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CHAPTER I

INTRODUCTION

One major trend recently in consumer electronics has been the smartphone— a compact,
powerful, networked computing device with continuous networking connectivity and the
ability to run a variety of mobile applications. These applications, often referred to as
“apps” in popular media, provide the user with access to dynamic information while away
from home or the office.

With this new emphasis on dynamic mobile applications, an efficient way to distribute
data between devices and the services which provide information to them is needed. Since
smartphones have limited battery capacity and typically run on relatively low-bandwidth
cell networks, such a data distribution system should be focused on minimizing power
and bandwidth consumption. Also, smartphone users expect up-to-date information to be
available immediately when they open an application, so such a framework should allow
applications to receive needed data at any time, even when the user isn’t actively using
the application. This paper describes such a data distribution system, called AMMO (An-
droid Mobile Middleware Objects), focusing specifically on its server-side component, the

AMMO Gateway.

I.1 Motivation
AMMO is being implemented as part of DARPA’s Transformative Apps program, which
is an effort to bring the power and mobility of modern smartphone platforms into the hands
of Army soldiers on the battlefield. AMMO forms the core middleware on which all the
other mobile applications in the Transformative Apps program will be based. Therefore,
the AMMO project is currently focused on assisting in the development of military ap-

plications. These applications include simple, commonplace applications such as instant



messaging or photo sharing, but the main driving force behind AMMO and the gateway is
situational awareness. This entails providing the soldier with a picture of the battlefield:
positions of fellow soldiers and of enemy combatants, hazards and terrain features in the
area, and other information the solder might need to know in order to do his job effectively.

Mobile devices, such as the Android phones which are targeted by the Transformative
Apps program and AMMO, are particularly well-suited for this application. Their mobility
gives each soldier almost-continuous access to the information they need to know, right
when they need to know it. Modern phones are also equipped with an array of sensors, such
as GPS to provide real-time location updates to the solder, or cameras to allow a soldier
to provide a visual record to go along with reports from the field. These phones can also
be equipped to provide ubiquitous connectivity, through technologies such as WiFi or 3G
cell service, or through more secure military radios. This could allow real-time information
sharing between soldiers in the field.

AMMO and the AMMO gateway provide the glue to hold these military apps together.
Although we would like for AMMO to be as broadly useful as possible outside of military

applications, this specific application is the driving force behind all of AMMO’s goals:

Power efficiency: While in the field, a soldier may be away from a charging station for
days at a time. Mobile applications should consume as little power as possible to

allow the device to remain useful for as long as possible.

Bandwidth efficiency: In most areas where AMMO might be deployed, fixed network in-
frastructure is very limited. This means that users will typically be connected through
low-bandwidth radios or satellite connections. Mobile applications should be aware
of the limitations of the network connection they are using, and should use bandwidth
sparingly to ensure prompt delivery of data and to maximize quality of service for

other users.

Reliable delivery: AMMO is expected to be able to handle many types of data, and some



of that data may be mission-critical. For example, one type of data which AMMO
could handle are medical evacuation requests: if the request is not delivered promptly,
the injured person’s condition could deteriorate. Requests also need to be delivered
reliably and provide acknowledgements of delivery, so that the requestor can take ap-
propriate action in the event that the lack of network connectivity prevents message
delivery. Applications need to ensure that data is delivered as promptly and com-
pletely as network conditions allow, and should also ensure that mission critical data

is given priority over less important traffic.

Security: In the field, a networked application could be subject to any number of different
hostile attacks. Applications should ensure that data is secure and can only be viewed
and modified by authorized personnel, and should ensure that the network itself is

robust and can remain operational while being disrupted due to outside interference.



CHAPTER 11

DESIGN

II.1 Gateway

In the current AMMO design, applications and

with each other. Instead, they communicate with a common back-end server called the
Gateway. The middleware running on each device creates a single connection to the gate-
way, which is used to asynchronously send and receive push messages (as described in
section I1.2). In this model, each application does not make its own connections to servers
or other devices. This allows for a single point of control to optimize bandwidth utilization,

quality of service, and power consumption: these resources can be used more efficiently if

all applications are cooperating to exchange data.

services do not communicate directly

Central Network

0
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R
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Figure Il.1: AMMO network layout

In our current implementation, the gateway sits on a standard server platform (currently,

an Intel-based server machine running Red Hat Enterprise Linux) in a data center operated




by the service provider providing services based on AMMO. Mobile devices typically con-
nect to the network via some type of wireless network; depending on the application, this
could be a WiFi network, a 3G cellular network, or some kind of packet radio system. This
architecture is shown in figure II.1.

By themselves, the gateway and devices are of limited utility; the gateway provides a
good way for devices to communicate amongst themselves, but it doesn’t provide a way
for devices to interact with the rest of the world, using software and protocols outside our
control. Therefore, the gateway needs a way to interact with third-party code. This third-
party code is connected to the gateway via a plugin mechanism, which allows the gateway
to host lightweight components which can interact with other components and services.
For example, a developer might want to use the AMMO system to provide a messaging
service to users, allowing devices to communicate with each other and with users on other
types of devices and other platforms. This developer could write a gateway plugin to allow
devices connected to the gateway to interact with an existing messaging protocol such as
Jabber, or with a web service which archives messages that are sent to and from devices.

For stability and security reasons, these gateway plugins operate as separate processes
from the gateway core itself. They communicate with the core gateway via local inter-
process communication (much like a device would communicate with the gateway, except
that plugins typically reside on the same physical machine as the gateway core). A plugin
developer doesn’t have to be concerned with the out-of-process nature of a gateway plugin,
however; a clean plugin API is provided (called LibGatewayConnector) which abstracts all
of the low-level communication and management details from the plugin developer. This

API is described in section I1.4.



I1.2 Gateway Operations

The AMMO gateway currently supports two different types of communication between
devices and the gateway: publish-subscribe communication, and pull-response communi-
cation.

Publish and subscribe communications implements the same type of publish/subscribe
model as implemented in systems such as DDS (the Data Distribution Service). In this
model, a number of clients “subscribes” to receive a particular type of data that they’re
interested in, referred to by MIME type. Then, when another client “publishes” data of that
MIME type, the gateway will automatically send it to all the clients which have subscribed
to that type. This is useful for any situation where a number of devices might be interested
in receiving all data of a particular kind or on a particular topic, as one might encounter in
an application like real-time chat.

In pull/response messaging, a client makes a query (or a “pull request”) for a particular
type of data which matches parameters specified by the client. Services can register to
handle pull requests of specific types, and when a pull request is received, the request is
forwarded on to all the services which have registered to handle pull requests of that type.
The services then send matching data back to the gateway, which transmits the results back
to the originating client. Pull/response messaging is useful when a device needs to receive
data on-demand, but doesn’t need continuous updates like in publish/subscribe messaging.

Both types of messaging are designed to operate asynchronously. For example, a client
can continue to do other things, such as interacting with the user or publishing more data,
while it is waiting for data to be published, or waiting for data to be returned from a pull
request. This is important because a device may have transient connectivity, or may be in
a limited bandwidth or high-latency environment. In these environments, operations may
take a long time to complete, so it is critical that devices remain useable while AMMO is

completing an operation.



II.3 Networking Layer

AMMO uses TCP/IP networking both to connect Android devices to the gateway, and
to connect gateway plugins to the gateway core. In the gateway, this networking layer is im-
plemented using ACE (the Adaptive Communication Environment)’s Acceptor/Connector
and Reactor frameworks, which abstract away most of the complexity of managing multi-
ple clients and connections, and provide a simple event-driven interface to send and receive
data from clients. The data that’s actually transmitted over the network is encapsulated
inside Google’s Protocol Buffers', a lightweight, cross-platform data serialization format
[1].

Google Protocol Buffers was chosen as the data serialization format for AMMO be-
cause it provides simple, efficient serialization of data that isn’t dependent on a particular
programming language, operating system, or processor architecture. This is important be-
cause AMMO needs to communicate between gateway servers, which are coded in C++
and run Linux, and handheld clients, which run the Android operating system. Like the
gateway systems, Android is Linux based, but are programmed in Java and typically use
ARM processors rather than the x86 processors used in the gateway). Protocol Buffers
provides a code generator and language bindings for both C++ and Java. This allows the
protocol to be specified in a simple, language-independent text format; Protocol Buffers
itself takes care of serializing and deserializing data based on the protocol defined by the
developer.

Protocol Buffers also makes the development process of the Gateway and the Android
services simpler. Protocol Buffers’ code generator takes the language-independent protocol
specification and generates a library for message construction and serialization native to
the target language (either C++ or Java). This code generator also allows protocols to
easily be extended: adding new messages or data elements to the protocol is as simple

as adding a few lines to the protocol specification. Also, Protocol Buffers is designed to

Thttp://code.google.com/apis/protocolbuffers/



allow backwards-compatibility between older versions of a protocol and newer versions:
it provides a mechanism by which older elements of a protocol can be kept stable, while
elements added more recently can be ignored if not present.

The gateway was implemented as two servers. The first, called the Gateway Core, is
the endpoint to which all gateway plugins connect. As the name implies, the Gateway Core
contains all the core logic of the gateway: the routing logic for data, user authentication
logic, and plugin management. The gateway core accepts one (or more, depending on the
plugin) connection per connected plugin. All gateway operations are sent over this connec-
tion: subscription requests, published data, pull requests and responses, and authentication
requests and results. Gateway plugins themselves don’t have to be concerned with this
network communication, however; the gateway provides an API (called LibGatewayCon-
nector) which abstracts all the details of the network interface away from the programmer
and provides a simple C++ API to communicate with the gateway, as though the plugin
were running in the same process as the Gateway Core itself. This API is described in

section 11.4.

Plugin Plugin
Gateway Plugin API Gateway Plugin API
[ Protocol Buffers Serializer Protocol Buffers Serializer J
TCP Socket w ( TCP Socket
J L
A\ A\
TCP Socket J [ TCP Socket
Protocol Buffers Protocol Buffers
Serializer Gateway Core Serializer

Figure 1.2: The AMMO Gateway and Plugins

The second server in the gateway manages communication with Android devices. This



server, called the Android Gateway Plugin, is implemented as a gateway plugin using
the LibGatewayConnector API. It accepts a connection from each Android device using
AMMO services, and acts as a proxy for the device with the Gateway Core, forwarding
data and requests back and forth between the core and the device. The Android plugin’s
protocol and set of supported operations are very similar to the Gateway Core itself, but it
was implemented as a plugin (rather than allowing devices to connect to the Gateway Core
directly) for security and stability reasons, and to allow the Android protocol to be ex-
panded later with features like encryption, data prioritization, and compression which may
not be necessary or desirable for the inter-process communication between the Gateway

Core and its plugins.

I1.4 Gateway Plugin API
As mentioned above, gateway plugins communicate with the Gateway Core via a li-
brary called LibGatewayConnector. This is an object-oriented C++ API, and hides all the
network communication required to communicate with the Gateway Core from the plugin
developer. The LibGatewayConnector API is shown in the class diagram in figure I1.3, and

described below.

DataPushReceiverListener
+ onDataAvailable

GatewayConnector
+ associateDevice PullRequestReceiverListener
+ pushData + onDataAvailable
+ pullRequest
+ pullResponse
+ registerDatalnterest PullResponseReceiverListener
+ unregisterDatalnterest + onDataAvailable
+ registerPullinterest
+ unregisterPullinterest
+ registerPullResponselnterest GatewayConnectorDelegate
+ unregisterPullResponselnterest + onConnect

+ onDisconnect
+ onAuthenticationResponse

Figure 11.3: LibGatewayConnector Class Diagram



On initialization, each plugin creates a GatewayConnector instance. When con-
structing its GatewayConnector object, the plugin provides it with an instance of a
GatewayConnectorDelegate subclass that it has implemented; this is a class of call-
back methods used for lifecycle management, called upon connection to the gateway, upon
disconnection from the gateway, and upon completion of user authentication. The plugin
then can do a number of things with the GatewayConnector: it can publish data, sub-
scribe to data, register as a pull request handler, or perform any of the other operations
described in section I1.2.

A plugin publishes data using the pushData method. This method accepts a MIME
type corresponding to the data type, a URI providing a unique identifier for the piece of
data, and, of course, the data itself (which can be any arbitrary binary data; the gateway
doesn’t restrict the form of the data transferred with it). That data is then transmitted
to the Gateway Core, which distributes it to all the plugins and devices which have sub-
scribed to that particular type. Pull requests happen in a similar way— the plugin calls the
pullRequest method, which accepts the MIME type of data that’s being requested, the
ID of the plugin requesting the data (used for routing), a query, and an optional projection,
which specifies a plugin-specific transformation to be done on the data. The gateway then
routes the request to all the plugins which claim to be able to handle requests of that type,
and the plugins return all the data which matches the query given in the pull request. Prior
to sending a pull request, a plugin must also call registerPullResponseInterest,
which registers a Pul 1ResponseReceiverListener which will be called when data
is received from the pull request.

A plugin subscribes to data of a particular topic with the registerDataInterest
method. This method accepts an instance of a DataPushRecieverListener sub-
class, which contains an onDataAvailable callback method which is called whenever

data of the registered MIME type is received. Likewise, a plugin registers to handle pull
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requests of a particular type using the registerPullInterest method, which ac-
cepts an instance of a Pul1lRequestReceiverListener subclass. This class con-
tains an onDataAvailable callback method that is called whenever a pull request
of the registered type is received, and the plugin responds to the pull request by calling

pullResponse on the GatewayConnector for each piece of data that it wants to return.

Table Il.1: Summary of Gateway API Methods

Method

pushData Publishes a piece of data

registerDatalnterest Subscribes to data of a particular type

pullRequest Sends a pull request to registered pull request handlers

registerPullResponselnterest Registers a callback method to be called when data is received
from a pull request
registerPulllnterest Registers a plugin to handle pull requests of a specific type
pullResponse Called by a pull request handler to send data in response
to a pull request

IL.S Disconnected Operation

One critical feature of AMMO is the ability to support disconnected operation: where
a device spends some amount of time without network connectivity and later reconnects,
sends any new data it has collected to the server, and receives any new content that was
created while it was offline. In our design, this synchronization is handled by a gateway
plugin. A plugin subscribes to all data of the types that need to be stored for later retrieval,
and registers itself as a pull request handler. When a device reconnects to the network, it
issues a pull request for items of that type which were sent while it was offline, and the
storage plugin retrieves those items and sends them to the device.

A simple, generic data storage plugin which can handle data of any type and perform

11



simple queries based on fields such as items’ timestamps is provided with AMMO. If de-
velopers have more specialized needs, such as querying based on information contained in

a message’s payload, a storage plugin specialized for that type should be created.

II.6 Functional Test Suite

Along with the core C++ components that make up the gateway, a Python-based testing
library was constructed. This library was designed to allow easy construction of functional,
stability, and scalability tests of the gateway. The test suite allows the functionality of the
gateway to be verified by itself, without using an application on an Android device. This
makes it easier to identify which component has introduced an issue, because issues in the
Android API don’t appear in the Python test suite.

The Python test suite was constructed using the Twisted networking framework?. It
was designed to emulate the behavior of an Android device: it connects to the Android
Gateway plugin, and communicates using the same protocol as a real Android device. The
Python test driver supports all of the same functionality as an Android device, including
subscribing to and publishing data and executing pull requests.

A number of test drivers have been constructed using our Python test framework. These
include tests of the gateway itself, including tests which verify the correct functionality of
the gateway’s core operations (such as publishing and subscribing to data) and performance
tests, such as latency measurements. The test framework has also been used to construct
tests for gateway plugins, to verify correct behavior for components such as the data store

plugin.

II.7 Android Framework

Although it is not the focus of this paper, a brief discussion of the AMMO components

running on the Android mobile devices is worthwhile for understanding AMMO as a whole.

Zhttp://twistedmatrix.com/trac
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The AMMO Android framework is built around the concept of content providers, which,
in Android, provide a way for all applications to store and retrieve data. Content providers
are typically backed by a database, and support SQL-style queries as well as automatic
notifications when data is added or changed.

In AMMO, an application specifies a content provider that will be used by the AMMO
distributor, or generates a content provider appropriate for use with AMMO using a code
generator provided with the framework. Data from that content provider is then published,
either automatically when added to the content provider or on demand. Subscriptions are
also handled by these content providers: data received as part of a subscription is automat-
ically added to the appropriate content provider for its type, and applications monitoring
that content provider are notified that new data is available. This provides a straightfor-
ward way to produce data-driven networked applications that are well-integrated both with

Android and with the AMMO network.
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CHAPTER III

IMPLEMENTATION

As mentioned earlier, all of the core parts of the gateway were implemented in C++
using the ACE programming toolkit. C++ was chosen as the implementation language for
the gateway because it allows the gateway to be highly performant with a minimal memory
footprint, which is important as the gateway may need to operate in a resource-constrained
environment. However, writing portable, maintainable code in C++ can be difficult. For
this reason, the ACE framework was used to construct the gateway. At its lowest level,
ACE provides platform-independent wrapper functions for operating system features such
as networking, threading, and file access [7]. Built on top of this low-level platform-
independence layer are object-oriented interfaces for much of this same functionality. This
allows system functionality such as networking or threads to be well-integrated into C++
code; traditionally, network socket or threading code would be written using low-level C
APIs such as the BSD socket API or the pthreads API.

On top of these object-oriented wrapper classes, ACE provides implementations of a
number of high-level design patterns. These include patterns such as the Reactor pattern
[8] and the Acceptor-Connector pattern [9], both of which are used heavily in the gateway.
This library of patterns reduces the amount of boilerplate code that must be written to
create a functional application, allowing more time to be spent developing logic unique to

the gateway.

III.1 Network service implementation

All the components of the gateway, including the Gateway Core, Android Gateway
Plugin, and Gateway plugin API, use very similar networking code, using ACE’s Acceptor-

Connector framework on top of the ACE Reactor. These provide an event-driven interface
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to network communication, where the Reactor handles waiting for events such as incoming
data and dispatching them to their appropriate event handlers [8] [9].

The Gateway Core and Android Plugin both implement network servers, and therefore
use the ACE Acceptor, the part of the ACE Acceptor-Connector framework which pas-
sively accepts connections from clients using the Connector pattern [9]. As used in the
gateway, the Acceptor creates a TCP listening socket and waits for connections. When a
connection is established, the Acceptor framework creates a new event handler object for
that connection and registers it with the reactor so it can be used to handle events from the
connection it manages. Likewise, the Gateway plugin API acts as a network client (con-
necting to the Gateway Core). Each instance of the GatewayConnector class creates
an ACE Connector, which attempts to connect to the Gateway Core, and, on connection,
creates an event handler object for the new connection.

This event handler object, or service handler, as it is called within the ACE framework,
contains all the logic required to communicate with a client. It contains all the state re-
quired to manage a single connection, including message queues, the network socket of
the connected client, and other miscellaneous data needed by the gateway to manage that
connection. This structure, where each active connection to the gateway has its own service
handler, provides a logical way to keep data for each connection separate while making it
simple to access a specific connection where it is needed.

Each component of the gateway (the Gateway Core, Android Plugin, and gateway API)
provides a service handler class which inherits from the ACE_Svc_Handler class. This
class defines several methods, including open, handle_input, handle_output,
and handle_close, which are called by the Reactor when the appropriate event occurs

for the connection the service handler is associated with:

* open is called when a connection is established. This method sets up the initial state
of the service handler and performs any other actions which must be done when a

connection is initiated.
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* handle_input is called when data is available to read on a socket. In each gate-
way component, this is implemented as a state machine: it first reads a short header
containing a message size and checksum, then reads the number of bytes specified
by the header. Due to the nature of network communications, these reads may be
spread out across multiple handle_input calls. Once an entire message has been
read, the data is passed off to a processData method, which validates the check-
sum from the header, deserializes the Protocol Buffers message contained within,
and performs some action based on the contents of the message. For the Gateway
Core, this processData method will perform operations on the Gateway Core as

described in section I11.2.

* handle_output is called when the application may write to a socket. In the
gateway, this method gets the next message to be sent off a queue, serializes that
Protocol Buffers message, computes the checksum and size of that message, then

sends the header containing size and checksum followed by the message itself.

The service handler classes also include state information pertaining to the connection
they are associated with. This state information includes the information required to man-
age the handle_input and handle_output methods: current state machine state,
buffers of received data, and the number of bytes sent or received. As mentioned above,
this also includes a queue of messages to be sent over the socket. This queue allows the
serialization and sending of a message to be decoupled from the point where a message is
generated. If messages are sent as they are generated, the gateway may have to block inside
an event handler, which impairs performance. Instead, messages are queued and sent when
the handle_output event is dispatched indicating that the application may send data

without blocking.

16



III.2 Gateway Core implementation

The gateway core itself is structured as a singleton class which is shared between all
active service handlers. This class maintains the routing tables used in the gateway and
manages the actual distribution of data between plugin connections.

Routing information for messages is maintained as a number of maps. Subscriptions
and pull request handlers are stored as C++ STL multimaps (where one key can map to
more than one value), with the subscription type name as the keys of the maps, and pointers
to the service handler representing the connection which made the subscription or pull
request as the values of the maps. A multimap was used for these tables as more than
one plugin may subscribe to a given type, and the STL multimap specifically provides a
reasonably efficient, portable implementation of this data structure.

The routing information for pull responses is stored as a C++ STL map, with the name
of the plugin which made the original request as the keys of the map, and a pointer to the
service handler representing that plugin as the values of the map. Unlike subscriptions
and pull request handlers, there should not be more than one plugin with the same name
connected to the gateway at one time. Therefore, a map is used instead of a multimap to
enforce this requirement.

The process through which a message is dispatched by the gateway can be best illus-
trated with an example, shown in figure III.1. Consider a push message sent from a gateway
plugin. Once the entire message has been received by the service handler for that plugin
connection, the message’s checksum is verified, and the Protocol Buffers deserializer is
called to deserialize the message. The service handler’s processData method is then
called, which identifies the message as a Push message, and calls the pushData method
on the singleton GatewayCore object. The GatewayCore then gets all the service han-

dlers from the subscription map which match the type of the message being pushed, and
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—— | handle_input »| processData
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Subscribing plugin's Service Handler

handle_output

< pushData
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to plugin

Figure lll.1: Gateway Message Flow

calls the pushData method on each of those service handlers. This method creates a Pro-
tocol Buffers message containing the data to be pushed, serializes it, and adds it to the ser-
vice handler’s outgoing message queue. From there, the message will be sent once all mes-
sages ahead of it in the queue have been sent and the service handler’s handle_output
method has been called.

One important implementation decision made while implementing the Gateway Core
was to keep the Gateway Core single threaded, in a single process. This means that all
network 1/0 and all event handling happens serially, rather than allowing network 1/O or
event handlers run simultaneously. This was done primarily for simplicity of implementa-
tion. Making the Gateway Core multithreaded would add complexity, as the data structures
used by all service handers, such as the subscription maps, would need to be synchronized
to ensure consistent operation between threads. Although this is not infeasible, the single

threaded implementation is simpler, which simplified development and debugging.
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III.3 Android Plugin implementation

The Android Plugin, the gateway plugin which manages connections between Android
mobile devices and the gateway, is considerably simpler than the Gateway Core. The An-
droid plugin does not contain much logic of its own; it simply receives requests and for-
wards them on to the Gateway Core for processing. The Android plugin is a consumer
of the LibGatewayConnector gateway plugin API described in section II.4, and acts as a
network server to receive connections from devices as described in section III.1. When
the Android plugin receives a message and its processData method is called, it simply
calls the appropriate method of the gateway plugin API to forward that data to the Gate-
way Core. The Android plugin also registers subscription callbacks on behalf of connected
devices; when published data is received from the Gateway Core, the Android plugin will
send that data to the appropriate connected device.

Unlike the Gateway Core, the Android plugin is multithreaded. While network commu-
nication all happens in a single thread, each connection has its own thread where messages
are processed. This decouples message processing completely from network communica-
tion; message queues are used to communicate between two levels. This decoupling en-
sures that slow network communications to or from one device can never prevent message

processing from happening for another device.
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CHAPTER IV

RESULTS

To evaluate the performance of the gateway, the Python test driver framework described
in section II.6 was used to measure the end-to-end latency of messages sent to the gateway.
This test suite was composed of three components: a producer script, which generates
messages containing a timestamp and a user-specified amount of random data and sends
them to the Android gateway plugin; a consumer script, which subscribes to the messages
generated by the producer script and computes the total time taken to receive the message
based on the timestamps; and a driver script which creates a producer and a user-specified
number of consumers and allows them to run for a set amount of time.

The Python testing framework was chosen for this test rather than using the AMMO API
on the Android devices to eliminate the added variability introduced by the Android API. In
the Android API, data must flow through a number of components before it is serialized and
sent over the network to the Android plugin. Also, Android devices are processor, memory,
and bandwidth constrained. Since the focus of this test is on the Gateway’s performance,
the Android components were simulated by the Python test framework to eliminate as many
extraneous variables as possible.

All tests were conducted using two computers. One machine, running 32-bit Red Hat
Enterprise Linux 6 (the standard deployment environment for the Gateway) was used as a
dedicated gateway machine. The second machine ran 64-bit Ubuntu Linux 11.04, and was
dedicated to the Python-based producer and consumers. The computers were connected
via gigabit ethernet, to minimize the impact of network bandwidth on the latency results.

Two main tests were conducted. The first test was designed to determine the impact
of multiple consumers on message distribution. A single producer was created, and the

test was repeated for 1, 5, 10, 20, 40, and 60 consumers, with message payload sizes (in
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addition to the included timestamps and Protocol Buffers overhead) of 0, 20, and 1000
bytes. A message rate of approximately two messages per second was used, and the test
was allowed to run for 500 seconds, for a total of approximately 1000 messages sent per
test. The latency from the producer to each consumer was measured, and averaged across
all consumers.

The results from this test are shown in figure I'V.1 . These graphs show what appears to
be a roughly logarithmic scaling of message latency with respect to number of consumers.
This is a desirable property, because it means that additional consumers impact overall

latency less as the number of consumers increases.

0.009
0.008

0.007

o
o
S
)

0.005
-0 bytes

0.004 -#-20 bytes
1 kilobyte

Mean Latency (s)

o
o
S
@

0.002

0.001

0 10 20 30 40 50 60
Number of Clients

Figure IV.1: Effect of number of clients on latency

The second test was designed to determine the impact of message size on message
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distribution. A single producer and 10 consumers were created for each run of the test.
The tested message payload sizes were 0 bytes, 20 B, 500 B, 1 KB, 10 KB, and 50 KB,
representing different possible message sizes for textual and multimedia content. As with
the first test, a message rate of approximately two messages per second was used, and the
test was allowed to run for 500 seconds, giving a total of approximately 1000 messages
sent per test.

The results from this test are shown in figure IV.2 . These graphs show an approximately
linear scaling of message latency with respect to message size. This is as expected, as
message transfer times over a network as well as data deserialization and copy times scale

linearly with respect to size.
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Figure 1V.2: Effect of message size on latency
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CHAPTER V

RELATED WORK

The pioneering example of the publish/subscribe communication model is the Object
Management Group, or OMG, Data Distribution Service (DDS)!. DDS is a specification for
publish/subscribe data distribution systems, and provides a common, platform-independent
interface that defines the data distribution service [6]. The DDS specification itself pro-
vides a UML model which specifies the interface to a data distribution service, which then
can be mapped onto a number of platforms and programming languages. A number of
implementations of this standard exist, including OpenSplice DDS, OpenDDS, and RTI
DDS.

DDS defines what they call a “Data-Centric Publish-Subscribe” interface, which pro-
vides participants in the system (publishers or subscribers) with an efficient, typed interface
to read and write data. The DDS middleware then distributes the data such that each sub-
scriber is able to access the current values for any piece of data [6]. To give the developer
control over this distribution process, the DDS specification also defines a set of quality
of service (QoS) policies. These policies can be attached to any publisher or subscriber,
and set constraints on the data distribution process, such as the allowable latency of data
distribution or the rate at which data must be updated.

Like DDS, the AMMO gateway provides a publish-subscribe paradigm for distributing
data. AMMO is not, however, an implementation of the DDS specification. AMMO uses a
much simpler API for data publishing and subscribing, both on the gateway and on Android
devices: this allows AMMO to operate in mobile environments where network bandwidth

is limited and low power consumption is essential. AMMO also does not currently offer an

Uhttp://www.omgwiki.org/dds/
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equivalent to DDS’s quality of service policies, although support for end-to-end quality of
service guarantees is planned for future work.

Many other attempts have been made to bring this publish-subscribe paradigm to mo-
bile devices. It is worth mentioning a few of these to provide context and comparisons to
AMMO:

STEAM [5] is a publish-subscribe system designed specifically to operate over 802.11
WiFi ad hoc networks. Therefore, unlike AMMO, STEAM was designed to operate without
a gateway; it operates as a fully distributed system. STEAM also provides a richer but more
complicated method of filtering and distributing data: rather than filtering by topic alone as
done in the AMMO gateway, STEAM filters objects based on topic, proximity, and content.
[5]

Pronto [2] is a system providing both publish-subscribe and point-to-point communi-
cation, based on the Java Messaging Service standard. Pronto can operate in two modes:
a centralized mode where a gateway, much like the AMMO gateway, distributes data, and
a decentralized mode where devices share data amongst themselves. Also, in addition to
gateways residing on remote servers, Pronto clients can communicate with gateways re-
siding on the devices themselves, alongside the clients. This is distinct from the current
iteration of AMMO, where gateways can’t reside on the devices. Pronto also puts a heavy
emphasis on what they call “SmartCaching” in the gateway. This is directly analogous to
what the gateway provides with its data store plugin, which ensures data is delivered even
under intermittent connectivity. [2]

Pervaho [3] is also a publish-subscribe system, but distinguishes itself from AMMO
and the other systems mentioned by focusing specifically on location-based publish-subscribe,
where devices receive data related to locations which they are in physical proximity to. Like
AMMO, the current implementation of Pervaho uses a centralized gateway to receive lo-
cation updates and distribute data, although the authors mention that they are interested in

modifying Pervaho to use a decentralized model.
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These different approaches to publish-subscribe communication in a mobile environ-

ment, as well as a couple others used in some systems, are summarized in [4]:

Centralized: A central broker stores all subscriptions in the system. This is the approach

currently implemented by the AMMO gateway.

Centralized with Quenching: The central broker gives each event source a filter based
on the union of all active subscriptions, so they don’t send objects which don’t match

any active subscriptions to the central broker.

Distributed broadcast: Uses a number of event brokers (rather than a single centralized
one), with each broker responsible for a portion of all subscriptions. An event source
connects to one of these brokers, which then broadcasts the event to all the other

brokers in the system.

Distributed multicast: Events are selectively forwarded between brokers depending on

the active subscriptions in the system.

Replication: Each user’s subscriptions are monitored by multiple brokers at the same
time, making it less likely that a user will miss events. This makes it more difficult to
ensure that duplicates are not delivered, that events arrive in order, and that all events

are actually received by all subscribers.

The AMMO gateway currently implements the centralized model as described in this
paper: the AMMO gateway is the centralized point where all subscriptions and messages
must be sent. However, AMMO extends the pure publish-subscribe approach given in this
paper and provides a means by which devices can explicitly request (or “pull”) data from
data sources. Also, [4] does not address the issue of integration of existing services and

data sources: AMMO provides a framework for this.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

Overall, the AMMO gateway provides an effective back-end system to support the
AMMO middleware running on mobile devices. It provides a centralized point of com-
munication to allow the device middleware to optimize bandwidth utilization, quality of
service, and power consumption, and provides an integration point for third-party services
to interact with applications running on an AMMO-enabled network. It makes efficient use
of bandwidth by using Google’s Protocol Buffers as a network transport protocol, and it
provides a central point for the implementation of security and quality of service guaran-
tees across multiple applications and services.

As currently implemented, the AMMO gateway contains the basic, core functionality
required for data dissemination and distribution. However, it is a relatively simple imple-
mentation; further work is required to make it a powerful, flexible environment for data
distribution.

One area which is being emphasized is support for multiple federated gateways. These
gateways could be placed in physically separate locations, and provide a bridge for hand-
helds and services operating in different areas to communicate between among each other.
This is similar to the distributed broadcast approach in [4]. As shown in figure VI.1,
many gateways (G) could be connected via possibly redundant network links, with differ-
ent devices (D) and services (S) connected to each gateway. Data published by a device or
service connected to one gateway could then be distributed to all the devices and services
connected to all the other gateways. The route that data and subscriptions take through

the network should be determined by a policy determined by the system administrator; this
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should allow the network to be configured to use the best possible route given network con-
ditions, and to fail gracefully by falling back to other, redundant links when a connection

fails.

Figure VI.1: Network of Gateways

Another important area of future work is support for quality of service guarantees.
While we do not want to support the wide range of policies specified by the DDS specifi-
cation, some control over message delivery is necessary is necessary in the environments
AMMO will be used in. For example, it would be very undesirable if a request for a medical
evacuation were delayed because another user was in a video chat. Some policies we may
implement are message priorities, multiple levels of delivery confirmation, and durability
policies which control the lifetime and validity of objects.

A third possible area of future work would extend subscriptions to allow filtering based
on the data contained within each object. Currently, subscriptions are based on message
type; a device or plugin always receives all published data of the types it is subscribed
to. However, there may be situations where a user isn’t interested in all the data of a

type; for example, they may only be interested in reports created at nearby locations. This
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isn’t possible with our current implementation, because data is encoded in an application-
specific format which the gateway may not understand. To achieve this, messages would
need to include metadata in some common, gateway-readable format, which the gateway

can then process and filter before forwarding messages on to devices.
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