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CHAPTERI|

INTRODUCTION

Background, Terminology and Motivation

There has been considerable research effort devoted tdaddifegged) locomotion, a re-
view of which can be found in [4]. While various methods aregm®ed to tackle the related control
problem, most of the ideas are either built on the Zero Morframt (ZMP) paradigm, or rely on
the (passive) Dynamic Walking Principle.

The Zero Moment Point control approach, originally introdd by Vukobratow et.al [5],
[6], is the most accepted and widely used paradigm for bipedrhotion syntheses. When level
ground walking is considered, ZMP is defined as that pointhergtound at which the net moment
vector of the inertial and applied forces has no componeatground plane [7]. As long as ZMP
is within the foot support area, its location coincides vilib center of pressure (CoP), which is
the point on the foot where the ground reaction force act® ififportance of the ZMP is that by
controlling its position within a foot support region, nootaotation will occur (i.e., the foot can
be used as a base link from which a trajectory tracking matmmtrol can be performed on the
body). The ZMP idea is well discussed in literature and sttgecontrol (among others) the first
dynamically balancing robot WL-10RD [8], and the state-a-trt humanoid robot the Honda
Asimo [9].

Walking with ZMP kept within the support region preventstfoatation and is attributed as
“dynamically balanced walk” [7]. In the related context therd “dynamic” is meant to indicate
that along the motion the center of mass (CoM) of the robot da¢sieed to be kept above the
CoP (which would be required to maintain static balance). @kgleping ZMP within the support
region (to prevent foot rotation) is also referred as a “dyitally stable walk”, restriction on foot

rotation is not required for stable walking, broadly coesetl as walking without falling herein.



In particular, foot rotation is naturally utilized by hunsafwhile walking stably) [10].

In addition to indicating a dynamically balanced walk, dynawalking is also a paradigm
in legged locomotion. In this context, dynamic walking refto a robot with finely adjusted inertial
and geometric design which, enhanced with slight contrah, @mulate stable walking [11]. On
the end of the spectrum of this approach is the “passive dimesalking principle” introduced
by McGear [12], by showing that (with precisely tuned deyign uncontrolled legged machine
can walk on a slight downward slope (powered only by grayigge [13]. While utilization of a
passive (uncontrolled) dynamics is an important objectiveugh dynamic walking, this approach
does not exclude control. Specifically, one can utilize sengontrol strategy on actuator assisted
dynamic walkers to emulate natural looking walking [14] vere walking with human efficiency
[1].

During the conducted research, we have identified two piitions which allowhuman-

like dynamic walkindo be realized on actuated robots:

e The first precondition, related to the control approachglpides enforcing a predefined ref-
erence trajectory and may also not favor enforcing staterm#gnt kinematic constraints, or
other attributes of the walking cycle (such as stride lensjpping frequency of average for-
ward speed) with high gain control. This condition motivhtes to develop a control frame-
work which utilizes state-dependent control torques gateer by low-gain spring-damper

couples to provide motion coordination without prespenifythe motion of the system.

e The second precondition (not related to control) dependmion actuation which should
not suppress passive joint motion (i.e., joints should lgallgiback-drivable such as human
joints). Utilization of back-drivable joint design allowise inertial motion of the robot to be
exploited through walking rather than being suppressedéattuation units. This condi-
tion motivated us to design a 7-link biped robot, with highck-drivable joints, which is

used in the experimental verification of the control framewo

The overall control philosophy is analytically developadmerically investigated and ex-



perimentally realized on a 7-link biped.

Compared to approaches proposed for actuated dynamic waldis], [16], [17], [18],
[19], [20], [21], [22], [23], [24], implementation of the psent one allowed experimental demon-
stration of human-like dynamic walking with (partially)Ibstic swing, extended knee stance sup-
port, and (preemptive) ankle push-off, on a robot with flaitfand upper body. Compared to
the ZMP walking paradigm (which must prevent foot rotationensure dynamic balance), the
presented approach allows foot rotation and as such emwilafihuman-likeactuated dynamic
walking. Beyond this difference, the extended knee stanppati offered here allows walking
which is more natural looking then the usual (ZMP-based} keee robot walking.

In addition to the analytical derivation, numerical evdioa and experimental implemen-
tation of the proposed control approach, the dissertatisn affers a modeling and simulation

method developed to support the presented control metbggol

Summary and Outline of the Dissertation
The dissertation is organized in five chapters. Chapter leptesthe introduction of the
work. Chapters II-IV contain three manuscripts that sumpeatine research completed and have
been submitted for publication as journal articles. Chayteoncludes the work with the con-
tributions and theproposedfuture direction. An overview of the manuscripts preserntedugh

Chapter II-1V is given as follows:

e Manuscript 1: D.J. Braun and M. Goldfarb, “Eliminating Comastt Drift in the Numerical
Simulation of Constrained Dynamical SystemS@mputer Methods in Applied Mechanics

and Engineeringvol. 198 no. 37-40, pp. 3151-3160, 2009.

This article provide a theoretical framework for numerisiahulation of constrained dynam-
ical system modeled with differential-algebraic equati{DAES). Specifically, the paper of-
fers an equation of constrained motion which, solved wittaadard explicit ODE integrator

(i.e., Euler, Runge-Kutta method), provides a precise maghi@diction for DAEs. Beyond



the theoretical contribution, the paper presents thrgect@y tracking simulations on a
seven link planar anthropometric biped robot which denrates feasibility of the approach
to simulate bipedal motion subjected to redundant (depghdenstraints. This features
have been recognized important through numerical invatstig of the walking controller

proposed in [25] (Manuscript 2). The real-time implemeiotabf the method was also uti-
lized for parameter identification, free swing experimeaisd the PD control experiment
performed to characterize the dynamics of the seven linkdyidesign and control of which

is discussed in [26] (Manuscript 3).

Manuscript 2: D.J. Braun and M. Goldfarb, “A Control ApproachActuated Dynamic
Walking in Biped Robots,JEEE Transaction on Robotic2009 - accepted. A short version
of this paper, [27], is presented at the IEEE/RSJ Internati@onference on Intelligent
Robots and Systems, October 11-15, 2009, St. Louis, USA.

This article presents a control framework for human-likesated dynamic walking in biped
robots. Instead of utilizing the ZMP (zero-moment-poinohtrol philosophy (frequently
preferred to synthesize actuated dynamic walking), wegsen alternative control method
for human-like dynamic walking. The proposed approach m&amprove, the walking
style (bent knee walking) and the low locomotion efficienegagnized as fundamental is-
sues in the majority of actuated walking robots. As was racaegl during the conducted re-
search, realization of a compliant walking precludes ez@orent of a prespecified reference
trajectory, or may also not favor enforcing state depen#ier@matic constraints or other
attributes of the walking cycle (such as step length, stepfriequency or average forward
speed) with high gain control. This recognition motivatedta develop a control frame-
work which utilizes state-dependent control torques gateer by low-gain spring-damper
couples to provide motion coordination without prespenifythe motion of the system. As
is demonstrated (through numerous simulations) in theleytthe approach can provide

energy-efficient human like actuated dynamic walking ireblijpobots.



e Manuscript 3: D.J. Braun, Jason E. Mitchell and M. Goldfaibxperimental Implementa-
tion of Actuated Dynamic Walking in Biped Robot§he International Journal of Robotics
Research submitted. A short version of this paper, [2], is acceptadie 9th IEEE-RAS

International Conference on Humanoid Robots December 7008, Paris, France.

By utilizing the control framework proposed in [25] (Manuigtr2), this article presents
an experimental realization of actuated dynamic walkingiped robots. During the de-
velopment of the walking controller, an important desigguieement for energy-efficient
realization of dynamic walking have been identified. Thiguieement depends on joint
actuation which should not suppress the passive joint mdtie., joints should be backdriv-
able such as human joints). Practically, utilization of keesable joint design allows the
inertial motion of the robot to be exploited through walkirgher than being suppressed
by the actuation units. This recognition motivated us tagiesa seven link biped robot,
with highly backdrivable joints, which device is used in teperimental verification of
the control framework. The presented walking experimemalestrates dynamic walking
characterized with (partially) ballistic swing, extendette stance support and (preemptive)

ankle push-off which feature can also be identified duriagtjffhuman walking.

Utilizing the framework presented in [28], a control appriedor human-like actuated dynamic
walking was analytically developed and numerically inigegied in [25], which approach is then
experimentally verified on a seven link biped robot desigoethis purpose [26]. According to the
authors best knowledge, the preemptive ankle push-offafwisian important qualitative attribute
of a fast human walking) identified during the walking expgnts, have been only demonstrated

on the MIT Spring Flamingo [18] and on the actuator assisteth€bdynamic walker [1].
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Abstract
By means of the Udwadia-Kalaba approach we propose an ebgajigation of constrained
motion developed to simulate constrained dynamical systeithout error accumulation due to
constraint drift. The basic idea is to embed a small virtoaté and a small virtual impulse to the
equation of motion, in order to avoid the drift typically expenced in constrained multibody sim-
ulations. The embedded correction terms are selected tonaig alter the dynamics in an accel-
eration and kinetic energy norm sense. The formulatiomallone to use a standard ODE solver,
avoiding the need for iterative constraint stabilizatiofhe equation is based on the pseudoin-
verse of a constraint matrix such that it can be used undemdaht constraints and kinematic
singularities. The proposed method takes into accountnite fivord-length of the computational

environment, and also accommodates possibly inconsistigiat conditions.

Introduction

Constrained dynamical systems are traditionally modelédaiagrangian equation of the
first kind [29] where additional algebraic variables (Lagyen multipliers) are used to incorpo-
rate the motion constraints to the equation. In additiomi® ¢lassical approach, many alternative
formulations have been proposed in order to model consladynamical systems, including:
Gauss’s principle of least constraint [30], Maggi’'s eqoiai31], Gibbs-Appell’s formulation [32],
[33], Kane’s equation [34], and the Udwadia-Kalaba appno@s], [36], [37], supported with
additional discussions and development presented by B8fsNamark and Fufaev [39], Gant-
macher [40], Goldstein [41], Chetaev [42] and Lurie [43].
Despite the strong theoretical foundation, direct nuna¢imaplementation of the proposed govern-
ing equations generally leads to error accumulation duedastraint drift”. Specifically, motion
constraint which should be physically invariant will movespace due to error and imperfection
in numerical integration. The resulting solution is not picglly consistent and as such loses value

with respect to practical interpretation. This issue hanteddressed by many authors including:



Baumgarte [44], Geast.al [45], Lotstedt and Petzold [46],Urer and Leimkuhler [47], Petzold
[48], ten Dam [49], Eich [50], Bayo and Ledesma [51], Blajer][88d Aghili [53]. The impor-
tance of having a reliable simulation tool which produceggntelly consistent motion prediction
is motivated by many practical applications as was disalbgeschiehlen [54] and Brogliatet.al
[55].

Our aim is to propose a formulation which enables stable migalesimulation without error ac-
cumulation in motion constraints. In order to do so, it wasassary to take the nonideal compu-
tational environment as well as the possible errors indhétata (caused by the user) into account.
Following a revised constraint definition, we derive an @ipkquation for constrained motion
with constraint correction terms. Although these addaiaerms have no direct physical mean-
ing, they can be interpreted as a set of small virtual foroesimpulses and are derived by means
of Gauss’s principle of least constraint. After preseptatf the proposed formulation, the ap-
proach is discussed in the context of prior work in the fielthaHy, the approach is illustrated on

and validated with several representative examples.

Constrained Multibody Dynamics
In this section, the equation of motion for a constrainedasiyital system is derived. The
approach is based on the explicit equation of constraingtmpresented by Udwadia and Kalaba

[35].

Unconstrained Multibody Dynamics
Consider an n-degree-of-freedom multibody system, the gorgtion of which is uniquely
specified byg € R" generalized coordinates. Let the equation of motion of tresitlered system

(derived by means of the Lagrangian formalism) be represkintthe following form

M(t,q)d = Q(t,q,q). (2.1)



Here,t € [0,T]is atime variableM € R™"is a symmetric and positive definite mass matrix while
Q <€ R" represents the generalized forces. If no constraints grkedpon (2.1), the dynamical

system is considered as unconstrained with respect to tse=nlgeneralized coordinaigs

Holonomic Constraints: Revised

Let us introduce additionah holonomic bilateral constraints on the system dynamics,
®(t,q) =0, (2.2)

where® : [0, T] x R" — R™. In the forthcoming analysis, we will assume that these mbetc
(explicitly time dependent) constraints &[0, T], such that, (2.2) has well defined first and sec-
ond partial derivatives at least.

Let us discuss the effect of (2.2) on the dynamical systeft).(&zenerally speaking, each bilateral
constraint adds a constraint reaction force to the systerardics. If the constraint is ideal, it gen-
erates an “ideal reaction” which does no work on any congti@nsistent virtual displacement.
We assume that all constraints are ideal and as such D’Aldisipenciple applies [56].
Considering the constraint equations (2.2), one can se@tha0 defines position-level relations
between the generalized coordinates. However, in ordeiol @rror accumulations along the nu-
merical solution, the holonomic (position) constraintsstnaiso be satisfied on the velocity level

® = 0. In this light, by adding the aforementioned velocity legehstraint to (2.2), one obtains
®(t,q) = 0,®(t,q,d) =O. (2.3)

If the dynamical system is restricted by (2.2), itis impattE make sure that not only (2.2) but also
(2.3) is satisfied. As follows, we will replace (2.3) with gelty and acceleration level constraints
which are linear with respect tpandg, respectively. To do so, let us assume that q(t) defines

the positions of the constrained dynamical system. UsiegdHunctions, one can come up with



®(t) = ®(t,q(t)), and the following Taylor expansion holds
D(t +dt) = D(t) + (Ag — bg)dt + O(dt?), (2.4)

where A(t,q) = 0d®P/dq andbgy(t,q) = —d®/ot. Similarly, one can defin®(t) = d(t,q(t),q(t))

and expand the velocity level (nonholonomic) constraiptsauthe acceleration level as,
D(t+dt) = ®(t) + (A§ — by)dt+O(dt?), (2.5)

whereby(t,q,q) = —q" [0%®/3q?|q — 2[0°D/dtdq]q — I>D/dt2.
If dt is interpreted as a (numerical) integration step, then tisé drder approximation of (2.3),
(as well as (2.4) and (2.5)) can be satisfied at each subsemtegration step®(t + dt) = 0,

®(t +dt) = 0, with velocity and acceleration level constraints defingdicdlows

Ad = bg— ®/dt,

. (2.6)
A = b, — ®/dt.

Instead of (2.6), the analytical derivation of the explexfuation of constrained motion proposed
by [45] and [35], [36], [37] is based on a velocity or accetenalevel representation of the original
constraints

However, the equation of constrained motion which is base(2’) does not have a numerically
stable ODE implementation without additional constraorrection. Namely, in order to substitute

(2.6) with (2.7), the following conditions must be met:

e The user must provide initial conditions which are constraonsistent®(0,q(0)) = 0,

e The solutiong(t), q(t) must not contain any integration error.
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Due to numerical errors, such conditions are not realigtia humerical (i.e., computer) simula-
tion environment. Rather, in practice, use of (2.7) typiclhds to significant error accumulation
and constraint drift. This motivated us to derive an implatagon of (2.6) which takes the ex-
pected numerical imperfections into account. We will shbat adequate implementation of (2.6)

prevents error accumulation and results in a numericatisolwithout constraint drift.

Constrained Multibody Dynamics

In order to incorporate position-level constraints to tly@amic equations, we recall the
Lagrange multiplier approach. However, in contrast to tie¢hrad traditionally used in mechanics,
where the multipliers represent constraint reaction fyroer intention is to use the same idea to
eliminate constraint violations.

Let us start with the traditional representation of the ¢é@msed dynamical system,

Mg =Q+Qc, (2.8)

whereQ. = AT A is the generalized constraint force, while the undeterdhiregrange multipliers,
A € R™ represent the physical forces generated by constrairtis répresentation is valid for
ideal constraints which do no work] 6q = 0, along any admissible virtual displacemeiat
{6q: 6g € R" |Adq = 0}. To formulate the equation of motion in explicit form, let smlve the

constrained acceleration from (2.8) as a functiod pf

g=a+M1ATA, (2.9)

wherea = M ~1Q is the unconstrained acceleration the system would haveuithe imposed

constraints, see (2.1). Now, substituting (2.9) back toptaetical acceleration level constraints
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(2.6), one can solve for the Lagrangian multipliers by direct rsi@n
A = (AM AT)"L(b, — Aa— ®/dt). (2.10)

Although, the physical constraint reactiohsre not well defined if the constraint matAxis rank
deficient (due to kinematic singularities or constrainturdiancy), the constrained acceleration
as well as the generalized constraint fo@e= ATA are always unique, [57], [58], [36]. Thus,
we can determin€. to accommodate kinematic singularities and constrainimddncy by first
defining the following matricesM /2, M~1/2, B = AM ~%/2 andB™*, where due to the positive
definiteness oM, the so called principal square root of the mass ma#i? and its inverse
M~1/2 are always well defined, as is the (Moore-Penrose inversa)dmsnverséB of B, [59].

Using the introduced notation, the generalized constfaice becomes
Qc = MY2B* (by — Aa— d/dt). (2.11)

Substituting (2.11) into (2.8), the explicit equation o tbonstrained dynamics can be easily ob-
tained. In order to further proceed, one can define the cainstl acceleratiorj = v and rewrite

the equation of motion in the following first order form

q=V,

_ (2.12)
V=a+M12B* (b, — Aa— ®/dt).

Although this formulation accounts for numerical errorstba velocity level,® ~ 0, it cannot
in general prevent error accumulation. This is becaus&€)2ihes not yet take the numerically
induced position level error given [ ~ 0 into account. With the aim of incorporating this error

source, we mimic the above procedure, adding a new Lagnamngatiplier to (2.12),

g=v+M AT (2.13)
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In contrast taA, the new multiplieru is not generated by the constraints but rather is introduced
to compensate for numerical errors along the integratiosindilar term, AT 4 was used by [45]

to incorporate velocity level constraints in the equatidnmmtion. Note that neitheAT u nor
M~IATu has clear physical meaning. However while the former cay bel considered as a
kinematic correction term, the latter (introduced hered dynamic correction which allows us to
interprety as a small mechanical impulse.

Substituting (2.13) into (2.6) one obtains
p = (AM AT (g — AV — d/dt). (2.14)
Once again, using the pseudoinverse notation, the comjgamsarm becomes
M~IAT g = M~Y2B+ (bg— Av — ®/dt). (2.15)

Substituting (2.15) into (2.13), and combining with (2.4,2he complete equation of motion for
the constrained dynamical system is obtained

g =V-+M~Y2B*(bg— Av — ®/dt),

. (2.16)

v=a+M"Y2B*(b,—Aa—d/dt),
wherea = M ~1Q is the unconstrained acceleratidris the constrained acceleration, api the
constrained velocity.
It can be easily recognized thatdt = 0 and® =0 (which also impliesAv = bg) then (2.16)
reduces to the well known explicit equation of motion dedily Udwadia and Kalaba (which as-
sumes an ideal computational environment and perfechimitinditions). Taking the error sources
in the real computational environment into account, we dasesume exact constraint satisfaction
which, following strict mathematical derivations, proéscadditional error compensation terms
in the equation. The new terms compensate for the numerigaiseand guarantee that no error

accumulation can take place.

13



Discussion of the Proposed Formulation
In order to discuss (2.16), let us recall the explicit equatf motion which does not

contain the constraint correction terms,

q=v,

_ (2.17)
vl =a+M-1Y2B*(b,—Aa),

whereV' is the acceleration which exactly satisfié' = by, while v is the velocity obtained by
numerical integration 0¥ (in an ideal computational environment one would obtais;, v').
Comparing (2.1&)with (2.17), one may conclude thi *1/2B+('D/dt represents a small correc-
tion of the constraint force (Lagrangian multipli&ér see (2.10)) which is necessary to satisfy the
constraints under numerically imperfect conditions. Idesrto have a clearer interpretation, let us

reformulate (2.16) by means of the Gauss principle of least constraint,

V=min{x e R": (x—V)TM (x — V),

_ (2.18)
AX = b, — ®/dt}.

Based on this interpretation, tkreprovided by (2.16y s the closest accelerationib(in an accel-
eration energy sense) which satisfies the constraints(2.6)

Similarly, comparing the first equations in (2.16) and (3, bhe might recognize that ~1/2B+ (bg—
Av — ®/dt), although not generated by physical constraints, is nacg$s prevent error accumu-
lation. In order to give a physical interpretation of thigte let us define an equivalent formulation

of (2.16) with the following constrained quadratic program

q=min{XxcR": (x—V)TM (x — V),

(2.19)

Here,q is the closest velocity t@ (in a kinetic energy sense) which satisfies the constra®n® (

Note thatv, obtained by time integration of the constrained acceal@matay not satisfy exactly
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the kinematic constraint&v # bq (which condition is taken into account along the derivatidn

a special case whan= V', (Av = bg), the correction term would reduce taM ~1/2B+ ¢ /dt.

One can conclude now that the derivation of the accelerdéioel correction terms are closely
related to the general principle of constrained motion fdated by Gauss [30], while the veloc-
ity level correction terms are obtained using kinetic egargnimization, and as such are also

physically motivated.

Numerical Implementation

In order to simulate a constrained dynamical system, a t@ng stable numerical solver
for the index-3 differential algebraic equation (DAE) (R.02.2), is required [60]. However, in
contrast to widely available ordinary differential eqoat{ODE) solvers, a DAE solver which reli-
ably prevents error accumulation and constraint drift istri@al to implement. By means of DAE
integration, DASSL [61] (and its extended version DASSLRT#rs a state-of-the-art implemen-
tation of the index-2 DAE formulation proposed by [45]. Inngeal, different DAE integrators
have been developed as research codes, overviews of wiidiedaund in [62], [63], [64].
Our intention is to show that one can use traditional ODEgrators to solve the reformulated con-
strained dynamic equation (2.16), without having problersrror accumulation and constraint
drift. In the remainder of this section, we discuss how t@obsuch a numerical solution.
When the analytical model is derived, the system is charaetéwith the following quantitiesyl,
Q, A, bg, by, @ and®. Without any further preparation, (2.16) is ready to be edlin a standard
ODE solver which utilizes a first order state-space formaiatproviding we can incorporate the
correction terms®/dt and®/dt where, as it was mentionedt is interpreted as a time step of
the numerical integrator. The simplest way to incorporhge dorrection terms is to use a fixed
step solver wherdt is predefined. If however, one wants to exploit the benefits wdriable step
solver, the actual time step should be used over the integratocedure.
The computational expense of the numerical implementatidd.16) is dominated by the calcu-

lations of the principal square root of the mass maiX2 and the pseudoinver&:". Practically,
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these computations entail an eigenvalue computatidtt ahd a singular value decomposition for
B, see [65]. However, in order to incorporate the constrairids, one can usé —1/2B+ =R-1C*
whereR is the upper triangular Cholesky factor of the inertia malfix= RTR while C = AR 1.
This replacement allows one to avoid the particularly espeneigenvalue computation which
would be required in order to comput!/2. It is also important to mention that the pseudoinverse
notation utilized in (2.16) allows a compact and generatesentation of the equation of motion
regardless of whether the constraints are independenpendent. From a computational point of
view, however, only dependent constraints require singtdaie decomposition to defirig" (or
C™) while for independent constraints one can either 1) comthg velocities and accelerations
together with the Lagrangian multipliers from (2.9), (2,1@.13) and (2.14), or 2) utilize the fol-
lowing explicit definition,M ~1/2B+ = R-1CT(CCT)~! to evaluate the right hand side of (2.16)
directly.

Note, that the correction terms are obtained based on tHerTexpansion of the constraints, see
(2.4), (2.5), which provides a good approximation as long amall integration stegt is used.
With this in mind, one cannot expect arbitrarily precisestomint satisfaction (i.e., due to the finite
time step and numerical imprecision). Let us recognizetti@torrection terms in (2.16) use the
same matrixM ~1/2B*, which must in any case be computed in order to incorporatednstraint
forces. In this light, beyond multiplication and additidghe correction terms do not require any
additional computation.

In the following, a simple numerical implementation of @) Will be given with some practical

comments.

Numerical Procedure

Using a small time stet, the finite domain of integratione [0, T| is equidistantly dis-
cretizedas Bty <ty <..<th<thi1<.. <ty =T. By means of numerical solution, we seek the
discrete values of all positioq$jo,q1, ---,0n, dn+1, ---, dn } @nd velocitievo, V1, ..., Vn, Vni 1, .., VN }

which are numerically constraint consistent. Let us asshiatehe initial conditiongjo = q(0) and
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vp = v(0) approximately satisfy the constrain®(tp,qo) ~ O, dJ(to, do, Vo) ~ 0. The complete so-
lution can thus be obtained by integrating the system dyosisuccessively between discrete time
instants. In order to illustrate salient aspects of the @nm@ntation, a numerical integration of

(2.16) is presented based on a forward Euler method, asvillo

1. Based om, = q(tn) andv, = v(t,), known from the previous integration step (or defined by
initial conditions for the starting step), one can evalu&e= Q(tn,dn,Vn), M = M (tn, dn),
A = A(th,0n), bg = bg(tn, An), by = by(tn, n, Vn), ® = ®(tn,qn) and® = @(tn, qn, vn). The
upper triangular Cholesky factor of the mass maRiis computed, whert! = RTR, and

the pseudoinvers8™ is computed based dd = AR 1.

2. Using Q and exploiting the Cholesky factorization one can efficiersiblve the uncon-
strained acceleratioa, from RTRa, = Q with a successive forward and backward sub-

stitution.

3. The endpoint position is computed from:
Ont1 = Qn+Vndt+ R7ICH[(bg — Avp)dt — @], (2.20)
and the endpoint velocity from:
Vi1 = Vn+ andt+ R1CH[(by — Aan)dt — ). (2.21)

At the end of an integration step, the new position and v8la@,.1,Vn+1) iS obtained.

These values are used to initialize the next integratiotecyc

The presented method assures that neither use of initiditoams which do not exactly satisfy the
constraints, the roundoff error (cased by imperfect arégties), nor the truncation error (made by
discretization) can cause constraint drift along the tintegration. This however, does not mean
that inconsistent initialization is preferred. Namelyppy selectedyjp andvg will cause intensive

corrections at the beginning of the integration which magrahe dynamic evolution of the system
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over time. To avoid this effect, it is important to take cafeorrect initialization using approxi-
mately (numerically) consistent initial conditior®(tp,qo) ~ O, dJ(to, do, Vo) =~ 0, [66], [67].

Let us mention that due to/dlt in (2.6), the compensation terms may make the governingtiequa
(2.16) stiff. However, this term is canceled after time dédization as it is shown in (2.20) and
(2.21).

If the constraints are indepndent, the pseudoinverse aste inumerical procedure is explicitely
definedC* = CT(CCT)~L. In general hoveveC* requires a singular value decompositiorof
This computation may be relatively expensive, althoughidgings one to resolve kinematic singu-
larities and generally handle dynamical systems with dégenhconstraints. For high degree-of-
freedom multibody systems however, reducing the compurtatieffort needed for time integration
could become crucial. In this case, one may favor Cartesi&natural” coordinates [68], [63],
[69], and use topological based approaches to exploit thetste as well as the sparsity pattern
of the formulation [70], [71].

In order to improve accuracy and/or numerical stabilitgtéad of the presented simple scheme,
more sophisticated explicit or implicit discretizatiomdae used as required. Implicit integrators
are computationally more expensive, but also more staldeenusually required if the equations
of motion are stiff. Practically, an implicit solver woulds® Newton iteration to obtain the po-
sitions and velocities at each time step. This iterative@ss can be sped up by exploiting the
sparsity pattern of the Jacobian used in Newton’s methasl@®posed in [72]. Note however that
due to its computational expense, solving (2.16) with anliciip solver is only resonable if the
constraints are independent, in which case no singulaewd@gomposition is required to compute

Ct.

Related Simulation Methods
In this section, established DAE integration methods fesdly used to prevent constraint
drift are discussed with respect to the presented equa2id®), An overall review of constraint

enforcement approaches can be found in [73] and [74].
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Baumgarte’s constraint stabilization

The main issue in all DAE problems is ensuring that the smati@rical error made at each
integration step does not accumulate along the solutioogss One of the most popular methods
in engineering practice, which does not require iteratiwastraint corrections, is Baumgarte’s
constraint stabilization [44]. Practically, instead oingsan original constrain® = 0, Baumgarte
proposes the use of a corresponding second order equaiera® + B2d = 0 which fora =
B > 0 has a globally asymptotically stable aperiodic solutippraaching zero® = 0) over time.
As has been frequently pointed out in the literature, theothiced parameters; and 8 must
be carefully selected, since the selection can make themefated problem stiff and also can
alter the original dynamics of the system under considamnatin (2.16), the correction terms are
derived to minimally alter the dynamics under numericathperfect conditions without resulting
in stiff equations. This was achieved by means of (2.1819R.without introducing extraneous
parameters liker andf3.
Various modifications of Baumgarte’s idea can be found in,[[A]], [77], [78]. Specifically, the
approach proposed by Ashetral[77] is based on a single correction step (Newton iteratiep)s
towards the position and velocity constraint manifold J2aBplied after each time step. In the
present paper, the velocity and acceleration level canssat (2.6) can also be seen as a Newton
iteration algorithm for (2.3). However, in the present aygmh, the correction terms embedded in
(2.16), are derived to minimally alter the uncorrected Boituin a kinetic and acceleration energy
sense according to (2.18) and (2.19), and as such they chamttained by directly solving (2.6)
as proposed in [77]. Moreover, instead of post-correctiegcbmputed solution, one can recognize
in (2.20), (2.21) that with explicit discretization, theroection terms derived here perform pre-

correction.
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Iterative correction approach

In contrast to Baumgarte’s approach, a variety of other nusthave been developed which
eliminate constraint drift by iteratively correcting thieeady computed solution.
The penalty based Augmented Lagrangian (AL) formulatidrooiuced by Bayo and Ledesman
[51] works with redundant constraints and singular massiogst In order to deal with constraint
violation, a “mass-orthogonal” projection method was fatated on the acceleration, velocity and
position level. Based on results presented in [51], the ntetlan provide numerically perfect con-
straint satisfaction along relatively large step inteigreg. The motivation of the mass-orthogonal
algorithm is to have the same matrix for the dynamic equatand also for the iterative constraint
correction process.
The correction approach proposed in this paper can alscemeasemass-orthogonal. However, the
idea presented herein is based on Gauss’s principle, anathst$s free of the auxiliary (penalty)
parameter one needs to specify on the AL formulation.
An alternative two-step decoupled position and velociteleonstraint correction algorithm had
also been proposed by Blajer [52]. This approach is built @xgihometric interpretation of the
constrained motion [79]. The method assumes a full-ranisttaimt matrix and as such it cannot
be used for simulation of dynamical systems with redundanstaints.
Aghili [53] presented an efficient formulation for the camsht motion problem introducing a
“constraint inertia matrix”. In order to satisfy the (pdsyi dependent) position constraints, he
proposed a geometrically motivated correction method dasethe pseudoinverse of the con-
straint matrix.
The approach presented in this paper does not uses the psarde of the original constraint
matrix, but rather is based on the inertially weighted ps@ugtrse, which allows dynamically

consistent constraint correction (i.e., based on Gaussisiple).
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Coordinate partitioning method

In many practical applications, using dependent coordsaiwith differential-algebraic
equations (2.1), (2.2) is a convenient and natural way toahodnstrained dynamical systems.
However, having constraints, and as such dependent cabedinis the primary reason for the
constraint drift along a numerical integration. Theor&tic this problem can be overcome by
analytical reformulation of the mathematical model, enddegd all constraints in (2.1) by specially
selected (independent) generalized coordinates. Tha ddimeformulation of the original DAE
problem to a corresponding ODE is often nontrivial or evepassible in practice. In this light,
Wehage and Haug [80] proposed a more practical coordinatéiqgang in order to separate the
dependent coordinates from the independent ones. Thisigrairtg, although non-trivial and not
unique, exactly eliminates the drift at the velocity levedrh the integration, and allows DAE

problems to be solved accurately using a correction onljherpbsition level.

Differential-algebraic approach

In order to incorporate the motion constraints to the gawgrequation, Gear [60] devel-
oped an index reduction method. Instead of solving the maighdex-3 DAE problem (2.1), (2.2),
he proposed an alternative index-2 DAE formulation, [45heve the velocity level constraints,
Aq = bg were directly embedded in the equation of motion. In contathe Udwadia-Kalaba ap-
proach, Gear did not eliminate the Lagrangian multipliersrather calculated these in each time
step. The integration was based on the Backward Differémtid&ormula combined with Newton
iterative correction of the original constrair®s Similar methods have also been developed by
[46], [47], [50].
In the presented approach, the Lagrangian multipliers areamputed, which allows us to take
redundant constraints into account. On the other handadssf using the velocity (and acceler-
ation) level constraints in standard form, we have used,(&bich allows (2.16) to prevent error

accumulation without iteration.
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Note that Eich [50] has proposed a quadratic minimizatisseddanethod which corrects the com-
puted solution by projecting it to the position and velocionstraint (2.3) after each time step. The
difference between the approach suggested in [50] and thieoch@resented herein is twofold;
first, the minimization we propose is performed in an aceglen and kinetic energy sense, and
second, the velocity and acceleration level constrainliged in this paper allows the correction

approach to be explicitly incorporated in equation (2.16).

Taking the numerical error sources into account

The importance considering the finite word length of the cotational platform, as well
as the inconsistency of the initial data was also pointedpten Dam [49]. In contrast to [60], ten
Dam argued that the index of the DAE is not what causes diffeziin the solution, but rather the
order of steps one takes to obtain the discrete formulatitstead of discretizing the analytically
derived equations, ten Dam proposed deriving the discraggdnge multipliers with the primary
objective of forcing the solution to satisfy the constraiat each time step. It was shown that
the discrete multipliers are not equal to the discretizediva of the analytically derived multi-
pliers, which is considered the main reason for the numienstability experienced by standard
approaches.
From our viewpoint, the primary reason of the error accutmaand constraint drift lies in the
standard constraint representation (2.7). Namely, itrass® = 0, ®=0 along the numerical so-
lution, and as such eliminates the information from thetdiinder this assumption, correction of
the constraint drift is not possible. Taking the finite wdedgth of the computational environment
into account, we acce@® ~ 0, ® ~ 0, and use the velocity and acceleration level constraiis-in
pendently as is proposed with (2.6). In this way the constiift can naturally and automatically

be eliminated.
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On the presented method

In order to obtain unique Lagrange multipliers, it is tramhally assumed that the constraint
matrix A is of full rank. In real simulation however, one cannot gudee this property through
the dynamical evolution of the constrained motion. Paldidy, if the constraint set becomes de-
pendentA loses rank, and the Lagrange multipliers cannot be uniquadbulated, and as such the
numerical simulation fails. By this reason, the approaclseméed here does not require the La-
grange multipliers to be computed, instead, it uses thergéned constraint force which is always
well defined.
All the dynamical simulations which seek precise constraatisfaction implement some type of
correction algorithm. This correction process alters theadnic evolution of the system and can
make it depart from the expected natural behavior over timerder to minimize this effect, the
proposed correction terms are derived to minimally alterrtfotion in an acceleration and kinetic
energy norm sense.
In contrast to the frequently used iterative type consti@irections, the equation of motion (2.16)
proposed here, does not require any iteration, which maydsgyhpreferred in real time applica-
tions. The noniterative constraint correction is achidwedirectly embedding (2.6) in the equation
of motion. Practically, this allows us to obtain one correxstep (toward the position and the ve-
locity level constraints) at each time step. Note, howetleat because only one corrective step
is allowed, using initial conditions which significantlyolate the constraints will result in a low
accuracy solution. In this light, it is important to useiaitonditions which at least approximately
satisfy the constraints and thus can be accepted as constasistent in a numerical sense.
Finally, it is important to mention that utilizing the ideagsented in [37], (2.16) can also be gen-

eralized to accommodate nonholonomic and nonideal constra
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Application

In this section, the proposed formulation (2.16) is firstad®n relatively simple dynamical
systems, then on a more complex one. Specifically, in ordassess the accuracy of the solution,
examples are chosen which are sufficiently simple to allamntdation of the dynamics without
explicitly imposed constraints, which in turn enables anEODrmulation of the dynamics. The
ODE formulation and subsequent solution via an ODE solvai¢chvis termed the “trusted solu-
tion”, is used in these cases to compare the results of tipectge DAE solution (2.16) termed
as the “proposed solution” (both under the same numericaditons). The authors also compare
the DAE solutions obtained by (2.16) and (2.17) (i.e., witld &vithout constraint error correction)
for constraint drift in the presence of “perfectly” consist and inconsistent initialization. Af-
ter comparing solutions for the simple examples, a sevdaHiped (in three different constraint
configurations), which is too complex to be formulated asnglsi ODE problem, is used as a
“realistic” application of the proposed method.
The presented examples are solved with a fourth order fixgdRtinge-Kutta method. The solver
is implemented in MATLAB and compiled to a C code. Using thisle, the simulations are per-
formed on 2.4 MHz Intel Core2 Quad PC computer with a fixed titap.sThe selected integration
step preserves stability of the explicit Runge-Kutta intégr. The error of the reported numerical
solutions are measured with respect to the “numericallgesalution” obtained using the ODE
formulation integrated with a MATLAB solver (with 132 relative and absolute tolerance). All

physical quantities used in the simulations have standaudits [kg, m, 5.

Mathematical Pendulum

A pendulum with massn and lengthl is chosen to test the proposed method over a long
time period simulation € [0,1000s. The constrained equation of motion, (2.16), is derivedgsi
two (dependent) coordinates= [x,y]" and one constrain® = x> +y? — 2. Starting from the

horizontal rest position, the motion is simulated using36me step. Compared to the “numer-
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ically exact” position of the pendulum, the simulation ésshow the same accuracyx3.0~’

(i.e., worst error magnitude), for the “proposed solutiandl the “trusted solution”, indicating that
this error is not due to the constrained formulation but theagenerated by discretization. On
the other hand, using (2.17), (with no constraint corregtiesults in a low accuracy solution,
101, as expected. In order to identify the importance of theeamion terms, the simulations

were repeated with slightly imperfect initial conditionie result is depicted in Figure 2.1. Note

y [m]

Figure 2.1 Mathematical pendulumt = 1m, m = 1kg. Last swing int € [0,1000s simulation
is depicted. The “trusted solution” started from the restzamtal positiong(0) = [1,0]", v(0) =
[0,0]", is plotted with “”. The solution obtained by (2.16), with imperfect initiadraditionsq(0) =
[14+107°,107°]T, v(0) = [10~4, —10~4T, is depicted with ”. The solution obtained by (2.17)
with the same imperfect initialization is plotted with-". This solution violates the constraint and
is shifted in time.

that despite the imperfect initialization, no error acclatian took place in the proposed solution.
Correspondingly, (except the first few steps) the constiaisatisfied up to, 102, such that the
solution is practically free of drift. Let us mention thategration of (2.16) over 10@Qook 137s
CPU time, 26% of which was spent on constraint correction.

Since in the present context an explicit solver is utilizbd,overall accuracy of the integrated solu-

tion (accuracy compared to the numerically exact soluti@nyell as the accuracy of the constraint
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satisfaction is step-size dependent. A representatiatioalbetween the integration step-size and
the mentioned accuracy measures is illustrated in Fig@.e/&s one can recognize, with a small

enough time-step, the overall accuracy obtained with tbpgsed formulation is the same as that
obtained by integration of the unconstrained formulatibime presented numerical result also ver-
ifies that with a larger time-step, the constrained formaragjives a less precise result, namely the

constraint error (although steadily maintained) is notim dérder of the machine precision.
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Figure 2.21n this figure, log-log pictures depict the maximum conslmirror\dbq\max 1Py mase

and the maximum overall accuragyay € = v/dX2 + dy? (wheredxanddyare errors in the corre-
sponding coordinates) between the “trusted solutiofi; &hd the proposed solutione™ The pre-
sented results are based on integration conductead=d®, 10/s (dashed line) ant= [0, 100's (full
line) with seven different time stepdt € [5x 107410732 x 1073,5x 1073,1072,2x 1072,5 x
10-2]. In the first two figures, the full and the dashed lines arelapped, indicating that the two
solutions have the same accuracy on the constraint sdisfac
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Slider-crank mechanism

Consider the slider-crank mechanism consisting of two link$ equal lengthd and
massesn, and a horizontal slider, with mass;, attached to the end of the mechanism Figure
2.3. When the links are either horizontal or vertical the nagidm is in a singular configura-
tion. Our intention is to test (2.16) under this singularitp make the motion periodically cross
the singular positions, the base link is subjected to a emmstounterclockwise torque of Rdn
and a torsional (linear) viscous damping with damping coieffit SNms The constrained for-
mulation is derived with four (dependent) coordinates [xl,yl,el,eg]T and three constraints
® = [x1,y1,y1+1(sin(61) +sin(62))]T. Here,(x1,y1) are coordinates of the support point white
and6, are absolute angles of the links measured counterclocKwasea horizontal reference.
The motion, started from a horizontal rest position, is $ated overt € [0,100s with 10~3 time
step. Compared to the numerically exact solution, the magtiacted to the horizontal position of
the sliderxs = x; +1(cog 61 ) +cog 62)), shows the same accuracy}4 10-8, for the proposed so-
lution and the trusted solution. The equation (2.16) is s#sted under inconsistent initialization.

The simulation results are depicted in Figures 2.3 and 2.4.

Two four-bar linkages

Let us consider two four-bar linkages with links of lengjind distributed masses When
the mechanism moves through a horizontal position, its rerrabdegrees of freedom changes in-
stantaneously from one to three. The intention here is t§2€K65) under this constraint singularity.
The equation of motion is derived with six natural coordasa81], which define the position of
the moving joints,q = [X1,Y1,X2,Y2,X3,y3]", and five constraint® = [x2 +y2 — 12 (xp — )2 +
Y2 —12,(x3—21)2+y2—12 (%2 —X1)2 + (Y2 — Y1)? — 12, (X3 — X2)? + (Y3 — y2)2 — I?]T. The motion,
started from a vertical rest position of the supportingsirik simulated overe [0, 100swith 1072
time step. Due to the relatively large time step and long &itiman time we do not expect a precise

solution. Accordingly, compared to the exact numericalisoh, the result reflected t& shows
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y [m]

Figure 2.3Slider-crank mechanisnh:= 1m, m= 1kg, ms = 1kg. Stroboscopic view of the motion
for t € [97.5,99s. The solution obtained by (2.16) with exact initializatiqt0) = [0,0,0,0]",
v(0) = [0,0,0,0]", is depicted with “-”. The numerical integration took 18 CPU time, 5% of
which is spent on constraint correction. The motion predidty (2.16) under slightly inconsistent
initialization q(0) = [1073,1072,1073,1072]", v(0) = [1073,1072,10°2,10°?|T is plotted with
“——". The solution obtained by (2.17), (with no constraint eation), was highly inaccurate
such that we decided not to present it here.

0 20 40 60 80 100

do/dt
=
o

Figure 2.4 Constraint evolution along the solution obtained by (2.56)lotted with “-". Note
that all constraints are below the machine precisiont20Constraint evolution along the solution
obtained with no constraint correction is depicted with-“—". Both depicted solutions started
with inconsistent initialization.
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102 maximal error in the proposed solution anet 20~* error in the trusted solution. Note that,

in numerical simulations with a time step, 1) the proposed and the trusted solution possesed the
same accuracy level, 10/, as that obtained in the previous examples. With the?1ine step,
integration of (2.17) with no constraint correction wastabte. The constrained equation (2.16),

was also tested under inconsistent initialization. Theltesire depicted in Figures 2.5 and 2.6.

y [m]

X [m]

Figure 2.5Two four-bar linkagest = 1m, m= 1kgfor each link. Stroboscopic view of the motion
for t € [95,96.25)s obtained by (2.16) with exact initializatiog(0) = [0,1,1,1,2,1]T, v(0) =
[1,0,1,0,1,0]7, is depicted with “-". The integration took 2s CPU time. The motion predicted
by (2.16) under slightly inconsistent initializatiaif0) = [0,14+1072,1,1+102,2—1072,1]T,
v(0)=[1-102,0,1,0,1+1072,0]" is plotted with “——

Trajectory tracking control

Motivated by a recent development in trajectory trackingtom [82], our intention is to
show how (2.16) can be used to simulate dynamical systenchvgarfectly (rather than approx-
imately) track a predefined reference trajectory. Accagdnthe classical philosophy of tracking
control, we assume that the motion of the considered dyramystem is guided with kinematic

constraints interpreted as control objectives. This vielvallow us to embed all predefined refer-
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Figure 2.6 Constraint evolution along the solution obtained by (2.18hg inconsistent initializa-
tion. Due to the large integration step, 20 some constraints are not satisfied on the order of the
machine precision. Nevertheless, the constraint drifoisgnowing through the integration.

ence trajectories in the constraint set (2.6). In the pes@ntext, this approach will allow perfect
satisfaction of the control objectives without applicatmf the Baumgartne’s constraint stabiliza-
tion method as was used by [82]. The idea is presented by aimglthree “exercise” motions of
a planar biped robot.

Consider a 7-link planar biped robot depicted in Figure 2it WweightL = 1.8m, masaM = 75kg
and anthropometric geometric properties and mass disisibaccording to Table 2.1, [3]. The
configuration of the biped is defined with nine absolute cimatgsg = [X,Y, 8, 81, 62, 83, 64, 05, 66| .
This coordinate set is independent for the “flying biped” lelii becomes dependent if constraints

are applied on the robot.
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m4,r4,l4\*96 X

Figure 2.7 Biped model with generalized coordinates and associatechggeic and inertia prop-
erties. For each segment, the moment of inertial with radpdbe center of mass is calculated as

l, = m,r2.

First exercise

Let us consider the biped restricted with nine kinematicst@ints, specifically, six physi-
cal restrictions due to the ground contact of both feet, Arektadditional control objectives which
specify the upper body angle and also define periodic flexidroth knees. The constraint set is
given by: @ = [\ —x', v,y X0 — X2 Y2 0 0 — 64,0, — ¢, 00 — ¢RIT where;x!, = 0,507,
x2, = —0.097 define the desired horizontal position for the toes oridtveard and backward foot,
64 = 41/9 is the desired upper body ang&{, = 01 — 6, is the relative angle at the forward knee
while ¢|:d = (11/6)(1— cogt)) defines its desired motiog? = 6, — 65 is the relative angle at
the backward knee with its desired motion definedpfly= (77/10)(1— cogt)). The simulation

result is depicted in Figure 2.8.
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Table 2.1Geometric and inertial parameters of the biped.

Description|| no. () | /L | lg/ly | mJM | 1.l
Upper body 1 0.288| 0.626| 0.6780| 0.496
Thigh 2 0.245| 0.433| 0.1000| 0.323
Shank 3 0.246| 0.433| 0.0465| 0.302
Foot 4 0.152| 0.250| 0.0145| 0.475

ally bll4 h/L
0.75 | 0.25 | 0.039

Foot geometry

Second exercise

Using the same biped model one can apply different conssréingenerate a required
motion. In this example, we apply four physical constrauwksch will hold the forward heel and
the backward toe to remain on ground while the motion of thmtas dictated with five control
constraints. Practically, we define the upper body afigle 471/9, the angular motion of the feet
B39 = (11/18)(coqmt) + 1), Bsg = —(11/18)(1— cogmt)) supported with periodic flexion of the
backward kneg?, = (11/10)(1— cognit)) and full extension of the forward leg. Accordingly, the
constraint set is given by® = x| — x|, vl X0 —x,, ¥, 6 — 64, 63 — O34, 66 — O, B, 92 — 92T,
wherex;]d = 0.262, X%, = —0.038. A stroboscopic view of the simulated motion is depidted

Figure 2.9.

Third exercise

The simulated motion here represents a balancing exerdis@arallel legs while only the
toes are on the ground. The constraint set is givendy: [x,yi,x,yP, 0 — 64, ¢kf — ¢kfd, oL —
002y, 03— B34, 05— Boa. Xcom] T Wherefy = 411/9, ¢y = ¢y = (11/3)(1—cos 21 /5)), B3 = O =
—(m/27)(1—cogq2mt /5)) while the center of mass of the biped is kept above the tegs = O.

Note that the constraint set contains ten relations whaeststem is described with nine coordi-
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Figure 2.8 The simulation is performed with 18 time step overt € [0,100s with q(0) =
[0.056,1.220,1.396,1.920,1.920,0,1.222,1.222,0]" andv(0) = 0. Along the motion, all phys-
ical and control constraints are satisfied up ®:610~11. The corresponding configurations in 50
successive depicted periods are overlapped.

el

y [m]

-0.5 0 0.5

Figure 2.9 The simulation is performed with 18 time step overt € [0,100s with q(0) =
[0.056,1.239,1.396,1.920,1.920,0.349,1.292 1.292 0] andv(0) = 0. The depicted 50 motion

cycles show that the corresponding configurations in sgoeegeriods are overlapped. All con-
straints are satisfied up to72< 10~11.
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nates. In this light, regardless of the configuration of theed, the constraint set is redundant at
each time instant. Stroboscopic view of the balancing eseiis plotted in Figure 2.10.

The reference trajectories in the above three simulatiomselected such that the system cannot

el
TAf- Y
12f [
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02f T

-0.2— : :
-0.5 0 0.5
x [m]

Figure 2.10 The simulation is performed with 18 time step ovett < [0,100s with q(0) =
[0.046,1.252 1.363 1.363 1.363 0,1.363 1.363 0] " andv(0) = 0. The stroboscopic view of the
whole simulation, 20 cycles, shows that the configuratiothefrobot in successive periods are
overlapped. All constraints are satisfied up 162 10-12.

experience impacts (i.e., the necessary smoothness assamgguired or® is not violated). Us-
ing an appropriate impact resolution algorithm, the présstmethod could be applied to simulate
nonsmooth motion such as bipedal walking. However, resglunpacts for multiple constraint
dynamical systems is outside of the scope of this paper [55].

Finally, we would like to point out that by embedding a refere trajectory into the constraint
set, we assumed that the reference motion could be enfontleédm“ideal” control force which
satisfies D’Alambert’s principle. This assumption, howeweay generate a controllability issue

on the trajectory tracking problem, as was pointed out by.[83
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Conclusion
In order to simulate a constrained dynamical system, a gawgequation (2.16) with em-
bedded constraint correction terms is derived. This eqgndtas a numerically stable implemen-
tation and allows the analyst to obtain a simulated solutigr long time periods of constrained
dynamical systems using simple generalized coordinagstandard ODE solvers. The presented
formulation exploits the pseudoinverse of the constraiatrix, and as such, can also be used un-
der dependent constraints and kinematic singularitiegshodigh the idea is presented from the
standpoint of classical mechanics, one can use it to simwi@tious physical systems modeled

with differential algebraic equations.
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Abstract

This paper presents an approach for the closed-loop carfteolully-actuated biped robot
that leverages its natural dynamics when walking. Rather ginascribing kinematic trajectories,
the approach proposes a set of state-dependent torquéspfeatich can be constructed from
a combination of low gain spring-damper couples. Accorlyingpe limb motion is determined
by interaction of the passive control elements and the ahtlynamics of the biped, rather than
being dictated by a reference trajectory. In order to imgetthe proposed approach, the authors
develop a model-based transformation from the controuesglefined in a mixed reference frame
to the actuator joint torques. The proposed approach issim@hted in simulation on an anthropo-
morphic biped. The simulated biped is shown to converge talales natural-looking walk from
a variety of initial configurations. Based on these simufetjdhe mechanical cost of transport is
computed and shown to be significantly lower than trajedi@gking approaches to biped control,
thus validating the ability of the proposed idea to proviffeient dynamic walking. Simulations
further demonstrate walking at varying speeds and on vgrgimound slopes. Finally, controller
robustness is demonstrated with respect to forward andi@adikpush-type disturbances and with

respect to uncertainty in model parameters.

Introduction

The zero moment point (ZMP) approach, is perhaps the mosprensively developed
in the biped locomotion control literature [5], [84], [9B3], [86], [87]. Methods based on this
approach have been shown to provide effective, robust, arghirle locomotion for biped robots.
Despite their effectiveness, ZMP approaches generallyitresa stiff and unnatural looking gait
with low locomaotive efficiency [11], [88]. The principal rean that these approaches appear stiff
and have a low locomotive efficiency is that they are baseti®trajectory tracking, and therefore
(by definition) override the natural dynamics of the roba.(iposition-level information is dictated

by the controller, and thus integration of the inertial dymes is not an essential part of the motion).
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Such reshaping of the natural dynamics is energeticallgmesige. By contrast, humans (which are
characterized by natural looking gait with high locomotefgciency) have been shown to leverage
the natural dynamics of their limbs when walking (e.g., )89]

In order to achieve a more efficient and natural-looking Bgleyait, several researchers
have investigated dynamic walking approaches that, likedns, leverage rather than override
the limb dynamics of the robot. As defined herein, a dynamilkevas one in which the motion
of the walker is not dictated substantially by the contmlkait rather is influenced significantly
by the gravitational and inertial characteristics of thetegn. As such, neither a predefined ref-
erence trajectory nor any other time or position-basedbattr of the walking cycle (i.e., desired
walking speed, stepping frequency or step length) can beresd by control. Rather, all such
gait characteristics are obtained indirectly by the intBom between the dynamics of the robot
and environment and the influence of joint torques (i.emftbe combined influences of the joint
torques and natural dynamics). Implicit in this definitigrthat the limb dynamics play a signif-
icant role in determining the joint angle trajectories. sTdefinition also implies that the joints
should be backdrivable such that power can flow freely ardireictionally between the limb load
and the actuator. Note that the phrase dynamic walking suded to describe a biped gait that
is dynamically (as opposed to statically) stable ([90]]],L@lthough that is not the meaning used
herein.

Prior work on dynamic walkers includes work on both actuaded unactuated walk-
ers. Specifically, such work describes the development atwmated (i.e., fully passive) walk-
ers, actuator-assisted walkers based largely on passis®ns, and actuated walkers that utilize
control approaches that do not dictate joint angle trajezto Fully passive dynamic walkers do
not incorporate any actuators (or control) and as such twmotion they produce adheres to the
previously given definition of dynamic walking (i.e., no noots are imposed by a controller). As
such, fully passive dynamic walkers rely on precisely tunatural dynamics of the robot, and
must walk on a slight downward slope to compensate for thegetie cost of transport (i.e., they

are powered by gravity). Examples of these types of walkerslascribed by [12], [13], [88].
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Actuator-assisted dynamic walkers augment a nearlyyg@asglker by introducing a re-
duced set of actuators to overcome the energetic lossesassbwith gait (i.e., the walkers need
not descend a slope) and to introduce some robustness gndemiameter variation (via some
form of feedback control). Examples of actuator-assistatkers are described in [1], [14], and
[91], the latter of which is based in part on relevant workserged in [92].

A fully actuated, partially dynamic walker is described 98], [94], [19], [21], [20].
Specifically, the authors address a reduced order problémshwnaintains balance in the walker
by imposing kinematic constraints between several joigies1 In doing so, however, they vio-
late the aforementioned definition of dynamic walking byafyeng kinematic constraints. In the
work described by [95], a neural network is used to learn tm@inal walking trajectories gen-
erated by an impulsive control approach, then a PD contr@lesed to enforce these relations
as state dependent constraints. Though the combinationpfisive control followed by passive
dynamics is a viable approach to dynamic walking, it is neachow much of the passive dynam-
ics are preserved through the neural network planner amtiassd constraint enforcement. Pratt
et al. [18] present a method that need not override the natyreamics of the biped (depending
on the choice of control parameters). The method describglBi, however, requires some lim-
iting assumptions, namely that the biped feet remain flahenground and that the ankle joints
remain unactuated (i.e., do not impose torque on the bip&d)iologically inspired sensor and
motor-neuron based approach to dynamic walking is desthigd23], [24]. This approach does
not utilize a trajectory tracking objective, but the extehtdynamic walking is unclear, particu-
larly since inertial effects are largely diminished at thale of implementation, and since the joint
servos are non-backdrivable (thus they preclude bidoeatipower flow in the joints, which thus
precludes dynamic walking).

This paper presents a control approach that enables fuitgrdic biped walking, which
can provide a more efficient gait than trajectory trackingrapches. Rather than prescribing a
kinematics (i.e., joint angle trajectories), the approsuhjects the robot to a set of state-dependent

torques. These torques are constructed from energetpadlgive elements (i.e., angular springs
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and dampers with fixed equilibrium points), which influenbe hatural dynamics to generate a
stable gait. Like the approach presented by [18], this wtilizess the notion of (some) control in-
fluences based in the task-space. However, the presenapmelaxes all assumptions regarding
robot configuration (i.e., feet need not be flat on the grount)oses state-dependent torques gen-
erated by low gain spring-damper couples, which are cocigtduas strictly passive functions with
fixed equilibrium points; references some of these torqo@stinertial reference frame and others
to the internal robot frame; and develops a model-basedigolto transform the state-dependent
control torques to actuator torques utilizing the Gaussqgpie of least constraint [30], [38].

The proposed control approach, the application of whicddda an energy efficient and

natural looking dynamic walk, is described herein and sgibeetly demonstrated via simulation.

Biped Model

The control methodology is based upon a dynamic model ofdbhetrintroduced in this
section. This model is derived by means of the Gauss prim@pleast constraint utilizing the
Udwadia-Kalaba approach [35]. Unlike traditionally usegeal models derived separately for
single support, double support and flight phase, the presedel offers a unified representation
which is valid for all phases of gait. Compared to constraidgdamic formulations derived by
means of Lagrangian equations of the first kind [96], [97@, @pproach presented herein provides
an analytical description of the biped dynamics under rddahconstraints and kinematic singu-
larities, and as such allows the formulation of a controlhmdblogy with no restriction on biped
configuration.

In order to facilitate model and controller developmenthiare developed in the context of
a seven-link (nine degree-of-freedom) planar biped, astii&ted in Figure 3.1. The configuration
of the biped is defined with the generalized coordinaies,|x,y, 8, 61, 0>, 83, 64,85, 6], defined
relative to the inertial reference frame. The biped is agiita be actuated at each joint (i.e., right
and left hip, knee, and ankle joints), such that, the dynamit¢he robot are affected by the vector

of actuator torquesy = [ug, U, U3, Us, Us, Ug) T, which are assumed positive in the counterclockwise
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direction.

Figure 3.1 Seven-link biped with generalized coordinates and astutigeometric and inertial
properties. The corresponding links on both legs are gedcally and inertially identical. For

each segment, the moment of inertia with respect to the cehtmass of the associated link is
calculated a$, = m,r2.

Unconstrained Dynamics
Consider am-dof autonomous multibody system, the configuration of Wwhguniquely
specified byg € R" generalized coordinates. The equations of motion, for tiedostrained “fly-

ing” biped, can be written as:

M(a)g+h(q,q) +G(q) = Qu, (3.1)

whereM € R™" is a symmetric and positive definite mass mathix R" represents the normal
and Coriolis inertial forces; € R" represents the gravitational forces, while R™™ is a matrix

mapping control inputsi € R™ to generalized control force spa@g = Eu. Note that the gener-
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alized control force vecto, must belong to the range spaceEyfQ, € Z(E), which indicates
that, using actuator torques the motion of the robot in flight phase cannot be fully préssat.

For the biped, all actuator inputs are independent, sudhrdh&(E) = m.

Kinematic Constraints

Along the walk, the biped is restricted with numerous phgistonstraints. These kinematic
motion restrictions are introduced and discussed as fsllow

For the biped in Figure 3.1, neither foot can penetrate tbergt, the knee joints cannot
extend beyond the fully straight position, and both feetam®umed not to slide when in contact
with the ground. Since each toe and heel are independerahacterized by non-penetration and
no-slip constraint with the ground, the biped dynamics @subject to ten (dependent) kinematic
constraints. Along the walk, the kinematic constraints “active” when imposed on the robot
and “inactive” when not affecting the motion. For each (ipeledent) active constraint, the model
loses one degree of freedom. For example, when the bipedsimghe support phase with the
stance leg foot flat on the ground, three independent comistrare active, which are the non-
penetration of the toe, the non-penetration of the heel oaedno-slip condition, and as such, the
biped is reduced to a six degree-of-freedom system (asgutimith neither knee is fully extended).

Following a general notation, the set of kinematic constsaimposed on the biped is given by:

® = [®(q)",®n(q,0)"]" =0, (3.2)

where®y, represents the holonomic constraints (e.g., the non-feitet between the toe and heel
and the ground, and the full extension of the knee joint), @jdepresents the nonholonomic
constraints (i.e., the non-slip condition between eachdod the ground).

We assume thaby, is twice and®,, is at least once differentiable while the initial conditson
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are constraint consistent. In this case, (3.2) can be dgutharepresented as:

A(9)d = b(q,q), (3.3)

where, A = [AT A]]T is the constraint matrix defined in terms Af, = d®y/dq and A, =
0®,/0q, whileb = Ag — [d'JE,(DI]T, [36]. Note that when a constraint becomes inactive (as a
function of system configuration), it is eliminated by zeihe corresponding row in (3.3). On
the other hand, when a constraint switches from inactivetioea(e.g., at the ground contact events
or when the knee hits a full extension stop), engagementeofanstraint will impart an impact to

the system dynamics. The following subsection describesréatment of these impact events.

Modeling Impact

For the biped robot, impact occurs when the knee joint fukerds and also when each
foot impacts the ground. Each impact is considered to bamtsheous and perfectly plastic. With
these assumptions, and defining the pre and post-impaditiesoasty~ andq™, respectively, the

post-impact kinematic constraints can be written as:
Ang™ > 0,Anq" =0. (3.4)

Given the no-slip assumption, we will utilize the Gauss gipte of least constraint [38],
[57] to formulate the effect of the impact as a constraineddgatic minimization problem as
follows:
gt =min{geR": (-¢7)"™M(G-q),
And > 0,And = 0}.

(3.5)

Note that motion restriction in the tangential directidpg = 0 is only active if a particular con-
straint does not break; however, (3.5) neglects the tarsdemocity component even if a cor-

responding constraint breaks. This assumption, whichataoe used under “fast” impulsive re-
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bound, becomes reasonable under “slow” non-impulsivetcaing detachment. Practically, when
bipedal walking is considered, both the knee and foot are&xepl to detach non-impulsively (and
nearly normal to the constraint manifold), which justifibe tuse of (3.5). Compared to more
general considerations [98], [99], [55], [100], [4], (3iS)particularly well suited to the present
context, in that it does not require computation of physaistraint forces, which may not be

possible under redundant constraints and kinematic sanigjek.

Constrained Dynamics
Based on the Gauss principle of least constraint, [30], [1J@5], the constrained acceler-

ationq, which satisfies (3.3), can be obtained from the followingdyatic programming problem:

g=min{x eR": (x—a)TM (x—a),Ax = b}, (3.6)

wherea = M ~1(Qu — h — G) is the unconstrained acceleration (i.e., the acceleratiersystem
would have without the imposed constraints (3.3)). Acawgdo (3.6),§ minimizes the acceler-
ation energy,(f§ —a)"M (g — a), between the motion which is not restricted with the kingmat
constraints and the constrained motion. SiMas symmetric and positive definite, the above
quadratic programming problem is convex, and the soluti¢8.6),§ = a+M AT (AM ~1AT)—!
(b—Aa) exists and is unique. In cases in whilis not full rank (which is often the case in a walk-
ing biped),(AM ~AT)~1 will not exist. In such cases, we can find the constrainedlac@®n
from:

§=a+RIC*(b—Aa), (3.7)

whereR is defined as the upper triangular Cholesky factorizatiornefrhass matrit = R'R,
[65], C = AR~1, is the inertially-weighted constraint matrix, whi@" is the pseudoinverse (i.e.,
the Moore-Penrose inverse) 6f[59]. This formulation explicitly defines the acceleratiohthe
constrained motion, which is well defined under dependemstraints. Note that (3.7) is expressed

using the Cholesky factorization of the mass maRiinstead of its principal square rott?/2
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utilized by Udwadia and Kalaba [35], [36].

The Gauss principle of least constraint is valid for anydigody system subjected to
“ideal” constraints. Accordingly, due to the no-slip asgion, all constraints in the biped (intro-
duced by (3.2)) are ideal, and as such, (3.7) provides aevedphation of motion which is used in

the following control design.

A Control Approach for Dynamic Walking
In this section, we develop a control methodology which camged to generate dynamic

walking in legged robots.

Guideline for Control Torque Selection

Instead of directly using the actuator torquesve introduce here the desired generalized
control forceQqy € R" to control the biped motion. This new control element, whigth be used
to directly apply torques between the robot and the inertigdrence frame, is shown to simplify
control design and makes control parameter selectiontiveuiRealization 0fQq using actuator
torquesu is discussed in the next subsection.

Our objective in walking is to maintain an upright body pmsit and also to sustain a stable
oscillation in leg motion characterized by a ballistic canpnt in swing. The first objective, to
maintain an (essentially) upright body position, can beead by prescribing a torque that attracts
the torso to a nominally vertical position (i.e., in the mbc@ordinates of Figure 3.1, a torque that
attractsf towards an angle at or near®0

In order to drive leg oscillation, the thigh segments argextbd to alternating torques,
where the alternation is driven by changes in biped conftgurde.g., heel strike and heel off).
Specifically, during swing phase, the prescribed torqueedrhip flexion by attracting the thigh
segment toward a given (flexion) angular orientation. Upeel Istrike, another torque drives hip

extension by attracting the thigh segment toward a givete(esxon) angular orientation.
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During swing, the knee is not subject to a driving torque, tather is subject only to
damping. During early stance phase (i.e., heel strike tbdf§ea somewhat stiff spring maintains
the knee in an extended position. Note that a less stiff gmauld be utilized to encourage stance
knee flexion; however, walking with a straight leg in (mogtstiince is described here, since doing
so may reduce knee actuator torque and power requiremeanttheF, as is recognized through
numerous simulation experiments, a “locking” knee enharnhe basin of attraction for a stable
gait limit cycle. The ankle is subject to a torque during syvihat encourages slight flexion (to
prevent stumbling), and to one during stance that genesagéght push-off before the stance leg
enters swing.

Note that the torso and the thigh segment torques are defetetie to the inertial refer-
ence frame (IRF), while the knee and ankle torques are defelative to the respective adjacent
links. That the torso torque would be defined relative to &I is perhaps obvious, since gravity
is assumed fixed with respect to the IRF, and postural stakslionly relevant when defined with
respect to the gravity vector. Referencing the thigh segnwegties with respect to the IRF (as
opposed to the torso) is less obvious, but achieving a dk&megular) dynamics with respect to
the inertial frame is recognized as simpler than commantingues with respect to the moving
links in the nonlinearly coupled system.

It is important to mention that the control torques eithderenced to the inertial frame
or defined on the robot frame only influence the rotationaladiyics of the robot. One does not
need to apply forces that influence the vertical or horiZahtaamics of the torso, since the upper
body will be carried atop the legs, and thus the appropriatezdntal and vertical motion will be
dictated by the motion of the lower limbs.

As described, we do not specify any trajectories in time acspbut only define a single
attraction point for each state. By utilizing torques defimethis manner, we are attracting the
biped toward a desired configuration, but not dictating thtl by which it arrives (in time or in
space). Moreover, the controller does not attempt to dyrecaintain a desired forward speed, step

frequency or stride length; rather, these motion attribate obtained as a result of the interaction
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between the natural dynamics of the robot and the low gaitraiber.

Transforming the Desired Control Torques to the Actuator Space

As described in the previous subsection, the control probfemade more intuitive by
referencing thigh and torso torques to the inertial coatdirirame, while defining knee and ankle
torques relative to adjacent links. In order to implemeret pnesented approach, we propose a
transformation between the desired generalized controe Qg (introduced in the previous
subsection), and the actuator torquesas follows.

The objective of the transformation is to achieve the sanmstcained motion forcing the
dynamics (3.7) withQy = Eu as would be achieved with the application@f. Denoting the
desired constrained accelerationtgs(generated byQg4) and the constrained acceleration gen-
erated by the actuator torques@sthe objective of the transformation can be stated asdg.

In order to consider this equivalence further, we must ficstsaider issues of overactuation and

underactuation.

Overactuation and Underactuation of the Constrained Dynanics

Due to the presence of the kinematic constraints (3.2), thedbcould at times be fully
actuated (i.e., same number of actuators as unconstragggdes of freedom), overactuated (i.e.,
more actuators than unconstrained degrees of freedomyderactuated (fewer actuators than
unconstrained degrees of freedom). For example, the bifletdenfully actuated when in single
support phase the foot is flat on the ground. The biped wil\mractuated in the double support
configuration. Finally, the robot will be underactuated wheo or fewer (independent) constraints
are active, such as when in single support and only a singl®tdeel (and nothing else) is in
contact with the ground.

In order to address the issue of underactuation, we chaiaethe effect of the control

force on the constrained motion of the biped. Let us first sagrthe unconstrained acceleraten
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as follows:

a=apt+a,=-MG+h) +M1Q,, (3.8)

where ag is the unconstrained acceleration generated by the umtiectrdynamics ang, =

M~1Q, is the unconstrained acceleration resulting from the aotuarques. Substituting (3.8)

into (3.7) provides a similar relation for the constrainedederations:
§=0Go+Ggu=RIC*b+R (1 —C*C)Rag 9)

+R7(1 - C*C)Ray,

whereq (the first two terms on the right hand side of (3.9)) is the t@iised acceleration resulting

from the uncontrolled dynamics whitg, is the constrained acceleration which is directly related

to the generalized control forces, ahd R"™" is an identity matrix. Substituting, from (3.8)

into (3.9), we can obtain the explicit relation @f in terms of the generalized control forc®s:

§u=RINRTTQy, (3.10)

whereN = | — CTC € R™" is a symmetric projection operator to the null space of tleetially-
weighted constraint matri€. Active constraints will reduce the biped degrees of freegdwhich
are given byn; = rank(N) < n. Active constraints can also reduce the effect of the comtputs.
For the generalized control forc€¥, = Eu in (3.10), the number of control inputs which can
independently alter the constrained motion is givemrgy= rank(NR"TE) < m.

The type of actuation for the constrained dynamics can nowdimed. Ifn. = m, the
number of degrees of freedom for the constrained motion uslet® the number of independent
control actuators, and as such the system is said to be fiillgted. In this case, the transformation
between the desired dynamics and achievable dynamics ¢s. dk&a: < mc, the biped has more
independent actuators than active degrees of freedom hansly/stem is said to be overactuated.
In this casey is not unique (i.e., the desired dynamics can be reprodudddiiferent control

inputs). Finally, in the case that > m, the system is underactuated, and as such the desired
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dynamics cannot in general be achieved.

Transformation in a Fully Actuated and Overactuated Configuration

Since the control input only effects the controlled part loé tonstrained acceleration
(3.10), the equivalence relation between the desired andlamotion ¢ = ¢q) can be written
as:

RINR TEu=RINRTQq. (3.11)

Note that this relation definas (possibly dependent) equations withunknown control inputs
u, where the degree of dependence is a function of the comstanfigurationN. Utilizing the
generalized inverse notation [59], a particular solutior{3.11) for the actuator torque vector is
given by:

u= (R INRTE)"RINRTQq. (3.12)

The solution defined by the above relation exists regardiesser or underactuation, al-
though it does not necessarily satisfy (3.11). Practic#lthe system is fully actuated, than
is a unique solution of (3.11). In the overactuated caseetiseno unique solution of (3.11). In
this case, (3.12) provides a solution of (3.11) in the minmaguared Euclidean norm sense (i.e.,
u'u — min). If however the system is underactuated, (3.11) cannobled exactly and as such
(3.12) definess which minimizes the squared Euclidean norm of the diffeecbetween the de-
sired and the actual acceleratidii,— ¢q)" (§ — §4) — min. Note however that] contains both
translational and also rotational coordinates, and as sutfe uncontrollable case, the control

solution is not dimensionally consistent and does not heer physical interpretation [102].

Transformation with Dimensional Consistency

Motivated by the Gauss principle of least constraint, weed(3.11) in the following more
general formulation:

u=minfueR™: (4 —da)"M(§—Ga)}- (3.13)
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In contrastto (3.11), the above quadratic program will pdeyphysically consistent actuator torque
computation even through motion phases which are undext@ctwvith the joint torque actuators.
In the present context, we expect any underactuated phagpessent, to occur only for
brief periods (i.e., for periods much shorter than the attarstic times associated with the biped
dynamics). As such, we assume any departure in dynamic imelthie to uncontrollability to be

small. Now, using (3.9) and (3.10) one can express (3.13) axg@licit quadratic program far as
: 1
u=min{u c R™: EuTAIAuu — bl Ay}, (3.14)

whereA, = NR™TE andb, = NR~TQq. Considering the fact tha is in general rank deficient,

a particular solution to (3.14) can be defined as:
u=(NRTE)"NRTQq. (3.15)

The solution expressed by (3.15) is physically consistenall cases of actuation. Specifically, if
the biped is fully actuated (i.eng = m), (3.15) yields the solution far that yieldsg = ¢gq. In the
overactuated case (i.a; < m), the solution to (3.15) satisfies the matching dynamidigon
(i.e.,d = §q), while also minimizing the squared Euclidean nornuofFinally, in the case that
the biped is underactuated (i.@¢, > M), (3.15) minimizes the acceleration energy between the
desired and actual motion. Using (3.15) one can transfoamésired generalized control forces
Qg to actuator torques. Note that, just as in the case of human walking, there is raoagiee
that the biped can recover a stable gait limit cycle from anmgawactuated configuration with the

proposed control solution.

Works Related to the Proposed Transformation

Using quadratic programming, [103] proposed a method tafyntwe predefined reference
trajectories to maintain balance while walking. Other vépfd 8] and [104], present methods that

can be used to transform generalized forces to joint torgqDespared to the presented approach,
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these methods do not provide a unified control force comjmutabhrough changing constraints,
and are restricted with respect to the robot configuration (at least one foot is assumed flat on

the ground).

Implementation on a Seven-Link Biped
We illustrate and further describe the proposed approacimplementation and simulation

on the seven-link biped illustrated in Figure 3.1.

Choice of Control

In order to define the control actions, we impose seven sigpendent torques which di-
rectly alter the rotational dynamics of the biped. Each efsthstate-dependent torques, can be
constructed from energetically passive spring-dampepleswith fixed equilibrium points. These
include an angular torque on the torso with respect to the dRfe-dependent alternating angular
torques on both thighs (also with respect to the IRF), ané-stapendent torques on knees and
ankles, both with respect to the robot frame (i.e., definetl véispect to adjacent links). As such,

the vector of desired generalized control forces can beessped as:

Qd = —Ka(@—@y) —Ba@, (3.16)
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where _

(000 0 0o 0o 0 o0
o o o 0 0 0 O
kk 0 0 O O O O
0 K, K, 0 0 0 0
Ke=| 0 0 K -K, 0 0 0 [, (3.17)
o 0 0 K, 0 0 ©
0 0 0 0 K, -Ky 0
0O 0 0 0 0 Ky —K,
O 0 0 0O 0 0 K,

is the stiffness matrixBy is the matrix of linear damping coefficients (which has thesdorm
as (3.17)),¢ = [6,61,6, — 01,03 — 0> + 11/2,04,05 — 04,65 — 65 + 11/2|" defines the feedback
information for the control torque computation, apgl= [6,, 6,0, 63, 6|',O, Qé]T defines the equi-
librium point of each spring (i.e., can be considered as ttraction point of each spring). The
parameters that defin@q for the seven-link biped are shown schematically in Figu 3Note
that the right and left side parameters are indicated wipesscripts.

It should be noted that the control given by (3.15), (3.16¢<lnot guarantee a dynamic
walk. Specifically, in order to meet the criteria for dynamialking, the stiffness and damping
parameters of the controller must be selected to be suffigiknv such that the control influence
does not substantively prescribe the motion of the robot.

As previously mentioned, leg oscillation is generated byliaption of alternating torques
(defined with respect to the IRF) applied to each thigh segnidns alternation is switched based
on an event driven finite state structure. As follows, we dbsdhe finite state logic along which
the control parameterkq, Bg, @4 are changed as piecewise constant functions.

Let us start at heel strike which induces application of tagesdependent torques that
attract the thigh toward a hip extension configurationjatgts knee locking with a somewhat stiff

spring and damper and imposes a spring-damper element ahkiee which accumulates elastic
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Figure 3.2 Schematic representation of the control elements.

energy during stance to provide an ankle push at late staftwe.heel off event (i.e., when the
heel leaves the ground) switches the hip torque (equilibriungle) to one that attracts the thigh
towards a hip flexion configuration and allows the ankle teasé the energy accumulated during
stance through push off. In addition to these two states aiditional states are used to facilitate
stable locomotion. Specifically, following the toe-off exéwhen the swing foot is entirely in the
air), the swing leg ankle equilibrium point (i.e., angle draction) is moved to a slightly flexed
position, which enhances ground clearance while the swireg ks only slightly damped. The
final state, defined by the knee reaching full extension, éslus retain the knee at full extension
and thus prepare the (extended) swing leg for heel strikeus,Tthe gait controller consists of
four states, as illustrated in Figure 3.3. Note that theestapply independently to each leg, and
do not apply at all to the torque acting on the torso (i.e.,dbwetrol parameters for the torso are
not changed during the motion). As such, (for each leg)estae consists of stance, state two
is initiated by heel-off, state three initiated by toe-affate four initiated by full knee extension,
and the leg is returned to state one by heel strike. Due taredtdisturbances or other type of
uncertainties however, the described event flow may notirepraserved along the motion of the

robot. In this light, the state of each leg is identified baseds constraint configuration (i.e., state
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one - both toe and heel on ground; state two - toe on ground offeground; state three - both
toe and heel off ground; state four - toe and heel off grourtbeastended knee on a forward swing
leg). In particular, switching from state three (swing) tate one (stance) is important if during
swing an incomplete knee extension occurs (which was rezedrnhrough the push disturbance
simulations subsequently presented). Further crosshiwghas also been recognized to improve

the robustness of the proposed control methodology.

Heel off Toe off R
1 £ Full knee
extension @
t \ 2

J

Heel strike

Figure 3.3 State flow diagram. The state flow presented with (solid lawjesponds to the solid
leg along normal walking.

Given the independence of each leg, there is no guaranteedbh leg is fully out of
phase with the other. Recall, however, that the control pbpdy in this work is to impose a
minimum number of constraints, and thus encourage the alatynamics of the biped rather
than constraining it. This is in contrast to an implemeptatvhich utilizes time based switching,
such as that described by [105]. Specifically, state swiggchiappens along changes in constraint
configuration initiated by the motion of the robot autonosiguSimilar approach on a point foot

robot and curved foot robot can be found in [21], [95] and [@&Ypectively.
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Simulation

For the biped illustrated in Figure 3.1, the associated ggomand inertial parameters
normalized to a body height and mas#, as given by [3], are listed in Table 3.1. For purposes
of control implementation and simulation, the biped wasapaaterized according to the values
listed in Table 3.1 using a height= 1.8 mand a mas# = 75kg. The simulation was conducted
by utilizing the desired generalized control force desaliim (3.16) and (3.17), and by using the
actuator torque solution (3.15). The controller was pataneed by starting with initial estimates
(guided by the characteristic times that typify human gai)l using the simulation to iteratively
tune parameters for a robust and human-like gait. Spedyficaintrol parameters were considered
to be a robust set when the biped would within a few steps e¢gevi® a stable, natural-looking
gait after starting from rest in several different initiaindigurations (e.g., double support with both
feet flat; double support with only forward heel and backwalin contact; single support with
foot flat).

Note that some type of automated parameter tuning couldogl$mplemented for control
gain selection. Due to the nonlinear character and nonsmuetture of the problem, however,
such automated parameter tuning is a nontrivial task whitdnaequires additional hand tuning
to provide a robust parameter set [105]. As such, for the Isitioms presented here, the control

parameters were selected by hand tuning and intuition.

Dynamic Walking of the Biped

For the (adult) human-scale anthropomorphic biped, thércbparameters used for an
approximately normal walking speed are listed in Table 8vBefe the upper indek«) = r/I
represents the right or left leg, respectively). A strolopsc image of the motion results of this
controller, simulated over a period b€ [0, 10]s, are shown in Figure 3.4. The corresponding real-
time video of the resulting gait is included in the suppatmaterial. For the simulation shown,
the initial configuration of the biped was (starting at restthe double-support phase with the

forward heel on the ground and the backward toe on the grolihd. average forward walking
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speed for this simulation, after converging to a stabletlepcle, was B1m/s.

As was outlined in the paper, the presented control apprisatdsigned to leverage the nat-
ural dynamics of the biped. A direct consequence is thatithelated motions have natural human
style. Beyond this qualitative characteristic, the efficieaf dynamic walking should be improved
relative to a ZMP-based approach, since the former needseasignificant energy to override the
natural dynamics of the biped. The efficiency of gait can atterized by the specific mechani-
cal cost of transport;y,; =(mech. energy)/(weight distance traveled), which is adapted from the
specific resistance, as presented in [106]. Based on theaiowkhown in Figure 3.4, the cal-
culated mechanical cost of transport of the proposed apprisx,; = 0.19. Comparatively, the
specific mechanical cost of transport of the ZMP-based Hésilao isestimatedascy: = 1.6 [1],
while the cost of transport of the (actuator-assisted) dbdyaamic walker iscy,; = 0.05 [1]. As
such, the walking synthesized with the proposed approabithipresumably is (as subsequently
demonstrated) more robust and versatile than an actusstad approach, can also be nearly an

order of magnitude more efficient than walking generateddygctory tracking approaches.

Walking with Different Speeds

In order to demonstrate versatility in the control approaahnulations were also conducted
for faster and slower walking speeds. Multiple possilasitexist for varying the control parameter
set to achieve stable locomotion with different walkingesge An intuitive parameter that can be
varied to influence the walking speed is the hip stiffnessndustance (i.e kgo in state one) which
effects the leg dynamics with respect to the inertial frafigures 3.5 and 3.6 show stroboscopic
images of the biped walking at faster and slower walking dpdeelative to Figure 3.4), respec-
tively, both simulated over a period bE [0,10]s, and both of which were generated by utilizing
the same control parameter set given in Table 3.2, but witbrdnt values of the stance hip stiff-
ness. Specifically, to achieve these gaits, the correspgrstiffness value was setkg, = 800Nm
andky, = 600Nm, respectively. The faster gait, which is shown in Figure Sdrting from rest

at an initial condition of double-support with both feet ftat the ground, is characterized by an
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average walking speed of92m/s. The slower gait, which is shown in Figure 3.6 starting from
rest at an initial condition of single-support with the fdlatt on the ground, is characterized by
an average walking speed of68m/s. Corresponding real-time videos of these simulations are
included in the supporting material.

Figure 3.10 shows the respective forward velocities (ofceter of mass of the torso) at
each of the three walking speeds. The time evolution of theeupody angle for the three gaits
are depicted in Figure 3.11. As can be seen in the figure, the for each case starts at an upper
body posture away from the limit cycle, and in each case agegewithin a few steps to a stable
limit cycle. Figure 3.12 shows the phase plane plots for tigg{-side) hip, knee, and ankle joints,
for each of the three gaits, clearly indicating that a stdibk cycle has been reached in each
case. The fact that the biped achieves a stable limit cydlainva few steps for several different
walking speeds from different initial conditions by vargianly a single control parameter (i.e., hip
stiffness during standey,) is demonstrative of the ability of the method to generattkivg with
different speeds and also shows robustness with respeatitdion in initial conditions. Different
control parameters, as the upper body arglenip damping at stanc®y, in state one), and ankle
stiffness in stancekj, in state one and two) can also be used to change the walkiegl séhile
the proposed approach can also be used to make the robot sttndal looking walking was

obtained in a speed range[0f6, 1.2Jm/s.

Walking with Different Style

In order to illustrate the differing character of gait acleid with a different set of control
parameters, the biped was simulated with the set of contm@meters listed in Table 3.3. The
stroboscopic image of walking with this controller, sinmteld over a period of € [0,10/s and
corresponding to an initial condition of starting at restdouble-support with the forward heel on
the ground and the backward toe on the ground, is shown in&i®. The corresponding real-
time video of the resulting gait is included in the suppaytmaterial. The differing character of

gait is evident by comparing the video corresponding to g7 with the video corresponding
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to the gait depicted in Figure 3.4. This motion obtained wrgléstantial variation in control
parameters also demonstrates robustness with respegittolquarameter variation.

Based on our experience with simulation of the biped, stalaliking is achievable with
a relatively large range of control parameters. Differimgssof control parameters result in a
differing character of gait, some of which appear more ratand efficient than others. Other
sets of parameters generate gaits that appear either nlaxedeor more deliberate. There also
obviously exists a large space of parameters that fail. Awiof one such failure is included in the
supplemental material. This particular failure is due tav@dk” gait (caused by hip torques that

do not generate sufficiently large steps) which ultimatebuits in a stumble.

Push Disturbance Response

In order to demonstrate robustness to push-type distuesartice biped was simulated at
the three speeds with impulsive forward and backward pysé-tlisturbances. Specifically, an
impulsive force was applied via a constant horizontal faic200N for a duration of (2s, applied
at the center of mass of the upper body in both the forward ackviard directions, respectively.
Note that these disturbances are similar to those desdrilj@@7]. In the six simulations (forward
and backward pushes at three different speeds), the robmiewed fully in all cases. In Figure
3.13, all six push recovery test results are depicted. Thesgponding real time videos included in

the supporting material demonstrate the push-type dishod®rejection of the proposed approach.

Model Parameter Uncertainties

Since the proposed approach is model based, the authdmerfednducted numerical ex-
periments to explore robustness with respect to model pateanvariations. Specifically, 100
simulations were conducted, in which the mass matiand constraint matriA used in the con-
troller (3.15) were simultaneously varied elementwise byagerage of 10% relative to the exact
values (used in the dynamic model). As depicted in Figurd,3He controller maintains stability

with uncertainty in parameters, demonstrating a modeegese of robustness to model parameter
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uncertainty.

Walking on Slopes

The versatility and robustness of the proposed approactalsaexplored by walking up
and down slopes. In order to walk up and down slopes, fouitivéucontroller parameters were
modified. Specifically, relative to the fast walking set ofgraeters, the following changes were
made: the upper body angle was selected t§pe {80°,90°} (for the uphill and downhill walk
respectively), the equilibrium angle for the ankles at givere changed t6; = 15° (to prevent
stumbling), the hip extension angle ws= 128, and the knee stiffness at stance was changed
to kg3 = 50Nm The corresponding simulation result f&5° upward and downward slopes are
shown in Figure 3.8 and Figure 3.9. Real time videos of thea&spe motions are included in the

supporting material. Note that with the same parameterbifiezl can walk also on level ground.

Comment on 3D extension and parameter adaptation

It should be noted that the approach presented herein @asdgittal plane motion, al-
though extension to three dimensional walking would neittfenge the structure of the model
nor the control approach. Particularly, the walking coltgrowould need to be extended with
additional spring-damper elements which would apply aiktaly torque to the (upper) body
motion in the frontal plane relative to the inertial refezerirame. Realization of the correspond-
ing torques would be enabled with additional (hip and/orl@n&ctuators on the robot. Finally,
further implementation of parameter adaptation usingniegrtechniques, [24], although not ex-
plored here, may improve the inherent robustness of theoapprdemonstrated through numerous

simulation results.

Conclusion
The authors have proposed an approach for the control ofl bigdking that enables dy-

namic walking in a fully actuated biped robot. Rather tharsprbe kinematic trajectories or
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kinematic constraints, the approach is based on the pp#iseriof state dependent torques ob-
tained with low-gain spring-damper couples that “encoatgmatterned movement through the
natural dynamics of the biped. These simple set of torquepmmposed which generate a stable
gait while allowing the biped to exploit its natural dynasiicSome of the prescribed torques are
referenced to the inertial reference frame, which simglifiee selection and tuning of the con-
trol parameters. Implementation of torques from a mixed$ebordinate frames is enabled by
a joint torque computation (based on Gauss’s principle adtieonstraint), which is valid for all
configurations of the biped. The proposed approach is imgheed in simulation on an anthro-
pomorphic biped, motion of which is shown to quickly convetg a natural-looking gait limit
cycle. Simulations are conducted with various control peei@rs and also different initial condi-
tions. The mechanical cost of transport is calculated and/shio be nearly an order of magnitude
lower than what would be expected from trajectory trackipgraaches. The authors additionally
demonstrate versatility with respect to varying walkingegs and ground slopes, and robustness
with respect to push-type disturbances and uncertaintyodeiparameters. Future work includes

experimental implementation of the proposed approach.

Table 3.1Geometric and inertial parameters, Winter [3].

Description|| no. (x) | LJ/L | lg/ly | mJM | 1.l
Upper body 1 0.288| 0.626| 0.6780| 0.496
Thigh 2 0.245| 0.433| 0.1000| 0.323
Shank 3 0.246| 0.433| 0.0465| 0.302
Foot 4 0.152| 0.250| 0.0145| 0.475

ally bll4 h/L
0.75 | 0.25 | 0.039

Foot geometry

60



Table 3.2Controller parameters for “normal walkingzg() [N, bgo[N mg, 6(*) [degd.

States] Ku1 | Kip | Kia | Kia | bur | bip | Do | Big
1 400| 700| 30| 20| 50 | 300| 5 15
2 400 70 | 30 | 20 | 50 1 5 15
3 400| 70| O 5|50 1 1 1
4 400 O | 30| 5| 50| O 5 1

States 1 | 2 | 3 | 4
6y 875
6 68 122 122 -
0; 0 0 10 0

Table 3.3Controller parameterdz;;o[Nm], bél() INm§, 9(*) [ded.

States| ka1 | kgp | Kgz | Kig | Pa1 | By, | Bys | gy
1 500|750 40 | 10| 35 |1 250 3 | 10
2 500 65|40 10| 35 15| 3 | 10
3 500 65| 0 | 5 | 35| 15|125] 2
4 500 O 40| 5 | 35| 0 3 2
States 1 [ 2 | 3 | 4
6, 84
g 67 125 125 —
0; 0 0 5 0
2 T T T T T T T T T T T
1.5 —
g 1F \ i
- \\n,fssg\\'e\s\\ A A A S S AT SO
G A AN AN I» \\\t*i» ]
B 1 i I T
(I) ; é 'Ii 4 5 6 7 EI§ ; 1I0

X [m]

Figure 3.4 Stroboscopic view of dynamic walking with.8lm/s average forward speed. The
motion is started from double support phase while only tmedod heel and the backward toe are
on the groundg(0) = [0,1.27,1.57,1.82,1.78,0.2,1.31,1.04,-0.35)", ¢(0) = 0. The calculated
specific cost of transport gy = 0.19. Within a cycle the walker spent B3% in double support
phase.
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Figure 3.5 Stroboscopic view of dynamic walking with.9Pm/s average forward speed.
The motion is started from double support with both feet flat the ground, gq(0) =
[0,1.24,1.5,1.86,1.86,0,1.23 1.23,0]", q(0) = 0. The calculated specific cost of transport is
cmt = 0.22. Within a cycle the walker spent 16% in double support phas
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Figure 3.6 Stroboscopic view of dynamic walking with.Bm/s average forward speed. The
motion is started from single support with the forward foaitfon the ground,q(0) =
[0,1.251.3,1.751.750,1.2,1.2,0]", q(0) = 0. The calculated specific cost of transport is
cmt = 0.17. Within a cycle the walker spent B8% in double support.
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Figure 3.7 Stroboscopic view of dynamic walking with.@/m/s average forward speed, sim-
ulated using the control parameters from Table 3.3. Theanas started from double sup-
port phase while only the forward heel and the backward tee ar the groundq(0) =
[0,1.27,1.57,1.82,1.78 0.2,1.31,1.04, —0.35]T, q(0) = 0.
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Figure 3.8 Stroboscopic view of uphill walking, simulated using theattol parameters from Ta-
ble 3.3. The motion is started from double support with betét flat on the groundy(0) =
[0,1.24,1.5,1.86,1.86,0,1.23 1.23,0]T, q(0) = 0.
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Figure 3.9 Stroboscopic view of downhill walking, simulated using #entrol parameters from
Table 3.3. The motion is started from double support witthidett flat on the groundy(0) =
[0,1.24,1.5,1.86,1.86,0,1.23 1.23,0]T, q(0) = 0.

dx/dt [m/s]

time [s]

Figure 3.10Forward velocity of the upper body CoM for walking at threefeliént speeds. The
average velocitiexayg = [0.92,0.81,0.68)m/s are calculated on the sustained walking cycles by:
Xavg = TTf x(t)dt/(T, — Tp) whereT; = 5sandT, = 10s.

63



100

0 [deg]

70 1 1 1
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time [s]

Figure 3.11Upper body angle during walking at three different speedi® Vertical upright posi-
tion corresponds to 90
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Hip velocity [rad/s]

-0.2 0 0.2 0.4 0.6 0.8
Hip angle [rad]

Knee velocity [rad/s]

-1.2 -1 0.8 -06 -04 -02 0
Knee angle [rad]

Ankle velocity [rad/s]

-0.4 -0.2 0 0.2 0.4
Ankle angle [rad]

Figure 3.12 Steady walking cycle for three different speeds for theh@idnip, knee and ankle
motion respectively. The joint angles are defined@s:= 0 for the hip, 6, — 6, for the knee, and
63 — 6, + 11/ 2 for the ankle respectively.
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Figure 3.13Push experiment for the walk @92, 0.81,0.68m/saverage speeds. The six separate
experiments shown characterize the response to forwarfiaaidvard pushes (red and black lines
respectively) af5.1,4,5.8]s with 200N force for a duration of @s, which act horizontally on the
center of the upper body. While the walk remained stable isialcases, at the slowest speed,
the robot converged to a different cyclic trajectory aftex torward push. Although, the recovery
time in some cases may seem long, the corresponding reavittee indicates a natural looking
response.
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The controller operates with: M+3M and A+0A

dx/dt [m/s]

0 2 4 6 8 10
time [s]
0 M=n 0 A=n_A
1 2

0.2 0.2
0.1 0.1
=B 0 = 0
-0.1 -0.1
-0.2 -0.2

0 25 50 75 100 0 25 50 75 100

trials trials

Figure 3.14The picture depicts forward velocity versus time in 100 datians under simultane-
ous variation of the mass matrix and constraint matrix. Emelom variables; » used to generate

the parameter variation have normal distribut(yu, 0?) (with zero meanu = 0 ando = 0.1
standard deviation). During the simulations, the robotaim®d stable in 92 trials, while it fell 8

times (all during the starting steps).
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CHAPTER IV

MANUSCRIPT 3: EXPERIMENTAL IMPLEMENTATION OF ACTUATED DYNAMIC
WALKING IN BIPED ROBOTS

By

David J. Braun, Jason E. Mitchell and Michael Goldfarb

Vanderbilt University
Nashville, TN

Submitted as an Original Paper to

The International Journal of Robotics Research

This paper has supplementary multimedia material (availapon acceptance at http://ijrr.org).
The submitted video demonstrates experimentally reatizdmic walking on a seven-link biped

robot. The video can be played with Windows Media Player.
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Abstract

This paper presents the experimental implementation ofnéralomethod developed by
the authors for actuated dynamic walking in biped robots h&athan utilizing trajectory track-
ing, the control approach used herein employs state dependetrol torques generated by low-
gain spring-damper couples to encourage patterned mdionthe purpose of experimentation,
a seven-link biped robot was designed with backdrivabletjactuators, which allows passive
leg motion preferred for dynamic walking. Implementatidntlee control approach on this ro-
bot provided a system that emulates an energetically effitieman like locomotion. Following
an overview of the control method, the paper describes thetrdesign, discusses the real-time
control implementation, and presents experimental daichga accompanying video) that demon-
strates compliant dynamic walking with natural lookingrfgly ballistic) swing, extended knee

stance support and human like (preemptive) ankle push-off.

Introduction

IN the recent years there has been considerable reseanchosffoted to bipedal locomo-
tion. Although various approaches are proposed in theliee, see [4] for a recent review, new
control ideas are often motivated by the zero moment poiltRYcontrol paradigm or are closely
related to the (passive) dynamic walking principle.

The ZMP approach introduced by [5], [84] is one of the mosfdiently used approaches
to biped locomotion synthesis, see [90], [9], [10], [85]6]8[87]. Application of this method
has been shown to provide effective, robust, and versatidenhotion for biped robots, [8], [9].
As is recognized through numerous implementations howewerto the characteristic bent knee
stance support, flat foot constraint, and a frequently ubagh{gain) trajectory tracking motion
coordination, the ZMP walk may look as a careful human walkuooertain terrain, rather than
the more natural highly dynamic walking humans typicallypdoy on level ground, [89], [11].

In order to achieve an efficient and natural-looking bipeghat, several researchers have
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investigated a dynamic walking approaches that leveraggdssive (uncontrolled, natural) dy-
namics of the robot through walking, see [108]. On one endisf $pectrum are fully passive
dynamic walkers which rely on precisely tuned natural dyiearaf the robot, and walk on a slight
downward slope powered only by gravity, [12]. Utilizingshdea, actuator-assisted passive walk-
ers were developed and shown to possess human-like and/efgcgent gait [1], [14].

Actuated robots which are controlled to mimic some unifieapprty of passive walking
have also inspired numerous works. In this context, an gneagking control approach was
proposed in [109] and also adapted by [110], [111], [112}3]1 In these later works, a trajectory-
free control approach was preferred to generate energyeeffidynamic walking. It was also
shown that active feedback control could be used to remaveviil known sensitivity issues of
the passive walking to ground slope. These ideas are fuliyed with the control philosophy
utilized in this paper.

Actuated dynamic walking which neither utilizes the ZMP heet, nor requires a passive
or a nearly passive robot design, have also been proposédrature. In this context, [16] used
inverse dynamics and linear optimal state feedback staltiin to control a dynamically walking
robot; [15] have proposed a tracking control scheme wheradference motion was generated
using Van der Pol oscillators; while [114] have introducecbatrol method where the reference
motion was selected to be a “potential energy conserving’drke., which is a special trajectory
along which the potential energy of the system is presery#fijle tracking control is a frequently
used viable approach to walking, its realization with higting (usually used for manipulators)
may not be well suited with walking, where there is no ensunedtial reference (i.e., the foot
cannot be considered fixed to the ground), [17].

Recently, a concept of “hybrid zero dynamics” [19] and “vateontrol constraints” [20]
were used to develop and experimentally verify a walkingrad@approach by [21]. This approach
while utilizes high-gain joint level control, it allows thminted-feet underactuated robot, Rabbit, to
exploit its uncontrolled rotational dynamics in the inakframe. Instead of enforcing a predefined

time dependent reference trajectory, [22] used neuralorisato identify the relations between the
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configuration coordinates generated by the robot while iglkThese relations are then used as
references to realize a robust dynamic walk. Motivated biffardnt idea, a biologically inspired
sensor and motor-neuron based control approach, whichrdiedilize trajectory tracking, was
proposed by [23], [24]. This method was implemented andlasdid with experimentally realized
dynamic walking on a small size robot, RunBot. Due to the higjggred actuation unit however,
the robot could not demonstrate ballistic swing leg motwhich is a major attribute of a (human-
like) dynamic walk considered here.

[18] proposed “virtual model control”, which was implemedton a biped with series-
elastic actuators, which enabled a practical control zatbn that was largely free of kinematic
constraints. In the mentioned work however, the controhmeidoes not employ ankle actuation
which is a characteristic motion attribute utilized by hurs@nd as such it is explicitly addressed
herein.

There are two main preconditions which allow natural-legkand energy-efficient realiza-
tion of actuated dynamic walking. The first, related to thetoa approach, precludes enforcing a
predefined reference trajectory, including state depdride@ematic constraints, or other attributes
of the walking cycle (such as stride length, stepping freqyeor average forward speed) with
high gain control. This condition motivated us to developoatomol framework which utilizes
state-dependent control torques (generated by low-gaingsdamper couples) to provide motion
coordination without prespecifying the response of théesys[27], [25]. The second precondition
(not related to control) depends on joint actuation whiabusth not suppress passive joint motion
(i.e., joints should be highly backdrivable, so that powan dlow both from the actuator to the
limbs, and back from the limbs to the actuator). Utilizatafrbackdrivable joint design allows the
inertial motion of the robot to be exploited through walkiregher than being suppressed by the
actuation units.

By means of the above arguments, the walking controllerzetilihere is implemented on
a 7-link biped robot designed with backdrivable actuatonsctv meets the second precondition

required for realization of actuated dynamic walking. Nitbtat such backdrivability can be sub-
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stituted using closed-loop torque control of each joinbtlyh a non-backdrivable transmission,
[104], but doing so largely removes the energetic advastafferded from leveraging the bipeds
passive dynamics.

In the remainder of this paper, we first recall the generah idethe control approach
developed by the authors [25]. The discussion on contrallisvied by a section on design of a
seven link biped robot developed with highly backdrivablafs. Description of design is followed
by a section on real-time control implementation. Finallg, present a walking experiment, which
demonstrates human-like compliant dynamic walking of a&sdink robot coordinated with the
proposed walking controller. The experimentally realireotion is characterized with a natural

looking swing, extended knee stance support and humaridikemptive) ankle push-off.

Model of the Biped

The control approach utilized in this paper requires infation from the dynamical model
of the biped. In this light, we will first introduce the moddla seven-link planar walking robot
illustrated in Figure 4.1. The configuration of the biped é&figed with nine coordinates} =
X,y,8,01,6,,63,04, 65,067, where the first two coordinates represent the transldtioogion of
the robot in the inertial frame while the last seven angutarrdinates reference the orientation of
the links with respect to the inertial frame. In order to sopphe forthcoming discussion, we will
also define the joint angles (relative angles between ths)ias: ¢ = [¢1, 9o, d3, ¢4, ¢5, pg]” =
(01— 0,0, — 61,03 — 6>+ 11/2,04 — 0,05 — 04,05 — 05 + n/Z]T. The biped is actuated at each
joint (i.e., right and left hip, knee, and ankle joints), Bubat, the dynamics of the robot are
affected by six actuator torques,= [ug, U, Us, Us, Us, Ug] ", which are considered positive in the
same (counterclockwise) direction as the joint angles.

In the following, we derive the mathematical model by coesiug the biped as a con-
strained mechanical system, [96], [97]. This model corstdlie differential equations of the flight
phase motion, and the (algebraic and differential) retetivhich define the kinematic (physical)

constraints along the motion. In the present context, weomily present the basic elements of
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o (x 3,)/'? e6 (xz’y z) *

Figure 4.1 Seven-link biped with the absolute coordinatesnd the control torquas. The Carte-
sian coordinate$x;, Vi), i € {1,2,3,4}, represent the position of the toe and the heel for the left
and right leg.

the biped model which provides the necessary informatiothi® closed-loop control design. For

more information on the modeling approach utilized here,[28].

Unconstrained Dynamics

The equations of motion for the 9-DoF (unconstrained) “flyibiped, can be written as

M(a)g+h(q,q) +G(q) = Qu, (4.1)

whereM € R°*? is a symmetric and positive definite mass mathix R® represents the inertial
forces,G € R® represents the gravitational forces, whidg = Eu is a generalized control force
computed using a constant matfixc R%<® which maps the control inputse R® to the general-

ized control force space.
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Kinematic Constraints

The unconstrained equation of motion presented aboveilesdhe flying phase motion
of the biped. In normal walking however, numerous kinemedgtrictions, imposed by ground-
foot contact or the full knee extension stop, can restrietrtiotion of the robot. These kinematic
motion constraints are introduced and discussed substyjuen

For the biped in Figure 4.1, neither foot can penetrate tbergt, the knee joints cannot
extend beyond the fully straight position, and both feetem®umed not to slide when in contact
with the ground. Since each toe and heel is independentiacteized by non-penetration and
no-slip with the ground, the flight phase dynamics (4.1) casiibject to the following kinematic

(physical) constraints,

Y1

Y2 X1

Y3 . X2

Ya X3

¢ | X |
- ¢5 -

where(x;, Vi), i € {1,2,3,4} are the toe and heel coordinates, see Figure 4.1, White 6, — 6;
and ¢5 = 65 — 04 are the relative angles at the knee joint. Instead of using) @irectly, the
forthcoming control development only requires a particiiformation contained by the constraint

matrix which is defined by

A(Q) = [(0®n/dq)T, (0®n/0G)"]". (4.3)

Depending on the configuration of the robot, the constraintecatenated in (4.2) and (4.3) are
active when they restrict the motion and inactive when theyndt. In order to ensure th#t

only contains the active constraints, the configuratiomefrbbot is monitored through the motion
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to identify and eliminate the inactive constraints by zegoihe corresponding row in (4.3). The
constraint matrix obtained in this way, carries the kinemiaformation from the configuration of

the biped utilized in the forthcoming control development.

Control Approach
The control approach considered here can be discussed stages. In the first stage, the
robot is acted upon by generalized control for@gswhich are (partially) referenced to the inertial
frame to make coordination of patterned movement intuiti@ a real robot however there is
no associated control actuator which can realize the geredacontrol forces (referenced to the
inertial frame) directly. Accordingly, in the second sta@g is recomputed tequivalentjoint
torques,u, which can be directly commanded through the actuators ¢odowate the robot. As

follows, we provide a systematic description of the outlimentrol idea on a seven link robot.

Generalized Control Forces

In order to generate patterned movement without trajedtagking, the seven link robot
is provided with seven control elements which are springqakler couples with fixed equilibrium
points, see Figure 4.2. Each control element can be charetdevith three control parameters,
a stiffness constant, a damping constant, and an equilbaingle. These parameters are changed
as piecewise constant functions through four separatesséédng the walk using a configuration-

based switching controller.

Computing the Generalized Control Forces

For a given set of control parameters, the desired genedatiantrol force is computed as

Q4 = —Ka(@— @g) — B, (4.4)

75



Figure 4.2 The control elements and the control parameters on a 7-dipétr

where@ = [8, 01, §2, 3, 64, ¢, dg]" is obtained by position feedbacip, Is known from a corre-
sponding velocity feedback, while the control parametersatenated in the stiffness matriky,
damping matrixBy and the equilibrium angle@, = [64, 641, 0, ¢g3, B44, O, ¢qe]’ are assigned by
the configuration-based switching controller as discugséake forthcoming subsection.

Before we proceed further, let us point out that while (4.4 tree same form as a usual
PD control law, the philosophy and the application of (4gentirely different. Specifically,
we use piecewise constant (fixed) equilibrium angbgsnstead of tracking a predefined desired
trajectory@y = @4(t). While this difference may not seem crucial, one can recegthiat contrary
to the precise trajectory tracking which requires highag2b control, the fixed angular references,
Figure 4.2, make high-gains not well suited to walking cohtrAccordingly, utilization of low
control gains is not only a preference to generate compiiation, but also a requirement for
stable gait synthesis.

Let us mention that utilizingp (as defined above), the generalized control force (4.4) only
influences the rotational dynamics of the robot. In thistlighe translational motion(x,y), is
not controlled directly but rather is allowed to be an outeawhproper postural coordination and

interaction of the robot and the environment. It can alsodmnghatQy operates on a mixed
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reference frame by utilizing absolute coordinates defiretd/een the robot and the inertial frame,
and also relative angular coordinates defined betweenke IThe specific coordinate choice was

selected to mitigate the parameter tuning process disdisdew.

Parameter Modulation based on the Robot Configuration

In order to achieve a walking motion, the control parameteesselected depending on the
configuration of the robot. In this light, we define four segiarstates for each leg depending on
whether the toe and/or the heel touch the ground and whetbadeg is fully extended at the knee
joint, see Figure 4.3. The configuration-based controlipatar modulation is implemented with
four “if —elsé€ statements. In each state, the logic assigns three cqrdarameters for each of the

seven control elements from a set of user-defined desireaneders.

Heel off Toe off,, FHHK!?E?,
extension

4

Heel strike

Figure 4.3 The configuration-based switching logic with the four sepaistates. The particular
state-flow,S1 — & — S3 — S — Sl..., together with the corresponding switching events, which
correspond to normal walking, is indicated with dasheddine

Utilizing the control elements which partially referentles control influence to the inertial
frame is recognized to support intuitive parameter tuniag follows, we describe a biologically

inspired approach for the parameter selection with indenttb mimic muscle activation of a walk-
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ing human subjects, [115], [3].

Along a walk, one of the primary objectives is to keep the upgmely in an upright vertical posi-
tion. Utilizing the control elements which act between tloelypand the inertial reference frame,
one can set the stiffness parameter and the equilibriunedaglrovide a near upright position for
the body, and then use the associated damping parametéuenice the body dynamics. A simi-
lar idea can be used to generate leg oscillation (with reédpexfixed inertial reference) by using
the control elements attached to the thigh. Specificallgpwimg, a low stiffness and low damping
element pulls the leg towards a fixed hip extension configungspecified with an equilibrium
angle), while in the stance phase, a higher stiffness arftehidamping is assigned to the same
control element which is encouraging the stance leg to mowards a fixed hip flexion angular
configuration. The knee stiffness and damping is also meelldy means of using a relatively
high value in stance (to support the body with the help of thegkstop), and employing only slight
damping to generate (partially) ballistic swing. Contradlithe ankle is set up by mimicking the
strategy taken by humans. Accordingly, the ankle stiffissssed to accumulate elastic energy
from the middle stance and provide a characteristic ankddmif at late stance. The main control
parameter at the swinging ankle is an equilibrium point Wwisbould be adjusted to provide slight

dorsiflexion, to avoid stumbling and scuffing during swing.

Actuator Torques

While Qq is straightforward to compute, it does not represent thet jrirques, and as
such, it cannot be directly used to coordinate the motiorhefrobot. Practically, one may want
to find the torques which, while directly commanded through the actuatorsyioles the same
motion the robot would have by applying the desired gernezdlcontrol force€)y. Since we are
interested in control of the constrained motion, let uslidwae the acceleration component of the

constrained motion generated by the desired generalizadotdorces,

g = R"INRTQy, (4.5)
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whereR is the upper triangular Cholesky factorization of the massim# = RTR (whereM is
defined in (4.1))N =1 — (AR~1)*(AR 1) is the null-space projection operator of the inertially-
weighted constraint matrix (whereis defined by (4.3)). The interested reader can find the deriva
tion of (4.5) in [27]. Using the above relation, one can alsfirte the constraint consistent accel-

erations generated with the actuator torques,

du =R INR TEu. (4.6)

Following the main objectivgy = ¢y, one can equate (4.5) and (4.6) and solve the corresponding
linear equation fou. Depending on the constraint configuration of the robot h@wehis solution

may not exist (in cases when the robot is underactuated xeomple in flying phase or if only
one toe or one heel is contacting the ground). In order toimla@a approximate solution even
when the robot is underactuated, we propose not to solfvem gq = ¢y directly, but rather to
define a solution which minimizes the acceleration energyéen the desired and the real motion

(64 — Gu) "M (84 — 6u) — min. The general solution to this problem is given with

u=ANR TQq+ (I — Al Ay)uo, (4.7)

whereA is a Moore-Penrose generalized inverse (pseudoinverée)eMNRTE, [59],| € R®<6

is an identity matrix, whileug € R® is an arbitrary (joint torque) vector. A particular solutio
provided with the first term in the above relatiam & 0) minimizes the squared Euclidean norm
of the joint torques and as such, due to its optimal charatisra preferred solution herein.

In addition to the pseudoinverse solution (first term in Y}.@ne can also utilizeg (with
the second term in (4.7)) to control the contact constraintds. Although the intention here is
not to maintain the grand contact constraints by force cbnpartial utilization of this idea is
recognized as a convenient way to actively modulate the &tifeess once the leg of the robot is
fully extended.

Let us point out here that (4.7) defines a full-body contral lahere each joint torque
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depends on the motion of the robot in whole. It is also imptrta recognize that no inverse
dynamics is performed to cancel the gravitational and iidrces along the motion and enforce
a predefined reference trajectory on the system. Insteadndtural dynamics of the robot is
allowed to substantially influence the motion of the robotchihs synthesized using joint torques
that mimic the effect of spring-damper forces (partiallppbed between the robot and the inertial
reference frame. As subsequently demonstrated, the Hedcaipproach allows emulation of a

human-like walking of a seven-link biped robot.

Robot Design

Practically, realization of a natural motion requiresimétion of backdrivable actuation
which allows passive joint motion, similar to human jointa. this light, for the purpose of val-
idation of the proposed control method, we design a sevénbliped robot keeping in mind the
mentioned design requirement.

The 7-link biped robot, depicted in Figure 4.4 is an expentakprototype which is Pm
tall and 143kg. The geometric parameters and mass distribution on the r®lspecified in Table
4.1. Below, we discuss the upper body design, joint desigst,design, and the sensory-system

on the robot.

Upper Body

The robot has an upper body which carries4kg, (10b), of weights which are distanced
0.2m from the hip joint, see Figure 4.4. The purpose of these weiigito represent (with the rest
of the robot trunk) a reasonable mass for the head, armsramiiaf a 12mtall biped. The body
is provided with a single-axis gyroscope (Analog DeviceBX&R150) which directly measures its
sagittal plane angular velocity. The sensor is chara@eénzith +150° /s measurement range and
a noise density of 05°/s/v/Hz In order to reduce the noise level, the analog signal igditte

with a first order low pass filter with a 5z roll-off frequency.
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Figure 4.4 Left: Experimental prototype of a 7-link dynamic walker é&ped at the Vander-
bilt University, Center for Intelligent Mechatronics. Righf€AD-model, side view of the 7-link
biped. The values for the model parameters are reportedile Bal, specifically, the geometric
parameters, the link massasmy, "y, Mg, link moments of inertias., Je1, Je2, Je3; actuator masses
Ma1, M2, My3, actuator moments of inertidg, , Ja2, Jaz, the gear ratios on the reducers on the joints
n:1,n: 1, n3:1, and the experimentally identified joint level linearcosis damping constant
by, b2, bs.
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Table 4.1Geometric and inertial parameters of the robot with totadsnafM = 14.3kg and hight
of L=1.2m.

Structure no.(x) | [m] i [M] m, [kg] Jox [kgNT]
Body - 0.390 Q185 612 00210
Thigh 1 0.295 Q147 Q67 00096
Shank 2 0.298 Q140 Q55 00069

Foot 3 0.183 — 0.36 00007
oot am b[m [ cJm o [m

0.137 Q046 Q055 Q014 Q035

Actuators no. () n, Me (K] Ja: [kgnTY] b.[Nm$

Hip 1 21 084 00067 ~0.13

Knee 2 12 084 00022 ~0.11

Ankle 3 21 084 00067 ~ 0.05

Joint Design

The seven link robot has an upper body, hip, knee, ankle am@htlike foot. In the biped
prototype, a unified design is utilized for the hip, knee ankl@joints with slight modifications
made for differences in range of motion and attachment poifigure 4.5 depicts the specific

design solution of the knee joint.

Actuator Unit

The robot is actuated with six 150W brushed DC-motors (Maxod@Ehrough low gear
ratio planetary reducers (Maxon GP42C), specifically 212:1,121:1 for the hips, knees and
ankles respectively. A low gear ratio drive (i.e., backdble joint design which allows substantial
power flow between the inertial load and the actuator) allpassive motion of the joints which is
a precondition to leverage natural dynamics through aetbdynamic walking without excessive
energy requirement.

Unlike the backdrivable actuation unit, highly geared {sjroften used for robot manipu-
lators and also in actuated walking robots, would introdsigaificant joint friction and prevent

power flow from the links to the actuators. While such highlamrgel actuation allows decoupled
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motion coordination with local (joint level) control, a $gm with backdrivable joints becomes
highly coupled and as such more difficult to control. In thegemt paper, however, low gear ratio

actuators are utilized to meet the precondition for natim@iing and energy-efficient motion.

Angular Joint Sensors

Each joint is provided with an incremental quadrature eec@dlaxon, ENC-MR-L-1024-
CPT) attached to the motor shaft, Figure 4.5. The referensii@o for each of the six encoders
is identified (in a static stance phase during initializatiosing two acceleration sensors (Analog
Devices, ADXL203) located on the upper body and the uppért teg. The implemented sensors
provide an accurate joint angl¢, measurement which can be characterized with quantizstim

of 4.2° x 10~23 at the hip and ankle joints and3? x 103 for the knee joints.

177.8mm

Figure 4.5Top: Knee joint on the robot. Bottom: CAD model - exploded vidvite knee joint:

1) encoder; 2) actuation unit - motor and the gearhead; ®&ribearing housing; 4) lower leg; 5)
Teflon sleeve bearing; 6) hard stop at full knee extensioappgr leg; 8) external bearing housing;
9) elastic coupling; 10) connecting element; 11) potendtenand housing (not used in present
implementation).

83



Foot Design and the Foot Sensors
The foot of the robot is constructed from ABS plastic, each biol is instrumented with

four force sensing resistors (Interlink, 402 FSR), spedlficavo FSR’s on each toe and heel.
These sensors are located between the underside of thenfbatthin foot-plate made from spring
steel, Figure 4.6. When the toe and/or the heel touches thmdythe circular rubber touch-pad
(located on the foot-plate) touches the foot sensors. Tiregwonding signal serves to identify the
contact configuration between the foot and the ground. Netlrettoe and the heel (which are the
expected contact areas) the foot-plate is supplementéadsiiton rubber pads with high frictional
properties, good abrasive durability and appropriate lslabsorbing capability. In the proposed
control implementation, measurements of the contact foocenoments are not required. As such,

the feet are not equipped with load cells.

2.5in
63.5mm

Figure 4.6 Top: Foot of the robot. Bottom: CAD model - exploded view of tlwtf 1) FSR
sensor; 2) foot-plate; 3) sensor touch-pad; 4) rubber fontact-pad.
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Comment on Planar Walking

For purposes of the experimental implementation of actudy@mamic walking, we con-
sider planar motion of the robot. Specifically, the robottta@hed through its hip to a lever arm
which keeps the biped on a circular path, witlerh radius while walking, see Figure 4.4. This
solution although not an ideal realization of a sagittahplavalk, was convenient for experimenta-
tion. Similar realization was employed for the MIT SpringrRy/Flamingo, [18], for Rabbit [21]
and also for RunBot [24]. In the current realization, the lesaynly used to constrain the motion
of the robot but it is not instrumented or exploited in any wayrovide an inertial reference for

the sensory-system on the robot.

Real-Time Control Implementation
The proposed closed-loop controller was developed on dpgk€C with the real-time in-
terface provided by MATLAB / Simulink Real Time Workshop. Ihet following, we discuss

implementation of the closed-loop controller.

Feedback Information from the Contact Configuration

In order to identify the active (and inactive) constraimtgpbsed by foot contact with the
ground we have utilized the foot sensors. Specifically, velienthe toe and/or the heel are touch-
ing the ground, the analog signal from the foot sensors aesliolded to generate an on/off type
output, which is used in the control implementation. In &ddito the contact condition between
the foot and the environment, knowledge of full knee ext@mss also required for the control
approach. For this purpose, the knee angle encoders aréomgohio determine whether the leg is

fully extendedg, 5 ~ 0.
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Position and Velocity Feedback

In the present paper we utilize both the joint angpe@vhich are measured by encoders),
and also absolute link anglés= [0, 681, 65, 63,64, 65,66]", to implement the proposed feedback-
control approach. Although the absolute orientations atenmeasured directly, they can be cal-
culated by® = [0,0 + ¢1,0 + ¢1+ ¢2,0 + ¢1+ d2+ ¢3 — 11/2,0 + ¢4,0 + Pa+ ¢5,0 + Pa +
¢s+ ¢ — 11/2]" if the upper body anglé is provided. Accordingly, in the following discussion
we will only describe how to comput@. Once the angular configuration is known, the velocity

information is obtained by numerical differentiation.

Computing the Absolute Orientation of the Upper Body

Whenever the robot is not underactuated (at least one foaitisril the ground or; either
the backward toe or heel and the forward toe or heel is on thengl), the system has six or less
degrees of freedom, and the absolute angular orientatrahdaipper body can be calculated using

the six encoder measuremegtgormally stated as,

0=06(¢). (4.8)

The related kinematic computation is performed exactlytifex of the feet touches the ground in
two contact points. Otherwise, if the foot touches the gdoarthree or more contacting points, the
upper body angle is solved in a least square sense to copkinématic redundancy and expected

inconsistency in the measurements.

Estimating the Absolute Orientation

There are two cases where (4.8) cannot be applied. Thishe ffdbot moves through un-
deractuated configuration (i.e., flight phase or if only ayeedr one heel is contacting the ground)
or if (4.8) is singular or nearly singular. Under these ctinds, we have utilized the gyroscope

signal to directly provide the angular velocity of the uppedy, 0= ég, and an estimate of the
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absolute orientation of the upper boéyby
t,
8=0(t)+ | Gy(1)dr, (4.9
to

wheret € [to,t1), to is the time instant starting from which (4.8) could not bedysehile t; is
the time when (4.8) can again be used reliably. The intetyal) for which the integration is
performed is expected to be short (at most 10% per step dojafThere are practical limitations
which makes (4.8) preferred over (4.9). Specifically, inddign of the analog gyroscope signal in
longer time would cause drift in the position estimate, efliltering Gg to reduce the noise level
will induce delay (phase-lag) on the feedback informaticnt the motion (which may lead to
stability problems in coordination), see [116]. These tasuies, which are the main limitations of
many inertial measurement units, are bypassed here bgingil{4.9) only when needed for short
time periods.

Concatenation of (4.8) and (4.9) allows reconstruction efahgular motion of the robot
in the inertial framef. Note that switching between the two computational schemssinduce
discontinuities on position and also on the velocity signdlhis issue is prevented with blending

between the two kinematic solutions in a short time windowerahe switching instant.

Computing the Actuator Torques

The most specific part of the real-time control implementais a control torque compu-
tation (4.7). Below, we provide further insight in this coxtte

The real-time implementation of (4.7) is developed in Matkimulink environment. The
model parameters required for this computation are thetanhmatrixg, the constraint matri®
and the mass matrid. It is an intrinsic property of the model which allows comatitin ofA(0)
andM (0) based only on the angular configuration of the robot (i.empatation of(x,y) is not re-
quired). Once the model parameters are known, a procedayalonmplemented (4.7) is provided

with two standard routines: the Cholesky factorization, tredpseudoinversion. Note that while
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the former is not a delicate operation, the pseudoinverselaéion (which is usually based on the
singular value decomposition (SVD) [65], [59] is a numelticeanvolved operation. Despite this
computational requirement, the current Matlab implem@meof the complete closed-loop con-
troller was real-time capable with 108@ sampling rate on an Intel Core 2 Quad 2.4Ghz desktop

computer.

Experimental Characterization of the Robot
In this section, experimental and simulation results aes@nted to: verify the model pa-
rameter identification, characterize the passive motiothefdevice and validate the electronic

implementation of the control actuators.

Parameter Identification

In order to compute the actuator torques, the model paragitetd andM are required.
For the purpose of real time control, these parameters aineedean analytical closed form. The
specific geometric and inertial parameters for each linkctvlaire used to compuie andM are
provided by measurements, and estimation from the CAD mddw.following experiments and

simulations are performed with the parameter set repontd@dble 4.1.

Free Swing Experiment
The robot introduced in this paper is provided with low gediordrives. In order to show
that the corresponding actuator unit indeed allows passmon (necessary for ballistic swing),

we have conducted free swing experiments. The experimergalts are depicted in Figure 4.7.
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Figure 4.7 Free swing experiments which characterize the passive(uratled) dynamics of the
hip and the knee joint. The motion of the device is depicteth {black) solid line while the
simulated response is plotted with dashed (blue) lines. diffierence in the low velocity area is
mainly due to the Coulomb friction and the cabling which isleeted in the simulations, (the
asymmetric effect of the cabling can be seen in the knee nsg)o In order to clearly show
the difference between a backdrivable actuator unit etlibere, and a usual highly geared joint
design, the dotted (gray) lines depict the model prediaifaorresponding motion the robot would
have with 105 : 1 and 60 : 1 gear ratio on the hip and knee rasphctDue to the low inertia of
the foot, a similar free swing experiment is recognized nelt suited to characterize the dynamics
of the ankle joint, and as such is not conducted here.
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PD Control Experiments

In order to validate the implementation of the control attitmtogether with the dynamic
model, further experiments were conducted with PD conttotivoperates with periodically mod-
ulated equilibrium points. The experimental response hedriodel prediction are both depicted
in Figure 4.8. Note that using low gain PD control allows usatidate both the implementation
of the actuator unit and the model parameters, namely, gporese of the system in this case is
not prescribed with the control force but rather substénptiafluenced by the natural dynamics of

the robot.

Dynamic Walking
In this section we provide simulation results and experitaeshata for the walking biped.

A corresponding video is included in the supporting multiimematerial.

Simulation Result

The control approach implemented here was initially vatifising numerical simulations
on an anthropometric biped model, see [27], [25]. In the gmepaper, the authors utilized the
same simulation tool to select control parameters for anggrefficient gait for the present robot.
The gait resulting from a suitable set of control parameagedepicted in Figures 4.9 and 4.10. The
related walking motion is characterized with average spefed,g = 0.53m/s (Froude number
Fr = Vavg/\/9lieg = 0.21) and mechanical cost of transport, (mech.energy)/(uweigdistance
traveled), ofc = 0.15.

While the simulation model was developed with emphasis osighlyconsistency, it does
not incorporate all the experimental conditions which ggdpl the robot. Aside from the usual
implementation nonidealities such as measurement nog@laase-lag on the feedback signals,
other unmodelled effects were also not included in the satran. Specifically, instead of a sagittal

plane motion, the real robot walks in a circle@h in radius). Moreover, the lever arm used to
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Figure 4.8 Low gain PD control experiment. Solid line (black) reprasethe motion of
the device while the dashed line (blue) is the correspondituglel response. The exper-
iment is performed by applying a control torque vector= —Ky(¢ — ¢4) — Bgp, Kyg =
[2,1.5,1,0,0,0]", By = [0.2,0.2,0.1,0,0,0]", ¢4 = [(7r1/3)sin(1.5mt) 4 71/20, (11/6)Sin(3mt —
pi/2) — 11/2, (11/6)sin(6mt) + 11/6]" .
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Figure 4.9 Motion plots for the simulated robot. The correspondinglstiscopic view is depicted
on Figure 4.10.
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Figure 4.10Stroboscopic view of the simulated walk ovef [0,12]s.
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guide the robot is neither counterbalanced nor is it takémaccount in the mass matrix used in
the control computation. If high gain trajectory trackingne applied to control the robot, these
effects would likely be overridden (by the control force$). the present situation however, the
experimental conditions will substantially alter the matwlynamics of the robot which is proposed
to be leveraged. While the mentioned implementational realities influence the walking style,

they do not prevent the proposed control approach to geneoatdinated motion.

Experimental Result

The control approach was implemented in real-time and useddrdinate the walking of
the biped robot. A representative experimental data is showrigure 4.11. A frame sequence
extracted from the experimental video is shown in Figur 4Tlhe walking of the robot is char-
acterized with: average forward speedvgfg ~ 0.5m/s which corresponds to Froude number
Fr = Vavg//Qlieg = 0.2. According to the dynamic similarity hypothesis [117]e tbalculated
Froud number indicates that the presented walking can beaad with the walk of the actuator-
assisted Cornell dynamic walkér = 0.18 [1] and the fully actuated Honda Asinta = 0.17
[118].

Following the concept of specific resistance, [106], we aeldghe mechanical cost of
transport to estimate the energy requirement of the predemtlking robot. The estimated value
obtained by the experimental datadg; = 0.35. Since the present robot is fully actuated (i.e.,
all joints are under continuous closed loop control), theegated walk may not be as efficient
as one can obtain by actuated assisted passive dynamicrgyadke the Cornell bipegh,; = 0.05
(which has the same efficiency as humans). However, theutlgreleveloped control approach
and the backdrivable actuator design adapted herein appegrovide an energetic advantage
of the presented robot over other actuated walkers whidizauthighly geared joints and high-
gain trajectory tracking control approaches. This claim lba supported by pointing out that the
mechanical cost of transport for the Honda Asimo robot whitlzes the ZMP control paradigm

is estimated to ben; = 1.6, see [1].
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Beyond the above quantitative attributes, there are impbdaalitative similarities be-
tween the walking of the robot herein and a human being. 8pakty, the walking experi-
ment demonstrates a natural looking (partially ballisti)ng which is realized with passive knee
(which is only slightly damped). Moreover, one can also ggtpe the characteristic preemptive
ankle-push off with human-like flat foot. While an actuatedveud foot is an accepted solution in
actuator-assisted dynamic walking [1], [14], an actuatech&n-like (flat) foot which provides a
preemptive ankle push-off to propel the robot forward,ieeal herein, is a major control challenge
which is rarely utilized in practical implementations, $&&9] for a related discussion.

Let us mention that during the preemptive ankle push-ofiigwonly the backward toe of
the rear foot is on the ground), the robot is in underactuatediguration. Practically, underactu-
ation characterized with foot rotation, is an indicator ghdmic disbalance (dynamic instability)
[7], and as such it is not allowed through implementationhaef ZMP control approach, although
it is utilized by human beings [10]. Recently, [87] proposedoatrol solution and numerically
demonstrated walking with controlled (prescribed) fodation. In the present paper, we have ex-
perimentally demonstrated that the proposed control ambrean cope with foot rotation. More-
over, the foot rotation (preemptive ankle push-off) her@as prescribed (enforced by control),
but rather is chosen by the robot only if recognized advadag or necessary through its forward

progression.

Conclusion
The authors have presented an experimental realizationcof@ol approach which en-
ables dynamic walking in a fully actuated robot. Rather thasgribe kinematic trajectories, state
dependent control torques are utilized in motion coorddmathat “encourage” patterned move-
ment. Implementation of the control methodology which, floet force the robot to follow a
predefined motion, but rather allows it to chose its own wajkstyle, step length and forward
speed, is performed on a seven link biped robot which is desigvith highly backdrivable joint

actuation. The conducted walking experiment demonstratesan-like compliant dynamic walk-
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Figure 4.11Actuated Dynamic Walking - Experimental data. Angular dedan the motion of the
robot. Black (full) lines depict the motion of the right leg ihthe blue (dashed) lines depict the
motion of the left leg.

Figure 4.12Frame sequence correspond to six subsequent walking stiepsted from the exper-
imental video.
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ing of a robot biped, characterized with natural lookingr{jadly) ballistic swing and preemptive

ankle push-off.

Appendix
This appendix contains: a description on the experimemalps a modification on the
hardware design, a description on control parameter tumingd presents pictures and data from

the conducted walking experiments.

Experimental Setup

The seven-link robot utilized in the walking experimentdésigned to be a planar walker.
In experimental realization, the robot is constrained witlever arm which allows walking in a
circle with L6min radius. The lever arm, the weight of which is approxima®Hg, is not coun-
terbalanced but instead is considered as an unmodelladlzhsice along the motion. Although
the asymmetric connection of the robot to the arm also affée motion, it does not prevent the
proposed controller from generating stable walking. Theeexnental setup utilized in this work

is depicted in Figure 4.13.

Enhancement on the Hardware Design

During the conducted experiments, failure in the joint dowgs was identified on numer-
ous occasions. In order to resolve this issue, the jointstia@aelastic joint couplings were re-
designed and refabricated. In the new design, the poteatem(not used during the experiments)
are not included, the joint couplings are made thicker, avthie overall joint assemblies became
more compact and less compliant, see Figures 4.14. The mats yoere tested through numerous

experimental trials and have been recognized as a robastative to the primary design solution.

In addition to the design modification of the joints, the fobthe robot was also modified.
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Figure 4.14Left: Knee joint on the robot, side and frontal views. Right: @/odel - exploded
view of the knee joint: 1) encoder; 2) actuation unit - motod dhe gearhead; 3) inner bearing
housing; 4) lower leg; 5) Teflon sleeve bearing; 6) hard stdpleknee extension; 7) upper leg; 8)
external bearing housing; 9) elastic coupling; 10) coningatlement.
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Practically, due to the significant torsional moment agptlgough the foot (which can be 25 Nm)
the initial design was weak in tensile strength. This issas addressed by using Gerolite (G-10)
as an alternative material for the new foot, instead of araichpesistive ABS plastic utilized on the
initial foot. Due to the significantly better material propes, the new foot has been recognized as

a reliable solution (no failure has been identified durirgeéikperiments).

Comment on the Sensory System

The walking experiments showed that imprecise sensonbsagdcan crucially affect the
performance of the robot. One of the most sensitive elemiantisis context is the gyroscope
measurement which provides the angular velocity feedbawk the upper body. In addition to
the gyroscope, identification of the foot contact configorais also required to implement the
proposed walking controller. For this purpose, force denesiesistors (FSR’s) are used as contact
switches on the foot. The FSR'’s, while known to be non-redidol force measurement, per-
formed satisfactorily as contact switches as demonstthtedgh numerous walking experiments.
Nonetheless, this simple design solution may be replacttdaninore sophisticated foot equipped
with load-cells to enhance the consistency of the feedhafckmation from the foot contact con-

figuration.

Comment on the Control Implementation

As any control approach, the one presented here also requarameter tuning during its
implementation. If high gain trajectory tracking controére utilized, this parameter tuning may
not be a difficult task, (as long as the high gain control eeiion does not generate instability, due
to practical issues such as noise or phase-leg on the sigredurements). The control approach
proposed here does not use reference trajectories, arerptefv gains which allow compliant
motion coordination on the robot. While selecting gains may/be as trivial in this case, it is

made intuitive on the proposed walking controller.
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The intuitive nature of the parameter tuning is provided efyrdng the generalized control
forces on the upper body and the thighs with respect to thidaheeference frame Figure 4.2. This
becomes obvious once coordination of the upper body is deresii. Namely, achieving a (nearly)
upright body position is trivial with the spring-damper gbeilocated between the body and the
inertial frame (i.e., one can set the equilibrium angle tarye9® with a high enough stiffness
parameter), while achieving the same using the hip torqubgl have coupled influence on the
body and the legs) would be considerably more complicatesimiar argument holds true if one
considers oscillatory leg motion generation with the psszbspring-damper couples (which are
referenced to the inertial frame) compared to the hip tasquigich could be considered referenced
to the moving (oscillating) body. Utilizing this featurepeactical parameter tuning was performed
independently first on the body (having the biped in doublgpsut stance phase with extended
knees), then the swing leg is independently tuned (by hatfiagoiped in single support phase),
and finally the stance leg parameters are tuned (again h#wngiped in single support phase).
Since the biped is in whole coupled, experience has showex@eacted), that this preliminary
parameter tuning needs to be refined with on-line tuning oeze stable walking. This kind of
parameter adjustment is made sequentially through wakxpgriments where the biped walked

with a “little help” provided by the experimenter.

Experimental Results
A demonstrative report on the conducted walking experisiengiven below. The figures
depict frame sequences, extracted from walking videosgraxgental data on the motion of the

robot, and the computed joint torques used to coordinatbifies.
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Figure 4.15Experiment I: Frame sequence of a walking experiment. Th&imgis character-
ized with: average step length o8in, average stepping frequency dfi 2, average forward speed
of 0.5m/s (Froude numbeFr = 0.2), specific mechanical cost of transpog; = 0.32. Compar-
atively, this cost is (approximately) six times higher tHamman efficiency (also reproduced by
the Cornell dynamic walker), while it is five times lower thdretvalue estimated for the Asimo
robot, [1]. During the walking experiment, the biped ugltza characteristic ankle push-off, pre-
ferred by humans. The experiment also verified proper coatidin of the robot through shortl®
underactuated motion phases (when only the forward heebwése ground), see [2].
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Figure 4.19Experiment Il: Frame sequence of a walking experiment. Tél&wg is characterized
with: average forward speed of4Bm/s (Froude numbeFr = 0.19), specific mechanical cost of
transportc = 0.32.

103



6,. 6, [deg]

6,, 6 [deg]

63, 96 [deq]

— 10+ . . '|\ 4 e \ | [ 'I\ i el L . . 1 A
\ \ |
.g 0‘|\ \l AR d Y ! 4 'l‘\ '\’/ Al '4’ 'I\"» —'\‘ It n -
~ I Gy v "y J ! [ '
AN Y R VAR N T ey //' Al A AYAN i/ ]
_20_ V V V { ) ) Vl: ) 1 ! ) . l 1 V ll ! V 1 V V V V ]
0 5 10 15 20 25
10
=3
£
=° oF
:;N
_10 1 1 1 1
0 5 10 15 20 25
10 I T T T T
g 0' "‘,_J‘,r h | 'l J M I\ J ] J‘ N r’ r
= : v | | 1 | \
1 J | TN A | Ry
= -100 4 l,h N I / hl TRTRY \’ U Ry
™ : | | ! | Il .
= 2o b 7 7| " ! i 7 i ! |v ! l) i f
0 5 10 15 20 25
time [s]

Figure 4.21Joint torques corresponding to the frame sequence demotétyure 4.19.
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Figure 4.23Experiment Ill: Frame sequence of a walking experiment. whking is character-
ized with: average forward speed abfh/s (Froude numbeFr = 0.2), specific mechanical cost
of transportcy; = 0.31.
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CHAPTER V

CONCLUSION AND FUTURE WORK

Conclusion

This dissertation presents a dynamic modeling, analyticatrol development, numerical
investigation and experimental realization of a humas-k#ctuated dynamic walking in biped
robots. First, a simulation approach developed for coimschdynamical system modeled with
differential-algebraic equations is presented. This nedtprovided a basis to model and simulate
the biped as a constrained dynamical system. Then, a capgpsbach for human-like actuated
dynamic walking is introduced and numerically investigatd-inally, the control approach was
experimentally verified on a seven-link biped robot desth(with backdrivable joints) for this
purpose. The walking experiments demonstrate human-titeated dynamic walking of a robot,
as was claimed and predicted by motion simulations. Summiatiye contributions is listed as

follows:

1. Development of an explicit equation of motion for precmsemerical simulation of con-

strained mechanical systems.

2. Development of a control framework which allows compliaaman-like dynamic walking

in biped robots.

3. Evaluation of the proposed walking controller by exteasiumerical investigation. This
numerical investigation addresses the ability of the @dletrto provide walking started from
different postural configuration, walking with differergesed, walking up and down slope,
walking with various styles, walking under control paraerefariation, walking under model

parameter variations, and walking under external forceithances.

4. Design and instrumentation of a seven-link biped robdkh wackdrivable joint actuators.
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Beyond the description of the hardware design and the sesgstgm on the robot, demon-
stration of the passive joint motion (allowed by the backalie joint actuation) is specifi-

cally presented.

5. Realization of a human-like actuated dynamic walking estven-link robot. Experimental
demonstration of a robot walking with (partially) ballisgswing leg, extended knee stance

support and human like (preemptive) ankle push-off.

Future Work
Bipedal locomotion is an active research field that provideserous possibilities for fur-
ther development. Since realization of dynamic walkingurexp a symbiotic combination of
control and design, a future research direction is natarélet discussed separated to these two

categories.

Comment on the Control Approach

The control approach proposed here addresses a humandikenit walking on actuated
biped robots. However, as presented, the approach is riotted to walking but is general enough
to be used (without any modification on its structure) to genf numerous other everyday tasks
such as: standing, standing to walking, walking to standiagsitions, or also sitting, sitting to
standing, standing to sitting transitions for example.

In a more general view, the control approach applied to waglldynthesis here, can be
used to a biologically-inspired compliant coordinationrobotic systems. Instead of using a de-
sired trajectory and inverse dynamics to calculate therobfdrces, the presented method defines
the controller on force level, which allows one to performmgiant coordination without pre-
specifying the motion of the system. This approach is reizaghto be highly advantageous to
generate a motion similar to that preferred by animals amdams while moving or locomoting

efficiently.
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During the development of the proposed control idea, theative was not to use assump-
tions which would limit the applicability and generality tife final results. As a direct conse-
guence, the control approach developed here is applicaldP walking with no structural mod-
ifications compared to its 2D (planar walking) implemerttati Experimental demonstration of a
3D actuated dynamic walking however does require rededitre@urrent robot which investment
is seen as a promising future work.

As was recognized through development, experimentalzatéin of the proposed ap-
proach is tightly coupled with control parameter tuning.this light, development of a machine
learning algorithm for automatic parameter tuning is recogd to be a beneficial future invest-

ment.

Comment on the Robot Design

In the presented work, we have specifically pointed out thareergy efficient realization
of a natural compliant motion depends on the applied conteihod (which should not be a high-
gain trajectory tracking) and also depends on a robot desigoh should allow exploitation of
the natural dynamics of the robot. Practically, it means fbiats should be backdrivable such
as human joints which allow the inertial motion of the robotbe exploited rather then being
suppressed as on highly geared industrial manipulatorsbsadon majority of actuated walking
robots.

While backdrivable joints are advantageous from energetictpf view, they make the
dynamics of the considered system (walking machine) caoughe as such nontrivial to control.
Moreover, providing the required torque during a demandiagice phase (when the entire body
needs to be supported) may not be trivial with low gear rétakdrivable) actuators. Development
of a backdrivable but also high torque actuation unit for pbamt motion/force control can be seen
as a targeted future research in the present context.

A high torque actuation unit, while experimentally demoat&d not to be a requirement

for level ground walking, would provide the necessary aardauthority under significant external
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disturbances. On the present platform, experiments haifeedehat torque limitation prevents the
robot to deal with significant disturbances, which can beeskkd by further design enchancement

(i.e., increasing joint torque capability).

112



BIBLIOGRAPHY

[1] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficientdujal robots based on passive
dynamic walkers,Science Magazineol. 307, pp. 1082-1085, 2005.

[2] D. J. Braun, J. E. Mitchell, and M. Goldfarb, “Actuated dymic walking in biped robots:
Control approach, robot design and experimental validdtidhe 9th IEEE-RAS Interna-
tional Conference on Humanoid Robgbp. xxx—xxx, December 7-10, 2009 Paris, France -
accepted.

[3] D. A. Winter, Biomechanics and Motor Control of Human Movemeéniley-Interscience,
New York, 2 ed., 1990.

[4] Y. Hurmuzlu, F. Genot, and B. Brogliato, “Modeling, stability and control oped robots -
a general framework Automaticavol. 40, no. 10, pp. 1647-1664, 2004.

[5] M. Vukobratovic and J. Stepanenko, “On the stability of antropometricesyst” Mathe-
matical Biosciencevol. 15, no. 1, pp. 1-37, 1972.

[6] M. Vukobratovic, “How to control artifical anthropomorphic systemEZEE Transactions
on Systems, Man and Cybernetiesl. SMC-3, 1973.

[7] M. Vukobratovic and B. Borovac, “Zero-moment point: Thirty five years of ifg i Inter-
national Journal of Humanoid Roboticgol. 1, no. 1, pp. 157-173, 2004.

[8] A. Takanishi, M. Ishida, Y. Yamazaki, and I. Kato, “Theatzation of dynamic walking by
the biped walking robot WL-10RDProc. Intl. Conference on Advanced Robatjms. 459—
466, 1985.

[9] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The @édpment of. honda humanoid
robot,” Proceedings of the 1998 IEEE ICRpp. 1321-1326, 1998.

[10] A. Goswami, “Postural stability of biped robots and fbet-rotation indicator (fri) point,”
The International Journal of Robotics Resegrebl. 18, pp. 523-533, 1999.

[11] A. D. Kuo, “Choosing your steps carefullyfEEE Robotics and Automation Magazjne
vol. 14, no. 2, pp. 18-29, 2007.

[12] T. McGeer, “Passive dynamic walkingThe International Journal of Robotics Research
vol. 9, no. 2, pp. 62-82, 1990.

[13] M. J. Coleman and A. Ruina, “An uncontrolled walking toatltannot stand still Physical
Review Lettersvol. 80, no. 16, pp. 3658-3661, 1998.

[14] M. Wisse, G. Feliksdal, J. van Frankenhuyzen, and B. MoYRassive-based walking robot:
Denis a simple efficient and lightweight bipedZEE Robotics and Automation Magazjne
vol. 14, no. 2, pp. 52-62, 2007.

113



[15] R. Kato and M. Mori, “Control method of biped locomotiorvigig asimptotic stability of
trajectory,” Automaticavol. 20, no. 4, pp. 405-414, 1984.

[16] T. Mita, T. Yamaguchi, T. Kashiwase, and T. Kawase, “Redion of a high speed biped
using modern control theornyihternational Journal on Controhlvol. 40, no. 4, pp. 107-119,
1984.

[17] J. Furusho and A. Sano, “Sensor-based control of a inike-obot,” International Journal
of Robotics Researchol. 9, no. 2, pp. 83-98, 1990.

[18] J. Pratt, C. M. Chew, A. Torres, P. Dilworth, and G. Pratfjrtual model control: An
intuitive approach for bipedal locomotionThe International Journal of Robotics Research
vol. 20, pp. 129-143, 2001.

[19] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, g zero dynamics of planar
biped walkers,IEEE Transactions on Automatic Contrebl. 48, no. 1, pp. 42-56, 2003.

[20] C. C. de Wit, “On the concept of virtual constraints as d foowalking robot control and
balancing,”’Annual Reviews in ContrpVol. 28, pp. 157-166, 2004.

[21] C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. Weste C. de Wit, and J. Grizzle,
“RABBIT: A testbed for advanced control theoryEE Control Systems Magazinel. 23,
no. 5, pp. 57-78, 2003.

[22] C. Sabourin, O. Bruneau, and G. Buche, “Control strategyhferobust dynamic walk of a
biped robot,"International Journal of Robotics Researatol. 25, no. 9, pp. 843-860, 2006.

[23] T. Geng, B. Porr, and F. @rgotter, “Fast biped walking with a sensor-driven neuronai-co
troller and real-time online learninglhternational Journal of Robotics Researaiol. 25,
no. 3, pp. 243-259, 2006.

[24] P. Manoonpong, T. Geng, T. Kulvicius, B. Porr, and Forgbtter, “Adaptive, fast walking
in a biped robot under neuronal control and learnifl,bS Computational Biologyol. 3,
no. 7, pp. 1305-1320, 2007.

[25] D. J. Braun and M. Goldfarb, “A control approach for adacadynamic walking in biped
robots,”IEEE Transactions on RoboticBOI: 10.1109/TR0O.2009.2028762.

[26] D. J. Braun, J. E. Mitchell, and M. Goldfarb, “Experimahtmplementation of actuated
dynamic walking in biped robots International Journal of Robotics Reseaycbol. xx,
NO. X, pp. XXx—xxx, 2009 - submitted.

[27] D. J. Braun and M. Goldfarb, “A controller for dynamic Walg in bipedal robots,”
IEEE/RSJ International Conference on Intelligent Robots Spstem9p. 2916-2921, Oc-
tober 11-15, 2009 St. Louis, USA.

[28] D. J. Braun and M. Goldfarb, “Eliminating constraintftlin the numerical simulation of
constrained dynamical system§bmputer Methods in Applied Mechanics and Engineer-
ing, vol. 198, no. 37-40, pp. 3151-3160, 2009.

114



[29] J. L. LagrangeMecanique AnalytiqueMme Ve Courcier, Paris, 1787.

[30] C. F. Gauss, Uber ein neues algemeines grundgesetz der mechateitschrift fir die
reine und angewandte Mathematiol. 4, pp. 232—-235, 1829.

[31] G. A. Maggi,Principii della Teoria Mathematica del Movimento dei Cor@orso di Mec-
canica RazionaleUlrico Hoepli, Milano, 1896.

[32] J. W. Gibbs, “On the fundamental formulae of dynamiésyierican Journal of Mathemat-
ics, vol. 2, no. 1, pp. 49-64, 1879.

[33] P. Appell, “Sur une forme generale des equations de tanhyque,’C. R. Acad. Sci., Parjs
vol. 129, pp. 459-460, 1899.

[34] T. R. Kane and D. A. LevinsorDynamics: theory and applicationdMicGraw-Hill, New
York, 1985.

[35] F. E. Udwadia and R. E. Kalaba, “A new perspective on gais¢d motion,”"Proceedings
of the Royal Society of Londax) vol. 439, pp. 407-410, 1992.

[36] F. E. Udwadia and R. E. KalabAnalytical Dynamics: A New ApproaciCambridge Uni-
versity Press, Cambridge, England, 1996.

[37] F. E. Udwadia and R. E. Kalaba, “On the foundations of @zl dynamics,International
Journal of Non-Linear Mechanig¢sol. 37, pp. 1079-1090, 2002.

[38] L. A. Pars,A Treatise on Analytical Dynamicgohn Wiley and Sons, New York, 1965.

[39] J. I. Neimark and N. A. Fufae\Dynamics of nonholonomic system&8MS, Providence,
1972.

[40] F. Gantmachet,ectures in Analytical Mechanic#ir, Moscow, 1975.
[41] H. GoldsteinClassical MechanicsAddison-Wesley, Reading, MA, 1980.
[42] N. G. Chetaev]heoretical MechanicsMir Publisher, Moscow, 1989.
[43] A.I. Lurie, Analytical MechanicsSpringer-Verlag, New York, 2002.

[44] J. Baumgarte, “Stabilization of constraints and inédgjof motion in dynamical systems,”
Computer Methods in Applied Mechanics and Engineenodj 1, pp. 1-16, 1972.

[45] C. W. Gear, B. Leimkuhler, and G. K. Gupta, “Automatic igtation of Euler-Lagrange
equations with constraintsJournal of Computational and Applied Mathematigesl. 12-
13, pp. 77-90, 1985.

[46] P. Lotstedt and L. Petzold, “Numerical solution of nonlineaffetential equations with
algebraic constraints I: Convergence results for backwdietrentiation formulas, Mathe-
matics of Computatigrvol. 46, no. 174, pp. 491-516, 1986.

115



[47] C. Rihrer and B. Leimkuhler, “Numerical solution of differeritelgebraic equations for
constrained mechanical motiotNumerische Mathematikol. 59, pp. 55-69, 1991.

[48] L.R. Petzold, “Numerical solution of differential-adgraic equations in mechanical systems
simulation,”PhysicaD, vol. 60, no. 1-4, pp. 269-279, 1992.

[49] A. A.ten Dam, “Stable numerical integration of dynaalisystems subject to equality state-
space constraintsJournal of Engineering Mathematicgol. 26, pp. 315-337, 1992.

[50] E. Eich, “Convergence results for a coordinate progettmethod applied to mechanical
systems with algebraic constraint§TAM Journal on Numerical Analysisol. 30, no. 5,
pp. 1467-1482, 1993.

[51] E. Bayo and R. Ledesma, “Augmented lagrangian and madksgwnal projection methods
for constrained multibody dynamicsNonlinear Dynamicsvol. 9, no. 1-2, pp. 113-130,
1996.

[52] W. Blajer, “Elimination of constraint violation and as@cy aspects in numerical simulation
of multibody systems,Multibody System Dynamicgol. 7, pp. 265-284, 2002.

[53] F. Aghili, “A unified approach for inverse and direct dymics of constrained multibody
systems based on linear projection operator: Applicatiort®ntrol and simulationJEEE
Transactions on Roboti¢csol. 21, no. 5, pp. 834-849, 2005.

[54] W. Schiehlen, “Multibody system dynamics: Roots andspectives,’Multibody System
Dynamicsvol. 1, pp. 149-188, 1997.

[55] B. Brogliato, A. A. ten Dam, L. Paoli, F. &ot, and M. Abadie, “Numerical simulation of
finite dimensional multibody nonsmooth mechanical syste®SME Applied Mechanics
Reviewsvol. 55, no. 2, pp. 107-150, 2002.

[56] J. d’Alembert,Traite de DynamiqueParis, 1743.

[57] J. J. Moreau, “Quadratic programming in mechanics:agyits of onesided constraintg,”
SIAM Contro] vol. 4, no. 1, pp. 153-158, 1966.

[58] P. Lotstedt, “Mechanical systems of rigid bodies subject tdateral constraints,SIAM
Journal on Applied Mathematicsol. 42, no. 2, pp. 281-296, 1982.

[59] A. Ben-Israel and T. N. E. GrevilleGeneralized Inverse: Theory and Applications
Springer, 2003.

[60] C. W. Gear, “Differential-algebraic equation indexrtsformations,”SIAM J. Sci. Statist.
Comput, vol. 9, pp. 39-47, 1988.

[61] L. Petzold, “DASSL: A differential/algebraic system olger,” Available at
http://www.netlib.org/ode/ddass|1991.

[62] K. E. Brenan, S. L. Campbell, and L. R. Petzdltimerical Solutions of Initial-Value Prob-
lems in Differential-Algebraic Equationg&lsevier Science, NY, 1989.

116



[63] J. G. de Jd@n and E. BayoKinematic and Dynamic Simulation of Multibody Systems The
Real-Time ChallengeSpringer-Verlag, New York, 1994.

[64] E. Hairer and G. Wanne§olving Ordinary Differential Equations II: Stiff and Daffential-
Algebraic ProblemsSpringer-Verlag, Series in Computational Mathematics].2 ¥996.

[65] G. Golub and C. V. Loanyatrix Computations The John Hopkins University Press, 3 ed.,
1996.

[66] B. Leimkuhler, L. R. Petzold, and C. W. Gear, “Approximatimethods for the consis-
tent initialization of differential-algebraic equatighSIAM Journal on Numerical Analysis
vol. 28, no. 1, pp. 205-226, 1991.

[67] P. E. Nikravesh, “Initial condition correction in midbdy dynamics,”"Multibody System
Dynamicsvol. 18, pp. 107-115, 2008.

[68] J. G. de Jdin, J. Unda, and A. Avello, “Natural coordinates for the comep analysis of
multibody systems,Computer Methods in Applied Mechanics and Engineenrg. 59,
pp. 309-327, 1986.

[69] C. Kraus, M. Winckler, and H. G. Bock, “Modeling mechani€AE using natural co-
ordinates,”Mathematical and Computer Modelling of Dynamical Systewot 7, no. 2,
pp. 145-158, 2001.

[70] E. J. Haug,Computer aided kinematics and dynamics of mechanical sgsténiume I:
Basic methodsAllyn and Bacon, Boston, 1989.

[71] R. Serban, D. Negrut, E. J. Haug, and F. A. Potra, “A togglbased approach for exploit-
ing sparsity in multibody dynamics in cartesian formulafidMlechanics of Structures and
Machinesvol. 25, no. 3, pp. 379-396, 1997.

[72] M. Arnold, A. Fuchs, and C. &hrer, “Efficient corrector iteration for DAE time integiai
in multibody dynamics,"Comp. Meth. Appl. Mech. Engvol. 195, no. 50-51, pp. 6958—
6973, 2006.

[73] A. Laulusa and O. A. Bauchau, “Review of classical apphescfor constraint enforce-
ment in multibody systemsJournal of Computational and Nonlinear Dynamiasl. 3,
p. 011004, 2008.

[74] O. A.Bauchau and A. Laulusa, “Review of contemporary apphes for constraint enforce-
ment in multibody systemsJournal of Computational and Nonlinear Dynamissl. 3,
p. 011005, 2008.

[75] J. Baumgarte, “A new method of stabilization for holorioronstraints,Journal of Applied
Mechanicsvol. 50, pp. 869-870, 1983.

[76] C. O. Chang and P. E. Nikravesh, “An adaptive constraiatation stabilization method
for dynamic analysis of mechanical systemiurnal of Mechanisms, Transmissions, and
Automation in Desigyvol. 107, pp. 488—492, 1985.

117



[77] U. M. Ascher, H. Chin, and S. Reich, “Stabilization of DABad invariant manifolds,”
Numerische Mathematikol. 67, pp. 131-149, 1994.

[78] S. T. Lin and M. H. Hong, “Stabilization method for nune integration of multibody
mechanical systemsJournal of Mechanical Desigrvol. 120, pp. 565-572, 1998.

[79] W. Blajer, “A geometrical interpretation and uniform tria formulation of multibody
system dynamics,Zeitschrift fir Angewandte Mathematik und Mechanil. 81, no. 4,
pp. 247-259, 2001.

[80] R. A. Wehage and E. J. Haug, “Generalized coordinatatjganing for dimension reduc-
tion in analysis of constrained dynamic systendsiirnal of Mechanical Desigrvol. 104,
pp. 247-255, 1982.

[81] E. Bayo and A. Avello, “Singularity free augmented lagg&n algorithms for constraint
multibody dynamics,Nonlinear Dynamicsvol. 5, pp. 209-231, 1994.

[82] F. E. Udwadia, “A new perspective on the tracking cohtrononlinear structural and me-
chanical systemsProceedings of the Royal Society of Londqrvol. 459, pp. 1783-1800,
2003.

[83] W. Blajer and K. Kolodziejczyk, “A geometric approach solving problems of control
constraints: Theory and a DAE frameworkjultibody System Dynamicegol. 11, pp. 343—
364, 2004.

[84] M. VukobratovE, B. Borovac, DSurla, and D. Stoki, Biped LocomotionSpringer Verlag,
1990.

[85] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koghi, and K. Tanie, “Planning
walking patterns for a biped robotEEE Transactions on Robotics and Automatienl. 17,
no. 3, pp. 208-289, 2001.

[86] S. Kagami, T. Kitagawa, K. Nishiwaki, T. Sugihara, Malm, and H. Inoue, “A fast dynam-
ically equilibrated walking trajectory generation methaichumanoid robot,Autonomuous
Robotsvol. 12, pp. 71-82, 2002.

[87] C. Chevallereau, D. Djoudi, and J. W. Grizzle, “Stableduial walking with foot rotation
through direct regulation of the zero moment poitEEE Transactions on Robotic#ol. 24,
no. 2, pp. 390-401, 2008.

[88] M. Garcia, A. Ruina, A. Chatterjee, and M. Coleman, “The @mgst walking model: Sta-
bility, complexity, and scaling,Journal of Biomechanical Engineeringol. 120, no. 2,
pp. 281-288, 1998.

[89] S. Mochon and T. A. McMahon, “Ballistic walking: An impved model,”"Mathematical
Biosciencesvol. 52, pp. 241-260, 1980.

[90] C.-L. Shih, “The dynamics and control of a biped walkirgpbot with seven degrees of
freedom,”Journal of Dynamic Systems, Measurement, and Cqomnobl 118, no. 4, pp. 683—
690, 1996.

118



[91] F. lida, Y. Minekawa, J. Rummel, and A. Seyfarth, “Towartuman-like biped robot with
compliant legs,Robotics and Autonomous SysteGG08.

[92] H. Geyer, A. Seyfarth, and R. Blickhan, “Compliant leg babar explains basic dynam-
ics of walking and running,Proceedings of the Royal Society of Lond®nvol. 273,
p. 28612867, 2006.

[93] J. W. Grizzle, G. Abba, and F. Plestan, “Asymptoticadhable walking for biped robots:
Analysis via systems with impulse effectdEEE Transactions on Automatic Contyol
vol. 46, no. 1, pp. 51-64, 2001.

[94] F. Plestan, J. W. Grizzle, E. R. Westervelt, and G. Ablstable walking of a 7-dof biped
robot,” IEEE Transactions on Robotics and Automatieal. 19, no. 4, pp. 653-668, 2003.

[95] C. Sabourin and O. Bruneau, “Robustness of the dynamic ofadkbiped robot subjected
to disturbing external forces by using CMAC neural netwdrkpbotics and Autonomous
Systemsvol. 51, pp. 81-99, 2005.

[96] H. Hemami and B. Wyman, “Modeling and control of constiesd dynamic systems with
application to biped locomotion in the frontal planEfEE Transactions on Automatic Con-
trol, vol. 24, no. 4, pp. 526-535, 1979.

[97] W. Blajer and W. Schiehlen, “Walking withouth impactsaasotion/force control problem,”
Journal of Dynamic Systems, Measurement, and Cqontobl 114, pp. 660—665, 1992.

[98] Y. Hurmuzlu and D. Marghitu, “Multi-contact collisi@of kinematic chains with external
surfaces,International Journal of Robotics Reseayaiol. 13, no. 1, pp. 82-92, 1994.

[99] B. Brogliato,Nonsmooth Mechanic$pringer Verlag London, 2 ed., 1999.

[100] F. Pfeiffer and C. Glockefultibody Dynamics with Unilateral ContactsWiley VCH,
1996.

[101] L. Lilov and M. Lorer, “Dynamic analysis of multirigitbody system based on the Gauss
principle,” Zeitschrift fir Angewandte Mathematik und Mechaniol. 62, pp. 539-545,
1982.

[102] K. L. Doty, C. Melchiorri, and C. Bonivento, “A theory of geralized inverses applied to
robotics,”International Journal of Robotics Reseayaiol. 12, no. 1, pp. 1-19, 1993.

[103] T. Sugihara and Y. Nakamura, “Whole-body cooperataahcing of humanoid robot using
cog jacobian,IEEE/RSJ International Conference on Intelligent Robots &ystemsyol. 3,
pp. 2575-2580, 2002.

[104] S. Hyon, J. G. Hale, and G. Cheng, “Full-body complianiian-humanoid interaction:
Balancing in the presence of unknown external forcSEE Transactions on Robotics
vol. 23, no. 5, pp. 884-898, 2007.

[105] K. Yin, K. Loken, and M. van de Panne, “Simbicon: Simplged locomotion control,”
ACM Transactions on Graphigsol. 26, no. 3, pp. 105-1 — 105-10, 2007.

119



[106] G. Gabrielliand T. von Erman, “What price speed?: Specific power required for propalsio
of vehicles,"Mechanical Engineeringvol. 72, no. 10, pp. 775-781, 1950.

[107] A. Takanishi, T. Takeya, H. Karaki, and |. Kato, “A coolt method for dynamic biped
walking under unknown external forcéEEE International Workshop on Intelligent Robots
and Systems IROS '9@ol. 2, pp. 795-801, 1990.

[108] H. Miura and I. Shimoyama, “Dynamic walk of a bipethiternational Journal of Robotics
Researchvol. 3, no. 2, pp. 60-74, 1984.

[109] A. Goswami, B. Espiau, and A. Keramane, “Limit cyclesaipassive compass gait biped
and passivity-mimicing control lawsAutonomuous Roboticsol. 4, no. 3, pp. 273-286,
1997.

[110] F. Asano, M. Yamakita, N. Kamamichi, and Z.-W. Luo, “&vel gait generation for biped
walking robots based on mechanical energy constrdlBEE Transactions on Robotics and
Automation vol. 20, no. 3, pp. 565 — 573, 2004.

[111] F. Asano, Z.-W. Luo, and M. Yamakita, “Biped gait gertema and control based on a uni-
fied property of passive dynamic walkingdBEE Transactions on Roboticgol. 21, no. 4,
pp. 754 — 762, 2005.

[112] M. W. Spong and F. Bullo, “Controlled symmetries and passgvalking,” IEEE Transac-
tions on Automatic Controlol. 50, no. 7, pp. 1025-1031, 2005.

[113] M. W. Spong, J. K. Holm, and D. Lee, “Passive-based bif bipedal locomotion: Reg-
ulating walking by exploiting passive gaits in 2-d and 3-pdas,”IEEE Robotics and Au-
tomation Magazingvol. 14, no. 2, pp. 30-40, 2007.

[114] S. Kajita, T. Yamaura, and A. Kobayashi, “Dynamic watk control of a biped robot along
a potential energy conserving orbilZEE Transactions on Robotics and Automatienl. 8,
no. 4, pp. 431-438, 1992.

[115] V. T.Inman, H. J. Ralston, and F. Todduman Walking Baltimore, Williams and Wilkins,
1981.

[116] L. Loffler, M. Gienger, and F. Pfeiffer, “Sensors and controlaapt of walking "Johnnie”,”
International Journal of Robotics Reseayatol. 22, pp. 229-239, 2003.

[117] R. M. Alexander and A. S. Jayes, “A dynamic similaritypayhesis for the gaits of
guadrupedal mammalsJournal of Zoologyvol. 201, pp. 135-152, 1983.

[118] C. L. Vaughan and M. J. OMalley, “Froude and the contidouof naval architecture to our
understanding of bipedal locomotiorGzait and Posturgvol. 21, no. 3, pp. 135-152, 2005.

[119] D. G. E. Hobbelen and M. Wisse, “Ankle actuation for iliroycle walkers,”International
Journal of Robotics Researcbol. 27, no. 6, pp. 709-735, 2008.

120



