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CHAPTER 1 

 

INTRODUCTION 

 

“My investigations showed that the functional superiority of the human brain is intimately 

bound up with the prodigious abundance and unusual wealth of forms of the so-called 

neurons with the short axons.” 

- Santiago Ramon y Cajal 

 

 Cajal might be right.  However, investigations presented here by our lab and 

others in the nearly 100 years since make it a complicated statement to judge.  Did he 

intend to restrict his effusive comment to humans?  If so, could he actually “show” that 

his cellular investigations translated to functional superiority?  At that time, functional 

comparisons between species were limited to basic sensory and motor function, eating, 

fighting, and reproducing (Llinas, 2003) so it would be reasonable of him to assign 

higher functions to the complex human anatomy he saw through his microscope.  

Nevertheless, legions of researchers from his student Lorente de Nó, who described a 

multitude of interneuron types in mouse cortex (Lorente de No, 1922 (1992 trans.)), to 

The Petilla Interneuron Nomenclature Group, who convened in Cajal’s hometown in 

2008 attempting to classify the “prodigious abundance” of interneuron data from many 

species (Ascoli et al., 2008), have greatly elaborated the “wealth of forms” of 

interneurons in rodents.  Similar advancements in behavioral science from 

demonstrations of self-awareness in pigeons (Epstein et al., 1981) to attentional and 
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affective set-shifting relying on primate-analogous brain regions in mice (Bissonette et 

al., 2008) to complex mood (Cryan and Holmes, 2005) and social behaviors (Silverman 

et al., 2010) in mice and rats have revealed that lower animals are capable of much 

more complex functions than Cajal might have considered.  So if we revise his 

statement based on current knowledge, could the “functional superiority of any brain” be 

linked to the diversity of its interneurons?  If so, what opportunities do the wealth of 

interneuron forms and behavioral complexities of mice present for modeling complex 

brain dysfunction found in human neuropsychiatric illness? 

 

GABA-ergic inhibition in the brain 

Neural action potentials are one of the most basic units of brain function.  These 

electrical pulses are generated by moving ions across a membrane down their 

electrochemical gradient, typically through selectively permeable ion channels.  Most of 

these action potentials are the results of cell signaling events.  There are three general 

types of neural transmission in the brain that determine whether a given neuron will fire 

an action potential: excitatory, inhibitory, and modulatory.  Excitatory transmission 

induces post-synaptic neurons to fire by opening ion channels that allow sodium and 

calcium (in some cases) to enter the cell.  Movement of enough of these ions into the 

cell depolarizes the membrane and fires an action potential. Excitation in the brain 

chiefly involves the neurotransmitter glutamate through its ligand-gated ion channels.  

Conversely, inhibitory transmission prevents neurons from firing action potentials by 

hyperpolarizing the cell far below its threshold for firing action potentials, typically via the 

influx of chloride through channels opened by the neurotransmitter gamma-aminobutyric 
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acid, or GABA.  Finally, modulatory transmission changes the probability that the cell 

will reach its firing threshold in the context of cell signaling events by altering 

electrochemical gradients in other ways such as modulating G-protein coupled inwardly 

rectifying potassium channels (GIRKs) or calcium channels.  In this manner, 

neuromodulators such as dopamine, serotonin, and norepinephrine can influence the 

firing probability and/or rate of individual neurons.  Research described here focuses on 

the inhibitory system and as such, we will assume a GABA-centric point-of-view. 

 

GABA is produced exclusively from glutamate by glutamic acid decarboxylase 

(GAD).  There are two isoforms of this enzyme that produce GABA in the brain.  

GAD67, the 67 kDa isoform, predominately localizes to cell bodies and dendrites while 

GAD65, the 65 kDa isoform predominately localizes to the axon terminals (Martin and 

Rimvall, 1993).  These enzymes are encoded by two separate genes, Gad1 and Gad2 

respectively, which are regulated independently (Erlander et al., 1991; Bu et al., 1992).  

Both enzymes require binding of a cofactor, pyridoxal 5'-phosphate (PLP), to be 

activated; however one of the major differences between the two isoforms is that 

GAD67 is nearly saturated with PLP, while only about 50% of the GAD65 in the brain is 

activated as a holoenzyme (Kaufman et al., 1991).  This discrepancy ostensibly 

represents having one constitutively active form, GAD67, and a second dynamically-

regulated isoform, GAD65 (Erlander et al., 1991; Feldblum et al., 1993; Esclapez et al., 

1994).  Dynamic binding of PLP to GAD (presumably GAD65 in this case) to activate 

the holoenzyme complex occurs in the presence of glutamate, with decreases of ATP 

concentrations, and/or with increases of inorganic phosphate concentrations which are 
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each consistent with augmented GABA production in response to increased neural 

activity (Martin and Rimvall, 1993).  This phenomenon may explain observed increases 

in local GABA production resulting from excess glutamate spillover in the hippocampus 

(Stafford et al., 2010).  The relative distribution and activation of these two isoforms 

promotes the interpretation that GAD67 supplies the bulk of cellular GABA for tonic 

inhibitory processes, cellular interactions other than those at axon terminals (such as 

dendrodendritic synapses), and cellular metabolism through the GABA shunt of the 

Kreb’s cycle while GAD65 maintains excitatory/inhibitory balance at the axon terminal 

synapse (Erlander et al., 1991; Kaufman et al., 1991; Feldblum et al., 1993; Martin and 

Rimvall, 1993; Esclapez et al., 1994; Soghomonian and Martin, 1998).  This view is 

supported by studies indicating that GAD67 loss causes a near complete reduction of 

brain GABA content and is not compatible with life (Asada et al., 1997) while GAD65 

loss does not alter brain GABA content nor does it induce any other phenotypes except 

for an increased seizure susceptibility (Asada et al., 1996).  Importantly, these seizures 

did not occur at baseline, but were induced by two separate classes of convulsant drugs 

that increase neuronal activity using different mechanisms (Asada et al., 1996).  

Inducing seizures in this manner shows that the dysfunction in GAD65-/- mice is caused 

by an inability to respond to the increase in neural activity rather than a general loss of 

inhibition.  In a more recent study, conditional GAD67 loss in individual interneurons 

effectively eliminated the GABA content of those cells despite normal GAD65 

expression (Chattopadhyaya et al., 2007).   
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Even more interesting is that these two isoforms appear to be differentially 

expressed in distinct interneuronal cell populations (Fish et al., 2011) that have different 

physiological properties coinciding nicely with the presumed roles of the GAD isoform 

they preferentially express.  During a cell signaling event, GABA is released initially 

from vesicles like many neurotransmitters, but is followed by non-vesicular release likely 

through reverse action of the GABA transporter (GAT) (Soghomonian and Martin, 

1998).  Adding functional importance to the GAD65 and GAD67 distinction, it has been 

proposed that GAD65 is responsible for producing the vesicular pool of GABA and 

mediating its release during phasic firing while GAD67 provides cytosolic GABA that is 

released non-vesicularly during tonic firing (Esclapez et al., 1994; Soghomonian and 

Martin, 1998).  Interestingly, GAD65 mRNA appears to be expressed highest in areas 

that exhibit phasic activity such as visual and neuroendocrine systems (Feldblum et al., 

1993) while cells capable of both tonic and phasic firing modes, such as those in the 

thalamic reticular nucleus, express both isoforms (Contreras et al., 1992; Feldblum et 

al., 1993).  At least one study combined electrophysiology and single cell PCR in rats to 

show that two cells with identical morphology and molecular expression, except for the 

presence of both GAD isoforms, differed in their firing patterns; the cell with both GADs 

fired consistent bursts in response to stimulation while the cell expressing only GAD65 

fired few, irregular spikes (Ferezou et al., 2002).  Taken together, these studies clearly 

show that the two GAD isoforms have different functions contributing to the diversity of 

GABA-ergic neurons and that GAD67 activity is required for normal GABA content in 

the brain. 
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 GABA-ergic interneurons, postsynaptic cells, and glial cells (astrocytes) each 

have important roles at GABA-ergic synapses.  All three of these cell types, and any 

excitatory synapses in the immediate area, participate in the glutamate/GABA-glutamine 

cycle to produce  glutamate and GABA (Bak et al., 2006).  The generation of GABA 

from glutamate by GAD isoforms was discussed in the previous section.  When GABA 

is released into the synapse, it activates GABAA receptor complexes on the postsynaptic 

membrane.  These are heteromeric ligand-gated chloride channels that typically 

hyperpolarize and inhibit the postsynaptic cell when activated (Macdonald and Olsen, 

1994), but can also be excitatory during early development due to altered chloride 

gradients that will be discussed in the next section (Ben-Ari, 2002).  Alternatively, GABA 

can activate GABAB G-protein coupled receptors (GPCRs) which act as inhibitory 

modulators on the postsynaptic membrane by opening GIRKs, closing calcium 

channels, and inhibiting adenylyl cyclase or as negative feedback sensors on the 

presynaptic membrane by similar mechanisms (Gassmann and Bettler, 2012).  GABA 

that does not bind to these receptor types is taken up by GABA transporters (GAT) on 

either presynaptic cells where it can be recycled or on the astrocytes where it is 

metabolized by GABA-transaminase (GABA-T) to form succinic semialdehyde (SSA) 

(Bak et al., 2006).  SSA is then converted to succinate and joins the Kreb’s cycle where 

it is eventually converted to glutamate.  Glutamate from this source or from astroglial 

uptake from nearby excitatory synapses is then converted by glutamine synthase into 

glutamine which is then exported back to the GABA-ergic interneuron (Bak et al., 2006).  

Glutamine is converted back into glutamate by glutaminase which can then be 

converted back into GABA by GAD as the cycle completes itself (Bak et al., 2006).  
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When all components of the cycle are working together, glutamate and GABA 

concentrations can regulate each other to maintain the excitatory/inhibitory balance 

necessary to prevent seizure activity and maximize the signal-to-noise ratio of neural 

communications. 

 

Development of the Cortical GABA-ergic system 

Perhaps not surprisingly, the interplay between excitation and inhibition requires 

careful coordination of these two systems from early in brain development.  GABA-ergic 

interneurons and excitatory cortical pyramidal cells are generated in distant areas of the 

developing brain, migrate into their final positions in the cortex, and establish synaptic 

contacts during the course of development (Anderson et al., 1999).  In rodents, where 

most of the data on cortical development has been collected for obvious ethical and 

practical reasons, nearly all GABA-ergic cells originate in the ganglionic eminences of 

the ventral subpallium, while glutamatergic cells originate in the subventricular zone 

(SVZ) of the dorsal telencephalon.  Primates have identical mechanisms, but also have 

an additional source of GABA-ergic cells originating in the SVZ (Letinic et al., 2002; 

Petanjek et al., 2009b; Petanjek et al., 2009a). 

 

Early in development, Cajal-Retzius cells migrate tangentially from multiple 

sources (Bielle et al., 2005) into the developing cortical preplate.  Once established, 

they direct the radial migration of glutamatergic pyramidal neurons along radial glia by 

secreting reelin (Tissir and Goffinet, 2003) and coordinate the organization and 

positioning of radial glia and migrating pyramidal cells with cell adhesion molecules 
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cadherin and nectin (Gil-Sanz et al., 2013).  Reelin signals migrating cortical cells to 

layer in an “inside-out” fashion with “younger” pyramidal neurons stacking on top of 

“older” cells until all of the layers of the cortex have developed (Tissir and Goffinet, 

2003); however this is not the case for laminar determination and final positioning of 

GABA-ergic cells (Pla et al., 2006).  GABA-ergic interneurons destined for the cortex 

migrate from the ganglionic eminences, avoid the striatum via semaphorin 3A- and 3F-

mediated chemorepulsion (Marin et al., 2001), and settle into their final positions after 

the radial migration of pyramidal cells is complete (Pla et al., 2006).  The overwhelming 

diversity of interneuron cell types (discussed in the next section) is predestined as 

different cell types originate in restricted portions of the medial, lateral, and caudal 

ganglionic eminences based on the combinatorial expression of different transcription 

factors (Wonders and Anderson, 2006; Flames et al., 2007).  The specificity of their 

integration into cortical laminae is also predestined as different populations tend to 

cluster together in specific layers (Ciceri et al., 2013), likely via cell type specific 

expression of cell adhesion molecules including neuregulin and ErbB4 (Fazzari et al., 

2010). 

 

GABA itself also plays a role in the development of the cortex.  GABA’s inhibitory 

effects on postsynaptic neurons depend on the equilibrium potential for chloride being 

lower than the resting membrane potential, resulting in hyperpolarization when GABAA 

receptor chloride channels are opened.  Up until birth, this equilibrium is reversed 

because the sodium-potassium-chloride cotransporters (NKCC1) are expressed while 

the postassium-chloride exporter (KCC2) is not, the net effect of which raises 
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intracellular chloride concentrations (Ben-Ari, 2002).  KCC2 expression typically 

increases around P0 and the chloride gradient switches; however, this may be 

dynamically regulated and there is evidence that local chloride gradients may be 

different at certain interneuron synapses and in disease states (Arion and Lewis, 2011; 

Hyde et al., 2011).  GABA’s excitatory role is important for the development of the 

cortex.  GABA is released through non-vesicular release prior to the development of 

synapses (Manent et al., 2005; Cellot and Cherubini, 2013).  Interestingly, this release 

mechanism correlates with the expression of the two GAD isoforms as GAD65, thought 

to provide vesicular GABA, is not expressed until after the gradient switch and 

development of synapses (Kiser et al., 1998).  Tonic GABA stimulates and guides the 

migration of new neurons in a receptor type-dependent manner (Owens and Kriegstein, 

2002).  GABAA receptors are expressed on neural progenitors in the proliferative zone 

and GABA signaling inhibits DNA synthesis, promoting cell cycle exit before migration 

(LoTurco et al., 1995).  GABAB and GABAC (an ion channel that is functionally identical 

to GABAA with different pharmacology) stimulation maintains migration through the 

cortical plate (Behar et al., 2001) while GABAA receptor stimulation finally provides a 

signal to stop migrating (Behar et al., 2000).  This entire process is highly orchestrated 

by changing expression of GABA receptors as cells migrate from the proliferative zone 

to their final place in the cortical plate (Maric et al., 2001).  Once in place, continued 

GABAA receptor stimulation signals cells to extend neurites (Barbin et al., 1993; Marty et 

al., 1996) and form excitatory pre-synaptic contacts to integrate with the developing 

cortical circuitry (Wang and Kriegstein, 2008).  This GABA-mediated, activity-dependent 

process has important results for the organization of cortical circuits as it provides the 
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framework that sets cortical column spacing (Hensch, 2005).  Somewhat unexpectedly, 

these same processes continue to regulate synaptic integration of cells in regions such 

as the dentate gyrus that continue to produce new neurons into adulthood (Ge et al., 

2006). 

 

Any mechanism of normal development provides an opportunity for abnormal 

development.  Schizophrenia is marked by a reduction of reelin (Impagnatiello et al., 

1998; Guidotti et al., 2000; Fatemi et al., 2005) and impaired neuregulin/ErbB4 

(Harrison and Weinberger, 2005; Neddens et al., 2011) signaling that may contribute to 

the cortical migration and synaptic deficiencies seen in the disorder.  Reelin deficiencies 

are also prominent in animal models of maternal immune activation (MIA; to be 

discussed) which mimics a risk factor for neurodevelopmental disorders (Meyer et al., 

2008; Harvey and Boksa, 2012).  Reelin-producing Cajal-Retzius cells express the 

cannabinoid receptor CB1 (Zurolo et al., 2010) which has become prominent in the 

neuropsychiatric literature (Andreasson et al., 1987; Henquet et al., 2008; Ferretjans et 

al., 2012).  Dopamine D1 receptor stimulation promotes interneuron migration, while D2 

stimulation slows it (Crandall et al., 2007).  Dopamine receptor modulating drugs such 

as cocaine can affect this process (Crandall et al., 2004; Thompson et al., 2009; 

McCarthy and Bhide, 2012).  Adenosine receptor antagonists such as caffeine similarly 

delay migration (Kabir et al., 2013; Silva et al., 2013).  GABA system-targeting drugs 

such as anticonvulsants (Manent et al., 2007), anxiolytics (Haas et al., 2013), or alcohol 

(Cuzon et al., 2008; Thompson et al., 2009; Aronne et al., 2011) also alter cortical 

migration and development.  Some of these effects appear to be cell type specific.  
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Neuregulin/ErbB4 signaling selectively affects development of GABA-ergic interneurons 

that express parvalbumin, cholecystokinin, calretinin, but not those that express 

calbindin in mice, rats, monkeys, and humans (Neddens et al., 2011).  Parvalbumin+ 

interneurons are also selectively disrupted by exogenous GABA potentiation (Levav-

Rabkin et al., 2010; Haas et al., 2013) or cocaine exposure (McCarthy and Bhide, 2012) 

during development while adenosine receptor agents and caffeine may target 

somatostatin+ cells (Silva et al., 2013).  Finally, conditional GAD67 suppression in 

perisomatic-targeting basket cells during adolescence decreases axonal branching 

(Chattopadhyaya et al., 2007).  Together, these studies highlight the importance of 

GABA-ergic system function for the proper migration and integration of inhibitory and 

excitatory cell types in the cortex and hippocampus as well as the sensitivity of this 

system to genetic and pharmacological insults. 

 

There are some important caveats that must be acknowledged regarding the 

comparison of developing GABA-ergic circuitry in humans and mice and the methods 

used to study interneuron migration in mice.  First, the proportion of interneurons to 

pyramidal cells in the human cortex is much greater than in the mouse (Jones, 2009).  

This discrepancy also raises the possibility that interneuron deficits in humans could 

have more robust effects on the brain and behavior than what is seen in rodent models.  

Second, up to 65% of human cortical interneurons arise from an alternate source of 

progenitors in the neocortical ventricular and subventricular zones that may have 

developed during primate evolution (Letinic et al., 2002; Petanjek et al., 2009b; Petanjek 

et al., 2009a).  Therefore, some of the findings in rodents may be restricted to a limited 
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population of human neurons.  There may also be deficits in humans arising from 

specific disruptions in this secondary interneuronal source that are not able to be 

studied in lower animals.  However, since the gross majority of cells from this source 

express calretinin (Petanjek et al., 2009a) which appear to be spared in 

neuropsychiatric illnesses such as schizophrenia (Hashimoto et al., 2003b), rodent 

models assessing the differentiation, migration, and maturation of GABA-ergic 

interneurons from the ganglionic eminences remain very informative about the 

neurobiological processes underlying the developmental aspects of mental illnesses.  

Third, there are important caveats regarding methodologies used by many labs to 

generate data regarding interneuron development in mice that will be discussed in this 

section.  GAD67-GFP mice were created by Tamamaki and colleagues to visualize 

GABA-ergic cells in the brain by knocking the eGFP gene into the transcriptional start 

site of the Gad1 gene (Tamamaki et al., 2003).  However, Tamamaki, et al. downplayed 

the fact that GAD67-GFP mice have significantly reduced levels of GABA during 

development.  They argued that these differences are unimportant since the GABA 

reduction was not statistically significant at 7 weeks of age (p=0.09) and suggested that 

a developmental compensatory mechanism, namely GAD65 expression, was able to 

overcome the differences (Tamamaki et al., 2003).  These claims are difficult to 

evaluate since GABA content was measured in “samples from mouse brain” in their 

study (Tamamaki et al., 2003) and it is possible that regional differences across 

development influenced their results; nevertheless, studies discussed in the previous 

section argue against the ability of GAD65 to compensate for GAD67 reduction.  

Regardless of the accuracy of their explanation, the fact remains that GABA reduction 
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during early development of GAD67-GFP mice is highly likely to affect interneuron 

migration and cortical development.  Since many groups have taken advantage of 

GABA-ergic neuron fluorescence in GAD67-GFP mice to track interneuron migration, 

data from such studies should be interpreted with the caveat that reduced GABA 

concentrations may have influenced the results. 

 

Interneuron diversity 

GABA-ergic cell types are so diverse that creating a nomenclature for their 

defining characteristics continues to be a tedious task (DeFelipe et al., 2013). However, 

classification of these diverse inhibitory cell types is necessary to describe the disparate 

functions performed by different classes and important because different types of these 

cells appear to be dysfunctional in neuropsychiatric disorders (Lewis et al., 2005; Marin, 

2012).  Categories can be broadly defined based on morphological, molecular, and 

physiological properties (Markram et al., 2004; Ascoli et al., 2008; DeFelipe et al., 2013) 

with the caveats that no single classification scheme is sufficient and integrating the 

growing amount of information is difficult in practice (DeFelipe et al., 2013).   

 

Perhaps the most distinguishing feature of any cell type is its morphology.  

Laminar distribution, columnar distribution, soma size, dendritic arborization, axonal 

branching, orientation, and synaptic connectivity are some of the aspects of a cell’s 

appearance that identify it as a member of a particular class (Markram et al., 2004; 

Ascoli et al., 2008; DeFelipe et al., 2013).  Basket, bipolar, bitufted, chandelier, double 

bouquet, Martinotti and neurogliaform are terms that describe the major interneuron cell 
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types (Markram et al., 2004).  Basket cells, which compose about half of all 

interneurons (Markram et al., 2004), can be further characterized as “large basket cells” 

that have larger soma and diffuse axonal arborization through multiple cortical lamina, 

“small basket cells” with smaller cell soma and arborization typically restricted to a local 

area, or “nest basket cells,” which are a similar size as “small basket cells” but have less 

axonal branching and fewer synaptic contacts (Markram et al., 2004).  Bipolar, bitufted, 

and double bouquet cells are very similar in their size, distribution, synaptic contacts 

and molecular content, but vary in the branching and spread of their dendritic arbors 

(Markram et al., 2004; Ascoli et al., 2008; DeFelipe et al., 2013).  They are typically 

small with oval-shaped cell bodies, and synapse onto dendrites of pyramidal cells in 

multiple layers.  Their dendritic arbors span multiple layers (interlaminar) and vary 

based on the number and density of their dendrites with bipolar cells having one or very 

few tightly-packed dendrites and a vertically oriented, straight axon (Markram et al., 

2004). Double-bouquet cells and bitufted cells are very similar with multiple, more 

diffuse branches of their axonal plexuses and dendritic trees, however the bitufted cells 

exhibit a wider branching of their axonal bundle that may cross over into other cortical 

columns (Markram et al., 2004; DeFelipe et al., 2013).  Chandelier cells have broad 

axonal branching and distribution resembling the hanging structure for which they are 

named.  These cells are easier to classify based on morphology alone but may have 

multiple functional modes that compound their diversity (to be discussed).  Martinotti 

cells project from lower cortical lamina up to layer 1 to inhibit distal dendrites of 

pyramidal cells (Markram et al., 2004; Ascoli et al., 2008; Karagiannis et al., 2009; 

DeFelipe et al., 2013).  Neurogliaform cells innervate dense, local regions and provide 
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tonic inhibition in an extra-synaptic manner (to be discussed), but also form synaptic 

networks with each other (Price et al., 2005) likely to coordinate previously-mentioned 

tonic processes.  Since the cortex has segregated inputs and outputs into various layers 

and organized cortical information processing into modular column units, interlaminar 

(between layers of cortex) and intercolumnar (between cortical columns) connections 

may be especially important to coordinate and unify brain function (Lubke and 

Feldmeyer, 2007; DeFelipe et al., 2013).  While many of these cells have been studied 

most extensively in the cortex, they are also found in other brain regions such as the 

hippocampus where they take similar forms and make analogous synaptic or extra-

synaptic connections (Klausberger and Somogyi, 2008).  These morphological 

categories can be further divided with additional information including selective 

molecular marker expression.   

 

Research presented here relies on the organization of various interneuron cell 

types based on their molecular content since non-overlapping populations express 

various calcium-binding proteins or neuropeptides (Figure 1); the focus of this work will 

be on interneurons that express parvalbumin (PV), cholecystokinin, or neuropeptide Y 

(Lewis et al., 2005) which will be described here in detail.  Identifying interneurons 

based on multiple parameters and determining their control of neural and behavioral 

processes yield important information directing the development of novel therapeutics 

for these disorders.  Multiple methods can be used to determine the molecular content 

of interneuron cell types including single cell PCR, which measures the gene expression 

signature of selected cells, multiple-label immunohistochemistry, which measures 
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overlapping protein localization, or pharmacology, which measures the response of a 

cell to drugs that act on particular receptors to determine if they are present on or in the 

cell. 
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Figure 1: GABA-ergic cell types differentially express particular calcium-binding 

proteins or neuropeptides.  Interneurons expressing parvalbumin (PV, green) regulate 

pyramidal cell soma and axon initial segments (AIS).  Those expressing cholecystokinin 

(CCK, yellow) regulate pyramidal cell soma and distal dendrites.  Cortical cells that 

express neuropeptide Y (NPY, red) regulate pyramidal cell distal dendrites and maintain 

tonic inhibition of a local area through extrasynaptic volume transmission.  Cells that 

express calretinin (CR, purple) inhibit distal dendrites in layer 1.  These cells do not 

appear to have altered GABA-ergic system components in neuropsychiatric disorders. 
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The calcium-binding protein parvalbumin is expressed by large basket cells and 

chandelier cells in multiple brain regions.  PV+ basket cells form perisomatic synaptic 

contacts onto pyramidal cells (Freund and Katona, 2007) and also inhibit other dendrite-

targeting interneuron populations (Lovett-Barron et al., 2012).  PV+ chandelier cells 

synapse on axon initial segments to regulate the output of cortical pyramidal cells 

across multiple areas (Markram et al., 2004; Woodruff et al., 2010) and control gamma-

oscillations within and between regions (to be discussed), which are believed to 

maintain working memory (Lewis et al., 2005).  Their “fast-spiking” activity is determined 

by their heavy glutamatergic innervation and by their expression of P/Q-type voltage-

gated calcium channels which cluster at synaptic active zones to support rapid vesicular 

release kinetics (Hefft and Jonas, 2005).  Of course, parvalbumin itself may be involved 

in this process as a calcium buffer.  Interestingly, the function of these cells has been 

described as “enigmatic” due to the possibility that they may also provide excitatory 

input to pyramidal cells in the cortex despite their GABA-ergic identities due to potential 

differences in local electrochemical gradients in normal and diseased brain (Woodruff et 

al., 2010; Arion and Lewis, 2011; Hyde et al., 2011).  This possibility arises because the 

distribution of the chloride transporters that maintains these gradients may be different 

at chandelier cell synapses (Woodruff et al., 2010).  Approximately 65% of PV+ 

interneurons express dopamine receptor D4 while nearly 20% express D2 (de Almeida 

and Mengod, 2010) which may be important for the regulation of PV+ GABA-ergic 

circuits in the amygdala (Woodruff and Sah, 2007; Bienvenu et al., 2012) by dopamine 

and for behaviors associated with dopamine signaling in the amygdala (Cao and 
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Rodgers, 1997; Royer et al., 1999; Marowsky et al., 2005; Pape, 2005; Likhtik et al., 

2008; de la Mora et al., 2010). 

 

In contrast, CCK+ basket cells regulate the activity of pyramidal cells directly via 

perisomatic synaptic transmission and indirectly via modulation of PV+ basket cells 

primarily in limbic and frontal circuits (Geola et al., 1981; Hornung et al., 1992; Meziane 

et al., 1997; Freund, 2003; Foldy et al., 2007; Karson et al., 2009).  This distribution is 

remarkably similar in mice (Meziane et al., 1997), nonhuman primates (Oeth and Lewis, 

1990), and humans (Geola et al., 1981; Hornung et al., 1992).  Despite being 

morphologically similar to PV+ basket cells, this cell type is molecularly unique in 

several ways.  In contrast to “fast-spiking” PV+ cells, CCK+ basket cells’ slower 

“accommodating” activity is determined by their relatively diminished glutamatergic 

innervation and by their expression of N-type voltage-gated calcium channels which are 

dispersed throughout presynaptic terminals further away from active zones which leads 

to less precise regulation of  vesicular release kinetics (Hefft and Jonas, 2005).  CCK+ 

cells in the hippocampus selectively express alpha7 nicotinic receptors (nAchR) (Porter 

et al., 1999) and are thought to be necessary for the cognition-boosting effects of 

acetylcholine (Nagode et al., 2011).  They are also the only interneuron type that 

expresses the serotonin type 3 receptor (Morales and Bloom, 1997) which positions 

them to integrate neuromodulatory information with fine-tuned network activity in 

multiple brain regions (Freund, 2003; Varga et al., 2009).  Furthermore, CCK is 

expressed by five electrophysiologically distinct types of interneurons in the lateral 

amygdala (Sosulina et al., 2010) which are among those that modulate anxiety-like 
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behavior (Truitt et al., 2009).  Finally, and perhaps most famously, CCK+ interneurons 

express the cannabinoid receptor CB1 (Katona et al., 1999; Marsicano and Lutz, 1999; 

Tsou et al., 1999; Katona et al., 2000; McDonald and Mascagni, 2001; Hill et al., 2007; 

Morales et al., 2008; Eggan et al., 2010) which has been shown to regulate both anxiety 

(Patel et al., 2005) and memory (Castellano et al., 1997; Castellano et al., 2003; 

Crombag et al., 2010; Tan et al., 2010).  Combined, the molecular signature of CCK+ 

interneurons supports their role in integrating processes that are important for global 

brain function and behavior. 

 

NPY+ neurogliaform interneurons release GABA via volume transmission (Olah 

et al., 2009; Manko et al., 2012) in diffuse cortical regions, the striatum, hippocampus, 

amygdala, and hypothalamus and play critical roles in maintaining tonic inhibition (Koos 

and Tepper, 1999; Markram et al., 2004; Tepper and Bolam, 2004; Karagiannis et al., 

2009; Partridge et al., 2009; Truitt et al., 2009) and make synaptic contacts onto each 

other, likely to regulate tonic inhibition throughout a region (Price et al., 2005).  The 

receptors expressed on these cells suggest that they are sensitive to endocrine 

changes.  They express both mu (Krook-Magnuson et al., 2011) and delta opioid 

receptors, which are substantially reduced on NPY+ cells in the hippocampus of female 

rats compared to males and even further reduced during high-estrogen phases of 

estrous (Williams et al., 2011).  Furthermore, NPY+ interneuron signaling involves the 

neurosteroid-sensitive GABA receptor delta subunit which implicates NPY+ 

neurogliaform cell function in response to stress and may be a component in the biology 

of gender differences in neuropsychiatric disorders (Lambert et al., 2003; Hosie et al., 
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2006; Olah et al., 2009).  Along with CCK+ basket cells, they are among those that 

regulate anxiety in the amygdala (Truitt et al., 2009).  Finally, NPY+ interneurons in the 

striatum, compared to PV+ interneurons in the striatum, are directly responsible for the 

cholinergic modulation of striatal circuitry (Luo et al., 2013) which is critically important 

for regulating reward pathways (English et al., 2012).  Their positioning in striatal 

circuitry (Ibanez-Sandoval et al., 2011) combined with our data implicating them in the 

control of amphetamine sensitivity may explain the mechanism of α4β2 nicotinic 

receptor drugs (Lippiello et al., 2008) and M4 muscarinic drugs (Brady et al., 2008) that 

modulate these behaviors with relevance for neuropsychiatric treatment. 

 

While morphological and molecular markers can identify GABA-ergic cell types 

and differences between their receptor and channel expression can provide clues about 

the ways they might participate in systems modulating neural processes and behavior, 

they do not tell us what the cells do.  In other words, interneuron function is not defined 

by firing rates or responses to drugs.  What an interneuron cell type does is defined by 

its integration into brain circuitry and its role in shaping the output of that circuitry. 

 

Interneuron Function 

Classification of interneuron subpopulations is critical for all other studies of 

inhibition because diverse subtypes of these cells regulate relatively homogenous 

pyramidal cell populations in different brain regions and in different ways (Kawaguchi et 

al., 1997; Jinno and Kosaka, 2003; Tepper and Bolam, 2004; Lewis et al., 2005; 

Houser, 2007; Sosulina et al., 2010; Kubota et al., 2011).  In the hippocampus, for 
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example, twenty one types of interneurons regulate the function of only three types of 

pyramidal cells (Klausberger and Somogyi, 2008).  Therefore, it is likely that the 

diversity of interneuron form and function plays a direct role in generating diverse brain 

functions and behavior.  Generally speaking, interneuron subpopulations modulate brain 

function at three levels: synchronizing neural populations, gating the activity of specific 

local circuits, and controlling the activity of neuromodulatory centers. 

 

First, distinct interneuron classes have different physiological properties and 

maintain different aspects of network synchrony.  Oscillations in the slow delta (0.5–3 

Hz) and theta (3–8 Hz) ranges and fast gamma (30–90 Hz) and ultrafast (as high as 

500 Hz) ranges maintain the signal-to-noise ratios and precise timing of neural 

communications that are critical for supporting cognition and other behavioral processes 

(Freund, 2003; Buzsaki and Draguhn, 2004; Bartos et al., 2007; Lewis et al., 2008).  

Synchronized network oscillations within and between brain regions are generated and 

maintained by different classes of interneurons (Whittington and Traub, 2003; Bartos et 

al., 2007; Freund and Katona, 2007; Gonzalez-Burgos and Lewis, 2008, 2012).  For 

example, frequency-dependent burst activity of single pyramidal cells is able to activate 

and synchronize networks of nearby interneurons which then suppress surrounding 

pyramidal cells (Marshall et al., 2002).  This process selects and propagates the original 

signal while suppressing noise from surrounding cells.  An interesting interneuron 

population in this context is comprised of the perisomatic-targeting basket cells.  These 

cells are heavily interconnected and coordinated through electrical coupling (Hestrin 

and Galarreta, 2005) and their oscillatory activity in the gamma and theta ranges is 
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necessary for maintaining network activity and behavior (Lewis et al., 2005; Fuchs et al., 

2007; Gonzalez-Burgos and Lewis, 2008).  There are two subtypes of basket cells that 

regulate each other (Karson et al., 2009) in addition to their pyramidal cell perisomatic 

contacts (Freund, 2003; Freund and Katona, 2007).  The distinct physiological 

properties of PV+ and CCK+ basket cells are thought to maintain different aspects of 

input selection and integration as fast-spiking PV+ cells maintain the synchrony of the 

network and determine selectivity while accommodating CCK+ cells detect temporal 

binding and integrate the activity of the network (Freund, 2003; Hefft and Jonas, 2005; 

Freund and Katona, 2007).  These functions are underscored by distinct synaptic 

contacts and receptor expression.  PV+ basket cells are consistently activated by robust 

glutamatergic drive while CCK+ basket cells are activated by glutamatergic synapses 

that are susceptible to short-term depression (mediated by cannabinoid receptor 1 

(CB1)) and are also modulated by serotonin and acetylcholine (Freund and Katona, 

2007).  In this manner, different interneuron classes, such as PV+ and CCK+ basket 

cells, distinguish signal from noise and integrate multiple signals in specific local circuits 

(Hefft and Jonas, 2005; Freund and Katona, 2007).   

 

Interneuron populations also function to synchronize activity between brain 

regions.  For example, the amygdala and hippocampus are heavily interconnected 

(Pitkanen et al., 2000).  Homogenous subnetworks of NPY+ neurogliaform (Price et al., 

2005) and PV+ basket (Klausberger et al., 2003) cells in the hippocampus separately 

participate in theta and gamma oscillations as well (Capogna, 2011).  Recent studies 

found that NPY+ neurogliaform and calbindin+ dendrite-targeting interneurons 
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(Bienvenu et al., 2012; Manko et al., 2012), but not PV+ basket calls (Bienvenu et al., 

2012) in the basolateral amygdala were phase-locked with hippocampal theta 

oscillations, leading to a transient reduction of inhibitory signaling in the amygdala 

(Manko et al., 2012) which would likely lead to specific alterations in behavior 

(discussed in the next section).  These hippocampal theta oscillations also entrain the 

activity of pyramidal cells in the medial frontal cortex in an interaction that is functionally 

critical for working memory performance (Gordon, 2011).  In this manner, particular 

classes of interneurons, such as NPY+ or calbindin+ cells in the amygdala or 

hippocampus or PV+ cells in the hippocampus or cortex function across networks and 

across brain regions to support a broad spectrum of behaviors from working memory to 

anxiety to social behavior (Herry et al., 2008). 

 

Second, these classes are positioned to gate the flow of information within and 

between specific regional and subregional circuits.  For example, the amygdala 

processes emotionally salient stimuli and relays this information to other regions to 

generate appropriate behavioral responses (Cardinal et al., 2002; Herry et al., 2008; 

Seymour and Dolan, 2008; Morrison and Salzman, 2010).  It is composed of 

developmentally and functionally distinct subregions (basolateral, centromedial, central, 

etc.) that are connected by well-defined circuits (Sah and Westbrook, 2008).  In addition 

to the cells that regulate network synchrony mentioned above, interneurons in the 

amygdala also act as critical switches within these circuits (Royer et al., 1999; Pape, 

2005; Truitt et al., 2007; Likhtik et al., 2008; Ehrlich et al., 2009; Truitt et al., 2009) and 

are under the control of prefrontal cortical input and dopamine modulation (Rosenkranz 
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and Grace, 2001; Marowsky et al., 2005; Pape, 2005; de la Mora et al., 2010).  

Conversely, glutamatergic projections from the amygdala to the prefrontal cortex 

synapse on layer II/III interneurons providing reciprocal feed-forward and feed-back 

gating of information between regions (Saddoris et al., 2005; Cunningham et al., 2008; 

Benes, 2009) which is critical for everything from fear to addiction (Maren and Quirk, 

2004; Peters et al., 2009; Koob and Volkow, 2010).   

 

Localized interneuron function is also found in the hippocampus where twenty 

one types of interneurons regulate the function of only three types of pyramidal cells 

(Klausberger and Somogyi, 2008).  These different interneuron types are distributed in 

different cellular layers and subregions of the hippocampus (Jinno and Kosaka, 2003; 

Klausberger and Somogyi, 2008) and dentate gyrus (Hefft and Jonas, 2005; Houser, 

2007).  It has been shown that the CA1, CA3, and dentate gyrus are responsible for 

different aspects of spatial representation, pattern separation, pattern completion, 

novelty detection, and short- or intermediate-term memory functions of the 

hippocampus (Kesner et al., 2004) and that various hippocampal functions map along a 

dorsoventral or anteroposterior axis in animals and humans (Bannerman et al., 2004; 

Fanselow and Dong, 2010; Poppenk et al., 2013).  Several aspects of local 

hippocampal function are dependent on specific interneuron classes.  The function of 

the dentate gyrus is dependent on the precise timing and co-regulation of PV+ and 

CCK+ cells discussed previously (Hefft and Jonas, 2005).  These CCK+ cells are 

concentrated in the ventral hippocampus (Jinno and Kosaka, 2003) which is thought to 

be more involved in regulating emotion than memory (Bannerman et al., 2004) and fast 
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serotonergic modulation (Varga et al., 2009) of CCK+ interneurons in this subregion is 

likely a key component of that distinction (Morales and Bloom, 1997; Ferezou et al., 

2002).  Likewise, classes of striatal interneurons, particularly those expressing PV or 

NPY, regulate local circuits in a cell type-specific manner and directly influence striatal 

projection neurons and reward circuitry (Kubota and Kawaguchi, 1994; Kawaguchi et 

al., 1997; Koos and Tepper, 1999; Wilson, 2007; Tepper et al., 2010; Gerfen and 

Surmeier, 2011; English et al., 2012).  In this manner, GABA-ergic interneurons function 

to regulate local circuitry and projections that are critical for normal behavior and are 

dysfunctional in mood disorders, PTSD, substance abuse, autism and schizophrenia 

(Truitt et al., 2007; Sah and Westbrook, 2008; Benes, 2009; Peters et al., 2009; Koob 

and Volkow, 2010; Mohler, 2012). 

 

Third, different classes of interneurons regulate the release of neuromodulators 

such as dopamine and serotonin which have diffuse effects in multiple brain regions.  

The primary sources of these neuromodulators in the brain (the ventral tegmental area 

and substantia nigra and the raphe nuclei respectively) are under direct, monosynaptic 

control of GABA-ergic neurons.  The tail of the ventral tegmental area/rostromedial 

tegmental nucleus (tVTA/RMTg) is composed of GABA-ergic cells that directly inhibit 

dopamine-producing cells in the VTA and substantia nigra to shut down dopaminergic 

signaling in response to aversive events (Jhou et al., 2009).  In addition to the obvious 

functional implications of well-regulated dopamine release, balanced activity of 

neuromodulatory circuits is also critical for fundamental processes that determine 

stimulus salience (Schultz, 2011) which are underappreciated hallmarks of mental 
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illnesses (Morris et al., 2012).  Similarly, dorsal raphe neurons that provide serotonergic 

innervation to most of the brain are under direct, local control of GABA-ergic cells 

(Inyushkin et al., 2010).  These particular interneurons have been shown to be 

necessary for the acquisition of socially-relevant behavior (Challis et al., 2013).  

Consistent with this, we have also shown that silencing an interneuron subpopulation, 

causes specific disruption of serotonergic circuitry and changes in social behavior 

(Brown et al., 2013). 

 

In addition to the direct, monosynaptic connections, GABA-ergic interneurons 

can affect modulatory systems via polysynaptic, systems level pathways.  For example, 

NPY+ interneurons in the striatum control striatal projection neurons (Ibanez-Sandoval 

et al., 2011; English et al., 2012) and we have shown that silencing these neurons (and 

NPY+ interneurons in other regions) causes dopamine-dependent behavioral 

abnormalities and increased sensitivity to amphetamine (Schmidt et al., 2013).  

Disinhibition of these dopamine circuits reduces anxiety-like behaviors in rodents 

(Zweifel et al., 2011) likely by modulating the activity of the GABA-ergic interneurons in 

the amygdala (Marowsky et al., 2005; Pape, 2005; de la Mora et al., 2010) which 

include both the NPY+ and CCK+ cells described above (Truitt et al., 2009).  It has also 

been suggested that disinhibition of the hippocampus by disruption of parvalbumin+ 

inhibitory circuitry can overdrive dopaminergic circuits in multiple systems (Lisman and 

Grace, 2005).  In the case of serotonin, a growing body of evidence shows that the local 

GABA-ergic interneurons in the dorsal raphe (Inyushkin et al., 2010) actively participate 

in gating the glutamatergic drive of those cells (Soiza-Reilly et al., 2013) in response to, 
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or under the control of medial frontal cortical input (Varga et al., 2001).  In this manner, 

GABA-ergic circuitry functions to directly and indirectly control the release of 

neuromodulators throughout the brain which has important consequences for a wide 

range of behaviors. 

 

Given the challenges of comparing functional cortical microanatomy in rodents 

and humans, more work needs to be done to understand how the function of particular 

GABA-ergic circuits might influence disease-relevant behaviors.  Nevertheless, there 

are long-accepted links between widespread biogenic amine system dysfunction and 

neuropsychiatric conditions such as dopaminergic changes in schizophrenia and 

substance abuse and serotonin disturbances in mood disorders, social behavior, and 

potentially psychosis.  Advancing knowledge about the mechanisms whereby GABA-

ergic interneuron function interacts with and controls these systems may identify diverse 

causes of these disorders and potential new treatments. 

 

GABA and disease 

Nearly all neuropsychiatric disorders include dysfunctional GABA system 

components: schizophrenia (Hashimoto et al., 2008b), bipolar disorder (Guidotti et al., 

2000), anxiety (Rudolph et al., 1999; Low et al., 2000; Mohler, 2012), depression 

(Thompson Ray et al., 2011; Mohler, 2012), panic disorder (Malizia et al., 1998), post-

traumatic stress disorder (Geuze et al., 2008), attention deficit hyperactivity disorder 

(Edden et al., 2012), autism (Fatemi et al., 2002), Rett syndrome (Blue et al., 1999), 

epilepsy (Lloyd et al., 1986), and others (Marin, 2012). 
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Researchers studying schizophrenia in particular have accumulated the largest 

body of evidence showing that GABA system dysfunction may be related to behavioral 

dysfunction and clinical diagnosis (Lewis et al., 2005).  Discovering that GABA controls 

dopamine release in striatal and mesolimbic circuits prompted investigators in the 1970s 

to theorize that GABA dysfunction could cause schizophrenia (Roberts, 1972; Van 

Kammen, 1977).  GABA-associated deficits steadily emerged in the clinical literature 

with the publication of studies that found reduced GABA content (Perry et al., 1979; 

Spokes et al., 1980), altered GABA receptor subunit protein levels and mRNA levels 

(Hanada et al., 1987; Benes et al., 1992; Impagnatiello et al., 1998; Volk and Lewis, 

2002; Hashimoto et al., 2008b; Hashimoto et al., 2008a; Charych et al., 2009; 

Maldonado-Aviles et al., 2009), decreased GABA transporter protein levels (Simpson et 

al., 1989; Volk and Lewis, 2002; Hashimoto et al., 2008b), and altered interneuron 

densities (Benes et al., 1991; Daviss and Lewis, 1995; Wang et al., 2011) in the post-

mortem brains of subjects with schizophrenia.  In 1995, Akbarian and colleagues first 

reported a decrease in GAD67 mRNA in prefrontal cortex of post-mortem schizophrenic 

brain tissue that could not be accounted for by cell loss (Akbarian et al., 1995).  The 

GAD67 expression deficit has become one of the most consistently replicated gene 

expression findings in schizophrenia across many different brain regions, patient 

cohorts, methods, and investigators which is remarkable given the complex genetics 

and diverse presentation of symptoms seen in patients (Akbarian et al., 1995; 

Impagnatiello et al., 1998; Guidotti et al., 2000; Mirnics et al., 2000; Volk et al., 2000; 

Knable et al., 2002; Volk and Lewis, 2002; Hashimoto et al., 2003a; Kalkman and 
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Loetscher, 2003; Costa et al., 2004; Fatemi et al., 2005; Lewis et al., 2005; Akbarian 

and Huang, 2006; Huang and Akbarian, 2007; Hashimoto et al., 2008b; Hashimoto et 

al., 2008a; Curley et al., 2011; Thompson Ray et al., 2011). 

 

These studies of post-mortem brain tissue from subjects with schizophrenia also 

indicate that dysfunction of the GABA seems to be cell type-specific.  Approximately 

30% of GABA-ergic interneurons in the cortex of postmortem brains from individuals 

with schizophrenia do not express GAD67 mRNA (Akbarian et al., 1995; Volk et al., 

2000); however those that do express detectable GAD67 appear to have normal levels 

(Volk et al., 2000).  Among these dysfunctional cell types are interneurons that express 

the calcium binding protein parvalbumin or the neuropeptides CCK or NPY (Hashimoto 

et al., 2003a; Hashimoto et al., 2008b).  The most overwhelming evidence is that PV+ 

interneurons, particularly cortical chandelier cells, are the predominantly affected cell 

type in schizophrenia.  Hashimoto and colleagues reported that GAD67 was not 

detected in 55% of PV+ interneurons in the cortex despite observing normal PV+ cell 

density (Hashimoto et al., 2003b).  The synaptic contacts made by these cells onto the 

axon initial segments (AIS) of pyramidal neurons are also abnormal in schizophrenia.  

Decreased presynaptic expression of GABA transporter 1 (GAT1) and increased 

postsynaptic expression of GABA receptor subunits suggests that GABA-ergic 

neurotransmission is diminished at these synapses (Volk and Lewis, 2002; Lewis et al., 

2005).  Furthermore, a 40% reduction in the total density of PV+ chandelier cell – AIS 

synaptic contacts has been observed in schizophrenia (Woo et al., 1998).  The 

formation of these PV+ axon terminals and the formation of glutamatergic contacts that 
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drive the PV+ interneurons are dependent on Neuregulin—ErbB4 signaling (Fazzari et 

al., 2010; Wen et al., 2010) which is also dysfunctional in schizophrenia (Stefansson et 

al., 2004; Harrison and Weinberger, 2005; Mei and Xiong, 2008).  The dysfunction of 

these cells likely contributes to impaired gamma oscillations (Fuchs et al., 2007; 

Gonzalez-Burgos and Lewis, 2012), learning (Chen et al., 2010), and working memory 

(Lewis et al., 2005; Fuchs et al., 2007; Haenschel et al., 2009). 

 

Other GABA-ergic interneuron cell types are also clearly dysfunctional in 

schizophrenia.  Many studies have found that CCK is downregulated in schizophrenic 

patients (Ferrier et al., 1983; Roberts et al., 1983; Beinfeld and Garver, 1991; Kerwin et 

al., 1992; Virgo et al., 1995; Bachus et al., 1997; Lewis et al., 2005; Hashimoto et al., 

2008b; Curley and Lewis, 2012) and in animal models that may have relevance for 

schizophrenia including chronic dopamine receptor stimulation (Suzuki and Moroji, 

1989) or NMDA receptor hypofunction (Arif et al., 2006).  The strong correlation 

between reductions of CCK and GAD67 mRNA suggests that CCK+ interneurons are 

dysfunctional in schizophrenia (Hashimoto et al., 2008b).  These are also the only 

interneuron cell type that expresses the cannabinoid receptor CB1 (Marsicano and Lutz, 

1999; Tsou et al., 1999; McDonald and Mascagni, 2001; Eggan et al., 2010).  CB1 

receptor activation has been shown to silence CCK+ interneurons (Losonczy et al., 

2004) and disrupt the functions of the hippocampus (Katona et al., 1999; Hajos et al., 

2000) and amygdala (Katona et al., 2001; Tan et al., 2010) particularly in response to 

chronic stress (Patel et al., 2009).  Since exposure to cannabis and chronic stress are 

both epidemiologically identified risk factors for developing schizophrenia (Horvath and 



32 
 

Mirnics, 2009), CCK+/CB1+ interneuron dysfunction may contribute to disease-relevant 

processes.  However, it has also been suggested based on the post-mortem evidence 

that CCK+ basket cells may rely more heavily on GAD65 relative to GAD67 than other 

interneuron populations (Fish et al., 2011) and that CCK peptide and CB1 receptor 

downregulation observed in schizophrenic brain tissue (Lewis et al., 2005) may actually 

result in a net increase of inhibition produced by these cells (Curley and Lewis, 2012).  

This interpretation must be examined in the context of the circuitry where CCK+ 

interneurons inhibit both PV+ interneurons and pyramidal cells (Freund and Katona, 

2007; Lee et al., 2011) by processes that are gated by the CCK peptide itself (Foldy et 

al., 2007).  Further experiments are required to fully evaluate the role of CCK+ 

interneuron dysfunction presented by Curley and Lewis.  Some of the results presented 

here will provide further information on this issue and the possibilities that GAD67 

downregulation in these cells contributes to behavioral impairments. 

 

A third GABA-ergic cell type that is dysfunctional in schizophrenia is the NPY+ 

population.  Neuropeptide Y itself is downregulated in schizophrenia (Frederiksen et al., 

1991; Gabriel et al., 1996; Kuromitsu et al., 2001; Hashimoto et al., 2008b; Mellios et 

al., 2009; Morris et al., 2009) although it is unclear whether antipsychotic medication 

(Huang et al., 2006; Mellios et al., 2009; Nikisch et al., 2012) or age and duration of 

illness (Peters et al., 1990) mediate this effect.  Nevertheless, NPY+ interneuron density 

is altered in the cortex (Ikeda et al., 2004) and NPY interneuron dendrites are 

malformed in the hippocampus (Iritani et al., 2000) of schizophrenic brains indicating 

that these cells are specifically disrupted during development.  Similar to the CCK+ 
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cells, it has also been suggested that the strong correlation between reductions of NPY 

and GAD67 mRNA suggests that NPY+ interneurons are dysfunctional in schizophrenia 

(Hashimoto et al., 2008b).  Furthermore, NPY+ interneurons mediate tonic inhibition of 

numerous brain regions as discussed previously (Olah et al., 2009).  The GABAA 

receptor delta subunit is exclusively expressed in extrasynaptic receptors that mediate 

this tonic inhibition and is also downregulated in schizophrenia (Hashimoto et al., 

2008b; Charych et al., 2009; Maldonado-Aviles et al., 2009).  It is possible that this 

deficient molecular machinery supporting tonic inhibition and the corresponding 

dysfunction of NPY+ neurogliaform cells contributes to baseline hyperactivity in multiple 

brain regions seen in patients with schizophrenia (Molina et al., 2003; Fryer et al., 2013; 

Homan et al., 2013; Sorg et al., 2013).  Interestingly, neurosteroids that act on these 

receptors (Hosie et al., 2006) have clinical efficacy in improving cognitive deficits in 

patients with schizophrenia and there is evidence that improving tonic GABA 

transmission is a component of this improvement; however glutamatergic systems are 

involved as well (Marx et al., 2009).  There is also a growing body of evidence from 

animal models that NPY+ interneurons in the striatum and amygdala modulate reward 

pathways and mediate anxiety-like and risk aversion-related behaviors (Truitt et al., 

2009; English et al., 2012) which have relevance for a number of disease states.  

Further clinical research will be required to fully evaluate the participation of these cells 

in other disorders and the potential for targeting these cells with new therapeutics 

including neurosteroids. 
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How might GAD67 expression deficits develop?  Several studies of the gene that 

encodes GAD67, GAD1, have yielded a number of single nucleotide polymorphisms 

(SNPs) that are found more frequently in schizophrenic patients than controls 

(Addington et al., 2005; Straub et al., 2007; Du et al., 2008).  The majority of SNPs in 

each study was found in gene regulatory sequences suggesting a role in regulating 

gene expression and not protein function.  An analysis of patients with a GAD1 genetic 

variant suggested that DNA sequence variation can effectively regulate mRNA 

expression levels in the postmortem tissue of subjects with schizophrenia (Straub et al., 

2007).  Epigenetic mechanisms may also contribute to decreased GAD67 expression in 

schizophrenia.  Genes can be suppressed when promoters or other regulatory 

sequences are methylated causing changes in chromatin structure that prevent 

transcription (Veldic et al., 2004).  Methylation is carried out by enzymes such as DNA 

methyltransferase 1 (DNMT1) which is overexpressed in GABA-ergic interneurons of 

schizophrenic patients and correlated with decreased GAD67 mRNA in the same cells 

suggesting that epigenetic regulation of the gene may be imbalanced; however, a 

causal relationship between increased DNMT1 and GAD1 promoter methylation cannot 

be conclusively established in post-mortem studies (Veldic et al., 2004; Veldic et al., 

2005; Huang and Akbarian, 2007; Ruzicka et al., 2007; Veldic et al., 2007).  Finally, it 

has been suggested recently that GAD67 downregulation and other GABA-associated 

dysfunction measured in post-mortem tissue collectively reflect general dysfunction of 

GABA system development via changes in cell-cycle regulation (Benes, 2011), 

impairments in interneuron maturation (Hyde et al., 2011), and migration defects (Benes 

et al., 1991; Ikeda et al., 2004).   
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Complementing the genetic population-based studies and expression/epigenetic 

data from post-mortem research, the use of animal models is also able to shed light on 

the mechanisms by which GAD67 downregulation alters normal brain function.  As 

mentioned previously, GAD67 knockout mice are not viable (Asada et al., 1997).  

However, data from rodent models using more subtle or restricted manipulations are 

useful.  GAD67 expression can be reduced by chronic dopamine D2-receptor 

stimulation (Lindefors, 1993; Laprade and Soghomonian, 1995) or acute NMDA 

receptor antagonism (Qin et al., 1994) in multiple brain regions.  These data mirror the 

ability of chronic dopamine stimulation (Sato et al., 1992) and acute NMDAR 

antagonism (Javitt and Zukin, 1991; Krystal et al., 1994) to precipitate psychosis in 

humans.  Thus, the NMDA hypofunction hypothesis, the dopamine hypothesis, and the 

GABA dysfunction hypothesis of schizophrenia could be integrated with GAD67 

deficiency being a player in each (Kalkman and Loetscher, 2003).  Furthermore, some 

antipsychotic drugs demethylate the GAD1 promoter which may enhance their 

therapeutic profile in some cases (Guidotti et al., 2009; Guidotti et al., 2011).  According 

to one study, treating mice with nicotine suppressed DNMT1 expression, demethylated 

the GAD1 promoter, and increased GAD67 protein levels which may explain in part the 

high incidence of cigarette smoking among individuals with schizophrenia (Satta et al., 

2008).  This study complements the human post-mortem epigenetic data and supports 

epigenetic modification as a potentially reversible mechanism of GAD67 deficiency.  

However, coincidence of GAD67 rescue with symptomatic improvement in the short- 

and long-term remains unclear (Thomsen et al., 2009; Guidotti et al., 2011).   
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Importantly, neither haloperidol nor olanzapine reduced GABA-associated gene 

expression in nonhuman primates, ruling out medication effects as a primary cause of 

GAD67 reduction in the human post-mortem brain of subjects with schizophrenia 

(Hashimoto et al., 2008b) and suggesting that GAD67 may be a primary mechanism of 

pathophysiology and behavior associated with mental illness. 

 

In addition to the downstream effects of genetic manipulations, animal studies 

have also illuminated mechanisms that connect epidemiologically-identified 

environmental insults with cellular and behavioral dysfunction.  Environmental 

disruptions during development including prenatal and perinatal infections, perinatal 

hypoxia, drug abuse during prenatal development or adolescence, and stress have all 

been shown to increase risk for schizophrenia diagnosis (Lewis and Levitt, 2002; 

Horvath and Mirnics, 2009).  Among these, maternal immune activation and neonatal 

hippocampal damage have been the best characterized using animals.  Maternal 

immune activation (MIA) is typically studied in animal models by administering bacterial 

infection mimetic lipopolysaccharide (LPS) or viral mimetic poly:IC during pregnancy 

(Canetta and Brown, 2012).  GABA content (Bitanihirwe et al., 2010), GAD67 

expression (Deslauriers et al., 2013; Richetto et al., 2013), and GABA receptor subunit 

expression (Nyffeler et al., 2006; Richetto et al., 2013) are all dysregulated in the 

offspring of MIA-treated rats and mice.  Interestingly, these effects appear to be cell 

type specific and preferentially affect PV+ interneurons (Ibi et al., 2010; Ducharme et al., 

2012; Piontkewitz et al., 2012).  Even more interesting is that these effects are 

augmented by stress (Deslauriers et al., 2013; Giovanoli et al., 2013) or by DISC1 
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genotypes associated with neuropsychiatric illness (Ibi et al., 2010; Lipina et al., 2013) 

providing evidence for a two-hit model of risk factors with GABA system dysfunction as 

a common endpoint.  Animal studies have also identified interleukin-6 as the harbinger 

of molecular and behavioral dysfunction resulting from MIA (Smith et al., 2007b; Garbett 

et al., 2012).  DISC1 genotype plus MIA also has a supra-additive effect on interleukin-6 

release, providing further support for the two-hit model of developmental dysfunction 

and providing a potential opportunity for intervention by targeting the interleukin-6 

pathway. 

 

The neonatal ventral hippocampal lesion (NVHL) rat models hippocampal 

damage during a period analogous to the third trimester in human pregnancy (Lipska 

and Weinberger, 2002; Tseng et al., 2009; O'Donnell, 2012).  GABA system dysfunction 

is a core component of the NVHL model with multiple research groups reporting 

decreased GAD67 (Lipska et al., 2003) and increased GABAA receptor gene 

expression (Mitchell et al., 2005; Endo et al., 2007) as well as decreased interneuron 

cell number in some regions (Francois et al., 2009).  One of the main findings in the 

NVHL model is altered dopaminergic regulation of prefrontal circuits; stimulating the 

VTA in these animals increased PFC pyramidal cell activity which was directly attributed 

to dysfunctional VTA inputs (O'Donnell et al., 2002) and loss of D2 receptor modulation 

(Tseng et al., 2008) on PFC interneurons.  Each of these animal models has provided 

insight into the mechanisms governing the effects of disease-relevant environmental 

insults during development and highlights the involvement of GABA system dysfunction 
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as a common downstream component of multiple genetic and environmental 

disturbances. 

 

It is unlikely that any single mechanism is solely responsible for the consistent 

GABA-system deficits observed in so many patient cohorts.  The fact that several 

different mechanisms (genetic, environmental, and gene*environment interaction) can 

lead to decreases in GAD67 gene expression shows that diverse insults and influences 

can converge, giving rise to common GABA-ergic dysfunction.  This concept is 

fundamental to understanding the neurobiology of psychiatric illness where heritability is 

clear (Lewis and Levitt, 2002; Harrison and Weinberger, 2005; Mirnics et al., 2006; 

Horvath and Mirnics, 2009), but genetics is less so (Purcell et al., 2009; Shi et al., 2009; 

Stefansson et al., 2009).  Since polygenic risk factors interact with multiple 

environmental risk factors leading up to the delayed onset of symptoms, identifying 

“hubs” where these diverse factors exert common influence reveals the mechanisms 

that are likely responsible for symptoms of the disease and generates opportunities for 

directing therapeutic intervention to those systems (Mirnics et al., 2006; Horvath and   

Mirnics, 2009).  These converging lines of evidence from human genetic, patient post-

mortem brain, and rodent studies implicate GABA system dysfunction as a core “hub” 

feature of many neuropsychiatric illnesses and identify potential opportunities for novel 

therapeutic development.  The diversity of interneurons is a critical factor in both the 

dysfunctional spectrum and the therapeutic potential and more data are needed 

addressing the functional consequences of restricted dysfunction in GABA-ergic 

interneuron subclasses. 
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Hypotheses 

 Directly or indirectly, many studies have addressed the activity of individual 

interneurons during normal and dysfunctional behavior (Costall et al., 1989; O'Donnell 

et al., 2002; Lewis et al., 2005; Marowsky et al., 2005; Chattopadhyaya et al., 2007; 

Fuchs et al., 2007; Likhtik et al., 2008; Tseng et al., 2008; Truitt et al., 2009; Polepalli et 

al., 2010; Bienvenu et al., 2012; Heldt et al., 2012; Alberi et al., 2013; Kvitsiani et al., 

2013; Tukker et al., 2013) and recent findings suggest GAD67 expression and 

behavioral dysfunction are tightly correlated and that subtle decreases in GABA 

signaling give rise to behavioral changes (Chao et al., 2010; Heldt et al., 2012).  GAD67 

deficiency has been shown to effectively silence individual interneurons 

(Chattopadhyaya et al., 2007) and has been described as a primary mechanism of 

behavioral dysfunction in other animal models (Chao et al., 2010; Richetto et al., 2013).  

While one recent study examined two interneuron populations mediating different 

behavioral responses (Kvitsiani et al., 2013), systematic and comprehensive analyses 

of the molecular and behavioral consequences of restricted GAD67 suppression in 

distinct interneuron populations have not been conducted to date. 

 

While no one will recreate complex human behavioral disorders in a rodent, 

simple research questions can be asked using transgenic mice generated in our lab and 

others to shed light on the functional implications of specific GABA-ergic dysfunction in 

neuropsychiatric disorders.  Given the robust and consistent finding that GAD67 

expression is correlated with neuropsychiatric diagnoses (described above), we are 



40 
 

particularly interested in several related questions.  Does manipulating the expression of 

this gene affects behavior?  If so, is one restricted cell type enough to induce the 

changes and do the effects depend on the interneuron cell type involved?  Finally, are 

the answers to these questions meaningful for dysfunction associated with particular 

neuropsychiatric illness or is GAD67 suppression generalizable?  Answers to these 

basic questions could direct future therapeutic interventions toward particular cell types 

and limit side effects.  Experiments in the following chapters address these hypotheses.  

The targeting construct and mouse lines used to suppress GAD67 in restricted cell 

populations are described in Chapter 2.  The cell type specific effects of GAD67 

suppression on the lipidome and proteome are outlined in Chapter 3.  Finally, the 

behavioral consequences of GAD67 suppression are detailed in Chapter 4.  The results 

of these experiments, their relationships with the hypotheses described above, and their 

implications for understanding the brain, behavior, and behavioral dysfunction are 

discussed. 
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CHAPTER 2 

 

NOVEL ANIMAL MODELS FOR STUDYING COMPLEX BRAIN DISORDERS: BAC-

DRIVEN miRNA-MEDIATED IN VIVO SILENCING OF GENE EXPRESSION 

 

Martin J. Schmidt, Szatmár Horváth, Krassimira A. Garbett, Philip Ebert, Levente 

Gellert, Monika Everheart, Khine Lwin, Pat Levitt, and Károly Mirnics 

 

INTRODUCTION 

 To test the hypothesis that GAD67 downregulation affects brain systems and 

behavior in a cell type dependent manner, our lab created BAC-driven, miRNA-

mediated technology that silences GAD67 expression in targeted cell populations in 

mice (Garbett et al., 2010).  Bacterial artificial chromosomes (BACs) are large pieces of 

engineered DNA that are useful for inserting transgenes into mice (Heintz, 2001).  

miRNAs are naturally occurring small RNA molecules, often housed in introns of genes, 

that regulate the expression of genes by binding specifically to untranslated regions of 

mRNAs and either tagging the message for degradation by the RNA-induced silencing 

complex (RISC) or repressing translation by interfering with ribosomal function 

(Valencia-Sanchez et al., 2006).  By engineering a synthetic miRNA to selectively target 

GAD1 mRNA, we are able to study the effects of GAD1/GAD67 deficiency in specific 

interneuronal populations in vivo. 
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Figure 2: BAC-driven, miRNA-mediated in vivo silencing of GAD67 expression in 

mice.  A synthetic miRNA targeted against GAD1 mRNA (black) was contained within 

an intron (gray) between the first two exons of the beta globin gene (orange) which were 

floxed (blue) to permit miRNA excision while maintaining the construct insertion site and 

fluorescent marker expression.  An eGFP reporter (white with green border) was 

included to visualize construct expression and an SV40 polyadenylation signal (purple) 

ensured proper mRNA processing.  This entire construct was inserted into bacterial 

artificial chromosomes (BAC) that contained gene regulatory sequences for the NPY 

(red) or CCK (green) genes to ensure that expression was restricted to either of those 

cell types. 
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METHODS 

Mice 

NPYGAD1 transgenic mice were generated and validated for construct 

expression and efficacy in a previous study (Garbett et al., 2010). CCKGAD1 transgenic 

mice were generated and validated in a similar manner described here. Briefly, RP23-

60I1BAC containing the Cholecystokinin (mCck) locus (Chr9: 121,435,221 – 

121,551,243, NCBI GRCm38.p1) was purchased from the Children's Hospital of 

Oakland Research Institute (http://bacpac.chori.org/). The BAC was isolated from the 

original DH10B E. coli strain and transformed into EL250 E. coli cells. The presence of 

the mCck locus in RP23-60I1 was verified by restriction enzyme digest mapping. GFP-

miRNA:Gad1-FRT-neo-FRT was inserted at the start codon of mCck, ensuring that 

mCck promoter would control expression of an engineered construct described 

previously (Garbett et al., 2010). In essence, mNpy homology arms of the previous 

construct were swapped with mCck homology arms in pSTBlue-1 plasmid vector 

(Novagen). The mCck targeting construct carried Cnr1 5’ (150 bp) and 3’(151 bp) 

homology arms surrounding the eGFP, β-globin minigene and an FRT-flanked 

neomycin-resistance cassette. The β-globin minigene contained miRNA:Gad1 in a 

position allowing the in vivo release of functional miRNA, which effectively reduced the 

GAD1 protein to undetectable levels in cell cultures (Garbett et al., 2010). After proper 

insertion of the targeting construct at the mCck start codon on the RP23-60I1 BAC, the 

selective marker neo was removed via FRT-directed recombination. BAC modifications 

were confirmed with restriction mapping and sequence analysis of the region of interest. 

The modified RP23-60I1 BAC was isolated with alkaline lysis and purified with 
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Sepharose CL-4B chromatography, described previously (Gong and Yang, 2005). 

Transgenic mice on congenic C57Bl/6 backgrounds were generated by injection of 

circular modified BAC into fertilized C57Bl/6 mouse oocytes by the Transgenic Mouse / 

ESC Shared Resource at Vanderbilt University (http://www.vicc.org/research/shared/tg-

mouse.php) and identified by PCR using construct-specific primers. 

 

Immunohistochemistry 

Construct expression and efficacy were evaluated in NPYGAD1 transgenic mice 

in a previous study (Garbett et al., 2010).  Mice were deeply anesthetized with 

isoflurane (IsoFlo, Abbott Animal Health) and transcardially perfused with ice-cold 1X 

PBS followed by 4% phosphate-buffered paraformaldehyde (PFA). Brains were 

removed and post-fixed in 4% PFA overnight before saturation in up to 30% phosphate-

buffered sucrose. 50µM sections were cut on a cryostat (Leica Biosystems, Buffalo 

Grove, IL). Sections were washed extensively in PBS and blocked in 10% normal 

donkey serum in 0.1mM PB (pH 7.4) for 1 h. All primary antibody incubations were 72 h 

at 4°C and secondary incubations were 3 h at room temperature. Secondary antibodies 

were diluted 1:250 (Jackson Immunoresearch, West Grove, PA). For eGFP labeling, 

sections were incubated with either chicken anti-GFP (Abcam, Cambridge, MA; 1:2000) 

or rabbit anti-GFP (Invitrogen; 1:2000) primary antibodies and donkey anti-chicken 

DyLight488 or donkey anti-rabbit DyLight488 secondary. GAD1-stained sections were 

pre-incubated with 70 mg / ml of monovalent Fab’ fragment of donkey anti-mouse 

immunoglobulin G (Jackson Immunoresearch) to block endogenous mouse 

immunoglobulins, then incubated with mouse anti-GAD1 (Millipore;1:2000) and donkey 
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anti-mouse Cy3 secondary. CCK-stained sections were incubated with either rabbit anti-

proCCK (a generous gift from Dr. Andrea Varro) or rabbit anti-CCK8S (Immunostar, 

1:1000) and donkey anti-rabbit Cy3 secondary. Images were acquired with a 

fluorescence microscope (Leica Microsystems Inc. Bannockburn, IL) and whole images 

were pseudocolored and adjusted for contrast in Photoshop (Adobe Systems, San 

Jose, CA). 

 

 

RESULTS 

Transgenic mice were generated containing a BAC construct with the promoter-

enhancer elements of either the NPY or CCK genes, an eGFP reporter, and a synthetic 

miRNA targeted to Gad1 mRNA (Figure 2).  These elements restricted eGFP 

expression and GAD1 suppression to either NPY+ or CCK+ interneurons and made the 

targeted cells fluorescent. Both transgenic lines were generated as previously described 

(Garbett et al., 2010) and construct expression and GAD1 suppression efficacy were 

verified with immunohistochemistry in Tg(Npy-eGFP/miRNA:GAD1)1KM (Garbett et al., 

2010) and Tg(Cck-eGFP/miRNA:GAD1)2KM (Figure 3; Schmidt et al., 2013) transgenic 

mice, hereafter referred to as NPYGAD1 and CCKGAD1 respectively.  These studies 

revealed that the transgene construct was expressed specifically in the targeted NPY+ 

and CCK+ cell populations and that these subpopulations had no detectable levels of 

GAD1 expression. 
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Figure 3: GAD67 is suppressed in CCK+ interneurons.  GAD67 (red) was not 

detected in eGFP+ (green) cells in the amygdala (a), cortex (b), or hippocampus (c) of 

CCKGAD1 transgenic mice. 
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CHAPTER 3 

 

MODULATION OF MOLECULAR NETWORKS BY SELECTIVE INTERNEURONAL 

INACTIVATION 

 

Martin J. Schmidt, Philip Ebert, Jeremy L. Norris, Erin H. Seeley, Monika Everheart, 

Krassimira A. Garbett, Richard M. Caprioli, and Károly Mirnics 

 

INTRODUCTION 

 Successfully suppressing GAD67 expression in two distinct interneuron 

populations with very different molecular and physiological properties (Garbett et al., 

2010; Schmidt et al., 2013) allowed us to inventory the molecular changes that result 

from GAD67 deficiency and determine if these changes are dependent on the type of 

interneuron that is disrupted.  Furthermore, since these interneuron populations are 

concentrated in different brain regions (Chronwall et al., 1985; Meziane et al., 1997), we 

chose to use a relatively new in situ proteomics technique (Cornett et al., 2007) that 

enables the comparison of region-specific changes of proteins, peptides, and lipids in 

our transgenic animals. 
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METHODS 

Mice 

NPYGAD1 and CCKGAD1 transgenic mice were generated and validated for 

construct expression and efficacy as described in previous studies (Garbett et al., 2010; 

Schmidt et al., 2013). 

 

Matrix-Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-

IMS) 

Tissue Preparation 

Brains were harvested from male transgenic mice (n=6 per group) and wild type 

littermate controls (n=3 per group), snap frozen immediately on liquid nitrogen, and 

preserved at -80°C. Twelve micron thick coronal sections taken at the level of the 

striatum and hippocampus were cut in a cryostat (Leica Biosystems, Buffalo Grove, IL). 

The sections were thaw mounted onto gold-coated steel MALDI targets and stored in a 

vacuum desiccator until analysis. 

 

Matrix Application 

To prepare sections for protein analysis (m/z 2000-20,000), tissue was washed 

using 70%, 90%, and 95% ethanol solutions for 30 seconds and dried before matrix 

application. Dry, sinapinic acid powder was applied to seed the tissue which promoted 

uniform crystallization of the matrix on the tissue surface. Sinapinic acid solution (20 

mg/mL in 50:49.9:0.1 acetonitrile, water, trifluoroacetic acid) was applied using an 

acoustic spotter (Aerni et al., 2006) in a 250 micron-spaced array pattern. A total of 45 
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drops were deposited in each position. Adjacent sections were prepared for lipid and 

peptide analysis (m/z 500-2000). α-cyano-4-hydroxy-cinnamic acid (CHCA) was used to 

seed as described above. CHCA solution (10 mg/mL in 50:49.9:0.1 acetonitrile, water, 

trifluoroacetic acid) was applied to the tissue using an acoustic spotter. Matrix was 

applied to each section in a 340 micron-spaced array pattern. A total of 60 drops were 

deposited in each position. 

 

Mass Spectrometry Analysis 

Low molecular weight species (m/z 500-2000) were analyzed using an 

ultrafleXtreme™ MALDI TOF/TOF (Bruker Daltonics) operating in reflector positive ion 

mode tuned for optimum resolution using the standard neurotensin (m/z 1672). Each 

position of the array was analyzed by summing 1000 spectra at each location. The 

protein data (m/z 2000-20,000) were collected using a linear autoflex™ speed MALDI 

TOF (Bruker Daltonics) tuned for optimum resolution of the standard, apomyoglobin 

(m/z 16,952). Protein identification was performed using LC-MS/MS as previously 

described (Schey et al., 2013). 

 

Data processing 

Mass spectrometry data were visualized using flexImaging software (Bruker 

Daltonics, version 3.0). Regions of interest (ROIs) were annotated and the data for each 

ROI were exported. Spectral data were processed using ClinProTools (Bruker 

Daltonics, version 2.2). Spectra were baseline corrected, recalibrated, normalized to 

total ion current, a peak-picking algorithm was applied, and p-values were calculated 
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using a pairwise two-tailed t-test and corrected using the Benjamini-Hochberg false-

discovery rate (Benjamini and Hochberg, 1995). The pairwise t-test compared sections 

from transgenic and wild type animals on the same target plate to minimize the effects 

of inter-plate variability on the analysis. The magnitude of differences between 

transgenic and control mice was calculated using log2-based average log ratios (ALR; 

see statistical analysis section). 

 

Statistical Analysis 

For mass spectrometry analyses, p-values were calculated using two-tailed pairwise t-

tests corrected for multiple comparisons using the Benjamini-Hochberg false discovery 

rate (Benjamini and Hochberg, 1995). The magnitude of significant differences was 

calculated using log2-based average log ratios (ALR) where ALR = 

mean(log2[NPYGAD1plate 1, section a], log2[NPYGAD1plate 1 section b]) -

log2[NPYBACWTplate1] for each plate. 
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RESULTS 

GAD1 suppression in NPY+ or CCK+ interneurons has differential effects on the 

lipidome and proteome 

To determine if there are molecular changes downstream of GAD1 suppression 

and if they are dependent on interneuron cell type, we performed matrix assisted laser 

desorption ionization imaging mass spectrometry (MALDI-IMS) (Cornett et al., 2007) on 

brain tissue sections. We took advantage of the spatial resolution offered by this type of 

analysis and divided the sections into 10 regions of interest (ROIs; Figure  4): cortex 

(divided into CTXH for the neocortex in the hippocampal section, CTXS for the 

neocortex in the striatal section, and MFC for the cingulate area of the striatal section), 

corpus callosum (divided into CORPH and CORPS for the respective sections), 

hippocampus (HIPP), hypothalamus (HYTH), septum (SEP), striatum (STR), and 

thalamus (THAL). Using this method, we were able to reliably assess over 400 distinct 

proteins, peptides and lipids (0 – approx. 22,000 Da), in each brain region. GAD1 

suppression in NPY+ interneurons lead to significant changes of 129 lipids, peptides, or 

proteins across the investigated regions (51 decreased, 65 increased, and 13 had 

region-specific changes; Supplementary Table 1) compared to wild type controls. 

GAD1 suppression in CCK+ interneurons induced region-specific expression changes 

of 52 lipids, peptides, or proteins (25 decreased, 23 increased, and 4 had region-

specific changes; Supplementary Table 2) compared to wild type controls. Perhaps not 

surprisingly, there were only 15 that were common to both transgenic lines; of these, 

only 3 changed in the same direction, 6 changed in opposite directions, and 6 had 

region-specific differences. Highlighting the utility of MALDI-IMS spatial resolution and 
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regional specificity of the results, there were only two peaks (m/z 1583.09 and m/z 

1907.27) that were significantly changed in at least three regions in NPYGAD1 mice 

and none in CCKGAD1 mice. 

 

 

Figure 4. MALDI-IMS profiles lipids, peptides, and proteins with spatial resolution. 

Sections at the level of the striatum (left side) and hippocampus (right side) were taken 

from adult male mice from each BAC transgenic line and wild type littermates. Each 

section was imaged using matrix assisted laser desorption ionization mass 

spectrometry at 250-micron resolution. Sections were subdivided into regions of interest 

(ROIs) for the cortex, medial frontal cortex, corpus callosum, hippocampus, 

hypothalamus, septum, striatum, and thalamus (bottom row). Mass spectra for each 

ROI were then processed and analyzed for statistical significance. Atlas images from 

(Paxinos and Franklin, 2001). 
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We found that m/z 6725.9 was significantly upregulated in the hippocampus (t(2) = 

4.471, p = 0.047) and cortex (t(2) = 6.796, p = 0.021) of NPYGAD1 mice (Figure  5; 

Supplementary Table 1). To determine its identity, protein was extracted directly from 

tissue sections and analyzed via LC-MS/MS similar to that described in Schey, et al 

(Schey et al., 2013) (data not shown). Using these methods, we were able to 

conclusively identify m/z 6725.9 as PEP19, also known as PCP4 (Harashima et al., 

2011).  Interestingly, PEP19/PCP4 overexpression has been shown to disrupt 

neurodevelopment (Mouton-Liger et al., 2011) and increase the release of 

neurotransmitters including dopamine and acetylcholine (Harashima et al., 2011).  The 

peptide was also increased following chronic stress (Daniels et al., 2012) or 

amphetamine administration (Romanova et al., 2012) in rodents, while clinical gene 

expression studies found it to be increased in one study of patients with psychosis 

(Teyssier et al., 2011), but reduced in another (Guillozet-Bongaarts et al., 2013).  

Additional research is needed to fully identify and evaluate other significant changes in 

the dataset. 
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Figure 5. GAD1 suppression in NPY+ interneurons leads to an increase in the 

expression of a 6725.9 Da peptide, identified as PEP19/PCP4. Representative 

MALDI-IMS expression intensity image of m/z 6725.9 from wild type (top row) and 

NPYGAD1 (bottom row) brain sections on a single MALDI target plate. m/z 6725.9 

(arrows) was detected in the corpus callosum (a), cortex (b), hippocampus (c), medial 

frontal cortex (e), septum (f), and striatum (g). It was not detected in hypothalamus (d) 

or thalamus (h). m/z 6725.9 was significantly increased in the cortex (b) and 

hippocampus (c). The peptide was identified as PEP19, also known as PCP4, in a 

separate experiment. ALR, average log ratio; *, p < 0.05; a.u., arbitrary units, scale bar, 

5mm. 
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CHAPTER 4 

 

MODULATION OF BEHAVIORAL NETWORKS BY SELECTIVE INTERNEURONAL 

INACTIVATION 

 

Martin J. Schmidt, Philip Ebert, Jacquelyn Brown, Monika Everheart, Krassimira A. 

Garbett, Taylor W. Grice, and Károly Mirnics 

 
 

“However little it may be possible to identify human with animal brain-functions 
and illnesses, yet, from the effects produced by particular noxae in the brains of 

animals, conclusions can be drawn as to the issue of like processes in man.” 
- E.Kraepelin (Kraepelin, 1919 (1922 trans.)) 

 

INTRODUCTION 

GABA system abnormalities have been identified in a number of neuropsychiatric 

disorders including schizophrenia (Hashimoto et al., 2008b), bipolar disorder (Guidotti et 

al., 2000), autism (Fatemi et al., 2002), Rett syndrome (Blue et al., 1999), and epilepsy 

(Lloyd et al., 1986). Among these, downregulation of glutamic acid decarboxylase 1 

(GAD1), the enzyme responsible for producing the majority of the GABA in the brain 

(Martin and Rimvall, 1993), is a robust and consistent finding in the postmortem brains 

of subjects with schizophrenia (Lewis et al., 2005). However, what role(s) individual 

interneuronal cell types might play in normal or dysfunctional behavior are not well 

established. GABA-ergic interneurons are classified based on their morphology, 

physiology, receptor expression, brain distribution, and molecular markers (Ascoli et al., 

2008). This diversity allows different classes of interneurons to regulate the input, signal 
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integration, output, and population synchrony of principle cells and other interneurons in 

distinct and dynamic ways (Markram et al., 2004). Given the variety of interneuron types 

and the spectrum of behavioral abnormalities among disorders with identified GABA-

ergic pathophysiology, it is possible that dysfunction of one or more interneuron classes 

contributes to the variety of symptoms.  Since CCK+ and NPY+ interneurons appear to 

be among those that are affected in subjects with schizophrenia (Hashimoto et al., 

2008b) and since we found divergent molecular profiles in mice following GAD67 

suppression in these populations (discussed in the previous chapter), we hypothesized 

that their dysfunction will lead to behavioral disturbances that are cell type-specific. 

 

METHODS 

Mice 

NPYGAD1 and CCKGAD1 transgenic mice were generated and validated for 

construct expression and efficacy as described in previous studies (Garbett et al., 2010; 

Schmidt et al., 2013).  Behavioral testing was performed in the Vanderbilt Murine 

Neurobehavioral Laboratory (MNL; http://vandymouse.org/) during the light cycle in 

accordance with the Vanderbilt Animal Care and Use Committee guidelines. Adult male 

mice (n = 10-12) were handled for 5 days prior to testing. Before each session, mice 

were acclimated for 1 hour under red light in an adjacent room. Tests were at least 24 

hours apart. Experimenters were blinded to genotypes. All equipment was cleaned with 

Vimoba solution (Quip Labs, Wilmington, DE) between animals to reduce odor 

contamination and sanitize the equipment. 
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Irwin Screen, Grip Strength, Rotorod 

A modified Irwin Screen assessed general health, neuromuscular function, and 

motor coordination (Irwin, 1968). To test grip strength, averaged across three trials, 

mice were held with their forepaws gripping metal mesh attached to a load cell and 

gently pulled away until they released the mesh. The rotorod (Ugo Basile, Comerio VA, 

Italy) accelerated from 2-40 rpm gradually over a 5 min period. Latency to fall was 

scored for each of three trials. In some cases animals can hold onto the rod and rotate 

around it when performing this task, especially during the low-speed portion. Since this 

result does not measure motor coordination and cerebellar function as desired, trials 

were stopped if the mouse rotated around the rod more than once. 

 

Open Field Activity 

Mice were placed in a white plastic box (50 x 50 x 40 cm) and allowed to explore 

freely for 10 min on two consecutive days. Video was recorded and locomotor activity 

and the amount of time in the center of the arena compared to the amount of time spent 

in the periphery was analyzed by ANY-maze software (Stoelting Co., Wood Dale, IL). 

The task measures locomotor activity and both within-session habituation, defined as a 

decrease in locomotion over time, and between-session habituation, defined as 

decreased locomotion at the beginning of the second session compared to the first. 

Failure to exhibit either type of habituation can indicate hippocampal dysfunction and/or 

general hyperactivity. Rodents have an innate aversion to open spaces that is adaptive 

for avoidance of their primary predators. Taking advantage of this behavior, many tasks 

compare time spent in a closed or protected area that is seemingly safer to an open 
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area that may be more dangerous (Rodgers et al., 1997; Belzung and Griebel, 2001; 

Rodgers, 2010). In this manner, comparing time spent in the center zone of the arena 

with time spent in the periphery of the arena can be considered a measure of “anxiety-

like” (Cryan and Holmes, 2005) or “risk-avoidance” (Kim et al., 2013) behavior in mice. 

 

Elevated Zero Maze 

The white plastic zero maze was placed 60 cm above the floor in the center the 

testing room. The 5 cm wide runway was divided into four quadrants: two open and two 

closed with 15 cm high walls. Mice were placed in the center of one open area and 

allowed to explore freely for 6 min. Video was recorded and time spent in each zone 

and locomotor activity were analyzed by ANY-maze (Stoelting Co., Wood Dale, IL). 

Unprotected head dips, defined as the animal dipping its head over the side of the open 

or “unprotected” zone of the maze, and stretched attend postures, defined as the animal 

exhibiting an elongated body posture typically at the transition area between zones or in 

the open zone, (Shepherd et al., 1994) were scored by an experimenter blinded to 

genotype. Similar to the center/peripheral comparison in the open field task, comparing 

the amount of time spent in the closed zone with time spent in the open zone can be 

considered a measure of “anxiety-like” or risk-avoidance behavior in rodents. In 

addition, head dips and stretched attend postures are considered measures of risk 

assessment behavior as the animal is thought to be the determining whether or not 

immediate threats exist in the environment (Rodgers and Johnson, 1995; Rodgers et 

al., 1997; Cryan and Holmes, 2005).  
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Forced Swim 

The Porsolt forced swim task measures an animal’s propensity to continue to 

attempt to escape a stressful situation, in this case a container of water, over a relatively 

prolonged period of time. This task is thought to measure depression-like behavior in 

rodents, defined as decreased latency to float and/or increased total immobility time 

(considered acquiescence to the negative situation) based on its predictive validity for 

efficacy of antidepressant medications (Cryan and Holmes, 2005). Mice were placed 

into a 15 x 21 cm Plexiglas cylinder filled with room temperature water for 5 min. Each 

session was video recorded and scored for latency to float and total immobility time. 

 

Light-Dark Boxes 

The light-dark box is another paradigm designed to measure anxiety-like and 

risk-aversion behaviors in rodents through their innate avoidance of open spaces that 

may contain threats to their survival (Belzung and Griebel, 2001; Bourin and Hascoet, 

2003; Cryan and Holmes, 2005). Mice were placed into the light side of a two-

chambered box. The clear plastic light side (15 x 30 x 20 cm) was connected to a dark 

plastic chamber through a 5 x 7 cm opening. Boxes were enclosed inside ventilated 

sound-attenuating chambers and lit with overhead lights. Infrared photocells across 

each side recorded the location of the mouse and MED Activity computer software 

scored time in each box, locomotor activity, and number of transitions between boxes 

(MED Associates, Georgia, VT). 
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Prepulse Inhibition 

Prepulse inhibition measures sensorimotor gating, considered by many to be 

translatable between rodents and people (Braff et al., 2001; Geyer et al., 2002), and has 

been used for this purpose in several patient populations including schizophrenia 

(Swerdlow et al., 1994; Braff et al., 1999; Braff et al., 2001). Mice were placed into 

cylinders affixed to force-transducers inside ventilated sound-attenuating chambers. 

The force transducers measured the motor startle response to a loud acoustic stimulus. 

After a 5 min acclimation, 45 trials were presented randomly with 20 ms of varying 

prepulse levels (0, 70, 76, 82, or 88 dB) followed by a 40 ms, 120 dB white noise burst. 

Nine null trials served as baseline measurements. Percent prepulse inhibition (startle 

during prepulse trials / startle during 0 dB trials x 100) and acoustic startle response (0 

dB prepulse vs. null trials) were recorded and analyzed by StartleReflex software (MED 

associates, Georgia, VT). 

 

Y-Maze Alternation 

One method for evaluating spatial working memory is a three-armed-maze 

alternation task (Gerlai, 1998). Since rodents and other animals are exploratory by 

nature, they tend to prefer entering new arms of the maze instead of arms they had 

previously visited. If the animal cannot remember that it had just visited an arm or if it 

has no preference for novelty, it may show a reduced rate of spontaneous alternation. 

Mice were placed into an enclosed clear plastic y-maze (35 x 5 cm arms) and allowed to 

explore freely for 5 min. ANY-maze (Stoelting Co., Wood Dale, IL) scored arm entries 

when the mouse moved completely into an arm. Alternations were defined as entering 
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each of the arms once in any three consecutive entries. Percent alternation was 

determined by calculating the number of successful alternations out of the total possible 

alternations. 

 

Social Interaction 

As mentioned above, rodents are exploratory animals and tend to investigate 

new things. The three-chambered social interaction task, used as described by Yang et 

al.  with minor modifications (Yang et al., 2011), quantifies that tendency in a social 

setting by introducing two novel social stimuli over the course of the task. In this study, 

the task involved three, 10 min phases. First, mice acclimated to the three chambered, 

clear plastic box (57 x 40 x 45 cm). Second, two wire pencil cups were placed in the two 

side chambers. In one cup a novel social stimulus mouse was placed while the second 

cup remained empty. Third, a second novel social stimulus mouse was placed in the 

empty cup. Social stimulus mice were naïve adult male wild type C57Bl/6 mice. Cup 

location and social stimulus mouse order were counterbalanced to overcome any 

potential bias for one side of the chamber or the other or for one novel stimulus mouse 

or the other in case any such bias existed. ANY-maze (Stoelting Co., Wood Dale, IL) 

tracked the position of the test mouse and scored interaction time when the head was 

<1 cm from the cups. Preference was calculated as 100 x (novel mouse 1 interaction 

time – novel object interaction time) / (novel mouse 1 interaction time + novel object 

interaction time) and 100 x (novel mouse 2 interaction time – familiar mouse interaction 

time) / (novel mouse 2 interaction time + familiar mouse interaction time). Typically, 

mice prefer the novel social stimulus mouse to the novel object (sociability) and prefer 
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the second novel social stimulus mouse to the familiar mouse (preference for social 

novelty) (Silverman et al., 2010).  

 

Olfactory Habituation 

A series of nonsocial (orange and almond extract, diluted 1:100 with water, 

McCormick and Co., Sparks, MD) and social odors (conspecific bedding) were 

presented via cotton swabs to each mouse (Silverman et al., 2010). Each presentation 

lasted 2 min with 1 min between trials. An experimenter, blinded to experimental 

conditions, measured the total time each mouse investigated the swab. 

 

Fear Conditioning 

Contextual and cued fear conditioning was tested using the protocol developed 

for mice by Smith et al.(Smith et al., 2007a) with minor modifications. Mice explored the 

chamber (20 x 15 x 10 cm) freely for 12 min. The next day, they received 6 tone-

footshock pairings (70 dB, 2 kHz, 20 s tone and 2 s, 0.5 mA shock separated by 18 s). 

On day three, mice were placed into the “training context” for 15 min with no tones or 

shocks before being returned to a clean cage while the testing chamber was cleaned 

and outfitted with striped walls and covered floor. Mice were placed back into the 

chamber and allowed to explore this novel “testing context” for 3 min. Cued testing trials 

began immediately following the novel context exploration. Ten tones identical to those 

in the training phase were administered 80 s apart without shocks. Freezing, the 

absence of movement other than breathing, was scored objectively by VideoFreeze 

(MED Associates, Georgia, VT). 
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Amphetamine-Induced Locomotion 

Mice were placed into clear plastic boxes (30 x 30 x 20 cm) inside ventilated 

sound-attenuating chambers lit with overhead white light, allowed to explore freely for 

15 min, removed and injected with 3 mg/kg D-amphetamine hemisulfate (Sigma-Aldrich, 

St. Louis, MO) in 0.9% saline solution, and immediately returned to the chamber for 60 

min. Infrared photocells measured locomotor activity and stereotypical behaviors (MED 

Activity software, MED Associates, Georgia, VT). 

 

Statistical Analysis 

Two-tailed groupwise t-tests and two-way repeated measures ANOVAs were 

used to compare transgenic mice with wild type littermate controls as appropriate for 

each test. 
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RESULTS 

GAD1 suppression in NPY+ or CCK+ interneurons has differential effects on 

behavior 

Adult male mice (n = 10-12 per group) were evaluated using a battery of tasks 

chosen to assess a broad range of behavioral traits (see Methods for full details). 

NPYGAD1 and CCKGAD1 lines were tested independently using identical testing 

parameters and results were compared against wild type littermate controls. Mice were 

visually indistinguishable from littermate controls and did not display any general health 

or neuromuscular problems (Figure 6a,b). CCKGAD1 mice exhibited decreased 

locomotor activity during the initial portion of the open field test (two-way repeated 

measures analysis of variance (ANOVA) time x genotype interaction, F(9,198) = 2.0938, p 

= 0.032; Figure 7a). All groups displayed normal habituation to the open field arena 

(two-way repeated measures ANOVA main effect of time: NPYGAD1 F(9,180) = 

12.2300 p = 0.000; CCKGAD1 F(9,198) = 10.5489, p = 0.000). CCKGAD1 mice also 

trended towards hypoactivity on the elevated zero maze (two-tailed independent 

samples t-test: t(22) = -1.7822 p = 0.089; Figure 7b). 

 

We assessed anxiety-like behavior using the open field, elevated zero maze, and 

light-dark box paradigms (Cryan and Holmes, 2005). Neither transgenic line showed 

significant differences when comparing the amount of time spent in the center of the 

open field to the amount of time spent in the periphery of the arena (data not shown). A 

ceiling effect of center-arena aversion due to the intensity and/or location of the 

overhead lighting prevented analysis of anxiety-like behavior in this paradigm since all 
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mice did not gradually increase their exploration of the center of the arena over the 

course of the session (data not shown). However, NPYGAD1 mice displayed reduced 

anxiety-like behavior in both the elevated zero maze and light-dark box paradigms. 

Although they did not spend significantly more time than WTs in the open zone of the 

zero maze, NPYGAD1 transgenics’ lack of preference for a “safer,” “less anxious” 

environment indicates an anxiolytic-like and/or less risk-averse phenotype. Wild type 

mice, including ours, typically spend significantly more time in the closed zone than the 

open zone of the zero maze, however NPYGAD1 mice failed to do so (paired t-test: 

t(11) = 1.207, p = 0.253; Figure 7c). Similarly, they had a significantly reduced aversion 

to the light box compared to littermate controls in the light-dark box task (two-tailed 

independent samples t-test: t(20) = -2.247, p = 0.036; Figure 7f). 

 

The Porsolt forced swim task (Cryan and Holmes, 2005) measured depression-

like behaviors by the duration each animal attempted to escape after being placed in a 

cylinder of water (latency to float) and the total immobility time during the session. 

Shorter latency to float and/or increased total immobility times are considered 

depression-like behaviors in rodents (Cryan and Holmes, 2005). There were no 

differences between groups in either latency to float (independent samples t-test: 

NPYGAD1 t(20) = -0.538, p = 0.596; CCKGAD1 t(22) = 0.279, p = 0.783; Figure 7d) or 

total immobility (independent samples t-test: NPYGAD1 t(20) = -0.291, p = 0.774; 

CCKGAD1 t(22) = -0.078, p = 0.939; Figure 7e). 
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Prepulse inhibition (PPI) tested the animals’ sensorimotor-gating capabilities 

(Geyer et al., 2002). Briefly, varying levels of weaker auditory prepulse stimuli preceded 

stronger auditory bursts. The startle response elicited by the burst is typically inhibited 

by stronger prepulses. Data from one NPYGAD1 mouse was removed due to 

equipment malfunction. All groups showed appropriate levels of inhibition to each of four 

prepulse levels and there were no significant differences in percent PPI (two-way 

repeated measures ANOVA: NPYGAD1 F(19) = 0.036, p = 0.852; CCKGAD1 F(22) = 

0.000, p = 0.998; Figure 7g) or in baseline acoustic startle in the absence of the 

prepulse (independent samples t-test: NPYGAD1 t(19) = -0.788, p = 0.440; CCKGAD1 

t(22) = 1.166, p = 0.256; Figure 7h). 

 

We tested hippocampal function using the y-maze spontaneous alternation task 

(Gerlai, 1998). All groups alternated at the expected level for mice, approximately 65-

70%, and there were no differences between groups (independent samples t-test: 

NPYGAD1 t(20) = -0.551, p = 0.587; CCKGAD1 t(22) = -1.370, p = 0.184; Figure 7i). 

 

Social behavior was evaluated using the three-chamber social task (Silverman et 

al., 2010). After an acclimation phase (10 min), the first interaction phase (10 min) 

tested sociability by comparing the test mouse’s preference for investigating a social 

stimulus mouse (first novel mouse) placed in a pencil cup in one side chamber instead 

of an empty pencil cup in the opposite chamber (novel object). The second interaction 

phase (10 min) measured a preference for social novelty by introducing a second 

stimulus mouse (second novel mouse) and comparing the interaction time between the 
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test mouse and the second novel mouse or the first novel mouse (now the “familiar” 

mouse). All groups showed a preference for the first novel mouse over the novel object 

(Figure 7j). However, during the second interaction phase NPYGAD1 mice showed a 

significantly stronger preference for social novelty (two-tailed independent samples t-

test; t(20) = 2.178, p = 0.042; Figure 7k). 

 

In addition to the social interaction task, we tested olfactory sensory capability 

and sensitivity to social cues (Silverman et al., 2010). This is an important control for the 

social interaction task since rodent social investigation is based mostly on olfaction. It is 

also a measure of a different aspect of exploratory behavior. Mice were presented with 

a series of social and nonsocial odors in a clean cage. CCKGAD1 mice spent 

significantly more time sniffing the almond (two-way repeated measures ANOVA, F(1,22) 

= 7.231, p<0.05) and orange (two-way repeated measures ANOVA, F(1,22) = 5.831, 

p<0.05) nonsocial odors than littermate controls (Figure 7l) and showed a trend 

towards increased investigation of the social odors (two-way repeated measures 

ANOVA, F(1,22) = 3.035, p = 0.095). 

 

Contextual and cued fear conditioning assessed hippocampus- and amygdala-

dependent learning and memory in a single task developed for mice (Smith et al., 

2007a) with minor modifications. Contextual fear conditioning measures the ability of an 

animal to associate an aversive event, in this case a mild footshock, with the 

environment or “context” in which it occurred. Similarly, cued fear conditioning 

measures the ability of an animal to associate an aversive event with a discrete 
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stimulus, in this case an auditory tone. “Learning” is the ability to form these 

associations and “memory” is the ability to exhibit them some time after. “Extinction” is a 

separate adaptive learning process that the previous association is no longer relevant. 

Contextual fear conditioning relies heavily on hippocampal circuitry (Fanselow, 2000) 

while cued fear conditioning is dependent on the amygdala (Fanselow and Gale, 2003). 

Interestingly, the amygdala appears to be involved in the consolidation of context fear 

learning, but not when animals are pre-exposed to the apparatus (Huff et al., 2005) as 

we did in this study. Extinction of fear memory involves neural plasticity in the cortex, 

amygdala, and hippocampus that supersedes the previously learned associations 

(Maren and Quirk, 2004; Likhtik et al., 2008; Peters et al., 2009). All groups rapidly 

learned to associate the tone with the shock, as shown by an increase in freezing 

behavior with each tone presentation, and reached high levels of freezing (Figure 7m). 

Elevated freezing during the initial 3 min in the training context compared to freezing in 

the testing context operationally defines contextual fear memory (Smith et al., 2007a). 

All groups displayed appropriate contextual fear memory (Figure 7n). Cued fear 

memory is defined by an increase in freezing behavior during the tone relative to the 

novel context baseline (Smith et al., 2007a). All groups displayed appropriate cued fear 

memory (Figure 7o). In addition, a significant decrease in freezing with repeated cue 

exposures in the absence of the shock indicated appropriate fear extinction (Figure 7o). 

 

The dopamine system is dysregulated in a number of dysfunctional behaviors 

and neuropsychiatric disorders.  One way to assess dopaminergic circuit function is to 

test the animals’ response to psychostimulants.  In this experiment, we measured 
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locomotor responses following an amphetamine injection (3 mg/kg). Amphetamine 

sensitivity was defined here as the change in locomotor activity following the 

amphetamine injection. NPYGAD1 mice displayed an approximately 600% greater peak 

response to amphetamine than littermate controls (two-way repeated measures 

ANOVA, time x genotype interaction F(11) = 6.3646, p = 0.000) while, in a separate 

experiment, CCKGAD1 mice showed an approximately 50% reduced peak response 

(two-way repeated measures ANOVA, time x genotype interaction F(11) = 2.015, p = 

0.028; Figure 8a). NPYGAD1 displayed significantly greater AMPH-induced locomotor 

activity compared to WT controls over the entire session (t(20) = 4.477, p = 0.000; Figure 

8b). Stereotypical behaviors, generally defined as repetitive movements in a spatially 

confined area, result from pronounced striatal activation which can be induced with a 

high dose of psychostimulants drugs or conceivably though a striatal system 

predisposed to higher levels of activity (Canales and Graybiel, 2000). When evaluating 

transgenic mice, a decrease in locomotor activation following psychostimulant drug 

exposure, as seen in the CCKGAD1 transgenic mice, can indicate either a reduction or 

increase in sensitivity to the drug. In the latter case, the same dose of drug may be in 

the locomotor activating range of the dose-response curve in a normal animal, but into 

the stereotypy-inducing higher range of the curve in a hypersensitive animal. In this 

study, there were no differences in motor stereotypies as scored by MED Activity 

software indicating that the CCKGAD1 transgenic mice are in fact hyposensitive to 

AMPH (data not shown). 
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Figure 6. GAD1 does not affect basic neuromuscular performance. There were no 

differences between groups on the accelerating rotorod (a) or grip strength (b).  
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Figure 7. GAD1 suppression has a cell type-specific impact on behavior. Adult 

male mice were evaluated in an extensive behavioral testing battery. Mice with GAD1 

downregulation suppressing BAC constructs in CCK+ (CCKGAD1) or NPY+ 

(NPYGAD1) interneurons displayed different patterns of behavior compared to wild type 

littermate controls. CCKGAD1 mice were hypoactive in the open field (a) and on the 

zero maze (b). NPYGAD1 mice did not spend more time in the closed zone of the zero 

maze (c). There were no difference in latency to float (d) or total immobility (e) in the 

forced swim test. NPYGAD1 mice had a significantly reduced preference for the dark 

box in the light-dark box anxiety test (f). There were no differences in prepulse inhibition 

(g) or acoustic starte response (h) (a.u., arbitrary units). All groups displayed normal 

alternation in the y-maze (i). In the three-chambered social task, both mouse lines 

displayed normal sociability (j), however NPYGAD1 mice had a significantly increased 

preference for social novelty (k). CCKGAD1 mice spent significantly more time 

investigating a non-social olfactory stimulus but all groups investigated social olfactory 

stimuli similarly (l). Finally, there were no differences in learning (m) or memory of 

contextual (n) or auditory cued (o) fear conditioning or cued fear extinction (o). *, 

p<0.05; ns, non-significant; a.u., arbitrary units. 
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Figure 8. GAD1 suppression has cell type-specific augmentation or attenuation of 

amphetamine-induced locomotion. All mice displayed increased locomotor activity in 

response to a 3mg/kg injection of amphetamine.   AMPH sensitivity was defined as the 

magnitude of the locomotor response after AMPH injection relative to baseline 

locomotor activity.  NPYGAD1TG mice were approximately 600% more sensitive to 

AMPH compared to wild type littermate controls while CCKGAD1TG mice were 

approximately 50% less sensitive (a).  Total locomotor activity across the entire post-

injection session was decreased in CCKGAD1TG mice and increased in NPYGAD1TG 

mice compared to WT littermate controls (b) **, p<0.01. *, p<0.05. 
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CHAPTER 5 

 

DISCUSSION 

 

“Everything we hear is an opinion, not a fact. Everything we see is a perspective, not 

the truth.” 

― Marcus Aurelius 

 

Cholecystokinin (CCK) and neuropeptide Y (NPY) are expressed in non-

overlapping interneuron cell types with distinct morphology, connectivity, firing patterns, 

and distributions in both rodents and humans (Chronwall et al., 1985; Hornung et al., 

1992; Meziane et al., 1997; Markram et al., 2004).  Since these molecular markers do 

not overlap and since these distinct cell types have both been implicated in 

neuropsychiatric disorders (Hashimoto et al., 2008b; Truitt et al., 2009; Curley and 

Lewis, 2012), it is possible that their dysfunction will lead to distinct and independent 

effects and that dysfunction of one or both classes underlies different aspects of 

behavior spectrum disorders (Adam, 2013).  GAD67 was suppressed below detectable 

levels in NPYGAD1 (Garbett et al., 2010) and CCKGAD1 transgenic mice (Schmidt et 

al., 2013).  The development of these mice allows for the empirical study of the effects 

of GAD67 downregulation in specific cell types on molecular and behavioral processes 

of the brain.  Using the BAC method simplifies the interpretation of the data because 

mice are generated on C57BL/6 congenic backgrounds, eliminating issues regarding 

strain background and backcrossing (Garbett et al., 2010).   
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Previous studies have detailed interneuron cell type diversity to the extent of their 

synaptic contacts onto principle cells and other interneurons (Markram et al., 2004; 

Ascoli et al., 2008).  CCK+ and NPY+ interneurons represent only 8-17% of 

interneurons (Uematsu et al., 2008; Xu et al., 2010) and an even smaller percentage of 

all brain cells.  Yet, we found that altering their GABA-ergic phenotype is sufficient to 

induce widespread, brain region-specific changes in a considerable number of lipids, 

peptides, and proteins.  Since these two non-overlapping interneuronal subpopulations 

have vastly different morphology, physiology, receptor expression, brain distribution and 

molecular content, it is perhaps not surprising that their inactivation results in 

fundamentally different molecular changes.  

 

However, it was somewhat unexpected that in both transgenic animal lines a 

single molecular manipulation (GAD1 suppression) led to region-specific molecular 

changes. Of these, we found PEP19/PCP4 to be increased in the hippocampus and 

cortex in NPYGAD1 transgenic line as a result of GAD1 suppression (1.55-fold, p = 

0.047 and 1.516-fold, p = 0.021, respectively), but not in the CCKGAD1 animals. 

Discovering altered expression of a peptide previously linked to neurodevelopment 

(Mouton-Liger et al., 2011; Daniels et al., 2012), dopamine system function (Harashima 

et al., 2011; Romanova et al., 2012), and neuropsychiatric disorders (Teyssier et al., 

2011; Daniels et al., 2012; Guillozet-Bongaarts et al., 2013) as a result of empirically 

modifying another (Lewis et al., 2005) supports the concept that diverse genetic factors 

can converge onto common molecular and behavioral dysfunction (Harrison and 

Weinberger, 2005; Mirnics et al., 2006; Horvath and Mirnics, 2009). 
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 MALDI-IMS imaging mass spectrometry was developed with primarily for cancer 

research (Schwamborn and Caprioli, 2010).  Comparing cancerous cells with normal 

adjacent tissue has benefits of isolating the molecular profile of the cancer cells from 

normal cells from the same region in the same individual.  It also adds an 

underappreciated aspect of experimental design which is that all of the comparisons are 

done within sections on the same MALDI target plate during the same experimental 

scanning run.  To our knowledge, this set of experiments is the first time that MALDI-

IMS has been used to compare different groups of tissue with each other.  This 

advancement of the technology represents a useful new application for studies in basic 

and clinical neuroscience that make between-groups comparisons.  It presented a 

number of challenges, but we were able to rely on the Mirnics lab’s expertise in gene 

expression analysis to use a pairwise average log ratio and false discovery rate 

statistical analyses typically used in microarray experiments to compare wild type and 

transgenic tissue from different animals on the same target plates during the same 

scanning run.  This approach reduced some of the difficulties with standardization and 

variability between plates and scanning runs to yield usable data.  However, further 

development will be useful to streamline this process.  A standard solution or a 

reference section from the same wild type animal placed on every plate on every 

scanning run would benefit the normalization of data across plates.  Further 

development of analysis and imaging software used for this type of analysis would 

generate images from this normalized data and introduce the application of fMRI and 

PET analysis techniques to the region-specific analysis of proteomics data.  Between 
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plate variability and image-generation from data that are not normalized currently 

precludes the use of these useful analysis strategies. 

 

We also found that GAD67 suppression in distinct interneuron cell types induced 

specific and in some cases opposing behavioral changes that may indicate region-

specific dysfunction.  Several interesting conclusions can be drawn from these data. 

First, suppressing GAD1 in as few as 8-12% of GABA-ergic interneurons is sufficient to 

induce molecular and behavioral changes that are dependent on the interneuron cell 

type affected.  Second, GAD1 suppression in NPY+ and CCK+ interneurons leads to 

opposing effects on dopamine-dependent behavior highlighting the complex interplay 

between GABA-ergic and dopaminergic systems. Third, the pattern of behavioral results 

raises the possibility that dysfunction of distinct interneuron classes is related to 

different behavioral domains. 

 

Recent findings suggest GAD1 expression and behavioral dysfunction are tightly 

correlated and that subtle decreases in GABA signaling give rise to behavioral changes 

(Chao et al., 2010; Heldt et al., 2012). Our data suggest that this modulation is 

dependent on the interneuron cell type and may be region specific. Some of our findings 

could have relatively straight-forward interpretations. For example, increased olfactory 

investigation in CCKGAD1 mice may be explained by disrupting the inhibition of primary 

olfactory cortex which has a high density of CCK+ interneurons (Meziane et al., 1997; 

Ekstrand et al., 2001). Yet our most intriguing finding, the opposing effects of 

amphetamine on locomotor behavior, is likely to be far more complex. We propose that 
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the opposite response of NPYGAD1 and CCKGAD1 mice to amphetamine is due to 

alterations in dopaminergic tone as a result of hippocampal dysfunction. NPY+ and 

CCK+ interneurons are both distributed in the hippocampus (Chronwall et al., 1985; 

Meziane et al., 1997), but they serve very different functions. NPY+ neurogliaform cells 

maintain tonic inhibition of entire regions through volume transmission (Olah et al., 

2009; Karayannis et al., 2010). Disinhibiting hippocampal circuits by suppressing GAD1 

in these cells can drive the activity of dopamine neurons in the ventral tegmental area 

(VTA) (Lisman et al., 2008) resulting in increased sensitivity to amphetamine and 

reduced anxiety-like behaviors (Zweifel et al., 2011). In contrast, CCK+ basket cells 

regulate parvalbumin+ (PV+) basket cells through synaptic contacts (Karson et al., 

2009). By disinhibiting PV+ cells, GAD1 suppression in CCK+ interneurons could result 

in a net increase of inhibitory tone in the hippocampus that would diminish hippocampal-

VTA loop signaling and lead to locomotor hypoactivity and reduced sensitivity to 

amphetamine. Alternatively, the divergent behavioral results could also be explained by 

disrupting amygdalar (Truitt et al., 2009) or striatal circuits (English et al., 2012), 

however GAD1 suppression in the amygdala alone does not change anxiety-like 

behavior (Heldt et al., 2012) and tonically disinhibiting the striatum would likely augment 

the hippocampal-VTA loop activity mentioned above. Clearly, these hypotheses will 

have to be tested in further experiments. However, regardless of the exact mechanism 

at work, it is fascinating to consider that specific GABA-ergic circuits can modulate and 

potentially unbalance the dopamine system in opposite directions and what that means 

for behavioral spectrum disorders. 
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Data presented here from our lab and others clearly demonstrate that diverse 

and distinct interneuron populations regulate a broad range of brain functions in region-

specific ways and that these functions are critical for generating a large spectrum of 

behaviors.  Therefore, and as we have shown, dysfunction of particular interneuron 

populations or combinations of multiple populations can result in specific dysfunction 

within the behavioral spectrum. It is well understood that psychiatric disorders are 

disorders and/or syndromes of this behavioral spectrum (Adam, 2013).  We present the 

possibility that dysfunction of one or more classes of interneurons underlies behavioral 

dysfunction in some patients and that the diversity of this dysfunction may represent, at 

least in part, the diversity of symptoms along the behavioral spectrum. 

 

These data have also broader, conceptual implications.  The idea of the anatomical 

substrate defining specific brain function has been around for almost a century: in 1929, 

Herrick proposed that fundamental anatomical building blocks govern complex behavioral 

responses (Herrick, 1929).  More recently, a hypothesis emerged that large networks can 

be controlled by diverse subnetworks (Liu et al., 2011) and further evidence suggests 

different network dynamics of interneuron classes underlie behavioral function (Kvitsiani 

et al., 2013).  We believe that our findings provide strong behavioral and molecular 

support for this view while expanding the scope beyond a single brain region and 

elaborating upon the behavioral impact of cell type-specific interneuron dysfunction.  In 

this context, we can consider the interneurons as anatomically encoded, critical modular 

building blocks that are directly responsible for various behavioral domains.  Thus, 

silencing different inhibitory subnetworks, driven by various inhibitory interneuronal 
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subclasses, will lead to different behavioral phenotypes.  Furthermore, modulating the 

inhibitory subnetworks will not only alter the behavior, but also result in brain and lipid 

composition disruption in the homogenous excitatory network.  We also hypothesize that 

in pathological conditions, such as schizophrenia, the modular building blocks of the 

inhibitory subnetworks might be related to various symptom domains, either by direct 

effect on inhibitory subnetworks, or indirectly, through secondary effects on the relatively 

homogenous excitatory network. 

 

 In addition to the overarching conceptual implications arising from the diverging 

results following a common genetic manipulation, these data provide new information 

about the functional differences between these two interneuron cell types.  NPY+ and 

CCK+ interneurons are fundamentally different and these studies provide interesting 

data regarding the development and function of each type and their participation in the 

development and function of the brain.  NPY+ interneurons mediate tonic GABA 

signaling through extrasynaptic volumetric neurotransmission (Olah et al., 2009) while 

CCK+ interneurons regulate pyramidal cells as well as other interneurons via 

accommodating (long and integrated) synaptic input (Freund and Katona, 2007).  These 

cell types demonstrate the concept that GAD67 maintains tonic GABA release while 

GAD65 mediates phasic release (Esclapez et al., 1994; Soghomonian and Martin, 

1998).  CCK+ interneurons fire phasically and appear to rely much more on GAD65 

than other cell types (Fish et al., 2011).  In fact, a subset of these cells do not express 

GAD67 at all in wild type tissue (Ferezou et al., 2002) suggesting that a portion of CCK+ 

interneurons would not be affected by our GAD67-targeting miRNA.  Our results in 
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CCKGAD1 mice show that GAD67 downregulation in these cells does have an impact 

on the molecular and behavioral profile of brain function.  However, the effects were 

modest in comparison to NPYGAD1 mice which is consistent with the interpretation that 

CCK+ interneurons may rely more on GAD65 than GAD67 (Fish et al., 2011) and that 

tonic inhibition mediated by NPY+ interneurons relies on GAD67. 

 

 Our results in CCKGAD1 mice also inform the presumed interaction of CCK+ and 

PV+ basket cells in the context of mental illness.  It is generally assumed that GAD67 

downregulation observed in mental illness has a disinhibitory effect.  However GAD67 

downregulation in CCK+ interneurons could disinhibit PV+ basket cell-mediated 

perisomatic inhibition and result in a net increase of inhibition (Freund and Katona, 

2007).  Curley and Lewis proposed that gene expression changes in these cells in the 

cortex of individuals with schizophrenia augment CCK+ and decrease of PV+ synaptic 

strength with respect to perisomatic modulation of pyramidal cells (Curley and Lewis, 

2012) and this interaction is critical for working memory function (Fuchs et al., 2007; 

Timofeeva and Levin, 2011; Curley and Lewis, 2012).  As stated previously, this is 

difficult to interpret since feedback inhibition of CCK+ basket cells by pyramidal cells is 

likely impaired by concurrent decreases of CB1 mRNA and CCK mRNA (Lewis et al., 

2005; Lee et al., 2011).  Furthermore, CB1 mRNA reduction in CCK+ cells could result 

in increased GABA release onto PV+ basket cells (Katona et al., 1999) while CCK 

mRNA reduction could result in decreased PV+ cell stimulation (Foldy et al., 2007; Lee 

et al., 2011).  If the interaction between these two cell types mediates working memory, 

we might expect to see a disruption or enhancement of working memory function.  We 
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found no changes in learning, memory, or working memory following GAD67 

suppression in CCK+ interneurons.  These data can be interpreted in two ways.  First, 

this synapse might not require GAD67, which would be supported by the relatively high 

expression of GAD65 in CCK+ basket cells (Fish et al., 2011).  Second, CCK+ basket 

cell regulation of PV+ interneurons in general is not necessary for learning, memory, 

and working memory processes in vivo, which would be contradictory to in vitro data 

that suggests this interaction integrates subcortical inputs to maintain working memory 

(Freund, 2003; Freund and Katona, 2007; Varga et al., 2009).  Further experiments 

measuring gamma and theta oscillations in CCKGAD1 mice in vivo or increasing the 

working memory load of the behavioral analysis may clarify the interpretation of these 

results. 

 

 Experiments with NPYGAD1 transgenic mice also provide insight into potential 

mechanisms of neuropsychiatric disease and treatment.  NPY+ interneurons express 

neurosteroid-sensitive GABAA delta receptor subunits (Olah et al., 2009).  Stimulation of 

these receptors inhibits networks of NPY+ neurogliaform interneurons that maintain 

tonic inhibition through volume transmission (Olah et al., 2009) and disinhibits a region.  

Glutamatergic neurons also express neurosteroid-sensitive receptors at different levels 

across development (Shen et al., 2007; Smith, 2013).  Allopregnanolone is a 

neurosteroid that is increased during stress.  Our experimental manipulation, which 

mimics the same effect of neurosteroid receptor stimulation on NPY+ neurons 

consistently throughout development and adulthood in male mice by silencing 

neurogliaform cells, is interesting in the context of gender differences in development 
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and neuropsychiatric disorders.  We show that GAD67 downregulation in these cells in 

vivo leads to an anxiolytic-like phenotype in multiple behavioral assays and a 

dramatically increased sensitivity to amphetamine.  This result is similar to the effects of 

allopregnanolone administration in male rodents during early postnatal development 

(Darbra and Pallares, 2012) and adulthood (Rodgers and Johnson, 1998), however 

changing levels of neurosteroid-sensitive GABA receptors on projection neurons during 

female adolescence produces anxiogenic effects (Shen et al., 2007).  Similar 

anxiogenic behavior results from fluctuations of neurosteroid circulation during the 

menstrual cycle in females (Smith, 2001; Gulinello and Smith, 2003; Smith et al., 2006).  

Taken together, these results and ours suggest that neurosteroid receptors on NPY+ 

interneurons mediate anxiolytic effects of neurosteroids in males.  It is possible that 

anxiogenic effects of neurosteroids in females relate to changing expression in 

glutamatergic neurons (Shen et al., 2007).  Comprehensive analysis of NPYGAD1 

female animals has not been done to date, but could shed light on this issue.  

Administration of neurosteroids to NPYGAD1 male mice could also shed light on the 

relative contributions of these receptors on interneurons and pyramidal cells on anxiety-

like behavior.  Another possible explanation for these anxiogenic-like effects is that 

NPY+ interneurons in the striatum directly regulate striatal projection neurons and VTA 

reward circuitry (Koos and Tepper, 1999; Tepper and Lee, 2007; Tepper et al., 2010; 

Ibanez-Sandoval et al., 2011; English et al., 2012) and silencing these cells by GAD67 

suppression or neurosteroid application could increase dopaminergic tone and reduce 

anxiety-like behavior (Zweifel et al., 2011).  Clarification of these possibilities relies on 

the interpretation of the behavioral data. 
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 Anxiety-like behavior in rodents relies on the innate avoidance of bright, open 

spaces (Rodgers et al., 1997; Cryan and Holmes, 2005; Rodgers, 2010).  Other 

measures in these types of tasks claim to measure “risk-assessment” by the rodents’ 

cautious exploration of the interface between a “safe” area and an open “risky” area 

(Rodgers and Johnson, 1995; Griebel et al., 1997) however these terms rely on 

anthropomorphism.  Regardless, “risk-assessment” and “risk-avoidance” or “risk-taking” 

are not the same thing.  Risk-taking refers to the probability of executing behavior that 

could have a dangerous or negative outcome (Schultz, 2011).  It does not refer to the 

amount of time an organism takes to make that decision.  Increased exploration of an 

open environment that poses an innate predatory risk to a rodent can demonstrate 

increased risk-taking behavior and/or decreased risk-avoidance behavior in the absence 

of any change in risk-assessment or anxiety.  In fact, there is some evidence that 

anxiety and “anxiety-related risk-avoidance behavior” involve separate circuitry (Kim et 

al., 2013).  These distinctions may sounds like semantics, but have real world 

consequences.  Blocking nicotinic receptors (nAchR) on NPY+ interneurons, effectively 

silencing them as we have, induced a similar pattern of behavior to what we have 

shown (Lippiello et al., 2008).  Targacept and Astra Zeneca, the companies developing 

the nAchR antagonist used by Lippiello and colleagues, interpreted the data as an anti-

anxiety-like and possible anti-depressant-like effect and ran clinical trials for patients 

with depression which failed (data unpublished).  Removing anthropomorphism from the 

analysis would have lead to a dopamine-centric interpretation of the rodent data since 

dopamine clearly regulates these behaviors (Wall et al., 2003; Marowsky et al., 2005; 
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Pape, 2005; Diaz et al., 2011; Zweifel et al., 2011) and may have resulted in exploring 

this compound as a potential treatment for a number of disorders with dopamine system 

abnormalities.  For neuropsychiatric disorders, symptom improvement is behavior-

based by definition.  The careful interpretation of behavioral phenotypes in our mice and 

other rodent models is critically important to understand mechanisms of 

neuropsychiatric disease and developing treatments.  In fact, the number of first-in-class 

drugs approved by the FDA between 1998 and 2008 increasingly favors phenotypic 

screening (Swinney and Anthony, 2011) which will make behavioral analyses and 

interpretation even more important in the years to come. 

 

 In summary, we have shown that GAD67 downregulation in as few as 8-17% of 

GABA-ergic interneurons has specific molecular and behavioral effects that are 

dependent on the type of interneuron affected.  Molecular changes downstream of 

GAD67 suppression include proteins that have also been identified in neuropsychiatric 

disorders, indicating that they may be part of a convergent molecular network leading to 

brain and behavioral dysfunction.  Behavioral analyses showed that the effects of 

GAD67 downregulation are most prominent in cells that mediate tonic inhibition of brain 

regions and less prominent in cells that have relatively abundant GAD65.  Bi-directional 

modulation of amphetamine sensitivity by two distinct interneuron classes suggests that 

dopaminergic dysfunction in a number of brain disorders may modulate positioning on 

the neuropsychiatric spectrum.  However, over-interpretation of data from rodent studies 

can be misleading and further clinical research in multiple patient populations will be 

required to fully understand these mechanisms.  In many cases, these future studies will 
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require the development of objective methods to measure and quantify analogous 

behaviors and brain functions in rodents and humans which may prove difficult.  

However, experiments presented here, in conjunction with information about cell type-

specific receptor expression, may provide opportunities to target different domains of 

behavioral dysfunction to reduce side effects and improve clinical symptoms. 
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Supplementary Table 1. 
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Supplementary Table 1. MALDI-IMS analysis identifies region-specific changes in 

NPYGAD1 transgenic mice. In situ proteomic analysis identified 129 lipids, peptides, 

and proteins (0 – approximately 22,000 Da) with significantly altered expression in 

NPYGAD1 mice compared to wildtype controls. 51 were decreased, 65 were increased, 

and 13 had region-specific changes. Only two results (m/z 1583.09 and m/z 1907.27) 

were significant across more than three regions. *, significant results assessed by 

Benjamini-Hochberg correction for false discovery rate; _ , not significant. 
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Supplementary Table 2. 
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Supplementary Table 2. MALDI-IMS analysis identifies region-specific changes in 

CCKGAD1 transgenic mice. In situ proteomic analysis identified 52 lipids, peptides, 

and proteins (0 – approximately 22,000 Da) with significantly altered expression in 

NPYGAD1 mice compared to wiltype controls. 25 were decreased, 23 were increased, 

and 4 had region-specific changes. No results were significant across more than three 

regions. *, significant results assessed by Benjamini-Hochberg correction for false 

discovery rate; _ , not significant. 
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