can automati-

cally result in automatic discovery and control flow establishment in DDS.
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The DAnCE D&C framework and CIAO component middleware are open-source and
available for download at www.dre.vanderbilt.edu/CIAO. The EQAL MDE tool

is available for download at www .dre.vanderbilt.edu/cosmic.
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APPENDIX A
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Tiako, IDEA Group, 2007

2. Gan Deng, Douglas C. Schmidt, Christopher Gill, and Nanbor Wang. QoS-enabled
Component Middleware for Distributed Real-Time and Embedded Systems. Hand-
book of Real-Time and Embedded Systems (1. Lee, J. Leung, and S. Son, eds.), CRC

Press, 2007.
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Douglas C. Schmidt. Model Driven Middleware: A New Paradigm for Deploying
and Provisioning Distributed Real-time and Embedded Applications. Elsevier Jour-

nal of Science of Computer Programming: Special Issue on Model Driven Architec-

ture, Edited by Mehmet Aksit, 2007
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A.3 Refereed Conference Publications
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time Publish/Subscribe Service Integration Approaches in QoS-enabled Component
Middleware. Proceedings of the 10th IEEE International Symposium on Object-
oriented Real-time Distributed Computing (ISORC ’07), Santorini Island, Greece,

May 7-9, 2007.

2. Gan Deng, Douglas C. Schmidt, Aniruddha Gokhale, and Andrey Nechypurenko.
Modularizing Variability and Scalability Concerns in Distributed Real-time and Em-
bedded Systems with Modeling Tools and Component Middleware. Proceedings
of the 9th IEEE International Symposium on Object-oriented Real-time Distributed

Computing (ISORC ’06), Gyeongju, Korea, April 24-26, 2006.

3. Gan Deng, Jaiganesh Balasubramanian, William Otte, Douglas C. Schmidt, and
Aniruddha Gokhale. DAnCE: A QoS-enabled Component Deployment and Con-
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nent Updating. Proceedings of the International Symposium on Distributed Objects
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. George Edwards, Gan Deng, Douglas C. Schmidt, Aniruddha Gokhale, and Bal-
achandran Natarajan. Model-driven Configuration and Deployment of Component
Middleware Publisher/Subscriber Services. Proceedings of the 3rd ACM Interna-

tional Conference on Generative Programming and Component Engineering (GPCE

04), Vancouver, Canada, October 2004.

. Andrey Nechypurenko, Tao Lu, Gan Deng, Emre Turkay, Douglas C. Schmidt, and
Aniruddha Gokhale. Concern-based Composition and Reuse of Distributed System:s,
Proceedings of The 8th International Conference on Software Reuse, ACM/IEEE
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tion of Federated Event Services in Real-Time Component Middleware. Proceedings
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. Gan Deng. Resolving Component Deployment and Configuration Challenges for
DRE Systems via Frameworks and Generative Techniques. Doctoral Symposium of
ACM 28th International Conference of Software Engineering (ICSE 2006), Shanghai,
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