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CHAPTER 1
INTRODUCTION AND BACKGROUND

INTRODUCTION

Medical providers commonly record descriptions of patient encounters and treatments
using free text narratives [1-3]. This method of clinical documentation generates a
historical record that assists with continuity of care and provides justification for
diagnostic tests and therapeutic interventions [4-6]. However, annotating free text to
convert the data it contains into a structured form useful for computational analysis is
expensive [7-9], which limits the use of such data in activities that can improve healthcare,

such as biosurveillance and evaluations of medical practice guidelines.

Natural language processing (NLP) systems can often automate and thus reduce the
expense of extracting structured data from free text, but their use in medicine is still
limited [2, 10, 11]. One reason for this may be that existing NLP systems typically require
modification before they can function reliably within a clinical domain or handle a specific
extraction task. Modifying existing NLP systems generally requires a substantial
investment of time and expertise. Additionally, such systems may depend upon the
availability of significant computational power and time to accurately extract data, which
may limit their use to relatively small-scale operations and processes that are not

dependent on rapid feedback.

This thesis provides background regarding why providers continue to use free text to
describe medical encounters and decisions and the implications of its continued use. It also
explores the literature regarding hurdles that have prevented the wider adoption of NLP
within medicine. Existing NLP-related systems are described as well as how some systems
are addressing barriers to clinical adoption. The thesis framework then describes potential
approaches to overcoming these barriers, and it outlines how the approach was selected
that resulted in the development and implementation of a novel application, the Rapid Text
Annotation Tool (RapTAT). Finally, this work includes two studies evaluating the RapTAT
system and describes features of the system that would benefit from further development

and ones that could prove useful in future applications.



BACKGROUND

Structure versus Unstructured Data Entry

Unstructured and structured data entry represent the two general approaches to
documenting medical care [5, 11]. When electronic health record (EHR) systems use a
fully structured approach, they ensure that data entry complies with specific formats that
are machine readable and interpretable. As an example, such systems might limit the entry
of patient symptoms to items that exist within a pre-defined set of terms. Structured entry
systems may also require the user to supply certain information, such as not only the dose
of a drug but also the duration, name of the provider that ordered the medication, and
justification. This requirement helps to ensure that the data is complete with respect to

the needs for not only continuity of care but also data processing and analysis.

In contrast to structured entry methods, unstructured data entry provides users with
substantial latitude with respect to how best to record patient encounters and care. As
long as the text entered meets legal and clinical requirements, medical providers using
these approaches are free to employ whatever terms, abbreviations and linguistic
constructs they choose. One substantial downside to this method of data entry is that there
often numerous ways to describe even a single medical detail. Use of different synonyms
(cardiac/heart, liver/hepatic), inflections of the same term (sneeze/sneezing, run/ran),
and word order variants in medical phrases provide multiple alternatives for expressing
essentially the same medical concept [12]. For example, there are at least 15 different
phrases that might be used to describe the frequency of administering a drug (Table 1).
Combining the expression of drug frequency with dose and duration further increases the
number of phrase variants that might be used and the complexity associated with
subsequently identifying and extracting the data, which may be further obscured due to the
data being embedded within surrounding text. Further complications arise from
abbreviations and homographic words with multiple meanings (e.g., ‘patient’ as a
description of a personal trait versus a ‘patient’ being treated by a physician). Their use in
medical free text can hinder interpretation, normalization, and mapping of such terms to

standardized medical concepts. As a result, it can be difficult to reliably detect and track



Table 1. Phrase variants used to describe
twice a day drug administration

twice a day twice daily 2X daily
2X per day 2X/d 2x/day
every 12 every twelve
hours hours q12h
bis in die b.i.d. bid
bis die b.d. bd




concepts expressed using such terms. Free text data entry may also increase the potential
for data loss. Without requirements or prompts for data element entry, providers may not

record certain elements and increase the difficulty of analysis and interpretation.

Despite the limitations of unstructured data entry, it does have several advantages over
structured data. One is flexibility, which allows providers to enter data in the form and
order that best matches their clinical workflow. Forcing clinicians to search for the
required entry methods for documenting patient encounters or clinical orders can increase
the cognitive burden associated with clinical care, introduce delays, and thus decrease
efficiency [11, 13-16]. A recent report described the impact on nursing staff of introducing
two EHR systems into 9 different elderly care facilities[16]. The most frequently reported
adverse consequences were difficulty with data entry and/or information retrieval, which
were reported by 43% of the staff. The third most common complaint, reported by 31% of
the staff, was that the systems increased the complexity of managing information.
Unstructured data entry also allows for greater expressivity than structured entry, so the
provider can document subtle aspects of a clinical event, such as the certainty of a clinical
impression. A clinician can also include aspects of an encounter that would otherwise be
difficult to document, such as the reasoning process used to formulate a diagnostic plan.
Until those advantages are matched by structured data entry methods, the use of
unstructured data entry in EHRs is likely to continue and necessitate using manual

annotation or NLP for data extraction.

Role of Natural Language Processing in Clinical Care

A number of existing NLP systems are capable of performing the general task of identifying
concepts within medical narratives and mapping them to standard terminologies or
ontologies, such as the Unified Medical Language System (UMLS) and/or the Systematized
Nomenclature of Medicine - Clinical Terms (SNOMED-CT). Examples of these systems
include HITEx [17], MedLEE [18], MCVS [19], cTAKES [20], KnowledgeMap [21, 22],
MetaMap [23]and YTEX [24] among others. Because of the large number of concept
occurrences that can be automatically identified within medical narratives and recorded by
NLP systems, clinicians could use the data provided by these systems in a variety of ways to

improve medical care, such as detecting novel associations between patient characteristics
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and responses to a therapeutic intervention. Multiple studies have now demonstrated that
NLP is effective for a wide-range of specific clinical uses. Examples include extracting
medication information for visualization and reconciliation [25], as a screening tool for
identifying patients suffering from traumatic injuries [26], automated identification of post-
operative complications [27], automated detection of signs of infection and cases of
influenza for use in biosurveillance [28, 29], quantitation of the use of evidence-based
psychotherapy for treating post-traumatic stress disorder patients within the Department
of Veterans Affairs [30], extraction of clinical decision support information from research
reports included within the PubMed database [31], detection of patients who should be
screened for colorectal cancer [32, 33], and determination of the efficacy of using influenza
vaccines to prevent pneumonia in patients with existing influenza [34]. Given that NLP can
reduce the need for providers to enter only structured data, NLP might also reduce barriers
to adoption of EHR systems. In fact, sixteen years ago, McDonald identified two key
reasons for lack of greater adoption, and one of the two was “we have not quite figured out
how to capture the data from the physician in a structured and computer understandable

form [14].”

Barriers to Clinical Adoption of NLP

Despite the great promise of NLP with regard to converting unstructured medical free text
to structured data, its overall clinical usage remains limited [35]. Even when used, the
functionality of NLP has typically been focused on rather specific tasks, some of which are
noted above. Identifying the barriers to usage and developing methods to overcome them
could increase the use of NLP, which could, in turn, increase the availability of data for
evaluating and improving medical care. Chapman and colleagues identified a number of
potential reasons for the slow adaptation of NLP for clinical use [10]. One of the possible
barriers noted was the difficulty in reproducing results generated by a system in a
particular domain or institution. NLP systems commonly consist of manually generated
rules and/or statistical models generated based on machine learning [12]. Tailoring these
rules and statistical models to perform well on training data can lead to over-fitting, and
such systems may not perform well on test data or generalize to other medical domains or

institutions. Adapting an existing NLP system to a new task may even require developing



novel NLP applications or iterative modification of the existing algorithms to match the
document types under review and the environment [10, 33, 36, 37]. Furthermore, medical
care, terminology, and patient populations are not static but evolve over time, and
maintaining system accuracy over time may require system testing along with rule

modification and re-training.

Limited system scalability may also reduce clinical adoption. NLP systems are commonly
used for automating tasks and providing more rapid or less costly analysis than provided
by manual review of free text. However, the demands of a large healthcare system may
exceed the spatial and temporal capabilities of NLP systems that have been generated for
academic studies with corpora of limited size. Data from a large health system, such as the
Veterans Health Administration (VHA), can provide an appreciation of the potential scale
required. Within the Veterans Health Administration in 2012, there were 83.6 million
outpatient visits and 703,500 inpatient admissions with an average length of stay of 5.2
days [38, 39]. Assuming that the number of documents directly related to medical care
generated by each outpatient visit or day of inpatient care is four (a bare minimum), there
are at least 334 million medical care documents generated per year in the VHA, or roughly
1 million documents per day. MedLEE, one of the first and most extensive clinical NLP
systems [40], was reported to require approximately 8 seconds to process a discharge
summary and 0.4 seconds to process a radiology report [18]. Assuming an average
processing time of 4.2 seconds, a single NLP system such as MedLEE could analyze
approximately 20,000 documents per day. Parallelization may assist with the need for
faster throughput, and there are open source software frameworks that can assist in the
creation of parallel pipelines for NLP processing, such as the Unstructured Information
Management Architecture (UIMA) [41] and the General Architecture for Text Engineering
(GATE) [42, 43] systems. However, although such systems do allow for simultaneous
processing of multiple documents, they do not address clinical use cases that may require
real- or near-real-time NLP processing and feedback. Examples include analysis of free text
and feedback at the point of care regarding medication errors or contraindications and

notification of untreated incidental findings.

Although generalizability, adaptability, and scalability are important factors affecting the
clinical use of NLP, the greatest barrier may be the size and technical proficiency of the
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team required for implementation [10]. Despite the availability of NLP frameworks such as
GATE and UIMA to assist with the creation of new and better tools, use of these tools still
requires advanced computer programming skills [12]. Also, tailoring an existing NLP
system to perform optimally within a specific medical facility or field often calls for
substantial linguistic expertise and domain knowledge. This is a critical barrier because a
key ingredient needed for successful integration of a new EHR system or module is the
presence of a respected and technologically knowledgeable clinician, a “champion,” who
can spearhead the adoption [44-46]. This individual can provide a model for other
clinicians regarding the initial and continued operation of the system and the potential
benefits. Given the complexity of designing and adapting an NLP tool for use within an
EHR system, identifying a clinician with the technical expertise and commitment needed to

lead the implementation process may be difficult.

Need for Improved Text Annotation Tools

As the above discussion indicates, a tool that assists in adapting NLP systems to new
domains would provide clinicians greater access to the advantages provided by these
systems. This thesis describes and evaluates a tool developed to assist with a critical
aspect of the adaptation process, namely the generation of training and testing data. The
limited availability of such data can be a substantial hurdle to system development [9, 10].
A training or test corpus generally consists of hundreds to thousands of documents from
the medical domain of interest in which the concepts of interest occurring within each
document have been identified or “annotated.” During creation of an NLP system,
developers use the annotated documents for generating rules for concept identification or
training the systems to identify concepts based on probabilistic algorithms. It is critical
that the annotations be accurate in order to produce a worthwhile NLP system. However,
creation of precisely annotated corpora is costly, particularly for clinical documents; it
generally requires manual review by annotators familiar enough with the medical domain
to identify the concepts of interest [47, 48]. Each annotator must examine all free text
within each document in the corpus, identify the sequences of free text that relate to a
concept of interest, and classify the sequence according to its associated concept. To
produce the corpus generally involves three independent reviewers. Two reviewers act as

annotators, and the third adjudicates any disagreements between the two.
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A technique that can reduce annotation cost is pre-annotation [7, 49-51]. This approach
employs an automated method to identify likely annotations prior to manual review, and it
can reduce the work of a manual reviewer by decreasing the time spent searching for
phrases or mapping them to concepts [50, 51]. The task of an annotator using this
approach consists largely of removing incorrect and adding missing pre-annotations.
However, there are potential downsides. The presence of numerous incorrect pre-
annotations may increase rather than decrease the total workload of a reviewer. Also, pre-

annotations may bias a reviewer by influencing the phrases chosen for annotation.

This thesis focuses on generating a system that reduces the burden of annotation by
automatically adding pre-annotations without introducing bias and evaluates system
performance in terms of accuracy and introduction of bias. The system to be described
accomplishes pre-annotation through the use of a technique commonly referred to as
interactive machine learning (IML). Generating training samples, such as annotated
documents in the case of NLP, for machine learning system tends to be costly, and the
general goal of interactive learning is to reduce the cost by either reducing the number of
samples needed for training or decreasing the time required to annotate a corpus of given
size. The process is interactive in that, unlike other forms of machine learning, the human

user provides feedback to the machine learning system throughout training.

Two major categories of interactive machine learning are active learning and online
learning, and the tool described in this thesis employs an online and not an active form of
interactive machine learning. The reason for this is that the aim of active learning is
generally to reduce the number of samples needed to produce a trained system. The
system itself actively selects the next training sample to be manually labeled. One active
learning strategy is to select the sample that, once labeled, will be most informative and
thus provide the greatest increase in machine learning system accuracy [52]. The goal of
the tool described herein is not to reduce sample size but to reduce the time and associated
cost of annotating a document corpus of a given size, which can then be used to train
external NLP systems. In contrast to active learning, online learning provides a way to
reduce the time required to annotate a training corpus of set size. The approach is referred
to as online because the training samples are provided sequentially, and the machine

learning system updates its learning algorithms after the user supplies each training
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sample. When using conventional machine learning, training samples are provided as a
batch; the training process is separate and occurs “offline,” after generating all samples
used for training. The reason for hypothesizing that online learning may reduce annotation
time is that the process can gradually train a system to predict how a reviewer will
annotate. The process involves the system pre-annotating a document based on the
training it has received up to that point, submitting the document to the annotator for
review and correction, and then using the corrected annotations for further system training.
This process gradually shifts the task of the reviewer from one of pure manual annotation
to one of review and correction. This thesis will test both whether that review and
correction process can reduce the time taken for annotation, and evaluate whether the pre-
annotations provided by the system training influence the annotations selected by the

reviewer.
OVERVIEW OF INCLUDED STUDIES

During design of the assisted annotation system described in this thesis, we recognized that
pre-annotation by a machine learning system consists of two essential steps. The first step
is to identify stretches of free text or “phrases” that the manual reviewer is likely to
annotate. We refer to this step as “phrase identification.” The second step is to determine
the concept to which that phrase corresponds. We refer to this step as “concept mapping,”
and it is equivalent to a process referred to as concept recognition, normalization, or
grounding in NLP systems [53-55]. Multiple NLP systems have been developed that are
capable of concept mapping of clinical text [12]; examples include the Mayo Clinic
Autocoder [56], the SNOMED Categorizer (SNOCat) [57], cTAKES [20], IndexFinder [58],
KnowledgeMap [21], MedLEE [59], HITex [17], MedEx [60], MetaMap [23], Metaphrase
[61], MicroMeSH [62], MTERMS [63], PhraseX [64], SAPHIRE [65], and SENSE [66]. These
tools map phrases into a variety of user-defined lexicons, terminologies, and ontologies. In
the studies supporting this thesis, we describe an alternative system that can support
online machine learning and optimize the mapping of concepts within a given domain to an

existing terminology or user-defined schema.

We will present the topics of phrase identification and concept mapping in this thesis in an

order that is the reverse of that carried out during pre-annotation. The reason for
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presenting these two topics in this order is that it was more straightforward to first
develop concept-mapping methods using pre-defined phrases mapped to concepts; the
order of presentation mirrors chronology of development. We will first describe our
efforts to generate and evaluate a system that can be interactively trained to accurately
map existing free text phrases to various concepts of interest contained within a set of
defined concepts. This concept mapping system was then combined with a phrase
identification system to generate a complete, machine-learning based pre-annotation
system, and that system and its performance with regard to an assisted annotation task will

be described and evaluated.
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CHAPTER 2
CONCEPT MAPPING WITH RapTAT

BACKGROUND

Multiple computational models exist to support machine learning, including support vector
machines (SVMs), logistic regression, neural networks, and Bayesian networks among
others. All of these models use a set of features to make a prediction regarding an outcome.
In this study, we were interested in predicting the likelihood of a particular concept
mapping given a set of features consisting of a sequence of words that form a textual
phrase. We used one type of Bayesian network, the naive Bayes classifier, as our machine
learning method. Many of the concept recognition tools described in the previous chapter
have relied on matching of text strings to descriptions within an existing database of
concepts [21, 23, 58,59, 61, 62, 64-66]. A number of rules hand-coded within these
systems were then applied to features within the text to select from among the set of
matched concepts. One limitation of these approaches is that specific rules and identified
features helpful in classifying text in one domain may not be generalizable to other
domains. Another is that string matching within large databases can slow analyses and

prevent the use of NLP systems for real-time analyses [67].

Probability-based, machine learning methods may provide a way to generate phrase-to-
concept mappers tailored to the domain of interest. To the best of our knowledge, only two
tools have been described that use probabilistic rather than a largely rule-based approach
to map free text to medical concepts [57, 68]. The SNOCat tool combines regular
expression searches and a vector space model based on term frequency and inverse
document frequency to label free text with SNOMED CT concepts [57]. The Autocoder tool
uses a database of previous classifications together with a naive Bayes classifier for medical
concept recognition; it maps lists of clinical diagnoses to codes within an ICD-8 based
coding system [68]. The implementation treats text as a “bag-of-words” with respect to
token frequency and disregards token position. Such an approach could remove important
classification information and reduce accuracy. Naive Bayes classifiers rely on conditional
probability distributions of tokens given a particular classification, and those distributions

may be position dependent. We therefore included in our concept mapping system not just
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the tokens themselves but also their positions within a phrase of text as part of the machine

learning process. We refer to this system as a token-order-specific naive Bayes model.

An advantage to using a token-order-specific, naive Bayes model for mapping is that there
are only modest computational demands relative to other machine learning methods. Like
the bag-of-words naive Bayes classifier, the token-order-specific naive Bayes classifier is
based on the simplifying assumption that the tokens in a phrase of text are conditionally
independent. In other words, if a phrase is used to express particular concept, the presence
of a particular token in the phrase does not alter the probability of any other token
occurring in the phrase. Given that the tokens are conditionally independent, a system
trying to map phrases of text to concepts based on tokens alone does not need to store joint
probabilities reflecting the likelihood of two or more tokens occurring in the same phrase.
Storing such probabilities would increase spatial demands and could become intractable
for corpora with large vocabularies. Under the assumption of independence, the system
only needs to store the probabilities of individual tokens in the training corpus occurring in
phrases mapped to a particular concept. This assumption thus reduces the spatial
requirements for calculating the most likely concept associated with a given phrase. The
spatial efficiency afforded by this approach should also improve temporal efficiency.
Probabilities can be stored in rapidly accessible, computer memory, potentially capable of

supporting real-time concept mapping.

This first study describes the initial development and evaluation of the concept mapping
part of the RapTAT. We hypothesized that machine learning based on a token-order-
specific, naive Bayes classifier could be used to create a system capable of accurately and
efficiently mapping phrases within free text to medical concepts. This study determines
the impact of including token order as a feature on the ability of a machine learning system
to accurately reproduce the phrase-to-concept mappings of an existing NLP system from
discharge summaries to SNOMED concepts. Specifically, it compares the performance of
this token-order-specific classifier relative to a bag-of-words-based, naive Bayes classifier,
and it defines the impact of phrase variability and concept ambiguity on performance.
Furthermore, the study evaluates the accuracy and temporal efficiency of this
implementation relative to a more basic system that maps phrases of text to concept-based

string look-ups within a disk-based database. Finally, the dataset from the 2010 i2b2
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challenge is employed to evaluate the ability of the system to map manually annotated

phrases within clinical notes to user-defined concepts.

METHODS
Sampling and Population

The main document corpus, subsequently referred to as the VA data set, was a random
sample of 2860 discharge summaries collected between fiscal years 1999 and 2006 within
the Tennessee Valley Healthcare System (TVHS) VA Hospital. The TVHS institutional
review board and research and development committee approved the study and granted a
waiver regarding the need to obtain informed consent and HIPAA authorization before
using patient data. The document corpus had been previously annotated using the Multi-
threaded Clinical Vocabulary Server (MCVS) NLP tool to identify noun, verb, adjective, and
prepositional phrases and map them to concepts within SNOMED CT [27]. For the named
entity recognition part of the task, MCVS gives preference to concepts within SNOMED CT
that contain a greater number of content terms (i.e., non-stop words). The method uses
word normalization, word and term level synonymy and a word order independent
method for concept recognition. Phrase identification is based on a set of heuristics that
use concept type as a method to perform a set of rule based combinatorial algorithms. The
technique is a backward and forward chaining algorithm and takes into account the
assertion value of the concept. An earlier report using a predecessor of the MCVS tool
demonstrated that, after accounting for missing synonyms within SNOMED CT, its
sensitivity and specificity were 0.997 and 0.979, respectively, for the mapping of entries
within a clinical problem list to the ontology [19]. In a study examining the ability of MCVS
to detect symptoms related to tuberculosis, acute hepatitis, and influenza within VA clinical
notes, precision and recall over all symptoms evaluated were 0.91 and 0.84, respectively

[29].

The MCVS tool was responsible for all pre-processing of the free text, including document
parsing, sentence splitting, tokenization, and identification of phrases, which were then
mapped to SNOMED CT concepts by MCVS. For the purposes of this study, we defined a

phrase as an ordered sequence of tokens formulated by the author of a medical note to
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express a concept. Tokens were generally words but also included other elements such as
numbers, units of measurements, and dosages [19, 69]. The MCVS-processed data were
provided to RapTAT as an idealized set of phrase-to-SNOMED CT concept mappings for tool
development and testing. The aims for this part of the study were to evaluate the ability of
RapTAT to learn to reproduce the MCVS mappings and to determine the factors that can

affect tool performance.

All sequences were limited to a maximum of 7 tokens, the maximum phrase length
identified by MCVS. All token characters were converted to lower case for training and
evaluation. There were 567,520 phrases (22,994 unique) within the document corpus, and
each phrase was mapped to one of 12,056 unique concepts by the MCVS tool. These
annotated documents provided a working environment for training and evaluation of
RapTAT, and the phrase-to-SNOMED CT concept mappings generated by the MCVS tool
served as the reference standard for the purposes of this study. The data were stored in
comma-separated value (CSV) files with each row containing a single phrase and the

associated MCVS-mapped concept.

The study also used the data available from the 2010 i2b2 challenge for evaluating the
performance of the RapTAT tool with regard to its ability to map manually annotated
phrases to concepts within a defined schema [70]. The annotated corpus consisted of
discharge summaries and progress notes from 3 institutions, University of Pittsburgh
Medical Center, Beth Israel Deaconess Medical Center, and Partners Healthcare. The
schema contained three concepts (problem, test, and treatment), and all annotated phrases
were mapped to one of those three. The training corpus contained 170 documents, and
16,526 phrases within the corpus were manually annotated and mapped to one of the
schema concepts. The test corpus contained 256 documents, and the i2b2 reviewers had
mapped 31,162 phrases from that corpus to the schema concepts. RapTAT performance on
the test set was evaluated with respect to how closely its mapping of phrases to one of the
three i2b2 concepts matched those determined by the i2b2 organization. The assertion
and relation classifications of the phrases, which were provided with the i2b2 training and

test data, were not used in our study.
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Machine Learning Algorithm

We used the Java programming language to generate both bag-of-words based and token-
order-specific, naive Bayes classifiers for mapping free-text phrases to SNOMED CT
concepts within the RapTAT application. The system first imported the MCVS-determined
phrase-to-concept mappings to establish both prior and conditional probabilities, which
were then used to identify the most likely phrase-to-concept mapping within the test data.
Prior probabilities for the classifier were determined based on the frequency of concept
occurrences within the training data. Conditional probabilities were calculated based on
the likelihood of a given token occurring within a phrase given a particular concept. In the
case of the token-order-specific implementation, the RapTAT tool generated a separate
conditional probability table for each of the 7 potential token positions within a phrase
during training. For the bag-of-words, tokens from all positions within a phrase were used

to generate a single distribution.

By treating the probability of a particular token as independent of the occurrence of all
other tokens in a phrase, we were able to use the naive Bayes equation to generate the
likelihood estimate, P, of the tokens mapping to a given concept, Ci [71]. The form of that

equation is
P(Cy) PTIC)
P(T)

P(GT) =

where T represents the vector of tokens that make up the phrase. Using this equation
reduces the task of the system to identifying the particular concept, Ci, which maximizes the
right side of the equation. For a given phrase, the denominator, P(T), is constant, so that
only the numerator needs to be considered when determining the most likely token

sequence to concept mapping. For the bag-of-words classifier,
n
. xj
P(ricy = | [P« [1-P(Ty)]” @
j=1

where n is the number of unique tokens over all phrases, and x; is one if token Tj occurs in
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the phrase and zero otherwise [72]. The estimate of P(Tj) is given by

Occurrences of Token T; within Sequence Mapping to C;

P(Ty;) = (3)

Occurrences of C;
The token-order-specific implementation corresponds to a multinomial naive Bayes model
in which positions within a mapped token sequence represent features, and the tokens
represent the assigned values of the features. For that model, the conditional probability of

the phrase T of length m is
P(T|C;) = P(Tij1)  P(Tixz) * -+ * P(Titm) (4)

where P(Tjx) is estimated as

Occurrences of Token T; at Position k when Sequence Maps to C;
P(Tij) = J L 5)
ik Occurrences of C;

One difficulty with using Bayes equation is that conditional probabilities can be zero for
rare tokens absent from the training data. We therefore used Laplace smoothing to adjust

all probabilities [73].

Hash tables stored the number of times each token was associated with a concept within
the training data. In the case of the token-order-specific implementation, there was a
separate hash table for each of the 7 potential positions of tokens within a phrase. For
example, if the phrase “acute myocardial ischemia” occurred in the test data, RapTAT
would use “acute” as a key for the hash table corresponding to the first position in a token
phrase. The key would return a set containing all concepts for which acute was the first
word in a phrase mapping to one of the concepts. Within the set, each concept would be
associated with an integer indicating the number of times a phrase mapped to that concept
and contained “acute” as the first token. All input and output data and the data structures

used by the tool were maintained in random access memory during processing.

The RapTAT application is available at http://code.google.com/p/raptat/. RapTAT was
developed independently and does not contain source code of any form from MCVS or
other NLP system. The data structures generated based on the MCVS annotated text were

created only for the purposes of testing and evaluation of the RapTAT tool. Those data
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structures contain potentially identifiable patient health information and cannot be

distributed or reused.

Evaluation Measures

Performance was based on the number of true positives (TP), false negatives (FN), and
false positives (FP). A TP was attributed to a concept when both the RapTAT system and
the reference standard mapped a phrase to that exact same concept. When RapTAT
mapped the phrase to a different concept than the one identified by the reference standard,
a FP was attributed to the RapTAT concept. A FN was attributed to the reference concept
when RapTAT was unable to map the phrase or identified a concept different from the
reference standard. The tool itself scored TPs, FPs, and FNs and calculated precision,

recall, and F-measure according to the equations
Precision =TP / (TP + FP) (6)
Recall =TP / (TP + FN) (7)
F-Measure = 2 o Precision » Recall / (Precision + Recall) (8)

For determining the accuracy and efficiency of string matching-based concept mapping, we
generated a separate Java tool to sequentially match each of 290,741 randomly selected
token sequences from our experimental data to terms in the MCVS SNOMED CT database.
The tool used repeated SQL queries for matching phrase strings to terms, and phrases and
their matched concepts were cached in memory during processing. Memory caching
consisted of dynamically building a hash table mapping each phrase used in a SQL query to
the identified concept. This improved the processing rate by eliminating repeated SQL
queries on the same phrase; the more efficient hashing process was used if the phrase
reoccurred in the data. Matching was carried out using both approximate and exact string
matching. Approximate matching was carried out by placing wildcard characters (“%”) at
the beginning and end of each evaluated phrase. Queries were of the form “SELECT ‘id’
FROM ‘db_table’ WHERE ‘name’ LIKE ‘phrase’,” where ‘id’ referred to the SNOMED concept
identifier, ‘db_table’ was a table in a local database in which SNOMED concept identifiers
(‘id’) and fully qualified names of the concepts (‘name’) were columns in the table, and

‘phrase’ was one of the phrases identified by MCVS. When multiple concepts were
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returned from a query, only the first one was retained and tested for correspondence to the

reference standard.
Primary Analysis

We used bootstrap evaluation to estimate precision, recall, and F-measure of the RapTAT-
generated phrase-to-concept mappings over the entire, 2860 document corpus. The
evaluation method was automated by the RapTAT system and implemented consistent
with bootstrapping methods used in risk prediction modeling [74]. The analysis consisted
of 1000 training and testing iterations, and each iteration began with creation of a training
set generated by random sampling with the sample size equal to the original number of
documents. Sampling was done with replacement; selected documents could be chosen
more than once, and each training set might contain 0, 1, or multiple copies of a single
document (and its associated phrases and concepts). The system did not include phrase-
concept associations from previous iterations in the probability calculations. Estimated

performance (Perfgs:) with respect to precision, recall, and F-measure was calculated as

PerfEst = Perprp — Opt (9)

where Perfypp referred to apparent performance on the entire data set when trained on the
entire data set. Optimism (Opt) represents the degree to which Perfa,, overestimates
performance when training and testing are done on the same data set. It is calculated by
training on the bootstrap set and then measuring the difference in performance, averaged
for each concept across all iterations, when testing is done on the bootstrap versus the
entire data set. In the case of concepts with low prevalence, the training set may have
limited or no training on which to base concept mapping. Under these conditions, TP and
FP may both be zero so that precision is undefined, or TP and FN may both be zero so that
recall is undefined. When this occurs for a given iteration, there is no calculable estimate
for optimism. Based on a similar situation that can happen during cross-validation, we
evaluated three different approaches for handling this issue during bootstrapping: 1) skip
the iteration and do not include it in the calculation for the concept; 2) assume optimism is
zero; and 3) assume optimism is one [75]. In addition, because cross-validation is more
commonly used than bootstrapping for estimating the accuracy of machine learning-based

models, we compared the performance measures estimated using bootstrapping to values
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obtained using “leave one out” cross-validation. The leave one out evaluation consisted of
an iterative process, using one of the documents in the corpus for testing and the remaining
documents for training. This was done iteratively until every document had been used
once for testing. To minimize bias in the estimated performance measures, TP, FP, and FN
were summed over all iterations to give a total precision, recall, and F-measure for each

concept [75].

Concepts included in the study were grouped within each of the top-level concepts within
the SNOMED CT ontology [75] (Table 2). These top-level concepts form the roots of 19
hierarchical trees within SNOMED CT, and we refer to these as ‘conceptual groups.” The
grouping was done to illustrate general system performance over the many concepts
present in the corpus while still allowing for detection of performance differences among
groups. Macro-averages were generated by taking the average performance score for each
concept determined by bootstrapping and calculating the ‘average of the averages’ for all
concepts within a conceptual group, so both rare and commonly occurring concepts

contributed equally.
Evaluation of Performance on i2b2 Data

The phrase tokens within the i2b2 data underwent additional processing before training of
RapTAT. Initial pre-processing consisted of phrase tokenization, retention of only the first
7 tokens for each phrase, and conversion of all characters to lower case. Subsequent pre-

processing consisted of tagging tokens with their parts-of-speech (POS tagging), removal of

nn »n o n «

stop words (“a,” “an,” "and,” “by,” “for,” “in,” “nos,” “of,” “on,” “the,” “to,” and “with”), token
lemmatization, and/or inversion of token order. The influence of each of these pre-
processing steps with regard to F-measure of the tool using each of these pre-processing
steps was evaluated using the training set and bootstrapping as described above. The
combination of steps that produced the highest F-measure was used for pre-processing

tokens within the test set.

Tokenization and POS tagging was carried using the OpenNLP libraries (Apache Software
Foundation) and trained maximum entropy POS tagger. Lemmatization, which converts

multiple inflections of a word into a single form, such as the conversion of the both “runs”
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Table 2. Macro-averaged precision, recall, and F-measure for mapping phrases to
conceptual groups within SNOMED-CT using a token-order-specific classifier. The
averages are calculated using only concepts that appeared 5 or more times in the

corpus.
SNOMED CT Concepts Phrases Macro-Averaged Performance
Conceptual Within Within (95 % Confidence Interval)
Group Group Group Precision Recall ‘ F-Measure
Body Structure 350 24365 CREE, 0.93 LR
(0.92-0.96)  (0.91-0.95)  (0.90-0.94)
Clinical Finding 724 34147 0.95 0.95 0.94
(0.94-0.96)  (0.94-0.96)  (0.93-0.95)
e 10 367 1.00 0.92 0.95
(1.00-1.00)  (0.87-0.97)  (0.92-0.98)
Linkage Concept 114 33759 0.95 0.95 0.94
(0.91-0.98)  (0.91-0.98)  (0.90-0.98)
Location 40 7536 ULk — Uk
(0.95-1.00)  (0.99-1.00)  (0.97-1.00)
Observable Entity 158 9242 0.95 0.96 0.95
(0.94-0.97)  (0.93-0.98)  (0.92-0.97)
Organism 26 523 0.92 0.94 0.92
(0.83-1.00)  (0.85-1.00)  (0.84-1.00)
Physical Force 4 423 1.00 0.97 0.98
(0.99-1.00)  (0.87-1.00)  (0.93-1.00)
Physical Object 106 4155 0.96 0.96 0.96
(0.94-0.99)  (0.94-0.98)  (0.94-0.98)
Procedure 397 23570 0.96 0.96 0.95
(0.95-0.97)  (0.95-0.97)  (0.94-0.96)
Product 203 7227 oLl oLl 0.96
(0.95-0.99)  (0.95-0.99)  (0.95-0.98)
Qualifier Value 902 108619 0.96 0.94 0.94
(0.95-0.97)  (0.93-0.96)  (0.93-0.96)
Record Artifact 6 758 1.00 1.00 1.00
(1.00-1.00)  (0.99-1.00)  (1.00-1.00)
Situation 27 1090 0.98 0.91 0.93
(0.95-1.00)  (0.87-0.95)  (0.91-0.96)
Social Context 62 13606 S o S
(0.93-1.00)  (0.94-1.00)  (0.93-1.00)
Special Concept 2 203 0.98 1.00 0.99
(0.72-1.00)  (1.00-1.00)  (0.85-1.00)
Specimen 3 3936 1.00 0.99 0.99
(1.00-1.00)  (0.96-1.00)  (0.98-1.00)
Staging & Scales 3 51 0.99 0.95 0.97
(0.97-1.00)  (0.77-1.00)  (0.86-1.00)
Substance 165 5511 0.95 0.95 0.95
(0.92-0.98)  (0.92-0.98)  (0.92-0.97)
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and “ran” to “run”, was carried out using the lexical variant generator (LVG) library from
the National Library of Medicine [76], Token order inversion consisted of putting the
tokens into the hash tables used for probability calculations in reverse order. The last
token in an English phrase commonly constitutes the “headword” of the phrase and may
strongly influence phrase interpretation [77]. We therefore hypothesized that inverting
token order might improve mapping performance by aligning phrases along the last token.
For example, without inversion, “acute” and “ischemia” would go into the two hash tables
corresponding to positions one and two during training. When testing the system on a
phrase such as “chronic myocardial ischemia,” the previous occurrence of the token
“ischemia” in the second position would not directly influence the likelihood of the tested
phrase mapping to the same concept as “acute ischemia” because of differences in position
of “ischemia” in the two phrases. In contrast, if the two phrases were inverted, “ischemia”

would be the first token in both.

Learning, Training, and Mapping Rates

To evaluate the learning rate of the system, we randomly divided the original VA corpus
into training and test set with 50% of the documents. The tool was first trained using 12
random subsets ranging in size from 100 phrases to the full training set of 283,760
phrases ; precision, recall and F-measure were determined on the entire test set after
training on each data subset. To minimize the bias introduced when concepts within the
test set are absent from the training set, performance was measured based on the total TP,
FP, and FN concept matches summed over all concepts [75]. Evaluation of system speed
(phrases processed per second) was accomplished using the same training and test sets.
Both training and testing consisted of the system sequentially reading in and processing
each row of data from the CSV data file, and the system reported the time to complete every
10,000 rows. We also evaluated the speed of the SQL query-based, string-matching
application. For all speed evaluations, text processing did not include tokenization, POS

tagging, lemmatization, or token order inversion.

All training and testing of the RapTAT system and baseline evaluation were run using a
standard desktop personal computer containing 1.98 GB of RAM, an Intel Core 2 Duo
processor running at 2.99 GHz, and a 7200 RPM hard drive with a SATA-300 interface. The
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operating system was Windows XP Professional with Service Pack 3. The SQL database
used for string matching was created using Microsoft SQL Server 2008 maintained on a
server containing 11.9 GB of RAM and Intel Xeon CPU running at 2.66 GHz with the
Microsoft Windows Server 2003 R2 operating system. The server database was
maintained on an array of fifteen, 450 GB, 15K RPM hard drives maintained in a RAID5
configuration. The SQL table used for querying was sorted and indexed using clustering
based on the SNOMED CT term. The application accessed the server through the local VA

intranet.
Phrase Variance Analysis and Concept Ambiguity

To examine the impact of variations in the set of tokens mapping to a given concept on the
corresponding F-measure, phrase variance for each concept was quantified using the index

of qualitative variation, IQV, defined as

v= ——e(1-3p2| o)
K-1 i=1 l

where K is the number of unique phrases mapping to a given concept, and p; is the

proportion of phrases that map to a given concept accounted for by the ith phrase [78].

The IQV provides a measure of the variability of the phrases mapping to a single concept. It
reaches a maximal value of one when the phrases mapping to a given concept are evenly
distributed among two or more possibilities; its value approaches zero for a concept
associated almost exclusively with a single phrase. The IQV is undefined when K is one, so
concepts corresponding to a single, unique phrase (2957) were not included in the phrase

variance analyses.

We define and computed a measure of “concept ambiguity” to formalize the relationship
between mapping uncertainty and tool performance as well as the impact of classifier type
on that relationship. This measure quantifies the uncertainty associated with phrase-to-
concept mapping due to the use of the same token among phrases used to express distinct
concepts. For some phrases, the tokens themselves and/or their sequence may uniquely
identify a concept. For example, MCVS mapped the single token phrase, “keflex,” to a single

SNOMED CT concept, cephalexin (product). Training a system like RapTAT to accurately
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reproduce such a mapping is trivial. In contrast, when two or more concepts employ the
same tokens for expression, the probability of mapping a given token sequence to a
particular concept may be greater than zero for multiple candidate concepts, resulting in
greater mapping uncertainty. For example, “abdominal” was a token in the phrases

»” «

“abdominal hernia,” “abdominal distention,” and “left lower abdominal quadrant” as well as
a number of others within our VA document corpus, and each of those phrases was mapped

to a different SNOMED CT concept within the MCVS reference standard.

To quantify concept ambiguity (Appendix A), we first calculated the phrase-to-concept
“mapping ambiguity” for each phrase that mapped to a given concept according to the
reference standard. Mapping ambiguity for a phrase was based on the number of “similar”
phrases in the dataset; its magnitude correlated with the number of concepts to which a
phrase might map. In the case of the token-order-specific classifier, similar phrases were
defined as all those having the same token at the identical position as the given phrase. In
the case of the bag-of-words classifier, they were defined as all phrases having the same
token as the one in the given phrase at any position. Potential mapping concepts for a
particular token were defined as all concepts associated with the given or similar phrases.
Mapping ambiguity for a given phrase was calculated as the size of the set of potential
mapping concepts for all tokens within the phrase normalized to phrase length. Concept
ambiguity was calculated as the logarithm of the average mapping ambiguity for all phrases
associated with the concept based on the reference standard. As a result of using this
method of calculation, when concept ambiguity approached zero, the probability of

correctly mapping all the phrases associated with that concept approached one.

Statistical Analysis

Simple linear regression was used to evaluate the relationship between precision, recall,
and F-measure and the number of documents containing a concept. Paired t-tests were
used to compare performance across concepts between the token-order-specific and bag-
of-words naive Bayes classifiers. All statistical analyses were carried out using Static/IC
11.2 for Mac (Stata Corp., College Station, TX), and p-values of less than 0.05 were

considered significant.
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RESULTS

When the VA corpus was divided into separate training and test sets, recall and F-measure
increased steadily for the first 10,000 training phrases regardless of the machine learning-
basis of the classifier (Figure 1). For the token-order-specific, naive Bayes-based classifier,
all performance measures were 20.88 after training on phrase-to-concept mappings from
50,000 phrases. With further training, all performance measures appeared to continue to
increase, reaching a precision, recall, and F-measure of approximately 0.92 using the entire
set of training phrases. In comparison, the performance measures for the bag-of-words-
based classifier reached a plateau in the range of 0.80-0.82 after training on 50,000 phrases

or more. Increases in performance with additional training were 0.003 or less.

Although cross-validation has been used more frequently than bootstrapping for statistical
validation of NLP models, bootstrapping may provide more accurate estimates of precision,
recall, and F-measure. To compare performance estimation by bootstrapping to that of
cross-validation, our study used both approaches to calculate the average F-measure at the
concept level for the token-order-specific classifier. Because low prevalence concepts can
bias both approaches [75] and should occur more frequently in smaller document corpora,
our study estimated performance as a function of the number of documents containing a
concept. When analyzing concepts with low prevalence (present in < 5 documents), leave-
one-out cross-validation estimated a lower F-measure than the other evaluation methods
(Figure 2). When the system used bootstrapping and set the optimism to one when it
could not otherwise be calculated, it also estimated a lower value of the F-measure for low
prevalence concepts than did the other bootstrapping techniques. When the system
assumed an optimism of zero or skipped estimation altogether for low prevalence concepts,
less bias was apparent, but there did appear to be a slight overestimation of the F-measure
relative to higher prevalence concepts. For concepts in 5 or more documents, the F-
measure was similar across all methods. Because of this finding, all subsequent analyses
were confined to concepts occurring in at least 5 documents to minimize bias, and
performance measures were calculated using bootstrapping. This reduced the VA data set
to 3302 concepts and 279,088 phrases. When a concept was absent from the bootstrap set,
performance measures were calculated assuming an optimism of both one and zero, and

the calculated values were averaged to generate a final estimate. To quantify phrase
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Figure 1. Learning rate of phrase mapping as a function of the number of
documents used for training. The graph demonstrates the impact of language
model (TOS - token-order-specific naive Bayes, open symbols; BOW - bag-of-
words, closed symbols) on precision (top), recall (middle), and F-measure
(bottom). Each point represents the precision, recall, or F-measures based on the
total true positives, false positives, and false negatives across all concepts in the
test set (n=673 documents).
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Figure 2. F-measure as evaluated by cross-validation or bootstrapping as a function
of the number of the documents containing a concept. The graph also demonstrates
how varying the approach to handling optimism alters the estimated F-measure
relative to concept prevalence. Concepts were assigned to groups (x-axis) based on
the number of documents in which they occurred, and each point represents the
average over all concepts within the group.
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complexity within the reduced VA data set, the number of tokens per phrase was calculated
and found to be 1.5 * 0.8 (mean * SD) across concepts occurring in 5 or more documents
with a median of 1 (interquartile range = 1 - 2). The average number of unique phrases

mapping to a concept was 1.9 + 4.3 with a median of 1 (interquartile range 1 - 2).

Using the bootstrapping technique described above to estimate performance, there was a
significant increase in precision, recall and F-measure for both classifier models when the
number of documents containing a concept and thus available for training the system to
map to the concept increased beyond 5 (Figure 3). In the case of the bag-of-words
classifier, precision, recall, and F-measure were in the range of 0.80-0.86 after training on
100 or more documents compared to 0.97-0.98 for the token-order-specific classifier
(Figure 3). With respect to variability of the phrases mapping to a concept, as measured
by IQV, F-measure decreased for both classifiers with increasing IQV, and the greatest
decrease was associated with the bag-of-words classifier (Figure 4, top). Similar
decreases in performance occurred as concept ambiguity increased, and the most

substantial decreases were associated with the bag-of-words classifier (Figure 4, bottom).

The highest scoring system in terms of precision, recall, and F-measure averaged over all
concepts was the token-order-specific classifier (Table 3). The bag-of-words classifier and
exact string matching showed intermediate performance, and the approximate string
matching had the lowest performance. Histogram-based analysis of F-measures for the
naive Bayes classifiers demonstrated a strong bivariate distribution for phrase mapping
using the bag-of-words classifier (Figure 5). For that classifier, >29% of the concepts had
an F-measure of 0.05 or below, whereas <2% of the concepts mapped with the token-
order-specific classifier had such a low F-measure. To determine whether the low
performance concepts were alone responsible for the reduced F-measures attained using
the bag-of-words classifier (Figure 3), we restricted the analysis for concepts that had
performance measures above 0.5 for both classifiers. Although this restriction did reduce
the disparity between the two classifiers, precision, recall, and F-measure were still
significantly higher for the token-order-specific (0.99 + 0.04, 0.99 * 0.04, and 0.985 * 0.09,
respectively; mean * SD) relative to the bag-of-words classifier (0.94 £ 0.12, 0.96 + 0.11,

and 0.95 + 0.10, respectively.

27



Table 3. Precision, recall, and F-measure using four different methods of phase-to-concept

mapping. The analysis was restricted to only concepts that occurred in at least 5 of the

documents within the corpus.

Mapping Method

Average Performance
(95% Confidence Interval)

Precision \ Recall \ F-Measure
Token-Order-Specific Classifier O(fgsi(.)ég)s O('(?_ 34%0%51)6 O('(?_ 34%099.51)5
Bag-of-Words Classifier 0('(? ngo(,)s';l)s 0('5 21%0%2)6 0('(? :5}0%096?)5
Exact String Matching O('(Z 3:0%:)1 O(.(i Sfo%;lf O('g)_ S5)7%0(_)6.:)1)4
Approximate String Matching 0('01' lefot.)lig )4 0('; 31%0(')1' 32 )9 0('; 31%0(,)1' ? )0
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Figure 3. Impact of the number of documents containing a concept and naive Bayes
classifier type (TOS - token-order-specific naive Bayes, open symbols; BOW - bag-of-
words, closed symbols) on precision(circles with solid line), recall (squares with
dashed line), and F-measure (triangles with dotted line). Concepts were assigned to
groups (x-axis) based on the number of documents in which they occurred, and each
point represents the average over all concepts within each group.
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Figure 4. F-measure as a function of the variability of the phrases mapping to that
concept as measured by the index of qualitative variation (IQV; top). Each point
represents the average over all concepts having an IQV greater than the lower limit of
the range given by the x-axis and equal or less than the upper limit. F-measure is also
plotted as a function of concept ambiguity (bottom). Each point represents the
average F-measure for all phrases that potentially map to the number of concepts
within the range indicated along the x-axis. F-measure with respect to both the token-
order-specific (TOS; open symbols) and bag-of-words (BOW; closed symbols)
classifiers is included. Precision and recall closely matched the F-measure and have
been excluded for the sake of clarity.
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Precision, recall, and F-measure for the token-order-specific classifier were generally
similar across the 19 SNOMED CT conceptual groups included in the study. Average
performance measures were >0.91 for all groups (Table 2), and the majority of groups had

an average precision (18 of 19), recall (14 of 19), and F-measure (13 of 19) exceeding 0.95.

When the token-order specific classifier was applied to the i2b2 training set, pre-
processing of phrases by removing stop words, POS tagging, or reversal of token order
improved F-measure, which was estimated using bootstrapping (Table 4). Combining all
three of these pre-processing steps was associated with the greatest F-measure.
Lemmatization had no measurable effect or reduced performance. When these pre-
processing steps were used during training of RapTAT on the training set and evaluating it
on the test set, measured precision and F-measure were generally in the 0.87-0.94 range
depending on the concept, and recall was in the 0.87-0.91 range (Table 5). Performance
increased continuously as the number of training documents increased. This is
demonstrated by the strong log-linear relationship between the number of training phrases
and precision, recall, and F-measure based on regression analysis (r?>0.96 and p<0.001 for

all performance measures) (Figure 6).

Training and evaluation rates for the two, naive Bayes-based classifiers were similar. The
token-order-specific and bag-of-words classifiers were able to process 149.4 and 128.0
phrases per millisecond during training (data not shown), respectively, and they mapped
29.6 and 24.4 phrases per millisecond during evaluation (Figure 7). This rate did not
include any lexical processing, which was done by the MCVS tool before generating the CSV
file imported into RapTAT. There were no detectable changes in the rate during training
or mapping. With respect to string matching using SQL queries, memory caching gradually
increased the rate of phrase processing using exact and approximate matching. Both
methods reached a plateau rate after processing approximately 1 X 10> phrases (Figure 7).
The mapping method used by the naive Bayes-based classifiers was approximately 5-fold
faster than the plateau rate of the exact string matching method. After reaching the
plateau, the rate of string matching per millisecond remained within the range of 4-8 for

exact phrase matches and 0.10-0.25 for approximate phrase matches.
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Table 4. Impact of token pre-processing on RapTAT performance. Performance with
respect to concept mapping on the 2010 i2b2 training data was assessed using
bootstrapping to estimate the F-measure when phrase tokens were subject to stop word
removal, part-of-speech (POS) tagging, reversal of the order in which tokens were
entered into hash tables or evaluated, conversion of the tokens into their lemmas, or stop
word removal, POS tagging, and token order reversal combined.

Pre-Processing
Concept Stop POS Token Use Stop Word Rgmoval/
None Word Tagein Order Lemmas POS Tagging/
Removal B8Ing Reversal Token Order Reversal
Problem 0.93 0.93 0.93 0.94 0.93 0.94
Test 0.91 0.92 0.92 0.92 0.91 0.92
Treatment 0.90 0.91 0.91 0.92 0.90 0.92
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Table 5. Phrase mapping performance of RapTAT on the
i2b2 test data. Performance on each of the schema
concepts is shown. Average performance over all
concepts (last row) was computed by weighting each
performance measure based on the number of times the
concept occurred in the test data.

Concept _ Performance Measure
Precision Recall F-Measure
Test 0.91 0.89 0.90
Problem 0.93 0.87 0.90
Treatment 0.94 0.91 0.87
All 0.93 0.86 0.89
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Figure 6. Precision, recall, and F-measure of the RapTAT tool on the i2b2 test data
relative to the number of phrases used for training.
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DISCUSSION

Our study tested the feasibility of using a token-order-specific, naive Bayes classifier-based,
machine learning system to quickly analyze free-text phrases and accurately map them to
associated concepts. The generalizability of the tool is suggested by its ability to accurately
reproduce the mappings of both automated and manual annotations. In addition, the
results demonstrate that the tool can rapidly process phrases both during training and
during mapping of phrases to concepts. The discharge summaries used for our study
contained, on average, 260 words and 216 mapped phrases. Our findings suggest that our
tool requires just 7.3 milliseconds to map all the phrases from a single discharge

summary. Such a tool should be able to support mapping of such summaries for near-real-
time NLP, which could be useful in assisting annotators with regard to concept mapping,
enhancing existing NLP tools by improving concept mapping efficiency, or providing rapid,
interactive feedback following free-text entry. Temporal performance did not decrease
during testing, which suggests that the tool should be scalable for mapping purposes. Also,
the tool dealt with over 15,000 unique phrases using a 256 MB memory partition for the
Java virtual machine, so there is potential for expansion based on current desktop

computer configurations.

The use of hash tables likely contributed to system performance. This design choice
provided high temporal efficiency during mapping because the approach constrained
searches for maximizing equation 1 to only concepts associated with at least one of the
phrase tokens. It also reduced spatial requirements because the system only stored actual
associations between tokens and concepts in the training data rather than, for example,

creating a matrix of all potential associations between every concept and token.

Averaged F-measures for the token-order-specific classifier were generally high with
regard to the MCVS phrase mappings, being at least 0.92 for the top-level SNOMED CT
conceptual groups and above 0.95 in the majority of cases. The F-measures were
somewhat lower for the manual annotations from the i2b2 data set but still above 0.89
overall. The lower performance of RapTAT on the manual annotations was expected given
that performance was evaluated on a test set rather than estimated using bootstrapping.

Furthermore, it appears that performance was limited somewhat by the size of the training
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set based on the steady increase of the F-measure learning curves (Figure 6). Finally, we
would expect mapping consistency to be higher for automated than manual annotations,

which would likely effect system performance.

The apparently high F-measures achieved by the RapTAT system are somewhat surprising
in view of the implicit assumption by naive Bayes models that all phrase tokens are
conditionally independent given the mapped concept. The multinomial naive Bayes model,
such as the token-order-specific classifier used here, maintains this independence
assumption; the probability of a given word occurring at a particular position within a
sequence is assumed to be independent of the presence of other tokens at other positions
within the sequence. A phrase such as “ischemic myocardial infarction,” may violate the
assumption, because the occurrence of “ischemic myocardial” would seem to increase the
probability of the next word being “infarction.” However, naive Bayes classifiers often

perform well even when the independence assumption is violated [79].

There have been numerous biomedical challenge tasks that evaluate performance with
regard to the combination of named entity recognition and concept mapping, and the
results of these challenges provide standards for evaluating new computational systems. A
report on the 2010 i2b2 challenge indicated that the best system achieved an F-measure of
0.85 for exact matches and 0.92 for inexact matches [70, 80], while RapTAT achieved
comparable F-measures ranging from 0.87 to 0.94. Because the i2b2 challenge systems
were responsible for both named entity recognition and mapping, direct comparison of
RapTAT to the systems tested in the i2b2 challenge is not possible. Unfortunately, few
challenges, if any, have focused on concept normalization alone [53], but the i2b2 results
suggest that RapTAT performs this particular task relatively well. A recent report did
focus on normalization of diseases found in the Arizona disease corpus [53, 81]. The
investigators enhanced two existing biomedical concept mapping systems, Peregrine and
MetaMap, with rules to handle issues such as term variation and abbreviations [53]. The
maximum F-score achieved in that study with regard to concept mapping was 0.736.
However, even though the study focused on concept normalization, mapping still relied on
automation of named entity recognition to identify phrases. Named entity recognition
performance in that study, which achieved a maximum F-measure of 0.854, undoubtedly

limited concept-mapping accuracy.
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Our comparison of the token-order-specific to the bag-of-words and string-matching
classifiers suggests that the former provided substantial advantages over the other
methods. Performance of the token-order-specific classifier was considerably higher after
training on phrases within 5 to over 100 documents (Figure 3). The performance of the
bag-of-words classifier reported here actually exceeds that reported by Pakhomov,
Buntrock, and Chute, who used a bag-of-words classifier to categorize medical diagnosis
and found that precision, recall, and F-measure were 0.59, 0.51, and 0.54, respectively [68].
That study narrowed the use of the bag-of-words classifier to potentially difficult phrases,
ones that could not be readily mapped using previous classifications, which may have
diminished performance. Differences in the performance measures may also be related to
the amount of classifier training, and further training might reduce the differences in
precision, recall, and F-measure between the two classifiers (Figure 3). Nevertheless, our
data also indicate that the token-order-specific classifier would likely outperform the bag-

of-words classifier if training sets were limited in size.

One reason that performance can be diminished by a bag-of-words classifier is
demonstrated by the phrase, “hemodynamically stable,” which was present in 75
documents within the corpus and was mapped to a SNOMED-CT concept of the same name
within the conceptual group “clinical finding.” The word “stable” alone occurred much
more frequently as a phrase than “hemodynamically stable” and was mapped to a concept
within the “qualifier value” conceptual group by MCVS. So, when token position was not
included as a feature by the bag-of-words classifier, the mapping of the phrase was strongly
influenced by the high probability of association of “stable” with the qualifier value concept.
In contrast, when “stable” was the second word in a phrase, it always mapped to
“hemodynamically stable,” and when token position was used as a feature by the token-
order-specific classifier, it correctly mapped the phrase. Although increased
computational accuracy often requires additional calculations leading to a decrease in
processing speed, this did not appear to be the case in the present study. Processing speed
for the token-order-specific classifier appeared to be similar to and possibly slightly faster
than the bag-of-words classifier (Figure 7). The reason for this is likely that token
sequence length is one determinant of classifier speed, and both classifiers must evaluate

each of the tokens in a phrase during mapping. However, the bag-of-words classifier must
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also evaluate the probabilities for tokens that are not in a phrase under evaluation (cf.

Equation 2 versus 4).

Another advantage of the token-order-specific classifier is that it diminished the impact of
phrase variability and concept ambiguity on performance (Figure 4). This could be
important if one was planning to train the tool to reproduce human-generated phrase-to-
concept mappings, which might be done if using the tool to automate or assist with manual
annotations. Both inter- and intra-reviewer discrepancies during manual annotation can
produce substantial variation in the phrases identified and the mappings selected. The
amount of variation would likely be greater than that produced by an NLP application such

as the MCVS tool used in the current study.

The speed and accuracy of the RapTAT tool is encouraging, but the present system has
limitations. For one, the tool only selects the most probable concept mapping when
provided with a phrase; it does not identify which raw text phrases should be annotated.
However, previous work suggests that such a task is feasible. D’Avolio et al reported on use
of the ARC tool to identify noun phrases within raw text [82]. Using a conditional random
field classifier as the basis of machine learning, ARC automated retrieval of three different
concepts and their associated phrases from an i2b2 document set, generating micro-
averaged F-measures in the range of 0.80 - 0.83. In addition, there are a number of pre-
processing steps that need to be carried out before the phrase-to-concept mapping carried
out by RapTAT. These steps will add to the overall document processing time, but our
analysis of the time required for database lookups, even when memory caching is used,
suggest that the temporal performance of the RapTAT system could help existing NLP
systems to move closer to near-real-time processing. Furthermore, because the system is
trained using existing phrase-to-concept mappings, it will reproduce any inaccuracies
generated by the system that created the initial mappings. Also, the tool needs to process
an adequate number of training examples to accurately map phrase to concepts, and the
number required increases as phrase variability and concept ambiguity increase. However,
synthetic phrases similar to those likely to be found in the domain could be added to boost
the training for rare or ambiguous concepts. The tool does not determine the assertion
value of concepts, so currently there is no way to distinguish among positive, negative, and

uncertain concepts. Similarly, the current version of the tool does not do any semantic
40



analysis. Therefore, once tool training is completed, phrases that might map to more
granular concepts and abbreviations whose meaning depends on context only map to a
single concept. In addition, it will not map abbreviations that were not included in the
training data. Finally, RapTAT cannot combine simple concepts to generate compositional
expressions, which are needed to more fully encode documented medical phrases [83].
Despite the limitations of RapTAT, the tool does provide a systematic method for learning
and accurately reproducing both established and novel phrase-to-concept mappings, such
as might be needed when applying NLP to a new domain. Current efforts to further
develop the tool may allow users to train it to determine assertion values and delineate the

concepts that might be combined to form compositional expressions.

In addition to addressing the current limitations discussed above, our future plans include
using the system to generate an assistive annotation tool. Current manual annotation
systems require a reviewer to first identify a phrase of interest and then select from a list of
concepts for mapping. By training RapTAT to reproduce concepts selected by an annotator,
it should be possible to automate the mapping process or limit the concepts presented to
an annotator to only those with high probability. The RapTAT concept-mapping module
has been incorporated into plug-ins and components of the GATE and Unstructured
Information Management application (UIMA) NLP frameworks. Using this approach,
RapTAT can also be used to systematically generate rapid concept mappers that are
tailored to different domains and tasks and that can be used within larger, existing NLP

systems.

CONCLUSION

Because RapTAT can accurately map phrases to a large repertoire of concepts distributed
widely across an existing ontology, it could serve as an alternative mapping system within
an existing NLP tool. Given more than 5 training instances, the F-measure exceeds 0.92,
which should be sufficient for many tasks. In addition, with a mapping rate of ~30 phrases
per millisecond, the system should be fast enough to readily support phrase-to-concept
mapping within a near-real-time NLP system. Using the tool to fully automate the human
annotation process will require further development in the form of identifying free text

phrases for labeling.
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CHAPTER 3
ASSISTED ANNOTATION USING RapTAT

BACKGROUND

Pre-annotation is one method that has been investigated for its potential ability to reduce
the time and effort required to annotate a document. Its goal is to reduce the number of
annotations a reviewer must add. Previous implementations used a dictionary generated
specifically for the annotation task at hand or an existing NLP system. For example,
Lingren et al created a dictionary tailored to generate pre-annotations in clinical trial
announcements, focusing on the impact of pre-annotation on the ability of reviewers to
label disease and symptom-related concepts. Pre-annotation decreased the time needed
for review by 14-21% compared to fully manual annotation [7]. Investigations using
existing NLP systems for pre-annotation of non-medical documents have reported
decreases in annotation time of 50-58% for named entity recognition, part-of-speech

tagging and parsing within non-medical documents [49-51].

Despite the reported benefits of pre-annotation, there are some potentially important
considerations regarding its use. Inaccurate pre-annotations may require deletion or
correction, and evidence indicates that time savings correlate with pre-annotation accuracy
[95, 96]. For some tasks, pre-annotation may not alter annotation time [97], and the
presence of multiple, inaccurate pre-annotations may actually increase annotation time [95,
98]. Also, pre-trained systems capable of pre-annotating for a specific task or medical
realm either may not exist or be sufficiently accurate when used within a new domain.
Although it is possible to create task-specific pre-annotation systems [7], doing so may
require substantial effort and offset the time-savings afforded by pre-annotation.
Furthermore, although some studies have found no evidence to suggest that pre-
annotation induces bias or reduces quality of annotating text for biomedical concepts or
part-of-speech [7, 8, 99], Fort and Sagot suggest that pre-annotations can induce bias

leading to decreases in random errors but increases in systematic errors by reviewers [95].
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The present study describes the design and evaluation of the full, RapTAT assisted
annotation tool, which may provide as an alternative approach to previously described
methods of pre-annotation. The concept mapping system described in the previous
chapter is combined with a phrase identification system to generate a complete, machine-
learning based pre-annotation system. In the study, we assess the impact of generating
pre-annotations interactively using online, iterative machine learning as implemented in
RapTAT on annotation burden. Specifically, the study evaluates whether RapTAT can
support interactive, assisted annotation and reduce the time required for annotation
without negatively affecting inter-annotator consistency or inducing annotation bias
relative to manual review. The system is tested with regard to its ability to support the
development of an annotated reference corpus that will eventually be used to train and test
an external machine-learning based NLP system. The goal of that NLP tool is to detect
clinical signs and treatments that can reveal the consistency with which providers adhere
to American Heart Association (AHA) guidelines for CHF care. Following AHA guidelines
has been shown to reduce hospital admissions, improve quality of life, and decrease
mortality of CHF patients[84, 85], so rapidly identifying discrepancies between guidelines
and care can help to mitigate decreases in care quality. To accomplish its mission, the NLP
system will need to identify 7 concepts within clinical notes: 1) mentions of angiotensin
converting enzyme (ACE) inhibitor administration; 2) mentions of angiotensin II receptor
blocker (ARB) administration; 3) mentions of ejection fraction; 4) quantitative measures of
ejection fraction; 4) mentions of left ventricular systolic function; 6) qualitative measures
of left ventricular systolic function; and 7) documented reasons for not administering ACE

inhibitors or ARBs when otherwise indicated.
METHODS
Sampling and Population

The study corpus consisted of CHF patient notes including discharge summaries,
emergency department triage and nursing notes, internal medicine attending notes,
neurology resident notes, physician discharge notes, physician history and physical notes,

and primary care outpatient notes. Documents were selected from a larger corpus
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consisting of a random sample of documents generated from September of 2007 to
September of 2008 by 6 independent VA medical centers from the western U.S. Patients
were excluded if they: a) participated in trials related to angiotensin-converting enzyme
inhibitors or angiotensin receptor blockers; b) had comfort measure advanced directives;
c) were fitted with heart assist devices (excepting pacemakers or defibrillators); or d) had a
heart or heart/lung transplant. The final study corpus contained 404 documents from 171
patients. The Tennessee Valley and Salt Lake City Health System VA and University of Utah
institutional review boards and research and development committees approved the study
and granted a waiver regarding the need to obtain informed consent and HIPAA

authorization.
Schema Development

A cardiology expert and 3 experienced annotators designed the annotation schema using
an iterative process involving schema generation, annotation of a document sample, review
of the annotations, and schema revision. The schema development process defined the key
concepts that occur within the medical record and that relate to clinical care guidelines for
CHF patients. According to the guidelines, patients in systolic heart failure with an ejection
fraction of <40% should be treated with ACE inhibitors or, alternatively, ARBs [100]. The
schema was designed to provide annotations so that the NLP tool could identify 1)
evidence of heart failure, 2) whether the patient was receiving ACE inhibitors or ARBs, and
3) if a reason was provided for not prescribing ACE inhibitors or ARBs to heart failure
patients. The final schema contained 7 concepts (Table 6), and the task of annotators was

to identify phrases in the text that express those concepts.
Annotator Training

Four reviewers, all experienced in clinical note annotation, were responsible for annotation.
All annotators were provided with annotation guidelines specific to the schema. Two were
responsible only for manual annotations, and the remaining two carried out only RapTAT-
assisted annotation. To train all reviewers with respect to the annotation schema, the

creators of the schema used consensus annotation to generate a training set of 30
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Table 6. Schema demonstrating the seven concepts annotated within the corpus used for
assisted annotation. Text samples demonstrating phrases that should be annotated are also

included.
Number of | Number of
Concept Documents Patients *Sample Text
Containing with (Annotated Phrases in Bold)
Concept Concept
. . . "ACEL" "ACE inhibitor", "Altace",
Angiotensin Converting " . un cn
" 272 132 Vaseretic," "Captopril,
Enzyme Inhibitor "Lisinopril”
Angiotensin Il Receptor 107 53 "ARB," "Angiotensin receptor
Blocker blocker," "Sartans," "Losartan"
. . "Estimated ejection fraction,"
Ejection Fract 201 11 ’
Jection Fraction 0 8 "EF", "LVEF", "Ejection fraction"
Eiection Fraction "EF=60-70%," "EF is about 30%,"
jQuantitation 197 116 "Ejection fraction in the range of
40 to 50%"
IILV I' f H nn I'
Left Ventricular Systolic systo |.c u.r,“.:,tlon' SYStO.,IC
Iy e 79 51 dysfunction," "LV function,
Y "Normal LV size and function,"
. . "Mild systolic dysfunction,"
Left Ventrl.cu/ar systolic 76 48 "Systolic function is borderline
Function Value normal"
"Elevated creatinine levels,"
Reason Not on ACE 40 2 "Developing sepsis," Patient

Inhibitor/ARB

refuses to take ACEI", "Renal
disease"

* Examples corresponding to each concept were provided to reviewers as part of the annotation guidelines, but
they were not meant to comprehensively represent all phrases that might refer to a given concept. For the
concept “Reason not on ACEI/ARB,” reviewers were instructed to annotate a phrase only when it was provided as

an explicit reason for not prescribing one of the drugs.
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documents distinct from the study corpus. Reviewers annotated the training set in batches
of 10 using the Knowtator annotation tool (Figure 8) [101]. They were required to achieve
an agreement score exceeding 80% between their annotations and the adjudicated training

set before proceeding with review of documents in the study corpus, where

Matches
Matches + Non- Matches

€y

Agreement =

Annotation of the Study Corpus

Each document in the corpus was randomly assigned to one of 20 batches, and each batch
contained 19-21 documents (Figure 9). The batches were used as units of analysis for
statistical purposes and to identify document sets for training RapTAT during assisted
annotation. Assisted reviewers annotated the first document batch without any pre-
annotation to provide the initial training of the machine learning algorithms within
RapTAT. The next batch was pre-annotated by RapTAT based on this training, displayed
within Knowtator for review and correction by the assisted annotators, and the corrected
annotations were entered into RapTAT to update its training before pre-annotating the
subsequent batch. This iterative process of pre-annotation, correction, and updating of
RapTAT training was carried out by separate instances of RapTAT for each of the two
assisted reviewers, and it continued until the final batch had been corrected following pre-
annotation. Manual annotators also used Knowtator for annotating each batch, but the
documents were not pre-annotated. An adjudicator who was neither a manual nor
assisted annotator reviewed the manual annotations to produce the reference standard.

Inter-annotator agreement (IAA) was calculated using Equation 1.
Text Processing

RapTAT learns to pre-annotate documents with the likely annotations of a reviewer based
on iterative feedback from that same reviewer. The tool used two different probabilistic
models to estimate the likelihood of a reviewer 1) annotating a particular phrase and 2)

mapping that phrase to a particular schema concept (Table 6). For both models, we
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is on beta-blockers and digoxin. Continue :
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comments on this text s¢

Figure 8 Screen capture of the Knowtator annotation plug-in within the Protégé

application. The displayed document is synthetic but contains text representative of
that found within the study corpus. Schema concepts are listed on the left. For each

corpus document, reviewers use the input device of the computer to highlight all

phrases mapping to one of the schema concepts and to select the concept associated

with each highlighted phrase.
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defined a token as a contiguous group of characters that corresponded to a word, value, or
unit of measure, and a phrase as a contiguous sequence of one or more tokens that is
representative of one of the schema concepts. Considering only token sequences (S) in a

phrase without regard to context, the probability of annotation (A) of a given sequence is

Number of Annotations of S
P(AlS) = (2)
Number of Occurrences of S

We modified this equation for use in RapTAT because, by using this simple phrase
identification model, subsequences shorter than the complete annotated phrase do not
enter into probability calculations. For example, if “high fever of unknown origin” were
annotated, the probability of annotating the subsequence “high fever” would not increase.
Such a model could reduce recall by underestimating the probability of annotating token
sequences that occur infrequently as complete annotated phrases even though they might
occur frequently as subsequences. We therefore adjusted RapTAT to give partial credit to
subsequences (Table 7). Each subsequence within an annotated phrase of length i in a
sequence of length j was credited with an annotation count of i/j (numerator, Equation 2).
Thus, the credited count was lower for sub-sequences that were particularly short relative
to the length of the complete annotated phrase. All token sequences whose first token was
not the first token in an annotated phrase were considered unlabeled and contributed
equally to the number of sequence occurrences (denominator, Equation 2). Estimating the
likelihood of mapping a phrase to a concept was accomplished using a multinomial naive
Bayes classifier. The classifier calculated the most probable concept for a given phrase,
using the equation

P(Ci)e P(T4|Cy)e --«P(T}| C)

P( CilTli"'!Tk) = P(Tlxka) (3)

where P(C;) refers to the probability of occurrence of the ith concept, k is the number of
tokens in the phrase and Tk refers to the token at the kth position in the sequence. The

value of P(Tk|Ci) is provided by the equation

Because the denominator in Equation 3, P(Ty, -+, T}), is constant when mapping a given
phrase, finding the most probable concept for mapping is reduced to identifying the one

that maximizes the numerator. Laplace smoothing adjusted for the occurrence of tokens
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Table 7. Examples demonstrating how annotated phrases and their
subsequences are counted during training, where n represents the number of

tokens in the phrase.

Number of Annotations

L h Ph Tok
Sequence Lengt rase okens Credited to Sequence

AL (OIS “LV systolic function” 3 1.0
Phrase

n-1 Subsequence “LV systolic” 2 0.67

n-2 Subsequence “Lv” 1 0.33
AL IISEL “Renal disease” 2 1.0
Phrase

n-1 Subsequence “Renal” 1 0.5
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missing from the training data [73]. Multiple studies exist that have used this multinomial
naive Bayes models for text classification [102], although, to the best of our knowledge, the

use of token position as a feature for medical concept mapping is unique to RapTAT.
RapTAT System Design

The RapTAT system was programmed in Java, and consisted of one module that
determined the likelihood of phrase annotation and a second that determined the
likelihood of a given phrase mapping to a particular concept (Figure 10). Phrases analyzed
by the system were limited to contiguous sequences of < 7 tokens. Before analysis by the
two RapTAT modules, the text was pre-processed, which consisted of detecting sentence

boundaries, dividing each sentence into tokens, removing “stop word” tokens ("and,” “by,”

»” o » « ”n llof" “« »” «
)

“for,” “in,” “nos, on,” “the,” “to,” and “with”), and identifying and adding the
appropriate part of speech to the token as a suffix. The pre-processing steps were carried
out using the OpenNLP libraries (Apache Software Foundation). All versions of RapTAT are

available at http://code.google.com/p/raptat/, and version 0.6a was used for this study.

Evaluation Measures

RapTAT was evaluated based on the number of true positives (TP), false negatives (FN),
and false positives (FP) within the pre-annotations. Precision, recall, and F-measure
provided measures of performance of the RapTAT tool and were calculated with respect to
both the corrected annotations from the RapTAT-assisted annotators and the reference
standard described above. A TP was defined as an overlap of one or more tokens between
the RapTAT-generated and reference standard that mapped to the same concept. RapTAT
automatically scored TPs, FPs, and FNs and calculated precision, recall, and F-measure

according to the equations
Precision=TP / (TP + FP)  (4)
Recall=TP / (TP +FN) (5)

F-Measure = 2 o Precision ¢ Recall / (Precision + Recall) (6)
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Figure 10 Data flow during training and pre-annotation by the RapTAT machine
learning system. Dotted lines and arrows represent optional parts of the system that
are available but were not used in this study, such as LVG lemmatization. Stippled
patterns represent RapTAT specific modules (light stippling) and files (dense

stippling).
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We used leave-one-out cross-validation to estimate the performance of RapTAT with
respect to each of the schema concepts. Cross-validation consisted of training RapTAT
using all but one of the annotated documents from a given reviewer; RapTAT then
generated annotations for the “left-out” document, which were compared to those of the
reference standard. This process was repeated for each document and reviewer. Precision,
recall, and F-measure for a given concept were calculated by combining the TPs, FPs, and

FNs for that concept.

Reviewer Annotation Time and Rate

To assess batch-to-batch changes in annotation time, each RapTAT-assisted reviewer
recorded the time required to review each document. Time per batch was normalized to
batch size in kilobytes. Because correct pre-annotations might decrease and incorrect
annotations might increase annotation time, we also calculated annotation rate of both
manual and assisted reviewers with respect to only the annotations that were added or
corrected. Correction was defined either modifying the beginning or end offsets of the
annotation or changing the concept to which the phrase mapped. We defined the
annotation rate as the number of annotations added or corrected per minute based on
timestamps generated by Knowtator for each annotation. Because rates were not
normally distributed, we determined the median rates for each reviewer and batch, and
that data was used for statistical evaluations of the change in annotation rate as a function

of batch number.

RapTAT System Training and Annotation Rates

To evaluate the training rate of the RapTAT system, we measured the time required to
process the first 10 document batches. To evaluate the annotation rate, the corpus was
divided into two independent training and test groups with 10 batches of documents in
each. After processing the training documents, annotation rate of RapTAT was calculated
based on the time spent pre-annotating the test documents. Times were normalized to
document corpus size in kilobytes. Time required to read the corpus from disk into

computer memory and read and write data structures before and after training was
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excluded from all rate calculations. Heap size of the Java Virtual Machine was <1 GB.
Training and testing were carried out on the VA Informatics and Computing Infrastructure
(VINCI) server, which ran on an Intel Xeon quad-core processor running at 2.27 GHz and
supplied with 128 GB of RAM. The operating system was Windows Server, 2008 R2

Enterprise.
Statistical Analysis

The study used simple linear regression to evaluate the statistical significance of changes in
F-measure, annotation rate, and fraction of annotations correctly provided by RapTAT as a
function of document batch. A “correct” RapTAT annotation was defined as a pre-
annotation was neither added nor corrected by the reviewer. To compare the similarity of
RapTAT-generated pre- annotations to the assisted and reference standard annotations, we
ran paired t-tests on estimates of precision, recall, and F-measure across all batches. A
Student’s t-test was used to compare the number of annotations added or corrected by
assisted versus manual reviewers. A two-sample proportion test was employed to identify
statistical differences for single measures of IAA. All statistical analyses were carried out
using Stata/IC 11.2 for Mac (Stata Corp., College Station, TX), and p-values of less than 0.05

were considered significant.
RESULTS

There was a notable decrease in annotation time from batch to batch for the RapTAT-
assisted reviewers, especially over the first 6-7 batches, followed by a slower apparent
decrease over batches 14-20 (Figure 11; top). Annotation time decreased by
approximately 50% from the first to the last batch. Part of this decrease may be accounted
for by the gradual decrease in the number of annotations that had to be added or corrected
by the annotators over the course of annotation (Figure 11; bottom). Averaged over the
entire corpus, the two manual annotators added 100 + 18 (mean * SD) annotations per
batch. The assisted annotators added or corrected significantly less, 78 + 12 annotations
per batch, and 21 * 9 annotations per batch were generated as pre-annotations by RapTAT

during assisted annotation and did not require correction. To determine if the decrease in
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Figure 11 Time required to annotate text as a function of the number of document
batches reviewed (top), and the fraction of all annotations that were uncorrected by
reviewers and added only by RapTAT. For the annotation time plot (top), each
symbol represents the time taken by a single RapTAT-assisted annotator for a
particular batch of documents from the study corpus, and the dashed line represents
the apparent, batch-to-batch trend in annotation time. For the plot of the fraction of
annotations generated by RapTAT alone with no correction by the annotators
(bottom), each symbol represents the total number of uncorrected annotations
generated by RapTAT for each batch divided by the total number of annotated phrases
in the batch; the least squares line of regression is also included, and the slope is
significantly different from zero (p<0.01).
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annotation number alone accounted for the marked decrease in annotation time (Figure
11; top), the rate of only adding or correcting annotations while excluding correct
annotations generated by RapTAT was evaluated. The annotation rate of the assisted
reviewers significantly increased over the course of annotation (+0.145 added or corrected
annotations per minute per batch; 95% CI = 0.07 - 0.22) and approximately doubled from
the first to the last batch (Figure 12). In contrast, the batch-to-batch change in annotation
rate for the manual reviewers was significantly lower than that of the assisted annotators
and did not change significantly over the course of annotation (+0.022 annotations per

minute per batch; 95% CI = -0.004 to 0.048).

F-measure of the RapTAT pre-annotations relative to the assisted reviewer annotations
steeply increased over the initial 5-6 batches (Figure 13; left). After a single batch of
training, F-measure was 0.5-0.6 and increased over 0.80 after three batches. Precision and
recall increased similarly. Linear regression analysis of the performance scores after the
initial 5 batches revealed a non-significant trend toward a continuing increase in F-
measure (p=0.0623 for slope > 0 by linear regression analysis). There was no evidence
that pre-annotation had an adverse effect on annotation quality. Although the RapTAT
pre- annotations were more similar to the annotations of the assisted reviewers than the
reference standard based on significantly increased precision, recall and F-measure across

all batches (paired t-test; p<0.05), the average increases were generally slight (<0.046).

Also, differences in precision, recall and F-measure between pre-annotations measured
relative to the reference standard and pre-annotations measured relative to the reviewer
annotations (Figure 13; left versus right) remained roughly the same throughout the
course of annotation. In addition, there was no evidence that pre-annotation adversely
affected IAA, which was significantly greater for assisted than manual annotation for three

individual concepts as well as overall (Table 8).

The performance of RapTAT with respect to its ability to accurately annotate phrases was
concept dependent (Table 9). The four highest F-measures ranged from 0.80 to 0.97 and

corresponded to the most highly prevalent concepts in the corpus, and the lowest
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Table 8. Inter-annotator agreement (IAA) between the two
manual and between the two RapTAT-assisted reviewers.

Average |IAA
Concept (95% Confidence Interval)

Manual Assisted

Angiotensin Converting 0.89 0.93*
Enzyme Inhibitor (0.86-0.93) (0.91-0.96)

Angiotensin |l Receptor 0.81 0.97*
Blocker (0.72-0.89) (0.95-1.00)

. . 0.86 0.97*
SJileliidclailely (0.80-0.93) (0.95-1.00)

Ejection Fraction 0.90 0.88
Quantitation (0.85-0.94) (0.83-0.92)

Left Ventricular Systolic 0.82 0.76
Function/Dysfunction (0.73-0.91) (0.62-0.89)

Left Ventricular Systolic 0.85 0.77
Function Value (0.78-0.93) (0.64-0.90)

Reason Not on ACE 0.58 0.54
Inhibitor/ARB (0.46-0.70) (0.45-0.64)

Total (Combined Over All 0.85 0.89*
Concepts) (0.81-0.88) (0.87-0.91)

* indicates significant difference when comparing the IAA of the manual
reviewers versus that of the assisted reviewers.
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Table 9. Precision, recall, and F-measure of

RapTAT for each schema concept.

Performance Measure

Concept
Precision | Recall F

Anglotensm. C.onvertmg 0.97 0.94 0.95
Enzyme Inhibitor
Angiotensin |l Receptor 0.99 0.96 0.97
Blocker
Ejection Fraction 0.96 0.95 0.96
Ejection Fraction 0.77 0.82 0.80
Quantitation ) ’ )
Left Ventricular Systolic
Function/Dysfunction iz s bLaty
Left V.entrlcular Systolic 0.83 0.37 051
Function Value
Reason Not on ACE
Inhibitor/ARB b Bials BL
Total (Combined Over 0.87 0.82 0.85

All Concepts)
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Figure 12 Annotation rate as a function of the number of document batches
reviewed. Each symbol represents the rate for a single reviewer for a particular batch
of documents from the study corpus. The rate represents the inverse of the time
between adding or correcting annotations for both manual (open symbols) and
RapTAT-assisted (closed symbols) reviewers.
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Figure 13 Precision, recall, and F-measure of the RapTAT tool as a function of the
number of document batches used for training. Pre-annotations provided by the
RapTAT tool were scored for performance versus either the assisted reviewer
annotations (left) or the reference standard annotations (right).
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F- measure was for the least prevalent concept, “Reason Not on ACE Inhibitor/ARB”

concept (Table 6).

Processing speed of the RapTAT tool during annotation was 132.0 msec per kilobyte of text.
“Pre-processing,” which we define as sentence boundary detection, tokenization, part-of-
speech detection, and stop word removal, took most of the time (123 msec); only 9 msec
were required for training once the text was read into computer memory and pre-
processed. Annotation rate by the tool was 116.6 msec, which consisted of 116 msec for

pre-processing and 0.55 msec for phrase identification and concept mapping.

DISCUSSION

This study demonstrates that pre-annotation based on interactive, iterative machine
learning can reduce the burden associated with creating an annotated corpus. Considering
the annotation time and rate of the two assisted reviewers compared to the manual
reviewers, we estimate that using assisted rather than manual annotation would have
saved each reviewer roughly 16 h for annotation of the entire 404-document corpus. Also,
our study did not find any evidence to suggest that pre-annotation introduces bias. Before
the study, we were concerned that the closed feedback loop between RapTAT and each
reviewer might induce a drift in the annotations, so that pre-annotations might closely
match annotations of each reviewer but increasingly deviate from those of the reference or
other annotator over the course of annotation. However, the IAA for the assisted
annotators was actually equal to or higher than the manual annotators. Also, the precision,
recall, and F-measure for the pre-annotations relative to the assisted annotations and for
the pre-annotations relative to the reference standard remained similar throughout the

course of annotation.

The F-measure of the pre-annotations relative to the assisted reviewer annotations was
below 0.8 for the first few annotation batches, so the tool may only provide slight
assistance in the early stages. This is a limitation of the iterative training needed for
RapTAT compared to prior approaches that initially pre-annotate all documents using

existing tools or ones created for the task. As RapTAT learns and improves, the number of
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annotations that must be added or corrected decreases and the annotation time of the
reviewers correspondingly decreases. Fort and Sagot examined the impact of pre-
annotation accuracy on annotation time and found that increasing accuracy from 66.5% to
81.6% was associated with an ~50% decrease in annotation time [95]. In our study, F-
measure reached 81% after 3 document batches, which suggests that approximately 60
documents may be required for training RapTAT to a level of accuracy such that its pre-
annotations substantially reduce annotation time. The impact of training on F-measure
was concept dependent, which may be partially related to concept prevalence, so the rate
of increase in annotation speed as a function of the number of documents annotated may

be slower for infrequent concepts.

In the current study, while RapTAT was used to generate the pre-annotations, annotators
added and corrected pre-annotations using the separate Knowtator tool. Our goal is to
eventually embed RapTAT within an annotation tool. This will allow annotators to update
the machine learning algorithms after each document and obviate the import and export of
data that was required in this study. When designing RapTAT, we were concerned that
existing language models, such as maximum entropy Markov and conditional random fields,
might not be sufficiently rapid to support iterative training and pre-annotation in a way
that would not introduce delays during annotation. We therefore used language models
and worked to implement algorithms that would be fast enough to support the interactive
annotation process described in this study. Based on the annotation and system-training
rate determined in this study, RapTAT should be readily capable of supporting real-time,
interactive annotation. The current rate-limiting factor is disk access. Since one kilobyte of
text equals approximately one-half a page, the current RapTAT system should take about
one second to train on 4 pages or annotate 8 pages once the documents are read from disk

and stored in computer memory.

The impact of the interactive approach to pre-annotation described here on annotation
time appears to be within the range reported in other studies on pre-annotation, which
decreased annotation time by 14-58% [7, 8, 49-51]. Interactive, assisted pre-annotation in

the current study approximately doubled the annotation rate relative to manual reviewers.

62



Studies examining changes in IAA due to pre-annotation have been less consistent, with
some studies reporting no change and another reporting an increase of 11% [7, 8, 98].
Interactive assisted annotation in the current study improved [AA by ~27%. Although
some of the decrease in annotation time in our study was expected and likely due to the
increased fraction of annotations correctly labeled by RapTAT, there was an unexpected
increase in annotation rate unrelated to annotation number. One possible explanation is
that correcting annotations may take less time than adding missing annotations. The
existence of pre-annotations may also reduce the cognitive burden by decreasing the
number of annotations that have to be identified on each document or helping to delineate
document sections. With respect to the increase in [AA for assisted annotators, we theorize
that pre-annotation by RapTAT may help reviewers to identify and annotate phrases they
might otherwise overlook, thus reducing inter-annotator discrepancies. A potential benefit

of increased [AA is a decrease in the adjudication workload.

Although previous studies have suggested that pre-annotation can reduce annotation
burden, the iterative, machine learning-based approach to pre-annotations described here
has some important advantages. One is that there is no need to identify or create a pre-
annotation system because such a system is generated during the annotation process.
RapTAT can be used without the linguistic and computational experience that might
otherwise be required to implement a pre-annotation system. A second advantage is that
the system carrying out pre-annotation is automatically optimized for the schema and
intended domain via machine learning during annotation. Considering that low pre-
annotation accuracy can slow the annotation process [95, 98], correctly tailoring the pre-
annotation to the domain is important, and non-optimized pre-annotation tools, such as

pre-existing systems or dictionaries developed for a task, may not be sufficient.

There have been previous reports on the use of machine-learning based pre-annotations
for assisted annotation. Culotta et al described an iterative approach similar to the one
described for RapTAT for training a named entity recognition system. Using simulations,
they reported that their approach reduced the number of “actions” required by an

annotator by 42% [103]. The MIST tool has been used to annotate protected health
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information within medical documents, and it can be trained to identify other

concepts [104]. Another annotation tool, BOEMIE, is reported to include the ability to use a
similar interactive approach to assist with text annotation [105]. To the best of our
knowledge, the impact of using MIST or BOEMIE on annotation time and IAA and their

ability to support real-time interactive annotation have not been reported.

CONCLUSION

This study demonstrates that interactive, iterative machine learning as provided by
RapTAT can assist with the annotation of text by gradually learning to produce accurate
pre-annotations. Doing so substantially reduces the annotation time by decreasing the
number of annotations that must be added by reviewers and helping to accelerate the rate
at which reviewers are able to add missing annotations and correct inaccurate ones.
RapTAT also improves IAA, which should accelerate adjudication when using multiple
reviewers for annotation. Integration of RapTAT or a similar system with an annotation
tool could help to mitigate an important barrier to implementing NLP systems in the

medical realm.
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CHAPTER 4
FUTURE DIRECTIONS

The studies described in this thesis demonstrate that online machine learning can assist
and accelerate annotation of text. A question that remains to be explored is whether there
are refinements to the described approach that could further improve the RapTAT assisted
annotation tool and reduce the annotation burden. A second question is whether, given the
benefits provided here by online learning, this approach might also be used for other text
classification tasks, such as document and patient classification. A third question is
whether the language processing algorithms created in these studies can be used to
generate other medical informatics tools for improving patient care. The following

discussion examines each of these questions in turn.
LANGUAGE MODEL REFINEMENTS

A few potential modifications to the assisted annotation tool described in this thesis might
further reduce the annotation burden. One potential modification would be to refine the
text analysis to extract further information about the extracted concepts. Annotation of
medical notes often entails more than simple concept identification. Perhaps the most
straightforward example is the need to include whether a concept found in the text was
negated or uncertain. Clearly, negated symptoms, such as found in the example, “the
patient denies any exercise intolerance,” has very different implications from an assertion
such as “the patient reports extreme exhaustion after exercise.” Capturing both asserted
and negated symptoms and other concepts can be important in a medical record.
Assuming that a narrative describing a patient encounter is accurate, text describing a
negated symptom indicates that the symptom was investigated and found to be absent. In
contrast, for symptoms are not even mentioned in the text, there is generally no way to
determine whether such symptoms are present or absent. To determine whether a
concept is negated generally requires an analysis of the context in which it appears.
Several tools have been developed that use context to accurately determine the assertion
status of concepts in text. Examples include NegEx, which is a rule-based system with a

reported precision of 84.5% and recall of 77.8% [106], and NegScope, which uses a
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machine learning-based, conditional random field model supplemented with a dictionary of
negation terms to establish negation status and has a reported precision of 91.7% and
recall of 92.7% [107]. Other contextual attributes of concepts that can be important in the
medical realm include the concept “experiencer,” which describes whether a symptom or
treatment was experienced by a patient or someone else such as a family member, and
concept “temporality,” which describes whether the occurrence of an entity pertains to the
past, present, or future. These particular attributes are now extracted by the rule-based
ConText tool with a precision and recall of 74.2% and 67.4%, respectively, for temporality
and 100% and 50%, respectively, for experiencer [108]. The performance of the NegEx,
NegScope, and ConText tools suggests that it should be feasible to expand a tool like

RapTAT to use online learning to assist with assigning attributes to concepts.

Other language models may be more accurate than the Bayesian concept mapper and
phrase identification models described in our studies. Given that the speed of assisted
annotation is dependent on pre-annotation accuracy [95, 98], finding a more accurate
model could further increase the rate of annotation. In the 2010 i2b2 challenge, the task
for groups entering the challenge was to identify medical problems, tests, and treatments in
clinical text, and conditional random field (CRF) language models were found, in general, to
perform best [70, 109, 110]. For the studies in this thesis, we generated a novel,
probabilistic method of phrase identification because CRFs require user input to identify
and define the “features” to include, which will affect model performance. Concept
recognition features can be simple, such as the tokens within the text, or complex, such as
the nature of multiple, surrounding tokens. Increasing the number of features can improve
model accuracy but may also increase training time and lead to over-fitting. Also,
identifying features for potential inclusion may require linguistic expertise that is not
readily available to someone using a RapTAT-like tool. Nevertheless, because feature
selection takes place during the training of CRFs, it may be possible to generate and include
an extensive number of text features in the model initially and allow online training to
select those that most improve accuracy. Another characteristic of CRFs that would
probably have to be addressed is that they are typically trained offline using the entire

training corpus. A method of incrementally training CRFs, which is required for
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implementing online learning, has recently been described [111]. The investigators used a
modification of stochastic gradient descent, which gradually updates the model with new
training instances, and the modified optimization method obtained an order of magnitude
increase in training speed relative to offline, batch training [111]. Whether this increase in
speed is sufficient to support real-time updating of the language model and feedback to an

assisted reviewer as done in this study remains to be established.

Although the time requirement is a substantial barrier to annotation, and RapTAT appears
to lower that barrier by accelerating annotation, another important hurdle is that
annotation of medical notes often requires reviewers with substantial expertise. For
example, if the annotation task was to identify free text phrases signifying dehydration, a
reviewer inexperienced in medical terminology might have a hard time accurately
recognizing such phrases. With substantial training in the domain and the annotation task,
it might be possible to use less experienced reviewers for annotation, but the time spent
training reviewers itself adds to the annotation burden. An online learning system like
RapTAT might be able to reduce the expertise requirement. If RapTAT or a similar system
was pre-trained using the annotations of an expert reviewer, the pre-annotations provided
by such a system might help to guide inexperienced reviewers regarding how to perform
the annotation task. Based on the results of the studies in this thesis, 50-60 documents
might be sufficient for pre-training and generating a reasonably accurate (F-measure >

0.80) pre-annotation system.
ONLINE LEARNING AND DOCUMENT CLASSIFICATION

The online learning approach used by RapTAT very likely has uses beyond those described
in this thesis, such as training systems to classify medical documents. A number of machine
learning-based systems have been described for carrying out document classification [112].
As with NLP, these systems must be trained using a corpus of manually classified
documents, and generating such a corpus is expensive. Online learning might reduce the
time spent on manual classification by switching the task from one of full document review
to one of only identifying incorrect classifications. It might also reduce the time spent on

manual classification by minimizing the size of the training set. In our studies, the primary

67



goal was to speed the annotation of corpus of given size rather than to train the RapTAT
algorithms. Our intention was then to use that corpus for training other, external NLP
algorithms. However, online learning can be and typically is used for direct algorithm
training. Because performance is monitored continuously during the training that occurs
as a part of online learning, the manual part of the process, whether it involves text
annotation or document classification, can stop as soon as the system being trained reaches
an acceptable level of performance. With offline batch training, there is generally no way to
determine a priori the number of documents required to achieve adequate performance, so
reviewers may examine more documents than actually needed to assure that there are

enough to generate an accurate system.

The potential use of online learning for training systems with respect to document
classification has been demonstrated by Borodin et al [113]. They used a modified,
centroid-based classification algorithm for online learning to classify medical literature
documents. Their purpose was not to accelerate training but to use online learning to
adaptively respond to changes in documents over time and minimize potential decreases in
performance. They found that the accuracy of their algorithm with regard to classifying a
medical literature corpus was higher when trained using online learning than when using
batch offline learning. While the Borodin study demonstrates that online learning can be
used for document classification training, whether online learning can be used to accelerate

such training has not been established.
NEAR REAL TIME NATURAL LANGUAGE PROCESSING

The initial purpose of developing the RapTAT algorithms was to support assisted
annotation. Based on the studies included in this thesis, it appears that these algorithms
can be trained to achieve sufficient accuracy to carry out common NLP tasks such as
concept recognition and normalization of the phrases used for expressing a particular
concept. A number of NLP systems already exist that can accurately recognize or
normalize concepts, examples of which include MCVS [19], the Mayo Clinic Autocoder [68],
the SNOMED Categorizer (SNOCat) [57], KnowledgeMap [21], IndexFinder [58], MedLEE
[59], MetaMap [23], Metaphrase [61], MicroMeSH [62], PhraseX [64], SAPHIRE [114], and

68



SENSE [66]. The advantage of the RapTAT algorithms over those within existing systems
appears to be the speed and scalability. To date, the largest corpus to which RapTAT has
been applied consisted of 18,000 clinical notes averaging 1-2 pages in length. Processing,
including file input and output, took 90 minutes, equivalent to approximately three
documents each second. The rate did not change during processing, which suggests that
the system may scale for processing larger corpora and is potentially capable of processing
288,000 documents per day. In comparison, a report on the well-established MedLEE NLP
system suggests that it is capable of processing approximately 20,000 documents per day

[40].

Two potential uses of RapTAT afforded by its scalability and speed are for medical
surveillance and clinical feedback at the point of care, respectively. The ability of RapTAT
to process large numbers of documents suggests that it could be used for continuous
monitoring of the text within large document corpora produced daily by healthcare centers.
Potential examples include monitoring of adverse effects from medical devices or
medications following Federal Drug Administration approval, surveillance for unexpected
clustering of disease outbreaks, and oversight of the ongoing rate of medical procedure
complications. One potential use with respect to the ability of RapTAT to provide near real
time feedback is the automated generation of problem lists based on the text created
during a clinical encounter. Such a system might aid the clinician and his or her colleagues
by assisting in the detection and explicit documentation of clinical problems. The clinician
could even provide feedback to the system following problem list creation. In this way, the
system could be individually tailored to the type of expressions used by the clinician and
the typical problems encountered. Near real time analysis of clinical notes at the point of
care could also be used for automated retrieval of knowledge relevant to the concepts
present in the text. Cimino first proposed the term “infobuttons” for links within the
electronic medical record to electronic information resources [115]. Not surprisingly,
infobutton use is reported to increase when contextual information is used to increase the
relevancy of the linked information [116]. Considering the importance of context with
respect to identifying pertinent resources, the ability to quickly process the information

provided within the free text could provide additional context and further increase
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relevance. Del Fiol and Haug have shown that machine learning can significantly improve
the selection of appropriate resource links [117]. The key concepts of interest within a
clinical system and the resources that can provide information about those concepts can
change or “drift” over time, and Del Fiol and Haugh demonstrated that periodically
retraining the system to adapt to drifts over time could improve the ability of the system to
select relevant resources. They also showed that they could increase system performance
by tailoring the system to a particular user based on machine learning. Online learning
could be used to continuously update the system to respond to conceptual and resource
changes over time. It might also be used to automatically tailor the system to individual
providers based on feedback regarding the utility of Infobutton links identified by the

system.

An additional advantage provided by using RapTAT as a full NLP system is that it opens up
the potential for also using active learning during training. As mentioned earlier, active
learning can decrease the cost of annotating text by actively involving the learning
algorithm in the document selection process [86]; its goal is to train the system while
requiring as few samples as possible. Its implementation within RapTAT could
complement the use of online learning, which speeds up the rate of annotation and tracks
tool performance during training. Active learning has been applied in a wide variety of
language processing tasks [87], examples of which include part-of-speech tagging [88, 89],
text categorization [90, 91], named entity recognition [92, 93], and classification of
assertions [94], and it has been reported to reduce the number of required training
samples by 38-63% [92, 94]. To the best of our knowledge, there are no reports describing
the impact of combining active with online learning in a single system on overall

annotation burden, and studying such a burden could be a worthwhile are for investigation.
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Appendix A. Mapping and Concept Ambiguity

Phrases Concepts
Tokens in Containing Associated
Phrase the Token with Phrase
phrase,

» concept,

____—phrase, ?
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: : concept,,
token, —— phrase_:---*-3 concept,,
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Mapping Ambiguity - This measure reflects the number of concepts to which a given phrase can
be mapped. The above figure demonstrates how mapping ambiguity is determined for a
theoretical example, phrase,, which is defined by a sequence of three tokens, token, token, and
tokens. A concrete example of such a phrase would be “acute myocardial ischemia” with the
tokens being “acute,” “myocardial,” and “ischemia.” For a token-order-specific (TOS) classifier, we
consider “similar” phrases to phrase, (dotted squares in the figure) to be all phrases that contain a
particular token, such as tokeny, at the same position within the token sequence that defines the
phrase. For a bag-of-words (BOW) classifier, similar phrases to phrase, would be those containing
token; at any position within their token sequences. In the figure, phrase, is similar to itself as
well as phrasep and phrase.. For example, a phrase such as “acute myocardial ischemia” would be
similar to “acute hepatitis” according to both the TOS and BOW classifiers because the token
“acute” is in the first position in both phrases. It would also be similar to “relapsing acute
pancreatitis” according to the BOW but not the TOS classifier. “Similar” phrases might be mapped
to the same or different concept in SNOMED CT or another user-defined ontology. As shown in the
figure, phrase, and phrasey are similar and map to concept;. They are also similar to phrase., but it
maps to a different concept, conceptiy. The phrases “acute myocardial ischemia” and “acute
coronary insufficiency” would be examples of similar phrases that map to the same SNOMED CT
concept, while “acute hepatitis” would be a similar phrase that mapped to a distinctly different
concept.

To calculate mapping ambiguity, we need to know the number of tokens in the phrase and the
concepts associated with these tokens. In the theoretical example in the figure, phrase, is similar
to itself, phrasep, phrase., phraseq, phrase., and phrases which are associated with 4 concepts,
concept;, concepty, concepty, and conceptyy. We normalize this value to the number of tokens to
offset the probability that a longer sequence with more tokens is expected to be associated with
more concepts. For this example, the mapping ambiguity of phrase, is 4/3 or 1.33.
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Appendix A. Mapping and Concept Ambiguity

Phrases Mapping
Describing Ambiguity
Concept of Phrase
[N 1 — m,
Concept Ambiguity
concept Phraseg ______________ m,
Pt L m_+m,+m,+m,
phraseh """"""" m, 09,, f
phrase e m,

Concept Ambiguity - This measure quantifies the degree to which phrases that map to a given
concept are distinctly associated with that concept. Concept ambiguity decreases as the mapping
ambiguity of the phrases associated with the concept decrease. For example, in the above figure, if
phraseq, phrasey, phrase., phraseqall have a token sequence length of one and are associated with
only one concept, concept;, then the mapping ambiguity of each is one, and the concept ambiguity
is base 10 log of the average mapping ambiguity, which is logi0(4/4) or zero.

Note that it is possible for concept ambiguity to be less than zero. If a phrase has a token length, L,
of greater than one but maps to only one concept, its mapping ambiguity will be 1/L, a value less
than one. If the average mapping ambiguity is less than one, the log of this value and thus concept
ambiguity will be a negative value.
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