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CHAPTER I 

 

SPECIFIC AIMS 

 

 Traditionally, the visual system has been thought to encode visual scenes by 

changes in response rate of visual neurons, with the individual neurons acting as feature 

detector (Barlow, 1972). However, the dimensionality of visual scenes overwhelms even 

the large number of visual neurons, suggesting that independent firing rate modulation 

may not be the only coding mechanism employed by the visual system. With the aid of 

multi-channel recording, synchronized neural responses have been found at multiple 

stages in the visual pathway. The stimulus dependence of synchrony implies that neural 

cooperation may play an important role in visual perception (Eckhorn et al., 1988; Gray 

et al., 1989; Engel et al., 1991; Singer and Gray, 1995; Castelo-Branco et al., 2000). The 

goal of this work is to explore the fundamental sources of neural synchronization and the 

potential functional role of correlated neural responses in visual perception tasks such as 

contour integration and pattern recognition.  

 

Aim #1 

To determine the relationship between stimulus properties and receptive field features 

that encourages neural synchrony. Earlier work suggests that cortical neurons with 

similar orientation preferences and overlapped receptive fields are more likely to 

synchronize their activities (Eckhorn et al., 1988; Engel et al., 1991a; Gray et al., 1989; 

Kreiter & Singer, 1996; Kohn & Smith, 2005). However, using linear gratings or bars as 
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the major experimental stimulus cannot reflect the broad range of visual stimuli in the 

real world and this strategy potentially underestimates the functional role of neural 

synchrony in visual perception. The fact that neural synchrony is stimulus-driven implies 

that spatial or temporal features in the visual stimuli may be more important than intrinsic 

receptive field characteristics in the development of neural synchrony.  The influence of 

receptive field features in the development of synchrony remains unresolved. We have 

analyzed neural responses, including average response rate and neural synchrony, to the 

stimulation of collinear (regular drifting sinusoid gratings) and cocircular contours 

(drifting sinusoid concentric rings). The goal of this study is to test whether non-collinear 

stimuli can induce synchronized activity between cells, and whether this activity is 

emergent, i.e., provides a more sensitive discrimination between collinear and non-

collinear stimuli than does firing rate.  

 

Aim #2 

To study the relationship between the time domain and frequency domain estimates of 

neural synchronization and to clarify the importance of fine temporal structures in 

maintaining neural correlation.  Correlation between neural responses normally 

expresses as synchronization of spike timing and/or coherence of specific frequency 

components (oscillation). Cross-correlation (Perkel et al., 1967; Aertsen et al., 1989) and 

coherence (Mitra and Pesaran, 1999; Jarvis and Mitra, 2001) analysis are the primary 

methods for analyzing the timing and frequency association between neurons, but few 

studies have been conducted to address the direct relationship between these two 

approaches. In this aim, we analyzed the synchronized neural activities in cat primary 
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visual cortex with both cross-correlation and coherence analysis and conducted 

regression analysis to study the correlation between the results from these two methods. 

We also perturbed the fine temporal structures in the original spike trains by randomly 

jittering spikes in different time ranges to observe how correlation is disrupted by 

systematically destroying the fine temporal structure in the response.  

 

Aim #3 

To clarify the contribution of spatial integrity to the generation of neural synchrony. 

Coherent spatial and temporal structures within visual space lead to the perception of 

discrete visual features as a whole (Koffka, 1935).  Neural assemblies, defined by 

correlated firing, can be constructed among cells with similar tuning properties once 

those cells are coactivated by stimuli with appropriate spatial characteristics such as 

drifting gratings with preferred orientation and direction of motion (Eckhorn et al., 1988; 

Engel et al., 1991a; Gray et al., 1989; Kreiter & Singer, 1996; Samonds et al., 2004). 

Gray et al. (1989) showed that neural synchrony is sensitive to contour integrity. These 

findings suggest that synchronized neural responses not only depend on common 

temporal coherence but are also sensitive to spatial integrity. What remains unknown is 

the specific degree to which synchrony depends on spatial coherence of the visual 

stimulus. In the third aim, we used drifting sinwave gratings with fixed temporal features 

but systematically deconstructed contour integrity to determine the dependence of neural 

synchronization on spatial coherence. We also examined how neural synchronization in 

the time and frequency domains developed to explore the relationship between spike 

timing synchronization and associated frequency component oscillation.   

 3



REFERENCES 

Aertsen AM, Gerstein GL, Habib MK, Palm G (1989) Dynamics of neuronal firing 

correlation: modulation of "effective connectivity". J Neurophysiol 61:900-917. 

Barlow HB (1972) Single units and sensation: a neuron doctrine for perceptual 

psychology? Perception 1:371-394. 

Castelo-Branco M, Goebel R, Neuenschwander S, Singer W (2000) Neural synchrony 

correlates with surface segregation rules. Nature 405:685-689. 

Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988) 

Coherent oscillations: A mechanism of feature linking in the visual cortex? 

Biological Cybernetics V60:121-130. 

Engel AK, Kreiter AK, Konig P, Singer W (1991) Synchronization of oscillatory 

neuronal responses between striate and extrastriate visual cortical areas of the cat. 

Proc Natl Acad Sci USA 88:6048-6052. 

Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual 

cortex exhibit inter-columnar synchronization which reflects global stimulus 

properties. Nature 338:334-337. 

Jarvis MR, Mitra PP (2001) Sampling properties of the spectrum and coherency of 

sequences of action potentials. Neural Comput 13:717-749. 

Mitra PP, Pesaran B (1999) Analysis of Dynamic Brain Imaging Data. Biophys J 76:691-

708. 

Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point 

processes. II. Simultaneous spike trains. Biophys J 7:419–440. 

 4



Singer W, Gray CM (1995) Visual feature integration and the temporal correlation 

hypothesis. Annu Rev Neurosci 18:555-586. 

 5



CHAPTER II 

 

INTRODUCTION 

 

Visual coding hypothesis  

 The dimensionality of a complex visual scene, involving different objects with 

specific spatial and temporal features, such as colors, brightness, shapes and motion, is 

enormous.  This raises the challenging question of how the visual system is capable of 

segregating and identifying specific objects within the huge amount of information it 

receives every moment. The Gestalt principle, which embraces a series of rules such as 

common fate, closure, familiarity, and proximity etc. (Figure 2-1), defines the basic 

framework about how our brain combines discrete elements to create a "whole" object 

(Koffka, 1935). However, the biological mechanisms within the visual pathway that 

support the representation and integration of those individually incomplete features are 

still under debate.  Different coding schemas have been proposed to address the solution. 

Based on the response properties of individual neurons, a classic model called the 

“Cardinal cell” theory (Barlow, 1972) proposed that each visual neuron serves as a 

feature detector and each cell will display an elevated firing rate once an appropriate 

feature is presented in a specific location in the visual field. Visual information then 

converges onto neurons in the next cortical level in the visual pathway, where the 

structure of effective stimulus features is further developed. "Cardinal" cells located on 

the top of the mental hierarchy would have the ability to represent features that have the 

highest complexity, which also implies the highest degree of selectivity. The "Cardinal  
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cell" theory describing perception through integrated firing rate has received support 

from extensive experimental studies. In the primary visual cortex, neurons are generally 

dependent on the simplest features of the visual input including location, orientation and 

spatial and temporal frequencies (Hubel and Wiesel, 1962; Albrecht et al., 1980; De 

Valois et al., 1982; Webster and De Valois, 1985; Bonds, 1989). Cells in higher cortical 

areas are selective to more complicated features. For example, some cells in area V4 of 

macaque monkey will show an elevated response rate only if concentric rings or radial 

gratings are presented in their receptive fields (Gallant et al., 1996). A small group of 

cells located in the inferior temporal (IT) cortex in macaque monkeys are reported to 

respond selectively to faces (Desimone et al., 1984). If the internal features of the face 

such as eyes or snout are removed or scrambled, the response is greatly reduced, which 

suggests that a particular configuration of the internal features is essential to drive those 

cells. Furthermore, other stimuli such as a picture of a hand or sine-wave gratings elicit 

almost no response in these face-selective IT neurons.  

 However, the coding mechanism described by this classic model has been 

criticized for its inefficiency and ambiguity. The “cardinal cell” theory requires cells at 

the highest levels of the visual cortex to have the ability to detect a specific object or 

complicated feature, but the finite number of total available neurons in the central 

nervous system seems inadequate to support the apparently unlimited perceptual ability 

of the brain.  On the other hand, neurons may respond to stimuli consisting of different 

feature parameters with the same response magnitude. For example, the response rate of 

cells in area 17 may not change if a cell is stimulated by a moving grating with less 

optimal orientation but high contrast or a grating with more optimal orientation but low 
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contrast. The information provided to cells in the extra-striate cortical areas will thus be 

ambiguous if response rate modulation is the only coding methodology in the visual 

system. The theory of perception through the independent firing rate of distributed 

feature-triggered cells thus cannot account for the entire capability of the visual system to 

represent information.  

The concept of population coding was proposed early in the last century. 

Sherrington (1941) presented a reflex model defining cooperation between different 

groups of neurons, in which a "center" received converging input from afferent nerve 

fibers and the output pulses were transmitted over a compound efferent nerve tract.  The 

sum of the central excitatory and central inhibitory states decided the activity of the pool. 

A “neural assembly” theory proposed by Hebb (1949) considers that connections and 

interactions between neurons are more functionally significant than the specific 

properties of individual neurons. Hebb suggested that a group of neurons that tend to fire 

together under specific stimulation forms a “cell assembly” in which numbers of cells act 

simultaneously as an entity to represent and deliver certain information. The efficacy of 

connection among neurons increases in proportion to the degree of correlation between 

pre- and post- synaptic activities (Hebb, 1949). Guided by Hebb’s “cell assembly” theory, 

brain researchers and vision scientists further explored the theoretical and experimental 

evidence supporting the notion that neural correlation may play an important role in brain 

function. Milner (1974) elaborated on the drawback of the "feature detector" theory in 

shape perception and explained in detail how synchronized cell assemblies might 

improve the deficiency and ambiguity of the feature detector model. Von der Malsburg 

(1981) presented a theory in which the term "correlation" was defined as the 
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measurement of similarity between the time of occurrence of neural signals expressed on 

a fine temporal scale. Correlation between neural signals could then modulate the 

synaptic strength or refine the synaptic plasticity that von der Malsburg proposed as the 

biological basis for short-term and long-term memory respectively.  

 

Neural synchronization and temporal correlation 

After the late 1970's, when practical multi-channel recording became available, 

vision researchers began to seek experimental support for theories involving correlated 

neural responses and have found that neural synchrony may play an important role in 

visual perception. Numerous studies have shown that synchronized neural activity exists 

throughout the entire visual pathway and that it is stimulus-dependent, implying that it 

carries useful information. Meister et al (1995) studied correlated signaling in ganglion 

cells of the salamander retina. They found that cell pairs that have more closely spaced 

receptive fields have higher correlation in their activity. The plot of a synchronous 

receptive field of a cell pair derived from reverse correlation with a pseudorandom 

flickering checkerboard was generally smaller than the sum of the receptive fields of both 

neurons and was located in the overlapping portion of the receptive fields, which implied 

that these two cells were not firing independently. With multiunit recordings from cat 

retina and lateral geniculate nucleus (LGN), Neuenschwander & Singer (1996) found 

oscillatory synchronization between cells with non-overlapping receptive fields, with 

synchronized responses occurring over distances greater than 20o. Synchronization has 

also been described between cells located in the same or different levels of the visual 
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cortex or even between cells in different hemispheres (Gray et al., 1989; Gray and Singer, 

1989; Engel et al., 1991a; Engel et al., 1991b).  

A number of studies provide evidence suggesting that neural synchronization may 

act as a versatile coding mechanism in the perceptual binding of features detected by 

individual cells. Synchronized neural responses in multi-unit activity (MUA) of cat area 

17 are dependent on global features such as spatial continuity. When stimulating with a 

long moving light bar, strong oscillatory behavior with zero phase lock was found 

between two recording sites with separate receptive fields if these two sites were co-

activated by the same stimulus. If the same two recording sites were separately stimulated 

with two short light bars moving in the same or different directions, synchronization was 

considerably reduced (Gray et al., 1989). Similarly, in MT area of awake behaving 

monkey, the strength of synchrony was higher when two cells were stimulated with a 

single bar moving in a direction midway between the preferred directions than when the 

two cells were stimulated independently with two bars moving in the preferred directions 

of the individual cells. Castelo-Branco et al. (2000) tested neurons in cat area 18 and 

PMLS with a plaid stimulus created by superimposing two gratings with different moving 

directions. By manipulating the luminance of the grating intersections, the plaid stimulus 

is perceived as either two surfaces, in which two gratings are moving independently, or as 

a single pattern, in which two gratings are moving coherently. Neurons responding to one 

of the two grating components would synchronize with neurons responding to the other 

component when the components were perceived to move coherently or desynchronize 

when the components were perceived to move independently. Response rate modulation, 

however, failed to differentiate the above two patterns. Gamma band oscillation may also 
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act as a brain mechanism for scene segmentation. Gail et al. (2000) used a grating pattern 

in which a rectangular area with (figure-ground condition) or without (continuous 

condition) spatial phase shift was defined as an object. Analysis of V1 MUA and local 

field potential (LFP) responses from the recording sites corresponding to the figure and 

background areas showed that gamma coherence was dramatically reduced when the 

stimulus condition changed from figure-ground condition to the continuous condition. 

Based on the above research findings, Singer and his colleagues extended earlier 

correlation theories and developed the “temporal correlation” hypothesis (Singer and 

Gray, 1995; Gray, 1999; Singer, 1999). Oscillatory synchronization between feature 

selective cells in the visual cortex is suggested as being sensitive to the global features of 

visual stimuli, such as continuity, orientation similarity and motion coherency and 

provides a binding mechanism to establish relations between features in different parts of 

the visual fields. Perceptual grouping and segmentation could be mediated by the 

formation of cell assemblies. Because of the precise (<10 msec) timing of synchrony, 

multiple cell assemblies could be formed simultaneously, and each assembly represents 

one set of grouped features. Cell assemblies are dynamic entities; the structure of an 

assembly would be determined not only by the anatomical organization of the cortical 

networks, but would also be constrained by the Gestalt properties of the stimulus features 

in the visual scene. Cell assemblies are formed based on the synchronization of neuronal 

firing among neural populations distributed within and across different levels of the 

cortical hierarchy. Different assemblies are distinguished from one another by the 

independence of their firing patterns. Since these neural ensembles are dynamic, different 

stimuli will create different coherent groupings. With such mechanisms, in primary visual 

 12



cortex even entirely novel stimuli can be represented by the coherent activity of a 

particular neural ensemble.  

 

The role of neural synchrony in visual perception 

The hypothesis of binding through neural synchrony has been challenged by some 

negative findings reported by other research groups. These inconsistent results should 

however be carefully interpreted before rejecting neural synchrony as a potential binding 

mechanism. The plaid experimental protocol (see Castelo-Branco et al., 2000) was 

reexamined by Thiele and Stoner (2003) in area MT of awake, behaving monkeys. 

Synchrony was not significantly higher in plaids perceived as coherent as opposed to 

those perceived as non-coherent. On the other hand, coherent plaids elicited a 

significantly greater response rate than non-coherent plaids. This result would appear to 

contradict any linkage between synchrony and image binding. However, neural 

synchrony may play different roles in different cortical areas. In the early stages of the 

visual pathway, such as the primary visual cortex, neurons are mainly responsible for 

processing the fundamental properties of the visual stimuli. If objects are bound via 

synchrony at lower levels due to coherent temporal or spatial characteristics of visual 

stimuli, there is no necessity for higher-order neurons to further synchronize their 

responses. The higher response rate for recognizing coherent plaids than for non-coherent 

plaids found in MT neurons in fact suggests that rate modulation of higher-order neurons 

might be induced by synchronized inputs from lower-order neurons (Singer, 1999; 

Castelo-Branco et al., 2000; Thiele and Stoner, 2003). Lamme and Spekreijse (1998) 

reported that neuron pairs in Area 17 of awake behaving monkeys, in which both 
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members respond to the figure in a visual stimulus, did not show significantly higher 

synchrony than neuron pairs with one responding to figure and the other to ground, which 

seems to conflict with the positive finding in Gail et al. (2000). However, synchrony can 

be exquisitely sensitive to the match between the form of the stimulus and the tuning of 

the receptive fields (Samonds et al., 2003; Kohn and Smith, 2005) and Lamme and 

Spekreijse (1998) did not provide information on the relationship between the orientation 

preference of recorded units and the orientation of the stimuli. Thus, averaging data 

across cell pairs with different receptive field configurations may mask the truly valuable 

information (Singer, 1999).  Palanca and DeAngeles (2005) examined MUA and LFP 

synchrony in MT of awake monkey. Images were created that were identical within the 

recorded receptive fields, but either joined or independent outside those regions. In 

general there was little synchrony difference between the two conditions, suggesting that 

synchrony was not a primary means for signaling the integrity of global structures. 

However, these results do not necessarily reject the temporal correlation hypothesis. LFP 

gamma band synchrony was slightly but consistently higher for integral (vs. independent) 

stimuli, which agrees that gamma band activity is on the whole more sensitive to image 

structure.  While this was not seen in MUA, unit activity is generally less effective for 

coherency analysis and a larger data set may have improved the results.  We would also 

suggest that binding of image segments by synchrony may be less obvious at higher 

cortical levels because cells are already expressing more complex abstractions.   

Though the evidence of synchrony as an active binding mechanism is not 

consistent in extracortical visual areas, research results have suggested that synchrony in 

the early stages of visual pathway can provide pre-processing of visual information for 
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higher-order correlations. Each ganglion cell in the area centralis of a cat receives 

convergent inputs from fewer than 10 closely distributed photoreceptors (Kolb, 1979). 

The subsequent divergent and convergent transmission from ganglion cells to LGN 

causes the firing of nearby neurons in LGN to represent local coherent spatial and 

temporal structures embedded in the visual stimulus. Coherence information encoded in 

the form of synchrony is propagated to striate and extrastriate cortex (Engel et al., 1991a; 

Engel et al., 1991b; Castelo-Branco et al., 2000). The spatial and temporal integrity in the 

stimulus yields similar response latencies that appear to be more important in generating 

neural synchrony than oscillation (Samonds and Bonds, 2005). Because of high 

convergence, cortical neurons may not be able to recognize the rich temporal information 

contained in the spike trains of retinal ganglion cells. If the individual rates can be 

translated into distributed, synchronized neural ensembles, the information could be more 

easily parsed by cortical neurons (Usrey and Reid, 1999). In the visual pathway from 

retina to LGN to visual cortex, when neurons receive two input spikes with a narrow 

interspike interval (ISI), i.e., less than 30 milliseconds, the second spike is much more 

likely to evoke spikes in the postsynaptic neurons. This paired-spike enhancement also 

increases the number of synchronous events in the target area (Alonso et al., 1996; Usrey 

et al., 1998).  Therefore, synchrony should to be considered as a "reliable signal 

transmission mechanism that extracts higher-order visual relationships as a Gestalt rather 

than active structural binding mechanism that represents a secondary code within a 

system of simple feature extraction" (Samonds and Bonds, 2005). Synchronized neural 

firing induced by the coherent spatial and/or temporal structures in visual stimuli 

emphasizes the salience of the correlated signals, which can be recognized by a common 
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target neuron in the higher level of the visual pathway. Thus novel or unanticipated 

structures can by represented flexibly, allowing for an unlimited perceptual range of the 

visual system.   

One conceptual framework that we consider consistent with the synchronous 

activity in V1 is association field theory. In a psychophysical study of the Gestalt law of 

"good continuation", Field et al. (1993) found that the observers' performance in 

detecting a curved contour defined by a group of Gabor patches was improved if these 

Gabor patches were closer to each other. Field et al. also found that even though the 

orientation difference between two adjacent patches can affect the detectability of the 

contour, the orientation variance of each patch relative to the overall contour is more 

important in determining whether those patches are perceived as being linked together. 

After alternating the polarity of some Gabor patches, the contour was still detectable with 

only a minor decrement in observer performance. These findings imply that the 

perception of the contour is not the output of a single linear filter with an elongated 

receptive field, but rather that this linking result is due to the joint contribution from a 

network, which more likely consists of complex cells (Field et al., 1993; Hess et al., 

2003). Association field theory predicts linking between orientation-tuned cells that is 

dependent on their joint relative orientation and spatial position. In natural images, 

contours are predominantly linear with a decreasing probability of greater curvature 

(Geisler et al., 2001; Sigman et al., 2001; Elder and Goldberg, 2002). The probability for 

linking is strongest between elements with smaller orientation difference and closer 

separations. What is more important is the relative variance, the extent to which receptive 

fields are aligned along the notional contour (Field et al., 1993). Therefore, greater 
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separation can support greater angular differences because the relative variance to the 

contour linking the two elements is smaller with larger spatial separation. We conjecture 

that synchrony in the early stages of visual processing, i.e. primary visual cortex, can 

extend integration over broad regions and overcome the ambiguity of firing rate to 

identify salient contours, which then have the potential to be integrated at subsequent 

locations in the higher level cortical areas, e.g. V4. In Chapter 4, we examined the 

potential role of neural synchrony in cat areas 17 and 18 in contour integration. We tested 

cell response with both traditional drifting sinusoid gratings and more complex drifting 

sinusoid concentric rings. We found that the strength of synchrony between cells in the 

primary visual cortex is not only affected by the receptive field properties, such as 

orientation and location, but also determined by the effectiveness of visual stimulus in 

driving cells. What is more interesting in our results is that synchrony was found to be 

more reliable for detecting cocircular contours than independent firing rate, suggesting 

that contour integration could start as early as in the lowest level of visual cortex through 

synchronization between neural responses.    

 

Time and frequency domain analysis 

 Spike timing synchronization is often accompanied by coherent frequency 

oscillation, especially in the gamma band (35 – 70 Hz). Coherent oscillation is said to 

occur when two neurons oscillate at the same frequency with a small phase difference, 

which can result in a central peak in their cross-correlogram (Usrey and Reid, 1999). 

From studies of oscillation patterns of single and multiple spikes as well as local field 

potentials recorded from the primary visual cortex, Eckhorn et al. (1988) proposed that 
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stimulus-evoked oscillation may serve to define global aspects of a visual scene by 

binding a group of neurons that have specific receptive field features into coherent 

ensembles. The membership in these coherent ensembles is dynamically defined such 

that the same neuron can join different groups depending on the stimulus configuration 

and its receptive field attributes.  

 Neural synchronization is normally assessed in the time and frequency domains 

by cross-correlation and coherence analysis respectively. In Chapter 5, we examined the 

synchronized neural response in cat areas 17 and 18 with JPSTH and multi-taper 

coherence analysis (Percival and Walden, 1993; Jarvis and Mitra, 2001) to explore the 

correlation between the time and frequency domain estimates. Linear regression analysis 

on the synchrony and coherence results obtained with JPSTH and multi-taper methods 

shows that cross-correlation analysis and coherence analysis are internally related, though 

these two methods study neural connectivity from different perspectives. 

 

Fine temporal structure and neural correlation 

Several studies have suggested that information beyond that provided by the 

firing rate could be added by fine temporal structure within the neural response. In very 

early work, Hubel (1959) observed the irregularity of single-unit discharges in cat visual 

cortex and described burst activity, which later is defined as a group of multiple spikes 

from a single neuron with an interspike interval (ISI) of < 4 – 8 msec preceded by at least 

100 msec of silence  (Lu et al., 1992; Debusk et al., 1997; Reinagel et al., 1999; Lesica 

and Stanley, 2004). In complex cells, neural responses to stimuli presented at or near the 

optimal orientation tend to have a higher percentage of spikes in bursts than responses to 

 18



stimuli at nonoptimal orientations. Spikes in the burst ("clustered spikes") and outside the 

burst ("isolated spikes") have detection sensitivities to different attributes of the stimulus 

(Cattaneo et al., 1981). Only the clustered spikes are tuned for orientation and spatial 

frequency while both the isolated and clustered spikes are sensitive to contrast change.  

At a given firing rate, the optimal orientation can induce bursts with greater length than 

nonoptimal orientations (Debusk et al., 1997). Bursts from a presynaptic cell are almost 

100% more effective than isolated spikes in eliciting a time-related response in the driven 

cell, and longer bursts are more effective than shorter bursts (Snider et al., 1998). Studies 

of response patterns from neural populations also indicate that emergent information that 

is not found in independent neural responses can be provided by the fine temporal 

structure embedded in neural firing. With cost-based metrics analysis, Samonds and 

Bonds (2004) reported that, while information for discriminating large orientation 

differences (i.e. > 10o) is contained mainly in the firing rate, spike timing and intervals 

provide information suitable for fine discrimination of orientation (i.e. < 10o). Study of 

the correlated activity of cells in the lateral geniculate nucleus (LGN) of cats showed that 

a significant amount of information can be extracted if temporal correlation between cells 

is considered (Dan et al., 1998). However, the role of fine temporal structure in coding 

visual information is still under debate. For example, Shadlen and Newsome (1998) have 

argued that the fine temporal structures contained in neural spike trains may merely 

reflect the noise transmitted through the visual pathway and deliver little meaningful 

information.  

 To explore the importance of spike timing accuracy and fine temporal structure in 

maintaining neural correlation, we perturbed the spike timing in the original neural 
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response by randomly jittering the spikes over different time ranges. The result described 

in Chapter 5 shows that synchrony and coherence both systematically dropped with the 

increase of the jittering range. Functional dependency analysis discovered that 

information loss is introduced after the fine temporal structures in the spike trains are 

deconstructed by the jittering procedure.   

 

Spatial integrity and neural synchronization 

 The principle of continuity in Gestalt psychology states that the visual system 

tends to group continuous figures as a whole (Koffka, 1935). To support the notion that 

synchrony provides a substrate for pre-processing simple features in order to develop 

more complex structures, it is necessary to understand how synchrony depends on the 

integrity of the input structures. Although psychophysical experiments have studied the 

interaction of temporal and spatial cues in perceptual grouping and demonstrated that 

binding and segmentation may be accomplished by exploiting both spatial or temporal 

cues either alone or in combination (Leonards et al., 1996), more neurophysiological 

studies on the cellular level are needed to quantify the contribution and interactions of 

temporal and spatial features in visual segmentation and perceptual grouping.  

 Our laboratory has shown earlier that synchrony is dependent on the similarity of 

latency in the responses of a cell pair. The strength of synchrony is strongly correlated 

with the inverse log of both the difference in response latency and the standard deviation 

of the latency difference (Samonds and Bonds, 2005). Fries et al. (2001) reported that 

with similar orientation preferences and overlapping receptive fields, the spontaneous 

response of cells in cat primary visual cortex tends to exhibit correlated fluctuations in 
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response latency and that this correlation only occurred when local field potentials (LFPs) 

oscillated in the gamma frequency range. This suggests that during visual perception 

coherent spontaneous excitability fluctuation in certain cells, which may originate from 

either anatomical connections or short-term synaptic plasticity in the pre-stimulus stage, 

could result in faster binding after stimulus onset. These observations lead to the 

speculation that synchrony is likely to arise from common fate, but cortical circuitry 

contributes to sustaining it (Samonds and Bonds, 2005). On the other hand, synchrony is 

clearly related to spatial structure since it is more dependent on orientation than is firing 

rate (Samonds et al., 2004). Gray et al. (1989) reported that a long light bar would evoke 

stronger synchrony in two collinearly aligned cells than that induced by using two short 

bars to drive the same two cells, suggesting synchrony is sensitive to spatial 

disorganization or discontinuity in stimuli. What remains unknown is the specific degree 

to which neural synchronization depends on spatial integrity, temporal integrity, or both. 

In Chapter 6, we explored the answer to this question by studying cells’ response to 

stimuli with and without coherent spatial structure. By adding 10 – 55% spatial noise into 

regular sinewave gratings, the spatial integrity of the stimulus was systematically 

deconstructed while the temporal integrity of stimulus was maintained constant. We 

found that temporal integrity, and not spatial integrity, generates synchrony; spatial 

integrity however is critical in triggering subsequent gamma band synchronization.   

 

Future research 

 So far, research regarding the role of population coding has mainly focused on 

analyzing the correlation between pairs of neurons. Although pairwise correlations imply 
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strongly correlated network states in the overall neural population (Schneidman et al., 

2006), studies extending to larger neural assemblies beyond cell pairs are necessary to 

fully understand the role of neural correlation in brain processing and visual perception. 

 The paucity of reports on interactions among larger neural populations is partially 

due to the unavailability of valid computational tools to quantify correlation within 

groups of neurons larger than two, although current techniques of multi-channel 

recording have conquered the limitation of collecting simultaneous activities from 

multiple cells. Therefore, we have developed a novel method to quantify multi-cell 

synchrony in a neural assembly that contains more than two members. The 

implementation of this method will be briefly discussed in Chapter 7.  

 Since the late 1950s, vision research has emphasized study of responses to 

spectrally or spatially pure artificial images, such as lines, gratings or simple geometric 

figures, based on the understanding that interpretation of results would be easier and less 

prone to artifact.  This has contributed greatly to our understanding of basic neural 

properties of the visual system (Hubel, 1959; Hubel and Wiesel, 1962, 1968; De Valois et 

al., 1979; De Valois et al., 1982; Ts'o et al., 1986; Bonds, 1989; Gallant et al., 1996) and 

has provided an essential foundation for future work. However, interactions such as 

receptive field reorganization due to stimulation of the “non-classical” periphery (Pettet 

and Gilbert, 1992) suggest that current models based on simple stimuli may not 

accurately predict cell behaviors in the context of complex images such as natural scenes. 

The importance of natural image stimulation in future research will be briefly discussed 

in Chapter 7.  
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CHAPTER III 

 

EXPERIMENTAL METHODS 

 

Data collection 

 Experimental data in support of the included projects were collected from areas 

17 and 18 of seven adult cats (2.0 – 4.0kg). Cats were prepared for electrophysiological 

recording in accordance with the guidelines by the American Physiology Society and 

Vanderbilt University’s Animal care and Use Committee. Neural signals were recorded 

with the Utah 10×10 microelectrode array (Figure 3-1, Cyberkinetics Neurotechnology 

Systems, Inc.). Before recording, the electrode array was inserted into primary visual 

cortex to a fixed depth of 0.6 mm with the aid of pneumatically-actuated impulse array 

inserter. The impedance of the electrodes ranges from 50 to 300 kΩ. The Cyberkinetics 

microelectrode array can provide reliable recordings with quality comparable to that from 

single-electrode recordings (Kelly et al., 2007). The neural signal amplifier amplifies the 

signals from each electrode (×5000) and reduces the noise with high-pass and low-pass 

filters with corner frequencies of 250 Hz and 7.5 kHz. After the amplified and filtered 

signals were collected by the neural signal processor, signals were further digitized at 

30,000 samples/sec/electrode. Real-time neural responses were monitored with neural 

signal acquisition system user an interface program and activity map viewer program 

(Figure 3-2).  
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Figure 3-1: Microelectrode array (A) Cyberkinetics array consists of a 4 mm by 4 mm 
base that contains100 silicon spikes that are 1.0 mm long (B) Acute microelectrode array 
assembly with IDC connectors. 
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Figure 3-2: Example of recorded neural activity (A) Real-time neural activity viewer. (B) 
Raster plot of neural signals from 100 electrodes. (C) Neural spikes from one electrode. 
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Visual stimulation 

 Two stimulators were used in our projects.  The first projected spots or bars of 

light onto a large tangent screen, and was used for rapid manual characterization of 

receptive field location and tuning properties.  The second was a gamma-corrected 

SONY 21" graphics display driven either by a Cambridge Research Systems VSG2/3F 

controller board or a generic video controller using WinVis software package 

(Neurometrics Institute, CA).  Images from monitor were projected into the cat’s eyes 

through a mirror placed in front of animal at a 45o angle, and the distance between image 

and cat’s eyes was set at 57 cm so that 1 cm on the image subtended 1˚ of visual angle. 

Displays were refreshed at 120 Hz, which avoids entrainment artifact (Wollman and 

Palmer, 1995) that could be critically disruptive in our measurements. All stimulation loci 

were referenced to the area centralis, specified by projection of retinal landmarks onto the 

tangent screen with a reversible ophthalmoscope, and all stimulation was referenced to 

quantitative maps of receptive field loci. The size and location of the stimulation were 

chosen to cover the aggregated receptive fields from maximum number of cells that 

displayed robust tuning responses with stimulation by regular sinusoid gratings presented 

in a circular aperture (diameter = 18 degrees). 

 

Time domain analysis  

 We quantify synchrony using the Cross-Correlation Histogram (CCH) derived 

from the Joint Post-Stimulus Time Histogram (JPSTH), which represents the joint 

occurrences of spikes from two neural spike trains at all possible time delays (Aertsen et 

al., 1989; Sillito et al., 1994; Snider et al., 1998; Samonds et al., 2004).  The cross-
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product of the post-stimulus time histograms (PSTHs) (expected correlation) is subtracted 

from the raw JPSTH (observed correlation, 1 2( ) ( )x t y t ) (Figure 3-3 A, Equation 3-1) 

and then normalized by the standard deviation of the PSTH predictor under the null 

hypothesis that two neurons are firing independently (Figure 3-3 B, Equations 3-2 to 3-4).  
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In the above equations, x and y represents the neurons, t represents time bin, and k 

represents the stimulus trial index. The CCH is created by integrating along the principal 

diagonal of the normalized JPSTH matrix. Aertsen et al. (1989) refer to this CCH as the 

normalized cross-correlogram or effective connectivity (Figure 3-3 C). We quantify what 

we will refer to throughout the thesis as synchrony by measuring the 1-ms peak at or near 

zero in the normalized CCH.  We consider synchrony significant when the peak is at least 

two times the random fluctuations or noise in the CCH (generally 0.1-0.3%).   

 Like conventional cross-correlation, the JPSTH contains a contribution from 

stimulus-related modulation of single-neuron firing rates (Perkel et al., 1967; Aertsen et 

al., 1989). Aerten et al. (1989) used the "residual" result after the cross-product of the 

PSTHs was subtracted from the "raw" JPSTH to represent the intrinsic neuronal 

dependencies. Although the cross-product of the PSTHs is conceptually the same as the 

shift predictor, the methods are distinct from each other and the cross-product provides a  
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Figure 3-3: Example of JPSTH analysis (A) Raw JPSTH matrix. (B) Normalized JPSTH 
matrix. (C) Normalized cross-correlation histogram. 
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much smoother predictor function (Aertsen et al., 1989) since the PSTHs are the results 

averaged over many trials.  

 

Frequency domain analysis 

 Besides analyzing correlation between neural spike trains in the time domain with 

the CCH, coherence analysis offers an alternative means to measure the coherent 

frequency association between neural signals. Compared with CCH analysis in the time 

domain, coherence analysis is much less susceptible to nonstationarity in neural 

responses, which provides an intrinsic normalized estimate. Coherency is calculated by 

deriving the power spectra (  and ) and cross spectrum ( ) of cell 

responses with the Fourier transform of spike trains (Equation 3-5) and coherence is 

defined as the magnitude of coherency (Equation 3-6) since coherency is a complex value 

(Percival and Walden, 1993; Mitra and Pesaran, 1999; Jarvis and Mitra, 2001).  

11( )S f 22 ( )S f 12 ( )S f

    12

11 22

( )
( )

( ) ( )
S f

f
S f S f

γ =           (3-5) 

            ( ) ( )C f fγ=          (3-6) 

Indices 1 and 2 in Equation 3-5 indicate the two different simultaneously recorded neural 

spike trains. Spike trains were sampled at a rate of 250 or 500 Hz. To reduce bias of the 

spectrum estimate, we applied 5 orthogonal Slepian tapers during the windowing 

procedure of Fourier transform, which is also called multi-taper coherence analysis. We 

also utilized the jackknife resampling approach to calculate the 95% confidence intervals 

of the coherence result.     
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CHAPTER IV 

 

SYNCHRONOUS ACTIVITY IN CAT VISUAL CORTEX ENCODES 

COLLINEAR AND COCIRCULAR CONTOURS 

Jason M. Samonds*, Zhiyi Zhou*, Melanie R. Bernard, A. B. Bonds 
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Abstract 

We explored how contour information in primary visual cortex might be embedded in the 

simultaneous activity of multiple cells recorded with a 100-electrode array.  Synchronous 

activity in cat visual cortex was more selective and predictable in discriminating between 

drifting grating and concentric ring stimuli than changes in firing rate. Synchrony was 

found even between cells with wholly different orientation preferences when their 

receptive fields were circularly aligned, and membership in synchronous groups was 

orientation- and curvature-dependent. The existence of synchrony between cocircular 

cells reinforces its role as a general mechanism for contour integration and shape 

detection, as predicted by association field concepts.  Our data suggest that cortical 

synchrony results from common and synchronous input from ealier visual areas and that 

it could serve to shape extrastriate response selectivity.  
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Introduction 

The primary visual cortex has traditionally been viewed as a network of filters or feature 

detectors, each sampling localized regions of the visual field (Hubel and Weisel 1962).  

There remains considerable debate on how features are integrated for object recognition 

and segmentation.  This question becomes especially critical when considering that the 

firing rate of each cell varies across multiple features (e.g., orientation, spatial frequency, 

temporal frequency, contrast, context) resulting in ambiguity.  One proposed solution is 

that feature detectors are integrated through synchronous activity (Singer and Gray 1995).  

Synchronous integration is an intriguing solution because it could also provide an elegant 

resolution to the binding problem (von der Malsburg 1999; but see also Shadlen and 

Movshon 1999). 

The first experimental evidence for the involvement of synchronous activity in fea-

ture integration used coherent collinear stimulation such as drifting light bars (Ts’o et al. 

1986; Eckhorn et al. 1988; Gray et al. 1989).  The observed synchrony required that pairs 

of cells had similar orientation preferences and collinear receptive fields (RFs).  Collin-

earity is actually just one special case of the more general property of cocircularity (Par-

ent and Zucker 1989).  Cocircular RFs are defined as having orientation preferences with 

the same angle, but opposite sign, with respect to a line connecting the center of the two 

RFs—i.e., tangent to the same circle (Parent and Zucker 1989) (Figure 4-1).  Cocircular-

ity is a ubiquitous structure in natural scenes (Geisler et al. 2001; Sigman et al. 2001; 

Elder and Goldberg 2002; see also Chow et al. 2002) and has been proposed as the foun-

dation of contour integration (Field et al. 1993).  The framework is known as the associa-

tion field, where the chances of contour segments being part of one continuous  
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Figure 4-1: Mathematical Definition of Cocircularity: A line passing through the centre 
of each RF at the preferred orientation must be tangent to the same circle. 
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contour increase with proximity and similarity in their orientation.  Each segment of an 

integrated contour falls on the same circle as another segment.  The idea is that in nature, 

contours are predominantly linear with a decreasing probability of greater curvature 

(aligning on progressively smaller circles).     

The goal of our current study was to see if synchronous activity predictably exists 

for cell pairs that differed in orientation preference, but whose receptive fields still 

followed cocircularity and association field rules.  Extending the collinear synchrony 

results to cocircular RFs in general is necessary if synchrony is to be considered to play 

some role in integrating complex contours and shapes.  We recorded from large groups of 

cells simultaneously in areas 17 and 18 of anesthetized cats and found that particular 

subgroups of cells dynamically synchronize depending on the incoming visual 

information (based on cocircularity).  Synchronous activity matched the association field 

rules and stimulus curvature much more reliably than the average firing rate because 

synchrony depended primarily on local contour information and was not prone to 

response ambiguities outside of the local RFs.  We conjecture that the integration of 

global contour information begins with synchronous activity within cell groups in early 

visual areas such as V1.  Extrastriate cortex could then respond to complex shapes and 

curvature by detecting this synchronous activity. 

 

Materials and Methods 

Physiological Preparation and Recording 

Experimental procedures were performed under the guidelines of the American 

Physiological Society and Vanderbilt University’s Animal Care and Use Committee and 
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are described in detail elsewhere (Samonds et al. 2003, 2004; Samonds and Bonds 2005).  

Two cats were anesthetized with propofol and N2O and paralyzed with pancuronium 

bromide.  A Bionics (now Cyberkinetics) 10 x 10 multi-electrode array (400-μm spacing) 

was pneumatically inserted to a fixed depth of 0.6 mm (Figure 4-2).  Seventy and 98 

channels recorded single-unit or multi-unit activity for each cat, respectively.  However, 

we could not isolate spiking activity with thresholding for all channels due to low signal-

to-noise.   

Details about the reliability of single-unit recordings with this array and spike 

sorting procedures can be found in Samonds and Bonds (2005).  Here we did not include 

multiple units that were recorded and resolved from a single channel (i.e., all single units 

reported in this article are from different electrodes).  Spike sorting was used to isolate 

the most robust single-unit (e.g., see Figure 4-2 B, right) and remove noise and artifact on 

each channel (Shoham et al. 2003).  We isolated 28 and 23 single-units that had stable 

orientation-selective activity driven by drifting sinusoid gratings (Figure 4-2 A and B, 

respectively).  The response to the preferred orientation had to be at least two times that 

from the worst orientation (orientation tuning was typically robust and narrow). The 51 

cells provided 631 pairs of cells, for cross-correlation analysis.   

Due to tissue damage caused by removing the array, we were unable to perform 

histological analysis on the recording sites following recording.  However, based on the 

relationship between electrode positions and Horsley-Clark coordinates and response 

characteristics, we believe that >92% (47/51 cells) of our sample was in area 17 while the 

remaining 8% (4 cells) was in area 18 (see Figure 4-2).  Based on our estimation, the area 

18 cells contributed 9 pairs (<5%) to our sample of synchronous pairs (N = 188 pairs) 
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Figure 4-2: Positioning of microelectrode array (A) Layout of microelectrode array with 
respect to Horsley-Clark coordinates.  Magenta line represents estimated border between 
areas 17 and 18 (see left hemisphere view on the right).   Gray dots represent electrodes 
with reliable single-unit responses (Recording Session 1).  Red and blue dots correspond 
to cells used as representative examples in Figures 8 and 11. (B) Same as (A) for Re-
cording Session 2.  Images on the right show examples of spiking activity—waveform 
(horizontal line: threshold) and instantaneous firing rates.  
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with all pairs comprised of one area 17 and one area 18 cell.  The fixed insertion depth 

virtually ensures recordings were in superficial layers.  The curvature of the brain leads to 

some variation of electrode depth with a maximum depth of 0.6 mm.  This depth 

combined with the possibility of recording activity a few hundred microns below the 

electrode leaves only a very small probability of our sample including layer 4 cells.  

Forty-nine out of the 51 cells were complex (Hubel and Weisel 1962; Skottun et al. 1991) 

with a mean F1/F0 = 0.34 ± 0.03 (N = 51 cells). 

 

Quantifying Synchrony 

We quantified synchrony using the “effective connectivity” Cross-Correlation Histogram 

(CCH) derived from the Joint Post-Stimulus Time Histogram (JPSTH) (Aertsen et al. 

1989; see also Sillito et al. 1994; Snider et al. 1998; Samonds et al. 2003; Samonds and 

Bonds 2005).  The cross-product of the post-stimulus time histograms (PSTH) (expected 

correlation) is subtracted from the JPSTH (observed correlation) and then normalized by 

the standard deviation of the PSTH predictor (normalized JPSTH: equation 9 in Aertsen 

et al. 1989).  We then create a CCH by integrating along the principal diagonal of this 

two-dimensional matrix (Aertsen et al. 1989).  Aertsen et al. (1989) refer to this CCH as 

the normalized cross-correlogram or effective connectivity.  We represent the magnitude 

as the percentage of the maximum possible effective connectivity (all spikes correlated; 

correlation coefficient ranging from -100% to 100%).  We quantify what we will refer to 

throughout the article as synchrony by measuring the 1-ms peak at or near zero in the 

CCH.  We considered synchrony significant when the peak was at least two times the 

random fluctuations or noise in the CCH (0.1-0.3%).   
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Although the cross-product of the PSTHs is conceptually the same as the shift 

predictor, the methods are distinct from each other and the cross-product provides a much 

smoother predictor function (Aertsen et al. 1989).  The normalization strategy of the 

JPSTH was also chosen to contribute as little noise as possible to the cross-correlation 

estimate (Aertsen et al. 1989).  Based on models with known correlation strengths and 

temporal profiles, Aertsen et al. (1989) found the standard deviation of the PSTH-based 

predictor (described above) as the best choice for true normalization (due to its relatively 

small dynamic range; see also Palm et al. 1988; Ito and Tsuji 2000).  In addition, the 

standard deviation of the predictor is equal to the square root of the product (geometric 

mean) of the auto-covariation histograms and the resulting normalized value is equivalent 

to Pearson’s correlation.  We find that with this normalization procedure, there is only a 

weak relationship between synchrony and firing rate (r2 = 0.13 for sum of rates and r2 = 

0.16 for product of rates; see also Fig. 13 in Samonds and Bonds, 2005).  

  The second concern with any cross-correlation method is that fast correlations 

(10’s of ms) may not necessarily represent true connectivity-based (anatomic) 

correlation.  Brody (1998, 1999a,b) has shown that long-term (10’s of seconds) or trial-

by-trial covariation of firing rates, covariation of response latency, and covariation of 

excitability can produce what might be easily interpreted as correlated activity resulting 

from anatomical connections (short-term correlations) (however see also Kirkland et al. 

2000).  We explicitly chose the relatively vague and benign term synchrony for this very 

reason.  Correlation and connectivity both implicitly suggest knowledge of the underlying 

causes for the observed firing rate statistics.  What is not debatable is that the Aertsen et 

al. (1989) measurement describes the deviation of the activity from independence (Brody 
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1998, 1999a,b; Ito and Tsuji 2000).  Although deciphering the origins of this deviation is 

important, we are at present primarily interested in describing the stimulus-dependence 

and dynamic behavior of the synchrony.  For more recent progress on these topics, see 

Gerstein and Kirkland (2001) and Kass et al. (2005).  We see very little covariation or 

correlation among the trial-by-trial firing rates (r2 <<0.1 and always <<0.3) and there are 

not clear relationships between PSTHs and CCHs.  There is some weak broad correlation 

(beyond ±100 ms) observed that is likely caused by common inhibitory input (Moore et 

al. 1970; Ts’o et al. 1986).   

   

Visual Stimulation 

We tested responses to coherent cocircular stimulation using drifting sinusoidal 

concentric rings (Figure 4-3 A).  The rings drifted outwards and were presented within a 

16º circular aperture on a mean luminance background.  The center locations were 

strategically chosen based on RF loci of the population to test conditions that would bias 

predicted synchrony between cells with clear orientation preference differences (>30º) 

(see Figure 4-3 C and D).  However, each experiment included hundreds of pairs of cells, 

most requiring a unique ring origin, so 9-16 locations were chosen to test as many pairs 

as possible in an individual experiment.  Our approach was highly probabilistic.  Even 

though there were large numbers of cell pairs, it was not axiomatic that every cell pair 

would demonstrate constructive interactions, so stimuli had to be optimized for the 

population to maximize our yield of data that could be analyzed in detail.  Pair-by-pair 

testing for 631 pairs of cells is not possible with our preparation in just two recording 

sessions.  We chose concentric rings because this stimulus is very efficient since it  
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Figure 4-3: Visual stimuli and aggregated receptive fields (A) Drifting concentric rings 
were used for optimal stimulation of pairs with differing orientation preferences and co-
circular RFs. (B) Drifting gratings were used for optimal collinear stimulation. (C) RF 
plots for Recording Session 1.  Black dots represent centre locations of rings stimuli (blue 
dot for examples in Figures 4-8 and 4-11).  Red dot is the center location of the gratings 
stimuli.  Highlighted RFs correspond to examples in Figures 4-8 and 4-11. (D)  Same as 
(C) for Recording Session 2. 
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minimizes trials by testing for varying curvature and cocircular relationships at multiple 

locations simultaneously.  This strategy allowed us to synchronize 51 pairs of cells with 

differences in orientation preference ranging from 10-80º during the two experiments 

with rings stimulation   

We used drifting sinusoidal gratings to test responses to coherent collinear 

stimulation (Figure 4-3 B). The orientation and direction were varied in 10º increments 

over all possible orientations and directions, while all other grating parameters were fixed 

(spatial frequency = 0.5 c/deg, temporal frequency = 2.0 Hz, contrast = 50%). All 

properties except orientation were the same for cocircular and collinear stimulation.  

Linear and circular gratings on a mean luminance background provided the 

strongest responses, enhancing reliable estimation of response properties.  Based on 

psychophysical considerations, we predicted that the rings and gratings offered the 

greatest chance of revealing the underlying mechanisms of contour integration because 

their contours are parallel (Polat and Norcia 1998; Polat and Tyler 1999; Geisler et al. 

2001; Alais and Lorenceau 2002; however see Solomon and Morgan 2000), circular 

(Field et al. 1993; Pizlo et al. 1997; Pettet et al. 1998; Pettet 1999; Geisler et al. 2001; 

Alais and Lorenceau 2002), and are enclosed (Kovács and Julesz 1993; Pettet et al. 

1998).  We were interested in clearly revealing the dynamics of response properties from 

collinear to curvilinear stimulation.  We did not explore segmented contours or contours 

embedded within noisy elements because we wanted to maximize our chances of contour 

integration among a variety of cells.  We believe it is important to extend our results to 

some of the psychophysics tests such as segmented contours, but because the segmented 

contours are still detected and grouped together, they do not really provide a definitive 
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test for contour integration (the psychophysics results suggest the response properties or 

synchrony would simply deteriorate: Pizlo et al. 1997; Alais and Lorenceau 2002; 

Beaudot and Mullen 2003; see also corresponding neurophysiologic data: Gray et al. 

1989; Kapadia et al. 1995). 

 

Selection Criteria 

A total of 127 out of a possible 631 pairs of cells were chosen for cocircularity analysis 

based on responsiveness and the spatial relationship between the RFs and the stimulus 

(Figure 4-4).  In addition to requiring that each cell had orientation tuning (described 

above), we required that the pair of cells responded with a total average firing rate of at 

least 5 sps for either gratings or rings and had significant synchrony (see above) for one 

of the two stimulus conditions.  Our detailed analysis (Figures 4-8, 4-9, 4-12) on only a 

limited portion of our entire dataset was important to ensure that we made direct 

comparisons between the two stimulus conditions and direct reliable comparisons 

between the two measured response properties.  At least with respect to firing rates, this 

smaller sample was not significantly different from the entire sample (p > 0.38).   

We used bars of light rear-projected onto a large tangent screen to estimate RF 

sizes (mean = 3.9 ± 0.2°) and locations (Figure 4-3 C and D).  Receptive fields of cells in 

a pair had to have minimal overlap so that stimulus-response predictions were 

unambiguous.  The mean RF overlap for each cell for pairs of cells with unambiguous RF 

relationships was 35.0 ± 1.8%.  Firing rate and synchrony measurements were made for 

the rings and gratings that provided the best match with the preferred orientation of both 

cells.  In order to make predictions about which stimulus would lead to a greater  
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response, it had to be clear whether the segment of the rings or the gratings passing 

through the two respective RFs was closer to the preferred orientation for both cells.  

Therefore, the quantitative criterion for the classes was that the corresponding rings or 

gratings contour had to match the RF orientations better than the complementary stimulus 

by ≥10º (because we used 10º increments).   For example, rings would drive a pair of 

cells with a >40º difference in orientation preference better than gratings only if the ring 

segments are within ±20º of the preferred orientation for both cells.  This criterion for 

both cells is impossible with larger amounts of receptive overlap—hence the ambiguity.  

Additionally, pairs of cells that were not aligned with the rings (because a limited number 

of locations were tested) were also not included because we could not make a direct 

comparison with the gratings condition.   

 

Cocircularity Analysis 

For each pair of cells, we calculated the ratio (RPI, Rings Preference Index) for both the 

total average firing rate and synchrony for rings (R) versus gratings (G) (the optimal rings 

and gratings): 

     
GR
GRRPI

+
−

=                (4-1) 

We specify this ratio as RPIf when it is calculated on the basis of firing rate and RPIs 

when it is calculated on the basis of synchrony.  We used a standard sigmoid model fit for 

RPI versus the orientation preference difference between the cell pair (which we term 

cocircularity) x to see how well the synchrony or total average firing rate varied with 

cocircularity on a pair-by-pair basis: 
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We used a standard Gaussian model fit for our synchrony and firing rate 

measurements for grating stimulation, where x is cocircularity and f(x) is the total average 

firing rate or synchrony: 

                 (4-3) 
2
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The Gaussian fit was chosen because the total average firing rate and synchrony should 

decline with collinear gratings with increasing or decreasing cocircularity (i.e., both are 

absolute increases in the orientation preference difference).  We used the sigmoid fit 

(equation 4-2) for synchrony and firing rate measurements for rings stimulation because 

the total average firing rate and synchrony should decline only for decreasing 

cocircularity.  The models were otherwise arbitrarily chosen simply to show how much 

the variance of the total average firing rate and synchrony was related to stimulus-RF 

relationships (i.e., cocircularity) with regression analysis.  The difference between R2 

measurements for total average firing rate and synchrony are more important than the 

absolute R2 values, which are likely to be degraded by both response properties being 

dependent on additional spatiotemporal stimulus properties beyond contour/orientation 

information (e.g., spatial frequency, temporal frequency), which were not optimized for 

each pair of cells.  Confidence intervals were calculated by bootstrapping pairs (Efron 

and Tibshirani 1993).   

 

Results 

In order to provide an adequate sample of cells with a variety of cocircular RF 

relationships, we recorded simultaneously, with 100-electrode arrays, from 28 and 23 
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cells in striate cortex of two cats, providing a total of 51 cells and 631 pairs of cells (see 

Figure 4-2). We tested responses to coherent cocircular stimulation using drifting 

sinusoid concentric rings (Figure 4-3 A) and tested responses to coherent collinear 

stimulation using drifting sinusoid gratings (Figure 4-3 B).  Nine to sixteen locations in 

the visual field were strategically chosen for the ring centers in order to match the ring 

contours to the preferred orientations of pairs of cells with obvious differences in 

preferred orientation (see Figure 4-3 C and D).  For gratings, orientations were varied in 

10º increments over a range of 360°.  All other stimulus properties were the same for 

both rings and gratings.  Our stimulation paradigm produces data with a distribution that 

tends to be bimodal rather than continuous with respect to stimulus feature space.  This 

allows us to show significant differences among the distributions.  We chose this strategy 

because the physiological data would not be reliable enough to make significant 

parametric comparisons to psychophysical (access to all cells) and natural scene (very 

large databases) statistical distributions with respect to association field concepts.    

Synchrony was quantified as the peak height of the rate-normalized cross-

correlogram (Aertsen et al. 1989), with the quantity expressed as the percentage of the 

maximum possible synchrony (i.e., percent correlation; ranging from -100 to 100%).  

Peak widths were consistent (~10 ms width) so area under the peak provides qualitatively 

similar results.  All of our pairs were recorded in the same layer (600 μm, putatively II-

III) and thus would have some chance of integration at the next stage of visual 

processing.  An evaluation of the utility of synchrony in propagating information requires 

that it be compared against some other mechanism.  Here we compare it against the firing 

rate, which is the usual metric for neural signaling.  There are however two different 
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ways of quantifying the firing rate of cell pairs, depending on the time constants of the 

recipient cell layer.  If the time constant is reasonably long, then the firing rate is simply 

integrated without regard to temporal structure, and its effectiveness can be modelled by 

adding the average firing rate of the two cells.  If the time constant is short, then only 

coincident spikes are effective.  The probability of coincident spikes is simply equal to 

the product of the probabilities of each cell firing within the time constant interval, so the 

receiving layer acts as an effective multiplier of firing rates.  Both mechanisms may be 

represented at different times, in that time constants are dynamic and dependent on the 

activity of the cell (e.g., Azouz and Gray 2003).  In this paper we chose to analyze firing 

rate on the basis of the sum, because it provides a test of the relative effectiveness of two 

different processing strategies.  We have also performed similar analyses using the 

product metric and found that the results remain qualitatively unchanged with regard to 

the relationships between contour information and firing rates.  Our synchrony 

measurements are only weakly related to both the sum and product of the firing rates (see 

Materials and Methods) and provide an additional critical dimension to encode visual 

information. 

  We first examine our data with a broad perspective to see how firing rate and 

synchrony match the predictions made by the association field theory.  We then take a 

closer look at the data by characterizing the RF properties.  We use these properties to 

make predictions on how pairs of cells will respond to gratings and rings stimulation (i.e., 

varying degrees of curvature).  We then test these predictions first very generally based 

on population statistics and rings and gratings stimuli.  Next we systematically test these 

predictions on a pair-by-pair basis with respect to the degree of curvature.  Finally, we 
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examine cross-correlation properties to gain insight into the possible underlying 

mechanisms of synchronous integration of contour information. 

 

Visual Cortical Pairs and Association Field Predictions 

Collinear contours exceed cocircular contours in natural scenes (Geisler et al. 2001; 

Sigman et al. 2001) and collinear contours are more easily detected psychophysically 

than curvilinear contours (Field et al. 1993; Polat and Sagi 1994; Pizlo et al. 1997; Pettet 

et al. 1998; Pettet 1999; Geisler et al. 2001; Beaudot and Mullen 2001).  This is 

consistent with one of the primary rules of the association field theory—segments are less 

likely to be part of the same contour with greater differences in their orientations (i.e., 

greater curvature) (Field et al. 1993; Polat and Sagi 1994; Geisler et al. 2001; Sigman et 

al. 2001; Elder and Goldberg 2002).  A second rule is that segments are less likely to be 

integrated with increasing distance between them.  Cortical organization should reflect 

these principles in two ways: (1) Orientation tuned cells are connected when their RFs 

have cocircular alignment and (2) The number of connections decreases with increasing 

RF distance and increasing difference in orientation preference.  Anatomical evidence 

tends to support these concepts (Malach et al. 1993; Bosking et al. 1997; Lund et al. 

2003).  Overall we would therefore predict enhanced activity (firing rate and/or 

synchrony) for drifting sinusoid gratings versus drifting concentric sinusoid rings.  

Analysis of the firing rate suggests that there is not a clear preference for linear 

contours versus curved contours within our sample.  The greatest average firing rate for 

each cell was chosen across 36 orientations (10° increments) for gratings and 16 center 

locations for rings.  For N = 51 single cells and 631 pairs, the average firing rate is nearly 
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the same for gratings and rings—13.7 ± 1.9 sps versus 16.2 ± 2.0 sps (t-test; p>0.18) for 

the two stimuli, respectively.  We would expect to underestimate the activity from rings 

because we tested a relatively limited number of ring locations and were therefore unable 

to match the preferred orientations and directions for the entire population.  We were 

however able to match the preferred orientation and direction for all 51 cells with 

gratings.  Therefore, overall the firing rate alone is inconsistent with the psychophysical 

data and discourages the notion of an association field organization in primary visual 

cortex. 

Synchrony conversely does appear to show an overall preference for gratings over 

rings as the behavioral tests suggest.  When we include all pairs of cells (N = 47 cells and 

188 pairs) that showed significant synchrony (a central peak that was at least two times 

the random fluctuation in the CCH), the preference for gratings is substantial: gratings 

(collinear) = 0.90 ± 0.06% versus rings (curvilinear) = 0.36 ± 0.04% (t-test; p<1.3×10-12).  

If we examine only pairs of cells with RFs aligned with the rings contour orientation and 

direction (N = 47 cells and 127 pairs), the average synchrony for gratings (0.66 ± 0.04%) 

is still significantly (t-test; p<5.0×10-6) greater than that found for rings (0.40 ± 0.04%).  

For the same 47 cells, there is still no significant difference in the average firing rate 

between gratings and rings—14.5 ± 2.0 sps vs. 17.0 ± 2.1 sps (t-test; p>0.19).  

The probability of observing synchrony for a given pair of cells also matches the 

orientation rule of the association field theory (Figure 4-5, left).  If the pair of cells has 

orientation preferences within 30º (N = 185 pairs), the probability of measuring 

significant synchrony is 80.0% (see also Ts’o et al. 1986; Gray et al. 1989; Samonds et al. 

2004).  If the pair of cells has orientation preference differences greater than 30º, their 
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RFs are cocircular (e.g., Figure 4-1), and the pair was tested with an appropriately aligned 

ring stimulus (N = 76 pairs), the probability is reduced to 50.0%.  Our data are 

insufficient to explore systematically the relationship between probability of synchrony 

and orientation preference difference, but clearly the trend matches the prediction.  

Overall, the change in strength in synchrony and the probability of observing synchrony 

appear to depend strongly on the relationship of orientation preference between pairs of 

cells in visual cortex that is consistent with the predictions of the association field model.   

Our synchrony data do not at first glance appear to support the proximity rule of 

association field theory.  Across all synchronous pairs (N = 188) the greatest synchrony 

found for gratings or rings did not covary with respect to average RF overlap or 

maximum RF overlap (e.g., 100% when the RF of one cell is completely within the RF of 

the other cell): r2 = 0.01 for both measurements.   

However, this might be attributed to including only pairs of cells with significant 

synchrony.  Pairs of cells without significant synchrony would essentially have 

synchrony measurements of zero or near zero.  If these pairs tend to have greater distance 

between their RFs, then the trend with respect to proximity would be stronger.  

Therefore, the proximity rule might be more apparent by measuring the probability of 

observing synchrony based on RF overlap.  Figure 4-5 (right) illustrates the probability of 

observing synchrony for three subpopulations of pairs based on average RF overlap 

(<25%, 25-50%, >50%).  For pairs of cells with orientation preferences within 30º 

(collinear), we do not find any difference among the three groups (all are ~80%).  For 

cocircular pairs (with orientation preferences >30º), the probability of observing 
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synchrony increases with increasing proximity (29.2% to 55.6% to 64.0%) matching the 

association field prediction. 

For any given orientation preference difference, the association field model 

predicts decreasing probability of integration with respect to distance between segments.  

The results above show this to be true for the probability of synchrony only for cells with 

>30º differences in preferred orientation.  In order to see if there still might be some 

support for the proximity rule for orientation preference differences ≤30º, we measured 

the strength of synchrony with respect to average and maximum RF overlap for the 

orientation preference difference with both the strongest and most reliable synchrony 

measurements. Pairs of cells with orientation preferences within ±10° of each other (N = 

64 pairs) should have significant synchrony across the entire spectrum of proximity.  

Even for these pairs, however, the relationship between the strength of synchrony and 

greater RF proximity (defined as average and maximum RF overlap) is still rather weak 

(r2 = 0.13 and 0.14; Figure 4-6 A and B, respectively).   

Although we did not find a clear general relationship between synchrony and 

proximity for probability of observation or magnitude, the trends we did observe were in 

the right direction.  This weak proximity relationship and the progression to larger RFs 

from striate to extrastriate cortex might suggest that contour integration needs to extend 

beyond V1. 

 

Classification Based on RF Organization 

In the next three sections, we take a closer look at RF relationships and their connection 

to stimulus contour to characterize how these interactions shape firing rate and 
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synchrony. Based on the relationship between the RF locations and orientation 

preferences for each cell pair, we classified pairs a priori either as Prefers Rings (PR) or 

Prefers Gratings (PG).  PR pairs of cells had cocircular RFs (Figure 4-1) so they were 

predicted to have greater activity for drifting concentric rings versus drifting collinear 

gratings (Figure 4-7 A).  Concentric rings, if properly centered, can present the preferred 

orientations for both cells simultaneously.  Gratings would present intermediate non-

optimal orientations for one or both cells.    

We predicted that gratings would drive PG pairs of cells better than rings because 

they either had collinear RFs (Figure 4-7 B) or cocircular RFs with curvature opposite to 

that (Figure 4-7 C) of the rings stimulus.  Collinear pairs are both driven by the same 

(preferred) orientation with the grating.  While the example pair shown in Figure 4-7 C is 

driven by non-optimal grating orientations; with rings of the opposite curvature, 

orientations are yet more non-optimal (e.g., orthogonal).  

Many cell pairs were unsuitable for this analysis.  When RFs have excessive 

overlap, PG/PR classification is ambiguous (Figure 4-7 D).  Additionally, the most 

appropriate center location for the rings could not be chosen for each of the 631 pairs—

nearly all require a unique location.  Because recording time was limited, we chose a 

limited number of ring centers (see Figure 4-3 C and D) selected to maximize our yield of 

data with an adequate number of samples (100-200 stimulus repetitions).  A large portion 

(81%) of the 631 pairs of cells recorded with the 100-electrode arrays were disqualified 

for at least one of these two reasons, and these pairs were not subjected to further analysis 

(see selection criteria details in Materials and Methods).     
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Figure 4-5: Left: Probability calculations of observing synchrony based on the orientation preference of cells. Right: Probability 
calculations of observing synchrony based on the RF overlap of cells (proximity). 
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calculations of observing synchrony based on the RF overlap of cells (proximity). 
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Figure 4-6: Relationship between Synchrony and Proximity (A) Scatter plot of 
synchrony versus average RF overlap for pairs of cells with orientation preferences with 
±10° of each other (N = 64 pairs). (B) Same as (A) using the maximum RF overlap of one 
cell with respect to the other in each pair. 
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Figure 4-7: Stimulus-RF Classification (A) Prefers Rings (PR): The activity should be 
greater for a curve versus a line passing through both RFs.  (B) Prefers Gratings (PG), 
Collinear: The activity should be greater for a line versus a curve passing through both 
RFs.  (C) PG, Negative Cocircularity: Again, the activity should be greater for a line 
versus a curve because the RFs are oriented for the opposite curvature.  (D) Ambiguous: 
Determining whether a line or curve passing through the RFs will cause greater activation 
is not possible.  (E) Cocircularity Coordinate System: Pairs of cocircular and collinear 
RFs are assigned a cocircularity value, which is the difference in preferred orientation for 
the two cells.  The RFs progressively prefer the curves of the concentric rings versus the 
lines of the gratings as you move up the coordinate system.  The lower portion of the 
coordinate system is assigned negative cocircularity because the RFs prefer the opposite 
curvature of the rings stimulus (dashed curve) or an inward direction of motion. 
 



The remaining sample that we analyze in detail seems representative of our entire 

population.  First, this sample includes 47 of the 51 total cells and the overall firing rates 

of the two samples are not significantly different (t-test; p>0.38 and p>0.39 for gratings 

and rings, respectively).  Second, the fact that we limit our analysis to pairs with 

significant synchrony does not lead to a small unique sample of cells. If this were true, 

we might deceptively imply a more dramatic role for synchrony in contour integration 

merely because we were seeking out synchronous pairs.  In fact, choosing synchrony as a 

selection criterion is nearly the same as explicitly choosing cocircular RF relationships.  

As shown above (see Figure 4-5), 71.3% of cocircular (which includes collinear) pairs (N 

= 186 of 261 pairs) have significant synchrony in one of the two stimulus conditions 

when appropriately matched with the stimulus (<30% of the sample produces false 

negatives).  We measured significant synchrony in 0.7% of the pairs (N = 2 of 307 pairs) 

that did not have any clear cocircular RF relationships (<1% of the sample produces false 

positives).  

Each pair of cells that was classified as either PR or PG was assigned a 

cocircularity value (measured in degrees) calculated as the difference between the cells’ 

orientation preferences.  Cocircularity should not be confused with the definition 

cocircular described in Figure 4-1. All 127 pairs in this population are implicitly 

cocircular because they are aligned with the rings or gratings stimulus.  Cocircularity 

simply characterizes the degree of curvature for each cocircular pair.  Cocircularity was 

negative for the curvatures opposite those of the stimulus.  Greater cocircularity for a cell 

pair predicts a better match between their RF properties and the rings stimulus (as 
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opposed to the grating stimulus), provided the location of the rings center was appropriate 

(Figure 4-7 E).  Dashed lines represent the opposite curvature of the rings stimulation.   

 

Do the Response Properties for PR and PG Pairs Match Our Predictions?  

We measured the response of cell pairs to rings and to gratings with an orientation that 

best matched the preferred orientations of the two cells.  We would predict (Figure 4-7) 

that the response for PR pairs should be maximized with rings and the response for PG 

pairs should be maximized with gratings.  Figure 4-8 A-C shows the synchrony and firing 

rate statistics for PR pairs of cells.  For this group, the rings nearly doubled the synchrony 

found with gratings (Figure 4-8 A).  As expected, the total average firing rate for this 

group is also greater for rings versus gratings (Figure 4-8 C).   

Figure 4-8 B shows two cells with an 80º difference in preferred orientation that 

synchronize for rings and do not synchronize for gratings.  In this case, the absence of 

synchrony for gratings is unsurprising because with a linear grating at the orientation 

midway between the cells' preferences, the cells are barely being driven (total average 

firing rate 4.9 sps).  However, synchrony between two cells with discrete RFs and a 

difference in orientation preference of 80º is surprising.  Synchrony has traditionally been 

viewed as strictly orientation dependent (Ts’o et al. 1986; Eckhorn et al. 1988; Gray et al. 

1989).  Counterexamples are sparse, with only Das and Gilbert (1999) measuring 

predictable significant synchrony between cells with differing orientation preferences and 

discrete RFs for T-junction and corner configurations.  Castelo-Branco et al. (2000) also 

found synchrony among cells with differing orientation preferences in areas 18 and 

PMLS when stimulated by plaid patterns. 
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Figure 4-8: Activity of PR Pairs vs. PG Pairs (A-C) PR pairs of cells. (A) Average syn-
chrony for 51 PR pairs for rings and gratings stimuli (standard error bars). (B) Cross-
correlation histograms for a cocircular pair of cells driven by gratings (above) and rings 
(below).  (C) Average total firing rate for same data described in (A). (D-F) PG pairs of 
cells.  (D) Average synchrony for 76 PG pairs for rings and gratings stimuli. (E) Cross-
correlation histograms for a collinear pair of cells driven by gratings (above) and rings 
(below).  (F) Average total firing rate for same data described in (D).  
 



The synchrony and firing rate statistics for pairs of cells classified as PG (Figure 4-

8 D-F) show a pattern complementary to that found with PR pairs.  Drifting concentric 

rings are less effective than drifting gratings at synchronizing these pairs (as predicted).  

Overall, for PG pairs of cells, synchrony from rings was about a quarter that found with 

gratings (Figure 4-8 D).  The total average firing rate also decreased for rings versus 

gratings (Figure 4-8 F), but considerably less than the change in synchrony (Figure 4-8 

D).  Figure 4-8 E shows two cells with the same preferred orientation that generate more 

synchronization for gratings than for rings.  This occurred despite a decrease in the total 

average firing rate of these two cells from 55.1 sps for rings to 41.3 sps for gratings 

(contradicting the prediction based on RF organization and orientation preferences). 

 

Classification Based on Responses 

Figure 4-8 suggests that synchrony and firing rate provide essentially the same contour 

information, but that synchrony does so more robustly (Figure 4-8 A vs. C and Figure 4- 

8 D vs F).  That alone is not very surprising and it is consistent with past results showing 

that the spatial acuity (orientation tuning) of synchrony is narrower than that of firing rate 

(Snider et al. 1998; Frien et al. 2000; Samonds et al. 2003, 2004).  The averaged results 

also suggest that local orientation filtering extends to multiple cells in a straightforward 

manner.   

However, the response difference between rings and gratings contradicting the 

prediction based on RFs demonstrated in Figure 4-8 E was not an isolated case, which we 

will demonstrate in this section.  Even though the average statistics across the population 

of cell pairs imply that synchrony and firing rate provide essentially the same 
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information, on a pair-by-pair basis the total average firing rate failed much more often 

than synchrony in tests of PR and PG predictions.  The firing rates of the two cells did 

not predictably reflect the relationship between the orientations displayed in their RFs 

and their orientation preferences.  Responses to rings were generally higher than 

responses to gratings despite the latter having a much better match with the orientation 

tuning of both cells. 

In order to assess the reliability of a given coding scheme, we reclassified each 

pair of cells as either PR or PG on the basis of either synchrony or total average firing 

rate (as opposed to RF structure) and compared the results to our original classification 

described in Figure 4-7.  For example, if grating stimulation yielded greater synchrony 

than ring stimulation, we classified pairs as PG, and vice versa.  The classification errors 

can then be used to calculate transmitted information (Victor and Purpura 1996).  With 

this simple strategy, synchrony provided 0.40 bits of information while the total average 

firing rate provided only 0.13 bits of information (the most information possible is one 

bit).  Confidence intervals and bias for the information measurements were estimated 

with the bootstrap method (Efron and Tibshirani 1993) and the difference between 

synchrony and firing rate information was significant (α<0.005). 

Figure 4-9 shows pair-by-pair results for the response-based (Figure 4-9 A, 

synchrony; Figure 4-9 B, firing rate) classification described above.  The data for each 

pair of cells is plotted as the rings preference index RPI (see Materials and Methods for 

details), which ranges from -1 to 1 and represents the difference in synchrony (for RPIs, 

Figure 4-9 A) or firing rate (for RPIf, Figure 4-9 B) for rings versus gratings divided by 

the sum of the synchrony or firing rate, respectively (equation 4-1).  RPI should vary  
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Figure 4-9: Rings Preference Index (RPI) vs. Cocircularity (A) The gain in synchrony 
(RPIs, equation 2) for rings stimulation with respect to gratings stimulation (red points 
contradict the prediction based on RF organization).  (B) The gain in the total average 
firing rate (RPIf, equation 2) for rings stimulation with respect to gratings stimulation. 
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from -1 to 1 with respect to cocircularity (which represents the preference for rings 

stimulation based on RF relationships).  There should also be a slight positive bias for 

RPI with respect to cocircularity (rightward shift) because zero cocircularity has a 

preference for gratings stimulation.  Red data points in Figure 4-9 represent classification 

errors—i.e., when the response behavior did not match the prediction based on the RF 

properties.  The total average firing rate clearly resulted in more classification errors 

(more red data points) than the synchrony as illustrated above with the information 

measurements. 

Figure 4-9 also shows whether RPI varied systematically with cocircularity.  One 

would predict a direct dependence between the two quantities, since both quantities are 

related to the degree of stimulus curvature.  The data points should cluster in the lower-

left and upper-right quadrants, approaching -1 and 1 in the two quadrants with decreasing 

and increasing cocircularity, respectively.  Again, by comparing Figure 4-9 A with Figure 

4-9 B, the synchrony clearly outperforms the total average firing rate on a pair-by-pair 

basis.  The data points cluster in the appropriate quadrants in Figure 4-9 A while the data 

points appear to be equally scattered around the origin in Figure 4-9 B.  Regression 

analysis of a sigmoid fit confirms that the synchrony varies systematically with the 

cocircularity more reliably than the total average firing rate (R2 = 0.52 versus R2 = 0.19; 

α<0.001).  The best-fit sigmoid for synchrony also matches the expected RP-cocircularity 

relationship (described above) much better than the fit for the total average firing rate.  

However, both functions at least show the slight positive bias with respect to 

cocircularity.   
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Converging and Diverging Inputs? 

Even though there was only a slight dependence on RF overlap, we wanted to take a 

closer look at common input as a possible source of our synchrony.  The average 

receptive field overlap for the entire population with significant synchrony (N = 188) was 

41.5 ± 1.6%, which was expected since the majority of the significant synchrony that we 

measured was between electrodes that are within the range of overlapping RFs for area 

17 in cats (5 mm2; Albus 1975; see Figure 4-10).   

In addition, the lag times of our cross-correlograms support common input as the 

probable source of synchrony.  A large percentage (43%) of the synchrony peaks we 

measured were at 0 ms and the average center of the synchrony peaks was displaced only 

1.4 ± 0.2 ms.  Again, this is predicted by the anatomy since electrode pairs yielding 

synchrony fell within the extent of the most distant projections measured from layer 4 to 

layers 2/3 in cats (5 mm; Martin and Whitteridge 1984).  We see a clear drop-off in 

synchronous pairs that lay outside of this region but still within the array dimensions 

(Figure 4-10).   

However, within this region where common input is expected we do not see a 

clear systematic relationship with electrode distance and the strength of synchrony (N = 

188 pairs) (r2 = 0.01; Figure 4-10).  Our data only weakly suggests that the strength of 

synchrony decreases with increasing distance between electrodes (Das and Gilbert, 

1999).  However, we were unable to investigate pairs closer than 400 μm (electrode 

spacing on the array), which were examined by Das and Gilbert (1999).  Figures 4-6 A 

and B also show that within the 5 mm window there is not a strong systematic 

relationship between the RF overlap and the strength of synchrony.  These two points,  
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Figure 4-10: Relationship between Synchrony and Electrode Distance. Scatter plot of 
synchrony versus the distance between electrodes for each recorded pair. Vertical lines 
represent Bionics array dimensions and cat area 17 dimensions of regions of RF overlap 
(Albus, 1975) and maximum distance of Layer 4 projections to Layers 2/3 (Martin and 
Whitteridge, 1984). 
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together with the observation that 5% of our pairs had wholly separate RFs and over 12% 

of our pairs had less than 10% overlap, suggest that the synchrony we observe does not 

simply reflect common inputs.  Nonetheless, both the lag times and the physical extent of 

the interactions suggest that synchrony arises from the bottom-up converging and 

diverging inputs from earlier levels of the visual system.  One explanation for the lack of 

any clear systematic relationship with anatomy is that the synchrony is dynamic, which 

we will describe in the following section.  Due to the overlap of these converging and 

diverging inputs, the synchrony cannot be resolved exclusively with a connectionist 

description of the cortical network. 

 

Stimulus-Dependent Dynamic Synchrony 

We also examined how synchrony within cell groups larger than pairs depended on the 

form of stimulation.  One theory for cortical representation of information is that cells 

change their membership within a particular subpopulation (defined by synchrony) as 

stimuli vary (von der Malsburg 1981).  Figure 4-11 (left) shows the RFs of three cells 

simultaneously recorded.  When a drifting grating is presented, the two upper cells (red), 

which are essentially collinear, synchronize while the lower cell does not synchronize 

with either of the upper two (Figure 4-11 A, middle).  When drifting concentric rings are 

presented, the lower two cells (blue), which are nearly orthogonal but positioned to prefer 

this ring stimulus, synchronize while the upper cell does not synchronize with either of 

the lower two cells (Figure 4-11 B, middle).   

The firing rate tuning of the cells (Figure 4-11 A and B, right) roughly predicts the 

groupings for changing stimulation.  However, the synchrony is much more precise, 
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acting like a logical AND gate that only allows the stimulus to synchronize the cells at 

the intersection of the tuning.  For collinear contours, the strongest synchrony occurs for 

the orientation between the two cells’ preferred orientations (Figure 4-11 A; right, red 

arrow) and weakens with changes in either direction (green curve is synchrony 

measurements).  We see this behavior consistently across our entire sample, which 

matches several previous reports (see quantitative description in Ghose et al. 1994; 

Samonds et al. 2003, 2004; Samonds and Bonds 2005; Kohn and Smith 2005).  For 

curved contours, the rings need to be precisely aligned with both RFs to allow cells with 

nonoverlapping orientation tuning to synchronize (blue arrows are direction of the ring 

with respect to each cell’s RF).  We again see the synchrony weaken or disappear with 

changes in the ring center location.  However, the number of ring centers that we used 

was too sparse to characterize systematically the dependency of synchrony with respect 

to alignment for curved contours.  

Figure 4-12 shows how the example of dynamic grouping in Figure 4-11 extends to our 

entire population of pairs.  A scatter plot of all synchrony measurements (Figure 4-12 A) 

shows that the strongest synchrony for gratings occurs for cell pairs with zero 

cocircularity (i.e., strictly collinear), which matches previous reports (Ts’o et al. 1986; 

Gray et al. 1989; Samonds et al. 2004).  The synchrony is both more reliable and more 

selective than the firing rate at predicting whether a stimulus is collinear (Figure 4-12 A 

vs. 4-12 B; α<0.005).  If synchrony is a general mechanism for contour integration, it 

must also play a role in detecting cocircular contours.  Figure 4-12 C illustrates that ring 

stimuli tend to shift the strongest synchronization from collinear pairs to pairs with higher 

cocircularity, synchronizing pairs with differing orientations (note that overall the 
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Figure 4-11: Example of dynamic binding (A) Cross-correlation histogram (CCH) between cell 10 and cell 20 (collinear RF 
relationship) for gratings (red CCH) and for rings (lower black CCH).  The firing rate tuning is shown to the right (red arrow is 
the orientation of the grating).  The green points and curve are synchrony measurements. (B) Cell 10 synchronizes with cell 11 
(cocircular RF relationship) for rings (blue CCH), but not for gratings (upper black CCH).  The firing rate tuning is shown to 
the right (blue arrows are the orientation of the rings with respect to cell 10’s and cell 11’s RFs). 
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Figure 4-12: Synchrony Shifts to Higher Cocircularity for Concentric Rings (A) 
Synchrony measurements for N = 127 pairs during drifting grating stimulation. (B) Total 
average firing rate measurements for same data in (A).  BW = half-height half-
bandwidth. (C) Synchrony measurements for the same 127 pairs of cells during 
concentric rings stimulation. (D) Total average firing rate measurements for same data in 
(C).  Measurement is slope at 50% magnitude. 

 



average synchrony is weaker in Figure 4-12 C versus 12A).  Again, synchrony is more 

selective and more reliable than firing rate at predicting the stimulus (Figure 4-12 C vs. 4-

12 D; α<0.001).  The increased selectivity and reliability of the synchrony is not simply a 

multiplicative result of firing rate probabilities.  The synchrony that we are measuring is 

above the chance level that is predicted by multiplying firing probabilities (which is in 

any case subtracted from the measurement; Aertsen et al. 1989).  The Aertsen et al. 

(1989) rate-normalized synchrony we use, also termed effective connectivity, is clearly 

dynamic (i.e., not simply a fixed consequence of anatomical connections) and stimulus 

dependent with respect to contour configuration. 

 Lastly, we want to comment on the magnitude of the synchronous behavior we 

observe and its implications with respect to the decoding of contour information by 

higher visual areas.  The synchrony peaks (1-ms bins) among visual cortical pairs are      

relatively weak (mean <1%; see Figure 4-12 A and 4-12 C).  Integrated over a window of 

10 ms, the average synchrony (correlation coefficient) is 6.2% (typically <20%).  A 

hypothetical coincidence detector cannot distinguish between synchronous spikes that 

arise from chance and those that arise from network dynamics and connectivity (Shadlen 

and Movshon 1999).  Based on our average firing rates, the synchronous spikes that arise 

from chance within a 10-ms window is on average 11.0% (and increases with increasing 

firing rates).  Therefore, if we consider the synchrony we are measuring as the contour 

signal, the firing rate will add a considerable amount of noise.  Whether or not this is 

detrimental to our interpretations described below cannot be determined from our data 

alone.  First, the firing rate information is not all noise.  Although more coarsely and with 

more errors, the firing rate still encodes some contour information (and with a 
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coincidence detector there is some improvement over summing firing rates).  In addition, 

we cannot determine how the signal-to-noise will scale over larger numbers of cells 

although it seems likely that it would increase (Samonds et al. 2004). 

   

Discussion 

One of the fundamental presumptions about the role of V1 in visual processing is that 

single-cell orientation tuning forms the foundation for a system that detects edges or 

contours (e.g., Marr and Hildreth 1980).  The association field theory provides rules 

about how orientation detectors might combine based on natural scene statistics and 

psychophysical tests of contour detection (Field et al. 1993; Polat and Sagi 1994; Pizlo et 

al. 1997; Pettet et al. 1998; Pettet 1999; Geisler et al. 2001; Sigman et al. 2001; Alais and 

Lorenceau 2002; Elder and Goldberg 2002).  Lateral connections are thought to be 

critical in contour integration by enhancing responses to cells with collinear RFs driven 

by a single contour (Gilbert and Weisel 1989; Gilbert et al. 1996).  Evidence of such 

enhancement (Kapadia et al., 1995) and the anatomical organization of horizontal 

connections in V1 (Gilbert and Weisel 1989; Malach et al. 1993; Bosking et al. 1997; 

Stettler et al. 2002; Lund et al. 2003) support this proposal and provide physiologic and 

anatomic links with the association field model. 

 

Contextual Interactions and Contour Integration 

The predominance of horizontal connections among cells with similar orientation 

preferences (Gilbert and Weisel 1989; Malach et al. 1993; Bosking et al. 1997; Lund et 

al. 2003) would predict greater firing rates for gratings (stimulation of similar 
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orientations) versus rings (stimulation of different orientations) if such connections are 

facilitatory.  However, our results suggest that overall these lateral connections offer no 

advantage to responses from grating stimulation over concentric rings stimulation 

because the average firing rates are nearly the same in the two conditions.  In addition, 

we find that aggregate V1 responses to gratings or rings stimulation are not easily 

predicted from the independent orientation tuning functions (Figure 4-9 B).  The 

integrated firing rates are ambiguous and are therefore unreliable as encoders of the shape 

of the contour segment within the local RFs.  Contour orientation must not be the only 

influence on firing rate (see also Hess et al. 2003). 

This response ambiguity could result from contextual modulation of V1 responses 

by stimuli extending beyond the classical RF (CRF) (Fitzpatrick 2000).  Although there 

are some systematic trends (e.g., Kapadia et al. 1995, 2000) for modulation of the CRF 

response by peripheral stimulation, there are also considerable inconsistencies (Jones et 

al. 2002).  The reported effects include suppression, facilitation, and disinhibition with 

surround suppression being the most consistent result (Jones et al. 2002; Yao and Lee 

2002; Cavanaugh et al. 2002; Guo et al. 2005).  In most cases, suppression is strongest 

when the surround stimulus properties match the CRF stimulus properties, which is 

inconsistent with purely excitatory integration between cells with similar orientation 

preferences.  Facilitation can occur when the surround orientation is orthogonal to CRF 

orientation, suggesting that contextual modulations might play a role in segmentation 

(Lamme 1995; Sillito and Jones 1996; Marcus and van Essen 2002).  In limited cases 

(42%), the same orientation in the surround with collinear alignment results in 

facilitation, suggesting that contextual modulations support contour integration (Kapadia 
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et al. 1995).  However, Cavanaugh et al. (2002) suggest that collinear facilitation might 

be overestimated in Kapadia et al. (1995) due to underestimating the extent of the 

classical RF.  Lastly, surround effects have also been shown to support the integration of 

discontinuities such as junctions and corners (Sillito et al. 1995). 

On the whole gratings are more likely than rings to cause surround suppression 

(Jones et al. 2002) because rings distribute energy across a variety of orientations in the 

surround.  While an optimally orientated grating might generate a greater response from 

two collinear CRFs, it is reduced by suppression outside the CRF.  Surround antagonism 

is likely less with rings stimulation.  Thus while gratings are more effective for the CRF 

response, rings may ultimately generate an identical or larger firing rate, resulting in 

ambiguity about the local contour curvature.  A similar response ambiguity would also 

arise with contrast changes (which minimally affect contour integration; see Hess et al. 

2003).  Synchronous integration again would preserve the contour information lost in the 

ambiguous firing rates because contrast leads to negligible changes in synchrony strength 

(Snider et al. 1998; Kohn and Smith 2005).    

We believe that our sample of pairs and choice of stimuli generalize for the 

behavior of layers 2/3 of V1.  Our comparison of firing rate versus synchrony was made 

when the local stimulus orientation was matched with the RFs of both cells.  Our sample 

of cells was restricted to superficial layers, but the array dimensions (4×4 mm) provided 

us with a widespread sample across multiple orientation columns.  Limiting our analysis 

to synchronous pairs does not appear to bias our sample significantly among this 

selection of cells.  If our source of stimulation (gratings covering 16° of visual angle) 

biased our sample, it would be towards including more cells enhanced by elongated 
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contours (i.e., not including cells enhanced by discontinuities or cells with strong 

suppressive surrounds).  Our choice of gratings is unlikely to influence our interpretations 

substantially because the predominance of suppressive surround effects has been found 

with bars, gratings, and natural scenes (Jones et al. 2002; Yao and Lee 2002; Cavanaugh 

et al. 2002; Guo et al. 2005).   

 

Dynamic Contour Integration 

We propose that contour integration is primarily driven by bottom-up synchronous 

integration via the diverging and converging anatomy in the earlier stages of visual 

processing (Alonso et al. 1996; Usrey and Reid 1999).  Synchrony is more prominent and 

predictable than facilitation when tested over a diverse population of cells—i.e., 

synchrony occurs for >70% of our cocircular pairs (see also Tso et al. 1986; Gray et al. 

1989; Samonds et al. 2004; >75% occurrence for similar orientations) while collinear 

facilitation occurs for less than half of V1 cells (Kapadia et al. 1995), and even that might 

be an overestimation (see above; Cavanaugh et al. 2002).  Overall our data show that 

both the magnitude and probability of observing synchrony match the fundamental 

prediction of the association field model: segments are more likely to be part of the same 

contour when they are similarly oriented.  Our analysis of electrode distance, RF overlap, 

and synchronous lag times all suggest that the synchrony we observe can most simply be 

explained by common and synchronous input from previous levels of the visual system.  

Specific afferent projections (100-300 μm) from layer 4 to layers 2/3 can span as much as 

5 mm (Martin and Whitteridge 1984), which falls well within the range of all the 

synchrony we measure with the array (Figure 4-10).   
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Collinear contours would synchronize cells within and across different orientation 

columns that have the same orientation preference.  The most acute curves would likely 

synchronize pairs located at orientation column discontinuities (i.e., pinwheel centers; 

Bonhoeffer and Grinvald 1992).  Synchrony among cells with large orientation 

differences and discrete RFs can indeed be found near pinwheel centers (Das and Gilbert 

1999).  

Our data do not necessarily rule out a role for horizontal connections, but there is 

no clear evidence (e.g., lag times) to suggest that synchrony is driven by direct mono- or 

polysynaptic excitatory connections, at least among the population of V1 cell pairs that 

we observed.  Nonetheless, the synchrony could be driven laterally by an intermediate 

common input that we were unable to observe.  Horizontal connections within V1 

suggest an appealing substrate for contour integration since 60-70% of these connections 

are between columns of similar orientation preferences (Malach et al. 1993; Bosking et 

al. 1997; Stettler et al. 2002; Lund et al. 2003) and therefore support the association field 

viewpoint (see Yen and Finkel 1998).  However, Sperry et al. (1955) found virtually no 

change in performance for cats discriminating global contours and patterns after 

transecting horizontal connections throughout area 17 so this raises some doubt about 

their role in contour integration being critical.  Broad integration might take place at 

higher levels, where RFs are larger. 

 

Extent of V1 Contour Integration? 

Although in general our synchrony data support the association field theory, we did not 

find clear evidence for its prediction of enhanced synchrony or higher probability of 
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observing synchrony with RF proximity (Figures 4-5 and 4-6; note however that any 

trends we did observe were in the right direction).  This could be explained because the 

synchrony that we found was mainly limited to relatively local processing within the 

visual field.  The total separation of contour segments that stimulated cell pairs was 

always less than 10º (≤ 3 complex cell RFs; Wilson and Sherman 1976) even though the 

total spread of RFs and stimulation spanned over 16º.  The average RF overlap was 35% 

and only about 15% of our pairs were discrete or nearly discrete (<10% overlap).  The 

term "local" must be tempered by the fact that in all cases we were still exploring 

stimulation extending beyond a single V1 classical RF and the cortical distances between 

electrodes (≥ 0.4 mm) suggest that the interactions were at least across different 

orientation columns.   

Alternatively, the global aspects and proximity rule of contour integration might 

be implemented over multiple layers of the visual system hierarchy and possibly 

combined with inferential top-down mechanisms (e.g., Feldman 1997; Geisler et al. 

2001; Elder and Goldberg 2002).  This alternative view seems more likely if synchrony is 

supported by afferent inputs that limit integration within one layer to cell pairs with 

overlapping or nearby RFs.  This limitation is suggested by the result that the majority of 

the synchrony we measure is within the cortical area of RF overlap (5 mm2; Albus 1975; 

Figure 4-2 C) despite the array covering 16 mm2 of cortex.  Top-down connectivity could 

also be another source of the synchrony we measure (e.g., Sillito et al. 1994), but the 

connections between V2 to V1 appear to lack the necessary organization to support the 

association field model (Stettler et al. 2002).  Nonetheless the flow of information 

 83



through the visual hierarchy could still support the association field proximity rules while 

the level of integration via synchronization in V1 guides the orientation rules.   

 

Integration of V1 Responses in Extrastriate Cortex 

Use of the contour information provided by synchrony in primary visual cortex requires 

that cells at higher levels of the visual system act as synchrony decoders or coincidence 

detectors.  Softky and Koch (1993) have suggested that the irregular firing that is 

preserved from V1 to area MT is a result of the neurons acting as coincidence detectors.  

The changes in thresholding measured during normal activity also suggest that cortical 

cells are likely only to integrate synchronous spikes (Azouz and Gray 2003). 

We suggest that the selective response of single cells in extrastriate regions of the 

Macaque monkey (the medial superior temporal area, V2, and V4) to curvature and 

cocircular spatiotemporal patterns (Saito et al. 1986; Tanaka and Saito 1989; Orban et al. 

1992; Gallant et al. 1993; Gallant et al. 1996; Hegdé and Van Essen 2000; Pasupathy and 

Connor 2001) indicates recovery of information provided by synchronous spikes from 

striate cortex.  The selectivity of V2 cells for corners and T-junctions (Hegdé and Van 

Essen 2000) might also reflect coincidence detection of synchrony driven by these 

features (Das and Gilbert 1999). 

Wilson (1999) has suggested that extrastriate tuning for concentric rings and 

Glass patterns must originate from forms of integration of the responses from earlier 

levels of visual processing that are more complex than simple summation.  Nonlinear 

integration via coincidence detection of synchronous spikes at least provides substantial 

improvement for detecting contour shape and has the capacity to resolve the contour 
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ambiguity present in firing rates.  Because orientation discrimination improves 

substantially when considering the synchrony among larger groups of cells, the accuracy 

in representing contour configuration would likely continue to improve if we were able to 

examine more cells encoding the same contour (Samonds et al. 2004).    
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CHAPTER V 

 

INTERDEPENDENCE OF SPIKE TIMING AND OSCILLATION IN 

SYNCHRONIZED RESPONSES OF CAT VISUAL CORTEX  

Zhiyi Zhou, Melanie R. Bernard, A. B. Bonds 

 

Abstract 

Synchronized neural responses, which often are accompanied by oscillations in the 

gamma frequency band (35 – 70 Hz), have been found extensively in the visual cortex 

and have been proposed as supporting perceptual mechanisms. We studied the correlated 

firing between cells recorded in cat primary visual cortex with both JPSTH and multi-

taper coherence analyses. Linear regression analysis reveals strong correlation between 

neural synchrony and the corresponding coherence (R2 = 0.63), which suggests that 

cross-correlation analysis and coherence analysis are internally related, though these two 

methods study neural cooperation from different perspectives. To explore the importance 

of the temporal structures of spike trains in maintaining the temporal and frequency 

correlation between neurons, we then randomly jittered the neural spikes over different 

time ranges (±5msec, ±10msec, ±20msec) to disturb the timing accuracy in neural 

responses. We found the strength of synchrony and coherence systematically dropped 

with the increase of jittering range, with the coherence in the gamma frequency band 

showing the greatest losses after spike trains were jittered. Dependency analysis shows 

that significant amounts of information are lost after correlation between neurons is 

disrupted by spike jittering.  
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Introduction 

In the primary visual cortex, neurons give their strongest response, which is normally 

specified by the firing rate, to simple stimuli with defined spatial and temporal 

characteristics such as a moving light bar (Hubel and Wiesel, 1962; Albrecht et al., 1980; 

De Valois et al., 1982; Webster and De Valois, 1985; Bonds, 1989; Hubel, 1989). Cells 

located in the higher levels of the visual pathway, on the other hand, tend to respond to 

stimuli with more complicated features. For example, cells in area V4 of macaque 

monkey will show an elevated response rate if concentric rings or radial gratings are 

presented in their receptive fields (Gallant et al., 1996). A group of cells located in the 

inferior temporal cortex in macaque monkeys was reported to respond selectively to faces 

(Desimone et al., 1984). One common view is that discrimination of complexity is 

derived via a layered hierarchy in which information from cells in the lower level of the 

visual system converges upon cells in the higher levels. “Cardinal” cells located at the top 

of this hierarchy would have the ability to represent features that have the highest 

complexity (Barlow, 1972). However, the binding mechanism by which the higher level 

visual neurons selectively group and segment the convergent presynaptic inputs to form 

meaningful object(s) is not fully understood.   

 One proposed mechanism for detection of higher-order features is the so-called 

temporal binding theory, in which cells responding to combinations of lower-order 

features are grouped by temporal synchrony of either individual spikes or of periodic 

response structures (Milner, 1974; von der Malsburg, 1981; Eckhorn et al., 1988; Engel 

et al., 1992; Singer and Gray, 1995; Gray, 1999; Singer, 1999). With the aid of multi-

electrode recording, synchronized activity has been found in multiple areas in the central 
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nervous system including the visual pathway (Mastronarde, 1989; Engel et al., 1991; 

Sillito et al., 1994; Alonso et al., 1996; Kreiter and Singer, 1996; Riehle et al., 1997; Dan 

et al., 1998; Oertel, 1999; Aksay et al., 2003). Synchrony is dependent on visual stimuli 

(Ts'o et al., 1986; Gray et al., 1989; Engel et al., 1991; Kreiter and Singer, 1996; Castelo-

Branco et al., 2000; Kohn and Smith, 2005; Samonds et al., 2006) and there is some 

evidence to suggest that it could act as a binding mechanism signaling the integrity of 

visual structures (Gray et al., 1989; Singer and Gray, 1995; Neuenschwander and Singer, 

1996; Castelo-Branco et al., 2000; Gail et al., 2000), though the validity of this proposal 

is still under debate (Lamme and Spekreijse, 1998; Shadlen and Movshon, 1999; Thiele 

and Stoner, 2003; Palanca and DeAngelis, 2005).  

 Spike timing synchronization between neurons is traditionally assessed by means 

of the normalized cross-correlation histogram (CCH), which measures the temporal 

proximity of firing events between two neurons. Generally, a peak in the normalized 

CCH indicates that cells are firing synchronously with or without time lag (Perkel et al., 

1967; Aertsen et al., 1989). Another approach to assessing the association of neural firing 

patterns is to estimate the dependence between spike trains in the frequency domain, 

which is quantified by coherence. Coherence is mathematically defined as the Fourier 

transform of the autocovariance function and estimates the frequency association between 

spike trains by computing the spectrum of individual spike trains and the cross-spectrum 

between spike trains (Thomson, 1982; Mitra and Pesaran, 1999; Jarvis and Mitra, 2001; 

Brown et al., 2004; Henrie and Shapley, 2005). Cross-correlation and coherence analysis 

both evaluate the association between neural spike events, but to date there has been no 

systematic study of the direct relationship between the two approaches. There are also 
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questions of possible artifact in the application of the JPSTH due to effects of latency and 

nonstationarity (Brody, 1999a; Brody, 1999b) as well as inadequate normalization (Ito 

and Tsuji, 2000).  Coherence analysis is much less sensitive to these factors.  Here we 

analyze synchronized neural response by using both the joint peri-stimulus time 

histogram (JPSTH) and coherence analysis. Linear regression shows that the results from 

JPSTH and coherence analysis are highly correlated, which suggests that the JPSTH is a 

reasonable estimate of cooperativity and that the processes detected by both cross-

correlation analysis and coherence analysis are internally related. 

 Previous studies have shown that the temporal structures in correlated neural 

response may carry information that is not delivered by the average response rate 

(Reinagel and Reid, 2000; Samonds and Bonds, 2004). We are interested in the 

importance of the fine temporal structure in maintaining the association between neural 

responses and whether breaking the temporal correlation between neurons can cause any 

information loss. We randomly jittered the spike timing in our collected signals with 

different time ranges (±5msec, ±10msec, ±20msec) and then analyzed the association 

between neural responses by conducting cross-correlation and coherence analysis on 

jittered spike trains. Our jitter method does not change either the average firing rate or the 

overall response dynamics of individual cells (see Results), but the fine temporal 

structure is systematically perturbed. We found the strength of synchrony and coherence 

systematically decreased with increase of jitter range. We defined the average coherence 

of spike trains that were jittered with the largest time range (±20msec) as the “baseline” 

coherence, and derived modulation functions. The coherence of the unjittered spike trains 

in the gamma frequency band showed the greatest losses after spike trains were jittered. 
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We last estimated the transneural correlation by calculating the functional dependency of 

synchronized pairs. We found the tuning response of dependency progressively was 

systematically degraded with the increase of spike jittering range. We propose that the 

fine temporal structures in spike trains are important in maintaining the temporal and 

frequency dependence between neurons, and perturbing spike timing accuracy can cause 

loss of information that is contained in the correlated neural response.   

 

Materials and Methods 

Physiological Preparation 

Two adult cats (2.3 and 2.5 kg) were prepared for electrophysiological studies under the 

guidelines of the American Physiological Society and Vanderbilt University’s Animal 

Care and Use Committee. Before surgery, each cat was injected intramuscularly with 

0.5ml acepromazine maleate and 0.5ml atropine sulfate. After cannulating two forelimb 

veins, anesthesia was induced with 5% halothane in O2 and maintained with intravenous 

injection of 0.3 mg · kg-1 · hr-1 propofol. The trachea was then cannulated and the cats 

were mounted in a stereotaxic device. A small craniotomy (8 × 8 mm) was performed 

over the area centralis representation (Horsley-Clark coordinates P4-L2). The electrode 

array was inserted after the dura was incised, and the hole was covered with agar mixed 

in mammalian Ringer solution.   

During recording, paralysis was induced with a loading dose of 6mg and 

maintained with 0.3 mg · kg-1 · hr-1 pancuronium bromide via the second cannula. The 

cats were respirated at 30 breaths/min with a mixture of N2O:O2:CO2 (75:23.5:1.5), and 

pCO2 was held at 3.9%. The cats’ body temperature was maintained at 37.5ºC with a 
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servo-controlled heat pad and the rectal temperature was monitored throughout the 

recording. Anesthetic stability was ensured by monitoring the brain activity and heart rate 

via the electroencephalogram and electrocardiogram respectively. The cats’ nictitating 

membranes were retracted with 10% phenylephrine hydrochloride and the pupils were 

dilated with 1% atropine sulfate. Contact lenses with 4mm artificial pupils and auxiliary 

lenses were applied to render the retina conjugate with a screen at a viewing distance of 

57 cm.   

 

Visual Stimuli 

After mapping individual cell’s receptive field location with rear-projected light bars, we 

determined the center and size of the aggregated area that would be simultaneously 

covered by the visual stimuli. Drifting sinusoid gratings were generated with Cambridge 

Research System (Rochester, UK) VSG2/4 controller board and displayed on a gamma-

corrected 21-inch Sony Trinitron monitor at a distance of 57 cm. The monitor was set to 

have a frame rate of 120 Hz and a mean luminance of 73 cd/m2. For each presentation, 

gratings were displayed within a circular aperture (diameter = 14º or 18º) for 2 seconds. 

The orientation and direction of the gratings varied from 10 to 180º in 10º increment or 0 

to 340º in 20º increments, while other parameters were fixed (contrast = 50%, spatial 

frequency = 0.5 c/º, and temporal frequency = 2.0 Hz). Gratings were randomly displayed 

at each orientation for 75 to 100 trials to ensure the reliability of the results. A blank 

window lasting 1 second was interleaved between stimulus presentations to avoid 

adaptation.  
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Recording 

A Cyberkinetics 10 × 10 microelectrode array (4 x 4 mm) was pneumatically inserted to a 

fixed depth of 600 μm in cat areas 17 and 18 based on Horsley-Clark coordinates. Single 

or multiunit activities were recorded with this electrode array. The raw data was 

processed offline with a spike sorting procedure to remove noise and artifact on each 

channel (Shoham et al., 2003). We only included channels that recorded single unit 

activity, thus all single units reported in this study were resolved from different channels. 

We isolated single units (cells) that showed reliable orientation selectivity (i.e., firing rate 

at the preferred orientation was at least twice that at the worst orientation), and we only 

studied units with a stable firing rate of at least 8 spikes/sec for reliable spectral analysis. 

A total of 66 cells (32 and 34 cells from each cat), which provided 1057 pairs of cells, 

were finally chosen for analysis in this report. All cells we studied were classified as 

complex (Skottun et al., 1991). 

 

Synchrony and Coherence  

The cross-correlation histograms (CCHs) between cells were derived from the JPSTHs 

(Aertsen et al., 1989). The cross-product of PSTHs (expected correlation) is subtracted 

from the raw JPSTH (observed correlation), and the difference is then divided by the 

standard deviation of the PSTH predictor to create the normalized JPSTH (Aertsen et al., 

1989; Sillito et al., 1994; Snider et al., 1998; Samonds et al., 2003). The normalized CCH 

is then created by integrating along the principle diagonal of the normalized JPSTH, 

which Aertsen et al. (1989) refer as effective connectivity. A pair of cells is considered to 

fire synchronously when their CCH shows a discernable central peak located at around 0 
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msec time delay, and we consider synchrony significant if the peak value is at least twice 

the random fluctuations or noise in the CCH. The normalization procedure applied in 

JPSTH analysis is statistically equivalent to the method of the shift predictor (Perkel et 

al., 1967; Gerstein and Perkel, 1972; Aertsen et al., 1989) to remove the contribution 

from the joint elevation of firing rates, except that the method of JPSTH produces 

smoother results because the PSTHs are averaged over all trials (Aertsen et al., 1989).  

Coherency measures the frequency dependence between spike trains (Brown et al., 

2004), which is defined by the following equation:  

    12

11 22

( )( )
( ) ( )
S ff

S f S f
γ =         (5-1) 

in which 11( )S f and 22 ( )S f are the power spectra of two neural spike trains, and 12 ( )S f is 

the cross spectrum between these two spike trains (Thomson, 1982; Percival and Walden, 

1993; Mitra and Pesaran, 1999; Jarvis and Mitra, 2001). Coherency is a complex value, 

while coherence is the modulus of the coherency (Jarvis and Mitra, 2001; Henrie and 

Shapley, 2005). Normally, the spectrum is estimated by multiplying the Fourier transform 

of the data with a taper (windowing) to reduce the leakage errors. However, this single 

taper method also causes the loss of information (Percival and Walden, 1993; Mitra and 

Pesaran, 1999). Fortunately, this information loss can be recovered by introducing 

multiple orthogonal tapers during the procedure of spectral estimation. The final spectral 

estimate is the average quantity over individual tapered spectral estimates, which can 

effectively reduced the bias (Percival and Walden, 1993; Mitra and Pesaran, 1999; Jarvis 

and Mitra, 2001). The multi-taper method also provides some other computational 

advantages over single tapering, including supplying variance estimate by “jackknifing” 

(Thomson and Chave, 1991; Percival and Walden, 1993).    
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We used the Chronux package 1.0 (Chronux.org) to calculate the coherence 

spectra in cell pairs that showed synchronous firing based on the observation of peaks in 

the CCHs. Neural spike trains were computed within a 2 second window and sampled at 

a rate of 500 Hz. Coherence was estimated with the multi-taper method with five Slepian 

tapers. Each spectrum was calculated for a frequency range from 2 to 100 Hz and 

averaged by trials to reduce variance (Jarvis and Mitra, 2001), and 95% confidence 

intervals of the coherence, which measure the variance of the estimator, were calculated 

with the jackknifing method. The theoretical 95% confidence limits for the coherence 

were also established with multivariate statistics to examine whether the coherence is 

significant in certain frequency band(s) (Hannan, 1970; Jarvis and Mitra, 2001).  

We smoothed the original normalized CCHs with a 5 msec moving average 

window. The time interval located between the two local minima on each side of the 

central peak on CCH defined the maximum time delay ( τΔ ) of the synchronized spikes, 

which can be transformed into a critical phase interval (φ ) by following equation (Jarvis 

and Mitra, 2001): 

    ( ) 2f fφ π τ= Δ         (5-2) 

We quantified the synchrony strength by integrating the area under the central peak on 

the smoothed CCH as a measure of the percentage of all synchronized spikes from the 

two spike trains. We further quantified the frequency dependence across a broad band (5-

100 Hz) between two spike trains by integrating the areas underneath the coherence trace 

where the value of coherence exceeded the 95% confidence interval and the 

corresponding phase value was within the phase range derived from the above maximum 

time delay. Note that because we use an integrated value derived from the coherence plot 
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instead of a single peak value, the coherence strength is an arbitrary quantity which no 

longer ranges from 0 to 1.   

We also applied a spike jitter method (Hatsopoulos et al., 2003) to evaluate how 

the frequency dependence between spike trains is affected by the spike timing accuracy. 

In this study, we defined three different jitter ranges, ± 5msec, ± 10msec, ± 20msec, and 

randomly jittered all the spikes uniformly within the different ranges. The spike jitter 

method will not change the average response rate or overall response statistics, but the 

fine temporal structure and the frequency components contained in the neural spike trains 

will be modified. Jittering with ± 20msec time range flattened the coherence spectra 

across the mid and high frequency ranges. To explore how coherence is affected by 

different ranges of jittering, we defined the coherence estimate with ± 20msec spike 

jittering as the “baseline” coherence. Following the method defined by Henrie and 

Shapley (2005), spectral modulation relative to the “baseline” was derived, frequency by 

frequency, as  

   ( ) ( ) / ( )blM f C f C f=         (5-3) 

while ( )M f was further transformed to a percentage change from “baseline” by 

    ( ) ( 1) 100%M f MΔ = − ×         (5-4) 

We recalculated the temporal correlation (normalized CCHs) and the coherence 

between cells after spikes were jittered, and observed that association between cells was 

changed in both the time and frequency domains.  
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Dependency Analysis 

Besides evaluating the effect of perturbing spike timings on neural correlation with cross-

correlation and coherence analysis, we further analyzed the functional dependency of 

synchronized pairs before and after spike jittering. The dependency analysis, which is 

originally derived from type analysis, measures the transneural correlation (Samonds et 

al., 2003). Type analysis and dependency analysis have been described in detail by 

Johnson et al. (2001) and Samonds et al. (2003). Briefly, spike trains were first translated 

into binary representations depending on whether or not a spike occurs within a time bin. 

The joint firing pattern of a pair of spike trains was then described by a temporal 

sequence of numbers based on the binary representation from the first step. Since we only 

studied dependency between cell pairs, these numbers ranged from 0 to 3. We calculated 

the observed firing/nonfiring probabilities of each neuron. The forced-independent 

firing/nonfiring probabilities between neurons were also estimated under the assumption 

that neurons are firing independently (Samonds et al., 2003). The Kullback-Leibler (KL) 

distance between the observed type and forced-independent type is calculated as: 

   
3

1
1 2 1 2

1 0 2

( )( || ) ( ) log
( )

B
b

b
b k b

P kd P P P k
P k= =

= ×∑∑        (5-5) 

in which 1P  indicates the observed firing/nonfiring probability while 2P  indicates the 

forced-independent firing/nonfiring probability. The letter B in Eq. 5-5 represents the 

index of bins. The dependency of neurons is then created by calculating the resistor 

average of the KL distances between the observed and force-independent types:   
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1 2
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        (5-6) 
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Results 

We recorded a total of 66 cells in areas 17 and 18 of two anesthetized and paralyzed cats 

with a 10x10 Cyberkinetics microelectrode array. Traditional drifting sinusoidal gratings 

with fixed temporal and spatial frequency but varied orientations were used as visual 

stimuli. We first conducted cross-correlation analysis to identify synchronized cell 

samples. Coherence analysis was then applied with the multi-taper method on those 

synchronized cell pairs and linear regression analysis was performed between synchrony 

and coherence to reveal the correlation between the two quantities, derived from temporal 

and frequency domain analysis respectively. We also jittered the spike trains in our 

sampled data in order to assess the dependence of these two properties on timing 

accuracy and observed that both synchrony and coherence were significantly affected.  

  

Synchrony Analysis 

Temporal correlation between neural spike trains was measured by conducting cross-

correlation analysis with the JPSTH method (Aertsen et al., 1989) on all possible 1057 

cell pairs. Among these pairs we identified 694 (65.7% of total sampled pairs) that 

showed synchronized firing. Since 152 pairs (of 694) showed only moderate synchrony 

strength (lower than the level of significance defined in Methods), we only included data 

from the remaining 542 pairs. Our data set contains 1569 samples because 361 cell pairs 

synchronized their firing for more than one stimulus condition. The reason that we 

focused on cell pairs having stronger synchrony strength is because the better signal-to-

noise ratio provides a clearer relationship between the analysis results in the time and 

frequency domains. Consistent with the previous findings (Ts'o et al., 1986; Eckhorn et 
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al., 1988; Gray et al., 1989; Engel et al., 1991; Kreiter and Singer, 1996; Kohn and Smith, 

2005), we found that most synchronized cell pairs had some level of receptive field 

overlap (mean = 43%) while only 31 cell pairs (5.7%) had entirely separate receptive 

fields. The locations of our sampled cells were spread broadly in the visual cortex 

(distance between recording channels ranged from 0.4 to 4 mm).  The mean distance 

between synchronized cells (interelectrode distance) was 1.77mm and the probability of 

neural synchrony decreased with the increasing distance between cells (Figure 5-1 A).  

 We also studied the influence of difference in cells’ preferred orientations on 

synchrony strength from all synchronized cell pairs (N= 319) in one cat on which we 

tested the full range of orientations with 20o increments. A drifting sinewave grating is 

effective in synchronizing the firing of a pair of cells only if this stimulus is drifting at an 

orientation that can drive both cells to reasonably high firing rates. More than half of the 

synchronized pairs showed synchrony for more than one stimulus orientation. If cells had 

the same orientation preference, the strongest synchrony was usually induced by gratings 

presented at this orientation. If cells had different orientation preferences, the stimulus 

orientation that induced the strongest synchrony was usually intermediate between the 

cells’ preferred orientations (Kohn and Smith, 2005). Figure 5-1 B shows that cell pairs 

with smaller orientation differences tended to have stronger synchrony than cell pairs 

with larger differences in their preferred orientations. This was not simply a consequence 

of lower firing rate at non-optimal orientations, since the JPSTH is normalized for firing 

rate. Our result is in general agreement with previous reports that synchrony is dependent 

on the similarity of receptive field properties (Ts'o et al., 1986; Eckhorn et al., 1988; Gray 

et al., 1989; Engel et al., 1991).  However, this result should be carefully interpreted. We 
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Figure 5-1: Relationship between synchrony and RF properties (A) Cells that are located 
closer to each other are more likely to synchronize their firing. (B) Cells pairs with less 
orientation difference tend to have stronger synchrony. Error bars indicate SEM. 
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only stimulated our cells with simple oriented gratings in this study, which may not      

adequately explore the role of synchrony in transmission of visual information. One-

dimensional stimuli are only effective for cells with similar orientations, and we have 

found with two-dimensional stimuli that synchronization is primarily determined by the 

effectiveness of a stimulus in driving both cells simultaneously, as opposed to orientation 

similarities between the cells (Samonds et al., 2006).  

 

Spectral Analysis  

To explore the frequency components in neural spike trains that may contribute to neural 

synchrony, we conducted coherence analysis with the multi-taper method in cell pairs 

that showed significant synchrony under grating stimulation. Spectra were estimated 

across the frequency band from 2 to 100 Hz. All the cells we recorded were of complex 

type with a mean of F1/F0 = 0.24 ± 0.22 (Hubel and Wiesel, 1962; Skottun et al., 1991). 

We consider that coherence at the lowest frequencies (ie. < 4 Hz) reflects response 

covariation corresponding to grating drift (2Hz) rather than originating from the network 

interactions. Therefore, we focused our analysis on the frequencies from 5 to 100 Hz.  To 

examine if our coherence result is significant, we compare the coherence values 

estimated via jackknifing method with the theoretical confidence limits derived by 

multivariate statistical distribution (see Methods). Among all data samples, we found that 

1542 (98.3%) showed a coherence value higher than the theoretical 95% confidence 

interval at certain frequency band(s), and the lower bounds of the coherence in 791 

samples (51.2%) reached the theoretical 95% confidence interval.  
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As with the JPSTH analysis, we found that the strength of coherence decreases 

with the increase of distance between cells (recording sites). We divided our cell pairs 

into three subsets, short (<1500 μm), medium (1500 ~ 3000 μm) and long (>3000 μm) 

separation between cell pairs, and grouped our coherence results into three bins with 

coherence strengths based on the integrated area underneath the coherence curve and 

beyond the theoretical 95% confidence interval (see Methods). Histograms in Figure 5-2 

show the relative proportion of cell pairs in every coherence strength category for each 

cell separation subset. For the subset with short distance between cells, a relatively large 

portion (61.7%) of pairs showed medium to strong coherence (integrated coherence ≥ 

1.5). For cell pairs with medium and long separations, coherence is biased towards low 

coherence strengths.  

 In our analysis, we did not find any obvious relationship between the peaks in the 

spike spectra and the peaks of the coherence functions. In other words, the frequency 

bands of peaks in the individual cells’ response spectra do not necessarily determine the 

frequency band in which the two spike trains show correlated firing. Figure 5-3 A shows 

an example in which two cells both exhibit elevated power around 30 Hz in their spike 

spectra, and the coherence has the highest peak at 31 Hz. The two cells in Figure 5-3 B 

have highest peaks at the frequency lower than 20 Hz, but the peak on their coherence 

curve is located at 42 Hz. Figure 5-3 C shows two cells have clear peaks in spike spectra 

in 40-50 Hz frequency bands, but their greatest coherence is located at 16 Hz . 
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Figure 5-2: We divide our data samples into three subsets based on the distance between 
recording sites (A: less than 1500 μm; B: 1500 to 3000 μm; and longer than 3000 μm). 
We further binned our samples into three categories according to the integrated coherence 
(weak coherence: less than 1.5; medium coherence: 1.5 to 3; strong coherence: higher 
than 3). Histograms show coherence is stronger in cells with shorter distance between 
receptive fields than in cells with longer distance.  
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Figure 5-3: Examples of spectral analysis (A) cells 19 and 27 both showed elevated 
power around 30 Hz (left and middle plots), and the coherence between these two cells is 
highest at 31 Hz (right plot). (B) The highest coherence for cells 20 and 29 is found at 42 
Hz (right plot), though the highest peaks on the power spectra for both cells are located at 
the frequency band lower than 20 Hz (left and middle plots). (C) Cells 17 and 28 both 
showed peaks in 40 to 50 Hz range on their power spectra (left and middle plots), but the 
highest coherence is located at 16 Hz. The gray horizontal lines in the coherence plots 
indicate the 95% confident limit. 
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Correlation between JPSTH and Coherence Analysis 

We conducted linear regression analysis between coherence and synchrony to observe 

whether the two estimates, derived from the time and frequency domains, showed any 

systematic correlation in the context of biological signals. The appearance of a central 

peak in the CCH indicates that two cells synchronize a certain percentage of their spikes 

(Perkel et al., 1967; Aertsen et al., 1989). The area underneath this central peak was thus 

treated as the total accumulation of synchronized spikes (with slightly different time 

delays) from the two spike trains. With coherence analysis, frequency-dependent 

correlation between two signals is implied by a coherence value beyond a certain 

confidence limit (Jarvis and Mitra, 2001; Brown et al., 2004). For each pair of cells, we 

quantified total coherence by integrating the area between the coherence curve and the 

95% confidence limit over a frequency range of 5 to 100 Hz. Coherence may not be 

directly related to synchrony unless the time offset translated from the phase of the 

coherency (see Methods) is within a time range that corresponds to the width of the 

central peak of the CCH, so we ignored the area under the coherence curve where the 

phase of the coherency fell out of the range defined by the width of the peak of the CCH. 

The scatter plot in figure 5-4 shows the relationship between these integrated quantities 

for each data sample (N = 1569). The location of a large number of data points close to 

the zero coordinates is not surprising.  Our data set contains cell pairs that show 

synchronized firing for both optimal and non-optimal orientations, and the latter drive 

synchronous responses less effectively. Overall coherence is strongly correlated with 

synchrony (R2 = 0.63), which suggests that these two quantitative methods of analysis 

reflect fundamentally the same neurological response properties.  
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Figure 5-4: Linear regression analysis between synchrony and coherence. Strong 
correlation was found between results from coherence and JPSTH analysis. 
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Temporal Structure and Neural Correlation 

The fine temporal structure in neural spikes cooperates with the average response rate of 

visual neurons to provide visual information, though these two variables have different 

roles in coding specific properties (Cattaneo et al., 1981; Debusk et al., 1997; Snider et 

al., 1998; Castelo-Branco et al., 2000; Samonds et al., 2003, 2004; Samonds et al., 2006). 

We applied a spike jittering method with different time ranges (±5msec, ±10msec, and 

±20msec) to perturb the timing accuracy in the spike trains systematically at different 

levels to see how both synchrony and coherence depend on fine structure, as opposed to 

general response organization or chance. We are trying to clarify that correlation between 

neural responses is induced specifically instead of resulting accidentally from spike rate 

modulation.  

 We also studied the response distribution of the spike trains before and after 

jittering to ensure that the jittering procedure does not change the overall statistics of the 

response. One characteristic feature in visual cortical responses is the high variability 

exhibited in the discharge pattern (Softky and Koch, 1993; Shadlen and Newsome, 1998), 

which is also found in our data. We examined the response variation of all the spike 

trains (N = 596) in our sampled data. The variation coefficient ( /
ISIV ISI ISIC SD mean= ) of 

interspike intervals (ISIs) in the unperturbed spike trains ranges from 0.5 to 1.17 while 

the variation coefficient of response rate ( /
FRV FR FRC SD mean= ) ranges from 0.17 to 2.37. 

Our result (mean of 
ISIVC = 0.64; mean of 

FRVC = 0.69 ) is in agreement with the previous 

reports that neural response has high variability even for the exactly same stimulus 

(Softky and Koch, 1993; Shadlen and Newsome, 1998). We compared ISI and PSTH 

distributions derived from the original spikes trains with the ISI and PSTH distributions 
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after spike jittering at different jittering ranges (Figures 5-5 & 5-6). After spike jittering, 

5 percent of spike trains (30/596) changed the ISI distribution significantly (two-tailed 

Kolmogorov-Smirnov test, α = 0.05) while only one of the spike trains showed 

significant changes in its PSTH distribution (two-tailed Kolmogorov-Smirnov test, α = 

0.05). Thus, the jitter procedure not only keeps the firing rate constant but also maintains 

statistical characteristics of the overall response. 

 We then refined our study to include only data samples (N = 1280) that did not 

show significant change in either ISI or PSTH distribution. In the refined data sample, we 

found both the amplitude of synchrony and the integrated coherence derived from the 

unperturbed spike trains are significantly higher than those derived from the spike trains 

jittered with different ranges (paired student’s t-test, p<10-10). Figure 5-7 shows an 

example of synchrony and coherence analysis results from one cell pair. These two cells 

have similar orientation preferences (110º and 150º) and show synchronized firing with 

stimulation by a moving grating (orientation = 140º) that is effective in driving both cells. 

Strong frequency dependence between these two cells was mainly focused in the gamma 

band with the highest coherence value (coherence = 0.26) located at 52 Hz. After the 

spikes of both cells were randomly jittered across a ±5msec range, synchrony and the 

coherence strength reduced dramatically. When the two spike trains were jittered across 

broader time ranges (±10msec and ±20msec), the central peaks on the CCHs were nearly 

extinguished and the frequency dependence between these two cells was almost 

destroyed completely.   

 The reduction of temporal and frequency dependence after spike jittering also 

applies to our entire population. We averaged the synchrony and coherence curves for all 
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Figure 5-5: Example histograms of ISI before and after spike jittering (A) ISI histogram 
without spike jittering.  (B) ISI histogram with spikes jittered over ±5 msec time interval. 
(C) ISI histogram with spikes jittered over ±10 msec time interval. (D) ISI histogram 
with spikes jittered over ±20 msec time interval. 
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Figure 5-6: Example histograms of PSTH before and after spike jittering (A) PSTH 
histogram without spike jittering.  (B) PSTH histogram with spikes jittered over ±5 msec 
time interval. (C) PSTH histogram with spikes jittered over ±10 msec time interval. (D) 
PSTH histogram with spikes jittered over ±20 msec time interval. 
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Figure 5-7: Example of synchrony and coherence modulate systematically with the 
increase of spike jittering range (A) The CCH (left) and coherence (right) plots for the 
original spike trains show two cells having strong correlation in both time and frequency 
domains. The gray area around the coherence curve represents the upper and lower 
bounds of the coherence estimate. The gray horizontal line in the coherence plot indicates 
the 95% confident limit. (B) Synchrony and coherence both reduced after the spike trains 
were jittered in ±5msec range. (C) Synchrony and coherence both reduced further after 
the spike trains were jittered in ±10msec range. (D) After the spike trains were jittered in 
±20msec range, the peak on CCH is hardly detectable, and the area between coherence 
curve and 95% confidence limit almost disappears.   
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synchronized pairs we identified, with results shown in Figures 5-8 and 5-9. The average 

synchrony is highest before spike trains were jittered. On the averaged CCH, the peak 

amplitude is 1.16% and is located at 0 msec delay. After the spikes were jittered 

randomly with increased time ranges (±5 msec, ±10 msec, and ±20 msec), synchrony 

gradually reduced to 0.82%, 0.66%, 0.56% respectively with statistical significance 

(paired student’s t-test, p<10-10). Meanwhile, the width of the central peak on the 

averaged CCHs also increased when the spikes were jittered across a broader time range, 

indicating a disruption of the temporal relationship between cells.  

We find that the average coherence spectrum for the unperturbed spike trains has 

its greatest power in the lower frequency bands and a second peak on the coherence curve 

is found in the gamma range, around 45 Hz (Figure 5-9 A). As expected, the power in the 

coherence spectrum gradually decreases with the increase of the spike jittering range. 

When spikes were jittered in the ±5msec range, the second coherence peak disappeared, 

and when spikes were jittered in the ±10 or ±20msec range, the coherence trace in the 

gamma range flattened. To explore how much frequency dependence is embedded in the 

fine temporal structure, we derived a figure for coherence modulation with respect to the 

“baseline” coherence (i.e., coherence expected in the absence of fine coordination), 

which is defined by the average coherence for spike trains jittered in the ±20msec range 

(see Methods). Figure 5-9 B shows, for the average coherence from the original spike 

trains, the coherence modulation is highest at 46 Hz and falls off gradually towards the 

lower and higher frequency bands. For the average coherence from spike trains jittered in 

±5 and ±10msec ranges, modulations are lower than that from the “raw” spike trains and 

the modulation peaks shift towards the lower frequency (peaks locate at 20 and 13 Hz 
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respectively). We compared the modulation loss among alpha (5 – 15 Hz), beta (15 – 35 

Hz), and gamma bands. For each band, we integrate the areas below the modulation 

curves with different jittering ranges (no jittering, ±5 msec jittering, or ±10 msec 

jittering). In the alpha band, the integrated area was reduced by 9.1% or 34.1% 

respectively after ±5 msec or ±10 msec jittering.  In the beta band, reduction was 29.6% 

or 75.9% respectively after ±5 msec or ±10 msec jittering. In the gamma band, however, 

the reduction was 76.4% or 100% after ±5 msec or ±10 msec jittering. Our results 

suggest that the fine temporal structure in neural spike trains is critical in maintaining the 

frequency dependence between neurons, and that the frequency band that is most 

sensitive to the integrity of the temporal structures in the neural spike trains is the gamma 

band. 

We last explored if there is any information loss due to spike jittering by 

calculating the functional dependency (resistor averaged KL distance between observed 

type and forced-independent type). The dependency tuning was calculated on 51 cell 

pairs, for which the orientation preference was the same within each pair. Dependency 

was calculated for both original and jittered spike trains with temporal resolutions from 1 

to 10 msec and the result at the temporal resolution yielding the maximum dependency 

was chosen to build the dependency tuning. The example in figure 5-10 A shows that 

tuning response was systematically reduced with the increase the jittering range. 

Dependency was further quantified for different jittering ranges by integrating the area 

underneath the corresponding tuning curves and average across sampled pairs. We found 

the mean dependency to be highest (7.16 bits) with the original spike trains and drops to 

5.93, 5.00, and 4.52 bits respectively with spikes jittered in ±5, ±10, and ±20 msec ranges 
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Figure 5-8: The population averaged synchrony estimates with spike jittering (A) The 
average CCH from the original spike trains shows a sharp peak centered at 0msec delay. 
(B-D) After the spike trains were jittered in ±5msec, ±10msec, and ±20msec ranges, the 
peak of the averaged CCH reduced and the peak width increased systematically.  
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Figure 5-9: The population averaged coherence estimates with spike jittering (A) The 
average coherence of the “raw” spike trains (black curve) shows the greatest power in 
low frequency band and displays a second peak at 45 Hz. After the spike trains were 
jittered in ±5msec range, the second peak on the averaged coherence (red curve) 
disappeared. After the spikes were jittered in ±10msec and ±20msec ranges, the average 
coherence (blue and gray curves) became flat lines in gamma range. (B) With the average 
coherence of spike trains jittered in ±20msec range defined as the “baseline” coherence, 
the coherence from the “raw” spike trains shows greatest modulation (black curve) with a 
peak located at 46 Hz. When spikes trains were jittered in ±10msec and ±20msec ranges, 
coherence modulation (red and blue curves) reduced and the peak of the modulation 
shifted to frequency band lower than gamma band.   
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Figure 5-10: Dependency analysis (A) An example of dependency tunings for the 
original and jittered spike trains. (B) Mean integrated dependency systematically reduced 
with the increase of jittering range. Error bars indicate SEM. 
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(Figure 5-10 B), indicating significant information loss (One-way ANOVA test, 

p<0.0001) after the spike timing was perturbed. 

 

Discussion 

In cat visual cortical cells (areas V1 and V2) stimulated with sinewave gratings, 

coherence analysis and the CCHs derived from JPSTHs showed high correlation. This 

consistency validates both analytical approaches for studying the associative relationship 

between neural spike trains. We also perturbed the timing accuracy of the original neural 

spike trains by jittering the spike timing. We found that synchrony and coherence both 

systematically decrease with the increase of the jittering time range while the coherence 

in the gamma frequency band exhibits the greatest loss.  

 

Temporal and Spectral Analysis of Neural Cooperation 

The most commonly used methods for investigating the association between neural firing 

include time domain and frequency domain analysis. With the development of multi-

electrode recordings, cross-correlation analysis (Perkel et al., 1967; Aertsen et al., 1989) 

has been extensively used to study the role of neural synchrony in visual perception.  A 

shift predictor is generally subtracted from the raw CCHs to remove the expected 

synchrony from chance (Perkel et al., 1967; Aertsen et al., 1989). However, its 

application for studying associations between neural responses has been challenged by 

the proposal that peaks in the CCH may be induced by trial by trial latency and 

excitability covariations, which confound the estimation of spike timing synchronization 

(Brody, 1999a; Brody, 1999b; Brown et al., 2004). Meanwhile, because factors such as 
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ISI and spike count in the discharge pattern are highly irregular, the temporal structures 

embedded in the neural spike trains have been considered to merely reflect noise and 

contain little meaningful information (Shadlen and Newsome, 1998). The spike jittering 

process applied in our study preserved both the mean firing rate and the overall response 

dynamics (ISI and PSTH distributions derived over multiple trials). What has been 

interrupted is the common fine temporal structure contained in the synchronized spike 

trains. The attenuation of neural synchrony and coherence after spike jittering indicates 

that the correlation between neurons in both time and frequency domains is not a trivial 

consequence of response rate statistics but rather results from some causal mechanisms, 

arising from stimuli and/or brain network interactions.  

 The method of normalization of the JPSTH has also been criticized as inadequate, 

especially in cases of higher firing rates (Ito and Tsuji, 2000).  To examine the validity of 

the normalization implemented in the JPSTH on real data, we compared the results 

between time and frequency domain analysis. Coherence analysis has several advantages 

over time domain analysis, which include insensitivity to nonstationarity in the discharge 

history and more effective normalization than time domain correlation analysis (Jarvis 

and Mitra, 2001). Initial studies based on computer simulated data suggest that coherence 

analysis and cross-correlation analysis are complimentary to each other. Moritz et al. 

(2005) reported that synchronized neural discharges in simulated motor neurons can 

induce a peak between 16 – 32Hz in the coherence spectrum. The amplitude and the area 

of the coherence peak are strongly correlated with the strength of synchrony. Here we 

report that regression analysis between JPSTH analysis and coherence analysis on 

responses from visual cortical cells is consistent with Moritz’s finding. The strong 
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correlation between the results from both methods not only implies that the coherence 

analysis and JPSTH method are internally related, but also supports the validity of the 

normalization procedure applied in JPSTH analysis.  

 

Temporal Structure and Neural Cooperation 

Earlier studies have described emergent information in visual cortical neurons that is 

independent of the average response rate.  Cattaneo et al. (1981) reported that spikes 

within bursts ("clustered spikes", with intervals of 8 msec or less) and outside bursts 

("isolated spikes") have detection sensitivities to different attributes of the stimulus. 

Clustered spikes are more finely tuned for orientation and spatial frequency while both 

the isolated and clustered spikes are sensitive to contrast change. DeBusk et al. (1997) 

also found that, at a given firing rate, optimal orientations can induce bursts with greater 

length than nonoptimal orientations. With information-theoretic analysis, Dan et al. (1998) 

found that more information can be extracted from the activity of LGN neurons if 

temporal correlations between neurons are considered. The percentage increase can be as 

high as 20% in strongly synchronized pairs. The information carried by cooperative 

responses in neural ensemble is restricted within a limited time interval. By applying type 

analysis, Samonds et al. (2003) found that cooperativity between synchronized complex 

cells in cat area 17 enhances fine orientation discrimination beyond the coding of the 

firing rate, and that the information is primarily contained within 10 msec time window.  

The question remains as to whether this information is useful.  Any candidate 

mechanism for coding neural information requires a means for discriminating the code.  

In the case of neural synchrony, this is readily provided by spatial summation: 
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synchronized inputs are more efficient than isolated spikes in eliciting action potentials 

on postsynaptic neurons (Alonso et al., 1996; Usrey et al., 1998). The effective window 

for temporal summation of synchronized inputs is generally considered to be about 10 

msec (Softky and Koch, 1993; Diesmann et al., 1999; Larkum et al., 1999). This 

summation may be more than simply linear, since rapid depolarization lowers the voltage 

threshold for spiking in postsynaptic cells (Azouz and Gray, 2000).  Here we have 

confirmed by systematic disruption of the fine structure within the spike trains that timing 

on a scale of 10 msec is critical for maintaining the information contained in both the 

cross-correlation as well as the spectrally-organized cooperation (gamma oscillation).  

Whether the "tuning" of the post-synaptic membrane to be specifically sensitive to timing 

on this scale validates the concept that this is a functionally significant means of 

transmitting visual information remains open to debate, but it is certainly both supportive 

and suggestive. 

   

Source of Oscillation  

Frequency dependence of cooperative neural firing is thought to result from common 

excitatory or inhibitory inputs (Rosenberg et al., 1998). A presynaptic cell is likely to 

transmit any periodicity in its firing pattern to common recipient cells, which would 

result in coherence at the corresponding frequency band. Although coherence between 

two cells can display a prominent elevation at a particular frequency, here we often found 

that the power spectra of the individual cells may have no relationship to this peak. 

Therefore, common oscillatory input is not necessary to produce periodically associated 

firing between single cells, though the synchrony is stronger in cell pairs with oscillation 
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than in cells with no oscillation (Samonds and Bonds, 2005). Gray and Singer proposed 

that the oscillation around 40 Hz found in the visual cortex originates from intracortical 

mechanisms, since no similar oscillation was found in the thalamic input to visual cortex 

(Gray and Singer, 1989). Ghose and Freeman showed, however, that intracortical 

connections are not necessary to produce cortical oscillations, while lateral geniculate 

nucleus (LGN) oscillation combined with intrinsic cortical oscillators maybe induce 

oscillation in visual cortex.   

 The spectral analysis in our study shows that oscillation in the cat’s primary 

visual cortex is not a simple harmonic of the temporal and spatial frequency features in 

the visual stimuli. However, neurons with receptive fields being co-activated by the 

sustained stimulation of the coherent structures in the visual stimulus could synchronize 

their responses as a consequence of similar response latencies (Fries et al., 2001; 

Samonds and Bonds, 2005; Samonds et al., 2006).   
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CHAPTER VI 

 

DECONSTRUCTION OF SPATIAL INTEGRITY IN VISUAL STIMULUS 

DETECTED BY MODULATION OF SYNCHRONIZED ACTIVITY IN CAT 

VISUAL CORTEX 

Zhiyi Zhou, Melanie R. Bernard, A. B. Bonds 

 

Abstract 

Spatiotemporal relationships among contour segments can influence synchronization of 

neural responses in the primary visual cortex. We have carried out a systematic study to 

dissociate the impact of spatial and temporal factors in the signaling of contour 

integration via synchrony.  In addition, we characterized the temporal evolution of this 

process to clarify potential underlying mechanisms. With a 10x10 microelectrode array, 

we recorded the simultaneous activity of multiple cells in the cat primary visual cortex 

while stimulating with drifting sinewave gratings. We preserved temporal integrity and 

systematically degraded spatial integrity of the sinewave gratings by adding spatial noise. 

Neural synchronization was analyzed in the time and frequency domains by conducting 

cross-correlation and coherence analyses. The general association between neural spike 

trains depends strongly on spatial integrity, with coherence in the gamma band (35 – 70 

Hz) showing greater sensitivity to the change of spatial structure than other frequency 

bands. Analysis of the temporal dynamics of synchronization in both time and frequency 

domains suggests that spike timing synchronization is triggered nearly instantaneously by 

coherent structure in the stimuli while frequency-specific oscillatory components develop 
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more slowly, presumably through network interactions. Our results suggest that while 

temporal integrity is required for the generation of synchrony; spatial integrity is critical 

in triggering subsequent gamma band synchronization. 
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Introduction 

While mechanisms of visual perception are generally accepted as resulting from changes 

in the response rate of neurons (Barlow, 1972), cooperative neural firing may also serve 

as a versatile coding mechanism that extends the information capacity of the visual 

system (Milner, 1974; von der Malsburg, 1981; Singer and Gray, 1995; Gray, 1999; 

Singer, 1999; von der Malsburg, 1999).  Earlier studies have focused either on the tight 

(<10 msec) synchronization of spike timing or phase-locked oscillation at particular 

frequencies, most notably gamma (35 – 70 Hz; Alonso et al. 1996; Dan et al. 1998; 

Eckhorn et al. 1988; Engel et al. 1991; Frien et al. 2000; Fries et al. 2001; Gray et al. 

1989; Gray and Singer 1989; Kohn and Smith 2005; Samonds et al. 2004; Samonds et al. 

2006; Usrey et al. 1998). Analysis of single or multiunit activity (MUA) and local field 

potentials (LFPs) responding to stimulation by coherent structures such as moving light 

bars or drifting gratings reveals that neural synchronization is stimulus-dependent and 

may occur within or between cortical columns or even across different cortical areas 

(Eckhorn et al., 1988; Gray et al., 1989; Gray and Singer, 1989; Engel et al., 1991). 

Evaluation of synchronization modulation by spatial and/or temporal changes in visual 

stimulation has led to the suggestion that neural cooperation may play a role in visual 

binding (Castelo-Branco et al. 2000; Engel et al. 1991a; Gail et al. 2000; Gray et al. 

1989), though the generality of this proposal has been challenged by several negative 

results (Lamme and Spekreijse, 1998; Thiele and Stoner, 2003; Palanca and DeAngelis, 

2005). 

The functional significance and exact behavior of gamma-band oscillation also 

remains unclear.  It can be found over considerable cortical distance and is enhanced by 
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coherent stimuli and destroyed by incoherent stimuli (Gray et al., 1989; Engel et al., 1991; 

Konig et al., 1995; Castelo-Branco et al., 2000; Gail et al., 2000). Though oscillation is 

not necessary for generating synchrony, synchrony can be strengthened or sustained if 

oscillation exists (Samonds and Bonds, 2005).  

Spike timing synchronization, which in this paper is generally referred to as 

synchrony, and frequency coherence reflect neural cooperation from different 

perspectives, though the analyses in the time and frequency domains are correlated (Zhou 

et al., 2007). We consider that synchrony is triggered by coherent spatial and temporal 

structures in the visual input which simultaneously activate populations of retinal cells 

(Samonds and Bonds, 2005). The timing synchronization between neural spike trains is 

then propagated through the visual pathway via divergent and convergent transmission 

(Usrey and Reid, 1999). Neural synchronization may provide emergent information that 

is not carried by independent firing rates (Dan et al., 1998; Kohn and Smith, 2005; 

Samonds et al., 2006; Montani et al., 2007).  For example, synchronized responses in 

neural ensembles permit the discrimination of fine differences of orientation that are not 

evident from independent firing rates (Samonds et al., 2003, 2004). The present study 

tests the specific image qualities that encourage synchrony, with a view towards 

describing the nature of the visual information carried by synchrony.  While we agree 

that synchrony arises from coherent spatiotemporal structures in the retinal image, here 

we try to disambiguate the two variables by investigating how synchrony and oscillation 

depend on the degree of spatial integrity in the stimulus, without changing global 

temporal structure (drift rate). More specifically, we systematically deconstructed the 

contour integrity of drifting sinewave gratings by progressively adding spatial noise, 
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while maintaining the coherent motion of both noise and gratings. Single unit recordings 

were made simultaneously with a 10x10 microelectrode array from large numbers of cells 

in areas 17 and 18 of three anesthetized and paralyzed cats. We analyzed spike timing 

synchronization and frequency association between neural spike trains with cross-

correlation and coherence analyses and found that the synchronization between neural 

responses in the time and frequency domains both modulated systematically with the 

change of spatial integrity in the visual stimuli. We also discovered that coherence in the 

gamma frequency band is more sensitive to changes in spatial integrity than either lower 

frequency bands or general spike synchrony as revealed by the JPSTH. Coherence in the 

lower (alpha and beta) frequency bands dropped only moderately even after large 

amounts of spatial noise (i.e. 55%) were added to the image. We suspect that low 

frequency coherence may be driven mainly by the temporal structure in the stimulus, 

though additional study is needed to confirm this conjecture. To further explore the 

relationship between synchrony and gamma coherence, we analyzed the temporal 

dynamics of synchronization in both the time and frequency domains. Our result suggests 

that spike timing synchronization is triggered nearly instantaneously by coherent 

structure in the stimuli while the frequency-specific oscillatory components evolve more 

slowly, presumably through network interactions.  

 

Materials and Methods 

Physiological Preparation 

Electrophysiological recordings were made in three adult (2.5- 3.5 kg) cats. All 

experimental procedures were performed under the guidelines of the American 
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Physiological Society and Vanderbilt University’s Animal Care and Use Committee. 

Each cat initially received intramuscular injections of 2mg dexamethasone about 20 

hours before surgery and 0.5ml acepromazine maleate and 0.5ml atropine sulfate about 2 

hours before surgery. General anesthesia was induced by inhalation of 5% halothane in 

O2. One of the forelimb veins was cannulated for intravenous injection of 0.3 mg · kg-

1 · hr-1 propofol to maintain anesthesia. After a tracheal cannula was inserted, cats were 

mounted in a stereotaxic device. Paralysis was induced with 6mg and maintained with 0.3 

mg · kg-1 · hr-1 pancuronium bromide through another cannulated forelimb vein. Cats were 

ventilated at the rate of 30 breaths per minute with a mixture of N2O:O2:CO2 

(75:23.5:1.5), and the expired pCO2 was maintained at 3.9%. An 8 × 8 mm craniotomy 

was performed over the area centralis representation in area 17 (Horsley-Clark 

coordinates P4-L2). After the electrode array was inserted, the hole was covered with 

agar mixed in mammalian Ringer’s solution.   

 During recording, we maintained cats’ body temperature at 37.5ºC with a servo-

controlled heat pad. The brain activity and heart rate were monitored with 

electroencephalograms and electrocardiograms to ensure anesthetic stability. 

Phenylephrine hydrochloride (10%) was dropped into both eyes to retract the nictitating 

membranes, and the pupils were dilated with 1% atropine sulfate. The corneas were 

protected by adding contact lenses with 4mm artificial pupils, and auxiliary lenses were 

applied to ensure the eyes were focused on the stimulus plane.   
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Stimulation 

The location of the receptive fields of individual cells was first mapped with rear-

projected light bars, then the center and size of the aggregate area were determined so 

that multiple receptive fields could be simultaneously covered by the visual stimulus. A 

21-inch gamma-corrected Sony Trinitron monitor (mean luminance 73 cd/m2) was 

positioned at a viewing distance of 57 cm to display visual stimuli. The monitor was set 

to a refresh rate of 120 Hz and each frame was presented twice.  

 Visual stimuli were generated with the Winvis for Matlab toolbox (Neurometrics 

Institute, Oakland, CA). We used drifting sinewave gratings with or without perturbation 

of the spatial structure to test how visual neurons modulate their responses and 

synchronization in correspondence with these changes. The unperturbed gratings had 

fixed contrast (50%), spatial frequency (0.5 c/º), and temporal frequency (2Hz), which 

drove nearly all of the cells in our sample. Several values of orientation and direction of 

drift were selected, with each providing simultaneous activation of large numbers of cells.  

We then added spatial noise to the original sinewave gratings to perturb the contour 

integrity of the stimulus. The spatial noise was created by swapping randomly selected 

pairs of areas (3x3 pixels, 0.13 × 0.13 degree2) in the original gratings (Figure 6-1). The 

brightness of each substituted area was uniform and calculated as the average of the 

initial pixel values.  Swapping areas in the original image, as opposed to insertion of 

random levels, avoids changes in the overall luminance distribution. Each swapped pair 

was tagged so that no further swapping would happen in these areas. We chose a fixed set 

of spatial noise levels (all three cats were tested with 10%, 25%, 40% and 55% spatial 

noise, and two cats were also tested with 100% spatial noise), defined by the total  
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Figure 6-1: Visual Stimuli with and without spatial noise (A) The unperturbed stimulus 
is a standard sinewave grating with fixed contrast (50%), spatial frequency (0.5 c/º), and 
temporal frequency (2Hz) drifting at varied orientations. (B) The contour integrity of the 
stimulus is degraded by adding spatial noise at different levels (25% spatial noise here).   
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percentage of swapped areas within the original stimulus, to explore how cells modulated 

their responses to graded deconstruction of spatial integrity.  

 Since spatial reorganization of the stimulus might influence firing rate as well as 

synchrony due to changes in the nominal stimulus orientation, we carefully chose the size 

of the spatial noise elements (dimensions of the swapped areas) so that contour integrity 

could be perturbed without altering the orientation structure of the stimulus. To test 

whether our perturbation procedure has any impact on the effective orientation of the 

stimuli, we tested 34 cells with the original sinewave gratings and the perturbed stimuli 

with 10 – 55% spatial noise displayed across a full range of orientations (15 – 360 

degrees) with a 15 degree increment. The orientation yielding the highest firing rate for 

the original gratings was defined as a cell's intrinsic orientation preference. When the 

gratings were perturbed by adding 10% or 55% of spatial noise in the image, 6 cells had 

peak orientations that deviated from their intrinsic orientation in either condition. When 

25% or 40% of noise was added in the image, 8 cells showed peak deviations of their 

tuning curves. However, all the deviations were within a ±15 degree range. The 

population averaged orientation tuning curves for each stimulus condition show that 

adding spatial noise has little impact on the effective orientation of the stimuli (Figure 6-

2). 

 We tested all cells’ orientation preference with drifting sinewave gratings 

displayed for 2 seconds and repeated 25 times. A one-second blank window was 

interleaved between stimulus presentations to avoid adaptation. After we obtained the 

orientation preferences for cells that showed vigorous responses (≥ 10 spikes/second), we 

combined the unperturbed and the perturbed gratings to create the basic stimulus set.  
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Figure 6-2: The population averaged tuning curves for the original (A) and perturbed 
gratings (B – E) show that adding spatial noise has little impact on the perceived 
orientation of the stimuli, though cells’ response strength drops with spatial noise. Error 
bars represent SEM.          
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Visual stimuli were displayed in random order in a circular aperture (diameter = 10 to 14 

degrees) and each presentation lasted 2 seconds. All stimuli were repeated for 100 to 360 

trials to ensure reliability of the data. Due to experimental time limits, we only tested the 

stimuli at certain orientations (normally 8 to 12) that were able to drive a substantial 

portion of the cell population.  

 

Recording 

Recordings were made with a Cyberkinetics 10 × 10 microelectrode array (4 x 4 mm), 

which was pneumatically inserted to a fixed depth (600 μm) in cat areas 17 and 18 based 

on Horsley-Clark coordinates. We processed the raw neural signals offline with a spike 

sorting procedure to remove noise and artifact (Shoham et al., 2003). In this study, we 

only included channels that recorded single unit activity showing reliable orientation 

selectivity (i.e., firing rate at the preferred orientation was at least twice that at the worst 

orientation).  Reliable measurement of synchrony and coherence requires a strong 

response rate, so we selected cells that have their preferred orientation equal or close to 

the orientation of the visual stimuli (difference between cells’ preferred orientation and 

the orientation of the visual stimulus is equal to or less than 15 degrees). 20, 24, and 23 

cells from three cats were included in our final analysis. All cells we studied were 

classified as complex (Skottun et al., 1991). 

 

Synchrony 

Spike timing synchronization between cells was determined from the cross-correlation 

histogram (CCH), which was derived from the joint peri-stimulus time histogram 
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(JPSTH) (Aertsen et al., 1989). The two-dimensional JPSTH represents the joint spike 

count per unit time (here using a 1 msec binwidth) between a pair of cells. To correct for 

changes in synchrony due to the contribution from the joint elevation of the firing rates, 

the raw JPSTH is normalized by subtracting the cross-product of the peristimulus time 

histograms (PSTHs) and then dividing by the standard deviation of the PSTH predictors. 

This normalization procedure is statistically equivalent to the method of the shift 

predictor (Perkel et al., 1967; Gerstein and Perkel, 1972; Aertsen et al., 1989), except that 

the method of JPSTH produces smoother results since the PSTHs are trial averaged 

results (Aertsen et al., 1989). The normalized CCH is produced by integrating along the 

principle diagonal of the normalized JPSTH. A pair of cells is considered to be firing 

synchronously if a discernible peak appears around 0 msec time lag in the CCH, and 

synchrony is considered significant if the peak value is at least twice the random 

fluctuations or noise in the CCH. We identified a total of 152 cell pairs with significant 

synchrony in our sampled population. The width (about 500msec) of the temporal 

structure in the PSTH reflects the periodic luminance change in the stimuli (Figure 6-3), 

which is much broader than the width (10msec or less) of the central peak on CCH in our 

sampled pairs, indicating that synchrony does not result from covariations in response 

latency and/or excitability (e.g., Brody, 1999ab).  

 

Coherency/Coherence Analysis 

Similar to the cross-correlation analysis, coherency analysis also quantifies the 

synchronization between neural firing but in the frequency domain. Coherency measures 

the frequency dependence between neural spike trains instead of the timing dependence 
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Figure 6-3: Examples of PSTH (A) PSTH of cell 2 responding to unperturbed gratings. 
(B) PSTH of cell 11 responding to unperturbed gratings. 
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addressed by the cross-correlation analysis. The direct procedure of calculating 

coherency is implemented by conducting the Fourier transform of the spike trains to 

compute the power spectra and the cross spectrum of the two processes. Coherency is 

then derived by the following equation: 

12

11 22

( )
( )

( ) ( )
S f

f
S f S f

γ =                                        (6-1) 

in which indices 1 and 2 denote the two different simultaneously recorded neural spike 

trains (Jarvis and Mitra, 2001). Since coherency is a complex quantity, the modulus of 

the coherency, known as coherence, is introduced to quantify the association between 

neural responses in the frequency domain. A windowing procedure is normally applied to 

reduce the leakage error during the Fourier transform.  

 We used the multitaper method to compute the coherence in our study. A distinct 

feature of the multitaper method is that it computes the averaged spectral estimates by 

applying several orthogonal windowing functions, in which windowing is referred as 

tapering to differentiate it from segmentation. The coherence estimate from the multitaper 

method has reduced bias and variance compared to that from the direct estimation 

procedure (Percival and Walden, 1993; Mitra and Pesaran, 1999; Jarvis and Mitra, 2001). 

We used the Chronux package 1.0 (Chronux.org) to calculate the coherence spectra of the 

synchronized cell pairs identified by the JPSTH. Neural spike trains were sampled at a 

rate of 250 Hz, and the coherence spectra were estimated for the frequency range from 2 

to 100 Hz. We applied 5 orthogonal Slepian tapers in calculating the coherence. The 95% 

confidence intervals of the coherence were calculated with the jackknife method, and a 

theoretical 95% confidence limit for the coherence was also estimated with multivariate 
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statistics to determine whether the coherence reaches a significant level (Hannan, 1970; 

Jarvis and Mitra, 2001).  

 

Temporal Dynamics of Synchrony and Coherence 

Two-dimensional plots of CCHs and coherence in a 250 msec moving window were 

produced with 25 msec step resolution. The beginning of the first time window started 0 

msec after stimulus onset. To ensure reliability of the estimation, we only analyzed the 

temporal dynamics of synchrony and coherence in the 74 pairs of cells that were tested 

with 360 stimulus trials. Pre-stimulus CCH and coherence were not included in the study 

since we could not obtain reliable estimates with low spontaneous spike rate (mean = 

4.25 spikes/sec). We consider synchrony and coherence to be stabilized when the values 

of synchrony and coherence first reached 90% of their maximum values along the time 

axis.  

 

Results 

We drifted sinewave gratings with different levels of spatial noise at constant velocities 

to examine how the perturbation of spatial integrity influences the synchronized 

responses in visual neurons. The synchronization between neural firing was estimated 

with the cross-correlation and coherence analyses in the time and frequency domains 

respectively. We identified a total of 152 pairs of cells exhibiting synchronized firing 

from recordings in areas 17 and 18 of three paralyzed and anesthetized adult cats. We 

found that synchrony and coherence systematically dropped when the spatial integrity of 

the stimuli was deconstructed in stages. When coherence was examined, the gamma 
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frequency band appears to be more sensitive to the perturbation of the spatial integrity 

than alpha and beta bands or general spike synchrony. By computing the synchrony and 

coherence with sliding time windows, we discovered that synchrony develops earlier than 

coherence, suggesting that spectrally organized cooperation is a network property.  

 

Neural Synchrony Modulation 

We first measured the correlation between neural responses in the time domain by 

inspecting the shape of the normalized CCHs derived through the JPSTH method 

(Aertsen et al., 1989). A narrow (<10 msec) and discernible peak around 0 msec time lag 

in the normalized CCH indicates that two neurons are firing synchronously while the 

magnitude of the peak can be considered the maximum “effective connectivity”, 

measured as a percentage of all spikes, between the cells. Figure 6-4 shows how 

synchrony is dependent on the integrity of the spatial coherence of the visual stimulus. 

Cells 2 and 11 have the same orientation preference. When stimulated by intact sinewave 

gratings, these two cells showed strong synchrony. Synchrony consistently decreased as 

the spatial integrity of the visual stimulation was systematically perturbed. We examined 

the population behavior by averaging the CCHs (Figure 6-5) and the synchrony values 

(Figure 6-8 A) for all cell pairs (N = 152) that we identified as having significant 

synchrony for unperturbed stimuli. The graded reduction of synchrony across the 

population suggests that the dependence of synchrony on the integrity of spatial structure 

is a general phenomenon in the primary visual cortex.  
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Figure 6-4: Example of synchrony modulation by the perturbation of spatial integrity in 
the stimuli (A) Cells 2 and 11 have the same orientation preference and partly 
overlapping receptive fields. (B) The cross-correlation histogram shows strong synchrony 
from unperturbed sinewave gratings. (C-F) With spatial noise in the stimulus increased 
from 10% to 55%, the strength of the synchrony between these two cells is systematically 
reduced. 
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Figure 6-5: CCHs were averaged across all synchronized cell pairs for stimulus 
conditions with different noise levels (A) Averaged CCH for regular gratings. (B-E) 
Averaged CCHs for perturbed gratings with noise level increased from 10% to 55%. The 
gray areas around the averaged CCHs (black curves) indicate SEM. 
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Coherence Modulation 

We also evaluated the cooperation between neural spike trains in the frequency domain 

by measuring the coherence modulation of synchronized cell pairs as spatial integrity was 

deconstructed. Coherence spectra were calculated with multitaper spectral estimation, 

which not only computes the coherence estimation with reduced bias, but also provides 

variance estimation (Percival and Walden, 1993; Jarvis and Mitra, 2001). Consistent with 

our findings in the time domain, the synchronized neural spike trains also displayed 

correlation in the frequency domain. This finding is not surprising since synchrony and 

coherence analyses are correlated, though they analyze the association between neural 

responses from different perspectives (Zhou et al., 2007). Figure 6-6 shows an example in 

which the coherence between two cells dropped with the deconstruction of spatial 

integrity in the stimulus. We observed that with unperturbed sinewave gratings, the 

coherence spectrum showed two major peaks, one at around 50 Hz and another at around 

10 Hz (Figure 6-6 A). As the spatial noise level in the stimulus increases (Figure 6-6 B-F), 

the spatial integrity systematically decreases although the overall motion of the stimulus 

remains constant. We found that the magnitude of the coherence, especially in the gamma 

frequency band, showed organized reduction. After the spatial integrity of the stimulus 

was totally destroyed by adding 100% spatial noise in the stimulus, only a small amount 

of coherence was preserved in the low frequency band (<10Hz) and the coherence in the 

gamma band totally disappeared. The mean coherence curves for each stimulus condition 

were generated by averaging the data from all synchronized pairs, in which a trial-shifted 

predictor was subtracted to remove the background coherence. The same modulation 

pattern that exhibited in the above example is also seen in the population-averaged 
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coherence results. Coherence showed graded reduction as the spatial noise level in the 

stimulus systematically increased (Figure 6-7). 

 Frien and Eckhorn (2000) reported that, in area V1 of macaque monkeys, the 

spectral coherence of MUA in the range of 35 – 50 Hz depended more strongly on 

stimulus orientation than that in the range of 0 – 12 Hz. Also in Macaque V1, Henrie and 

Shapley (2005) found that, while overall LFP power gradually increases with increased 

stimulus contrast, the gamma band increases differentially more than in other frequency 

bands. These results suggest that differential organization of mechanisms signal different 

spectral components. To explore whether specific frequency bands are differentially 

sensitive to the deconstruction of spatial integrity, we separated trends in the alpha (5 – 

15 Hz), beta (15 – 35 Hz), and gamma bands (35 – 70 Hz) respectively. We quantified 

the total coherence by integrating the area between the coherence curve and the estimated 

95% confidence level at the frequencies where the phase value fell within a range defined 

by time offset of ± 10 msec. The relationship between phase (φ ) and time (t) (Jarvis and 

Mitra, 2001) is defined by:  

( ) 2f ftφ π=                                                                  (2)  

The reason that we specifically limit integration within this phase range is because 

information provided by cooperative neural firing appears to be contained mainly in a 

time window of less than 10 msec (Softky and Koch, 1993; Samonds et al., 2004). The 

integrated values for individual bands (alpha, beta, and gamma) are further normalized by 

dividing the bandwidth of the frequency range so that the relative coherence modulation 

can be directly compared. Figure 6-8 shows the modulation of synchrony, normalized 

coherence in different frequency bands, and mean firing rate corresponding to different  
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Figure 6-6: Example of coherence modulation by the perturbation of spatial structure in 
the stimuli. The black traces in the plots represent the coherence between cells while the 
gray dotted curves above and below represent the 95% confidence intervals of the 
coherence derived from the jack-knifing method. The straight gray dotted line draws the 
theoretical 95% confidence limit for the coherence estimated via multivariate statistics. 
(A) With regular drifting sinwave gratings, the coherence spectrum exhibited prominent 
elevation around 10 and 50 Hz respectively. (B-E) The coherence between cells, 
especially in the gamma band, decreases with the percentage increase of the spatial noise 
level in the image. (F) With 100% drifting spatial noise, the spatial structure of stimulus 
is destroyed while the temporal coherence was maintained. Only a small amount of 
coherence was preserved in the low frequency band (<10 Hz) while gamma coherence 
disappeared completely.  
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Figure 6-7: Coherence averaged across the population (A) Mean coherence for regular 
gratings. (B-E) Mean coherence for perturbed drifting gratings with noise levels 
increased from 10% to 55%. Gray areas around the mean coherence curves (black traces) 
indicate SEM.  
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Figure 6-8: Mean response with different levels of spatial noise (A) Mean synchrony 
values for stimulus conditions with different noise levels. (B) Mean normalized 
integrated coherence in the alpha, beta, and gamma bands for stimulus conditions with 
different noise levels. (C) Mean firing rate for stimulus conditions with different noise 
levels. 
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spatial noise levels. One-way ANOVA testing shows that synchrony, gamma coherence, 

and firing rate, but not alpha and beta coherence, can discriminate between different 

levels of spatial noise (table 6-1). We transformed the means of firing rate, synchrony, 

and gamma band coherence into percentage values so that the response modulation 

between different domains can be compared. For example, the mean firing rate under the 

stimulation of perturbed gratings with 10% spatial noise was transformed by dividing the 

mean firing rate under stimulation by regular gratings, and then multiplied by 100%. 

With this transformation, we found that firing rate, synchrony and gamma band 

coherence reduced to 68.9%, 63.1%, and 32.4% respectively at 55% spatial noise level 

(Figure 6-9). The transformed mean firing rate, synchrony, and gamma coherence were 

individually fitted with linear regression lines. Comparing the slopes between different 

regression lines (Zar, 1999), we found that gamma coherence and synchrony dropped 

significantly faster than firing rate, and gamma coherence also reduced significantly 

faster than synchrony, indicating that gamma coherence is the most sensitive in detecting 

the change of spatial integrity among these three variables (table 6-2). We found that 

coherence in the alpha and beta bands was well maintained at 81.4% and 86.4% even 

when the spatial integrity was dramatically degraded with 55% spatial noise. We suspect 

that the coherence in these low frequency bands is mainly supported by the temporal 

features, such as common fate, in the stimulus. However, we cannot verify this conjecture 

since we did not vary the temporal features of the stimuli used here.  

 Besides modulation of synchrony and coherence by the increase of spatial noise in 

the stimulus, we also noticed a corresponding reduction of firing rate (Figure 6-8 C). 

Removing the contribution of firing rate covariation is necessary before evaluating  
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Figure 6-9: The mean firing rate, synchrony, and normalized integrated gamma 
coherence were transformed to percentage values fitted with linear regression lines for 
direct comparison.  
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Table 6-1: One-way ANOVA test (α = 0.025) shows that 
synchrony, gamma coherence, and firing rate can differentiate 
the different spatial noise levels while coherence in the alpha 
and beta bands cannot tell the difference.   
 

 p Value 

Synchrony 1.53E-009* 

Alpha Coherence 0.33 

Beta Coherence 0.34 

Gamma Coherence 0* 

Firing Rate 3.86E-008* 

* indicates significant p value  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Table 6-2: Two-tailed t-test (α = 0.025), which compares the 
slopes between different regression lines, shows that synchrony 
reduces faster than firing rate while gamma coherence reduces 
faster than both firing rate and synchrony with the increase of 
spatial noise level. 
 

 p Value 

Gamma Coherence – Firing Rate 0.0002* 
 

Synchrony – Firing Rate 0.0179* 

Gamma Coherence -- Synchrony 0.0003* 
 

* indicates significant p value  
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cooperation between neurons. The JPSTH method removes the “chance correlation” by 

subtracting the cross-product of the peristimulus time histograms, which is statistically 

equivalent to shift predictor (Aertsen et al., 1989).  Frequency domain estimators such as 

coherence analysis provide intrinsic normalized measurement of correlation between 

neural responses (Jarvis and Mitra, 2001). Therefore, even though the mean firing rate 

decreased with the progressive reduction of the spatial coherence in the stimuli, the 

changes in synchronization between spike trains, either in the time or frequency domain, 

should not be considered as being induced by the firing rate change.  

 

Evolution of Neural Cooperation 

Even though there is correlation between JPSTH-derived synchrony and coherence, it is 

not clear whether these two quantities reflect the same underlying activity.  This question 

can be addressed by observing how synchrony and coherence between neural responses 

develops over time.  We calculated both synchrony and coherence within a 250 msec 

moving window with 25 msec step resolution throughout the two second duration of 

stimulation. Figure 6-10 shows an example from a cell pair of the 2-dimensional plots for 

temporal evolution of coherence. Strong coherence in both the gamma band and lower 

frequency (<25 Hz) bands results from stimulation with pure sinewave gratings and 

gratings with low distortion (10% or 25% spatial noise added). However, gamma 

coherence is either weak or absent with noisier gratings (40%, 55% spatial noise), 

although the low frequency coherence is less affected. In the population-averaged 2-

dimensional coherence plot (Figure 6-11 B) for pure sinewave grating stimuli, strong 

coherence also appears in the gamma band and the frequency bands lower than 25 Hz. 
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We observed the evolution of coherence and synchrony by finding the maximum 

coherence in the high (gamma) and low (5 – 35 Hz) frequency bands and the maximum 

synchrony along the time axis in the 2-dimensional coherence and synchrony plots 

(Figure 6-11). The averaged result shows that synchrony develops much earlier than 

high-frequency coherence. Synchrony reaches its highest magnitude within the second 

moving time window, which starts 25 msec after stimulus onset, and then gradually 

declines, stabilizing at about 80% of its maximum level after 700 msec (Figure 6-12 A). 

Though all tested cell pairs that demonstrated gamma band coherence surpassed the 95% 

confidence interval for gamma coherence within 300 msec, gamma coherence gradually 

grows to its highest value at around 900 msec and then slightly decays (Figure 6-12 B). 

Across all synchronized pairs, the median time when synchrony reaches 90 percent of the 

highest magnitude is within a 250 msec window starting at 25 msec after stimulus onset 

while the median for that of high-frequency coherence is within a window starting at 575 

msec. Synchrony therefore develops much more quickly than high-frequency coherence, 

and gamma coherence, though obvious early on, continues to develop over most of a 

second.  The temporal dynamics of synchrony and coherence suggest that even though a 

rough impression can be obtained from a quick glimpse, a certain amount of time is 

needed to refine the perceived image. Coherence in the low frequency band (5 – 35 Hz) 

behaves in a complementary fashion to that in gamma band.  The highest level is reached 

at the onset of stimulation and decays thereafter (Figure 6-12 C). We consider that 

coherence in the low frequency band (<25 Hz) is mainly induced by the stimulus onset, 

while gamma coherence develops through internal interaction within the neural network.  
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Figure 6-10: Example of coherence evolution over time (A) Coherogram for stimulation 
with regular sinewave gratings. (B-E) Coherograms for stimulation with noise levels 
from 10 – 55%. (F) Coherogram for 100% noise level. 
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Figure 6-11: (A) Population averaged temporal dynamics of CCH with stimulation of 
regular gratings. (B) Population averaged temporal dynamics of coherence with 
stimulation of regular gratings.    
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Figure 6-12: (A) Evolution of maximum synchrony vs. time. (B) Evolution of maximum 
gamma coherence vs. time. (C) Evolution of maximum coherence in the low frequency 
band (5 – 35 Hz) vs. time. (D) Temporal dynamics of mean firing rate.   
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Discussion 

Here we demonstrate that the correlation between neural responses is influenced by the 

integrity of the spatial structure of the visual stimulus. Synchrony and coherence derived 

from JPSTH analysis and spectral estimation significantly and systematically declined 

when the contour integrity of gratings was deconstructed by increasing spatial noise in 

the image, indicating that synchronization in neural firing can detect modification of 

spatial features. We also found that coherence modulation in the gamma band showed a 

greater loss than in alpha and beta bands as the spatial coherence was reduced, suggesting 

that gamma oscillation is more sensitive than other frequency bands as an indicator of the 

change of spatial integrity in visual stimuli. Compared to the coherence change in the 

gamma band, which decreased by 67.6% with 55% spatial noise in the stimulus, the alpha 

and beta bands only reduced by 18.6% and 13.6% coherence with the same stimulus. We 

also found that alpha and beta coherence were well maintained even after the spatial 

structure in the image was largely destroyed. We thus consider that the lower frequency 

coherence is mainly induced by the basic temporal structure of the stimulus as opposed to 

its spatial representation.  

 

Development of neural cooperation 

The initiation and development of neural cooperation in the visual system remain largely 

unstudied.  Samonds and Bonds (2005) discovered a strong inverse logarithmic 

relationship between synchrony and cells’ response latency differences, implying that 

two cells are more likely to synchronize their responses if their response latencies are 

nearly the same. Fries et al. (2001) found that with similar orientation preferences and 
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overlapping receptive fields, the spontaneous response of cells in cat primary visual 

cortex tends to exhibited correlated fluctuations in response latency and that this 

correlation only occurred when LFPs oscillated in the gamma frequency range. This 

suggests that, during the perception of contours with spatially contiguous structure or 

similar orientations, the coherence of spontaneous excitability fluctuation in certain cells, 

which may originate from either the anatomical connections or short-term synaptic 

plasticity in the pre-stimulus stage, could result in faster binding after stimulus onset.  In 

our analysis, we found that synchrony reached its maximum value within the first tens of 

milliseconds, also suggesting that cell pairs that are synchronized are synchronized by the 

time of their first spikes (Samonds and Bonds, 2005). Unlike spike synchronization in the 

time domain, the frequency dependence between cells develops much more slowly. This 

does not however mean that its availability is delayed.  In 96% of the cell pairs having 

coherence in the gamma band, detectibility of the coherence reached 95% confidence 

limits within 250 msec after stimulus onset, but the average gamma coherence does not 

reach its maximum until around 900 msec (Figure 6-12 B). This suggests that while the 

overall magnitude of neural cooperation in the time and frequency domains are strongly 

correlated, they are governed by two different mechanisms. We believe that spike timing 

synchronization is initially triggered by coherent structure embedded in the visual 

stimulus, while the frequency dependent component of cooperation is supported by 

network interactions.  

Though only a moderate correlation was found between synchrony and gamma 

oscillation, oscillatory coupling may provide a framework that supports the organization 

of synchrony.  Synchrony is maintained with little attenuation throughout the stimulation 
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period if oscillation is apparent, while synchrony decays significantly in the absence of  

oscillation (Samonds and Bonds, 2005).  An in vitro study of pyramidal neurons, which 

have both axons and dendrites extending through multiple layers, shows that back-

propagation of the action potential produced in the axon facilitates the generation of 

calcium action potentials in the dendrite if it coincides with a distal dendritic input within 

a range of several milliseconds (Larkum et al., 1999). This suggests that pyramidal cells 

may act to associate the activities of multiple neurons from which the pyramidal cells 

receive synchronized inputs. The intrinsic oscillatory behavior in pyramidal cells may 

facilitate maintenance of this association. (Silva et al., 1991). It thus seems reasonable to 

conjecture that the pyramidal neurons play an important role in the development of neural 

cooperation. The pyramidal cell detects the coincident firing between neurons, which is 

initiated by the coherent structures in the visual stimulation, and fires action potentials to 

coordinate the firing timing of two correlated neurons. The intrinsic rhythmic firing 

frequency of pyramidal cells, on the other hand, promotes and maintains the 

synchronized oscillation within the correlated neural population.  

 

Neural Synchronization and Perceptual Grouping 

Gestalt theory defines the basic framework for how our brain combines discrete elements 

to create a "whole" object, which is interpreted from the coherent spatial and temporal 

cues (Koffka, 1935). However, the biological mechanisms that support the representation 

and integration of those individually incomplete features through the visual pathway 

remain unclear. In our current study, we have observed that gamma band coherence has 

higher sensitivity than independent firing rate and spike synchrony to the degradation of 
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contour integrity of the stimulus. We also found that coherence modulation in the gamma 

frequency band, but not in the alpha or beta band, is capable of signaling the difference 

between stimulus patterns with different noise levels. Our findings suggest that fast 

frequency association between neurons may play an import role in visual perception, 

such as pattern recognition and contour integration.  
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CHAPTER VII 

 

FUTURE EXPLORATIONS 

 

Examining correlation in neural assemblies larger than two presents two 

significant challenges:  (1) Quantification of multicell correlation and (2) Selection of 

stimuli that are suitable for generation of synchrony in larger groups.   

 

Quantifying correlation in large neural assemblies 

 Correlation between cells is normally studied by CCH analysis in the time domain 

(Perkel et al., 1967; Aertsen et al., 1989) or coherence analysis in the frequency domain 

(Jarvis and Mitra, 2001), but correlation within pairs of cells does not directly predict 

correlation across larger groups.  The representation of synchrony in multicell assemblies 

is confounded by both a quantity and a quality of synchronization due to the large 

number of pairwise interactions. Previous researches have proposed several approaches 

to describe the cooperation within neural assemblies that contain more than two cell 

members. For example, gravitational clustering (Gerstein and Aertsen, 1985; Gerstein et 

al., 1985) maps neural activities into motions of particles in a multidimensional space. 

The number of neurons in the assembly determines the dimensionality of the space, and 

the distances between any two particles are uniform in the initial state. Simultaneous 

neural responses are transformed to particle charges that will proportionally attract other 

particles to create patterns of clustering. Samonds and Bonds (2004) developed a real-

time visualization method that translates the temporal organization of multi-neuron 
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responses into a spatial display, in which the binary firing pattern of individual neurons 

within a cell assembly is converted into decimal numbers representing the group firing 

pattern. However, the results from these two methods are both qualitative instead of 

quantitative, and the gravitational clustering method still focuses on pairwise distance 

calculations.  

 To extend our analysis of the principles governing membership in synchronous 

assemblies to larger populations, we have developed an intuitive and reliable approach to 

detect and quantify synchrony within neural assemblies of arbitrary sizes (Bernard et al., 

2005).  The basic principle of this new method is to reflect the relevance of group 

synchrony to post-synaptic neurons by modeling the temporal summation of postsynaptic 

potentials (PSPs). The steps to implement the algorithm of this method are briefly 

described as follows:  

1. Transforming the point process spike train to create PSP trains by convolving 

each spike with an alpha function (Equation 7-1) which models the general shape 

of PSP (Figure 7-1 A&B). The length of the alpha function can be defined as 10 

msec, since previous researches have shown that the effective temporal 

summation is around 10 msec or less  (Softky and Koch, 1993; Samonds et al., 

2003). 

            (7-1) 
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2. Filtering PSP trains created in step 1 to remove partial or entire waveforms that do 

not overlap with any waveforms from other PSP trains (Figure 7-1 C). 

3. Deriving the raw synchrony by calculating the ratio of the total integrated area in 

the filtered PSP trains to the total integrated area in the original PSP trains. 
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4. Determining the statistical significance. Chance synchrony is derived by 

calculating shift predictor (Perkel et al., 1967) under the null hypothesis that all 

neurons in the assembly are firing independently. More specifically, the score in 

step 3 is recalculated after shifting PSP trains by one or more stimulus trials. A 

student t-test can determine if a raw synchrony score is significant or not after the 

distribution of chance synchrony score being built by deriving multiple shift 

predictors with different trial shifts. 

5. Computing normalized synchrony score by subtracting chance score from raw 

synchrony score.  

 The final group synchrony estimate (normalized synchrony) has a value ranging 

from 0 to 1 while a high normalized score implies strong group correlation with a cell 

assembly. We have compared results from the PSP method with Aertsen’s JPSTH 

method (1989) in calculating pairwise synchrony, and both methods are consistent in 

evaluating synchrony within a pair of cells (Figure 7-2).  

 

Testing synchrony with natural image stimuli 

So far, studies about information representation and processing in visual cortex 

mainly rely on observing neural response to the simulation of artificial images. However, 

the rich structure information contained in natural image stimuli may provide a more 

convincing explanation about how information is encoded in the visual system. For 

example, natural images may provide more effective stimulation in further tests of the 

validity of association field theory. Based on the statistics of natural image scenes and 

psychophysical studies (Field et al., 1993; Geisler et al., 2001), association field theory 
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predicts that contour integration may be implemented by the association between 

orientation-tuned cells dependent on their joint relative orientation and spatial position. In 

Chapter 4, we have shown that synchrony was not simply an issue of matched tuning 

preferences between cell pairs, since with suitable stimulation of curvilinear stimuli, 

some cell pairs with larger orientation preference differences could exhibit more 

synchrony than those with smaller orientation preference differences, and that synchrony 

was not well-correlated with distance between recording sites.  This implies that the 

stimulus configuration may be as important as direct anatomical connections in defining 

correlated activity. This initial examination of association field principles used a limited 

range of curvatures that only offered a match between stimulus and receptive field 

cocircularity in a few cell pairs, substantially decreasing the opportunities for synchrony. 

One of the possible strategies to get a large number of cells with differed orientation 

preferences to synchronize their responses is to test those cells with natural images 

(Figure 7-3), which contain many more comprehensive contour configurations than 

simple artificial images.  

Our prediction is, if synchrony is related to behavioral validation of the 

association field theory (Hess et al., 2003), it will not depend simply on a good spatial 

match between the stimulus and the cell pairs.  Instead, pairs with receptive fields of 

closer proximity will demonstrate synchrony for more similar orientations and pairs with 

receptive fields having wider separation will demonstrate synchrony for larger orientation 

differences.  This simply reflects the shift in orientation along fixed curvatures rather than 

sensitivity to greater or lesser curvature.  The extent to which our results are consistent 

with the association field concept will address whether synchrony in the primary visual 
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cortex plays a part in defining the association field, thus supporting a linking hypothesis.  

This will also contribute to our understanding of the relative roles of temporal coherence 

and architectural constraints in the creation of synchrony.  
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Figure 7-1: Implementing PSP algorithm (A) Spike trains from a cell assembly with 
three neurons. (B) PSP trains created by convolving each spike train with an alpha 
functio
trains. 
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Figure 7-2: Smoothed (5msec moving average window) cross-correlograms for one pair 
of cells constructed by the PSP (top) and JPSTH (bottom) methods. 
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Figure 7-3: The comprehensive spatial configurations in natural image stimulation 
maybe more effective than simple artificial images in driving multiple cells to 
synchronize their responses if the receptive fields (white rectangles in the picture) of cells 
are optimally aligned on correlated contours. The image was obtained from http://www. 
nicisoft.com 
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CHAPTER VIII 

 

CONCLUSIONS 

 

 In this work, I investigated how synchronized neural responses within the cat’s 

striate cortex might influence visual perception. The visual stimuli that were applied in 

my study included not only the classic drifting sinusoid gratings that have been 

extensively employed in studying neural behavior in the primary visual cortex but also 

concentric rings and gratings with systematically deconstructed spatial integrity. We 

found that neural synchronization in lower levels of the cortical visual pathway, i.e. area 

17, may provide the basis for contour integration. We summarized our results as follows: 

1. Cells in areas 17 and 18 dynamically synchronize their responses based on 

incoming visual information. The strength of correlation between neurons is 

dependent not only on the receptive field properties (i.e., orientation preference, 

location) of the cell pairs, but is more importantly determined by the spatial and 

temporal features of visual stimulation.  

2. Neural synchrony is not a trivial phenomenon caused by response modulation. 

Instead, spike timing synchrony and frequency coherence between neural spike 

trains is induced by spatial and temporal structures in a specific stimulus. 

Cooperation between neural responses is restricted within a specific time range, 

i.e. less than 10 msec, which matches that for effective temporal summation of 

synchronized inputs. Perturbing the fine temporal structures in neural responses 
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not only can interrupt association between neural responses but also may cause 

information loss. 

3. Neural synchronization in both the time and frequency domains has different but 

related roles in visual perception.  Fast development of spike timing synchrony 

suggests that synchrony is trigged by the coherent temporal features of visual 

stimulus, while the slow accumulation of frequency coherence, especially in the 

gamma frequency band, implies that frequency association between neurons plays 

important role in recognizing detailed spatial structure of stimulus.   
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