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ABSTRACT

In addition to the inherent chemical phase shift between different proton species, fat-water
MRI k-space raw data are corrupted by several sources such as magnetic field
inhomogeneity; chemical shift phase accumulated during the data readout window and
trajectory shifts due to non-ideal gradient performance. NMR signal can be modeled within a
single voxel as the mixture of different type protons with all corrupting factors clearly defined.
If multiecho data are acquired, the evolving fat-water signal can be described as a linear
system which can be unmixed. A reversed readout-based method is investigated in this work
to correct the field inhomogeneity for radial fat-water MRI data. In the Cartesian case, the field
map can be estimated using an iterative approach when other corrupting factors are precisely
modeled. In addition, accurate fat-water signal modeling includes the use of a multipeak fat
spectrum, and precise sampling time information. Multipeak fat spectrum information is
obtained from nuclear magnetic spectroscopy, and the precise sampling time information is
based on the employed pulse sequence. On the other hand, fat-water image reconstruction
from radial trajectory data requires non-uniform Fourier transformation including regridding,
density correction and interpolation. All these procedures are inserted as a part of radial
fat-water separation. The artifact caused by imperfect gradients for radial MRI is also
discussed and corrected in this work. Reconstruction results for both Cartesian and radial

data with all corrections applied are displayed and compared.
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CHAPTER 1

INTRODUCTION

1.1 MRI Basics

It is widely considered that magnetic resonance imaging (MRI) is one of the most innovative

1% century. MRI serves as a major medical imaging

imaging techniques available in the 2
system alongside other modern imaging modalities such as CT, ultrasound and PET and
SPECT. MRI is based on the physics phenomenon that an external magnetic field and an
excitation radio frequency (RF) pulse can trigger the object to emit signal. Major components
of a MRI system include an external static magnetic field in which the object is placed; a RF

transmit coil that excites net magnetization into the transverse plane; magnetic gradients

encoding spatial information along different directions; and RF coils that receive MRI signal.

When an external static magnetic field is applied, protons in the object start precessing about
the direction of the magnetic field with a constant frequency. This frequency is called the
Larmor frequency, which is determined both by the strength of external magnetic field and by
the gyromagnetic ratio. The gyromagnetic ratio is strictly related to nuclei species, which
leads to the fact that protons in different nuclei species, such as H?, C'3,N'5 or P31, precess
at different rate even when experiencing the same magnetic field strength. The precessing
protons will then be deviated by a RF pulse from its equilibrium state. The net magnetization

will be nutated by the RF pulse into the transverse plane perpendicular to the direction of the



external static magnetic field, which is similar to resonance. After the net magnetization is
lying in the transverse plane, another magnetic field, the magnetic field gradient, is applied to
differentiate spatial information at one location from the other. The typical spatial gradients
include slice selective, phase, and frequency encoding (readout) to cover spatial information
of the object on a 2D plane. A 3D acquisition utilizes a slab selective gradient and a second

phase encoding gradient.

MRI systems often do not work as perfectly in reality as they are described in theories.
Artifacts, usually caused by various reasons such as magnetic and RF field inhomogeneity,
non-ideal gradient performance, or other physics/physiological limitations, are commonly
found in MRI images. An artifact can be defined as any feature in an image which
misrepresents the object in the field of view (FOV). This could be a erroneous bright signal
outside the object, or lack of signal where there should be something. It could also be a
reconstructed image with streaks that do not exist in the real object or with misplaced object
signal appearing at a different location in the reconstructed than it actually is. A large group of
MR artifacts appear as ‘ghost’ images, where a faint copy of the object appears in the image
displaced in one direction or another. In general artifacts are critical in MR image

reconstruction.

1.2 Chemical Shift Imaging

In nuclear magnetic resonance (NMR), the chemical shift describes the dependence of
nuclear magnetic energy levels on the electronic environment in a molecule [1] [2].
Microscopically, electrons will start precess when an external magnetic field is induced. The
precessing particles, according to Lenz’s law, will then generate a new magnetic field

opposing to the induced one. The new magnetic field has a smaller strength than the original



one such that the net magnetic field strength is weakened by a fraction ¢. This faction, also
called shielding constant g, is specific to molecular structures. Quantitatively, this shielding
constant can be estimated if shift in PPM between two species along resonance frequency
axis is known. This phenomenon that frequency is altered by the electron environments is

recognized as paramagnetic shielding in physics.

Since the magnetic field strength is changed by the electron environments, the nuclear
magnetic resonance (NMR) frequency will be different as well. This difference will depend on
the strength of the static magnetic field B,, used to perform the NMR spectroscopy. The
greater the value of B, the greater the frequency difference will be. This relationship could
make it difficult to compare NMR spectra taken on spectrometers operating at different field

strengths, so the term chemical shift is reported in part per million (PPM) [3].

The chemical shift of a nucleus is defined relative to the standard as the difference between
the resonance frequency of the nucleus and a standard [3].
(f - f,, )x10°

5=fre—f, 1.1

ref

where f is the frequency of the observed species, and f; is the reference frequency. In NMR

spectroscopy, this standard is often tetramethylsilane, abbreviated TMS. In the body, since

there is no TMS, water protons are usually considered the reference [3].

It should also be noted that artifact in MRI caused by chemical shift occurs either in slice
selective direction, or along readout direction in which frequency information is encoded.
Although chemical shift happens in phase encoding direction as well, it does not accumulate.

This is due to the fact that MRI signal is repeatedly excited to acquire separate phase



encodes. Since it is a new excitation and new echo, chemical shift in the phase encoding
direction does not change from one signal to the next. This implies that chemical shift artifact

has no impact on signal in the phase encoding direction.

Because spatial information is coded based on resonance frequency in the frequency
encoding direction, misregistration arises when chemical shift exist. This means multiple
chemical species can cause image signal to displace from its original location in spatial
domain, which can be mathematically explained by the Fourier transform shift theorem.

Chemical shift is notorious in MRI as one of the main artifacts alongside others such as

motion, RF inhomogeneity and B, inhomogeneity. Figure 1.1 [4] is an example showing the

artifact caused by fat water chemical shift [4]:

Figure 1.1. An example of artifact caused by chemical shift (cited from [4]).

In Figure 1.1, the left panel shows that the chemical shift artifact is visible as a small dark or
bright border at the interfaces of bone, fat and muscle indicated by red arrows. This scan was

acquired with maximum water fat shift. Right panel shows the same slice as left panel, but



scanned with minimum water fat shift. As is indicated by green arrows, the interface borders
are smaller, but the higher sampling rate that minimizes water fat shift lowers the signal to

noise ratio [4] [5].

In the human body, there mainly are two organic molecule types containing hydrogen: fat and
water. Fat-water imaging has been demonstrated in many clinical applications such as
quantification of fat in tissues. Although numerous works have been accomplished in fat water
separation, it is still considered noticeably more challenging than many image processing
topics in MRI. Fat water separation can be more complicated when other factors, such as
difference in sampling time and field inhomogeneity, are introduced. In addition, fat water
separation from non-Cartesian k-space data increases the difficulty of the reconstruction.

Especially static field inhomogeneity estimation is a rather challenging topic.

To understand the cause of artifacts in fat water imaging, an investigation about the chemical
structure of fat and water is in order. Fat comprises hydrogen atoms linked to carbon such as
methylene protons in triglycerides ([-CH, —],,), which make up large molecules. The large
molecules in fat have a slow rate of molecular motion due to inertia of the large molecules.
They also have a low inherent energy which means they are able to absorb energy efficiently.
Water comprises hydrogen atoms linked to oxygen [— OH]. Water consists of small molecules
with little inertia that have a high rate of molecular motion. Water molecules have a high
inherent energy which means they are not able to absorb energy efficiently [4]. On the other
hand, the electron density around each proton is different in fat and water molecules.
Triglyceride structure provides more diamagnetic shielding for methylene protons than for
protons in water. This paramagnetic shielding results in a lower precession rate for protons in

fat.



Chemical shift between fat and water causes misregistration along the readout direction.

Particularly, water protons at location X,, with gradient strength G, precess at frequency f:

f,=2Gx,, 1.2
27

Where, yis the value of gyromagnetic ratio. Due to chemical shift effect, fat protons precess

at a lower frequency f, :

f,=2Gx,-6-LB,, 1.3
27 27

Where, ¢ is the chemical shift measured in ppm, and B is the strength of the external static

magnetic field. Therefore, a displacement will be observed in reconstructed image where fat
signal moves away from its true location. If water is considered the reference frequency, the

displacement is:
AX=X, —X; =5 ==, 1.4

The displacement is proportional to the strength of operating frequency. Since fat has 3.5 ppm
chemical shift downfield from water, it corresponds to approximately 220 Hz at 1.5T and 440
Hz at 3.0T. For example, in a 3.0T static external magnetic field, if the bandwidth is 1340
Hz/pixel, and if the pixel size is 1 mm by 1 mm, the chemical shift will cause 0.33mm

displacement between fat image and water image.



1.3 Radial MRI and Its Reconstruction

Radial MRI is one of the most common non-Cartesian trajectories in MRI system today. It is
typically composed of a group of equally spaced radial samplings that overlap at the center of
k-space, as depicted in Figure 1.2. Radial MRI has gained popularity due to several
advantages: First of all, each spoke of a radial data set contains an equal amount of low and
high frequencies, which leads to advantageous undersampling properties. Second, the
Fourier transform of each spoke corresponds to a projection through the object in an angle
perpendicular to the direction of the projection. This relationship is a direct consequence of
the Fourier Projection-Slice Theorem and assigns a geometric meaning to each single
k-space diagonal. It allows for the adoption of reconstruction techniques from transmission
tomography including consistency criteria, which can be used for artifact correction. Third,
radial trajectories oversample the central portion of k-space which, though apparently
inefficient, turns out to be beneficial in certain practical scenarios. Moreover, the central
oversampling may be exploited for multicontrast MRI and parallel imaging by reconstructing

multiple low-resolution images from undersampled data sets [6] [7].
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Figure 1.2. Trajectory of Radial MRI in k-space.

MRI data on scanners is recorded in k-space, which is the Fourier transform of the image data.
A 2D image can be considered a 2D digitized function f (X, y)from a signal processing

perspective. There are two primary signal domains in MRI: the spatial domain and the spatial

frequency domain (k-space), which are conjugates of each other via Fourier transform.

Radial MRI also has image space and k-space. Its image space is represented in Cartesian
grid, whereas its k-space data are arranged in sinogram format. The sinogram format
comprises parallel projections across all projection angles lined up next to each other. Each
parallel projection is defined as the line integral along across the object at a projection angle

6. The ensemble of all projections is known as a sinogram. One of the fundamental



principals in radial MRI reconstruction is the Fourier Projection-Slice Theorem, which states
that the Fourier transform of a parallel projection of an object f (X, y) obtained at angle &
equals a line in a 2D Fourier transform of f (X, y)taken at the same angle [8]. The Fourier
Projection-Slice Theorem is illustrated in Figure 1.3 [8]:

1D Fourier

Transform ,
p(t.6) ———— = F(ocos0,nsin0d) '

2D Fourier
Transform

|:> F(u,v)

Figure 1.3. lllustration of the Fourier Projection-Slice Theorem.

where @ is the projection angle, t is the position along projections, @ is the digital

frequency, and F(k,, kK, )is MR signal in k-space. The Fourier Projection-Slice Theorem can

be formulated in Equation 1.5 [8]:

60 g — J.If X, y)Q—jZ;ra)(xcosa+ysin:9)dXdy _ F(G)COSQ,(OSiI’]H), 15

where, k, =w@cosd,k, =wsin & and F(wcosé,wsind)is the 2D Fourier transform of

f(X, y). Therefore, the reconstructed image, or the inverse 2D Fourier transform of k-space

data, can be represented in Equation 1.6 [8]:



£(x )= [ [Flk, K, 0"k dk 16

where f(X, y)is the digital MRI image, and F(kx,ky)is the MR signal collected in k-space

with coordinates k, and k, . By replacing k, =@cos @ and k, = wsin @ in Equation 1.5,

Equation 1.5 evolves to Equation 1.7 [8]:

f(x,y)= ”F(a)cose,a)sin Q) 127 (xocosdryosind)g g o, 1.7

Inserting the conclusion in Equation 1.4 into Equation 1.6 to obtain Equation 1.8 [8]:

27 )
f(X, y): jdg .[ P(a), 9)ej2ﬂ(ch059+ywsin9)a)da), 18
0

—00

Equation 1.7 can be further simplified as following noticing that P(a), 0+ 7z)= P(— w, 0) to

obtain Equation 1.9 [8]:

(% y)= [0 | P(, 0)re o 19

0

Here, P(aJ, 9) is the Fourier transform of the projection at angle. The inside integral is the

inverse Fourier transform of the quantity P(a), 9]@| In the spatial domain, it represents a
projection filtered by a function whose frequency domain response is |a)| and is therefore

called a “filtered projection” [6]. |a)| is often referred to as “Ram-Lak” filter [8].

10



1.4 Fat Water Separation

1.4.1 Two-Point and Three-Point Dixon Methods

The fact that MR signal from human tissue is primarily contributed by protons in water and

lipids allows us to model the signal from a single voxel as in Equation 1.10 [9]:
s, =w+ fel”™ 1.10

where, s is the signal at nth echo, wis complex water signal component, f is the
complex fat signal component, @, is the off-resonance frequency caused by chemical

shift and TE, is the nth echo time. Since only two species are under consideration in

this model, water is regarded as on resonance, whereas fat is off resonance.

The simplest way to estimate water and lipids signal is to acquire two images at Nnth echo

time TE, where o, TE, =0,7 mod 27 . Here mod represents modulo operation. This

process results in a “0image” and a “ 7 image” [10]:

s, =w+ f, 1.11
s, =w-— f, 1.12

Water and fat signal can then be estimated as in Equation 1.13 and Equation 1.14 [9]:

v“v:%(sl+sz). 1.13

1



Above is the Two-Point Dixon method, which separates water and fat signal using a
combination of images from a two-echo acquisition. However, aside from chemical shift effect,

there are other components that compromise the separation of the water and fat image. For
example, the underlying static magnetic field inhomogeneity, the Tz*decay of signal and the

inhomogeneous penetration of the imaging volume by radiofrequency pulses [7]. Among

these factors, the problem of the static magnetic field inhomogeneity is by far the most
important. Other factors, such as the estimation and correction for Tz* degrading the

separation between fat and water, is of secondary concern [9]. In Two-Point Dixon model, the

signal can be extended if field inhomogeneity is added:
s, =(w+ ™ 1.15
s, =(w— f)el™ 1.16

where i is the magnetic field inhomogeneity frequency measured in radians per second.

The estimate of water image in Equation 1.13 then becomes [8]:
1 ! ~ - ~
W=5[51(1+ W& TE)) 5 (1—eivETE) )| 1.17

It can be seen that even for a small off-resonance small angle, the water estimate will be

significantly contaminated by the fat component in the voxel.

One solution to manage this primary concern caused by magnetic field inhomogeneity is to

12



add an additional measurement to allow the magnetic field inhomogeneity quantityy to be

estimated [11]. If one more echo image is acquired, the Two-Point Dixon method will become
the Three-Point Dixon method which is mathematically formulated in Equation 1.18 through

Equation 1.20:

s, =(w+ ™ 1.18
s, =(w— f)el™ 1.19
s, =(w+ el 1.20

If the echo time is symmetrically distributed, yTE, =3yTE, and yTE, =2yTE,, and the
increment of phase between two consecutive echoes is identical. Thus, the phase increment

¢ between echoes can be estimated by froms; and s, :
24 =arg(s]s, ), 1.21

where, 5 is the estimate of @, arg(-) denotes the angle between two vectors, and sf is the

complex conjugate of S, .

S, can then be phase corrected based on the estimate of the phase accrual due to field

inhomogeneity, and combined with S, to obtain the estimate of water and fat signal [9]:

Wz%[sl +52e‘”3] 1.22

13



fz%[sl—sze”;]. 1.23

However, a closer investigation of the above conclusion raises another problem. By replacing
S, and s, with the summation of water and fat signals in Equation 1.22 and Equation 1.23, one

will have following representations [9]:
W:%[w(1+e"(”))+ f(l—e"(¢"’3))] 1.24
f:%[w(l—ej(¢‘¢3))+ f(1+ej(""¢3))] 1.25

These equations indicates that the estimate of water and fat signal is correct only when¢3 =g.

The Dixon method provides an idea how the fat-water signal in a single voxel is modeled. It
also explains how distortion occurs in spatial domain or k-space due to phase accrual. Further

analysis on fat-water separation in Chapter 2 is also an extension from Dixon method.

14



CHAPTER 2

METHODS, MATERIALS AND RESULTS

The novel contribution in this work is that the field inhomogeneity correction for radial MRI raw
data was investigated. A reversed readout gradient method based method studied in [12] was
applied to process radial MRI raw data. The numerical integration technique in this work was

modified to Runge-Kutta-Felhberg 5th order method.

Two fat-water phantoms, the Marcol 86 Exxon mineral oil phantom and the peanut oil
phantom, were used in experiments to test separation algorithms. During the experiments,
the peanut oil phantom behaves more sensitive to the field inhomogeneity than the mineral oil
phantom. The comparison of the separation results between the two phantoms demonstrated

the importance of correction both in k-space domain and image domain.

2.1 lterative Least-Squares Estimation Method

As introduced in the previous chapter, the fat water separation is a voxel-wise operation
based on knowledge of the field inhomogeneity and chemical shift. Field inhomogeneity is

one of the major MRI artifacts that noticeably impacts the quality, such as tissue interface or
object geometry, of the final reconstruction. It is caused by B, inhomogeneity, paramagnetic or

ferromagnetic implants [13] [14]. In 2004, Scott Reeder proposed an iterative algorithm to

separate fat and water in a single voxel. This algorithm is called iterative lease-squares

15



estimation method, or simply the IDEAL algorithm. It processes Cartesian k-space data to
generate estimates of the field inhomogeneity map and fat and water images iteratively. The

data acquired originally in Reeder’s work was fast spin echo data with echo duration less than
1ms. The short echo time has advantages including high signal to noise ratio (SNR), Iesst*

effect and favorable contrast behavior [15].

In the IDEAL method, the signal in a individual voxel is modeled as the summation of the fat
signal and water signal with the summation biased by the field inhomogeneity as Equation 2.1

[15]:

M A .
s(t):[ pe ™ je'z’w‘, 2.1
J

j=1

where S(t) is the signal intensity in a single voxel at timet, M is the number of the

chemical species, p; is the image for ] th species, Afj is the chemical shift compared to

water and y is the field inhomogeneity. At the nth echo timet,, Equation 2.1 becomes

[15]:

M . .
s(n)= (ijem"t" Je'z’”"" , 2.2

The reconstruction of fat and water image cannot be conducted until the field inhomogeneity

is corrected. By assuming field inhomogeneity asy/ , the estimated combination of water and

fat signal can be formulated in Equation 2.3 [15]:

5, =5,87 W =3 p gt i, 2.3

16



Forn=1---,N; Equation 2.3 can be formatted using matrix representation listed below [15]:

&R
S, Ciy _d11 Cx _d21 Cyvi1 _dMl r pR n
=R 1
Sy C, _d12 Cy _dzz Cy2 _sz pRI
. 1
: R
55 d d Ay | ©2
S, _ Cinve —0Oipn Gy —Uyy Cun  —Uun ,OI 24
al - 2 ]
S) 1 Cyy d21 Cy M1 Cyv1
I
S, d, C, d,, Cp M2z Cuo ,OR
3
I
~1 L p3
| S4 | div G Oy Cyy duw  Cwn |

where pf is the real part of the jth species, p]I- is the imaginary part of the jth species,

Cin = cos(ZnAfjtn) and d;, = sin(ZnAfjtn).

Equation 2.4 can be simply written as:
S=Ap, 2.5
Thus each species, for example water and fat, can be calculated as following:
p=(ATA)ATS 26

On the other hand, Equation 2.3 can further be analyzed using Taylor expansion to produce

the following [15]:

M

§F =5 -3 (5%, — pld, )= 2mut, Y 57, — ple, )+ Y (pte, —pld, ) 27
n n = ] 7n J7n n J 7 n J7n J7n J7n )

i= =1

and
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| Sh (<R ~1 ~R ~1 (=R ~1
n =5 —Z(,Dj dj, +/’jcjn)=2”A‘//th(/’j Cin —pjdjn)+2(pj dj, +/’1Cjn) 2.8

= = =

Equation 2.7 and 2.8 can be combined together as matrix multiplication:

_§1R_ _glRl Cy —dy Cy —dy - Cyy _dMl__AW |

S, 05 Co O, Cp —dp o Cyp —dy, | Ap]
P I IO Ale

§4R _ glRN Cin _le Can _dZN = Cwy _dMN APZR 29
5, gy Ay Gy dy Gy wi Cwi | AP ’ .
§2I gllz 12 Ci dp, C2 dv,  Cue :
N A,DgR

_§4I i Oy Oy Gy Dy Cyy duv  Cwn | AP:!, |

Equation 2.9 in simple matrix notation is:
S=BY. 2.10

The critical point in IDEAL algorithm is the update of the field inhomogeneity map: Ay, which

is saved in another matrix Y . From Equation 2.9, Y can be solved in Equation 2.11 [15]:

Y =(B"B)"B'S. 2.11

The IDEAL method starts from a initial guess for field inhomogeneity map, y,, then it

iteratively solves for the estimation of the field inhomogeneity map. For a single receive

channele acquisition, the steps of determining field map are described in [15] as following:

1. Estimate the signal from each chemical species using Equation 2.6 and an initial guess for

the field map, . A useful initial guess fory/, is zero (Hz).
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2. Calculate the error to the field map, Ay , using Equation 2.11.

3. Updatey =y, + Ay .

4. Recalculate S using Equation 2.5 with the new estimate of .

5. Repeat the preceding three steps until Ay is smaller than tolerance, for example 1Hz.
6. Spatially filter (smooth) the final field map, y, with a low-pass filter.

7. Recalculate the final estimate of each chemical species image with Equation 2.6.
8. Filter the field map to reduce noise performance.

The previous steps are the original work from Reeder in [15]. It explains the basic procedures

of how the field map is estimated from single-coil Cartesian data.

Although the estimate of different species was also described in the original IDEAL method,
the fat water separation can be improved if the signal is better modeled. This will be

introduced in next section.
2.2 Radial Fat Water Imaging Separation

In order to accurately separate fat and water signal in a single voxel, many factors, such as
field inhomogeneity, echo time, and chemical shift, need to be known. The original IDEAL
method concentrated on image domain distortion, but some k-space based distortion was not
processed. This IDEAL based, but improved, method was introduced by Ethan Brodsky in

2008 [16], which allows signal separation using the actual acquisition time of each k-space
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point, rather than lumping all k-space acquisition times together into the single time of echo.
Compared to [15], [16]primarily corrects distortion occurring in k-space due to chemical shift,

which manifest as larger errors in non-Cartesian readouts.

Similar to the signal model in [15], the MR signal in a single voxel is described in Equation

2.12 [16];
M . .
S(I’,tn ) — (me (r)e|27rAfmtn Jelbw/(r)tn ’ 212
m=1

where, S(r,tn)is the signal at r th location, pm(r) is the signal from mth atr th location,
species Field map, Af, is the chemical shift in ppm for mth species, tis echo time and

l,//(r)is the field map. Prior to any further processing, the field map needs to be removed from

the signal [16]:

M
§(r) — S(r)eiZE[—y/(r)]tn — (me (I,)eiZHAfmt,1 j’ 213
m=1

The demodulated signal is inversely Fourier transformed back into k-space. In k-space, echo

time information is carefully used to refine the signal model as compared to that in original

IDEAL method. Particularly, instead of using a “bulk echo time” t , a new term, 7, is

n?
introduced. The 7, , is associated with each k-space location and with each echo time. It

indicates the relative time delay from a single k-space sampling location where the signal is
being acquired to the center of the current echo time. With this new factor added, the Fourier

transformed signal becomes [16]:
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5(r, . k)= f“ P (k)e'2mtn) 214
=1

This new term, 7, ., describes the acquisition time for each sample point. Rewriting Equation

2.14 as matrix representation gives following Equation 15 [16]:

)

(k) Clldll(k) C21d21(k) CMldMl(k) pl(k)
Cy,d

.(k) B C12d:.L2(k) szd'zz(k) M2 MZ(k) pZ-(k), 2.15

Nm)

)

54(k) ClNd;N(k) CZNd.ZN(k) CMNdMN(k) pz.(k)

i272AF 7

where C = g'?™ " and don (k): e . Equation 2.15 can also simply be represented

as [16]:

S(k)= A p(k), 2.16

So the signal of each species can be solved by [16]:
pk)=AS(k), 2.17
where, A, represents the Moore-Penrose pseudo inverse of A, and [16]
A =(ATA) A 2.18
where, A''is the Hermitian transpose of A, .

The final separation results, ﬁm(r), can be obtained by performing an inverse Fourier
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transform on the k-space estimate p,, (k) o (r) is free of chemical shift effects [16].

2.3 Multipeak Signal Model

It is commonly seen that more that a fatty tissues, or even fat-water phantom, contains more
than one type of lipid proton. For example, chemical shift documented between fat and water
is usually 3.5 ppm, but this is actually an approximation using the primary peak. When
analyzed with nuclear magnetic resonance spectroscopy, multiple lipid proton peaks are
detected around 3.5ppm (about 440Hz at 3.0T). Thus the true chemical shift of fatty
substance will be altered from its primary peak. This fact suggests that prior knowledge from

nuclear magnetic resonance spectroscopy is helpful for better fat water imaging results.

From previous discussion, it is can be seen that the chemical shift information for one species

only appears once as Afj in signal model. If there are multiple peaks; they must be combined

together in some way to achieve more accurate separation.

A multipeak model was presented in [16], where the spectrum of each species is first

normalized such that the area under the spectrum curve is unity [16]:
[a,(f)df =1, 2.19
where am(f )is the spectrum for the m th species as a function of frequency. Equation 2.19

can be plugged into Equation 2.14 to replace the chemical shift frequency with a better

representation to get the Equation 2.20 [16]:
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M = .
S(r 0 k)= Y o (k) [, (£ )20 2.20
m=1 —o0

In reality, the multipeak resonance frequency is modeled as a weighted summation of delta

functions with each centered on one single peak. Suppose the total number of the peaks is P,

and the weighting factor of pth peak in mth speciesisr then all weighting factors sum to

m,p’
unity [16]:
Pm
D =1 2.21
p=1
The signal in Equation 2.20 can be rewritten as [16]:
4 e 127 (ty 47 )
o 127 m n+rk,n
$(rink) =Y oK) 1, e , 222
m=1 p=1

Equation 2.20 can also be viewed as the summation of Fourier transform of all species. The

phase factors ¢ and d defined where in continuous are also changed as [16]:

Con = [ 2 (f )™ df, 2.23

—0

Ay (k)= [a,(f)e*" ™ df, 2.24

In the discrete case, Equation 2.23 and 2.24 [16] become Equation 2.25 and 2.26 [16],

respectively

23



i27Af
C.., :Zr g'?imeh 2.25

doo (k)= r, e, 2.26

p=1

In both cases, the complex coefficient matrix A, is then calculated as in Equation 2.15, and

o (k)can be unmixed using Equation 2.17. Inverse Fourier transformation finally separates

spatial images of each species [16].
2.4 Results of Cartesian Fat-Water Separation

Single channel MRI data, both Cartesian and radial, of a set of phantoms were obtained from
a 3T Achieva MRI scanner (Philips Healthcare, Best, The Netherlands). One mineral oil
phantom and one peanut oil phantom were acquired with a one channel TR head coil in
Cartesian k-space. One mineral oil phantom and one peanut oil phantom were acquired in
radial k-space. One regular water phantom was acquired for alternating frequency encoding

correction for radial scan.

The mineral oil phantom consists of nearly half water and half mineral oil with mineral oil
having less density than water. The peanut oil phantom is made up by mixing water and

peanut oil approximately half and half. Peanut oil is also less dense than water.
2.4.1 Data Collection

Cartesian k-space data were acquired with a conventional multiple fast field echo (mFFE)

sequence on a 3T Achieva MR scanner (Philips Healthcare, Best, The Netherlands). Field of
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view (FOV) was 256 mm X256 mm with 128 phase encode lines and 2 times oversampling

along the readout direction. Bandwidth (BW) was 1.3403 kHz/pixel, which made readout
duration 0.7461 ms (millisecond). Images were acquired with time of repetition (TR) 71 ms
and at 3 echoes with echo times centered at 1.3402 ms, 2.9902 ms and 4.6402 ms,
respectively. Two dynamics of data were scanned with each dynamic of data consisting of 12

slices to more easily calculate SNR.

As explained previously, chemical shift of fat water phantoms was represented using a
multipeak model which required nuclear magnetic resonance spectroscopy analysis. For the
white mineral oil (Marcol 86 Exxon), two peaks, located at 420 Hz and 47 1Hz, were observed
at 3 T. The weighting factors for the two peaks were 0.7482 and 0.2518. For the peanut oil
phantom, only one distinguished peak is observed at 432 Hz. It should be mentioned that
multipeak models are neglected for the peanut oil phantom since the amplitude of other peaks
are too small compared to the major peak. Figure 2.1 illustrates the multipeak model for

mineral oil with water “on resonance”:

0.7482

Water
Fat

0.2518

O0Hz 420 Hz 471 Hz Hz

Figure 2.1. Multipeak model at 3 T for the mineral oil phantom. Water is “on resonance”; Fat
has two peaks located at 420 Hz and 471 Hz with amplitude weighting 0.7482 and 0.2581.
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2.4.2 Separation Results and Analysis

The Cartesian k-space data of the mineral oil phantom is displayed in Figure 2.2:

echo 1: real part cho 1: imaginary part  echo 1: magnitude

echo 2: real part cho 2: imaginary part echo 2: magnitude

echo 3: real part cho 3: imaginary part  echo 3: magnitude

Figure 2.2. Mineral oil Cartesian k-space: Panel (a) through (d) are real part, imaginary part,
magnitude and phase information for the first echo; Panel (e) through (h) are for second echo;
Panel (i) through (1) are for the third echo.

Similarly, the Cartesian k-space data of peanut oil is shown in Figure 2.29:
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echo 1: real part cho 1: imaginary part  echo 1: magnitude echo 1: phase

(b)

echo 2: real part cho 2: imaginary part  echo 2: magnitude

echo 3: real part cho 3: imaginary part  echo 3: magnitude

Figure 2.3. Peanut oil Cartesian k-space: Panel (a) through (d) are real part, imaginary part,
magnitude and phase information for the first echo; Panel (e) through (h) are for second echo;
Panel (i) through (1) are for the third echo.

For both phantoms, three echoes of data were collected.

Figure 2.3 shows the real part, imaginary part, the magnitude and the phase information of

the mineral oil phantom across all the echo times. Due toTz* effect, slight signal drops can be
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observed in the real part of the signal. However, the acquisition readout had a short duration,

which created negligibIeT; degradation:
echo 1: real part echo 1: imaginary part echo 1: magnitude

echo 2: real part echo 2: imaginary part echo 2: magnitude

echo 3: real part echo 3: imaginary part echo 3: magnitude echo 3: phase

Ef; S
L

e

(k)

Figure 2.4. Mineral oil Cartesian reconstruction: Panel (a) through (d) are real part imaginary
part, magnitude and phase information for the first echo, Panel (e) through (h) are for the
second echo; Panel (i) through (1) are for the third echo.

Similarly, Figure 2.5 shows the real part, the imaginary part, the magnitude and the phase

information for the peanut oild phantom across all the echo times:
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Figure 2.5. The peanut oil phantom Cartesian reconstruction: Panel (a) through (d) are real
part imaginary part, magnitude and phase information for the first echo, Panel (e) through (h)
are for the second echo; Panel (i) through (1) are for the third echo.

Before processing Cartesian k-space fat-water data, knowledge of field inhomogeneity map is
needed since it impacts both fat and water signals within any voxel. The field inhomogeneity
map is estimated using the IDEAL algorithm [15] which iteratively estimates the true value of
the filed map at each spatial location in the image domain. The algorithm starts with an initial
guess of the field map, typically zero, and then it explicitly updates the fat-water estimates at
each iteration based on the new field map information just estimated. The stop criterion in this
work was set 1 Hz as the change of field map magnitude between two consecutive iterations.
A mask was created such that the background region is treated excluded. The filed map
magnitude is measured in the unit of Hertz. The detailed algorithm for field map estimate for
Cartesian data is explained in [15] and also previously in this work. Figure 2.6 shows the

field inhomogeneity of the Cartesian mineral oil phantom data:
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field inhomogeneity Hz

Figure 2.6. Estimated field inhomogeneity map for Cartesian mineral oil data using IDEAL
method.

In Figure 2.6, it can be observed that there is a gap along the interface between water (bottom
layer) and fat (top layer). Frequency from fat side rises about 50 Hz across the border to the
water side. On the other hand, the field inhomogeneity map behaves as a spatially slowly
varying function with dark regions representing low frequency and light regions corresponding
to high frequency. The range of the field inhomogeneity is about 60 Hz. On the other hand, we
do not see fat frequency offset (about 440 Hz) in this field inhomogeneity map, which shows

the acquisition is short enough to avoid phase wrapping problem from occurring.
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Likewise, Figure 2.7 shows the field inhomogeneity map for the peanut oil phantom solved by

the IDEAL method:

field inhomogeneity Hz

460

450

440

Figure 2.7. Estimated field inhomogeneity map for Cartesian peanut oil data using IDEAL
method.

The estimated field inhomogeneity map for the peanut oil phantom also changes smoothly
across the FOV. It behaves as a bowl-shaped function with central portion lower than the

edges. The total range of the field map variation is about 80 Hz.

Aside from the field inhomogeneity map, another factor considered in this work is the time
point at which each sample in k-space is acquired. This requires information from two sources:

first, the center of each echo time; second, 7 ,,, the time delay from the center of the echo
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time for each k-space sampling location. The centers of echo time for our Cartesian
experiment are 1.3402 ms, 2.9902 ms and 4.6402 ms, and it is known that the acquisition
time for each echo is 0.7461 ms. So it is straightforward to conclude that the t,, ranges

from -0.37305 ms to 0.37305 ms as illustrated in Figure 2.8:

T map

0.37306 ms

0 ms (center of echo)

0.37305 ms

Figure 2.8. 7, ,map showing sampling time lag, ranging from -0.37305ms to 0.37305ms,
compared to the center of the k-space.

It should be pointed out that the mineral oil phantom and the peanut oil phantom share same

7, , map because both were acquired using the same pulse sequence.

The final reconstruction is formed after field inhomogeneity and chemical shift effects are

corrected. Figure 2.9 shows the fat-water separation for the Cartesian mineral oil phantom:

32



water: w/o « and w/o ‘f fat: w/o r and w/o ‘+'1 water + fat: w/o r and wio ¥ fat%: wio r and w/o 'P
Gap caussd by e Fat signal fraction

’ 8 chemical shiff = =2, 1 Lo 4 before correction s
ljs . |:° ) S P () ) - o (d)
! s == A e, )

02
°

water: w/ r and wio ‘1'1 fat: w/ r and wio ¥ A water + fat: w/ r and wfo 4 %: wl © and w/o ‘i"

water: w/o t and w/ b s fat: w/o t and w/ ¥ - water + fat: w/o t and w;' v fat%: wio « and w/ :
8 ]
s (i 6 (j
R §!
0.2

water: w/ r and w/ ¥ fat: w/ v and w/ ¥ water + fat: w/ « and w/ ¥ fat%: w/ t and w/ 'P
! Chemical shift Fat signal fraction

1
l:‘ s 8 after correction gy after CDrrecm:n
)6 L] 6
(m) (n) I: (0)
jo4 Mo 4 .

02 0.2

Figure 2.9. Mineral oil fat-water separation results from a Cartesian acquisition: Panel (a)
through (d) is water signal, fat signal, summation of fat and water signal, and fat signal

percentage when there is neither 7, map correction nor field inhomogeneity correction. Panel

(e) through (h) is water signal, fat signal, summation of fat and water signal, and fat signal
percentage when there is 7, A map correction but no field inhomogeneity correction. Panel (i)

through (l) is water signal, fat signal, summation of fat and water signal, and fat signal
percentage when there is noz,  map correction but field inhomogeneity correction. Panel (e)

through (h) is water signal, fat signal, summation of fat and water signal, and fat signal
percentage with both 7, map correction but and field inhomogeneity correction.

It can be observed in Figure 2.9, especially via fat signal percentage (panel (d) through (p)

from top to bottom), that improvement occurs in fat signal percentage when 7, map

correction and field inhomogeneity correction are both applied. Panel (p) shows a higher fat

signal fraction, particularly in the top area of the phantom, than its three equivalents from
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panel (d) to panel (i) vertically. On the other hand, the chemical shift can be observed in panel
(c), where a gap exists between fat and water along their interface. This displacement,

caused by chemical shift artifact, is corrected in panel (g) through panel (o) with panel (o)

giving the best result when both 7, map and field inhomogeneity artifacts are corrected.

Performance of fat-water separation is measured by observing the average fat signal fraction

for each fat pixel. The fat signal fraction is listed in Table 2.1:

Table 2.1. Fat signal percentage with different corrections for the Cartesian mineral oil
phantom.

corrections | Wio 7, ;wlo ¥ | W/ T, ;wlo | wio T, swl Y | W oT W P

Fat Signal Percentage 88.44% 89.00% 89.69% 90.35%

From Table 2.1, it can be seen that field inhomogeneity correction is a more dominant factor in
fat-water signal reconstruction than 7, ., map correction. The fat signal fraction increases
from 88.44% to 89.00% suggests that 7, . correction might have limited effect in

reconstruction process especially when readout duration is short. On the other hand, the fat

signal fraction improves from 88.44% to 89.69% due to field inhomogeneity correction.

However, when both field inhomogeneity correction and 7, |~ correction are applied, the fat

signal percentage increases from 84.55% to 90.35%, which is the best result compared to

either correction individually.

Figure 2.10 shows chemical shift correction seen as 1D profile. It shows the comparison

between uncorrected and corrected data. Adjustments include both the 7z, map correction

and the field inhomogeneity correction:
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Figure 2.10. A gap caused by chemical shift between fat and water in the mineral oil phantom
depicted by blue dotted curve is corrected in red curve in which both the field inhomogeneity
and the chemical shift are corrected.

Figure 2.11 shows the final fat-water separation for the Cartesian peanut oil data:
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Figure 2.11. Peanut oil fat-water separation results from a Cartesian acquisition: Panel (a)
through (d) is water signal, fat signal, summation of fat and water signal, and fat signal

percentage when there is neither 7,  map correction nor field inhomogeneity correction. Panel

(e) through (h) is water signal, fat signal, summation of fat and water signal, and fat signal
percentage when there is 7, ;map correction but no field inhomogeneity correction. Panel (i)

through (l) is water signal, fat signal, summation of fat and water signal, and fat signal
percentage when there is noz, ,map correction but field inhomogeneity correction. Panel (e)

through (h) is water signal, fat signal, summation of fat and water signal, and fat signal
percentage with both 7, map correction but and field inhomogeneity correction.

Compared to the fat-water separation the results of the mineral oil phantom, the peanut olil
phantom substantiate the robustness of the separation technique. For example, it is clear to

see the enhancement of fat signal fraction in the mineral oil phantom when one compares
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panel (d) with panel (p). The improvement in fat signal percentage with different corrections is

listed in Table 2.2:

Table 2.2. Fat signal percentage with different corrections for the Cartesian peanut oil
phantom.

corrections | Wo 7, ;wlo P | w/ 7, swlo | wio 7, sw Y| w7 Wy

Fat Signal Percentage 79.17% 79.14% 84.36% 84.53%

Table 2.2 also confirms that field inhomogeneity correction has more significant impact on the

quality of fat-water separation. Although fat signal percentage decreases a small portion
when only 7, map correction is applied, the fat signal percentage has its maximum value
when both field inhomogeneity and 7, , map correction are performed. It should also be

emphasized that the gap between fat and water in panel (c) also disappears in panel (0) due

to 7, , map correction.

This example also shows the importance of using two phantoms instead of one. Compared to
the mineral oil phantom, the peanut oil phantom is more sensitive to the underlying field
inhomogeneity, which makes the field inhomogeneity correction contributes more

improvement in signal reconstruction than the mineral phantom.

Likewise, the gap along the fat water interface is mitigated in Figure 2.12:
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Figure 2.12. A gap caused by chemical shift between fat and water in the peanut oil phantom
depicted by blue dotted curve is corrected in red curve in which both the field inhomogeneity
and the chemical shift are corrected.

In Figure 2.11, the blue curve shows the profile of the reconstructed fat-water image for
peanut oil phantom along its midline vertically. It can be seen that after correction for field

inhomogeneity and chemical shift, the gap rises significantly in the red curve compared to that

in blue curve.

The results show that the IDEAL method is a feasible way to correct image degradation
caused by the field inhomogeneity, but the method proposed by Brodsky in 2008 [16]
extended IDEAL fat-water signal separation by adding t,, map correction. Further

processing, which corrects data corruption associated with the time point at which one
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location is sampled, is performed in k-space. Experimental results show that the IDEAL
method combined with Brodsky’s method [16] is an effective procedure to perform Cartesian

fat-water data separation.

2.5 Results of Radial Fat-Water Separation

Single channel MRI data, both Cartesian and radial, of a set of phantoms were acquired on a
3T Achieva scanner (Philips Healthcare, Best, The Netherlands). The same phantoms, one
mineral oil phantom and one peanut oil phantom, were used for both the Cartesian and the

radial trajectories.

2.5.1 Data Collection

Radial k-space data were acquired using a radial sampling scheme of 201 projections equally
spaced over 180° on a 3T Achieva MRI scanner (Philips Healthcare, Best, The Netherlands).
Data were acquired with alternating frequency encode (readout) direction as illustrated in
Figure 2.12. The same phantoms, mineral oil phantom and peanut phantom, were scanned

as previously discussed. Field of view (FOV) was 256 mm X256 mm with 256 readout
samplings evenly distributed symmetrically about DC (k, = 0,k, =0 along each projection.

Bandwidth (BW) in readout direction is 1.3403 kHz/pixel, which in turn made readout duration
0.7461 ms. Data were acquired with time of repetition (TR) equal to 75 ms and at 3 echo
times centered at 1.3402 ms, 2.9902 ms and 4.6402 ms, respectively. Two dynamics of data
were scanned, to calculate SNR, with each dynamic consisting of 12 slices. In addition to the
fat-water phantoms, a Philips picture imaging quality test (PIQT) phantom was also used to

evaluate the correction.
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2.5.2 Alternating Frequency Encoding Correction

As mentioned previously, the radial MRI data were sampled with readout direction changing in
an alternating pattern. A primary challenge associated with this sampling strategy is the
imperfect alignment of each sampled diagonal with the center of k-space. Gradient
imperfections and timing delay errors cause the sampled trajectory to shift from the intended
trajectory [17]. The shift changes as the readout direction is rotated. The opposite readout

direction causes the shift to be in opposite directions as also illustrated in Figure 2.13:

k_y /
\ / Center of k-space

>

kx
Aky
/ \ \ Center of the readout line

Figure 2.13. Left part of the figure shows the radial sampling trajectory. On the right is an
exaggerated explanation of the red window. The center of each readout line, the bold black

dot, is shifted away from the center of the k-space by AK, .

Prior to image reconstruction, the alternating readout direction artifact needs to be corrected.
In particular, the artifact is caused by the shift occurring in k-space, so the correction aims at
removing the undesired shift in k-space such that all projections are exactly lined up at the

center of the k-space.

According to the Fourier Shift theorem, translation in one domain corresponds to a linear
phase shift in the other domain. In this case, the shift artifact exists in k-space, so it is

equivalent to perform complex multiplication in the spatial domain. This suggests the artifact
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of k-space center misplacement can be compensated by phase correction in the spatial

domain. The shift to be corrected is illustrated in Figure 2.12 depicted as Ak, , and it is

X ?
assumed that the alternating shift artifact happens symmetrically around the center of the

k-space.

In this work, directly solving for Ak, is not straightforward since the location of the center of the

k-space is unknown. Instead, 2Ak, was estimated rather than solving Ak, directly, To do that,

a projection acquired with opposite readout gradient is needed. As described previously, over
200 projections are evenly sampled across 180° (201 for the fat-water phantoms, and 256
for the PIQT phantom), so it is reasonable to make following approximation: For the nth
readout in radial k-space, its reversed gradient approximation can be estimated by averaging
its two nearest neighbors. We assume that readout lines sampled with reversed readout
gradient should have same amount of shift from the center of the k-space, and the amount of

shift about the center of the k-space is symmetrical. The total shift between the original

projection and its reversed should be 2Ak, .This is illustrated in Figure 2.14:

Nearest neighbor pair of
nth projection

Center of k-space 7
‘; - P ___ -~ nth projection

- —

‘t/// > -~

Average of nearest pair

Figure 2.14. The shift between nth projection and its reversed readout approximation is

2Ak

X
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The phase change in the spatial domain caused by the misalignment shift 2Ak, in k-space

along a single projection can be written as following:

S(k + 24k, ) = F{s(x)e 274} 2.27

where F{-}is the Fourier transform operator, and S(k)is the Fourier transform of S(X).

Inverse Fourier transformation of each projection in k-space produces spatial projections
arranged as a sinogram. For each single projection in sinogram space, the oppositely shifted
projection is approximated using the average of the nearest neighbors. The complex

exponential terms g'2*(24k)

can then be computed by taking the ratio of the original projection
line to its approximation with opposite shift. The phase terms, 27zx(2Akx), are therefore
straightforward to calculate as follows. It can be seen that the phase terms behave as a linear

function of position in the spatial domain along the projection, and 2Ak, is the slope of the

linear function. A matrix representation describing the relation between the positions and

parameters is shown in Equation 2.28:

yl l Xl gl
1 X |m
|7 % { }r 2 2.28
: b :
Y, 1 % &y

where, Y, is the phase at Nnth position X, , X, is nth position along projection direction, m

andb are the slope and intercept, respectively, and ¢, is the noise. A simplified format can be

written as:

Y = XA+ E. 2.29
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The estimate of A, based on least square criterion, is

A=(XTWx )XWy, 2.30

A~

where 7 is the first element of 4, and W is a diagonal matrix that treats anything less than

10% of the signal peak as noise

In this application, only the slope information is related to Ak,, and there is no further use of
intercept information. Figure 2.15 shows the linear estimate of the phase difference in the

spatial domain:

linear fitting for phase difference

5 T T T T T
& phase difference
4r — fitting line 1
3 - .
«— slope = -0.01554
2t _ Intercept = 0.21905 .
E 1 i e |
o
o
0 (0 > S
At = ]
21 4
3tk 4
_4 1 1 1 1 1
-300 -200 -100 0 100 200 300

Figure 2.15. The linear fitting for phase difference between a spatial domain projection and its
reversed approximation.
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Figure 2.15 shows an example of linear fitting for one single projection. The blue circles
indicate the phase difference as a function of position. The black solid the line is the fit based

on the least square approach described above.

The linear fitting solves the slope and intercept, and only the slope information is needed for

AX, estimate. After AX, correction for k-space shift artifact also takes place in spatial domain.

Each projection with AX, displacement in k-space is multiplied by a phase correctorejz”x(’AkX).

The corrected radial k-space of the PIQT phantom is shown in Figure 2.16:
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Figure 2.16. Comparison between original (panel (a)) and corrected (panel (b)) radial
k-space of PIQT phantom. Zoom-in of the highlighted area is displayed in panel (c) and panel
(d).

Panel (a) shows the radial k-space data without any correction. The highlighted area is shown
in panel (c) where a sawtooth pattern is clearly displayed around direct DC (k, =0) area.
Panel (b) shows corrected radial k-space data with apparent improvement, for example better

smoothness, around DC area. The zoom-in of highlighted area in panel (b) is shown as panel

(d). Figure 2.17 shows the sinogram of original and corrected k-space:
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original corrected

Figure 2.17. Comparison between sinogram from original k-space data on the left and
sinogram from corrected k-space data on the right.

Unlike the noticeable difference in k-space, there is nearly no change visible in the sinogram
as shown in Figure 2.17. This is because only phase correction is applied to sinogram, which

means only “phasors” are multiplied with sinogram data.

Reconstruction is completed using NUFFT [18] toolbox developed by Fessler. Results are
compared between the original k-space data and the corrected k-space data. Signal to noise
ratio (SNR) is also calculated by taking the ratio of the signal within the orange highlight

against the noise from green highlight. The illustration is shown in Figure 2.18 below:
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original corrected

Figure 2.18. Improvement is observable within red circle with white spot inside removed.

The SNR in left panel is increased from 58.2 to 58.5 in right panel. Similarly, SNR defined as
signal from the yellow ROI to noise from the green ROI improves from 0.55 to 0.60. This is

shown in Figure 2.19:

original corrected

Figure 2.19. SNR improvements in fat-water phantom after k-space misalignment correction.

2.5.3 Separation Results and Analysis

Like Cartesian results that are shown in previous section, separation results for radial MRI

fat-water data are also displayed with k-space data, reconstructed image, 7,,, map, field
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inhomogeneity map, as well as fat signal fraction. Figure 2.20 shows the radial k-space data

of mineral oil phantom:

echo 1: real part echo 1: imaginary part echo 1: magnitude _QChIO 1: phase

(@) (b)

echo 2: real part echo 2: imaginary part H rrlagrlit_ude

il

echo 3: real part echo 3: imaginary part echo 3: magnitude

Figure 2.20. The mineral oil phantom radial k-space: Panel (a) through (d) are real part,
imaginary part, magnitude and phase information for the first echo; Panel (e) through (h) are
for second echo; Panel (i) through (I) are for the third echo.

It should be mentioned that the magnitude displayed in Figure 2.20 is based on a log scale.

Figure 2.21 below displays the image reconstruction results of radial mineral oil data:
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__ech_o1: real part echo 1: imaginary part echo 1: magnitude echo 1: phase

echo 2: real part echo 2: imaginary part echo 2: magnitude echo 2: phase

(e) (f) (9) (h)

echo 3: real part echo 3: imaginary part echo 3: magnitude echo 3: phase

(i) () (k) ()

Figure 2.21. The mineral oil phantom radial reconstruction: Panel (a) through (d) are real part
imaginary , magnitude and phase information for the first echo, Panel (e) through (h) are for
the second echo; Panel (i) through (I) are for the third echo.

Figure 2.22 and 2.23 show the results for the peanut oil phantom. The radial k-space data are

displayed in Figure 2.22, and the reconstructed image data are demonstrated in Figure 2.23.
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echo 1: real part echo 1: imaginary part echo 1: magnitude e_cho 1: phase

) (c) :
— "3' ——

echo 2: imaginary part echo 2: magnitude

®

echo 3: real part echo 3: imaginary part echo 3: magnitude

(i) j (k)

Figure 2.22. The peanut oil radial k-space: Panel (a) through (d) are real part, imaginary part,
magnitude and phase information for the first echo; Panel (e) through (h) are for second echo;
Panel (i) through (1) are for the third echo.
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echo 1: real part echo 1: imaginary part echo 1: magnitude echo 1: phase

(a) ) () )

echo 2: real part echo 2: imaginary part echo 2: magnitude echo 2: phase

(e) (h)
w.d L

~ echo 3: real part echc 3: imaginary part ( cchu 3: magnitude ) echo 3: phase

| .

Figure 2.23. The peanut oil phantom radial reconstruction: Panel (a) through (d) are real part
imaginary , magnitude and phase information for the first echo, Panel (e) through (h) are for
the second echo; Panel (i) through () are for the third echo.

7, map is shown in Figure 2.24:

1L

6

Figure 2.24. 7, 'map for radial sampling scheme.

Both the mineral oil phantom and the peanut oil phantom share the same radial sampling
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scheme, which is illustrated in Figure 2.24. Thez, 'map is arranged in the same as raw

k-space data. Each column is associated with a single projection in k-space.

The estimated field inhomogeneity map is similar to that estimated for the Cartesian
acquisition, which is expected because the underlying field map nearly remains consistent.
Therefore, the field map is very similar as Cartesian reconstruction. Because estimating field
map for radial data is formidable, this work used the field map from the Cartesian estimate for

radial data. For the mineral oil phantom, the filed map is displayed in Figure 2.25:

field inhomogeneity Hz

- 40

Figure 2.25. Estimated field inhomogeneity map for the mineral oil phantom.
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For the peanut oil phantom the field map is shown in Figure 2.26:

field inhomogeneity Hz

460

450

440

Figure 2.26. Estimated field inhomogeneity map for the peanut oil phantom.

Figure 2.27 shows separation results of mineral oil phantom. The fat signal fraction is an

indicator of how effective the corrections are:
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Figure 2.27. The Mineral oil fat-water separation results from a radial acquisition: Panel (a)
through (d) is water signal, fat signal, summation of fat and water signal, and fat signal

percentage when there is neither 7,  map correction nor field inhomogeneity correction. Panel

(e) through (h) is water signal, fat signal, summation of fat and water signal, and fat signal
percentage when there is 7, ,map correction but no field inhomogeneity correction. Panel (i)

through (l) is water signal, fat signal, summation of fat and water signal, and fat signal
percentage when there is no 7, ,map correction but field inhomogeneity correction. Panel (e)

through (h) is water signal, fat signal, summation of fat and water signal, and fat signal
percentage with both 7, -map correction but and field inhomogeneity correction.

Similar features can be observed for radial data separation. Panel (d) through (p) vertically

demonstrate clear improvement in fat signal fraction as a precise separation indicator. Fat

signal percentage becomes more realistic when z,  map correction and field inhomogeneity

correction are both involved in correction procedure. Panel (p) shows the best fat signal
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percentage level amongst all. The fat signal fraction improvement increase more significantly

when field map is applied than when 7, ‘map is applied. On the other hand, the chemical

shift correction in radial case does not have as much improvement as in Cartesian case. The

quantitative improvement due to each correction is listed in Table 2.3:

Table 2.3. Fat signal percentage with different corrections for the Cartesian mineral oil
phantom.

corrections | Wio 7, ;wlo Y | w/ 7, swlo | wio 7, swl Y| woT Wy

Fat Signal Percentage 91.60% 92.96% 91.66% 93.02%

It can be seen from Table 2.3 that each individual correction contributes to signal
reconstruction quality. Although signal strength increases less when only field inhomogeneity

correction is applied than when only 7, =~ correction is applied, there is no significant

difference in signal strength improvement. The fat signal percentage improves to it maximum

value when both field inhomogeneity correction and 7, correction are performed.

A 1D projection of the signal shows no significant improvement in chemical shift correction

comparing panel (c) and panel (0):
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Figure 2.28. 1D projection profile of normalized signal strength of the mineral oil phantom
along the center cut across the interface of the fat and water of the object.

Similarly, the separation result of peanut oil is shown in Figure 2.29:
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Figure 2.29. Peanut oil fat-water separation results from a radial acquisition: Panel (a)
through (d) is water signal, fat signal, summation of fat and water signal, and fat signal

percentage when there is neither 7,  map correction nor field inhomogeneity correction. Panel

(e) through (h) is water signal, fat signal, summation of fat and water signal, and fat signal
percentage when there is 7, ,map correction but no field inhomogeneity correction. Panel (i)

through (l) is water signal, fat signal, summation of fat and water signal, and fat signal
percentage when there is no 7, ,map correction but field inhomogeneity correction. Panel (e)

through (h) is water signal, fat signal, summation of fat and water signal, and fat signal
percentage with both 7, -map correction but and field inhomogeneity correction.

In Figure 2.29, more significant improvement occurs with the peanut oil than mineral oil. This
particularly is noticeable from panel (d) through panel (p) as last column of the diagram. This
also suggests that the peanut oil phantom experienced a more serious field inhomogeneity
compared to the mineral oil phantom. The quantified fat signal percentage with each

correction is listed in Table 2.4:
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Table 2.4. Fat signal percentage with different corrections for the Cartesian peanut oil

phantom.

corrections | W/o 7, ,; w/o

w/ T, wio

wlo 7, ;W

w7 WY

Fat Signal Percentage 82.44%

82.55%

88.18%

88.29%

Table 2.4 shows clear signal strength increase as more corrections are included. Like results

from Cartesian separation, the 7, =~ correction does not significantly improve fat signal

percentage compared to field inhomogeneity correction. However, when both 7, = correction

and field inhomogeneity correction are performed, the fat signal percentage increases from

82.44% to 88.29%. This is displayed from panel (d) through panel (p) in Figure 2.29

The chemical shift in panel (c) is corrected in panel (0) in Figure 2.29, which is more

distinguished in a 1D projection shown in Figure 2.30:
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Figure 2.30. 1D projection profile of normalized signal strength of the peanut oil phantom
along the center cut across the interface of the fat and water of the object.

The peanut oil phantom shows more improvement in chemical shift correction than mineral oil

phantom. There is almost no gap after field inhomogeneity correction and t,, map

correction for the red curve in Figure 2.30.

2.5.4 Reversed Readout Gradient Correction of Field Inhomogeneity

In the previous sections, reconstruction results were shown for the fat-water phantoms

acquired with radial trajectory. Prior knowledge of field map is calculated based on a separate

Cartesian acquisition. However, the radial k-space data should itself contain information

about the field inhomogeneity.
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It was proposed by Chang in 1992 [12] that field inhomogeneity artifacts can be corrected

along frequency encode direction if the readout gradient is reversed. When field
inhomogeneity ABO(X, y,z) is present at some location (X, y,z) in image space, the

intra-slice image distortion that occurs along frequency encode direction in image space is

shown in Equation 2.31 [12]:

X =X+——-+2 2.31

where X is the true location of a signal in spatial domain, and X; is the distorted location due

to inhomogeneity. When a reversed readout gradient is applied along the same frequency

encode line, the new position becomes [12]:

X, N aABy(X)
G

X

) 2.32

where « is the ratio of amplitude between the reversed readout gradient and the original.

On the other hand, the signal intensity at position x; and x, can be calculated as [12]:

i (x,)= i(x)% 233
L (x, )= i(x)%(z 234

where, il(Xl)and iz(xz)are image intensities at distorted location X;and X, , andi(X)is the
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image intensity at undistorted location X. The distortion in image space caused by field

inhomogeneity is illustrated in Figure 2.31 [12]:

Bo + B.(z) :

(a)

By + Be(z) + 2G; :

—_—
o
—

By + B.(z) — 2Gy :

Figure 2.31. Image distortion caused by field inhomogeneity with G, as readout gradient: (a)
Static field B, superimposed with a disturbance B, (x); (b) Field inhomogeneity causes image
distortion AX defined as the displacement from its original location X, to X, ; (c) If the readout

gradient is reversed, the distortion, as indicated as AX, for X, will occur at X, .
In Figure 2.31, when G, is reversed to — G, , the displacement of the true signal changes the

location from X, to X,. This suggests that along the frequency encode direction the true

signal location should be somewhere between the signals with positive and reversed readout

gradient.

Equation 2.25 through Equation 2.27 establish a relationship between the true image signal
and the displaced signals caused by field inhomogeneity. This suggests that the true signal,

or the undistorted image, can be estimated based on the information collected using readout
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gradients reversed with respect to each other. Especially, when a = —1, the true location of

the undistorted signal, x, can be estimated as [12]:

X= , 2.35

and the true signal intensity i(x) at location x can be estimated as [12]:

i(x) = 21, (%, )i (x;)
ANCARRE) 3

Equation 2.35 concludes that as long as x; and x, are known, the true location x can be
estimated. In addition, it should be pointed out that every x; is paired with a particular x,,
although there is no straightforward information regarding how they are paired with each other.
However, conclusion in Equation 2.36 can be solved from Equation 2.33 and Equation 2.34

by applying the chain rule [12]:

&, _ i) 2.37
Xm iZ(XZ)

Equation 2.37 is an ordinary differential equation (ODE) which can be solved with boundary

conditions.

The Runge-Kutta-Fehlberg 5th order (RKF45) method [19] with adaptive step size was
chosen as the numerical integration technique. The numerical method solves the position
pairing from the original k-space data and from the average of its neighbours. For each
projection pair, the original and the reversed, the integration method is applied to estimate the

true location and intensity for each spatial domain projection sample. Figure 2.32 shows the
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estimate of unbiased signal using RKF45 method:

orginal
reversed
corrected

Figure 2.32. Estimate of unbiased signal (black curve, corrected) based on original signal
(blue curve, original) and the reversed (red curve, reversed) using RKF45 method. Zoom-in
window shows that the corrected signal is situated between the original and the reversed.

In our experiment, as illustrated in Figure 2.12, the radial readout lines are acquired in
alternating directions. Since 201 readout lines are sampled, it is sufficiently precise to
simulate the revered gradient approximation of a single readout line by averaging its closest
neighboring pair, as illustrated in Figure 2.13. The two 1D data vectors, original k-space and
its reversed readout approximation, were then both 1D Fourier transformed into the spatial

domain (sinogram space).

In Figure 2.32, the “original” blue curve indicates one single projection in the original sinogram
degraded by field inhomogeneity; the “reversed” red curve represents the same projection

experiencing a reversed readout gradient; the “corrected” black curve is the estimated
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trajectory of the unbiased projection with field inhomogeneity removed. A zoom-in window
clearly shows the displacement, for blue and red curves from the black curve. The reversed
readout gradient causes the blue curve and the red curve to locate on different sides of the
black curve. It is also noticeable that the corrected curve lies almost exactly in the middle of
original blue curve and reversed red curve, which is supported by Equation 2.35 and Equation

2.36.

Since the frequency encoding direction in radial MRI is the same as that for one single spatial
projection according to the Fourier Projection-Slice Theorem, the field inhomogeneity
correction of this approach is essentially operating in sinogram space. Figure 2.33 displays

the improvement of a sinogram after RKF45 based correction is applied:

original sinogram

V"

corrected sinogram

e

Figure 2.33. Comparison between sinogram before (top) and after (bottom) RKF45 correction
is performed.
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It is easily observed in Figure 2.33 that the corrected sinogram is smoother than the original
because the zigzag pattern in the original sinogram (top) is significantly reduced in the

corrected one (bottom).

After applying the correction to each projection and obtaining a corrected sinogram, the final
image is reconstructed using NUFFT [18]. The numerical integration needs boundary
conditions, which is implemented by thresholding to exclude the background region in each
projection. Estimation of the final corrected projection samples was achieved using spline
interpolation [20]. The method proposed in [12] did not account for complex numbers, so
phase was estimated by averaging the real and the imaginary parts for the original data and

its reversed readout approximation. The reconstruction results of a PIQT phantom is shown in

Figure 2.34:

r original \ corrected

Figure 2.34. Comparison between original and corrected reconstruction for PIQT phantom.

Improvement is evident around the holes highlighted with white rectangles. Sharper features
can be observed in the corrected image compared to the original image. This shows RKF 5th

order integration with spline interpolation can improve the image reconstruction quality, which

65



was originally corrupted by the field inhomogeneity

2.6 Discussion

Fat-water separation has many pitfalls that require attention. Artifacts arise from many
sources such as k-space sampling scheme, field inhomogeneity or chemical shift. In general,
MRI image reconstruction consists of three major phases: preprocessing, reconstruction and
post processing. A typical example of preprocessing in this work is the correction of artifact
caused by alternating readout direction in this work. The raw radial k-space data are acquired
with alternating readout direction, which causes k-space frequency encode lines to be
misaligned with the center of the k-space. It should be mentioned alternating scan scheme
was employed because there will be significant smearing of signal intensity across the FOV in
the lipid image acquired with the radial technique if the standard scan direction is used [21].
Although reconstruction without shift correction yields acceptable image quality, results
presented here show that improvements can still be made when phase correction is
performed in the spatial domain. It should also be noticed that the feasibility of using Fourier
shift theorem in this case is because same phase multiplication is imposed on all sampling
positions along a projection in image space. Whereas in readout reversed gradient correction
for radial MRI data, the displacement varies as location in image space changes. For image
reconstruction, data sampled with radial trajectory are in general more difficult to process than
those sampled with Cartesian trajectory, since more procedures, such as regridding, density
correction and interpolation, are involved. Using the IDEAL method [15] to separate fat and
water for in vitro phantoms is rather straightforward, but conducting same work for radial data
is not as easy as for Cartesian data. One of the most challenging parts for radial data
separation is how to accurately estimate the field inhomogeneity directly from raw data. In

specific, the radial data are acquired based on line integral, or the summation of density along
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a line, of the object. This makes it difficult to correct the field inhomogeneity corruption of the
raw data. The reversed gradient method provides a way of correcting field inhomogeneity for
radial data, but the pairing procedure is extremely sensitive to noise. Data need to be
carefully processed. Extra steps, such as low-pass filtering before numerical integration and
spline interpolation after numerical integration, are used to increase the robustness of the
algorithm, although some resolution in spatial domain could be sacrificed. In addition,
although the reversed gradient method has shown encouraging results for radial MRI raw
data correction, using it to retrieve precise field map is still under investigation. Although some
experiments have been conducted in this work, reliable field map estimation still relies on the

IDEAL method.

In conclusion, the IDEAL method provides a reliable way to estimate field map for data
sampled with Cartesian trajectory. Radial fat-water data correction needs accurate field map
information to produce acceptable reconstruction results. Many detailed issues, such as
direct estimation of field map for radial MRI data, are still open and are worthy of further work.
On the other hand, non-Cartesian fat-water separation is a broad topic with which there is
many directions to extend. It can be combined with other topics, some of which will be

introduced in next chapter,
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CHAPTER 3

FUTURE WORK

3.1 Future Work

Although Cartesian fat-water separation is an essential part of this work, radial MRI is the
focus, especially with respect to future applications. Possible future work that will be benefit
for clinical applications includes: 1 auto-calibrated parallel imaging; 2, sliding window helical

spiral using golden angle radial acquisition with a continuous moving table.

In 2010 [22], Lin proposed an offline method, GRAPPA operator for wider radial bands
(GROWL), for the reconstruction of undersampled radial MRI data. This GRAPPA [23] based
method expands undersampled radial data to cover entire k-space using only the fully
sampled central portion of the k-space (Nyquist circle) to estimate the GROWL operator. The
expansion using the GROWL operator occurs to each radial line making them wider radial
bands. Although the edges of k-space violate the Nyquist sampling criterion, the fully sampled
signal inside the smaller Nyquist circle (Figure 3.1a) is sufficiently informative to calibrate the
GROWL operator. The data after self-calibration will become fully sampled across the entire

k-space. The basic principle of GROWL is depicted in Figure 3.1 [22]:
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Figure 3.1. The basic idea of GROWL. a: undersampled radial k-space data with its central
portion (Nyquist circle, highlighted in gray) inside which the Nyquist criterion is satisfied. b:
each single projection is expanded by the GRAPPA relative shift operators to form a wider
band, and the Nyquist circle is thus enlarged. c: for each single projection, calibration is first
performed based on the information inside the Nyquist circle(the gray region), then GRAPPA
relative shift operators mapping source (gray) points to target (white) points [22].

The optimal weights that solves for expanding source signal to targeting positions are

determined by Tikhonov regularization in Equation 3.1 [24] [25]:

W, = arg min{|tACS - SACSW||2 + /12||w||2}, 3.1

where, w,,; is the optimal weights, ||||2 is the L, norm, the subscript ACS indicates that

both target and source data points are collected in the ACS region, t,.s is the targeting
signal (white circles in Figure 3.1c), S,¢s is the source signal, w is the weight vector for the
GRAPPA relative shift operator, and A is the Tikhonov factor [22]. The solution to Equation

3.1 is described in Equation 3.2 [22]:
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where u;, v; and s; are the left singular vectors, right singular vectors, and singular values

of S ( source signal ), respectively, generated by singular value decomposition, with singular

vectors and singular values indexed by j [22].

It is also mentioned in [22] that the acceleration factor achievable with the GROWL
reconstruction depends on the number of coil elements and noise levels in the data. Results

in [22] show that 256 X256 images with acceptable qualities can be reconstructed with 32

radial views, using a commercial eight-channel head coil and a low SNR condition. It is also
pointed out in [22] that combination of different image processing techniques, such as
GROWL and radial GRAPPA, or GROWL and PARS [26] (parallel imaging with augmented

radius in k-space), is possible to achieve larger acceleration factors.

Another possible potential direction, as mentioned previously, focuses on sliding window
helical spiral using gold ratio spaced acquisition. Although there have been many advanced
reconstruction techniques created, some fundamental problems, such as sampling strategies,

are still worth investigating.

In radial MR, the dominant sampling structure is to sample the k-space with equally spaced
readout lines, which can be traced back to Lauterbur’s seminal paper in 1973 [27]. However,
today many novel appliances for radial MRI have been developed in dynamic applications
that require a high temporal resolution while tolerating an increased artifact level in return. As
discussed in previous section, azimuthally undersampled radial data may therefore
considerably increase the image acquisition rate without sacrifice significant information [28].

In addition, MRI data reconstruction acquired with a moving table along axial direction is
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raising interests due to its potential for fast and subject-friendly scans. Sliding window
reconstruction techniques already described in the literature can increase the image update

rate or can balance spatial and temporal resolutions.

In 2007, a golden ratio based radial MRI sampling strategy was described in [28]. Instead of
using evenly spaced readout lines, the k-space is sampled with readout lines rotating with
fixed angular increment of 111.25°, which is the ratio of 180° to golden ratio (1.618). The
comparison between golden ratio sampling and traditional uniform sampling is shown in

Figure 3.2 [28]:

(a)d)—lSOOf’lO

TN %% %@%

P=2 P=3 P=4 P=5 .. P—lO P=11 -
(b)d)(,R:I 11. 950

Thrrrne

=8 - P=13.. P=21

Figure 3.2. (a) Uniformly sampled radial data. P is the number of projections. k-space is
either unevenly or excessively sampled unless P is equal to 10. (b) Golden ratio sampled
radial data. P is the number of projections. Projections are evenly distributed regardless the
value of P [28].

With this sampling scheme, the readout lines are almost evenly spaced across k-space for
any arbitrary number of consecutive projection angles, especially when the number of the

projections is equal to Fibonacci numbers.
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For the uniform sampling strategy, the sampling trajectory either does not cover the entire
k-space or oversamples the same line multiple times when number of the projections is too
small or too large. This never occurs with the golden ratio sampling technique since the

projections tend to evenly distribute across k-space, and they never overlap with each other.

It is also shown in [28] that in terms of SNR and residual error of the magnetization transfer
function, the Golden Ratio based method and uniform sampling strategy have very similar

performance.

The sampling scheme for radial MRI based on golden ratio projection angle spacing makes it
possible to acquire and reconstruct data for an arbitrary length of time. In an arbitrarily long
sampling window, projections are nearly evenly distributed across k-space. It is also possible
that the k-space data may be undersampled. These approaches create the opportunity for
undersampled radial MRI fat-water data acquired with a continuously moving table. This
helical-spiral-like trajectory will eventually leads to faster and more efficient MR imaging

technique.

One of its advantages is that its reconstruction will keep the majority of the image information
even if some of the radial lines are skipped. This means decent reconstructions are possible
for undersampled radial MRI data. On the other hand, instead of typical backfolding artifacts
in Cartesian data, radial MRI reconstruction often just generates artifacts as streaks [6].
These merits of radial MRI make it specifically useful in dynamic applications where the total

sampling duration is critical.

Nyquist sampling theorem requires the sampling frequency is no less than two times the
maximum band width of the sampled signal. In radial MRI, this is satisfied if the distance or

the azimuthal gap between two consecutive samples in azimuthal direction does not exceed
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the sample distance in readout (or radial) direction [28]. However, fully sampled radial MRI
data need density correction for its reconstruction due to the oversampled central portion of
the k-space. Filters such as Ram-Lak are often used to weight down the central part of the
radial k-space. Thus, even though radial k-space data are undersampled, the central portion
of the k-space is still possible meet the Nyquist criterion. On the other hand the combination
of a moving bed with a SENSE [29] (multi-channel) coil at isocenter through which the table
moves. A radial acquisition would allow for auto-calibrated multi channel reconstruction in

such a case.

In conclusion, this work started with Cartesian fat-water separation, and investigated fully
sampled radial MRI data acquired with single channel. It studied various topics regarding data
correction such as field inhomogeneity correction and non-perfect alternating scan correction
for radial MRI. Future work is to successfully process chemical shift imaging for data acquired

with multi-channel, with undersampled radial trajectory, and with a continuously moving table.
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