HUMAN-INSPIRED FORGETTING FOR ROBOTIC SYSTEMS

By

Sanford T. Freedman

Dissertation
Submitted to the Faculty of the
Graduate School of Vanderbilt University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
in
Computer Science
December 2010

Nashville, Tennessee

Approved:
Professor Julie A. Adams
Professor Gautam Biswas

Professor Douglas H. Fisher
Professor Gordon D. Logan

Professor D. Mitchell Wilkes

ACKNOWLEDGMENTS

This dissertation was supported by many individuals...

I was fortunate to have Dr. Fisher, Dr. Biswas, Dr. Logan, Dr. Wilkes, and Dr. Adams on my dissertation
committee, a collection of exceptional researchers with diverse backgrounds. Each tackles problems with
a different approach and despite being established figures in their respective fields, are eager to spend time
assisting their students. Their advice and suggestions greatly improved the quality of my research, while
providing the motivation to perform all of the experiments and write the dissertation.

My understanding of WiFi signals and the effects of various objects in the environment was the result
of Dr Yuan Xue generously spending time discussing WiFi theory. Dr. Greg Walker spent many hours
discussing the best approaches to take in optimizing the forgetting algorithms presented in this dissertation
and many of the finer points related to the DAKOTA software package. I spent many hours in Andy Richter’s
office discussing the Vanderbilt University Electrical Engineering & Computer Science department’s network
infrastructure. These discussions made it possible to maximize the efficiency of my distributed software
applications.

The collection of the real world results presented in this dissertation would not have been possible without
the assistance of Sean Hayes. He spent an entire day manipulating equipment and logging data at the Colson
Hollow group camp grounds. Eli Hooten and Stephen Motter provided their support during the construction
of equipment required for the real world testing experiment. The real world experiment was fraught with
delays and challenges, but Gary Hawkings was always willing to reschedule my experiment and provide the
needed assistance to make the experiment possible.

This dissertation was partially supported by the Office of Naval Research MURI award N000140710749.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ittt e e e e e e e e ettt eeaee e
LISTOF TABLES ittt it e e e e e ettt ittt oo
LISTOFFIGURES ittt i it e ettt it e ettt ieenes
LISTOF ACRONYMES ittt ittt et ittt et ettt i e
I Problem Statement e e e e e e e e
I’ Literature Review o i i i it it ittt it ittt it ettt neeeeas
II.1 Historyof Robotics e
II.2 Situational AWareness ottt e e
I1.2.1 Situational Awareness Components v v v v v v v vt

IL2.1.1 Attention e

I1.2.1.2 ExplicitFocus

1.2.1.3 Shortand Long-Term Memory

IL.2.1.4 Failures

11.2.1.5 Goals, Plans, and Their Evolution

I1.2.2 Robotic Situational Awareness

.2.2.1 Improving Remote Operator Situational Awareness

1.2.2.2 Improving Robotic Situational Awareness

I3 Cognitive Architectures i e e
II.3.1 The Minsky-Sloman Architecture

II.3.2 CoSy Architecture Schema

II.3.3 Polyscheme e

.34 ICARUS e

I35 ACT-R e

IL3.6 Soar e

I1.3.7 CLARION e

I1.3.8 COGNET e e e

II4 Forgetting o i e e e e e e
4.1 Time-based Decay.

I1.4.2 Similarity-based Interference

I.4.2.1 Proactive Interference,

I1.4.2.2 Retroactive Interference

I1.4.3 Cognitive Models Incorporating Forgetting

11.4.3.1 The Trace Threshold Model

432 SIMPLE

11.4.3.3 The Architecture of Dosher and Ma (1998) and Dosher (1999)

I1.4.3.4 Robotic Designs Employing Forgetting

iii

Page

ii

vi

ix

xiii

III Detailed Presentation of Approach to Solving Problem 43

L1 Forgetting o o e 43
III.2 Improving Situation Awareness with Forgetting 45
I3 ActSimple e 46
III.3.1 Time-Based Decay 47

II.3.2 Encoding Interference 48

I.3.3 Mental Exertion e 49

II.3.4 OutputInterference 50

III.3.5 Activation oo i e e e e 51

III.3.6 Retrieval Time e 51

IV TestDomain ittt ittt ittt ettt ennnneeeeas 53
IV.I Algorithms o o o 54
IV2 Environment L e e e e e 56
IV.3 Interpolation Methods e 59
IV4 Experimental Design 67
IVS Summary e 69
VooOptimization 0 e e e e e e 71
V.1 Optimization o 0oL e e e e e 71
V.1.1 Optimizing the Queue-Based Forgetting Algorithms 71

V.1.2 Optimizing the Non-Queue-Based Forgetting Algorithms 73

V.1.3 OptimizationResults L o 74

V.14 Summary e 81

V.2 Alternate Existing Robotic Algorithms 84
V.3 Alternate Basestation Configurationsand Paths 86
V.3.1 Descriptionof Paths 21-64 86

V.3.2 Forgetting Performance with Paths 21-64 89

V.33 Summary 95

VA4 Summary e e 97

VI RealWorldTesting o i i it it i it ittt ittt ie i ot nneeeneos 929
VI.1 Experimental Design e 99
VL2 Real WorldResults 101
VI3 Discussion o e e e e e e e e 106
VII Performance with Other Noise Distributions 110
VII.I New Noise Distributions et 110
VIL2 Theresults o o o e e e 118
VIL3 Summary e e e e e e e e 127
VIII Evaluating the Performance of Forgetting at Each Point Along the Paths 131
VIII.1 Performance Along Individual Paths 131
VIII.1.1 Performance of Forgetting when AppliedtoPath2 132

VIII.1.2 Performance of Forgetting when Appliedto Path4 140

VIIL.1.3 One Cycle, Eight BasestationPaths 142

VIII.1.4 Static, Three Cycle Paths 144

VIII.1.5 Dynamic, Non-Random Paths 149

VIIL.1.6 Randomly Generated Paths 153

VIIL.2 Along the Path Performance Metrics 157

iv

VIIL3 Summary o o e e e e e e e e e 167

IX Pavlik and Anderson Modification i, 171
IX.1 Optimizing the Pavlik and Anderson Modification 171
IX.2 Effects of the Pavlik and Anderson Modification 173
IX.3 Original Twenty Paths e 175
IX.4 Randomly Generated paths 179
IX.5 Summary . . 0oL e 185

Summary of Contributions and Future Directions 188
X1 Reviewo 188
X.2 Summary of Contributions e 191
X.3 Future Directions e e 192

Supporting Media for Chapter VIII i ittt ittt enas 195
A.1 Additional Along the Path Performance Graphs 195
A.2 Along the Path Errorand Recall Maps 200

Additional Components of Situational Awareness 201
B.1 System Stress e e e 201
B.2 Ideal, Achievable, and Actual Situational Awareness 201
B3 Vigilance e 202
B.4 Uncertainty and Confidence 202
B.5 Bad Situational Awareness vs. Bad Decision Making, 203
B.6 Biasesand Expectations 204

B.6.1 Schemasand Mental Models 204

B.6.2 FramingandOrder 205

B.6.3 Observation Quality and Availability 207

B.7 Workload 207
B.8 DataDriven and Goal Driven Behavior 208
BIBLIOGRAPHY i i it ittt ittt ittt ettt e 209

Table

IL.1

1.2

IL.3

1.4

IL5

\'Al

V.2

V.3

V4

V.5

V.6

V.7

V.8

V.9

V.10

V.11

V.12

V.13

V.14

V.15

V.16

V.17

V.18

LIST OF TABLES

Page
Initial list of situational awareness components 10
Levelsof autonomy e 16
Types of human-robotteams e 16
Definitions of HRISA forms 17
Models of short-term memory ot e e e e 36
Parameter sweep counts Lol e e e 74
Parameterization error improvement oLl 74
Best algorithm parameterizations 75
Variance test L L 76
Individual path average number of recallable readings 77
Individual path estimation error 78
Comparison of estimation error e e 78
The effects of dynamism on estimation error 79
Estimation error performance on static and dynamic paths 80
New interpolation methods 85
New interpolation method rankings 85
New interpolation method performance deviations 86
Basestation configurations for paths 21 -64 o oL oo 87
Average number of recallable readings for paths 21-64 90
Average estimation error for paths 21-64 oL oo 91
Comparison of estimation error for paths 21-64 92
The effects of dynamism on estimation error for paths 21 -64 93
Estimation error performance on static and dynamic paths for paths 21 -64 94

Vi

VI.1

VI.2

VL3

V14

VL5

VIIL1

VIL.2

VIL3

VIL4

VILS

VIL6

VIL7

VIIIL1

VIIIL.2

VIIL.3

VIIL4

VIIL.5

VIIL6

VIIL.7

VIIL.8

VIIL.9

IX1

IX.2

IX.3

IX.4

IX.5

Real worldresults 102
Forgetting performance deviations from No Forgetting 103
Comparison of estimation error for real-world paths 104
The effects of dynamism on estimation error for real-world paths 105
Estimation error performance on real-world static and dynamic paths 106
Noise distribution effects on average recallable reading counts 118
Noise distribution average estimation €rror vt e . 120
Noise distribution effects on average estimationerror. 122
Noise distribution effects on estimation error rankings 123
Comparison of estimation €rror e e 124
Noise distribution effects on average estimation error (paths 1-20) 126
Noise distribution effects on estimation error rankings (paths 1-20) 127
Along path average estimation €Iroro 158
Along path standard deviation 159
Comparison of estimation error - Along Path Average 160
The effects of dynamism on estimation error - Along Path Average 160
Estimation error performance on static and dynamic paths - Along Path Average 161
Along path average signed squared deviation 163
Comparison of estimation error - Along Path SSD Average 164
Along path No Forgetting signed squared deviation 165
Comparison of estimation error - Along Path SSD No Forgetting 166
Pavlik and Anderson parameterizations 173
Pavlik and Anderson metrics 177
Effects of the Pavlik and Anderson modification 177
Effects of the Pavlik and Anderson modification along static and dynamic paths 178

Statistical significance of the Pavlik and Anderson modification on static and dynamic paths 179

vii

IX.6

IX.7

IX.8

IX.9

IX.10

X1

B.1

B.2

Pavlik and Anderson random path overall performance 180

Effects of the Pavlik and Anderson modification on randomly generated paths 181
Pavlik and Anderson random path class performance 182
Pavlik and Anderson random path effects of dynamism 183
Statistical significance on static and dynamic randomly generated paths 184
Reduction in average number of recallable readings 189
Minsky’s variety of frameso 205
Negative forces actingon SA L 207

viii

Figure

IL.1
1.2
1.3
1.4
IL.5
IL.6
IL.7
I1.8
IL.9
II.10
IL11
.12

II.13

IVl
Iv2
Iv3
Iv4
Iv.s
Iv.6
Iv.7
Iv.8
v9
V.10

Iv.11

LIST OF FIGURES

Page
Vaucanson’s Duck L 5
Endsley’s model of SA located within the greater model of human decision making . . . 8
The Perceptual Cycle e 9
Relationship of goals, plans, and mental modelsto SA 14
The Causality Matrix o o i et e e e e e 19
The H-CogAff Architecture 20
The Model Six Architecture 21
The CoSy Architecture Schema Subarchitecture 22
Guiding principles of Polyscheme 22
The CLARION Cognitive Architecture 28
The COGNET Cognitive Architecture 30
Time-Based decay L 34
Example case-based reasoning caseo i e e e e 41
Basestation configurations within the tested environment 57
Average error when estimating WiFi signal strength with a constant value 58
Nearest Neighbor Interpolation with 10, 100, 500, and 1000 randomly generated samples. 60

Shepard’s Interpolation with 10, 100, 500, and 1000 randomly generated samples. 62
Microsphere Interpolation withonesample 63
Microsphere Interpolation with 10, 100, 500, and 1000 randomly generated samples. . . . 64
Multiple samples on the same line as an interpolation point 65
Effects of asymmetric noise on interpolation methods 66

Effects of asymmetric noise on interpolation methods for the first ten thousand steps taken 66
Effects of sample clustering on interpolation methods 68

Paths through the environment oL 70

iX

V.1

V.2

V.3

V.4

V.5

V.6

V.7

VI.1

VI.2

VL3

V14

VIIL1

VIL.2

VIL3

VIL4

VILS

VIL.6

VIL7

VIIL.8

VIL9

VIII.1

VIIIL.2

VIIL.3

VIIL.4

VIILS

VIIL.6

Queue-based forgetting algorithm optimizationresults 72
Number of parameters vs. average absolute estimationerror 82
Average number of recallable readings vs. average absolute estimation error 83
New basestation configurations 87
New path trajectories e 88
Number of parameters vs. average absolute estimation error for paths 21 -64 96
Average number of recallable readings vs. average estimation error for paths 21 -64 . . . 97
Real world experimentmap L 100
Maps of real world truth values L o 102
Number of parameters vs. average absolute estimation error for real world paths 107
Average number of recallable readings vs. average estimation error for real world paths . 108
Original noise distribution PDF o oL 111
Discrete Gaussian PDF 112
Rounded discrete Gaussianoc =5PDFs 114
Rounded discrete Gaussianoc =15PDFs oL 114
Impulse distribution PDFs 115
Discrete Laplace PDFs e 116
PDF for the sinc noise distribution 117
Number of parameters vs. average absolute estimationerror 129
Average number of recallable readings vs. average estimation error 129
Along path results for path 2 - 1 cycle 4 basestations 132
Path 2 - 1 cycle 4 basestations with No Forgetting error and recall maps 134
Path 2 - 1 cycle 4 basestations with ACT-R error and recall maps 136
End of path recall map for ActSimple and path 2 - 1 cycle 4 basestations 137
Path 2 - 1 cycle 4 basestations with Queue Static error and recall maps 138
Path 2 - 1 cycle 4 basestations with SIMPLE Update error and recall maps 139

VIIL7

VIIL.8

VIIL.9

VIIIL.10

VIII.11

VIII.12

VIIIL.13

VIIL. 14

VIIL.15

VIIL.16

VIIIL.17

VIII.18

VIIL.19

VIII.20

VIII.21

VIIL.22

VIIL.23

VIIIL.24

VIIL.25

VIIIL.26

VIIL.27

VIIL.28

VIIL.29

IX1

IX.2

IX.3

Trajectory of path 4 141

Along path results for path 4 - 1 cycle 4 basestations 141
Path 4 - 1 cycle 4 basestations with ACT-R error and recallmaps 142
Path 4 - 1 cycle 4 basestations with ActSimple error and recallmaps 143
Along path results for path 8 - 1 cycle 8 basestations 144
Along path results for path 10 - 3 cycles 4 basestations 145
Path 10 - 3 cycles 4 basestations with SIMPLE Update recall maps 146
Path 10 - 3 cycles 4 basestations with SIMPLE Update error maps 147
Along path results for path 12 - 3 cycles 4 basestations 148
Trajectoryof path 12 149
Path 12 - 3 cycles 4 basestations with ACT-R error and recallmaps 150
Along path results for path 5 - 1 cycle 8 - 4 basestations 151
Along path results for path 9 - 3 cycles 4 - 8 basestations 152
Along path results for path 13 - 3 cycles 8 - 4 basestations 152
Along path results for path 1 - 1 cycle 4 - 8 basestations 153
Path 1 - 1 cycle 4 - 8 basestations with No Forgetting error and recall maps 154
Along path results for path 17 - random 4 - 8 basestations 155
Along path results for path 20 - random 8 basestations 155
Along path results for path 18 - random 4 basestations 156
Path 18 - random 4 basestations with SIMPLE Update recall and error maps 157
Average estimation error on static paths and dynamic paths before the basestation config-

urationchange 168
Average estimation error on dynamic paths after a basestation configuration change . . . 169
Number of parameters vs. average estimation error alongapath 170
Evolutionary algorithm process 172
Comparison of the activation values generated by ACT-R and ACT-RPA 174
Comparison of the recall probabilities generated by ACT-R and ACT-RPA 176

X1

IX.4

IX.5

Al

A2

A3

A4

AS

A6

A7

A8

A9

B.1

B.2

B.3

B.4

Average number of recallable readings vs. average estimation error for the original paths . 186

Average number of recallable readings vs. average estimation error for random paths . . . 187
Along path results for path 3 - 1 cycle 4 basestations 195
Along path results for path 6 - 1 cycle 8 basestations 196
Along path results for path 7 - 1 cycle 8 basestations 196
Along path results for path 11 - 3 cycles 4 basestations 197
Along path results for path 14 - 3 cycles 8 basestations 197
Along path results for path 15 - 3 cycles 8 basestations 198
Along path results for path 16 - 3 cycles 8 basestations 198
Along path results for path 19 - random 8 - 4 basestations 199
Directory Structure e e 200
Relationship between ideal, achievable, and actual SA 202
SAand confidence levels L 203
Recall performance of details from a reading passage 206
SAvs.Workload e 208

Xii

LIST OF ACRONYMES

ACT-R The Adaptive Control of Thought - Rational

Al Artificial Intelligence

CBRNE Chemical, Biological, Radiological, Nuclear, Explosive
CLARION Connectionist Learning with Adaptive Rule Induction ON-line
COGNET COGnition as a NEtwork of Tasks

CoSy Cognitive Systems for Cognitive Assistants

DAKOTA The Design Analysis Kit for Optimization and Terascale Applications toolkit
H-CogAff The Human-CognitionAffect Architecture

HRI Human-Robot Interaction

PDF Probability Density Function

SA Situational Awareness

SIMPLE The Scale-Independent Memory, Perception, and Learning Model
SNR Signal to Noise Ratio

SSD Signed Squared Deviation

xiii

CHAPTER 1

Problem Statement

Perfect memory and recall provides a mixed blessing. While flawless recollection of episodic data and pro-
cedural rules allows for increased reasoning, photographic memory hinders a robot’s ability to operate in
real-time, highly dynamic environments. The absence of forgetting can result in memory being filled by a
tremendous volume of data, increasing both search time and the probability of over-learning. Many small,
but critical details within the environment greatly impact the probability of successful task completion, un-
fortunately robots are currently ill-equipped to navigate incoming data to detect, recognize, and act upon
these details. As robotic hardware and designs improve, robots will be further inundated as finer resolution
environmental data and higher accuracy mental models become available. Contemporary robots are already
overrun with vast volumes of data requiring real-time processing and the problem will only increase. Before
robots realize human-level intelligence, a means of classifying the importance of each acquired datum and
forgetting unnecessary, erroneous, and expired data will be required. This dissertation uses forgetting to fil-
ter data and has developed a robotic forgetting mechanism, inspired by human forgetting, that incorporates
time-based decay and interference effects.

Solomon Veniaminovich Shereshevskii, a professional mnemonist, possessed a close to photographic
memory, but found it difficult to learn and understand higher level concepts. Despite the ability to recall lists
of great length, understanding non-literal sentences or recognizing dynamically changing objects, including
human faces, proved challenging (Luria, 1968). Shereshevskii’s near photographic memory prevented him
from forgetting minor details and allowing concepts to transcend into higher levels of thought (Schooler and
Hertwig, 2005). A lack of forgetting capabilities can cause similar problems for robots.

Forgetting has previously been recognized as beneficial to machine-learning, particularly case-based rea-
soning (Kira and Arkin, 2004). Within some domains and tasks, random forgetting has been found to im-
prove performance (Kira and Arkin, 2004) and in particular situations, even accurate data can hinder perfor-
mance (Markovitch and Scott, 1988). Selective utilization of learned information has previously been used
to prune classification hierarchies, improving efficiency (Yoo and Fisher, 1991; Markovitch and Scott, 1989;
Mooney, 1989). Forgetting may be required in order to achieve human levels of intelligence, and theories of
human forgetting may provide the basis for the generation of effective robot forgetting.

Through the years, strong evidence has been found to both support and refute the two leading theories of

human forgetting, time-based decay and interference (Jonides et al., 2008). Some research has posited that

human forgetting is a combination of both theories and their subcomponents (Jonides et al., 2008; Wixted,
2004; Sims and Gray, 2004; Altmann and Gray, 2002). Reflecting on the complexity of the human mind
and cognition, it is unlikely that the full dynamic of human forgetting can be realized from one parsimonious
mechanism. Several researchers have developed models of human forgetting that incorporate multiple forget-
ting methods (Mueller and Krawitz, 2009). Others that stand by one mechanism, have admitted that multiple
mechanisms may contribute to human forgetting, just to a lesser extent (Wixted, 2004).

This dissertation uses forgetting as a means of filtering data and presents a new approach to implementing
forgetting within robots that combines both time-based decay and interference theories of forgetting. Through
the unique collection of mechanisms in the forgetting system, the approach may be highly amenable to
the varied demands of robotic systems, allowing for the removal of irrelevant, erroneous, and out-dated
information. Contemporary and future robotic systems involve a complex interaction between their various
subcomponents. Individual robot subsystems may possess detailed and vital information regarding active
tasks, but when this information is combined to form higher level concepts, a robot may be better equipped
to detect and beneficially act upon the many critical details within the environment. The developed forgetting
method is capable of simultaneously operating both at the lower raw sensor value levels, and with multiple
instances of the forgetting mechanism, manage a robot’s composite data. Inherently non-domain specific, the
forgetting mechanism can operate on a wide array of data modalities, but can be parameter-tuned, allowing
the relative importance of each component of the forgetting method to be modified.

Forgetting may directly aid the ability of robots to operate under uncertainty. When complete certainty is
unavailable, then any decision or action selection made by a robot is essentially an educated guess. Heuristics
comprise a critical form of decision making under uncertainty and real-time constraints (Gigerenzer et al.,
1999; Gigerenzer and Brighton, 2009). Forgetting has previously been shown to improve the accuracy and
applicability of some heuristics (Schooler and Hertwig, 2005). This form of decision-making benefits many
areas within robotics and forgetting may significantly improve their effectiveness.

Neurobiology, psychology, artificial intelligence, and robotics have all worked cooperatively over the past
few decades to improve the understanding of their respective fields. The forgetting approach presented in this
dissertation may provide additional evidence for theories of human forgetting. The approach incorporates a
large number of theories of human forgetting, but the impact of individual components can be independently
modified, allowing for a comparison of the effects of each theory. As robots evolve and are assigned tasks
with ever increasing similarity to the challenges faced by humans on a daily basis, the effects of individual
forgetting components on robot performance may correlate with the effects of human performance.

Inherent to the operation of the dissertation’s approach to robotic forgetting, a relevance metric is de-

veloped for each datum stored in a robot’s knowledge bases. These values are used to classify and rank

the probability that an individual datum will be required by the system. This classification may provide an
additional search criterion for other subsystems within the robot.

The presented forgetting mechanism may indirectly aid robots in attaining human levels of Situational
Awareness (SA). A phenomena with numerous definitions (Adams et al., 1995), SA can loosely be consid-
ered an understanding of the environment and effects of possible future actions. Data management poses one
of the underlying difficulties in developing SA in real-time domains. Many features are required by a robot’s
architecture in order for comprehensive SA to be developed, such as information filtering, inter-module com-
munication, and storing volumes of information and purging stale data (Freedman and Adams, 2008). These
features all contain aspects of data management and are negatively affected by increasing volumes of stored
data. Forgetting may aid the realization of these features and consequently improve the ability for robotic

systems to develop SA.

CHAPTER IT

Literature Review

Numerous factors can limit a robot’s ability to effectively and efficiently operate within complex, dynamic
environments. Copious volumes of data can inundate a robot’s cognitive processes, information inaccessi-
bility and incorrect knowledge can induce erroneous models of the environment, and demanding cognitive
processes can prevent real-time responses to environmental stimuli. As robots increase their ability to assuage
these data problems, real-time robotic performance may increase. Capabilities to forget undesirable data may
aid robots attempting to minimize cognitive workload, prioritize data, and purge erroneous information.
This chapter provides a review of several aspects that are critical to the efficacious incorporation of forget-
ting mechanisms into contemporary robotic design. A history of robotics is presented to provide motivation
and justification for taking inspiration from biological systems. Transitioning from the discussion of how
biologically inspired ideas have influenced the evolution of robotics, human situational awareness (an under-
standing of the environment and effects of possible future actions) is discussed. Human situational awareness,
a phenomena of key importance, that enables humans to effectively operate within challenging domains, may
provide parallels allowing robots to operate in those same demanding conditions. Providing insight into the
manner in which contemporary robots and cognitive agents are controlled, a review of several leading cogni-
tive architectures is presented. Forgetting as occurs within humans is then reviewed. Human forgetting is a

complex and multifaceted mechanism that offers many insights and suggestions.

II.1 History of Robotics

The field of robotics has a long and storied history, dating back thousands of years. The concept of robots
originated as clever, sophisticated machines (Matari¢, 2007), but slowly evolved into the myriad of present
day definitions of the term robot (Wikipedia, 2009). These modern day definitions have refined the concept of
the robot to roughly refer to intelligent machines possessing some level of autonomy. Originally mechanical
creations generally possessing fixed modes of operation and minimal levels of adjustability, contemporary
robotic designs have evolved into highly reconfigurable, general purpose machines (Wikipedia, 2009).

The term “Robot”, coined by Josef Capek, first appeared in the 1920 play Rossum’s Universal Robots
(R.UR.) by Capek’s bother, Karel Capek (Zunt, 2004); however, visions of mechanical beings performing
undesirable, but necessary tasks had already existed for thousands of years (Matari¢, 2007). Many examples
of ancient robotic designs and technologies exist. Around approximately 1400 B.C., the Babylonians crafted

a water clock named “Clepsydra”, a device considered one of the earliest robotic devices (The History of

FIGURE 6. A nineteenth-century inventor’s illustration of his own imagined version of a me-
chanical digesting duck. An arrow helpfully indicates where the main action takes place. From
Chapuis and Edouard Gélis, Le Monde des automates, 2:151.

Figure II.1: Vaucanson’s duck (Riskin, 2003)

Computing Project, 2007). Many user-configurable automated devices were crafted by Hero of Alexandria
(10-70 A.D.), while a clock tower featuring mechanical figurines playing music to announce the passage of
time was constructed in China by Su Song in 1088 (Wikipedia, 2009).

These early robotic creations realized tremendous mechanical discovery and ingenuity, but only repro-
duced the outward appearance and actions of the biological entities they mimicked. It was not until the
eighteenth century that robotic devices began to reproduce both internal and external functions of the entities
that they embodied (Riskin, 2003). In 1738, the French scientist Jacques Vaucanson put on display a me-
chanic duck, Figure II.1, that “stretches out its Neck to take Corn out of your hand; it swallows it, digests
it, and discharges it digested by the usual Passage” (Vaucanson, 1979). Vaucanson’s creation benefited from
extensive analysis of real ducks to allow the mechanical creation to simulate a number of authentic behaviors
and actions, although its most prominent, digestion, was faked (Riskin, 2003). This mechanical achievement
was one of the earliest examples of robotic designs shifting from “amusements and feats of technological
virtuosity” to the study of how biological processes could be recreated within machines and how the under-
standing of those processes may be enhanced (Riskin, 2003).

After Vaucanson created his duck, scientists and inventors continued developing devices of increasing
realism and complexity, but it was not until the mid-twentieth century that robots began to resemble their
modern day counterparts. In the 1940’s, the field of cybernetics emerged, applying control theory to the

understanding of biological systems. Cybernetics’s initiator, Norbert Wiener and his colleagues investigated

how control theory could explain and aid in simulating biological processes from the level of neurons to
behavior (Matari¢, 2007). During this time, William Grey Water used the field of cybernetics to develop a
collection of devices commonly referred to as “tortoises” that exhibited many aspects analogous to biological
systems. Many consider these turtles to be the first examples of modern robots (Matarié, 2007).

From the 1950’s through the mid-1980’s, robot developers started to integrate Artificial Intelligence (AI)
inspired approaches into their creations. Robots such as Shakey (Raphael, 1976), HILARE (Giralt et al.,
1979), and the Stanford Cart (Moravec, 1990) combined the biologically inspired abilities of vision process-
ing, world modeling, and planning to achieve tasks too complex and difficult for earlier designs (Matari¢,
2007). These robots achieved their success by employing the design paradigm commonly referred to as
Sense-Model-Plan-Act. A robot using this approach first sensed its environment, and once complete, con-
structed a world model suitable for a planner. Plans were generated by this planner and subsequently trans-
fered to an actuation unit that caused the robot to take physical actions (Brooks, 1991). Robots from this
era often spent a majority of their processing time perceiving the environment and constructing world mod-
els (Brooks, 1991). In 1987, Schoppers (1987) developed the notion of Universal Plans, a lookup-table based
approach to planning that required responses to all possible environmental states to be calculated.

Robots embodying the Sense-Model-Plan-Act paradigm were slow and required carefully engineered
static environments (Matarié, 2007; Brooks, 1991). In the late 1980’s and early 1990’s, a new approach to
robot design emerged, reactive (Brooks, 1986) and later behavior-based (Arkin, 1998; Matari¢, 1992; Werger,
1999) robotics. Reactive design methods, analogous to human reflexes, enabled robots to respond to elements
within the environment quickly, and unlike previous robotic designs, in a smooth manner (Matari¢, 2007).
Behavior-based robotics uses collections of simple modules that each exhibit individual behaviors. Collec-
tions of these behaviors run concurrently, resulting in emergent intelligence. Inspired by the capabilities of
fish, insects, and birds, robots were developed with complex combinations of simple behaviors that resulted
in abilities far exceeding earlier robot designs. A number of robots modeling insects were created, that in
many ways, reproduced biological behavior (Arkin, 1998).

Despite minimalism and statelessness being core ideals of behavior-based robotics, researchers reintro-
duced deliberative processing into robotic designs. These new architectures were hybrid combinations of
behavior-based principles and classical Al inspired algorithms (Werger, 1999). This change in design philos-
ophy was inspired by the desire to realize higher level cognitive functions within robots. Present day robotic
designs commonly employ this hybrid approach, often involving slow and highly computationally expensive
processes operating on top of fast reactive mechanisms.

The reintroduction of state information into robotic designs allows robots to complete challenging cog-

nitive tasks, but has proven to be a double-edged sword. Along with the benefits of persistent sensor data

and mental constructs, enduring state can become stale and erroneous information may remain available to
cognitive processes for significant periods of time. Humans remediate this informational plague by many
means, one of which is forgetting. As future robotic designs progressively incorporate biologically inspired
capabilities, parallels to human forgetting may allow robots to achieve still greater levels of performance and

Success.

II.2 Situational Awareness
Humans are able to operate and excel in highly dynamic and complex environments partly because of their
perceptual and cognitive capabilities. Situation Awareness (SA) (Adams et al., 1995; Endsley, 1988b,a,
1995b), the human ability to perceive the environment, comprehend the situation, and project that compre-
hension into the near future, forms a critical component of those cognitive and perceptual capabilities.

SA has received considerable attention in the human factors community and many definitions have been
developed (Uhlarik and Comerford, 2002; Fracker, 1988; Dominguez, 1994; Endsley, 1988b,a, 1995b; Sarter
and Woods, 1991). As a result of SA’s origin in avionics and military related human performance research,

many existing definitions of SA are domain and task specific, such as SA

“means that the pilot has an integrated understanding of factors that will contribute to safe flying
of the aircraft under normal or non-normal conditions. The broader this knowledge is, the greater

the degree of situational awareness” (Regal et al., 1988).

This dissertation will adopt the non-domain specific commonly accepted definition of SA from Endsley

(1988b):

“the perception of the elements in the environment within a volume of time and space, the com-

prehension of their meaning, and the projection of their status in the near future.”

The large number of SA definitions presently available partly arose from the difficulty in determining
exactly what is and what is not encompassed by SA (Uhlarik and Comerford, 2002). There has even been
debate as to whether SA is a concept that defines a cognitive phenomena or if SA is a causal agent forming a
portion of human cognition (Flach, 1995).

While often misinterpreted as a process (or a set of processes), SA is a grouping and description of
processes working to form human cognition. The portions of these processes that handle incoming data and
then compute higher level constructs can be grouped together by SA. Endsley partitioned this higher level
construct into a series of three levels (Endsley, 1995b). Level one involves acquiring raw information from

the environment. Level two consists of merging data from level one into an understanding of the current

* System Capability
« Interface Design

« Stress & Workload
+ Complexity
+ Automation

Task/System Factors

=

SITUATION AWARENESS

Perception \cqmprehension |Projection
State Of The Of Elements |o¢ Cyrrent f Future Decision
Environment In Current |Sit ation Status

Situation

Level 1 Level 2 Level 3

\/ ‘

Information Processing
Mechanisms
Long Term 6

Performance
of

Actions

Individual Factors

+ Goals & Objectives
« Preconceptions
(Expectations)

« Abilities
« Experience
« Training

Figure I1.2: Endsley’s model of SA located within the greater model of human decision making (Endsley,
1995b)

situation in the environment. The final level utilizes level one and level two constructs to predict the future
states of the environment and possible actions to undertake. Figure I1.2 illustrates how Endsley’s model of
SA fits within the larger context of human decision making.

The concept of situational awareness can also be represented by the Perceptual Cycle (Neisser, 1976),
a cyclical model of human cognition. As illustrated in Figure I1.3, the actual environment modifies the
human’s current mental model of the environment’s status and properties. These modifications result in
active adjustments to how perceptual channels are directed within the environment. Perceptual channels
sample the constantly changing environment, completing the cycle (Adams et al., 1995). While at a high
level, the cyclical nature of situational awareness can be considered similar to Sense-Model-Plan-Act loops
of robotics from the 1960’s to the 1980’s (Brooks, 1991), the various components of the perception cycle are
not system states that can be discretely entered and exited. The three elements of the perception cycle are
permanently active, simultaneously working toward high levels of situational awareness and performance.

The human cognitive system is highly advanced and at present too difficult to fully understand. The study
of SA bounds the decision making process and aids in the identification of aspects of human cognition that

contain similar properties and requirements (Flach, 1995). Care must be taken while studying SA as the

Actual world
{(potentiatly available
information)

Modifies Y, // £
!

’

/

Cognitive
map of the

world
and its

Locomotion
and
action

Directs

Figure I1.3: The Perceptual Cycle (Neisser, 1976)

phenomenon is not performance, although a relationship between SA and performance exists (Adams et al.,
1995). When minimal or erroneous SA is maintained, the likelihood of achieving high levels of performance
is low, especially if a human mistakenly overestimates their level of SA. Inferior performance is not guaran-
teed as a result of poor SA, since luck, physical skill, and physical dexterity may compensate. If a human
realizes that their level of SA is below some desirable threshold, then behaviors and actions may be changed
to improve SA and causally improve performance (Endsley, 1995b). When an agent deliberately changes
behaviors to improve SA, some means of approximating their SA level is required (New York Times News
Service, 2000). In many domains, the ability to accurately estimate one’s current level of SA may be critical

to achieving high performance levels.

I1.2.1 Situational Awareness Components

SA is difficult to define and isolate partly due to the large and diverse array of cognitive and perceptual
abilities that compose the phenomenon, see Table II.1 for an initial list. Additionally, human SA is highly
sensitive to a number of external (e.g. environmental stressors, salience, automation) and internal (e.g. cogni-
tive workload, vigilance, fatigue, stress) factors (Endsley, 1995a; Salmon et al., 2006; Wickens, 2002). This

section presents an overview of some of the cognitive and perceptual components that compose human SA.

Table II.1: Initial list of situational awareness components

Attention Biases and Expectations
Explicit Focus Schema and Mental Models
Short & Long Term Memory Data Driven and Goal Driven Behavior
System Stress Goals, Plans, and their Evolution
Workload Observation Quality and Availability
Failures Framing and Ordering Effects
Uncertainty and Confidence Bad SA vs. Bad Decision Making
Ideal, Achievable, and Actual SA | Vigilance

I1.2.1.1 Attention

Attention management affects a human’s ability to sense and understand the surrounding environment. While
attending to a particular sensory channel does not guarantee perception, attention is required to attain percep-
tion (Wickens et al., 2004), a critical component of level one SA. Humans are able to divide, direct, and select
their attentional capabilities (Wickens and Hollands, 2000). However, human perception is limited and finite
as humans have a bounded quantity of attention to distribute across all items of interest at any given point
in time. These items generally consist of perceiving information from the environment, processing that in-
formation, decision making, and motor control. Human attentional resources are limited by sensory channel
demands; and complex dynamic environments can quickly overload human attentive abilities (Freedman and
Adams, 2007). As a result, humans may selectively sample their sensory channels (Smart, 2005). Humans
typically manage their attentional focus based upon the frequency that percepts must be updated and infor-
mation update rates. Sampling can occur in periodic sequences, but previously acquired information, along
with current goals and plans, may also dictate the flow of attention. Human perception is further constrained
by the limited human ability to parallel process sensor percepts due to sensor modality and working memory
constraints. However, salient features may direct attention and focus their efforts to potentially critical tasks.
As the presence of sampling increases, human SA can improve even as the domain becomes more challeng-
ing (Wickens and Hollands, 2000). Along with goal directed influences, the focus of attention can be shifted
by expertise and ancestral bias (New et al., 2007).

Many domains are dynamic and information importance may change substantially throughout the dura-
tion of a task. Attention must shift and sampling patterns must be altered when these conditions occur in order
to ensure incoming percepts are relevant and beneficial. Memory’s collection of existing percepts may need
to undergo a similar shift. When the applicability of individual percepts and memory items fade, forgetting
can purge obsolete information, reducing cognitive load and shifting the “focus of attention” of mental pro-
cesses. Forgetting provides selective cognitive attention. During the process of forgetting old items, cognitive

processes are effectively directed away from knowledge of minimal importance.

10

11.2.1.2 Explicit Focus

Humans are able to direct their attention, and potentially the sensory channels that attention relies upon,
based on the surrounding environment and the dynamics of present tasks. The ability to rapidly redirect
human attention is critical for level one SA and as a result has an effect on level two and three SA. When
attention is intentionally placed on particular aspects within the environment, the human’s knowledge of those
items may increase while information regarding other items will become stale, and potentially forgotten.
Selective attention can filter extraneous information from the environment, but may also prevent critical
knowledge from being detected and understood. Attention must also be focused on the items critical to the
success of current tasks and goals. Without focused attention, distractors prevent the consistent acquisition
of information critical for the development and maintenance of SA (Smart, 2005). In the extreme; however,
focused attention becomes cognitive tunneling (Wickens and Hollands, 2000), ignoring critical information
to focus on one particular item in the environment. In complex, dynamic environments, numerous objects
within the environment require simultaneous monitoring. The ability to divide attention between these items
is paramount to the development of SA. Affording attention to unnecessary objects can degrade SA. Imperfect
sampling and failed data retrievals may require repeated sampling (Wickens and Hollands, 2000).

Forgetting and directed attention are complimentary processes that provide many of the same benefits to
humans operating within complex domains. A common characteristic of these domains, information overload
hampers SA generation abilities, but selective attention can provide data filters minimizing this knowledge
burden. Forgetting capabilities may allow for the removal of erroneous and unnecessary data passing through

these attentive filters, further minimizing the quantity of unnecessary information.

I1.2.1.3 Short and Long-Term Memory

Humans possess short-term and long-term memory that stores previous experiences and information required
to achieve and maintain SA (Freedman and Adams, 2007). A number of models of short-term and long-
term memory exist, varying between two philosophies, that short-term and long-term memory are separate
and distinct systems and that both forms of memory are two aspects of the same system (Jonides et al.,
2008). Baddeley (1986, 2000) developed one of the most influential multi-store models of human memory,
which describes a collection of model buffers working together to form short-term memory. Interactions be-
tween short-term and long-term memory are coordinated by a central executive module (Jonides et al., 2008).
Unitary-store models of short-term memory, consisting of activated long-term memory representations, may
have originally been proposed by Atkinson and Shiffrin (Jonides et al., 2008; Atkinson and Shiffrin, 1971).
In these models, short-term memory consists of activated long-term memory representations and recently ac-

quired sensory percepts. Representations within long-term memory possess varying activation levels whose

11

strength fluctuates depending on observation frequency and recency. A relationship exists between the acti-
vation strength of a long-term memory concept and that item’s probability of being in short-term memory.
As activation strength increases, so does the chance the item will be activated and included in short-term
memory. A restricted set of the most activated short-term memory items are within the focus of attention and
are directly accessible for cognitive processing (Jonides et al., 2008; Oberauer, 2006).

Short-term memory provides rapid access to information, but is capacity limited. Multi-store models
of memory interpret the capacity limitations of short-term memory as the result of the rate of forgetting
combined with the speed of rehearsal and discovery. Unitary-store models of memory present this limitation
as a limit on the number of items that can be activated from long-term memory at any point in time (Jonides
et al., 2008). Long-term memory can be unreliable, at times failing to recall information or returning incorrect
data (Freedman and Adams, 2007).

Both short-term and long-term memory are critical for the development and maintenance of SA. After
information has been distilled from the environment, it is placed in short-term memory and forms level one
SA. If percepts are rehearsed or repeatedly perceived, their encoding strength and durability will increase,
otherwise they will be forgotten (Jonides et al., 2008). Forgetting induced short-term memory instability and
capacity limitations, are often viewed as negative forces working against human performance (Wickens and
Hollands, 2000), but may serve critical functions in the development and maintenance of SA. Tasks and goals
evolve while objects in the environment change. Forgetting provides a mechanism for removing this old
information; reducing the interference and erroneous memory recalls that prevent rapid recall of contextually
important information.

Procedural information residing in long-term memory, including schemata (Kumar, 1971), mental mod-
els (Minsky, 1974), semantic networks (Sanford and Garrod, 1981), and frames (Minsky, 1974), combine
with level one SA to form a comprehensive understanding of the environment and predictions of the short-
term evolution of that environment (level two and level three SA). While fairly stable, phenomena and facts
represented in long-term memory can evolve, both rapidly and gradually. Forgetting of long-term memory
elements allows adaptation to changing conditions, such as technological improvements, and minimization

of the effects of false beliefs that were previously thought to be true.

I1.2.1.4 Failures

Humans are prone to a number of physical and cognitive errors, mistakes, and failures. To effectively operate
within real world environments, humans need to find means to effectively deal with these failures, non-
optimal decision making, and unintentional events. Failures can result in reduced SA and often are correlated

with inaccurate or insufficient SA (Freedman and Adams, 2007). Even the best, highly trained, professional

12

athletes, humans who have dedicated potentially their entire lives to being able to perform a very small set
of tasks, cannot remove all sources of uncertainty (Davids et al., 1991). Mental ability also suffers the curse
of failure. Forgetting provides a mechanism for erroneous decisions and inaccurate mental constructs to be

removed from memory; increasing the ability to recall vital and correct information.

I1.2.1.5 Goals, Plans, and Their Evolution

In complex dynamic environments, it is quite common to simultaneously maintain multiple goals, which may
or may not conflict at some level. These goals not only evolve over time, but require prioritization based on
their importance to the overall system task. When utilizing a data driven processing method, patterns may
emerge from the environment, dictating whether new goals must be created, existing goals should be changed,
or if priorities require alteration. Conversely, a goal driven methodology will influence how new observations
from the environment are integrated and interpreted.

Goals can be thought of as ideal system states, which are used to select the most appropriate mental model
for a given task. The resultant combination of goals and mental models allows for plans to be generated that
modify the environment to align with key environmental states. If available, scripts may also be used to assist
in the action selection process.

Current goals may be malleable, evolving as a result of performance and interactions with the envi-
ronment. When the environment and current mental models are consistent, correct operation is commonly
assumed, but when differences exist, plans and goals may require modification. Additionally, the relative
importance of goals and plans may shift in an attempt to better align the environment and mental models.
Figure I1.4 graphically describes the relationship between goals, plans, mental models, and SA (Endsley,
1995b).

As goals change, knowledge requirements can similarly transform. Forgetting can provide a means of
removing information that is no longer relevant to current goals and increase the ability to recall new ger-
mane observations from the environment. When switching tasks, humans frequently experience a temporary
performance penalty during the initial portion of new tasks, often labeled “switch-cost” or “restart cost” (All-
port and Wylie, 2000). Altmann described the theory of functional decay, which describes how within-run
slowing can minimize “switch-cost”. Within-run slowing appears as a progressive decrement in performance
during task execution. This reduction in performance results from memory items critical to task completion
becoming progressively more challenging to recall. While task performance declines on the current task, the
acquisition and retention of knowledge required for a subsequent task is improved (Altmann, 2002; Altmann

and Gray, 2002; Altmann and Schunn, 2002; Sims and Gray, 2004).

13

i
l

MENTAL directs selectlon [. E J
MODEL of model L
—f — (IDEAL STATE)
| e GOALS J_

directs change based
on situation model

A [.
match of plan 5 T
o . =
projections to desired P | (PROJECTED STATE) ‘

goals directs selection 250
- PLANS

I
Bouet match of desired plan [L
. gy ‘
bR to existing scripts - (OUTCOME)
- actions devised SCRIPTS
through projection

when no scripts exist -

directs ‘ ‘ ,
et || eomin '
system model projection 2
“p expectations ACTIONS
(SITUATION MODEL)
SITUATION e
AWARENESS to key
] features
'percepllav
ENVIRONMENT

Figure I1.4: Relationship of goals, plans, and mental models to SA (Endsley, 1995b)

14

SA is a complex phenomena comprised of many cognitive and psychological components. While not
a process in and of itself, SA provides a grouping of mental processes enabling humans to operate within
complex and dynamic domains. The majority of SA components are affected by data management issues and
forgetting may provide a means of removing unnecessary and obsolete information. With less data to process,
humans are better equipped to achieve high levels of SA and performance. This section presented several
components of SA and how they benefit from forgetting. Appendix B provides descriptions of additional SA

components.

I1.2.2 Robotic Situational Awareness

Robots are often tasked to operate in the same complex and dynamic domains as humans. SA can assist
robotic systems in many of the ways that humans benefit from the psychological phenomenon. A large body
of work exists that aims to improve the SA of human remote operators that work with robots, but research

aspiring to achieve human levels of SA within robots is difficult to find.

I1.2.2.1 Improving Remote Operator Situational Awareness
Considerable effort in the field of Human-Robot Interaction (HRI) has focused on improving the SA of
humans interacting with robots (Drury et al., 2003; Humphrey and Adams, 2009a; Kaber et al., 2000; Burke
and Murphy, 2004; Scholtz et al., 2005; Sellner et al., 2006; Stubbs et al., 2007; Riley and Endsley, 2005;
Gatsoulis, 2008). In some cases, remote operators directly tele-operate robots to complete tasks and acquire
sensor readings. At other times, humans and robots operate in more of a team fashion, with a human generally
assuming the leadership role.

Across this spectrum of configurations, robots can operate as various levels of autonomy. A number
of taxonomies have been created to identify individual levels of autonomy (Sheridan and Verplank, 1978;
Kaber et al., 2000; Parasuraman et al., 2000). Sheridan and Verplank (1978) developed the ten levels of
autonomy available to a human working with a system. Shown in Table II.2, the taxonomy ranges from
humans assuming complete control at one extreme, to systems possessing full responsibility at the other.
Research has shown; however, that increasing the level of automation in a system may generate mixed results.
In some domains and tasks, operator SA may improve but in others, unintended consequences may result,
including a net loss of SA (Parasuraman et al., 2000; Adams, 2007). A primary cause of lost SA, “out of the
loop” effects may appear if the level of automation is improperly increased. In this condition, the operator
loses awareness of some of the events occurring within the environment as the automated system performs
action selection and execution.

A number of taxonomies for multi-robot systems have been developed. Gerkey and Matari¢ (2003),

15

Table I1.2: Levels of autonomy (Sheridan and Verplank, 1978)
Level Description

=)

The system is fully autonomous and ignores human input.

The system can optionally inform the human.

The system provides information by request.

The system can perform any action but then must inform the human.

The system can perform any action unless the human rejects the action selection.
The system requires approval from the human.

The system provides a single suggested action.

The system provides a small set of options to the human.

The system provides a complete list of possible actions.

The system does not provide assistance.

el

—_— N WAk NN 3

Table I1.3: Types of human-robot teams (Yanco and Drury, 2004)

Type Human Robot
1 Human Robot
2 Human Robot Team
3 Human Robots
4 Human Team Robot
5 Humans Robot
6 Human Team Robot Team
7 Human Team Robots
8 Humans Robot Team

Dudek et al. (2002), and Balch (2002) have generated taxonomies for robot only teams that highlight the dif-
ferences in communication and information requirements between differing configurations of robots. Yanco
and Drury (2004) expanded these ideas to a taxonomy specifically for human-robot teams, see Table II.3.
Drury et al. (2003) analyzed the SA requirements and properties of real-time HRI teams. They found that
HRI tasks have a non-symmetrical property, the requirements for human teammates were not identical to the
robot teammate requirements. They developed a general definition of HRI SA and a five element classifi-
cation system to define the SA requirements of HRI teams, see Table I1.4. The applicability of these HRI
definitions for potential future systems, where robots may assume a greater share of leadership responsibil-
ities is uncertain. In future systems, a greater emphasis on protecting humans from harm will exist, but the
asymmetrical nature of HRI applications may diminish, requiring these definitions to be modified.

A large body of work exists exploring how communication interfaces can be developed to increase the
level of human operator SA (Adams, 2009; Goodrich et al., 2008; Adams and Freedman, 2007; Freedman
and Adams, 2007; Gatsoulis, 2008; Sellner et al., 2006; Murphy et al., 2008; Scholtz et al., 2004; Yanco and

Drury, 2004; Scholtz et al., 2005; Humphrey and Adams, 2009a). Under conditions where operator SA is

16

Table 11.4: Definitions of HRI SA forms (Drury et al., 2003)

Name

Definition

HRI Awareness
(General Case)

Human-Robot
Awareness

Human-Human
Awareness
Robot-Human
Awareness

Robot-Robot

“Given n humans and m robots working together on a synchronous task, HRI
awareness consists of five components:”

“The understanding that the humans have of the locations, identities,
activities, status, and surroundings of the robots. Further, the understanding of
the certainty with which humans know the aforementioned information.”

“The understanding that the humans have of the locations, identities, and
activities of their fellow human collaborators.”

“The robots’ knowledge of the humans’ commands needed to direct activities
and any human-delineated constraints that may require command
noncompliance or a modified course of action.”

“The knowledge that the robots have of the commands given to them, if any,

Awareness by other robots, the tactical plans of the other robots, and the robot-to-robot
coordination necessary to dynamically reallocate tasks among robots if

necessary.”

Humans’ Overall “The humans’ understanding of the overall goals of the joint human-robot
Mission Awareness activities and the measurement of the moment-by-moment progress obtained
against the goals.”

commonly explored, two primary forms of HRI exist, remote interaction and proximate interaction (Goodrich
and Schultz, 2007). Under remote conditions, operators are not co-located with the robots and all interaction
occurs through a computer interface. Examples for modifying a graphical user interface to support SA during
remote interaction include the exploration into novel compass visualizations (Humphrey and Adams, 2008)
and the creation of guidelines governing interface design (Scholtz et al., 2004). Research aiming to improve
human operator SA during proximate interactions, when the human and robot(s) are co-located, includes the
creation of specific roles for human operators to assume (Murphy et al., 2008; Scholtz et al., 2005; Goodrich
and Schultz, 2007) and providing robots with anticipatory capabilities to improve team efficiency (Hoffman

and Breazeal, 2007).

I1.2.2.2 TImproving Robotic Situational Awareness

While considerable work and progress has been made towards improving human SA when operating within
human-robot teams, a far smaller body of work exists directly attempting to increase the level of SA pos-
sessed by robots. To some extent; however, a large portion of robotics research has indirectly worked towards
the development of human level SA. Improved hardware-based sensors allow for increased accuracy of per-

ception, including the minimization of missed data located within the environment. Mapping and navigation

17

algorithms, such as Simultaneous Localization And Mapping (Smith et al., 1990), FastSLAM (Thrun et al.,
2004), and Markov localization (Fox et al., 1999), allow robots to operate within complex, dynamic en-
vironments, sometimes with no a priori information. Using these algorithms, robots can maintain a sense
of localization and simultaneously develop a comprehensive map of their surroundings. Research has been
conducted to allow robots to gauge and estimate the psychological and emotional state of humans located
within close proximity (Mower et al., 2007; Breazeal et al., 2009). Even research not inherently associated
with robotics, such as machine vision (Davies, 2004) and natural language processing (Manning and Schiitze,
1999), has increased the ability for robots to develop SA. This body of work is gradually advancing the SA
capabilities of robots from a bottom-up perspective.

The body of robotics research aiming to explicitly achieve human levels of robot SA from top-down or
holistic approaches is scarce. Gatsoulis and Virk (2006) suggested taking a holistic approach to improving
performance within the Urban Search and Rescue domain by improving the SA of both humans and robots.
By increasing the level of SA within human operators and within the controlled robots, the SA of the entire
system may be improved, resulting in increased performance. In their presented work, only efforts to under-
stand, measure, and improve operator SA were presented. The desire to improve the SA of robots operating
within the Urban Search and Rescue domain has been reiterated in the future work section of Gatsoulis’s PhD
thesis (Gatsoulis, 2008).

Lison et al. (2010) recently crafted the ability for robots employing the CoSy Cognitive Architecture,
see Section 11.3.2 for a full review, to create and maintain rich probabilistic multi-modal belief models from
low-level sensory information. These hierarchical structures are founded on Markov Logic (Richardson and

Domingos, 2006) and allow for comprehensive situated reasoning.

II.3 Cognitive Architectures

Contemporary designs for intelligent robots often utilize cognitive architectures. Considerable work has
been completed towards the realization of cognitive agents (McCarthy, 1959; Cox, 2005; McCarthy et al.,
2002; Cox, 2007), but current systems have not come close to achieving human-level Artificial Intelligence
(AI) (McCarthy et al., 2002). The vast majority of current Al systems use only a limited number of algorithms
and representations, normally only one (McCarthy et al., 2002), but a symbiotic relationship of multiple,
and possibly many, different representations and algorithmic approaches may need to be formed (Minsky,
1992). The Causality Matrix, see Figure IL.5, is an initial attempt to categorize classes of algorithms and
determine how they can be combined (Minsky, 1992). To achieve human-level Al, different algorithms and
representations will need to be assimilated into one coherent and diverse system (McCarthy et al., 2002;

Cassimatis et al., 2006), plus the system must be capable of seamlessly transitioning between algorithmic

18

processes while still enabling parallel processing (Singh and Minsky, 2003).

Few «—— Numbers of Causes —> Many
small /Easy Linear, Connectionist D
I Statistical Neural Network
Fuzzy Logic
Traditipnal
Compuiting
Scale | ordinary Classical Analogy Based
of Qualitative Al Reasoning
Effect| Reasoning
ociety
Symbolic [Mind
Logical Case Based
Reasoning Reasoning Intractable
Large _ / A
Find Better
Representation!

Figure I1.5: The Causality Matrix (Minsky et al., 2004)

Robots capable of generating human levels of SA within complex, dynamic domains will require diverse
cognitive and physical capabilities. Forgetting may increase robotic capabilities by improving the effec-
tiveness and efficiency of many of the cognitive processes required for robotic SA generation. Cognitive
architectures provide principled means for enabling forgetting to aid these processes. This section presents
a number of existing cognitive architectures designed for domains ranging from mobile robotics to human
performance modeling. Many of the presented architectures incorporate forgetting mechanisms or have pre-
viously been incorporated into robotic systems. Several presented cognitive architectures do not inherently
incorporate forgetting mechanisms, but allow for their introduction. Cognitive architectures along with for-
getting mechanisms may allow robots to complete complex mental operations, minimize unnecessary data,

and increase SA.

I1.3.1 The Minsky-Sloman Architecture

Two potential architectures that can allow agents to easily switch between “ways to think” (Minsky, 2006) are
the Human-CognitionAffect (H-CogAff) architecture (Sloman, 2001, 2003), see Figure I1.6, and the Model
Six architecture (Minsky, 2006; Singh, 2005), see Figure 11.7. These frameworks share many components in
common and are sometimes collectively referred to as the Minsky-Sloman model (Minsky et al., 2004). These

hierarchical architectures are flexible in that the number, type, and format of cognitive processes are allowed

19

perception META-MANAGEMENT action
(reflective) Personae
processes :

SO AN
T A
A N term
! e memory
DELIBERATIVE PROCESSES
- (Planning, deciding, -
‘What if reasoning) ~q=
Motive
activation
Variable
threshold
attention

vV """ 3
filter —

THE ENVIRONMENT

Figure I1.6: The H-CogAff Architecture (Sloman, 2001)

to vary across implementations. Processes can be executed in parallel and hierarchical level boundaries are
not absolute. The reactive layer represents processes that immediately form responses to sensed values.
Deliberative processes examine multiple responses to input and determine the most appropriate action. The
meta-management layer of the H-CogAff architecture represents similar processes to the top three levels of
the Model Six architecture. Meta-management processes provide various forms of metacognition through
controlling, monitoring, and evaluating self (McCarthy et al., 2002). Forgetting mechanisms are not inherent
to these architectures, but can be incorporated into individual instances.

The EM-ONE architecture for reflective commonsense reasoning provides an initial implementation of
the Model Six architecture (Singh, 2005). Realizing the lower three levels of the Model Six architecture, EM-
ONE provides commonsense reasoning capabilities and the benefits of Minsky’s critic-selector model (Min-
sky, 2006). EM-ONE incorporates ideas from the H-CogAff architecture and has been used to control two

simulated robots working cooperatively on physical manipulation and social interaction tasks (Singh, 2005).

I1.3.2 CoSy Architecture Schema

The Cognitive Systems for Cognitive Assistants (CoSy) Architecture Schema, is a modular schema designed
to allow for the creation of agents capable of parallel modular processing, metacognition, and structured data
management. Each loosely coupled module, see Figure IL.8, is referred to as a subarchitecture and generally
works within one realm of reasoning, visual, spatial, etc. Subarchitectures consist of four separate types of

components. Unmanaged processes are generally light weight and run continuously. Working memory stores

20

Values, Censors, Ideals, and Taboos

NN XN

Self-Conscious Reflection
(Self-Reerctive Thinking)
(Reflective Thinking)
(Deliberative Thinking)
(Learned Reactions)

Instinctive Reactions

A AKX

Innate, Instinctive Urges and Drives

Figure I1.7: The Model Six Architecture (Recreated from (McCarthy et al., 2002))

data derived from the unmanaged components and is writable by any component within the module, but
read-only to the rest of the system. However, some privileged components may exist that can modify other
modules’ working memory. Managed processes, which generally perform expensive calculations, monitor
working memory for relevant changes. When these changes are detected, the managed processes determine
what actions should be completed. Permission is required from the task manager before a managed compo-
nent can begin any new processing. Cognitive Systems for Cognitive Assistants Architecture Schema agents
require a subarchitecture designed to perform coordination and another to bind symbols. Binding enables
high-level inter-module communication. The schema does not inherently incorporate many of the capabili-
ties present in other cognitive architectures that directly model human cognition (such as forgetting), but it
does allow for their inclusion through the development of appropriate subarchitectures (Hawes et al., 2006,
2007). This schema has been incorporated into robotic systems capable of human-robot interaction, com-
pleting physical manipulation tasks, and exploratory behavior (Hawes et al., 2010, 2009, 2007; Jacobsson
et al., 2008; Kruijff et al., 2007). The ability for these robots to generate and maintain rich belief models has
recently been crafted (Lison et al., 2010). These models are spatio-temporally framed structures incorporat-
ing epistemic information and utilize Markov Logic (Richardson and Domingos, 2006). Similar to systems
designed for commonsense reasoning (Mueller, 2006), this addition allows for reasoning over situationally

dependent information.

I1.3.3 Polyscheme
Polyscheme (Cassimatis, 2002; Cassimatis et al., 2007) is a flexible hybrid cognitive architecture designed to

tightly integrate diverse arrays of knowledge representations and inference schemes. Five central principles,

21

..... Push — 3
[Trask 1 Pull
Manager
C._.—. -
> | i
7T >
/ H :
Input/Output 3 ; : Waiking
P Memory
> =< :
! Managed
i Processing P ;
i Components LI TT-
Unmanaged
_ 1 Processing :
Input *~_Components
S O s

Figure I1.8: The CoSy Architecture Schema Subarchitecture (Sridharan et al., 2007)

1. Algorithms and representations have niches

2. Frequent communication between components is critical
3. Focus of attention must be carefully guided and singular
4. The Common Function Principle

5. The Multiple Implementation Principle

Figure I1.9: Guiding principles of Polyscheme (Cassimatis, 2002)

shown in Figure I1.9, have guided the development of Polyscheme (Cassimatis, 2002, 2006). Polyscheme is
composed of three components, a set of specialists, an attention buffer, and a focus manager. Specialists im-
plement inference schemes, and except for supporting a communications protocol, their design is unrestricted.
Specialists reason over and communicate with knowledge chunks called propositions. The attention buffer
stores a queue of these propositions, which have been requested for focus by specialists. The focus man-
ager selects propositions and forces each specialist to perform inferences on them (Cassimatis et al., 2007).
With this design, specialists are able to utilize different algorithms and representations, but stay abreast of
knowledge changes within the system. Polyscheme’s goal is to form a commonsense substrate, a means of
simplifying the realization of complex AI problems by providing a common base architecture capable of
supporting a diverse array of domains (Cassimatis, 2002). A review of available literature did not reveal any
experiments directly relating Polyscheme to beneficial forgetting capabilities.

Polyscheme provides a systematic means for integrating different forms of inference and knowledge

representations. Through focusing, knowledge can be shared across data representations. Polyscheme’s fo-

22

cus manager is domain independent and different attention fixation strategies can be utilized to modify and
control the operations of specialists (Cassimatis et al., 2007), making the architecture flexible and applica-
ble to numerous domains requiring complex cognitive ability. In a demonstration of the ease of adapting
Polyscheme to different domains, the original implementation, which was concerned with physical reason-
ing, was converted into a natural language syntactic parser (Cassimatis, 2006). Polyscheme has also been
used in human-robot interaction and heterogeneous information retrieval applications. Real robot hardware
experiments have been completed using Polyscheme (Cassimatis et al., 2007), including NASA’s Robonaut

humanoid robot (Sofge et al., 2004; Ambrose et al., 2000).

I1.3.4 ICARUS

ICARUS (Choi et al., 2004; Langley and Choi, 2006) is a cognitive architecture aiming to realize qualitative
aspects of human behavior. Several concepts regarding human behavior that originated in the field of psy-
chology have influenced the design of ICARUS. These include, the use of means-ends analysis to solve unfa-
miliar problems, mental problem solving combined with execution to complete challenges within a physical
context, skill generation resulting from the solving of novel challenges, and converting backward-chaining
search into a forward-chaining process through learning (Langley and Choi, 2006). ICARUS utilizes two
forms of knowledge, concepts and skills. Concepts represent forms of environmental situations built from
lower level concepts and percepts. Skills describe how goals can be decomposed into subgoals. Long term
memory possesses a hierarchical structure of skills. Concepts utilize relations between perceptions, while
skills are composed of relations between actions. Skills incorporate goal conditions, requisite preconditions,
and continuation conditions (Langley et al., 2009). Recently, episodic memory capabilities have been added
to ICARUS (Stracuzzi et al., 2009).

ICARUS follows a recognize-act paradigm. First, a perceptual buffer is populated with percepts of objects
perceived within the environment (Langley et al., 2009). These environmental percepts include a type, name,
and attribute pairs that describe the object in the environment being represented by the percept (Langley
and Choi, 2006). Low-level concepts are then compared against these percepts and matches are transfered
to short-term memory in the form of beliefs. Higher level concepts may be relevant to the newly created
beliefs, resulting in a cyclical belief creation pattern (Langley et al., 2009) Categories within ICARUS are
represented in a boolean fashion, preventing fuzzy classification (Langley and Choi, 2006). Starting from
the agent’s top-level goal, a search through its skill hierarchy is taken with paths containing skills possessing
fulfilled preconditions, but unsatisfied goals. Once a primitive skill is reached that possesses actions available
for direct execution, the search is terminated and the actions are taken. When the search fails to find primitive

actions to execute, the agent begins problem solving, which uses backward chaining to achieve goals and

23

generate new skills (Langley et al., 2009).

ICARUS has been used in domains requiring inference, action execution, problem solving, and learning.
Some of these domains include logic problems (Tower of Hanoi, Multi-column subtraction, FreeCell, and
logistics), control of synthetic characters (Langley et al., 2009), and in-city driving (Langley and Choi, 2006).

Currently, the feasibility of using ICARUS to control robots is being explored (Langley et al., 2009).

I1.3.5 ACT-R

Adaptive Control of Thought - Rational (ACT-R) (Anderson et al., 2004; Anderson and Lebiere, 1998) is a
cognitive architecture designed to model human behavior. The architecture is composed of a collection of
modules, each representing a different type of knowledge and functionality. These modules include sensor
processing modules, motor modules, an intentional module representing system goals, and a declarative
module that stores long-term declarative knowledge. Each module has a buffer that acts like short-term
memory, holding a single unit of relational declarative knowledge, frequently referred to as a chunk. Long-
term memory in ACT-R consists of a collection of production rules used to coordinate module processing.
When long-term memory productions match chunks in short-term memory, module buffers may be modified,
new structures may be constructed in memory, and actions within modules may be taken (Anderson et al.,
2004).

Production matching within ACT-R is founded on an activation level approach. Chunks in memory
compete for selection by productions based on an activation level set by equations II.1 and II.2. These
equations calculate the activation of a chunk based on a base activation (B;) and the chunk’s relevance to
the current context. W;, source activation, represents attention directed to portions of the current goal and
Si, strength of association, represents the frequency that a chunk was required when element j was part of a
current goal. € and & represent permanent and transient noise, respectively. The base level activation (B;) is
calculated by combining an initial expected base level activation value () with a logarithmic function based

on the retrieval times of a chunk (Anderson and Lebiere, 1998).

A; :Bi+Z(Wiji)+€1 +& (IL1)
7
Bi=B+In(Y 19 (11.2)
k=1
_ 1 1.3
P e AimT)fs (IL.3)

24

T;=Fe ™ (IL4)

Chunk selection is not a deterministic process. After chunk activation levels have been updated, two
equations are used to select a chunk for activation and determine the latency before the chunk becomes
activated. Equation I1.3 calculates the probability that a chunk’s activation level will exceed a preset threshold
value (7). T acts as a minimum threshold value for an item’s activation level, while s provides noise to the
system. When the activation of multiple chunks exceeds 7, the final chunk is selected probabilistically. A
retrieval latency, defined by equation I1.4, delays the activation of the selected chunk. F provides a scaling
factor to match units to real time (Taatgen et al., 2006).

ACT-R inherently incorporates the concept of forgetting. Equation II.2, which calculates a chunk’s current
base activation level, implements trace-decay (time-based forgetting) and derivatives of the function have
been used to model trace-decay by other architectures and models (Nuxoll et al., 2004; Schooler and Hertwig,
2005). The presence of the summation term in equation II.1 results in the ACT-R model possessing similarity-
based interference (see Section I1.4 for a description of the different types of interference that may lead to
forgetting). Similarity-based interference, interference resulting from the presence of items with similar
properties, results from the strength of association terms, S; ;, whose values are dependent on the number
of chunks associated with components of the current goal and the total number of chunks in declarative
memory. As the number of similar chunks increases, the strength of association decreases, resulting in
increased interference. The combination of base level activations and encoding interference enables ACT-R
to directly model the psychological notion of “fan-out” (Anderson and Lebiere, 1998).

ACT-R is capable of both structural and statistical learning. Base activation levels for chunks evolve
through the operation of the ACT-R system. Frequently selecting a chunk will increase its base level ac-
tivation, while ignoring a chunk will cause its activation level to fade. Through a process of production
compilation, new productions can be generated. New productions are generated based on the firing of exist-
ing productions and variable replacement (Langley et al., 2009).

ACT-R has been used across a wide variety of domains within experimental psychology. Phenomena
that have been explored using ACT-R include memory, attention, reasoning, problem solving, and language
processing (Langley et al., 2009). ACT-R has also been used to explore if forgetting is beneficial to heuris-
tics (Schooler and Hertwig, 2005) and to model individual differences (Daily et al., 2001). A number of
robotic applications have been developed using ACT-R. Burghart et al. (2006) incorporated ACT-R into a

robotic system that solves jigsaw puzzles with the assistance of a human tutor. ACT-R/S (Harrison and

25

Schunn, 2003; Harrison, 2007), an extended version of ACT-R that incorporates two spatial buffers (config-
ural and manipulative), has been incorporated into NASA’s Robonaut project (Sofge et al., 2004). Another
extension of ACT-R, ACT-R/Embodied (ACT-R/E) (Trafton et al., 2008), combines visual and auditory data

to enable robots to track conversations within human-robot interaction domains.

I1.3.6 Soar

Soar (Lehman et al., 2006)'is a cognitive architecture originating in the 1980’s that aims to model high-level
aspects of human cognition (Laird, 2008). Two fundamental assumptions have guided Soar’s development,
that humans are complex knowledge systems that rationally utilize knowledge, and that human cognition
primarily operates at the symbolic level (Johnson, 1997). Soar possesses three forms of long-term memory:
procedural, semantic, and episodic knowledge (Nuxoll and Laird, 2007; Laird, 2008). Procedural memory is
composed of operators that describe primitive and high level domain specific actions. Operators can propose
actions both internal and external to an agent. Working memory within Soar contains declarative knowledge
and is the only form of memory that can be matched by procedural knowledge (Johnson, 1997).

Tasks in Soar are formed around the achievement of goals. Goals are stored on a stack and can possess
subgoals to form a hierarchical structure. The processing cycle within Soar consists of three steps, propose
operators, select an operator, and apply the selected operator. During the process of selecting operators that
have been suggested by procedural memory, if multiple operators have the same preference or if no operators
have been proposed, then an impasse is instigated (Langley et al., 2009). During an impasse, a new goal
aiming to solve the impasse is created and is added to the agent’s goal stack (Johnson, 1997). When a new
goal is added to the stack, a new state is generated, which inherits the properties of the parent state (Langley
et al., 2009). Operators are able to modify parent states, both directly and indirectly through external actions.
When a goal is achieved, the goal is removed from the stack and the substate is discarded (Laird, 2006).

The original design for Soar did not incorporate forgetting, but it has subsequently been added (Chong,
2003). Chong’s implementation of forgetting borrowed the activation equation from ACT-R, see equa-
tions II.1 and II.2. The spreading activation term in equation II.1 and the permanent noise term were not
used. The summation term was not included in this implementation because Soar did not possess any sub-
symbolic associative links. Equation II.5 defines the value for the transient noise term, where ans represents
the variance of the distribution used to model the noise within the system. The decay implementation in Soar
was then extend by Nuxoll et al. (2004). Extensions to Chong’s implementation included improved efficiency

of the decay features, extending decay functionality to the entirety of working memory, and applying acti-

I'Soar originally stood for State, Operator, And Result, but the name is no longer considered to be an acronym. Additionally, Soar is
no longer written in all capital letters to reflect Soar’s transition to a proper name (Ritter and Kim, 2006).

26

vation differently to both forms of working memory present within Soar. Additionally, a change was made
that diverges from the original ACT-R implementation. Instead of setting the initial base activation of a new
working memory item to a fixed value, the item’s initial activation level is dependent on the activation levels
of the working memory elements that caused the item to be created.

& = ans xlog [(I.O—p)/p]
p =rand[0.0,1.0] (IL5)

Soar is capable of procedural, episodic, and semantic learning. Procedural learning occurs via two pro-
cesses, chunking and reinforcement learning. When subgoals are completed, chunking can be used to abstract
the processing that resulted in the goal being completed. This abstraction is then converted into a new pro-
duction rule. Reinforcement learning adjusts the operator selection process by modifying operator preference
levels. Semantic memory is bolstered through the accumulation of portions of working memory for later use,
while episodic learning records copies of working memory at different points in time (Langley et al., 2009).

A diverse array of domains have been explored with the Soar architecture (Langley et al., 2009). Software
agents using Soar have been developed to compete in the First Person Shooter style computer games Quake
2 (Laird, 2001), Unreal Tournament (Magerko et al., 2004), Quake 3, and Descent 3 (Wintermute et al.,
2007). Soar has also been used to model military pilots participating in air combat training exercises (Tambe
et al., 1995). Human language processing (Lewis, 1993) and categorization (Miller and Laird, 1996) have
also been explored with the Soar cognitive architecture. Soar has previously been employed by robotic
systems. Sultanik et al. (2008) developed a system where Soar controlled mobile robots performing team-
based surveillance. These robots interacted with human operators through a Personal Digital Assistant (PDA)
based interface. Hanford et al. (2008) developed a six-legged hexapod robot that used Soar to complete

navigation and obstacle avoidance tasks.

11.3.7 CLARION

Connectionist Learning with Adaptive Rule Induction ON-line (CLARION) (Sun, 2003) is a fixed-hybrid
cognitive architecture composed of four distinct subsystems, the Action-Centered Subsystem, the Non-
Action-Centered Subsystem, the Motivational Subsystem, and the Metacognitive Subsystem, see Figure II.10.
The Action-Centered Subsystem performs both physical and mental action control, while the Non-Action-
Centered Subsystem maintains non-action centric knowledge. Motivational decision support is provided by
the Motivational Subsystem. The Metacognitive Subsystem monitors, directs, and alters the actions of the
other subsystems. All subsystems provide both implicit and explicit forms of knowledge representation. Im-

plicit knowledge resides in the “bottom” level of each subsystem and consists of sub-symbolic reasoning

27

Action-Centered

Subsystem Non-Action-Centered Subsystem

action—centered non-action—centered

explicit representation explicit representation

action—centered implicit non—action—centered —_—

I— representsation implicit representation
—

A A
1 1

i n i n J
| reinforcement }—

goal structure
|

l goal setting I

. filtering
drives selection
regulation
Motivational Subsystem Metacognitive Subsystem

Figure I1.10: The CLARION Cognitive Architecture (Adapted from (Sun et al., 2006))

utilizing neural networks. “Top” level reasoning provides symbolic processing through rule-based compo-
nents (Sun et al., 2006). All four subsystems can perform bidirectional learning; top-down and bottom-
up (Sun, 2006).

CLARION directly incorporates forgetting mechanisms into the Non-Action-Centered and Action-Centered
subsystems. Symbolic knowledge within both subsystems is composed of a collection of chunks and asso-
ciated rules, each of which can undergo forgetting. Within the Non-Action-Centered Subsystem, forgetting
occurs by two separate processes. The first involves a time dependent base level activation (i.e., decay) similar
to ACT-R, see Section I1.3.5. Defined by equation II.6, base level activation within the Non-Action-Centered
Subsystem affects the selection of chunks and associative rules. If a base level activation drops below a
threshold value, the item is filtered. Rules and chunks can also be forgotten using a frequency threshold.
CLARION calculates the frequency that chunks and rules are invocated (encoding, re-encoding, extraction,
re-extraction, and activation) and if the invocation frequency for an item drops below some threshold, the item
is removed. When chunks are removed from the system, associative rules connected to the chunk are also re-
moved. The Action-Centered Subsystem utilizes the same forgetting mechanisms except that items within the

Action-Centered Subsystem’s capacity-limited working memory can also have chunks deliberatively added

28

and removed (Sun, 2003).

n
Bj=iBj+cy ;¢ (IL6)
=1

CLARION explicitly provides metacognitive capabilities through its subsystems. While one subsection
has been labeled the metacognition subsection, metacognitive capabilities are also provided via the motiva-
tional subsystem. The action-centered subsystem can also assist in realizing metacognition, but does not have
direct architectural support (Sun, 2003; Sun et al., 2006).

CLARION’s metacognitive subsystems utilize a diverse array of status information in determining how
to modify the system. All modules within the metacognitive subsystem have access to the system’s state,
goal structure, and state of the systems drives. Through the goal setting module, the CLARION architecture
is capable of generating new goals that should be pursued. The evaluation module processes the above inputs
into a reinforcement reward to be used for learning. Filtering, selection, and regulation are also possible
within the metacognitive subsystem. Through its reasoning, the metacognitive subsystem is able to modify
many of the system’s properties. Reasoning and data processing provided by CLARION’s motivational
subsystem also promotes metacognition. Via generating drive strengths for an agent, this subsystem indirectly
determines the importance of goals at any point in time.

CLARION has previously been used to simulate a number of cognitive tasks, including serial reaction
time, artificial grammar learning, process control, alphabetical arithmetic, Tower of Hanoi (Sun, 2002),
minefield navigation (Sun and Peterson, 1998; Sun et al., 2001), and social simulation (Naveh and Sun,
2006). The cognitive architecture has been used to explore the interactions between rule-based reasoning,
similarity-based reasoning, and associative memory (Sun et al., 2006) and also investigate the phenomenon
of performance degradation under pressure (Wilson et al., 2009). Additionally, CLARION models have been
employed to probe the relationship between the dichotomies of implicit versus explicit knowledge and proce-
dural versus declarative knowledge (Sun et al., 2009). A review of the available literature did not reveal any

experiments involving real robots using the CLARION architecture.

I1.3.8 COGNET

COGnition as a NEtwork of Tasks (COGNET) (Harper and Zacharias, 2004; Zachary and Mentec, 2000;
Zachary et al., 2005) is a real-time multi-tasking cognitive architecture designed to produce agents for in-
telligent training, decision-support, and human performance modeling. As shown in Figure II.11, COGNET
consists of four main components: cognition, perception, and action subsystems along with a memory store.

All three subsystems operate in parallel and the cognitive and perceptual subsystems can access the memory

29

The Outside World (External context)
Visual & auditory cues Physical & verbal actions

Perception Motor Action
Resources
Cognitive
Proprioception
i §
Long-Term Metacognitive
Working Memory Memory

Cognition
Metacognition

Figure II.11: The COGNET Cognitive Architecture (Zachary et al., 2005)

store independently. Sets of resources exist within the perception and motor subsystems to afford timing and
accuracy simulations with the outside world. Metacognition support has been incorporated into the original
design, adding a cognitive proprioception component, additions to the memory store, and metacognitive rea-
soning within the cognitive subsystem. For purposes of simplifying models within the COGNET architecture,
the memory store operates as a long term memory structure (Zachary et al., 2005).

COGNET maintains five separate forms of knowledge: declarative, procedural, action, perceptual, and
metacognitive (Zachary et al., 2005). Declarative knowledge utilizes a blackboard representation that can
be modified by both the cognitive and perceptual subsystems (Zachary et al., 1998). Guiding the opera-
tions of the cognitive subsystem, modifying declarative memory, and selecting actions for the motor subsys-
tem (Zachary et al., 2005), procedural knowledge utilizes a chunking mechanism based on Goals, Operators,
Methods, and Selection Rules (GOMS) (Zachary et al., 1998). Action knowledge instructs the motor sub-
system how to interact with the outside world. Rule-based perceptual knowledge consists of the form, IF
event Then POST updated data to memory store (Zachary et al., 1998). Metacognitive knowledge is utilized
by the cognitive subsystem and is GOMS based (Zachary et al., 2005). Metacognitive memory stores in-
formation relevant to the system, which simple GOMS style knowledge chunks can use to modify system
operation. The cognitive subsystem processes procedural and metacognitive rules in an identical fashion,
simplifying development. Metacognition can be utilized to improve how the system restarts interrupted pro-
cesses. COGNET has been designed to easily transition from a cognitive task analysis of a highly structured
domain to a working system.

A forgetting mechanism has been incorporated into the COGNET architecture (Zachary et al., 2004).

The forgetting capabilities were modeled after the Human Operator Simulator work of Glenn et al. (1992)

30

and Lane et al. (1981). Trace-decay and rehearsal effects (see Section I1.4.1) were combined with proactive
interference (see Section I1.4.2) to model human learning performance. Only elements located within a
COGNET model’s short-term memory can be forgotten by these mechanisms. Contradictory information can
be deliberatively removed from both short-term and long-term memory (Zachary et al., 2004).

COGNET has been used to construct models of real-time human-computer interaction in multi-tasking
environments (Zachary et al., 1998). Attention-switching has been explored in vehicle tracking (Ryder and
Zachary, 1991), and COGNET models have been used to create improved computer interfaces (Zachary
et al., 1992) for en-route air traffic control (Seamster et al., 1993) and telephone operator services (Ryder
et al., 1998). The Australian air traffic control curriculum has been redesigned with results from a COGNET
air traffic control model (Australian Civil Aviation Authority, 1994). COGNET has been incorporated into
the Operational driven development approach for Cognitive Systems (Reichel et al., 2008) cognitive agent
system. This system allows a remote operator to direct teams of unmanned aerial vehicles operating within

military domains.

Robots operating in dynamic domains and assigned complex tasks may require a large collection of skills,
knowledge, and capabilities. The use of a cognitive architecture may be required for designs to effectively
incorporate forgetting into a system capable of parallel and diverse processing capabilities. Existing cognitive
architectures span a wide range of design paradigms and have been tested across a diverse sampling of
experimental domains. Distilling the critical features of each may lead to a better understanding of the

requirements for synthetic forgetting and its applicability to robotic domains.

II.4 Forgetting
Robots and humans operating within complex, dynamic domains are often inundated with data and forget-
ting can play a critical role in the ability to achieve and maintain SA. Forgetting information can remove
out-of-date information, increase the ease of recalling critical knowledge, and improve cognitive processing
efficiency. Robotic systems that aim to realize human levels of SA may require the beneficial, but intricate
effects of forgetting.

A long standing debate has raged regarding the form and mechanics of human forgetting (Roediger 111,
2008). Two prominent theories exist, time-based decay and similarity-based interference, which appear to
stand in stark contrast to one another (Jonides et al., 2008). The first, subscribes to the belief that the passage

of time directly degrades items within memory, while the later postulates that accumulation of inter-item

31

interference prevents items from being successfully recalled. Numerous models of each theory have been
developed that appear to accurately model empirical evidence, but the developed analyses and their models
have also sparked controversy (Jonides et al., 2008; Mueller and Krawitz, 2009; Altmann and Schunn, 2002;
Sims and Gray, 2004; Wixted, 2004). The complexity of psychological testing of humans has driven a serious
debate over the possibility of diverse arrays of confounds that can cloud the interpretations of results (Jonides
et al., 2008; Oberauer, 2006; Nairne, 2002; Wixted, 2004). Further complicating matters, it has been postu-
lated that some psychologists have misread and misinterpreted previous findings, resulting in the dismissal of
valid ideas and the reluctance to accept new theories (Wixted, 2004; Altmann and Schunn, 2002).

These debates are further heightened by the multiple forms of human memory, which can be partitioned
into two major categories (Tulving, 1990). Procedural memory is highly stable, non-symbolic knowledge
without a truth value, forming stimulus-response pairings. Conversely, declarative memory is “knowledge
that can be introspectively reasoned over without any overt behavioral response” (Tulving, 1990). Declarative
memory groups two separate, but parallel memory types, episodic memory and semantic memory (Tulving,
1984). Episodic memory maintains a collection of individual episodes and events, including temporal-spatial
relations. Semantic memory is a non-instance based memory involving “the acquisition, retention, and uti-
lization of skills and knowledge that have to do with the world” (Tulving, 1984). Some models and analyses
of forgetting are strongly dependent on a particular form of memory. Altmann and Gray (2002) stated that
their functional decay model relies heavily on episodic memory representations, although Sims and Gray
(2004) questioned this dependence.

Item representation, which may be influenced by types of memory, adds additional uncertainty regarding
the nature of forgetting. Presently, at least two forms of storage have been considered within short-term
memory, whole item storage and the binding of features (Jonides et al., 2008). Models of both trace-based
decay and interference-based forgetting have been developed utilizing both short-term storage approaches.

It has been posited that working memory operates on a number of levels, implying different item recall
difficulties (Jonides et al., 2008). The Oberauer model (Oberauer, 2006) presents three levels of focus, “the
activated part of long-term memory”, “the region of direct access”, and “the focus of attention”. The first
represents activated long-term memory currently residing in working memory. The second represents highly
activated items that can be directly accessed, while the third represents the item currently under focus. At the
lower level, items may have only a small probability of being recalled, but they will provide structured noise,
facilitating the forgetting process (Jonides et al., 2008).

Recall and reperception can affect the ability to recall items from memory. The spacing effect (Melton,
1967; Dempster, 1988; Pavlik Jr. and Anderson, 2005; Callan and Schweighofer, 2010) is the psychological

phenomena where spaced repetition of reperception results in greater recall ability than repeatedly observing

32

an item within a short period of time. While one of the most reproducible phenomenon in experimental psy-
chology (Dempster, 1988), a complete understanding is still lacking. Extensive work has been completed ex-
ploring the spacing effect and a number of theories have been crafted (Pavlik Jr. and Anderson, 2005; Cepeda
et al., 2006; Callan and Schweighofer, 2010). The deficient-processing theory states repeated presentation of
an item induces a feeling of knowing (Zechmeister and Shaughnessy, 1980), resulting in reduced maintenance
via rehearsal. When presentations are further spaced apart, the item will often no longer be in working mem-
ory and the sense of knowledge is reduced, resulting in greater rehearsal being performed (Rundus, 1971;
Cuddy and Jacoby, 1982; Callan and Schweighofer, 2010). The encoding variability theory or contextual
fluctuation theory (Estes, 1955; Melton, 1967; Landauer, 1969; Glenberg, 1979; Raaijmakers, 2003; Callan
and Schweighofer, 2010) posits that when items are perceived in a spaced fashion, an increasingly diverse set
of associations to existing knowledge forms along with the item’s associated context becoming more diverse,

aiding subsequent cue-based retrieval.

I1.4.1 Time-based Decay

Time-based decay is the intuitive concept that items within short-term memory deteriorate and eventually
disappear due to the effects of time (Jonides et al., 2008). At perception, items are encoded in memory at a
particular activation level, dictating ease of retrieval. As time passes, this activation level decreases, increas-
ing the difficulty of item retrieval. To combat these effects, the memory system performs a refreshing strategy
called rehearsal (Nairne, 2002). During this process, memory items are recalled in order to strengthening their
activation levels (Nairne, 2002). As shown in Figure II.12, the activation level of a memory item may un-
dergo three stages (Altmann, 2002). Strengthening involves memory rapidly recalling the item to boost its
activation level. The middle stage, Use, involves recalling a memory item to complete a task. During this
period, recall provides a boost to the item’s activation level, but not at a rate to fully counteract decay. In the
final stage, Disuse, the item is no longer used and the activation slowly decays.

In 1885, Ebbinghaus (1885) presented the original forgetting curve, a logarithmic function, which can
be estimated with a power function (Wixted and Carpenter, 2007), that predicts trace-decay (Roediger III,
2008). A commonly used equation for modeling time-based decay, Equation II.2, can be found in the ACT-R
cognitive architecture (Anderson and Lebiere, 1998), see Section I1.3.5.

While mathematical models of time-based decay exist (Mueller and Krawitz, 2009), there are no generally
agreed upon biological mechanisms to support time-based decay, although several mechanisms have been
proposed (Jonides et al., 2008). One suggestion postulates that neurons forming an item in memory fall out
of synchrony, continually increasing the difficultly of retrieval (Lustig et al., 2005). A second states items do

not deteriorate, but their probability of receiving memory’s focus of attention wanes, making the item harder

33

Strengthening Use Disuse

Activation
- —

Time / Retrievals

Figure II.12: Time-based decay (adapted from (Altmann, 2002))

to recall (Jonides et al., 2008).
Both psychological-based and neurological-based empirical evidence has been collected in order to verify
time-based decay, but alternate explanations exist for many of the discovered trends (Jonides et al., 2008).

These alternate explanations have been used as support for interference-based forgetting (Lewandowsky et al.,

2004).

I1.4.2 Similarity-based Interference

Similarity-based interference, the current dominant account of forgetting (Jonides et al., 2008), has a long and
storied history (Wixted, 2004). While proponents of interference admit that forgetting is correlated with time,
they believe the true causes of failed recall are processes and activities that occur during a time span (Nairne,
2002). Unlike decay theory, interference predicts failed recall results from inter-item competition for the
memory system’s focus of attention (Roediger III, 2008). Interference-based forgetting is a complex theory
involving many forms of competition between items. Competition can be affected by item encoding strength,
the number of items, the similarity between items, and the phase of learning and recall (encoding, storage,
and retrieval) (Jonides et al., 2008). Two common methods exist for partitioning the theories of interference,
the point of interference (encoding and output) (Lewandowsky et al., 2004) and the age of affected items
(retroactive interference and proactive interference) (Jonides et al., 2008). The former compares Encoding
Interference with Output Interference, while the later contrasts Retroactive Interference with Proactive Inter-
ference. Each form of interference exhibits different behaviors and many models of forgetting promote one

over the other.

34

11.4.2.1 Proactive Interference

Proactive interference effects entail existing memory items decreasing the encoding strength of new items and
increasing the difficulty associated with new item recall (Jonides et al., 2008). Proactive interference is often
associated with cue-overload, a phenomena where items associated with the same or similar cues interfere
with each other (Wixted, 2004). When a new item is initially perceived, the effects of proactive interference
may be small, but will increase with time. It is speculated that items previously associated with a cue are

unintentionally recalled during the new item’s retention period resulting in interference (Wixted, 2004).

I1.4.2.2 Retroactive Interference

Retroactive effects describe the phenomena where new memory items interfere with existing items (Jonides
et al., 2008). While an object of debate, there appears to be a Retroactive Interference gradient immediately
following the perception of an item. Some believe that after memory trace creation, a consolidation process
begins that strengthens the item. As items consolidate, they become more resistant to interference and the
effects of retroactive interference decrease (Wixted, 2004).

Skaggs (1933) has posited that retroactive interference effects actually arise from two separate processes,
similarity and mental exertion. Receiving grater acceptance, similarity effects dictate that increased simi-
larity between items results in greater retroactive interference (Jonides et al., 2008). Mental exertion pro-
vides non-similarity based retroactive interference. During an item’s consolidation process, the presence of
mental exertion of any form will adversely affect the consolidation process and the item’s final encoding

strength (Wixted, 2004).

I1.4.3 Cognitive Models Incorporating Forgetting

Through the years, strong evidence has been found to both support and refute the two leading theories of
forgetting, time-based decay and interference (Jonides et al., 2008). Some research has posited that forgetting
is a combination of both theories and their subcomponents (Jonides et al., 2008; Wixted, 2004; Sims and
Gray, 2004; Altmann and Gray, 2002). Reflecting on the complexity of the human mind and cognition, it
is unlikely that the full dynamic of forgetting can be realized from one parsimonious mechanism. Several
researchers have developed models of forgetting that incorporate multiple forgetting methods (Mueller and
Krawitz, 2009). Others that stand by one mechanism, have admitted that multiple mechanisms may contribute
to forgetting, just to a lesser extent (Wixted, 2004). Table II.5 presents a number of existing models of short-
term memory and characterizes them based on the forms of forgetting that they contain. This table has been
modified and expanded from (Mueller and Krawitz, 2009). As presented in (Mueller and Krawitz, 2009),

the Time Effects column was labeled Decay and was changed to prevent confusion with purely decay-based

35

Table I1.5: Models of short-term memory (Adapted and Expanded from (Mueller and Krawitz, 2009))

Time Encoding Output
Model Effects | Capacity | Interference | Interference
Perturbation Model (Lee and Estes, 1977, 1981) + - - -
(Shiffrin and Cook, 1978) + + - -
The Trace Threshold Model (Schweickert and Boruff, 1986) + - - -
TODAM (Lewandowsky and Murdock, 1989) - + + o
Network Model (Burgess and Hitch, 1992, 1999) + + + +
Feature Model (Neath and Nairne, 1995) - + + -
(Brown and Hulme, 1995) o - o o
ACT-R (Anderson and Matessa, 1997) + + + -
(Dosher and Ma, 1998; Dosher, 1999) + - - +
The Primacy Model (Page and Norris, 1998) + + + -
Start-End Model (Henson, 1998) + + + +
SPAN (Byrne, 1998) + + + -
EPIC (Kieras et al., 1999) + - - -
OSCAR (Brown et al., 2000) - + + +
Modified EPIC (Mueller, 2002) o o o o
SOB (Farrell and Lewandowsky, 2002) - + + +
Modified SOAR (Nuxoll et al., 2004) + - - -
SIMPLE (Brown et al., 2007) + - + -

'+’ the component is present, 'o’ the component is optional, ’-’ the component is not present.

forgetting effects. Table I1.5 was expanded with the incorporation of Modified Soar. The remainder of this
section will present a few models of forgetting that are representative of trace-decay and interference-based

mechanisms.

I1.4.3.1 The Trace Threshold Model

Schweickert and Boruff (1986) developed a model of trace-decay within short-term memory to explore verbal
capacity limits. Unlike many models that promote short-term memory capacity limits, this model is designed
around the length of time a verbal trace can be recalled. The model is founded on the idea that the “similarity
between the trace-decay hypothesis and the common assumption made in psychophysics that the probability
of detecting a stimulus equals the probability that its intensity is greater than a fluctuating threshold” (Schwe-
ickert and Boruff, 1986). Equations II.7- I1.9 describe the entirety of the Schweikert-Boruff model. In this
model, list recall will be successful if the verbal trace duration, T, is greater than the required recall time, 7.
Equation I1.7 calculates the probability of correctly recalling a list. If 7, and T, are considered to be stochasti-
cally independent random variables possessing means of 7, and 7, with variances of 6> and 672, equation I1.7
can be transformed into equations II.8 and I1.9. Equation II.8 calculates the probability of immediate se-
rial recall “analogous to the psychophysical function for probability of detection” (Schweickert and Boruff,

1986). 1, and 03 are determined through estimation with empirical data (Schweickert and Boruff, 1986).

P=P[T,<T, (I1.7)

36

pP=pP lT’TV(T’TV) éz] (IL8)

z:—(r,—rv)/\/crrzjtcvz (I1.9)

The Trace Threshold model accurately models the relationship between speaking times and the probabil-
ity of correct list recall (Mueller and Krawitz, 2009), although it only takes maintenance into account (Schwe-
ickert and Boruff, 1986). Other components of memory span, including word frequency (Hulme et al., 1997),
have been tested with the Trace Threshold model (Mueller and Krawitz, 2009). Results from the Trace
Threshold model have been misinterpreted in the past, since unlike other models, this model treats a list
of words as a single item. The more common approach is to treat words as individual items (Mueller and

Krawitz, 2009).

11.4.3.2 SIMPLE

The Scale-Independent Memory, Perception, and Learning (SIMPLE) model (Brown et al., 2007) is a tempo-
ral difference model of human memory and forgetting. In this model, items to be recalled are located within
a multi-dimensional psychological space. A temporal axis exists within this space that records the amount
of time since an item’s point of presentation and other axes can exist that record additional item properties.
Since SIMPLE is a temporal difference model of forgetting, the discriminability of an item is determined by
the degree to which the item is isolated from its neighbors. When calculating the discriminability of items,
inter-item distance along the time-axis undergoes a logarithmic compression, that increases the effective sim-
ilarity of items as they move further from the psychological space’s origin. While time plays a critical role
in the SIMPLE model, it does not incorporate trace-decay. Forgetting within SIMPLE is purely interfer-
ence based. With Weber Compression, as time passes, items become increasingly similar and difficult to
discriminate (Brown et al., 2007).

SIMPLE is a “scale-similar” model of forgetting, exhibiting similar behavior across time-scales differing
by orders of magnitude (Brown et al., 2007). Similar behavior across time-scales is possible because of the
way SIMPLE calculates inter-item similarity. Instead of comparing items by the magnitude of inter-item
distance within psychological space, the ratios of positions along each axis, raised by a power constant, are
compared. SIMPLE is also founded on the concept of local distinctiveness. As inter-item distance increases,

the similarity between items decreases along with interference. Resultingly, items within close proximity

37

affect each other to a greater extent than items spaced further apart (Brown et al., 2007).

The distance between two items in a multi-dimensional psychological space is computed with equa-
tion II.10. For each dimension, the difference is located along the relevant axis and scaled by a constant
factor, wy, representing the level of attention paid to that dimension. Distances in SIMPLE are calculated in
a Manbhattan fashion as opposed to an Euclidean or more complex method (Lewandowsky et al., 2004). The
distance between two items is then processed by equation II.11 to form a similarity metric 1. & modifies the
family of equations used to transform distance into similarity. When « = 1.0, equation II.11 acts as an expo-
nential function, while a value of 2.0 results in Gaussian behavior (Brown et al., 2007). Many experiments
set a to a value of 1.0 (Brown et al., 2007; Lewandowsky et al., 2004). The discriminability of an item is
inversely proportional to the similarity to the rest of the items in the system summed together, equation II.12.
When recall omissions cannot occur, the probability of correctly recalling an item in a target location during
serial recall is equivalent to the item’s discriminability. However, the probability of incorrectly recalling an
item at a desired location is given by equation II.13. In this equation, Y represents the deterministic nature of
item recall. ¥ is often set to 1.0 (Brown et al., 2007). When modeling free recall, omissions are possible and
equation II.14 is required instead of equation II.12. Equation II.14 transforms the probability density with a

sigmoid function, governed by threshold value ¢ and slope s.

m m
Sij=Y wilMi;—M;;| where) w; =1 (I1.10)
=1 =1
My = ecIsul® (IL11)
1
D;=— (IL.12)
Z Nij
j=1
Y
P(R)|T) = n(nz,]) (IL.13)
|,k
kgl (771,)
= : 14
P(Ri|D;) = The 0 (I1.14)

38

11.4.3.3 The Architecture of Dosher and Ma (1998) and Dosher (1999)

Dosher and Ma (1998) and Dosher (1999) developed a model of human forgetting that combines trace-decay
with output interference effects. In this model of serial recall, trace-decay effects occur during explicitly
labeled retention intervals and during the process of recall. As the length of time required to recall a list
of items increases, forgetting effects become more severe and the probability of correct list recall decreases.
Their model consists of two formulations, one predicting full list recall and a second that calculates individual
item recall probabilities.

Equation II.15 determines the probability of correctly recalling an entire list during a serial recall trial
and takes a common exponential form (Murdock, 1982; Wixted and Carpenter, 2007). Accurate list recall
is influenced by list length (L), forgetting rate (), and initial encoding strength of the entire list (). De-
pending on the form of experimental data being analyzed, t; can represent output time, output duration, or
pronunciation duration of the list. A Gaussian with mean (7) and standard deviation ¢ models the strength
distribution of the list during the forgetting process. Strength values above a threshold value 7 are recalled,
while lesser values indicate the list has been forgotten.

p=1—-®(t,u' (1),0)
W (1) = Ae P

(11.15)

Equation II.16 represents the probability of correctly recalling an individual item within a list of length
[at its correct location (k) with material m and presentation rate » during serial recall trials. This equation
incorporates two separate measures of time, the length of time between item presentation and the end of
presentation (#;) and the time duration between the end of list presentation and the point at which the item is
to be recalled (#,). Four scaling factors, B, By,. Br,, and Br,, regulate the relative importance of the factors

influencing forgetting. Item encoding strength o r is dependent on item position and presentation rate.

P=1=@ (T, tptmr, 1) = e Pl =R Pro k1) BrtstBrote) (IL.16)

Robotic systems have benefited from the introduction of ideas and concepts inspired by biological systems
and humans in particular. Contemporary robotic designs are continuously incorporating additional human
inspired capabilities. Human forgetting has the potential to motivate an analogous capability for robots. With
increased forgetting abilities, future robots may be better equipped to realize benefits of forgetting similar to

those currently enjoyed by humans.

39

11.4.3.4 Robotic Designs Employing Forgetting

Forgetting has previously been explored in the field of robotics. Kira and Arkin (2004) augmented an existing
case-based reasoning system to use forgetting as a means of modifying a case library. Implemented within
the MissionLab System (MacKenzie et al., 1997), an instance of the Autonomous Robot Architecture (Arkin,
1998), the modifications affected a behavioral unit called GOTO, which realizes goal-directed navigation
in mobile robots. Cases in this system consisted of a fixed size collection of continuous valued vectors
of static length, see Figure II.13. The system was able to learn new cases, but maintained a case library
with a capacity that was quickly exceed. Each case was implemented as a fixed collection of scalar values
representing internal parameters and traversability of areas directly adjacent to the robot (Likhachev and
Arkin, 2001). Kira and Arkin’s cases were fixed data structures, but many systems may use variable size
constructs. Forgetting was implemented to aid in selecting cases the system could delete when its case
library’s capacity was exceeded.

To facilitate forgetting, three separate forms of case selection were evaluated: random selection, metric-
based selection, and a spreading activation selection involving time-based decay. Random forgetting was not
expected to produce quality results due to several properties inherent in the case-based reasoning system. The
case library capacity was relatively small (four to twenty cases) and was expected to generally possess few
redundant high performance cases. As the robot operated within its domain, existing cases were improved
through a hill-climbing learning algorithm (Likhachev et al., 2002). Random selection primarily acted as a
control group to compare other strategies. Four separate metrics were implemented in the metric-based for-
getting mechanism, performance, recency, frequency of use, and a weighted summation of the three metrics.
Activation spreading selection maintained activation scores for cases based on case construction, case perfor-
mance, case similarity to the current environment, and case lifetime. Time effects resulted in a decrement to
case activation similar to time-based decay, except the degradation was linear.

Testing occurred in the MissionLab simulator, with the robot navigating through both homogeneous and
heterogeneous environments of various clutter density. Performance and frequency metrics best equipped the
robot to complete the most tasks and minimize distance traveled. Weighting the metrics resulted in similar
performance. Forgetting resulting from spreading activation performed worse than a robot not equipped with
a forgetting mechanism. Recency and random forgetting achieved inferior results. Kira and Arkin attribute
some of spreading activation’s performance deficits to parameter and threshold settings.

While Kira and Arkin explored the benefits of forgetting for case-based reasoning, Correia and Abreu
(2004) investigated improvements to topological map generation and maintenance from forgetting. In their

work, fatigue and trace decay where incorporated into a behavior-based robot. This combination of abilities

40

Spatial Vector: Case Output Parameters:

D(goal distance) =5 MoveToGoal_Gain =0.10
density distance Noise_Gain =0.02
Region0: 0p=1.00 r9p=1.00 Noise_Persistence =10
Region I: 07 =0.80 r;=1.00 Obstacle_Gain =0.80
Region2: 0,=0.00 r,=1.00 Obstacle_Sphere =1.50
Region3: 03=0.80 r3=1.00 Bias_Vector X =-1.00
Temporal Vector: Bias_Vector_ Y =0.70
(0 - min, 1 - max) Bias_Vector_Gain =0.70
ShortTerm_Motion R, = 0.000 CaseTime =2.0

LongTerm Motion R; = 0.600
Traversability Vector:

(0 - untraversable, 1 - excellent)
fo=0.14 f1=0.32
=100 f3=0.32

Figure II.13: Example case-based reasoning case (Adapted from (Likhachev and Arkin, 2001))

was chosen to enable the robot to effectively manage the inter-play between exploration and preventing stale
information from corrupting data stores. In their design, a simplified representation of fatigue was imple-
mented as the latency, warm-up, and after-discharge portions of fatigue where assumed to have a zero second
duration. Only the fatigue and recovery periods had non-zero durations. The robot possessed two behaviors,
explore and go-home, of which explore had higher priority. In their experiments, the explore behavior would
be enabled until the robot became fatigued or the map exceeded a threshold number of locations, causing
the go-home behavior to be executed. After the recovery period, the robot would continue exploring the
environment. Forgetting capabilities were used to purge stale information from the map. A trace-based de-
cay approach was explored and three separate forgetting functions were evaluated, see equations II1.17-IL.19.
In these equations, o represents the decay factor and n represents the number of times a location has been

visited. The system was evaluated on simulated Kheprea robots (Correia and Abreu, 2004).

w(t+1)=w()—oe™ wherew(to) =1 (I1.17)
__ 1 118
W(t)_1+e—w (IL.18)
1
w(t) =1 (IL.19)

1t exp (—70'8’5*0%000 + 2.5n)

41

Howell and Donald (2000) developed a robot that utilized forgetting while performing simultaneous lo-
calization and mapping tasks. During the execution of a task, the robot generated a map comprised of tangent
vectors extracted from sonar readings. The number of data points within the map was capacity limited to a
set number of entries and when this limit was exceeded, the system randomly discarded existing tangents.
Removal of map entries provided benefits of bounding computational requirements by the mapping and local-
ization algorithms and removing older information from the map. Howell and Donald (2000) presented three
possible modifications to the forgetting mechanism that included restricting map evaluations to areas within
close proximity to the robot, sampling available vectors to reduce the density of evaluated map entities, and

performing localization at progressively more precise resolutions.

42

CHAPTER 111

Detailed Presentation of Approach to Solving Problem

This chapter presents a novel approach to improving the data management capabilities of robotic systems
through the incorporation of Human-Inspired Forgetting mechanisms. The developed forgetting system holds
the potential to reduce the number of memory items requiring cognitive processing, while simultaneously
improving a robot’s ability to detect critical cues in the environment. Increasing the ability for robotic systems
to wade through vast arrays of diverse data will not generate SA by itself, but will form one component that
may combine with other components to form the interactions required for the realization of improved robotic
SA.

Robotic SA is influenced by a wide array of components and processes, but data management forms an
unifying theme connecting many of these factors. Effective data management may allow for better infor-
mation filtering and efficient processing throughout a robotic system by providing structure, while allowing
for improved robotic SA and performance. Forgetting may play an integral part in the ability for robotic
systems to remove unnecessary and erroneous data, while enabling rapid recall of relevant memory items. A
large body of work has been completed that attempts to model the inner workings of human memory and the
presented approach takes inspiration from this previous work to develop a forgetting capability targeting the

specific requirements of robotic systems.

III.L1 Forgetting

Before a forgetting system can be implemented to improve a robot’s SA, the specific benefits to SA must be
determined. Each level of SA possesses different attributes that may be non-uniformly affected by forgetting
mechanisms. Level one concepts are generally atomic, consisting of either sets of similar raw data items (e.g.,
logged sensor readings) or singular items receiving continuous updates (e.g., bump sensor status). Purging
will have a minor impact on systems that only consider a sensor’s current status, but may facilitate the pruning
of archived raw data.

Level two SA may benefit the most from forgetting. Composite objects, level two constructs are the meld-
ing of multi-modal information to form higher level representations of possibly highly dynamic constructs.
Purging may realize two separate benefits. First, level two items have relations to level one items. When
these lower level items are altered or removed, level two items may be modified. Unnecessary relations and
subcomponents may be deleted or entire items may be discarded. Second, the entire item may be deemed

unnecessary and deleted.

43

Level three concepts may be affected in many of the same ways as level two concepts. The difference
lies in the effects on the system. Level three concepts predict the effects of actions and the evolution of the
environment. These items may already be highly dynamic and possess a short life-span. Additionally, level
three concepts are less likely to be a subcomponent of another item. As a result, the effects of forgetting a
level three concept may be slightly smaller than the forgetting of level two items.

Even limiting the scope of improving robotic SA to the advancement of data management leaves a signif-
icant frontier for advancement. The described forgetting mechanism may aid systems in removing erroneous
data and pruning unnecessary information. Forgetting may appear to be an odd selection as a feature addi-
tion to a system predicated on comprehensive and complex data management. This belief primarily results
because forgetting is often considered to be a negative property or activity, for example misplacing keys, for-
getting items on shopping lists, and the inability to remember where a car was parked. However, forgetting
actually provides many benefits to data management.

Forgetting is a critical cognitive process for humans operating within complex and changing environ-
ments. With forgetting, humans are able to improve the efficiency of memory retrieval. Selecting goal-
relevant memories results in competition between memories, each vying for selection. It has been shown that
humans use forgetting to progressively repress memories that are not selected, thus reducing the cognitive
load on subsequent memory retrievals (Kuhl et al., 2007). Human forgetting can reduce “switch cost”, the
costs incurred when switching between tasks (Altmann, 2002). Through “within-run slowing”, a performance
degradation that occurs during the execution of a task, memories regarding the present task are reduced in
encoding strength. This encoding reduction allows for easier replacement of task specific information with
data relevant to new tasks (Altmann, 2002). Forgetting also aids in classification, a common and critical
task in many real world domains. In many environments, categories undergo gradual, but significant change.
Exemplar items may become faster or larger, technology may improve the properties of consumer devices,
and cultures will evolve over time. With forgetting, humans are able to progressively reduce the influence of
previous instances of categories stored in memory and incorporate new items, allowing humans to adapt to
changing categories (Elliott and Anderson, 1995). Forgetting also aids heuristic inference. Heuristics play a
critical role in humans’ ability to handle complex decision problems under tight time constraints and demand-
ing mental load by taking advantage of structure in the environment (Gigerenzer et al., 1999; Gigerenzer and
Brighton, 2009). Under certain circumstances, cognitive capacity limitations have been shown to improve
the ability for humans to detect correlations within data (Anderson et al., 2005; Kareev, 2005). However,
it has been suggested that cognitive limitations promote the use of simpler detection mechanisms that can
outperform more complex approaches in stable environments (Gaissmaier et al., 2006). The recognition

heuristic states that when selecting between items, select the item that is recognized (Gigerenzer et al., 1999;

44

Goldstein and Gigerenzer, 2002). With forgetting, unimportant information is unavailable, thus preventing
it from being recognized. Irrelevant information removal increases the chances that only important items
are recognized, increasing the applicability and performance of the recognition heuristic (Schooler and Her-
twig, 2005). Forgetting has also been shown to improve performance of the fluency heuristic (Schooler and
Hertwig, 2005).

As described in Chapter II, there are several separate proposed means by which humans forget infor-
mation. The present biological and psychological literature has suggested many forms of forgetting and
combinations of those forms, but has not reached a unanimous decision as to which method or methods are
actually used. As compelling evidence has been presented for many of the proposed methods, this disserta-
tion introduces forgetting to robotic systems by selecting and combining several of these human forgetting
methods into one comprehensive algorithm. Through the method that the individual components are com-
bined, the relative importance of each forgetting component can be changed to realize a highly configurable

and dynamic forgetting system.

III.2 Improving Situation Awareness with Forgetting

This dissertation recommends the incorporation of forgetting within robots in order to improve the genera-
tion and maintenance of human-level SA. Forgetting and recall mechanisms can be used to select memory
items that have a high probability of solving a current problem or increasing the understanding of a situation.
Forgetting can also be performed after a memory item has been selected. The recallability of the selected
item is increased, while the ability to retrieve other items in memory is reduced. The approach taken by this
dissertation pre-filters memory items, reducing the quantity available to selection mechanisms. A large per-
centage of existing and future robotic algorithms require substantial computational power, but must execute
fast enough to realize a real-time system. Pre-filtering available memory items has the potential to not only
remove out-dated, erroneous, and irrelevant data, but also to decrease the computational demands of current
and future robotic technologies. All but the simplest forgetting algorithms will require some computational
power, but when this demand is less than the demand required by existing robotic algorithms, the system may
realize a net performance increase.

Robots are often assigned diverse tasks and asked to operate within varied domains and no single algo-
rithm or approach will completely solve the entirety of robotic challenges. A large array of existing algorithms
have already been developed that enable robots to move and operate within complex domains while achiev-
ing high levels of performance, but these approaches tend to be domain specific. No simple parsimonious
algorithm may be capable of solving all of robotics’ problems. The described forgetting algorithm will not

replace any existing or future technologies, but may improve the performance of those systems and allow

45

for more effective searches through the vast quantities of data that may be stored within robotic knowledge
bases.

Different algorithms can be employed to pre-filter robotic data, but each will need to follow the same
basic design. When memory items are perceived or otherwise created, their cognitive representations receive
properties and statistics facilitating the forgetting process. Item reproception and recall results in the repre-
sentations being appropriately updated to reflect current usage patterns. When existing robotic algorithms
require the use of a memory item, the forgetting algorithm begins the pre-filtering process. The retrievabil-
ity of each memory item is calculated and the resultant set of recallable items is presented to the querying
system. In general, items are not permanently forgotten. The retrievability of an item is recalculated each
time a query is to be performed. Depending on the forgetting algorithm used, the existence of memory items,
even with a very small chance of recall, can affect the system similar to how cues can help humans recall
information. Forgetting may not be appropriate for the entirety of robotic data and certain algorithms may
need to bypass the filtering effects of forgetting. With the described approach, both of these cases can easily
be handled. Forgetting will not have to be applied to every type of data within a robot. In situations where
accuracy may be more important than execution speed or when a complete analysis of all memory items
is required, forgetting pre-filtering can be ignored. The presented forgetting approach does not necessarily
delete memory items determined to be unrecallable. In these situations, the full collection of memory items

can be presented to the querying system.

IIL3 ActSimple

A large number of models of human forgetting have previously been developed, but few models have been
crafted explicitly for the control and implementation of mobile robots. This dissertation has developed a new
method for realizing forgetting that has been developed specifically for robotic systems and the application of
pre-filtering data available to existing and future robotic algorithms. The new algorithm, named ActSimple,
derives its name from its two largest influences, ACT-R and SIMPLE. Many algorithms and models of human
forgetting have been explored in the past, but ActSimple incorporates a breadth of mechanisms and theories
that may provide the new algorithm with the diversity and flexibility to aid robotic systems across a wide
range of domains, modalities, and tasks.

Through the years, strong evidence has been found to both support and refute the two leading theories of
forgetting, time-based decay and interference (Jonides et al., 2008). Some research has posited that forgetting
is a combination of both theories and their subcomponents (Jonides et al., 2008; Wixted, 2004; Sims and
Gray, 2004; Altmann and Gray, 2002). Reflecting on the complexity of the human mind and cognition, it

is unlikely that the full dynamic of forgetting can be realized from one parsimonious mechanism. Several

46

researchers have developed models of forgetting that incorporate multiple forgetting methods (Mueller and
Krawitz, 2009). Others that stand by one mechanism, have admitted that multiple mechanisms may contribute
to forgetting, just to a lesser extent (Wixted, 2004).

ActSimple combines time-based decay, effects of mental exertion, similarity-based interference, and out-
put interference. Through the unique collection of mechanisms in ActSimple, the algorithm may be highly
amenable to the varied demands of robotic systems. The system may be tailored to specific domains and
tasks by modifying constants and the relative importance of the individual mechanisms.

This section proceeds as follows, first the incorporation of time-based decay is explained, followed by
similarity-based interference’s impact on the system. Mental exertion effects are presented, followed by the
influence of output interference. Finally, the integration of all of the components is explained. Constant

scaling factors and offsets are represented by ¢ symbols in the equations that follow.

IIL.3.1 Time-Based Decay

While time-based decay theory previously fell out of favor (Wixted, 2004), decay has recently regained a
significant amount of support (Altmann and Schunn, 2002; Wixted, 2004). Time-based decay’s durability
and recent resurgence provides strong evidence that it has an effect on forgetting. Time effects must be
incorporated into any effective robotic forgetting system. Purely interference based models of forgetting
exist that incorporate aspects of time, such as SIMPLE (Section 11.4.3.2), but their direct applicability to
robotics is unclear. Unlike many laboratory-based recall experiments, robots will observe items multiple
times and may require repeated recall of individual memory items. The SIMPLE model does not incorporate
rehearsal, although it can model some rehearsal-based primacy effects. Brown et al. (2007) modeled several
recall data sets by setting the effective time value used by the SIMPLE model to the time of last rehearsal.
While this approach approximated the empirical data, the effects of previous item presentation and rehearsal
were lost or minimized. Unlike some interference-based models, trace-based decay models can allow for a

natural modeling of rehearsal effects.

ItemRecallCount

v LifetimeO fItem

Activation = In() (IL.1)

While multiple forms for the algorithmic process of forgetting have been proposed that exhibit a decreas-
ing proportional rate of decay (Wixted, 2004), the power law family of equations, which has been posited to
best characterize forgetting (Wixted, 2004; Anderson and Schooler, 1991; Wickelgren, 1974), will be used.
A commonly cited equation is the ACT-R base activation equation, Equation II.1, and its many simplified

forms (e.g. Equation III.1). Pavlik and Anderson (2003) modified Equation II.1 to incorporate the item’s

47

activation level at each time of retrieval (Sims and Gray, 2004). This modification realizes the spacing effect
of short-term memory (see Section I1.4). The Pavlik and Anderson equation, Equation III.2, will be used to
model time-based decay (a mental exertion scaling factor, ¢, has been added for ActSimple). Depending on
the robot, the initial base level activation, 8, can be set to a fixed value or a dynamically generated value, such
as a belief level (Thrun et al., 2005). b; ; represents the feature’s activation level at the jth retrieval of item i
and b; represents the feature’s base activation. r; is the span of time since item i’s jth recall. ¢ represents the
effects of mental exertion, which are described in Section I11.3.3.
dij= crélii + ¢,

L (II1.2)
bi = (pﬁ, + l}’l(z ri,j L,I)

II1.3.2 Encoding Interference

Many complex domains require robots to possess diverse arrays of knowledge to achieve high performance
levels. Developing SA requires acquiring data from many sources, which can quickly strain robotic memory
capacities. Limits in raw storage and computational restrictions may further hamper SA generation. Incorpo-
rating encoding interference may aid robots in maintaining breadth of knowledge without purging or ignoring
critical information. Two forms of encoding interference are incorporated into ActSimple, mental exertion
and similarity-based encoding interference. Mental overload has been incorporated by different means than
similarity-based encoding interference and will be described in Section II1.3.3.

The similarity-based encoding interference component is based on the SIMPLE temporal ratio model of
forgetting (Section 11.4.3.2). Unlike the SIMPLE model; however, acquisition time of memory items is not
used to calculate interference as perception and rehearsal-based time effects are already incorporated into
the trace-based decay portion of the system. The difference effects of the SIMPLE model were integrated
into ActSimple because of the inter-item interactions within psychological space that the model produces.
Explicit knowledge items possess properties, either continuous or discrete, that provide inter-item differenti-
ation. Exploiting these properties by locating memory items within a multidimensional psychological space,
as performed by SIMPLE, may allow robots to approximate differences between data and maintain a wide
breadth of knowledge. Maintaining separate axes within the psychological space, instead of generating and
storing a single difference value, allows ActSimple to provide unique weights to the distances along indi-
vidual axes and dynamically alter those weight values. Similarity-based encoding interference is calculated
with three equations, Equation II1.3, Equation I11.4, and Equation IIL.5. § represents a set of functions able

to calculate the distance between two items on an axis within the psychological space. Functions were in-

48

corporated into the model instead of simple distances to allow for axes to be non-linear or contain subspaces
(for instance the International Commission on Illumination 1931 Color Space (International Commission on
Ilumination, 1932)). Attention directed to each axis is indicated by 6, while A represents the full distance
between two items in psychological space. Presently, the inter-item distance is calculated in a Manhattan
Distance fashion, although Euclidean methods are possible. The similarity (1) of two items is calculated by
an exponential function incorporating item confidence levels (), inter-item distance, and a factor (4) that

alters how distance is related to similarity. g represents the discriminability of item i.

L L
Aig =) 6|8 (i,k)] where } 6, =1 (ITL.3)
A
Mix = e~ 31 (IL.4)
o—. (IIL5)

- K
Z Nik

I11.3.3 Mental Exertion

It has been posited that memory items may consolidate or become more durable after they are perceived.
Mental exertion during this consolidation period can increase the likelihood that an item will be forgot-
ten (Wixted, 2004). This form of retroactive interference may be beneficial to robots operating in complex
and dynamic environments, as it may foster a form of focused attention. When a robot is under a heavy
computational load, the addition of more memory items may slow comprehension and subsequently reduce
SA. By incorporating retroactive interference through mental exertion, irrelevant details may be encoded at
reduced strengths and quickly removed. Conversely, important items will be recalled rapidly, boosting their
encoding strength and negating the effects of mental exertion.

The effects of mental load have been incorporated into ActSimple by generating a scaling factor, @, that
modifies an item’s initial base activation level. ¢ is computed by taking the integral of mental exertion ex-
perienced by the robot during a time-window near the item’s perception, see Equation II1.6. In this equation,
to and 71 represent the bounds of the time-window. While in the time-window, the robot updates ¢ each time

the item’s encoding level is required.

1
¢@=1—c4 | MentalExertiondt (111.6)
1o

49

II1.3.4 Output Interference

When robots are operating within complex and dynamic domains, periods of low computational demand
followed by intervals of high computational load will be a common occurrence. Output interference has been
added to ActSimple in order to decrease the volume of data that must be processed during these high load
periods. As a robot makes decisions, the effects of output interference increase, systematically removing
irrelevant and possibly erroneous information as the rate of decision making increases. The greatest benefit
from output interference may be seen in domains where each subsequent decision or action increases the
importance of correct decision making, while reducing the available response time.

Inspired by Lewandowsky et al.’s model (2004), output interference has been incorporated into ActSim-
ple. Lewandowsky et al. provided the SIMPLE model of human memory with output interference capabilities
by modifying Equation II.11 into III.7, where o is a constant and n represents the number of output decisions
that have already been completed plus one. This modification to SIMPLE motivated the addition of an output
interference parameter (@) to ActSimple, see Equation IIL.8. In this equation, p; represents the amount of
time since the j™ decision was made. Deviating from Lewandowsky et al.’s modification, @ was not incor-
porated into ActSimple’s encoding interference component. Instead, the effects of output interference have
been placed in the recallable probability equation (Equation III.10), described in Section II1.3.5. ActSimple
incorporates more components than SIMPLE and placing the output interference coefficient in the recallable
probability equation allows the effects of output interference to affect the entire system.

Unlike the conditions where Lewandowsky et al.’s model was evaluated, robotic systems may be required
to operate for long periods of time, making a significant number of recalls. With the original model, output
interference never decreased and eventually the effects of output interference would prevent the robot from
making memory retrievals. A power law decay, modeled after the power law decay properties of ACT-R, was
added to the magnitude of the output interference scaling factor so that interference effects will wane during

periods of infrequent recall.

my = e <lsl (7

J
ce+l -
c5 "LP; (IIL8)

50

III.3.5 Activation

Many of ActSimple’s individual components are combined by Equation II1.9 to form an activation level for
each item in memory. Effects of trace decay and encoding interference are summed together with permanent
(€1) and transient (&) noise. Scaling constant cg allows the relative importance of trace decay and encoding

interference to be altered.

o = cgbi+ (1 —cg) @i+ € + & (I11.9)

Forgetting within ActSimple is nondeterministic and uses a sigmoid function, shown in Equation III.10,
to compute the probability that an item is available for recall. In Equation III.10, ¢ represents the slope of the
sigmoid function. 7 is a threshold on the activation values and Output interference (@) scales the resultant
recallability probability. Similar sigmoid-based probability functions have been used by existing cognitive
architectures, such as ACT-R (Section I1.3.5) and SIMPLE (Section 11.4.3.2), but resultant probabilities are
used differently in ActSimple. In architectures modeling human memory, resultant probabilities are often
used to probabilistically select an item for recall. ActSimple uses item probabilities to determine if an item
will be available for selection. This change allows specialized and domain specific robotic algorithms to
continue to perform item selection. The forgetting mechanism only removes old and irrelevant information,

speeding search, while adding a small degree of variability to the item selection process.

(0] 1

IIL.3.6 Retrieval Time

Some robotic algorithms may require or benefit from the ability to approximate the ease of memory item
retrieval. The retrieval time equation from the ACT-R architecture (Section I1.3.5) is incorporated into Act-
Simple to provide an estimate of a memory item’s integrity and availability. A constant latency factor (y)
scales the result of an exponential function on an item’s activation level (&) to generate a retrieval metric.

This metric can be used to model the latency required for an item to be recalled from memory.

Retrieval Time; = ye®% (IIL.11)

While not directly part of the system, robots using this mechanism can utilize rehearsal strategies to

modify the activation values of memory items. By periodically recalling particular items, the system will

51

boost their activation levels, potentially increasing their focus levels and preventing the items from being
filtered.

In complex and dynamic domains, robots must process large volumes of diverse data. Through the human
forgetting inspired filtering and purging provided by ActSimple, it is believed that robots may be better

equipped to generate and maintain SA.

52

CHAPTER 1V

Test Domain

In order to explore the effectiveness of using Human-Inspired Forgetting to filter information, a simplified
version of ActSimple was developed along with six other forgetting algorithms. A WiFi signal strength
estimation domain was developed to empirically test these forgetting approaches. Simulated WiFi signal
strength information was generated and provided to a simulated robot operating within a grid-based world.
The forgetting algorithms were used to filter the database of stored signal strength readings, improving the
overall estimate of available WiFi signal strength at any particular point within the environment.

Robots operating within complex and dynamic domains are frequently inundated with copious data read-
ings and information. Much of this knowledge is redundant, erroneous, or rapidly becomes out of date.
Human-inspired robotic forgetting mechanisms may be capable of partially alleviating this information pro-
cessing problem. A large number of human forgetting models have been proposed by the psychology lit-
erature, many of which may benefit robotics. While the vast and varied array of possible robot tasks and
information may make the selection of an optimal forgetting algorithm for robots impossible, several are
more applicable to on-line implementations and the specific requirements of robots.

The experiments described in this dissertation were conducted to explore the effectiveness of several
forms of forgetting as applied to a specific task and data type common to many robot domains. Modern
mobile robots often require some form of wireless communication, with WiFi frequently providing a high
bandwidth, low-cost communication medium. WiFi signal strength, and consequently communication relia-
bility and speed, can be affected by many factors. Areas of minimal to no signal strength can be frequently
encountered. In stable environments, WiFi hardware can often be carefully positioned to provide acceptable
WiFi signal strength and avoid areas of no communication. Unfortunately, optimal placement of WiFi tech-
nology in complex and dynamic environments is frequently not possible. Many robotic deployments require
careful multi-agent coordination; necessitating categorization and monitoring of WiFi capabilities within an
environment. Some systems even utilize relocatable WiFi nodes to alleviate communication bottlenecks and
areas of minimal signal strength (Basu and Redi, 2004; Reyes et al., 2006; Weiss et al., 2008).

The described experiments simulated a robot tasked with continuously exploring a grid-based environ-
ment to monitor and estimate WiFi signal strength. The robot collected WiFi signal strength samples which
were used to generate an estimate of the available WiFi signal strength of the entire environment. Interpola-

tion methods were implemented to allow for estimates where no sample readings were available. This task,

53

along with being practical and frequently required, is representative of many activities performed by robots
operating within complex and dynamic environments where low-level environmental properties can impact

the probability of successful mission completion.

IV.1 Algorithms

Seven forgetting algorithms were evaluated to filter unimportant sensor readings: a simplified version of
ActSimple, a trace-based decay method (labeled ACT-R), two similarity-based interference methods based
on SIMPLE (referred to as SIMPLE and SIMPLE Update), two queue-based forgetting methods (labeled
Queue-Dynamic and Queue-Static), and a random forgetting method. Testing was also performed without

forgetting (referred to as No Forgetting) to act as a control for comparing forgetting algorithm performance.

ActSimple

The experiments used a simplified version of the ActSimple algorithm. Described by Equations IV.1, IV.2,
IV.3,1V.4, and IV.5, the simplified version of ActSimple was used instead of the full version to better illustrate
the core components of the algorithm (trace-based decay and similarity-based interference), minimize the
need for parameter optimization, and to allow for a more direct comparison to the ACT-R and SIMPLE
algorithms. The simplified version of the algorithm does not incorporate the Pavlik and Anderson (2003)
modification, mental exertion, belief state effects, output interference, or noise. All remaining constants were
considered adjustable parameters except for A, which was fixed at 1.0. In the SIMPLE-inspired portion of
the algorithm, the psychological space consisted of three axes: reading position along the x-axis, reading
position along the y-axis, and WiFi signal strength.

Equation IV.1 is a simplified version of Equation III.2. The effects of mental exertion (¢) have been
removed and the Pavlik and Anderson (2003) modification (—d; ;) was replaced with a constant, d. Equa-
tions IV.3 and IV.4 are equivalent to Equations III.4 and IIL.5 except that the belief state effects (y) have
been removed. Equation IV.5 calculates the complete activation level for a memory item except, unlike
Equation II1.9, noise (& and &) was not included. Mental exertion (Equation III.6) and output interference
(Equation III.8) are not included in the simplified version of ActSimple. Equation IV.2 is unmodified from
the full ActSimple Algorithm (Equations III.3).

Ji
b =P +ln(ZriTjC") (IV.1)

L L
Ag=Y.60/18(i.k)| where Y. 6, =1 av.2)

54

Mg = 318 (IV.3)

1
o= (IV.4)
Zni,k
o; = cgb; + (1 - Cg) i7; (IV.5)
P = 71 V.6
Tl 4eslai-1) (IV:6)

Trace-based decay forgetting
The trace-based decay forgetting algorithm labeled ACT-R was implemented for these experiments using
Equation IV.7 and Equation IV.8. Noise was not used by the implemented version of the algorithm. In

Equation IV.8, ¢ is equivalent to the % term from Equation IL.3.

Bi=B+n(Y 1% Iv.7)
k=1

S V.8

YT 4 es(BimT) (IV:8)

SIMPLE and SIMPLE Update

The similarity-based interference forgetting algorithms, SIMPLE and SIMPLE Update, were inspired by the
SIMPLE model of human memory. The psychological space used by these two algorithms possessed four
axes: reading position along the x-axis, reading position along the y-axis, time, and WiFi signal strength.
Both methods work in an identical fashion, except when a WiFi reading is reperceived (a WiFi signal strength
value is collected multiple times at a particular location). When reperception occurs, the SIMPLE Update

method updates the sample’s time property to the current point in time and increments the perception count

55

for the reading. Conversely, the SIMPLE algorithm increments the perception count, but does not update the

perception time. Both forgetting algorithms where implemented as described in Section 11.4.3.2.

Queue Dynamic and Queue Static

Two queue-based forgetting algorithms were explored, Queue Dynamic and Queue Static. Both algorithms
possessed a fixed sized queue that stored WiFi signal strength readings. New readings were appended to the
end of the queue, and once the queue capacity was exceeded, old readings were removed from the front of the
queue. Similar to the differences between SIMPLE and SIMPLE Update, operation of the two queue methods
deviated only when a reading was reperceived. If a reading was collected and it was already present in the
queue, then the Queue Dynamic algorithm updates the readings perception count and moves the reading to
the back of the queue. Queue Static also updates the readings perception count, but does not relocate the

reading.

Random Forgetting

Similar in operation to the queue-based forgetting algorithms, a random forgetting algorithm was also tested
in the experiments. This algorithm worked exactly like the Queue Static algorithm except when capacity
was exceeded, readings were randomly selected for deletion. The newest reading was guaranteed to not be

removed.

IV.2 Environment

The environment constructed for these experiments consisted of a 25 unit by 25 unit simulated grid world.
Movements within the grid world were constrained to only horizontal or vertical transitions. All movements
consisted of single-unit location changes, and the simulated robot moved at every time step unless the robot
attempted to leave the bounds of the grid world. It was assumed that all sensing and data processing occurred
within one time unit. WiFi sensor readings were taken at every time step, irrespective of whether or not the
robot’s position actually changed. WiFi signal strength within the environment ranged from 1 to 100 (weak
to strong, respectively) and was determined by a location’s proximity to WiFi basestations located within
the environment, see Equation IV.9. WiFi signal strength values computed by Equation IV.9 were clipped
to the range 1 to 100. For the experiments, the slope was set to 2.0 and the threshold remained at 4.0. Two
basestation configurations were tested during the experiments, four basestations and eight basestations, see
Figure IV.1. In the figure, strong WiFi signal strength is represented by darker areas, while lighter areas

indicate weak signal strength.

56

(a) Four basestation configuration (b) Eight basestation configuration

Figure IV.1: Basestation configurations within the tested environment

1
<1 o 1+ efslope(distance,-7rhreshold)

WiFi Signal Strength = 100 Z > + noise av.9)

In addition to basestation proximity, WiFi signal strength readings were also influenced by noise. The
magnitude of noise affecting a given sample was determined by a probability density function defined by
Equation IV.10. Probabilities were not influenced by noiseless signal strength and the final reading value was

clipped to remain within the interval 1 to 100.

0.62 ifx=0
0.1 if [x=10
0.05 if [x| =20
- IV.10
POY= 0003 if x| = 40 (V10
0.01 if [x] = 60
0 else

While a grid world, the test environment possesses a significant challenge to a robot attempting to main-
tain an accurate estimate of WiFi signal strengths. The number of WiFi basestations can change, resulting
in substantial alterations to the availability of WiFi signal strength, and noise will generate many erroneous
readings. Even without changes to the number of basestations or noise, many naive approaches to estimating
WiFi signal strength will not be effective. Figure IV.2 depicts the absolute error that would result if a robot
simply assumed that the WiFi signal strength within a static, noiseless environment was constant. When
four basestations are present, minimal error is realized when the robot estimates signal strength to be at its

minimum, an approach that would be impractical and self-defeating. When eight basestations are present,

57

100 ,

a0 -

80 7

70

L
&0 = —
- - - - - - -No Basestations
50 — - — = 4 Basestations
\ R —— & Basestations
40 A i
o ,_’_’_/
30 e -— -

20 <

Average Absolute Error

10

0 10 20 30 40 50 60 70 30 90 100
Estimated WiFi Signal Strength

Figure IV.2: Average error when estimating WiFi signal strength with a constant value

the absolute error of a constant-valued estimate is radically different from when four basestations are located
within the environment. A robot may require a large number of readings distributed within the environment
in order to generate accurate estimates of WiFi signal strength. It is not possible to instantaneously acquire
all of the required samples, since the process requires some period of time. Changing the number of bases-
tations within the experiment models the dynamism present in nearly all real-world domains and tests the
effectiveness of different data processing mechanisms’ ability to handle real-world situations.

The effectiveness of the forgetting algorithms was evaluated by simulating a robot traveling along a
number of predetermined paths taking WiFi sensor readings. At set intervals, the robot generated an estimated
WiFi signal strength map from the readings that were correctly recalled. When each estimated WiFi signal
strength map was created, the absolute error at each point within the environment was calculated and used as
a metric for effectiveness. Interpolation methods were utilized to generate estimated signal strength values
for locations where no sensor readings were successfully recalled. The absence of sensor readings at a given
location may have resulted from the robot being unable to recall any readings at the location or the robot not

having explored that area yet. When no readings were available, the robot guessed a strength value of 50.5,

58

the midpoint of the range of possible signal strength values.

IV.3 Interpolation Methods

A large number of interpolation methods are available for converting the collection of sensor readings into an
estimated strength map. The simulated environment was a grid-based world, but no restrictions were placed
on the robot’s path. Sampling was often non-uniform with regard to the entire environment and estimated
strength maps needed to be created before the robot had a chance to fully explore the environment. The inter-
polation method used within the experiment needed to be non-uniform and allow for the generation of signal
strength estimates outside of the convex hull surrounding the entirety of the presently recalled WiFi samples.
A number of interpolation methods were possible, but the selection was further restricted to only include
exact value methods of interpolation. Functional interpolation methods were not selected because, while
estimated values may successfully pass through all provided sample points, these methods often generate in-
valid values for locations in between readings. With the nature of the experiments and sensor readings, these
out-of-bounds values were unacceptable. Considering these criteria, the experiments used a combination of
three exact interpolation methods: Nearest Neighbor Interpolation, Shepard’s Interpolation (Shepard, 1968),
and Microsphere Interpolation (Dudziak, 2007). Each of these forms of interpolation possesses a different
method of generating estimated values that can affect the experimental results.

Nearest Neighbor Interpolation is a fast method that estimates values solely on the closest available
sample. Due to the nature of the environment and the possibility of multiple readings being collocated, sev-
eral WiFi readings may be equidistant to a location where interpolation is being performed. When equidistant
points occur, two separate methods can be independently tested. The first approach uses an equal weighting
scheme and averages the values for all samples (this approach will be refereed to as Nearest Neighbor Inter-
polation with Equal Weighting). The second approach uses a weighted average based on the number of times
each reading has been observed (this approach will be referred to as Nearest Neighbor Interpolation with Per-
ception Count Weighting). Nearest Neighbor Interpolation can be the most variable of the three interpolation
methods. Small changes in the location of a reading may change which sample’s value is used to estimate a
target location within the environment. Since individual readings vary substantially, the estimate can equally
fluctuate. Figure IV.3 demonstrates an example application of the Nearest Neighbor Interpolation method
where the number of samples available to the interpolation algorithm is 10, 100, 500, and 1000 samples
respectively. The left column shows the original images and the sample locations used by the interpolation
method and the right column provides the resultant images. Nearest Neighbor Interpolation generates blocky
results with few gradients.

The Shepard’s Interpolation method (Shepard, 1968) was also explored during these experiments. An

59

2 e 3
w%’h_ ;z.-"‘ A," 4

(c) Nearest Neighbor Interpolation with 500 samples

Figure IV.3: Nearest Neighbor Interpolation with 10, 100, 500, and 1000 randomly generated samples. The
left column shows the original image and the sample locations used by the interpolation method and the right
column shows the resultant images.

60

inverse distance weighted approach to interpolation, Shepard’s Interpolation (Equations IV.11 and 1V.12)
differs from Nearest Neighbor Interpolation by incorporating influence from every available sample. Equa-
tion IV.11 calculates the weight or relative influence of sample i. p is the weighting exponent, a constant
influencing propagation, while d represents the euclidean distance between a sample and the location that is
being estimated. In the experiments, p was held constant at 2.0, a commonly used value for the weighting
exponent (Dudziak, 2007). The sample weights are used in Equation IV.12 to generate a weighted sum of the
values of available samples, v. The influence of individual readings is determined solely by relative distance
between the samples and the location whose value is being interpolated; no special handling is required for
equidistant points. An example of Shepard’s Interpolation on a raster image is presented in Figure IV.4. In
this figure, interpolation was performed with 10, 100, 500, and 1000 randomly generated samples. Shepard’s
Interpolation results are blended and not blocky like with Nearest Neighbor Interpolation; however, as shown

in Figure IV.4, the results can be overly blurred, obscuring transition changes.

i = (IV.11)

N
Estimated Value =)" wiv; (IV.12)

Microsphere Interpolation (Dudziak, 2007) is an approximation method embodying an analogy of
spheres illuminated by light sources. The location being estimated is considered to be a sphere, with its
surface decomposed into a number of sectors. Unlike in Shepard’s Interpolation, the influence of a sample
is affected not only by distance to the target location, but also by the angle between the sample and the nor-
mal from each sector on the sphere, see Figure IV.5. Similar to Nearest Neighbor Interpolation, the most
influential sample for each sector is determined and then the samples selected for all of the sectors undergo
a weighted average to produce the final interpolated value. The mathematical form of Microsphere Inter-
polation is shown in Equations IV.13, IV.14, and IV.15. The weighting exponent, p, in the Microsphere
Interpolation algorithm serves a similar purpose as the weighting constant in Shepard’s Interpolation. In
the described experiments, when multiple samples equally affected a sector, their values were averaged with
equal weighting. p was held constant at 2.0 and the number of sectors was set to 20. An example of Micro-
sphere Interpolation on a raster image is presented in Figure IV.6. In this figure, interpolation was performed
with 10, 100, 500, and 1000 randomly generated samples. Microsphere Interpolation combines the positive

effects of Nearest Neighbor Interpolation and Shepard’s Interpolation to produce blended results that still

61

(d) Shepard’s Interpolation with 1000 samples

Figure IV.4: Shepard’s Interpolation with 10, 100, 500, and 1000 randomly generated samples. The left
column shows the original images and the sample locations used by the interpolation method and the right
column shows the resultant images.

62

Figure IV.5: Microsphere Interpolation with one sample (adapted from (Dudziak, 2007))

maintain a majority of the transitional information in the data.

Wi zmax(|lj —1| " xcos(si,1; —I)) lje(1,2,...,N)
m; :vj|max(’lj—]rpcos(s,-,lj—l)) ,j€(1,2,...,N)

V,‘|I: liie {1,2,..,N}
P

Z m;wi
i=1
P
Yow
i=1

I = Location of interpolation
p = Propagation of influence power, p > 0
v; = Value of sample i, i € {1,2,..,N}
I; = Location of sample i, i € {1,2,..,N}
N = Number of samples
s; = Sector normal i, i € {1,2,..,N}
P = Precision (Number of sector normals)

f) =

otherwise

(Iv.13)

(IV.14)

(IV.15)

The interpolation values of the described interpolation methods may have an impact on a robot estimating

WiFi signal strength. Figure IV.3 shows the blocky nature of the results of Nearest Neighbor Interpolation.

The edges of color boundaries are not approximated well and small variations in the samples can have large

affects on the resultant interpolation values. Shepard’s Interpolation does not have sharp transitions between

color regions, but the results are overly smooth. The influence of distant samples are used in the generation of

the interpolated value, generating incorrect results. These effects are most noticeable in the top center portion

of Figure IV.4. Microsphere Interpolation limits the stochastic nature of Nearest Neighbor Interpolation,

63

L8 PO PG SR P I -
(c) Microsphere Interpolation with 500 samples

v A
(d) Microsphere Interpolation with 1000 samples

Figure IV.6: Microsphere Interpolation with 10, 100, 500, and 1000 randomly generated samples. The left
column shows the original images and the sample locations used by the interpolation method and the right
column shows the resultant images.

64

Interpolation

Samples Point

-
-
*—@ O

Figure IV.7: Multiple samples on the same line as an interpolation point

but also limits the influence of distance samples. When interpolating WiFi signal strength, distant readings
should be ignored, as closer samples make their influence undesirable, especially if those points are collinear
with the location to be interpolated. As shown in Figure IV.7, if two readings, that are collinear with the
interpolation location, are on the same side of a location to be interpolated, the more distant point (assuming
no error), should not be used in the interpolation. The two samples may have completely different values,
possibly resulting from objects within the environment, and averaging will only degrade the quality of the
result.

The form of weighting used when readings are equidistant can have a large impact on the quality of
interpolation results. When asymmetric noise is present within a system, perception count weighting may
be better equipped to minimize average error as the number of points available to the interpolation method
increases. Figure IV.8 shows the results of the four described interpolation methods on data collected from
the experimental environment. Figure IV.9 displays a zoomed in view of the first ten thousand steps taken
by the robot. The noise within the environment is asymmetric because of WiFi signal strength clipping.
The data shown in the figures was gathered by a simulated robot, without forgetting, that continuously ex-
plored the entirety of the experimental environment while collecting WiFi signal strength readings. All four
interpolation methods initially generated a high level of estimation error, but as the robot started collecting
readings, the estimation error quickly decreased. After approximately 500 time-steps, the effects of per-
ception count weighting and equal weighting diverged. Nearest Neighbor with Equal Weighting, Shepard’s
Interpolation, and Microsphere Interpolation all experienced increasing error, while Nearest Neighbor with
Perception Count Weighting generated a reduction in error as the number of steps increased. Asymmetric
noise causes this phenomena. When noise is symmetric, highly erroneous readings will effectively average
out; reducing error over time. Asymmetric noise; however, does not generate complimentary erroneous data
readings and the average of all sensible reading values do not average to the correct value. Perception Count
Weighting is only able to average out noise when multiple readings have been acquired for a given location.
Depending on the paths taken by robotic systems within an environment, the availability of multiple readings

may be inconsistent.

65

Average Absolute Error

Average Absolute Error

16

14 1

12 4

10

500 25000 49500 74000 98500 123000

Steps

= = = Nearest Neighbor with Equal Weighting Nearest Neighbor with Perception Count Weighting
= = Shepard Interpolation = = Microsphere Interpolation

Figure IV.8: Effects of asymmetric noise on interpolation methods

14

12 A

10

- —5_;_.-,.—--—&"""'-

500 1500 2500 3500 4500 5500 6500 7500 8500 9500
Steps

= = = Nearest Neighbor with Equal Weighting Nearest Neighbor with Perception Count Weighting
= = Shepard Interpolation = ==Microsphere Interpolation

Figure IV.9: Effects of asymmetric noise on interpolation methods for the first ten thousand steps taken

66

Robots operating within complex domains frequently do not evenly sample an environment. Task exe-
cution, terrain traversability, and other entities can influence the paths that robots follow and the length of
time that they spend in various locations. Especially when sensors are continuously acquiring new samples,
clustering and grouping of data generally occurs. Nearest Neighbor Interpolation, Shepard’s Interpolation,
and Microsphere Interpolation are all affected differently by data clustering. Figure IV.10 demonstrates the
effects of clustering on the three interpolation methods. The images were constructed by interpolating across
a 25 pixel by 25 pixel image. A black pixel sample was located at the point (-10, 0) and 1 or 100 white pixel
samples were located at the point (10, 0). The one hundred white pixels were all collocated. The results
of one black pixel and one white pixel are shown in the left column of Figure IV.10 and the results of one
black pixel and one hundred white pixels are shown in the right column. Nearest Neighbor Interpolation
(Figure IV.10a) is only affected by data clustering when samples are equidistant, resulting in a weighted av-
erage. Shepard’s Interpolation (Figure IV.10b) is affected at all points within the image, except at the exact
locations of the samples. The presence of one hundred white pixel samples dramatically influences the inter-
polation values throughout when using Shepard’s Interpolation (Figure IV.10b). Microsphere Interpolation
(Figure IV.10c) generates identical results in either situation. Mobile robots are tasked with varied and diverse
assignments with many data modalities. The data readings resulting from these modalities may resemble any
of the three interpolation methods. An experiment presented by this dissertation explored the effects of all
three interpolation methods to evaluate the effects of clustering on the effectiveness of forgetting in mobile

robotics.

IV.4 Experimental Design

Robotic forgetting of low-level data readings may be affected by data clustering, reading distributions, and
environment coverage. In the described experiments, the results of a simulated robot following twenty sep-
arate paths through the environment were tested. These paths, graphically described in Figure IV.11, fit into
two different categories. The first sixteen paths, Figure IV.11a-p, involve the robot systematically moving
back and forth through the environment, completing a number of cycles. A cycle refers to the simulated
robot traveling from the left portion of the environment to the right and then completing a return trip. The
remaining four paths, Figure IV.11g-t, were randomly generated. While the robot traversed the paths, either
four or eight WiFi basestations were present, see Figure IV.1. In some of the paths, the number of basesta-
tions changed from four to eight or from eight to four at roughly the half way point through the complete
path. These changes were incorporated into the testing in order to evaluate the system’s ability to adapt to
changing environments. At the completion of each path, the robot used an interpolation algorithm to generate

an estimated WiFi signal strength map. The absolute error between the true WiFi signal strength and the

67

(a) Nearest Neighbor Interpolation

(b) Shepard’s Interpolation

(c) Microsphere Interpolation

Figure IV.10: Effects of sample clustering on interpolation methods

68

estimate was calculated for each location within the environment and averaged. This mean value formed the
primary metric to indicate performance of a particular forgetting algorithm (or no forgetting) on the recently

traversed path.

IV.5S Summary

This chapter described the general environment and testing procedure used for all experiments presented in
this dissertation. However, most of the experiments made modifications to this general design. Chapter V
presents an experiment that computed optimal parameterizations for the seven forgetting algorithms. The
algorithms, combined with the parameterizations, were tested with 44 new paths and four new basestation
configurations. Chapter VI presents an experiment conducted in the real world (not in simulation). During this
experiment, the simulation environment and the noise distribution described in Chapter IV.2 were not used.
Chapter VII presents an experiment where the forgetting algorithms were tested in the presence of twenty
one new noise distributions. An experiment is presented in Chapter VIII where the forgetting algorithms
were tested at each point along the paths, not just at the end. Finally, Chapter IX presents an experiment
where the Pavlik and Anderson modification (Chapter I11.3.1) was incorporated into the tested versions of the

ActSimple and ACT-R algorithms.

69

-
—
—=
=

(a) Path 1 (b) Path 2 (c) Path 3 (d) Path 4

1 cycle 1 cycle 1 cycle 1 cycle

4 to 8 basestations 4 basestations 4 basestations 4 basestations
1272 steps 1272 steps 1080 steps 1032 steps

-
—
—=
=

(e) Path 5 (f) Path 6 (g) Path 7 (h) Path 8

1 cycle 1 cycle 1 cycle 1 cycle

8 to 4 basestations 8 basestations 8 basestations 8 basestations
1272 steps 1272 steps 1080 steps 1032 steps

-
—
—=
=

(i) Path 9 (j) Path 10 (k) Path 11 (1) Path 12

3 cycles 3 cycles 3 cycles 3 cycles

4 to 8 basestations 4 basestations 4 basestations 4 basestations
3768 steps 3768 steps 3192 steps 3000 steps

-
—=
=

(m) Path 13 (n) Path 14 (o) Path 15 (p) Path 16

3 cycles 3 cycles 3 cycles 3 cycles

8 to 4 basestations 8 basestations 8 basestations 8 basestations

3768 steps 3768 steps 3192 steps 3000 steps
! T d B[BT I = HH]
: igishs i_jjw‘ﬂ I il gl Rig2iisss: !
; T % EE o Hp HHL P2 ! }
A5 H o o H 0 jEgenlas ot ke e
] e R e |
b | e TP Hr H ! e
= C _‘} T :E:} f i 1 :P T . o H—r-’- M B
e o ST R Eg:ﬁt“ i
HH] " o f e e - HH = ma g _EiT__‘

A T HFWH:ML : o d

(q) Path 17 (r) Path 18 (s) Path 19 (t) Path 20

random path random path random path random path

4 to 8 basestations 4 basestations 8 to 4 basestations 8 basestations

3000 steps 3000 steps 3000 steps 3000 steps

Figure IV.11: Paths through the environment

70

CHAPTER V

Optimization

The forgetting algorithms described in Chapter IV.1 each possess a number of parameters that can greatly
influence forgetting performance and estimation accuracy. Before the effectiveness of the forgetting algo-
rithms were evaluated, the algorithms required optimization. This chapter describes the optimization process
performed to identify the optimal parameterizations for each forgetting algorithm through the use of simula-
tion. Using the calculated parameterizations, the relative performance of each forgetting algorithm and No

Forgetting was analyzed.

V.1 Optimization

The seven forgetting algorithms described in Chapter I'V.1 each possess a diverse collection of properties and
parameters. This section presents the two optimization strategies that were employed to determine optimal
parameterizations for each of the algorithms. The first optimization approach computed parameters for the
Queue Static, Queue Dynamic, and Random forgetting algorithms. ACT-R, SIMPLE, SIMPLE Update,
and ActSimple were optimized with a second, more complex process. The optimization used the Nearest
Neighbor Interpolation with Perception Count Weighting as the existing robotic algorithm. This interpolation

method was selected for its ability to average out the effects of noise.

V.1.1 Optimizing the Queue-Based Forgetting Algorithms
The Queue Static, Queue Dynamic, and Random Forgetting algorithms each possesses a single parameter,
which is discrete. For these algorithms, an exhaustive search through their respective parameter spaces was
completed. The longest path through the simulated environment involved 3768 steps taken by the robot.
During the optimization process, the queue size parameter for each of the three forgetting algorithms varied
from 1 to 3769. At the largest value, the queue for each algorithm was able to maintain every reading along
the path, effectively providing no forgetting. For each queue size, the simulated robot traversed each path
1000 times. Figure V.1a presents the results of the exhaustive search, while Figure V.1b provides a zoomed
in perspective of the forgetting algorithms’ optimal queue sizes. In both figures, the horizontal dashed line
represents the estimation error when no forgetting is performed by the robot.

With small queue sizes, the queue-based forgetting algorithms initially performed poorly (estimation
error over 25), but the estimation error quickly decreased as queue size increased (see Figure V.1). Random

Forgetting was the first forgetting algorithm to outperform No Forgetting (queue size of 409). As queue size

71

Error

Error

Queue Fixed
Queue Dynamic
s RanAdom

— =—No Forgetting

0 T T T T T
1 501 1001 1501 2001 2501 3001 3501

Queue Size
(a) Full results

11

10.5 |

Queue Fixed
Queue Dynamic
s Random

——— No Forgetting

1 501 1001 1501 2001
Queue Size

(b) Zoomed results

Figure V.1: Queue-based forgetting algorithm optimization results

72

continued to increase, Queue Static and Queue Dynamic Forgetting began generating less error than Random
Forgetting. Performance exceeded No Forgetting levels for queue sizes of 409 - 1868 readings for Random
Forgetting, 476 - 2009 readings for Queue Static Forgetting, and 473 - 2125 readings for Queue Dynamic
Forgetting. Through the queue size range of 500 to 1400 readings, Queue Dynamic generated error values
appreciably better than Queue Static, although both algorithms appeared to follow a similar trend. At larger

queue sizes, the performance of the three forgetting algorithms become identical to No Forgetting levels.

V.1.2 Optimizing the Non-Queue-Based Forgetting Algorithms

Ideally, an exhaustive search would have been conducted through the parameter spaces of each remaining
forgetting algorithm. However, ACT-R, SIMPLE, SIMPLE Update, and ActSimple each involve a large
number of continuous parameters, making this approach infeasible. Instead, a two-stage optimization pro-
cess was conducted, involving a parameter sweep and a local optimization pattern search. Throughout this
optimization process, an assumption was made that the influence of the X and Y axes would be identical
in Simple, Simple Update, and ActSimple. The first stage involved sweeping through each algorithm’s pa-
rameter space by evaluating estimation error at a large number of roughly equi-distant points (5,359,616
for ACT-R, 2,744,560 each for SIMPLE and SIMPLE Update, and 2,621,892 for ActSimple). During this
step, the robot traversed each path ten times. Table V.1 lists the number of tested parameterizations for each
forgetting algorithm where the average estimation error was below certain threshold limits. The column ti-
tled Error Limit provides the threshold values, while the four columns on the right contain the number of
parameterizations for each forgetting algorithm that generated estimation errors below the threshold values.

Once the parameter sweep was completed, the Coliny Pattern Search algorithm from the DAKOTA (De-
sign Analysis Kit for Optimization and Terascale Applications) toolkit (DAKOTA, 2010) was used to perform
the local optimization. ACT-R, SIMPLE, SIMPLE Update, and ActSimple are all stochastic algorithms and
the simulated test environment possesses significant noise, limiting the effectiveness of gradient-based op-
timization methods. While slower than gradient-based optimization algorithms, the Coliny Pattern Search
method maintains greater immunity to noise present in the WiFi readings and estimated signal strength val-
ues. During this phase, the robot traversed each path 100 times per test point in a forgetting algorithm’s
parameter space.

The pattern search was applied to the best 700 parameterizations found during the parameter sweep for
each forgetting algorithm. Table V.2 presents the average reduction in estimation error observed for each
parameterization that underwent the optimization process. The ACT-R forgetting algorithm experienced a
minimal improvement (0.016), while the performance gains for SIMPLE were negligible (0.001). However,

ActSimple received a modest improvement (0.250) and SIMPLE Update’s performance unexpectedly im-

73

Table V.1: Parameter sweep counts
Error Limit ACT-R SIMPLE SIMPLE Update ActSimple

5.8 0 0 0 0
5.9 0 0 0 94
6.0 0 0 0 244
6.1 0 0 0 393
6.2 0 0 0 620
6.3 0 0 0 1,103
6.4 0 0 0 1,979
6.5 541 0 0 3,019
7.0 71,867 0 0 33,963
7.5 129,441 0 0 67,132
8.0 196,401 0 0 93,171
8.5 259,196 0 0 118,156
9.0 328,827 0 0 153,543
9.1 344,216 0 0 159,644
9.3 396,624 0 799 191,870
94 1,735,650 917,956 933,614 1,084,886
9.5 1,740,271 938,887 954,086 1,091,645
10.0 1,757,893 985,154 998,773 1,108,362
Points
Tested 5,359,616 2,744,560 2,744,560 2,621,892

proved by a large margin (1.646). Despite the significant gains, the initial poor performance of SIMPLE

Update prevented the algorithm from exceeding the performance of ActSimple.

Table V.2: Parameterization error improvement

Algorithm Average Std.Dev.
ACT-R 0.016 0.017
SIMPLE 0.001 0.001
SIMPLE Update 1.646 1.178
ActSimple 0.250 0.127

V.1.3 Optimization Results

The results from both optimization approaches were combined so that the relative performance of the seven
forgetting algorithms could be compared against each other and No Forgetting. The resultant parameter-
izations and estimation error for each forgetting algorithm and No Forgetting are presented in Table V.3.
The column labeled Error presents the estimation error generated by each forgetting algorithm’s optimal
parameterization. The columns on the right show the individual parameter values for each optimized parame-
terization. Parameters not included in a forgetting algorithm are indicated with a ’—’ symbol. No Forgetting

does not involve any parameters. All of the forgetting algorithms outperformed No Forgetting, although

74

SIMPLE’s benefits were negligible (an improvement of 0.004). The optimized SIMPLE Update forgetting
algorithm generated an average estimation error 3.113 lower than SIMPLE, demonstrating the benefits of
updating the perception time associated with a WiFi signal strength reading. The optimized parameteriza-
tions for these two algorithms possess large Time-Axis parameter values (0.7035 for SIMPLE and 0.9891 for

SIMPLE Update), signifying the importance of time effects.

Table V.3: Best algorithm parameterizations

Parameters
Algorithm Error Queue Size f3 d X &Y Time Strength c3 cg S T
No Forgetting ~ 9.357 — — — — — — — — — —
Queue Static 7.559 776 — — — — — — — — —
Queue Dynamic 6.504 803 — — — — — — — — —
Random 8.892 597 — — — — — — — — —
ACT-R 6.451 — 6.1290 0.8257 — — — — — 104.6835 0.8065
Simple 9.353 — — — 0.05553 0.7035 0.1854 25000 — 7.7329 -1.2500
Simple Update 6.240 — — — 0.004974 0.9891 0.0009642 14.3125 — 5465.8491 0.03125
ActSimple 5.608 — 5.0000 0.9229 0.5000 — 0.0000 2.5000 0.1517 149.2500 0.0000

The ACT-R algorithm’s best parameterization generated an estimation error average of 6.451, while Act-
Simple’s best parameterized realized an average value of 5.608. While both of the SIMPLE forgetting algo-
rithms and ACT-R performed worse than ActSimple, these results suggest that the combination of trace-based
decay and similarity-based interference can be combined to generate greater performance levels. The opti-
mized parameterization of ActSimple possessed a cg value of 0.1517, indicating the importance of similarity-
based interference. The X and Y Axis parameters were 0.5000, indicating that only spatial information was
used in calculating the similarity-based interference. Strength values of the WiFi readings were not used by
the optimized parameterization of ActSimple. The d parameter for ActSimple and ACT-R was 0.9229 and
0.8257 respectively, deviating from the value of 0.5, which is commonly used in many ACT-R based systems.

During the parameter sweep of ACT-R, SIMPLE, SIMPLE Update, and ActSimple’s parameter spaces,
ten instances of each path were employed to generate average estimation error values and 100 instances were
used during the pattern search. Since the forgetting algorithms are stochastic algorithms operating over noisy
WiFi readings, the estimation error values are variable. An analysis of this variability was conducted by
processing groups of path instances with each forgetting algorithm. Using the optimized parameterizations,
each forgetting algorithm processed sets of 10, 100, and 1000 paths instances. The results were collected for
100 trials of each path instance count. The estimation error was then averaged across trials and the results are
presented in Table V.4.

While the standard deviation between trials for each forgetting algorithm was reduced as the path instance

count increased, the values were all relatively small. These results suggest that the forgetting algorithms are

75

Table V.4: Variance test

Algorithm Instances Average Std. Dev. Span

ACT-R 10 6.469 0.027 0.134
100 6.467 0.009 0.042
1000 6.469 0.003 0.013

SIMPLE 10 9.358 0.019 0.080
100 9.358 0.006 0.034
1000 9.359 0.002 0.008

SIMPLE Update 10 6.247 0.033 0.176
100 6.253 0.008 0.034
1000 6.253 0.003 0.014

ActSimple 10 5.629 0.029 0.157
100 5.631 0.009 0.050
1000 5.633 0.003 0.014

robust to differences between path instances.

A forgetting algorithm’s performance when applied to a particular path may differ from that forgetting
algorithm’s average performance. Path properties, including basestation configuration changes and length
can alter the operation of a forgetting algorithm. The seven forgetting algorithms and No Forgetting were
tested with a new set of 100 instances of the twenty paths, described in Chapter IV. The average number of
recallable readings generated by each forgetting algorithm or No Forgetting, when applied to each path, is
presented in Table V.5. Ranking was performed after rounding to minimize the effects of noise. No Forgetting
averaged the largest number of recallable readings (1270.13) although the SIMPLE algorithm generated a
nearly identical number of recallable readings (1270.1). The Random forgetting algorithm was limited by
its queue size and realized the least number of recallable readings (597). ActSimple produced the second
smallest number of recallable readings (636.958). While the SIMPLE Update algorithm averaged 1025.51
recallable readings, ACT-R generated an average of 674.86.

The estimation error generated by each forgetting algorithm or No Forgetting, when applied to each path,
is presented in Table V.6. No Forgetting and the SIMPLE algorithm generated identical average estimation
error and standard deviation values (9.159 and 6.568, respectively). All other forgetting algorithms generated
less overall estimation error. The standard deviation value of 6.568 was also the largest generated by any
forgetting algorithm or No Forgetting. ActSimple realized the smallest overall estimation error (5.448), while
SIMPLE Update and ACT-R were second and third, respectively (6.058 and 6.276, respectively). Queue
Dynamic’s fourth smallest estimation error (6.319) was 0.043 larger than ACT-R’s estimation error.

No Forgetting generated substantially greater estimation error on the six paths containing a basestation

configuration change than the fourteen static paths. Paths 17 and 19 (the two randomly generated dynamic

76

Table V.5: Individual path average number of recallable readings
No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Path 1 - 1 Cycle 4 - 8 Basestations 1155.93 776 803 597 635.36 115591 734.1 661.28
Path 2 - 1 Cycle 4 Basestations 913.78 776 803 597 63147 913.74 911.36 688.79
Path 3 - 1 Cycle 4 Basestations 787.8 775.48 787.58 597 583.15 787.79 787.34 671.33
Path 4 - 1 Cycle 4 Basestations 752.33 752.32 752.33 597 558.54 7523 752.3 663.87
Path 5 - 1 Cycle 8 - 4 Basestations 1155.41 776 803 597 634.7 1155.38 741.15 659.57
Path 6 - 1 Cycle 8 Basestations 973.85 776 803 597 631.47 973.83 915.16 685.64
Path 7 - 1 Cycle 8 Basestations 835.1 776 803 597 588.88 835.09 834.05 671.01
Path 8 - 1 Cycle 8 Basestations 796.6 775.87 794.42 597 56599 796.58 795.87 667.26
Path 9 - 3 Cycles 4 - 8 Basestations 2048 776 803 597 781.39 2047.94 1170.33 579.68
Path 10 - 3 Cycles 4 Basestations 1484.33 776 803 597 802.86 1484.27 1480.58 701.36
Path 11 - 3 Cycles 4 Basestations 1286.69 776 803 597 73245 1286.68 1285.93 661.39
Path 12 - 3 Cycles 4 Basestations 1206.36 776 803 597 679.43 1206.3 1201.08 633.74
Path 13 - 3 Cycles 8 - 4 Basestations ~ 2048.21 776 803 597 759.35 2048.15 1111.5 586.78
Path 14 - 3 Cycles 8 Basestations 1687.46 776 803 597 839.68 1687.38 1504.52 683.77
Path 15 - 3 Cycles 8 Basestations 1450.61 776 803 597 7672 1450.6 1433.73 654.33
Path 16 - 3 Cycles 8 Basestations 1370.07 776 803 597 724.11 1370.03 1338.93 634.38
Path 17 - Random 4 - 8 Basestations 1502.93 776 803 597 691.51 1502.89 775.2 556.41
Path 18 - Random 4 Basestations 1167.63 776 803 597 646.72 1167.6 1041.59 606.96
Path 19 - Random 8 - 4 Basestations 1502.51 776 803 597 646.37 1502.46 740.5 501.12
Path 20 - Random 8 Basestations 1277.1 776 803 597 596.57 1277.07 954.94 570.49
Average 1270.13 774.784 799.266 597 674.86 1270.1 1025.51 636.958
Std 380.540 5.289 11.698 0 83.496 380.526 270.409 53.041
Rank 1 5 4 8 6 2 3 7

paths) resulted in the largest estimation error of the six dynamic paths. Old readings are not filtered by No
Forgetting and their influence detrimentally impacts the ability to estimate signal strength. No Forgetting’s
poor overall estimation error was not simply a result of generating substantial error on dynamic paths. While
No Forgetting outperformed ActSimple on the six static one cycle paths (paths 2-4 and 6-8), No Forgetting
resulted in greater estimation error with the the six static three cycle paths (paths 10-12 and 14-16).

The statistical significance of the relative estimation error performance results from Table V.6 was tested
with two non-parametric Wilcoxon signed rank tests. Non-parametric testing was performed because the true
path distribution is not known. Wilcoxon signed rank tests were selected because they can be more powerful
than the simpler sign test. Results from the tests are presented in Table V.7. The first test, labeled Less than No
Forgetting, tested if the forgetting algorithms listed in the left-most column generated less average estimation
error than No Forgetting. The second test, labeled ActSimple less than, tested if ActSimple resulted is less
estimation error than No Forgetting and the other forgetting algorithms. Both tests were singled-sided and
used an & of 0.05. Results that were found to be significant are indicated in bold and individual pairings that

were not performed are marked with a

symbol. The tests included the estimation error results from all
twenty paths.

ActSimple’s reduction of estimation error relative to No Forgetting was found to be significant (v = 32.0,
p = 0.0024), while the reduction of estimation error of the other forgetting algorithms was not found to be
significant (column Less than No Forgetting). When ActSimple was compared against No Forgetting and

the other forgetting algorithms (column ActSimple less than), ActSimple’s relative estimation error benefits

77

Table V.6: Individual path estimation error
No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Path 1 - 1 Cycle 4 - 8 Basestations 17.801 8.987 8.687 14.649 5.635 17.801 8.427 6.024
Path 2 - 1 Cycle 4 Basestations 4413 5.211 4.553 5397 4.698 4413 4.433 4.621

Path 3 - 1 Cycle 4 Basestations 5.004 5.093 5.002 5.625 5.694 5.004 5.01 5.077
Path 4 - 1 Cycle 4 Basestations 5.708 5.708 5.708 6.224 10944 5.708 5.708 5.746
Path 5 - 1 Cycle 8 - 4 Basestations 18.729 8.736 8.404 15.044 4.897 18.729 5.871 5.296
Path 6 - 1 Cycle 8 Basestations 5.062 6.212 5.335 6.553 5.575 5.062 5.593 5.479
Path 7 - 1 Cycle 8 Basestations 6.098 6.561 6.166 7.135 6.801 6.098 6.103 6.389
Path 8 - 1 Cycle 8 Basestations 6.408 6.559 6.404 7.315 9.055 6.408 6.414 6.557
Path 9 - 3 Cycles 4 - 8 Basestations 17.032 5.972 5.169 8.196 3.834 17.032 5.658 4.618
Path 10 - 3 Cycles 4 Basestations 3.788 4.959 4.128 5.583 1.908 3.789 3.831 2.274
Path 11 - 3 Cycles 4 Basestations 4.404 5.653 3.761 6.103 2.748 4.405 4.412 2.964
Path 12 - 3 Cycles 4 Basestations 5.108 11.604 9.669 7.292 8.907 5.109 5.203 3.715

Path 13 - 3 Cycles 8 - 4 Basestations 18.158 5.271 431 7.402 2.837 18.158 4.23 3.502
Path 14 - 3 Cycles 8 Basestations 3.891 6.015 5.128 6.781 2.613 3.892 4.552 3.297
Path 15 - 3 Cycles 8 Basestations 5.005 8.043 5.82 7.648 3949 5.005 5.015 4.416
Path 16 - 3 Cycles 8 Basestations 5.346 9.434 7.55 8.934 6.765 5.346 5.431 4.947
Path 17 - Random 4 - 8 Basestations 20.971 8.15 7.199 16.624 13.983 20.972 8.756 13.864
Path 18 - Random 4 Basestations 4.762 9.352 5.648 7.172 4406 4.763 6.145 3.964
Path 19 - Random 8 - 4 Basestations 20.256 7.887 6.673 15419 12416 20.258 8.216 10.317
Path 20 - Random 8 Basestations 5.227 12.224 11.069 9.063 7.849 5227 12.161 5.897
Average 9.159 7.382 6.319 8.708 6276 9.159 6.058 5.448
Std 6.568 2.148 1.936 3.604 3355 6.568 1.983 2.616
Rank 7 5 4 6 3 7 2 1

Table V.7: Comparison of estimation error

Less than ActSimple
No Forgetting less than
n v p n v p
No Forgetting 20 32.0 0.0024
Queue Static 20 105.0 0.5073 20 30.0 0.0018
Queue Dynamic 19 81.0 0.2974 20 58.0 0.0413
Random 20 108.0 0.5508 20 0.0 <0.0001
ACT-R 20 71.0 0.1081 20 71.0 0.1081
SIMPLE 20 1545 09687 20 32.0 0.0024
SIMPLE Update 20 105.0 0.5073 20 53.0 0.0266
ActSimple 20 320 0.0024 20 —— —

were found to be significant when compared against No Forgetting (v = 32.0, p = 0.0024), Queue Static
(v =30.0, p = 0.0018), Queue Dynamic (v = 58.0, p = 0.0413), Random (v = 0.0, p < 0.0001), SIMPLE
(v =32.0, p = 0.0024), and SIMPLE Update (v = 53.0, p = 0.0266). However, ActSimple’s estimation
error improvement over ACT-R was not significant (v = 71.0, p = 0.1081). These results suggest that for
collections of paths similar to the twenty tested paths, ActSimple is an effective approach to reducing average
estimation error. While ACT-R’s reduction of average estimation error relative to No Forgetting was not
found to be significant, ActSimple’s estimation error improvement over ACT-R was also not found to be
significant. This suggests that the trace-based decay present in ActSimple and ACT-R may play a critical role

in the ability to improve performance.

78

The presence of dynamism can have a large impact on the absolute and relative effectiveness of a forget-
ting algorithm, and the statistical results presented in Table V.7 may be affected by varying the percentage of
paths containing a basestation configuration change. A single-sided Wilcoxon rank sum test was performed
to evaluated if No Forgetting and the forgetting algorithms generated less average estimation error on static
paths as compared to dynamic paths. This test was employed instead of the Wilcoxon signed rank test be-
cause the data was not paired. The test was performed with & = 0.05, n4 = 14, and ng = 6. Results from this

test are presented in Table V.8.

Table V.8: The effects of dynamism on estimation error

w p
No Forgetting 0.0 <0.0001
Queue Static 37.0 0.3590
Queue Dynamic 31.0 0.1985
Random 5.0 0.0005
ACT-R 37.0 0.3590
SIMPLE 0.0 <0.0001
SIMPLE Update 25.0 0.0893
ActSimple 26.0 0.1037

The difference in average estimation error between static and dynamic paths was found to be significant
for No Forgetting (w = 0.0, p < 0.0001), Random (w = 5.0, p = 0.0005), and SIMPLE (w = 0.0, p < 0.0001).
The remaining forgetting algorithms were not found to generate a significant difference in average estimation
error. These results suggest that Queue Static, Queue Dynamic, ACT-R, SIMPLE Update, and ActSimple
may not be affected by dynamism to the same extent as No Forgetting, Random, and SIMPLE.

Dynamism may affect the relative estimation error generated by No Forgetting and the forgetting algo-
rithms. Four single-sided Wilcoxon signed rank tests were performed to test the differences in estimation
error that results from applying No Forgetting and the forgetting algorithms to just static paths and to dy-
namic paths. Results from these tests are presented in Table V.9. The first test (Less than No Forgetting -
Static) tests if the forgetting algorithms listed in the left-most column generated less estimation error when
only results from the fourteen static paths were considered. The second test (Less than No Forgetting - Dy-
namic) tests if the forgetting algorithms generated less estimation error than No Forgetting when only results
from the six dynamic paths were included. The third test (ActSimple less than - Static) tests if ActSimple
resulted in less estimation error than No Forgetting and the other forgetting algorithms when applied to only
the static paths. The fourth test (ActSimple less than - Dynamic) tests if ActSimple generated less estimation
error than No Forgetting and the other forgetting algorithms when applied to only the dynamic paths. The o

value was 0.05 for each test and significant results are indicated in bold.

79

Table V.9: Estimation error performance on static and dynamic paths

Less than No Forgetting ActSimple less than
Static Dynamic Static Dynamic
n v p n v p n v p n v p

No Forgetting 14 32.0 0.1083 6 0.0 0.0156
Queue Static 14 105.0 1.0000 6 0.0 0.0156 14 3.0 0.0003 6 9.0 0.4219
Queue Dynamic 13 81.0 0.9960 6 0.0 0.0156 14 21.0 0.0247 6 11.0 0.5781
Random 14 105.0 1.0000 6 0.0 0.0156 14 0.0 0.0001 6 0.0 0.0156
ACT-R 14 71.0 08794 6 0.0 0.0156 14 23.0 0.0338 6 14.0 0.7812
SIMPLE 14 95.0 09980 6 95 04375 14 32.0 0.1083 6 0.0 0.0156
SIMPLE Update 14 105.0 1.0000 6 0.0 0.0156 14 18.0 0.0148 6 10.0 0.5000
ActSimple 14 320 0.1083 6 0.0 0.0156

None of the results from testing if the forgetting algorithms generated less estimation error than No For-
getting when applied to only the static paths (column Less than No Forgetting - Static) were found to be
significant. However, when the forgetting algorithms were tested to determine if they resulted in less estima-
tion error than No Forgetting when processing dynamic paths (column Less than No Forgetting - Dynamic),
all of the results were significant (v = 0.0, p = 0.0156), except for SIMPLE (v = 9.5, p = 0.4375). All of
the forgetting algorithms, except for SIMPLE, generated identical metric and p values because they resulted
in less estimation error than No Forgetting when applied to each of the six dynamic paths. These results sug-
gest that Human-Inspired Forgetting may be an effective approach to improving system accuracy in dynamic
domains. While the results from comparing the estimation error from ActSimple to the estimation error from
No Forgetting when applied to the static paths was not found to be significant, ActSimple’s average estima-
tion error on the static paths (4 = 4.6674, o = 1.303) was smaller than the average estimation error resulting
from No Forgetting (4 = 5.0161, 6 = 0.7506). These results suggest that in addition to the benefits provided
by applying Human-Inspired Forgetting to dynamic paths, ActSimple may result in equal or even improved
accuracy when employed under some static conditions.

The third Wilcoxon signed rank test in Table V.9 evaluated if ActSimple resulted in less estimation error
than No Forgetting and the other forgetting algorithms when only results from the static paths were included
(column ActSimple less than - Static). The results were significant for Queue Static (v = 3.0, p = 0.0003),
Queue Dynamic (v = 21.0, p = 0.0247), Random (v = 0.0, p = 0.0001), ACT-R (v = 23.0, p = 0.0338),
and SIMPLE Update (v = 18.0, p = 0.0148). The results for No Forgetting and SIMPLE were identical
and not significant. The fourth Wilcoxon signed rank test in Table V.9 tested if ActSimple resulted in less
estimation error than No Forgetting and the other forgetting algorithms when only results from the dynamic

paths were used. The results were significant for No Forgetting (v = 0.0, p = 0.0156), Random (v = 0.0,

80

p = 0.0156), and SIMPLE (v = 0.0, p = 0.0156). Results for the remaining forgetting algorithms were
not significant. These results suggest that Human-Inspired Forgetting may not improve accuracy across all
possible conditions. Instead, forgetting algorithms and their parameterizations may need to be optimized for
specific domain properties and conditions. ActSimple was able to generate less estimation error than the other
forgetting algorithms (excluding SIMPLE) when processing static paths and also resulted in less estimation
error than No Forgetting and SIMPLE when applied to dynamic paths. ActSimple may not always result in
the least amount of estimation error for every specific tested condition, but these results suggest ActSimple
may be capable of improving average system accuracy. The ratio of static to dynamic paths used during the
optimization process may have influenced the relative performance of ActSimple and the other forgetting

algorithms when applied to static and dynamic paths.

V.14 Summary

The optimization process and results for ActSimple and the six other forgetting algorithms have been pro-
vided. Two separate optimization procedures were employed, one for the queue-based forgetting algorithms
and another for the remaining four algorithms. During optimization, the forgetting algorithms were optimized
with WiFi signal strength estimation results from a simulated robot traversing the twenty paths described in
Chapter IV.4. Only one metric was used during optimization, the average absolute signal strength estima-
tion error generated by the robot when it employed the forgetting algorithms. After the robot had finished
traversing each path, the robot estimated the signal strength at each location within the environment and the
resultant error at each location was recorded. The metric was computed by averaging the estimation error for
100 instances of each of the twenty paths.

The forgetting algorithms and No Forgetting were tested for twenty paths after optimization. ActSimple
was found to generate the smallest amount of estimation error, while SIMPLE and No Forgetting tied for
the greatest amount of estimation error (Table V.6). These results suggest in addition to Human-Inspired
Forgetting having the potential to improve performance relative to No Forgetting, ActSimple may be a highly
effective implementation. However, while ActSimple outperformed No Forgetting and the other forgetting
algorithms, ActSimple possesses the largest number of parameters and can be considered the most complex
of the algorithms.

The effects of algorithm complexity are shown in Figure V.2, which plots an algorithm’s number of
parameters versus its resultant average absolute estimation error. Path dynamism was demonstrated to have
an effect on the estimation error generated by forgetting algorithms and No Forgetting. Each forgetting
algorithm (and No Forgetting) in Figure V.2 is indicated with a unique symbol, while the set of paths used to

create the average estimation error is represented by color. The results of averaging estimation error from all

81

20

18

Algorithm
No Forgetting
M Queue Static
A Queue Dynamic
X Random
XACT-R
= SIMPLE
+ SIMPLE Update
@ ActSimple

16

14

12

10 A
Paths

* = WAl Paths
M Static Paths
Dynamic Paths

X

Average Absolute Estimation Error

» XIS
X%
++

4 T T T T T T T T
4 5 6 7 8

Number of Parameters

©41 00

o
[uN
N
w

10

Figure V.2: Number of parameters vs. average absolute estimation error

twenty paths is shown in black, while results generated solely from the fourteen static paths are shown in red.
Blue indicates results involving only the six dynamic paths.

Excluding SIMPLE, Figure V.2 shows an inverse relationship between complexity and estimation error
when all twenty paths are included (Black). SIMPLE and No Forgetting generated an identical amount of
estimation error, suggesting parameter count is not the sole factor influencing performance. The relative
performance of the forgetting algorithms and No Forgetting was more variable when the paths were parti-
tioned based on dynamism. While ActSimple generated the smallest amount of estimation error on static
paths (Red), No Forgetting resulted in the second smallest amount. When applied to only dynamic paths
(Blue), ActSimple generated the fourth smallest amount of estimation error, while No Forgetting resulted
in the seventh smallest amount of estimation error. SIMPLE Update generated the second smallest amount
of estimation error on dynamic paths, but only resulted in the fourth smallest amount of estimation error on
static paths. The optimization process was performed for the entire set of twenty paths and the ratio of static
to dynamic paths may have influenced the resultant parameterizations.

In addition to the average estimation error metric (Table V.6), a second metric was recorded, the average
number of recallable readings (Table V.5). The average number of recallable readings metric shows the av-
erage number of WiFi signal strength readings presented to the existing robotic algorithm (Nearest Neighbor

Interpolation with Perception Count Weighting). While No Forgetting resulted in the largest number of re-

82

20

18 A
Algorithm
_ 16 @ No Forgetting
2 M Queue Static
i})
c A Queue Dynamic
-% 14 X Random
E XACT-R
a —SIMPLE
% 12 + SIMPLE Update
= @ ActSimple
)
10 +
% Paths
5 * W All Paths
X)

3: M Static Paths

81 Dynamic Paths

=
X
6| X 2 + o,
° *
[J
4 T T T T T
500 700 900 1100 1300 1500

Average Number of Recallable Readings

Figure V.3: Average number of recallable readings vs. average absolute estimation error

callable readings, ActSimple filtered the second largest number of readings. Random forgetting averaged the
smallest number of recallable readings, suggesting a forgetting algorithm’s operation and parameterization
have a large impact on the amount of filtering that is performed.

Forgetting algorithm selectivity has a greater influence on performance than just the average number
of recallable readings. The relationship between the average number of recallable readings and average
absolute estimation error for each forgetting algorithm and No Forgetting is presented in Figure V.3. This
figure uses the same key as employed in Figure V.2. When all twenty paths are included, ActSimple filtered
the second largest number of readings, but still managed to produce the lowest amount of estimation error.
No Forgetting, which filtered the fewest readings, tied with SIMPLE for the largest amount of estimation
error. Random forgetting filtered the most readings, but only generated the sixth best estimation error. These
results suggest that simply using more data to solve a problem may not always be the optimal solution.

When the results from static and dynamic paths were separated, a performance trend appears for No
Forgetting and the forgetting algorithms. Applying No Forgetting, SIMPLE, Queue Static, Queue Dynamic,
and ACT-R to only the static paths resulted in fewer recallable readings and less estimation error than when
the forgetting algorithms and No Forgetting were applied to the dynamic paths. These forgetting algorithms
and No Forgetting performed better with the static paths. The Random forgetting algorithm averaged the

same number of recallable readings under all conditions, but still performed better on static paths. ActSimple

83

and SIMPLE Update resulted in a different trend. While both algorithms generated less estimation error
when only processing static paths, they also resulted in larger numbers of recallable readings. In situations
where the average number of recallable readings can have a noticeable impact on efficiency and performance,

determining if these two algorithms perform better with static or dynamic paths is more challenging.

V.2 Alternate Existing Robotic Algorithms

Robots operating within complex and dynamic domains require the ability to adapt to changing task con-
ditions as well as environment fluctuations. In Section V.1, the seven forgetting algorithms were optimized
while being applied to the existing robotic algorithm of Nearest Neighbor Interpolation with Perception Count
Weighting. This section explores the effects on forgetting algorithm performance when changes occur to the
existing robotic algorithm. Results from this experiment reveal if the forgetting algorithms maintain their
performance levels, realize graceful degradation, or fail completely.

This experiment tested all four interpolation methods described in Chapter IV.3 (Nearest Neighbor In-
terpolation with Perception Count Weighting, Nearest Neighbor Interpolation with Equal Weighting, Shep-
ard’s Interpolation, and Microsphere Interpolation) with the optimized parameterizations discovered in Chap-
ter V.1. The seven forgetting algorithms and No Forgetting were individually combined with the four inter-
polation methods and evaluated with 1000 instances each of the twenty paths described in Chapter IV. These
path instances were the same as those used in optimizing the queue forgetting methods (Section V.1).

Estimation error generated from combining each forgetting algorithm or No Forgetting with the four
interpolations methods is presented in Table V.10. The best performing forgetting algorithms were able
to minimize the resultant estimation error for each interpolation method. In the table, the right most two
columns present the mean and standard deviation across interpolation method. Error values were smallest
when the Nearest Neighbor with Perception Count Weighting method was used, except for Random forgetting
where Microsphere Interpolation generated 0.006 less error. The Shepard’s Interpolation method consistently
produced the largest estimation error and the Nearest Neighbor Interpolation with Equal Weighting method
always underperformed the Nearest Neighbor Interpolation with Perception Count Weighting method. The
SIMPLE algorithm and No Forgetting generated nearly identical error values. While SIMPLE outperformed
No Forgetting by 0.004 when Nearest Neighbor Interpolation with Perception Count Weighting was used, the
error values for the other interpolation methods were equivalent.

The rank orderings of the estimation error values were calculated and are presented in Table V.11. The
ranking was performed after rounding to minimize the effects of noise. The ActSimple algorithm generated
the smallest estimation error for each of the four interpolation methods. The SIMPLE Update algorithm

generated the second best error with Nearest Neighbor Interpolation with Perception Count Weighting, but

84

Table V.10: New interpolation methods

No Forgetting Queue Static Queue Dynamic Random ACT-R Simple Simple Update ActSimple Mean Std

NN - Perception Count 9.357 7.559 6.504 8.892 6.451 9.353 6.251 5.608 7.497 1.515
NN - Equal 10.718 7.803 7.015 9.182 6.9 10.718 7.591 5911 823 1.793
Shepard’s 11.485 9.169 7.941 11.98 7.836 11.485 8.586 7.263 9.468 1.896
Microsphere 10.609 7.619 6.842 8.886 6.738 10.609 7.414 5.691 8.051 1.818
Average 10.542 8.037 7.076 9.735 6.981 10.542 7.46 6.118 8311 1.727
Std 0.881 0.761 0.615 1.503 0.6 0.883 0.957 0.774 0.872 0.285

produced the fourth smallest error with the other interpolation methods. While the ACT-R algorithm gener-
ated the third best error with Nearest Neighbor Interpolation with Perception Count Weighting, the forgetting
algorithm achieved the second best error with the remaining interpolation methods. With Nearest Neighbor
Interpolation with Perception Count Weighting, the Queue Dynamic algorithm generated the fourth best es-
timation error and improved to third for the remaining interpolation methods. The Queue Static algorithm
consistently achieved the fifth best error. The Random and SIMPLE algorithms, along with No Forgetting,

never realized a ranking better than sixth.

Table V.11: New interpolation method rankings

No Forgetting Queue Static Queue Dynamic Random ACT-R Simple Simple Update ActSimple Mean Std

NN - Perception Count 8 5 4 6 3 7 2 1 45 2449
NN - Equal 7 5 3 6 2 7 4 1 4375 2.264
Shepard’s 6 5 3 8 2 6 4 1 4375 2.326
Microsphere 7 5 3 6 2 7 4 1 4.375 2.264
Average 7 5 3.25 6.5 225 675 3.5 1 4.406 2.248
Std 0.816 0 0.5 1 0.5 0.5 1 0 0.54 0.394

The estimation error differences between Nearest Neighbor Interpolation with Perception Count Weight-
ing and the other interpolation methods are shown in Table V.12. Positive deviation values reflect a decrease
in performance. Except for the marginal performance gain (-0.006) for the Random forgetting algorithm
and Microsphere Interpolation, the forgetting algorithms and No Forgetting each experienced a decrease in
performance when an interpolation method other than Nearest Neighbor Interpolation with Perception Count
Weighting was employed. The performance decrements were not consistent and ranged from 0.060 to 3.088.
The ActSimple algorithm generated the second smallest average performance decrement, trailing only Queue
Static forgetting. No Forgetting generated increasing estimation error for each of the three alternate interpo-
lation methods. These increases in error suggest the alternate interpolation methods pose a greater challenge
to the forgetting algorithms. Maintaining the estimation error values that were generated with Nearest Neigh-
bor Interpolation with Perception Count Weighting requires the forgetting algorithms to increase the amount
of error reduction afforded by filtering. The estimation error increases for the Queue Static, Queue Dy-

namic, ACT-R, and ActSimple algorithms were all smaller than the respective changes with No Forgetting.

85

These four forgetting algorithms maintained their benefits to WiFi signal strength estimation, improving their
relative benefit when applied to the three new and more challenging existing robotic algorithms. These esti-
mation error trends suggest the algorithms are robust to changes in task. Algorithm performance will degrade

gracefully if a robot’s task changes slightly or is poorly modeled.

Table V.12: New interpolation method performance deviations

No Forgetting Queue Static Queue Dynamic Random ACT-R Simple Simple Update ActSimple Mean Std

NN - Equal 1.361 0.243 0.511 0.29 0.449 1.365 1.34 0.303 0.733 0.523
Shepard’s 2.128 1.609 1.437 3.088 1.386 2.132 2.335 1.655 1971 0.572
Microsphere 1.252 0.06 0.338 -0.006 0.287 1.256 1.163 0.083 0.554 0.567
Average 1.581 0.638 0.762 1.124 0.707 1.585 1.613 0.681 1.086 0.445
Std 0.477 0.847 0.591 1.707 0.593 0.477 0.632 0.851 0.772 0.404

V.3 Alternate Basestation Configurations and Paths

The seven forgetting algorithms were optimized and compared against No Forgetting while filtering WiFi
signal strength readings. During optimization, the Nearest Neighbor Interpolation with Perception Count
Weighting was employed as the existing robotic algorithm. Section V.2 demonstrated how changes to the
existing robotic algorithm (interpolation method) can affect the performance of a forgetting algorithm. Per-
formance can also be influenced by changes to the environment. This section describes an experiment where
the forgetting algorithms, along with No Forgetting, were applied to a set of 44 new paths (labeled path 21 -
64), comprised of new path trajectories, basestation configurations, and number of basestation configuration

changes that occurred during a path.

V.3.1 Description of Paths 21 - 64
The paths used during the optimization process employed two basestation configurations, one with four
basestations and another with eight (Figure IV.1). During the experiment presented in this section, four
new basestation configurations were constructed. These new configurations consisted of: a single basestation
configuration, a two basestation configuration, a three basestation configuration, and a five basestation config-
uration. The signal strength available at each location in the environment for each basestation configuration
is presented in Figure V.4.

The 44 new paths were created with three different types of path trajectories. Twenty of the paths (Path
21 - 40) incorporated an exhaustive pattern through the environment (Figure V.5a). This trajectory is identical
to the trajectory of Paths 1, 2, 5, 6, 9, 10, 13, and 14. The trajectory starts at the center of the environment
and then travels to the lower left corner. From this point, the trajectory exhaustively moves to the upper right

corner of the environment. The trajectory then returns to the lower left corner. Paths using this trajectory

86

(a) 1 basestation

(b) 2 basestations

1

(c) 3 basestations

(d) 5 basestations

Figure V.4: New basestation configurations

Table V.13: Basestation configurations for paths 21 - 64

Path Cfg. ‘ Path Cfg. ‘ Path Cfg. ‘ Path Cfg.
Path 21 1 Path 32 5 Path 43 3 Path54 2-1
Path 22 2 Path 33 1-2 Path 44 5 Path55 3-5
Path 23 3 Path 34 2-1 Path45 1-2 | Path56 5-3
Path 24 5 Path 35 3-5 Path46 2-1 | Path57 1
Path25 1-2 | Path36 5-3 Path47 3-5 | Path 58 2
Path26 2-1 | Path37 1-2-1 | Path48 5-3 | Path59 3
Path27 3-5 | Path38 2-1-2 | Path49 1 Path 60 5
Path28 5-3 | Path39 1-2-3 | Path50 2 Path61 1-2
Path 29 1 Path40 3-2-1 | Path5l1 3 Path62 2-1
Path 30 2 Path 41 1 Path 52 5 Path63 3-5
Path 31 3 Path 42 2 Path53 1-2 | Path64 5-3

made either one or three round trips from the lower left corner to the upper right and back. The second
trajectory (Figure V.5b) is similar to the first, except every other column in the environment is skipped. This
trajectory was used by Paths 41 - 56. The remaining trajectories (Figures V.5c¢ - V.5j) were each randomly
generated. Each of these trajectories were used by only one path (Paths 57 - 64). Paths 21 - 28 and 41 - 48
were 1272 steps long while paths 29 - 40 and 49 - 56 were 3768 steps long. The randomly generated paths
(Paths 57 - 64) were all 3000 steps in length. Twenty of the paths possessed one basestation configuration
change. This change occurred at roughly the midpoint of the paths. Four paths incorporated two basestation
configuration changes. These four paths changed configurations at approximately the one third and two thirds

points along the path. Table V.13 presents the basestation configurations employed by each path.

87

et R ER
m\\ _I_ H \\Im \H _IHHH_\\\m : 1T ﬁ|
e RelliEicti i
, , T T
,] £ S| g
i SN T
W S T
T e e
- HHH-L A
| R B 7
| S i e S A :
_ | < REEEEN manpll |||L,ﬂ| W\lwfl_m_ I
& [T - &0 B L S
_ 2 : : : g xﬁ man
] m ks [
_) 2 HFHEH Bl = TH]
[=2 FHT rH W H T EEgE
| SEI s cesEnEEe) E T
| R PR EH R R S IR et
| QPR e e N 1
: R BT ERERRjRAENEEE
: £ HEl %r‘mr — e B
: 2 W EEENE = ,
| 2 SRR 5 CoHE
_ A
| , HEL i O
CTT T EEBRIEEIE
Tl L
RS i M
b e A i
e [A A A
HHlA, [IT\H_H = HEOTHTHEEET H Illlﬁ
:|HH1 _I ﬁHHlm Il_Ll_

i

i

(h) Path 62 (i) Path 63 (j) Path 64

(g) Path 61

Figure V.5: New path trajectories

88

V.3.2 Forgetting Performance with Paths 21 - 64

The seven forgetting algorithms and No Forgetting were applied to 100 instances of each new path. Testing
conditions were identical to those used during optimization except for the actual paths. The Nearest Neighbor
Interpolation with Perception Count Weighting was used as the existing robotic algorithm.

The resultant individual average number of recallable readings are presented in Table V.14. Ranking
values were computed after rounding to minimize the effects of noise. The rank ordering when only paths
21 - 64 were included in the results (Table V.14) was identical to the rank ordering when only paths 1 - 20
were tested (Table V.5). No Forgetting averaged the largest number of recallable readings (1090.794), with
SIMPLE averaging nearly the same amount (1090.759). ActSimple averaged the second least number of
recallable readings (600.877) and the Random forgetting algorithm filtered the most (583.108). The Random
and ActSimple algorithms also generated the smallest standard deviations (32.05 and 71.07, respectively).

The resultant individual estimation error results are presented in Table V.15. The rank ordering of the
forgetting algorithms and No Forgetting differed from the rank orderings when the forgetting algorithms and
No Forgetting were applied to paths 1 - 20 (Table V.6), unlike the average number of recallable reading count
rankings. The ActSimple algorithm maintained the smallest estimation error (5.144), but SIMPLE Update
moved from second place to sixth. ActSimple’s estimation error was 5.448 when applied to paths 1 - 20
and decreased to 5.144 when applied to paths 21 - 64. The SIMPLE Update algorithm’s estimation error
increased from 6.058 to 8.708. The ACT-R algorithm generated a third place estimation error (6.276) with
paths 1 - 20, but improved to second place by producing an estimation error of 5.277 with paths 21 - 64. Both
Queue Static and Queue Dynamic improved their rankings by one despite generating larger estimation error
for paths 21 - 64. Queue Static produced an estimation error of 7.382 for paths 1 - 20 and 7.571 for paths 21 -
64. The Queue Dynamic algorithm generated an estimation error of 6.319 for paths 1- 20 and 6.675 for paths
21 - 64. No Forgetting and the SIMPLE algorithm tied for the largest estimation error (9.058) in a similar
fashion to their performance with paths 1 - 20.

The statistical significance of the relative estimation error performance results from Table V.15 was tested
with two Wilcoxon signed rank tests and are presented in Table V.16. These tests were performed in a
similar fashion to those presented in Chapter V.1.3. The first test, labeled Less than No Forgetting, tested
if the forgetting algorithms listed in the left-most column generated less average estimation error than No
Forgetting. The second test, labeled ActSimple less than, tested if ActSimple resulted is less estimation error
than No Forgetting and the other forgetting algorithms. Both tests were singled-sided and used an o of 0.05.

Results that were found to be significant are indicated in bold and individual pairings that were not performed

are marked with a symbol. The tests included the estimation error results from all 44 paths.

89

Table V.14: Average number of recallable readings for paths 21 - 64

No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Path 21 - 1 Cycle 1 Basestations 867.76 776 803 597 629.62 867.7 718.59 684.02
Path 22 - 1 Cycle 2 Basestations 877.33 776 803 597 630.58 877.32 781.46 687.76
Path 23 - 1 Cycle 3 Basestations 907.48 776 803 597 631.11 907.41 832.66 684.53
Path 24 - 1 Cycle 5 Basestations 944.44 776 803 597 63141 944.44 943.33 686.33
Path 25 - 1 Cycle 1 - 2 Basestations 1017.46 776 803 597 641.24 1017.43 712.73 675.23
Path 26 - 1 Cycle 2 - 1 Basestations 1019.39 776 803 597 639.84 1019.35 698.69 675.19
Path 27 - 1 Cycle 3 - 5 Basestations 1013.18 776 803 597 631.79 1013.13 864.31 675.33
Path 28 - 1 Cycle 5 - 3 Basestations 1015.34 776 803 597 632.01 10153 904.21 674.49
Path 29 - 3 Cycles 1 Basestations 1322.37 776 803 597 775.26 1322.34 1171.52 725.32
Path 30 - 3 Cycles 2 Basestations 1358.58 776 803 597 78294 1358.49 1262.24 717.62
Path 31 - 3 Cycles 3 Basestations 1455.92 776 803 597 800.62 1455.88 1379.26 711.99
Path 32 - 3 Cycles 5 Basestations 1588.12 776 803 597 82591 1588.02 1577.04 696.9
Path 33 - 3 Cycles 1 - 2 Basestations 1619.48 776 803 597 761.82 1619.36 1080.82 651.95
Path 34 - 3 Cycles 2 - 1 Basestations 1617.03 776 803 597 758.02 1616.97 1035.48 661.49
Path 35 - 3 Cycles 3 - 5 Basestations 1689.26 776 803 597 806.93 1689.19 1388.25 656.67
Path 36 - 3 Cycles 5 - 3 Basestations 1686.57 776 803 597 787.37 1686.52 1240.63 665.66
Path 37 - 3 Cycles 1 - 2 - 1 Basestations ~ 1594.34 776 803 597 7545 1594.34 1121.57 664.7
Path 38 - 3 Cycles 2 - 1 - 2 Basestations 1611.8 776 803 597 759.65 1611.74 1133.04 655.19
Path 39 - 3 Cycles 1 - 2 - 3 Basestations ~ 1644.36 776 803 597 781.42 1644.32 1146.95 662.66
Path 40 - 3 Cycles 3 - 2 - 1 Basestations 1647.4 776 803 597 804.7 1647.34 1148.84 658.19
Path 41 - 1 Cycle 1 Basestations 478.14 478.14 478.14 478.14 449.12 478.12 478.14 471.75
Path 42 - 1 Cycle 2 Basestations 483.88 483.88 483.88 483.88 451.04 483.88 483.88 483.24
Path 43 - 1 Cycle 3 Basestations 499.63 499.63 499.63 499.63 466.54 499.61 499.63 498.68
Path 44 - 1 Cycle 5 Basestations 521.68 521.68 521.68 521.68 483.87 521.68 521.68 520.74
Path 45 - 1 Cycle 1 - 2 Basestations 558.72 558.72 558.72 558.72 519.75 558.69 558.72 554.78
Path 46 - 1 Cycle 2 - 1 Basestations 558.72 558.72 558.72 55872 519.22 558.69 558.72 554.71
Path 47 - 1 Cycle 3 - 5 Basestations 560.23 560.23 560.23 560.23 514.55 560.23 560.23 559.3
Path 48 - 1 Cycle 5 - 3 Basestations 559.31 559.31 559.31 559.31 514.47 559.3 559.31 558.29
Path 49 - 3 Cycle 1 Basestations 718.89 718.89 718.89 597 490.36 718.87 718.89 514.79
Path 50 - 3 Cycle 2 Basestations 745.78 745.77 745.78 597 5024 74574 745.78 521.64
Path 51 - 3 Cycle 3 Basestations 795.85 775.6 792.73 597 52556 795.84 795.85 535.33
Path 52 - 3 Cycle 5 Basestations 872.79 776 803 597 559.69 872.77 872.79 555.85
Path 53 - 3 Cycle 1 - 2 Basestations 877.86 776 803 597 57029 877.83 858.72 544.54
Path 54 - 3 Cycle 2 - 1 Basestations 878.81 776 803 597 559.22 878.79 844.19 532.83
Path 55 - 3 Cycle 3 - 5 Basestations 927.95 776 803 597 604.4 927.94 922.3 577.67
Path 56 - 3 Cycle 5 - 3 Basestations 925.63 776 803 597 567.56 925.63 925.63 542.57
Path 57 - Random 1 Basestations 1106.44 776 803 597 602.72 1106.39 905.6 629.61
Path 58 - Random 2 Basestations 1148.29 776 803 597 62252 1148.25 962.87 600.2
Path 59 - Random 3 Basestations 1234.58 776 803 597 675.58 1234.57 1070.24 636.7
Path 60 - Random 5 Basestations 1287.83 776 803 597 63892 1287.79 987.12 569.79
Path 61 - Random 1 - 2 Basestations 1290.66 776 803 597 662.71 1290.61 739.02 584.82
Path 62 - Random 2 - 1 Basestations 1193.83 776 803 597 578.01 1193.79 696.49 564.84
Path 63 - Random-3 - 5 Basestations 1214.35 776 803 597 620.73 121434 910.16 548.07
Path 64 - Random 5 - 3 Basestations 1291.32 776 803 597 585.67 1291.28 854.76 539.75
Average 1090.794 724.114 744.118 583.108 630.723 1090.759 897.408 600.877
Std 398.434 101.215 111.859 32.05 116.051 398.417 272.904 71.07
Rank 1 5 4 8 6 2 3 7

90

Table V.15: Average estimation error for paths 21 - 64

No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Path 21 - 1 Cycle 1 Basestations 4.063 4.539 4.061 4606 4.106 4.063 6.563 4.13
Path 22 - 1 Cycle 2 Basestations 4.13 4.627 4.148 4759 4229 413 5.766 4.181
Path 23 - 1 Cycle 3 Basestations 4313 5.1 4.436 5.189 4536 4313 5.566 4518
Path 24 - 1 Cycle 5 Basestations 4.573 5.525 4.741 5713 4925 4573 4.578 4.841
Path 25 - 1 Cycle 1 - 2 Basestations 14.371 10.038 8.689 11.895 5.384 14.371 12.255 55
Path 26 - 1 Cycle 2 - 1 Basestations 14.529 10.057 8.694 11.982 5.242 14.531 15.777 5.397
Path 27 - 1 Cycle 3 - 5 Basestations 10.727 8.629 7.886 10.097 5.01 10.728 6.603 5.691
Path 28 - 1 Cycle 5 - 3 Basestations 11.141 8.596 7.843 10.184 4.564 11.141 12.931 5.309
Path 29 - 3 Cycles 1 Basestations 3.798 5.851 3.57 5.059 1443 3.799 6.711 1.765
Path 30 - 3 Cycles 2 Basestations 3.827 4.981 3.756 516 1599 3.827 5.768 1.859
Path 31 - 3 Cycles 3 Basestations 3.82 4.939 4.107 5516 1.847 3.82 5.277 2.28
Path 32 - 3 Cycles 5 Basestations 3.816 5.507 4.6 6.104 2238 3.817 3.799 2.809
Path 33 - 3 Cycles 1 - 2 Basestations 13.999 4.877 3.851 6.828 2.763 14 7.84 2.676
Path 34 - 3 Cycles 2 - 1 Basestations 14.119 4.666 3.649 6.71 2454 1412 10.439 2.282
Path 35 - 3 Cycles 3 - 5 Basestations 10.023 5.406 4.577 6.903 2.639 10.023 4.644 3.288
Path 36 - 3 Cycles 5 - 3 Basestations 10.643 4912 4.095 6.602 2.089 10.643 6.445 2484
Path 37 - 3 Cycles 1 - 2 - 1 Basestations 10.372 4.421 3.838 7.682 1919 10.372 9.958 2.245
Path 38 - 3 Cycles 2 - 1 - 2 Basestations 10.253 4.599 3.992 7.682 2.127 10.254 7.262 2.687
Path 39 - 3 Cycles 1 - 2 - 3 Basestations 10.047 4.986 4.24 6.78 2465 10.047 5.903 2.847
Path 40 - 3 Cycles 3 - 2 - 1 Basestations 15.074 4.486 3.889 8.122 6.468 15.075 14.761 2.645
Path 41 - 1 Cycle 1 Basestations 4335 4.335 4.335 4335 4267 4335 4.335 4.335
Path 42 - 1 Cycle 2 Basestations 4.261 4.261 4.261 4261 4266 4.261 4.261 4.261
Path 43 - 1 Cycle 3 Basestations 4.76 4.76 4.76 476 4779 476 4.76 4.764
Path 44 - 1 Cycle 5 Basestations 5.39 5.39 5.39 539 5431 539 5.39 5.391
Path 45 - 1 Cycle 1 - 2 Basestations 15.135 15.135 15.135 15.135 13.635 15.133 15.135 15.018
Path 46 - 1 Cycle 2 - 1 Basestations 15.188 15.188 15.188 15.188 13.502 15.187 15.188 15.061
Path 47 - 1 Cycle 3 - 5 Basestations 11.306 11.306 11.306 11.306 10.146 11.306 11.306 11.309
Path 48 - 1 Cycle 5 - 3 Basestations 11.631 11.631 11.631 11.631 10.324 11.632 11.631 11.635
Path 49 - 3 Cycles 1 Basestations 4.145 4.145 4.145 4883 235 4144 4.145 2.644
Path 50 - 3 Cycles 2 Basestations 4.069 4.069 4.069 4.98 243 4.07 4.069 2.681
Path 51 - 3 Cycles 3 Basestations 4.453 4.665 4.454 5574 2961 4453 4.453 3.179
Path 52 - 3 Cycles 5 Basestations 4.808 6.182 4.625 6.329 3.596 4.808 4.808 3.717
Path 53 - 3 Cycles 1 - 2 Basestations 14.697 12.842 13.343 12.509 10.299 14.697 13.836 8.429
Path 54 - 3 Cycles 2 - 1 Basestations 14.843 13.241 13.401 12.724 9.435 14.844 12.917 7.601
Path 55 - 3 Cycles 3 - 5 Basestations 10.853 10.548 10.049 10.234 8.927 10.854 10.43 8.052
Path 56 - 3 Cycles 5 - 3 Basestations 11.237 11.25 10.057 10.167 6.946 11.237 11.237 5.632
Path 57 - Random 1 Basestation 3.844 6.211 3.532 5467 1.683 3.845 7.186 2.051
Path 58 - Random 2 Basestation 3.879 6.844 4.322 5.791 2.653 3.879 6.597 2.799
Path 59 - Random 3 Basestation 4.025 6.539 4.29 6.171 2.549 4.025 6.243 2.585
Path 60 - Random 5 Basestation 4.671 8.3 6.703 7742 5.138 4.672 7.926 4.782
Path 61 - Random 1 - 2 Basestation 11.615 7.006 5.13 9.235 6.152 11.616 10.761 5.187
Path 62 - Random 2 - 1 Basestation 16.497 9.058 6.078 14.752 10.373 16.498 12.927 10.402
Path 63 - Random 3 - 5 Basestation 7.198 15.908 14.033 9.622 12.781 17.198 13.99 6.954
Path 64 - Random 5 - 3 Basestation 8.927 7.08 5.498 9.695 6.224 8.927 8.42 5.526
Average 9.058 7.571 6.675 8.28 5277 9.058 8.708 5.144
Std 4.408 3.473 3.645 3.162 3.564 4.408 3.801 3.439
Rank 7 4 3 5 2 7 6 1

91

Table V.16: Comparison of estimation error for paths 21 - 64

Less than ActSimple

No Forgettting less than
n v P n v p
No Forgetting 44 71.0 <0.0001
Queue Static 35 203.0 0.0337 44 340 <0.0001
Queue Dynamic 34 108.0 0.0004 44 118.0 <0.0001
Random 36 246.0 0.0881 44 21.0 <0.0001
ACT-R 44 71.0 <0.0001 44 600.0 0.8897
SIMPLE 38 609.5 0.9999 44 71.0 <0.0001
SIMPLE Update 31 221.0 0.3042 44 30.0 <0.0001
ActSimple 44 71.0 <0.0001

The reduction in estimation error when compared to No Forgetting (column Less than No Forgetting) was
significant for Queue Static (v = 203.0, p = 0.0337), Queue Dynamic (v = 108.0, p = 0.0004), ACT-R (v =
71.0, p < 0.0001), and ActSimple (v =71.0, p < 0.0001). The results for Random forgetting (v = 246.0, p =
0.0881), SIMPLE (v =609.5, p = 0.9999), and SIMPLE Update (v =221.0, p = 0.3042) were not significant.
These results suggest than the ability for Human-Inspired Forgetting algorithms to improve performance
relative to No Forgetting was not limited to only the original twenty paths tested in Chapter V.1.3. Despite
changing multiple path and environmental properties, four of the forgetting algorithms were able to generate
less estimation error than No Forgetting. Forgetting algorithms may possess the ability to improve system
accuracy even for conditions for which they were not directly optimized.

The second Wilcoxon signed rank test (column ActSimple less than) tested if ActSimple generated less
estimation error than No Forgetting and the other forgetting algorithms. The results were significant for
No Forgetting (v = 71.0, p < 0.0001), Queue Static (v = 34.0, p < 0.0001), Queue Dynamic (v = 118.0,
p < 0.0001), Random (21.0, p < 0.0001), SIMPLE (v = 71.0, p < 0.0001), and SIMPLE Update (v = 30.0,
p < 0.0001). However, comparing ActSimple to ACT-R was not significant (v = 600.0, p = 0.8897). These
results suggest that trace-based decay may play a role in the ability for forgetting algorithms to improve
system accuracy.

The effect of dynamism on the results was explored by using a single-sided Wilcoxon rank sum test
to determine if No Forgetting and the forgetting algorithms generated less estimation error on static paths as
compared to dynamic paths. Results from this test are presented in Table V.17. The evaluation was conducted
in an identical fashion to the test presented in Chapter V.1.3, and was performed with o = 0.05, n4 = 20, and
ng = 24.

The difference in average estimation error between static and dynamic paths was significant for No For-

getting and all of the forgetting algorithms. No Forgetting (w = 0.0, p < 0.0001), Queue Static (w = 104.0,

92

Table V.17: The effects of dynamism on estimation error for paths 21 - 64

w |y
No Forgetting 0.0 <0.0001
Queue Static 104.0 0.0005
Queue Dynamic ~ 123.0 0.0026
Random 7.0 <0.0001
ACT-R 105.0 0.0006
SIMPLE 0.0 <0.0001
SIMPLE Update 29.0 <0.0001
ActSimple 113.0 0.0011

p = 0.0005), Queue Dynamic (w = 123.0, p = 0.0026), Random (w = 7.0, p < 0.0001), ACT-R (w = 105.0,
p = 0.0006), SIMPLE (w = 0.0, p < 0.0001), SIMPLE Update (w = 29.0, p < 0.0001), and ActSimple
(w =113.0, p = 0.0011) each generated less estimation error when applied to only static paths as com-
pared to being applied to only dynamic paths. These results suggest that static conditions may provide fewer
challenges to mobile robots or are possibly more forgiving of poor performance.

Dynamism may affect the relative estimation error generated by No Forgetting and the forgetting algo-
rithms. Four single-sided Wilcoxon signed rank tests were performed to test the difference in estimation error
that results from applying No Forgetting and the forgetting algorithms to just static paths and to just dynamic
paths. Results from these tests are presented in Table V.18. The first test (Less than No Forgetting - Static)
evaluated if the forgetting algorithms listed in the left-most column generated less estimation error when only
results from the twenty static paths were considered. The second test (Less than No Forgetting - Dynamic)
evaluated if the forgetting algorithms generated less estimation error than No Forgetting when only results
from the twenty four dynamic paths were included. The third test (ActSimple less than - Static) evaluated
if ActSimple resulted in less estimation error than No Forgetting and the other forgetting algorithms when
applied to only the static paths. The fourth test (ActSimple less than - Dynamic) evaluated if ActSimple
generated less estimation error than No Forgetting and the other forgetting algorithms when applied to only
dynamic paths. The a value was 0.05 for each test.

The first Wilcoxon signed rank test in Table V.18 (column Less than No Forgetting - Static) evaluated if
the forgetting algorithms generated less estimation error than No Forgetting on the new static paths. Only the
results from ActSimple (v =45.0, p =0.0120) and ACT-R (v =40.0, p = 0.0068) were significant. However,
the results from the second Wilcoxon signed rank test (column Less than No Forgetting - Dynamic) showed
a different trend. The results from all forgetting algorithms except for SIMPLE were significant. Queue
Static (v = 18.0, p = 0.0002), Queue Dynamic (v = 16.0, p = 0.0002), Random (v = 13.0, p = 0.0001),
ACT-R (v =11.0, p < 0.0001), SIMPLE Update (v = 34.0, p = 0.0062), and ActSimple (v = 3.0, p <

93

Table V.18: Estimation error performance on static and dynamic paths for paths 21 - 64

Less than No Forgettting ActSimple less than
Static Dynamic Static Dynamic
n v p n v p n v p n v p
No Forgetting 20 450 0.0120 24 3.0 <0.0001

Queue Static 15 120.0 1.0000 20 18.0 0.0002 20 10.0 <0.0001 24 8.0 <0.0001
Queue Dynamic 14 74.0 09137 20 16.0 0.0002 20 36.0 0.0042 24 30.0 0.0001

Random 16 136.0 1.0000 20 13.0 0.0001 20 10.0 <0.0001 24 3.0 <0.0001
ACT-R 20 40.0 0.0068 24 11.0 <0.0001 20 165.0 0.9893 24 1440 0.4387
SIMPLE 17 136.5 0.9988 21 178.5 09872 20 450 0.0120 24 3.0 <0.0001
SIMPLE Update 12 76.0 0.9995 19 34.0 0.0062 20 15.0 0.0001 24 3.0 <0.0001
ActSimple 20 450 0.0120 24 3.0 <0.0001

0.0001) each generated less estimation error than No Forgetting when processing only the twenty four new
dynamic paths. These results suggest than Human-Inspired Forgetting based forgetting algorithms may be
an effective approach to improving system accuracy in dynamic domains, but trace-based decay may provide
some forgetting algorithms the ability to improve performance in certain static environments as well.

The third Wilcoxon signed rank test in Table V.18 (column ActSimple less than - Static) evaluated if
ActSimple generated less estimation error than No Forgetting and the other forgetting algorithms when only
applied to the new static paths. Results from No Forgetting and all of the other forgetting algorithms, except
ACT-R (v = 165.0, p = 0.9893), were significant. No Forgetting (v = 45.0, p = 0.0120), Queue Static
(v =10.0, p < 0.0001), Queue Dynamic (v = 36.0, p = 0.0042), Random (v = 10.0, p < 0.0001), SIMPLE
(v =45.0, p = 0.0120), and SIMPLE Update (v = 15.0, p = 0.0001) each generated more estimation error
than ActSimple when applied to only the new static paths. The results from the fourth Wilcoxon signed rank
test (column ActSimple less than - Dynamic) showed a similar trend. Except for ACT-R (v = 144.0, p =
0.4387), the comparisons against No Forgetting and the remaining forgetting algorithms were significant. No
Forgetting (v = 3.0, p < 0.0001), Queue Static (v = 8.0, p < 0.0001), Queue Dynamic (v =30.0, p =0.0001),
Random (v = 3.0, p < 0.0001), SIMPLE (v = 3.0, p < 0.0001), and SIMPLE Update (v = 3.0, p < 0.0001)
were all found to generate more estimation error when processing the new dynamic paths. These results show
ActSimple improving system accuracy in both static and dynamic conditions as compared to No Forgetting
and all of the forgetting algorithms except ACT-R. ActSimple and ACT-R both incorporate trace-based decay
and these results suggest that this method of implementing forgetting in robotic systems may be an effective
approach to improving performance across a wide range of realistic conditions that could be presented to

robotic systems.

94

V.3.3 Summary

The forgetting algorithms and No Forgetting were tested with a set of 44 new paths, labeled paths 21 - 64.
These paths possessed different trajectories, basestation configurations, and number of basestation configura-
tion changes, but the forgetting algorithms (except for SIMPLE) were able to generate less average absolute
estimation error than No Forgetting.

While the relative estimation performance of the forgetting algorithms varied from the original twenty
paths, the ActSimple algorithm produced the smallest estimation error for both sets of paths (Tables V.6 and V.15).
SIMPLE Update, which generated the second best performance for paths 1 - 20, only realized the sixth best
estimation error for the new paths. These results suggest that forgetting algorithms embodying Human-
Inspired Forgetting possess the ability to improve accuracy despite changing environmental conditions and
task properties. However, the relative benefits of the forgetting algorithms may not be constant. The Act-
Simple algorithm appears to capitalize on its combination of trace-based decay and similarity-interference to
generate improved filtering capabilities. The SIMPLE Update algorithm generated less estimation error than
ACT-R when applied to paths 1 - 20 and ACT-R averaged less estimation error than SIMPLE Update when
applied to paths 21 - 64, but ActSimple realized the least amount of estimation error for both groups of paths.

While the ActSimple algorithm generated the smallest amount of average absolute estimation error, it
possess the largest number of parameters. The additional parameters in ActSimple may lengthen the amount
of time required to optimize the algorithm for a new task or domain, but the results suggest that the extra
parameters may not cause over-learning by the algorithm. A comparison of each algorithm’s complexity
(number of parameters) and the algorithm’s resultant average absolute estimation error is presented in Fig-
ure V.6. This graph uses the same key as Figure V.2, but presents the combined results of all 44 paths (paths
21 - 64), the twenty new static paths, and the 24 new dynamic paths.

No Forgetting and the forgetting algorithms each generated less estimation error when operating with just
the static paths as compared to the full set of paths. This trend is identical to the trend generated by paths 1 -
20. No Forgetting and the forgetting algorithms also generated more error when applied to the dynamic paths,
than when applied to the full set of 44 paths. Dynamism appears to result in more challenging conditions
for both No Forgetting and the forgetting algorithms, although the magnitude of the effects do not appear
to be consistent. The estimation error difference from applying a forgetting algorithm (or No Forgetting) to
only static paths versus only dynamic paths varies across No Forgetting and the forgetting algorithms. No
Forgetting and SIMPLE resulted in the largest performance differences.

ACT-R and ActSimple generated less average absolute estimation error than No Forgetting, when only ap-

plied to the static paths. This result suggests that at least under certain conditions, Human-Inspired Forgetting

95

14

124 Algorithm

4 No Forgetting

H Queue Static

A Queue Dynamic
X Random
XACT-R

¢ = SIMPLE

+ SIMPLE Update
@ ActSimple

10 A

+

Paths
W All Paths
M Static Paths
| X + PY Dynamic Paths

Average Absolute Estimation Error

2 T T T
0 1 2 3 4 5 6 7 8 9 10
Number of Parameters

Figure V.6: Number of parameters vs. average absolute estimation error for paths 21 - 64

has the potential to improve performance in static environments. The filtering afforded by these algorithms
may allow robotic systems to better reject noise inherent in complex domains, resulting in greater accuracy.

The average number of recallable readings metric when No Forgetting and the forgetting algorithms were
applied to paths 21- 64 was also collected (Table V.14). The rank ordering of the number of recallable
readings resulting from each forgetting algorithm and No Forgetting was identical to when the forgetting
algorithms were applied to paths 1 - 20. No Forgetting averaged the largest number of recallable readings,
Random forgetting averaged the least, and ActSimple averaged the second smallest number of recallable
readings. The filtering provided by a forgetting algorithm is only beneficial if the resultant estimation error
either improves or only increases slightly. A graph comparing the average number of recallable readings
and the average absolute estimation error from No Forgetting and the forgetting algorithms is presented in
Figure V.7.

The average number of recallable readings generated by No Forgetting and each forgetting algorithm was
smallest when only static paths were considered. As a result, the dynamic paths resulted in larger numbers
of recallable readings. The difference in the number of recallable readings between static and dynamic con-
ditions varied across the forgetting algorithms. No Forgetting and SIMPLE experienced a relatively large

difference, while ActSimple and SIMPLE Update generated more consistent values (Figure V.7). When ap-

96

14

12

Algorithm
No Forgetting
M Queue Static
A Queue Dynamic
X Random
Py XACT-R
= SIMPLE
+ SIMPLE Update
u @ ActSimple

=
o

Paths
M All Paths
M Static paths
Dynamic Paths

Average Absolute Estimation Error

2 T T T T T T
500 600 700 800 900 1000 1100 1200

Average Number of Recallable Readings

Figure V.7: Average number of recallable readings vs. average estimation error for paths 21 - 64

plied to each of the three sets of paths, ActSimple and ACT-R generated the least amount of average absolute
estimation error and fewer recallable readings than No Forgetting and all other forgetting algorithms, except
for Random forgetting. These results suggest that the application of Human-Inspired Forgetting algorithms
may have the potential to increase accuracy, while also reducing the number of data points that require pro-

cessing by potentially computationally expensive existing robotic algorithms.

V4 Summary

This chapter presented a set of experiments where the seven forgetting algorithms described in Chapter IV
were optimized and tested under three sets of conditions. Two metrics were collected, the average absolute
estimation error resulting from a robot estimating the WiFi signal strength at each point within a simulated
environment, and the average number of recallable WiFi signal strength readings that were presented to the
existing robotic algorithms.

Results from this chapter have shown that simply providing additional data to an existing robotic algo-
rithm may not be an effective approach to improving accuracy. After the forgetting algorithms were op-
timized, they were tested with a set of twenty paths. While No Forgetting generated the largest number
of recallable readings, No Forgetting tied for the largest amount of average estimation error. Conversely,

ActSimple filtered the second most number of readings, but still resulted in the smallest amount of average

97

estimation error. The selectivity of an information filter (forgetting algorithm) appears critical to the effec-
tiveness and accuracy of a system. Intelligent removal of detrimental information has the potential to improve
system accuracy and reduce the volume of data requiring potentially computationally expensive processing.

Mobile robots operating in complex and dynamic domains are frequently presented with new challenges
and must adjust. The tasks performed by these systems are not static and constantly adapt to changing
conditions. The ability for the tested forgetting algorithms to reduce average estimation error despite small
changes to task was evaluated by combing the algorithms with three additional interpolation methods. No
Forgetting generally resulted in or tied for the largest amount of estimation error. Conversely, ActSimple
consistently produced the smallest amount of estimation error. ActSimple and Human-Inspired Forgetting
appear to degrade gracefully in the presence of small changes to task.

In addition to adapting to changing tasks, mobile robots must also perform well in the face of changing
environmental conditions. The forgetting algorithms were tested with a set of 44 additional paths, comprised
of new trajectories, basestation configurations, and basestation configuration changes. The relative perfor-
mance of the forgetting algorithms changed when applied to these new paths, but No Forgetting once again
tied for the largest amount of estimation error, while ActSimple resulted in the smallest amount of estima-
tion error. ActSimple did not produce the smallest amount of estimation error for every single path, but on
average, outperformed No Forgetting and the other forgetting algorithms. No forgetting algorithm may be
capable of guaranteeing the best performance on any one specific set of condition. Average performance is
often more important to mobile robots, especially if extreme performance degradations can be avoided.

The results presented in this chapter suggest that Human-Inspired Forgetting may be an effective and vi-
able means of simultaneously improving system accuracy, while minimizing the number of points that must
be processed by potentially computationally expensive existing robotic algorithms. No Forgetting resulted
in at least a tie for the largest amount of estimation error, despite never filtering a signal strength reading, in
nearly every tested condition. The forgetting algorithms employing Human-Inspired Forgetting, excluding
SIMPLE, were able to simultaneously filter data, while improving accuracy. ActSimple was able to consis-
tently generate the smallest amount of estimation error, while filtering the largest number of readings. These
results suggest that ActSimple is an effective forgetting algorithm that may also be resistant to changes in
task and environment. When operating within complex and dynamic domains, algorithms employed by mo-
bile robots must be capable of operating across a diverse array of conditions and degrade gracefully in the

presence of unexpected situations.

98

CHAPTER VI

Real World Testing

The real world poses many challenges that are difficult to model or account for in simulation. Robotic
algorithms require real world testing to verify that unintended properties of a simulator do not mask true
performance levels or unanticipated real world challenges do not negate an algorithm’s benefits. This chapter
presents an experiment where ActSimple and the other six forgetting algorithms were applied to real world
WiFi readings. The experiment was conducted in an identical manner to previous simulation evaluations
(Chapter V), except that a real robot collected the WiFi signal data from an outdoor environment and a

collection of new paths and basestation configurations were employed.

VI.1 Experimental Design

Before the forgetting algorithms could be applied to any real world WiFi data, truth information was required
in order to calculate the estimation error values. The real world is presently too difficult to model completely,
forcing truth information to be collected empirically. Initially, the experiment was to be conducted on Van-
derbilt University’s campus, but the lack of control and repeatability over WiFi quality in a city environment
made this approach impractical. WiFi interference can result from numerous sources, including cell phones,
microwaves, computers, air conditioners, other WiFi equipment, and heavy machinery. While the forgetting
algorithms were tasked with removing the effects of this interference during testing, uncontrolled interference
prevents the generation of truth information guaranteed to be consistent and valid throughout the experiment.

Instead, the experiment was performed at the Colson Hollow group camp grounds, an area located within
the Land Between the Lakes national recreation area. Colson Hollow consists of a large grassy field sur-
rounded by forests on three sides and a river on the fourth. The campgrounds are isolated from many sources
of WiFi interference, while providing a large open experimental area. Power lines are present at Colson Hol-
low and a radio transmitter is within a few miles of the location, but the reliability of collected truth data was
greater than if readings were collected on Vanderbilt’s campus.

Similar to the simulation-based optimization experiment (Chapter V), the real world experiment involved
two WiFi basestation configurations and a large number of WiFi sampling locations, see Figure VI.1. Due
to logistical constraints, changes to the environment were made. The sampling area was 300 ft. by 300 ft.
and samples were taken along a ten by ten grid. The WiFi basestations were situated 25 ft. outside of the
sampling region and were placed on approximately 5 ft. tall wooden stands.

A Pioneer 3DX robot equipped with a WiFi enabled laptop computer recorded the readings. While the

99

300 ft.
7
)

Figure VI.1: Real world experiment map. The red points represent sample locations. The blue circles repre-
sent WiFi basestations that were always present in both configurations, blue rings represent WiFi basestations
present in the seven basestation configuration, and the blue cross represents a basestation present only in the
four basestation configuration.

robot was running during data collection, the ground conditions prevented the robot from driving through
the environment. Sampling was performed by manually placing the robot at each location. Samples were
collected with a Dell TrueMobile 1150 Series Mini PCI card (Dell, 2003) and the NetStumbler 0.4.0 (Net-
Stumbler, 2002) WiFi monitoring program. All samples required for a particular sampling location and
basestation configuration were collected at one time for a 6 minute interval with a frequency of up to 2 Hz.
Actual sampling frequency was dependent on individual WiFi basestation response times.

During the evaluation, readings were selected randomly from the samples recorded for a particular loca-
tion and basestation configuration. This approach was employed to minimize the effects of any interference
present in the environment and to increase the efficiency of data collection. The Colson Hollow location
minimized the effects of persistent, low frequency noise. In the ideal case, no noise would be present and the
process of collecting WiFi readings in batches would not affect the results. However, if noise was present,
randomly selecting readings would minimize these effects. The collection of readings in batches permitted a
larger number of paths to be tested with fewer recorded samples.

The NetStumbler application created sampling log files for each combination of location and basestation
configuration in Wi-Scan file format. NetStumbler actively sends WiFi packets to detected basestations in
order to determine the available signal level, noise level, and Signal to Noise Ratio (SNR), timestamped to
the second. In the generated files, samples are recorded when available, instead of at a set frequency.

Before the data could be evaluated, the raw logs required processing, which consisted of several steps. For
each second within the logging time window for a particular location and basestation combination, the reading
with the highest SNR value was selected. If no readings were available for a particular second, a value of 0

dB was assigned. The NetStumbler program occasionally produced samples where both the reported signal

100

strength and the noise level were -32618. These values are erroneous and were discarded before processing
began. The SNR values were then multiplied by 2.0, incremented by 1.0, and then clipped to the range 1 to
100. This conversion process was performed so that the results are on the same scale as the results generated
during optimization. While the clipping process does result in some lost information, the robot’s primary
goal is to locate problematic areas possessing poor WiFi capabilities. As a rule of thumb, a SNR over 40 dB
is considered to be very good. The clipping process only affects readings with a SNR over 50 dB, readings
already indicative of areas not experiencing degraded WiFi communications. As the final processing step,
a Max 2 filter was applied to the data. Resulting from the active WiFi signal strength measuring technique
employed by the NetStumbler program, the generated readings possessed an unnecessarily large number of
minimum value readings. These extra readings resulted not from weak signal strength, but from basestations
occasionally not reporting strength values at a high enough frequency to ensure valid data at every time
stamp. The Max 2 filter tested each reading and if the previous reading was larger, then the current reading
was changed to the value of the previous reading. The Max 2 filter only operated on the pre-filtered data,

otherwise, the readings would have been monotonically increasing.

VI.2 Real World Results

All of the real world data was collected during a four day period in June, 2010. The entirety of the data was
used to calculate the truth data. After the readings were processed as described in Section VI.1, the readings
for each combination of location and basestation configuration were averaged. Results from this averaging
process are shown in Figures VI.2a and VI.2b. In these figures, black represents areas possessing a greater
SNR. The presence of the basestations in each condition can be clearly observed, although exact basestation
positions are not always easy to determine. Interference appears to have slightly affected the top and right
portions of the seven basestation truth map, and to a lesser extent the truth map for the four basestation con-
figuration. This interference resulted in weaker SNR values and a greater difficulty in determining basestation
positions. Definitive differences between areas of high SNR and areas with low SNR can be observed.

The forgetting algorithms were tested with a set of eighteen new paths, as the paths used during opti-
mization did not fit in the smaller real world environment. These new paths ranged in length from 337 to
3177 steps (1 = 1831.278 and o = 1032.329) with six generated randomly. A basestation configuration
change occurred in eight of the paths, at roughly the midpoint of the path’s trajectory. While the real world
environment is only 10 by 10, the forgetting algorithms were optimized in the larger simulation environment.
When relatively short paths are processed by the forgetting algorithms, they consistently recalled nearly every
reading. Six additional paths, with a length of 208 steps or less, were also tested, but since the seven for-

getting algorithms and No Forgetting generated effectively identical recall and estimation error values, these

101

H

|| J |

(a) 4 basestations (b) 7 basestations

Figure VI.2: Maps of real world truth values

paths were not included in the presented results. The removal of these paths did not affect the error rankings.
Path instances were created by randomly selecting readings from the log files, and readings were allowed
to be selected multiple times. During testing, parameterizations determined in the optimization experiment

(Chapter V) were used.

Table VI.1: Real world results
No Forgetting Queue Static Queue Dynamic Random ACT-R Simple Simple Update ActSimple

Recall Average 848.316 675.979 692.467 544.366 555.095 848.297 632.063 338.887
Std 331.196 179.450 189.407 108.914 131.159 331.189 206.261 36.805
Rank 15t 4th 3rd 7th 6th 2nd 5th 8th
Error Average 4.588 3.084 3.289 3.855 3.840 4.588 2.382 3.069
Std 3.182 1.940 2.277 2,122 2.151 3.1818 1.038 0.950
Rank 7th 3rd 4th 6Lh Sth 7th 18t 2nd

The overall recallable reading counts and estimation error values are presented in Table VI.1. Rank-
ing values were computed after rounding was performed to minimize the effects of insignificant noise. No
Forgetting generated the largest average number of recallable readings, with SIMPLE averaging only 0.019
fewer. Both No Forgetting and the SIMPLE algorithm maintained similar recallable reading count standard
deviations (331.196 and 331.189, respectively), which were 124.928 higher than the next highest standard
deviation (SIMPLE Update’s standard deviation of 206.261). ActSimple averaged only 338.887 recallable
readings, 509.429 less than No Forgetting, while maintaining a standard deviation of only 36.805. All other
forgetting algorithms averaged a greater number of recallable readings than ActSimple.

The performance differences between each forgetting algorithm and No Forgetting are presented in Ta-
ble VI.2. The Outperformed row represents the number of paths where a forgetting algorithm outperformed
No Forgetting, while the Underperformed row displays the number of paths where the forgetting algorithm
generated greater estimate error. The Outperformed Ave. and Underperformed Ave. rows provide the aver-

age error deviation for paths where the forgetting algorithm outperformed or underperformed No Forgetting,

102

Table VI.2: Forgetting performance deviations from No Forgetting

Metric Queue Static Queue Dynamic Random ACT-R Simple Simple Update ActSimple

Average Deviation 1.504 1.299 0.733 0.747 0 2.205 1.518

Deviation Std. 2.386 2.176 1.53 1.104 0 2.639 2.542
Outperformed 8 8 8 9 8 9 8

Outperformed Ave. 3.594 2.985 2.088 1.692 0 4.454 4.209
Underperformed 4 3 6 7 7 5 10

Underperformed Ave. 0.42 0.169 0.586 0.254 0 0.079 0.634
Equal Performance 6 7 4 2 3 4 0

respectively.

Despite averaging far fewer recallable readings, ActSimple’s average estimation error (3.069) was 1.518
less than No Forgetting. Although ActSimple also maintained the only estimation standard deviation under
1.0 (0.950), SIMPLE Update averaged lower estimation error (2.382). Queue Static maintained the third best
average estimation error (3.084).

All forgetting algorithms outperformed No Forgetting on eight of the eighteen paths except for ACT-R and
SIMPLE Update, which both generated smaller error on nine paths. The number of paths where the forgetting
algorithms underperformed No Forgetting was more variable, ranging from three to ten paths. ActSimple
underperformed No Forgetting ten times, while ACT-R underperformed seven times and SIMPLE Update
underperformed five times. The outperformed and underperformed values for SIMPLE are not reliable, since
the largest estimation error performance difference between SIMPLE and No Forgetting was less than 0.001.

Trends were also observed in the individual path data. Basestation configuration changes generated sub-
stantial performance variations in the forgetting algorithms and No Forgetting. When basestation configu-
ration changes were not present, the worst estimation error generated by No Forgetting was 3.614, but the
best error produced for a path with a basestation configuration change was 7.547. Excluding SIMPLE, every
forgetting algorithm outperformed No Forgetting when a basestation configuration change occurred. Again
ignoring SIMPLE, SIMPLE Update and ACT-R were the only forgetting algorithms to outperform No For-
getting on static paths. However, both forgetting algorithms only outperformed No Forgetting on one path
each and by a margin less than 0.001.

The performance properties exhibited by No Forgetting and the forgetting algorithms when no basesta-
tion configuration change occurred can partially be explained by the method used to generate the truth data.
Readings for each pairing of location and basestation configuration were averaged together to form the truth
value for each combination. During paths when no basestation configuration change occurred, No Forgetting
benefited from being able to recall every reading to help average out noise present in the readings, essen-

tially mimicking the truth data generation procedure. If truth values were available by a means other than a

103

weighted average, the performance differences along static versus dynamic paths may decrease.

The statistical significance of the relative estimation error performance results from Table VI.1 was tested
with two Wilcoxon signed rank tests and are presented in Table VI.3. These tests were performed in a
similar fashion to those presented in Chapter V.1.3. The first test, labeled Less than No Forgetting, evaluated
if the forgetting algorithms listed in the left-most column generated less average estimation error than No
Forgetting. The second test, labeled ActSimple less than, evaluated if ActSimple resulted in less estimation
error than No Forgetting and the other forgetting algorithms. Both tests were single-sided and o was 0.05.
Significant results are indicated in bold and the individual pairings that were not performed are marked with

a —— symbol.

Table VI.3: Comparison of estimation error for real-world paths

Less than ActSimple

No Forgetting less than
n v p n v p
No Forgetting 18 55.0 0.0982
Queue Static 12 10.0 0.0105 18 102.0 0.7659
Queue Dynamic 11 6.0 0.0068 18 101.0 0.7525
Random 14 26.0 0.0520 18 50.0 0.0649
ACT-R 16 35.0 0.0467 18 55.0 0.0982
SIMPLE 15 57.0 04452 18 55.0 0.0982
SIMPLE Update 14 20.0 0.0209 18 171.0 1.0000
ActSimple 18 55.0 0.0982

The reduction in estimation error when compared to No Forgetting (column Less than No Forgetting)
was significant for Queue Static (v = 10.0, p = 0.0105), Queue Dynamic (v = 6.0, p = 0.0068), ACT-R
(v =35.0, p = 0.0467), and SIMPLE Update (v = 20.0, p = 0.0209). Results from Random, SIMPLE,
and ActSimple were not significant. The Wilcoxon signed rank test labeled ActSimple less than evaluated if
ActSimple generated less estimation error. None of the results were significant, despite ActSimple generating
the second smallest average estimation error (Table VI.1).

SIMPLE Update averaged the smallest amount of estimation error when applied to the real-world paths
(Table VI.2). A single-sided Wilcoxon signed rank test was conducted to determine if SIMPLE Update
generated less estimation error than ActSimple on these paths and the results were significant (n = 18, v =
0, p < 0.0001). SIMPLE Update outperformed ActSimple when applied to this particular set of testing
conditions.

The effects of dynamism on the results was explored by using a single-sided Wilcoxon rank sum test
to determine if No Forgetting and the forgetting algorithms generated less estimation error on static paths

as compared to dynamic paths. This test was conducted in an identical fashion to the tests presented in

104

Chapter V, and the results are presented in Table VI.4. The o was set to 0.05, while ng = 10, and np = 8.

Table VI.4: The effects of dynamism on estimation error for real-world paths

w P
No Forgetting 0.0 <0.0001
Queue Static 11.0 0.0043
Queue Dynamic 8.0 0.0015
Random 0.0 <0.0001
ACT-R 0.0 <0.0001
SIMPLE 0.0 <0.0001
SIMPLE Update 17.0 0.0217
ActSimple 8.0 0.0015

The difference in average estimation error between static and dynamic paths was significant for No For-
getting and all of the forgetting algorithms. No Forgetting and the forgetting algorithms, on average, found
the real-world paths containing a basestation configuration change to be more challenging.

The presence of basestation configuration changes may alter the relative estimation error performance of
No Forgetting and the forgetting algorithms. Four single-sided Wilcoxon signed rank tests were performed
to evaluate the difference in estimation error that results from applying No Forgetting and the forgetting
algorithms to static paths and dynamic paths. Results from these tests are presented in Table VI.5. The first
test (Less than No Forgetting - Static) evaluated if the forgetting algorithms listed in the left-most column
generated less estimation error than No Forgetting when only results from the static paths were considered.
The second test (Less than No Forgetting - Dynamic) evaluated if the forgetting algorithms generated less
estimation error than No Forgetting on the dynamic paths. The third test (ActSimple less than - Static)
evaluated if ActSimple resulted in less estimation error than No Forgetting and the other forgetting algorithms
when applied to only the static paths. The fourth test (ActSimple less than - Dynamic) evaluated if ActSimple
generated less estimation error than No Forgetting and the other forgetting algorithms when applied to the
dynamic paths. The o was 0.05 for each test.

The Wilcoxon signed rank test in Table VI.5 for the Less than No Forgetting - Static condition evaluated
if the forgetting algorithms generated less estimation error than No Forgetting on static paths. None of the re-
sults were significant. The results of the Wilcoxon signed rank test for the Less than No Forgetting - Dynamic
condition showed a different trend. The results from all of the forgetting algorithms, except SIMPLE, were
found to be significant (v = 0.0, p = 0.0039). These results suggest that Human-Inspired Forgetting based
forgetting algorithms may be an effective approach to improving system accuracy in dynamic real-world
conditions.

The Wilcoxon signed rank test for the ActSimple less than - Static condition evaluated if ActSimple

105

Table VI.5: Estimation error performance on real-world static and dynamic paths

Less than No Forgetting ActSimple less than
Static Dynamic Static Dynamic
n v p n v p n v p n v p

No Forgetting 10 550 1.0000 8 0.0 0.0039
Queue Static 4 10.0 1.0000 8 0.0 0.0039 10 52.0 0.9971 8 10.0 0.1562
Queue Dynamic 3 6.0 1.0000 8 0.0 0.0039 10 55.0 1.0000 8 8.0 0.0977
Random 6 21.0 1.0000 8 0.0 0.0039 10 500 09932 & 0.0 0.0039
ACT-R 8 350 0991 8 00 0.0039 10 550 1.0000 8 0.0 0.0039
SIMPLE 8 250 0.8438 7 7.0 0.1484 10 55.0 1.0000 &8 0.0 0.0039
SIMPLE Update 6 20.0 09844 &8 0.0 0.0039 10 55.0 1.0000 8 36.0 1.0000
ActSimple 10 55.0 1.0000 8 0.0 0.0039

generated less estimation error than No Forgetting and the other forgetting algorithms when only applied to
the static paths. None of the results were significant. The Wilcoxon signed rank test for the ActSimple less
than - Dynamic condition tested if ActSimple generated less estimation error on dynamic paths. Results were
significant for No Forgetting, Random, ACT-R, and SIMPLE (v = 0.0, p = 0.0039), and not significant for
Queue Static, Queue Dynamic, and SIMPLE Update.

The real-world paths and environment differed greatly from the paths and environment used in Chapter V
and the overall average estimation error across No Forgetting and the forgetting algorithms dropped from
7.314 to 3.5869. Additionally, ActSimple averaged the second smallest amount of estimation error and
maintained the smallest estimation error standard deviation (0.950). These results suggest that ActSimple
may have been able to minimize the occurrence and severity of very poor performance, but the reduction
in average estimation error for No Forgetting and the forgetting algorithms may have limited the ability for

ActSimple to outperform No Forgetting and the other forgetting algorithms.

VI.3 Discussion
The effectiveness of Human-Inspired Forgetting was explored by applying No Forgetting and the forgetting
algorithms to real-world data. A robot was used to collect WiFi signal strength readings from a real-world
environment, and these readings were used to create path instances to test the forgetting algorithms. Results
from this experiment suggest Human-Inspired Forgetting has the potential to improve system accuracy in
real-world environments, and especially within dynamic real-world environments.

Each forgetting algorithm, except SIMPLE, averaged less estimation error than No Forgetting when ap-
plied to the real-world data, while also reducing the average number of recallable readings. The tested envi-

ronment was very different from the conditions used to originally optimize the algorithms, but the forgetting

106

Algorithm
No Forgetting
H Queue Static
A Queue Dynamic
X Random
XACT-R
= SIMPLE
+ SIMPLE Update
@ ActSimple

~

[e2]

(&)
&
g
1

N
L

X Paths

W All Paths

M Static Paths
Dynamic Paths

Average Absolute Estimation Error

w
| 14

N
DX
*
+

1 T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10

Number of Parameters

Figure VI.3: Number of parameters vs. average absolute estimation error for real world paths

algorithms still managed to increase system accuracy. While the SIMPLE Update algorithm averaged less
estimation error, ActSimple generated the second smallest average estimation error and resulted in the fewest
number of recallable readings.

The effects of algorithm complexity are shown in Figure V1.3, which plots an algorithm’s number of
parameters versus its resultant average estimation error. No Forgetting and each forgetting algorithm is
represented by a unique symbol and color indicates which paths were included in the results. The SIMPLE
Update and ActSimple algorithms are two of the most complex algorithms, based on parameter count, but they
averaged the least amount of estimation error on dynamic paths and the full set of eighteen paths. These two
algorithms also resulted in the smallest differences between performance on static paths and dynamic paths.
No Forgetting and SIMPLE resulted in the least amount of estimation error on static paths but the largest
amount of estimation error on dynamic paths. However, the average estimation error difference between real-
world static and dynamic paths for No Forgetting and SIMPLE was smaller than the differences generated
by No Forgetting and SIMPLE on the simulated paths (Figures V.2 and V.6). Many robotic systems require
consistent performance. Human-Inspired Forgetting based forgetting algorithms may not improve accuracy
for every single set of conditions, but the results suggest Human-Inspired Forgetting may allow robots to

minimize severe accuracy degradations while improving average accuracy.

107

Algorithm
No Forgetting
M Queue Static
A Queue Dynamic
X Random
XACT-R
= SIMPLE
+ SIMPLE Update
@ ActSimple

~

[e2]

o

N
L

XK Paths

W All Paths

M Static Paths
Dynamic Paths

Average Absolute Estimation Error

w
!
|

1 T T T T T T T T T
200 300 400 500 600 700 800 900 1000 1100 1200

Average Number of Recallable Readings

Figure VI.4: Average number of recallable readings vs. average estimation error for real world paths

A comparison between the average amount of estimation error and the average number of recallable
readings that resulted from No Forgetting and each forgetting algorithm is presented in Figure VI.4. This
graph uses the same key as Figure VI.3. Unlike the results generated with the simulated path data (Figures V.3
and V.7), ActSimple averaged the least number of recallable readings for the full set of paths, static paths,
and dynamic paths. No Forgetting and SIMPLE resulted in the largest number of recallable readings for all
three sets of paths. SIMPLE Update averaged less estimation error than ActSimple, but resulted in almost
twice as many recallable readings. Mobile robots are frequently tasked with operating under tight timing
constraints. These results suggest the ActSimple algorithm may be capable of improving system accuracy,
while simultaneously reducing the volume of data requiring processing by computationally expensive existing
robotic algorithms.

The relative benefits of forgetting depend on the forgetting algorithm, its parameterization, and compat-
ibility with the task and environment. Each forgetting algorithm was optimized under simulated conditions
differing greatly from the real-world environment employed in this chapter. However, the forgetting algo-
rithms were still able to simultaneously reduce estimation error and the number of recallable readings. These
results suggest Human-Inspired Forgetting based forgetting algorithms may be relatively resilient to changing
environmental conditions. As many realistic challenges facing mobile robots constantly evolve or are difficult

to model, the ability to minimize the need to frequently re-optimize may be paramount in applying forgetting

108

to real world situations.

109

CHAPTER VII

Performance with Other Noise Distributions

During the optimization experiments (Chapter V), only a single noise distribution was tested. During the real
world experiment (Chapter VI), an alternate noise distribution was present in the environment. Differences in
the noise distributions may have lead to the performance deviations observed between the real world results
and those acquired from the optimization experiment (Chapter V). This chapter describes an experiment
that was conducted to explore the effects of applying the forgetting algorithms in the presence of new noise
distributions. During this experiment, the seven forgetting algorithms and No Forgetting were tested with the
simulated robot traveling the 64 paths described in Chapters IV and V. For each new noise distribution, the

estimation error was calculated in an identical fashion as in previous experiments.

VII.1 New Noise Distributions
In addition to the original noise distribution, 21 new discrete noise distributions were tested, comprising
six separate distribution families. Noise distribution families consisted of distributions based on Gaussian,
rounded Gaussian, impulse, Laplace, and sinc distributions as well as No Noise. All distributions are centered
at 0 and range from -100 to 100.

Original Noise Distribution: The original noise distribution’s Probability Density Function (PDF) is
defined by Equation IV.10 (repeated below). This distribution has only nine values with a probability greater

than 0 and maintains a large probability at its center, as can be seen in Figure VII.1

062 x=0
0.1 |x|=10
0.05 |x| =20
X) = V.10
P =19 0,03 x| = 40 (IV-10)
0.01 |x| =60
0 else

110

Probability

0.7

0.5+

©
IS
.

o
w
.

0.2 4

0.1+

0 Arrrrrrrrrrrrrrr R e A

-100 90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100
Noise

Figure VII.1: Original noise distribution PDF

111

0.45

0.4 4

0.35

0.3 4§

0.25
—o=1

—0=2

Probability

o

N
L
—

0.15 A

0.1

0.05 -

O TP e

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 80 90 100
Noise

Figure VIIL.2: Discrete Gaussian PDF

Discrete Gaussian: The discrete Gaussian distribution PDFs are characterized by Equation VII.1 and the
distributions with o = 1 and ¢ = 2 are shown in Figure VIIL.2. Six discrete Gaussian noise distributions were

tested in this experiment with ¢ values of 1, 1.25, 1.5, 2, 5, and 15.

2
Gaussian(x,) = ———e¢20?
%= arer
Gaussian(x, o) (VIL1)
Gaussian(i, o)
i=—100

112

Rounded Discrete Gaussian: The rounded discrete Gaussian family of noise distributions were inspired
by the discrete Gaussian and are calculated using Equation VIL.2. Unlike the discrete Gaussian, the rounded
discrete Gaussian has only non-zero values that are multiples of an integer parameter, r. The tested rounded
discrete Gaussian noise distributions have the following o, r parameter sets: {5, 3}, {5, 5}, {5, 11}, {15,
3}, {15, 5}, and {15, 11}. Figure VIL.3 contrasts the two rounded discrete Gaussian distributions {5, 3}
and {5, 11} with the discrete Gaussian of ¢ = 5. The two rounded Gaussian distributions have fewer values
possessing a non-zero probability than the discrete Gaussian. However, each of the non-zero probability
values in the rounded Gaussian distributions has a greater probability than the equivalent value in the discrete
Gaussian distribution. Figure VIL4 contrasts the two rounded discrete Gaussian distributions {15, 3} and

{15, 11} with the discrete Gaussian with ¢ = 15. The trends when ¢ = 15 are similar to when o = 5.

round(x,r) = r|x/r|

rounded_Gaussian(x, 0, r) =

0 round(i,r) # x

W | Gaussian(x,6) round(i,r) = x
i=—100

(VIL2)

rounded_Gaussian(x, o,r)
T

Z rounded_Gaussian(x, o, r)
i=—100

113

Probability

Probability

0.8
0.7 1
0.6
!
I|
0.5 I
I
I
'l
|I o=5
0.4+ I g=5r=3
:: ———0=5r1=11
I
I
0.3 Iy
I
I
)
0.2 :l
|
i
0.1] | i
I| I
II I
| I
O T e e e e
-100 -90 -80 -70 -60 -50 -40 -30 20 -10 O 10 20 30 40 50 60 70 80 90 100
Noise
Figure VII.3: Rounded discrete Gaussian ¢ = 5 PDFs
0.35
0.3 1
0.25
] i
1 1
1 1
0.2 \ ;
\ ! _
; j, o=15
:1 .- 0=15,r=3
; S o=15r=11
0.15 .
01 1 P ;
n " \
I . v
' " N
0.05 :
0 rrrrrrrrrrrrrre——=—_—_— e oI
-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 80 90 100
Noise

Figure VII.4: Rounded discrete Gaussian ¢ = 15 PDFs

114

0.3

0.25

0.2 4

2
E
8 0.15 —5=0.25
2
o
0.1 4 I
0.05 4

O T TP TP TP TP T T T T T T T T T
-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 80 90 100

Noise

Figure VIL5: Impulse distribution PDFs

Impulse: The tested impulse family of noise distributions incorporate a large probability located at x = 0
and all remaining probability is equally distributed throughout the range -100 to 100. Impulse noise distribu-
tions are characterized by Equation VIL.3. This experiment tested impulse functions with § values of 0.25,

0.3, and 0.5. Figure VIL5 shows the distribution for § = 0.25. When § = 1, the distribution is the same as

No Noise.
) x=0
p(x,0) = (VIL.3)
lzﬁ x#0

115

0.8

0.7 4

0.6

0.5+

—b=05
—b=20

Probability
o
S

0.3 4

0.2

0.1+

O T TP T T e T T T
-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 80 90 100

Noise

Figure VIIL.6: Discrete Laplace PDFs

Discrete Laplace: The discrete Laplace family of noise distributions are characterized by Equation VIL.4.
Figure VIL.6 displays Laplace distributions with » = 0.5 and b = 2. During this experiment, four Laplace

distributions were tested, b =0.5,b=1,b=1.5,and b = 2.

—lxl

Laplace(x,b) = 5-e

Laplace(x,b) VIL4

Z Laplace(i, b)
i=—100

116

0.14

0.12 A

0.1

©

o

&
.

Probability

0.06 -

0.04 -

0.02

O AT R e T T T T e T O T T T M M P e e e e e e e e e e M e e e T T e e e T

-100 90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100
Noise

Figure VIL.7: PDF for the sinc noise distribution

Sinc: The sinc noise distribution was inspired by the sinc function (Equation VIL.5). Equation VII.6
characterizes the sinc noise distribution. Since the sinc noise distribution does not contain any parameters,

only one instance was tested. A plot of the sinc noise distribution is provided in Figure VIL.7.

1 x=0
sinc(x) = (VILS)
Sil;ﬁ x#0
p(x,b) = 1050‘“& (VIL6)
Z sinc(x)
i=—100

117

Table VII.1: Noise distribution effects on average recallable reading counts
Distribution Parameters No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Gaussian o= 1243.81 749.498 772.833 592.845 692.446 1243.76 894.168 629.925
c=125 1335.31 751.433 775.058 594.422 698.224 1335.26 844.204 613.593
oc=15 1405.43 752.783 776.408 595.257 699.948 1405.38 798.527 599.905
oc=2 1503.69 754.353 777.978 596.079 698.482 1503.63 747.124 580.019
o=5 1712.59 757.117 780.742 596.949 682.631 1712.53 677.417 540.814
oc=5r=3 1430.29 753.138 776.763 595.562 699.866 1430.24 789.532 595.348
oc=5r=5 1250.29 749.668 773.129 592.983 693.783 1250.24 901.63 629.616
o=5r=11 963.138 726.616 745.011 583.947 623.624 963.108 824.275 629.864
oc=15 1789.04 757.794 781.419 596.995 671.039 1788.98 677.542 529.13
oc=15r=3 1666.57 756.459 780.084 596.917 685.058 1666.52 714.292 549.129
oc=15r=5 1568.62 755.203 778.828 596.578 693.498 1568.57 751.274 567.181
o=15r=11 1338.81 751.379 775.004 594.51 700.785 1338.77 878.958 614.091
Impulse §=0.25 883.529 718.754 737.316 582.242 637.197 883.49 826.471 664.399
§=0.3 917.292 725.406 743.978 584.356 658.369 917.255 865.527 678.752
5=0.5 986.244 737.493 757.01 588.988 702.128 986.206 931.357 702.491
Laplace b=0.5 956.453 724.642 742.695 583.14 610.775 956.416 807.529 618.877
b=1 1276.48 749.24 772.826 592.576 676.176 1276.43 882.602 612.133
b=1.5 1435.65 752.569 776.194 595.138 688.393 1435.59 783.751 588.124
b=2 1529.15 754.25 777.875 596.033 689.263 1529.1 739.718 571.789
Sinc _ 1708.94 756.715 780.34 596911 678.045 1708.89 740.522 540.631
Typel _ 1134.94 743.156 765.058 588.315 644.386 1134.91 932.682 617.406
None _ 642.234 603.25 610.641 541.375 536.115 642.21 546.603 556.673
With Impulse ~ Average 1303.568 740.042 761.69 590.096 670.92 1303.522 797.987 601.359
Std 311.835 32.819 36.544 11.956 40.018 311.826 94.847 45.574
Rank 1 5 4 8 6 2 3 7
Without Impulse Average 1362.707 742.066 764.152 590.87 671.712 1362.66 785.913 588.645
Std 293.378 34.855 38.729 12.681 41.733 293.369 95.156 33.627
Rank 1 5 4 7 6 2 3 8

None: The No Noise case was also tested. Equation VII.7 describes how the no noise case was imple-

mented.

p(x) = (VIL7)

VIL2 The results
The effects of the 21 new noise distributions described in Chapter VII.1 were explored in a simulation eval-
vation. Each of the 21 new noise distributions, along with the original noise distribution, were individually
used to add noise to the readings collected in the signal strength estimation domain. All 64 paths described in
Chapters IV and V were used during testing. Except for changing the noise distribution in the environment,
the testing conditions were identical to those described in Chapter V.

The noise distribution present in the environment can alter the number of readings filtered by a forgetting
algorithm. Table VII.1 presents the average number of recallable readings for the noise distributions when

applied to the seven forgetting algorithms and No Forgetting. The left-most column lists each distribution’s

118

family (Gaussian, Impulse, Laplace, sinc, Original, or No Noise). The second column lists the parameters
that define the individual noise distributions. The Gaussian and rounded Gaussian noise distributions can
be differentiated by the presence of the r parameter, as the parameter is specific to the rounded Gaussian
class. The remaining columns present the average number of recallable readings. The ranking values were
calculated after rounding to minimize the effects of noise. Table VII.1 provides two sets of overall descriptive
statistics, labeled “With Impulse” and “Without Impulse”. The former includes all of the tested noise distri-
butions, while the latter excludes the Impulse noise distributions. The Impulse noise distributions generated
significantly more estimation error than the other tested noise distributions (presented below).

When all of the noise distributions were considered, No Forgetting generated the largest number of re-
callable readings (1303.568) and the SIMPLE algorithm averaged a nearly identical 1303.522 recallable
readings. No Forgetting and the SIMPLE algorithm also generated the largest number of recallable read-
ings during the optimization experiments (Chapter V). The Random forgetting algorithm produced the least
number of recallable readings 590.096, while the ActSimple algorithm generated the second smallest number
(601.359). The SIMPLE Update algorithm resulted in the third most recallable readings (797.987), while the
ACT-R algorithm resulted in the third least number of recallable readings (670.92).

The recallable readings metric for No Forgetting and the SIMPLE algorithm resulted in similar large
standard deviations of 311.835 and 311.826, respectively. The standard deviation values for the other for-
getting algorithms were considerably smaller. The SIMPLE Update algorithm had a standard deviation of
94.847, but the remaining algorithms’ standard deviations were all at or below 45.574. The amount of filter-
ing provided by the Queue Static, Queue Dynamic, Random, ACT-R, and ActSimple forgetting algorithms is
comparatively consistent in the presence of varying noise distributions.

When the Impulse noise distributions are not included in the results, the ActSimple algorithm filtered the
most number of readings (588.645), while Random forgetting filtered the second most number of readings
(590.87). The other rank ordering values did not change. However, the average number of recallable readings
increased for all forgetting algorithms and No Forgetting, except SIMPLE Update and ActSimple when the
Impulse distribution results were not included.

Changing noise distributions within an environment can also affect estimation error performance. Ta-
ble VIIL.2 presents the resultant estimation error for each noise distribution averaged across the forgetting
algorithms and No Forgetting. The left two columns identify the individual noise distributions in the same
fashion as Table VII.1. The noise distributions did not provide a consistent challenge. The three Impulse
distributions resulted in significantly larger estimation error (53.833 for 6 = 0.25, 50.606 for 6 = 0.3, and
37.032 for & = 0.5) than any other noise distribution. In the environment, the signal strength ranged from 1

to 100 and before the first reading was collected, the robot guessed a value of 50.5 for each location in the

119

Table VII.2: Noise distribution average estimation error

Distribution ~ Parameters Average Std
Gaussian o=1 3.853 1.286
o=1.25 3940 1.279
oc=15 4.049 1.261
c=2 4.278 1.230
c=5 5.485 1.120
oc=5r=3 5.377 1.158
o=5r=5 5.337 1.182
o=5r=11 5.231 1.182
c=15 9.267 1.026
c=15r=3 9.211 1.050
oc=15r=5 9.155 1.059
o=15r=11 9.030 1.08
Impulse 0=025 53.833 2.600
=03 50.606 2.220
6=0.5 37.032 0.437
Laplace b=0.5 3.882 1.179
b=1 3.916 1.288
b=15 4.184 1.253
b=2 4.468 1.220
Sinc _ 11.204 1.785
Original _— 7.250 1.402
None _ 4194 0976

120

environment. This guess results in a maximum average error of 49.5. The average estimation error when
0 = 0.25 was 4.333 larger than simply guessing 49.5.

After the sinc distribution’s average estimation error of 11.204, the four Gaussian distributions with o =
15 generated the largest average error (9.267 for o = 15, 9.211 for {o = 15, r = 3}, 9.155 for {c = 15,
r=>5}, and 9.030 for {o = 15, r = 11}). Rounding in the rounded Gaussian distributions reduced the number
of noise values with a non-zero probability. As the rounding in the ¢ = 15 distributions increased, the average
estimation error decreased. However, the original noise distribution, which only possesses nine values with a
non-zero probability, resulted in the next largest average estimation error (7.250). This error value was larger
than the Gaussian distribution with o = 5 (5.485) and the Laplace distribution with b = 2 (4.468), despite
these two distributions having 49 and 53 probability values at or above 0.000001, respectively. Additionally,
the Laplace distribution had thirteen values with a probability greater than 0.012 and the Gaussian distribution
had twenty one values with a probability larger than 0.01.

The Gaussian distributions with ¢ = 5 followed the same trend as the Gaussian distributions with o = 15.
The distributions’ estimation error decreased as rounding increased (5.485 for o = 5 to 5.231 for {0 =5,
r =11}). The Laplace distributions also realized decreasing error as the value of b was reduced (4.468 for
b =21t03.882 for b =0.5).

The Gaussian distributions with ¢ = 1.5, 0 = 1.25, and 6 = 1 generated average estimation errors of
4.049, 3.940, and 3.853, respectively. The No Noise case unintuitively produced greater error (4.194). A
small amount of noise appears to have benefited at least one of the forgetting algorithms or No Forgetting.

The individual estimation error values were also recorded and are presented in Table VIL.3. The table pro-
vides overall descriptive statistics both with and without the Impulse noise distributions. When the Impulse
distributions are included, the ActSimple algorithm generated the smallest overall average estimation error
(10.755), but the Queue Static algorithm’s error was slightly larger (10.837). The SIMPLE Update algorithm,
which had the second best estimation error during optimization (on paths 1 - 20) (Chapter V.1), generated
an error of 11.502. This value gives SIMPLE Update the fifth smallest estimation error. No Forgetting and
the SIMPLE forgetting algorithm tied for the worst average estimation error (12.964). The Queue Static
algorithm generated the best estimation error (10.837) out of all three queue-based forgetting algorithms
(including Random forgetting).

Several trends exist in the error values for individual noise distributions. During the No Noise case,
No Forgetting and the SIMPLE algorithm generated the worst estimation error (5.479). This estimation
error value was the smallest achieved by No Forgetting or the SIMPLE algorithm. Every other forgetting
algorithm generated less estimation error than No Forgetting and SIMPLE when No Noise was present, but

also produced less estimation error than the No Noise case with at least two noise distributions.

121

Table VII.3: Noise distribution effects on average estimation error
Distribution Parameters No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Gaussian o= 5.77 3.081 2.909 4283 2946 577 3.472 2.594
c=125 5.853 3.131 2.971 4.361 3 5.853 3.573 2.78
c=15 5.935 3.216 3.08 4429 3.053 5.935 3.771 2.969
c=2 6.094 3.386 3.26 4622 3219 6.095 4.227 3.323
o=5 7.056 4.674 4.456 5816 4297 17.056 5.768 4.758
6=5,r=3 7.05 4.751 4.489 5857 4329 7.05 5.233 4.259
c=5r=5 7.033 4.813 4.487 5.885 4.351 7.033 5.05 4.045
o=5r=11 6.805 5.01 4.525 5.805 4.073 6.805 5.213 3.616
c=15 10.312 8.988 8.441 9.835 7.836 10312 10.218 8.196
c=15r=3 10.316 9.01 8.41 9.85 7.784 10316 10.014 7.983
oc=15r=5 10.304 9.03 8.405 9.851 7.761 10.304 9.78 7.808
c=15r=11 10.271 9.115 8.332 9.855 771 10271 9.133 7.55
Impulse §=0.25 54.046 50.109 54.474 52.276 57.423 54.045 51.195 57.099
§=03 50.722 47.611 50.969 49.063 53.776 50.721 48.476 53.507
6=05 37.495 36.392 36.692 36.943 37.446 37.495 36.608 37.184
Laplace b=0.5 5.604 3.326 3.192 4287 2989 5.604 3.575 2.48
b=1 5.835 3.126 2.977 4374 2994 5.835 3.501 2.688
b=15 6.05 3.367 3.202 4586 3.155 6.05 3.94 3.125
b=2 6.26 3.616 3.459 4813 3363 626 4.459 3.513
Sinc _ 12.125 11.041 10.161 11.767 8911 12.125 14.331 9.17
Original R — 8.794 7.352 6.415 8213 5542 8794 7.1 5.191
None _ 5.479 4.267 4291 4333 3.122 5479 3.813 2.765
With Impulse ~ Average 12.964 10.837 10.891 11.868 10.867 12.964 11.502 10.755
Std 14.405 14.173 15.285 14.334 16.189 14.404 14.299 16.138
Rank 7 2 4 6 3 7 5 1
Without Impulse Average 7.523 5.49 5.13 6.464 4776 7.523 6.146 4.674
Std 2.105 2.659 2.406 2.529 2.113 2.105 3.127 2.266
Rank 7 4 3 6 2 7 5 1

The Queue Dynamic algorithm experienced the largest difference in estimation error when the No Noise
and Gaussian with o = 1 distributions were considered. Queue Dynamic generated in an average error of
4.291 with No Noise, but the Gaussian distribution resulted in an estimation error of only 2.909, a difference
of 1.382. The Queue Static algorithm experienced a similar trend, as error decreased by 1.186. ActSimple
experienced a smaller reduction in error (0.171), but still realized an improvement. These results suggest
noise may provide some aid to forgetting algorithms.

The Impulse noise distributions resulted in the largest amount of estimation error for every forgetting
algorithm and No Forgetting. While the Impulse noise distribution with 6 = 0.5 generated the least amount
of error between the Impulse distributions, the error associated with this distribution was over double the next
largest estimation error for each forgetting algorithm or No Forgetting. Error values of this magnitude can
mask the trends present in the rest of the data. Table VIL.3 includes the overall average error for each forget-
ting algorithm and No Forgetting excluding the Impulse distributions. Without the Impulse distributions, the
average estimation error values for the forgetting algorithm and No Forgetting possess smaller magnitudes.
ActSimple generated an error of 4.674 instead of 10.755, SIMPLE Update’s error changed from 11.502 to
6.146, ACT-R’s error dropped from 10.867 to 4.76, and No Forgetting’s error improved from 12.964 to 7.523.

122

Table VIL.4: Noise distribution effects on estimation error rankings
Distribution Parameters No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Gaussian o=1 7 4 2 6 3 7 5 1
o=125 7 4 2 6 3 7 5 1
c=15 7 4 3 6 2 7 5 1
o=2 7 4 2 6 1 8 5 3
o=5 7 3 2 6 1 7 5 4
o=5r=3 7 4 3 6 2 7 2 !
o=5r=5 7 4 3 6 2 7 5 1
o=5r=11 7 4 3 6 2 7 5 1
c=15 7 4 3 5 1 7 6 2
c=15r=3 7 4 3 5 1 7 6 2
c=15r=5 7 4 3 6 1 7 5 2
c=15r=11 7 4 3 6 2 7 5 1
Impulse §=0.25 5 1 6 3 8 4 2 7
§=03 5 1 6 3 8 4 2 7
6=05 7 1 3 4 6 7 2 5
Laplace b=0.5 7 4 3 6 2 7 5 1
b= 7 4 2 6 3 7 5 1
b=15 7 4 3 6 2 7 5 1
b=2 7 4 2 6 1 7 5 3
sinc _ 6 4 3 5 1 6 8 2
Original E— 7 4 3 6 2 7 5 1
None _ 7 4 5 6 2 7 3 1
With Impulse ~ Average 6.773 3.545 3.091 5.5 2545 6.727 4.727 2.227
Std 0.612 1.057 1.151 0964 2.087 0.935 1.386 1.901
Rank 8 4 3 6 2 7 5 1
Without Impulse Average 6.947 3.947 2.789 5.842 1.789 7 5.158 1.579
Std 0.229 0.229 0.713 0375 0.713 0.333 0.898 0.902
Rank 7 4 3 6 2 8 5 1

However, the rank ordering only changed for three forgetting algorithms. The ActSimple algorithm contin-
ued to generate the least amount of error, while Queue Static moved from second to fourth. Queue Dynamic
switched from fourth to third, and ACT-R improved from third to second. The relative performance of No
Forgetting and the SIMPLE and Random forgetting algorithms did not change.

The relative estimation error performance of the forgetting algorithms and No Forgetting was ranked for
each noise distribution. These ranking values are presented in Table VII.4. Ranking was performed after
rounding to minimize the effects of noise. The overall average rankings were similar for both the With
Impulse and the Without Impulse results. All forgetting algorithms maintained the same ranking values
except for SIMPLE, which switched from a tie with No Forgetting (With Impulse) to eighth place. The
performance deviations between No Forgetting and SIMPLE were very small (Table VII.3) and this change
in rank ordering does not appear to represent a large change in performance. The overall rank ordering
in Table VIL.4 is identical to the Without Impulse overall estimation error ranks in Table VII.3, except for
SIMPLE.

The ActSimple and ACT-R algorithms generated the best overall rank values, but generated the worst

performance on the two Impulse distributions with 6 = 0.25 and 6 = 0.3. Additionally, the Queue Dynamic

123

algorithm resulted in the third best overall rank value, but the sixth largest estimation error when tested with
the two Impulse noise distributions. The SIMPLE algorithm and No Forgetting generated the fourth and fifth
best estimation error values.

The statistical significance of the relative estimation error performance results from Table VIL.3 was
evaluated with four single-sided Wilcoxon signed rank tests and the results are presented in Table VILS.
The first two tests, labeled With Impulse - Less than No Forgetting and With Impulse - ActSimple less than,
evaluated the statistical significance of the results when the Impulse distributions were included. The last
two tests, labeled Without Impulse - Less than No Forgetting and Without Impulse - ActSimple less than,
evaluated the statistical significance when the Impulse distributions were not included. The first and third
tests evaluated if the forgetting algorithms listed in the left-most column resulted in less average estimation
error than No Forgetting. The second and fourth tests evaluated if ActSimple resulted in less estimation error
than No Forgetting and the other forgetting algorithms. The ¢ value for these tests was set to 0.05. Results

that were found to be significant are indicated in bold.

Table VIL.5: Comparison of estimation error

With Impulse Without Impule
Less than ActSimple Less than ActSimple
No Forgetting less than No Forgetting less than
n v p n v p n v p n v p
No Forgetting 22 26.0 0.0003 19 0.0 <0.0001

Queue Static 22 0.0 <0.0001 22 560 0.0104 19 00 <0.0001 19 2.0 <0.0001
Queue Dyanmic 22 3.0 <0.0001 22 68.0 0.0293 19 00 <0.0001 19 12.0 0.0001

Random 22 0.0 <0.0001 22 44.0 0.0030 19 0.0 <0.0001 19 0.0 <0.0001
ACT-R 22 410 0.0021 22 71.0 0.0369 19 0.0 <0.0001 19 650 0.1206
SIMPLE 21 1450 0.8462 22 26.0 0.0003 18 1450 0996 19 0.0 <0.0001
SIMPLE Update 22 17.0 <0.0001 22 43.0 0.0026 19 16.0 0.0003 19 0.0 <0.0001
ActSimple 22 26.0 0.0003 19 00 <0.0001

Results from the first test (column With Impulse - Less than No Forgetting) were significant for Queue
Static (v = 0.0, p < 0.0001), Queue Dynamic (v = 3.0, p < 0.0001), Random (v = 0.0, p < 0.0001), ACT-R
(v=41.0, p=0.0021), SIMPLE Update (v = 17.0, p < 0.0001), and ActSimple (v = 26.0, p = 0.0003).
Results from SIMPLE were not significant (v = 145.0, p = 0.8462). These results suggest that the results
presented in Chapter V were not dependent on the original tested noise distribution. Algorithms based on
Human-Inspired Forgetting may be applicable to a wide range of environmental conditions. Additionally, the
forgetting algorithms’ parameterizations may not require constant re-optimization as real world environments
and domains evolve over time.

Each of the comparisons in the second test (column With Impulse - ActSimple less than) were significant.

124

No Forgetting (v = 26.0, p = 0.0003), Queue Static (v = 56.0, p = 0.0104), Queue Dynamic (v = 68.0,
p =0.0293), Random(v =44.0, p = 0.0030), ACT-R (v="71.0, p =0.0369), SIMPLE (v =26.0, p = 0.0003),
and SIMPLE Update (v = 43.0, p = 0.0026) each resulted in less estimation error than ActSimple. These
results suggest that the relative benefits of ActSimple may be resilient to some changes in environmental
conditions and the results presented in Chapter V were not a result of a particular set of tested conditions.

The Impulse distributions resulted in substantially more estimation error than the other tested noise dis-
tributions and their inclusion in the results had the potential to alter the relative performance of the forgetting
algorithms. The Without Impulse Wilcoxon signed rank tests evaluated if the benefits of ActSimple and
Human-Inspired Forgetting were still present when the Impulse noise distributions were removed. The With-
out Impulse - Less than No Forgetting) test evaluated if the forgetting algorithms generated less estimation
error than No Forgetting and the results were significant for Queue Static (v = 0.0, p < 0.0001), Queue Dy-
namic (v = 0.0, p < 0.0001), Random (v = 0.0, p < 0.0001), ACT-R (v =0.0, p < 0.0001), SIMPLE Update
(v =16.0, p =0.0003), and ActSimple (v = 0.0, p < 0.0001). Results from SIMPLE were not significant
(v = 145.0, p = 0.9966). When the Impulse noise distributions were removed, the forgetting algorithms
continued to generate less estimation error than No Forgetting.

The fourth Wilcoxon signed rank test evaluated if ActSimple generated less estimation error than No For-
getting and the other forgetting algorithms when the Impulse distributions were not included (column Without
Impulse - ActSimple less than). Results from No Forgetting (v = 0.0, p < 0.0001), Queue Static (v = 2.0,
p < 0.0001), Queue Dynamic (v = 12.0, p = 0.0001), Random (v = 0.0, p < 0.0001), SIMPLE (v =0.0, p <
0.0001), and SIMPLE Update (v = 0.0, p < 0.0001) were significant, while results from ACT-R (v = 65.0,
p = 0.1206) were not significant. Results from this test suggest the ability for ActSimple to generate less
estimation error than No Forgetting and the forgetting algorithms that do not include trace-based decay was
not a result of the Impulse distributions. The difference in estimation error between ActSimple and ACT-R
was not significant, suggesting trace-based decay may be an effective method to improve system accuracy,
even in the presence of diverse environmental conditions.

Individual paths can influence the amount of estimation error that is generated. Some paths are more chal-
lenging than others and individual forgetting algorithms may respond differently depending on path proper-
ties. Table VIL.6 presents the estimation error results from Table VIL.3 for only paths 1 - 20, instead of the full
set of 64 paths. This table is formatted identical to Table VII.3. The forgetting algorithms and No Forgetting
each generated less overall average estimation error (With Impulse) on the full set of noise distributions when
only paths 1 - 20 were included. Estimation error for the Without Impulse results followed a different trend.
Excluding the SIMPLE Update algorithm, the forgetting algorithms and No Forgetting each averaged more

error with paths 1 - 20. The Impulse noise distribution had a smaller negative impact on the original set of

125

Table VIL.6: Noise distribution effects on average estimation error (paths 1 - 20)
Distribution Parameters No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Gaussian o=1 6.017 3.053 2.856 4.699 3422 6.017 2.404 2.653
c=125 6.101 3.335 3.132 4847 3538 6.101 2.77 2.965
c=15 6.183 3.609 3.432 4933 3.637 6.183 3.168 3.28
c=2 6.345 3.925 3.839 5.166 3.877 6.345 3.916 3.855
o=5 7.309 5.427 5.31 6.496 5279 7.308 5.904 5.964
65, r=3 7.311 5.269 5.054 6.447 5.151 7311 4783 4.86
oc=5r=5 7.305 4.939 4.623 6.401 5.059 7.305 4.045 4.369
o=5r=11 7.13 4.503 4.311 6.125 4517 713 3.628 3.503
c=15 10.54 9.955 9.641 10.665 9.463 10.54 10.279 10.099
c=15r=3 10.547 9.892 9.562 10.637 9.282 10.547 10.029 9.58
oc=15r=5 10.541 9.86 9.488 10.636 9.181 10.541 9.663 9.15
c=15r=11 10.526 9.587 8.993 10.554 8926 10.526 8.384 8.479
Impulse §=0.25 41.226 37.318 41.81 39.687 43.759 41.225 39.509 43.626
§=03 38.783 35.295 39.217 37.362 41.062 38.782 37.323 40.927
6=05 29.075 27.627 28.18 28.566 29.036 29.074 27.745 28.513
Laplace b=0.5 5.852 2.608 2.748 4462 3262 5.852 2.114 2.193
b=1 6.091 3.154 2.949 4804 3469 6.091 2.511 2.752
b=15 6.31 3.806 3.574 5.129 3762 6.31 3.504 3.499
b=2 6.524 4.173 4.064 539 407 6524 4.281 4.13
sinc _ 12.391 11.8 11.273 12.449 10414 12.391 13.26 10.752
Original _— 9.164 7.394 6.322 872 6.278 9.164 6.076 5.441
No Noise _ 5.714 3.439 3.513 4228 3221 5714 2.281 2214
With Impulse ~ Average 11.681 9.544 9.722 10.836 9.985 11.681 9.435 9.673
Std 10.416 10.21 11.379 10.376 11.862 10.416 10.956 11.964
Rank 7 2 4 6 5 7 1 3
Without Impulse Average 7.784 5.775 5.510 6.989 5569 7.784 5421 5.249
Std 2.106 2.958 2.805 2.682 2527 2.106 3.308 2.883
Rank 8 5 3 6 4 7 2 1

paths (1 - 20).

The ActSimple algorithm only generated the third best estimation error (9.673) with paths 1 - 20 when the
Impulse distributions were included. SIMPLE Update realized the least amount of estimation error (9.435)
and Queue Static averaged the second least average error (9.544). The ACT-R algorithm produced the fifth
least amount of error (9.985). When the Impulse distributions were not included, ActSimple averaged the
least amount of error (5.249) and SIMPLE Update generated the second least amount of error (5.421). Queue
Static’s relative performance dropped to fifth place with an error of 5.775.

The SIMPLE Update algorithm generated the best estimation error when the Impulse noise distributions
were included in the results and the second best error when the Impulse noise distributions were not included.
However, SIMPLE Update only averaged the fifth best estimation error when processing results from all 64
paths (Table VII.3). Some of the paths from path 21 - path 64 pose a greater challenge to SIMPLE Update
than some other forgetting algorithms.

Rank ordering of the estimation error resulting from paths 1 - 20 was calculated and is presented in
Table VII.7. Ranking was performed after rounding to minimize the effects of noise. The overall rank

ordering averages changed from the ranking of overall estimation error for paths 1 - 20 when the Impulse

126

Table VIL.7: Noise distribution effects on estimation error rankings (paths 1 - 20)
Distribution Parameters No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Gaussian o=1 7 4 3 6 5 7 1 2
o=125 7 4 3 6 5 7 1 2
o=15 7 4 3 6 5 7 1 2
c=2 7 5 1 6 3 7 4 2
o=5 8 3 2 6 1 7 4 5
6=5,r=3 7 5 3 6 4 7 1 2
c=5r=5 7 4 3 6 5 7 1 2
o=5r=11 7 4 3 6 5 7 2 1
c=15 6 3 2 8 1 6 5 4
c=15r=3 6 4 2 8 1 6 5 3
oc=15r=5 6 5 3 8 2 6 4 1
c=15r=11 6 5 4 8 3 6 1 2
Impulse 6=0.25 5 1 6 3 8 4 2 7
§=03 5 1 6 3 8 4 2 7
6=05 8 1 3 5 6 7 2 4
Laplace b=05 7 3 4 6 5 7 1 2
b=1 7 4 3 6 5 7 1 2
b=15 7 5 3 6 4 7 2 1
b=2 7 4 1 6 2 7 5 3
sinc _ 5 4 3 7 1 5 8 2
Original E— 7 5 4 6 3 7 2 1
No Noise _ 7 4 5 6 3 7 2 1
With Impulse ~ Average 6.636 3.727 3.182 6.091 3.862 6.455 2.591 2.636
Std 0.848 1.279 1.296 1.306 2.077 0.963 1.894 1.761
Rank 8 4 3 6 5 7 1 2
Without Impulse Average 6.737 4.158 2.895 6.474 3316 6.684 2.684 2.105
Std 0.653 0.688 0.994 0.841 1.600 0.582 2.029 1.049
Rank 8 5 3 6 4 7 2 1

distributions were included. ActSimple improved from the third least estimation error to the second smallest
average rank. The SIMPLE Update algorithm maintained the best performance. Queue Static dropped from
second to fourth and Queue Dynamic moved from fourth to third. The ACT-R algorithm remained fifth. Rank
positions, when the Impulse distributions were not included, did not change from Table VIL.6 to Table VIL.7.

The rank ordering of performance in Tables VII.3 and VII.6 was identical for the Impulse distributions
with § = 0.25 and 6 = 0.3. ActSimple and ACT-R generated more error than the other forgetting algorithms
and No Forgetting with these noise distributions for both the full set of paths (paths 1 - 64) and the smaller

original set (paths 1 - 20).

VII.3 Summary

Noise in the environment can influence the effectiveness of a forgetting algorithm. This chapter presented
an experiment where the performance of No Forgetting and the seven forgetting algorithms was tested with
twenty one new noise distributions. Results from this experiment demonstrate the stability and flexibility of
the benefits afforded by Human-Inspired Forgetting.

No Forgetting did not generate the largest amount of estimation error for each of the new noise distri-

127

butions, but tied for the greatest amount of overall average estimation error and never resulted in better than
the fifth best estimation error value. The Human-Inspired Forgetting algorithms managed to generate less
estimation error, despite the changes to the noise distribution present in the environment. In many real-world
environments, accurately modeling the noise and other environmental properties that can influence a mo-
bile robot’s performance is very challenging, if not impossible. The results from this chapter suggest that if
Human-Inspired Forgetting is utilized in mobile robots operating in real-world environments, the algorithms
may increase system accuracy without requiring constant re-optimization.

The ActSimple algorithm averaged the least amount of average estimation error and appears to be an
effective and reliable means of incorporating Human-Inspired Forgetting into robotic systems. The algorithm
did not generate the smallest amount of estimation error for each tested noise distribution, but resulted in the
smallest average estimation error and the best average rank value. Forgetting algorithms may not be able
to guarantee the best possible performance under every condition, but ActSimple appears to be an effective
means of improving average performance.

Algorithmic complexity can be an important factor when selecting and utilizing an algorithm. The es-
timation error values from Table VII.3 were contrasted with each algorithm’s number of parameters and is
presented in Figure VIIL.8. Each algorithm is represented with a unique symbol and error values including the
Impulse noise distributions are shown in black, while the error values not including the Impulse distributions
are shown in gray.

No Forgetting does not possess any parameters and tied for the largest amount of estimation error. Act-
Simple utilizes the largest number of parameters and resulted in the smallest amount of estimation error.
However, a direct relationship between parameter count and estimation error is not shown. SIMPLE and
SIMPLE Update each possess seven parameters, yet both resulted in more estimation error than ACT-R,
Queue Static, and Queue Dynamic. Other factors appear to have an impact on the effectiveness of a forget-
ting algorithm to improve system accuracy. Additionally, ActSimple was optimized with only the original
noise distribution, but still generated the smallest amount of estimation error. The additional parameters in
ActSimple do not appear to cause over-learning, but may aid in ActSimple’s ability to perform well across
multiple noise distributions.

Human-Inspired Forgetting may improve system accuracy, but the filtering performed by the forgetting
algorithms may also reduce the number of data points requiring potentially computationally expensive pro-
cessing by existing robotic algorithms. A comparison between the forgetting algorithms resultant estimation
error (Table VIIL.3) and the resultant number of recallable readings (Table VII.1) is presented in Figure VIL9.
This figure uses the same key as Figure VILS.

The Impulse noise distributions substantially increased the average estimation error generated by No

128

Average Absolute Estimation Error

Average Absolute Estimation Error

14

13 ¢ -
12 4 X
+ Algorithm
11 A @ No Forgetting
. X ® H Queue Static
10 A Queue Dynamic
| X Random
XACT-R
9 4 =SIMPLE
+ SIMPLE Update
g | @ ActSimple
Distributions
71 W With Impulse
Without Impulse
6 4
5 4
4 T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Number of Parameters
Figure VIL.8: Number of parameters vs. average absolute estimation error
14
13 .
12 <
+ Algorithm
11 @ No Forgetting
A
L X n H Queue Static
10 A Queue Dynamic
X Random
XACT-R
9 4 =SIMPLE
+ SIMPLE Update
8 @ ActSimple
Distributions
71 W With Impulse
Without Impulse
6
5
4 T T T T T T T T
500 600 700 800 900 1000 1100 1200 1300 1400

Average Number of Recallable Readings

Figure VII.9: Average number of recallable readings vs. average estimation error

129

Forgetting and the forgetting algorithms, but the relative number of recallable readings and estimation error
values are similar. No Forgetting and SIMPLE resulted in the most estimation error, but also the largest
number of recallable readings. This data suggests that in noisy environments, the quantity of data available
to an existing robotic algorithm may not result in improved accuracy. ActSimple generated the least amount
of estimation error and resulted in at most the second smallest number of recallable readings. The ability
to intelligently select a subset of data collected from the environment may have a greater influence on the
effectiveness of a mobile robot to improve system accuracy.

ActSimple is the most complex forgetting algorithm that was tested, possessing the largest number of
parameters, but was able to average the smallest amount of estimation error and at most the second smallest
number of recallable readings. Robotic systems that operate in dynamic real-world environments and em-
ploy computationally expensive existing robotic algorithms may realize improved accuracy, while decreasing
overall computational load with the use of the ActSimple forgetting algorithm. Generating the best average
estimation error over the full set of tested noise distributions, the ActSimple algorithm may also not require

constant re-optimization in order to provide benefits to the system.

130

CHAPTER VIII

Evaluating the Performance of Forgetting at Each Point Along the Paths

During the optimization experiment (Chapter V), the parameters for each forgetting algorithm were opti-
mized by minimizing the resultant WiFi signal strength estimation error generated at the end of each path.
Neither the absolute nor the relative performance of a forgetting algorithm parameterization will necessarily
be constant throughout a path. At the beginning of a path, most forgetting algorithms and parameterizations
generate nearly identical estimation values; however, as the robot continues along the path, the performance
across the forgetting algorithms may diverge. This chapter describes an experiment in which forgetting algo-
rithm performance data was gathered throughout the entire path, not just at the end. During this experiment,
item recalls did not affect a reading’s activation level and only the effects of perception count were included.

This experiment used paths 1 - 20 (Chapter IV.4) and the same simulation conditions used during op-
timization (Chapter V). The collected results were averaged over 100 instances of each path. These path
instances were not the same as the path instances used to optimize the forgetting algorithms. The resultant
estimation values for each path were plotted. The most interesting results are provided in this chapter and the
remaining results are provided in Appendix A. Performance along paths 1, 2, 4, 5, 8, 9, 10, 12, 13, 17, and

20 are described in detail in this chapter.

VIII.1 Performance Along Individual Paths

The performance along all paths exhibited a few general trends. Path 2, provided in Figure VIII.1, is rep-
resentative of these trends. At the beginning of each path, no WiFi readings were available and estimation
error was significant. While the initial estimation error was dependent on a path’s initial basestation con-
figuration, the forgetting algorithms and No Forgetting each generated identical error values. As the robot
began collecting WiFi signal strength readings, the estimation error generally began to decrease, although
the decrement rate depended on the path. After approximately 500 - 650 time steps (roughly 600 steps for
Path 2), the performance of the forgetting algorithms began to diverge on most paths. The degree that the
individual forgetting algorithms’ performance diverged was path dependent. None of the conditions gener-
ated monotonically decreasing error, even when only paths containing a single basestation configuration were

analyzed.

131

VIIL.1.1 Performance of Forgetting when Applied to Path 2

The benefits of the individual forgetting algorithms varied across paths, but also experienced sizable vari-
ability along each path. Figure VIII.1 presents the along the path results for Path 2. This path involved one
complete cycle through the simulation environment using the four basestation configuration. At the begin-
ning of this path, no readings were available and the estimation error was very large (42.0696). After the first
reading was collected, the average error dropped sharply to 30.0406, as is visible in Figure VIII.1. The esti-
mation error continued to decline until 43 readings were collected. At this point, the error began to increase
for approximately 138 readings before returning to a declining trend. Around the 600" time step, the estima-
tion error generated by the different forgetting algorithms began to diverge. The SIMPLE Update and ACT-R
algorithms both experienced a larger increase in estimation error than the other forgetting algorithms or No
Forgetting. During the period of increased error, from approximately reading 700 to 1150, ACT-R reached
an error value of 13.759 and SIMPLE Update’s error increased to 13.298. The error generated by ACT-R
and SIMPLE Update at the end of the path had returned to levels similar to the other forgetting algorithms

and No Forgetting. The trends shown in path 2 are representative of the performance generated along path 3
(Figure A.1).

45

40 +

35 +

30 +

— QueueStatic
—— QueueDynamic
Random
ActR
—— Simple
— SimpleUpdate
—— ActSimple
—— NoForgetting

N
ol
I

20 +

Estimation Error

15 +

10 +

| | L | |
—+— —+— —+— —+— ——F— —+— —+— —+—
- — - — - — — — — — - — - - - — — - - — - — — - - —
n o [Te} o [Te} o n o wn o mn o n o n o n o [Te} o wn o n o [Te}
— — N N (3] [l < < n n © © ~ ~ [ee] [ee] () ()] o o - — N N
- — - - - —

Time

Figure VIII.1: Along path results for path 2 - 1 cycle 4 basestations
Performance of the forgetting algorithms and No Forgetting at each point in time along the path was

132

influenced by the environment. Estimation error values and the number of recallable readings were often
inconsistent at any given point in time. Figure VIII.2 graphically presents the individual error and recallable
reading counts throughout the environment at selected points in time when No Forgetting was present. Fig-
ures VIII.2a - VIII.2h show the average number of recallable readings at each location in the environment.
The recall maps indicate recallable readings with blue. Darker colors represent larger numbers of recallable
readings. Recall values within these maps are clipped to a value of three readings to allow for discrimination
of values between 0 to 3. The blue color does not directly present the probability of recalling an item, simply
the average number of recallable items. As a result, two harder to recall readings may be represented with a
darker color than one easier to recall reading. The small black square represents the robot. The robot moves
and then takes a reading, thus, the last collected reading is always concealed by the robot indicator. The
basestations are represented as two circles in Figure VIII.2. The basestations are located in each corner. The
inner circle shows the 90% strength mark for the basestation, while the outer circle shows the radius where
the basestation’s strength has been reduced to 10%. These circles indicate the transition area for a basestation,
where available signal strength shifts from high levels to low. Figures VIII.2i - VIIL.2p show the individual
error values throughout the environment. Red indicates error, with darker colors representing greater amounts
of error. The robot indicator and the basestation markings are the same in the error maps as they are in the
recall maps. The full set of error and recall maps for No Forgetting, Queue Static, ACT-R, ActSimple, and
SIMPLE Update for all twenty paths are available in Appendix A.

Path 2 is one of the simplest paths tested. The robot started at the center of the environment and traveled
to the lower left corner of the environment. The robot proceeded to exhaustively explore the environment
traveling from the left side of the environment to the right. At the completion of the trip to the right side
of the environment, the robot returned to the lower left corner of the environment, again with an exhaustive
search strategy. At least one reading was collected at every location in the environment.

At the beginning of the path, the robot is located in the center of the environment and no readings are
available (Figure VIII.2a). The average number of recallable readings is zero for every location in the en-
vironment and the associated recall map (Figure VIII.2a) contains no blue markings. The robot does not
not have any signal strength readings and is forced to guess a signal strength value of 50.5 for each location
(Figure VIII.2i). Substantial error is generated at most locations in the environment, shown in Figure VIIL.2i
by the large amount of red. The only areas where large amounts of error are not present is in the transition
areas for each basestation, identified with each basestation’s pair of circles. At this point, the robot made a
movement towards the lower left corner of the environment and gathered its first reading (Figure VIIL.2b).
The robot changed its error estimation for every location in the environment based on this single reading and

the resultant error changed significantly (Figure VIII.2j). The robot traveled to the lower left corner of the

133

o) ©Q
o) ©

o ©

O (©

o) ©Q

©

Ef@
®

(a) Recall (b) Recall
0 time steps 1 time step
(e) Recall (f) Recall

48 time steps

76 time steps

®

(i) Error
0 time steps

(j) Error
1 time step

r
oM

"
o

. o, s

(c) Recall
24 time steps

(g) Recall
648 time steps

(d) Recall
34 time steps

(h) Recall
1272 time steps

o™

(k) Error
24 time steps

(1) Error
34 time steps

O ©
0 O

0 ©
0 ©

(m) Error
48 time steps

(n) Error
76 time steps

(0) Error
648 time steps

(p) Error
1272 time steps

Figure VIIL.2: Path 2 - 1 cycle 4 basestations with No Forgetting error and recall maps

134

environment collecting signal strength readings (Figure VIII.2c). Signal strength in the center of the envi-
ronment was at a constant minimum level. Until the robot reached the basestation in the lower left corner,
collecting additional readings did not result in visible changes to the robot’s estimation error. When the robot
reached the lower left basestation and began collecting higher valued strength readings (Figure VIII.2c), the
corresponding estimation error began to decrease (Figure VIII.2k). The robot collected additional readings
(Figures VIIL.2d - VIIL.2f), which slowly reduced estimation error near the basestations (Figures VIIL.2I -
VIIL.2n). After the 648™ time step (Figure VIIL.2g), at least one reading had been collected for every location
in the environment and pockets of significant error were removed (Figure VIII.20). The robot collected addi-
tional readings, while returning to the lower left corner of the environment (Figure VIIL.2h), but no significant
visual change occurred to the error map (Figure VIIL.2p).

Environmental conditions had a large impact on the average number of recallable readings at each loca-
tion. Figure VIIL.2h shows the effects of a basestation on the number of recallable readings. Both the center
of the environment and the center of the basestations possess an extreme signal strength level (either the
minimum or the maximum detectable value). The noise present in the environment is symmetric, but is then
clipped, converting the noise into an asymmetric noise source. At the center of the environment, any signal
strength reading that would have been negative (due to noise before clipping) is clipped to the minimum de-
tectable signal strength value. Likewise, readings centered on a basestation will be clipped to the maximum
detectable signal strength value. The clipping process at these two locations effectively limits the number of
unique signal strength readings that can be recorded by the robot. Conversely, the transition areas between
the basestations are not at the extremes of the detectable signal strength spectrum. At these locations, noise
can result in both positive or negative error, which allows for a greater number of possible signal strength
values. Even if the recallable probability of each reading is less, the presence of more unique readings at a
particular location can result in a darker color on a recall map.

The performance of the ACT-R algorithm differed from that of No Forgetting. Selected estimation error
and recallable reading maps from applying the ACT-R forgetting algorithm to Path 2 are presented in Fig-
ure VIIL.3. Figure VIII.1 demonstrates that during the second half of path 2, the ACT-R forgetting method
experienced a large increase in estimation error for approximately 550 time units. This phenomena occurred
because the ACT-R forgetting method began to filter readings located on the left side of the environment
before the robot was able to complete the path. The ACT-R forgetting algorithm started to filter the earliest
readings by the 648™ time step and the robot had completed the first pass through the environment (Fig-
ure VIII.3a). The effects of filtering are visible for the sub-path from the center of the environment to the
lower left corner of the environment and in the corner itself. A slight increase in estimation error can be seen

in the lower left corner of Figure VIII.3i. As the robot continued the pass back to the left side of the environ-

135

(a) Recall
648 time steps

.

(b) Recall
673 time steps

=

(e) Recall
959 time steps

w

(f) Recall
1099 time steps

.

(c) Recall
799 time steps

(g) Recall
1149 time steps

(d) Recall
899 time steps

(h) Recall
1272 time steps

O ©
0 d
O ©Q

DO

eMe

J ©

©

.

(i) Error
648 time steps

(j) Error
673 time steps

(k) Error
799 time steps

(1) Error

899 time steps

D

Ly ©

o4

D

o

el e

0 ©
0 ©

(m) Error
959 time steps

(n) Error
1099 time steps

(0) Error
1149 time steps

(p) Error
1272 time steps

Figure VIIIL.3: Path 2 - 1 cycle 4 basestations with ACT-R error and recall maps

ment, the effects of filtering increase and additional readings from the left side of the environment become
unrecallable (Figures VIII.3b - VIII.3e). During this period, the estimation error present on the left side of
the environment continued to increase (Figure VIIL.3j - VIII.3m). After collecting more readings, the robot
traveled past the transition point between where readings were recallable and where they were unrecallable
(Figure VIIIL.3f). While Figures VIII.3n and VIII.30 do not show increasing error on the right side of the
environment, Figures VIIL.3f and VIII.3g show ACT-R continuing to filter greater numbers of old readings.
At the end of the path, the error map (Figure VIIL.3p) visually appears the same as the map generated by No
Forgetting (Figure VIIL.2p), but the recallable reading map shows significant differences. The map generated
by No Forgetting (Figure VIII.2h) reveals large deviations in the number of recallable readings per location
in the environment, while the recall map generated by ACT-R (Figure VIII.3h) suggests only one reading was
available (except for the sub-path from the center of the environment to the lower left corner and the right

most edge of the environment).

@

@

Figure VIII.4: End of path recall map for ActSimple and path 2 - 1 cycle 4 basestations

Similarity-base interference affected the number of recallable readings generated by the ActSimple algo-
rithm. Figure VIII.4 presents the recallable reading map for ActSimple at the end of path 2. The top, bottom,
and right edges of the environment exhibited larger numbers of recallable readings, unlike the left side of the
environment. ActSimple’s parameterization places a large emphasis on spatial similarity. Readings located
on the edges of the environment have fewer nearby locations and consequently experienced reduced interfer-
ence. Increased numbers of recallable readings are not available on the left edge of the environment due to

the effects of time.

137

(a) Recall (b) Recall (c) Recall (d) Recall
648 time steps 934 time steps 979 time steps 1079 time steps

!
:
D

(e) Recall (f) Recall (g) Recall
1175 time steps 1239 time steps 1272 time steps

ONCONee
oNe ol o)

(h) Error (i) Error (j) Error (k) Error
648 time steps 934 time steps 979 time steps

ﬁ@ﬁ@
D) O ©

(1) Error (m) Error (n) Error
1175 time steps 1239 time steps 1272 time steps

e Ne
Q) ©
& Me

1079 time steps

@M e

O ©

Figure VIIL.5: Path 2 - 1 cycle 4 basestations with Queue Static error and recall maps

138

£ e B
!’ﬂ

(a) Recall
633 time steps

(e) Recall
1011 time steps

(b) Recall
648 time steps

(f) Recall
1185 time steps

(c) Recall
672 time steps

(g) Recall
1211 time steps

(d) Recall
860 time steps

(h) Recall
1272 time steps

oo

O ©Q

o ©

oEe

A
OR ©

(i) Error
633 time steps

(j) Error
648 time steps

(k) Error
672 time steps

(1) Error
860 time steps

OH®
5 ©

o ©

oNGe)

Q) ©
0 ©

(m) Error
1011 time steps

(n) Error
1185 time steps

(0) Error
1211 time steps

(p) Error
1272 time steps

Figure VIIL.6: Path 2 - 1 cycle 4 basestations with SIMPLE Update error and recall maps

139

The Queue Static algorithm’s limited queue size had an effect on the forgetting algorithm’s performance
along Path 2 (Figure VIIL5). Since the queue size for Queue Static was 776, estimation error and recall were
the same as No Forgetting for the collection of the first 776 unique readings (Figures VIIL.5h, VIIL.5i, VIIL.5a,
and VIIL5b). Around the 979" time step, the queue became full and older readings began to be forgotten.
Figure VIII.5c shows the initial readings from the center of the environment starting to become unrecallable.
However, the associated error map (Figure VIIL.5j) did not reveal the effects of forgetting. The limited queue
size’s effects started to prevent readings from the left side of the environment from being recallable by the
1079 time step (Figure VIIL.5d). The effects on estimation error began to appear at this time, increasing error
in the affected left side of the environment (Figure VIIL.5k). The primary region experiencing the effects of
the limited queue size began moving to the right of the environment as the robot continued to follow the path.
A band of limited reading recallability can be seen in Figures VIIL.5e - VIII.5g. The effects on estimation
error can be seen in the corresponding error maps (Figures VIIL.51 - VIIL.5n).

The SIMPLE Update algorithm experienced a substantial increase in estimation error similar to ACT-R
(Figure VIII.1). Selected recall and error maps for the SIMPLE Update algorithm being applied to path 2
are presented in Figure VIII.6. The SIMPLE Update algorithm’s performance was visually identical to No
Forgetting for the first 633 time steps (Figures VIII.6a and VIIL.6i). The performance of SIMPLE Update
began to diverge and by the 648™ time step, the forgetting algorithm began filtering readings in the center
of the environment (Figure VIIL.6b), but an increase in estimation error was not visible in the associated
error map (Figure VIIL.6j). Additional readings began to be filtered (Figure VIII.6¢c) and visible increases in
estimation error started to occur as the robot began the second half of the path (Figure VIII.6k). The filtering
of readings continued in the center of the environment (Figure VIII.6d) and estimation error also continued to
increase (Figure VIIL.61). Continuing along the path, the robot progressed to the left side of the environment,
traveling through the area experiencing the filtering of readings (Figure VIII.6e), reducing estimation error
(Figure VIII.6m). The robot then collected additional readings, which removed the substantial filtering of
readings that occurred in the center of the environment (Figures VIIL.6f and VIII.6g). These additional
readings removed the visible increase in estimation error and after completing a total of 1211 time steps, the
elevated estimation error was no longer visible (Figure VIII.60). A second increase in the filtering of readings
started to appear at the end of the path (Figure VIII.6h). However, a second visible increase in estimation

error did not occur (Figure VIIL.6p).

VIII.1.2 Performance of Forgetting when Applied to Path 4
Path 4 is similar to path 2 in that it involves one cycle through the environment and the four basestation con-

figuration, but differs in the number of locations visited in the environment’s upper left corner. Figure VIII.7

140

presents path 4’s trajectory (repeated from Figure IV.11d). When the robot travels into the upper left section,
the collection of readings is not exhaustive and readings are only collected for the locations visited by the
robot. This section describes the performance differences with ACT-R and ActSimple that result from the

change in path trajectory from Path 2 to Path 4.

Figure VIII.7: Trajectory of path 4 (Repeated from Figure I'V.11d

— QueueStatic

—— QueueDynamic
Random

——ActR

—— Simple

— SimpleUpdate

—— ActSimple

—— NoForgetting

Estimation Error

- — -) -) -) - - (=) - - — - — -) - - -
[Te} o wn o n o n o n o n o n o 0 o n o [Te) o
— — N N o™ o™ < < [Te) [Te) © © ~ ~ @ @ (=2} (=2} 9'

Time

Figure VIII.8: Along path results for path 4 - 1 cycle 4 basestations

The ACT-R algorithm’s end of path estimation error with Path 4 (time 1033 in Figure VIII.8) increased

substantially from path 2 (time 1272 in Figure VIII.1). ACT-R generated an end of path estimation error

141

@@@:@)g
&) 0D @)

(a) Recall (b) Recall (c) Recall
552 time steps 699 time steps 1032 time steps

@@@@ﬁ@
0 D) o) ©

(d) Error (e) Error (f) Error
552 time steps 699 time steps 1032 time steps

Figure VIII.9: Path 4 - 1 cycle 4 basestations with ACT-R error and recall maps

of 4.703 for path 2, but the Path 4 results have an end of path error of 10.950. Figure VIIL.9 presents a
subset of the error and recall maps for ACT-R when applied to path 4. Similar to the filtering of the readings
that occurred along path 2, ACT-R filtered the readings collected from the left side of the environment,
including the readings from the upper left section (Figure VIIL.9b). All of the readings from the upper left
were unrecallable (Figure VIII.9c) and significant estimation error was generated (Figure VIIL.9f) by the time
the robot returned to the lower left corner of the environment.

ActSimple’s performance differed from ACT-R’s along path 4. Figure VIII.10 presents the recallable
reading and error maps for ActSimple along path 4. After 699 time steps, ActSimple did not visually begin
to filter the readings gathered in the left half of the environment (Figure VIII.10b). However, bands of large
estimation error were still present (Figure VIII.10e), similar to ACT-R. When the robot completed the path,
the readings located in the upper left section were still not being filtered (Figure VIII.10c). However, some
readings in the bottom left portion do appear to have been filtered, since this area is a lighter more consistent
blue than the right portion. Unlike ACT-R, ActSimple generated considerably less error in the upper left

portion of the environment (Figure VIII.10f).

VIII.1.3 One Cycle, Eight Basestation Paths
Estimation error along the three paths involving one cycle and eight basestations was similar to the per-

formance observed along the one cycle, four basestation paths except for the effects of the first acquired

142

(

(a) Recall
552 time steps

(b) Recall
699 time steps

EHE

(c) Recall
1032 time steps

O _(©

0 O ©

0) ©

B ©
O ©

(d) Error
552 time steps

Figure VIII.10: Path 4 - 1 cycle 4 basestations with ActSimple error and recall maps

reading and the initial rate of error reduction. The eight basestation paths maintained a larger percentage
of the environment where strong signal strength was available. As a result, the estimation error gener-
ated before any readings were collected was 33.999. Unlike the four basestation paths described in Chap-
ters VIII.1.1 and VIII.1.2, which experienced an estimation error drop from 42.070 to 30.041, the error
increased to 57.562 after the first reading was collected. This phenomena is present in the graph of estimation

error for path 8 (Figure VIII.11). Paths 6 and 7 generated similar estimation error as path 8 and are presented

in Figures A.2 and A.3.

(e) Error
699 time steps

143

(f) Error
1032 time steps

70

60

50 +

— QueueStatic
—— QueueDynamic
Random
ActR
— Simple
— SimpleUpdate
—— ActSimple
—— NoForgetting

IS
o
,

30 +

Estimation Error

20

10 +

0 Il Il Il Il Il Il } Il Il Il Il Il Il Il Il } Il Il Il }
- — - I i - — - — — — — - — - - - I — — —
n o [Te} o [Te} o wn o wn o mn o mn o n o Yo} o [Te} o
— — N N ™ ™ < < o) Te) © © ~ ~ ee] [ee] () (o)) 8

Time

Figure VIII.11: Along path results for path 8 - 1 cycle 8 basestations

VIIL.1.4 Static, Three Cycle Paths

The performance of the forgetting algorithms and No Forgetting on the beginning portions of the three cycle,
single basestation configuration (either four or eight) paths (paths 10-12 and 14-16) were similar to their
complementary one cycle paths (paths 2-4 and 6-8). The performance of each forgetting algorithm and No
Forgetting started to diverge as the second cycle in each path began. Figure VIII.12 presents the estimation
error along path 10, which is representative of the estimation error values diverging.

The SIMPLE Update algorithm generated an oscillating estimation error along path 10. Selected recall
maps for SIMPLE Update applied to path 10 are presented in Figure VIII.13. The complimentary error maps
are presented in Figure VIII.14. Path 10 includes three cycles through the environment, all of which are iden-
tical except for an initial sub-path from the center of the environment to the lower left corner. The first cycle
in path 10 is identical to the entirety of path 2 and the performance of SIMPLE Update along path 10 initially
was indistinguishable to the results of applying SIMPLE Update to path 2 (Figures VIII.1 and VIIL.6). A de-
scription of SIMPLE Update applied to path 2 is presented in Chapter VIII.1.1. Figures VIII.13a - VIII.13b
and Figures VIII.14a - VIIL.14b show the recallable readings and the estimation error generated by the SIM-
PLE Update algorithm for the final portion of the first cycle through the environment. At the conclusion

of the first cycle (after 1272 time steps), a second instance of significant filtering started to appear in the

144

45

40 +

35 +

30

—— QueueStatic

§ —— QueueDynamic
o 25+ Random
_S ActR
© — Simple
% 20 —— SimpleUpdate
w —— ActSimple

15 1 — NoForgetting

10 +

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201 2401 2601 2801 3001 3201 3401 3601
Time

0

Figure VIII.12: Along path results for path 10 - 3 cycles 4 basestations

middle of the environment (Figure VIII.13b). However, an increase in estimation error was not visible (Fig-
ure VIII.14b). The robot began the second cycle. After a total of 1320 time steps, the region experiencing
substantial filtering had expanded (Figure VIII.13c) and an increase in estimation error was observed (Fig-
ure VIII.14c). The area where readings were being filtered continued to expand, while the robot completed
the 1464™ time step. Estimation error increased in a similar fashion (Figure VIIL14c). After the 1733
time step, the robot had ventured into the filtering area, reducing the area’s size (Figure VIII.13e). While
the size of the filtered reading area was shrinking, new readings were being filtered at the right edge of the
environment. Estimation error along the right side of the environment similarly increased (Figure VIII.14e).
The robot finished the first half of the second cycle by completing the 1896™ time step while traveling to
the upper right corner. The newly collected readings on the right side of the environment reduced the effects
of filtering on that half of the environment (Figure VIII.13f) and elevated estimation error was also removed
(Figure VIII.14f). During the robot’s return trip to the left side of the environment, another area of extensive
filtering appeared (Figure VIII.13g) and estimation error also increased (Figure VIIL.14g). After the 2520
time step, the filtering and increase in estimation error had again subsided (Figures VIII.13h and VIII.14h).
The third cycle through the environment was similar to the second cycle (Figures VIII.13i - VIII.131 and

Figures VIII.14i - VIII.14]).

145

(a) Recall (b) Recall (c) Recall (d) Recall
1211 time steps 1272 time steps 1320 time steps 1464 time steps

(e) Recall (f) Recall (g) Recall (h) Recall
1733 time steps 1896 time steps 2058 time steps 2520 time steps

(i) Recall (j) Recall (k) Recall (1) Recall
2632 time steps 3144 time steps 3306 time steps 3768 time steps

Figure VIII.13: Path 10 - 3 cycles 4 basestations with SIMPLE Update recall maps

146

(a) Error
1211 time steps

(b) Error
1272 time steps

(c¢) Error
1320 time steps

(d) Error
1464 time steps

Q0 ©
0) ©

(e) Error
1733 time steps

(f) Error
1896 time steps

(g) Error
2058 time steps

(h) Error
2520 time steps

Q) O

©h.(@

O
@Il

o ©
0) ©

(i) Error
2632 time steps

() Error
3144 time steps

(k) Error
3306 time steps

(1) Error
3768 time steps

Figure VIII.14: Path 10 - 3 cycles 4 basestations with SIMPLE Update error maps

147

45

40 1

35 +

— QueueStatic
—— QueueDynamic
Random
ActR
— Simple
— SimpleUpdate
—— ActSimple
—— NoForgetting

Estimation Error

0 ‘ ‘ : ‘ : : : : ‘ : : : : ‘
- - - - — — — i — — - - - - — —
o o o o o o o o o o o o o o o
N < © [eo) o N < © @ o N < © © o
— - - - — N N N N N (3]
Time

Figure VIII.15: Along path results for path 12 - 3 cycles 4 basestations

The differences in estimation error were greater along path 12 (Figure VIII.15). Near the end of the
path, Queue Static, Queue Dynamic, and ACT-R each experienced a “step-like” increase in error. Path 12’s
trajectory (Figure VIII. 16, repeated from Figure IV.111) is very similar to path 4’s trajectory (Figure VIIL.7,
repeated from Chapter IV.4). The first two cycles in the path 12 trajectory each reproduce path 4’s trajectory,
except the second cycle does not include the sub-path from the center of the environment to the lower left
corner. The third cycle is similar to the second cycle, except the robot does not travel into the upper left
quadrant of the environment. The second and third cycles only visit locations previously visited by the first
cycle, resulting in the graphical representation of path 12’s trajectory (Figure VIIL.16) being identical to the
graphical representation for path 4’s trajectory (Figure VIIL.7).

The large estimation error deviations and the “step-like” trends in the last third of path 12 result from
the interaction of path 12’s trajectory with the upper left corner of the environment (similar to the interaction
experienced by path 4 and that quadrant of the environment). Figure VIII.17 presents selected recall and error
maps for ACT-R when applied to path 12. The number of recallable readings in each location along path 12
(Figures VIII.17a - VIIL.17c) were identical to the results from path 4 (Figures VIII.9a - VIII.9c) for the first
1032 time steps. The error maps for path 12 (Figures VIII.17i - VIII.17k) were also identical to the error

maps from path 4 (Figures VIII.9d - VIIL.9f) during this period of time. The robot then began the second

148

Figure VIII.16: Trajectory of path 12 (Repeated from Figure IV.111)

cycle, returning to the upper left quadrant (Figure VIII.17d). While readings were again recallable in the
upper left, readings at the right edge of the environment were being filtered. The newly recallable readings
in the upper left reduced the estimation in that area, but an increase in estimation error was present on the
right side of the environment due to readings being filtered (Figure VIII.171). The robot continued along the
path and after 1560 time steps, the error map (Figure VIII.17m) resembled the error map from mid-point of
the first cycle (Figure VIII.17i). The recall map (Figure VIII.17e) reveals readings were available throughout
the entire trajectory. The robot returned to the lower left corner and the readings in the upper left quadrant
again began to become unrecallable (Figure VIII.17f), resulting in slightly increased error (Figure VIII.17n).
During the third cycle, the robot did not return to the upper left quadrant and the readings from that location
were filtered (Figures VIII.17g and VIII.17h). Substantial error returned to the upper left portion of the
environment (Figure VIII.170 and VIII.17p).

The Queue Static and Queue Dynamic algorithms experienced similar “step-like” increases in estimation
error due to similar interactions with the upper left quadrant of the environment. While Random forgetting
also experienced increasing error during the second half of this path, Random forgetting did not generate a
large jump in estimation error like the other queue-based forgetting methods or ACT-R. The results for paths

11, 14, 15, and 16 are located in Appendix A.

VIIL.1.5 Dynamic, Non-Random Paths

When the forgetting algorithms and No Forgetting were applied to the non-random paths containing a bases-
tation configuration change, the resultant estimation error during the first half of each path was similar to
the performance seen on the static paths. Once the basestation configuration change occurred, the estimation

error generated by the forgetting algorithms and No Forgetting increased sharply. The change in estimation

149

(a) Recall
552 time steps

@

(b) Recall
749 time steps

®

(c) Recall
1032 time steps

(d) Recall
1249 time steps

(e) Recall (f) Recall (g) Recall (h) Recall
1560 time steps 2040 time steps 2520 time steps 3000 time steps
L | Im g
y (O @ Ok (O
|
[|
(i) Error (j) Error (k) Error (1) Error
552 time steps 749 time steps 1032 time steps 1249 time steps

J
©

E@
O) ©

ﬁ@'
O) Qo

&
©

(m) Error

1560 time steps

(n) Error
2040 time steps

(0) Error
2520 time steps

(p) Error
3000 time steps

Figure VIII.17: Path 12 - 3 cycles 4 basestations with ACT-R error and recall maps

150

error is presented in Figure VIII.18 for path 5, Figure VIII.19 for path 9, Figure VIII.20 for path 13, and Fig-
ure VIII.21 for path 1. The basestation configuration change occurred after 648 time steps for paths 1 and 5
and after 1896 time steps for paths 9 and 13. The effects of the basestation configuration change were differ-
ent for each path, and estimation error from the individual forgetting algorithms and No Forgetting diverged.
While the forgetting algorithms generated worse estimation error than No Forgetting for at least a portion of
each path after the basestation configuration change, all forgetting algorithms, except SIMPLE produced less
estimation error than No Forgetting at the end of each path (Figures VIIL.21 - VIII.20). The Queue Static,
Queue Dynamic, and ACT-R algorithms generated substantially greater error than No Forgetting along path
1 after the basestation configuration change. The Queue Static and Queue Dynamic algorithms’ periods of
increased error lasted for approximately 110 time steps, while the ACT-R algorithm’s increase lasted for
roughly 185 time steps.

70

60

50

— QueueStatic

—— QueueDynamic
Random

—ActR

— Simple

— SimpleUpdate

—— ActSimple

—— NoForgetting

40

30

Estimation Error

20

10

A A A A d A d d d d " A A A A A A A A A d d Hd o
n o v O 1L O 1”wW O LW O 1 O 1 O 1’ O 1 O 1’ O W O 1w O

Figure VIII.18: Along path results for path 5 - 1 cycle 8 - 4 basestations

151

Estimation Error

Estimation Error

201

-
o
N

401

401

- P - - P - - - - - - - - P - -
o o o o o o o o <] o o o o o o o
© ® S Q3 © ® o I N © @D S 3 ©
— - Ll — - N N N N N o 3] 2] ™

Time

Figure VIII.19: Along path results for path 9 - 3 cycles 4 - 8 basestations

- - - - - - - - - - - - - - - -
o o o o o o o o o o o o o o o o
© ® =1 Q3 © ® o I N © @ S 3 ©
- Ll -~ - — N N N N N o™ (3] o ™

Time

Figure VIIL.20: Along path results for path 13 - 3 cycles 8 - 4 basestations

152

— QueueStatic

—— QueueDynamic
Random

——ActR

— Simple

—— SimpleUpdate

—— ActSimple

—— NoForgetting

— QueueStatic

—— QueueDynamic
Random

——ActR

— Simple

—— SimpleUpdate

—— ActSimple

— NoForgetting

45

40 1

35 +

— QueueStatic
—— QueueDynamic
Random
ActR
— Simple
— SimpleUpdate
—— ActSimple
—— NoForgetting

Estimation Error

0 }
— — - — - - - — - - — — - — — — - — - - — - - - — -
N O 1B O W O B O W O I O W O I Q© W O W O W O W O W
4 4 & ®m 3 F L w o O~ N~ 060 o0 9 9 449 8 o

Time

Figure VIII.21: Along path results for path 1 - 1 cycle 4 - 8 basestations

Basestation configuration changes can have a significant impact on the amount of estimation error present
at each location within the environment. The estimation error and recallable reading maps for No Forgetting
when applied to path 1 are presented in Figure VIII.22. No Forgetting performed the same as with path 2
(Figure VIII.2) for the first 648 time steps (Figures VIII.22a and VIII.22e), but the estimation error changed
abruptly after the basestation configuration change and the 649" time step (Figure VIIL.22f). The bases-
tation configuration switched from the four basestation configuration to the eight basestation configuration
and altered the error associated with each previously collected reading. New readings were collected (Fig-

ure VIII.22c) as the robot began the return trip to the left side, which aided in reducing the error in the
locations near the new basestations (Figure VIII.22g). The error levels did not change near the old basesta-
tion location because the change in basestation configuration only added basestations, none were removed.
At the end of the path, a new reading had been collected for nearly every location within the environment

(Figure VIII.22d), helping to reduce error; however, No Forgetting was unable to remove the effects of the

readings collected prior to the basestation configuration change (Figure VIII.22h).

VIIL.1.6 Randomly Generated Paths

Four of the tested paths (paths 17 - 20) involved randomly generated trajectories. Two paths contained a

basestation configuration change from either four to eight or eight to four basestations, while the remaining

153

O (OCIoooIo

Ok QIO
@fﬁ OIO@o

(a) Recall (b) Recall (c) Recall (d) Recall
648 time steps 649 time steps 789 time steps 1272 time steps

O O OO

D @
ele @ @

(e) Error (f) Error (g) Error (h) Error
648 time steps 649 time steps 789 time steps 1272 time steps

Figure VIII.22: Path 1 - 1 cycle 4 - 8 basestations with No Forgetting error and recall maps

two paths only possessed a single basestation configuration. The estimation error performance along these
paths resembled the performance observed on non-randomly generated paths (involving the same length and
basestation configuration characteristics) except that the randomly generated paths tended to have sharper
estimation error transitions. Figure VIII.23 shows the estimation error for path 17, a randomly generated path
with a basestation configuration change after 1500 time steps and Figure VIII.24 presents performance along
path 20, a path without a basestation configuration change. The performance along path 19 can be found in

Figure A.8.

154

Estimation Error

Estimation Error

201

-
o
N

401

Figure VIII.23: Along path results for path 17 - random 4 - 8 basestations

401

601 801 1001 1201 1401 1601 1801 2001 2201 2401 2601 2801 3001
Time

- - - - - - — - - - - - -
o o o o o o o o o o o o o
@ @ S N < © @ S I < © @ S
- - - - - N N N N N (2]

Time

Figure VIII.24: Along path results for path 20 - random 8 basestations

155

— QueueStatic

—— QueueDynamic
Random

——ActR

— Simple

— SimpleUpdate

—— ActSimple

— NoForgetting

— QueueStatic

—— QueueDynamic
Random

——ActR

— Simple

—— SimpleUpdate

—— ActSimple

— NoForgetting

The SIMPLE Update algorithm performed differently on path 18 (Figure VIIL.25). Unlike the other tested
forgetting algorithms or No Forgetting, SIMPLE Update experienced a large increase in estimation error from
around time step 1500 to time step 2400. Figure VIII.26 presents selected recall and estimation error maps for
SIMPLE Update when applied to path 18. After the first reading was collected (Figure VIII.26a), the SIMPLE
Update algorithm generated the same amount of estimation error as every other forgetting algorithm (and No
Forgetting) when applied to a path beginning in the 4 basestation configuration. After the first 65 time steps
(Figure VIIL.26b), the estimation error near the upper left basestation was reduced (Figure VIII.26j). After the
294" time step (Figure VIIL.26¢), the estimation error in the lower left corner was reduced (Figure VIII.26k).
The majority of significant estimation error was removed (Figure VIIL.261) by the time of the 1050 time
step (Figure VIII.26d). The robot continued collecting readings and by the 1552 time step, readings in
the upper center of the environment started being filtered (Figure VIII.26e). Estimation error in this area

of the environment started to increase (Figure VIII.26m). The number of readings being filtered continued
to increase and by the 1970 time step, the majority of the center of the environment was being filtered
(Figure VIII.26f). Estimation error similarly increased (Figure VIII.26n). The robot then traveled through
the area where filtering was occurring and collected new readings (Figures VIII.26g and VIII.26h). These

new readings resulted in the reduction of the increased estimation error (Figure VIII.260 and VIII.26p).

45

40 £

35 +

— QueueStatic
—— QueueDynamic
Random
ActR
— Simple
— SimpleUpdate
— ActSimple
—— NoForgetting

Estimation Error

201 +
401 +
601 +
801 +

| | | | | | | | | |
f
- - - - - - Pl Pl - - - -
o o o o o o o o o o o
o N < © @ o N < © o) (=)
- - - - - N N N N N ™
Time

Figure VIII.25: Along path results for path 18 - random 4 basestations

156

O %__@
0 © Wl 1.

(a) Recall (b) Recall (¢) Recall (d) Recall

_
O R
O) (O

O

1 time step 65 time steps 294 time steps 1050 time steps

%

@

(e) Recall (f) Recall (g) Recall (h) Recall
1552 time steps 1970 time steps 2221 time steps 3000 time steps
2 @ & Oy &
(i) Error (j) Error (k) Error (1) Error
1 time step 65 time steps 294 time steps 1050 time steps

L)

) OO (O
D @80 @@

(m) Error (n) Error (o) Error (p) Error

1552 time steps 1970 time steps 2221 time steps 3000 time steps

Figure VIIL.26: Path 18 - random 4 basestations with SIMPLE Update recall and error maps

VIIL.2 Along the Path Performance Metrics

The graphs from Chapter VIII.1 show varied relative performance along each tested path. In many domains

and tasks, the precise time when a decision will need to be made will often not be known in advance. Ad-

157

Table VIII.1: Along path average estimation error

Path No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple
Path 1 - 1 Cycle 4 - 8 Basestations 21.09 20.83 20.70 20.47 20.08 21.09 18.80 19.25
Path 2 - 1 Cycle 4 Basestations 10.97 11.10 11.04 1123 13.12 10.97 12.59 10.98
Path 3 - 1 Cycle 4 Basestations 11.62 11.63 11.62 11.74 13.37 11.62 12.75 11.63
Path 4 - 1 Cycle 4 Basestations 11.98 11.98 11.98 12.07 14.02 11.98 13.15 11.98
Path 5 - 1 Cycle 8 - 4 Basestations 24.65 23.87 23.88 2393 2241 24.65 22.85 22.56
Path 6 - 1 Cycle 8 Basestations 14.36 14.68 14.58 1480 1697 14.36 16.81 14.40
Path 7 - 1 Cycle 8 Basestations 15.00 15.04 15.01 1521 17.00 15.00 15.94 15.02
Path 8 - 1 Cycle 8 Basestations 15.50 15.51 15.50 15.67 1750 15.50 16.39 15.51
Path 9 - 3 Cycles 4 - 8 Basestations 15.82 10.85 10.80 12.58 14.04 1582 12.95 12.11
Path 10 - 3 Cycles 4 Basestations 6.39 7.27 6.65 7.61 6.25 6.39 8.32 5.69
Path 11 - 3 Cycles 4 Basestations 6.99 8.54 6.69 7.99 6.97 6.99 8.13 6.37
Path 12 - 3 Cycles 4 Basestations 7.59 9.45 8.44 8.56 9.13 7.59 8.64 7.03
Path 13 - 3 Cycles 8 - 4 Basestations 17.64 12.00 11.77 14.03 1435 17.64 14.96 12.37
Path 14 - 3 Cycles 8 Basestations 7.77 9.22 8.61 9.68 8.15 7.717 10.46 7.52
Path 15 - 3 Cycles 8 Basestations 8.71 10.34 9.00 10.23 9.05 8.71 9.81 8.43
Path 16 - 3 Cycles 8 Basestations 9.05 11.03 9.70 10.63 1020 9.05 10.01 8.85
Path 17 - Random 4 - 8 Basestations 2222 21.08 21.01 21.62 2141 2222 19.37 20.99
Path 18 - Random 4 Basestations 9.56 10.57 9.81 1044 10.28 9.56 11.38 9.12
Path 19 - Random 8 - 4 Basestations 25.90 23.61 23.16 2472 2381 2590 22.46 23.18
Path 20 - Random 8 Basestations 15.64 17.67 17.30 1694 1626 15.64 18.36 15.66
Average 13.92 13.81 13.36 14.01 1422 1392 14.21 12.93
Std 5.95 5.07 5.35 5.18 52 5.95 4.54 5.34

ditionally, robots operating in complex and dynamic domains will be required to make multiple decisions
across a period of time. A forgetting algorithm’s average performance along a path may frequently be more
important than the best performance available at any one specific point in time.

The average estimation error generated by a forgetting algorithm or No Forgetting along a path was
computed and is presented in Table VIIL.1. Values in red represent average estimation error values worse
than those generated by No Forgetting, for instance, Queue Static’s average estimation error of 11.10 on path
2. Teal text indicates estimation values equal to No Forgetting performance, for instance, SIMPLE’s average
estimation error on path 1. The results from the 100 path instances for each path were averaged together.
Analysis of the data at the path instance level would have been heavily influenced by the stochastic nature
of the algorithms and noise in the environment. Path instance level analysis was not performed. The results
were rounded to 2 decimal places. All data analysis and table coloring was performed on the rounded values
to minimize the effects of noise. The standard deviation of the estimation values was also computed and those
results are located in Table VIII.2.

Except for SIMPLE, which generated identical estimation error values as No Forgetting, every forgetting
algorithm outperformed No Forgetting on some paths, but generated greater estimation error on others (Ta-
ble VIII.1). The ActSimple algorithm resulted in an overall average estimation error of 12.93, the smallest
across all forgetting algorithms and No Forgetting (Table VIII.1), but also generated a standard deviation
of 9.12, the largest across all forgetting algorithms and No Forgetting (Table VIII.2). Applying ActSimple

to the twenty paths generated less estimation error than No Forgetting on 13 paths, the most of any forget-

158

Table VIIL.2: Along path standard deviation

Path No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple
Path 1 - 1 Cycle 4 - 8 Basestations 7.6 8.48 8.32 7.61 9.58 7.6 8.28 8.59
Path 2 - 1 Cycle 4 Basestations 8.42 8.32 8.37 8.22 7.4 8.42 7.58 8.41
Path 3 - 1 Cycle 4 Basestations 8.11 8.11 8.11 8.02 7.29 8.11 7.49 8.1
Path 4 - 1 Cycle 4 Basestations 8.09 8.09 8.09 8.03 7.06 8.09 7.4 8.09
Path 5 - 1 Cycle 8 - 4 Basestations 10.49 11.3 11.25 1072 12.17 10.49 11.4 11.89
Path 6 - 1 Cycle 8 Basestations 13.15 12.93 13 12.84 11.86 13.15 11.83 13.12
Path 7 - 1 Cycle 8 Basestations 12.9 12.88 12.9 12.77 11.98 12.9 12.37 12.89
Path 8 - 1 Cycle 8 Basestations 13.02 13.02 13.02 1291 12.04 13.02 12.5 13.02
Path 9 - 3 Cycles 4 - 8 Basestations 9.4 8.22 9.04 7.86 8.74 9.4 7.56 9.06
Path 10 - 3 Cycles 4 Basestations 5.89 5.56 5.79 5.44 6.55 5.89 5.46 6.2
Path 11 - 3 Cycles 4 Basestations 5.74 523 5.87 5.35 6.25 5.74 55 6.02
Path 12 - 3 Cycles 4 Basestations 5.73 5.28 5.67 5.37 5.74 5.73 5.51 5.98
Path 13 - 3 Cycles 8 - 4 Basestations 10.93 10.47 10.96 9.83 10.3 10.93 9.86 10.7
Path 14 - 3 Cycles 8 Basestations 9.04 8.54 8.75 8.38 9.45 9.04 8.45 9.15
Path 15 - 3 Cycles 8 Basestations 8.77 8.25 8.66 8.25 9.04 8.77 8.46 8.88
Path 16 - 3 Cycles 8 Basestations 8.77 8.15 8.56 8.23 8.67 8.77 8.49 8.85
Path 17 - Random 4 - 8 Basestations 6.91 7.39 7.63 6.63 7.08 6.91 7.22 6.89
Path 18 - Random 4 Basestations 6.21 5.65 6.04 5.67 5.98 6.21 5.54 6.48
Path 19 - Random 8 - 4 Basestations 8.76 9.73 9.84 8.75 8.94 8.76 9.88 9.25
Path 20 - Random 8 Basestations 10.97 9.36 9.64 9.92 10.5 10.97 8.81 10.89
Average 8.94 8.75 8.98 8.54 8.83 8.94 8.48 9.12
Std 2.36 2.42 2.32 2.38 2.14 2.36 2.25 2.31

ting algorithm (Table VIIL.1). The ACT-R algorithm resulted in less estimation error than No Forgetting on
the second most number of paths (8), but surprisingly generated the worst overall average estimation error
(14.22). Unlike the ActSimple algorithm, when the ACT-R algorithm generated greater estimation error than
No Forgetting, the difference was large (1 = 1.44, 6 = 0.77). On the paths where No Forgetting outper-
formed ActSimple, the average error difference was 0.02 (¢ = 0.01). The Queue Dynamic and SIMPLE
Update algorithms outperformed No Forgetting on 7 and 6 paths, respectively.

The statistical significance of the relative estimation error performance results from Table VIII.1 was
evaluated with two Wilcoxon signed rank tests and are presented in Table VIIL.3. These tests were performed
in a similar fashion to those presented in Chapter V.1.3. The first test, labeled Less than No Forgetting,
evaluated if the forgetting algorithms listed in the left-most column generated less average estimation error
than No Forgetting. The second test, labeled ActSimple less than, evaluated if ActSimple resulted in less
estimation error than No Forgetting and the other forgetting algorithms. Both tests were singled-sided and

used an & of 0.05. Results that were found to be significant are indicated in bold and individual pairings that

were not performed are marked with a symbol. The tests included the estimation error results from all
20 twenty paths.

The reduction in estimation error when compared to No Forgetting (column Less than No Forgetting) was
significant for only ActSimple (v = 28.0, p = 0.0014). Results from the other forgetting algorithms were

not significant. The second Wilcoxon signed rank test (column ActSimple less than) evaluated if ActSimple

generated less estimation error. Results from No Forgetting and all of the forgetting algorithms were signifi-

159

Table VIII.3: Comparison of estimation error - Along Path Average

Less than ActSimple

No Forgetting less than
n v p n v p
No Forgetting 20 28.0 0.0014
Queue Static 20 128.0 0.8058 20 24.0 0.0007
Queue Dynamic 19 89.0 04144 20 43.0 0.0096
Random 20 1340 0.8613 20 0.0 <0.0001
ACT-R 20 126.0 0.7848 20 1.0 <0.0001
SIMPLE 20 187.0 0.9995 20 28.0 0.0014
SIMPLE Update 20 115.0 0.6494 20 18.0 0.0002
ActSimple 20 28.0 0.0014

cant. No Forgetting (v = 28.0, p = 0.0014), Queue Static (v = 24.0, p = 0.0007), Queue Dynamic (v = 43.0,
p =0.0096), Random (v = 0.0, p < 0.0001), ACT-R (v =1.0, p < 0.0001), SIMPLE (v =28.0, p = 0.0014),
and SIMPLE Update (v = 18.0, p = 0.0002) each resulted in more estimation error than ActSimple. These
results suggest that ActSimple may be an effective and safe approach to improving system accuracy. No For-
getting and forgetting algorithms may not be able to realize a constant relative performance along the entirety
of a path, but on average, ActSimple was able to generate less estimation error.

The effect of dynamism on the results was explored by using a single-sided Wilcoxon rank sum test to
determine if No Forgetting and the forgetting algorithms generated less estimation error on static paths as
compared to dynamic paths. Results from this test are presented in Table VIII.4, and was conducted in an
identical fashion to the test presented in Chapter V.1.3. The test was performed with an & of 0.05, ny = 6,

and ng = 14.

Table VIIL.4: The effects of dynamism on estimation error - Along Path Average

w P
No Forgetting 0.0 <0.0001
Queue Static 12.0 0.0059
Queue Dynamic 12.0 0.0059
Random 8.0 0.0017
ACT-R 8.0 0.0017
SIMPLE 0.0 <0.0001
SIMPLE Update 9.0 0.0023
ActSimple 8.0 0.0017

The difference in average estimation error between static and dynamic paths was significant for No For-
getting and all of the forgetting algorithms, where each generated less estimation error on the static paths.

These results suggest that dynamic conditions provide greater challenges to maintaining system accuracy

160

than static conditions.

The presence of basestation configuration changes may alter the relative estimation error performance of
No Forgetting and the forgetting algorithms. Four single-sided Wilcoxon signed rank tests were performed
to evaluate the difference in estimation error that results from applying No Forgetting and the forgetting
algorithms to static paths and dynamic paths. Results from these testes are presented in Table VIIL.5. The first
test (Less Than No Forgetting - Static) evaluates if the forgetting algorithms listed in the left-most column
generated less estimation error than No Forgetting when only results from the fourteen static paths were
considered. The second test (Less than No Forgetting - Dynamic) evaluates if the forgetting algorithms
generated less estimation error than No Forgetting when only the results from the six dynamic paths were
included. The third test (ActSimple less than - Static) evaluates if ActSimple results in less estimation error
than No Forgetting and the other forgetting algorithms when applied to only the static paths. The fourth test
(ActSimple less than - Dynamic) evaluates if ActSimple generated less estimation error than No Forgetting

and the other forgetting algorithms when applied to only the dynamic paths. The a was 0.05 for each test.

Table VIIL.5: Estimation error performance on static and dynamic paths - Along Path Average

Less than No Forgetting ActSimple less than
Static Dynamic Static Dynamic
n v p n v p n v p n v p

No Forgetting 14 28.0 0.0676 6 0.0 0.0156
Queue Static 14 105.0 1.0000 6 0.0 0.0156 14 6.0 0.0009 6 6.0 0.2188
Queue Dynamic 13 81.0 09960 6 0.0 0.0156 14 10.0 0.0026 6 9.0 0.4219
Random 14 105.0 1.0000 6 0.0 0.0156 14 0.0 0.0001 6 0.0 0.0156
ACT-R 14 102.0 09998 6 0.0 0.0156 14 0.0 0.0001 6 1.0 0.0312
SIMPLE 14 105.0 1.0000 6 12.0 0.6562 14 28.0 0.0676 6 0.0 0.0156
SIMPLE Update 14 105.0 1.0000 6 0.0 0.0156 14 0.0 0.0001 6 10.0 0.5000
ActSimple 14 28.0 0.0676 6 0.0 0.0156

The Wilcoxon signed rank test in Table VIIL5 for the Less than No Forgetting - Static condition evaluated
if the forgetting algorithms generated less estimation error than No Forgetting on static paths. None of the
results were significant, even though ActSimple (it = 10.5862, ¢ = 3.5194) was the only forgetting algorithm
to average less estimation error on the static paths than No Forgetting (1 = 10.7950, o = 3.2860). The results
of the Wilcoxon signed rank test for the Less than No Forgetting - Dynamic condition showed a different trend.
The results from all of the forgetting algorithms, except SIMPLE, were significant. Queue Static (v = 0.0,
p = 0.0156), Queue Dynamic (v = 0.0, p = 0.0156), Random (v = 0.0, p = 0.0156), ACT-R (v = 0.0,
p = 0.0156), SIMPLE Update (v = 0.0, p = 0.0156), and ActSimple (v = 0.0, p = 0.0156) all generated less

estimation error than No Forgetting when processing on the six dynamic paths. These results suggest that

161

Human-Inspired Forgetting based forgetting algorithms may be an effective approach to improving system
accuracy in dynamic domains, and ActSimple may provide acceptable performance on static paths.

The Wilcoxon signed rank test for the ActSimple less than - Static condition evaluated if ActSimple gen-
erated less estimation error than No Forgetting and the other forgetting algorithms when only applied to static
paths. Results from all of the forgetting algorithms, except SIMPLE were significant. Queue Static (v = 6.0,
p = 0.0009), Queue Dynamic (v = 10.0, p = 0.0026), Random (v = 0.0, p = 0.0001), ACT-R (v = 0.0,
p =0.0001), and SIMPLE Update (v = 0.0, p = 0.0001) each generated more estimation error than ActSim-
ple on static paths. Results from No Forgetting and SIMPLE were not significant. The Wilcoxon signed rank
test for the ActSimple less than - Dynamic condition evaluated if ActSimple generated less estimation error
on the dynamic paths. Results were significant for No Forgetting (v = 0.0, p = 0.0156), Random (v = 0.0,
p = 0.0156), ACT-R (v = 1.0, p = 0.0312), and SIMPLE (v = 0.0, p = 0.0156). These results suggest that
ActSimple is able to perform well across a variety of conditions, resulting in very good average performance.
ActSimple may not be able to guarantee the best performance in every single tested condition, but the al-
gorithm may be equipped to improve system accuracy across the diverse set of conditions potentially facing
mobile robots.

The ActSimple algorithm generated the largest overall estimation standard deviation (Table VIII.2), al-
though by itself, this metric provides little information. The standard deviation of a forgetting method’s
estimation error values describes the variability of the estimation values along the path, but does not indicate
if this fluctuation is beneficial or detrimental. A forgetting method may consistently produce highly erroneous
estimates, while another algorithm may oscillate from acceptable to highly accurate estimates. A third metric,
signed squared deviation (SSD), was computed to analyze the effects of estimation variability. This metric is
computed using Equation VIII.1 and compares an algorithm’s performance against a reference trend. SSD is
similar to the mean squared error except that the sign of the difference is maintained. Maintaining the sign
allows the metric to compare the beneficial deviations from the reference to the negative deviations from the
reference. The results in Table VIII.6 were computed with the average performance of all tested forgetting
algorithms and No Forgetting acting as the reference. Values in red represent positive (detrimental) deviations

and numbers in teal represent values equal to the reference.

Length 5
Z [Sign(x,- —r)(xi—ry)

SSD = =t VIIL1
Length ()

The ActSimple algorithm was one of only three forgetting algorithms that generated a negative SSD value

(-2.14) and was the only algorithm that produced negative SSD values for all paths (Table VIIL.6). The Queue

162

Table VIII.6: Along path average signed squared deviation

Path No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple
Path 1 - 1 Cycle 4 - 8 Basestations 4.48 4.05 2.47 .15 -0.54 4.48 -6.52 -4.54
Path 2 - 1 Cycle 4 Basestations -0.83 -0.72 -0.79 -0.39 997 -0.83 5.58 -0.82
Path 3 - 1 Cycle 4 Basestations -0.45 -0.45 -0.45 -0.31 7.33 -0.45 2.55 -0.45
Path 4 - 1 Cycle 4 Basestations -0.51 -0.51 -0.51 -0.35 9.21 -0.51 2.67 -0.50
Path 5 - 1 Cycle 8 - 4 Basestations 6.15 0.83 0.79 152 -6.97 6.15 -2.19 -4.91
Path 6 - 1 Cycle 8 Basestations -1.59 -0.85 -1.08 -048 12.08 -1.59 8.55 -1.50
Path 7 - 1 Cycle 8 Basestations -0.56 -0.54 -0.55 -0.22 9.88 -0.56 1.12 -0.53
Path 8 - 1 Cycle 8 Basestations -0.53 -0.53 -0.53 -0.24 9.80 -0.53 1.02 -0.52
Path 9 - 3 Cycles 4 - 8 Basestations 21.72 -14.51 -15.30 -097 447 2172 -0.02 -3.94
Path 10 - 3 Cycles 4 Basestations -0.39 0.34 -0.27 1.13 1.21 -0.39 4.66 -1.80
Path 11 - 3 Cycles 4 Basestations -0.25 3.14 -0.60 0.84 1.19 -0.25 1.83 -1.39
Path 12 - 3 Cycles 4 Basestations -1.00 3.46 1.05 0.17 424 -1.00 1.19 -3.00
Path 13 - 3 Cycles 8 - 4 Basestations 33.99 -14.81 -16.84 -0.52 1.23 33.99 3.44 -8.76
Path 14 - 3 Cycles 8 Basestations -1.17 0.61 -0.27 1.95 1.97 -1.17 6.93 -1.80
Path 15 - 3 Cycles 8 Basestations -0.50 2.58 -0.24 1.56 2.25 -0.50 0.86 -1.10
Path 16 - 3 Cycles 8 Basestations -0.92 3.26 -0.11 1.24 3.25 -0.92 0.46 -1.55
Path 17 - Random 4 - 8 Basestations 4.35 -1.07 -2.31 0.74 0.69 4.35 -13.65 -0.18
Path 18 - Random 4 Basestations -0.55 1.39 -0.23 0.33 0.14 -0.55 5.62 -1.66
Path 19 - Random 8 - 4 Basestations 10.27 -2.07 -4.07 133 -029 10.27 -8.59 -1.76
Path 20 - Random 8 Basestations -2.65 3.38 1.90 0.15 -0.66 -2.65 6.11 -2.16
Average 3.45 -0.65 -1.90 0.43 3.52 3.45 1.08 -2.14
Std 9.14 5.12 5.04 0.86 4.82 9.14 5.43 2.06
Min -2.65 -14.81 -16.84 -097 -697 -2.65 -13.65 -8.76
Max 33.99 4.05 2.47 195 12.08 33.99 8.55 -0.18

Dynamic algorithm generated the second largest number of negative SSD values with 16 and also produced
the second most negative average SSD value (-1.90). SIMPLE and No Forgetting had the next highest number
of individual path SSD values with 14; however, two of the positive values for each algorithm were at or above
21.72. These large values reflect the relatively poor performance of No Forgetting and the SIMPLE algorithm
on the second half of the associated paths. The SIMPLE Update algorithm generated the second best overall
estimation error at the end of the twenty paths (Chapter V), but only produced five negative individual path
SSD values. The remaining fifteen paths all resulted in positive SSD values. The SIMPLE Update algorithm’s
overall average SSD value was 1.08, the fifth best overall average.

While the ActSimple algorithm had only the fourth best minimum SSD value (-8.76), ActSimple had
the best and only negative maximum SSD value (-0.18). The minimum SSD represents an algorithm’s best
performance, while the maximum SSD represents an algorithm’s worst performance. These results suggest
that the ActSimple algorithm will not only be beneficial in some situations, but the algorithm may involve the
least amount of risk concerning worst case estimation error.

ACT-R generated the largest average SSD value despite producing the third best average estimation error
when applied to paths 1 - 20 and only end of path estimation error is considered (Chapter V). While SIMPLE
and No Forgetting tied for the largest max SSD value (33.99), the common spurts of poor performance
generated by ACT-R helped the method achieve the worst average SSD. Queue Dynamic produced the second

best average SSD value despite the algorithm’s fourth best end of path estimation performance (on paths 1

163

- 20). SIMPLE Update, which had the second best end of path average estimation error (on paths 1 - 20),
produced an average SSD of 1.08.

The statistical significance of the SSD metric, when average performance was used as a reference, was
tested with two single-sided Wilcoxon signed rank tests and the results are presented in Table VIIL.7. The
Less than No Forgetting test evaluated if the forgetting algorithms listed in the left-most column generated
more negative SSD values than No Forgetting. The ActSimple less than test evaluated if ActSimple generated
more negative SSD values than No Forgetting and the other forgetting algorithms. These tests used an o

value of 0.05 and included all twenty tested paths.

Table VIIL.7: Comparison of estimation error - Along Path SSD Average

Less than ActSimple

No Forgetting less than
n v p n v p
No Forgetting 20 28.0 0.0014
Queue Static 20 116.0 0.6629 20 60.0 0.0487
Queue Dynamic 19 84.0 03397 20 76.0 0.1471
Random 20 105.0 0.5073 20 0.0 <0.0001
ACT-R 20 123.0 0.7510 20 50 <0.0001
SIMPLE 20 159.0 0.9800 20 28.0 0.0014
SIMPLE Update 20 107.0 0.5364 20 38.0 0.0053
ActSimple 20 28.0 0.0014

The reduction in SSD values as compared to No Forgetting (column Less Than No Forgetting) was only
significant for ActSimple (v = 28.0, p = 0.0014). The Wilcoxon signed rank test for the ActSimple less
than condition evaluated if ActSimple generated more negative SSD values than No Forgetting and the other
forgetting algorithms. Results from No Forgetting and all of the forgetting algorithms, except Queue Dy-
namic, were significant. No Forgetting (v = 28.0, p = 0.0014), Queue Static (v = 60.0, p = 0.0487, Random
(v=0.0, p <0.0001), ACT-R (v =5.0, p < 0.0001), SIMPLE (v = 28.0, p = 0.0014), and SIMPLE Up-
date (v = 38.0, p = 0.0053) each resulted in SSD values greater than ActSimple. These results suggest that,
in addition to averaging less estimation error than No Forgetting and the other forgetting algorithms along
the tested paths (Table VIII.3), ActSimple may be able to minimize periods of relatively poor performance.
While the results from comparing ActSimple and Queue Dynamic were not significant, ActSimple generated
a maximum SSD value of -0.18 and Queue Dynamic produced a considerable larger maximum SSD value of
2.47 (Table VIIL.3). Mobile robots operating in challenging domains need to achieve high levels of perfor-
mance while also preventing periods of poor performance that may cause a task to fail. The results suggest
ActSimple may be the safest tested Human-Inspired Forgetting algorithm.

Testing of the relative estimation error performance for No Forgetting and each forgetting algorithm on

164

Table VIIL8: Along path No Forgetting signed squared deviation

Path No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple
Path 1 - 1 Cycle 4 - 8 Basestations 0.00 -2.51 -3.58 -1.25 -12.67 0.00 -17.84 -16.13
Path 2 - 1 Cycle 4 Basestations 0.00 0.10 0.04 0.19 16.25 0.00 10.12 0.00
Path 3 - 1 Cycle 4 Basestations 0.00 0.00 0.00 0.05 11.25 0.00 4.80 0.00
Path 4 - 1 Cycle 4 Basestations 0.00 0.00 0.00 0.03 13.82 0.00 5.08 0.00
Path 5 - 1 Cycle 8 - 4 Basestations 0.00 -8.03 -7.61 -1.87 2535 0.00 -14.84 -20.86
Path 6 - 1 Cycle 8 Basestations 0.00 0.45 0.25 049 22,12 0.00 17.33 0.01
Path 7 - 1 Cycle 8 Basestations 0.00 0.02 0.00 0.15 15.09 0.00 3.21 0.00
Path 8 - 1 Cycle 8 Basestations 0.00 0.00 0.00 0.10 1487 0.00 297 0.00
Path 9 - 3 Cycles 4 - 8 Basestations 0.00 -68.41 -71.81 -29.67 -15.08 0.00 -30.56 -39.67
Path 10 - 3 Cycles 4 Basestations 0.00 1.12 0.12 2.04 4.04 0.00 7.31 -0.93
Path 11 - 3 Cycles 4 Basestations 0.00 432 -0.16 1.53 3.05 0.00 3.20 -0.73
Path 12 - 3 Cycles 4 Basestations 0.00 7.33 4.13 1.53 8.76 0.00 3.12 -0.64
Path 13 - 3 Cycles 8 - 4 Basestations 0.00 -90.08 -95.54 -39.72 -39.72 0.00 -38.57 -70.99
Path 14 - 3 Cycles 8 Basestations 0.00 2.99 1.14 4.95 6.97 0.00 13.39 -0.18
Path 15 - 3 Cycles 8 Basestations 0.00 4.81 0.17 3.41 4.92 0.00 2.44 -0.18
Path 16 - 3 Cycles 8 Basestations 0.00 7.18 1.46 3.97 6.02 0.00 2.03 -0.11
Path 17 - Random 4 - 8 Basestations 0.00 -9.60 -12.70 -1.60 -3.32 0.00 -30.97 -4.85
Path 18 - Random 4 Basestations 0.00 3.08 0.21 1.45 1.08 0.00 9.29 -0.31
Path 19 - Random 8 - 4 Basestations 0.00 -20.08 -26.38 -4.32 -13.14 0.00 -37.06 -19.94
Path 20 - Random 8 Basestations 0.00 11.70 8.65 3.47 0.82 0.00 16.39 0.03
Average 0.00 -7.78 -10.08 275 099 0.00 -3.46 -8.77
Std 0 25.6 26.43 11.26 154 0 17.98 18.05
Min 0.00 -90.08 -95.54 -39.72 -39.72 0.00 -38.57 -70.99
Max 0.00 11.70 8.65 495 2212 0.00 17.33 0.03

static paths versus dynamic paths was not conducted. Unlike the average estimation error metric presented
in Table VIII.1, the SSD metric is dependent on the relative performance of No Forgetting and the other
forgetting algorithms.

Wilcoxon signed rank tests evaluating the relative estimation error performance between No Forgetting
and the forgetting algorithms when applied to static paths and dynamic paths were conducted. The majority
of the results are similar to the results involving the average estimation error metric and are not presented.
The only change resulted from testing if ActSimple generated less estimation error than ACT-R on dynamic
paths. Unlike in Table VIIL5, the results were not significant.

SSD values were also computed using No Forgetting as a reference and the results are presented in
Table VIII.8. The SSD values for No Forgetting are all 0.00, since it was used as the reference. The SIMPLE
algorithm’s performance was always within the effects of noise and the algorithm’s SSD values of 0.00 reflect
that trend. The ActSimple algorithm did not generate a negative SSD value under all conditions, unlike in
Table VIIL.6. Along five paths, the ActSimple algorithm generated SSD values of 0.00 and for two paths,
ActSimple generated positive SSD values. However, these two SSD values were very small (0.01 and 0.03).
The other forgetting algorithms produced fewer individual path SSD values that were negative.

Queue Dynamic produced a better average SSD value (-10.08 compared to ActSimple’s -8.77), but gen-
erated nine positive individual path SSD values. Queue Dynamic and Queue Static both produced better

minimum SSD values (-95.54 and -90.08 respectively) than ActSimple (-70.99), but also had much large

165

maximum SSD values (8.65 and 11.70 compared to 0.03). ActSimple only had the third best minimum SSD,
but its maximum SSD was substantially better than the values for all forgetting algorithms except SIMPLE.
No Forgetting generated very poor relative estimation error when the robot traversed the environment for
three cycles and a basestation change occurred, as shown in Figures VIII.19 and VIII.20 (Section VIIIL.1). Ta-
ble VIII.8 supports this finding with the SSD values for all forgetting algorithms (except SIMPLE) generating
substantial negative SSD values for these two paths.

The ActSimple algorithm generated the least amount of average estimation error when performance was
considered along each path (Table VIII.1). Table VIII.6 shows ActSimple generating the best SSD value
when the average performance of all of the forgetting algorithms and No Forgetting is used as the reference.
While ActSimple did not generate the best average SSD value when No Forgetting was used as a reference,
Table VIII.8 shows the use of ActSimple resulting in the least positive max SSD value (excluding SIMPLE).
These results suggest that at least for the paths and environment tested, ActSimple may not always generate
the best possible performance, but on average, ActSimple will produce the best average error estimates while
minimizing the risks associated with filtering data. Many robotic designs may be affected to a greater extent
by average and worst case performance than best case performance. ActSimple has the potential to improve
average robotic performance without greatly degrading worst case performance.

The statistical significance of the SSD values generated when No Forgetting was used as a reference was
evaluated with two single-sided Wilcoxon signed rank tests and the results are presented in Table VIIL.9. The
tests were conducted in an identical fashion to the results presented in Table VIIL.7. All twenty paths were

used in the tests and the o was set to 0.05.

Table VIII.9: Comparison of estimation error - Along Path SSD No Forgetting

Less than ActSimple

No Forgetting less than
n v p n v p
No Forgetting 20 28.0 0.0014
Queue Static 19 100.0 0.5856 20 62.0 0.0570
Queue Dynamic 17 65.0 03056 20 78.0 0.1650
Random 20 1240 0.7625 20 0.0 <0.0001
ACT-R 20 129.0 0.8159 20 6.0 <0.0001
SIMPLE 20 28.0 0.0014
SIMPLE Update 20 107.0 0.5364 20 37.0 0.0047
ActSimple 20 28.0 0.0014

The Less than No Forgetting test determined if the forgetting algorithms generated SSD values more
negative than No Forgetting. This SSD metric was computed by using the estimation error performance of

No Forgetting as a reference, and as a result the SSD values for No Forgetting are 0.0 for each path. This

166

analysis effectively also tested if the forgetting algorithms generated SSD values less than 0.0. The results
for ActSimple were significant (v = 28.0, p = 0.0014), but the results for the other forgetting algorithms
were not significant. The ActSimple less than test determined if ActSimple generated more negative SSD
values than No Forgetting and the other forgetting algorithms. Results from this analysis were significant
for No Forgetting (v = 28.0, p = 0.0014), Random (v = 0.0, p < 0.0001), ACT-R (v = 6.0, p < 0.0001),
SIMPLE (v = 28.0, p = 0.0014), and SIMPLE Update (v = 37.0, p = 0.0047). Testing with Queue Static
and Queue Dynamic did not generate significant results. These tests suggest that ActSimple was the only
forgetting algorithm able to consistently generate negative SSD values and average less estimation error than
No Forgetting.

Wilcoxon signed rank tests evaluating the relative estimation error performance between No Forgetting
and the forgetting algorithms when applied to static paths and dynamic paths were conducted. The results are
similar to the results involving the SSD metric where average performance was used as a reference and are

not presented.

VIII.3 Summary

The performance of each forgetting algorithm and No Forgetting varies across paths as well as along each
path. This chapter explored the along the path performance of No Forgetting and the seven forgetting algo-
rithms by applying each forgetting algorithm and No Forgetting to the same twenty paths (paths 1 - 20) used
during optimization (Chapter V) and recording performance at each time step. Results from this experiment
demonstrate the benefits and effectiveness of using the ActSimple algorithm to improve system accuracy
throughout the entirety of a path.

The estimation error generated by No Forgetting and the forgetting algorithms generally decreased as the
robot traveled through the environment, but the reduction in estimation error did not occur in a monotonic
fashion. Even on static paths, short bursts of increased estimation error were observed with both No Forget-
ting and the forgetting algorithms. These estimation error variations were nearly identical for approximately
the first 600 time steps on each path. The inability to maintain monotonically decreasing error did not result
from limitations in the forgetting algorithms, but instead the estimation error volatility was a direct result of
the interaction of the environment and task.

After approximately the first 600 time steps, the forgetting algorithms were provided with enough read-
ings for estimation error performance to begin to diverge. ACT-R frequently generated a relatively large
increase in estimation error that lasted for several hundred time steps, while SIMPLE Update frequently
resulted in oscillating amounts of estimation error. ActSimple did not exhibit these drastic increases in esti-

mation error.

167

50

45 +
40
2 35 1
w
E —— Queue Static
< 30 —— Queue Dynamic
% \ Random
w |
o 25 Act-R
5 — SIMPLE
2 —— SIMPLE Update
Q .
< 20 — ActSimple
% \ — No Forgetting
215
<

R WEN

0

1 184 367 550 733 916 1099 1282 1465 1648 1831 2014 2197 2380 2563 2746 2929 3112 3295 3478 3661

Time

Figure VIII.27: Average estimation error on static paths and dynamic paths before the basestation configura-
tion change

When basestation configuration changes occurred, the estimation error increased sharply for No Forget-
ting and each forgetting algorithm. The collection of additional readings again reduced the estimation error,
but the relative performance of No Forgetting and the forgetting algorithms was more variable than at the
beginning of each path. The ability for No Forgetting and the forgetting algorithms to reduce estimation error
for both static paths and after a basestation configuration change were plotted in Figures VIII.27 and VIII.28.
Figure VIIL.27 shows the estimation error for No Forgetting and each forgetting algorithm averaged across
the paths. Each path was included in the results, except that the portion of the dynamic paths that occurred
after a basestation configuration change were not included. Figure VIII.28 shows the average estimation
error generated by No Forgetting and the forgetting algorithms from the dynamic paths after the basesta-
tion configuration changes occurred. In this graph, time represents the amount of time since the basestation
configuration change occurred.

Figures VIII.27 and VIII.28 both show the collection of additional WiFi signal strength readings generally
resulting in the reduction of estimation error. However, the rate of estimation error reduction is not identical.
After a basestation configuration change, both No Forgetting and the forgetting algorithms reduce estimation
error at a slower rate and the relative performance between No Forgetting and the forgetting algorithms is

more pronounced. No Forgetting and SIMPLE generally reduced estimation error at the slowest rate.

168

40

35

30

- I\ — Queue Static

“ —J —— Queue Dynamic
Random
20 \ I_____,_/"\\\ ‘\ Act-R

— SIMPLE

— SIMPLE Update
— ActSimple

— No Forgetting

15 A

Average Absolute Estimation Error

10 A

0

1 93 185 277 369 461 553 645 737 829 921 1013 1105 1197 1289 1381 1473 1565 1657 1749 1841

Time

Figure VIII.28: Average estimation error on dynamic paths after a basestation configuration change

In addition to accuracy, algorithmic complexity can be an important factor when selecting and utilizing
an algorithm. The average estimation error values from Table VIII.1 were contrasted with each algorithm’s
number of parameters and the results are presented in Figure VIIL.29.

ActSimple possesses the largest number of parameters, but generated the smallest amount of estimation
error for all twenty paths, the fourteen static paths, and the six dynamic paths. No Forgetting, which uses
no parameters, produced the second smallest amount of estimation error on static paths, but resulted in the
fourth best estimation error for all paths and the second worst estimation error on the dynamic paths. ACT-R
and SIMPLE Update averaged greater amounts of estimation error than Queue Static and Queue Dynamic,
despite possessing more parameters. While Queue Dynamic requires fewer parameters, the consistency of
ActSimple’s results suggest that the ActSimple algorithm may be an effective approach to improving system
accuracy throughout tasks performed in both static and dynamic environments. The consistent performance

of ActSimple may result from its unique combination of trace-based decay and similarity-based interference.

169

Average Absolute Estimation Error

22

20 4

[
o]
L

=
(<2}
L

Algorithm
4 No Forgetting
M Queue Static
A Queue Dynamic
X Random
XACT-R
= SIMPLE
+ SIMPLE Update
@ ActSimple

Paths
W All Paths
M Static Paths
Dynamic Paths

X +
14 ¢ i -
A
+
12 A X
n
A
[4 -
10
0 1 2 3 4 5 6 7

Number of Parameters

Figure VIII.29: Number of parameters vs. average estimation error along a path

170

CHAPTER IX
Pavlik and Anderson Modification

ActSimple possesses a large number of components, inspired by a diverse collection of cognitive architec-
tures and models of human memory. A simplified version of the ActSimple algorithm was tested in the
experiments presented in Chapters V - VIII. This simplification helped demonstrate many of the properties
of ActSimple’s two primary components, trace-based decay and similarity-based interference. This chapter
presents an experiment that incorporates the Pavlik and Anderson modification (Pavlik and Anderson, 2003)

into ActSimple’s trace-based decay component.

IX.1 Optimizing the Pavlik and Anderson Modification

Pavlik and Anderson (2003) modified ACT-R’s base level activation equation (Equation I1.2 (repeated below))
to incorporate an item’s activation level at each time of retrieval (Sims and Gray, 2004). The modified version
of ACT-R’s base level activation equation is shown in Equation IX.1. The B; ; term represents the activation
present at the j™ perception or recall of the i" item. This modification was applied to the ACT-R cognitive
architecture to better realize the spacing effect of short-term memory (see Chapter 11.4). The Pavlik and
Anderson modification was incorporated into ActSimple using Equation IX.1, except that the B; and B; ;
terms were replaced with the b; and b; ; terms. This implementation realized the full trace-based decay
component within ActSimple, with the exception of the mental exertion component. The performance of the
Pavlik and Anderson modification was evaluated when applied to both ActSimple and ACT-R. The Pavlik
and Anderson modification versions of ACT-R (ACT-R PA) and ActSimple (ActSimple PA) were compared

against the previously evaluated versions of the algorithms. No other changes were made.

Bi=p +ln()i) (11.2)
k=1

di7j = CleB’?J' +cp

Jio (IX.1)
Bi=B+in(Y.r, ")

The addition of the Pavlik and Anderson modification required both forgetting algorithms to be fully
re-optimized before performance comparisons were completed. Unlike the two stage optimization process

performed in Chapter V, the ActSimple PA and ACT-R PA algorithms were optimized with the Coliny evolu-

171

1. Generate and evaluate an initial population.
2. Perform parent selection.

3. Apply crossover and mutation effects.
Evaluate the new individuals.

Select a new population.

SAE U

Repeat.

Figure IX.1: Evolutionary algorithm process

tionary algorithm provided by the DAKOTA toolkit (DAKOTA, 2010). This algorithm required less compu-
tation and preliminary testing showed an equal effectiveness to the optimization approach taken in Chapter V.
Figure IX.1 presents the steps taken by the evolutionary algorithm. An initial parameterization population
is created and evaluated. Parent parameterizations are selected to form a set of new parameterizations. The
crossover and mutation effects are applied to the selected individuals and the resultant parameterizations are
evaluated. A new parameterization population is selected from the combination of both groups of parameter-
izations. The algorithm continues generating new populations until the results converge.

The optimization algorithm was configured to have a convergence tolerance of 0.0001 and to use a popu-
lation size of 100. Initial seeding was performed randomly with the criteria that all instances were guaranteed
to be unique. A two point crossover approach was taken with a crossover rate of 50%. The mutation rate
was 100%, with mutations consisting of deviations generated from a zero mean normal distribution. A merit-
based evaluation was employed and the probability of a parameterization being selected was proportional
to its relative WiFi estimation error. During the selection phase, the best ten parameterizations from the
combination of the two current groups were selected along with 90 randomly chosen parameterizations.

Environmental conditions were the same during the optimization described in Chapter V, except new path
instances were used. Evaluations performed by the evolutionary algorithm employed ten path instances for
each of the test paths. During the optimization process, DAKOTA stores all evaluated parameterizations and
their respective estimation error values. Once the evolutionary algorithm completed, all parameterizations
generating estimation error values under 6.5 were evaluated with 100 instances per path. Parameterizations
for each algorithm were ordered based on the results of this second step. Evaluating the parameterizations
with sets of 100 path instances permitted averaging out some of the effects of noise inherent in the environ-
ment and the algorithms.

The best parameterization for each Pavlik and Anderson algorithm is presented in Table IX.1, along with

the previously discovered optimal parameterizations for both ACT-R and ActSimple. ACT-R and ActSimple

172

Table IX.1: Pavlik and Anderson parameterizations

Algorithm B d c1 c XYAttention Strength Axis c3 cg S T

ACT-R 6.1290 0.8257 — — — — — — 104.6835 0.8065
ACT-R PA -2.0181 — 8.5922 9.2281 — — — — 80.9834 -68.8124
ActSimple 5.0000 0.9229 — — 0.5000 0.0000 2.5000 0.1517 149.2500 0.0000
ActSimple PA -2.1957 — 22.4574 18.7865 0.09093 0.8181 89.2226 0.6121 126.0423 -84.7130

parameter values vary significantly from the parameterizations calculated for the Pavlik and Anderson ver-
sions. In the original versions, 8 was 6.1290 and 5.0000 for ACT-R and ActSimple, respectively. values
for ACT-R PA and ActSimple PA were both approximately -2 (-2.0181 and -2.1957). The threshold values
experienced a similar shift, changing from close to 0 (0.8065 and 0.0000) to large negative values (-68.8124
and -84.7130). Contrasted to the d values for ACT-R and ActSimple (0.8257 and 0.9229, respectively), which
set the rate of forgetting present in the algorithm, the values c¢; and ¢, are large in magnitude (8.5922 and
9.2281 for ACT-R PA and 22.4574 and 18.7865 for ActSimple PA). In Equation IX.1, when ¢; =0, d; ; is
equivalent to ¢p. As a result, setting ¢c; = 0 and ¢, = d provides identical behavior to ACT-R and ActSimple.
The ActSimple specific parameters underwent similar changes. The weight provided to the strength axis in
ActSimple transitioned from 0.0000 to 0.8181, while c3 changed from 2.5000 to 89.2226. The cg parameter

changed from 0.1517 to 0.6121, increasing the significance of the trace-based decay component.

IX.2 Effects of the Pavlik and Anderson Modification
The Pavlik and Anderson modification alters the decay rate of items that have been reperceived or recalled.
Figure IX.2 provides the changes to the rate of decay when the Pavlik and Anderson modification is applied
to ACT-R. The figure was created with the recently determined optimal parameterization for ACT-R PA and
all values were computed on integral values of time. Figure IX.2a presents the decay rates of ACT-R, while
Figure IX.2b shows ACT-R PA’s rate of forgetting. The ACT-R 2 and ACT-R PA 2 lines show a memory
item that is initially perceived at time 0 and then reperceived at time 700. ACT-R 3 and ACT-R PA 3 display
the same memory item except that it is reperceived twice, once at time 700 and again at time 900. Until
the second reperception, ACT-R 2 is identical to ACT-R 3 and ACT-R PA 2 is identical to ACT-R PA 3. The
horizontal lines represent threshold values, 7, for the forgetting algorithms. When the activation value crosses
the threshold, the memory item will be recallable with a probability of 50%.

At time 1, the activation values for both algorithms start at the respective values, but then the activation
starts to decay. ACT-R PA 2 and ACT-R PA 3 cross their threshold at approximately time 627, while ACT-
R 2 and ACT-R 3 cross slightly later, at roughly time 630. At time 700, the item is reperceived and the

activation values sharply increased. The activation values for ACT-R 2 and ACT-R 3 at time 701 became

173

Activation

-10

-20

-30

Activation

-40

-50

-60

-70

-80

Time
(b) ACT-R PA

e ACt-R 2
Act-R 3
e« == Threshold
1882
0 500 1000 1500 2000 2500
Time
(a) ACT-R
500 1000 1500 2000 2500
\ Act-R PA 2
Act-R PA 3
= = Threshold
2332

Figure IX.2: Comparison of the activation values generated by ACT-R and ACT-R PA

174

6.133, 0.004 larger than their B value, while ACT-R PA 2 and ACT-R PA 3’s activations only return to
approximately the 8 value. As time continued to progress, the activation values again began to decay. At
time 900, the second reperception occurred and the activation values for ACT-R 3 and ACT-R PA 3 again
increased sharply. The activation value for ACT-R 3 at time 901 became 6.145, while ACT-R PA 3 returned
to -2.018. At approximately time 1882, ACT-R 2 crossed its threshold, while the ACT-R PA 2 activation did
not cross until approximately time 2092. Unlike the initial crossings, ACT-R 2 crossed before ACT-R PA 2.
At approximately time 2332, ACT-R PA 3 crossed its threshold value, while at time 2500, ACT-R 3 had an
activation value of 0.992.

Activation values affect the probability that an item from memory will be made available to an existing
robotic algorithm. Figure IX.3 presents the recall probabilities that are produced from the activation values in
Figure IX.2. Figure IX.3a presents the recallable probabilities for ACT-R 2 and ACT-R 3, while Figure IX.3b
shows the recallable probabilities for ACT-R PA 2 and ACT-R PA 3. The recall probabilities follow their
respective activation values, maintaining a value of 50% when the activation crossed the respective threshold
values. Until approximately time 1581, ACT-R 2 generated the same recallable probabilities as ACT-R 3,
while ACT-R PA 2 produced identical recallable probabilities to ACT-R PA 3. Around time 1882, ACT-R 2
resulted in a recallability probability of 50%, while ACT-R 3 maintained a recallable probability of nearly
100% until at least time 2500. ACT-R PA 2 generated a recallable probability of 50% at approximeatly time
2092, while ACT-R PA 3 resulted in a recallable probability of 50% around time 2332. Figure IX.3c contrasts
the recallable probability values of ACT-R 2 and ACT-R PA 2. The trends for these two conditions are the
same, except ACT-R PA 2 generates quicker transitions from large probabilities to low probabilities.

The data trends shown in Figures IX.2 and IX.3 confirm that the Pavlik and Anderson modification en-
ables the ACT-R forgetting method to exhibit the spacing effect. This result can be seen when the memory
item is reperceived the second time and the ACT-R PA 3 line decays appreciably faster than the ACT-R 3
line. Even in a dynamic environment, mobile robots may rapidly reperceive the same item for a short period
of time. If the object represented by the memory item changes or disappears altogether, the increased rate of

decay offered by the Pavlik and Anderson modification may enable robots to filter the memory item.

IX.3 Original Twenty Paths

The ACT-R, ACT-R PA, ActSimple, and ActSimple PA algorithms were combined with Nearest Neighbor
Interpolation with Perception Count Weighting to process 100 instances of paths 1 - 20 (Chapter IV.4). The
resultant average recallable reading counts and average estimation error values for each of the four algorithms
are presented in Table IX.2. ACT-R PA averaged 661.282 recallable items, 13.345 fewer than ACT-R’s

674.627. Despite this reduction in recallable items, ACT-R PA achieved an average estimation error of 5.942,

175

-

o
©

ud
®

&
2

°
>

=
o

&
=

Recallable Probability

o
@

=
N

L
jy

o

o T g g s s
g 8 g 8 g
8 g g g 8
g g & &
Time

(a) Comparison of the recall probabilities generated by ACT-R 2 and ACT-R 3

1
0.9
0.8
50.7
=
_g 0.6
o
a
o 05
=] ActR PA2
£
]
o
o 03
0.2
01
0 —
° s s s s 3
3 E a & &
Time
(b) Comparison of the recall probabilities generated by ACT-R PA 2 and ACT-R
PA 3
1
0.9
08
E‘OJ
=
_g 0.6
S
a
Q 05
o)
(=§ 0.4
[
3
o 0.3
0.2
01
0

N g g g g g
g g g g g
g g] g
Time
©

Figure IX.3: Comparison of the recall probabilities generated by ACT-R and ACT-R PA

176

0.326 better than ACT-R’s 6.268.

ActSimple and ActSimple PA followed a different trend. The Pavlik and Anderson version of the algo-
rithm averaged 25.123 more recallable items and generated an average estimation value 0.472 larger than
ActSimple. Interestingly, the performance of ACT-R PA and ActSimple PA was very similar, producing a
recallable item difference of only 0.355 and an estimation error difference of 0.037. While ActSimple PA
averaged more recallable items, the algorithm managed to maintain a slightly better estimation error than

ACT-R PA.

Table IX.2: Pavlik and Anderson metrics

ACT-R ACT-RPA ActSimple ActSimple PA

Recall Average 674.627 661.282 636.514 661.637
Recall Std 83.32 98.377 53.001 101.757
Error Average 6.268 5.942 5.433 5.905
Error Std 3.368 2.758 2.588 2.733

The statistical significance of the relative average number of recallable readings and average estimation
error performance results from Table IX.2 was tested with four single-sided Wilcoxon signed rank tests, with
a = 0.05. Results from these tests are presented in Table IX.3. The first test evaluated if ACT-R PA resulted
in fewer average recallable readings than ACT-R. Results from this test were not significant. ActSimple was
tested to determine if the algorithm averaged fewer recallable readings than ActSimple PA. This test was also
not significant. Despite ACT-R PA averaging 13.345 fewer recallable readings than ACT-R and ActSimple
averaging 25.123 fewer readings than ActSimple PA, the data does not indicate that the Pavlik and Anderson

modification affects the average number of recallable readings.

Table IX.3: Effects of the Pavlik and Anderson modification
Test n v p

Average number of recallable readings
ACT-R PA less than ACT-R 20 91.0 0.3108
ActSimple less than ActSimple PA 20 81.0 0.1942

Average estimation error
ACT-R less than ACT-R PA 20 79.0 0.1744
ActSimple less than ActSimple PA° 20 91.0 0.3108

The effects of the Pavlik and Anderson modification on estimation error were also tested. ACT-R was
tested to determine if the algorithm averaged less estimation error than ACT-R PA. The results were not
significant. ActSimple was evaluated to determine if the algorithm resulted in less estimation error than Act-

Simple PA. Like ACT-R, the results were not significant. While the estimation error values from Table IX.2

177

maintained a 0.326 average estimation error difference between the ACT-R algorithms and a 0.472 average
estimation error difference between the ActSimple algorithms, the results were not able to reveal an effect on
estimation error by the Pavlik and Anderson modification.

Dynamism appears to have influenced the relative performance of the Pavlik and Anderson forgetting al-
gorithms. Table IX.4 shows the performance differences in the ACT-R methods and the ActSimple Methods.
The values in the table represent the change from the original method to the Pavlik and Anderson method,
e.g., a negative error value indicates that the Pavlik and Anderson algorithm generated less error than the

original algorithm.

Table IX.4: Effects of the Pavlik and Anderson modification along static and dynamic paths

ACT-R, ACT-R PA Difference ActSimple, ActSimple PA Difference

Recall Error Recall Error

Dynamic Static Dynamic Static Dynamic Static = Dynamic Static

Average -34.25 -4.387 -2.099 0434 64.903 8.076 -2.112 1.580

Std 53.671 21.708 3.207 1.196 102.337 100.762 2451 2.306
Min -114.55 -67.67 -6.477 -0.012 -33.75 -109.57 -6.185 -0.462
Max 6.57 12.2 0.072 4.556 202.4 173.34 -0.477 6.171

ACT-R PA averaged fewer recallable items for both the dynamic and static paths (-34.25 and -4.387
respectively), while the average estimation error only decreased in the presence of dynamism (-2.099). ACT-
R PA produced larger estimation error (0.434) when the robot traveled static paths. ActSimple PA realized a
similar error trend, decreasing error by 2.112 for dynamic paths, but increasing error by 1.580 for static paths.
ActSimple PA averaged a greater number of recallable items under both conditions (64.903 for dynamic paths
and 8.076 for static paths). Both ACT-R PA and ActSimple PA decreased average estimation error during
dynamic paths by approximately the same amount (-2.099 and -2.112, respectively), but ActSimple PA’s
increase in error for static paths was 3.641 times as large as the change for ACT-R PA. The minimum and
maximum error values show a similar trend between the ACT-R algorithms and the ActSimple methods. The
PA methods reduced estimation error by at least 6.185 on one dynamic path, but generated at least 4.556
greater error on at least one static path. These extreme error deviations all occurred with paths containing a
randomly generated trajectory.

The statistical significance of the average number of recallable readings and estimation error values from
Table IX.4 was evaluated with eight single-sided Wilcoxon signed rank tests that are presented in Table IX.5.
Significant results are indicated in bold and o was set to 0.05. ACT-R was evaluated to determine if the
algorithm averaged fewer recallable readings than ACT-R PA on static paths, while ACT-R PA was tested to

determine if the algorithm generated fewer recallable readings than ACT-R on dynamic paths. Results from

178

both tests were not significant. ActSimple was tested to determine if the algorithm produced fewer recallable
readings than ActSimple PA for static paths and for dynamic paths. Similar to the ACT-R tests, neither was
significant. The data from applying the four algorithms to the set of twenty paths was unable to demonstrate

the Pavlik and Anderson modification altering the average number of recallable readings.

Table IX.5: Statistical significance of the Pavlik and Anderson modification on static and dynamic paths

Test Paths n \% p
Average number of recallable readings

ACT-R less than ACT-R PA Static 14 48.0 0.4039

ACT-R PA less than ACT-R Dynamic 6 4.0 0.1094

ActSimple less than ActSimple PA Static 14 47.0 0.3804
ActSimple less than ActSimple PA' Dynamic 6 5.0 0.1562

Average estimation error
ACT-R less than ACT-R PA Static 14 15.0 0.0083
ACT-R PA less than ACT-R Dynamic 6 3.0 0.0781
ActSimple less than ActSimple PA Static 14 16.0 0.0101
ActSimple PA less than ActSimple Dynamic 6 0.0 0.0156

Wilcoxon signed rank tests were also used to determine if the Pavlik and Anderson modification had an
effect of average estimation error. Testing if ACT-R resulted in less estimation error than ACT-R PA on static
paths was significant (v = 15.0, p = 0.0083). ACT-R PA was tested to determine if the algorithm gener-
ated less estimation error than ACT-R when applied to dynamic paths, but the results were not significant.
ActSimple’s ability to reduce estimation error on static paths compared to ActSimple PA was found to be
significant (v = 16.0, p = 0.0101). Significance was also found when testing if ActSimple PA resulted in less
estimation error than ActSimple on dynamic paths (v = 0.0, p = 0.0156). The Pavlik and Anderson modifi-
cation appears to increase estimation error when applied to static paths. However, the Pavlik and Anderson
modification may reduce estimation error on dynamic paths. While the estimation error reduction from ACT-
R PA was not significant when applied to the six dynamic paths, the average estimation error reduction shown

in Table IX.4 was 2.099.

IX.4 Randomly Generated paths

The effects of random movement by the simulated robot were evaluated by applying the four forgetting
algorithms to 500 new paths, all randomly generated. These paths were created based on twenty combinations
of basestation configurations and path length (referred to as a path class). Half of the path classes were static,
involving only the four basestation configuration or the eight basestation configuration, while the other half
switched configurations at the path’s midpoint. Path lengths ranged from 600 steps to 6000 steps. Twenty

five paths were created for each path class and 100 instances were tested for each path. The random nature of

179

each path allowed for large potential performance deviations between paths in each class.

The overall results of applying the four forgetting methods to the 500 randomly generated paths are shown
in Table IX.6. Compared to the results from the original twenty paths (Table IX.2), all four forgetting methods
averaged fewer recallable items. Out of the original set of twenty paths, sixteen did not involve a randomly
generated path. These sixteen paths primarily involved the robot conducting a nearly complete investigation
of the environment, repeatedly traveling from one side of the environment to the other. On average, the
number of readings that are taken at each location within the environment will be more consistent than along
the 500 new randomly generated paths. Frequently visiting the same locations reduces the total number of

unique readings that can be collected, consequently reducing the number of readings that will be recallable.

Table IX.6: Pavlik and Anderson random path overall performance

ACT-R ACT-RPA ActSimple ActSimple PA

Recall Average 610.016 542.385 513.009 546.396
Recall Std 142.282 96.424 79.138 99.139
Error Average 12.449 12.31 11.756 12.307
Error Std 8.201 7.865 8.279 7.901

The average error for all four forgetting methods roughly doubled compared to the estimation error gen-
erated with the original twenty paths. Randomly generated paths frequently do not continuously and exhaus-
tively explore the environment, like the non-random paths from the original set. In addition to not visiting
some locations within the environment, randomly generated paths can also involve locations being visited
a small number of times. Visiting locations a small number of times reduces the number of readings per
location, limiting the ability for the Nearest Neighbor with Perception Count Weighting algorithm to average
out the effects of noise.

The ACT-R PA algorithm averaged fewer recallable items (542.385) compared to ACT-R (610.016), as
shown in Table IX.6, while ActSimple PA averaged more recallable items than ActSimple (546.396 and
513.009, respectively). These results are similar to those presented in Table IX.2. The average estimation
error also followed this trend. ACT-R generated an average estimation error of 12.449 compared to ACT-R
PA’s estimation error of 12.31. ActSimple generated an average estimation error of 11.756, while ActSimple
PA produced a value of 12.307. Again following the performance pattern from the original set of twenty paths,
the results from ACT-R PA and ActSimple PA were very close, deviating in recall by 4.011 and average error
by 0.003.

The statistical significance of the results from Table IX.6 was tested with four single-side Wilcoxon signed

rank tests, which are presented in Table IX.7. Significant results are shown in bold and o = 0.05. Values

180

from all 500 paths were used.

Table IX.7: Effects of the Pavlik and Anderson modification on randomly generated paths

Test n \% P

Average number of recallable readings
ACT-R PA less than ACT-R 496 118600.0 <0.0001
ActSimple less than ActSimple PA 500 24199.5 <0.0001

Average estimation error
ACT-R less than ACT-R PA 491 58885.0 0.3158
ActSimple less than ActSimple PA 500 44141.5 <0.0001

The first Wilcoxon signed rank test evaluated if ACT-R PA resulted in fewer recallable readings than
ACT-R and the results were significant (v = 118600.0, p < 0.0001). ActSimple was evaluated to determine if
the algorithm generated fewer recallable readings than ActSimple PA and was also significant (v = 24199.5,
p < 0.0001). These results indicate that when applied to randomly generated paths, the Pavlik and An-
derson modification may aid the ACT-R algorithm in reducing the average number of recallable readings.
Conversely, the modification may cause ActSimple to make additional readings recallable. Changes to the
average number of recallable readings may influence the resultant average estimation error.

ACT-R was evaluated to determine if the algorithm generated less estimation error than ACT-R PA, but
the results were not significant (v = 58885.0, p = 0.3158). Results from testing if ActSimple resulted in less
estimation error than ActSimple PA were significant (v =44141.5, p < 0.0001). When applied to both static
and dynamic paths, the results suggest that the Pavlik and Anderson modification may not improve overall
average estimation error.

The average recallable reading counts and estimation error values for each path class were computed
and the performance differences between ACT-R and ACT-R PA are shown in Table IX.8, along with the
performance differences between ActSimple and ActSimple PA. Negative values represent a Pavlik and An-
derson algorithm generating either less error or fewer recallable readings. In the table, the path class labels
include the basestation configurations present in the class and the number of three step movements taken by
the robot. For example, the path class label “Random-B4-200” represents the set of paths that only involve
the four basestation configuration and include 200 three step movements (a total of 600 steps). The label
“Random-B4-100-B8-100" describes the set of paths where the robot travels through the four basestation
configuration for 300 steps and then the eight basestation configuration for 300 steps. Three step movement
patterns were used in the creation of the random paths to reduce the occurrence of the robot traveling back
and forth to a very limited number of locations. Similar to Table IX.4, the values in Table IX.8 represent the

change in performance from the original form of a forgetting algorithm to the Pavlik and Anderson version

181

Table IX.8: Pavlik and Anderson random path class performance

ACT-R, ACT-R PA Difference = ActSimple, ActSimple PA Difference

Path Class Recall Error Recall Error
Random-B4-200 0.038 0 4.288 0.006
Random-B8-200 0.062 -0.001 4.43 0
Random-B4-500 -7.144 0.273 -49.08 1.125
Random-B8-500 -7.14 0.218 -33.619 1.832
Random-B4-1000 -48.16 2.317 -4.287 2.881
Random-B8-1000 -47.717 3.094 39.508 3.586
Random-B4-1500 -86.369 2.62 21.168 2.775
Random-B8-1500 -77.702 3.857 89.992 2.998
Random-B4-2000 -107.998 2.491 49.784 1.899
Random-B8-2000 -115.704 4.192 106.413 2.734
Random-B4-100-B8-100 0.049 0.001 9.59 0.058
Random-B8-100-B4-100 0.054 0 8911 0.058
Random-B4-250-B8-250 -9.023 -0.248 -7.802 -0.249
Random-B8-250-B4-250 -9.215 -0.173 -5.619 0.224
Random-B4-500-B8-500 -118.021 -4.861 18.367 -3.705
Random-B8-500-B4-500 -102.552 -4.324 12.042 -2.579
Random-B4-750-B8-750 -151.651 -4.124 90.677 -2.384
Random-B8-750-B4-750 -130.364 -2.678 75.472 0.08
Random-B4-1000-B8-1000 -172.387 -3.273 132.225 -1.322
Random-B8-1000-B4-1000 -161.675 -2.16 105.279 0.996
Average -67.631 -0.139 33.387 0.551
Std 61.656 2.735 50.494 2.005

of the forgetting approach.

ACT-R PA generated greater error on static paths, but less error on dynamic paths, except for the four
600 step path classes. The average estimation error deviations during the 600 step paths were at most 0.001.
ACT-R PA’s change in error (compared to ACT-R) was dependent on the length of the path. During both
the static and dynamic paths, the average error for the 1500 step paths was roughly a tenth of the magnitude
of longer paths. ACT-R PA’s largest performance decrement occurred with the Random-B8-2000 path class,
while the biggest performance gain occurred with the path class Random-B4-500-B8-500.

Relative performance between ActSimple PA and ActSimple was more variable (Table IX.8). ActSimple
PA generated inferior performance for each static path class (except for Random-B8-200 where the error
difference was zero), but both performance gains and losses were present in the dynamic path results. Act-
Simple PA’s best relative error value (-3.705) occurred with path class Random-B4-500-B8-500, but path
class Random-B8-1000-B4-1000 resulted in a performance decrement of 0.996.

On average, ACT-R PA resulted in fewer recallable items (-67.631) and less error (-0.139), while Act-
Simple PA generated more recallable items (33.387) and more error (0.551). ACT-R PA’s and ActSimple’s

182

best relative error occurred with the same path class, Random-B4-500-B8-500.

These results suggest that the benefits from the Pavlik and Anderson modification for dynamic paths may
be dependent on time. Using the Pavlik and Anderson modification, readings that are repeatedly perceived
within a short time period will quickly decay once a basestation configuration change occurs that invalidates
those readings. As the amount of time between basestation configuration changes (or the end of the path)
increases, erroneous readings will become unreadable and valid readings that have not been perceived for a
period of time will also be filtered. While traversing randomly generated paths, nothing prevents the robot
from traveling to an area in the environment, collecting a number of samples and not returning to that loca-
tion. The Pavlik and Anderson modification, in this situation, may result in readings from this area quickly
becoming unrecallable despite their accuracy and benefit.

A clear difference in performance between static and dynamic paths is shown in Table IX.8. The average
effects of each path type (static and dynamic) are presented in Table IX.9. ACT-R PA generated a reduced
number of recallable items for both dynamic and static paths (-85.478 and -49.783, respectively), but the
change for static paths was roughly 42% less than the change for dynamic paths. ActSimple PA resulted
in greater numbers of recallable items (43.914 for dynamic paths and 22.86 for static paths) and similar to
ACT-R PA, the magnitude of change was larger for dynamic paths. ACT-R PA reduced error during dynamic
paths (-2.184), but increased error during static paths (1.906). ActSimple PA generated a similar trend, an
error reduction for dynamic paths (-0.882) and an increase in error for static paths (1.984). Unlike ACT-R

PA, the magnitude of change for ActSimple PA was larger for static paths.

Table IX.9: Pavlik and Anderson random path effects of dynamism

ACT-R, ACT-R PA Difference ActSimple, ActSimple PA Difference

Recall Error Recall Error

Dynamic Static Dynamic Static Dynamic Static Dynamic Static

Average -85478 -49.783 -2.184 1.906 43914 22.86 -0.882 1.984
Std 72.568 45.293 1.951 1.641 51583 49.755 1.533 1.256

The statistical significance of using the Pavlik and Anderson modification with static paths and dynamic
paths was tested with a set of eight single-sided Wilcoxon signed rank tests, which are presented in Ta-
ble IX.10. These tests are similar to those presented in Table IX.5.

The first two Wilcoxon signed rank tests evaluated if ACT-R PA resulted in fewer recallable readings
with static paths and dynamic paths. Results from both tests were significant (v = 29700.0, p < 0.0001).
Significance was also found when ActSimple was tested to determine if the algorithm resulted in fewer

recallable readings than ActSimple PA for static paths (v = 8372.0, p < 0.0001) and dynamic paths (v =

183

Table IX.10: Statistical significance on static and dynamic randomly generated paths

Test Paths n v p
Average number of recallable readings

ACT-R PA less than ACT-R Static 248 29700.0 <0.0001

ACT-R PA less than ACT-R Dynamic 250 29700.0 <0.0001

ActSimple less than ActSimple PA Static 248 8372.0 <0.0001
ActSimple less than ActSimple PA Dynamic 250 3943.0 <0.0001

Average estimation error
ACT-R less than ACT-R PA Static 247 1013.0 <0.0001
ACT-R PA less than ACT-R Dynamic 250 26321.0 <0.0001
ActSimple less than ActSimple PA Static 244 277.0 <0.0001
ActSimple PA less than ActSimple Dynamic 250 21853.0 <0.0001

3943.0, p < 0.0001). Both sets of tests agree with the results from Table IX.7, the Pavlik and Anderson
modification appears to decrease the number of recallable readings generated by ACT-R, but increase the
number of recallable readings resulting from ActSimple.

The Pavlik and Anderson modification’s affect on average estimation error was also evaluated with four
Wilcoxon signed rank tests. ACT-R was evaluated to determine if the algorithm generated less estimation
error than ACT-R PA on static paths and the results were significant (v = 1013.0, p < 0.0001). Significance
was also observed when ACT-R PA was tested to determine if the algorithm resulted in less estimation error
than ACT-R on dynamic paths (v = 26321.0, p <= 0.0001). These results help to explain why the test
evaluating the affect of the Pavlik and Anderson modification when applied to all 500 paths (Table IX.7) was
not significant. The modification may improve estimation error performance on dynamic paths, but degrade
performance on static paths. A similar set of tests were performed on the ActSimple algorithms. ActSimple’s
ability to generate less estimation error than ActSimple PA on static paths was significant (v = 277.0, p <
0.0001) and ActSimple PA’s ability to reduce estimation error compared to ActSimple on dynamic paths was
also significant (v = 21853.0, p < 0.0001). These results suggest that the Pavlik and Anderson modification
may possess the ability to improve system accuracy on randomly generated dynamic paths.

On average, ACT-R PA and ActSimple PA generated less error on dynamic paths, but increased error on
static paths. The use and application of the Pavlik and Anderson modification to both ACT-R and ActSimple
may only be applicable in certain domains and for particular tasks. Some robotic systems, such as a security
robots, may constantly and exhaustively patrol a large environment. Incorporating the Pavlik and Anderson
modification may be detrimental in those situations. However, other robots may only monitor an environment
as a secondary task. In these cases, movement patterns may possess a greater degree of variability and when

operating within a heavily dynamic environment, such as a busy office setting, benefit from the addition of

184

the Pavlik and Anderson modification.

Both the ACT-R PA and the ActSimple PA algorithms were optimized with the same set of twenty orig-
inal paths. Out of these paths, six possess a basestation configuration change and only four incorporated
a randomly generated trajectory (two of the randomly generated paths were static and two were dynamic).
Re-optimizing the Pavlik and Anderson algorithms with an increased percentage of random dynamic paths
has the potential to increase the benefits afforded by the forgetting approaches during dynamic and complex

paths, but at the expense of static and simpler paths.

IX.5 Summary

The Pavlik and Anderson modification was applied to the ACT-R and ActSimple forgetting algorithms, cre-
ating the ACT-R PA and ActSimple PA forgetting algorithms. These two new forgetting algorithms were
optimized with an evolutionary algorithm and then tested with the original set of twenty paths and a set of
500 randomly generated paths. Results from this chapter suggest the Pavlik and Anderson modification may
improve system accuracy on dynamic paths.

Incorporating the Pavlik and Anderson modification into ACT-R and ActSimple resulted in decreased es-
timation error when the forgetting algorithms were applied to dynamic paths. The decrease in estimation error
between ActSimple PA and ActSimple was significant for both sets of dynamic paths. Accuracy improve-
ments from ACT-R PA, compared to ACT-R, was significant when processing the set of randomly generated
dynamic paths. However, applying the two Pavlik and Anderson modification forgetting algorithms to the
sets of static paths resulted in increased estimation error. The Pavlik and Anderson modification did not have
a significant effect on the average number of recallable readings when processing the original set of twenty
paths, but the average number of recallable readings decreased when processing the set of randomly gener-
ated paths. The benefits the Pavlik and Anderson modification appear to be dependent on the properties of
the original forgetting algorithm, task, and environment.

The relative benefits of the Pavlik and Anderson modification are affected by the combined changes to
average estimation error and number of recallable readings. The interaction between these two metrics for
the original set of twenty paths in shown in Figure IX.4. The ACT-R and ActSimple algorithms generated
greater amounts of estimation error on the dynamic paths as compared to the static paths, while the Pavlik
and Anderson modification algorithms resulted in decreased error on the dynamic paths. The ACT-R PA
algorithm resulted in fewer recallable readings and less estimation error than ACT-R when applied to the
dynamic paths and the full set of paths. However, while ActSimple PA resulted in less estimation error than
ActSimple when applied to dynamic paths, the modification generated a greater number of recallable readings

for all three conditions and increased estimation error for the static paths and the full set of twenty paths.

185

7.5

Algorithm
XACT-R
- X AACT-R PA
@ ActSimple
M ActSimple PA

o
3]

o

X Paths

W All Paths

M Static paths

[] Dynamic Paths

o
3]

Average Absolute Estimation Error
»

4.5 T T T T
575 600 625 650 675 700

Average Number of Recallable Readings

Figure IX.4: Average number of recallable readings vs. average estimation error for the original paths

A comparison of the average number of recallable readings and estimation error for the randomly gener-
ated paths is presented in Figure IX.5. The ActSimple algorithm combined the smallest number of recallable
readings and the least amount of estimation error for the set of static paths and the full set of 500 random
paths. Adding the Pavlik and Anderson modification resulted in additional recallable readings and greater
amounts of estimation error. When applied to only the dynamic paths, the Pavlik and Anderson modification
still resulted in more recallable readings, but decreased the amount of estimation error. Adding the Pavlik
and Anderson modification to ACT-R decreased the number of recallable readings for all three sets of paths,
but decreased the amount of estimation error for the set of dynamic paths and the full 500 paths.

The Pavlik and Anderson modification may improve system accuracy and performance under certain
conditions. The degree to which dynamism is present in the environment and the computational cost of each
additional recallable data item may determine the actual benefits of using the modification for any particular
task or environment. Mobile robots operating in complex domains can experience a diverse array of varying
conditions. These systems will require a forgetting algorithm capable of high levels of performance in all
reasonable situations. However, some systems may operate within a constrained set of conditions or be
capable of adapting forgetting algorithms as tasks and the environment change. In these situations, the use of

the Pavlik and Anderson modification may result in increased system accuracy and performance.

186

Average Absolute Estimation Error

19

=
(o2}
L

=
w
L

Algorithm
XACT-R
AACT-R PA
@ ActSimple
W ActSimple PA

AN Paths
[J W All Paths
M Static Paths
Dynamic Paths
10 A
A m
PY X
7
475 500 525 550 575 600 625

Average Number of Recallable Readings

Figure IX.5: Average number of recallable readings vs. average estimation error for random paths

187

CHAPTER X

Summary of Contributions and Future Directions

This chapter reviews the work presented in this dissertation and summarizes the contributions from this

research. An outline for potential avenues of future research are also presented.

X.1 Review

Perfect memory and recall provides a mixed blessing. While flawless recollection of episodic data and pro-
cedural rules allows for increased reasoning, photographic memory hinders a robot’s ability to operate in
real-time, highly dynamic environments. The absence of forgetting can result in memory being filled by a
tremendous volume of data, increasing both search time and the probability of over-learning. Contemporary
robots are already overrun with vast volumes of data requiring real-time processing and the problem will
only increase. Before robots realize human-level intelligence, a means of classifying the importance of each
acquired datum and forgetting unnecessary, erroneous, and expired data will be required.

This dissertation has developed Human-Inspired Forgetting, a means of incorporating forgetting capa-
bilities into current and future robotic systems. This approach may enable robots to remove unnecessary,
erroneous, and out-of-date information, while increasing the ability to reliably and rapidly recall critical cues
necessary for successful task completion. Instead of selecting an item from memory to complete a task,
Human-Inspired Forgetting filters the information presented to existing robotic algorithms. The pruned data
may allow a diverse array of powerful, but task specific algorithms to realize improved accuracy while re-
ducing cognitive load. The novel ActSimple forgetting algorithm was developed as an implementation of
Human-Inspired Forgetting. This forgetting algorithm has been heavily inspired by a number of cognitive ar-
chitectures, along with models of human memory and combines trace-based decay and encoding interference
with belief state values, mental exertion, and output interference.

The benefits of the ActSimple algorithm and six other Human-Inspired Forgetting based forgetting algo-
rithms were tested against the situation where No Forgetting was present. A WiFi signal strength estimation
test domain was constructed to assess the ability of the forgetting algorithms to simultaneously reduce the
amount of data presented to existing robotic algorithms and increase system accuracy. In the test domain,
a robot explored an environment while collecting WiFi signal strength readings. At set points, the readings
were used to generate estimated signal strength values for each location in the environment. During the ex-
periments, two metrics were collected, the number of recallable readings presented to the existing robotic al-

gorithm and the average estimation error at each location in the environment. The forgetting algorithms were

188

Table X.1: Reduction in average number of recallable readings

No Forgetting 3" most 3" most ActSimple ActSimple

Experiment average average reduction (%) average reduction (%)
Chapter V - Paths 1 - 20 1270.13 1025.51 19.259 636.958 49.851
Chapter V.3 - Paths 21 - 64 1090.794 897.408 17.729 600.877 44914
Chapter VI - Real-World Data 848.316 692.467 18.372 338.887 60.052
Chapter VII - Other Noise Distributions 1303.568 797.987 38.784 601.359 53.868
Average 1128.202 853.343 23.536 544.520 52.171
Std 208.672 142.043 10.185 138.126 6.404

evaluated with a set of seven experiments, including the robot following a set of twenty paths (Chapter V.1.3),
the use of alternate existing robotic algorithms (Chapter V.2), traveling a set of 44 paths (Chapter V.3), test-
ing with WiFi signal strength readings collected from a real-world environment (Chapter VI), changing noise
distributions in the environment (Chapter VII), testing performance along each path instead of just at the end
(Chapter VIII), and adding the Pavlik and Anderson modification to the ActSimple and ACT-R forgetting
algorithms (Chapter IX).

All forgetting algorithms, except for SIMPLE, reduced the average number of recallable readings, com-
pared to No Forgetting, for each experiment where the metric was recorded. No Forgetting and the SIMPLE
forgetting algorithm generated nearly identical results, consistently resulting in the largest number of re-
callable readings. In each experiment, the ActSimple algorithm filtered either the most or the second most
number of readings. The reduction of average recallable reading count is presented in Table X.1. Results from
ActSimple and the algorithm that generated the third largest number of recallable readings for each experi-
ment are included. Each forgetting algorithm, except for SIMPLE, resulted in at least an average reduction of
23.536% of the number of recallable readings. ActSimple averaged a reduction of 52.171%. Mobile robots
operating in real-world environments often have tight timing constraints and the reduction of data requiring
cognitive processing may decrease computational load. However, system performance will only improve if
filtering does not negatively affect system accuracy.

No Forgetting and the SIMPLE forgetting algorithm generated nearly identical estimation error values and
averaged the largest amount of estimation error on the five experiments where performance was tested at the
end of each path. The ActSimple algorithm averaged the least amount of estimation error in each experiment,
except for the real-world experiment where the algorithm averaged the second smallest estimation error. The
other forgetting algorithms resulted in more variable relative estimation error performance. The SIMPLE
Update algorithm averaged the least amount of estimation error in the real-world experiment, but the third

most when applied to paths 21 - 64. Use of the ACT-R forgetting method averaged the second smallest

189

average estimation error with paths 21 - 64, but only the fifth best estimation error on the real-world data. The
forgetting algorithms, except for SIMPLE, consistently resulted in less estimation error than No Forgetting,
but only the ActSimple algorithm was able to maintain consistent relative estimation error reduction.

Relative estimation error performance of a forgetting algorithm may not be consistent throughout the
entirety of a task. The along the path experiment tested the effectiveness of the forgetting algorithms to
reduce estimation error at each point along the tested paths. The ActSimple algorithm resulted in the smallest
average estimation error and the best average SSD value (using average performance as a reference), but No
Forgetting did not generate the worst performance. Random forgetting, ACT-R, and SIMPLE Update each
resulted in a greater amount of average estimation error and ACT-R produced the worst average SSD value.
The forgetting algorithms were optimized by using the amount of estimation error generated at the end of
each tested path. This optimization approach may have resulted in the reduced relative performance of some
of the forgetting algorithms when estimation error was tested along each path. However, the tasks assigned to
mobile robots are often difficult to perfectly model and often change slightly throughout task execution. The
ActSimple algorithm was able to consistently maintain relative performance, by reducing estimation error,
both at the end of paths and at each point along those paths.

Dynamism had an impact on the amount of estimation error generated by No Forgetting and the forgetting
algorithms. Average estimation error increased when No Forgetting and the forgetting algorithms were ap-
plied to paths containing a basestation configuration change, but decreased when applied to static paths. The
deviations between performance on static and dynamic paths was not consistent. No Forgetting and the SIM-
PLE forgetting algorithm resulted in the largest deviations between average estimation error on static paths
and dynamic paths (Figures V.2, V.6, V1.3, VIIL.29). Mobile robots assigned challenging tasks in complex
environments require consistently high levels of performance. Results from this dissertation suggest that the
use of Human-Inspired Forgetting may allow robotic systems to minimize performance fluctuations resulting
from changing levels of dynamism present in the environment.

The ActSimple PA and ACT-R PA forgetting algorithms, which added the Pavlik and Anderson modifi-
cation to ActSimple and ACT-R respectively, resulted in less estimation error when applied to dynamic paths
from the original set of paths (paths 1 - 20). However, these two forgetting algorithms generated greater
estimation error than ActSimple and ACT-R on the static paths. When ActSimple PA and ACT-R PA were
applied to a large set of randomly generated paths, the algorithms again reduced estimation error on the dy-
namic paths but increase estimation error on the static paths. Under some conditions, forgetting algorithms
may be capable of generating less estimation error on dynamic paths as compared to static paths, although
overall accuracy and consistency may degrade.

Human-Inspired Forgetting has the potential to improve system accuracy, while decreasing the volume

190

of data requiring potentially computationally expensive cognitive processing. The ActSimple forgetting al-
gorithm provides an implementation of Human-Inspired Forgetting inspired by a diverse array of cognitive
architectures and models of human memory. Experiments presented in this dissertation show that the Act-
Simple algorithm consistently reduced average estimation error, while simultaneously decreasing the average
number of recallable readings provided to the existing robotic algorithms. ActSimple’s consistency may re-
sult from the algorithm’s unique combination of trace-based decay and similarity-based interference. Human-
Inspired Forgetting, and the ActSimple algorithm in particular, has the potential to improve system accuracy,
while minimizing the cognitive load experienced by real-time mobile robots. Forgetting algorithms may be
unable to guarantee the best performance for every single condition, but may possess the ability to improve

average performance, while limiting the severity and frequency of extreme performance degradations.

X.2 Summary of Contributions

Contributions of this dissertation include:

1. This dissertation has identified data management as a core area where non-domain specific algorithms
and strategies can be developed to aid robotic systems in reducing cognitive load. These new algo-
rithms and strategies may eventually assist robotic systems in improving their situational awareness.
Understanding the current and future states of a complex and dynamic environment frequently requires
many cues, data that can be easily overlooked or ignored. Improving robotic systems’ ability to navi-
gate large volumes of data may eventually lead to robots capitalizing on a greater percentage of these

available cues, boosting performance and reliability.

2. This dissertation has put forth the idea that Human-Inspired Forgetting can be used as a means for
robotic systems to filter incoming data streams and remove erroneous knowledge for the purpose of
increasing data management capabilities and performance. Unlike some existing models of human
forgetting and robotic systems, the presented approach does not select items from memory, but filters
the data available to existing algorithms. Through this data reduction, traditional robotic algorithms

may realize improved performance and increased accuracy.

3. ActSimple, a new algorithm designed to implement robotic forgetting was created. This algorithm
incorporates a number of different components, each inspired by existing models and understanding of
human forgetting and memory. The cognitive architecture ACT-R and the SIMPLE model of human
memory provided the bulk of the inspiration for the algorithm and its name. ActSimple is a non-domain

specific algorithm with a number of parameters and subcomponents that can be adjusted for particular

191

domains and tasks. These parameters can be tuned through either off-line or on-line learning mecha-
nisms, minimizing design effort. A large infrastructure is not required by the ActSimple algorithm and
multiple concurrent instances may be executed on the same system, each operating on different forms

of data or sections of the robot.

4. Within the context of a WiFi signal strength estimation task, this dissertation presented initial ex-
ploration into the application of Human-Inspired Forgetting. Factors affecting robotic performance,
including changes to task and the environment were investigated, revealing how forgetting capabilities

can mitigate some of the challenges posed by complex and dynamic environments.

X.3 Future Directions

Many avenues exist for future work in Human-Inspired Forgetting for robotic systems. Additional compo-
nents within ActSimple can be explored or added, Human-Inspired Forgetting can be applied to new forms
of data and knowledge, and many robotic domains exist that may benefit from robotic forgetting capabilities.

The ActSimple algorithm combines a number of diverse components inspired by many models of hu-
man memory and cognitive architectures. This dissertation explored the components of trace-based decay,
similarity-based interference, and the Pavlik and Anderson modification. Future experiments may investigate
the benefits afforded by belief state values, mental exertion, and output interference.

A number of additional components may also be added to the ActSimple algorithm. Rehearsal forms a
critical component in many trace-based decay theories of forgetting, see Chapter 11.4.1, and Figure II.12 in
particular. This cognitive strategy is analogous to a human rapidly and repeatedly stating a fact to prevent
forgetting and may aid a robot in actively shaping the knowledge that is remembered and forgotten.

Many items encountered by robots possess a number of characteristics that allow for grouping. Color,
size, heat, and location are all properties that may be important in robotic domains. Presently, the ActSimple
algorithm treats all data equally. The introduction of a mechanism into ActSimple that “highlights” items
within memory that fit a currently desired parameter set may be explored. Minsky (1986) proposed the idea
of K-Lines, mechanisms within human memory that link relevant memories together. When a K-Line is
“activated”, all of the memories attached to the K-Line also become “activated” or easier to recall. A system
that “highlights” memory items may provide a robot with an improved ability to utilize cues in recalling
critical information.

Forgetting algorithms, and ActSimple in particular, possess a large number of independent parameters.
This dissertation explored the effectiveness of off-line parameter space searches, but on-line implementations
may be explored. While some reliable real-time metric will be required to ascribe a utility to individual pa-

rameter settings, nothing prevents the parameters used by ActSimple from being manipulated while a robot

192

traverses its environment. Many domains where robots are and will be operating are fluid and dynamic. Op-
timal parameter settings may also fluctuate and on-line tuning may be one mechanism that allows ActSimple
to adapt to these changes.

Many task, domain, and environmental factors can influence the absolute and relative performance of a
forgetting algorithm and its parameterization. This dissertation created parameterizations for ActSimple and
six other forgetting algorithms by optimizing performance with twenty paths. An analysis may be conducted
to determine the relative benefits of creating generalized parameterizations, parameter values tuned for high
levels of performance across diverse conditions, and specialized parameterizations, parameter values tuned
for specific subsets of task and environmental conditions. In some situations, the use of a single general
use parameterization may result in acceptable performance. However, some domains may allow for accurate
sensing of environmental conditions and performance may increase if the robot rapidly switches between
specialized sets of parameterizations.

Human-Inspired Forgetting may benefit a number of robotics domains. Many traditional robotic domains,
such as Human-Robot Interaction (HRI) (Goodrich and Schultz, 2007) and disaster rescue (Murphy et al.,
2000, 2008), may directly benefit from the introduction of robots with forgetting capabilities. Human-robot
interaction involves humans and robots working cooperatively to solve common goals and in some cases,
providing mutual assistance. Robots may one day become ubiquitous elements of human daily life, but they
will require the ability to communicate naturally with humans. Along with the ability to provide human
partners with the small cues and mannerisms that are common in human communication, robots will need to
detect and correctly interpret cues provided by their human partners. Gaze (Mutlu et al., 2009), timing (Okuno
et al., 2009), and body position (Yamaoka et al., 2009) can all influence the quality of communication and
the quantity of information that is reliably passed between partners. Effects of cues and emotive behavior
are not consistent. If robots are to one day be able to achieve natural interaction capabilities with humans,
the ability to recall important cues, while ignoring inconsequential actions may be critical. Human-Inspired
Forgetting may provide this capability. Through the interaction with an individual, a robot may be able
to record communication cues and adapt its own behavior appropriately. With the inclusion of rehearsal
mechanisms, robots may be well equipped to recall common cues and critical rare human reactions. These
rare reactions may result from injuries or from a human becoming exceptionally angry.

Wilderness Search and Rescue (Adams et al., 2009), Urban Search and Rescue (Murphy et al., 2000),
and future CBRNE deployments (Humphrey and Adams, 2009b) are all domains where robots are frequently
tasked with searching an environment, detecting abnormalities, and identifying items that appear out-of-place.
Unexpected items may signify humans trapped under rubble or explosive devices that have been concealed

in a building. Forgetting may be able to improve the performance of robotic systems operating within these

193

domains. Similar to the experiments presented in this dissertation (Chapters V - IX), forgetting may enable
robots to gain an understanding of the current status of an environment and adapt to changes. These domains
are often highly dynamic and continually evolve. Supplies are transported throughout the environment, rubble
can shift, first responders setup and break down equipment, and victims may wander throughout the affected
areas. Forgetting may allow robots operating under these conditions to remove outdated information, while

still retaining salient and pertinent data.

194

Appendix A

Supporting Media for Chapter VIII

This appendix presents additional supporting media for Chapter VIIIL

A.1 Additional Along the Path Performance Graphs
This section presents eight additional along the path performance graphs that were not included in Chap-
ter VIII. Graphs for paths 3, 6,7, 11, 14, 15, 16, and 19 are provided.

45
40

35

30 —— QueueStatic

— QueueDynamic
Random

—— ActR

—— Simple

—— SimpleUpdate

—— ActSimple

— NoForgetting

25

20

Estimation Error

15

10

— — - — - — - — - — - — - — - - — - - — — —
n o n o n o 0 o wn o n o n o n o n o 0 o [Te]
— — N N (3] o™ < < n Tel © © ~ ~ o 0 o o a 3

Time

Figure A.1: Along path results for path 3 - 1 cycle 4 basestations

195

Estimation Error

Estimation Error

— QueueStatic

—— QueueDynamic
Random

——ActR

— Simple

—— SimpleUpdate

—— ActSimple

—— NoForgetting

51
101
151
201
251
301
351
401
451
501
551
601

5
701
751
801
851
901
951

1001
1101
1151
1201
1251

1051

Figure A.2: Along path results for path 6 - 1 cycle 8 basestations

— QueueStatic

—— QueueDynamic
Random

——ActR

— Simple

—— SimpleUpdate

—— ActSimple

— NoForgetting

— -) -) -) -) - I - - - - - - - — - —

m o b © b © b © b © b © I © b O b O b o b

4 4 8 8 ® ® ¥ Y b » 6 © &~ ~ ® ® & o 9 Qg
Time

Figure A.3: Along path results for path 7 - 1 cycle 8 basestations

196

Estimation Error

Estimation Error

201

-
o
N

401

401

601

- - - — - — - - - - — - I
o o o o o o o o o o o o o
© @ S I < @] S IN] N © @ S
— — - — - N N N N N (2]

Time

Figure A.4: Along path results for path 11 - 3 cycles 4 basestations

- - - - - - - - - - - - - - -
o o o o o o o o o o o o o o o
@ =1 Q3 © ® o I N © @ S 3 @
- Ll -~ - — N N N N N o™ (3] o ™

Time

Figure A.5: Along path results for path 14 - 3 cycles 8 basestations

197

— QueueStatic

—— QueueDynamic
Random

——ActR

— Simple

—— SimpleUpdate

—— ActSimple

—— NoForgetting

— QueueStatic

—— QueueDynamic
Random

——ActR

— Simple

—— SimpleUpdate

—— ActSimple

— NoForgetting

Estimation Error

Estimation Error

201

-
o
N

401

401

601
801
1001

— - — - - - - — - I

o o o o o o o o o o

I < @] S IN] N © @ S

— - — - N N N N N (2]
Time

Figure A.6: Along path results for path 15 - 3 cycles 8 basestations

601
801

Figure A.7:

- - - - — - - - - -

o o o o o o o o o o

S N < © @ S I < © @

- - - - - N N N N N
Time

Along path results for path 16 - 3 cycles 8 basestations

198

3001

— QueueStatic

—— QueueDynamic
Random

——ActR

— Simple

—— SimpleUpdate

—— ActSimple

—— NoForgetting

— QueueStatic

—— QueueDynamic
Random

——ActR

— Simple

—— SimpleUpdate

—— ActSimple

— NoForgetting

Estimation Error

i)
o
N

401

- - — - - - - - - - - - —
o o o <] o o o o o o o o o
@ @ S N < © @ S « <5 © @ S
— — - — - N N N N N (2]

Time

Figure A.8: Along path results for path 19 - random 8 - 4 basestations

199

— QueueStatic

—— QueueDynamic
Random

——ActR

— Simple

—— SimpleUpdate

—— ActSimple

—— NoForgetting

A.2 Along the Path Error and Recall Maps
This section presents the complete set of error and recall maps for the Act-R, Queue Static, SIMPLE Update,
and ActSimple algorithms. The maps for No Forgetting are also presented. Each set of maps is provided in

video format and is located on the accompanying DVD in the path structure shown in Figure A.2.

¢ Chapter VIII Video Files

- Act-R
ActSimple

No Forgetting

Queue Static
SIMPLE Update

Figure A.9: Directory Structure

200

Appendix B

Additional Components of Situational Awareness

SA is a complex phenomena that spans a diverse array of cognitive processes and properties. Many com-
ponents of cognition can affect the ability to generate and maintain SA, although dependence on forgetting
mechanisms is not universal. Some portions of the processes required to generate SA are not directly affected
by data management issues and forgetting capabilities; however, these aspects of human cognition are still
important. Benefits arising from components not directly associated with forgetting aid in the development
of an environment suitable for the generation of SA, while the absence of these components can negate the
benefits of forgetting. This appendix presents a number of cognitive phenomena that influence the ability to

generate and maintain SA, while not directly being influenced by forgetting mechanisms.

B.1 System Stress
Human SA tends to suffer as human stress levels increase. In real world environments, many types of stressors
exist, elements that affect information processing, but are not actually inherent components of the information
to be processed. Stressors can be both environmental and physiological. Environmental stressors include
noise, vibration, heat, cold, and poor lighting. Anxiety, fatigue, frustration, and anger are all considered to
be physiological stressors. Four effects commonly arise from the presence of stressors. As stress builds,
humans can undergo physiological changes, such as becoming frustrated. Short-term physiological effects
also commonly occur, such as increased heart rate or a change in the output of catecholamines. In the presence
of stressors, human information processing efficiency often decreases and long-term negative health effects
may develop (Wickens et al., 2004).

The presence of stress can result in decreased perceptual abilities and inferior processing of resultant
information. This degradation may cause a reduction in level one SA. As level one SA decreases, higher

levels of SA start to degrade (Freedman and Adams, 2007).

B.2 Ideal, Achievable, and Actual Situational Awareness

Pew (2000) classifies human SA into three categories; ideal, achievable, and actual SA, as shown in Fig-
ure B.1. Ideal SA is often unachievable, as it represents an awareness of the entire situation, including items
that may not be available under human cognitive and perceptual limitations. Achievable SA, a subset of ideal
SA, captures the best level of SA for a given situation that is possible with human cognitive and perceptual

capabilities. Actual SA represents a human’s current level of SA, which is often a subset of the achievable SA

201

Figure B.1: Relationship between ideal, achievable, and actual SA (Recreated from (Pew, 2000))

category. Breaking down SA into ideal, achievable, and actual levels aids developers during the design and
evaluation phases of interface development. Achievable SA provides performance goals for new interfaces

and provides a valuable point of reference from which to compare a human’s actual SA (Pew, 2000).

B.3 Vigilance

Maintaining good SA requires the constant observance of numerous specific details. In many domains, tasks
can become quite boring and taxing. Humans have a tendency to stop paying attention to some of these
details, at times to focus on other issues and sometimes to simply reduce the amount of required work. This
phenomenon is known as loss of vigilance and can result in disastrous consequences. It is well known that
human vigilance levels drop dramatically over time and have an effect on overall SA. Human vigilance levels

often drop due to boredom and fatigue (Wickens and Hollands, 2000).

B.4 Uncertainty and Confidence
Uncertainty and confidence play a pivotal role in the relationship between human SA and performance. Hu-
man uncertainty often manifests itself in a human’s hesitation or failure to act. Frequently, humans will con-
tinue to gather additional information in order to improve their awareness and confidence in actions selected
to achieve desired objectives. However, complete certainty is almost always impossible. A trade off must
constantly be made between the cost of acting under uncertainty and the benefits of additional search. Once
an acceptable level of uncertainty has been reached, actions should be performed. When humans spend too
much time searching the environment, the associated costs will increase and performance may subsequently
degrade.

Many factors play into a person’s level of confidence in their SA. When incoming data disagrees or

outright contradicts itself, then uncertainty will increase as the likelihood that some previously acquired

202

Situation Awareness

Good Poor
: Bad
High Outcome
Confidence
Level
Low Do Nothing Okay Outcome
(Ineffectual) (Delay)

Figure B.2: SA and confidence levels (Endsley and Jones, 1997)

information is erroneous may be quite high. The quality and reliability of information sources within the
environment can have an impact on confidence levels. Within adversarial domains, misleading or completely
false information may also act to degrade confidence as the ability to trust incoming information is weakened.
Additionally, the ability and confidence in that ability to process and correctly interpret incoming data can
influence a person’s faith in their SA.

As seen in Figure B.2, there are four possible states to define the relationship between confidence and
SA, assuming a binary partitioning. The ideal case occurs when good SA is matched with high confidence,
but care must be taken to handle the other scenarios. If high SA is achieved, but confidence is low, then per-
formance may be unnecessarily poor, as observations will needlessly be sought from the environment. When
SA is poor and uncertainty is high, then the desire to further monitor the environment will be appropriately
high. The worst case occurs when SA is poor and confidence is high. Not only may poor action selection
result while someone is in this state, but others may worsen their SA as they interact with the person acting

with considerable confidence (Endsley and Jones, 1997).

B.5 Bad Situational Awareness vs. Bad Decision Making

SA is not synonymous with superior decision making, nor is it interchangeable with performance. Venturino
et al. (1990) performed a study of fighter pilot SA where pilots participated in a combat simulation. Pilots
who rated their SA as low performed poorly and pilots with self-assessments of average SA only performed at
an average level of performance. When high self-ratings of SA were given, pilot performance varied greatly.
From these results, Venturino et al. concluded that while SA may be necessary for high levels of performance,
it is not the sole factor (Uhlarik and Comerford, 2002). Additionally, through luck or pure physical skill and

ability, high levels of performance may occasionally be produced.

203

B.6 Biases and Expectations

Humans naturally have biases and expectations regarding different situations and their outcomes. In complex
dynamic environments many objects require constant monitoring and surveillance. The patterns dictating how
sensory channels are directed within the environment can be influenced by bottom-up factors (e.g., saliency
and cues), but can also be affected by top-down biases and expectations. Previous experiences, goals, and
mental models can all form expectations that govern the usage of sensory channels. Bias and expectations
also influence higher levels of SA. In the presence of incomplete or ambiguous knowledge, humans often use
expectations to filter choices and minimize cognitive load (Wickens and Hollands, 2000). Heuristics are often
used by humans to complete tasks in time restricted situations. These heuristics can provide results compa-
rable to more cognitively taxing mental processes, but are often domain and task specific (Gigerenzer et al.,
1999). When inappropriately applied, heuristics can degrade performance and result in incorrect decision

making (Wickens and Hollands, 2000).

B.6.1 Schemas and Mental Models

Mental models and schemas are constructs generally stored in long term memory that speed up comprehen-
sion of the environment and assist in determining the important of various SA constructs. Created through
experience operating in some domain, mental models and schemas allow circumvention of various bottle-
necks to SA by directing attention to the most importance aspects in the environment. Additionally, guidance
on how to process incoming information and how to use it to project into the future can result from their use.
Assistance in the decision making process is also possible by utilizing mental models and schemas (Endsley
and Jones, 1997).

Considerable debate exists about the exact representation of humans’ mental models. Minsky (1974,
1986) postulated that mental models are composed of frames. Frames are considered to be the basic building
block of knowledge with a human’s memory consisting of millions of these frames in a hierarchical data
structure. Lower level frames will possess greater specificity of a particular task or event, but at a smaller
scope. Within each frame, top level components are fixed, in that they represent items mandatory to the
domain or phenomena being represented. As a progression is made to lower items within a frame, items gain
in optionality. Many of the items within a frame may already possess values even before the frame is applied
to an instance of a situation. These values act as defaults, assisting in the understanding of complex situations
and causing deviations from the default values to be noticed. Defaults can negatively impact recall in some
situations. If the real value of some feature does not agree with a default, but this fact is not noticed and
recorded, then the default value can erroneously be stored for recall later. Minsky defined six different types

of frames, shown in Table B.1. While all of the frame types possess the same basic characteristics, hierarchy

204

Table B.1: Minsky’s variety of frames (Minsky, 1974)
Frames for objects
Temporal or programmatic frames
Mixed frames for situations
Grammar frames
Narrative or text frames
Scientific paradigms

and leveling of optionality, each is used for a different purpose.

When the environment highly correlates with a mental model, the decision making process is even further
speed up, as less processing is required. If a mental model partially disagrees with the current state of the
environment, benefits can still be realized from its use due to human pattern matching abilities and utilization
of best fit approximation. Additionally, mental models provide default values for missing information, al-
lowing for decision making and prediction even in the presence of uncertainty. Confidence in the model can
also negatively affect this process as doubt about a mental model’s correctness and applicability increases,

reliance on the model will decrease until it is not used at all (Endsley and Jones, 1997).

B.6.2 Framing and Order

The order in which observations about the environment are made can have a substantial impact on a human’s
ability to understand a situation. This impact may result from the formation of a situational model about
the environment and the current task at hand, which is primarily composed of these observations. As new
information is received, the model is altered, ideally resulting in a more detailed and accurate picture of
the state of the environment. Much of this model is necessarily built from inferences and assumptions, since
complex dynamic environments contain too much information and uncertainty to allow for full understanding.
When incorrect ordering of information is presented to a human, they may either produce incorrect inferences
or fail to produce them altogether (Sanford and Garrod, 1981).

Dooling and Lachman (1971) crafted a demonstration of this phenomenon with a short text passage.

“With hocked gems financing him, our hero bravely defied all scornful laughter that tried to
prevent his scheme. Your eyes deceive’, he had said. An egg, not a table, correctly typifies this
unexplored planet’. Now three sturdy sisters sought proof. Forging along, sometimes through
calm vastness, yet more often turbulent peaks and valleys, days became weeks as many doubters
spread fearful rumors about the edge. At last, from nowhere, welcome winged creatures appeared

signifying momentous success.”

205

100

80+
60 Story
9 No- theme
o 40 After-theme
32 waripﬂon

Random Passages
20

} 1 L 1
Y — i
F

! :
Level in hierarchy

Figure B.3: Recall performance of details from a reading passage ((Sanford and Garrod, 1981) recreated
from (Thorndyke, 1977)

This passage is generally considered difficult to remember, much less interpret and understand, until the
title is provided, “Christopher Columbus’s discovery of America”. Once the title is available to frame the text,
a basic understanding can start to form, but not until the passage is reread can many of the rich metaphors be
appreciated (Sanford and Garrod, 1981).

Thorndyke (1977) experimentally tested the effects of information ordering by presenting a reading pas-
sage to subjects whose recall was subsequently tested. Five different versions of the passage were used during
the test, Story (the passage was presented in its normal format and ordering), After-Theme (sentences contain-
ing the theme of the story were moved to the end of the passage after some slight restructuring), No-Theme
(the passage had its theme completely removed), Description (the passage was altered so that only nominal
and pronominal references remained), and Random Passages. Results from this experiment can be seen in
Figure B.3. In the graph, Level of Hierarchy refers to the relative importance of a piece of information to
the overall meaning and context of the passage. From this experiment, Thorndyke was able to conclude that
the standard story format ordering of a passage allowed readers to form a global frame (in the Minsky sense)
of reference that subsequent information could refine. The After-Theme and No-Theme versions prevented
the reader from constructing a global frame, but allowed the readers to utilize local causal’ links and simple

temporal ordering (Sanford and Garrod, 1981).

206

Table B.2: Negative forces acting on SA (Endsley and Jones, 1997)
Error in observations
Denial of observations
False observations
Overloading of observations
Inducing wrong conclusions
Disorganization of observations
Induce incorrect assumptions
Increase of unpredictability

B.6.3 Observation Quality and Availability

The quality of SA that can be obtained is based solely on the quality of the input observations from the
environment and the ability of a human’s cognitive processes to generate an understanding of the environment
and future actions. While producing a highly efficient and effective SA capability is difficult with even the
best set of observations in the real world, false and misleading information will result in a direct assault on
this capability. Causes of these undesired observations do not necessarily need to originate from adversarial
forces in the environment, such as direct competitors, but may come from teammates or even neutral agents
who happen to be present in the environment. In this case, agent can refer to practically anything, humans,
animals, or even machines that are somehow involved with the current process. Additionally, a human’s own
senses may help to undermine the ability to generate high SA because of failures and errors in the ability to
perceive the environment (Endsley and Jones, 1997).

Table B.2 partitions the collection of negative forces acting on SA into eight separate areas. The first,
and most obvious, is simply erroneous observations of the environment. Sources of erroneous observations
are numerous, ranging from sensory error to the inability of human senses to detect characteristics about
objects in the environment. Second in the list, denial of observations, may result when active entities in
the environment are actively attempting to prevent particular observations from being made. Third, false
observations help to increase uncertainty, generate false beliefs, and decrease trust in valid percepts. Other
negative forces acting against SA can impose similar constraints and degrade the ability for a human to

achieve and maintain high levels of SA (Endsley and Jones, 1997).

B.7 Workload

Human SA is affected by both cognitive and physical workload, which can act as a stressor when present
in excess (Wickens et al., 2004). Figure B.4 depicts the relationship between workload and SA. Under low
to moderate workload, SA and workload can vary almost independently. At the lowest levels of workload,

vigilance may decrease and attention can be diverted from important task elements. As workload exceeds

207

high max capacity

Ideal State Challenged

SA

low | Vigilance Overload

low high
Workload

Figure B.4: SA vs. Workload (Endsley, 1993)

available capacity, performance and SA decrease. Under this condition, every task requiring attention can-
not be adequately handled and information regarding the environment is ignored or undetected (Endsley and
Jones, 1997). Under these high workload conditions, critical information and tasks are often neglected, for-
gotten, or ignored (Wickens et al., 2004). Missing information directly degrades level one SA and indirectly
affects higher levels of SA. Level two and level three SA are also directly affected by the time pressures
resulting from an increased workload. Without adequate cognitive capacity, level one constructs cannot be
formed into level two constructs and the development of level three constructs equally suffers. Forgetting
stale, irrelevant, and out of date data may reduce cognitive workload by reducing the mental search time

required to recall items necessary for successful task completion.

B.8 Data Driven and Goal Driven Behavior

Two diametrically opposed processes can be used for operating in a complex dynamic environment, data
driven processing and goal driven processing. When operating in a data driven mindset, the environment is
scanned in parallel for salient signal properties to emerge. Salient features of the environment are observed
and processed into level one SA. Patterns can easily be detected when utilizing a data driven approach, which
can be used to modify or replace any current goals. Goal driven processing involves directed sampling in
the environment. Using this approach, specific information from the environment can be sought out and then
evaluated with respect to current goals, forming level two SA.

Choosing which mode to use can play a significant role in the success of a task, as the selection will affect
how attention is directed and how information is perceived and interpreted. These two methods need to be
alternated constantly, since data driven processing can lead to data overflow and goal driven processing can
result in too narrow of a focus and the loss of the ability to determine information’s importance (Endsley and

Jones, 1997).

208

BIBLIOGRAPHY

Adams, J. A. (2007). Unmanned vehicle situation awareness: A path forward. In Proceedings of the 2007
Human Systems Integration Symposium.

Adams, J. A. (2009). Multiple robot-single human interaction: Effects on perceived workload. Behavior &
Information Technology, 28(2):183-198.

Adams, J. A. and Freedman, S. T. (2007). Unmanned system autonomy, situation awareness, and system
safety. In Proceedings of the 25" International System Safety Conference, pages 800-810.

Adams, J. A., Humphrey, C. M., Goodrich, M. A., Cooper, J. L., Morse, B. S., Engh, C., and Rasmussen., N.
(2009). Cognitive task analysis for developing unmanned aerial vehicle wilderness search support. Journal
of Cognitive Engineering and Decision Making, 3(1):1-26.

Adams, M. J., Tenney, Y. J., and Pew, R. W. (1995). Situation awareness and the cognitive management of
complex systems. 37(1):85-104.

Allport, A. and Wylie, G. (2000). Task-switching, stimulus-response binding, and negative priming. In
Monsell, S. and Driver, J. S., editors, Control of Cognitive Processes: Attention and Performance XVIII,
pages 35-70. MIT Press, Cambridge, MA.

Altmann, E. M. (2002). Functional decay of memory for tasks. Psychological Research, 66:287-297.

Altmann, E. M. and Gray, W. D. (2002). Forgetting to remember: The functional relationship of decay and
interference. Psychological Science, 13(1):27-33.

Altmann, E. M. and Schunn, C. D. (2002). Integrating decay and interference: A new look at an old interac-
tion. In Proceedings of the 24™ Annual Meeting of the Cognitive Science Society, pages 65-70. Lawrence
Erlbaum Associates, Mahwah, NJ.

Ambrose, R. O., Aldridge, H., Askew, R. S., Burridge, R. R., Bluethmann, W., Diftler, M., Lovchik, C.,
Magruder, D., and Rehnmark, F. (2000). Robonaut: NASA'’s space humanoid. IEEE Intelligent Systems,
15(4):57-63.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S. A., Lebiere, C., and Qin, Y. (2004). An integrated
theory of mind. Psychological Review, 111(4):1036—-1060.

Anderson, J. R. and Lebiere, C. (1998). The Atomic Components of Thought. Lawrence Erlbaum Associates,
Mahwah, NJ.

Anderson, J. R. and Matessa, M. P. (1997). A production system theory of serial memory. Psychological
Review, 104:728-748.

Anderson, J. R. and Schooler, L. J. (1991). Reflections of the environment in memory. Psychological Science,
2:396-408.

Anderson, R. B., Doherty, M. E., Berg, N. D., and Friedrich, J. C. (2005). Sample size and the detection
of correlation - a signal detection account: Comment on kareev (2000) and juslin and olsson (2005).
Psychological Review, 112(1):268-279.

Arkin, R. C. (1998). Behavior-based Robotics. MIT Press, Cambridge, MA.

Atkinson, R. C. and Shiffrin, R. M. (1971). The control of short-term memory. Scientific American,
225(2):82-90.

Australian Civil Aviation Authority (1994). Air Traffic Control Abinitio Training Program. Australian Civil
Aviation Authority, Air Traffic Services, ATS Human Resources, Canberra, Australia.

209

Baddeley, A. D. (1986). Working Memory. Oxford University Press, New York, NY.

Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive
Sciences, 4(11):417-423.

Balch, T. (2002). Taxonomies of multirobot task and reward. In Balch, T. and Parker, L. E., editors, Robot
Teams, pages 23-35. A. K. Peters, Natick, MA.

Basu, P. and Redi, J. (2004). Movement control algorithms for realization of fault-tolerant ad hoc robot
networks. IEEE Network, 18(4):36—44.

Breazeal, C., Gray, J., and Berlin, M. (2009). An embodied cognition approach to mindreading skills for
socially intelligent robots. The International Journal of Robotics Research, 28(5):656—680.

Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and
Automation, 2:14-23.

Brooks, R. A. (1991). Intelligence without reason. In Proceedings of the 12" International Joint Conference
of Artificial Intelligence, pages 569-595.

Brown, G. D. A., Chater, N., and Neath, I. (2007). A temporal ratio model of memory. Psychological Review,
114(3):539-576.

Brown, G. D. A. and Hulme, C. (1995). Modeling item length effects in memory span: No rehearsal needed?
Journal of Memory and Language, 34:594—621.

Brown, G. D. A., Preece, T., and Hulme, C. (2000). Oscillator-based memory for serial order. Psychological
Review, 107:127-181.

Burgess, N. and Hitch, G. (1992). Toward a network model of the articulatory loop. Journal of Memory and
Language, 31:429-460.

Burgess, N. and Hitch, G. (1999). Memory for serial order: A network model of the phonological loop and
its timing. Psychological Review, 106:551-581.

Burghart, C., Gaertner, C., and Woern, H. (2006). Cooperative solving of a children’s jigsaw puzzle between
human and robot: First results. In Beetz, M., Rajan, K., Thielscher, M., and Rusu, R. B., editors, Cognitive
Robotics: Papers from the AAAI Workshop, number WS-06-03, pages 33-39.

Burke, J. L. and Murphy, R. R. (2004). Situation awareness and task performance in robot-assisted technical
search: Bujold goes to Bridgeport. Technical Report CRASAR-TR2004-23, Center for Robot Assisted
Search & Rescue, University of South Florida.

Byrne, M. D. (1998). Taking a computational approach to aging: The SPAN theory of working memory.
Psychology and Aging, 13:309-322.

Callan, D. E. and Schweighofer, N. (2010). Neural correlates of the spacing effect in explicit verbal semantic
encoding support the deficient-processing theory. Human Brain Mapping, 31:645-659.

Cassimatis, N. (2006). A cognitive substrate for achieving human-level intelligence. Al Magazine, 27(2):45—
56.

Cassimatis, N., Bugajska, M., Dugas, S., Murugesan, A., and Bello, P. (2007). An architecture for adaptive
algorithmic hybrids. In Proceedings of the 22" AAAI Conference on Artificial Intelligence, pages 1520
1526.

Cassimatis, N., Mueller, E. T., and Winston, P. H. (2006). Achieving human-level intelligence through
integrated systems and research. Al Magazine, 27(2):12-14.

Cassimatis, N. L. (2002). Polyscheme: A Cognitive Architecture for Integrating Multiple Representation and
Inference Schemes. PhD thesis, Massachusetts Institute of Technology.

210

Cepeda, N. J., Pashler, H., Vul, E., Wixted, J., and Rohrer, D. (2006). Distributed practice in verbal recall
tasks: A review and quantitative synthesis. Psychological Bulletin, 132:354-380.

Choi, D., Kaufman, M., Langley, P., Nejati, N., and Shapiro, D. (2004). An architecture for persistent reactive
behavior. In Proceedings of the 3'¢ International Conference on Joint Autonomous Agents and Multiagent
Systems, pages 988— 995.

Chong, R. S. (2003). The addition of an activation and decay mechanism to the Soar architecture. In The
Logic of Cognitive Systems: Proceedings of the 5™ International Conference on Cognitive Modeling, pages
45-50.

Correia, L. and Abreu, A. (2004). Forgetting and fatigue in mobile robot navigation. In Advances in Artifi-
cial Intelligence: Proceedings of the 17" Brazilian Symposium on Artificial Intelligence, pages 434—443.
Springer, Sao Luis, Brazil.

Cox, M. T. (2005). Metacognition in computation: A selected research review. Artificial Intelligence,
169(2):104-141.

Cox, M. T. (2007). Perpetual self-aware cognitive agents. Al Magazine, 28(1):32-45.

Cuddy, L. J. and Jacoby, L. L. (1982). When forgetting helps memory: An analysis of repetition effects.
Journal of Verbal Learning and Verbal Behavior, 21:451-467.

Daily, L. Z., Lovett, M. C., and Reder, L. M. (2001). Modeling individual differences in working memory
performance: A source activation account. Cognitive Science, 25(3):315-353.

DAKOTA (2010). Design analysis kit for optimization and terascale applications.
http://www.cs.sandia.gov/dakota.

Davids, K., Smith, L., and Martin, R. (1991). Controlling system uncertainty in sport and work. Applied
Ergonomics, 22(2):312-315.

Davies, E. R. (2004). Machine Vision: Theory, Algorithms, Practicalities. Morgan Kaufmann, San Francisco,
CA.

Dell (2003). Dell TrueMobile 1150 Mini PCI Card. http://support.dell.com/support/edocs/network/
tm1150mp/en/index.htm.

Dempster, F. N. (1988). The spacing effect: A case study in the failure to apply the results of psychological
research. American Psychologist, 43(8):627-634.

Dominguez, C. (1994). Can SA be defined? Technical Report AL/CF-TR-1994-0085, Air Force Systems
Command, Wright-Patterson Air Force Base. pages 5-15.

Dooling, D. J. and Lachman, R. (1971). Effects of comprehension on retention of prose. Journal of Experi-
mental Psychology, 88:216-222.

Dosher, B. (1999). Item interference and time delays in working memory: Immediate serial recall. Interna-
tional Journal of Psychology, Special Issue: Short-Term/Working Memory, 34:276-284.

Dosher, B. and Ma, J. (1998). Output loss or rehearsal loop? Output-time versus pronunciation-time limits
in immediate recall for forgetting-matched materials. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 24(2):316-335.

Drury, J. L., Scholtz, J., and Yanco, H. A. (2003). Awareness in human-robot interactions. In Proceedings of
the 2003 IEEE Conference on Systems, Man, and Cybernetics, pages 912— 918.

Dudek, G., Jenkins, M., and Milios, E. (2002). A taxonomy of multirobot systems. In Balch, T. and Parker,
L. E., editors, Robot Teams, pages 3-22. A. K. Peters, Natick, MA.

211

http://support.dell.com/support/edocs/network/tm1150mp/en/index.htm
http://support.dell.com/support/edocs/network/tm1150mp/en/index.htm

Dudziak, W. (2007). Presentation and analysis of a multi-dimensional interpolation function for non-uniform
data: Microsphere projection. Master’s thesis, University of Akron.

Ebbinghaus, H. (1885). Memory: A Contribution to Experimental Psychology. Teachers College, Columbia
University, New York, NY. translators Ruger, H. A. and Bussenius, C. E. 1913.

Elliott, S. W. and Anderson, J. R. (1995). Effect of memory decay on predictions from changing categories.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(4):815-836.

Endsley, M. R. (1988a). Design and evaluation for situation awareness enhancement. In Proceedings of the
Human Factors Society 32 Annual Meeting, pages 97-101.

Endsley, M. R. (1988b). Situation awareness global assessment technique (SAGAT). In Proceedings of the
National Aerospace and Electronics Conference, pages 789-795.

Endsley, M. R. (1993). Situation awareness and workload: Flip sides of the same coin. In Jensen, R. S. and
Neumeister, D., editors, Proceedings of the 7" International Symposium on Aviation Psychology, pages
906-911.

Endsley, M. R. (1995a). Measurement of situation awareness in dynamic systems. Human Factors, 37(1):65—
84.

Endsley, M. R. (1995b). Toward a theory of situation awareness in dynamic systems. Human Factors,
37(1):32-64.

Endsley, M. R. and Jones, W. M. (1997). Situation awareness information dominance & information warfare.
Technical Report AL/CF-TR-1997-0156, United States Air Force Armstrong Laboratory.

Estes, W. K. (1955). Statistical theory of distributional phenomena in learning. Psychological Review,
62(5):369-377.

Farrell, S. and Lewandowsky, S. (2002). An endogenous distributed model of ordering in serial recall. Psy-
chonomic Bulletin and Review, 9:59-79.

Flach, J. M. (1995). Situation awareness: Proceed with caution. Human Factors, 37(1):149-157.

Fox, D., Burgard, W., and Thrun, S. (1999). Markov localization for mobile robots in dynamic environments.
Journal of Artificial Intelligence Research, 11:391-427.

Fracker, M. L. (1988). A theory of situation assessment: Implications for measuring situation awareness. In
Proceedings of the Human Factors Society 32" Annual Meeting, pages 102—106.

Freedman, S. T. and Adams, J. A. (2007). The inherent components of unmanned vehicle situation awareness.
In Proceedings of the 2007 IEEE International Conference on Systems, Man, and Cybernetics, pages 973—
9717.

Freedman, S. T. and Adams, J. A. (2008). Synthetic cognitive agent situational awareness components. In
AAAI Technical Report FS-08-04, page 62.

Gaissmaier, W., Schooler, L. J., and Rieskamp, J. (2006). Simple predictions fueled by capacity limitations:
When are they successful? Journal of Experimental Psychology: Learning, Memory, and Cognition,
32(5):966-982.

Gatsoulis, I. (2008). Performance Metrics and Human-Robot Interaction for Teleoperated Systems. PhD
thesis, School of Mechanical Engineering, University of Leeds.

Gatsoulis, Y. and Virk, G. S. (2006). Modular situational awareness for CLAWAR robots. In Tokhi, M. O.,
Virk, G. S., and Hossain, M. A., editors, Climbing and Walking Robots: Proceedings of the 8" Interna-
tional Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines,
pages 1011-1020. Springer, Berlin, Germany; Heidelberg, Germany; New York, NY.

212

Gerkey, B. and Matari¢, M. J. (2003). A framework for studying multi-robot task allocation. In Schultz,
A. C., Parker, L. E., and Schneider, F. E., editors, Multi-Robot Systems: From Swarms to Intelligent
Automata - Proceedings of the 2003 International Workshop on Multi-Robot Systems, volume 2, pages
15-26. Springer.

Gigerenzer, G. and Brighton, H. (2009). Homo heuristicus: Why biased minds make better inferences. Topics
in Cognitive Science, 1(1):107-143.

Gigerenzer, G., Todd, P. M., and the ABC Research Group (1999). Simple Heuristics That Make Us Smart.
Oxford University Press, New York.

Giralt, G., Sobek, R., and Chatila, R. (1979). A multi-level planning and navigation system for a mobile
robot: A first approach to Hilare. In Proceedings of the 6™ International Joint Conference on Artificial
Intelligence, pages 335-337.

Glenberg, A. M. (1979). Component-levels theory of the effects of spacing of repetitions on recall and
recognition. Memory and Cognition, 7(2):95-112.

Glenn, F., Schwartz, S., and Ross, L. (1992). Development of a human operator simulator version V (HOS-
V): Design and implementation. Research Note 92-PERI-POX. Army Research Institute.

Goldstein, D. G. and Gigerenzer, G. (2002). Models of ecological rationality: The recognition heuristic.
Psychological Review, 109(1):75-90.

Goodrich, M. A., Morse, B. S., Gerhardt, D., Cooper, J. L., Quigley, M., Adams, J. A., and Humphrey, C. M.
(2008). Supporting wilderness search and rescue using a camera-equipped mini UAV. Journal of Field
Robotics, 25(1-2):89-110.

Goodrich, M. A. and Schultz, A. C. (2007). Human-robot interaction: A survey. Foundations and Trends in
Human-Computer Interaction, 1(3):203-275.

Hanford, S. D., Janrathitikarn, O., and Long, L. N. (2008). Control of a six-legged mobile robot using the
Soar cognitive architecture. In Proceedings of the 46" AIAA Aerospace Sciences Meeting and Exhibit,
number AIAA Paper No. 2008-0878.

Harper, K. A. and Zacharias, G. L. (2004). Common problems and helpful hints to solve them: Lessons
learned in integrating cognitive models in large-scale simulation environments. In Ingalls, R. G., Rossetti,
M. D., Smith, J. S., and Peters, B. A., editors, Proceedings of the 2004 Winter Simulation Conference,
pages 891-897.

Harrison, A. M. (2007). Online of Offline? Exploring Working Memory Constraints in Spatial Updating.
PhD thesis, University of Pittsburgh.

Harrison, T. and Schunn, C. (2003). Segmented spaces: Coordinated perception of space in ACT-R. In Detje,
F., Dorner, D., and Schaub, H., editors, The Logic of Cognitive Systems: Proceedings of the 5™ Interna-
tional Conference on Cognitive Modeling, page 307. Universitits-Verlag Bamberg, Bamberg, Germany.

Hawes, N., Brenner, M., and Sjo6, K. (2009). Planning as an architectural control mechanism. In Proceedings
of the International Conference on Human-Robot Interaction, pages 229-230, La Jolla, CA.

Hawes, N., Hanheide, M., Sj60, K., Aydemir, A., Jensfelt, P., Gobelbecker, M., Brenner, M., Zender, H.,
Lison, P., Kruijff-Korbayov4, L., Kruijff, G.-J., and Zillich, M. (2010). Dora the explorer: A motivated
robot. In Proceedings of the 9" International Conference on Autonomous Agents and Multiagent Systems,
pages 1617-1618, Toronto, Canada.

Hawes, N., Sloman, A., Wyatt, J., Zillich, M., Jacobsson, H., Kruijff, G.-J. M., Brenner, M., Berginc, G., and
Skocaj, D. (2007). Towards an integrated robot with multiple cognitive functions. In Proceedings of the
22" Conference on Artificial Intelligence, pages 1548-53.

213

Hawes, N., Wyatt, J., and Sloman, A. (2006). An architecture for embodied cognitive systems. Technical
Report CSR-06-12, University of Birmingham.

Henson, R. N. A. (1998). Short-term memory for serial order: The start-end model. Cognitive Psychology,
36:73-137.

Hoffman, G. and Breazeal, C. (2007). Effects of anticipatory action on human-robot teamwork: Efficiency,
fluency, and perception of team. In Proceedings of the 2" ACM/IEEE International Conference on Human-
Robot Interaction, pages 1-8.

Howell, J. and Donald, B. R. (2000). Practical mobile robot self-localization. In Proceedings of the 2000
International Conference on Robotics and Automation, pages 3485-3492.

Hulme, C., Roodenrys, S., Schweickert, R., Brown, G. D. A., Martin, S., and Stuart, G. (1997). Word-
frequency effects on short-term memory tasks: Evidence for a redintegration process in immediate serial
recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23:1217-1232.

Humphrey, C. M. and Adams, J. A. (2008). Compass visualizations for human-robot interaction. In Proceed-
ings of the 3" ACM/IEEE International Conference on Human-Robot Interaction, pages 239-246, New
York, NY.

Humphrey, C. M. and Adams, J. A. (2009a). General visualization abstraction algorithm for directable inter-
faces: Component performance and learning effects. IEEE Transactions on Systems, Man, and Cybernetics
- Part A, Accepted.

Humphrey, C. M. and Adams, J. A. (2009b). Robotic tasks for CBRNE incident response. Journal of
Advanced Robotics, Special Issue on Disaster Response Robotics, 23:1217-1232.

International Commission on Illumination (1932). Commission internationale de I’Eclairage proceedings.
Cambridge University Press, Cambridge, England.

Jacobsson, H., Hawes, N., Kruijff, G.-J., and Wyatt, J. (2008). Crossmodal content binding in information-
processing architectures. In Proceedings of the 3" ACM/IEEE International Conference on Human-Robot
Interaction.

Johnson, T. R. (1997). Control in ACT-R and Soar. In Shafto, M. and Langley, P., editors, Proceedings of the
19" Annual Conference of the Cognitive Science Society, pages 343—348. Lawrence Erlbaum Associates,
Hillsdale, NJ.

Jonides, J., Lewis, R. L., Nee, D. E., Lustig, C. A., Berman, M. G., and Moore, K. S. (2008). The mind and
brain of short-term memory. Annual Review of Psychology, 59:193-224.

Kaber, D. B., Onal, E., and Endsley, M. R. (2000). Design of automation for telerobots and the effect on
performance, operator situation awareness, and subjective workload. Human Factors and Ergonomics in
Manufacturing, 10(4):409—-430.

Kareev, Y. (2005). And yet the small-sample effect does hold: Reply to juslin and olsson (2005) and anderson,
doherty, berg, and friedrich (2005). Psychological Review, 112(1):280-285.

Kieras, D. E., Meyer, D. E., Mueller, S., and Seymour, T. (1999). Insights into working memory from the per-
spective of the EPIC architecture for modeling skilled perceptual-motor and cognitive human performance.
In Miyake, A. and Shah, P., editors, Models of Working Memory: Mechanisms of Active Maintenance and
Executive Control, pages 183-223. Cambridge University Press, New York.

Kira, Z. and Arkin, R. C. (2004). Forgetting bad behavior: Memory management for case-based naviga-
tion. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robotics and Systems,
volume 4, pages 3145-3152.

214

Kruijff, G.-J. M., Lison, P., Benjamin, T., Jacobsson, H., and Hawes, N. (2007). Incremental, multi-level
processing for comprehending situated dialogue in human-robot interaction. In Lopes, L. S., Belpaeme,
T., and Cowley, S. J., editors, Proceedings of the 2007 Symposium on Language and Robots, pages 55—64.

Kuhl, B. A., Dudukovic, N. M., Kahn, 1., and Wagner, A. D. (2007). Decreased demands on cognitive control
reveal the neural processing benefits of forgetting. Nature Neuroscience, 10(7):908-914.

Kumar, V. K. (1971). The structure of human memory and some educational implications. Review of Educa-
tional Research, 41(5):379-417.

Laird, J. E. (2001). It knows what you’re going to do: Adding anticipation to a quakebot. In Proceedings of
the 5™ International Conference on Autonomous Agents, pages 385-392.

Laird, J. E. (2006). The Soar 8 tutorial: Part 3. Online.
http://ai.eecs.umich.edu/soar/sitemaker/docs/tutorial/TutorialPart3.pdf.

Laird, J. E. (2008). Extending the Soar cognitive architecture. In Proceedings of the 1" Conference on
Artificial General Intelligence, pages 224-235.

Landauer, T. K. (1969). Reinforcement as consolidation. Psychological Review, 76(1):82-96.

Lane, N., Strieb, M., Glenn, F., and Wherry, R. (1981). The human operator simulator: An overview. In
Moraal, J. and Kraiss, K.-F., editors, Manned Systems Design: Methods, Equipment, and Applications.
Plenum Press, New York, NY.

Langley, P. and Choi, D. (2006). A unified cognitive architecture for physical agents. In Proceedings of the
21*" National Conference on Artificial Intelligence, pages 1469-1474.

Langley, P., Laird, J. E., and Rogers, S. (2009). Cognitive architectures: Research issues and challenges.
Cognitive Systems Research, 10(2):141-160.

Lee, C. L. and Estes, W. K. (1977). Order and position in primary memory for letter strings. Journal of
Verbal Learning and Verbal Behavior, 16:395-418.

Lee, C. L. and Estes, W. K. (1981). Item and order information in short-term memory: Evidence for multilevel
perturbation processes. Journal of Experimental Psychology: Human Learning and Memory, 7:149-169.

Lehman, J. F,, Laird, J., and Rosenbloom, P. (2006). A gentle introduction to Soar, an architecture for human
cognition: 2006 update. Technical report, University of Michigan.

Lewandowsky, S., Duncan, M., and Brown, G. D. A. (2004). Time does not cause forgetting in short-term
serial recall. Psychonomic Bulletin & Review, 11(5):771-790.

Lewandowsky, S. and Murdock, B. B. (1989). Memory for serial order. Psychological Review, 96:25-57.

Lewis, R. L. (1993). An architecturally-based theory of sentence comprehension. In Proceedings of the 15"
Annual Conference of the Cognitive Science Society, pages 108—113. Lawrence Erlbaum, Hillsdale, NJ.

Likhachev, M. and Arkin, R. C. (2001). Spatio-temporal case-based reasoning for behavioral selection. In
Proceedings of the 2001 IEEE International Conference on Robotics and Automation, pages 1627-1634.

Likhachev, M., Kaess, M., and Arkin, R. C. (2002). Learning behavioral parameterization using spatio-
temporal case-based reasoning. In Proceedings of the 2002 IEEE International Conference on Robotics
and Automation, pages 1282—1289.

Lison, P., Ehrler, C., and Kruijff, G.-J. M. (2010). Belief modeling for situation awareness in human-robot in-
teraction. Technical report, Language Technology Lab, German Research Centre for Artificial Intelligence,
Saarbriicken, Germany.

Luria, A. R. (1968). The Mind of a Mnemonist: A Little Book about a Vast Memory. Basic Books Inc., New
York, NY. translator Lynn Solotaroff.

215

Lustig, C., Matell, M. S., and Meck, W. H. (2005). Not ”just” a coincidence: Frontal-striatal interactions in
working memory and interval timing. Memory, 13(3/4):441-448.

MacKenzie, D. C., Arkin, R. C., and Cameron, J. M. (1997). Multiagent mission specification and execution.
Autonomous Robots, 4(1):29-52.

Magerko, B., Laird, J. E., Assanie, M., Kerfoot, A., and Stokes, D. (2004). Al characters and directors for
interactive computer games. In Proceedings of the 2004 Innovative Applications of Artificial Intelligence
Conference.

Manning, C. D. and Schiitze, H. (1999). Foundations of Statistical Natural Language Processing. The MIT
Press, Cambridge, MA.

Markovitch, S. and Scott, P. D. (1988). The role of forgetting in learning. In Proceedings of the 5" Interna-
tional Conference on Machine Learning, pages 459—465. Morgan Kaufmann, San Mateo, CA.

Markovitch, S. and Scott, P. D. (1989). Information filters and their implementation in the SYLLOG sys-
tem. In Proceedings of the 6" International Workshop on Machine Learning, pages 404—407. Morgan
Kaufmann.

Matari¢, M. J. (1992). Integration of representation into goal-driven behavior-based robots. IEEE Transac-
tions on Robotics and Automation, 8(3):304-311.

Matari¢, M. J. (2007). The Robotics Primer. The MIT Press, Cambridge, MA.

McCarthy, J. (1959). Programs with common sense. In Proceedings of the Teddington Conference on the
Mechanization of Thought Processes, pages 75-91. Her Majesty’s Stationary Office, London, UK.

McCarthy, J., Minsky, M., Sloman, A., Gong, L., Lau, T., Morgenstern, L., Mueller, E. T., Riecken, D.,
Singh, M., and Singh, P. (2002). An architecture of diversity for commonsense reasoning. IBM Systems
Journal, 41(3):530-539.

Melton, A. W. (1967). Repetition and retrieval from memory. Science, 158(3800):532.

Miller, C. S. and Laird, J. E. (1996). Accounting for graded performance within a discrete search framework.
Cognitive Science, 20:499-537.

Minsky, M. (1974). A framework for representing knowledge. Technical Report AIM-306, Massachusetts
Institute of Technology.

Minsky, M. (1986). The Society of Mind. Simon & Schuster, New York, NY.
Minsky, M. (2006). The Emotion Machine. Simon & Schuster, New York, NY.

Minsky, M., Singh, P, and Sloman, A. (2004). The St. Thomas common sense symposium: Designing
architectures for human-level intelligence. Al Magazine, 25(2):113-124.

Minsky, M. L. (1992). Future of Al technology. Toshiba Review, 47(7).

Mooney, R. (1989). The effect of rule use on the utility of explanation-based learning. In Proceedings of the
11™ International Joint Conference on Artificial Intelligence, pages 725—730, San Francisco, CA. Morgan
Kaufmann.

Moravec, H. (1990). The Stanford cart and the CMU rover. In Cox, I. J. and Wilfong, G. T., editors,
Autonomous Robot Vehicles, pages 407-441. Springer-Verlag, New York, NY.

Mower, E. K., Feil-Seifer, D. J., Matari¢, M. J., and Narayanan, S. (2007). Investigating implicit cues for
user state estimation in human-robot interaction using physiological measurements. In Proceedings of the
2007 IEEE International Workshop on Robot and Human Interactive Communication, pages 1125-1130.

Mueller, E. T. (2006). Commonsense Reasoning. Morgan Kaufman.

216

Mueller, S. T. (2002). The Roles of Cognitive Architecture and Recall Strategies in Performance of the
Immediate Serial Recall Task. PhD thesis, University of Michigan.

Mueller, S. T. and Krawitz, A. (2009). Reconsidering the two-second decay hypothesis in verbal working
memory. Journal of Mathematical Psychology, 53(1):14-25.

Murdock, B. B. (1982). A theory for the storage and retrieval of item and associative information. Psycho-
logical Review, 89(6):609-626.

Murphy, R. R., Casper, J., Micire, M., and Hyams, J. (2000). Mixed-initiative control of multiple hetero-
geneous robots for urban search and rescue. Technical Report CRASAR-TR2000-11, Center for Robot
Assisted Search & Rescue, University of Southern Florida.

Murphy, R. R., Pratt, K. S., and Burke, J. L. (2008). Crew roles and operational protocols for rotary-wing
micro-UAVs in close urban environments. In Proceedings of the 3 ACM/IEEE International Conference
on Human-Robot Interaction, pages 73—80.

Mutlu, B., Shiwa, T., Kanda, T., Ishiguro, H., and Hagita, N. (2009). Footing in human-robot conversa-
tions: How robots might shape participant roles using gaze cues. In Proceedings of the 4" ACM/IEEE
International Conference on Human-Robot Interaction, pages 61-68.

Nairne, J. S. (2002). Remembering over the short-term: The case against the standard model. Annual Review
of Psychology, 53:53-81.

Naveh, I. and Sun, R. (2006). Simulating a simple case of organizational decision making. In Cognition
and Multi-Agent Interaction: From Cognitive Modeling to Social Simulation, pages 124-150. Cambridge
University Press, New York, NY.

Neath, I. and Nairne, J. S. (1995). Word-length effects in immediate memory: Overwriting trace decay theory.
Psychonomic Bulletin and Review, 2:429-441.

Neisser, U. (1976). Cognition and Reality: Principles and Implications of Cognitive Psychology. W. H.
Freeman & Company, San Francisco, CA.

NetStumbler (2002). NetStumbler 0.4.0. http://www.stumbler.net/.

New, J., Cosmides, L., and Tooby, J. (2007). Category-specific attention for animals reflects ancestral pri-
orities, not expertise. Proceedings of the National Academy of Sceinces of the United States of America,
104(42):16598-16603.

New York Times News Service (2000). Study finds trends in incompetence. The Tennessean. Nashville, TN.

Nuxoll, A., Laird, J. E., and James, M. R. (2004). Comprehensive working memory activation in Soar. In
Proceedings of the 6™ International Conference on Cognitive Modeling, pages 226-230.

Nuxoll, A. M. and Laird, J. E. (2007). Extending cognitive architecture with episodic memory. In Proceedings
of the 22" Conference on Artificial Intelligence, pages 1560—1565.

Oberauer, K. (2006). Is the focus of attention in working memory expanded through practice? Journal of
Experimental Psychology, 32(2):197-214.

Okuno, Y., Kanda, T., Imai, M., Ishiguro, H., and Hagita, N. (2009). Providing route directions: Design
of robot’s utterance, gesture, timing. In Proceedings of the 4" ACM/IEEE International Conference on
Human-Robot Interaction, pages 53—60.

Page, M. P. A. and Norris, D. (1998). The primacy model: A new model of immediate serial recall. Psycho-
logical Review, 105(4):761-781.

Parasuraman, R., Sheridan, T. B., and Wickens, C. D. (2000). A model for types and levels of human
interaction with automation. /IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and
Humans, 30(3):286-297.

217

Pavlik, P. I. and Anderson, J. R. (2003). An ACT-R model of the spacing effect. In Detje, F., Dorner, D.,
and Schaub, H., editors, Proceedings of the 5" International Conference on Cognitive Modeling, pages
177-182. Universitits-Verlag Bamberg, Bamberg, Germany.

Pavlik Jr., P. I. and Anderson, J. R. (2005). Practice and forgetting effects on vocabulary memory: An
activation-based model of the spacing effect. Cognitive Science, 29:559-586.

Pew, R. W. (2000). The state of situation awareness measurement: Heading toward the next century. In
Endsley, M. R. and Garland, D., editors, Situation Awareness Analysis and Measurement, pages 33—47.
Lawrence Erlbaum Associates, Mahwah, NJ.

Raaijmakers, J. G. W. (2003). Spacing and repetition effects in human memory: Application of the SAM
model. Cognitive Science, 27:431-452.

Raphael, B. (1976). The Thinking Computer: Mind Inside Matter. W. H. Freeman and Company, San
Francisco, CA.

Regal, D. M., Rogers, W. H., and Boucek, G. P. (1988). Situational awareness in the commercial flight deck:
Definition, measurement, and enhancement. In Proceedings of the 7" Aerospace Behavioral Technology
Conference and Exposition, pages 65—69.

Reichel, K., Hochgeschwender, N., and Voos, H. (2008). OpCog: An industrial development approach for
cognitive agent systems in military UAV applications. In Berger, M., Burg, B., and Nishiyama, S., editors,
Proceedings of the 7" International Conference on Autonomous Agents and Multiagent Systems: Industry
and Applications Track, pages 97-100. INESC-ID, Lisbon, Portugal.

Reyes, J. C., Burgoa, E., Calafate, C. T., Cano, J.-C., and Manzoni, P. (2006). A manet autoconfiguration
system based on bluetooth technology. In Proceedings of the 3% International Symposium on Wireless
Communication Systems, pages 674—678, Valencia, Spain.

Richardson, M. and Domingos, P. (2006). Markov logic networks. Machine Learning, 62(1-2):107-136.

Riley, J. M. and Endsley, M. R. (2005). Situation awareness in HRI with collaborating remotely piloted
vehicles. In Proceedings of the Human Factors and Ergonomics Society 49" Annual Meeting, pages 407—
411.

Riskin, J. (2003). The defecating duck, or, the ambiguous origins of artificial life. Critical Inquiry, 29(4):599—
633.

Ritter, F. E. and Kim, J. W. (2006). Soar: Frequently asked questions list. http://acs.ist.psu.edu/soar-fag/soar-
faq.html.

Roediger III, H. L. (2008). Relativity of remembering: Why the laws of memory vanished. Annual Review
of Psychology, 59:225-254.

Rundus, D. J. (1971). Analysis of rehearsal processes in free recall. Journal of Experimental Psychology,
89:63-717.

Ryder, J. M., Weiland, M. Z., Szczepkowski, M. A., and Zachary, W. W. (1998). Cognitive engineering of
a new telephone operator workstation using COGNET. International Journal of Industrial Ergonomics,
22(6):417-429.

Ryder, J. M. and Zachary, W. (1991). Experimental validation of the attention switching component of the
COGNET framework. In Proceedings of the Human Factors Society 35" Annual Meeting, pages 72-76.

Salmon, P., Stanton, N., Walker, G., and Green, D. (2006). Situation awareness measurement: A review of
applicability for C4i environments. Applied Ergonomics, 37:225-238.

Sanford, A. J. and Garrod, S. C. (1981). Understanding Written Language: Explorations of Comprehension
Beyond the Sentence. John Wiley & Sons, Chichester, New York.

218

Sarter, N. B. and Woods, D. D. (1991). Situation awareness: A critical but ill-defined phenomenon. The
International Journal of Aviation Psychology, 1(1):45-57.

Scholtz, J., Young, J., Drury, J. L., and Yanco, H. A. (2004). Evaluation of human-robot interaction aware-
ness in search and rescue. In Proceedings of the 2004 IEEE International Conference on Robotics and
Automation, pages 2327-2332.

Scholtz, J. C., Antonishek, B., and Young, J. D. (2005). Implementation of a situation awareness assessment
tool for evaluation of human-robot interaction. IEEE Transactions on Systems, Man, and Cybernetics -
Part A: Systems and Humans, 35(4):450-459.

Schooler, L. J. and Hertwig, R. (2005). How forgetting aids heuristic inference. Psychological Review,
112(3):610-628.

Schoppers, M. (1987). Universal plans for reactive robots in unpredictable environments. In Proceedings of
the 10™ International Joint Conference on Artificial Intelligence, pages 1039-1046.

Schweickert, R. and Boruff, B. (1986). Short-term memory capacity: Magic number or magic spell? Journal
of Experimental Psychology, Learning, Memory, and Cognition, 12:419-425.

Seamster, T. L., Redding, R. E., Cannon, J. R., Ryder, J. M., and Purcell, J. A. (1993). Cognitive task analysis
of expertise in air traffic control. International Journal of Aviation Psychology, 3(4):257-283.

Sellner, B. P, Hiatt, L. M., Simmons, R., and Singh, S. (2006). Attaining situational awareness for sliding
autonomy. In Proceedings of the I*' Annual Conference on Human-Robot Interaction, pages 80-87.

Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of
the 1968 23"* ACM National Conference, pages 517-524.

Sheridan, T. B. and Verplank, W. (1978). Human and computer control of undersea teleoperators. Tech-
nical report, Man-Machine Systems Laboratory, Department of Mechanical Engineering, Massachusetts
Institute of Technology.

Shiffrin, R. M. and Cook, J. R. (1978). Short-term forgetting of item and order information. Journal of Verbal
Learning and Verbal Behavior, 17:189-218.

Sims, C. R. and Gray, W. D. (2004). Episodic versus semantic memory: An exploration of models of memory
decay in the serial attention paradigm. In Proceedings of the 6" International Conference on Cognitive
Modeling, pages 279-284.

Singh, P. (2005). EM-ONE: An Architecture for Reflective Commonsense Thinking. PhD thesis, Mas-
sachusetts Institute of Technology.

Singh, P. and Minsky, M. (2003). An architecture for combining ways to think. In Proceedings of the 2003
International Conference on Knowledge Intensive Multi-Agent Systems, pages 669-674.

Skaggs, E. B. (1933). A discussion on the temporal point of interpolation and degree of retroactive inhibition.
Journal of Comparative Psychology, 16(3):411-414.

Sloman, A. (2001). Beyond shallow models of emotion. Cognitive Processing, 2(1):177-198.

Sloman, A. (2003). Progress report on the cognition and affect project: Architectures, architecture-schemas,
and the new science of mind. Technical report, The University of Birmingham. Updated in 2004 and 2008.

Smart, P. (2005). Knowledge-intensive fusion for situational awareness: Requirements for knowledge-filtered
awareness. Technical Report DTC/WP270/Requirements, School of Electronics and Computer Science,
University of Southampton, Southampton, UK.

Smith, R., Self, M., and Cheeseman, P. (1990). Estimating uncertain spatial relationships in robotics. In
Autonomous Robot Vehicles, pages 167-193. Springer-Verlag, New York, NY.

219

Sofge, D., Perzanowski, D., Skubic, M., Bugajska, M., Trafton, J. G., Cassimatis, N., Brock, D., Adams, W.,
and Schultz, A. (2004). Cognitive tools for humanoid robots in space. In Proceedings of the 16" IFAC
Symposium on Automatic Control in Aerospace.

Sridharan, M., Hawes, N., Wyatt, J., Dearden, R., and Sloman, A. (2007). Planning information processing
and sensing actions. Technical Report COSY-TR-0706, School of Computer Science, The University of
Birmingham.

Stracuzzi, D. J., Li, N., Cleveland, G., and Langley, P. (2009). Representing and reasoning over time in a
unified cognitive architecture. In Proceedings of the 31™ Annual Meeting of the Cognitive Science Society,
pages 2986-2991, Amstrerdam, Netherlands.

Stubbs, K., Hinds, P. J., and Wettgreen, D. (2007). Autonomy and common ground in human robot interac-
tion: A field study. IEEE Intelligent Systems Magazine, 22(2):42-50.

Sultanik, E. A., Braude, 1., Thai, P., Lass, R. N., Nguyen, D. N., Kopena, J. B., Regli, W. C,, Lisse, S. A.,
Furtwangler, S. N., and Vayda, A. J. (2008). Human-robot collaboration for remote surveillance. In
Proceedings of the 23" AAAI Conference on Artificial Intelligence, pages 1886—1887.

Sun, R. (2002). Duality of the Mind: A Bottom Up Approach Toward Cognition. Lawrence Erlbaum Asso-
ciates, Mahwah, NJ.

Sun, R. (2003). A tutorial on CLARION 5.0. Technical report, Cognitive Science Department, Rensselaer
Polytechnic Institute.

Sun, R. (2006). The CLARION cognitive architecture: Extending cognitive modeling to social simulation.
In Sun, R., editor, Cognition and Multi-Agent Interaction. Cambridge University Press, Cambridge, UK;
New York, NY.

Sun, R., Merrill, E., and Peterson, T. (2001). From implicit skills to explicit knowledge: A bottom-up model
of skill learning. Cognitive Science, 25(2):203-244.

Sun, R. and Peterson, T. (1998). Autonomous learning of sequential tasks: Experiments and analyses. /IEEE
Transactions on Neural Networks, 9(6):1217-1234.

Sun, R., Zhang, X., and Mathews, R. (2006). Modeling meta-cognition in a cognitive architecture. Cognitive
Systems Research, 7(4):327-338.

Sun, R., Zhang, X., and Mathews, R. (2009). Capturing human data in a letter counting task: Accessibility
and action-centeredness in representing cognitive skills. Neural Networks, 22(1):15-29.

Taatgen, N. A., Lebiere, C., and Anderson, J. R. (2006). Modeling paradigms in ACT-R. In Sun, R., editor,
Cognition and Multi-Agent Interaction: From Cognitive Modeling to Social Simulation, pages 29-52.
Cambridge University Press, Cambridge, UK; New York, NY.

Tambe, M., Johnson, W. L., Jones, R. M., Koss, F., Laird, J. E., Rosenbloom, P. S., and Schwamb, K. (1995).
Intelligent agents for interactive simulation environments. Al Magazine, 16:15-39.

The History of Computing Project (2007). Timeline of robotics. www.thocp.net. Downloaded April 6 2009.

Thorndyke, P. W. (1977). Cognitive structures in comprehension and memory of narrative discourse. Cogni-
tive Psychology, 9(1):77-110.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics. The MIT Press, Cambridge, MA.

Thrun, S., Montemerlo, M., Koller, D., Wegbreit, B., Nieto, J., and Nebot, E. (2004). FastSLAM: An efficient
solution to the simultaneous localization and mapping problem with unknown data association. Journal of
Machine Learning Research, 4(3):380-407.

220

Trafton, J. G., Bugajska, M. D., Fransen, B. R., and Ratwani, R. M. (2008). Integrating vision and audition
within a cognitive architecture to track conversations. In Proceedings of the 3™ ACM/IEEE International
Conference on Human Robot Interaction, pages 201-208.

Tulving, E. (1984). Précis of elements of episodic memory. The Behavioral and Brain Sciences, 7:223-268.

Tulving, E. (1990). Memory systems. In Eysenck, M. W., editor, The Blackwell Dictionary of Cognitive
Psychology, pages 222-223. Blackwell Reference, Oxford, UK; Cambridge, MA.

Uhlarik, J. and Comerford, D. A. (2002). A review of situation awareness literature relevant to pilot surveil-
lance functions. Technical Report DOT/FAA/AM-02/3, Office of Aerospace Medicine, Federal Aviation
Administration, U.S. Department of Transportation, Washington, DC.

Vaucanson, J. (1742[1738]/1979). Letter to the abbé desfontaines. In Le Mécanisme du fluteur automate,
page 21. Buren, The Netherlands. translator J. T. Desaguliers.

Venturino, M., Hamilton, W. L., and Dvorchack, S. R. (1990). Performance-based measures of merit for
tactical situation awareness. In Situation Awareness in Aerospace Operations, pages 4/1-4/5. NATO-
Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine, France.

Weiss, M. D., Peak, J., and Schwengler, T. (2008). A statistical radio range model for a robot manet in a
subterranean mine. IEEE Transactions on Vehicular Technology, 57(5):2658-2666.

Werger, B. B. (1999). Cooperation without deliberation: A minimal behavior-based approach to multi-robot
teams. Artificial Intelligence, 110:293-320.

Wickelgren, W. A. (1974). Single-trace fragility theory of memory dynamics. Memory & Cognition,
2(4):775-780.

Wickens, C. D. (2002). Situation awareness and workload in aviation. Current Directions in Psychological
Science, 11(4):128-133.

Wickens, C. D. and Hollands, J. G. (2000). Engineering Psychology and Human Performance. Prentice Hall,
Upper Saddle River, NJ, 3 edition.

Wickens, C. D., Lee, J. D, Liu, Y. D., and Gordon-Becker, S. E. (2004). An Introduction to Human Factors
Engineering. Prentice Hall, Upper Saddle River, NJ, 2nd edition.

Wikipedia (2009). Robot. www.wikipedia.com. Downloaded April 6, 2009.

Wilson, N. R, Sun, R., and Mathews, R. C. (2009). A motivationally-based simulation of performance
degradation under pressure. Neural Networks, 22(5-6):502-508.

Wintermute, S., Xu, J., and Laird, J. E. (2007). SORTS: A human-level approach to real-time strategy ai.
In Proceedings of the 3" Artificial Intelligence and Interactive Digital Entertainment Conference, pages
55-60.

Wixted, J. T. (2004). The psychology and neuroscience of forgetting. Annual Review of Psychology, 55:235—
269.

Wixted, J. T. and Carpenter, S. K. (2007). The Wickelgren power law and the Ebbinghaus savings function.
Psychological Review, 18(2):133—-134.

Yamaoka, F., Kanda, T., Ishiguro, H., and Hagita, N. (2009). Developing a model of robot behavior to identify
and appropriately respond to implicit attention-shifting. In Proceedings of the 4" ACM/IEEE International
Conference on Human-Robot Interaction, pages 133—140.

Yanco, H. A. and Drury, J. (2004). Classifying human-robot interaction: An updated taxonomy. In Pro-
ceedings of the 2004 IEEE International Conference on Systems, Man, and Cybernetics, volume 3, pages
2841-2846.

221

Yoo, J. and Fisher, D. (1991). Concept formation over explanations and problem-solving experience. In
Proceedings of the 12" International Joint Conference on Artificial Intelligence, pages 630-636, Sydney,
Australia. Morgan Kaufmann.

Zachary, W. and Mentec, J.-C. L. (2000). Incorporating metacognitive capabilities in synthetic cognition.
In Proceedings of the 9" Conference on Computer Generated Forces and Behavior Representation, pages
513-521.

Zachary, W., Ryder, J., Ross, L., and Weiland, M. (1992). Intelligent human-computer interaction in real-
time, multi-tasking process control and monitoring systems. In Helander, M. and Nagamachi, M., editors,
Human Factors in Design for Manufacturability, pages 377-402. Taylor and Francis, Oxford, UK.

Zachary, W., Ryder, J., Stokes, J., Glenn, F., Mentec, J.-C. L., and Santarelli, T. (2004). Developing concept
learning capabilities in the COGNET/iGEN integrative architecture and associated agent-based modeling
and behavioral representation (AMBR) air traffic control (ATC) model. Technical Report AFRL-HE-WP-
TR-2005-0103, Air Force Research Laboratory, Wright-Patterson AFB, OH.

Zachary, W., Ryder, J., Stokes, J., Glenn, F., Mentec, J.-C. L., and Santarelli, T. (2005). A COGNET/i-
GEN cognitive model that mimics human performance and learning in a simulated work environment. In
Gluck, K. A. and Pew, R. W, editors, Modeling Human Behavior with Integrated Cognitive Architectures,
chapter 5, pages 115-176. Lawrence Erlbaum Associates.

Zachary, W. W., Ryder, J. M., and Hicinbothom, J. H. (1998). Cognitive task analysis and modeling of
decision making in complex environments. In Cannon-Bowers, J. A. and Salas, E., editors, Decision
making under stress: Implications for training and simulation, pages 315-344. American Psychological
Association, Washington, DC.

Zechmeister, E. B. and Shaughnessy, J. J. (1980). When you know that you know and when you think that
you know but you don’t. Bulletin of the Psychonomic Society, 15(1):41-44.

Zunt, D. (2004). Who did actually invent the word “robot” and what does it mean?
http://capek.misto.cz/english/robot.html. Downloaded March 31 2009.

222

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMES
	I Problem Statement
	II Literature Review
	II.1 History of Robotics
	II.2 Situational Awareness
	II.2.1 Situational Awareness Components
	II.2.1.1 Attention
	II.2.1.2 Explicit Focus
	II.2.1.3 Short and Long-Term Memory
	II.2.1.4 Failures
	II.2.1.5 Goals, Plans, and Their Evolution

	II.2.2 Robotic Situational Awareness
	II.2.2.1 Improving Remote Operator Situational Awareness
	II.2.2.2 Improving Robotic Situational Awareness

	II.3 Cognitive Architectures
	II.3.1 The Minsky-Sloman Architecture
	II.3.2 CoSy Architecture Schema
	II.3.3 Polyscheme
	II.3.4 ICARUS
	II.3.5 ACT-R
	II.3.6 Soar
	II.3.7 CLARION
	II.3.8 COGNET

	II.4 Forgetting
	II.4.1 Time-based Decay
	II.4.2 Similarity-based Interference
	II.4.2.1 Proactive Interference
	II.4.2.2 Retroactive Interference

	II.4.3 Cognitive Models Incorporating Forgetting
	II.4.3.1 The Trace Threshold Model
	II.4.3.2 SIMPLE
	II.4.3.3 The Architecture of Dosher and Ma (1998) and Dosher (1999)
	II.4.3.4 Robotic Designs Employing Forgetting

	III Detailed Presentation of Approach to Solving Problem
	III.1 Forgetting
	III.2 Improving Situation Awareness with Forgetting
	III.3 ActSimple
	III.3.1 Time-Based Decay
	III.3.2 Encoding Interference
	III.3.3 Mental Exertion
	III.3.4 Output Interference
	III.3.5 Activation
	III.3.6 Retrieval Time

	IV Test Domain
	IV.1 Algorithms
	IV.2 Environment
	IV.3 Interpolation Methods
	IV.4 Experimental Design
	IV.5 Summary

	V Optimization
	V.1 Optimization
	V.1.1 Optimizing the Queue-Based Forgetting Algorithms
	V.1.2 Optimizing the Non-Queue-Based Forgetting Algorithms
	V.1.3 Optimization Results
	V.1.4 Summary

	V.2 Alternate Existing Robotic Algorithms
	V.3 Alternate Basestation Configurations and Paths
	V.3.1 Description of Paths 21 - 64
	V.3.2 Forgetting Performance with Paths 21 - 64
	V.3.3 Summary

	V.4 Summary

	VI Real World Testing
	VI.1 Experimental Design
	VI.2 Real World Results
	VI.3 Discussion

	VII Performance with Other Noise Distributions
	VII.1 New Noise Distributions
	VII.2 The results
	VII.3 Summary

	VIII Evaluating the Performance of Forgetting at Each Point Along the Paths
	VIII.1 Performance Along Individual Paths
	VIII.1.1 Performance of Forgetting when Applied to Path 2
	VIII.1.2 Performance of Forgetting when Applied to Path 4
	VIII.1.3 One Cycle, Eight Basestation Paths
	VIII.1.4 Static, Three Cycle Paths
	VIII.1.5 Dynamic, Non-Random Paths
	VIII.1.6 Randomly Generated Paths

	VIII.2 Along the Path Performance Metrics
	VIII.3 Summary

	IX Pavlik and Anderson Modification
	IX.1 Optimizing the Pavlik and Anderson Modification
	IX.2 Effects of the Pavlik and Anderson Modification
	IX.3 Original Twenty Paths
	IX.4 Randomly Generated paths
	IX.5 Summary

	X Summary of Contributions and Future Directions
	X.1 Review
	X.2 Summary of Contributions
	X.3 Future Directions

	A Supporting Media for Chapter VIII
	A.1 Additional Along the Path Performance Graphs
	A.2 Along the Path Error and Recall Maps

	B Additional Components of Situational Awareness
	B.1 System Stress
	B.2 Ideal, Achievable, and Actual Situational Awareness
	B.3 Vigilance
	B.4 Uncertainty and Confidence
	B.5 Bad Situational Awareness vs. Bad Decision Making
	B.6 Biases and Expectations
	B.6.1 Schemas and Mental Models
	B.6.2 Framing and Order
	B.6.3 Observation Quality and Availability

	B.7 Workload
	B.8 Data Driven and Goal Driven Behavior

	 BIBLIOGRAPHY

