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Chapter 1 

Introduction 

 

Robust localization is essential for successful navigation of autonomous mobile robots in 

any environment. Advanced techniques such as simultaneous localization and mapping 

(SLAM) also consider reliable localization as a critical component. The major existing 

localization algorithms like the Particle Filter, however, are, based on the assumption 

that the environment is static which does not hold true for some practical applications 

of mobile robots. 

 

In this thesis, we explore a rather fledgling area of wireless robotic capsule endoscopy 

where dynamism is an inherent feature of the environment. Since the last decade, 

intense research has spurred in the field of robotic diagnostic technologies for inspecting 

the entire gastrointestinal (GI) tract for various diseases, such as obscure 

gastrointestinal bleeding (OGIB), tumors, cancer, Crohn’s disease, and celiac disease. It 

is envisioned that the next generation of these micro-robots will traverse the GI tract 

with greater autonomy. In such self-propelling tiny capsule robots, the incorporation of 

mini-surgical tools and artificial intelligence is anticipated. Capsule robot localization 

and mapping of the environment inside the human body will be a key essential for 

successful autonomous navigation. This becomes a similar problem to that of standard 

mobile robot pose estimation and SLAM, but the difference being the complex dynamic 

environment that it operates in.  

 

In this work, we report the existing state of affairs of several research activities related 

to capsule robot technology, technical challenges in such conditions, and finally propose 

an approach that explores extending the Particle Filtering paradigm to this new type of 

tubular elastic environment. In our methodology, we describe a restricted version of the 

dynamism problem, where the map changes with time in a predictable manner. A series 

of simulations reflecting several situations that can arise in an elastic colon-like 

environment were demonstrated. Our approach utilizes and adapts to a series of maps 

that are assumed to be determined a priori based on patterns of expansion and 

contraction of the colon walls. Experimental results demonstrate that in such scenarios 

the Particle Filter cannot be directly applied, but with clever changes in the algorithm, 

robust pose estimation and localization may be achievable. 
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This thesis is divided into 6 Chapters starting with this first chapter of introduction. 

Chapter 2 sheds light on the background of the problem we aim to solve in our research, 

the various motivations and the significance of extending standard mobile robot 

navigation paradigms into the recent domains like bio-robotics and miniature robot 

endoscopy.  

 

In Chapter 3, we review the literature on the recent trends in innovation and research of 

several capsule robots, their state-of-the-affairs and the present challenges faced by 

scientists in this domain. 

 

Chapter 4 outlines how we approach this problem and our methodology of applying a 

Particle Filtering technique in colon-like conditions. In this section, we also try to cover 

the mathematical background in order to prepare readers for the later sections. We start 

from deriving the basics of Bayes’ filtering, which can in many ways be extended to 

other recursive filters including Particle filters.  

 

In Chapter 5, we present the results of the implementation of Particle Filter in various 

scenarios in dynamic colon-like environment, and discuss what we learned from 

analyzing these results. This section covers several experiments that we performed to 

quantify the impact of dynamism in the pose estimation error and methods to minimize 

it. We implemented the algorithms in a Matlab environment, and readers can find these 

codes we used in the Appendix. Additionally, we present the particle cloud images as 

the robot moves in the dynamic map eventually localizing itself.  

 

Lastly, we close with conclusions and summary in Chapter 6 and discuss possible future 

research in this promising field of robotics briefly. 
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Chapter 2 

Background & Significance 
 

In the past two decades, mobile robot localization and SLAM have received 

substantial interest within the AI and robotics community. The localization problem 

deals with estimating the pose of a robot relative to a fixed map [1] whereas SLAM 

addresses a more challenging problem of building a map of an environment and 

concurrently using this map to deduce the location of the robot. The solution to the 

simultaneous localization and map building (SLAM) problem is, in many respects, a 

“Holy Grail” of the autonomous vehicle research community. [2] SLAM is of inestimable 

value in a range of applications where absolute position or precise map information is 

unobtainable, including, amongst others, autonomous planetary exploration, subsea 

autonomous vehicles, autonomous air-borne vehicles, and autonomous all-terrain 

vehicles in tasks such as mining and construction.  

 

The general localization problem also has attracted similar attention and has been the 

subject of substantial research because reliable position estimation is a key problem in 

mobile robotics especially in areas such as unmanned vehicle navigation systems and 

geophysical surveying. Both problems, mobile robot localization and SLAM have been 

formulated and solved at a theoretical and conceptual level in a number of different 

forms.  

 

The paradigm of Markov localization has proven to be extremely effective in solving the 

mobile robot localization problem as it applies probabilistic representations for the 

robot’s location, the outcome of actions, and the robot’s observation. Markov 

localization has been employed by various groups with remarkable success [3, 4, 5, 6, 7] 

 

The most popular algorithms that follows this framework can be classified into two 

categories: Grid-based Markov localization and Monte Carlo localization. Between the 

two, Monte Carlo localization (also called Particle Filter localization) has better 

performance parameters because it has reduced memory usage since its memory usage 

only depends on the number of particles and does not scale with size of the map, and 

can integrate measurements at a much higher frequency. Particle filters have been 

applied with great success to many real world localization and tracking problems, as 

documented by various chapters in [8].  
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Similarly, a number of approaches have been proposed to address the SLAM problem 

out of which, The EKF-SLAM and FastSLAM are the two most widely used solution 

methods. 

 

FastSLAM algorithm, introduced by Montemerlo et al. [9], marked a fundamental 

conceptual shift in the design of recursive probabilistic SLAM. FastSLAM, with its basis 

in recursive Monte Carlo sampling, or particle filtering, was the first to directly 

represent the nonlinear process model and non-Gaussian pose distribution. FastSLAM 

quickly becase a highly popular technique because the algorithm decomposes the SLAM 

problem into a robot localization problem, and a collection of landmark estimation 

problems that are conditioned on the robot pose estimate.  Interestingly, the success of 

SLAM and Particle Filter localization techniques has not by any means accomplished 

the much-coveted dream of totally autonomous mobile robot navigation. They both 

have a common deficiency that we shall discuss in detail throughout this research. 

 

On a holistic level, a striking characteristic of the rich literature on this topic is that 

virtually all published work on SLAM and Particle Filters assumes that the 

environment is static. This assumption, called Markov assumption, is commonly made 

in the mobile robot navigation literature. It postulates that the robot’s location is the 

only state in the environment which systematically affects sensor readings. This is not a 

trivial but a critical shortcoming, because, this static world assumption is in clear 

contrast to some robotic environments, which change over time. Thus, at the start of 

this research, we believed that a worthwhile research goal would be to investigate those 

applications where a dynamic environment is indispensably inherent and hence a major 

part of the problem.  

 

Again, dealing with dynamism in a robot’s environment is not a new prospect which is 

evident in the volume of research conducted by various groups discussed in chapter 3. 

However, upon profound investigation into their research, we discovered that dynamism 

in the robot’s environment that was studied can be broadly classified into 2 types: 

a) Hundreds of people moving around robot corrupting the sensor readings[10, 11,12] 

b) Changes in the map over the time because a door is opened/closed, or a piece of 

furniture is displaced.[13] 

 

In this research, we postulate that there is a third kind of dynamism that can arise in 

several areas of mobile robot navigation that are not explored to their totality as yet. 

This is the dynamism inherently caused by the changes in the structure of the 

environment over a course of time either deterministically or non-deterministically. It 

was clear that the earlier techniques fail if the map is not static, but we explored areas 

of application that required newer takes on our standard algorithms. 
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No one has shed light on this aspect probably because in outdoor/indoor mobile robot 

navigation, it is hard to imagine such a scenario. But recent studies have shown that 

fields such as micro-robotics, robotic capsule endoscopy, robotic capsule colonoscopy, 

and medical robotics in general are increasingly borrowing concepts from mobile 

robotics. PillCam[14], PillCam Colon2[15] and PillCam SB[16] are some examples of tiny 

capsule size robots that can propel themselves in the interior of the human 

gastrointestinal tract to perform early cancer diagnosis. In these applications, the 

intestinal walls are stretchable and thus the environment in which the micro-robots 

have to operate is prone to this new kind of dynamism. This avant-garde medical micro-

robotics domain is highly promising and we investigated during this research what kind 

of challenges this new application segment presents to standard mobile robot navigation 

methodologies and how we can address them. 

 

Again, we believe this is a field that is going to revolutionize medical diagnosis and 

cancer studies because experimental tests from reputed studies showed that these 

capsule devices deform intestinal walls ten times less than conventional colonoscopies, 

even reaching the same objectives. [17] We envision that in the future, there will be very 

tiny robots in the nano-scale that can swim anywhere inside a living animal to perform 

diagnosis and even in some cases appropriate treatment. We are anticipating where 

robotics will achieve their goal of truly miniscule robots. 

 

Upon further investigation into this field, we found that in many ways this scenario of 

reliable navigation within the gastrointestinal tract becomes exceedingly similar to the 

earlier discussed SLAM and robot localization problem. But with an added element of 

dynamism. Here, dynamism is clearly a huge part of the problem and is certainly 

indispensable. The environment is constantly changing because of respiration of the 

human subject or other fluid movements inside the tract. This change caused in the 

structure of the map over a course of time can either be deterministic or non-

deterministic. 

 

In most cases, the robot travels along the intestine lumen like a worm. This is very 

similar to how a mobile robot navigates in an indoor environment. But the biggest 

difference is here the environment where the robot traverses is elastic and the walls 

contract and relax periodically or aperiodically. Our research started at this point to 

investigate where the previous solutions to SLAM and mobile robot localization fail due 

to this new kind of dynamism in the environment and how to effectively apply these 

techniques in such a challenging and an obscure environment.   
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Chapter 3 

Literature Review 
In the past, several researchers have studied the problem of dynamism in the context of 

robot localization and SLAM. Many successful approaches have been proposed but there 

remain a number of open challenges. 

 

As far as localization in non-static environments is concerned, one of the first strategies 

was described by Crowley [18] who uses a Kalman filter to fit lines on range 

measurements obtained from sonar sensors. Fox et al. [19], for example, use an entropy 

gain filter to identify the measurements caused by dynamic objects. Burgard et al. [20] 

additionally use a distance filter which selects individual measurements based on the 

difference between their measured and their expected distance. Montemerlo et al. [21] 

propose a method for tracking people while simultaneously localizing the robot which 

increases the robustness of the robot pose estimation. 

 

Although these ‘filtering of the range data’ approaches have proven to be robust in 

certain dynamic environments, they discard valuable localization information and thus 

cannot be applicable in the context of our problem. 

 

The problem of dealing with dynamism has also been investigated in the field of 

simultaneous localization and mapping (SLAM).  

 

Wang and Thorpe [22] employ a feature-based heuristic to identify dynamic objects in 

range measurements and use the filtered result for localizing the robot and building a 

map at the same time. HΥahnel et al. [23] use a probabilistic method for tracking people 

and filter out the corresponding measurements to improve the map building process. 

Although these filtering approaches have proven to be robust in highly dynamic 

environments, they discard valuable localization information when the changes in the 

environment occur with a relatively low frequency. 

 

Like aforementioned, there have been many researches on the detection and tracking of 

the moving objects like people around the robot. However, they have focused on the 

tracking of moving objects rather than the location change of dynamic landmarks. 

 

In 2005, Wolf et al. proposed an on-line algorithm for SLAM in dynamic environments 

[24]. It is capable of differentiating static and dynamic parts of the environment and 

representing them appropriately on two grid maps with occupancy probability model.  
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However, it was later identified that performing SLAM with occupancy grids suffers 

from deteriorating map quality over time.  

 

Mitsou and Tzafestas [25] suggest modifying the occupancy grid structure to maintain a 

history of sensor values. In a similar vein, some authors [26] presented a novel 

framework called Dynamic EKF SLAM that separates the landmarks into static and 

dynamic type. It estimates the optimal robot pose by combining the probability 

distribution models of the traditional EKF and the individual EKFs of the dynamic 

landmarks. However, this algorithm needs to cope with real robot platforms in real 

environments like the one we are discussing in this research. 

 

 

From investigating all of the research cited above, one can classify the dynamism that 

that has been studied into two broad categories: 

 

a) Dynamism in the environment due to moving people/vehicles/other robots. 

b) Dynamism in the environment caused by re-arrangement of furniture like door/chair. 
 

To a large extent, we can consider these two kinds of dynamism problems solved.  

Only a few studies have been published about the third kind of dynamism that we 

discuss in this research. It is the dynamism that is part of the intestinal environment 

where it is not the objects/landmarks that change with respect to time, but since the 

outer walls are elastic, the entire structure is inherently dynamic. 

 

Compared to outdoor and indoor environments, the inside of the human body is a 

complex environment making engineering design and visualization a formidable task.  
 

There are some authors who have studied somewhat similar environments. Biber and 

Duckett [27] propose a spatio-temporal map where the environment is represented at 

multiple time-scales simultaneously. This adaptive map approach aims at generating a 

consistent representation of the environment. Another idea is about using sets of local 

maps as representation of the changing environment. Williams et al. [28] create a local 

submap of the features around the robot and fuse the local maps regularly with a global 

map. This approach is very useful for our research problem but the key difference is 

that it assumes the environment to be static and uses the gathered information for 

constructing globally consistent maps.  

 

In the field of bio-robotics and medical robotics, wireless capsule endoscopy (WCE) has 

garnered great reputation over the conventional methods of endoscopy as it is a 

painless, effective, novel, diagnostic technology for inspecting the entire gastrointestinal 
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(GI) tract for various diseases, such as obscure gastrointestinal bleeding (OGIB), 

tumors, cancer, Crohn’s disease, and celiac disease. [29] 

 

In the field of WCE, rigorous research has been oriented towards the mechanical design 

aspects and miniaturization of the micro-robot so that it can traverse the GI tract safely 

and aid in medical diagnosis.  

 

These tiny micro-robots, called capsule robots, are in their nascent stage of commercial 

application inside a human body. However, there is an increased attention in capsule 

endoscopy after a series of breakthroughs since 2001. 

 

An Israeli company, Given Imaging Ltd., developed the first commercial disposable 

capsulated pill named M2A, as illustrated in Figure 3.1. The single capsule design 

incorporates a light source, a miniature complementary metal oxide semiconductor 

(CMOS) color camera, a battery, an antenna, and a radio transmitter. 

 

 

 
 

Figure 3.1, image of M2A 

 

 

The capsule is the size and shape of a pill typically 20-25 mm in length, 11 mm 

diameter and contains a tiny camera. After a patient swallows the capsule, it takes 

pictures of the inside of the gastrointestinal tract like the one shown in Figure 3.2.  
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Figure 3.2, Image of the colon acquired by capsule endoscopy 

 

 

Due to the dissimilarities of different areas of the GI tract, Given Imaging, Ltd. 

launched its esophagus-specific and colonspecific capsules, that is, PillCam ESo and 

PillCam Colon, respectively. In addition to Given Imaging Ltd., Jinshan (China), 

Olympus (Japan), and IntroMedic (Korea) made significant improvements in the 

performances of their own endoscopic capsules. 

 

Even so, all of the present capsules that are used move through the GI tract by the 

natural motility of the tract itself. There is no control of the capsules’ movements or 

camera orientation, which limits the accuracy of medical diagnoses. Along with this, the 

poor image resolution and low frame rate confine the wider application of the capsules 

for sensitive detection. Overcoming these limitations and developing the next generation 

of such capsules with enhanced functionality and control is the objective of many 

research communities in this area. 

 

One promising step in that direction is a microcapsule named MiRO #1, which is being 

developed by the Intelligent Microsystem Center [30] in Korea. As illustrated in Figure 

3.3, it has the ability to advance forward, backward, orientate, stop, and anchor itself 

onto the colon wall at will. 
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Figure 3.3, Image of the MIRO#1 micro-robot 

 

 

Only 10 mm in diameter and 20 mm in length, it is equipped with a micromanipulator 

arm that is able to perform therapeutic procedures like taking tissue samples and 

administering an injection. The images are transmitted wirelessly, and it is also 

integrated with a position tracking device. A transmitted radio-frequency signal is 

typically used to accurately estimate the location of the capsule and to track it in real 

time inside the body and gastrointestinal tract. 

 

Several researchers [31] argue that a better technique would be to inflate the colon, and 

then make the capsule should enter the tract, so that it can detect abnormalities in the 

colon with greater effectiveness. With the implementation of a micromanipulator arm 

and the ability to control the capsule’s movement and orientation at will, they predict 

that this would be a huge advantage when evaluating the small intestine. 

 

They further envision that Capsule endoscopy will reach a stage where both diagnosis 

and therapeutic procedure can be performed simultaneously. In the future, it would not 

be as hard as it is now to design an active robot that can move on its own and against 

the natural peristalsis of the gastrointestinal (GI) tract. This would be a great 

advantage to the community of medical diagnosis. 
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We aim to push the boundaries in this particular context. We believe that an active 

self-propelling micro-robot that is capable of navigating through the intestines is 

certainly possible in the coming decades. In this research, we explore how far the 

standard navigation techniques that are widely popular in mobile robotics in outdoor 

and indoor environments can be applied in this avant-garde and challenging 

environment.  
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Chapter 4 

Our Methodology 
 

 

With this research, we focus on making it clear to the robotics community on what 

assumptions to make, what set of challenges to consider and what approaches to use 

while adapting the standard algorithms like particle filtering in such avant-garde 

application domains. Our performance results in this pursuit reveal that although it is 

certainly not directly feasible to account for all new challenges this new tubular 

environment presents, a vast majority of them can be addressed by following a set of 

simplification techniques and appropriate assumptions. We hope this research is a 

starting step to many more things to do. 

 

In Chapter 4, we described the status of the research in capsule robot endoscopy and 

the challenges that arise in operating in dynamic intestinal environments. In this 

chapter, we dive into the details of such environments and how they can be modelled for 

a feasible implementation of standard robot localization algorithms. We further discuss 

the methodology that we have used to attack this problem in the most effective yet 

computationally tractable manner. 

 

4.1 Our Environment Model 

In this particular research, we focus our attention on the human colon environment that 

is traditionally examined by a procedure called “Colonoscopy”. Harvard School of Public 

Health (HSPH) states that colonoscopies could prevent 40% of colorectal cancers. [32] 

With this insight in mind, several scientific centres like CODIR[33] are exceedingly 

working towards building next generation robots that can swim/submerge in the colon 

environment and perform crucial tasks like visual examinations and biopsy. Based on 

the suggestions of various researches who are working on Pill Colonoscopy [34], we have 

identified that there was a great need for models that experimented with the colon. 

 

Due to these compelling factors we selected the human colon to be our organ of interest 

in this thesis. Below is the actual shape of a human colon which has several divisions as 

illustrated in Figure 4.1. 
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Figure 4.1: Human colon and its various sections [Mayo] 
 

 

 

 

Figure 4.2 shows the outline of a segment of colon that we have chosen to build our 

model after. It is called “Transverse Colon” and has several ridges like other parts of the 

colon.  
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Figure 4.2: Transverse Colon (area filled with blue) 

 

The transverse colon, the longest and most movable part of the colon, passes with a 

downward convexity from the right hypochondrium region across the abdomen, opposite 

the confines of the epigastric and umbilical zones, into the left hypochondrium region, 

where it curves sharply on itself beneath the lower end of the spleen, forming the splenic 

or left colic flexure. The right colic flexure is adjacent to the liver. In its course, it 

describes an arch, the concavity of which is directed backward and a little upward; 

toward its splenic end there is often an abrupt U-shaped curve which may descend lower 

than the main curve. [35]This specific part of the colon was interesting to us because it 

provides a better navigation path without too many turns and bends for the capsule 

robot. 

 

Inspired by the design of several capsule endoscopy robots like PillCam Colon2 shown in 

Figure 4.3, we modelled our actual robot simulator to be extremely small so that it can 

operate within the transverse colon’s space with great freedom. It is further assumed 

that the micro-robot has active navigation capabilities like advancing forward or 

backward or in any given direction. The details of the robot model will be discussed in 

later parts of this chapter. 
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Figure 4.3: Image from a 3D simulation of PillCam Colon2 moving in transverse colon 

 

 

 

Dimensionally speaking, the total human colon averages 150 cms (60 inches) in length. 

The transverse colon is usually over 18 inches (45 cm) in length and extends across the 

upper abdomen to the splenic flexure.  

 

From a robotic mapping point of view, the general situation inside the human 

transverse colon is extremely complex with millions of features and mucous layers 

making it a high dimensional problem. But colonoscopic procedures followed by medical 

examiners make use of several cleansing apparatus and they also inflate the colon using 

CO2 or Water to maximum capacity. This is sometimes called Robotic 

HydroColonoscopy as suggested in [36]. This provides greater freedom for the robot to 

navigate inside and for the camera equipment mounted on the robot to function 

effectively.  

 

Since, the level of complexity that the navigation inside an internal organ presents is too 

high dimensional to perform our research at these early stages, for simplicity, we have 

considered building a 2D model of the organ. We built a 2D outline map of “Traverse 

Colon” using Adobe Photoshop as shown in Figure 4.4. This map of the colon 

environment thus serves as the global map that is used in several localization problems 

in autonomous mobile robotics. It is to be observed that the transverse colon has 

various ridges and bends and is uneven throughout its structure. This is another 

deviation from a traditional map used in localization problems where the structure is 

more uniform and rigid.  
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Figure 4.4: One of the transverse colon maps used in our algorithm 

 

The ends of the transverse colon extend themselves into other fixtures in reality but in 

the scope of this research, we assume that they are closed so that the colon segment 

looks like a closed tube as depicted in Figure 4.4. 

 

Putting these simplifications together, the problem now becomes exceedingly similar to 

a conventional mobile robot localization in a given map. We know that this localization 

problem, in other words, robot pose estimation, can be addressed using a Sequential 

Monte Carlo algorithm.  

 

4.2 Dynamism in the Environment 

 

In this research, we investigate a restricted version of the dynamic environment 

problem. To account for the inherent dynamism present in an intestinal environment 

such as the transverse colon, we have utilized a series of maps. Dynamism arises due to 

the change in the state of the environment. This is caused by natural respiration 

patterns of the examinee resulting in contraction and expansion of the outer layers of 

the colon. Thus, the structure of the transverse colon changes with time. The extent to 

which the change in the map can happen is an unknown parameter as of current state of 

the colonoscopic research and is beyond the scope of this research. However, it is 

assumed that it will be possible in the future for advanced medical diagnosticians to 

predict the accurate change in the map by observing thousands of examinee images over 

extended periods of time. In the light of such assumption, we consider that we have a 

way by which the present shape of the transverse colon is estimable at any given instant 

of time. Ofcourse, in reality we expect there may still be some random perturbations in 

the map, but for our initial work we assume a predictable model. In our model, a series 
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of maps are built on the top of one another with gradual changes in certain regions to 

simulate the dynamism described above. 

 

Figure 4.5 shows the maps Ma and Mb at six time instants t1, t2, t3, until t4 

respectively. 

 

Figure 4.5: Maps with changes in a region over the time t1 to t6 

 

As in the standard mobile-robot localization problem, here the map is always available. 

Due to the dynamism in the structure of the environment, the map varies with time. 

This is a unique constraint that pertains only to such tubular intestinal environments. 

But since we assume that it changes deterministically, the standard Particle Filtering 

algorithm can still be applied as discussed below. 

 

4.3 Particle Filter Theory 

 

For estimating the pose of the robot relative to the environment, our localization 

framework relies on a standard particle filter paradigm. The reason we choose Particle 
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Filtering is because of its central presence in both the localization and SLAM solutions.  

In most variants of the mobile robot localization problem, particle filters have been 

consistently found to outperform alternative techniques, including parametric 

probabilistic techniques such as the Kalman filter and more traditional. The Particle 

Filter has been implemented with as few as 50 samples [37] on robots with extremely 

limited processing and highly inaccurate actuation, such as the soccer playing AIBO 

robotic shown in Figure 4.6. 

 

 
Figure 4.6: Particle filters have been used successfully for on-board localization of 

soccer-playing Aibo robots with as few as 50 particles. 

 

 

In Particle Filter localization, we are interested in estimating the state of the robot at 

the current time-step k, given knowledge about the initial state and all measurements 

 Zk=ሼݖ௞, ݅ ൌ 1…݇ሽ up to the current time. Typically, we will work with a 3-dimensional 

state vector X = [x, y, θ], i.e. the position and orientation of the robot.  

 

This estimation problem is an instance of the Bayesian filtering problem, where we are 

interested in constructing the posterior density p(Xk | Zk) of the current state 

conditioned on all measurements. In the Bayesian approach, this probability density 

function (PDF) is taken to represent all the knowledge we possess about the state Xk, 

and from it we can estimate the current position.  

 

The key idea of particle filters is to represent the posterior by a set of weighted samples 

or particles, where each particle corresponds to a potential pose of the robot. 

 

Summarizing, to localize the robot we need to recursively compute the density p(Xk | 

Zk) at each time-step. 
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4.3.1 Particle Filter Theory 

Particle filters inherit a lot of their mathematical explanation from Bayes filters. For 

the sake of consistency, here we briefly derive the basics, beginning with Bayes filters. 

Bayes filters address the problem of estimating the state X of a dynamical system 

from sensor measurements. For example, in mobile robot localization the dynamical 

system is a mobile robot and its environment, the state is the robot’s pose therein (often 

specified by a position in a two dimensional Cartesian space and the robot’s heading 

direction θ), and measurements may include range measurements, camera images, and 

odometry readings. 

 

Odometers are sensors that measure the revolution of a robot’s wheels. As such they 

convey information about the change of state. Even though odometers are sensors, we 

will treat odometry as control data, since they measure the effect of a control action.  

Control data is denoted by ut. The variable ut will always correspond to the change 

of state in the time interval (t-1;t]. As before, we will denote the sequence of control 

data by ut1:t2, for 1ݐ ൑  :2ݐ

ut1:t2= ut1, ut+1, ut+2, …..ut2 

Bayes filters assume that the environment is Markov, that is, past and future data 

are (conditionally) independent if one knows the current state. 

 

The key idea of Bayes filtering is to estimate the posterior probability density over 

the state space conditioned on the data. In the robotics and AI literature, this posterior 

is typically called the belief. Throughout this chapter, we will use the following notation: 

௧ሻݔሺ݈݁ܤ ൌ  ௧|݀଴…௧ሻݔሺ݌

Here x denotes the state, xt is the state at time t, and ݀଴…௧ denotes the data starting 

at time 0 up to time t. 

 

For mobile robots, we primarily have two types of data:  perceptual/sensor data such 

as sonar/laser range measurements and odometry data or controls which carries 

information about robot motion.  

Denoting the sensor measurements by z and the motion control by u we have,  

௧ሻݔሺ݈݁ܤ ൌ ,	௧ିଵݑ,௧ݖ	ห	௧ݔ൫݌ ,	௧ିଶݑ,௧ିଵݖ 	௧ିଷݑ,௧ିଶݖ … . .  ଴൯           (2.1)ݖ,଴ݑ

 

Without loss of generality, we assume that observations and actions occur in an 

alternating sequence. Note that the most recent perception in Bel(xt) is zt whereas the 

most recent controls/odometry reading is ut-1. 
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Bayes filters estimate the belief recursively. The initial belief characterizes the initial 

knowledge about the system state. In the absence of such knowledge, like in global 

localization, it is typically initialized by a uniform distribution over the state space. 

To derive a recursive update equation, we observe that Expression 2.1 can be 

transformed by Bayes rule to: 

  

௧ሻݔሺ݈݁ܤ ൌ
	௧ିଵݑ,௧ݔ	ห	௧ݖ൫݌ … . . 	௧ିଵݑ	|	௧ݔሺ݌	଴൯ݖ … . . ଴ሻݖ

	௧ିଵݑ	|	௧ݖሺ݌ … . . ଴ሻݖ
 

 

    ൌ
௣൫ݖ௧	ห	ݔ௧,ݑ௧ିଵ	 … . . 	௧ିଵݑ	ห	௧ݔ௣൫	଴൯ݖ … . . ଴൯ݖ

௣൫ݖ௧	ห	ݑ௧ିଵ	, ݀଴….௧ିଵ൯
           

(2.2) 

 

The Markov assumption states that measurements ݖ௧	are conditionally independent 

of past measurements and odometry readings given knowledge of the state ݔ௧: 
 

	௧ିଵݑ,௧ݔ	ห	௧ݖ൫݌ … . . ଴൯ݖ ൌ  ௧,൯ݔ	ห	௧ݖ൫݌	
 

This allows us to conveniently simplify Equation (2.2): 

௧ሻݔሺ݈݁ܤ ൌ
	௧ିଵݑ	|	௧ݔሺ݌	௧ሻݔ	|	௧ݖሺ݌ … . . ଴ሻݖ

,	௧ିଵݑ	|	௧ݖሺ݌ ݀଴….௧ିଵሻ
 

 

To obtain our final recursive form, we now have to integrate out the pose ݔ௧ିଵ, at 

time t -1, which yields 

ൌ		
	௧ሻݔ	|	௧ݖሺ݌

,	௧ିଵݑ	|	௧ݖሺ݌ ݀଴….௧ିଵሻ
න݌ሺݔ௧	|	ݔ௧ିଵ	, ,௧ିଵݑ … . . ሻ	଴ݖ ,	௧ିଵݑ	|	௧ିଵݔሺ݌ … . .  ௧ିଵݔሻ݀	଴ݖ

 

The Markov assumption also implies that given knowledge of	ݔ௧ିଵ and ݑ௧ିଵ, the 

state ݔ௧ is conditionally independent of past measurements ݖଵ,  and		௧ିଵݖ.…ଷݖ,ଶݖ

odometry readings ݑଵ,  :, upto time t-2, that is	௧ିଶݑ.…ଷݑ,ଶݑ

,	௧ିଵݔ	|	௧ݔሺ݌ ,௧ିଵݑ … . . ሻ	଴ݖ ൌ ,	௧ିଵݔ	|	௧ݔሺ݌	  ሻ	௧ିଵݑ
 

Using the definition of the belief Bel, we obtain a recursive estimator known as 

Bayes filter: 
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௧ሻݔሺ݈݁ܤ ൌ
		௧ሻݔ	|	௧ݖሺ݌

,	௧ିଵݑ	|	௧ݖሺ݌ ݀଴….௧ିଵሻ
න݌ሺݔ௧	|	ݔ௧ିଵ	, ሻ	௧ିଵݑ  ௧ିଵݔ௧ିଵሻ݀ݔሺ݈݁ܤ

௧ሻݔሺ݈݁ܤ                 ൌ ׬	௧ሻݔ	|	௧ݖሺ݌	ߟ ,	௧ିଵݔ	|	௧ݔሺ݌ ሻ	௧ିଵݑ  ௧ିଵ      (2.3)ݔ௧ିଵሻ݀ݔሺ݈݁ܤ

where ߟ is a normalizing constant.  This equation is of central importance, as it is the 

basis for our Particle Filter algorithm described below. 

4.3.2 Models of Robot Motion and Perception 

In the context of mobile robot localization, Bayes filters are also known as Markov 

localization. To implement Markov localization, one needs to know three distributions:  

a) The initial belief ݈݁ܤሺݔ଴ሻ (e.g., uniform), 
 

b) The next state probability ݌ሺݔ௧	|	ݔ௧ିଵ	,  called the motion model	ሻ	௧ିଵݑ
 

c) The perceptual likelihood ݌ሺݖ௧	|	ݔ௧ሻ		called the perceptual model. 
 

 

The specific shape of these probabilities depends on the robot’s odometry, and the 

type of sensors used for localization. Both of these models are time-invariant: we will 

henceforth omit the time index t. 

4.3.3 Our Motion Model 

In the methodology of this thesis, we have chosen a specific motion model which is 

the result of combining conventional robot kinematics with two independent zero-mean 

random variables, one of which models noise in rotation, and one models translational 

noise. The values depend on the odometry of the wheels and are usually pre-determined. 

Since we are just performing simulations, we assume a standard Gaussian with zero 

mean and a standard deviation of 0.1 for both rotational and translational noise. The 

model is easily coded using MATLAB. The idea is to simulate the movement of a 

capsule robot in the given map. In this localization approach, initially, the pose of the 

robot is given, i.e. the state X0 is known. From here, using the sensor readings from the 

perception model, and our likelihood pdf, we make the micro-robot move in the map so 

that we can recover the pose over a series of prediction and updation stages. The robot 

simulator as described above was built using MATLAB code and helps us move 

anywhere in X-Y Cartesian co-ordinate system with a certain heading direction, θ. 

4.3.4 Our Perception Model 

The perceptual model ݌ሺݖ	|	ݔሻ usually depends on the specific sensor. In our case, 

however, we assume the micro-robot is equipped with 5 range finders for perception 
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placed at θ=00, 300, 600, 3000, 3300 with respect to horizontal (x) axis. Such sensors 

measure the distance of the robot to nearby obstacles using sound or structured laser 

light. We do not delve into the details of which of them would be practically applicable, 

however, we believe laser range finders are more accurate but the trade-off is their size 

and cost. We believe in the future, there will be a possibility where the micro-robots will 

be equipped with high-precision sonar/laser range finders or possibly modulated Infra-

red sensors without worrying about size and cost factors. 

The specific density ݌ሺݖ	|	ݔሻ	is computed in two stages. First, the measurement in an 

ideal, noise-free environment is calculated. For laser range finders, this is easily done 

using ray-tracing in a geometric map of the environment, such as the one shown in 

Figure 4.7. 

Second, the desired density ݌ሺݖ	|	ݔሻ	 is obtained as a mixture of random variables, 

composed of one that models the event of getting the correct reading additive with small 

Gaussian-distributed measurement noise, one for receiving a max-range reading (which 

occurs frequently), and one that models random noise and is exponentially distributed.   

 

 
Figure 4.7 
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4.3.5 Implementation as Particle Filter 

If the state space is continuous, as is the case in mobile robot localization, 

implementing the belief update equation (2.3) is not a trivial matter, particularly if one 

is concerned about efficiency. The idea of a particle filter algorithm is to represent the 

belief ݈݁ܤሺݔሻ  by a set of m weighted samples distributed according to ݈݁ܤሺݔሻ. 

ሻݔሺ݈݁ܤ ൌ ൛ݔሺ௜ሻ,  ௜ୀଵ,ଶ,…௠	ሺ௜ሻൟ݌

 

Here each ݔሺ௜ሻ is a sample (a state), and ݌ሺ௜ሻ are non-negative numerical factors 

called importance factors, which sum up to one.  As the name suggests, the importance 

factors determine the weight (=importance) of each sample. 

In global mobile robot localization, the initial belief is a set of poses drawn according 

to a uniform distribution over the robot’s universe, annotated by the uniform 

importance factor 1/m. For the sake of simplicity, we assume the initial position is 

known. It is the same pose (x co-ordinate, y co-ordinate and heading direction) we 

assign our robot motion model to start from. We call it X0= [x0,y0,θ0]. 

 

The recursive update is realized in three steps, computing the expression in (2.3), 

from the right to the left,  

1. Sample a state ݔ௧ିଵ from ݈݁ܤሺݔ௧ିଵሻ, by drawing a random ݔ௧ିଵ
ሺ௜ሻ

 from the sample 

set representing ݈݁ܤሺݔ௧ିଵሻ  according to the (discrete) distribution defined 

through the importance factors ݌௧ିଵ
ሺ௜ሻ

. 
 

2. Use the sample ݔ௧ିଵ
ሺ௜ሻ

 and the action ݑ௧ିଵ to sample ݔ௧
ሺ௝ሻ

   from the distribution 

,	௧ିଵݔ	|	௧ݔሺ݌ ௧ݔ  The predictive density of	௧ିଵሻ.ݑ
ሺ௝ሻ

    is now given by the 

,	௧ିଵݑ	|	௧ݔሺ݌  . ௧ିଵሻݔሺ݈݁ܤ ௧ିଵሻݔ
 

3. Finally, weigh the sample	ݔ௧
ሺ௝ሻ

 by the (non-normalized) importance factor  

௧ݔቚ	௧ݖቀ݌
ሺ௝ሻቁ, the likelihood of the sample ݔ௧

ሺ௝ሻ
, given the measurement ݖ௧. 

 

After the generation of ‘m’ samples, the new importance factors are normalized so 

that they sum up to 1 (hence define a probability distribution).  The reader should 

quickly see that this procedure in fact implements Eq (2.3) using an (approximate) 

sample based representation.  

The various versions of particle filters proposed in the literature can be regarded as 

special cases of this general Sequential Importance Sampling algorithm. These special 

cases can be derived from the SIS algorithm by an appropriate choice of importance 

sampling density and/or modification of the resampling step. 

Below are the three particle filters proposed in the literature and we know these are 

all derived from the SIS algorithm.   
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a) sampling importance resampling (SIR) filter; 
b) auxiliary sampling importance resampling (ASIR) filter; 
c) regularized particle filter (RPF). 
 

Particularly in this thesis, we are interested in the first type, ‘sampling importance 

resampling (SIR) filter. 

Sampling Importance Resampling Filter: The SIR filter proposed in [38] is a Monte 

Carlo method that can be applied to recursive Bayesian filtering problems. The 

assumptions required to use the SIR filter are not very binding. 

 

The weights given by the proportionality in the equation above are normalized 
before the resampling stage. As the importance sampling density for the SIR filter is 
independent of measurement, the state space is explored without any knowledge of the 
observations. However, the SIR method does have the advantage that the importance 
weights are easily evaluated and that the importance density can be easily sampled. 

 

Obviously, our algorithm constitutes just this one possible implementation of the 

particle filtering idea: other sampling schemes exist that further reduce variance. 

Further below, it will be convenient to notice that in this version of particle filter, the 

proposal distribution for approximating Bel(x) via importance sampling is given by, 

 

ݍ ∶ൌ ,௧ିଵݔ	|	௧ݔሺ݌  ௧ିଵሻ       (2.4)ݔሺ݈݁ܤ	௧ିଵሻݑ

 

which is used to approximate the desired posterior,       

௣൫ݖ௧	ห	ݔ௧൯	௣൫ݔ௧	ห	ݑ௧ିଵ	, 		௧ିଵ൯஻௘௟ሺ௫೟షభሻݔ
௣൫ݖ௧	ห	݀଴….௧ିଵ	, ௧ିଵ൯ݑ

      (2.5) 

 
 

Consequently, the importance factors are given by the quotient  

ሾ݌ሺݔ௧	|	ݔ௧ିଵ,  ௧ିଵሻሿݔሺ݈݁ܤ	௧ିଵሻݑ
-1  
௣൫ݖ௧	ห	ݔ௧൯	௣൫ݔ௧	ห	ݑ௧ିଵ	, 		௧ିଵ൯஻௘௟ሺ௫೟షభሻݔ

௣൫ݖ௧	ห	݀଴….௧ିଵ	, ௧ିଵ൯ݑ
  

	

thus the quotient, ݍ ∝  ௧ሻ     (2.6)ݔ	|	௧ݖሺ݌

 

To update the weights, ݓ௞ିଵ
ሺ௜ሻ

, we note that according importance sampling, the 

weights of the particles at time k should be as follows: 
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௞ݓ
ሺ௜ሻ 	∝ 		

	଴:௧ݔቀ݌
ሺ௜ሻ 	ቚ	ݖଵ:௧

ሺ௜ሻ	ሻ

	଴:௧ݔቀݍ
ሺ௜ሻ 	ቚ	ݖଵ:௧

ሺ௜ሻ	ሻ
 

 

 

 

 
We will not give the full derivation here, but it turns out that it is possible to express the above 

equation recursively in terms of ݓ௞ିଵ
ሺ௜ሻ

 
 
 

௞ݓ
ሺ௜ሻ 	∝ ௞ିଵݓ	

ሺ௜ሻ 	
		௧ݖሺ݌ ௧ݔ	|	

ሺ௜ሻ	ሻ݌൫ݔ௧	
௜ 	ห	ݔ௧ିଵ

ሺ௜ሻ 	ሻ

	௧ݔ൫ݍ
௜ 	ห	ݔ଴:௧ିଵ

ሺ௜ሻ , ଵ:௞ݖ
	 	ሻ

 

 

 
To put it simply, in the resample step, a new set of particles is chosen so that each 

particle survives in proportion to its weight. The weighted cloud of particles turns into 

the somewhat more condensed and smoother cloud of unweighted particles. Highly 

unlikely particles at the fringe are not chosen, and the highly likely particles near the 

center of the cloud are replicated so that the high-probability region has a high density, 

correctly representing p(x), our posterior distribution. 

 
Refer to the MATLAB code attached in Appendix to see how this algorithm was 

realized. 
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4.4 Our adaptations 

We assume that the observations, ݖ௧ሺሻ	that are required as per our Particle 

Filtering technique are obtained from a sonar range scanner mounted on the robot and 

that each observation ݖ௧ consists of a set of range measurements.   

To evaluate the likelihood ݌ሺݖ௧	|	ݔ௧ሻ of an observation ݖ௧ given the pose ݔ௧	of the 

robot and a reference map m, we use the likelihood fields model. In this model, the 

individual range measurements of the observation ݖ௧ are assumed to be independent of 

each other and the likelihood of each one is computed based on the distance between the 

endpoint of the range measurement and its closest wall in the map m. We use ray-

tracing to determine the actual distance of the micro-robot from the nearest wall in the 

geometric map. First, we verify that a point actually is inside a map. We do this by 

diving the X-Y plane into 4 zones at θ= 90, 180, 270, 360. We trace the line of θ=0 

until it hits a wall in the map. This process repeats for all the 4 sides described above. 

Only if a particle’s rays hit all the 4 sides, it is considered within the map and thus a 

valid one. Otherwise, it is discarded in the initial distribution step. This is because we 

assumed that the map is a closed tube structure. 

 

Once the range value is calculated for every sensor using ray-tracing for the actual 

robot, we believe this value to be the ‘true value’ denoted by the range vector	ݖ௧ሺሻ	.  

௧ሺሻݖ	 ൌ ሺ	ݖଵ, ,ଶݖ	 ,ଷݖ	 ,ସݖ	  ହሻݖ	

Where 	ݖଵ,  .etc., are the range values for the respective sensors	ଶ,ݖ	

The range that pertains to the particles is denoted by	ݐݖതതത. We then assign weight to 

each particle by its closeness to the micro-robot. That is, by the closeness of its sensor 

readings ݖ௧ഥ 	to that of the actual robot’s.ሺ	ݐݖሻ The weights are correspondingly assigned 

following the SIR algorithm, which is to say, that the particles with ‘lesser’ deviation in 

their range vector ݖ௧ഥ  from that of the actual values will receive higher weights than 

others. The weights are distributed over all the particles according to a Gaussian 

distribution.  

Subsequent motion commands, ut move the robot in the map in a given path 

resulting in the particles to follow suit. The particle cloud finally converges to the actual 

pose of the robot is a few steps. The performance metrics and results are discussed in 

Chapter 5. 
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Chapter 5 

Simulations & Results 
 

This chapter presents several experiments performed on our Particle Filter in order 
to validate the different dynamic situations that might arise while operating in the colon 
environment. As mentioned earlier in Chapter 4, in our approach, we model various 
operating conditions on deterministically changing maps. That is, localization is done 

not on one single map but over a series of maps which vary with time. (t1, t2, etc.)The 

experiments have been conducted in the MATLAB environment.  
 

In a non-dynamic environment, at time t = t1, t2…t6 the map that the mobile robot 

uses to localize itself remains the same. Whereas in a dynamic environment like the 
colon, a consistent change in the map shape is an inherent problem. Since the beginning 
of our methodology, we have assumed that there could be a way in the future by which 
we can pre-determine the exact map at every time instant. In other words, we believe 
we will be equipped to know at what time instant the map change occurs. 

 
For this implementation, we have used two similar maps with change in only a 

certain region to make it more noticeable. As in the case of a real life situation of colon 

expansion, the map begins with being in a steady shape at time t1 but it bulges out as 

it reaches the time instant t5.  

 

Here is the map at the time instants t1 and t5 as described in Figure 5.1: 
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Figure 5.1 Outline of the colon maps used, M1 and M2. 
 
We begin our Particle Filter execution by distributing the particles (samples) 

throughout the map uniformly. Each particle as discussed in previous chapters 

represents a valid robot pose, which in Estimation Theory is called a ‘state’. The colon 

map here is a 2D outline and hence we operate in X-Y coordinate system. The robot 
pose contains information about the position of the robot i.e. its (x, y) location and its 
heading direction with respect to horizontal (x) axis. 

 

The particle filter ran smoothly and the particles were sampled and resampled in 
cycles finally resulting in all of them converging very close to the actual robot pose. The 
actual robot pose is (820, 410, 1.5708) in the X-Y coordinate system. 

 
A series of images in Figure 5.2 demonstrates one of our trails where the map 

changes from Ma to Mb, yet the filter successfully estimates the robot pose with good 

precision. 
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Figure 5.2 Time line of Particle Filter localization in a colon map with N=100 
particles 

 
 
 
Quantitative results of the above implementation are presented in Table 4.3. These 

results are obtained after simulating several times exactly the same setup (for instance 
atleast 10 times), and then computing the mean values of all simulations. 
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 No.of particles 

 
Error in x 

 
Error in y 

 

Error in θ 

20 
5.1440 % 

 
3.5810 % 

 
16.8173 % 

100 

 

        1.20841 % 

 

 

   1.89962 % 

 

7.7777 % 

500 0.8027 % 1.5505 % 4.9009 % 

1000 0.6113 % 1.1954 % 3.6445 % 

5000 0.8449 % 1.3645 % 3.9973 %  

 
Table 5.1 

 
Table 5.1 suggests that the performance of our algorithm was enhanced by increasing 

the number of particles as is the expected case in any typical PF implementation 
technique. However, as far as time consumption is concerned, it seems clear that PF is 
slightly computationally taxing because of the presence of higher number of particles 
requiring longer times at each step, mainly due to the time spent in computing the 
weights. 

 
 
A performance comparison chart is depicted below in Figure 5.3 that outlines the 

impact of higher particle size on the accuracy of the final robot pose estimated. 
 

 
 

Figure 5.3 Performance comparison of our particle filter by varying the number of 
particles. 
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Additionally, we have characterized several interesting operating conditions that 

might arise while navigating inside a transverse colon into a set of cases which are 
presented below. Various worst-case scenarios, for example the change of maps in 

regions that we couldn’t anticipate, were tested in the experiments 
 
 
The experiments are classified into several cases, like Case1, Case2, etc., with each of 

them representing one unique scenario while operating under our assumed conditions 
inside the colon. Uniformly, each case assumes a particle set size of 100 particles. The 
experimental cases presented in Table 5.2 helped us analyze the performance metrics of 
our Particle Filter in each situation with respect to that of its implementation with a 
static map.  

 
 

Case 1:  

 

When the map is static, i.e. there is no dynamism in the colon environment. This case 

stands as a reference and is identical to any typical Particle Filter implementation in static 

environments. 

 

Case 2:  

 

When the map changes, i.e. there is dynamism in the colon environment but our Particle 

Filter model still follows the static assumption. 

 
 

 

Case 3:  

 

When the map changes, i.e. there is dynamism in the colon environment and our Particle 

Filter model adapts itself to the map change. (assuming predictability of maps a priori) 

 
 

Case 4:  

 

When the map doesn’t change, i.e. there is no dynamism in the colon environment but our 

Particle Filter model incorrectly makes a map change.  
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Case 5:  

 

When the map changes, i.e. there is dynamism in the colon environment but it changes 

unpredictably as compared to the pattern our Particle Filter model has assumed, i.e., the PF 

model changes to a new map, but that map is incorrect.  
 

Table 5.2 
 
 
 
 
 
 
Case 1:  
 
As described in Table 5.2, the first scenario deals with a non-dynamic situation. 

Understandably, here the map won’t change with time and will simply remain constant. 
This case stands as a reference and is identical to a typical Particle Filter 
implementation in static environments. [outdoor or indoor environments] 

 
A series of images in Figure 5.4 demonstrates one of our Case-1 type trails where the 

map stays fixed at Mb. The filter with 100 particles successfully estimates the robot 
pose with great precision because of the conditions being highly static. 
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 Figure 5.4 Time line of Particle Filter localization in Case 1 with N=100 particles 
 
 
 
The qualitative results estimate the error in robot pose to be minimal in this 

scenario. Infact, it is the least amount of error when compared to the rest of the cases 
and this can be attributed to a lack of perturbations in the environment.  

 

Figure 5.5 is a bar graph that displays the robot pose error (x, y, θ) in percentage for 
our Particle Filter localization in Case 1. 
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Figure 5.5 Mean of the error percentage of robot pose in Case 1 (with atleast 10 
trials) 

 
 
 
 
 

Case 2: 
 
As described in Table 5.2, the second scenario deals with a dynamic situation. Here, 

the colon environment undergoes a change in a certain region of the map. Thus the 

actual map of the colon changes from Ma to Mb between t1 and t6.  

 
However, in this case, we want to demonstrate how the change in the map impacts 

the regular robot localization. Thus, our model in this case will not change its reference 
map making this a static particle filter implementation but with the environment 
becoming dynamic. Such a filter will quickly become erroneous and the final estimation 
will be affected severely. This was reflected exactly in the robot pose error calculations 
in Figure 5.6. 

 
A series of images in Figure 5.6 demonstrates one of our Case-2 type trails where the 

map changes from Ma to become Mb at time instant t5. Our filter with 100 particles 
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estimates the robot pose with substantially reduced precision because of the conditions 
being highly dynamic. 

 
 
 

 
 

Figure 5.6 Time line of Particle Filter localization in Case 2 with N=100 particles 
 
 
 
 
 
 The qualitative results estimate the error in robot pose to be quite high in this 

scenario. Infact, it is the highest amount of error when compared to the rest of the cases 
and this can be attributed to the induced dynamism in the environment and to the fact 

that our model hasn’t adapted itself to this change in the map.  
 

Figure 5.7 is a bar graph that displays the robot pose error (x, y, θ) in percentage for 
the micro-robot localization using our Particle Filter in Case 2. 
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Figure 5.7 Mean of the error percentage of robot pose in Case 2 (with atleast 10 

trials) 
 

 
 
 
 

Case 3:  
 
As described in Table 5.2, the third case is our major experiment since it outlines the 

scenario for which our Particle Filter was originally conceived for. Case 3 handles the 
dynamic environment by making the model adapt itself when the colon undergoes a 
change in a certain region by updating the map to the new map. The actual map of the 

colon changes from Ma to Mb at time instant t5 and our model updates this change in 

the algorithm.  
 
Our Particle filter performed impressively in this bringing the error due to dynamism 

to very low values.  
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A series of images in Figure 5.8 demonstrates one of our Case-3 trails where the map 

changes from Ma to become Mb at time instant t5 and our filter updates its reference 

map. Our filter with 100 particles estimates the robot pose with substantially improved 
precision as compared to the previous case.  

 
 

 
 

Figure 5.8 Time line of Particle Filter localization in Case 3 with N=100 particles 
 
 

The qualitative results for this case estimate the error in robot pose to be 
comparable to that of Case 1, i.e., the ideal conditions. Infact, it is the least amount of 
error when compared to the rest of the dynamic cases and this can be attributed to the 
how our model has updated its algorithm and used the most current map.  

 

Figure 5.9 is a bar graph that displays the robot pose error (x, y, θ) in percentage for 
the micro-robot localization using our Particle Filter in Case 3. 
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Figure 5.9 Mean of the error percentage of robot pose in Case 3 (with atleast 10 
trials) 

 
 
 
 

 
Case 4:  
 
This is the scenario where our PF algorithm incorrectly assumes a map change but 

in reality the map hasn’t changed. So, the expectation was to check if localization would 
be erroneous in such a situation, and if it did, how bad was the error.  

 
We have run 10 trials with 100 particles implementing this scenario by changing the 

base map which our model uses to update from Ma to Mb at time instant t5. However, 

it is to be noted that in this trial, in reality, the base map of the colon environment will 
not change as depicted in Figure 5.10. So, this is an intentional experiment to estimate 
the error in a worst-case scenario. 
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Figure 5.10 Comparison of true map and reference maps at the time instant t5 in 
Case 4 

 
 
The execution was quite challenging as the program would crash multiple times 

because of lack of high weighted particles. After several unsuccessful trials, we could 
acquire some performance data. 

 
Our Particle filter performed very poorly as was expected because of the improper 

updation of the base map. A series of images in Figure 5.11 demonstrates one of our 

Case-4 trails where the map remains constant at time instant t5 but our filter updates 

its reference map to Mb.  
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Figure 5.11 Time line of Particle Filter localization in Case 4 with N=100 particles 

 
 

 
The qualitative results for this case estimate the error in robot pose to be pretty high 

compared to all the cases. However, this is intuitive and can be attributed to the fact 

that we have updated our model to change the base map to Mb while in reality the base 

map hasn’t changed.   
 
 

Figure 5.12 is a bar graph that displays the robot pose error (x, y, θ) in percentage 
for the micro-robot localization using our Particle Filter in Case 4. 
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Figure 5.12 Mean of the error percentage of robot pose in Case 4 (with atleast 10 
trials) 

 
 
 
 
 
 
 

 
Case 5: 
 
This is the scenario where our PF algorithm updates the base map to a certain new 

map whereas in reality the original map has changed to a completely unpredicted map.  
 
This scenario challenges our assumption as the map changes in a manner that was 

not determined a priori. Expectedly, the error in the robot pose estimation is quite huge 
and this proves that in this adaptation of standard particle filter technique, the 
knowledge of map sequence is vital for successful localization. 

 
Map changes in Case 5 are depicted in Figure 5.13. We have run 10 trials with 100 

particles implementing this scenario by changing the base map Ma to Mc at time 

instant t5. At the same time instant, we made our model update itself to map Mb.  
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Figure 5.13 Comparison of true map and reference maps at the time instant t5 in 
Case 5 

 
 
 
 
The experiment was to check if localization would be erroneous, and if it did, how 

bad was the error. The execution was quite challenging as the program would crash 
multiple times because of lack of enough high weighted particles. After several trials, we 
could acquire some performance data. 

 
Our Particle filter performed poorly as was expected because of the improper 

updation of the base map. A series of images in Figure 5.14 demonstrates one of our 
Case-5 trials. 
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Figure 5.14 Time line of Particle Filter localization in Case 5 with N=100 particles 

 
 
 

 
 

The qualitative results for this case estimate the error in robot pose to be pretty high 

than that of Case 3. After time t5, our filter used a wrong map as reference for its 

sensor measurements and assignment of particle weights. Thus the pose estimation is 
bound to become erroneous in this case. 

 

Figure 5.15 is a bar graph that displays the robot pose error (x, y, θ) in percentage 
for the micro-robot localization using our Particle Filter in Case 5. 

 



44 
 

 
 

Figure 5.15 Mean of the error percentage of robot pose in Case 5(with atleast 10 
trials) 

 
 
 

 
We also performed a separate exercise to record the percentage increase in the error 

of the robot pose, i.e., (x, y and θ) with incremental changes in the area of the map.  

Particle Filter localization is generally robust as long as the true map of the 

environment stays in its original shape. But, in the case of dynamic environments like 

that of human colon, it is quite common to encounter expansion/contraction patterns. 

Thus, the map area either increases relative to the initial value when the colon expands 

or decreases when the colon contracts.  

We were interested in studying to what extent this increase/decrease of map area 

relative to the original map will affect the sensor readings and thereby the estimated 

pose. 

In order to study that, we’ve modeled the right most end of the colon map as a circle 

and varied the radius to increase the local map area as illustrated in Figure 5.16. 
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Figure 5.16 Sequence of maps M1, M2, M3 
 

 

 

 

 

 

 

There is no way to determine the enclosed area of the entire map as it is a 

completely uneven and unstructured outline. So, we have focused our interest in the 

increase/decrease of the local area of the circle and to measure its impact on the error. 

In each of these trials, our Particle Filter model is referenced to a steady map M1 

and the map at time instant t=t5 changes to a new map with a larger area circle like 

M2. In the next trial, we retained the initial map M1 just like before, yet at time t=t5, 

we made our model change its reference map to now an even larger area circle, M3. This 



46 
 

procedure was repeated over 10 trials and findings are summarized in Table 5.3. One 

can infer from the table that the larger the change in map, the higher the error.  

 

 
 

 
Map 

 
Area of the 

circle 

 
Local Area 

 
Error in 
x error

 
Error in y 

error 

 

Error in θ 
error 

M1 
38.4845 A1 0.1690 

 
1.0182 

 
     4.1656 

M2 
50.2655 A1 + 30.6123 %   1.2715  1.3064  6.2652  

M3 
63.6173 A1 + 63.6175 % 2.6470  3.5147    5.8579 

 
Table 5.3 Impact of the magnitude of map change on the robot pose estimation 

error. 
 
 
 
 

The qualitative and quantitative results presented so far analyzed various operating 
conditions that a micro-robot might face in a colon environment.  

 
The results of the simulations were encouraging as the greatest error in Case 3 was 

under 1.8% for estimating the location of the robot (x,y) and under 7.8% while 

estimating its heading direction θ. Case 3 is the hallmark scenario of our research where 
we could successfully estimate the robot pose despite the map changes, partly because 
we could anticipate them ahead of time and adapt our filter. The slightly higher 

percentage error in θ can be attributed to the non-uniform nature of the walls that the 
sensors are facing. The resolution of the map could also have contributed to the overall 
error, so availability of high resolution map would help significantly. The filter 
performance can also be improved by increasing the particle set size but again slight 
caution has to be exercised as Particle Filter generally loses its robustness after a certain 
size of particle set. 
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Chapter 6 

Conclusion 
 

 

The fields of bio-robotics and capsule robotic endoscopy are increasingly discovering the 

potential of micro-robots often the size of a pill or even smaller which are currently able 

to navigate inside the human body especially in the gastro-intestinal tract acting as 

powerful diagnostic tools. In the future, it is anticipated that these micro-robots will be 

equipped with AI and enhanced sensory capacities that will enable them to perform 

unprecedented surgical and diagnostic tasks. 

 

This thesis was aimed at exploring the possibility of applying a standard robot 

navigation technique widely popular in the robotics literature called Particle Filter 

Localization based on Bayesian probabilistic state estimation. Particle Filter localization 

also called as Monte Carlo Localization (MCL) was performed in such tubular intestinal 

environment in this research where there is a new-kind of dynamism that hasn’t been 

studied so rigorously so far. 

 

In order to demonstrate its implementation potential in such an environment, the 

Monte Carlo Localization filter was built in a Matlab environment and several 

simulations were performed under a few assumed conditions. The dynamic transverse 

colon environment was partially modelled by a map sequence that enables our 

localization algorithm to adapt itself to the most recent maps at different time instants. 

The key assumptions underlining this research are the predictability of the map change 

and the availability of colon maps a priori. A series of maps represent the change in the 

structure of the colon and our model adapts to these changes by updating its reference 

map at particular time instants.  

 

The performance of our Particle Filter in various operating conditions was analysed and 

tabulated in Chapter 5. The robot pose, i.e., its (X, Y) location along with its heading 

direction θ were estimated using the filter since this is a 2-D implementation. The filter 

performed appreciatively in some dynamic cases where the mean error in robot pose was 

1.208%, 1.899%, 7.777% in x, y and θ values respectively. 

 

Table 5.1 discusses the improvement of the performance of our Particle Filter as we 

increase the number of particles sampled. The best performance was observed for 

implementations with neither too little nor too many particles. This is a common trend 
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even in general Particle Filter implementation in outdoor/indoor environments owing to 

the fact that there should be atleast reasonable number of particles with weights to 

make the further resampling stages possible. Too less of a particle size will crash the 

model for the lack of high-weighted particles. Too high of a particle size will risk 

confining the belief to one weight value and the other weights could be dismissed 

resulting in a possible fatal error. 

 

Later, a set of interesting experiments were conducted using our filter model and the 

underlining map. We ran the filter in non-dynamic conditions first to benchmark the 

observed error as a reference. Keeping this error in perspective, and knowing that these 

conditions are idealistic in a colon environment, we designed several intuitive 

experiments. Divided into a list of cases as depicted in Table 5.2, these experiments 

span the broad spectrum of possibilities of dynamism in the colon environment.  

  

Case 1 was implementation of our Particle Filter in static, idealistic conditions and 

almost resembles the classic Particle Filter implementation in known environments. The 

mean error in robot pose we observed was expectedly the least. Case 2 dealt with a 

scenario when the map undergoes change in a certain region, emulating a bulge-out of a 

real colon and our model doesn’t notice it. Results showed that the filter performs very 

poorly in such a case because of the altered sensor readings coming off the walls. Table 

6.1 presents the noticeable difference in the pose error percentages for Case 1 and Case 

2. 

 
Scenario 

 
Error in x 

 
Error in y 

 

Error in θ 

Case 1 1.0732 % 

 
1.5973 % 

 
6.2108 % 

Case 2 

 

   4.6165 % 

 

11.8877 % 64.244 % 

Case 3         1.208% 

 

   1.89962 % 

 

7.7777 % 

Case 4 29.7674 % 8.2426 %  66.7870 % 

Case 5 11.5448 % 7.1043 %  30.1985 % 

 

Table 6.1 Performance comparison of multiple scenarios that might arise while 

estimating the pose of a micro-robot in a colon environment 



49 
 

 

Case 3 is the most interesting case for us because it presents the most relevant scenario 

for the implementation of our Particle Filter. It is about making necessary adaptations 

to the filter so that it handles the dynamism in the environment by updating the 

reference map to the newest map. The results reveal that this scenario has been 

impressively handled as the estimated pose error fell to much lower values compared to 

the Case 2 and almost comparable to the ideal situation of Case 1. Table 6.1 sheds light 

on the success of our approach. 

 

Case 4 and Case 5 are worst-case scenarios and challenge some of our key assumptions. 

Particularly, Case 4 describes the situation where the map doesn’t change to a new map 

but our model incorrectly updates itself to the newest map. Expectedly, since the 

reference map has changed, the sensor readings are all off by several points resulting in 

a huge error. Case 5 presents another interesting situation where the map change 

pattern in reality doesn’t match with our predicted map sequence. The pose error is 

thus a function of the randomness of the new map but if we focus on varying the shape 

of a certain region only, the error still was significant. It is therefore predicted that the 

more random and incoherent the new maps are relative to the original map, the larger 

the error would be.  

 

We close our experiments with a final case where we chose to study the impact of the 

magnitude of map change on the estimation of robot pose. To do this, we’ve modelled a 

part of the colon as a circle and kept varying its radius to change the local area 

incrementally. The trend revealed a positive correlation between the magnitudes of 

change in map to the estimated pose error.  

  

Future Work: 

This research discussed the possibility of applying Particle Filtering techniques in 

emerging environments of mobile robot application like that of the human transverse 

colon for diagnostic/surgical purposes. In this work, we described the current state of 

the art methodologies that are being used in robotic capsule endoscopy. However, we 

believe it is just a scratch on the surface of the endless potential that these emerging 

fields contain in them. Even from a solution point of view, there are more open 

questions to be answered. We assumed we have a 2-D map of the transverse colon. In 

the future, as the robotic mapping techniques extend themselves into the fields of 

capsule robot navigation; it will be beneficial to construct 3D maps with richer features. 

Additionally, further research could lead to estimate the feasibility of simultaneously 

localizing and mapping (performing SLAM) inside the human body with greater 

precision. SLAM techniques rely on dividing the environment into a set of landmarks 

that are distinguishable from each other, so it would be interesting to see if the camera 
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technology mounted on the capsule/micro-robots can transmit such high resolution 

images. At this point, extensive research is going on in miniaturizing the mobile robots 

and enabling them to swim inside a human body by groups at Nano Robotics Lab 

(CMU-RI)[39] and STORM Lab at Vanderbilt University [40]. Moving beyond bio-

robotics, it is possible to envision applications for the dynamic particle filters in rare and 

unusual environments with stretchable walls like tents/canopies. Further research may 

even be directed towards studying underwater situations which mimic this kind of 

elastic dynamism. On a whole, we hope robotics and AI becomes seamless across new 

platforms like medical technology and will be able to attract newer approaches that can 

revolutionize healthcare and make our world increasingly healthier. 
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Appendix 

Matlab Code:  

 
This is the implementation code for the particle filter with multiple maps written in 
MATLAB. 
 
 

myPFmap.m 
%I1=imread(’1c.jpg’); 
I1=imread(’newcolonbit1.bmp’); 
J1= rgb2gray(I1); 
 
 
I2=imread(’newcolonbit2.bmp’); 
J2= rgb2gray(I2); 
 
 
I3=imread(’newcolonbit3.bmp’); 
J3= rgb2gray(I3); 
 
[nrows,ncols]= size(J1); 
xmax=ncols-1; %xmax=1056 
ymax=nrows-1; %ymax=720 
 
%black˙i and black˙j are the row and col number of the black pixels 
%in the gray image matrix (J) 
 
[black˙i,black˙j,v] = find(J1==0); 
 
 
 
%And also make all rows of J as i and columns as j?????? 
%J(i,j)=J; 
 
%plot(j,ymax-i,’.’);  
%Plotting only the black pixels on a X, Y axis 
plot(black˙j-1,ymax-black˙i+1,’.’);  
title(’MAP #1’); 
 
axis([0 xmax 0 ymax]) 
xlabel(’X axis’); 
ylabel(’Y axis’); 
 
 

myPFmap2.m 
 
[ 
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[nrows2,ncols2]= size(J2); 
xmax=ncols2-1; %xmax=639 
ymax=nrows2-1; %ymax=479 
 
%black˙i and black˙j are the row and col number of the black pixels 
%in the gray image matrix (J) 
 
[black˙i2,black˙j2,v2] = find(J2==0); 
 
 
 
 
%Plotting only the black pixels on a X, Y axis 
plot(black˙j2-1,ymax-black˙i2+1,’.’);  
title(’Map # 2’); 
 
axis([0 xmax 0 ymax]) 
xlabel(’X axis’); 
ylabel(’Y axis’); 
 
 

myPF.m 
 
 
clear all close all clc 
%---------------------------------- 
%Step1 
figure(1) 
%Step2 
myPFmap 
 
%Step3 
hold on 
%Step4 
J=J1; 
Jmodel=J1; 
X = myPFinitdist(xmax, ymax, J);  % Initial Distribution Done 
%Step5 
plot(X(1,:), X(2,:), ’.’) 
%---------------------------------- 
 
%Setting the Initial  Position & Orientation of the robot 
x0 = 150; 
y0 = 370; 
theta0 = 0; 
 
%Measuring the 5 sensor distances to the walls from the Inital Postion 
z = myPFsensorfunction(x0, y0, theta0, xmax, ymax, J); 
 
%Calculating the weights of each particle 
myPFweightfunction; 
w; 
if(w==0) 
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    disp(’Hey weight func screwed up, all weights are zero’) 
end 
 
%Plotting the particles that will remain after resampling 
figure(2) 
myPFmap 
hold on 
X = myPFresample(X, w); 
X0 = X; 
plot(X0(1,:), X0(2,:), ’.’,x0, y0,’o’) 
 
 
%% 
% Motion 1. 
rho = 100; 
deltatheta = 0; 
sigmatrans = 0.1; 
sigmarot = 0.1; 
% Moving all particles accordingly to the new position 
X = myPFmotion(X, rho, deltatheta, sigmatrans, sigmarot); 
X1 = X; 
%Moving the actual robot (here the simulator) to the new postition 
x1 = myPFmotion([x0 y0 theta0]’, rho, deltatheta, 0, 0); 
%Measuring the 5 sensor distances to the walls from the this Postion 
z = myPFsensorfunction(x1(1), x1(2), x1(3), xmax, ymax, J ); 
%Allocating weights to the nearest particles 
myPFweightfunction 
%----------------------------------  
figure(3) 
myPFmap 
hold on 
X = myPFresample(X, w); %resampling  
plot(X(1,:), X(2,:), ’.’,x1(1),x1(2),’o’) %plotting the remaining particles 
%---------------------------------- 
 
 
%% Motion 2. 
rho = 100; 
deltatheta = 0; 
sigmatrans = 0.1; 
sigmarot = 0.1; 
% Moving all particles accordingly to the new position 
X = myPFmotion(X, rho, deltatheta, sigmatrans, sigmarot); 
X2 = X; 
%Moving the actual robot (here the simulator) to the new postition 
x2 = myPFmotion([x1(1) x1(2) x1(3)]’, rho, deltatheta, 0, 0); 
%Measuring the 5 sensor distances to the walls from the this Postion 
z = myPFsensorfunction(x2(1), x2(2), x2(3), xmax, ymax, J ); 
%Allocating weights to the nearest particles 
myPFweightfunction 
%---------------------------------- 
figure(4) 
myPFmap 
hold on 
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X=myPFresample(X,w); %resampling  
plot(X(1,:), X(2,:), ’.’,x2(1),x2(2),’o’)  %plotting the remaining particles 
%---------------------------------- 
 
 
%% Motion 3. 
rho = 100; 
deltatheta = 0; 
sigmatrans = 0.1; 
sigmarot = 0.1; 
X = myPFmotion(X, rho, deltatheta, sigmatrans, sigmarot); 
X3 = X; 
x3 = myPFmotion([x2(1) x2(2) x2(3)]’, rho, deltatheta, 0, 0); 
z = myPFsensorfunction(x3(1), x3(2), x3(3), xmax, ymax, J );  
myPFweightfunction 
%---------------------------------- 
figure(5) 
myPFmap 
hold on 
X=myPFresample(X,w); 
plot(X(1,:), X(2,:), ’.’,x3(1),x3(2),’o’) 
%---------------------------------- 
 
 
%% Motion 4. 
rho = 100; 
deltatheta = 0; 
sigmatrans = 0.1; 
sigmarot = 0.1; 
X = myPFmotion(X, rho, deltatheta, sigmatrans, sigmarot); 
X4 = X; 
x4 = myPFmotion([x3(1) x3(2) x3(3)]’, rho, deltatheta, 0, 0); 
z = myPFsensorfunction(x4(1), x4(2), x4(3), xmax, ymax, J ); 
myPFweightfunction 
%---------------------------------- 
figure(6) 
myPFmap 
hold on 
X=myPFresample(X,w); 
plot(X(1,:), X(2,:), ’.’,x4(1),x4(2),’o’) 
%---------------------------------- 
 
 
%% Motion 5. 
rho = 50; 
deltatheta = 0; 
sigmatrans = 0.1; 
sigmarot = 0.1; 
X = myPFmotion(X, rho, deltatheta, sigmatrans, sigmarot); 
X5 = X; 
x5 = myPFmotion([x4(1) x4(2) x4(3)]’, rho, deltatheta, 0, 0); 
z = myPFsensorfunction(x5(1), x5(2), x5(3), xmax, ymax, J ); 
myPFweightfunction; 
%---------------------------------- 
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figure(7) 
myPFmap 
hold on 
X=myPFresample(X,w);  
plot(X(1,:), X(2,:), ’.’,x5(1),x5(2),’o’) 
%---------------------------------- 
 
 
%% Motion 6. 
rho = 50; 
deltatheta = 0; 
sigmatrans = 0.1; 
sigmarot = 0.1; 
X = myPFmotion(X, rho, deltatheta, sigmatrans, sigmarot); 
X6 = X; 
x6 = myPFmotion([x5(1) x5(2) x5(3)]’, rho, deltatheta, 0, 0); 
z = myPFsensorfunction(x6(1), x6(2), x6(3), xmax, ymax, J ); 
myPFweightfunction; 
%---------------------------------- 
figure(8) 
myPFmap 
hold on 
X=myPFresample(X,w);  
plot(X(1,:), X(2,:), ’.’,x6(1),x6(2),’o’) 
%---------------------------------- 
 
 
%% Motion 7. 
rho = 50; 
deltatheta = 0; 
sigmatrans = 0.1; 
sigmarot = 0.1; 
X = myPFmotion(X, rho, deltatheta, sigmatrans, sigmarot); 
X7 = X; 
x7 = myPFmotion([x6(1) x6(2) x6(3)]’, rho, deltatheta, 0, 0); 
z = myPFsensorfunction(x7(1), x7(2), x7(3), xmax, ymax, J ); 
myPFweightfunction; 
%---------------------------------- 
figure(9) 
myPFmap 
hold on 
X=myPFresample(X,w);  
plot(X(1,:), X(2,:), ’.’,x7(1),x7(2),’o’) 
%---------------------------------- 
hold off 
J=J2; %True Map changes here 
Jmodel = J2;  %Model changes here 
 
 
%% Motion 8. 
rho = 20; 
deltatheta = 0; 
sigmatrans = 0.1; 
sigmarot = 0.1; 
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X = myPFmotion(X, rho, deltatheta, sigmatrans, sigmarot); 
X8 = X; 
x8 = myPFmotion([x7(1) x7(2) x7(3)]’, rho, deltatheta, 0, 0); 
z = myPFsensorfunction(x8(1), x8(2), x8(3), xmax, ymax, J ); 
myPFweightfunction; 
%---------------------------------- 
%hold off %HEY DONT FORGET THIS 
figure(10) 
hold on 
myPFmap 
hold on 
X=myPFresample(X,w);  
plot(X(1,:), X(2,:), ’.’,x8(1),x8(2),’o’) 
%---------------------------------- 
 
 
%% Motion 9. 
rho = 20; 
deltatheta = 0; 
sigmatrans = 0.1; 
sigmarot = 0.1; 
X = myPFmotion(X, rho, deltatheta, sigmatrans, sigmarot); 
X9 = X; 
x9 = myPFmotion([x8(1) x8(2) x8(3)]’, rho, deltatheta, 0, 0); 
z = myPFsensorfunction(x9(1), x9(2), x9(3), xmax, ymax, J ); 
myPFweightfunction; 
%---------------------------------- 
figure(11) 
myPFmap 
 
hold on 
X=myPFresample(X,w);  
plot(X(1,:), X(2,:), ’.’,x9(1),x9(2),’o’) 
%---------------------------------- 
 
 
%% Motion 10. 
rho = 20; 
deltatheta = 0; 
sigmatrans = 0.1; 
sigmarot = 0.1; 
X = myPFmotion(X, rho, deltatheta, sigmatrans, sigmarot); 
X10 = X; 
x10 = myPFmotion([x9(1) x9(2) x9(3)]’, rho, deltatheta, 0, 0); 
z = myPFsensorfunction(x10(1), x10(2), x10(3), xmax, ymax, J ); 
myPFweightfunction; 
%---------------------------------- 
figure(12) 
%myPFmap2 
myPFmap 
hold on 
X=myPFresample(X,w);  
plot(X(1,:), X(2,:), ’.’,x10(1),x10(2),’o’) 
%---------------------------------- 
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%% Motion 11. 
rho = 10; 
deltatheta = 0; 
sigmatrans = 0.1; 
sigmarot = 0.1; 
X = myPFmotion(X, rho, deltatheta, sigmatrans, sigmarot); 
X11 = X; 
x11 = myPFmotion([x10(1) x10(2) x10(3)]’, rho, deltatheta, 0, 0); 
z = myPFsensorfunction(x11(1), x11(2), x11(3), xmax, ymax, J ); 
myPFweightfunction; 
%---------------------------------- 
figure(13) 
%myPFmap2 
myPFmap 
hold on 
X=myPFresample(X,w);  
plot(X(1,:), X(2,:), ’.’,x11(1),x11(2),’o’) 
%---------------------------------- 
% hold off 
% J=J1; 
%Jmodel = J3; 
 
%% Motion 12. 
rho = 20; 
deltatheta = 0; 
sigmatrans = 0.1; 
sigmarot = 0.1; 
X = myPFmotion(X, rho, deltatheta, sigmatrans, sigmarot); 
X12 = X; 
x12 = myPFmotion([x11(1) x11(2) x11(3)]’, rho, deltatheta, 0, 0); 
z = myPFsensorfunction(x12(1), x12(2), x12(3), xmax, ymax, J ); 
myPFweightfunction; 
%---------------------------------- 
hold off 
figure(14) 
myPFmap 
hold on 
X=myPFresample(X,w);  
plot(X(1,:), X(2,:), ’.’,x12(1),x12(2),’o’) 
%---------------------------------- 
 
 
%% Motion 13. 
rho = 30; 
deltatheta = 0; 
sigmatrans = 0.1; 
sigmarot = 0.1; 
X = myPFmotion(X, rho, deltatheta, sigmatrans, sigmarot); 
X13 = X; 
x13 = myPFmotion([x12(1) x12(2) x12(3)]’, rho, deltatheta, 0, 0); 
z = myPFsensorfunction(x13(1), x13(2), x13(3), xmax, ymax, J ); 
myPFweightfunction; 
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%---------------------------------- 
figure(15) 
myPFmap 
hold on 
X=myPFresample(X,w);  
plot(X(1,:), X(2,:), ’.’,x13(1),x13(2),’o’) 
%---------------------------------- 
 
 
%% Motion 14. 
rho = 20; 
deltatheta = pi/2; 
sigmatrans = 0.1; 
sigmarot = 0.1; 
X = myPFmotion(X, rho, deltatheta, sigmatrans, sigmarot); 
X14 = X; 
x14 = myPFmotion([x13(1) x13(2) x13(3)]’, rho, deltatheta, 0, 0); 
z = myPFsensorfunction(x14(1), x14(2), x14(3), xmax, ymax, J );  
% HERE IS THE CHANGE 
myPFweightfunction; 
%---------------------------------- 
figure(16) 
myPFmap 
hold on 
X=myPFresample(X,w);  
plot(X(1,:), X(2,:), ’.’,x14(1),x14(2),’o’) 
%---------------------------------- 
 
 
%% Motion 15. 
rho = 20; 
deltatheta = 0; 
sigmatrans = 0.1; 
sigmarot = 0.1; 
X = myPFmotion(X, rho, deltatheta, sigmatrans, sigmarot); 
X15 = X; 
x15 = myPFmotion([x14(1) x14(2) x14(3)]’, rho, deltatheta, 0, 0); 
z = myPFsensorfunction(x15(1), x15(2), x15(3), xmax, ymax, J );  
myPFweightfunction; 
%---------------------------------- 
figure(17) 
myPFmap 
hold on 
X=myPFresample(X,w);  
plot(X(1,:), X(2,:), ’.’,x15(1),x15(2),’o’) 
%---------------------------------- 
 
 
%% End of Particle Filter 
disp(’End of Particle Filter’) 
[xxx,III]=max(w); 
disp(’The predicted robot position is’) 
predicted˙position=X(:,III) 
disp(’The actual robot position is’) 
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actual˙position=x15 
error˙x=(actual˙position(1,1)-predicted˙position(1,1))/actual˙position(1,1)*100; 
error˙y=(actual˙position(2,1)-predicted˙position(2,1))/actual˙position(2,1)*100; 
error˙theta=(actual˙position(3,1)-predicted˙position(3,1))/actual˙position(3,1)*100; 
 
error˙x= abs(error˙x); 
error˙y= abs(error˙y); 
error˙theta= abs(error˙theta); 
 
% Error percentage of the implementation 
disp(’The error percentage is’) 
error=[error˙x;error˙y;error˙theta] 
%% Error was around 1% in x, 3.1% in y, 12% in theta when I used 200 particles. 
 

myPFinitdist.m 
function X =myPFinitdist(xmax, ymax, J) 
 
M=1000; %no of particles 
X = []; 
for p=1:M 
     
    validity=0; 
    while(validity==0) 
     
%  temp= [round((xmax/3-2)*rand(1))+1; round((ymax-100-2)*rand(1))+1]; 
 temp= [round((xmax-2)*rand(1))+1; round((ymax-2)*rand(1))+1];         
validity= myPFvalidposcheck(temp(1), temp(2), xmax, ymax, J); 
        %display(’this is the validity value’) 
    end 
    X(:,p)=temp; 
end 
X = [X  
    (2*rand(1,M)-1)*pi];  
 
 
 

myPFvalidposcheck.m 
function validity= myPFvalidposcheck(x,y,xmax,ymax,J) 
 
%% This function checks if the point is inside, on the colon, or 
%% outside the colon! 
  
xmin = 0; ymin = 0; 
xtmp = x; 
ytmp = y; 
    
 
 
%---------Region I---------Moving towards the right side of map---- 
atwallflag1= 0; 
mapedgeflag=0; 
 
while(atwallflag1˜=1 && mapedgeflag˜=1)         
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         ytmp = ytmp; 
         xtmp = xtmp+1; 
       if(xtmp¿=xmax) 
mapedgeflag=1; %the point reached the mapedge before hitting wall 
       end 
       atwallflag1= isfilledinmap(xtmp,ytmp, xmax, ymax, J); %the point is not occupied 
       
end  
%atwallflag1 
 
%---------Region II 
atwallflag2= 0; 
mapedgeflag=0; 
xtmp = x; 
ytmp = y; 
while(atwallflag2˜=1 && mapedgeflag˜=1)     
       ytmp = ytmp+1; 
       xtmp = xtmp; 
       if(ytmp¿=ymax) 
           mapedgeflag=1; %the point is outside the colon            
       end   
       atwallflag2= isfilledinmap(xtmp,ytmp, xmax, ymax, J); %the point is not occupied 
end   
%atwallflag2 
    
%---------Region III 
atwallflag3= 0; 
mapedgeflag=0; 
xtmp = x; 
ytmp = y; 
while(atwallflag3˜=1 && mapedgeflag˜=1)        
       ytmp = ytmp; 
       xtmp = xtmp-1; 
       if(xtmp¡=xmin) 
           mapedgeflag=1; %the point is outside the colon 
       end 
       atwallflag3= isfilledinmap(xtmp,ytmp, xmax, ymax, J); %the point is not occupied 
end    
%atwallflag3 
 
%---------Region IV     
atwallflag4= 0; 
mapedgeflag=0; 
xtmp = x; 
ytmp = y;    
while(atwallflag4˜=1 && mapedgeflag˜=1)    
       ytmp = ytmp-1; 
       if(ytmp¡=ymin) 
           mapedgeflag=1; %the point is outside the colon 
       end 
       xtmp = xtmp; 
       atwallflag4= isfilledinmap(xtmp,ytmp,xmax, ymax, J); %the point is not occupied 
end 
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%atwallflag4 
 
   atwallflag = atwallflag1 * atwallflag2 * atwallflag3 * atwallflag4; 
   
     
% if the new xtmp, ytmp pos are occupied, how to undo the new values? 
 
%--------------WHILE LOOP JUST ENDED--------------- 
 
% IF YOU HIT THE WALLS ON FOUR SIDES, THAT MEANS THE PARTICLE IS 
VALID.[INSIDE] 
validity = atwallflag; 
 
if isfilledinmap(x,y,xmax,ymax,J) == 1 
    %disp(’this is what is the problem’) 
    validity = 0; 
end 
 
 
return 
%-------------------------------------------------------------------------% 
%-------------------------------------------------------------------------% 
 
 

isfilledinmap.m 
function atwallflagnew = isfilledinmap(x, y, xmax, ymax, J); 
 
[rowval,colval]=convertxytoij(x,y,ymax); 
 
rowval = round(rowval); 
colval = round(colval); 
 
atwallflagnew = 0; 
if (rowval ¿ 1)&&(rowval ¡ (ymax+1))&&(colval¿ 1)&&(colval ¡ (xmax+1)) 
  temp = J( (rowval-1):(rowval+1) , (colval - 1):(colval + 1) ); 
  temp = sum(sum(255 - temp)); 
  atwallflagnew = (temp ¿ 0); %this flag is 0 if there are only 
  % white spaces around the pixel. Else the flag becomes 1. 
end 
 
 
 

myPFsensorfunction.m 
function z = myPFsensorfunction(x, y, theta, xmax, ymax,J) 
DMAX = 500; 
xmin=0; 
ymin=0; 
 
%The below are the sensor positions relative to the heading of the robot (theta) 
thetaoffsets = [-pi/3 -pi/6 0 pi/6 pi/3]’; 
%The global sensor angles are calculated below: 
sensorangles = theta + thetaoffsets;  
%slopes(1), slopes(2), slopes(3), slopes(4), slopes(5) 
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slopes = tan(sensorangles); %calculating various ’m’ values. 
bintercepts = y - slopes*x; %b intercept values for every sensor line 
z = ones(size(thetaoffsets))*DMAX;  % making an matrix of 5’s for the z value 
 
 
%STEP 1 
%Verify if the co-ordinate is already near a wall first so that you can check the 
%isatwall flag. We have with us x, y, theta. 
 
for ii=1:length(sensorangles) 
    if (sensorangles(ii) ¡= -pi) 
        sensorangles(ii) = sensorangles(ii) + 2*pi; 
    end 
    if (sensorangles(ii) ¿ pi ) 
        sensorangles(ii) = sensorangles(ii) - 2*pi; 
    end 
end 
 
for i=1:length(z)    %REPEAT 5 times 
    %i , sensorangles(i) 
xtmp = x; 
ytmp = y; 
atwallflag= 0; 
while(atwallflag˜=1)  
      %Region I 
       atwallflag1 = 0; 
   if (sensorangles(i) ¿ -pi/4 &&  sensorangles(i) ¡= pi/4) 
       xtmp = xtmp + 1;  %Sensor line moves along +x axis one step at once 
       ytmp = slopes(i)*xtmp + bintercepts(i); 
       xtmp=round(xtmp); 
       ytmp=round(ytmp); 
       atwallflag1= isfilledinmap(xtmp,ytmp, xmax, ymax, J); 
   end 
 
   %Region II 
   atwallflag2 = 0; 
   if (sensorangles(i) ¿ pi/4 &&  sensorangles(i) ¡= 3*pi/4) 
       ytmp = ytmp + 1; 
       if sensorangles(i) ˜= pi/2  
         xtmp = (ytmp - bintercepts(i))/slopes(i); 
       else 
         xtmp = xtmp; 
       end 
       atwallflag2= isfilledinmap(xtmp,ytmp, xmax, ymax, J); 
   end 
    
   %Region III 
   atwallflag3 = 0; 
   if (sensorangles(i) ¿ 3*pi/4 &&  sensorangles(i) ¡= pi) –– ( sensorangles(i) ¿ -pi && 
sensorangles(i) ¡ -3*pi/4) 
       xtmp = xtmp - 1; 
       ytmp = slopes(i)*xtmp + bintercepts(i); 
       atwallflag3= isfilledinmap(xtmp,ytmp, xmax, ymax, J); 
      % pause 
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   end 
    
   %Region IV 
   atwallflag4 = 0; 
   if (sensorangles(i) ¿ -3*pi/4 && sensorangles(i) ¡= -pi/4) 
       ytmp = ytmp - 1; 
       if sensorangles(i) ˜= -pi/2  
         xtmp = (ytmp - bintercepts(i))/slopes(i); 
       else 
         xtmp = xtmp; 
       end 
       atwallflag4= isfilledinmap(xtmp,ytmp, xmax, ymax, J); 
      % pause 
   end 
    
   atwallflag = atwallflag1 + atwallflag2 + atwallflag3 + atwallflag4; 
   atwallflag = atwallflag ¿= 1; 
  
    
   if atwallflag == 1 
       break 
   end 
end 
    
    
%Now we know the xtmp and ytmp values near the walls. 
% So, let’s calculate the Range between the new and the old points 
   if (xtmp ¿= xmin) && (xtmp ¡= xmax) %Boundary checking if the new point is 
within the map or not 
       range=sqrt((xtmp-x).ˆ2+(ytmp-y).ˆ2); 
       if (range ¿= 0) && (range ¡ z(i)) 
           z(i) = range; 
       end 
   end 
end 
end 
    
%-------------------------------------------------------------------------% 
%-------------------------------------------------------------------------% 
 
 
 
 
 

myPFweightfunction.m 
[nrows, ncols]=size(X); 
M = ncols; 
weight = zeros(1, M); 
sigma = 100; 
sigma2 = sigmaˆ2; 
for i=1:M 
    temp = X(:,i); 
    %What is Jmodel, Jtrue? 
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    %Jtrue is what the robot(simulator) actually sees, ie, from its sensor 
    %readings. Where as Jmodel is what the model is using from  
    %previous iterations without any change. So basically, it’s  
    %erroneous. So finally, the particles should fail following the robot 
    %position. 
    validity= myPFvalidposcheck(temp(1), temp(2), xmax, ymax, Jmodel);   
      
   
     
    if(validity==1) 
    zhat = myPFsensorfunction(temp(1), temp(2), temp(3), xmax, ymax,Jmodel); 
    w(i) = exp( -0.5 * (norm( zhat - z)ˆ2)/sigma2); 
     
    else 
        %disp(’In myPFweightfunction: Validity is’); validity 
        %disp(’ In myPFweightfunction: Hey we are in else loop of myPFweight func’) 
        w(i)=0; 
    end     
     
end 
diff=(X(:,1)-X(:,2)); 
if(diff(1)¡0.5 && diff(2)¡0.5) 
    %disp(’Its the same particle chosen 5 times and all weights are ’); 
    %w 
end 
 
 
  
 
 

myPFmotion.m 
function xmoved = myPFmotion(X, rho, deltatheta, sigmatrans, sigmarot) 
 
[nrows, ncols]=size(X); 
xmoved = X; 
 
for i=1:ncols 
     
xmoved(1,i) = X(1,i) + rho*cos(X(3,i) + deltatheta) + randn(1)*sigmatrans; 
xmoved(2,i) = X(2,i) + rho*sin(X(3,i) + deltatheta) + randn(1)*sigmatrans; 
xmoved(3,i) = X(3,i) + deltatheta + randn(1)*sigmarot; 
 
end 
 
 

myPFresample.m 
function Xresample = myPFresample(X, w) 
 
if(max(w)==0) 
disp(’ERROR in myPFresample:Weights of all particles is zero.’)      
end 
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wsum = sum(w); 
edges = cumsum(w/wsum); 
%%figure(89),plot(edges); 
%%figure(90),plot(w); 
M = length(w); 
R = rand(1,M); 
R = sort(R); 
Ichosen = zeros(1,M); 
i=1; j=1; 

while (i <= M) 
     
    %[i j M R(i) edges(j)] 
    if (R(i) ¡ edges(j)) 
         
        Ichosen(i) = j; 
        i = i + 1;   
    else 
        j = j + 1; 

        if (j>M)  
             
            %j=M; 
        end 
    end 
end 
Xresample = X(:,Ichosen); 
 
 
return 
 

convertijtoxy.m 
function [x,y]= convertijtoxy(i,j,ymax) 
 
ymax=479; 
 
y=ymax-i+1; 
x=j-1; 
 
end 
 
 

convertxytoij.m 
function [rowtmp,coltmp]= convertxytoij(x,y,ymax) 
 
rowtmp=ymax-y+1; 
coltmp=x+1; 
 
end 
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