
MYOSIN-1D EXPRESSION AND DYNAMICS IN POLARIZED CELLS 

By 

Andrew Eugene Benesh 

 

Dissertation 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

In partial fulfillment of the requirements 

For the degree of 

DOCTOR OF PHILOSOPHY 

in 

Cell and Developmental Biology 

December, 2011 

Nashville, Tennessee 

 

 

Approved: 

Professor David M. Miller 

Professor Bruce D. Carter 

Professor Robert J. Coffey 

Professor Matthew J. Tyska 

Professor Irina Kaverina 

Professor Christopher Janetopoulos 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2011 by Andrew Eugene Benesh 
All Rights Reserved 



 ii 

ACKNOWLEDGEMENTS 

 

First, I thank Matt for accepting me into his laboratory as his second 

graduate student. From him I have learned and appreciated the process that is 

science.  An open-mind and an honest heart are a couple of the basic tools 

needed to successfully pursue the many avenues that discoveries can lead us 

down.  Importantly, Matt has been extraordinarily patient in teaching me the 

critical thinking, technical, and soft skills necessary to become a successful 

scientist, and for this I am grateful.   

 Likewise, I appreciate the guidance of my committee David Miller, Irina 

Kaverina, Chris Janetopoulos, Bob Coffey, and Bruce Carter.  I am fortunate to 

have a committee that has been so supportive in allowing me to follow my 

projects wherever they may lead, but still keep me focused.  In addition, I can 

never forget the moral support and professional guidance they have offered-I 

could not have matured as I have without their assistance. 

 One of the greatest opportunities of being in Matt’s laboratory was my 

participation in the Program in Developmental Biology. I was fortunate to have 

participated in the retreats and journal clubs and I have benefitted from Chris 

taking an interest in my science. I count these events as some of the most 

invaluable experiences in developing my presentation skills.  Between Matt and 

Chris I know have matured as a public speaker. 

 I am fortunate to have worked with great colleagues and friends.  Russell, 

Raj, Suli, Jessi, David, and Scott have helped make the laboratory a fun place to 



 iii 

do science.  I thank them for their assistance and camaraderie these past few 

years. 

 I would not have made it this far without the support and love of my 

parents and family.  I thank them for instilling in me the values that have gotten 

me thus far.  Their encouragement and pride is inspiring.  Plus, I can not forget 

the cheese my parents would send from WI, nor the pounds of chocolate from 

my aunt in AZ. 

 Finally, I thank Emily for standing by me these last couple of years as we 

finish up our graduate training.  Without her friendship and love, I would not be as 

happy as I am now. 



 iv 

TABLE OF CONTENTS 

 

 Page 

ACKNOWLEDGEMENTS ...................................................................................... ii!

LIST OF TABLES ................................................................................................ vii!

LIST OF FIGURES .............................................................................................. viii!

LIST OF ABBREVIATIONS ................................................................................... x 

Chapter 

I. INTRODUCTION ............................................................................................ 1 
 

Class I myosin structure .............................................................................. 2!
Class I myosin motors bind actin ................................................................ 7!

Actin structure and polymerization ......................................................... 8!
Class I myosins in polarized cells of the digestive and nervous systems . 12!

Class I myosins and the small intestine epithelium .............................. 12!
Class I myosins and the nervous system ............................................. 16!

Myo1d expression and function ................................................................ 21!
Summary ................................................................................................... 23 

 

II. DIFFERENTIAL LOCALIZATION AND DYNAMICS OF CLASS I 
MYOSINS IN THE ENTEROCYTE MICROVILLUS .................................... 27 

 

Materials and methods ............................................................................. 29!
Proteomic analysis ............................................................................... 29!
Immunofluorescence ............................................................................ 30!
Preparation of whole cell homogenates ............................................... 31!
Brush border isolation and fractionation ............................................... 32!
Immunoblotting ..................................................................................... 32!
Molecular cloning .................................................................................. 33!
Cell culture ............................................................................................ 34!
Fluorescence recovery after photobleaching ........................................ 34!

Results ...................................................................................................... 35!
Four class I myosins reside in the mouse enterocyte brush 
border ................................................................................................... 35!



 v 

Myo1d localizes to the brush border terminal web and 
microvillar tips ....................................................................................... 38!
Myo1d partially colocalizes with IAP at microvillar tips ......................... 41!
Subcellular fractionation of Myo1d is altered in the absence of 
Myo1a ................................................................................................... 43!
Myo1d redistributes along the length of microvilli in the 
absence of Myo1a ................................................................................ 45!
Myo1d targeting to the brush border requires both IQ and TH1 
domains ................................................................................................ 49!
FRAP reveals that Myo1a is less dynamic than Myo1d ....................... 53!

Discussion ................................................................................................. 56!
Multiple class I myosins in the microvillus ............................................ 56!
Myo1a dependent targeting of Myo1d in the microvillus ...................... 57!
Function of Myo1d in WT brush borders .............................................. 58!
Myo1d function in the absence of Myo1a ............................................. 59!

Conclusion ................................................................................................ 61!
Acknowledgements ................................................................................... 61 

 

III. EXPRESSION AND LOCALIZATION OF MYO1D IN THE 
DEVELOPING NERVOUS SYSTEM .......................................................... 63 

 

Materials and methods ............................................................................. 65!
Sciatic nerve tissue preparation ........................................................... 65!
Brain preparation .................................................................................. 65!
Immunofluorescence ............................................................................ 66!
Yeast 2-hybrid assay ............................................................................ 68!
In vitro pull-down .................................................................................. 69!
Immunoblotting ..................................................................................... 70!

Results ...................................................................................................... 71!
Myo1d is present in myelinating and non-myelinating cells of 
the PNS ................................................................................................ 71!
Myo1d exhibits a developmentally regulated distribution in the 
cerebellum ............................................................................................ 73!
Myo1d is mostly absent from oligodendrocyte precursors and 
oligodendrocytes .................................................................................. 76!
Myo1d localizes to neuronal cell bodies, processes, and 
axons .................................................................................................... 81!
Myo1d interacts and partially co-localizes with aspartoacylase, 
an enzyme critical for fatty acid metabolism in the central 
nervous system .................................................................................... 85!

Discussion ................................................................................................. 90!
Myo1d is expressed in myelinating cells of the PNS, but not 
the cerebellum ...................................................................................... 90!
Roles for Myo1d in myelinating cells of the PNS .................................. 91!



 vi 

Possible functions for Myo1d in neurons .............................................. 92!
Myo1d interacts with aspartoacylase in vitro ........................................ 94!

Acknowledgements ................................................................................... 96 
 

IV. CONCLUSIONS AND FUTURE DIRECTIONS ........................................... 98 
 

Conclusions .............................................................................................. 98!
Future directions ..................................................................................... 104!

Investigating a role for Myo1d at adherens junctions ......................... 105!
Investigating a role for Myo1d at microvillar tips and terminal 
web ..................................................................................................... 110!
Characterizing Myo1d Function in Neurons ....................................... 119!
Exploring a role for Myo1d in glia ....................................................... 124!
Final Thoughts .................................................................................... 127 

 

V. REFERENCES…………………………………………………………………128  

 



 vii 

LIST OF TABLES 

Table             Page 

1. Proteomic analysis of class I myosins in the enterocyte brush border ........ 37!
2. Summary of FRAP kinetic data ................................................................... 55!
3. Multiple approaches were taken to detect the Myo1d-asparotacylase 

interaction. ................................................................................................. 119!

 



 viii 

LIST OF FIGURES 

 

Figure             Page 

1. Vertebrates express eight class I myosins. ................................................... 4!
2. ATPase cycle of myosins. ............................................................................. 5!
3. Cartoon representation of polarized cells and cytoskeletal features. .......... 10!
4. Myo1d localizes to the enterocyte basolateral membrane, terminal 

web, and microvillar tips. ............................................................................. 39!
5. Myo1d localizes to the basolateral membrane, terminal web, and tips 

of microvilli. .................................................................................................. 40!
6. Myo1d and IAP partially colocalize at tips of microvilli. ............................... 42!
7. Myo1d redistributes within the enterocyte in the absence of Myo1a ........... 44!
8. Myo1a and Myo1d exhibit differential localization within the brush 

border. ......................................................................................................... 46!
9. Myo1d brush border localization is altered in KO. ....................................... 48!
10. Truncation analysis reveals that both IQ and TH1 domains are 

needed for proper localization of Myo1d. .................................................... 50!
11. Cartoon depiction of constructs that were generated for studying 

Myo1d localization determinants. ................................................................ 52!
12. Myo1a and Myo1d demonstrate differential dynamics in the brush 

border. ......................................................................................................... 54!
13. Myo1d colocalizes with MBP in Schwann cells. .......................................... 72!
14. Myosin-1d is present in sciatic nerve and spinal cord. ................................ 74!
15. Myo1d is expressed throughout the mouse brain. ....................................... 75!
16. Myo1d distribution in the cerebellum is developmentally regulated. ........... 77!
17. Myo1d is predominantly expressed in neurons at P3. ................................. 79!
18. Myo1d is mostly absent from O4-labeled myelin tracts. .............................. 80!
19. Myo1d exhibits localization along neuronal processes and axons. ............. 82!
20. Myo1d exhibits cytosolic and dendritic subcellular localization in 

Purkinje cells. .............................................................................................. 83!
21. Myo1d is expressed in a distinct subpopulation of granule cells. ................ 84!
22. Myo1d interacts with aspartoacylase. .......................................................... 86!
23. Myo1d and aspartoacylase localize around the Purkinje cell cortex ........... 89!
24. Model representing possible functions for Myo1d in WT and KO 

enterocytes. ............................................................................................... 100!
25. Myo1d expression pattern changes upon onset of myelination. ................ 102!
26. A model for the Myo1d-aspartoacylase interaction in neurons. ................. 103!
27. EGFP-Myo1d and !-catenin colocalize at adherens junctions in CL4 

cells. .......................................................................................................... 108!
28. EGFP-Myo1d targets to microvllar tips in CL4 cells overexpressing 

mCherry-Espin ........................................................................................... 111!
29. Myo1d binds phosphatidylserine in WT BBs. ............................................ 113!
30. Myo1d tail binds Snapin. ........................................................................... 116!



 ix 

31. Myo1d is expressed in Paneth cells. ......................................................... 118!
32. Myo1d is enriched in myelin fraction from adult mouse. ............................ 125!
 



 x 

LIST OF ABBREVIATIONS 

 

Cases!

ADP!Pi:adenosine diphosphate + Pi ..................................................................... 2 

AMPA:"-amino-3-hydroxy-5-methyl-4-isoxazole propionic-acid .......................... 17 

ATP:adenosine triphosphate ................................................................................. 1 

CL4:LLC-PK1-CL4 ............................................................................................... 49 

CNS:central nervous system ............................................................................... 19 

DRM:detergent resistant membrane ................................................................... 43 

DSM:detergent soluble membrane ...................................................................... 43 

GPI:gylcophosphatidylinositol .............................................................................. 14 

IAP:intestinal alkaline phosphatase ..................................................................... 13 

IPTG:isopropyl ß-D-1-thiogalactopyranoside ...................................................... 69 

IQ:IQXXXRKXXXRK .............................................................................................. 1 

KD:knock down .................................................................................................. 114 

kDa:kilo-Daltons ..................................................................................................... 2 

KO:knockout ........................................................................................................ 15 

MDCK:Madin-Darby Canine Kidney .................................................................... 22 

Myo1a:myosin-1a .................................................................................................. 3 

Myo1c:myosin-1c ................................................................................................... 7 

Myo1d:myosin-1d .................................................................................................. 3 

Myo1e:myosin-1e .................................................................................................. 6 

Myo1f:myosin-1f .................................................................................................... 6 



 xi 

Myo1g:myosin-1g ................................................................................................ 63 

NAA:N-acetyl-L-aspartate .................................................................................... 24 

NEMO:nuclear factor #! essential modulator ........................................................ 7 

NMDA:N-methyl-D-aspartate ............................................................................... 17 

P7:postnatal day 7 ............................................................................................... 73 

PH:pleckstrin homology ......................................................................................... 6 

PIP2:phosphatidylinositol 4,5-bisphosphate ........................................................... 6 

PIP3:phosphatidylinositol 3,4,5-trisphosphate ..................................................... 14 

PNS:peripheral nervous system .......................................................................... 19 

PS:phosphatidylserine ....................................................................................... 112 

PSD-95:postsynaptic density-95 ......................................................................... 17 

SH3:SRC homology 3 ........................................................................................... 6 

SI:sucrase isomaltase ........................................................................................... 7 

SNARE:soluble N-ethylmaleimide-sensitive-factor attachment-protein receptor 18 

TH1:tail homology 1 ............................................................................................... 6 

TH2:tail homology 2 ............................................................................................... 6 

WT:wildtype ......................................................................................................... 15 

 

 



 

 

 1 

CHAPTER I 

 

INTRODUCTION 

 

The myosin superfamily of actin-binding molecular motors is composed of 

35 different classes, which are responsible for a range of functions from muscle 

contraction to protein transport (Odronitz and Kollmar, 2007).  Although 

structurally diverse, these molecules share three domains: an actin-binding, 

adenosine triphosphate (ATP) hydrolyzing motor domain; a variable repeat 

IQXXXRKXXXRK (IQ) motif that each bind calmodulin; and a tail domain that 

binds species specific cargo (Schliwa and Woehlke, 2003).  Conventional and 

some unconventional myosins dimerize, facilitating hand-over-hand processivity 

along actin filaments (Hartman et al., 2011).  However, the unconventional class I 

myosins have a monomeric motor, and thus are unlikely to be processive.  

Historically, these motors were hypothesized to facilitate vesicle trafficking 

(Soldati, 2003) and act as actin-membrane linkers (Cheney and Mooseker, 

1992).  Exciting new research is uncovering novel roles for this class in 

membrane-cytoskeletal biology which has important implications for polarized 

cells (McConnell and Tyska, 2010). Our laboratory studies the function of class I 

myosins to better understand how certain cell types acquire and maintain 

polarity.  Polarized cells are amenable for studying class I myosins as they 

possess: 1) a highly organized cytoskeleton; 2) distinct plasma membrane 

domains for identifying molecular targeting determinants; and 3) cytoskeletal 
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features that are easily assayed with biochemical or immunofluorescence 

methods.  This dissertation will further explore class I myosin structure, 

expression, and function; in particular, how those properties relate to polarized 

cells of the small intestine and nervous system.   

 

Class I myosin structure 

Vertebrates express eight class I myosins that are of similar molecular 

weights (~110 kilo-Daltons (kDa) (Mooseker and Cheney, 1995).  These 

molecules share three structural domains: 1) an N-terminal motor that binds actin 

and hydrolyzes ATP to produce mechanical force; 2) an internal neck region; and 

3) a C-terminal polybasic tail with multiple motifs for specific membrane and 

cargo interactions (Figure 1) (McConnell and Tyska, 2010).  A closer examination 

is required to appreciate the functional differences between class I myosins. 

The motor couples ATPase activity to actin-binding and undergoes 

conformational changes that result in force generation (Figure 2) (Geeves, 1991; 

Hackney, 1996).  Myosin bound to actin in the nucleotide-free state accepts ATP 

and then rapidly dissociates from the actin filament.  The nucleotide-binding 

pocket hydrolyzes ATP to form adenosine diphosphate + Pi (ADP!Pi).  This 

myosin-ADP!Pi complex releases Pi and subsequently binds actin.  Class I 

motors undergo a two-step working stroke that results in the release of ADP 

(Veigel et al., 1999), The rate of ATPase activity determines the amount of time 

the motor associates with actin, and regulates myosin processivity.  Motors that 

spend a significant amount of time during the ATPase cycle bound to actin have 
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a high duty ratio (Hartman et al., 2011).  However, class I myosins are low duty 

motors (Spudich, 1994; Lewis et al., 2006; Laakso et al., 2008), and would 

hypothetically have to act as an ensemble to transport cargo. 

Slight conformational changes in the motor domain during the working 

stroke are amplified in the neck domain resulting in large angular swings ranging 

from 32° for myosin-1a (Myo1a) (Jontes et al., 1995) and 90° for myosin-1d 

(Myo1d) (Kohler et al., 2003).  The degree of angular swing and length of the 

neck domain contribute to the myosin step size (Purcell et al., 2002; Kohler et al., 

2003).  Class I myosin neck domains have a variable number of IQ motifs (1-6) 

that bind calmodulin (Figure 1) (Cheney and Mooseker, 1992; Coluccio, 1997).  

Calmodulin associates with IQ motifs in either a Ca2+ dependent or independent 

manner depending on the myosin and IQ motif (Bahler and Rhoads, 2002) and  
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A) Class I myosins share three structural domains: an N-terminus motor 
that binds actin and hydrolyzes ATP, a neck region with a variable number 
of IQ motifs that bind Calmodulin, and a tail domain with several motifs for 
cargo binding.  B) Eight class I myosins are expressed in vertebrates.  
Figure from (McConnell and Tyska, 2010). 

Figure 1 Vertebrates express eight class I myosins. 
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C) 

Figure 2 ATPase cycle of myosins. 
Myosin hydrolyzes ATP for the generation of force.  A) ATP 
binds the myosin-actin complex causing dissociation from the 
actin.  B) The motor hydrolyzes ATP to form a myosin-ADP!Pi 
complex, which will release Pi. C) Myosin-ADP binds actin. D) 
The motor releases ADP causing a conformational change in the 
motor that tightly binds it to actin, in a process termed the power 
stroke.  Adapted from (Alberts et al., 2002). 

A) B) D) 
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accelerates ATPase activity (Swanljung-Collins and Collins, 1991).  In addition, 

calmodulin binding is thought to structurally support the myosin during the power 

stroke (Spudich, 1994).  Recent work suggests that in the absence of calmodulin 

binding myosin-5 switches from an active to an inactive state where the motor is 

folded onto the tail domain in a closed conformation (Taylor, 2007).  Thus, the 

neck domain provides multiple levels of regulation that varies both among the 

individual class I myosins and across classes, segregating each motor to specific 

tasks based on motor-neck interactions.  Finally, the C-terminal tail domain of 

each class I myosin is unique, with a different binding partner or cargo 

(Akhmanova and Hammer, 2010).  

The many differences in the tail among class I myosins specify the diverse 

set of functions these molecules participate in the cell (Foth et al., 2006).  Class I 

myosins have a polybasic C-terminal tail domain that binds anionic phospholipids 

through electrostatic interactions (Adams and Pollard, 1989; Hayden et al., 

1990), and have important implications in trafficking and cytoskeletal biology 

(Huber et al., 2000; Bose et al., 2002; McConnell and Tyska, 2010).  The tail 

domain varies in length and is composed of several binding motifs such as 

pleckstrin homology (PH) motifs which can bind phosphatidylinositol 4,5-

bisphosphate (PIP2) (Hokanson and Ostap, 2006) and SRC homology 3 (SH3) 

motifs that putatively bind cytoskeletal regulatory proteins (Figure 1) (Drubin et 

al., 1990; Geli et al., 2000).  All class I myosins have a tail homology 1 (TH1) 

motif, which contain basic residues, but myosins-1e and -1f (Myo1e and Myo1f) 

have a tail homology 2 (TH2) motif, which is a putative actin-binding site (Lynch 
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et al., 1986; Jung and Hammer, 1994).  Many tail-cargo interactions have been 

identified implicating class I myosins in diverse functions.  Myo1a binds sucrase 

isomaltase (SI), (Tyska and Mooseker, 2004) a transmembrane disaccharidase 

found in the brush border.  Myosin-1c (Myo1c) binds cadherin-23 (Siemens et al., 

2004), and PHR1 (Etournay et al., 2005), which are both transmembrane 

proteins in sensory hair cells.  In the insulin signaling pathway, Myo1c binds 

nuclear factor #! essential modulator (NEMO) (Nakamori et al., 2006) and the G-

protein RalA (Chen et al., 2007).  Myo1c also binds Neph1, a transmembrane 

protein containing five extracellular-immunoglobulin repeats in podocytes 

suggesting a role in kidney filtration (Arif et al., 2011).  Lastly, the Drosophila 

homologue for Myo1d binds !-catenin in developing embryos (Speder et al., 

2006). 

 

Class I myosin motors bind actin 

The physiology of an organism is a well-choreographed interplay among 

specialized systems, organs, tissues, and at the most basic living unit: cells.  

Indeed, tissue development and function depend on cell morphology and 

intracellular organization to orchestrate cell:cell contacts (Miyoshi and Takai, 

2008), migration (Gardel et al., 2010), and signaling (Hotulainen and 

Hoogenraad, 2010).  To accomplish these ‘directional’ processes, cells exhibit 

polarization in the localization of proteins and lipids to specific cell membrane 

domains to facilitate the movement of the cell or transfer of a signal in a given 

direction (Drubin and Nelson, 1996).  As a result, each cell surface may have a 



 

 

 8 

unique shape or function that contributes to the overall tissue physiology. 

Important in these interactions are molecular motors that utilize actin to transport 

cargo (Hasson and Mooseker, 1995) and provide mechanical forces to 

coordinate interactions between the cytoskeleton and plasma membrane that 

contribute to cell polarity and other processes (McConnell and Tyska, 2010).   

Class I myosins associate with the actin cytoskeleton, which underlies 

polarized cell shape and function (Drubin and Nelson, 1996).  Morphologically, a 

polarized cell surface may have microvilli (Tilney and Mooseker, 1971), 

stereocilia (Flock and Cheung, 1977), filopodia  (Edds, 1977), lamella 

(Abercrombie, 1980), dendrites (Fifkova and Delay, 1982), or junctions (Miettinen 

et al., 1978) (Figure 3).  Each of those cellular structures facilitates a particular 

function such as absorption (Spiller, 1994), mechanotransduction (Nayak et al., 

2007), migration (Lauffenburger and Horwitz, 1996), cell:cell communication 

(Dent et al., 2011b), or permeability (Steed et al., 2010). 

 

Actin structure and polymerization 

 Actin polymerization drives membrane rearrangements and formation and 

maintenance of cellular protrusions such as microvilli (Mooseker, 1985).  Actin 

appears in two forms: a monomeric globular form (G-actin) and a polymer fibrous 

form (F-actin).  G-actin polymerizes to form F-actin, the functional form of actin in 

the cell.  These actin filaments grow from the barbed or plus-ends and 

depolymerize from the pointed or minus-ends.  Class I myosins associate with 

filopodia, lamellipodia, microvilli, and cortical actin; all structures found among 
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the polarized cells of the digestive and nervous systems (Skowron et al., 1998; 

Wang et al., 2003; Komaba and Coluccio, 2010).  Below is a review of actin 

cytoskeletal arrays and regulatory proteins. 

Filopodia are linear actin-based bundle protrusions oriented with the plus-

ends outward (Faix et al., 2009).  Filopodia are important for pushing membrane 

forward and sensing the environment during migration (Mattila and Lappalainen, 

2008).  Filopodia formation is activiated by cdc42, a small guanosine 

triphosphatase (GTPase) (Nobes and Hall, 1995), and nucleation from the 

filopodial tip is regulated by formins (Mellor, 2010).  Filopodial actin bundles are 

held together with the bundler fascin (Kureishy et al., 2002).  

Another polarized actin structure is the lamellipodium which is a broad, 

thin membranous process supported with branched actin and is important in 

migration (Mogilner and Keren, 2009).  Branched F-actin polymerization is 

initiated when the arp2/3 complex nucleates a side filament (Insall and 

Machesky, 2009).  Migration requires constant filopodia and lamellipodia  
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Figure 3 Cartoon representation of polarized cells and cytoskeletal 
features. 

A) Representative growth cone with a filopodial and lamellipodial protrustion.  
Filopodia are actin-based membrane protrusions important in exploring the 
extracellular environment.  The actin filaments are bundled with the plus-ends 
oriented towards the filopodial tip.  The lamellipodium is also an actin-based 
membrane protrusion, but consists of a network of branched actin.  In addition, 
microtubules remodeling guides growth cone steering.  B) Representative 
enterocyte with microvilli.  These actin-based membrane protrusions define 
the apical cell surface.  Actin is bundled and oriented with plus-ends upward.  
Junctional complexes help define the apical-basolateral boundary in addition 
to organizing the cytoskeleton to maintain cell shape. 
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reorganization through several types of proteins including myosins, but also actin 

severing proteins like cofilin and gelsolin (Cooper and Schafer, 2000).  Together, 

filopodia and lamellipodia direct forward movement and directionality.   

Microvilli are densely packed, actin-based membrane protrusions that 

define the apical surface.  Microvilli increase the surface area for intestinal 

absorption and release lumenal vesicles (Spiller, 1994; McConnell et al., 2009).  

In the small intestine brush border actin bundles are composed of 20-30 

filaments (Mooseker, 1985) and are bound to together with fimbrin (Bretscher, 

1981).  The protein villin has dual roles: in the presence of low Ca2+ it will bundle 

actin (Mooseker et al., 1980), but at high Ca2+ concentrations villin severs actin 

bundles (Walsh et al., 1984).  However, the mechanism of microvillar actin 

nucleation is not well established. 

Finally, actin stabilizes cell:cell junctions that are important for cell 

signaling (Maruthamuthu et al., 2010).  F-actin interacts with "-actinin, which 

associates with the "-catenin, !-catenin, and the cadherin complex at the 

junction (Sanger et al., 1983; Miyoshi and Takai, 2008).  In addition, many 

cytoskeletal regulatory proteins associate with the junctions including arp2/3 and 

cofilin (Miyoshi and Takai, 2008).  In the polarized epithelial cell, actin forms a 

cortical network that contributes to cell contractility, facilitating polarization and 

tissue development (Owaribe et al., 1981; Zhang et al., 2005). 
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Class I myosins in polarized cells of the digestive and nervous systems 

Polarized cells are present in every tissue throughout the body, but the 

digestive and nervous systems exquisitely demonstrate the functional importance 

of asymmetric cells.  The small intestine epithelia or ‘enterocyte’ is important for 

nutrient absorption and blocking pathogen entry (Catalioto et al., 2011).  

Disruptions to enterocyte polarity contribute to malabsorption diseases 

(Khubchandani et al., 2011), and the rest of the body becomes susceptible to 

pathogens (Catalioto et al., 2011).  In the nervous system, neurons and glia must 

be polarized to propagate input stimuli from cell to cell.  In fact, failure to fully 

polarize the neurons or glia may lead to various mental retardations and 

diseases such as autism, Alzheimer’s, and schizophrenia (Lin and Koleske, 

2010). 

 

Class I myosins and the small intestine epithelium 

The epithelium lining the small intestine lumen serves as a selective 

barrier for the body to regulate the passage of nutrients and protect against 

invasion of pathogens (Catalioto et al., 2011).  The enterocyte exhibits distinct 

apical-basolateral polarity, and class I myosins target to each of these 

compartments.  First, the apical domain is a well-ordered array of tightly packed 

microvilli (~1,000) that forms the brush border of each enterocyte (Holmes and 

Lobley, 1989).  Each microvillus is an actin-based plasma membrane protrusion 

supported by 20-30 filaments with the plus-ends oriented distally (Tilney and 

Mooseker, 1971).  Electron microscopy revealed the presence of a membrane-
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actin cross linker, that was later identified as the first class I vertebrate motor 

(Mooseker and Cheney, 1995).  Microvilli are also enriched in enzymes such as 

SI, intestinal alkaline phosphatase (IAP), aminopeptidases, and phospholipases 

(McConnell et al., 2011).   

The minus-ends of microvillar actin protrude into the terminal web at the 

base of the brush border.  The terminal web is an actin-spectrin meshwork that is 

enriched in myosin-2 and is an important site for trafficking (Mooseker, 1985).  

On the apical-lateral surface, just below the plane of microvilli are the tight and 

adherens junctions, which are two centers for cell-cell contact important for cell 

communication and structure.  The actin cytoskeleton plays an important part in 

organizing and maintaining these structures during development (Ivanov, 2008).  

Tight junctions regulate epithelial permeability with claudins and ZO-1 and 

provide an important barrier between apical and lateral membrane (Balda and 

Matter, 2008).  The cytoskeleton and !-catenin contribute to lateral polarity by 

orchestrating the organization of the cadherin complex (Chen et al., 1999), which 

regulate cell:cell contacts (Baum and Georgiou, 2011).   

In addition to the cell structures detailed above, epithelial polarity is 

maintained by sorting of proteins and lipids to the appropriate membrane (Bryant 

and Mostov, 2008), and relies in part on myosins and the actin and microtubule 

cytoskeleton network (Weisz and Rodriguez-Boulan, 2009). Class I myosins may 

be able to target to specific compartments (apical versus lateral membrane) 

themselves based on affinity for particular phospholipids (Hayden et al., 1990; 

Hokanson et al., 2006).  Indeed, mature epithelia have polarized membrane 
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composition.  The apical surface is enriched in glycolipids and cholesterol 

(Christiansen and Carlsen, 1981), while the basolateral membrane is enriched in 

phospholipids (Kawai et al., 1974) such as phosphatidylinositol 3,4,5-

trisphosphate (PIP3), (Gassama-Diagne et al., 2006).  Properly polarized 

membrane facilitate sorting of specific proteins to the appropriate surface, for 

example glycophosphatidylinositol (GPI) anchored proteins are trafficked apically 

(Levental et al., 2010).  Misregulation sorting of polarity factors not only impedes 

cell polarization, but also lumen formation (Martin-Belmonte et al., 2008).   

Microvilli have been the focus of intense research to better understand 

how these polar extensions contribute to brush border physiology (Mooseker, 

1985).  In particular, the class I myosin, Myo1a was identified as the cross-linker 

in electron microscopy images and characterized biochemically to have ATPase 

activity and calmodulin binding domains (Mooseker and Tilney, 1975b; Howe and 

Mooseker, 1983).  The motor at first was hypothesized to be an actin-membrane 

linker or help modulate brush border Ca2+ levels (Mooseker, 1985).  Lipid binding 

analysis demonstrated the molecule preferred anionic phospholipids, 

hypothetically through the polybasic tail domain (Hayden et al., 1990).  The role 

of Myo1a became more apparent with the generation of a Myo1a dominant 

negative construct, the Myo1a TH1 domain.  These experiments revealed that 

Myo1a binds sucrase-isomaltase and helps retain the disaccharidase in 

detergent resistant membranes in the brush border (Tyska and Mooseker, 2004).  

Moreover, the TH1 domain was sufficient for brush border localization, and the 

tail governs membrane interactions (Tyska and Mooseker, 2002). 
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However, with the generation of a Myo1a knockout (KO) mouse, in depth 

in vivo functional analysis was possible.  While the animals appeared normal at 

the whole level, brush border composition was compromised (Tyska et al., 2005).  

Initial studies showed an increase in Myo1c in the brush border, decreased SI, 

myosin-6, and cytokeratins.  Surprisingly, given the high levels of Myo1a 

normally present in wildtype (WT) animals (Mooseker and Tilney, 1975b), 

microvilli still formed in the absence of Myo1a.  Morphologically, the brush border 

exhibited slight membrane herniations and intermicrovillar spacing defects 

(Tyska et al., 2005).   

Further studies comparing WT and MYO1A KO brush borders revealed 

that in the presence of ATP, isolated WT brush borders exhibited apical 

membrane translation along the microvillar actin bundles (McConnell and Tyska, 

2007).  Close examination revealed that vesicles were shed from the microvillar 

tips, an activity that was dramatically reduced in KO brush borders (McConnell 

and Tyska, 2007).  This result is consistent with Myo1a being responsible for 

powering membrane translation along the actin bundles.  Indeed, in vivo studies 

revealed that WT animals shed IAP-enriched vesicles of uniform size (McConnell 

et al., 2009).  However, KO vesicles varied in size and were not enriched in IAP 

(McConnell et al., 2009).  In addition, biophysical studies comparing isolated WT 

and KO brush borders revealed Myo1a contributes to membrane tension 

(Nambiar et al., 2009).  Despite the observed defects in KO brush border 

morphology, and reduced vesicle shedding, the fact that these structures and 

activities were still present suggested there might be a compensatory 
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mechanism.  Indeed, brush border proteome analysis suggested that another 

class I myosin might be upregulated in the absence of Myo1a (Benesh et al., 

2010).  Studies in polarized epithelia have revealed class I myosins target 

cytoskeletal features other than microvilli (Skowron et al., 1998; Tyska et al., 

2005; Speder et al., 2006; Goldblum et al., 2011). 

Class I myosins have been observed at tight and adherens junctions in 

polarized epithelia.  For example, Myo1c has been shown to interact with tight 

junction ZO-1 (Skowron et al., 1998; Goldblum et al., 2011).  Myo1c localization 

is not exclusive to the tight junctions; in fact, immunofluorescence data reveals 

this molecule is along the entire lateral membrane (Tyska et al., 2005).  

Interestingly, the Drosophila Myo1d homologue has been shown to interact with 

!-catenin at the adherens junction (Speder et al., 2006).  These myosins might 

be involved in targeting other complex members to these sites or may have a 

more general role in orchestrating trafficking events along the membrane 

(Soldati, 2003; Speder and Noselli, 2007).  The work presented in Chapter II 

details myosin-1d expression and dynamics in the enterocyte.  However, Myo1d 

also has high expression in the nervous system (Bahler et al., 1994), which 

includes the polarized cell types neurons and glia. 

 

Class I myosins and the nervous system 

Responsible for sensing the stimuli of the world around and within us, the 

nervous system propagates input signals from every region of the body towards 

the brain where the electrical signals are processed.  There are two main cell 
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types in the nervous system responsible for facilitating neural activity: neurons 

and glia.  These polarized cells rely on the actin and microtubule cytoskeleton to 

maintain their polarity and modulate synaptic plasticity (Fifkova and Delay, 1982; 

Gardiner et al., 2011) and class I myosins have active roles in several processes 

important in these cytoskeletal-driven events (Lin et al., 1996; Lund et al., 2005). 

The polarized morphology and function of a mature neuron is supported 

by the underlying cytoskeleton.  Input signals or neurotransmitters are received 

at dendritic spines, which are actin-supported mushroom-cup shaped processes 

enriched in proteins important for intracellular and cell:cell signaling including 

postsynaptic density-95 (PSD-95) a multi-PDZ scaffolding protein, N-methyl-D-

aspartate (NMDA)  and "-amino-3-hydroxy-5-methyl-4-isoxazole propionic-acid 

(AMPA) receptors (Li and Sheng, 2003).  Actin in the dendritic spines is arranged 

as a densely branched network with barbed-ends oriented towards the 

membrane (Fifkova and Delay, 1982).  Also, the cytoskeleton plays an important 

role during spinogenesis: filopodia protrude from the dendrite to search for a 

synaptic partner, and develop into the mature dendrite shaped mushroom cap 

described above (Yoshihara et al., 2009).  Likewise, the microtubule cytoskeletal 

network organizes synapse formation through remodeling and acting as a track 

for cargo transport (Conde and Caceres, 2009) 

 The dendritic processes converge onto the cell body, which contains the 

nucleus.  From the cell body protrudes a single axon, the main route along which 

electrical signals are transmitted within the neuron (Debanne et al., 2011).  

Microtubules in the axon are oriented with their plus-ends towards the axonal tips 
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(Heidemann et al., 1981; Baas et al., 1988) and act as a track for cargo transport.  

Microtubule stability along the axon is also polarized in nature, where more 

stable, posttranslationally detyrosinated and acetylated "-tubulin is found at the 

minus-ends compared to the more dynamic tyrosinated "-tubulin at the plus-ends 

(Baas and Black, 1990).  Recent work suggests that axon maturation depends on 

microtubule stability (Witte et al., 2008). 

Finally, neurotransmitters such as glutamate are exocytosed from the 

distal axonal synapses (presynapse) to be taken up by neighboring dendrite 

postsynaptic receptors such as NMDA or AMPA.  The presynapse is densely 

packed with vesicles that fuse with the synaptic membrane.  This fusion is 

regulated with soluble N-ethylmaleimide-sensitive-factor attachment-protein 

receptor (SNARE) machinery, vesicle-associated membrane protein (VAMP), 

and scaffolding proteins Bassoon and Piccolo (Rizo and Rosenmund, 2008; 

Zanazzi and Matthews, 2009).  The actin is found in two populations: a 

membrane and a dense non-membrane associated actin (Landis et al., 1988; 

Hirokawa et al., 1989).  Functional studies have shown that disruption of the actin 

cytoskeleton with latrunculin A increases neurotransmitter release (Morales et al., 

2000), suggesting that the non-membrane actin population may act as an 

obstacle for vesicle movement (Dillon and Goda, 2005).  Actin at the membrane 

facilitates synapse structure and remodeling (Li and Sheng, 2003). 

The cytoskeleton also plays an important role in neuronal migration.  The 

leading tip of a migrating neuron, or growth cone, is necessary for axonal 

pathfinding (Dent et al., 2011a).  The growth cone is a fan shaped protrusion that 
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consists of both filopodia and lamellipodia that explore the extracellular 

landscape (Dent and Gertler, 2003).  Actin and microtubule remodeling are 

necessary for growth cone steering and involves the coordination between 

cytoskeletal proteins (Marsh and Letourneau, 1984; Dent and Kalil, 2001; Dent et 

al., 2011a).  

Glia are important to neuronal migration, synapse formation, and 

myelination (a process discussed below) (Eroglu and Barres, 2010).  In fact, glia 

are the most populous cell type in the nervous system outnumbering neurons 10 

to 1 and include microglia, astrocytes, Schwann cells, and oligodendrocytes. 

Schwann cells and oligodendrocytes are members of the peripheral and central 

nervous systems (PNS and CNS), respectively, and are capable of ensheathing 

neurons in myelin, an insulating membrane that facilitates the propagation of the 

action potential (Hudson, 2001).   

Oligodendrocytes and Schwann cells in principal follow a similar 

myelination program, such that they both extend multiple processes from the cell 

body that myelinate by wrapping around an axon.  The main difference is that an 

oligodendrocyte myelinates multiple axons while a Schwann cell targets a single 

axon (Simons and Trotter, 2007).  The oligodendrocyte will wrap the axon in 

multiple layers of myelin that appears under electron microscopy as a dense, 

compact ensheathment (Wang et al., 2008).  Myelination is a multistep process 

that requires the coordination of the cytoskeleton to wrap axons (Bauer et al., 

2009).  First, oligodendrocyte processes must send filopodial processes in 

search of an axonal partner (Simpson and Armstrong, 1999; Bacon et al., 2007).  
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Once an axon has been selected, the oligodendrocyte process begins to wrap 

around the axon.  Although the mechanism remains unknown, the cytoskeleton is 

assumed to have an instrumental role in the wrapping process.  Proposed 

models revolve around constant remodeling of the actin cytoskeleton (Bauer et 

al., 2009) and research has even suggested myosins have a role in the process 

(Sloane and Vartanian, 2007; Wang et al., 2008).  Thus, in neurons and glia 

branched actin networks and the microtubule cytoskeleton are important for 

synapse remodeling, migration and axonal ensheathment.  Similar to the 

enterocyte, the actin cytoskeleton forms connections with junctional proteins in 

neurons and glia (Schnadelbach et al., 2001; Kwiatkowski et al., 2007). 

Cadherins localize to synapses and are thought to facilitate 

synaptogenesis (Togashi et al., 2002; Jontes et al., 2004).  !-catenin also 

localizes to dendrites and synapses (Murase et al., 2002; Togashi et al., 2002), 

and organizes presynaptic vesicles at the membrane (Bamji et al., 2003).  In 

postsynapses, !-catenin regulates formation of the mushroom-cup shaped 

dendrite (Togashi et al., 2002).  Finally, in Schwann cells, !-catenin orchestrates 

polarity and the timing of myelination (Lewallen et al., 2011).   

As described above, cytoskeletal dynamics regulate synapse formation, 

plasticity and migration.  Interestingly, class I myosins have been directly 

implicated in neuronal migration.  Myo1c appears to have a role in growth cone 

protrusion and lamellipodial retrograde flow (Diefenbach et al., 2002).   Given the 

number of membrane-cytoskeletal remodeling events in synapse formation, class 



 

 

 21 

I myosins are ideal candidates for involvement in this process.  For example, 

Myo1d is also highly expressed in the nervous system (Bahler et al., 1994). 

Similar to enterocytes, neurons and glia exhibit distinct membrane 

compartments defined by lipid composition.  Studies in hippocampal neurons 

revealed that hemagglutinin viral factors and GPI anchored proteins were 

trafficked to axons, while glycoprotein viral factors were transported to dendrites 

(de Hoop and Dotti, 1993).  Similar differential transport is seen in polarized 

epithelia, where hemagglutinin and GPI anchored proteins are trafficked to the 

apical surface, and glycoproteins accumulate at the basolateral membrane (de 

Hoop and Dotti, 1993).  Oligodendrocyte myelin is enriched in glycosphingolipids 

and cholesterol similar to the apical membrane of an enterocyte, but the plasma 

membrane of the cell body is the target of apical-like transport in epithelia (de 

Vries et al., 1998; de Vries and Hoekstra, 2000).  Moreover, viral glycoproteins 

accumulate in the myelin; further suggesting trafficking to the sheath mirrors 

basolateral transport in epithelia cells (Klunder et al., 2008). 

 

Myo1d expression and function 

Myo1d is expressed in multiple vertebrate tissue types including lung, 

kidney, and brain, but until recently had not been observed in the small intestine 

(Bahler et al., 1994; Benesh et al., 2010).  Intriguingly, Myo1d expression is the 

highest in the CNS (Bahler et al., 1994).  Examination of the rat cerebrum cortex 

and thalamus revealed Myo1d is expressed in neurons where the motor 

exhibited punctate cytosolic localization (Bahler et al., 1994).  Similarly, 
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immunofluoresence of the glioma cell line, C6, revealed Myo1d punctate staining 

(Bahler et al., 1994).  Western blot analysis demonstrated that Myo1d expression 

is developmentally regulated, with a steady increase in forebrain levels during 

maturity to adulthood (Bahler et al., 1994).  Interestingly, microarray data 

analysis of purified cells from mouse brain revealed that Myo1d transcripts 

increase more than 60-fold during oligodendrocyte maturation (Cahoy et al., 

2008).  In addition, the motor was identified in the myelin proteome suggesting 

that Myo1d is at high levels in the white matter of the CNS (Ishii et al., 2009; 

Jahn et al., 2009). 

Although Myo1d is expressed in most tissue types, the vertebrate function 

of the motor is not well understood.  Studies with Madin-Darby Canine Kidney 

(MDCK) cells, which are polarized kidney epithelia, suggest that the motor is 

important in the early endocytic recycling pathway (Huber et al., 2000).  

Immunofluoresence staining of MDCK cells reveal that Myo1d subcellular 

localization is punctate (Huber et al., 2000).  Furthermore, treating live MDCK 

cells with antibody targeting Myo1d inhibited progression of vesicles through the 

early endocytic pathway (Huber et al., 2000).  

 However, studies in the Drosophila embryo identified a novel role for 

Myo1d during left-right body patterning (Hozumi et al., 2006; Speder et al., 2006).  

Mutations within the motor domain resulted in situs-inversus of the Drosophila 

gut and gonads (Hozumi et al., 2006; Speder et al., 2006).  While the mechanism 

underlying how Myo1d contributes to left-right patterning remains unknown, it 

was shown that the tail domain interacts with Armadillo (the Drosophila !-catenin 
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homologue (Speder et al., 2006).  Hypothetically, Myo1d targets !-catenin to the 

adherens junctions affecting cellular polarity through either the cytoskeletal 

network or downstream nuclear targets (Speder et al., 2006).  Whether Myo1d 

contributes to left-right patterning in the developing vertebrate is not known. 

 While vertebrate Myo1d function during development is mostly 

unexplored, the motor has been associated with the developmental disorder 

autism.  Single nucleotide polymorphism studies of patients with autism 

compared to controls revealed an association with MYO1D (Stone et al., 2007).  

However, the mechanism of how mutations to MYO1D contribute to autism 

etiology has not been studied.   

 

Summary 

The work in this dissertation began with an interest in how class I myosins 

contribute to the apical microvillar actin array.  To this aim, I validated expression 

of a novel class I myosin, Myo1d, in the small intestine, and characterized Myo1d 

localization in the enterocyte.  Myo1d localizes to three subcellular regions in the 

small intestine enterocyte.  First, Myo1d localizes along the lateral membrane 

from the tight junctions towards the basal membrane.  Myo1d also targets to the 

terminal web, which is an actin-spectrin meshwork at the base of the brush 

border.  Lastly, Myo1d localizes to microvillar tips and is to our knowledge the 

first vertebrate protein identified to target this structure. 

Given that Myo1a is known to be at high density in the brush border, we 

were interested in how the structurally similar motor, Myo1d, is capable of 
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sharing the same cytoskeletal array.  Immunofluorescence of the small intestine 

revealed Myo1a localizes along the microvillar axis, while Myo1d localizes at the 

microvillar tips and terminal web.  However, in the MYO1A KO brush border, 

Myo1d redistributes along the entire length of the microvillar axis.  Biochemical 

analysis and live imaging suggest Myo1d is outcompeted along the actin bundle 

and the membrane, and is more dynamic in the brush border compared to Myo1a 

(Benesh et al., 2010).  Taken together, this suggests that Myo1a and Myo1d 

compete for the brush border cytoskeletal array.   

While Myo1d seems capable of compensating for the loss of Myo1a in the 

brush border, we were interested in identifying a unique role for the protein.  

Performing a yeast 2-hybrid screen, we identified aspartoacylase, a protein 

implicated in fatty acid synthesis and expressed in polarized cells of the kidney, 

small intestine, and brain (Hershfield et al., 2006; Surendran et al., 2006).  

Aspartoacylase catabolizes N-acetyl-L-aspartate (NAA), and the resulting 

products are hypothesized to regulate neuronal osmolarity and contribute to 

oligodendrocyte myelination (Namboodiri et al., 2006).  Interestingly, 

aspartoacylase has relatively high expression in the brain compared to protein 

levels in other tissues, (Bhakoo et al., 2001) similar to Myo1d (Bahler et al., 

1994).  Recent studies suggest Myo1d is present in isolated myelin (Yamaguchi 

et al., 2008; Ishii et al., 2009; Jahn et al., 2009) and is greatly upregulated during 

oligodendrocyte maturation (Cahoy et al., 2008).  Moreover, single polymorphism 

nucleotides in MYO1D are associated with autism (Stone et al., 2007), 

suggesting an important role for the motor during neurodevelopment.  



 

 

 25 

Intriguingly, autism patients exhibit altered NAA levels across brain regions 

(Kleinhans et al., 2007).  Taken together, we hypothesized that Myo1d may 

interact with aspartoacylase to modulate NAA levels.  We were therefore 

interested in determining if Myo1d and aspartoacylase are coexpressed in similar 

cell types.  First, we were interested in fully characterizing Myo1d expression in 

neuronal and myelinating cells to expand upon the screens mentioned above.   

While Myo1d is expressed in neuronal cells, expression in myelinating 

cells has not been fully established.  In light of similar expression for Myo1d and 

aspartoacylase in the brain, we were interested in determining what neural cell 

types express Myo1d by investigating the polarized cells of the PNS and CNS.  

Intriguingly, in teased sciatic nerve bundles, Myo1d associates with both 

myelinating Schwann cells and axons.  However, in the mouse cerebellum, 

Myo1d is predominantly expressed in neurons.  Immunofluorescence data 

demonstrates Myo1d expression is developmentally regulated, and is present in 

the Purkinje and granule cell layers.  Similar to Myo1d localization in the cortex, 

the motor exhibits cytosolic, punctate subcellular localization in cell bodies, along 

axons, and in dendrites.  In addition, biochemical and immunofluorescence data 

suggest that Myo1d and aspartoacylase interact.  Binding assays determined 

Myo1d interacts with the aspartoacylase C-terminus, which is hypothesized to 

sterically hinder catalytic activity (Bitto et al., 2007).  Given the proposed roles for 

aspartoacylase, myosin-1d may regulate neuronal osmolarity or fatty acid 

synthesis.  From these studies, Myo1d exhibits unique subcellular localization 

between cell types, high mobility, and an interaction with aspartoacylase. 
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The goal of this dissertation is multifold: 1) characterize Myo1d expression 

in the small intestine (Chapter II); 2) explore how similar class I myosins occupy 

the same cytoskeletal array (Chapter II); 3) characterize Myo1d expression in the 

nervous system (Chapter III); and 4) detail an interaction between Myo1d and 

aspartoacylase, a protein implicated in fatty acid synthesis (Chapter III). 
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CHAPTER II 

 

DIFFERENTIAL LOCALIZATION AND DYNAMICS OF CLASS I MYOSINS IN 

THE ENTEROCYTE MICROVILLUS 

 

This chapter was published under this title in Molecular Biology of the Cell, March 

15, 2010, (Benesh et al). 

 

Intestinal epithelial cells lining the small intestine exhibit a remarkably well-

organized apical brush border composed of a tightly packed array of microvilli.  

Integral to the stability of each microvillus is the core actin bundle and associated 

actin-binding proteins.  Early electron micrographs of microvilli revealed the 

presence of lateral bridges that connect the microvillar membrane to the 

underlying actin bundle (Mooseker and Tilney, 1975a; Matsudaira and Burgess, 

1979). These bridges were later identified as the actin-based motor protein, 

Myo1a (Mooseker and Tilney, 1975a; Matsudaira and Burgess, 1979; Howe and 

Mooseker, 1983; Collins and Borysenko, 1984).  Since the initial visualization of 

Myo1a, the list of myosins known to reside in the brush border has continued to 

grow; we now know that representatives from classes I, II, V, VI, and VII target to 

this actin-rich domain (Heintzelman et al., 1994; Chen et al., 2001). The diversity 

of myosins in the brush border highlights the complexity of this cytoskeletal 

environment and underscores the need to understand how these myosins 

interact and function together to contribute to epithelial physiology. 
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An example of the complex interactions between myosins in the brush 

border was recently provided by cell biological studies of Myo1a, which has been 

implicated in a wide variety of enterocyte functions ranging from the organization 

of apical membrane domains (Tyska and Mooseker, 2004), to the control of 

apical membrane tension (Nambiar et al., 2009), and the shedding of vesicles 

from the tips of microvilli (McConnell et al., 2009).  Indeed, analysis of a Myo1a 

KO mouse revealed defects in brush border membrane composition and the 

presence of apical membrane herniations in a subset of enterocyte brush borders 

(Tyska et al., 2005).  Despite these defects, Myo1a KO mice demonstrate no 

overt physiological symptoms, giving rise to the possibility that other myosins 

may be able to partially compensate for the absence of Myo1a function in these 

animals.  This idea is supported by more recent studies in isolated brush borders, 

which show that membrane shedding from microvillar tips is significantly 

reduced, but not abolished in the absence of Myo1a (McConnell and Tyska, 

2007).  Moreover, immunofluorescence studies do indicate that another short-

tailed class I motor, Myo1c redistributes from basolateral membranes to the 

brush border in the absence of Myo1a (Tyska et al., 2005).  However, Myo1c is 

only one of seven vertebrate class I myosins that hold the potential to function in 

place of Myo1a.  While the limited availability of high quality antibodies restricted 

the scope of these initial studies, a probe-independent approach, such as 

proteomic analysis, may provide more comprehensive information on how the 

absence of myosin-a impacts the complement of motor proteins that reside in the 

brush border.   
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Here we describe a proteomic approach that led us to identify Myo1d as 

another short-tailed class I myosin in the microvillus.  Within WT enterocytes, 

Myo1d localizes to the basolateral membrane and brush border terminal web; 

Myo1d is also enriched in striking puncta at the distal tips of microvilli.  In Myo1a 

KO mice, Myo1d levels in the brush border are increased approximately two-fold; 

this increase is accompanied by a marked redistribution of Myo1d along the 

length of the microvillus.  We also found that in contrast to Myo1a, the microvillar 

targeting of Myo1d requires both IQ and TH1 domains.  Finally, FRAP studies 

show that although Myo1d and Myo1a exhibit comparable turnover kinetics in the 

brush border, Myo1a has a significantly larger immobile fraction.  In addition to 

establishing Myo1d as a component of the brush border cytoskeleton, these 

results suggest that dynamics may govern the localization and function of 

different, yet closely related myosins that target common actin-rich structures.  

They also highlight the utility of proteomic methods in defining the resident motor 

proteins that populate specific actin arrays. 

 

Materials and methods 

 

Proteomic analysis 

Brush borders were isolated from adult mice, sacrificed in accordance with 

Vanderbilt IACUC protocols.  A total of five paired preparations (one preparation 

included 25 WT and 25 Myo1a KO) were completed for mass spectrometry 

analysis.  Once brush borders were collected (described below), total protein 
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concentration was determined using a BCA protein assay kit (Pierce).  brush 

borders were resuspended in Lamelli loading buffer and separated on a 10% 

NuPage gel (Invitrogen).  After samples were run into the gel ~2.0 cm, the gel 

was stained with Coomassie Blue G-250 (Bio-Rad), and then destained with 

sterile milliQ water.  The protein-containing region was excised from the gel and 

minced with a razor blade (Supplemental Fig. 1).  Gel fragments were then 

submitted to Vanderbilt University Mass Spectrometry Core for tryptic digest and 

subsequent proteomic analysis.  Tandem mass spectra were matched to peptide 

sequences via the MyriMatch algorithm (September, 2007 build) (Tabb et al., 

2007; Cao et al., 2008).  The IPI Mouse 3.33 database provided protein 

sequences, with each sequence present in both forward and reverse 

orientations.  Variable modifications included oxidation of methionine and loss of 

ammonia from N-terminal glutamines; all cysteines were considered to be 

alkylated.  IDPicker (Zhang et al., 2007) filtered the raw identifications to a 1% 

FDR and required proteins to feature at least two distinct sequences to be 

included in the reports.  The software also applied a parsimony filter to remove 

subset and subsumed proteins. 

 

Immunofluorescence 

Intestine tissues were dissected and flushed with 37° C Hank’s Balanced 

Salt Solution (Invitrogen).  3 mm fragments of intestine were fixed with 4% 

paraformaldehyde in PBS (50 mM EGTA, 137 mM NaCl, 7 mM Na2HPO4, and 3 

mM NaH2PO4, pH 7.2) for 30 minutes at 4° C and then cryoprotected overnight 
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at 4° C in 1M Sucrose in TBS.  Samples were embedded into OCT and 10 µm 

sections were cut using a Leica CM 1900 cryostat.  Sections were permeabilized 

for one second with –20° acetone, and washed with PBS.  Next, sections were 

blocked in 10% BSA/PBS for 20 minutes, and washed.  Sections were then 

incubated with primary antibody targeting Myo1a (4P1, 1:200) and Myo1d (C13, 

K18, or H60; Santa Cruz, 1:50), or IAP (Sigma Aldrich, 1:200) diluted in PBS for 

one hour and then washed.  Secondary antibodies donkey anti-goat (Molecular 

Probes, 1:200) and Alexa-conjugated Phalloidin (Molecular Probes/Invitrogen, 

1:200) were diluted in PBS and applied to sections for twenty minutes in 

darkness.  Finally, sections were washed three times and prepared for coverslips 

using ProLong Anti-fade (Molecular Probes/Invitrogen).  Samples were viewed 

on an Olympus FV-1000 with a 100x objective lens.  All images were contrast 

enhanced, pseudo-colored, and cropped with ImageJ v. 1.42h (NIH).  brush 

borders were straightened using the ImageJ Straighten Curved Objects plug-in 

(Eva Kocsis, NIH).  After straightening, pixel intensities for red, green, and blue 

channels were averaged along the axis perpendicular to the microvillar axis using 

a LabView program developed in house. Average pixel intensities were then 

plotted relative to position along the microvillar axis. 

 

Preparation of whole cell homogenates 

Intestinal tissues were collected from WT and Myo1a KO mice and placed 

in ice-cold sucrose dissociation solution (200 mM sucrose, 0.02% Na-Azide, 12 

mM EDTA-K, 18.9 mM KH2PO4, and 78 mM Na2HPO4, pH 7.2) for two hours.  
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Mucosa was scraped from the intestine with a blunt straight-edge and then 

resuspended in homogenization buffer (10 mM imidazole, 4 mM EDTA-K, 1 mM 

EGTA-K, 0.02% Na-Azide, 1 mM DTT, and 1 mM Pefabloc, pH 7.2).  

 

Brush border isolation and fractionation 

Brush borders were isolated from mouse small intestinal tissues as 

previously described (Tyska et al., 2005).  For biochemical extraction, isolated 

brush border pellets were first treated with 1% NP-40 in buffer A’ (75 mM KCl, 20 

mM imidazole, 1 mM EGTA, 2.5 mM MgCl2, 0.02% Na-Azide, 1 mM DTT, and 1 

mM Pefabloc pH 7.2) for five minutes on ice.  Samples were then centrifuged at 

5,000 x g for 10 min.  The resulting pellet was washed twice in A’ with 10 min 

spins at 5,000 x g.  Detergent extracted brush borders were then treated with 2 

mM ATP in A’ and quickly sedimented at 10,000 x g for 10 min at 4° C.  The 

resulting supernatant was collected and then centrifuged at 100k x g for 1 hr at 4° 

C (Beckman, TL-100 ultracentrifuge).  The 100k x g pellet was resuspended in a 

volume of A’ equivalent to the supernatant. 

 

Immunoblotting 

Primary antibodies used for immunoblotting were diluted to 1:1000, 

including Myo1a (4P1, developed by our laboratory), EGFP (Molecular Probes, 

A11122) and non-muscle Myo2 (Biomedical Technologies). H60 (Santa Cruz 

Biotechnology) and antibody #482 which targets amino acids 991-1006 of Myo1d 

were both used at 1:500 (a gift from Martin Bahler, Westfälische Wilhelms-
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Universität Münster, Münster, Germany)(Huber et al., 2000).  Secondary 

antibodies included fluorescent IRDye800 conjugated donkey anti-rabbit IgG 

(Licor) and fluorescent conjugated Alexa680 donkey anti-goat IgG (Molecular 

Probes).  Blots were processed according to manufacturers recommendations 

and scanned on an Odyssey Imager (Licor).  For some biochemical experiments, 

the secondary antibody was HRP-conjugated goat anti-rabbit IgG, in these 

cases, immunogens were imaged with ECL reagents according to the 

manufacturers recommendations (GE Healthcare). 

 

Molecular cloning 

A full length Rattus norvegicus Myo1d clone (IMAGE I.D. 7106587) was 

obtained from the Mammalian Gene Collection (http://mgc.nci.nih.gov/).  

Conventional PCR cloning was used to insert the Myo1d coding sequence into 

pEGFP-C1 (Clontech) with a forward primer containing a Sac1 site 

(AATTGAGCTCGCGCCATGGCGGAGCAGGAGAG) and a reverse primer with 

a BamH1 site (TGTTGGATCCTCAATTCCCGGGCACACTGA).  Myo1d-1d Motor 

(nucleotides 1-2109) was cloned into the pmCherry-N3 vector with the same 

forward primer as above and a reverse primer with a BamH1 site 

(TGGTGGATCCGAGGACAACCCTGACGAGCATC).  Myo1d-MotorIQ 

(nucleotides 1-2217) was cloned into the pmCherry-N3 vector with the same 

forward primer as above and a reverse primer containing a BamH1 site 

(GGTTGGATCCGTACGACTTCACTTTATAGC).  Myo1d IQ-TH1 (nucleotides 

1708-3018) was inserted into the EGFP-C1 vector using the EcoR1 and Sac1 
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sites.  The Myo1d TH1 domain (nucleotides 2242-3018) was cloned into the 

EGFP-C1 vector using a forward primer containing a Sac1 site 

(GCGAGCTCACGGGGTCAAGA) and the same reverse primer as above. The 

Myo1d IQ domain (nucleotides 2082-2241) was cloned into the EGFP-C1 vector 

using a forward primer containing an EcoR1 site 

(CGGCGGATCCGAATCGCCTGGCTACCTCGTG) and a reverse primer 

containing a BamH1 site (CTACGAATTCCATCGCGCCCAGATGCTCGTCAGG). 

 

Cell culture 

LLC-PK1-CL4 cells were cultured in Alpha Minimum Essential Media 

(Invitrogen), 10% defined fetal bovine serum (Hyclone), and 2 mM L-Glutamine 

(Invitrogen).  Cells were incubated at 37° C and 5% CO2.  LLC-PK1-CL4 cells 

were transfected using Lipofectamine 2000 (Invitrogen) according to the 

manufacturer’s protocols. 

 

Fluorescence recovery after photobleaching 

FRAP was performed as previously described (Tyska and Mooseker, 

2002).  Briefly, LLC-PK1-CL4 cells stably expressing EGFP-Myo1d or EGFP-

Myo1a were grown to confluency on Matek 35 mm glass bottomed dishes.  Prior 

to imaging, complete media was exchanged for 25 mM HEPES buffered DMEM 

lacking phenol red and mineral oil was layered on top to prevent media 

evaporation.  Cells were incubated in a WeatherStation (Precision Control) at 

37˚C and imaged using an Olympus FV-1000 laser scanning confocal 
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microscope.  A field of 105.6 x 105.6 $m was scanned every three seconds and 

a ROI for photobleaching was set at 5 $m2.  Bleaching was performed with three 

scans at 100% transmission.  Immediately after bleaching, the entire field was 

scanned at three second intervals. ImageJ was used to extract the ROI 

integrated pixel intensities from raw data files; intensity data was then exported to 

a Microsoft Excel where background and t = 0 intensity values were subtracted 

from each time point.  Intensity data was normalized so that the scan 

immediately prior to photobleaching was equal to 1.  Using SigmaPlot v.10, 

recovery data was fit to the following kinetic model:  IROI(t % 0) = ! - A1exp-k1t - 

A2exp-k2t where IROI is the ROI intensity at time t % 0, ! is the mobile fraction, 

Ax is the amplitude of the exponential process with rate kx. 

 

Results 

 

Four class I myosins reside in the mouse enterocyte brush border 

To identify class I myosin proteins that may be compensating for the loss 

of Myo1a in KO brush borders, we submitted five paired preparations of brush 

borders isolated from adult WT and KO mice for proteomic analysis with two-

dimensional liquid chromatography tandem mass spectrometry (2D-LC-MS/MS).  

Resulting mass spectra were assigned to peptides with MyriMatch, a database 

search algorithm employing multivariate hypergeometric analysis (Tabb et al., 

2007).  Peptides were then assigned to proteins using IDPicker, a parsimony-

based protein assembly tool (Zhang et al., 2007).  The peptide counts reported 
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here represent the total number of peptides assigned to a given myosin from all 

five brush border preparations (Table 1).  While this shotgun proteomic approach 

does not allow for a rigorous quantification of protein levels in our samples, 

relative comparisons between genotypes are possible as equal amounts of total 

protein were subject to 2D-LC-MS/MS.  Indeed, the number of peptides obtained 

for non-muscle myosin-2 (nm Myo2c), a protein not expected to change in KO 

brush borders (Tyska et al., 2005), was nearly identical between genotypes.  In 

contrast, the number of detectable calmodulin peptides decreased in KO 

samples, consistent with earlier findings (Tyska et al., 2005). 

Proteomic analysis of the brush border detected four class I myosins:  

Myo1a, Myo1c, Myo1d, and Myo1e.  Three of these four identifications have 

been reported in previous studies (Tyska et al., 2005).  Consistent with immuno-

fluorescence observations showing the redistribution of Myo1c into the brush 

border in the absence of Myo1a (Tyska et al., 2005), we observed a ~30% 

increase in the number of Myo1c peptides detected in Myo1a KO samples.  

However, the presence of high levels of Myo1d in WT brush borders was an 

unexpected result.  In addition, Myo1d peptide counts increased ~130% in the 

absence of Myo1a.  These data show that Myo1d is a constituent of the brush 

border under normal circumstances and the principal class I myosin in brush 

borders lacking Myo1a. 
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Table 1 Proteomic analysis of class I myosins in the enterocyte brush 
border 
 

*Total spectra obtained in the analysis of five, paired WT and Myo1a KO brush 
border preparations; see Supplemental Methods for details. 

Protein IPI identifier WT total* KO total* % change 
Myo1a IPI00465712.5 1068 3 -99.7 
Myo1c IPI00620222.2 19 25 31.6 
Myo1d IPI00408207.2 171 395 131.0 
Myo1e IPI00330649.4 6 11 83.3 

Calmodulin IPI00467841.6 8 3 -62.5 
Nm Myo2c IPI00453996.1 1796 1801 0.3 
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Myo1d localizes to the brush border terminal web and microvillar tips 

Given that Myo1d has not been previously observed in the vertebrate 

brush border, we sought to validate our proteomics data with conventional cell 

biological methods.  To examine Myo1d localization in the enterocyte, we stained 

sections of mouse small intestine with a commercially available antibody (C13; 

Santa Cruz Biotechnologies).  This anti-Myo1d probe targeted the enterocyte 

basolateral membrane as well as the terminal web of the brush border (Figure 

4A), a cytoskeletal meshwork at the base of microvilli that consists of the actin 

bundle rootlets, spectrin, nm Myo2, interwoven with an array of intermediate 

filaments (Mooseker, 1985).  The observed C13 terminal web staining was a 

consistent feature along the full length of villi throughout the small intestine.  

Strikingly, the C13 probe also labeled a population of discrete Myo1d puncta at 

the distal ends of microvilli (Figure 4B).  Phalloidin labeling revealed that Myo1d 

puncta appear at the distal tips of core actin bundles (Figure 4B, inset).  Close 

examination of frozen sections revealed that C13 labeled microvillar tips mostly 

along the distal half of the villus.   

Interestingly, when two other commercially available Myo1d antibodies 

(K18 and H60) were applied to sections of small intestine, these antibodies each 

targeted a distinct subcellular Myo1d population.  The K18 antibody targeted 

Myo1d at microvillar tips, while the H60 antibody targeted the terminal web and 

basolateral membrane (Figure 5).  Thus, the C13 staining described above 

(Figure 4) represents a composite of the labeling patterns produced by these two  
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Figure 4 Myo1d localizes to the enterocyte basolateral membrane, terminal 
web, and microvillar tips. 

 

Representative frozen sections of mouse small intestine stained with antibodies 
targeting Myo1d (green) and Alexa488 (or 633)-conjugated phalloidin (red). (A 
and B) Myo1d C13 antibody targets the basolateral membrane, terminal web, 
and microvillar tips of enterocytes. Bar is 20 $m.  Inset bar is 5 $m. 
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Figure 5 Myo1d localizes to the basolateral membrane, terminal web, and 
tips of microvilli.   

 

Two additional commercially available antibodies (K18 and H60) each target a 
unique Myo1d subcellular population.  Together, these two antibodies produce a 
composite pattern of the C13 antibody labeling.  (A) The Myo1d K18 antibody 
targets microvillar tips.  (B) The Myo1d H60 antibody labels the basolateral 
membrane and terminal web.  Bar is 20 $m; inset bar is 5 $m. 
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probes.  The different patterns observed here are likely related to the fact that 

these probes target distinct C-terminal epitopes of Myo1d, which may be 

differentially masked or exposed in different regions of the enterocyte. 

 

Myo1d partially colocalizes with IAP at microvillar tips 

Recent studies have revealed that enterocyte microvilli release small 

vesicles enriched in IAP from their distal tips (McConnell et al., 2009).  These 

previous experiments also showed that IAP is enriched in discrete puncta at 

microvillar tips, presumably intermediates in the vesicle formation and release 

pathway.  To determine if Myo1d is present in these puncta, we double-stained 

intestinal frozen sections for Myo1d and IAP.  Confocal imaging revealed bright 

regions of IAP staining at microvillar tips as previously reported (Figure 6).  While 

Myo1d tip labeling was readily observed, only a subset of the Myo1d signal at 

microvillar tips colocalized with IAP-enriched puncta.  In some regions, IAP 

enriched puncta were observed at more distal positions than Myo1d 

(arrowheads, Figure 6B inset), giving rise to the possibility that vesicles released 

into the lumen may not be enriched in this motor.  This is consistent with our 

previous proteomic analysis of microvillus-derived vesicles (McConnell et al., 

2009), which identified a total of three Myo1d peptides in two out of three 

preparations (unpublished data).  Together these data suggest that Myo1d may 

play a role in the early stages of vesicle formation at microvillar tips, but is not 

included as “cargo” in vesicles that are ultimately released into the intestinal 

lumen.  
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Figure 6 Myo1d and IAP partially colocalize at tips of microvilli. 

 

 

Frozen sections of mouse small intestine labeled with antibodies targeting 
Myo1d (green) and IAP (red).  (A) Confocal image of a villus demonstrating both 
Myo1d and IAP localize to microvillar tips.  (B) Representative view of partial 
colocalization between Myo1d and IAP at microvillar tips.  Myo1d at microvillar 
tips appears in two populations: alone in distinct puncta, and colocalized with 
IAP.  Arrowheads mark IAP enriched puncta that lack Myo1d at the extreme 
distal tips of microvilli.  Bars are 20 $m in A and B, 5 $m in B inset. 
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Subcellular fractionation of Myo1d is altered in the absence of Myo1a 

As a first step toward understanding how Myo1d responds to the absence 

of Myo1a, we examined whole cell levels of Myo1d in WT and Myo1a KO 

enterocytes.  Western blots of mucosal scrapings show that total cellular levels of 

Myo1d are unaltered in KO animals (Figure 7A).  This suggests that the increase 

in peptide counts observed in our proteomic analysis is likely the result of a 

redistribution of the Myo1d population normally expressed in enterocytes.  To 

further investigate this possibility, isolated brush borders were biochemically 

extracted using detergent and ATP.  Brush borders were first exposed to 1% NP-

40 to release detergent soluble membranes (DSMs).  As expected, neither 

Myo1a nor Myo1d were released from the brush border by detergent treatment 

(Figure 7B).  Next, the NP-40 insoluble fraction was treated with 2 mM ATP to 

release myosin motors and bound cargoes such as detergent resistant 

membranes (DRMs, +ATP, S in Figure 7B), from core actin bundles (+ATP, P in 

Figure 7B).  In WT brush borders, almost all of the Myo1d solublized with ATP 

treatment, while Myo1a distributed equally between ATP soluble and insoluble 

fractions.  Thus, in the presence of ATP, Myo1a may have a greater affinity for 

actin compared to Myo1d.  This finding may help explain why Myo1a effectively 

prevents Myo1d from targeting along the length of microvillar actin bundles in WT 

brush borders.  In Myo1a KO brush borders, the amount of Myo1d associated 

with core actin bundles following ATP treatment increased dramatically (+ATP, P 

in Figure 7B). 
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Figure 7 Myo1d redistributes within the enterocyte in the absence of Myo1a 
 

 

(A) Whole cell lysates were created from WT and KO small intestine and colon 
mucosal scrapings and then blotted for Myo1a and Myo1d.  (B) 
Compartmentalization of Myo1d within the brush border is Myo1a-dependent. 
Myo1d protein levels are slightly higher in KO brush borders compared to WT 
brush borders. Neither Myo1d nor Myo1a are found with detergent solublized 
membranes (DSMs) from whole brush borders following treatment with 1% NP-40 
(+NP-40, S).  Upon treatment with mM ATP, Myo1a distributes equally between 
soluble  (+ATP, S) and insoluble (+ATP, P) fractions.  Most Myo1d is found in the 
supernatant, with low levels remaining in the pellet.  In the absence of Myo1a, the 
amount of Myo1d associated with actin bundles increases dramatically. 
Centrifugation of the ATP supernatant (+ATP, S) at 100k x g enables the 
separation of DRMs (100k x g, P) from purely soluble proteins (100k x g, S).  In 
WT samples, Myo1a partitions equally between the DRM and soluble fractions, 
while Myo1d does not sediment with DRMs.  However, Myo1d signal appears in 
the DRM-enriched 100k x g pellet in Myo1a KO samples.  The 100k x g gel 
samples were concentrated 2.5-fold relative to all other samples.  As Myo2 is a 
brush border component that is not expected to change in the absence of Myo1a 
(see Table I), blots for Myo2 are shown as a loading control. 
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The supernatant created following ATP treatment (+ATP, S in Figure 7B) 

contains soluble myosins, such as Myo1a, and Myo1a-associated cargoes 

including DRMs (Tyska and Mooseker, 2004).  To determine if Myo1d also 

interacts with DRMs, these membranes were sedimented from the ATP soluble 

fraction using ultra-speed sedimentation (100k x g, 1 hr).  In WT samples, Myo1a 

was found in both the DRM (100k x g, P in Figure 7B) and soluble protein (100k x 

g, S in Figure 7B) fractions, while Myo1d was strictly soluble.  In Myo1a KO 

samples, however, Myo1d was detectable in the DRM-containing 100k x g pellet 

(100k x g, P in Figure 7B).  Together these fractionation studies suggest that in 

KO enterocytes, the brush border population of Myo1d reorganizes to occupy 

compartments that are normally only occupied my Myo1a (e.g. actin bundles and 

DRMs).    

 

Myo1d redistributes along the length of microvilli in the absence of Myo1a 

To further explore the nature of Myo1d redistribution throughout the brush 

border in the absence of Myo1a, we stained frozen sections of WT and Myo1a 

KO small intestine with antibodies directed against both motors.  Similar to 

previous reports (Heintzelman et al., 1994; Skowron and Mooseker, 1999; Tyska 

et al., 2005), Myo1a demonstrated uniform signal along the length of the 

microvillus (Figure 8A).  However, the populations of Myo1d at the terminal web 

and tips of microvilli did not exhibit observable overlap with Myo1a.  Indeed, high-

resolution confocal micrographs revealed that Myo1a was actually excluded from 

the distal tip compartment occupied by Myo1d (Figure 8A, inset).  Quantification 



 

 

 46 

 

Figure 8 Myo1a and Myo1d exhibit differential localization within the brush 
border.   

(A) Confocal images of adult WT mouse small intestine frozen sections stained 
for Myo1d (green, C13 antibody), Myo1a (red), and F-actin (blue).  In the brush 
border, Myo1d occupies microvillar tips and the terminal web, while Myo1a 
localizes along the length of microvilli.  (B) KO mouse sections stained in an 
identical manner reveal that Myo1d is found along the length of microvilli in the 
absence of Myo1a.  Myo1d still occupies microvillar tips, but redistributes from 
lateral plasma membrane and the terminal web. (C, D) Plots show the average 
pixel intensity along the microvillar axis from proximal (base) to distal (tip) for 
Myo1d (green), Myo1a (red), and phalloidin (blue) fluorescence signals. The 
arrow indicates the position of the terminal web.  Representative micrographs of 
“straightened” brush borders used to create these plots are shown in 
Supplemental Fig. 3.  Bar is 20 $m.  Inset bar is 5 $m. 
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of fluorescence (Figure 8C & D) revealed that the Myo1a signal begins just distal 

to the terminal web and parallels the phalloidin signal along the microvillar axis 

(red line, Figure 8C).  However, the Myo1d signal peaks in two regions that flank 

the phalloidin signal, corresponding to the terminal web and microvillar tips, 

respectively (green line, Figure 8C).  The distinct distributions observed here 

suggest that even closely related short-tailed class I myosins may be responsible 

for distinct functions within the microvillus. 

Intriguingly, in the absence of Myo1a, Myo1d demonstrated prominent 

staining along the length of microvilli (Figure 8B and D), a result consistent with 

the biochemical fractionation data presented above (Figure 8B).  Both terminal 

web and basolateral membrane labeling in the KO enterocytes were significantly 

reduced relative to WT samples (Figure 8B, Figure 9), suggesting that Myo1d 

signal along the length of microvilli in KO brush borders appears at the expense 

of these two populations.  In contrast to the terminal web and basolateral 

populations, distinct microvillar tip labeling was still observed, indicating that 

Myo1d targets to this compartment independent of Myo1a levels in the brush 

border (Figure 8B and D). 

In combination, these data reveal that outside of the microvillar tip 

compartment, the subcellular localization of Myo1d depends on the level of 

Myo1a present in the brush border.  Moreover, by showing that Myo1d 

redistributes along the length of microvilli in the absence of Myo1a, these results 

also demonstrate that Myo1d is well positioned to compensate for lost Myo1a 

function in the KO brush borders. 
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Figure 9 Myo1d brush border localization is altered in KO. 

(A) Images from Figure 8 shown with the curved white line marking the region 
selected for “straightening” and analysis in ImageJ.  (B) Straightened brush 
border segments marked by the curved line in A.  Bar is 20 $m; inset bar is 3 $m. 
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Myo1d targeting to the brush border requires both IQ and TH1 domains 

In order for Myo1d to fulfill functions normally carried out by Myo1a, one 

would expect this motor to target to the apical membrane using a mechanism 

similar to Myo1a.  Previous work has shown that the TH1 domain alone is 

sufficient for Myo1a localization to microvilli (Tyska and Mooseker, 2002).  To 

investigate which domains are required for Myo1d localization, we expressed 

truncated EGFP-tagged forms of Myo1d and analyzed their subcellular 

distribution.  Constructs consisting of EGFP fused to different portions of Myo1d 

(Myo1d, a.a. 1-1006; Myo1d-IQTH1, a.a. 570-1006; Myo1d-TH1, a.a. 748-1006 

(Figure 10A,B); Myo1d-Motor, a.a. 1-703; Myo1d-MotorIQ, a.a. 1-739, and 

Myo1d-IQ, a.a. 694-747 (Figure 11A) were expressed in LLC-PK1-CL4 (CL4) 

cells and their ability to localize to the plasma membrane and specifically, apical 

microvilli were examined using confocal microscopy.  Consistent with 

endogenous staining (Figure 4), full-length Myo1d localized to both microvilli and 

the basolateral membrane (Figure 10D).  Myo1d-IQTH1 also localized to 

microvilli and the basolateral membrane, similar to the full-length construct 

(Figure 10E).  However, the Myo1d-TH1 domain alone appeared mostly cytosolic 

with weak targeting to microvilli (Figure 10F).  Finally, Myo1d-Motor, Myo1d-

MotorIQ and Myo1d-IQ domains failed to exhibit proper targeting (Figure 11).  

These experiments show that while both IQ and TH1 domains appear to be 

necessary, neither is sufficient for the proper targeting of Myo1d. 



 

 

 50 

 

Figure 10 Truncation analysis reveals that both IQ and TH1 domains are 
needed for proper localization of Myo1d.   
(A) Cartoon depiction of constructs that were generated for studying Myo1d 
localization determinants.  EGFP was fused to the N-terminus of the full-length 
molecule, Myo1d-IQTH1, or Myo1d-TH1.  An indication of the ability of each 
(Figure 10 continued) 
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Figure 10 continued 

 
construct to target to microvilli is provided to the right of the cartoon. (B) Western 
blots with the H60 anti-Myo1d antibody confirm that fragments of the expected 
size are produced in CL4 cells.  (C-F) Confocal micrographs of CL4 cells 
expressing one of three EGFP-tagged Myo1d constructs or EGFP alone (green) 
and counter-stained with Alexa488 or Alexa 633-conjugated phalloidin (red). 
Merges of green and red channels are shown at both apical and basal planes.  
(C) EGFP alone demonstrates diffuse localization throughout the cytosol and 
nucleus.  (D) EGFP-Myo1d is enriched in microvilli and also targets the lateral 
plasma membrane, in a manner similar to that previously reported for EGFP-
Myo1a (Tyska and Mooseker, 2002).  (E) EGFP-Myo1d-IQTH1 localizes to 
microvilli and lateral membranes in a manner similar to full-length Myo1d.  (F) 
EGFP-Myo1d-TH1 demonstrates low level targeting to microvilli and plasma 
membrane. Bar in A is 20 $m and serves as a calibration for all panels. 
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Figure 11 Cartoon depiction of constructs that were generated for studying 
Myo1d localization determinants.   

(A) mCherry was fused to the C-terminus of Myo1d-Motor or Myo1d-MotorIQ.  
The amino acid numbers included in each construct are shown; an indication of 
the ability of each construct to target to microvilli is provided to the right of the 
cartoon. (B, C, D) EGFP-Myo1d-MotorIQ, EGFP-Myo1d-Motor, EGFP-Myo1dIQ 
domain constructs do not localize to microvilli or the plasma membrane.  Bar in 
(B) is 20 $m. 
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FRAP reveals that Myo1a is less dynamic than Myo1d 

The altered Myo1d distribution in Myo1a KO brush borders suggests that 

these two class I myosins may compete for shared binding sites (e.g. membrane 

receptors) within the microvillus. From this perspective, the non-overlapping 

distributions of Myo1d and Myo1a observed in WT enterocytes could be 

explained by differential dynamics within the brush border.  For example, Myo1a 

may exhibit slower turnover rates or a larger immobile fraction relative to Myo1d, 

making it difficult for the latter to occupy common binding sites along the length 

of the microvillus.  To test this model, we performed FRAP analysis on CL4 cells 

expressing EGFP-Myo1d or EGFP-Myo1a to measure turnover kinetics in this 

brush border model system (Tyska and Mooseker, 2002).  CL4 cells express 

very low levels of both Myo1a and Myo1d (only detectable via western blot), and 

thus provide a convenient opportunity to examine the dynamics of these two 

motors independent of one another, but in the same cellular background.  For 

these experiments, we used a laser scanning confocal microscope to 

photobleach a region (5 µm2) in the focal plane of microvilli (Figure 12A and B).  

FRAP recovery data were fit to a general kinetic model which assumes that the 

mobile population consists of two components: a fast population that represents 

freely diffusing protein, and a second slower population that represents protein 

interacting with brush border components (Figure 12C) (Tyska and Mooseker, 

2002).  Interestingly, the fast mobile components measured for Myo1a and 

Myo1d were nearly identical at ~0.34 s-1; recovery rates for the slow mobile 

components were also similar at ~0.06 s-1 (Figure 12E). 
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Figure 12 Myo1a and Myo1d demonstrate differential dynamics in the brush 
border.   

 

 

(A) EGFP-Myo1d and (B) EGFP-Myo1a were expressed in CL4 cells and grown 
on filters for FRAP studies.  Micrographs show representative examples of 
photobleaching; ROIs are marked with an arrow. (C) Averaged datasets (n = 14 
for EGFP-Myo1a, n = 22 for EGFP-Myo1d) of the relative fluorescence recovery 
in photobleached regions were fit to a general kinetic model as outlined in 
Methods.  Myo1d (green) demonstrates more complete recovery (i.e. a higher 
mobile fraction) when compared to Myo1a (red).  (D) Stacked bar graphs of the 
amplitudes for Myo1d and Myo1a (Fast phase, black; Slow phase, gray).  (E) Bar 
graphs of the rate constants for Myo1d and Myo1a (Fast phase, black; Slow 
phase, gray).  Bar in A is 20 $m and serves as a calibration for all images. 
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Table 2 Summary of FRAP kinetic data 

 
 
 
 
 

 
 

 
Photobleaching recovery curves were fit to a kinetic model as described in Methods.  Values listed here 
represent fit parameters ± standard error of the fit; Ax= amplitude for process x, kx = rate for process x, and n = 
number of brush borders sampled. 
 
 
 

 
 

Construct n Afast kfast (s-1) Aslow kslow (s-1) Afast/Aslow Mobile 
Fraction (α) 

EGFP-Myo1a 14 0.12 ±0.04 0.34 ±0.14 0.66 ±0.04 0.06 ±0.01 0.18 0.78 ± 0.01 

EGFP-Myo1d 22 0.38 ±0.05 0.34 ±0.05 0.55 ±0.04 0.06 ±0.01 0.69 0.93 ± 0.01 
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However, significant differences were observed in the total mobile fractions for 

Myo1a and Myo1d, 0.78 vs. 0.93, respectively (Figure 12C,D; Table 2 Summary 

of FRAP kinetic data).  Fits to the data indicate that the differences in mobile 

fraction are accompanied by different amplitudes for the fast and slow mobile 

components.  Myo1a demonstrated a very low ratio of fast to slow amplitudes 

(Afast/Aslow = 0.18), whereas Myo1d demonstrated a much higher ratio 

(Afast/Aslow = 0.69; Figure 12D, Table 2).  Thus, while Myo1a and Myo1d 

demonstrate comparable turnover kinetics in the brush border, Myo1a appears to 

have a significantly larger immobile fraction (i.e. a lower mobile fraction) on the 

timescale of these FRAP measurements (~1 minute).  These results suggest that 

differences in dynamics may help explain how similar motor molecules can 

display distinct subcellular localizations within the same organelle.  

 

Discussion 

 

Multiple class I myosins in the microvillus 

In this study, we exploit an unbiased shotgun proteomic approach to 

examine the complement of class I myosins that reside in the vertebrate brush 

border; we also explore how this complement changes in the absence of the 

major brush border component, Myo1a.  Four class I myosins were identified in 

our analysis: Myo1a, Myo1d, Myo1c, and Myo1e (listed in order of decreasing 

peptide counts).  In addition to Myo1a, previous studies have reported the 

presence of Myo1c and Myo1e in the apical domain of the enterocyte (Skowron 
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et al., 1998; Tyska et al., 2005).  Although early studies demonstrated the 

presence of Myo1d transcripts in vertebrate small intestine (Bahler et al., 1994), 

the high levels of Myo1d in the brush border and its unique localization at the tips 

of microvilli were unexpected.  While Myo1d was abundant in WT brush borders, 

peptide counts increased ~2.3-fold in Myo1a KO samples, the most robust 

change observed for any of the myosins-I detected in this analysis.  These data 

suggest that Myo1d is a component of the microvillus under normal conditions 

and is the motor most likely to recover functions that are compromised in the 

absence of Myo1a.  

 

Myo1a dependent targeting of Myo1d in the microvillus 

Studies presented here show that Myo1d localization in the brush border and its 

distribution along the microvillus are strongly influenced by the high levels of 

Myo1a that are normally expressed in the enterocyte.  We propose that the 

differential localization and dynamics observed for Myo1a and Myo1d are the 

result of differences in the binding affinities that these motors exhibit for 

microvillar components.  For example, when brush border fractions are exposed 

to millimolar levels of ATP, almost all of the Myo1d is released, whereas only 

~50% of the Myo1a is solublized (Figure 7B).  This indicates that Myo1a has a 

higher affinity for actin in the presence of ATP.  In addition, the amount of Myo1d 

found in actin bundle-containing fractions increases markedly in the absence of 

Myo1a (+ATP, P; Figure 7B).  Higher affinities for actin would enable Myo1a to 

out-compete Myo1d for binding sites along the microvillus length.  This model 
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becomes even more attractive if one turns to the proteomics data to gain insight 

on the relative abundance of these motors in the microvillus.  Based on the 

number of peptides detected in each case, Myo1a is ~5-fold more abundant than 

Myo1d.  Thus, the total number of Myo1d molecules in the brush border 

demonstrate ~1:1 stoichiometry with the “immobile” population of Myo1a 

molecules (~20% of the total). 

 

Function of Myo1d in WT brush borders 

The unique punctate localization pattern of Myo1d at microvillar tips and 

prominent banding at the terminal web implies that this motor may be carrying 

out distinct functions at these locations. Myo1d located in the terminal web may 

play a role in the short-range transport, docking and/or fusion of apically directed 

vesicles derived from the Golgi complex (Fath and Burgess, 1993). Indeed, 

previous Myo1d studies have shown that this motor associates with vesicle 

populations in neurons (Bahler et al., 1994), and early endosomal vesicles in 

MDCK cells (Huber et al., 2000), supporting a role in trafficking.  More recently, 

Myo1d was implicated in left-right asymmetrical gut patterning during Drosophila 

development (Hozumi et al., 2006; Speder et al., 2006), although the implications 

for Myo1d function in the vertebrate gut have not been explored.   

One of the most striking findings of the current study was the punctate 

Myo1d staining observed at the tips of microvilli.  Early electron micrographs of 

brush border microvilli revealed a dense tip complex at the distal end of core 

actin bundles (Mooseker and Tilney, 1975a), yet the composition of this complex 
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remains poorly characterized.  Although Eps8 has been localized to microvillar 

tips in C. elegans (Croce et al., 2004), to our knowledge, Myo1d is the first motor 

protein shown to target to the distal tip compartment in these structures.  While 

myosin-7b localizes to the distal half of microvilli (Chen et al., 2001), and myosin-

5 exhibits distal microvillar localization (Heintzelman et al., 1994), neither myosin 

clearly exhibits the punctate localization at microvillar tips displayed by Myo1d.  

The tip localization described here is reminiscent of myosin-10 accumulation at 

filopodia tips, where it regulates the formation of these dynamic protrusions (Berg 

and Cheney, 2002).  In the stereocilium, another parallel actin bundle supported 

protrusion, Myosin-3a localizes espin to the stereocilia tip where it plays a critical 

role in regulating stereocilia length (Les Erickson et al., 2003; Schneider et al., 

2006; Salles et al., 2009).  Myosin-15a also localizes to stereocilia tips 

(Belyantseva et al., 2003) and has been implicated in the tip-ward transport of 

whirlin (Belyantseva et al., 2005).  Thus, Myo1d at the tips of microvilli may 

function in the control of actin bundle dynamics or perhaps the transport of 

components along the microvillar axis.  Alternatively, Myo1d could play a role in 

the formation and/or release of vesicles from microvillar tips (McConnell and 

Tyska, 2007) as suggested by the partial colocalization with IAP at the distal 

ends of microvilli. 

 

Myo1d function in the absence of Myo1a 

While the TH1 domains of Myo1d and Myo1a only share 22.2% identity, they are 

both enriched in basic residues that are required to properly target both Myo1a 



 

 

 60 

(Tyska and Mooseker, 2002) and Myo1d to microvilli. This shared feature may 

allow these two molecules to bind similar protein and/or lipid targets and engage 

in similar functions.  In the vertebrate brush border, Myo1a forms bridges that link 

the actin core bundle and plasma membrane, suggesting that this molecule may 

play a role in maintaining the structural integrity of this complex cytoskeletal 

domain.  Indeed, recent biophysical studies of isolated brush borders and 

cultured epithelial cells demonstrate that Myo1a controls membrane tension by 

contributing adhesion to the cytoskeleton (Nambiar et al., 2009).  Myo1d 

redistribution along microvilli may rescue membrane tension in KO brush 

borders, but any rescue is expected to be partial due to the lower levels of Myo1d 

in this structure. Indeed, while a subset of enterocytes in Myo1a KO small 

intestine exhibit large herniations of brush border membrane (Tyska et al., 2005), 

many cells also demonstrate near normal apical membrane morphology.  This 

mixed population suggests that some enterocytes are able to compensate for the 

loss of Myo1a.  Other recent studies have established that Myo1a plays a critical 

role in regulating the formation and release of vesicles from microvillar tips 

(McConnell and Tyska, 2007; McConnell et al., 2009).  These studies revealed 

that Myo1a KO animals produce fewer vesicles that are larger than normal and 

perturbed in their composition.  Thus, microvillar membrane shedding may be a 

second aspect of Myo1a function that is partially compensated by Myo1d. 
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Conclusion 

 

In this study, we present data establishing Myo1d as a component of the 

enterocyte brush border; these data also suggest that Myo1d may play a role in 

compensating functions that would otherwise be lost in Myo1a KO mice.  The 

differential localization of these two closely related myosins within individual 

microvilli and the striking localization of Myo1d to the microvillus tip are likely the 

result of distinct dynamics and possibly differences in actin bundle binding 

affinity.  Future studies will investigate the functional role of Myo1d populations in 

the terminal web and at microvillar tips, and explore the detailed mechanism(s) 

underlying compensation in the Myo1a KO mouse. 
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CHAPTER III 

 

EXPRESSION AND LOCALIZATION OF MYO1D IN THE DEVELOPING 

NERVOUS SYSTEM 

 

This title is in the peer review process and will be resubmitted in the near future.  

Contributors to this work include: Andrew E. Benesh, Jonathan T. Fleming, Chin 

Chiang, Bruce D. Carter, and Matthew J. Tyska. 

 

The myosin superfamily is a diverse collection of actin-binding, ATP-

hydrolyzing molecular motors that sort into at least 35 different structural classes 

(Odronitz and Kollmar, 2007).  Class I myosins comprise one of the largest 

subfamilies (eight genes in vertebrates) and are defined by a monomeric heavy 

chain and the potential to bind directly to acidic phospholipids (McConnell and 

Tyska, 2010).  These molecules are also expressed in a variety of cells including 

Myo1a in epithelia of the small intestine (Cheney and Mooseker, 1992), Myo1f in 

kidney (Krendel et al., 2007), Myo1c in cochlea (Hasson et al., 1997), as well as 

Myosin-1g (Myo1g) in lymphocytes (Patino-Lopez et al., 2010) and Myo1d in 

neurons (Bahler et al., 1994) where they have been implicated in a wide range of 

functions at the actin/membrane interface (McConnell and Tyska, 2010). 

Myo1d, previously named myr4 and myosin I!, was first identified in the 

rat cerebral cortex, spinal cord, brainstem, and cerebellum, in addition to a 

number of other tissues (Bahler et al., 1994).  As a short-tailed class I myosin, 
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Myo1d contains a conserved motor domain, two IQ motifs that bind calmodulin, 

and a basic C-terminal tail homology-1 (TH1) domain (Bahler et al., 1994).  

Functional studies suggest that Myo1d plays a role in membrane trafficking 

(Huber et al., 2000), the control of membrane tension (Nambiar et al., 2009), and 

the establishment of left-right asymmetry during Drosophila development 

(Hozumi et al., 2006; Speder et al., 2006).  Aside from these initial reports, our 

understanding of Myo1d function in the context of vertebrate physiology remains 

largely unexplored. 

Three recent lines of evidence suggest that Myo1d plays an important role 

in nervous system tissues.  First, linkage analysis of autistic individuals revealed 

a potential association with MYO1D (Stone et al., 2007).  Second, mass 

spectrometry studies have identified Myo1d as a component of the myelin 

proteome (Yamaguchi et al., 2008; Ishii et al., 2009; Jahn et al., 2009).   Third, 

Myo1d is a significantly upregulated transcript during oligodendrocyte maturation, 

along with other classical myelin-associated components (Nielsen et al., 2006; 

Cahoy et al., 2008).  All of these investigations implicate Myo1d in 

neurodevelopment and further suggest that this motor plays a role in the process 

of myelination.  However, there is currently no cell biological data to validate or 

extend the results derived from these broad screening studies. 

The goal of this study was to investigate the expression, localization, and 

function of Myo1d during neurodevelopment.  Here, we show that Myo1d is 

present in both the PNS and CNS. In the CNS, our analysis focused on the 

cerebellum, where Myo1d expression is limited to neurons, exhibiting a punctate 
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distribution along axons and in cell bodies.  This motor was not found in glial cells 

as expected based on previous studies (Nielsen et al., 2006; Cahoy et al., 2008).  

We also identified aspartoacylase as a putative binding partner for Myo1d in 

Purkinje cells.  Aspartoacylase functions in fatty acid synthesis and mutations in 

this protein lead to leukodystrophy (Namboodiri et al., 2006).  Together, these 

findings hold implications for understanding the contribution of Myo1d to 

neurodevelopment and neurological disorders such as autism or Canavan 

disease. 

 

Materials and methods 

 

Sciatic nerve tissue preparation 

Following a published protocol (Spiegel et al., 2007), sciatic nerve was 

dissected from adult mouse, and then fixed in 4% paraformaldehyde/PBS for 30 

min at 4° C.  The nerve was washed in 1 M sucrose/Tris buffered saline (TBS) 

and then placed in glycerol until the tissue was teased apart under a dissecting 

microscope.  After individual fibers were separated, isolated material was placed 

on Superfrost®/Plus microscope slides (Fisher Scientific) and washed 3 times 

with PBS to remove residual glycerol.  

 

Brain preparation 

Mice 14 days old and younger were sacrificed according to Vanderbilt 

IACUC guidelines.  Briefly, whole brains were removed and placed in 4% 
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paraformaldehyde/Phosphate buffered saline (PBS; 50 mM EGTA, 137 mM 

NaCl, 7 mM Na2HPO4, and 3 mM NaH2PO4, pH 7.2) and allowed to rotate at 4° C 

for 4, 6, or 8 hours for mice that were 3, 7, and 14 days old, respectively.  Next, 

tissue was cryoprotected overnight in 1 M sucrose/TBS (50 mM Tris, 150 mM 

NaCl) at 4° C.  The following day, sucrose was washed out with OCT (Sakura 

Finetek) and then frozen in OCT.  Samples were sectioned at 15 "m thickness 

with a Leica CM 1900 cryostat and applied to Superfrost®/Plus microscope slides 

for further analysis.  For generation of the L7cre;YFPmembrane reporter mouse, 

Rosa-YFPmembrane mice (Jackson Laboratories,) were crossed with L7cre (Jackson 

Laboratories), and genotyped.  Tissue was processed similarly as wildtype. 

 

Immunofluorescence  

Sciatic nerves were permeabilized with 0.1% or 1% Triton® X-100 (Sigma-

Aldrich) for 30 min, and rinsed three times in PBS.  Next, fibers were blocked 

with 5% bovine serum albumin, fraction V (BSA; Research Products International 

Corp.) in PBS.  Antibodies targeting Myo1d (H60, polyclonal, 1:50, Santa Cruz 

Biotechnology, Inc.), myelin basic protein (SMI-94, monoclonal, 1:100, Covance), 

and light-neurofilament (DA2, monoclonal, 1:100, Cell Signaling) were applied to 

the samples overnight at 4° C.  We previously have shown that the Myo1d H60 

antibody is specific (Benesh et al., 2010), and consistently provides the best 

signal to noise results for immunofluoresence and Western blots.  The next day, 

unbound primary antibodies were removed with three 5-min washes of PBS.  

Secondary antibody was added to each sample for 45 min (Alexa Fluor® 488 or 
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568 goat anti-mouse [IgG] or goat anti-rabbit, Invitrogen Molecular Probes).  

Samples were washed with PBS three times and adhered to glass slides with 

Prolong® Gold antifade (Invitrogen). 

Brain slices were thawed to room temperature and a Super HT Pap Pen 

(Research Products International Corp.) was used to draw a hydrophobic 

boundary around tissue sections.  Samples were washed briefly in PBS to 

remove residual OCT, and then permeabilized with 0.1% Triton® X-100 (Sigma-

Aldrich) for 30 min at RT.  When staining for myelin basic protein, samples were 

permeabilized with acetone for 30 min at 4° C.  After three 5-min washes with 

PBS, samples were blocked with 5% BSA/PBS for 30 min at RT.  Primary 

antibodies used in study: anti-Myo1d, anti-myelin basic protein, anti-

neurofilament-L, anti-neurofilament-H (RMdO 20, monoclonal, 1:200, Cell 

Signaling), anti-calbindin (C26D12, polyclonal, 1:200, Cell Signaling), anti-O4 

(MAB1326, monoclonal, 1:200, Research and Development Systems), anti-neun 

(MAB377, monoclonal, 1:200, Millipore), anti-aspartoacylase (sc-109208, goat, 

1:50, Santa Cruz).  Samples were incubated overnight at 4° C.  Tissue was then 

washed in three 5-min washes with PBS before adding the appropriate 

secondary antibody species (Alexa Fluor® 488 or 568 goat anti-mouse (IgG or 

IgM) or goat anti-rabbit, Invitrogen Molecular Probes) for 45 min at RT in 

darkness.  The secondary antibody was washed out in three 5-min washes 

before sealing a coverslip over the sample with Prolong® Gold antifade.  Brain 

slices were imaged on a Leica TCS-SP5 confocal microscope (Leica 

Microsystems) with 10x and 63x objectives.  Brain slices seen in Figures 2 and 3 
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were imaged on an Ariol® SL-50 platform (Genetix) with the assistance of Joseph 

Roland in the Epithelial Biology Center, Vanderbilt University Medical Center.  All 

images were pseudo-colored, contrast enhanced, and cropped in ImageJ 1.44j 

(National Institutes of Health, http:/imagej.hig.gov/ij). 10x images were stitched 

together in Photoshop CS5 using the ‘Automerge’ feature. 

 

Yeast 2-hybrid assay 

A human kidney Matchmaker cDNA library was screened according to the 

manufacturer’s instructions (Clontech).  Briefly, Myo1d tail was subcloned 

(nucleotides 2230-3021) into the pGBKT-7 vector with a forward primer 

containing an EcoR1 site 

(AGCAGAATTCAAAGCCAGGCGATTCCACGGGGTC) and a reverse primer 

containing a BamH1 site (ATCGGGATCCATTCCCGGGCACACTGAGGAT). 

Myo1d tail pGBKT-7 transformed AH109 yeast tested negative for leaky HIS3 

expression and auto-transcriptional activation.  The bait-containing AH109 strain 

was mated with the Y187 yeast pre-transformed library in liquid culture overnight. 

Mating mixtures were streaked onto synthetic dropout plates (without Histidine, 

Leucine, and Tryptophan) and incubated for a week at 30° C.  Colonies were 

replica plated on quadruple synthetic dropout plates (without Histidine, Leucine, 

Tryptophan, Adenine).  DNA was extracted from clones picked from quadruple 

synthetic dropout plates, amplified by PCR, and sequenced according to 

manufacturer’s instructions. 
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In vitro pull-down 

BL21-Gold(DE3)pLysS (Stratagene, #230134) bacterial cells were 

transformed with pQE-32 vector (Qiagen, #32915) containing Hs aspartoacylase 

cDNA or not transformed, and were streaked on plates to enable single colony 

selection.  Colonies were picked and grown in 5 ml LB broth (FisherScientific, 

BP1426-2) overnight to test expression levels.  50 µl of a high expressing clone 

was used to inoculate a 50 ml starter culture that was grown overnight.  The 

following day, 25 ml of starter culture was added to 500 ml LB broth and grown 

until the OD600 reached 0.6.  To induce over-expression, isopropyl ß-D-1-

thiogalactopyranoside (IPTG) (500 µm, Sigma-Aldrich, 15502) was added to 

cultures, which were then allowed to grow for an additional 3-4 hours.  Bacteria 

were then pelleted in a Beckman X-15R at 5,000 x g for 20 minutes, 4° C.  The 

pellet was snap-frozen in liquid N2 and stored at -80° C.   To begin lysis, pellets 

were thawed and resuspended in 20 ml of Lysis buffer (100 mM KCl, 10% 

glycerol, 20 mM Tris-HCl, 10 mM Imidazole, fresh 10 mM ß-mercaptoethanol, 0.2 

ml fresh chicken lysozyme/gram of pellet, 1 mM Pefabloc, pH 8.5).  

Resuspended bacteria were agitated for 15 min at room temperature, and then 

sonicated with a Branson Sonicator 250 at 300W, 50% duty cycle five times for 

10 sec.  After bacterial lysis, the supernatant was clarified by centrifugation at 

20,000 x g (Sorvall, SS-34 rotor).  To bind the 6x-His tag aspartoacylase 

constructs to Ni-NTA resin (Qiagen), 2.5 ml of resin was equilibrated with Lysis 

buffer; the bacterial lysate was then added to resin and rotated for 1 hr at 4° C.  

The supernatant flow-through was removed by centrifugation (5 min at 500 x g).  
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Resin was washed three times in Wash Buffer (300 mM KCl, 20 mM Tris-HCl, 20 

mM Imidazole, pH 8.5).  His-tagged aspartoacylase was then incubated with 

LLC-PK1-CL4 (CL4) cell lysates containing either EGFP or EGFP-Myo1d.  CL4 

homogenates were prepared as previously described (Tyska and Mooseker, 

2004).  Briefly, confluent CL4 cells in a T-75 flask were washed three times with 

37° C TBS, scraped, and then pelleted (500 x g, 10 min).  Next, CL4 cells were 

resuspended in nine pellet volumes of Homogenization Buffer (2 mM EGTA, 150 

mM KCl, 5 mM MgCl2, 1 mM Dtt, 1 mM Pefabloc, 40 mM imidazole, 1 mM ATP, 

1% Triton X-100, pH 7.2) and homogenized in a dounce.  The homogenate was 

then centrifuged at 15,000 x g for 20 min at 4° C.  The CL4 supernatant was 

incubated with the His-tagged aspartoacylase bound Ni-NTA resin overnight at 4° 

C.  The following day, the resin was washed three times with Wash Buffer and 

then treated with boiling Laemmli sample buffer to prepare associated proteins 

for SDS-PAGE. 

 

Immunoblotting 

Protein samples were separated using SDS-PAGE. After electrophoresis, 

gels were transferred to a nitrocellulose membrane overnight (35V, 4° C).  

Membranes were rinsed three times with deionized water, blocked with nonfat 

dry milk in PBS, and then incubated with primary antibodies anti-GFP (1:500, 

Molecular Probes, A11122) or anti-His (1:1,000, Cell Signaling, 27E8) for 1 hr at 

RT.  Blots were then washed with PBS-Tween 0.1% three times before adding 

secondary antibody (1:1000,IRDye® 680 goat anti-mouse, 827-11080, IRDye® 
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800 goat anti-rabbit, 827-08365, LI-COR) for 30 min. After washing three more 

times with PBS-Tween 0.1%, blots were imaged with an Odyssey LI-COR 

Imaging System.   

 

Results 

 

Myo1d is present in myelinating and non-myelinating cells of the PNS  

Myo1d was originally identified in the rat cerebrum, spinal cord (Bahler et 

al., 1994), and sciatic nerve (Lund et al., 2005).  Recently, microarray studies 

demonstrated that Myo1d transcripts are present in oligodendrocytes (Cahoy et 

al., 2008), and proteomic studies suggest that this motor is also associated with 

myelin (Yamaguchi et al., 2008; Ishii et al., 2009; Jahn et al., 2009).  To further 

develop our understanding Myo1d function in myelinating cells and neurons, we 

used high-resolution confocal imaging to characterize the distribution of this 

motor in the PNS and CNS.  To this end, we first dissected mouse sciatic nerve 

bundles for immuno-fluorescence labeling and confocal imaging.  To visualize 

the distribution of Myo1d in sciatic nerve, the nerve bundle was teased into 

constituent fibers (a single axon wrapped by Schwann cells), which were then 

stained with antibodies targeting Myo1d, myelin basic protein (MBP) to label 

Schwann cells (Mirsky et al., 1980), or neurofilament light chain to label axons 

(Fabrizi et al., 1997; Sotelo-Silveira et al., 2000).  Interestingly, Myo1d exhibited 
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Teased mouse sciatic nerve bundles were treated with 0.1% Triton 
X-100 and antibodies targeting MBP (red) and Myo1d (green).  A) 
MBP localizes along the axonal ensheathment and colocalizes with 
Myo1d (B).  C) Both proteins target to ensheathment around the 
axon, arrow.  D-F) Teased sciatic nerve fibers were treated with 1% 
Triton X-100 and antibodies specific for neurofilament (red) (D), and 
Myo1d (E).  F) Myo1d and neurofilament colocalize along the axon 
(arrowhead) while Myo1d maintains localization on the axon 
ensheathment (arrow).  A-C) Bar, 20 mm; inset bar is 5 mm.  D-F) 
50 mm, inset bar is 5 mm. 

Figure 13 Myo1d colocalizes with MBP in Schwann cells. 
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robust co-localization with MBP along the myelin sheath enveloping neurons 

(Figure 13A-C).  In teased fibers that were exposed to higher levels of Triton X-

100 (1%) to increase permeabilization, the motor maintained localization along 

the myelin sheath, but also co-localized with neurofilament labeling along the 

length of axons (Error! Reference source not found.D-F).   These high-

resolution confocal images indicate that Myo1d is present in both neurons and 

myelinating cells in the PNS.  These data are also consistent with Western blots 

of sciatic nerve samples (Figure 14), brightfield studies demonstrating Myo1d is 

in the sciatic nerve (McQuarrie and Lund, 2009), and proteomic studies 

suggesting that Myo1d is present in myelinating cells (Yamaguchi et al., 2008; 

Ishii et al., 2009; Jahn et al., 2009).  

 

Myo1d exhibits a developmentally regulated distribution in the cerebellum 

To explore the cellular distribution and sub-cellular localization of Myo1d in 

the CNS, we applied a similar staining strategy to frozen sections of the 

developing mouse brain.  At postnatal day 7 (P7), Myo1d exhibits broad 

expression throughout the whole brain, with enrichment in select regions, 

including the hippocampal formation and cerebellar Purkinje cell layer (Figure 

15).  We noticed prominent axonal tract staining in the cerebellum and pontine 

region in agreement with previous biochemical analyses (Bahler et al., 1994).  

The choroid plexus nonspecifically bound secondary and is an artifact (data not 

shown).  We chose to focus further studies on the cerebellum as this region 
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undergoes dramatic maturation of both neuronal and myelinating cell populations 

to form highly organized cell layers during early  

Figure 14 Myosin-1d is 
present in sciatic nerve 
and spinal cord. 
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Figure 15 Myo1d is expressed throughout the mouse brain. 

A) P7 mouse brain was stained with antibody targeting Myo1d.  Myo1d 
expression is seen throughout the brain with enrichment in select regions 
including the hippocampal formation and Purkinje cell layer.  Interestingly, 
axonal tract labeling is evident in the pontine region and cerebellum.  Bar, 
500 µm.  B) Western blot analysis of P7 and P14 forebrain and cerebellum 
Myo1d levels. 
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mouse postnatal development, and had higher Myo1d levels by Western blot 

compared to mouse forebrain (Figure 15).   

Beginning with P3 prior to myelination (Skoff et al., 1976), Myo1d 

expression is present throughout the cerebellum in the Purkinje and granule cell 

layers, and in the region of the deep nuclei (Figure 16A-A’’).  However, 

expression is largely absent from the molecular cell layer demonstrating that 

Myo1d expression is not present in all neural cell types (Figure 16A’).  At P7, 

after the onset of myelination (Skoff et al., 1976), Myo1d expression expands 

along tracts that co-label with MBP, a marker for myelin (Kornguth and Anderson, 

1965) (Figure 16B-B’’).  At this time point, Myo1d expression is maintained in the 

Purkinje cell layer, but in the granule cell layer, expression has shifted to the 

apex of the cerebellar lobules (Figure 16B’’). Myo1d exhibits a similar expression 

pattern at P13, with pronounced expression in Purkinje cells and a subset of 

granule cells (Figure 16C-C’’).  These data indicate that Myo1d expression 

patterns are developmentally regulated, as suggested by previous biochemical 

studies (Bahler et al., 1994).  In particular, Myo1d enrichment along axons 

increases concomitantly with maturation and expression in granule cells 

becomes restricted to the apex of cerebellar lobules. 

 

Myo1d is mostly absent from oligodendrocyte precursors and 
oligodendrocytes 
 

Upon the onset of myelination at P7, Myo1d expression expands along 

axonal tracts suggesting that this motor is found in Purkinje cell axons or in  
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Mouse cerebella were stained with Myo1d (green) and MBP 
(red) at P3, P7, and P13.  A) Myo1d is expressed throughout the 
cerebellum in the Purkinje (asterisk) and, region of deep nuclei 
(open triangle).  A’) The motor is absent from the molecular cell 
layer (bracket).  A’’) Myo1d is also present throughout the 
granule cell layer (arrow).  B-B’’) Upon the onset of myelination 
at day 7, myoisn-1d expression has expanded along axonal 
tracts (arrowhead).  B’-B’’) Myo1d is present in the Purkinje cell 
layer and has a restricted expression pattern in the granule cell 
layer.  C-C’’) At day 13, Myo1d expression is maintained in the 
Purkinje and granule cell layers, and is distinctly present along 
axonal tracts.  Bar, 200 µm. 
 

Figure 16 Myo1d distribution in the cerebellum is 
developmentally regulated. 



 

 

 78 

oligodendrocyte processes that myelinate these axons (or both).  To distinguish 

among these possibilities, we performed high-resolution confocal microscopy on 

labeled P3 and P14 mouse brains with an antibody targeting O4, the earliest 

marker known for mature oligodendrocytes (Schachner et al., 1981; Sommer and 

Schachner, 1981).  At P3, O4 appears in an arc at the base of the cerebellum in 

the region of the deep nuclei and there is minimal expression overlap with Myo1d 

(Figure 17A-C).  In fact, O4-positive and Myo1d-positive cells appear 

interspersed in a mutually exclusive pattern.  We also analyzed O4 and Myo1d 

labeling in P14 mice cerebella (Figure 18). Interestingly, Myo1d was present 

along axons, whereas O4 labeled cellular processes clearly enveloped axons in 

these sections.  As a control, we stained mouse cerebella with an antibody 

targeting calbindin, a Purkinje specific marker (Jande et al., 1981; Roth et al., 

1981; Baimbridge and Miller, 1982), and O4.  This data shows O4-positive 

processes interwoven among Purkinje axons (Figure 18G-I), in the same manner 

observed in Myo1d-labeled sections.  Taken together, our high-resolution 

imaging data indicate that at early and intermediate time points in cerebellar 

development, Myo1d is either not present or is expressed at very low levels in 

oligodendrocytes. 
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Figure 17 Myo1d is predominantly expressed in neurons at P3. 

Mouse cerebella were labeled with antibodies specific for Myo1d (A) 
and oligodendrocyte progenitor marker, O4 (B).  C) Myo1d 
expression does not overlap with O4.  However, when cerebella 
were stained with antibodies for Myo1d (D) or neurofilament (E), 
there was greater overlap between both proteins (F).  Bar, 200 µm; 
inset, 50 µm. 
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Figure 18 Myo1d is mostly absent from O4-labeled myelin tracts.   

To determine if Myo1d is present in myelin tracts, P14 mouse 
cerebellum was costained with antibodies for Myo1d (A & D) (green) 
and O4 (B&E) (red).  Confocal image magnified along a white matter 
tract.  Myo1d appears to be specific for axonal tracts (arrow) and 
Purkinje cells, while O4 is in a separate cell population that wraps 
around the axons (F).  G) Antibodies targeting Calbindin (green) 
clearly target Purkinje cells, dendrites and axons.  H) O4 myelin 
positive processes form a web-like pattern.  I) O4 processes wrap 
around Calbindin-labeled axons.  A-C) Bar, 150 µm; D-I) Bar, 25 
µm; inset, 10 µm. 
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Myo1d localizes to neuronal cell bodies, processes, and axons   

To validate that Myo1d is expressed predominantly in neurons, mouse 

cerebella at P3 and P7 were costained for this motor and heavy neurofilament.  

At P3, Myo1d exhibits clear colocalization with neurofilament in the cerebellar 

nuclei and granule cell layer (Figure 17D-F).  However, at P7, Myo1d and 

neurofilament exhibit overlapping expression in the Purkijne cell layer, Purkinje 

axonal tracts, and in the cerebellar nuclei (Figure 19A-C).  High magnification 

images in the region of the cerebellar nuclei reveal that Myo1d is cytosolic in cell 

bodies, localizes along processes (Figure 19D-F), and along axon tracts (Figure 

19G-I).  Staining with heavy neurofilament antibodies also revealed Myo1d 

localization along Purkinje dendrites (Figure 20).  In Purkinje cell bodies, we 

observed cytosolic Myo1d with punctate labeling distributed throughout the soma 

as well as regions of enrichment around the cell cortex.  We confirmed Myo1d 

expression in Purkinje cells and axons using a Purkinje specific L7cre;YFPmembrane 

reporter mouse (Zhang et al., 2001) (Figure 20D-E).  To validate Myo1d 

expression in the granule cell layer, we stained the mouse cerebella for NeuN, a 

neuronal specific nuclear protein that is an established marker for this cell 

population.  While the NeuN staining pattern was evident throughout the entire 

granule cell layer, Myo1d expression is only evident in a subpopulation of granule 

cells at the apex of the cerebellar lobules (Figure 21).  Together, these results 

lead us to conclude that, in the context of the cerebellum, Myo1d is expressed in 

neurons (Bahler et al., 1994), but is unlikely to be present in myelinating cells 

(Yamaguchi et al., 2008; Ishii et al., 2009; Jahn et al., 2009). 
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Figure 19 Myo1d exhibits localization along neuronal processes 
and axons. 

P7 cerebella were labeled with antibodies targeting Myo1d (A) 
(green) and neurofilament (B) (red).  Myo1d and neurofilament 
colocalize along axonal tracts and in the region of the deep nuclei 
(C).  D-F) Myo1d has a cytosolic subcellular distribution and is 
present along neuronal processes.  G-I) Myo1d is expressed along 
axonal tracts (arrow).  A-C) Bar, 500 µm; D-I) Bar, 50 µm. 
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Figure 20 Myo1d exhibits cytosolic and dendritic subcellular 
localization in Purkinje cells. 

We colabeled sagittal cross sections of P14 tissue with antibodies for 
Myo1d (A) and neurofilament (B).  A) Myo1d has punctate cytosolic 
localization pattern and appears along dendrites.  The motor appears 
more densely along the cell cortex.  (D-F) Antibodies targeting Myo1d 
and GFP were applied to coronal cross sections of L7cre;YFPmembrane 
mouse cerebella.  (D) Myo1d is present in Purkinje cells with L7, a 
specific Purkinje cell marker.  Bar, 25 µm. 
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Figure 21 Myo1d is expressed in a distinct subpopulation of granule 
cells. 

To confirm Myo1d is in the granule cell layer, we stained day 14 
cerebella with Myo1d (A) and NeuN (B) specific antibodies.  C) Myo1d 
expression in the granule cell layer is restricted to the apex of the 
lobules in the granule cell layer.  All bars, 100 µm. 
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Myo1d interacts and partially co-localizes with aspartoacylase, an enzyme 
critical for fatty acid metabolism in the central nervous system 

 

Performing a yeast 2-hybrid screen with the Myo1d TH1 (i.e. tail) domain 

as bait, we identified aspartoacylase (Figure 22), a 313 amino acid protein that 

catabolizes NAA and is expressed in kidney, small intestine, and brain (Kaul et 

al., 1993; Surendran et al., 2006).  To confirm that neither bait nor prey caused 

auto-activation, we expressed the Myo1d TH1 or aspartoacylase alone in AH109 

yeast.  Neither construct was capable of initiating auto-activation. The interaction 

between these two proteins was confirmed with a biochemical pull-down 

approach; we over-expressed EGFP or EGFP-Myo1d in pig kidney epithelial 

cells and lysates were incubated with His-tagged aspartoacylase that was 

purified from BL21 E. coli and captured on a Ni-NTA resin.  Aspartoacylase 

interacted with Myo1d and was detected in pull-down samples (Figure 22D).  

EGFP-Myo1d did not bind Ni-NTA resin, supporting that the interaction between 

aspartoacylase and Myo1d was specific. 

Based on structural studies, aspartoacylase has two domains, an N-

terminal 212 a.a. domain and a C-terminal 100 a.a. domain (Bitto et al., 2007), 

which could potentially interact with the Myo1d TH1.  Using the same yeast-2-

hybrid approach, we determined that Myo1d TH1 interacts with the C-terminus of 

aspartoacylase (Figure 22C).  Based on the solved aspartoacylase structure and 

other carboxypeptidase family members the carboxyl-terminus is hypothesized to 

sterically block catalytic activity (Bitto et al., 2007).  Given our results, this 

suggests that Myo1d binding may modulate aspartoacylase activity. 
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Figure 22 Myo1d interacts with aspartoacylase.   

To identify potential binding partners for Myo1d, we performed a 
yeast 2-hybrid screen.  A) The tail domain (amino acids 743-
1006) was used as bait in a screen of a human cDNA kidney 
library.  A) Aspartoacylase has two domains: the N-terminus 
(amino acids 1-212) and C-terminus (213-313).  B) Yeast were 
streaked out onto triple nutrient dropout plates. 1: AH109 yeast 
expressing Myo1d tail alone, 2: AH109 yeast expressing 
aspartoacylase alone, 3: Myo1d tail interacts with 
aspartoacylase, 4: AH109 without any vector.  (Figure 21 
continued) 
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Figure 21 continued 

  
C) 5: AH109 yeast expressing aspartoacylase N-terminus (N-
Aspa), 6: AH109 yeast expressing aspartoacylase C-terminus (C-
Aspa), 7: AH109 yeast with both Myo1d tail and aspartoacylase N-
terminus, 8: Myo1d and aspartoacylase C-terminus together.  D) 
Myo1d interacts with aspartoacylase in an in vitro pull-down. His-
tagged aspartoacylase was expressed in BL21 bacteria, and 
EGFP or EGFP-Myo1d containing lysates were collected for an in 
vitro pull-down experiment.  His-tagged aspartoacylase interacts 
with EGFP-Myo1d, while not interacting with EGFP controls.  E) 
EGFP-Myo1d does not nonspecifically bind Ni-NTA resin in the 
presence of BL21 lysate. 
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We also performed immuno-fluorescence labeling and confocal imaging of 

mouse cerebellum to determine if Myo1d and aspartoacylase colocalize in the 

CNS, which would provide evidence in support an in vivo interaction.  Staining 

mouse frozen sections with antibodies targeting Myo1d and aspartoacylase 

revealed that these proteins share expression in Purkinje cells and a 

subpopulation of granule cells (Figure 23A-C).  Aspartoacylase staining was not 

observed in oligodendrocytes, but the Purkinje cell labeling described here is 

similar to that reported by the Human Protein Atlas (http://www.proteinatlas.org).  

Magnification of the Purkinje cell layer revealed that aspartoacylase staining was 

cytosolic similar to previous work (Madhavarao et al., 2004) (Figure 23D-F).  

Moreover, Myo1d and aspartoacylase are present in cell bodies and along 

dendrites, which suggests a subpopulation of these two proteins are positioned 

to physically interact in vivo.  Taken together, these in vitro and in vivo data 

provide evidence in support of a transient interaction between Myo1d and 

aspartoacylase in neurons of the cerebellum. 
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Figure 23 Myo1d and aspartoacylase localize around the Purkinje cell 
cortex 

P14 mouse cerebella were colabeled with antibodies for Myo1d (A & D) 
(green) and aspartoacylase (B & E) (red).  A-C) Myo1d and aspartoayclase 
expression overlaps in the Purkinje and granule cell layer.  D-F) Magnification 
of the Purkinje cell layer reveals Myo1d and aspartoacylase partially co-
localize at the cell cortex of Purkinje cells.  Both proteins exhibit a diffuse 
cytosolic labeling and localization along dendrites.  A-C) Bar, 200 µm; D-E) 
Bar, 10 µm; inset 5µm. 
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Discussion 

 

These studies extend prior immuno-fluorescence analyses that were 

limited to the sciatic nerve and cerebrum (Bahler et al., 1994; Lund et al., 2005), 

and more recent microarray and proteomic studies that suggest Myo1d is 

expressed in myelinating cells (Cahoy et al., 2008; Yamaguchi et al., 2008; Ishii 

et al., 2009; Jahn et al., 2009).  Our high-resolution confocal data indicate that 

Myo1d is expressed in both myelinating cells and neurons.  However, expression 

in myelinating cells was only detectable in the PNS.  In the context of the CNS, 

our studies are the first to describe the developmental expression and 

localization of Myo1d in the mouse cerebellum.  Here, Myo1d is most highly 

expressed in neurons, where it localizes throughout cell bodies, axons and other 

processes.  Importantly, Myo1d expression appears as early as P3 in the internal 

granule layer, becoming detectable at P7 in Purkinje cell axons, and expanding 

along axon tracts throughout later stages of neurodevelopment. We also report 

Myo1d binds to aspartoacylase, a protein linked to fatty acid synthesis and 

Canvan disease (Moffett et al., 2007). 

 

Myo1d is expressed in myelinating cells of the PNS, but not the cerebellum 

Recent proteomic investigations identified Myo1d as a component of 

mouse and human myelin, suggesting that this motor is present in myelinating 

cells (Yamaguchi et al., 2008; Ishii et al., 2009; Jahn et al., 2009).  Indeed, we 

observed that Schwann cells clearly express Myo1d, which co-localizes with 
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MBP.  However, our studies of the cerebellum demonstrate that Myo1d is not 

detectable in precursor or mature oligodendrocytes, at least at the level of 

resolution afforded by confocal microscopy.  This difference may reflect a distinct 

functional requirement for the motor in Schwann cells that may not exist in 

oligodendrocytes.  In fact, studies with myosin-2 have highlighted disparate roles 

for this motor in oligodendrocyte and Schwann cell myelination (Wang et al., 

2008).  In oligodendrocytes, decreasing myosin-2 levels facilitates myelination, 

whereas in Schwann cells myosin-2 deficiency leads to perturbations in 

cytoskeletal polarity and reduced myelinating activity (Wang et al., 2008).  Myo1d 

may also have disparate roles in oligodendrocytes and Schwann cells, which 

would be supported by the data described here. 

  

Roles for Myo1d in myelinating cells of the PNS 

What is the role of Myo1d in Schwann cells?  Dominant negative studies 

with another unconventional myosin, myosin-5a, implicate this motor in 

myelination possibly through a role in transporting VAMP2 along oligodendrocyte 

processes (Sloane and Vartanian, 2007).  Because Myo1d is monomeric, the 

motor is unlikely to perform processive cargo transport along actin filaments.  

However, Myo1d does target to distinct membrane compartments (Huber et al., 

2000; Benesh et al., 2010) and is able to contribute to membrane-cytoskeleton 

adhesion (Nambiar et al., 2009).  Thus, an alternative possibility is that this motor 

may facilitate the deformation of membrane relative to F-actin during the 

extension of myelin-rich processes in Schwann cells.  Actin polymerization drives 
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the filopodial and lamellopodial extension of myelin-rich processes in search of 

axonal targets (Bauer et al., 2009) and Myo1d may help remodel membrane 

protrusions during these events. 

 

Possible functions for Myo1d in neurons 

In the context of neurons, myosin superfamily members have proposed 

roles ranging from organelle transport to orchestrating actin rearrangements with 

consequences for migration and synaptic function (Hirokawa et al., 2010). Myo1d 

was identified in pyramidal neurons of the cerebral cortex and thalamus (Bahler 

et al., 1994), and was also shown to be upregulated at lesions in sciatic nerve 

(Lund et al., 2005).  However, the expression pattern of Myo1d in the cerebellum 

has not been described.  Our studies demonstrate Myo1d is found in cerebellar 

neurons including Purkinje and granule cells.  Intriguingly, Myo1d is only 

expressed in a subpopulation of granule cells at the apex of the cerebellar 

lobules, which receive inputs from the pontocerebellar fibers (Voogd and 

Glickstein, 1998).  

Previous studies revealed that Myo1d exhibits cytosolic and punctate sub-

cellular localization in cell bodies, and also localizes along axons and dendrites in 

the cortex (Bahler et al., 1994; Lund et al., 2005).  We report similar sub-cellular 

localization in cerebellar Purkinje neurons.  While the motor is expressed in 

neurons of the cortex and cerebellum, the function(s) for Myo1d in these cells 

remains uncharacterized.  Observed Myo1d puncta might represent vesicles or 

other small membranous organelles, as described for other class I myosins 
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(Bose et al., 2002). Myo1d does exhibit punctate staining in the C6 glial cell line 

(Bahler et al., 1994) and MDCK cells, where it may facilitate early endosomal 

trafficking (Huber et al., 2000).  However, punctate staining has also been linked 

to functions other than vesicle transport in neurons.  For example, myosins-1b 

exhibits a punctate distribution in growth cones where it may control retrograde 

flow (Lewis and Bridgman, 1996).  It has also been proposed that Myo1d might 

associate with larger organelles such as the smooth endoplasmic reticulum, to 

enable the ‘ratcheting’ of F-actin through sciatic nerve (McQuarrie and Lund, 

2009).  Additional studies will be needed to fully understand the nature and 

functional implications of the punctate staining observed in the current work.  

Our data indicate that Myo1d becomes enriched along axons at the onset 

of myelination, which may reflect a developmental stage-dependent function for 

this motor.  Indeed, myelination coincides with neuronal maturation, and includes 

clustering of lipids and ion channels to axonal subdomains, which facilitates 

conductance (Barres and Raff, 1999; Simons and Trajkovic, 2006).  Since class I 

myosins interact with specific lipid species (Hokanson et al., 2006) and retain 

transmembrane proteins within lipid rafts (Tyska and Mooseker, 2004), one 

possibility is that Myo1d may help orchestrate lipid or protein clustering along 

axons.  Interestingly, studies in Drosophila reveal that Myo31DF (a MYO1D 

homolog) co-localizes with !-catenin at adherens junctions of enterocytes 

(Speder et al., 2006).  This interaction is proposed to regulate cell-cell contacts 

because mutations in Myo31DF give rise to left-right asymmetry defects during 

development (Hozumi et al., 2006; Speder et al., 2006).  Neurons also depend 
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on the !-catenin/cadherin complex for cell adhesion and synaptic plasticity 

(Murase et al., 2002; Togashi et al., 2002), and therefore might rely on Myo1d in 

a similar manner, to facilitate these processes during neuronal maturation. 

 

Myo1d interacts with aspartoacylase in vitro 

Our data suggests that Myo1d interacts with aspartoacylase, which 

catabolizes NAA. Myo1d binds to the C-terminus of aspartoacylase (a.a. 212-

313), which may sterically hinder the active site as suggested by structural 

studies of aspartoacylase function (Bitto et al., 2007).  Our data also demonstrate 

that Myo1d and aspartoacylase are co-expressed in Purkinje neurons.  While 

aspartoacylase NAA catalytic activity is found predominantly in oligodendrocytes 

(Baslow et al., 1999), aspartoacylase protein is also expressed in large neurons 

(Madhavarao et al., 2004; Moffett et al., 2011).  Although published studies have 

not observed Purkinje cell aspartoacylase expression (Madhavarao et al., 2004), 

staining catalogued in the Human Protein Atlas corroborates our findings. 

In addition to contributing acetic acid for fatty acid synthesis (Chakraborty 

et al., 2001; Madhavarao et al., 2005), NAA is also hypothesized to have roles 

important in maintaining viable neuronal populations.  Indeed, many 

neuropathies such as schizophrenia, multiple sclerosis, and epilepsy are 

associated with altered CNS NAA levels (Moffett et al., 2007).  Proposed 

functions for neuronal NAA include regulating osmolarity (Baslow and Yamada, 

1997; Baslow, 1998), neuron-glia interactions (Baslow, 2000), and energy 

metabolism (Miller et al., 1996).  Most notably, mutations in aspartoacylase can 
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lead to higher NAA levels and the lethal leukodystrophy, Canavan disease 

(Namboodiri et al., 2006).   Given the number of neuropathies associated with 

altered NAA levels, maintaining the proper concentration of NAA in neurons and 

oligodendrocytes appears to be essential for normal CNS function.   

Most studies of aspartoacylase activity have focused on oligodendrocytes 

or myelin, and therefore a neuronal role for the protein has not been reported to 

date.  Since several studies including our own demonstrate aspartoacylase 

expression in neurons (Madhavarao et al., 2004; Moffett et al., 2011), it is 

possible that the neuronal aspartoacylase may provide a mechanism for 

buffering NAA concentrations, which would contribute to replenishing acetate and 

aspartate levels.  In addition, we propose that Myo1d modulates aspartoacylase 

activity, either through sequestering the protein to discrete locations or directly 

interfering with activity at the aspartoacylase catalytic site.  Indeed, our immuno-

fluorescence data demonstrates that Myo1d exhibits a punctate cytosolic 

distribution and localizes with aspartoacylase around Purkinje cell soma. 

Recent genetic studies of autistic individuals revealed multiple SNP 

variants with strong association to MYO1D (Stone et al., 2007).  Other work has 

shown that autistic individuals have decreased NAA levels throughout the brain 

(Friedman et al., 2003; Levitt et al., 2003).  While autism etiology is unknown, the 

disease is considered a developmental neurological disorder influenced by 

multiple genetic and environmental factors (DSM-IV, 2000).  Given that Myo1d 

exhibits expression throughout the brain (cortex, brain stem, and cerebellum), 
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which coincides with axonal maturation, this motor is well-suited to make wide-

ranging contributions to CNS development and function.  

In conclusion, Myo1d is is present in myelinating cells of the PNS, but not 

CNS suggesting distinct roles for this motor in these different tissues.  However, 

Myo1d expression is present in both sciatic and cerebellar neurons.  We also 

demonstrate that the cerebellar distribution of Myo1d is developmentally 

regulated in both Purkinje and granule cells.  Specifically, during early postnatal 

development Myo1d expression becomes restricted to cerebellar lobule apexes.  

Moreover, Myo1d subcellular enrichment increases along Purkinje cell axons 

during early postnatal maturation.  Finally, we identified aspartoacylase, an 

enzyme critical for maintaining proper levels of NAA in the brain, as a potential 

Myo1d binding partner. The data presented here provide the foundation for 

functional assays, which will be required for fully understanding the role of Myo1d 

during neurodevelopment, and its potential link to neurological disorders such as 

autism and Canavan disease. 
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Conclusions 

This dissertation details several new findings regarding Myo1d expression 

and function in polarized cells such as enterocytes, glia, and neurons.  This work 

is the first to visualize Myo1d distribution in the small intestine.  In enterocytes, 

Myo1d localizes to three subcellular compartments including the lateral 

membranes, terminal web, and microvillar tips.  Intriguingly, Myo1d subcellular 

localization and function appear to be regulated by the presence of Myo1a along 

the microvillar actin bundles.  Prior to our studies, understanding of Myo1d 

expression in myelinating cells was limited to microarray data (Cahoy et al., 

2008) and mass spectrometry analysis of isolated myelin from the brain 

(Yamaguchi et al., 2008; Ishii et al., 2009; Jahn et al., 2009).  However, we were 

able to observe by immunofluorescence Myo1d expression only in the 

myelinating cells of sciatic tissue compared to the cerebellum.  Our studies also 

revealed that Myo1d is mostly found in neuronal cells of the mouse cerebellum 

during early postnatal development and interacts with aspartoacylase, a protein 

in the fatty acid synthesis pathway.  

Myo1d localizes within the enterocyte to distinct cellular domains, which 

suggests the motor is primed for several different functions.  Myo1d is the first 

vertebrate protein shown to target to the microvillar tips (Benesh et al., 2010), 
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where the protein may orchestrate brush border assembly or maintain actin 

bundle length (Sokac et al., 2006).  The motor also targets to the brush border 

terminal web and lateral membrane, suggesting the protein may be involved in 

trafficking pathways or localizing cargo to these sites.  Myo1d localization to the 

lateral membrane of vertebrate cells is reminiscent of similar sub-cellular 

localization in Drosophila embryos (Speder and Noselli, 2007), and suggests that 

Myo1d targets the adherens junctions (Figure 24). 

Myo1d exhibits differential localization and dynamics with Myo1a (Benesh 

et al., 2010).  We hypothesize that the class I motors do segregate based on 

different functions and targeting determinants, such as affinity for different lipids. 

Indeed, differences between Myo1a and Myo1d were seen in our biochemical 

and live-cell imaging experiments.  First, Myo1d exhibits a smaller immobile 

population compared to Myo1a (Benesh et al., 2010).  Plus, Myo1d is more 

sensitive to ATP compared to Myo1a (Benesh et al., 2010).  Lastly, Myo1d is 

only detectable in DRMs in the absence of Myo1a (Benesh et al., 2010).  Myo1d 

redistributes along the microvillar axis in the absence of Myo1a (Benesh et al., 

2010), which supports the notion that these molecules do have a propensity to 

compensate for each other.  Closely related genes are an important evolutionary 

mechanism for coping with disease states.  When mutations arise in one gene, 

the closely related gene is able to partially overlap (Sartorius et al., 1998). 
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Figure 24 Model representing possible functions for 
Myo1d in WT and KO enterocytes.  

1) Myo1d localizes to microvillar tips where the 
molecule partially overlaps with IAP.  Intriguingly, 
Myo1d remains associated with microvillar tips, while 
IAP is sorted onto vesicles as cargo.  We hypothesize 
that Myo1d may orchestrate lipid or protein sorting to 
create a niche at the tip primed for vesicle release.  2) 
Myo1d localizes to the terminal web at the base of the 
brush border.  This site is enriched in vesicle trafficking 
machinery important for docking.  3) Myo1d localizes 
along the enterocyte lateral membrane.  Myo1d may 
also be involved in trafficking events at this membrane.  
In addition, it is known Myo1d interacts with #-catenin 
at the adherens junctions.  The significance of this 
interaction still needs to be explored.  4) Myo1d 
redistributes along the microvillar axis in the Myo1a 
KO brush border.  Myo1d may contribute to 
cytoskeletal-membrane tension in the KO animal. 



 

 

 101 

 Chapter III is the first observation that Myo1d is expressed in Purkinje and 

granule cells of the cerebellum.  Subcellular localization is punctate and cytosolic 

in the cell body, axons, and dendrites.  This is consistent with prior studies that 

have shown Myo1d to exhibit cytosolic punctate localization in neurons of the 

cortex and thalamus (Bahler et al., 1994).  This punctate staining may be 

indicative of association with vesicles.  Indeed, Myo1d and other class I myosins 

have been observed in the trafficking pathways (Hasson and Mooseker, 1995). 

Myo1d expression in the cerebellum is developmentally regulated in 

neurons.  Upon myelination, Myo1d expands along axons of the white matter 

tracts in mouse cerebellum.  As development proceeds, Myo1d expression 

becomes restricted to a subpopulation of granule cells at the apex of the 

cerebellar lobules (Figure 25). 

Myo1d interacts with aspartoacylase, a protein involved in catabolizing 

NAA.  Immunofluorescence of the mouse cerebellum demonstrates the two 

proteins are coexpressed in Purkinje cells.  We hypothesize that Myo1d 

modulates aspartoacylase activity in Purkinje cells, acting to buffer NAA levels in 

the brain (Figure 26).  Intriguingly, aspartoacylase and Myo1d are both 

expressed in neurons and kidney cells (Bahler et al., 1994; Hershfield et al., 

2006), suggesting the two proteins may have a conserved role across cell types. 
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Figure 25 Myo1d expression pattern changes upon onset of myelination. 

Prior to myelination, Myo1d expression is found throughout the cerebellum 
including the granule and Purkinje cell layers.  After myelination, Myo1d 
expression expands along Purkinje cell axons and becomes restricted 
within the granule cell layer to the apex of the lobules. 
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Figure 26 A model for the Myo1d-aspartoacylase 
interaction in neurons. 

Myo1d may interact with aspartoacylase to buffer 
NAA concentrations in neurons.  Increasing Myo1d 
levels hypothetically would increase NAA levels if 
the myosin tail inhibits aspartoacylase catabolic 
activity. 
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These studies demonstrate that Myo1d exhibits cell dependent subcellular 

localization.  In enterocytes, Myo1d has a small cytosolic pool and is enriched at 

the lateral membranes.  However, in neurons Myo1d has a large cytosolic pool.  

This may be a reflection in differences of membrane composition between 

enterocytes and neurons.  For example, we postulate that a particular membrane 

binding structure in enterocytes is absent in neurons, resulting in the inability for 

the myosin to target to the plasma membrane.  Taken together, these studies 

illustrate disparate roles for different class-I myosins in the intestine, but have the 

propensity for overlap and further suggest that Myo1d itself has tissue-specific 

identity.  Thus, these studies provide evidence that class I myosin motors are 

adaptable, and will perform the function required for the tissue in which they are 

expressed. 

 

Future directions 

This dissertation lays the groundwork for studies that aim to explore the 

role of Myo1d in polarized cells of the small intestine and nervous system. In 

particular, work will address whether Myo1d function is conserved across these 

cell types, and if the motor has multiple roles within the cell.  Our knowledge 

regarding Myo1d function will facilitate our understanding of how MYO1D 

mutations contribute to epithelial biology, development and autism (Stone et al., 

2007).   
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Investigating a role for Myo1d at adherens junctions 

 Interestingly, we found that Myo1d localizes to the enterocyte lateral 

membrane, in addition to the microvillar tips and terminal web.  Targeting to the 

lateral membrane potentially allows the molecule to participate in several cellular 

activities ranging from trafficking to signaling.  Indeed, other studies demonstrate 

that Myo1d interacts with #-catenin (Speder et al., 2006), which targets to 

adherens junctions at the lateral membranes.  Adherens junctions facilitate cell-

cell communication and regulate cell geometry through the dimerization of E-

cadherins on neighboring cells (Vasioukhin et al., 2000; Gumbiner, 2005; Harris 

and Tepass, 2010).  #-catenin connects E-cadherin to the actin cytoskeleton 

through $-catenin (Hulsken et al., 1994; Rimm et al., 1995).  Adherens junctions 

overexpressing E-cadherin do not complete polarization (Hermiston et al., 1996) 

and require #-catenin for proper actin organization (Tanentzapf et al., 2000), 

which ultimately ‘secures’ a single cell into an epithelial sheet and regulates cell 

shape (Gumbiner, 2005).   

To determine if a Myo1d - #-catenin interaction is conserved in 

vertebrates, we stained confluent pig kidney cells (LLC-PK1-cells) 

overexpressing EGFP-Myo1d with an antibody specific to #-catenin.  Strikingly, 

high-resolution confocal imaging revealed that EGFP-Myo1d and #-catenin 

colocalize at the lateral membrane (Figure 27) as seen in Drosophila embryos 

(Speder et al., 2006).   

 The significance of the interaction between Myo1d and #-catenin is 

unknown in the contexts of Drosophila embryo development and vertebrate cells.  
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Since #-catenin mediates the cadherin-cytokeletal scaffold at the adherens 

junction, Myo1d is ideally situated to contribute to this interaction.  One 

hypothesis is that the Myo1d tail binds #-catenin and the motor associates with 

actin filaments.  In this model, Myo1d may stabilize the cadherin complex either 

by targeting #-catenin to the junction or acting as a link between the cadherin 

complex and the actin cytoskeleton.  For the latter role, the motor may generate 

forces or modulate tension that underlies cell geometry, polarization, or 

movement through an interaction with the actin cytoskeleton. 

 To understand the function of this interaction in vertebrate cells, we will 

first map the binding site between Myo1d and #-catenin.  Since the myosin tail 

interacts with cargo we hypothesize that the Myo1d TH1 binds #-catenin.  Thus, 

to identify the Myo1d residues, we will first narrow our possibilities by testing 

three truncation mutants (a.a. 743-828, 829-906, 907-1006); where each 

structure presents a unique electronegativity surface plot profile that can be 

further dissected to identify specific residues.  The #-catenin structure is defined 

by 12 armadillo repeats, an N- and C- terminus (Huber et al., 1997), which can 

be separately generated to identify the site for reciprocal binding. 

 To test the hypothesis that an interaction between Myo1d and #-catenin 

stabilizes the adherens junction, we will take advantage of our Myo1d dominant 

negative construct (Myo1d IQ TH1) described in Chapter II.  Confluent CL4 cells 

will be transfected with EGFP-Myo1d-IQ-TH1 and allowed to grow for a couple of 

days.  After fixation, antibodies targeting #-catenin, E-cadherin, $-catenin will be 

applied to the cells and, Alexa-conjugated phalloidin will label F-actin.  
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Fluorescent intensities for the different markers will be compared between the 

control and experimental cells.  A decrease in fluorescent intensities would 

suggest that Myo1d is needed for stabilizing the cadherin complex, while 

enrichment in marker intensities would signify a role for Myo1d to target 

molecules to the junction. 
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Figure 27 EGFP-Myo1d and !-catenin colocalize at 
adherens junctions in CL4 cells. 

A) EGFP-Myo1d expressing CL4 cells were stained with 
anti-body targeting B) #-catenin.  C) F-actin was labeled 
with phalloidin, and D) is a merge of (A& B). 
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  If Myo1d modulates tension at the adherens junction, we can measure cell 

parameters including cell shape and the ability to polarize.  These studies would 

involve comparing control and experimental cells prior to and after confluency.  If 

Myo1d does contribute to the tension at the adherens junction, we would expect 

to see a failure for dominant negative expressing cells to fully polarize (Miyake et 

al., 2006).  As suggested for Drosophila embryo development, this interaction 

may have significant implications for vertebrate organ morphogenesis and 

represents a novel role for class I motors that needs to be further explored. 

 In addition to maintaining the adherens junction, #-catenin is a crucial 

component of the Wnt signaling pathway, which is a key regulator of 

development (Willert and Nusse, 1998).  Failure to modulate this pathway often 

leads to developmental defects and disease including cancer (Clevers, 2006).  In 

the absence of Wnt ligand #-catenin is polyubiquitinated for degradation (Willert 

and Nusse, 1998). However, when Wnt binds the Frizzled receptor, cytoplasmic 

#-catenin translocates to the nucleus to activate target downstream genes 

(Willert and Nusse, 1998).  Since #-catenin in this signaling pathway is largely 

found in the cytoplasm and is not membrane associated how an interaction with 

Myo1d contributes to Wnt signaling through #-catenin is less obvious.  One 

possible explanation though, is that Myo1d sequesters a population of #-catenin 

to the lateral membrane, acting to buffer the cytoplasmic pool or to limit the 

available #-catenin for degradation.  Hypothetically, a disruption to the Myo1d - 

#-catenin interaction would shift the #-catenin population from the lateral 

membrane to the cytoplasm and then into the nucleus.  This can be tested by 
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fractionating cells overexpressing dominant negative EGFP-Myo1d-IQ-TH1 and 

measuring by Western blot cytoplasmic:nuclear levels.  Increases in nuclear #-

catenin would suggest that Myo1d stabilizes the cytoplasmic catenin population. 

 

Investigating a role for Myo1d at microvillar tips and terminal web 

Intriguingly, Myo1d also localizes to the microvilli tips of the brush border, 

while Myo1a is found along the microvillar axis. Myo1a powers the apical 

translation of plasma membrane along the microvillar actin bundles, but the exact 

mechanism of vesicle shedding is unknown (McConnell and Tyska, 2007).  Since 

Myo1d is located apical to the actin bundles, the motor may contribute to vesicle 

release, actin nucleation, or additionally anchor proteins important in these 

processes.  To explore a possible role for Myo1d at microvilli tips we attempted 

to generate a cell culture model system.  First, we labeled CL4 cells with 

antibodies targeting Myo1d, but failed to observe discrete motor populations 

along the microvillar axis.  Similarly, we did not observe tip labeling in EGFP-

Myo1d overexpression studies.  We were interested if we could reconstitute tip 

localization by co-overexpressing both Myo1d and Myo1a in CL4 cells.  We 

hypothesized that Myo1a is able to force redistribution of Myo1d to the tips, 

however we observed colocalization between the two motors (Figure 28).  We 

next hypothesized that the shorter microvilli present in the cell culture model 

failed to allow us to discern Myo1d populations along the microvillus. We then 

questioned if we could favor microvillar tip targeting by elongating actin bundles 

in cell culture.  To accomplish this, we co-overexpressed the actin  
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Figure 28 EGFP-Myo1d targets to microvllar tips in CL4 cells 
overexpressing mCherry-Espin 

A-C) The H60 antibody targeting Myo1d (red) labels EGFP-Myo1d 
(green). (D) mCherry-Myo1d (red) and (E) EGFP-Myo1a (green) 
colocalize in CL4 cells.  G-I) EGFP-Myo1d (green) appears as puncta 
along microvilli and is also present at tips in CL4 cells overexpressing 
mCherry-Espin (red).  (A-C, G-I) Bar is 5 µm.  (D-F) Bar is 10 µm. 
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bundler mCherry-Espin and EGFP-Myo1d in CL4 cells.  Interestingly, we were 

able to observe punctate EGFP-Myo1d along the actin bundle, and also 

accumulations at the microvillar tips.  This could prove to be a convenient model 

for exploring a role for the motor at microvillar tips.  Live cell imaging could 

capture the motility of the motor along the actin bundle and allow us to probe 

what governs Myo1d localization. 

Inconsistent Myo1d localization between polarized cell model systems 

may reflect differences in the affinity for and distribution of binding partners along 

the membrane.  To assess the distribution of lipid species Jessica Mazerik 

(graduate student, Tyska laboratory) has demonstrated with phospholipid-

labeling experiments in the rat brush border that PIP2 is found at microvillar tips, 

which is reminiscent of Myo1d localization.  Interestingly, recent work has 

identified a conserved PH motif in class I myosins that bind specific anionic 

phospholipids including PIP2 and phosphatidylserine (PS) (Hokanson et al., 

2006; Feeser et al., 2010; Patino-Lopez et al., 2010).  Indeed, WT brush border 

lysates incubated with PIP strips revealed that Myo1d has a strong preference for 

PS and PIP2, which is consistent with Myo1d and PIP2 tip labeling (Figure 29). 

Myo1d association with PS was undetectable on the PIP strip incubated with 

Myo1a KO brush border lysates suggesting the recruitment of another factor with 

a tighter affinity. 

The role for Myo1d at microvillar tips is unknown but we hypothesize that 

the motor is involved in sorting cargo for vesicle shedding or regulating release.   
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A) Cartoon of PIP strip spots and associated phosphoinositide.  B) WT 
and Myo1a KO BB lysates were applied to PIP strips.  Membranes 
were blotted for the presence of Myo1d. 

Figure 29 Myo1d binds phosphatidylserine in WT BBs. 
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Our data demonstrates that Myo1d colocalizes with IAP at microvillar tips, but the 

motor is absent from vesicles suggesting a role for the molecule in sorting 

components.   We will employ KD approaches to determine if Myo1d is involved 

in the sorting of components such as IAP or regulates vesicle shedding. Caco-

2BBE cells knocked down for Myo1d expression will be measured for vesicle 

composition and shedding rates.  If Myo1d were needed for proper sorting of IAP 

onto vesicles, then we would expect less IAP cargo and a buildup of the 

phosphatase on the membrane.  Vesicle protein levels compared to cell IAP  

levels could be measured by Western blot or enzymatic activity could be 

assayed.   However, if the motor were involved in the release of vesicles from the 

brush border, in knock down (KD) experiments we would expect to observe a 

decrease in vesicle number or changes to vesicle size. 

Myo1d additionally targets to the terminal web, which has an active role in 

cell contractility (Burgess, 1982; Keller and Mooseker, 1982) and shape 

(Zarnescu and Thomas, 1999), and is the site of exo- and endocytic trafficking 

(Valentijn et al., 1997; Hansen et al., 2009).  We hypothesize that if Myo1d 

participates in terminal web contractility, the motor population acts as an 

ensemble to affect cell geometry.  We will KD Myo1d in fully differentiated Caco-

2BBE cells, and analyze terminal web composition and cell shape.  To inhibit the 

role of myosin-2 in cell contractility we will apply blebbistatin, while 

simultaneously adding ATP to initiate Myo1d activity.   If Myo1d does affect 

terminal web constriction, then decreasing motor activity will cause a relaxed cell 

cortex and larger cell circumference. 
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Coincidentally, different studies suggest Myo1d associates with trafficking 

vesicles and the early endocytic pathway (Bahler et al., 1994; Huber et al., 2000).  

While we did not explore Myo1d function in trafficking, our other yeast 2-hybrid 

hit (besides aspartoacylase) was the SNARE (Soluble N-ethylmaleimide 

Sensitive Factor Attachment Protein Receptor)-associated protein, Snapin.  

Preliminary biochemical results demonstrate that His-tagged Snapin pulls-down 

EGFP-Myo1d (Figure 30).  This 18-kDa protein interacts with SNARE machinery 

and is ubiquitously expressed across tissues (Buxton et al., 2003).   

We hypothesize that Myo1d acts as an anchor for SNARE components at 

the terminal web membrane.  We will employ KD approaches to target Myo1d 

transcripts and screen for trafficking defects such as altered trafficking machinery 

or cargo levels.  To determine protein levels in different cellular  
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Figure 30 Myo1d tail 
binds Snapin. 

A) We identified a 
Snapin as a putative 
Myo1d binding partner 
in a yeast 2-hybrid 
screen.  B) His-Snapin 
associates with EGFP-
Myo1d from CL4 lysates 
in pull-down. 
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compartments, we can fractionate whole cells and then immunoblot for Snapin.  

Likewise, to analyze cargo transport between cellular compartments we can 

perform immunofluorescence on Caco-2BBE cells to visualize protein distribution 

in Myo1d KD cells.  If Myo1d functions to anchor SNARE machinery to the cell 

periphery, we would expect decreased Snapin at the plasma membrane.  

Another possibility is the motor participates in in docking events and a decrease 

in Myo1d levels would cause a buildup of cargo at the membrane. 

 Myo1d may be involved in trafficking in other cellular pathways besides 

the enterocyte terminal web.  Specifically, Paneth cells at the base of intestinal 

crypts have enlarged secretory vesicles that are positive for Myo1d (Figure 31).  

This is an interesting observation considering that Myo1d does not exhibit a 

similar distribution in other secretory cells such as Goblet cells.  This suggests 

that there are differences underlying the mechanism of secretory transport 

among intestinal cells. One hypothesis is that the tail domain associates with 

these vesicles to facilitate transport in particular Paneth cells.  These Paneth 

cells can be isolated for biochemical analysis to identify interacting partners and 

better understand the role of the motor in secretory trafficking.   
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Figure 31 Myo1d is expressed in Paneth cells. 
A-C) Myo1d (green) expression is detectable in Rattus 
norvegicus crypts.  The BB is labeled with phalloidin (red).  D-F) 
Magnification of crypt from (A-C).  Myo1d is present in Paneth 
cells. 
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Characterizing Myo1d Function in Neurons 

Future work exploring Myo1d neuronal function will focus on two findings: 

the interaction with aspartoacylase, and association with vesicles to assess if the 

motor is connected to Canavan disease or autism etiology.  Eventually, these 

studies will lead into determining if the Myo1d-aspartoacylase interaction is 

conserved across cell types.  For example, Myo1d and aspartoacylase are also 

expressed in the kidney and small intestine.  Given that MYO1D is associated 

with autism (Stone et al., 2007), and autistic individuals exhibit neurological and 

gastrointestinal abnormalities do mutations in MYO1D contribute to both 

phenotypes?  Or is expression of the protein in only one of these tissues relevant 

to the disease etiology?  These studies will further our understanding of Myo1d in 

epithelial and neuronal biology, and may provide insight into mechanisms 

underlying autism or Canavan disease.   

While most aspartoacylase studies have focused on Canavan disease and 

myelination (Namboodiri et al., 2006; Moffett et al., 2007), a neuronal role for the 

carboxypeptidase is not known.  However, the interaction with Myo1d represents 

a promising avenue to further explore aspartoacylase function.  Listed in the 

table are the multiple pull-down approaches we have attempted to validate the 

interaction between Myo1d and aspartoacylase, but this interaction appears to be 

transient and difficult to detect.  While we present yeast 2-hybrid and biochemical 

data supporting binding between the two proteins, functional data would 

strengthen our understanding of this interaction.  Thus, several questions  
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Table 3 Multiple approaches were taken to detect the Myo1d-
asparotacylase interaction. 



 

 

 121 

regarding the interaction between Myo1d and aspartoacylase must be 

investigated in neurons.  Does the motor modulate aspartoacylase activity?  And 

how does the interaction contribute to cellular physiology?  

To address how Myo1d regulates aspartoacylase activity, we can perform 

enzymatic assays that take advantage of constructs generated in Chapter III.  

From our yeast 2-hybrid studies we identified that the Myo1d tail domain binds to 

the aspartoacylase carboxyl-terminus, which is predicted to sterically hinder 

catabolism (Bitto et al., 2007).  We hypothesize that the Myo1d tail would 

strengthen this inhibition.  To measure enzyme activity, we would measure the 

production of acetic acid by spectrometry.  Purified aspartoacylase would be 

incubated with Myo1d-IQ-TH1 or Myo1a-TH1 to determine if Myo1d specifically 

inhibits or activates aspartoacylase activity.  Since aspartoacylase catabolizes 

NAA into acetic and aspartic acid, we would expect to see a decrease in acetic 

acid concentration if Myo1d inhibits catabolic activity.  If Myo1d modulates 

aspartoacylase activity, we could utilize a cell culture model system and either 

overexpress or KD Myo1d expression.  When Myo1d is overexpressed, we would 

expect to see a similar decrease in acetic acid production, whereas in KD cells, 

we would hypothesize no change in aspartoacylase activity. 

If Myo1d does modulate aspartoacylase catabolism, how does this affect 

neuronal health?  These studies would benefit greatly from the generation of a 

MYO1D KO animal.  If Myo1d and aspartoacylase do interact, we would expect 

to observe similar phenotypes in the MYO1D and ASPA KO models.  For 

example, aspartoacylase deficient mice exhibit stalled neuronal maturation 
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(Kumar et al., 2009), and we then predict that MYO1D KO animals would also 

display neuronal developmental defects.  Importantly, generation of a MYO1D 

KO model will allow us to determine to what extent the motor contributes to 

Canavan disease or autism pathogenesis.  These mice will be analyzed for 

viability since Canavan disease is lethal at a young age.  Mouse behavior will be 

observed because autistic people display repetitive behavior and exhibit stunted 

social development (Geschwind and Levitt, 2007).  Motor coordination will be 

scored given that Canavan disease patients suffer from ataxia (Namboodiri et al., 

2006).  We will assess if neural connectivity is altered in mice similarly to autistic 

individuals (Geschwind and Levitt, 2007).  Cell morphology is important to 

consider given that oligodendrocytes contain large vacuoles and neurons do not 

mature in Canavan disease (Surendran et al., 2005).  NAA concentration across 

brain regions will be measured because in both autism and Canavan disease, 

NAA concentrations increase and distribution is shifted across the brain 

(Kleinhans et al., 2007; Moffett et al., 2007). 

Another valuable approach for manipulating this interaction is performing 

KD experiments in cell culture.  These studies will allow us to analyze 

parameters that have been implicated in aspartoacylase function including cell 

metabolism, membrane composition (Chakraborty et al., 2001), and maturation 

(Kumar et al., 2009).  We hypothesize that disturbing Myo1d expression will 

result in cell metabolism deficiencies, membrane composition alterations, and 

retard cell maturation.  To measure cell metabolism, we can measure acetic acid 

production as described in the prior paragraph.  To examine membrane 
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composition, we will determine fatty acid content by chromatography.  Cell 

maturation will be measured by immunoblotting for cell cycle progression 

markers such as cyclin A (S-phase) or cyclin B (M-phase). 

Our studies and a previous report have demonstrated that Myo1d appears 

in a punctate localization pattern in neurons (Bahler et al., 1994).  This suggests 

that the molecule associates with vesicles, but fractionation and immunoblotting 

will be needed to identify the trafficking pathway.  Similar to experiments 

proposed in enterocytes, we can test if an interaction with snapin is conserved in 

neurons.  Prior work has shown that the SNARE protein is a crucial component 

for exocytosis in neurons (Ilardi et al., 1999) and impaired snapin function leads 

to decreased dendrite patterning (Chen et al., 2005). By overexpressing Myo1d 

in a cell culture system, we hypothesize docking events would be altered with 

consequences for endo- or exocytosis rates.  In fact, Myo1d overexpression may 

lead to changes in dendrite density.  Supposing Myo1d coordinates snapin 

association with the membrane, which may be required to bring the proper 

factors to the membrane for dendrite patterning, overexpressing Myo1d could 

lead to increased dendrite patterning. Failure to specify appropriate dendrite 

patterning leads to neural connectivity issues as seen in autistic individuals.  If 

Myo1d interacts with snapin, this would support a role for the motor in neuro-

development and physiology.   

These experiments represent a path forward to further delineate a role for 

the motor in neurons.  Myo1d function may be conserved across cell types and 

have implications in Canavan disease and autism. 
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Exploring a role for Myo1d in glia 

Our studies reveal that Myo1d expression is detectable by confocal 

immunofluorescence in Schwann cells, but not oligodendrocytes prior to P14.  

However, no published data currently exists that characterizes Myo1d expression 

in peripheral glia, and previous analysis of the adult mouse and human myelin 

proteome suggests Myo1d is present in oligodendrocytes (Yamaguchi et al., 

2008; Ishii et al., 2009; Jahn et al., 2009).  Moreover, in primary culture the 

Myo1d transcripts are reported to be greatly upregulated during oligodendrocyte 

maturation (Cahoy et al., 2008).  Despite these published results, our study is the 

first attempt to validate Myo1d glial expression in the CNS and PNS with 

immunofluorescence microscopy.  Our data does not refute the published data, 

but in combination with those previous studies supports the notion that Myo1d 

glial expression is developmentally regulated.  Further immunofluorescence 

microscopy will be needed to detail Myo1d expression at similar developmental 

stages as the animals in the proteomic screens.  We hypothesize that if Myo1d is 

important in oligodendrocyte biology, then motor expression may be more 

evident at maturity based on our data and the mass spectrometry data.  In fact, 

Western blot analysis of adult mouse brain homogenate suggests that the motor 

is enriched in a myelin fraction (Figure 32).  

After establishing a developmental profile for Myo1d in glial cells, we 

would like to perform functional assays to ascertain a role for the motor during 

myelination.  In particular, we will utilize a primary co-culture system to study  
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Figure 32 Myo1d is enriched in myelin fraction from adult mouse. 

A) Steps for isolating myelin from the mouse brain.  B) Cartoon 
representing our myelin purification strategy.  C) Western blot and 
coomassie of a myelin isolation prep.  Myo1d is enriched in myelin 
fraction harvested from an adult mouse. 
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either oligodendrocytes or Schwann cell biology in the presence of neurons.  In 

these experiments, a Myo1d siRNA vector under the control of the Oct6 promoter 

will be transfected into co-cultures, and then myelination success will be 

measured (Schreiber et al., 1997; Svaren and Meijer, 2008).  The goal of these 

KD experiments would be to assess any differences that may exist for Myo1d 

function in glial cells of the CNS compared to the PNS.  There are two steps in 

myelination that are experimentally assessable: myelin wrapping and sheath 

maintenance.  

If Myo1d is important in myelination initiation, then we would expect to 

observe delayed or decreased myelination progression.  In this scenario, Myo1d 

could contribute to myelination by providing mechanical forces for pushing or 

pulling membrane from the actin cytoskeleton as described in other cell contexts 

(Nambiar et al., 2009, 2010).  We can assay the primary cultures for MBP to 

determine the degree of myelination or even perform transmission electron 

microscopy (TEM) to visualize myelin.   

However, if the motor is important in maintaining a myelin sheath, we 

hypothesize that disrupting Myo1d expression after initiation would result in less 

compact wrapping.  We propose that Myo1d similarly acts as a cytoskeleton-

membrane linker to maintain tension across the myelin sheath.  To discern that 

Myo1d is important for maintenance rather than myelination, we will KD Myo1d 

expression in mature oligodendrocytes.  As above, we will analyze myelin sheath 

thickness in cross-section by TEM comparing WT versus KD co-cultures.  
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In conjunction with these KD co-culture experiments, we will also study 

myelination in the Myo1d KO mouse.  If we generate an oligodendrocyte and 

Schwann cell specific inducible KO model, we will be able to separate a role for 

the myosin in myelinating cells from neurons.  The KO model will allow us to 

survey myelin pattern formation in the maturing mouse and assess if wrapping is 

delayed.  We expect from our data that the Schwann cell myelin sheath would be 

disrupted, and if we can detect Myo1d in oligodendrocytes at later time points, 

we would likewise hypothesize to observe myelin malformations.  

 

Final Thoughts 

By further exploring how Myo1d contributes to trafficking in enterocytes or 

elaborating on the interaction with aspartoacylase, this work will have 

ramifications for our understanding of how class I myosins contribute to 

development and cell biology. Given Myo1d expression is present in a variety of 

tissues and exhibits subcellular localization to multiple sites, the motor possibly is 

involved in several functions.  In particular, these studies will provide insight into 

how mutant Myo1d contributes to disease states such as autism spectrum 

disorders and other development defects.   
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