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CHAPTER I 

 

INTRODUCTION 

 

Introduction 

This dissertation covers the application of psychophysiological analysis to 

children with Autism Spectrum Disorders (ASD) during human-computer interaction 

(HCI) and human-robot interaction (HRI). Investigation into technology-assisted 

intervention for children with ASD has gained momentum in recent years. Clinicians1 

involved in interventions must overcome the communication impairments generally 

exhibited by children with ASD by adeptly inferring the affective cues of the children to 

adjust the intervention accordingly. Similarly, an intelligent system, such as a computer 

or robot, must also be able to understand the affective needs of these children - an ability 

that the current technology-assisted ASD intervention systems lack - to achieve effective 

interaction that addresses the role of affective states in HCI, HRI, and intervention 

practice. Affective cues are indicators, external or internal, of the manifestations of 

emotions and feelings experienced in a given environment. This research utilizes and 

merges recent technological advances in the areas of (i) robotics, (ii) virtual reality (VR), 

(iii) physiological signal processing, (iv) machine learning techniques, and (v) adaptive 

response technology in an attempt to create a tool for understanding various physiological 

aspects of social communication in children with ASD. The individual, familial, and 

                                                 

1The terms "clinician," "clinical observer," and "therapist" are used interchangeably in this dissertation to 

mean an expert with skill in making judgments, such as rating affective states, about the meaning of 

observable behaviors from individuals with autism. 
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societal impact associated with the presumed core social impairments of children with 

ASD is enormous. Thus, there is a need to better understand the underlying mechanisms 

and processes associated with these deficits as well as develop tools that can be used to 

create optimal intervention strategies. 

Autism is a neurodevelopmental disorder characterized by core deficits in social 

interaction, social communication, and imagination (American Psychiatric Association, 

2000). These characteristics often vary significantly in combination and severity, within 

and across individuals, as well as over time. Research suggests prevalence rates as high 

as approximately 1 in 150 for the broad autism spectrum (CDC, 2007). While, at present, 

there is no single universally accepted intervention, treatment, or known cure for ASD 

(NRC, 2001; Sherer and Schreibman, 2005); there is an increasing consensus that 

intensive behavioral and educational intervention programs can significantly improve 

long term outcomes for individuals and their families (Rogers, 1998). 

In response to this need, a growing number of studies have been investigating the 

application of advanced interactive technologies to address core deficits related to autism, 

namely computer technology (Bernard-Opitz et al., 2001; Moore et al., 2000; 

Swettenham, 1996), virtual reality environments (Parsons et al., 2004; Strickland et al., 

1996; Tartaro and Cassell, 2007), and robotic systems (Dautenhahn and Werry, 2004; 

Kozima et al., 2009; Michaud and Theberge-Turmel, 2002; Pioggia et al., 2005; 

Scassellati, 2005). Computer- and VR-based intervention may provide a simplified but 

exploratory interaction environment for children with ASD (Moore et al., 2000; Parsons 

et al., 2004; Strickland et al., 1996). Robots have been used to interact with children with 

ASD in common imitation tasks and can serve as social mediators to facilitate interaction 
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with other children and caregivers (Dautenhahn and Werry, 2004; Kozima et al., 2009). 

In the rest of the dissertation, the term "computer" is used to imply both computer- and 

robot-assisted ASD interventions.  

Even though there is increasing research in technology-assisted autism 

intervention, there is a paucity of published studies that specifically address how to 

automatically detect and respond to affective cues of children with ASD. Such ability 

could be critical given the importance of human affective information in HCI (Picard, 

1997; Prendinger et al., 2005) and HRI (Fong et al., 2003) and the significant impacts of 

the affective factors of children with ASD on the intervention practice (Ernsperger, 2003; 

Seip, 1996; Wieder and Greenspan, 2005). A computer that can detect the affective states 

of a child with ASD and interact with him/her based on such perception could have a 

wide range of potential impacts. Interesting activities likely to retain the child’s attention 

could be chosen when a low level of engagement is detected. Complex social stimuli, 

sophisticated interactions, and unpredictable situations could be gradually, but 

automatically, introduced when the computer recognizes that the child is comfortable or 

not anxious at a certain level of interaction dynamics for a reasonably long period of 

time. A clinician could use the history of the child’s affective information to analyze the 

effects of the intervention approach. With the record of the activities and the consequent 

emotional changes in a child, a computer could learn individual preferences and affective 

characteristics over time and thus could alter the manner in which it responds to the needs 

of different children. The research in this dissertation assesses what effects there are on 

physiological response for children with ASD during performance-oriented and socially-

oriented tasks. The ability to detect the physiological processes that are a part of 



 4 

impairments in social communication may prove an important tool for understanding the 

physiological mechanisms that underlie the presumed core impairments associated with 

ASD. 

 

Background 

 

Physiology for Affect Recognition of Children with ASD 

There are several modalities such as facial expression (Bartlett et al., 2003), vocal 

intonation (Lee and Narayanan, 2005), gestures and postures (Asha et al., 2005; 

Kleinsmith et al., 2005), and physiology (Kulic and Croft, 2007; Mandryk et al., 2006; 

Nasoz et al., 2004; Rani et al., 2004) that can be utilized to evaluate the affective states of 

individuals interacting with computer. This work evaluates affective states based on 

physiological data for several reasons. Children with ASD often have communicative 

impairments (both nonverbal and verbal), particularly regarding expression of affective 

states (American Psychiatric Association, 2000; Green et al., 2002; Schultz, 2005). These 

vulnerabilities place limits on computerized affective modeling based on traditional 

conversational and observational methodologies. For example, video has been used to 

teach children with ASD to recognize facial expressions and emotions of others (Stokes, 

2000), but no published studies were found that used visual recognition through video to 

autonomously determine the affective states of people with ASD. A facial recognition 

algorithm could be designed to detect certain expressions but would have to 

accommodate when expressions are abnormal (e.g., smiling under mild pain, etc.) or lack 

variability (Schultz, 2005). Physiological signals, however, are continuously available 



 5 

and are not necessarily directly impacted by these difficulties (Ben Shalom et al., 2006; 

Groden et al., 2005; Toichi and Kamio, 2003). As such, physiological modeling may 

represent a methodology for gathering rich data despite the potential communicative 

impairments of children with ASD. In addition, physiological data may offer an avenue 

for recognizing aspects of affect that may be less obvious for humans but more suitable 

for computers by using signal processing and pattern recognition tools. Furthermore, 

there is evidence that the transition from one affective state to another state is 

accompanied by dynamic shifts in indicators of Autonomic Nervous System (ANS) 

activity (Bradley, 2000). More than one physiological signal, judged as a favorable 

approach (Bethel et al., 2007), is examined in this research, and the set of signals consists 

of various cardiovascular, electrodermal, electromyographic, and skin temperature 

signals, all of which have been extensively investigated in psychophysiology literature 

(Bradley, 2000).  

One of the prime challenges of this work is attaining reliable subjective reports. 

There have been reports that adolescents could be better sources of information than 

adults when it comes to measuring some psychiatric symptoms (Cantwell et al., 1997), 

but researchers are generally reluctant to trust the responses of adolescents on self-reports 

(Barkley, 1998). One should be especially wary of the dependability of self-reports from 

children with ASD, who may have deficits in processing (i.e., identifying and describing) 

their own emotions (Hill et al., 2004). While there have been some criticisms on the use 

of subjective report (i.e., self-assessment or the reports collected from observers) and its 

effect on possibly forcing the determination of emotions, the subjective report is by and 

large regarded as an effective way to evaluate affective responses. Due to the unresolved 
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debate on the definition of emotion (e.g., objective entities or socially constructed labels), 

researchers in affective computing often face difficulties obtaining the ground truth to 

label the natural emotion data accordingly. As suggested by Cowie et al. (2001) and 

Pantic and Rothkrantz (2003), the immediate implication of such a controversy is that 

pragmatic choices (e.g., application and user-profiled choices) must be made to develop 

an automatic affect recognizer. As a result, subjective report is widely used for affective 

modeling and endowing a computer with the recognition abilities similar to those of the 

reporters (Picard, 1997; Silva et al., 2006).  

An important question when estimating human affective response is how to 

operationalize the affective state. Although much existing research on affective modeling 

categorizes physiological signal data into "basic emotions," there is no consensus on a set 

of basic emotions among the researchers (Cowie et al., 2001). This fact implies that 

practical choices are required to select target affective states for a given application. 

Anxiety, engagement, and enjoyment/liking are chosen as the target affective states in 

this dissertation research. Anxiety is chosen for two primary reasons. First, anxiety plays 

an important role in various human-machine interaction tasks that can be related to task 

performance (Brown et al., 1997). Second, anxiety frequently co-occurs with ASD and 

plays an important role in the behavior difficulties of children with autism (Gillott et al., 

2001). Engagement, defined as "sustained attention to an activity or person" (NRC, 

2001), has been regarded as one of the key factors for children with ASD to make 

substantial gains in academic, communication, and social domains (Ruble and Robson, 

2006). With "playful" activities during the intervention, the liking of the children (i.e., the 

enjoyment they experience when interacting with the computer) may create urges to 
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explore and allow prolonged interaction for the children with ASD, who are susceptible 

to being withdrawn (Dautenhahn and Werry, 2004; Papert, 1993). 

Literature in the human factors and psychophysiology fields provide a rich history 

in support of physiology methodologies for studying stress (Groden et al., 2005; Zhai et 

al., 2005), engagement (Pecchinenda and Smith, 1996), operator workload (Kramer et al., 

1987), mental effort (Vicente et al., 1987), and other similar mental states based on 

physiological measures such as those derived from electromyogram (EMG), galvanic 

skin response (GSR; i.e., skin conductance), heart rate variability (HRV), and blink rates. 

Meehan et al. (2005) reported that changes in physiological activity are evoked by 

different amounts of presence in stressful VR environments. Prendinger et al. (2005) 

demonstrated that the measurement of GSR and EMG can be used to discriminate a 

user’s instantaneous change in levels of anxiety due to sympathetic vs. unconcerned 

reactions from a life-like virtual teacher. In general, it is expected that higher 

physiological activity levels can be associated with greater stress levels (Smith, 1989). 

Therefore, developing technologies for exploration of physiological signals and the target 

affective states of anxiety, engagement, and enjoyment/liking that may be associated with 

core social deficits for children with ASD is both scientifically valid and technologically 

feasible. 

 

Technology in the Treatment of ASD 

Interventions often focus on social communication, including social-problem 

solving and social skills training, so that participants can gain experience and exposure to 

various situations representative of everyday living. The ultimate goal of such 
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interventions is for some generalization of these skills to carry over into real-life 

situations. A growing number of studies have been exploring the application of 

interactive technologies for future use in interventions to address the social deficits of 

children with ASD. Initial results indicate that such technologies hold promise as a 

potential alternative intervention approach with broad accessibility. Various software 

packages and VR environments have been developed and applied to address specific 

deficits associated with autism, e.g., understanding of false belief (Swettenham, 1996), 

attention (Trepagnier et al., 2006), social problem-solving (Bernard-Opitz et al., 2001), 

and social conventions (Parsons et al., 2005). Research on applying robotics to ASD 

intervention has suggested that robots can allow simplified but embodied social 

interaction that is less intimidating or confusing for children with ASD (Robins et al., 

2005). By employing HCI and HRI technologies, interactive intervention tools can 

partially automate the time-consuming, routine behavioral intervention sessions and may 

allow intensive intervention to be conducted at home (Dautenhahn and Werry, 2004). For 

the purpose of using affective computing tools, computers or robots could be the mode of 

technology for assisted ASD interventions. 

Dautenhahn and colleagues have explored how a robot can become a playmate 

that might serve a therapeutic role for children with autism in the Aurora project. 

Dautenhahn et al. (2003) emphasize the importance of robot adaptability in autism 

rehabilitation. Research showed that children with ASD are engaged more with an 

autonomous robot in the "reactive" mode than with an inanimate toy or a robot showing 

rigid, repetitive, non-interactive behavior (Dautenhahn and Werry, 2004; Robins et al., 

2004). Michaud and Theberge-Turmel (2002) investigated the impact of robot design on 
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the interactions with children with ASD and pointed out that systems need to be versatile 

enough to adapt to the varying needs of different children. Pioggia et al. (2005) 

developed an interactive life-like facial display system for enhancing emotion recognition 

in people with ASD. Robotic technologies pose the advantage of furnishing robust 

systems that can support multimodal interaction and provide a repeatable, standardized 

stimulus while quantitatively recording and monitoring the performance progress of the 

children with ASD to facilitate autism intervention assessment and diagnosis (Scassellati, 

2005). 

There are numerous reasons why a VR-based intervention system may be 

particularly relevant for children with ASD. The strength of VR technology for ASD 

intervention includes malleability, controllability, reduced sensory stimuli, individualized 

approach, safety, and a reduction of human interaction during initial skill training 

(Strickland, 1997). VR does not necessarily include direct human-to-human interaction, 

which may work well for an initial intervention to remove the difficulties common in 

ASD related to mere human interaction that is part of a typical intervention setting 

involving a child and a clinician (Chen and Bernard-Opitz, 1993; Tartaro and Cassell, 

2007). However, VR should not be considered an isolating agent, because dyadic 

communication accomplished between a child and a VR environment can lead into triadic 

communication including a clinician, caregiver, or peer and in due course potentially 

accomplish the intervention goals of developing social communication skills between the 

child with ASD and another person (Bernard-Opitz et al., 2001). Furthermore, the main 

sensory output of VR is auditory and visual, which may represent a reduction of 

information from a real-world setting but also represents a full description of a setting 
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without need for imagined components (Sherman and Craig, 2003; Strickland, 1997). 

Individuals with ASD can improve their learning skills related to a situation if the 

proposed setting can be manifested in a physical or visual manner (Kerr and Durkin, 

2004). Since VR mimics real environments in terms of imagery and contexts, it may 

allow for efficient generalization of skills from the VR environment to the real world 

(Cromby et al., 1996). However, since limited social insight and social cognition are 

vulnerabilities that are often part of the core deficits associated with ASD, individuals 

may lack the skills to envision abstract concepts or changes to situations on their own. 

Virtual environments can easily change the attributes of, add, or remove objects in ways 

that may not be possible in a real-world setting but could be valuable to teach abstract 

concepts. Therefore, VR can offer the benefit of representing abstract concepts through 

visual means (e.g., thought bubbles with text descriptions of a virtual character's 

thoughts) and seamlessly allows for changes to the environment (e.g., changing the color 

of a ball or making a table disappear) that may be difficult or even impossible to 

accomplish in a real-world setting (Sherman and Craig, 2003; Strickland, 1997). 

Furthermore, the spectrum nature of autism means an individual approach is appropriate, 

and computers can accommodate individualized treatment (Strickland, 1997). The highly 

versatile VR environment can illustrate scenarios which can be changed to accommodate 

various situations that may not be feasible in a given therapeutic setting because of space 

limitations, resource deficits, safety concerns, etc. (Parsons and Mitchell, 2002). 

Therefore, VR represents a medium well-suited for creating interactive intervention 

paradigms for skill training in the core areas of impairment for children with ASD (i.e., 

social interaction, social communication, and imagination). However, to date the 



 11 

capability of VR technology has not been fully explored to examine the factors that lead 

to difficulties in impairments such as social communication, which could be critical in 

designing an efficient intervention plan.     

Consensus statements from both the American Academy of Pediatrics (Myers et 

al., 2007) and the National Resource Council (NRC, 2001) underscore that effective 

intervention for children with ASD includes: provision of intensive intervention, 

individual instruction tailored to the qualities of the child, promotion of a generalization 

of skills, and incorporation of a high degree of structure/organization. Despite the urgent 

need and societal import of intensive treatment (Rutter, 2006), appropriate intervention 

resources for children with ASD and their families are often difficult to access and 

extremely costly when accessible (Jacobson et al., 1998; Sharpe and Baker, 2007; 

Tarkan, 2002). Therefore, an important direction for research on ASD is the identification 

and development of technological tools that can make application of effective intensive 

treatment more readily accessible and cost effective (Parsons and Mitchell, 2002; Rogers, 

2000). VR has also shown the capacity to ease the burden, both time and effort, of trained 

clinicians in an intervention process as well as the potential to allow untrained personnel 

(e.g., parents or peers) to aid a participant in the intervention (Standen and Brown, 2005). 

As such, the future creation of a VR-assisted affect-sensitive tool for autism intervention 

could meet all of the core components of effective intervention, while at the same time 

increasing the ability of the intervention provider to systematically control and promote 

intervention related skills.  

Affective cues are insights into the emotions and behaviors of children with ASD. 

The ability to utilize the power of these cues may permit a smooth, natural, and more 
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productive interaction process (Gilleade et al., 2005; Kapoor et al., 2001; Picard, 1997; 

Prendinger et al., 2005), especially considering the core social and communicative 

vulnerabilities that limit individuals with ASD to accurately self-identify affective 

experiences (Hill et al., 2004). Common in autism intervention, clinicians who work with 

children with ASD intensively monitor affective cues of the children in order to make 

appropriate decisions about adaptations to their intervention and reinforcement strategies. 

For example, "likes and dislikes chart" is recommended to record the children’s preferred 

activities and/or sensory stimuli during interventions that could be used as reinforcers 

and/or "alternative behaviors" (Seip, 1996). Children with autism are particularly 

vulnerable to anxiety and intolerant of feelings of frustration, which requires a clinician 

to plan tasks at an appropriate level of difficulty (Ernsperger, 2003). The engagement of 

children with ASD is the ground basis for the "floor-time therapy" to help them develop 

relationships and improve their social skills (Wieder and Greenspan, 2005). Given the 

importance of affective cues in ASD intervention practice (Ernsperger, 2003; Seip, 1996; 

Wieder and Greenspan, 2005), using affective information as a means of implicit and 

bidirectional communication may be critical for allowing a computer to respond to a 

child's affective states. The design of affect-sensitive interaction, an area known as 

affective computing, is an increasingly important discipline within the HCI and HRI 

communities (Picard, 1997). However, to date little work has been done to explore this 

approach for technology-assisted intervention of individuals with ASD. Furthermore, no 

existing technology specifically addresses how to autonomously detect and flexibly 

respond to affective cues of children with ASD within an intervention paradigm 

(Bernard-Opitz et al., 2001; Dautenhahn and Werry, 2004; Kozima et al., 2009; Michaud 
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and Theberge-Turmel, 2002; Mitchell et al., 2007; Parsons et al., 2005; Pioggia et al., 

2005; Scassellati. 2005; Strickland, 1997; Swettenham, 1996; Tartaro and Cassell, 2007; 

Trepagnier et al., 2006). The primary contribution of this dissertation is to address this 

deficiency. The research develops HCI technologies capable of eliciting affective 

changes in individuals with ASD. We investigate how to augment HRI to be used in 

affect-sensitive interaction by endowing the technology with the ability to recognize and 

flexibly respond to the affective states of a child with ASD based on his/her physiological 

responses. The research also assesses the efficacy of measuring affect in VR. 

 

Summary 

This dissertation is presented as follows. Chapter II demonstrates the feasibility of 

affect modeling for children with ASD using proof-of-concept performance-based tasks 

on a computer. Chapter III builds on results from Chapter II by applying the affective 

models in an online investigation of affect recognition and affect-sensitive adaptation 

during interactions between children with ASD and a robot. Since social communication 

is one of the core deficits for children with ASD, Chapter IV represents a shift from 

performance-based tasks to socially-oriented tasks. A social interaction system is 

developed using virtual reality environments. Experiments with two groups of 

participants engaging with the social interaction system are presented in Chapter V. 

Physiological signal detection and VR technology are combined to explore realistic social 

situations within the VR environment that can be used to understand the physiological 

mechanisms that underlie  the presumed core social impairments  associated  with  ASD.   
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Conclusions and an overview of the contributions of this work are covered in Chapter VI 

along with a synopsis of future work.   
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CHAPTER II 

 

PHYSIOLOGY-BASED AFFECTIVE MODELING OF CHILDREN WITH 

AUTISM SPECTRUM DISORDERS 

 

Introduction 

The primary objective of this chapter is to investigate the feasibility of affective 

modeling for children with ASD via a physiology-based affect recognition technique. 

There are several challenges that need to be addressed to develop a robust affect 

recognizer for children with ASD (e.g., obtaining reliable subjective reports on affective 

states, developing quantitative models for affect recognition). As such, there is a dearth of 

literature on quantitative modeling results of affect recognition of children with ASD 

(e.g., affective model with reliable prediction capability). Several researchers in the 

human–machine interaction community have focused on physiology-based affect-

recognition for typical adults. Picard et al. (2001) have employed a combination of 

Sequential Floating Forward Search and Fisher Projection methods to classify eight 

emotions with 81% accuracy. K-Nearest Neighbors (KNN), Discriminant Function 

Analysis, and Marquardt Backpropagation algorithms were applied to differentiate 

among six emotions by Nasoz et al. (2004), and the correct classification accuracies – 

71%, 74%, and 83%, respectively – were achieved for the three algorithms. Rani et al. 

(2006) compared several machine learning algorithms, namely, KNN, Bayesian Network, 

Support Vector Machines (SVM), and Regression Tree for determining the intensity of 

the affective states, and the best prediction accuracy rate 85.8% was achieved using 

SVM. The results in this chapter demonstrate for the first time that reliable affective 
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models can be developed for children with ASD based on their physiological signals 

while they play interactive computer games. 

Children with ASD are recommended to undergo at least 25 hours-per-week of 

year-round intensive autism intervention (i.e., one-on-one therapy with a trained 

therapist) outside of school and extracurricular activities (NRC, 2001; Tarkan, 2002). The 

developed affective model can be used in the computer-assisted autism interventions to 

detect the children's affective states on-line, move them toward the intervention goals in 

an affective manner, and make the treatment more accessible (e.g., possibly allowing 

intensive intervention to be conducted at home). The novelty of the presented affective 

model is that it is individual-specific, and it consists of an array of recognizers, each of 

which determines the intensity (e.g., high/low level) of one target affective state for each 

individual. An affect recognizer for children with ASD may need to be individual-

specific to accommodate the differences encountered in emotional expression and the 

spectrum nature of autism (American Psychiatric Association, 2000). Therefore, the 

model takes into account evidence that the affective state could be an aggregate of 

various affective categories at different arousal levels (Vansteelandt et al., 2005) and that 

within a given context different individuals express the same emotion with different 

characteristic response patterns (i.e., phenomenon of person stereotypy) (Lacey and 

Lacey, 1958). Even though physiology has been successfully employed to build affect 

recognizers for typical individuals in several research groups (Kulic and Croft, 2007; 

Mandryk and Atkins, 2007; Picard et al., 2001; Rani et al., 2006), the studies of the 

correlation of the physiological signals and the affective states of people with ASD are 
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relatively few (Ben Shalom et al., 2006; Groden et al., 2005) and no quantitative 

modeling results have been reported.  

This work included an autism therapist who has five years of experience in 

therapeutic and diagnostic interventions for children with ASD and each participant’s 

parent. The therapist and the parent observed the experiments and provided subjective 

reports based on their expertise/experience in inferring the presumable underlying 

affective states from the observable behaviors of a child with ASD. The therapist and the 

parent did not use the participant's physiological signals to recognize affective states, but 

these signals were recorded for eventual affective modeling (i.e., a mapping between the 

objective physiological signals and the subjective reports). In this study, the therapist’s 

reports on perceived intensity of the affective states of a participating child and the 

extracted physiological indices are employed to build therapist-like affect recognizers. In 

autism interventions, a therapist continuously monitors the affective cues of children with 

ASD based on behavioral observations. In this work, the “therapist-like affect 

recognizers” were developed to emulate the therapist's affect-recognition capability, 

however, based on the children’s physiological signals. With the incorporation of the 

therapist’s reports, the recognizers will be capable of autonomously delivering similar 

assessments of the affective states of the children with ASD in real time even when the 

therapist is not available. Ultimately, integrating the affective models with current 

interactive intervention approaches may allow for automating the intensive, repetitive 

aspects of the existing behavioral therapy techniques and possibly steer the individual 

towards the intervention goal in an affect-sensitive manner.  
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Physiological Signal Acquisition and Indices  

There is good evidence that the physiological activity associated with affective 

states can be differentiated and systematically organized (Bradley, 2000). The 

cardiovascular and electromyogram activities have been used to examine the positive and 

negative affective states of people (Cacioppo et al., 2000; Papillo and Shapiro, 1990). 

Electrodermal activities have been shown to be associated with task engagement 

(Pecchinenda and Smith, 1996). The variation of peripheral temperature due to emotional 

stimuli was studied by (Kataoka et al., 1998). In this chapter, we exploited the 

dependence of physiological responses on underlying affective states to develop affective 

models for children with ASD by using the machine learning method as described in 

Appendix A. The physiological signals examined were: various cardiovascular activities 

including electrocardiogram (ECG), impedance cardiogram (ICG), photoplethysmogram 

(PPG), and phonocardiogram (PCG)/heart sound; electrodermal activities (EDA) 

including tonic and phasic responses from skin conductance; electromyogram (EMG) 

activities from corrugator supercilii, zygomaticus major, and upper trapezius muscles; 

and peripheral temperature. Relevant features were derived from the physiological 

signals using various signal-processing techniques such as Fourier transform, wavelet 

transform, thresholding, and peak detection. The physiological signals that were 

examined with the features derived from each signal are described in Table 2.1.  

 

Acquisition of Physiological Signals  

The physiological signals were acquired using the Biopac MP150 physiological 

data acquisition system (biopac.com). ECG was measured from the chest using the  
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Table 2.1 Physiological Indices 
 

Physiological 

Response 
Features Derived Label Used 

Unit of  

Measurement 

Sympathetic power  
from ECG 

Sym 
unit/square second 
(unit/s2) 

Parasympathetic power 
from ECG 

Para unit/s2 

Very Low Frequency Power 
from ECG 

VLF unit/s2 

Ratio of powers  
Para/VLF 
Para/Sym 
VLF/Sym 

No unit 

Mean of IBI IBI_ECGmean milliseconds (ms) 

Electrocardiogram  

SD of IBI IBI_ECGstd 
Standard Deviation  
(SD, ms) 

Mean amplitude of the  
peak values of the PPG signal 

PPG_Peakmean microvolt (µV) 

Maximum amplitude of the  
peak values of the PPG signal 

PPG_Peakmax µV 

Mean of IBI of PPG IBI_PPGmean ms 

SD of IBI of PPG IBI_PPGstd ms 

Mean Pulse Transit Time (PTT) PTTmean ms 

Photoplethysmogram 

SD Pulse Transit Time (PTT) PTTstd ms 

Mean of the 3rd, 4th, and 5th level  
coefficients of the Daubechies 
wavelet transform of heart sound 

D3_HSmean 
D4_HSmean 
D5_HSmean 

No unit 

Heart Sound 
SD of the 3rd, 4th, and 5th level  
coefficients of the Daubechies  
wavelet transform of heart sound 

D3_HSstd 
D4_HSstd 
D5_HSstd 

No unit 

Mean Pre-Ejection Period (PEP) PEPmean ms 

SD Pre-Ejection Period (PEP) PEPstd ms 

Mean of IBI of ICG IBI_ICGmean ms 
Bioimpedance 

SD of IBI of ICG IBI_ICGstd ms 

Mean tonic activity level Tonicmean microsiemens (µS) 

Slope of tonic activity Tonicslope µS/s 

Mean amplitude of skin conductance 
response (phasic activity) 

Phasicmean µS 

Maximum amplitude of skin  
conductance response (phasic activity) 

Phasicmax µS 

Electrodermal  
activity 

Rate of phasic activity Phasicrate peaks/min 

Mean of Corrugator Supercilii activity Cormean µV 
SD of Corrugator Supercilii activity Corstd µV 
Slope of Corrugator Supercilii activity Corslope µV/s 
Mean of IBI of blink activity IBI_Blinkmean s 

Electromyographic  
activity   

Mean amplitude of the peak values  
of blink activity 

Blink_Peakmean µV 
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Table 2.1 (continued) Physiological Indices 
 

Physiological 

Response 
Features Derived Label Used 

Unit of  

Measurement 

Mean amplitude of blink activity Blinkmean µV 
SD of blink activity Blinkstd µV 
Mean of Zygomaticus Major activity Zygmean µV 

SD of Zygomaticus Major activity Zygstd µV 
Slope of Zygomaticus Major activity Zygslope µV/s 
Mean of Upper Trapezius activity Trapmean µV 
SD of Upper Trapezius activity Trapstd µV 

Slope of Upper Trapezius activity Trapslope µV/s 

Electromyographic  
activity   

Mean and Median frequency  
of Corrugator, Zygomaticus,  
and Trapezius 

Cfreqmean 
Zfreqmean 
Tfreqmean 
Cfreqmedian 
Zfreqmedian 
Tfreqmedian 

Hertz 

Mean temperature Tempmean 
Degree  

Fahrenheit (°F) 
Slope of temperature Tempslope °F/s 

Temperature 

SD of temperature Tempstd °F 

 

standard two-electrode configuration. ICG describes the changes of thorax impedance 

due to cardiac contractility and was measured by four pairs of surface electrodes that 

were longitudinally configured on both sides of the body. The top pair of ICG electrodes 

was placed on the neck parallel to and about 3 cm above the second pair, located at the 

base of the neck; the bottom electrodes were placed parallel to and about 5 cm below the 

third ones, which were placed on the sides of the chest at the level of the xiphisternal 

junction. A microphone specially designed to detect heart sound waves was placed on the 

chest to measure PCG. PPG, peripheral temperature, and EDA were measured from the 

middle finger, the thumb, and the index and ring fingers of the non-dominant hand, 

respectively, using surface electrodes sewn in stretchy Velcro straps. EMG was measured 

by placing surface electrodes on two facial muscles (corrugator supercilii and 

zygomaticus major) and an upper back muscle (upper trapezius). All the physiological 

sensors were extensions of the Biopac physiological data acquisition system. The 
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sampling rate was fixed at 1000 Hz for all the channels. Appropriate amplification and 

band-pass filtering were performed. Before each session, a three-minute baseline 

recording was done that was later used to offset day-variability. During the baseline 

recording, participants were asked to relax in a seated position and read age-appropriate 

leisure material. Subsequently, emotional stimuli induced by cognitive tasks were applied 

in epochs of up to four minutes in length. Previous research (Pecchinenda and Smith, 

1996; Rani et al., 2006) has shown that physiological signals (e.g. electrodermal activity, 

electromyographic activity, and cardiovascular activity) of 2-4 minutes in length were 

adequate for detecting affective states (e.g., anxiety, anger, engagement, etc.) from 

similar computer-based tasks. Each child with ASD took part in six one-hour sessions 

containing 13-15 epochs each. Each session took place on a different day to avoid bias in 

data due to habituation. Figure 2.1 shows the sensor setup. 

 

 

 
     (a)     (b) 
 
Figure 2.1 The sensor setup shows the position of facial EMG sensors (a) and the placement of sensors on 
the non-dominant hand (b). 
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Cardiovascular Activity  

ECG measures the heart activity through the electrical signal of the heart muscle. 

The number of beats per minute (bpm) is called the heart rate and is typically 70-80 bpm 

at rest. Inter beat interval (IBI) is the time interval in milliseconds between two “R” peaks 

in the ECG waveform. The R-peak detection algorithm performed band-pass filtering on 

the raw ECG signal and the signal was then smoothed by a 10 ms moving average 

window. Peaks were then detected in the resulting signal, and detection heuristic rules 

were applied to avoid missing R peaks or detecting multiple peaks for a single heart beat. 

These rules included obtaining the amplitude threshold (the difference between a peak 

and the corresponding inflection point) at which a peak should be considered a beat, 

enforcing a minimum interval of 300 ms and maximum interval of 1500 ms between 

peaks, checking for both positive and negative slopes in a peak to ensure that baseline 

drift is not misclassified as a peak, and backtracking with reexamination/interpolation 

when peak missing was detected. Generally, the average change for heart rate is expected 

to be within the range of 2-15 bpm (Bradley, 2000). The chosen interval threshold 

between peaks was well above the rate of change of heart rate due to genuine heart 

acceleration. Time-domain features of IBI, such as the mean and standard deviation (SD), 

can be computed from the detected R peaks. IBI variability was explored by performing 

power spectral analysis on the IBI data to localize the sympathetic and parasympathetic 

nervous system activities associated with different frequency bands. “Sym” was the 

power associated with the sympathetic nervous system activity of the heart (in frequency 

band 0.07-0.14 Hz). “Para” was the power associated with the parasympathetic nervous 

system activity of the heart (in frequency band 0.15-0.5 Hz). “VLF” was the power 
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associated with the frequency band from 0.02-0.06 Hz. The ratios of different frequency 

components were also computed as the input features for affective modeling. 

The PPG signal measures changes in the volume of blood in the fingertip 

associated with the blood volume pulse (BVP) cycle, and it provides an index of the 

relative constriction versus dilation of the blood vessels in the periphery. The raw PPG 

signal was smoothed by a 10 ms moving average window, and the baseline drift was 

accounted for by subtracting the average value of the signal. Pulse transit time (PTT) is 

the time it takes for the pulse pressure wave to travel from the heart to the periphery, and 

it was estimated by computing the time between systole at the heart (as indicated by the 

R-wave of the ECG) and the peak of the BVP wave reaching the peripheral site where 

PPG was measured. Besides the mean and SD of PTT, the mean and maximum values of 

BVP peak amplitudes and mean and SD of the IBI of BVP peaks were also extracted as 

features.  

ICG analysis measures the impedance or opposition to the flow of an electric 

current through the body fluids. The ICG signal was first filtered by a 5th order 

Butterworth filter (low-pass: 10 Hz) to clean up any residual noise on the waveform and 

was then differentiated. Pre-ejection period (PEP), derived from ICG and ECG signals, 

measures the latency between the onset of electromechanical systole and the onset of left-

ventricular ejection and is most heavily influenced by sympathetic innervation of the 

heart. The time intervals between the successive peaks of ICG time-derivative and “R” 

peaks of ECG were calculated to obtain the value of PEP. The indices obtained were the 

mean and SD of PEP and the average and SD of the time interval between two peaks of 

the ICG time-derivative (i.e., IBI of ICG). The peak detection mechanisms used to 
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determine the peaks of BVP and ICG time-derivative were similar to the ECG R-peak 

detection algorithm, while additional heuristic rules were added to reduce the degradation 

of the signal quality due to motion artifacts and avoid spurious peak detection with 

backtracking. Unlike ECG signals, the peak amplitudes of PPG and ICG showed a larger 

deviation over a given period of time. An adaptive thresholding rule was integrated in the 

peak detection algorithm to address this deviation, which continuously changed/updated 

the threshold value to determine whether candidates for peaks qualified as valid peaks. 

The heart sound signal measured sounds generated during each heartbeat. These 

sounds are produced by blood turbulence primarily due to the closing of the valves within 

the heart. The features extracted from the heart sound signal consisted of the mean and 

SD of the 3rd (138-275 Hz), 4th (69-138 Hz), and 5th (34-69 Hz) level coefficients of the 

Daubechies wavelet transform.  

 

Electrodermal Activity  

Electrodermal activity consists of two main components - tonic response and 

phasic response. Tonic skin conductance refers to the ongoing or the baseline level of 

skin conductance in the absence of any particular discrete environmental events. Phasic 

skin conductance refers to the event related changes that are caused by a momentary 

increase in skin conductance (resembling a peak superimposed on tonic skin 

conductance). The raw EDA signal was smoothed by a 25 ms moving average window 

and then down-sampled by 10 to remove the high frequency measurement noise. The 

phasic skin conductance detection algorithm used the following heuristics for considering 

a particular peak as a valid skin conductance response: (i) the slope of the rise to the peak 
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should be greater than 0.05 microsiemens/minute (µS/min); (ii) the amplitude should be 

greater than 0.05 µS; and (iii) the rise time should be greater than 0.25 seconds. Once the 

phasic responses were identified, we determined the rate of the responses and the mean 

and maximum phasic amplitude. All the signal points that were not included in the 

response constituted the tonic part of the skin conductance signal. The slope of tonic 

activity was obtained using linear regression. Another feature derived from tonic 

response was the mean tonic amplitude. 

 

Electromyogram Activity  

EMG measures the electrical activity in the muscle during contraction. The EMG 

signal from corrugator supercilii muscle (eyebrow) captures a person's frown and detects 

the tension in that region, and the EMG signal from the zygomaticus major muscle 

captures the muscle movements while smiling. Upper trapezius muscle EMG activity 

measures the tension in the shoulders, one of the most common sites in the body for 

developing stress. Time-domain features, such as the mean, SD, and slope were 

calculated from the EMG signals after performing a band-pass filtering operation (10-500 

Hz). The analysis of the EMG activities in the frequency domain involved applying Fast 

Fourier Transform (FFT) on a given EMG signal, integrating the EMG spectrum, and 

normalizing it to [0,1] to calculate the two features of interest - the median frequency and 

mean frequency for each EMG signal. The blink-related features were determined from 

the corrugator supercilii EMG signals after being preprocessed by a low-pass filter (10 

Hz). 
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Peripheral Temperature  

Variations in the peripheral temperature mainly come from localized changes in 

blood flow caused by vascular resistance or arterial blood pressure and reflect the 

autonomic nervous system activity. The signal was down-sampled by 10 and filtered to 

remove high-frequency noise, from which the mean, SD, and the slope were calculated as 

features. 

 

Experimental Investigation 

 

Participants 

Due to the fact that autism is a spectrum disorder (American Psychiatric 

Association, 2000), no one intervention technique will work for the entire population 

(NRC, 2001; Sherer and Schreibman, 2005). The research on autism intervention 

assistive tools is generally guided by the individual characteristics, needs, and 

preferences of the children (i.e., individual-specific approach) and focuses on one sector 

of the population to develop a method with the flexibility to allow future modifications 

for a wider part of the population (Pioggia et al., 2005; Robins et al., 2005; Robins et al., 

2004; Werry et al., 2001). The spectrum nature of autism and the phenomenon of person 

stereotypy (Lacey and Lacey, 1958) led us to choose an individual-specific approach to 

work on a long-term basis with a small group of children with autism in order to evaluate 

the affect recognition tool to be used in computer-assisted autism intervention. 

Six participants in the age range of 13 to 16 years volunteered to participate in the 

experiments with the consent of their parents. Each had a diagnosis on the autism 
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spectrum, either autistic disorder, Asperger's Syndrome, or pervasive developmental 

disorder not otherwise specified (PDD-NOS), according to their medical records. 

Participants were recruited using standard referral procedures that included (i) newsletters 

distributed through the Vanderbilt Treatment and Research Institute for Autism Spectrum 

Disorders, (ii) flyers placed in the Vanderbilt Center for Child Development, and (iii) 

website advertisements through the Vanderbilt Kennedy Center and the Autism Society 

of Middle Tennessee. The Institutional Review Board (IRB) approval was sought and 

received for conducting the experiment. Interested parents throughout middle Tennessee 

contacted the research office by phone or e-mail to set up an initial telephone screening. 

Monetary compensation (a $10 gift card per session) was given for the children’s 

voluntary participation. Due to the nature of the designed cognitive tasks, the following 

criteria were considered when choosing the participants: (i) a minimum competency level 

of age-appropriate language and cognitive skills (i.e., “high functioning”) and (ii) no 

history of mental retardation. Each child with ASD underwent the Peabody Picture 

Vocabulary Test III (PPVT-III) to assess cognitive function (Dunn and Dunn, 1997). The 

PPVT-III is a measure of single-word receptive vocabulary that is often used as a proxy 

for intelligence quotient (IQ) testing because of its high correlations with standardized 

tests such as the Wechsler Intelligence Scale for Children (Bee and Boyd, 2004). It 

provides standard scores with a mean of 100 and a standard deviation of 15, and the 

Diagnostic and Statistical Manual of Mental Disorders (DSM-IV; American Psychiatric 

Association, 2000) classifies full scale IQ’s above 70 as non-retarded. Participants in our 

study obtained a standard score of 80 or above on the PPVT-III measure. Table 2.2 shows 

the characteristics of the six children who participated in the experiments. 
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Table 2.2 The characteristics of the participants 

 

Child ID Gender Age Diagnosis PPVT-III Score 

A Male 15 Autistic Disorder 99 

B Male 15 Asperger's Syndrome 80 

C Male 13 Autistic Disorder 81 

D Male 14 PDD-NOS 92 

E Male 16 PDD-NOS 93 

F Female 14 PDD-NOS 83 

 

Several conditions posed challenges in recruitment of participants who matched 

the inclusion-exclusion criteria (e.g., cognitive skills and age range) and in coordination 

of schedules between the autism therapist and the parent of the participating child who 

were also involved in the experiment. First, autism may often co-occur with varying 

levels of mental retardation (American Psychiatric Association, 2000), which reduces the 

possible participant pool. Second, the IRB stipulates cutoffs between participants in 

different age ranges (e.g., 7-12 years, 13-17 years, 18 years and above, etc.), and autism 

intervention studies usually focus on one sector of the population within a certain age 

range (Gaylord-Ross et al., 1984; IRB, 2004; Parsons et al., 2005). Third, the 

responsibilities of raising a child with ASD are vast; therefore, willing parents often had 

to bring their child to the laboratory on weekends or after school on days without 

conflicts with other activities (e.g., social skills therapy) or family obligations. The group 

sizes and the cardinality of participant age range of many studies on computer-assisted 

autism intervention are commensurate with our work when an individual-specific 

approach was used (Pioggia et al., 2005; Robins et al., 2005; Robins et al., 2004; Werry 

et al., 2001). It is worth noting that this individual-specific study was based on a large 

sample size of observations for each child with ASD, which is comparatively more 

favorable than many other works (Groden et al., 2005; Pioggia et al., 2005; Robins et al., 
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2004). Each child completed approximately 85 epochs over 6 sessions, which represents 

6 different days and yields 6 hours of data for each child. This preliminary study focused 

on high-functioning children with ASD between 13 and 16 years old.  

 

Cognitive Tasks for Affect Elicitation  

Two computer-based cognitive tasks were designed and implemented to invoke 

varying intensities of the following three affective states: anxiety, engagement, and 

enjoyment/liking, in the participants. Physiological data from participants were collected 

during the experiment. The two tasks consisted of an anagram solving task and a Pong 

playing task. The anagram solving task has been previously employed to explore 

relationships between physiology and anxiety (Pecchinenda and Smith, 1996). Emotional 

responses were manipulated in this task by presenting the participant with anagrams of 

varying difficulty levels, based on vocabulary tests and established through pilot work. 

Five-letter words were collected from the Dolch sight word list (Dolch, 1948) and grade-

level vocabulary tests (Barnhart and Barnhart, 1984) and used to create the different 

levels of difficulty in the anagram task. A long series of trivially easy anagrams caused 

less engagement. An optimal mix of solvable and difficult anagrams caused liking and 

engagement at times. Unsolvable or extremely difficult anagrams and giving time 

deadlines generated anxiety.  

The Pong task consisted of a series of trials/epochs each lasting up to four 

minutes, in which the participant played a variant of the early, classic video game 

“Pong.”  This game has been used previously by researchers to study anxiety, 

performance, and gender differences (Brown et al., 1997). Various parameters of the 
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game were manipulated to elicit the required affective responses. These included: ball 

speed and size, paddle speed and size, sluggish or over-responsive keyboard, random 

keyboard response, and the level of the computer opponent player. Very low speeds and 

large sizes of the ball and the paddle made games less engaging after a while; whereas 

high ball and paddle speeds along with smaller sizes of the two made the game engaging. 

Very high ball speeds and sluggish or over-responsive keyboard caused anxiety at times. 

Games with a moderate-level computer opponent player usually generated liking. The 

game configurations were established through pilot work. 

Each task sequence was subdivided into a series of discrete epochs that were 

bounded by the subjective affective state assessments. These assessments were collected 

using a battery of questions about the target affective states and perceived task difficulty 

level rated on an eight-point Likert scale, where 1 indicated the lowest rating and 8 

indicated the maximum rating. Each participant took part in six sessions – three one-hour 

sessions of solving anagrams and three one-hour sessions of playing Pong – on six 

different days. No more than one, one-hour session with an individual participant took 

place per day. 

 

Experimental Setup 

Figure 2.2 shows the setup for the experiment. The child with ASD was involved 

in the cognitive tasks on computer C1 while his/her physiological data was acquired via 

the Biopac system (biopac.com). Physiological signals were transferred from the Biopac 

transducers to C2 through an Ethernet link at 1000 Hz after being amplified, digitized, 

and stored. C1 was also connected to the Biopac system via a parallel port, through which  
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Figure 2.2 Experimental setup for collecting physiological data and subjective reports in the computer-
based tasks 

 

the task-related markers were recorded along with the physiological data in a time-

synchronized manner. Different markers were defined to indicate the following events: 

start/end of game, performance events (right/wrong answer in anagram, hitting/missing 

ball in Pong), start/end of each epoch, and self-report logging.  

To gain perspective from different sources and enhance the reliability of the 

subjective reports on the target affective states, a therapist with experience in autism 

intervention for children with ASD and each participant's parent were also involved in the 

study, who may best know the participant. We video recorded the sessions to cross-

reference observations made during the experiment. The signal from the video camera 

was routed to a television, and the signal from the participant's computer screen where 
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the task was presented was routed to a separate computer monitor M2. The therapist and 

the participant's parent were seated at the back of the experiment room, watched the 

experiment on the TV from the view of the video camera, and observed how the task 

(anagrams or Pong) progressed on the separate monitor.  

 

Procedure 

On the first visit, participants completed the PPVT-III measurement to determine 

a standardized measure of receptive vocabulary and eligibility for the experiments. After 

initial briefing regarding the tasks, physiological sensors from a Biopac system were 

attached to the participant's body and a three-minute baseline recording was performed. 

Each session lasted about an hour and consisted of a set (13-15) of either 3-minute 

epochs for anagram tasks or up to 4-minute epochs for Pong tasks. Each epoch was 

followed by subjective report questions rated on an eight-point Likert scale. The 

participants reported their perceived subjective affective states through a pop-up dialog 

window presented on C1. The therapist and the participant's parent also answered the 

questions about how they thought the participant was feeling during the finished epoch 

on an eight-point Likert scale based on their audio/visual observations from the viewing 

monitors (TV and M2). These three sets of subjective reports related to the target 

affective states, from the therapist, the participant's parent, and the participant, were used 

as the possible reference points to link the concurrently collected objective physiological 

data to the participant's affective states.  

For developing affective models, we built mappings to determine the intensity 

(i.e., high/low) of a particular affective state from the physiological features. It resembles 
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a binary classification problem where the attributes are the physiological features (listed 

in Table 2.1) and the target function is the degree of arousal. In this work we employed 

SVM to determine the underlying affective state of a child with ASD given a set of 

physiological indices, based on previous work (Rani et al., 2006) which showed SVM 

gave the best classification accuracy compared to KNN, Bayesian Network, and 

Regression Tree as applied to the domain of affect recognition using physiological 

signals for typical adults. Details of the theory and learning method of SVM can be found 

in (Vapnik, 1998) and are briefly described in the Appendix A.  

Each participant had a data set that was comprised of both the objective 

physiological features and corresponding subjective reports on intensity of target 

affective states from the therapist, the participant's parent, and the participant. The 

subjective report forms instructed that 1-4 indicates the low level, 5-8 indicates the high 

level, and the different values represent the variation within each level. The physiological 

features were extracted using the approaches described previously in the Physiological 

Signal Acquisition and Indices section. Each feature was baselined to take into account 

day-variability, which is not commonly performed when testing statistically significant 

changes in physiological signals (Groden et al., 2005; Mandryk et al., 2006; Neumann 

and Waldstein, 2001) but has shown to be a useful technique when building physiology-

based affective models (Picard et al., 2001; Rani et al., 2005; Zhai and Barreto, 2006). 

The following equation from Rani et al. (2005) was employed:  
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Each feature i (i = 1,2,...51; listed in Table 2.1) obtained in epoch j 

(j=1,2,...approximately 15), 
ijkepochF , was baselined with respect to the feature obtained 

during the baseline recording for the corresponding day k (k=1,2,...6), 
ikbaseF . If 

ikbaseF  is 

equal to zero then the respective value of 
ijkepochF  is automatically baselined. Also, each 

subjective report was scaled to [0, 1] using the following min-max equation (Zhai and 

Barreto, 2006). 
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 (2.2) 

 

where the minimum subjective rating of each affective state a (a = anxiety, engagement, 

or enjoyment/liking) over all of a participant's epochs e (e=1,2,...approximately 85), 

aeminR , is subtracted from each individual epoch rating, 
aeepochR , and divided by the 

difference between the maximum rating from the corresponding reporter of the affective 

state, 
aemaxR , and the minimum rating, 

aeminR . All three affective states were partitioned so 

that there were two levels for each affective state. The scaled report ratings were 

discretized such that 0–0.50 was labeled as low level and 0.51–1 was labeled as high 

level. The reports from each rater (therapist, participant's parent, or child) for each of the 

three affective states were partitioned separately.  

Each participant's data set contained approximately 85 epochs. Multiple 

subjective reports were analyzed, and one was chosen as the possible reference points to 

link the physiological measures to the participant's affective state. As illustrated in Figure 

2.3, a therapist-like affect recognizer (i.e. a recognizer that captures the therapist's ability  
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Figure 2.3 Affective modeling overview when the therapist’s subjective reports are used 

 

to assess affective states) can be developed when the therapist’s reports are used. Current 

therapeutic settings do not retain quantitative records of the affective states of the 

children with ASD. A therapist generally uses qualitative affective evaluations suitable 

for binary (high/low) assessments to make intervention adjustments (e.g., using 

likes/dislikes charts (Seip, 1996). This study of differentiating high/low levels of the 

target affective states from physiological signals attempts to emulate the present autism 

intervention practice and to experimentally demonstrate the feasibility of affective 

modeling for these children with ASD via psychophysiological analysis.  

A SVM-based recognizer was trained on each participant’s data set for each target 

affective state. In this work, to deal with the nonlinearly separable data, soft-margin 

classifiers with slack variables were used to find a hyperplane with less restriction (Eqn. 

A.1, Appendix A). RBF (Radial Basis Function) was selected as the kennel function 

because it often delivers better performance (Vapnik, 1998). A ten-fold cross-validation 
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was used to determine the kernel parameter and regularization parameter (Eqn. A.2, 

Appendix A) of the classifier. 

 

Results 

To measure the amount of agreement among the different reporters, the kappa 

statistic was used (Siegel and Castellan, 1988). The kappa coefficient (K) measures pair-

wise agreement among a set of reporters making category judgments, correcting for 

expected chance agreement: 

 

( ) ( )
( )1

P A P E
K

P E

−
=

−
    (2.3) 

 

where ( )P A  is the proportion of times that the reporters agree and ( )P E  is the 

proportion of times that we would expect the reporters to agree by chance. When there is 

complete agreement, then 1K = ; whereas, when there is no agreement other than that 

which would be expected by chance, then 0K = .  

The results of the values of K, averaged across three target affective states, are 

shown in Figure 2.4. From the results, we can see that among the three possible pairs for 

each child (Therapist-Parent (T/P), Therapist-Child (T/C), and Parent-Child (P/C)) the 

agreement between the therapist and each participant's parent (T/P) shows the largest 

mean of the K statistic values (mean = 0.62, p < 0.05, paired t-test). The means of the K-

statistic values between the children and either the parent or the therapist were relatively 

small (0.40 and 0.37, respectively). Note that the K agreement between therapist and  
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Figure 2.4 Average Kappa Statistics between Reporters for Affective States. Kappa coefficients averaged 
across affective states measure the agreement between the different subjective reports (T-Therapist, P-
Parent, C-Child) corresponding to each participant (Child ID A-F). 

 

parent is substantial for Child A, Child B, Child D, and Child F and moderate for Child C 

and Child E. Such results might stem from the fact that it could be difficult for the 

therapist or parent to distinguish certain emotions for a particular child with ASD. For 

example, the agreement between therapist and parent for the anxiety level of Child C and 

Child E (K coefficient: 0.35 and 0.37, respectively) are considerably less than the average 

level (mean K coefficient of T/P: 0.62). In the experiment, Child A and Child F’s self-

ratings for anxiety, engagement, and liking were almost constant which resulted in lower 

K statistic values for the therapist and child pair (T/C) and the parent and child pair (P/C) 

than those of the other participants. This may be due to the fact that the spectrum 

developmental disorder for children with autism manifests in different abilities to 

recognize and report their own emotions. Lack of agreement with adults does not 

necessarily mean that the self-report of children with ASD is not dependable. However, 

given the fact that therapists’ judgment based on their expertise is the state-of-the-art in 



 38 

most autism intervention approaches and the reasonably high agreement between the 

therapist and the parents for all of the six children, the subjective report from the therapist 

was used as the reference points linking the objective physiological data to the children’s 

affective states. To enhance the consistency of the subjective reports, the same therapist 

was involved in all of the sessions. This choice allows for building a therapist-like 

affective model. In the rest of the chapter, unless otherwise specified, the terms liking, 

anxiety, and engagement imply the target affective states as discerned by the therapist. 

Once the affect modeling is completed, the recognizers will be capable of autonomously 

inferring the affective states of the child with ASD from the physiological signals in real 

time even when the therapist is not available, which is investigated in Chapter III. 

Figure 2.5 shows a comparison of the therapist’s average ratings for liking, 

anxiety, and engagement when the children with ASD played easy or difficult epochs in 

the anagram and Pong computer games, and the small bars indicate the standard error of 

the mean. When averaged across all participants, liking decreased, anxiety increased, and 

engagement decreased with increasing task difficulty. Table 2.3 shows the correlation   

 

 
 

Figure 2.5 Rated average affect response from therapist’s reports 
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Table 2.3 Results of Correlation Analysis from Therapist's Reports 
 

 Anxiety Engagement Difficulty 

Liking -0.521 0.885 -0.616 

Anxiety  -0.401 0.731 

Engagement   -0.486 

 

analysis between the reported affective states and the task difficulty. For each set of 

variables, the probability value (p-value) was computed from a two side t-test. Due to the 

large sample size (approximately 85 epochs for each participant), the p-value for all 

correlations was less than 0.005. Through point biserial correlation analysis, it was found 

that difficulty is strongly positively correlated with anxiety and negatively correlated with 

liking and engagement. By examining Pearson correlation coefficients (r), it was 

observed that there is strong positive correlation between liking and engagement and 

negative correlation between liking and anxiety, and there also exists a weak correlation 

between the reported anxiety and engagement. The results in Figure 2.5 and Table 2.3 

present findings across all the children. However, when each child is examined 

individually, different trends could arise. For example, for Child A, anxiety is positively 

correlated with engagement (r = 0.45); for Child F, no significant correlation is observed 

(r = -0.15, p > 0.05); while for the four other children (B, C, D, and E) anxiety negatively 

correlated with engagement (r equals -0.50, -0.39, -0.61, and -0.58, respectively), which 

revealed diverse affective characteristics of the children with ASD. 

The performance of the developed affective models based on the therapist's 

reports for each child (i.e., individual-specific approach) is shown in Figure 2.6. The 

cross-validation method, “leave-one-out,” was used, and the small bars represent the 

measured mean error rate of the trained machine, also called the empirical risk (Burges,  
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Figure 2.6 Prediction Accuracy of the Affective Model 
 

1998). The affective model produced high recognition accuracies for each target affective 

state of each participant. The average correct prediction accuracies across all participants 

with ASD were: 85.0% for liking, 79.5% for anxiety, and 84.3% for engagement, which 

are comparable to the best results achieved for typical adults (Nasoz et al., 2004; Picard 

et al., 2001; Rani et al., 2006). Figure 2.6 shows that for Child C and Child E, the 

prediction accuracy for anxiety is lower; moreover, as mentioned previously for these 

two participants there is also considerably less agreement between the therapist and the 

parent (T/P) on the subjective reports with respect to the anxiety level. The comparatively 

low (approximately 5% less) average prediction accuracy of anxiety may be due to the 

fact that the intensity of anxiety of a particular child with ASD (e.g., Child C and Child 

E) could be more difficult for the therapist to distinguish based on the observations than 

the other two affective states (i.e., liking and engagement). 
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We also compared the performance of affective modeling to a control method that 

represents random chance. Suppose we had an equal number of subjective reports that 

rated a particular affective state level (low/high) for a participant, then the chance 

probability would be 50%. However, the prevalence of each level could be different. For 

example, in 48 out of 86 epochs the engagement of Child E was rated as low, where a 

random classification could assign all test epochs to this category and make accurate 

classifications (48/86)×100 = 55.8% of the time. We thus considered the level with a 

majority of epochs and used the average of these higher numbers (across the participants’ 

affective states) to represent the chance condition, which is denoted by dark gray bars in 

Figure 2.6. While the physiology-based affective modeling alone did not provide perfect 

classification (i.e., 100%) of affective states of children with ASD, they did yield reliable 

matches with the subjective rating and significantly outperformed a random classifier 

(averaging 82.9% vs. 59.2%). This was promising considering that this task was 

challenging in two respects: (i) the reports were collected from the therapist who was 

observing the children with ASD as opposed to having typical adults capable of 

differentiating and reporting their own affective states and (ii) varying levels of arousal of 

any given affective state (e.g., low/high anxiety) were identified instead of determining 

between two discrete affective states. 

To explore the effects of reducing the number of physiological signals and the 

possibility of achieving more economical modeling (i.e., reducing the set of signals to be 

measured), we examined the performance of the affect recognizers when cardiovascular, 

electrodermal, and electromyographic activities and their combinations were used. As 

shown in Table 2.4, all the recognizers delivered better predication than random guess  
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Table 2.4 Prediction Accuracy of the Affective Modeling based on Different Physiological Signals (%)* 

 

Physiological Signals Liking Anxiety Engagement Mean 

Cardiovascular 75.7 68.5 76.2 73.5 

Electrodermal 73.4 72.3 73.3 73.0 

Electromyographic 73.1 65.8 70.1 69.7 

Electrodermal + Electromyographic 75.0 69.4 71.4 71.9 

Cardiovascular + Electromyographic 79.6 70.2 79.9 76.6 

Cardiovascular + Electrodermal 79.9 74.3 81.9 78.7 

All 85.0 79.5 84.3 82.9 

 

(mean prediction rate: 52.9%), and with more information from physiological activities 

the performance of the affective models tends to improve (except the combination of 

electrodermal and electromyographic activities). The improved prediction accuracy of the 

models with increased physiological features may be due to the fact that the inherent 

kernel representation and soft-margin optimization endow SVM the capability to work 

effectively in the high-dimensional feature space (Burges, 1998). While 

electromyographic/EMG signals have been used as indicators of affective response for 

typical individuals (Kulic and Croft, 2007; Rani et al., 2006), in this study we observed 

that it is less discriminatory than the cardiovascular and electrodermal activities. As 

suggested by the American Psychiatric Association (2000) and Green et al. (2002), 

children with ASD often have nonverbal communicative impairments regarding 

expression of affective states (e.g., abnormal body postures and gestures and absence of 

                                                 

* Peripheral temperature has relatively few features derived as shown in Table 2.1 and was not examined 

independently. Instead, it was studied conjunctively with the electrodermal activity, both of which were 

acquired from the non-dominant hand of a participant.  
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facial expression), which might reduce the discriminatory capability of EMG signals 

(e.g., muscle activities from both the corrugator supercilii and the zygomaticus major) to 

reveal affective cues of the participants. While no combination of physiological activity 

surpassed the percent accuracy achieved when all signals were used, the results in Table 

2.4 suggest that it may be possible to selectively reduce the set of signals and obtain 

nearly-as-good performance (e.g., using a combination of cardiovascular and 

electrodermal signals).  

With post-hoc analysis, we found the prediction accuracy generally tends to be 

higher when the therapist and the participant's parent agree more on the subjective reports 

about how they thought the participant was feeling during the finished epoch. As shown 

in Table 2.5, the K statistic of the therapist and parent is positively correlated with the 

prediction accuracy of the developed affect recognizer (r = 0.71, p < 0.001). In this 

experiment, the K statistic could indicate whether it is relatively easy or difficult to  

 

Table 2.5 Therapist-Parent (T/P) Kappa Statistics and Prediction Accuracy 
 

Child ID  Liking Anxiety Engagement 

Kappa Statistics (T/P) 0.566 0.831 0.494 
A 

Prediction Accuracy (%) 87.8% 85.4% 81.7% 

Kappa Statistics (T/P) 0.585 0.634 0.708 
B 

Prediction Accuracy (%) 76.8% 81.7% 89.0% 

Kappa Statistics (T/P) 0.753 0.352 0.551 
C 

Prediction Accuracy (%) 91.1% 73.4% 80.2% 

Kappa Statistics (T/P) 0.698 0.562 0.611 
D 

Prediction Accuracy (%) 86.1% 79.6% 84.9% 

Kappa Statistics (T/P) 0.721 0.372 0.449 
E 

Prediction Accuracy (%) 83.7% 74.1% 83.2% 

Kappa Statistics (T/P) 0.884 0.528 0.814 
F 

Prediction Accuracy (%) 84.8% 82.6% 87.2% 
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differentiate the affective states of a child by observation. The autism therapist used in 

this work had no previous interaction with the participants. The prediction accuracy could 

likely improve if the therapist interacts with a particular child with ASD for a significant 

amount of time and gains more knowledge of his/her affective expression before making 

the reports regarding the presented interaction tasks, which is generally the case for ASD 

intervention. 

 

Discussion  

We have designed and implemented two computer-based cognitive tasks – 

solving anagrams and playing Pong – to elicit the affective states of liking, anxiety, and 

engagement, which considered important in autism intervention, for children with ASD. 

To have reliable reference points to link the physiological data to the affective states, the 

reports from the child, the therapist, and the child's parent were collected and analyzed. 

We have investigated a large set of physiological indices that may correlate with the 

affective states of children with ASD. A SVM-based affective model yielded reliable 

prediction with approximately 82.9% success when using the therapist’s reports. This is 

the first time, to our knowledge, that the affective states of children with ASD have been 

experimentally detected via a physiology-based affect recognition technique. 

It should be noted that due to the phenomenon of person stereotypy and the 

spectrum nature of autism, an individual-specific approach has been employed for 

affective modeling based on a large sample size of observations of each of the six 

participating children with ASD. The methodology for inducing, gathering, and modeling 

the experimental data in this chapter is not dependent on the participants. The group sizes 
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and the cardinality of participant age range of many related studies are commensurate 

with our work and the sample size of observations in this work is comparatively 

extensive. The consistently reliable prediction accuracy for each participant demonstrated 

that it was feasible to model the affective states of these children with ASD via 

psychophysiological analysis.  
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CHAPTER III 

 

AFFECT-SENSITIVE ADAPTATION DURING HUMAN-ROBOT 

INTERACTION WITH CHILDREN WITH  

AUTISM SPECTRUM DISORDERS 

 

Introduction 

The primary objective of this chapter is to investigate how to augment HRI to be 

used in autism intervention by endowing a robot with the ability to recognize and respond 

to the affective states of a child with ASD. The work in Chapter II developed affective 

models through psychophysiological analysis. This chapter employs those models to 

investigate affect sensitivity during the closed-loop interaction between a child with ASD 

and the robot. A proof-of-concept experiment was designed wherein a robot learns 

individual preferences based on the predicted liking level of the children with ASD as 

discerned by the therapist and selects an appropriate behavior accordingly. 

Once affective modeling was completed in Chapter II, the therapist-like 

recognizers could be applied to a robot, equipping it with the capability to detect the 

affective states of the children with ASD in real time from on-line extracted physiological 

features, which could be utilized in future interventions even when a therapist is not 

available. As stated by Dautenhahn et al. (2003), it is important to have robots maintain 

characteristics of adaptability when applied to autism intervention. We designed and 

implemented a proof-of-concept experiment (i.e., robot-based basketball) wherein a robot 

adapts its behaviors in real time according to the preference of a child with ASD, inferred 

from the interaction experience and the predicted consequent liking level. This work is 

the first time, to our knowledge, that the feasibility and the impact of affect-sensitive 
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closed-loop interaction between a robot and a child with ASD have been demonstrated 

experimentally. While the results are achieved in a non-social interaction task, it is 

expected that the real-time affect recognition and response system described in this work 

will provide a basis for future research into developing technology-assisted intervention 

tools to help children with ASD explore social interaction dynamics in an affect-sensitive 

and adaptive manner. 

The overview of the affect-sensitive closed-loop interaction between a child with 

ASD and a robot is presented in Figure 3.1. The physiological signals from the children 

with ASD are recorded when they are interacting with the robot. These signals are 

processed in real time to extract features, which are fed as input into the models 

developed in Chapter II. The models determine the perceived affective cues and return 

this information as an output. The affective information, along with other environmental 

inputs, is used by a controller to decide the next course of action for the robot. The child 

who engages with the robot is then influenced by the robot’s behavior, and the closed-

loop interaction cycle begins anew.  

 

 
 

Figure 3.1 Framework overview 
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While the framework is implemented during affect-sensitive HRI, the affective 

models were built using physiological data gathered from two HCI tasks. Agrawal et al. 

(2008) showed that affective models built through HCI tasks could be successfully 

employed to achieve affect recognition in HRI for typical individuals. This observation 

suggests that it is possible to broaden the domain of tasks for affective modeling, thus 

reducing the habituation effect due to continuous exposure to the same system. 

 

Experimental Investigation 

 

Task Design 

A closed-loop HRI task, RBB (robot-based basketball), was designed. The main 

objective was two-fold: (i) to enable the robot to learn the preference of the children with 

ASD implicitly using physiology-based affective models as well as select appropriate 

behaviors accordingly; and (ii) to observe the effects of such affective-sensitivity in the 

closed-loop interaction between the children with ASD and the robot.  

The affective models developed in Chapter II are capable of predicting the 

intensity of liking, anxiety, and engagement simultaneously. However to designate a 

specific objective for the experiment in this chapter without compromising its proof-of-

concept purpose, one of the three target affective states was chosen to be detected and 

responded to by the robot in real time. As has been emphasized by Dautenhahn and 

Werry (2004), the liking of the children (i.e., the enjoyment they experience when 

interacting with a robot) is a goal as desirable as skill learning for autism intervention.  
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Therefore, liking was chosen as the affective state around which to modify the robot’s 

behaviors in the HRI experiment.  

In the RBB task, an undersized basketball hoop was attached to the end-effector 

of a robotic manipulator, which could move the hoop in different directions (as shown in 

Fig. 3.2) with different speeds. The children were instructed to shoot a required number 

of baskets into the moving hoop within a given time. Three robot behaviors were 

designed as shown in Table 3.1. For example, in behavior 1 the robot moves towards and 

away from the participant (i.e., in the X-direction) at a slow speed with soft background 

music, and the shooting requirement for successful baskets is relatively low. The 

parameter configurations were determined based on a pilot study to attain varied impacts 

on affective experience for different behaviors. From this pilot study, the averaged 

performance of participants for a given behavior was compiled and analyzed. The 

threshold of shooting requirement (TSR) was defined as 10% lower than the average 

 

 
 

Figure 3.2 X-, Y-, and Z-directions for behaviors used in RBB 
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Table 3.1 Robot Behaviors 
 

Behavior 

ID 

Motion 

Direction 

Speed 

(seconds/period) 

Threshold 

(baskets/epoch) 

Background 

Music 

1 X 8 12 Serene 

2 Y 4 20 Lively 

3 Z 2 30 Irregular 

 

performance. At the end of each epoch, the participant's performance was rated as 

excellent (successful baskets ≥ 1.2*TSR), above average (0.8*TSR ≤ successful baskets 

< 1.2*TSR), or below average (successful baskets < 0.8*TSR). Behavior transitions 

occurred between but not within epochs. As such, each robot behavior extended for the 

length of an epoch (1.5 minutes in duration) to have the participant fully exposed to the 

impact of that behavior. 

Each of the six participants, who also participated in the experiment in Chapter II, 

took part in two robot basketball sessions (RBB1 and RBB2). In RBB1 (non-affect 

based) the robot selected its behavior randomly (i.e., without any regard to the liking 

information of the participant), and the presentation of each type of behavior was evenly 

distributed. This session was designed for two purposes: (i) to explore the state space and 

action space of the QV-learning algorithm used in RBB2 for behavior adaptation; and (ii) 

to validate that the different robot behaviors have distinguishable impact on the child’s 

level of liking. In RBB2 (liking-based), the robot continues to learn the child’s individual 

preference and selects the desirable behavior based on interaction experiences (i.e., 

records of robot behavior and the consequent liking level of a participant predicted by the 

affective model). The idea is to investigate whether the robot can autonomously choose 

the most-liked behavior of each participant as observed from RBB1 by means of 

employing the physiology-based affective model and QV-learning. 
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Experimental Setup  

The real-time implementation of the robot-based basketball system is shown in 

Figure 3.3. The setup included a 5 degree-of-freedom robot manipulator (CRS Catalyst-5 

System) with a small basketball hoop attached to its end-effector. Two sets of infrared 

(IR) transmitter and receiver pairs were attached to the hoop to detect small, soft foam 

balls going through the hoop. The set-up also included the biological feedback equipment 

(Biopac system) that collected the participant’s physiological signals and the digital 

output from the IR sensors. The Biopac system was connected to a PC (C1) that: (i) 

acquired physiological signals from the Biopac system and extracted physiological 

features on-line, (ii) predicted the probable liking level by using the affective model 

 

 
 

Figure 3.3 Experimental setup for robot basketball 
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developed in Chapter II, (iii) acquired IR data through the analog input channels of the 

Biopac system, and (iv) ran a QV-learning algorithm that learns the participant’s 

preference and chooses the robot’s next behavior accordingly. Computer C1 was 

connected serially to the CRS computer (C2), which ran Simulink software. The behavior 

switch triggers were transmitted from C1 to C2 via a RS232 link. The commands to 

control the robot’s various joints were transmitted from C2 to the robot. There was a 

communication protocol established between C1 and C2 that ensured the beginning and 

end of the basketball task was appropriately synchronized with the physiological data 

acquisition on C1. As in the HCI tasks in Chapter II, the therapist and a parent were also 

involved, watching the experiment from the TV that was connected to a video camera. 

 

Experimental Procedure  

Each basketball session (RBB1 or RBB2) was approximately 1 hour long and 

included 27 minutes of active HRI (i.e., 18 epochs of 1.5 minutes each). The remaining 

time was spent attaching sensors, guiding a short practice, taking a baseline physiological 

recording, collecting subjective reports, and pausing for scheduled breaks. During the 

experiment, the participant was asked to take a break after every four epochs and the 

participant could request a break whenever he/she desired one. During each RBB epoch, 

the participant received commands and performance assessments from pre-recorded 

dialogue via a speech program running on C1 and the interaction proceeded as follows: 

1. The participant was notified of the goal (i.e., TSR). 

2. A start command instructed the participant to start shooting baskets. 
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3. Once the epoch started, the participant was given voice feedback every 30 

seconds regarding the number of baskets remaining and the time available. 

4. A stop command instructed the participant to stop shooting baskets, which 

ended the epoch. 

5. At the end of each epoch, the participant's performance was rated and 

relayed to him/her as excellent, above average, or below average. 

Each epoch was followed by subjective reports that took 30-60 seconds to collect. 

The subjective assessment procedure was the same as the protocol used in the affective 

modeling tasks in Chapter II. After the subjective report was complete, the next epoch 

would begin. To prevent habituation, a time interval of at least seven days between any 

two RBB sessions was enforced.  

 

Affect-sensitive Behavior Adaptation in Closed-Loop HRI 

We defined the state, action, state transition, and reward functions so that the 

affect-sensitive robot behavior adaptation problem could be solved using the QV-learning 

algorithm as described by Wiering (2005) and Appendix B. The set of states consisted of 

three robot behaviors as described in Table 3.1. In every state, the robot has three 

possible actions (1/2/3) that correspond to choosing behavior 1, 2, or 3, respectively, for 

the next time step (i.e., next epoch). Each robot behavior persists for one full epoch and 

the state/behavior transition occurs only at the end of an epoch. The detection of 

consequent affective cues (i.e., the real-time prediction of the liking level for the next 

epoch) was used to evaluate the desirability of a certain action. To have the robot adapt to 

a child’s individual preference, a reward function was defined based on the predicted 
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liking level. If the consequent liking level was recognized as high, the contributing action 

was interpreted as positive and a reward was granted (reward = 1); otherwise the robot 

received a punishment (reward = -1). QV-learning uses this reward function to have the 

robot learn how to select the behavior that was expected to result in a high liking level 

and therefore positively influenced the actual affective (e.g., liking) experience of the 

child. 

RBB1 enables state and action exploration where the behavior-switching actions 

are chosen randomly, with the number of visits to each state evenly distributed. The V-

function and Q-function are updated using Eqn. B.1 and Eqn. B.2 from Appendix B. 

After RBB1, the subjective reports are analyzed to examine the impacts of different 

behaviors on each participant’s preference. In RBB2 the robot starts from a non-preferred 

behavior/state and continues the learning process by using Eqn. B.1 and Eqn. B.2. A 

greedy action selection mechanism is used to choose the behavior-switching action with 

the highest Q-value. 

Because of the limited number of states and actions in this proof-of-concept 

experiment, tabular representation is used for the V-function and the Q-function. To 

prevent a certain action and/or state from being overly dominant and to counteract the 

habituation effect, the values of Q(s, a) and V(s) are bounded by using the reward or 

punishment encountered in the interaction. The parameters in Eqn. B1 and Eqn. B.2 are 

chosen as α = 0.8 and γ = 0.9. Before RBB1 begins, the initial values in the V-table and 

the Q-table are set to 0. 
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Results 

The six children with ASD who completed the HCI experiment in Chapter II also 

took part in the robot basketball task. The results described here are based on the RBB1 

(non-affect based) task and the affect-sensitive closed-loop interaction between the 

children with ASD and the robot in the RBB2 (liking-based) task. 

First, results are presented to validate that different behaviors of the robot had 

distinguishable impacts on the liking level of the children with ASD. To reduce the bias 

of validation, in RBB1 the robot selects behaviors randomly and the occurrence of each 

behavior is evenly distributed. Figure 3.4 shows the average labeled liking level for each 

behavior as reported by the therapist in RBB1. The difference of the impact is significant 

for five children (participants A, B, D, E, and F) and moderate for participant C. By 

performing two-way ANOVA analysis on the behavior (i.e., most-preferred, moderately-

preferred, and least-preferred behavior) and participant, it was found that the differences  

 

 
 

Figure 3.4 Mean liking level for different behaviors in RBB1 
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of reported liking for different behaviors are statistically significant (p < 0.05), whereas 

no significant effect due to different participants was observed. Furthermore, it was also 

observed that different children with ASD may have different preferences for the robot’s 

behaviors. These results demonstrated that it is important to have a robot learn the 

individual’s preference and adapt to it automatically, which may allow a more tailored 

and affect-sensitive interaction between children with ASD and the robot. For example, 

when a robot learns that a certain behavior is liked more by a particular child, it can 

choose that behavior as his/her "social feedback" or "reinforcer" in robot-assisted autism 

intervention. Playful interaction will be more likely to emerge by addressing a child’s 

preference. 

Second, the predictive accuracy of how closely the real-time physiology-based 

quantitative measures of liking, as obtained from affective models developed in Chapter 

II, matched with that of the subjective rating of liking made by the therapist during the 

RBB1 and RBB2 tasks (36 epochs total per child) is presented in Table 3.2. The average 

predictive accuracy across all the participants was approximately 81.0%. The highest was 

86.1% for Child D, and the lowest was 77.8% for Child B and Child E. Note that the 

affective model was evaluated based on physiological data obtained on-line from a real-

time application for children with ASD. However, this prediction accuracy is comparable 

to the results achieved through off-line analysis for typical individuals (Nasoz et al., 

2004; Rani et al., 2006). 

 

Table 3.2 Real-time classification accuracy of liking 
 

Child ID 
 

A B C D E F 

Prediction Accuracy (%) 83.3 77.8 80.6 86.1 77.8 80.6 
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Third, we present results about robot behavior adaptation and investigate its 

impact on the interaction between the children with ASD and the robot. Table 3.3 shows 

the percentages of different behaviors that were chosen in the RBB2 session for each 

participant. The robot learned the individual’s preference and selected the most-preferred 

behavior with high probability for all the participants. Averaged across all participants, 

the most-preferred, moderately-preferred, and least-preferred behaviors were chosen 

72.5%, 16.7%, and 10.8% of the time, respectively. The preference of a behavior was 

defined by the reported liking level in RBB1 as shown in Figure 3.4. To understand these 

results more clearly we describe an individual case. Figure 3.5 shows the affect-sensitive 

behavior adaptation in RBB2 for Child A, who prefers behavior 2 most (refer to Figure 

3.4). The real-time predicted liking level (i.e., high/low) is denoted by "0" for low and 

"1" for high. The robot starts in a non-preferred behavior (behavior 1) and then explores 

other behaviors before settling on the most-preferred behavior (behavior 2) where the 

liking level is high (as confirmed by the affective model prediction as well as the 

therapist’s subjective report). After a considerable time interacting with behavior 2 (e.g., 

epoch 7), the participant appears to not enjoy this behavior as much as before. The 

affective model detects this change and returns negative rewards. The QV-learning  

 

Table 3.3 Proportion of Different Behaviors Performed in RBB2 
 

Most-Liked 
Behavior 

Moderate-Liked 
Behavior 

Least-Liked 
Behavior 

 
Child ID 

 ID Proportion  ID Proportion ID Proportion 

A 2 82.4% 3 11.8% 1 5.8% 

B 1 70.6% 2 17.7% 3 11.7% 

C 2 58.8% 3 23.5% 1 17.7% 

D 2 76.5% 3 11.8% 1 11.7% 

E 2 76.5% 3 17.6% 1 5.9% 

F 2 70.6% 1 17.7% 3 11.7% 
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Figure 3.5 Behavior selected by affect-sensitive robot in RBB2 for Child A 
 

algorithm updates its state/action space and directs the robot to switch behaviors. 

However, after exploring other behaviors, the robot eventually finds that behavior 2 is the 

most-preferred by Child A (e.g., epoch 11) and continues the interaction using this 

behavior. At epoch 16, even though the predicted liking level is low, due to high frequent 

positive rewards received for behavior 2, the robot checks the updated Q-function and 

remains at this behavior. There could be several reasons why less-preferred behaviors 

were chosen in RBB2. The learned behavior selection policy might not have been optimal 

after the exploration in RBB1, and the QV-learning algorithm continued the learning 

process in RBB2. Another reason could be that the affective model is not 100% accurate 

and may return false reward/punishment, which may have given the robot imperfect 

instruction for behavior switches. Habituation to the most-preferred behavior during 

RBB2 could also be a factor that might have contributed to temporary changes in 

preference which led the robot to choose other behaviors. 

In Table 3.3, the robot chose a less-preferred behavior more often for Child C 

than for other participants. As can be seen in Figure 3.4, Child C does not show 

differences of liking among the three behaviors as significantly as the other children. This 
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instance of less-distinct preference could result in more inconsistent rewards/punishments 

and the robot switching behaviors more frequently. However, despite the above possible 

reasons for choosing less-preferred behaviors, Table 3.3 and Figure 3.5 show that the 

robot is capable of identifying and selecting the preferred behavior autonomously in most 

of the epochs for all participants and thus positively influencing the subjective liking 

level of the children with ASD (as shown in Figure 3.6).  

In Figure 3.6, we present results to demonstrate that active monitoring of 

participants’ liking and autonomously selecting the preferred behavior allowed children 

with ASD to maintain high liking levels. The average labeled liking levels of the 

participants as reported by the therapist during the two sessions were compared, and the 

small bars represent the standard error of the mean. The agreement between the therapist 

and parent on the subjective liking level is substantial for both RBB sessions and has a 

larger K statistic value (0.71) than that of the other two possible reporter pairs (0.43 for   

 

 
 

Figure 3.6 Subjective liking as reported by therapist 
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the parent and children and 0.39 for the therapist and children). The lighter bars in Figure 

3.6 indicate the liking level during the RBB1 session (i.e., when the robot selected 

behaviors randomly), and the darker bars show the liking level during the RBB2 session 

(i.e., when the robot learned the individual preference and chose the appropriate behavior 

accordingly). It can be seen that for all participants liking level was maintained, and for 

five of the six children liking level increased. There was no significant increase for Child 

C during the liking-based session as compared to the non-affect based session. As 

mentioned earlier, the impact of the different robot behaviors on the liking level of Child 

C is not as significant as that of the others, which may impede the robot in finding the 

preferred behavior and hence impede the robot in effectively influencing the subjective 

liking level positively. Note that RBB1 presents a typically balanced interaction with 

equal numbers of most-preferred, moderately-preferred, and least-preferred epochs, and 

the comparisons in Figure 3.6 are not between liking-based sessions and sessions of least-

preferred epochs. To determine the effects of the session type and participant on the 

reported liking, a two-way ANOVA test was performed. The null hypothesis that there is 

no change in liking level between liking-based sessions and non-affect based sessions 

could be rejected at the 99.5% confidence level. Additionally, no significant impact due 

to different participants was observed. This was an important result as the robot 

continued learning and utilizing the information regarding the probable liking level of 

children to adjust its behaviors. This ability enables the robot to adapt its behavior 

selection policy in real time and hence keep the participant in a higher liking level. 
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Discussion 

In this chapter, we have proposed a novel framework for affect-sensitive HRI 

where the robot can implicitly detect the affective states of the children with ASD as 

discerned by the therapist and respond to it accordingly. To account for the phenomenon 

of person-stereotypy and the diverse affective characteristics of the children with ASD, 

we employed an individual-specific approach for affective modeling. An intensive study 

was preformed based on a large sample size of observations (approximately 85 epochs 

over 6 hours) for each of the six children with ASD. The time spent collecting the 

training data for affective modeling can be justified by the current ASD intervention 

practices (Tarkan, 2002). However, note that the methodology for inducing, gathering, 

and modeling the experimental data is not dependent on the participants. The consistently 

reliable prediction accuracy for each participant demonstrated that it was feasible to 

model the affective states of children with ASD via psychophysiological analysis. 

To investigate the affect-sensitive closed-loop interaction between the children 

with ASD and the robot, we designed a proof-of-concept task, robot-based basketball, 

and developed an experimental system for its real-time implementation and verification. 

The real-time prediction of liking level of the children with ASD was accomplished with 

an average accuracy of 81.0%. The robot learned individual preferences of the children 

with ASD over time based on the interaction experience and the predicted liking level 

and hence autonomously selected the most-preferred behavior, on average, 72.6% of the 

time. We have observed that such affect-sensitive robot behavior adaptation has led to an 

increase in reported liking level of the children with ASD. This is the first time, to our 

knowledge, that the affective states of children with ASD have been detected via a 
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physiology-based affect recognition technique in real time. This is also the first time that 

the impact of affect-sensitive closed-loop interaction between a robot and children with 

ASD has been demonstrated experimentally. 
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CHAPTER IV 

 

VIRTUAL ENVIRONMENT SYSTEM FOR SOCIAL INTERACTION 

 

Introduction 

While research indicates the usefulness of technology-assisted intervention (e.g., 

computers, robots, and VR) for children with ASD, researchers have not yet fully utilized 

the potential of these technologies in the realm of social communication. Research in this 

chapter is designed to promote the development of an innovative technological approach 

for examining social communication difficulty for individuals with ASD with the aim of 

applying this technology as a future intervention paradigm. Furthermore, there are no 

design guidelines as to how to develop socially acceptable virtual peers (e.g., embodied 

humanoid robots or computerized humanoid characters) to be used for social skill 

intervention for children with ASD (Dautenhahn and Werry, 2004; Parsons, et al., 2005; 

Pioggia, et al., 2005; Strickland et al., 1996). In particular, it is important to know how 

these virtual peers should display intentions (e.g., facial expressions) and how they 

should interact (e.g., amount of eye contact, proximity to the child, etc.) to relay the 

intended social skill teaching to this population. Additionally, it is important to develop 

an evaluation method that is not solely dependent on self-report because of the known 

difficulty of self expression exhibited by children with ASD (Hill et al., 2004). Research 

that systematically develops social peers and studies social interaction with children with 

ASD in a step-by-step manner is thus necessary. Similar to how sophisticated machines 

are designed in virtual environments prior to fabrication, this chapter covers the design of 
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virtual peers in VR environments that would enable a systematic evaluation and 

manipulation of different components of social interaction through virtual social peers. 

If virtual peers are to be used to impart social skills, a primary deficit for the ASD 

population, considerable attention needs to be paid to aspects of social acceptability of 

such intervention aids. As a first step, this work investigates social design of humanoid 

characters (i.e., avatars) in a VR environment for children with ASD. In this chapter we 

describe the design of a virtual environment system for social interaction. Initial results 

are presented, and a more extensive evaluation of the system is investigated in Chapter V. 

The design is evaluated through an experiment plan that combines subjective ratings from 

a clinical observer/therapist with physiological responses indicative of affective states 

from the participant, both collected when a participant engages in social tasks with the 

avatars in a VR environment. Two social parameters of importance, namely eye gaze and 

social distance, are systematically varied to analyze the response of the participant. 

This chapter describes the design and development of a virtual environment 

system for social interaction that is capable of systematic manipulation of various design 

parameters that are important for the development of virtual social peers. We describe the 

socialization and expressivity of the VR characters. The VR system is formulated to 

present realistic social communication tasks to children with ASD, and the children's 

affective response during the tasks are monitored through physiological signals and 

observations from a clinician. This system is capable of systematically manipulating 

specific aspects of social communication to more fully understand how to design virtual 

peers for use in technology-assisted intervention for children with ASD.  
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Task Design 

For ASD intervention, VR is often effectively experienced on a desktop system 

using standard computer input devices (Parsons and Mitchell, 2002). The focus of this 

work is on desktop VR applications, chosen over more immersive technologies because it 

is more accessible, affordable, and less susceptible to "cybersickness" problems (nausea, 

headaches, dizziness) potentially associated with head-mounted devices (Cobb et al., 

1999). Therefore, users view the VR environment on a computer monitor from the first-

person perspective. Realistic VR scenarios are created for interaction with virtual social 

peers (i.e., expressive humanoid avatars). Vizard (worldviz.com), a commercially 

available VR design package, is employed to develop the environments. Within the 

controllable VR environment, components of the interaction are systematically 

manipulated to allow users to explore different social compositions. The avatars can 

make direct and averted eye contact. They can converse by matching their mouth 

movements to recorded sound files. Open-ended interaction between a participant 

actively speaking and an avatar interpreting and responding to the speech is not feasible 

in the current system design as it is a computationally intractable problem. Instead the 

participant responds to the avatars using a keypad to select from transparent text boxes 

superimposed in the corner of the VR scene.  

 

Social Parameters 

Eye gaze and social distance, the social parameters of interest, are organized in a 

4x2 experimental design, which makes possible eight distinct situations. These 

parameters were chosen because they play significant roles in social communication and 
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interaction (Bancroft, 1995), and manipulation of these factors may elicit variations in 

affective reactions (Argyle and Dean, 1965) and physiological responses (Groden et al., 

2005). Each situation is represented three times, which creates 24 trials in the experiment, 

following a Latin Square design to balance for sequencing and order effects (Keppel, 

1991). Each trial of an experiment session includes one avatar for one-on-one interaction 

with the participant. Participants are asked to engage in an interactive social task in the 

virtual environment. The specific task is modified such that the social communication 

parameters can be repeatedly explored while sustaining engagement. In each trial, 

participants are instructed to watch and listen as the virtual peer tells a 2-min story. The 

stories are written in first-person. Thus, the task can be likened to having different people 

introduce themselves to the user, which is comparable to research on social anxiety and 

social conventions (Argyle and Dean, 1965; Schneiderman and Ewens, 1971; Sommer, 

1962). Other social parameters, such as facial expression and vocal tone are kept as 

neutral as possible. However, we also attempt to make the task interesting enough so that 

participants do not become excessively detached based on habituation or dull content.  

The eye gaze parameter dictates the percentage of time an avatar looks at the 

participant (i.e., staring straight out of the computer monitor). Four types of eye gaze are 

examined. These are defined as "straight," "averted," "normal," and "flip of normal." 

Straight gaze means looking straight ahead for the duration of the story (i.e., for the entire 

trial). Averted gaze means the avatar never attempts to make direct eye contact with the 

participant, but instead alternates between looking to the left, right, and up. Based on 

social psychology literature from experimental observations of typical humans (Argyle 

and Cook, 1976) and algorithms adopted by the artificial intelligence community to 
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create realistic virtual characters (Colburn et al., 2000; Garau et al., 2001), normal eye 

gaze is defined as a mix of straight and averted gaze. A person displays varying mixes of 

direct and averted eye contact depending on if the person is speaking or listening during 

face-to-face conversations. Since the virtual peer in the VR environment is speaking, we 

use the gaze definitions for a person speaking, which is approximately 30% straight gaze 

and 70% averted gaze (Argyle and Cook, 1976; Colburn et al., 2000). Research 

represents averted gaze as looking more than 10° away from center in evenly-distributed, 

randomly-selected directions (Garau et al., 2001; Jenkins et al., 2006). Therefore, our 

averted gaze is an even distribution (33.3% each) of gazing left, right, and up more than 

10° from center. Flip gaze is defined as the flip of normal, which means looking straight 

approximately 70% of the time and averted 30% of the time, which is indicative of a 

person's gaze while listening. 

The social distance parameter is characterized by the distance between the avatar 

and the user. Two types of social distance, termed "invasive" and "decorum," are 

examined. In the VR environment, distance is simulated but can be appropriately 

represented to the view of the participant. For invasive distance, the virtual peer stands 

approximately 1.5 ft. from the main view of the scene. This social distance has been 

characterized as intimate space not used for meeting people for the first time or for 

having casual conversations with friends (Hall, 1955). A distance of 1.5 ft. apart has been 

investigated by several research groups in experiments with similar experimental setups 

to ours in which two people are specifically positioned while one introduces 

himself/herself to the other and discusses a personal topic for approximately 2 min 

(Argyle and Dean, 1965; Schneiderman and Ewens, 1971; Sommer, 1962), and this 



 68 

invasive distance is characterized by eliciting uncomfortable feelings and attempts to 

increase the distance to achieve a social equilibrium consistent with comfortable social 

interaction (Argyle and Dean, 1965). Decorum distance means the avatar stands 

approximately 4.5 ft. from the main view of the scene. This social distance is consistent 

with conversations when meeting a new person or a casual friend (Hall, 1966), and 

research indicates this distance results in a more comfortable conversation experience 

than the invasive distance (Argyle and Dean, 1965). Using Vizard software we project 

virtual social peers who display different eye gaze patterns at different distances; two 

examples are shown in Figure 4.1. 

 

Humanoid Avatars 

The virtual social peers have a fixed male or female body, but Dr. Jeremy 

Bailenson, director of the Virtual Human Interaction Lab at Stanford University, 

provided a set of distinct humanoid avatar heads for use in this work. The set of 26 heads 

was created from front and side 2D photographs of college-age students. Using 

3DMeNow software (biovirtual.com), the photos were formed into 3D heads that can be 

used in Vizard. Even though Bailenson's avatar heads are slightly older than the 

participants recruited for this study, they are used because of the following advantages: 

(i) open accessibility, (ii) age range close to our participant pool's peers, (iii) and the 

authentic facial features (e.g., variations in skin complexion, brow line, nose dimensions, 

etc.) allow the interaction to be interpreted as realistically as possible. 
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Figure 4.1 At top an avatar displays straight gaze at an invasive distance, while on bottom an avatar stands 
at a decorum distance and looks to her left in an averted gaze. 

 

The stories the virtual peers share are adapted from DIBELS (Dynamic Indicators 

of Basic Early Literacy Skills; dibels.uoregon.edu/measures/) reading assessments. These 

short readings are offered nationwide for internal educational use but may not be resold 

or distributed on a for-profit basis. The University of Oregon Center on Teaching and 

Learning encourages the use of these materials as long as they are not used to coach 

elementary school children before a reading assessment. The assessments are written on 
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topics such as geographical locations, weather phenomena, and intriguing occupations. 

The readings from fifth grade were chosen based on length and because this grade level 

corresponds to vocabulary tests used in the Chapter II experiments in the design of an 

easy-to-medium level of the Anagrams game used with a similar recruitment pool. In 

each trial of the experiment, an avatar narrates one of these first-person stories to the 

user. The voices were gathered from teenagers and college-age students from the regional 

area. Their ages (range = 13-22 years, mean = 18.5 yrs, SD = 2.3 yrs) are similar to the 

age of people used for the avatar heads and our participant pool. 

 

Social Interaction 

The interaction involves the virtual social peer telling a story while a participant 

listens. At the end of the story, the avatar asks the participant a question about the story. 

The questions are designed to facilitate interaction and to serve as a possible objective 

measure of engagement. The participant is not aware of the exact question before the 

story begins so that he/she engages in the task and is not focused on listening to one 

specific part of the discourse. The questions are intended to be easy to answer correctly if 

the participant listened to the story. Near the beginning of the first experiment session, 

the participant takes part in two demonstrations of the process of the VR task; therefore, 

any difficulty over correctly answering the questions that could be related to not 

understanding the process of the task is dealt with prior to starting the experiment and 

collecting data. Each question is accompanied by three possible answer choices (see 

Figure 4.2). The correct choice is spoken at least five times during the story, which is 

sufficient for the information to be relayed (Jonides et al., 2008), and the incorrect  
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Figure 4.2 Example question at the end of a story 
 

choices are never spoken in the story. For example, the story preceding the question 

shown in Figure 4.2 is about a bus breaking down on the way to a school picnic. At the 

end of the story the avatar asks, "What kind of vehicle did my classmates and I travel in?" 

The story includes the line "...a car appeared at the top of a hill...;" therefore, the offered 

choices to the question (A. A van, B. A bus, C. A train) do not include "car" as an option. 

We expect that a participant who engages in the task would achieve near to or complete 

100% accuracy on the questions; and consequently, a severely low percentage of correct 

answers would indicate a lack of engagement with the task. 

 

System Refinement 

Efforts were made to minimize reactions due solely to viewing a virtual peer by 

choosing the 10 most-neutral avatar heads based on a survey of 20 students. Therefore, 

reactions during the experiment could be reasonably expected to be related to change in 

eye gaze and/or social distance and not due to viewing the avatar alone. Participants for 
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the avatar head survey were recruited from undergraduate engineering and psychology 

courses at Vanderbilt University. Twenty (10 male) students completed the survey. These 

students were instructed to visit a webpage to complete a survey on their impressions of 

the 26 avatars (see Figure 4.3). 

Participants were asked to rate each avatar on four questions. Two questions were 

designed to measure elicited reactions from viewing the avatars (Q1 and Q2), and two 

were designed to determine participants' perceptions of each avatar's display of emotion 

(Q3 and Q4). Following descriptive terms from Lang et al. (1999), participants were 

asked to rate how they felt when looking at each avatar on a 5-point scale of valence and 

arousal. To gauge affective reactions to images, valence and arousal are important 

measures to consider (Bradley, 1994). Participants were also asked two questions about 

what emotion the avatar was conveying (Ekman, 1992; Frijda, 1986). 

 

Q1, Valence:  

When looking at this avatar, I feel... 

unhappy, happy, 

annoyed, neutral pleased,  

despaired hopeful 

 ○ ○ ○ ○ ○ 

 

 

Q2, Arousal:  

When looking at this avatar, I feel... 

calm, excited,  

sleepy, neutral wide-awake,  

unaroused aroused 

 ○ ○ ○ ○ ○ 
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F074 M304 M097 F232 

    

F619 M456 F480 M301 

    

F273 M289 F518 M309 

    

F216 F209 M140 F410 

    

M553 M228 M745 F108 

    

F272 F075 M008 M684 

  

  

M327 F183    
Figure 4.3 Screenshots and IDs of all 26 avatar heads atop the fixed male or female bodies are shown in the 
random order viewed by participant 1 of the survey. 
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Q3, Emotion: 

Do you feel that this avatar is expressing a specific emotion 

or no emotion/neutral? 

○ a specific emotion 

○ no emotion/neutral 

 

 

Q4, Degree of Chosen Emotion:  

If you had to choose, which emotion would you say this 

avatar is expressing? Please indicate to what degree you 

would say this avatar is expressing your chosen emotion. 

(Make only one mark.) 

 Low  Medium  High 

anger ○ ○ ○ ○ ○ 

disgust ○ ○ ○ ○ ○ 

fear ○ ○ ○ ○ ○ 

happiness ○ ○ ○ ○ ○ 

sadness ○ ○ ○ ○ ○ 

surprise ○ ○ ○ ○ ○ 

 

Each participant was presented with all 26 avatar heads (see Figure 4.3) in a 

randomized order. After participants answered evaluation questions on one avatar head, 

they were presented with the next avatar head. This process continued until they 

evaluated all 26 avatar heads. 

 

Survey Analysis 

The survey ratings were collected from 20 students to determine the most-neutral 

avatar heads. The average value of the valence and arousal ratings, on a [-2,2] scale, were 

calculated from Q1 and Q2, respectively. The scale had a neutral point at 0, which was 

our desired point of reference. Therefore, it was desirable to identify the avatar heads 
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with ratings closest to 0,0 on the valence vs. arousal affective space. The mean value of 

the valence and arousal ratings were used to determine the Euclidean distance from the 

0,0 origin in the valence-arousal affective space. The Euclidean distance measurement 

was divided by 2 2  to normalize the values to a [0,1] scale. 

 

 

2 2( 0) ( 0)
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− + −
=  (4.1) 

 

Eqn. 4.1 shows the normalized Euclidean distance calculation, where i represents each 

individual avatar head (26 total), Vmean,i is the average valence rating for each avatar head 

from Q1, Amean,i is the average valence rating for each avatar head from Q2, and Enorm,i is 

the normalized Euclidean distance from 0,0 in the valence-arousal affective space. 

Ratings from Q3 and Q4 were also considered in the overall rating of the avatar heads. 

For Q3, the portion of respondents answering "a specific emotion" was calculated for 

each avatar head. When analyzing results for Q4, we did not discriminate on which 

emotion was chosen (e.g., happiness, anger, etc.), because we were most concerned with 

the emotion being as minimally expressed as possible. Ratings from Q4 on a [0,4] scale 

were divided by 4 to achieve a [0,1] scale.   

For all three measurements, a lower score reflects our desired outcome. Therefore, 

the most-neutral avatar heads were considered as having (i) the shortest distance away 

from 0,0 in the valence-arousal space, (ii) the least portion of respondents answering "a 

specific emotion" to Q3, and (iii) the lowest degree of emotion expression to Q4. After 

normalization, the three measurements were all on a [0,1] scale. Thus, we combined these 
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measurements into a weighted equation for an overall rating of the avatar heads. A strong 

emphasis was placed on the valence and arousal ratings, because these have shown to be 

a reliable assessment of affect and proven to sufficiently cover the affective space 

(Bradley, 1994). In this survey we also took into account, but to a lesser extent, whether 

the avatar heads were perceived as expressing little to no emotion/neutral emotion. The 

combined equation used to rate the avatar heads is as follows, 

 

 ( ) ( ) ( ), 3, 4,0.8 0.1 0.1i norm i i iR E Q Q= + +  (4.2) 

 

where Ri is the overall rating of avatar head i, Enorm,i is the normalized Euclidean distance 

from 0,0 in the valence-arousal affective space, Q3,i is the average rating for responses to 

Q3 on the survey, and Q4,i is the average rating for responses to Q4 on the survey (see 

Table 4.1).  

 

Survey Results 

This is the first time these avatar heads and expressions have been tested to 

determine if Vizard's facial morph expressions are interpreted by viewers as intended. 

The "neutral" morph was used in the survey and for the virtual social peers in the VR 

system. Vizard supplies other emotion morphs (e.g., "happy," "surprise," etc.) for use 

with the avatar heads. Although Vizard uses common methods for defining the morphs 

(i.e., furrowed brow for "angry" morph, elevated brow and slightly open mouth for 

"surprise" morph, etc.)(Ekman, 1993; Frijda, 1986), Vizard has not tested user perception 

of the morphs to establish if the morphs convey the designed emotion to the viewer.  
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Table 4.1 Ratings from the survey are listed for measurements of valence, arousal, emotion, and degree of 
chosen emotion. The most-neutral avatar heads (shaded in light gray) have the lowest combined weighted 
scores for columns 4-6 of the table (see Eqn. 4.2). 
 

Mean Survey Measurement  

across Respondents (N=20) 
Screenshot 

Q1
a Q2

b Eqn. 4.1c  Q3
d Q4

e Eqn. 4.2f 

 
F074 -0.80 -0.65 0.36 0.45 0.34 0.37 

 
M304 -0.25 -0.05 0.09 0.20 0.10 0.10 

 
M097 -0.50 -0.15 0.18 0.60 0.28 0.24 

 
F232 -0.40 -0.60 0.25 0.25 0.10 0.24 

 
F619 -0.75 0.20 0.27 0.60 0.25 0.30 

 
M456 -0.20 -0.20 0.10 0.15 0.10 0.11 

 
F480 -0.15 -0.10 0.06 0.30 0.18 0.10 

aQ1: Mean valance rating on a [-2,2] scale 
bQ2: Mean arousal rating on a [-2,2] scale 
cEqn. 4.1: Euclidean distance from neutral origin 0,0 on valence vs. arousal affective space, divided by 

2 2  to achieve a [0,1] scale  
dQ3: Portion of respondents that answered "a specific emotion" to Q3  
eQ4: Mean degree of expression of chosen emotion, original [0,4] scale divided by 4 to achieve a [0,1] scale 
fEqn. 4.2: Weighted sum of Eqn. 4.1, Q3, and Q4 
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Table 4.1 (continued) Ratings from the survey are listed for measurements of valence, arousal, emotion, 
and degree of chosen emotion. The most-neutral avatar heads (shaded in light gray) have the lowest 
combined weighted scores for columns 4-6 of the table (see Eqn. 4.2). 
 

Mean Survey Measurement 

across Respondents (N=20) 
Screenshot 

Q1
a Q2

b Eqn. 4.1c Q3
d Q4

e Eqn. 4.2f 

 
M301 -0.50 0.00 0.18 0.20 0.16 0.18 

 
F273 -0.35 0.05 0.13 0.60 0.25 0.19 

 
M289 -0.75 0.40 0.30 0.80 0.38 0.36 

 
F518 -0.70 0.05 0.25 0.80 0.38 0.32 

 
M309 -0.35 -0.50 0.22 0.35 0.11 0.22 

 
F216 -0.45 0.20 0.17 0.65 0.35 0.24 

 
F209 -0.55 -0.05 0.20 0.55 0.23 0.23 

aQ1: Mean valance rating on a [-2,2] scale 
bQ2: Mean arousal rating on a [-2,2] scale 
cEqn. 4.1: Euclidean distance from neutral origin 0,0 on valence vs. arousal affective space, divided by 

2 2  to achieve a [0,1] scale  
dQ3: Portion of respondents that answered "a specific emotion" to Q3  
eQ4: Mean degree of expression of chosen emotion, original [0,4] scale divided by 4 to achieve a [0,1] scale 
fEqn. 4.2: Weighted sum of Eqn. 4.1, Q3, and Q4 
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Table 4.1 (continued) Ratings from the survey are listed for measurements of valence, arousal, emotion, 
and degree of chosen emotion. The most-neutral avatar heads (shaded in light gray) have the lowest 
combined weighted scores for columns 4-6 of the table (see Eqn. 4.2). 
 

Mean Survey Measurement 

across Respondents (N=20) 
Screenshot 

Q1
a Q2

b Eqn. 4.1c Q3
d Q4

e Eqn. 4.2f 

 
M140 -0.40 -0.30 0.18 0.35 0.15 0.19

 
F410 0.10 0.10 0.05 0.40 0.24 0.10

 
M553 -0.30 -0.10 0.11 0.50 0.16 0.16

 
M228 -0.85 -0.40 0.33 0.45 0.29 0.34

 
M745 0.20 0.25 0.11 0.65 0.38 0.19 

 
F108 0.20 0.10 0.08 0.25 0.10 0.10 

 
F272 -0.30 -0.20 0.13 0.25 0.18 0.14 

aQ1: Mean valance rating on a [-2,2] scale 
bQ2: Mean arousal rating on a [-2,2] scale 
cEqn. 4.1: Euclidean distance from neutral origin 0,0 on valence vs. arousal affective space, divided by 

2 2  to achieve a [0,1] scale  
dQ3: Portion of respondents that answered "a specific emotion" to Q3  
eQ4: Mean degree of expression of chosen emotion, original [0,4] scale divided by 4 to achieve a [0,1] scale 
fEqn. 4.2: Weighted sum of Eqn. 4.1, Q3, and Q4 
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Table 4.1 (continued) Ratings from the survey are listed for measurements of valence, arousal, emotion, 
and degree of chosen emotion. The most-neutral avatar heads (shaded in light gray) have the lowest 
combined weighted scores for columns 4-6 of the table (see Eqn. 4.2). 
 

Mean Survey Measurement 

across Respondents (N=20) 
Screenshot 

Q1
a Q2

b Eqn. 4.1c Q3
d Q4

e Eqn. 4.2f 

 
F075 -0.15 0.00 0.05 0.55 0.16 0.11 

 
M008 0.10 0.15 0.06 0.60 0.28 0.14 

 
M684 -0.75 -0.65 0.35 0.45 0.33 0.36 

 
M327 -0.15 -0.20 0.09 0.60 0.28 0.16 

 
F183 -0.50 -0.20 0.19 0.70 0.23 0.24 

aQ1: Mean valance rating on a [-2,2] scale 
bQ2: Mean arousal rating on a [-2,2] scale 
cEqn. 4.1: Euclidean distance from neutral origin 0,0 on valence vs. arousal affective space, divided by 

2 2  to achieve a [0,1] scale  
dQ3: Portion of respondents that answered "a specific emotion" to Q3  
eQ4: Mean degree of expression of chosen emotion, original [0,4] scale divided by 4 to achieve a [0,1] scale 
fEqn. 4.2: Weighted sum of Eqn. 4.1, Q3, and Q4 

 

The undergraduate students who completed the avatar head survey ranged in age 

from 18-21 yrs with a mean = 19.2 and SD = 0.9. The results, shown in Table 4.2, are 

sorted in ascending order from lowest to highest neutral rating. The 10 avatar heads with 

the lowest scores are used for the virtual social peers in the VR experiments. The four 

lowest female avatar heads and four lowest male avatar heads were used in the eight  
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Table 4.2 Shown are the 10 avatar heads with the most-neutral ratings from the survey. These avatar heads 
are used for the virtual social peers in the VR experiments. Also listed are their assigned experiment 
conditions (EC). The EC's use the following abbreviations: for social distance, Invasive (I) and Decorum 
(D); for eye gaze, Straight (S), Averted (A), Normal (N), and Flip (F) of normal. 
 

Mean Survey Measurement across Respondents (N=20) 
EC Screenshot 

Q1
a Q2

b Eqn. 4.1c  Q3
d Q4

e Eqn. 4.2f 

 

IN 

F108 0.20 0.10 0.08 0.25 0.10 0.10 

 

DA 

F480 -0.15 -0.10 0.06 0.30 0.18 0.10 

 

DS 

M304 -0.25 -0.05 0.09 0.20 0.10 0.10 

 

DF 

F410 0.10 0.10 0.05 0.40 0.24 0.10 

 

IF 

M456 -0.20 -0.20 0.10 0.15 0.10 0.11 

 

IS 

F075 -0.15 0.00 0.05 0.55 0.16 0.11 

 

IA 

M008 0.10 0.15 0.06 0.60 0.28 0.14 

 

IA 
Demo 

F272 -0.30 -0.20 0.13 0.25 0.18 0.14 

 

DN 

M553 -0.30 -0.10 0.11 0.50 0.16 0.16 

 

 
DN 
Demo 

M327 -0.15 -0.20 0.09 0.60 0.28 0.16 
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experiment conditions. The female and male avatar heads with the highest neutral rating 

of the bottom 10 are used for the demonstration of the VR interaction during session one 

of the experiment. Each of the eight experiment conditions are shown three times, 

creating 24 trials in the experiment, which are divided over two sessions on two different 

days for each participant. 

 

Experiment Protocol 

 

Participant Recruitment 

Participants are recruited through existing clinical and research programs of the 

Vanderbilt Kennedy Center’s Treatment and Research Institute for Autism Spectrum 

Disorders and Vanderbilt University Medical Center. Our protocol calls for enlisting 

children with ASD age 13-18 years old and an age- and verbal-ability-matched control 

group of typically-developing (TD) children. ASD participants must have documentation 

of their diagnosis on the autism spectrum, either Autism Spectrum Disorder, Autistic 

Disorder, or Asperger's Syndrome, according to their medical records. For all 

participants, the Social Responsiveness Scale (SRS; Constantino, 2002) profile sheet and 

Social Communication Questionnaire (SCQ; Rutter et al., 2003a) are completed by a 

participant's parent/caregiver before the first session to provide an index of current 

functioning and ASD symptom profiles. Selection is also based on a receptive vocabulary 

standard score of 80 or above on the PPVT-III. The PPVT-III (Dunn and Dunn, 1997) 

was used as an inclusion criterion in the research covered in Chapters II and III. The 

chosen age range and intelligence testing cutoff represents a method of partial control for 
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the reading skill requirements of the task and ensures that participants are able to perform 

the interaction tasks. All written components of the current design are accompanied by 

audio readings, thus alleviating some of the language requirements, which could open the 

prospect of including younger participants or those with less language and/or reading 

skills in future studies. 

 

Procedure 

The commitment required of participants is a total of two sessions (i.e., 

approximately 2.5 hrs). The first session runs approximately 1.5 hrs, due to gathering 

consent and assent, administering the PPVT-III, and running demonstrations of the social 

task. The second session lasts about 1 hr. For each completed session, a participant 

receives compensation in the form of gift cards. 

The equipment setup includes a computer dedicated to the social interaction tasks 

where the participants interacts with the VR environment, Biopac biological feedback 

equipment that collects physiological signals of the participant, and another PC dedicated 

to acquiring signals from the Biopac system (see Figure 4.4). The Vizard Virtual Reality 

Toolkit ran on a computer (C1) connected to the Biopac system via a parallel port to 

transmit task-related event-markers (e.g., start and stop of a trial). The physiological 

signals along with the event markers were acquired by the Biopac system and sent over 

an Ethernet link to the Biopac computer (C2). We also video recorded the sessions to 

cross-reference observations made during the experiment. The clinical observer/therapist 

and a participant's parent/caregiver watched the participant from the view of the video 

camera, whose signal was routed to a television hidden from the view of the participant.   
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Figure 4.4 Equipment setup for collecting physiological data and subjective reports in the VR social tasks 
 

The signal from the participant’s computer screen where the task was presented was 

routed to a separate computer monitor (M2) so that the clinical observer and parent could 

view how the task progressed.   

Each participant engages in two VR-based social interaction sessions on two 

different days. During the first session, the participants are told about the experiment 

purpose, the sensors, and the VR tasks. After the physiological sensors are placed, the 

participants are asked to relax quietly for three minutes while a resting/baseline recording 

of physiological signals is taken. The first session includes two demonstrations of the VR 

task, the resting/baseline physiological measurement, and a set of eight 2-min trials with 

different virtual social peers. The second session consists of the resting/baseline 

physiological measurement and the remaining 16 trials of social interaction tasks. After 
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each trial, the participant answers the story question and self report questions on affective 

states. The clinical observer and parent/caregiver also rate what they think the level (i.e., 

low or high) of the affective states of anxiety, engagement, and enjoyment/liking was for 

the participant during the finished trial.  

 

Results 

After completing sessions with a few participants, one pair was pulled out for 

initial data analysis. Results from two male children, one with ASD (A1) and one TD 

(T1), are presented in this section. Their characteristics are shown in Table 4.3. A1 had a 

confirmed diagnosis using DSM-IV criteria (American Psychiatric Association, 2000) as 

well as scores from ADOS-G, ADI-R, SRS, and SCQ assessments. The total score, 

combining Communication and Social Interaction scores, on the ADOS-G (Autism 

Diagnostic Observation Schedule-Generic; Lord et al., 2000) has a cutoff for autism 

spectrum of 7 and a cutoff for autism of 10. The total score, combining Social Interaction, 

Communication, Repetitive Activities, and Stereotyped Early Development scores, on the 

ADI-R (Autism Diagnostic Interview-Revised; Rutter et al., 2003b) has a cutoff for 

autism spectrum of 22. A1 had a total score on the ADOS-G and ADI-R of 9 and 63, 

respectively, and scored above ASD cutoffs on the SRS and SCQ. T1's scores on the SRS  

 

Table 4.3 Participant characteristics for initial analysis of system. The participants were matched by gender, 
age, and PPVT standard score. 

 

Participant ID Age (years) PPVT
g
 SRS

h
 SCQ

i
 

A1 (male) 17.333 119 78 30 

T1 (male) 17.667 118 37 3 
gPeabody Picture Vocabulary Test-3rd edition Standard score (Dunn and Dunn, 1997) 
hSocial Responsiveness Scale Total T-score (Constantino, 2002) 
iSocial Communication Questionnaire Total score (Rutter et al., 2003a) 
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and SCQ of 37 and 3, respectively, did not meet cutoffs for ASD. Both participants 

completed two sessions with the VR system. Percent accuracy on correctly answering the 

story questions revealed that the participants attended to the task; A1 and T1 achieved 

100% accuracy on the story questions.  

Evidence of overt behaviors as well as more subtle reactions to the different 

experiment conditions was demonstrated. Participant A1 showed considerable reactions 

to the virtual social peers standing at the invasive distance or using increased amounts of 

eye contact by temporarily leaning far back from or looking away from the monitor when 

they appeared on screen. In post-interview, his mother was surprised to observe such a 

stark reaction to the change in stimuli. Although accustomed to withdrawing behavior in 

complex, overwhelming social situations, the mother agreed that the story content and 

avatars' facial expressions were neutral and was therefore perplexed to see such a reaction 

from her child to the change in distance or eye gaze alone. These reactions and reflections 

highlight an advantage that systems like the virtual environment system for social 

interaction described here can provide to autism intervention. Because such technology 

can focus on each element of an interaction, minimizing distractions, and can do so with 

realistic representations of real-world settings; the VR system can systematically 

manipulate each element of an interaction and observe the effect. Therefore, the VR 

system can go beyond identifying a broad scope of situations that are affect-inducing. 

This system can pinpoint what components of a situation bring about an affective 

reaction to identify which specific component could be a vulnerability during social 

interaction.  
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The results of the values of Kappa (K) statistics, averaged across the three 

affective states showed that among the three possible reporter pairs for A1 (Therapist-

Parent (T/P), Therapist-Child (T/C), and Parent-Child (P/C)) the agreement between the 

therapist and A1's parent (T/P) had the largest value (mean K-statistic for A1, T/P = 0.34, 

T/C = 0.22, P/C = 0.27). T1's parent was unable to participant in the experiment sessions, 

but the T/C K-statistic for T1 was also small (mean K-statistic for T1, T/C = 0.18). The 

same therapist/clinical observer was involved in all of the experiment sessions, which 

aided in establishing a consistent reporter. Based on previous work from Chapters II and 

III on reporter reliability and consistency, results from K analysis of current results, 

previous observations of participants reporting constant ratings even as tasks varied, the 

common use of an observer or parent for rating emotions of children (Eisenberg et al., 

1995), and the possible unreliability of self-reports on emotions from adolescents with an 

without ASD (Barkley, 1998; Hill et al., 2004), as a experiment design methodology 

reports from the therapist were used whenever relating the objective physiological data to 

the children’s affective states.  

The overt reactions reflected ratings on affective states from the clinical observer 

and the subtle variations in physiological signals during the experiment trials. The 

correlation between the physiological features and subjective ratings for A1 and T1 are 

listed in Table 4.4. A1 and T1 showed significant correlations in their variations of 

physiological reactions versus variations in affective states. Therefore, the VR system 

shows it can elicit variations in both affective ratings and physiological signals to 

changes in social experimental stimuli. The findings are similar to observations in social 

anxiety research of typical adults in real-world settings (Argyle and Dean, 1965; 
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Schneiderman and Ewens, 1971; Sommer, 1962) but have now been examined with 

observations and physiological signals for children in a virtual interaction. This is the first 

step towards examining how children react to and accept the virtual social peers as 

realistic to real-world settings. Establishing realistic interactions builds a basis for 

creating more complex settings for social communication intervention. Further 

examination of reactions to the social stimuli from an expanded group of participants is 

presented in Chapter V.  

 

Discussion 

Social communication and social information processing are thought to represent 

core domains of impairment in children with ASD. This research may enhance our ability 

to understand the specific vulnerabilities in social communication of children with ASD 

as well as provide comparisons to a TD population. This system can identify specific 

social communication deficits for individual children and may determine patterns of 

physiological response across participants. Investigation using virtual social peers is not 

only cost and time efficient, it is also necessary to understand the complexity of social 

tasks. Systematic manipulation of facial expressions, eye gaze, social distance, vocal 

tone, and gestures need to be studied with virtual social peers where such manipulation is 

easy to perform, repeatable, and highly controllable. Questions on social communication 

can be exhaustively explored using controlled studies in virtual environments with virtual 

social peers interacting with the target population. Studies like the one presented here will 

provide insight on how such virtual peers display intentions, how they should interact, 

and how their interactions with children with ASD should be regulated. In that sense, this  



 89 

Table 4.4 Individual analysis of significant correlations between affective state ratings and physiological 
features for each participant (A1 and T1). Reports on affective states across all 24 experiment trials were 
correlated with the 51 extracted physiological features from the raw signals. The physiological features are 
the same as listed in Table 2.1. Only features with significant correlation (p < 0.05) are shown. The sign of 
the correlation defines a direct/positive or inverse/negative relationship. 
 

Participant Affective State 
Physiological 
Feature 

Pearson 
Correlation, r 

Significance, 
p-value 

IBI_ECGstd 0.5893 0.0024 

PTTstd 0.4377 0.0325 

D3_HSstd 0.6273 0.0010 

D4_HSstd 0.5707 0.0036 

Tonicmean -0.4387 0.0320 

Tonicslope 0.4289 0.0365 

Corstd 0.5835 0.0028 

Blink_Peakmean 0.6156 0.0014 

Blinkstd 0.4819 0.0171 

Anxiety 

Trapstd 0.4659 0.0218 

IBI_ECGstd -0.6589 0.0005 

IBI_PPGstd -0.5715 0.0035 

PTTstd -0.5798 0.0030 

D3_HSstd -0.6798 0.0003 

D4_HSstd -0.7154 8.5223e-5 

Tonicmean 0.5741 0.0034 

Tonicslope -0.4996 0.0129 

Corstd -0.5692 0.0037 

Blink_Peakmean -0.6938 0.0002 

Blinkstd -0.4730 0.0196 

Trapstd -0.4828 0.0169 

Enjoyment 

Tempmean 0.5204 0.0091 

Para -0.4421 0.0306 

IBI_ECGstd -0.6803 0.0003 

IBI_PPGstd -0.4845 0.0164 

PTTstd -0.4335 0.0343 

D3_HSstd -0.5952 0.0022 

D4_HSstd -0.5995 0.0020 

Tonicmean 0.5003 0.0128 

Tonicslope -0.4256 0.0381 

Corstd -0.6586 0.0005 

Blink_Peakmean -0.6000 0.0019 

Blinkstd -0.5044 0.0120 

Zygstd -0.4111 0.0460 

Trapstd -0.4589 0.0241 

A1 

Engagement 

Tempmean 0.4313 0.0354 

Para 0.4938 0.0142 

IBI_ECGstd 0.6111 0.0015 

PPG_Peakmean -0.4541 0.0258 

IBI_PPGmean -0.5547 0.0049 

PTTstd 0.4136 0.0445 

PEPstd 0.4672 0.0213 

IBI_ICGstd 0.6072 0.0017 

Trapstd 0.4768 0.0185 

Tempmean -0.4344 0.0339 

T1 Anxiety 

Tempstd 0.4492 0.0277 
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Table 4.4 (continued) Individual analysis of significant correlations between affective state ratings and 
physiological features for each participant (A1 and T1). Reports on affective states across all 24 experiment 
trials were correlated with the 51 extracted physiological features from the raw signals. The physiological 
features are the same as listed in Table 2.1. Only features with significant correlation (p < 0.05) are shown. 
The sign of the correlation defines a direct/positive or inverse/negative relationship. 
 

Participant Affective State 
Physiological 
Feature 

Pearson 
Correlation, r 

Significance, 
p-value 

IBI_ECGstd -0.4889 0.0153 

IBI_ICGstd -0.4917 0.0147 

Trapstd -0.4900 0.0151 

Enjoyment 

Tempstd -0.4238 0.0390 

IBI_ECGstd -0.6419 0.0007 

PEPstd -0.5314 0.0075 

IBI_ICGstd -0.6055 0.0017 

Corstd -0.4390 0.0319 

Zygstd -0.4146 0.0440 

T1 

Engagement 

Trapstd -0.6060 0.0017 

 

work is one of the first that presents a design platform for virtual peers for specific 

applications that is analogous to well-adopted practices in the manufacturing industry 

where computer-aided design inevitably precedes any manufacturing. The design of 

integrating VR social interaction tasks and biofeedback sensor technology is novel yet 

relevant to the current priorities of technology-assisted ASD intervention. With further 

development to equip the system with real-time affect recognition capabilities, an autism 

intervention paradigm could use the system in the future for adaptively responding to the 

effects of elements of social interaction that lead to struggles in social communication for 

children with ASD.  
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CHAPTER V 

 

PHYSIOLOGICAL ANALYSIS OF AFFECTIVE REACTIONS DURING 

SOCIAL INTERACTION 

 

Introduction 

A growing number of studies have been exploring the capability VR technologies 

to address the social communication deficits of children with ASD. Initial results indicate 

that VR holds promise as a potential alternative intervention approach with broad 

accessibility (Parsons and Mitchell, 2002). VR-based systems have demonstrated the 

advantages of this technology to facilitate children with ASD to learn social skills in 

designed tasks (Strickland et al., 1996). However, to date the capability of the VR 

technology has not been fully explored to examine the factors that lead to difficulties in 

social communication, which could be critical in designing an efficient intervention plan. 

VR paradigms may offer a way to combine the strengths from cognitive behavioral 

interventions as well as skills-based approaches (Parsons and Mitchell, 2002), while 

utilizing potential strengths for individuals with ASD (i.e., visual and auditory learning 

paradigms). A virtual world that allows for controllable complexity and minimized 

distractions may be less intimidating or confusing for children with ASD to interact with 

and hence models simplified but embodied social interaction (Moore et al., 2000; Standen 

and Brown, 2005). Since VR mimics real environments in terms of imagery and contexts, 

it may allow for efficient generalization of skills from the VR environment to the real 

world (Cromby et al., 1996). Furthermore, while changing and controlling environments 

is challenging during real-world interventions, VR possesses the advantage of being a 
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robust but flexible system that can reliably repeat as well as adaptively modify 

environments across and within contexts (Sherman and Craig, 2003).  

The primary objective of this chapter is to evaluate a VR-based social interaction 

system capable of objectively identifying specific communication aspects that induce an 

affective response in ASD and TD individuals by using a physiology-based approach. 

This research may identify significant differences in responses to elements of social 

interaction between the groups as well as within-group analysis and may enhance our 

ability to understand and tailor interventions to the specific vulnerabilities in social 

communication of children with ASD. The results could provide valuable information to 

caregivers and clinicians about the specific affect-eliciting aspects of social 

communication such that this feedback could drive behavioral interventions that scaffold 

skills from basic levels of comfort. In the future, the system could be developed into an 

intervention tool for detecting and adaptively responding to the effects of components of 

social interaction that lead to struggles in social communication in children with ASD. 

The ability to detect the physiological processes that are a part of impairments in social 

communication may also prove important for understanding the physiological 

mechanisms that underlie the presumed core impairments associated with ASD 

themselves. 

This chapter describes an investigation into socially-driven VR interactions to 

guide future intervention of children with ASD. The VR environment monitors affective 

changes during social contexts for children with ASD and TD children. In particular, we 

study how the affective states of anxiety, engagement, and enjoyment/liking; measured 

by ratings from a clinical observer and a participant's physiological signals; vary with 
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respect to the variation of specific communication factors (e.g., social distance and eye 

contact) presented in the virtual environment. Finally, we discuss how our findings, 

regarding the interaction with the VR social avatars, define similarities and differences in 

responses between and within the two groups. 

 

Experimental Investigation 

 

Participants 

A group of 13 (10 male) children with ASD and a matched group of TD children 

age 13-18 years old participated in the VR experiment. Their characteristics are shown in 

Tables 5.1 and 5.2. The majority of male participants is reflective of the autism 

community, which has been found to have a male to female ratio of 4:1 (Ehlers and 

Gillberg, 1993). All ASD participants had a confirmed diagnosis from evaluations by a 

licensed clinical psychologist using DSM-IV criteria according to their medical records. 

Additionally, all but three participants in the ASD group met cutoffs for ASD according 

to ADOS and ADI-R assessments. P9, P10, and P12 did not have ADOS or ADI-R 

records; however, their scores on the SRS and SCQ questionnaires meet ASD cutoffs. 

None of the participants in the TD group met ASD cutoffs on the SRS or SCQ 

questionnaires.  

All 26 participants underwent the PPVT-III (Peabody Picture Vocabulary Test-3rd 

edition) to assess cognitive function (Dunn and Dunn, 1997). The PPVT-III is a measure 

of single-word receptive vocabulary that is often used as a proxy for IQ testing because 

of its high correlations with standardized tests such as the Wechsler Intelligence Scale for  
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Table 5.1 Participant Characteristics. The participants were matched by age and PPVT standard score as 
well as gender and handedness (see Table 5.2). No significant group difference was found for gender, age, 
handedness, and standard score on the PPVT. 

 

Participant  

(Gender) 

Age 

(years) 

PPVT
a
 

Standard 

score 

SRS
b
 

Total 

T-score 

SCQ
c
  

Total 

score 

ADOS-G
d
 

Total score  

(cutoff = 7) 

ADI-R
e
 

Total score  

(cutoff = 22) 

ASD       

P1 (Male) 16.500 97 63 17 9 49 

P2 (Male) 17.250 112 90 23 11 51 

P3 (Male) 13.000 133 73 17 7 31 

P4 (Male) 13.833 126 69 23 11 56 

P5 (Male) 17.333 119 78 30 9 63 

P6 (Male) 15.500 110 73 13 7 33 

P7 (Male) 16.167 98 65 18 10 44 

P8 (Female) 15.167 83 90 28 10 62 

P9 (Male) 15.083 92 87 20 – – 

P10 (Female) 18.583 102 87 14 – – 

P11 (Female) 18.083 95 90 31 13 68 

P12 (Male) 14.333 107 85 20 – – 

P13 (Male) 17.500 103 83 31 20 51 

Group  
Mean (SD) 

16.0 (1.7) 105.9 (14.0) 79.5 (9.9) 21.9 (6.3) 10.7 (3.7) 50.8 (12.3) 

TD       

P21 (Male) 15.833 124 42 4 – – 

P22 (Male) 17.333 110 36 2 – – 

P23 (Male) 13.167 119 40 6 – – 

P24 (Male) 13.333 103 53 2 – – 

P25 (Male) 17.667 118 37 3 – – 

P26 (Male) 13.917 124 40 1 – – 

P27 (Male) 14.833 128 47 1 – – 

P28 (Female) 15.417 101 46 8 – – 

P29 (Male) 15.583 117 38 0 – – 

P30 (Female) 18.167 100 38 1 – – 

P31 (Female) 16.167 102 52 1 – – 

P32 (Male) 14.083 135 36 5 – – 

P33 (Male) 17.167 97 40 9 – – 

Group  
Mean (SD) 

15.6 (1.7) 113.7 (12.3) 41.9 (5.8) 3.3 (2.9) – – 

t-value 0.66 1.50 11.84 9.62   

p-value ns ns <0.001 <0.001   

Exact 
p-value 

0.5175 0.1468 1.6500e-11* 1.0341e-9*   

aPeabody Picture Vocabulary Test-3rd edition (Dunn and Dunn, 1997) 
bSocial Responsiveness Scale (Constantino, 2002) 
cSocial Communication Questionnaire (Rutter et al., 2003a) 
dAutism Diagnostic Observation Scale-Generic: Module 3 or 4 depending upon subject’s developmental 
level (Lord et al., 2000) 
eAutism Diagnostic Interview-Revised (Rutter et al., 2003b) 
Significant group differences, *p<0.001. 
No significant group differences were found for the age or PPVT standard score variables (p>0.05 for all). 
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Table 5.2 Group frequencies. The participant groups were matched by gender and handedness as well as 
age and PPVT standard score (see Table 5.1). 
 

Group Gender Frequency 

Male/Female 

Handedness Frequency 

Right/Left  

ASD 10/3 12/1 

TD 10/3 12/1 

 

Children (Bee and Boyd, 2004). It provides standard scores with a mean of 100 and a 

standard deviation of 15, and the DSM-IV classifies full scale IQ’s above 70 as non-

retarded (American Psychiatric Association, 2000). Participants in this study obtained a 

standard score of 80 or above on the PPVT-III measure.  

The SRS (Social Responsiveness Scale) is a 65-item, 15-min. parent-report 

questionnaire designed to quantitatively measure the severity of autism-related 

symptoms. This measure provides an index of ASD-related social competence with 

questions related to social awareness, social information processing, capacity for 

reciprocal social communication, social anxiety/avoidance, and autistic preoccupations 

and traits. The SRS has been shown to correlate on the order of 0.7 with the ADI-R 

(Constantino et al., 2003). Behaviors and characteristics are rated on a 4-point scale that 

ranges from “Not True” to “Almost Always True.” The SRS generates a total T-score 

reflecting severity of social deficits in the autism spectrum, as well as five Treatment 

Subscales: Receptive, Cognitive, Expressive, and Motivational aspects of social behavior, 

and Autistic Preoccupations. The T-score categorizes measurements in the Normal Range 

(§59T), Mild to Moderate ASD Range (60T-75T), or Severe Range (¥76T) (Constantino, 

2002). All of our TD participants scored within the Normal Range. Five ASD participants 

ranked within the Mild or Moderate Range (P1, P3, P4, P6, and P7) with the remaining 

eight falling into the Severe Range (P2, P5, P8, P9, P10, P11, P12, and P13).  
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The SCQ (Social Communication Questionnaire) is a brief instrument for the 

valid screening or verification of ASD symptoms in children that has been developed 

from the critical items of the ADI (Autism Diagnostic Interview) and compiled into a 

parent report questionnaire (Rutter et al., 2003a). As in the ADI, these questions tap the 

three critical autism diagnostic domains of qualitative impairments in reciprocal social 

interaction, communication, and repetitive and stereotyped patterns of behavior. Among 

200 children and adolescents, domain scale scores of the SCQ were significantly 

correlated with corresponding scores derived from the full ADI (r = 0.55 to 0.71, p < 

0.005) (Berument et al., 1999). Analysis indicated that the SCQ was comparable to the 

ADI in discriminating ASD from non-ASD, autism vs. mental retardation, and autism vs. 

other aspects of ASD. A cutoff score of 13 is recommended to maximize valid 

ascertainment of cases of ASD (specificity) while minimizing errors of omission 

(sensitivity). The SCQ was designed for use with children over the age of four years with 

a mental age of at least two years. All ASD participants met ASD cutoffs on the SCQ 

while no participant in the TD group did. 

The ADOS-G (Autism Diagnostic Observation Schedule-Generic) is a 45-min. 

semi-structured standardized observational assessment of play, social interaction, and 

communicative skills that was designed as a diagnostic tool for identifying the presence 

of autism (Lord et al., 2000). It is organized into four modules, which are distinguished 

by their appropriateness for use with individuals functioning at different developmental 

levels, ranging from nonverbal children to highly fluent adults. Each module provides a 

set of behavioral ratings in five domains: Language and Communication, Reciprocal 

Social Interaction, Play or Imagination/Creativity, Stereotyped Behaviors and Restricted 
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Interests, and Other Abnormal Behaviors. The scoring algorithm provides cutoffs that can 

be used to discriminate between a diagnosis of autism, autism spectrum, or non-spectrum. 

Across all modules, inter-observer agreement for the algorithm score was 0.92, and the 

test-retest correlation was 0.82. Agreement about diagnostic classification (autism vs. 

autism spectrum vs. non-spectrum) ranged from 81%-93% (Lord et al., 2000). After 

coding ratings on the five domains, a total score on the two main components of 

Communication and Reciprocal Social Interaction equal to or above 7 would indicate 

autism spectrum, and a score of 10 or more would indicate autistic disorder.  

The ADI-R (Autism Diagnostic Interview-Revised) is a semi-structured, 

investigator-based interview for parents/caregivers that was developed for the purpose of 

diagnostic classification of individuals who may have autism or other pervasive 

developmental disorders (Rutter et al., 2003b). This interview covers areas of background 

and history, early development, acquisition and loss of skills, language and 

communication, social development and play, favorite activities/toys, interests and 

behaviors, and general behaviors. The ADI-R provides explicit scoring criteria that yield 

cutoff scores in the domains of social reciprocity, language and communication, and 

restricted and repetitive activities. The scores from a subset of critical items of the ADI-R 

are summed to yield scores for each domain; cutoffs are used to determine whether the 

individual’s diagnostic classification is consistent with an autism spectrum disorder. This 

measure possesses strong psychometric properties in terms of inter-observer agreement, 

internal consistency, and test-retest reliability. The ADI-R has been found to discriminate 

autism from non-autism in individuals with mental ages of at least 18 months (Lord et al., 

1997). A total score on the four domains: Reciprocal Social Interaction, Communication, 
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Restricted and Repetitive Patterns of Behavior, and Evidence of Abnormal Development 

before 36 months of age, of the ADI-R equal to or above 22 would indicate autistic 

disorder (Rutter et al., 2003b).  

 

Procedure  

Our hypothesis was that manipulation of the social parameters may elicit 

variations in affective reactions (Argyle and Dean, 1965; Bancroft, 1995) and 

physiological responses (Farroni et al., 2002; Groden et al., 2005). A participant is likely 

to experience a range of short-lived affective states (i.e., emotions such as anxiety, 

interest, etc.) as he/she interacts with the VR system. However, these feelings should not 

be more intense than the levels of these emotions that are commonly experienced in daily 

life and should not carry over when the participant leaves the laboratory. Physiological 

signals from the participant and ratings of affective states from a clinical observer, a 

participant's parent, and self-reports from the participant were recorded during the 2-min. 

experiment trials. The interval between the stop and start of a trial to collect reports and 

allow the participant to choose when to begin the next trial ranged from approximately 1-

2.5 min. The equipment setup for the VR experiment is illustrated in Figure 4.4. A photo 

of the therapist and parent in front of the second computer monitor, TV, and their reporter 

laptops is shown in Figure 5.1. We were unable to attain parent participation for the TD 

children, but a parent of each ASD child participated in the two experiment sessions for 

his/her child. The participant, clinical observer, and parent (ASD group only) reported on 

levels of anxiety, enjoyment/liking, and engagement after each experiment trial. The 

participant answered on a 3-point scale (e.g., low-Disengaged, medium-Neutral,  
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Figure 5.1 Photo of clinical observer, on left, and a participant's parent, on right, sitting in front of the 
second computer monitor, TV, and their reporter laptops; printed with permission.  

 

high-Engaged) for simplicity and consistency with the story question answer choices. The 

clinical observer and parent rated what they thought the level of the affective state was 

for the participant during the finished trial on a 9-point scale (e.g., 1-Very Disengaged, 5-

Neutral, 9-Very Engaged) and a binary scale (e.g., Low Engagement or High 

Engagement). The 9-point scale was used to compare against the participant's reports for 

calculating K-statistics. The binary scale was used to label trials as "high" or "low" for 

data analysis. 

A participant with the Biopac sensors attached and positioned in front of the VR 

task computer is pictured in Figure 5.2. The physiological signals were processed to  
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Figure 5.2 Photo of a participant sitting in front of the VR task computer; printed with permission. The 
Biopac MP150 equipment and amplifier modules for each physiological sensor sit on top of a black cart in 
the foreground. 

 

extract features, which are the individual measurable properties of the physiological 

signals that could be correlated to affective states. Extracted features from the signals 

were compared to subjective reports to relate the participant's affective reactions and 

physiological responses with respect to the various social stimuli. The physiological 

signals recorded in this work are the same as those described in Chapter II with the 

features listed in Table 2.1. These signals were collected using a Biopac MP150 system 

(biopac.com) and small wearable sensors placed on a participant's left eyebrow 

(Corrugator Supercilii EMG), left cheek (Zygomaticus Major), upper back/lower neck 

muscle on right (Upper Trapezius EMG), chest (ECG and Heart Sound), neck and torso 



 101 

(ICG), ring and pointer finger of left hand (GSR), middle finger of left hand (PPG), and 

thumb on the participant's left hand (Skin Temperature). Participants used their right hand 

to press a keypad for interactions with the VR system. The sensors have been 

successfully used to collect physiological data of typical individuals (Rani et al., 2006) 

and children with ASD in the Chapter II and Chapter III experiments.  

 

Results 

Each child in the two groups completed two sessions with the virtual environment 

system for social interaction. Results from the accuracy of correctly answering the story 

questions revealed that the participants attended to the task. Percent accuracy for the ASD 

and TD group was 97% and 99%, respectively, and no group difference was found 

(p>0.05, p=0.2601). The results from K-statistic again revealed that the Therapist-Parent 

(T/P) reporter pair had the largest mean when compared to the Therapist-Child (T/C) and 

Parent-Child (P/C) pairs (mean K-statistic for ASD group: T/P = 0.21, p < 0.05) for the 

ASD group. The means of the K-statistic values between the children and either the 

therapist or parent were smaller (T/C = 0.11, P/C = 0.06). The mean K-statistic for the 

TD group when comparing reports between the therapist to the TD children was also 

small (mean K-statistic for TD group: T/C = 0.04). The same therapist was involved in all 

of the experiment sessions for the ASD and TD groups, and the subjective report from the 

therapist was used as the reference points linking the objective physiological data to the 

participant’s affective states.   

The ASD group's physiological signals showed significant changes to trials rated 

as eliciting "low anxiety" (LA) versus "high anxiety" (HA). The TD children also showed 
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significant physiological reactions to the experimental stimuli for trials rated as LA or 

HA in similar and different ways than their ASD counterparts. Reactions occurred for 

changes in social distance and eye gaze. The features of interest include GSR phasic 

response rate (Phasicrate), PPG peak maximum (PPG_Peakmax), and mean time of pre-

ejection period (PEPmean). Phasicrate is measured in peaks per minute (ppm) and 

represents a rapid increase in skin conductance similar to a peak. As shown in Table 5.3, 

both the ASD and TD group had a significant increase in Phasicrate, between trials rated 

as LA and HA for trials in which the social distance parameter was set to Invasive for all 

variations of the eye gaze parameter. As anxiety increased in these conditions, Phasicrate 

significantly increased within the groups, and between the groups the ASD children 

shown more phasic peaks per minute during LA and HA.  

 

Table 5.3 Listed are results of Phasicrate from the GSR signal compared between trials labeled as LA and 
HA. The trials considered were ones in which the social distance parameter was set to Invasive for all 
variations of the eye gaze parameter. 
 

Clinical Observer  

label 

ASD group  

Phasicrate (ppm) 

M (SD) 

TD group 

Phasicrate (ppm) 

M (SD) 

Group Differences 

LA 4.43 (2.75) 3.23 (2.78) Exact p-value 0.0227* 

HA 5.80 (3.55) 4.46 (3.57) Exact p-value 0.0286* 

t-value -2.18 -2.33 

Exact p-value 0.0311* 0.0211* 

 

Significant difference, *p<0.05 
 

Other conditions showed contrasting results for TD and ASD groups. Between 

trials labeled LA and HA for experiment condition of Straight eye gaze with distance 

varying, the TD group had a significant increase in PPG_Peakmax, but the ASD group 

did not (see Table 5.4). The difference between groups for this feature was significant for 

LA but not HA. PPG_Peakmax is the maximum amplitude of detected PPG peaks, 
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measured in mV, which showed significant differences in this study. PEP is calculated as 

the difference in onset of ICG time-derivative peak to onset of ECG R peak and is 

measured in ms. The experiment condition of Averted eye gaze with distance varying 

elicited a significant increase in the mean value of PEP within the ASD group but not the 

TD group (see Table 5.5) and showed higher values for the ASD group compared to the 

TD group for LA but not HA.  

 

Table 5.4 Listed are results of PPG_Peakmax compared between trials labeled as LA and HA. The trials 
considered were ones in which the eye gaze parameter was set to Straight for all variations of the social 
distance parameter. 
 

Clinical Observer  

label 

ASD group  

PPG_Peakmax (mV) 

M (SD) 

TD group  

PPG_Peakmax (mV) 

M (SD) 

Group Differences 

LA 2.93 (3.12) 1.21 (1.18) Exact p-value 0.0002* 

HA 4.24 (4.39) 3.42 (4.67) Exact p-value 0.5245 

t-value -1.52 -3.37 

Exact p-value 0.1329 0.0012* 

 

Significant difference, *p<0.05 
 
 
 
Table 5.5 Listed are results of PEPmean compared between trials labeled as LA and HA. The trials 
considered were ones in which the eye gaze parameter was set to Averted for all variations of the social 
distance parameter. 
 

Clinical Observer  

Label 

ASD group  

PEPmean (ms) 

M (SD) 

TD group  

PEPmean (ms) 

M (SD) 

Group Differences 

LA 156.61 (23.49) 145.54 (20.91) Exact p-value 0.0110* 

HA 143.85 (26.57) 146.79 (19.63) Exact p-value 0.6645 

t-value 2.13 -0.25 

Exact p-value 0.0367* 0.8044 

 

Significant difference, *p<0.05 
 

When the eye gaze was 100% direct (Straight), it overpowered the distance 

parameter for the ASD group. For these conditions the ASD group found the Invasive 

and Decorum distance similarly anxiety-inducing (i.e., the Straight gaze caused too much 

anxiety for the distance to cause degradation of anxiety), but TD children were able to 
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discern differences in these conditions. For 100% indirect eye gaze (Averted), the ASD 

group showed a significant difference in physiology for ratings of LA versus HA while 

the distance parameter varied from Invasive to Decorum, but TD children reacted equally 

to the different settings. Distance did not cause TD children to become more anxious 

when the eye gaze was minimal, but the ASD children showed a significant change to 

these experiment conditions.  

As reports on enjoyment/liking varied from "low liking" (LL) to "high liking" 

(HL), physiological signals also varied significantly. The features of interest include the 

SD of the IBI of the ECG signal (IBI_ECGstd), SD of pulse transit time (PTTstd), and 

mean value of skin temperature (Tempmean). IBI_ECGstd is the SD of the interval of 

time between R peaks of the ECG signal; SD has the same unit of the IBI of ECG which 

is measured in ms. As shown in Table 5.6, the ASD group showed a significant decrease 

in IBI_ECGstd between LL and HL, but the TD group did not. The difference between 

groups was not significant for either level of liking/enjoyment. This result is for trials in 

which eye gaze was set to Straight for variations in the social distance parameter.  

 

Table 5.6 Listed are results of IBI_ECGstd compared between trials labeled as LL and HL. The trials 
considered were ones in which the eye gaze parameter was set to Straight for all variations of the social 
distance parameter. 
 

Clinical Observer  

Label 

ASD group  

IBI_ECGstd (ms) 

M (SD) 

TD group  

IBI_ECGstd (ms) 

M (SD) 

Group Differences 

LL 88.30 (27.08) 73.89 (37.89) Exact p-value 0.0524 

HL 71.62 (22.27) 72.56 (35.99) Exact p-value 0.8981 

t-value 2.83 0.17 

Exact p-value 0.0060* 0.8758 
 

Significant difference, *p<0.05 
 

 



 105 

PTT is the time in ms for a pulse to travel from the heart to the periphery and is 

thus calculated from the ECG and PPG signals. For trials in which the distance was set to 

Invasive for all variations in eye gaze, the SD of PTT decreased significantly for the TD 

group, and PTTstd was smaller for the TD group than the ASD group for HL (Table 5.7). 

Also for these conditions of distance and eye gaze, Tempmean did not vary significantly 

within the groups but did for LL and HL between the groups (Table 5.8). Tempmean is 

measured in °F in this experiment.  

 

Table 5.7 Listed are results of PTTstd compared between trials labeled as LL and HL. The trials considered 
were ones in which the social distance parameter was set to Invasive for all variations of the eye gaze 
parameter. 
 

Clinical Observer  

label 

ASD group  

PTTstd (ms) 

M (SD) 

TD group  

PTTstd (ms) 

M (SD) 

Group Differences 

LL 145.57 (79.02) 126.76 (56.51) Exact p-value 0.0542 

HL 157.59 (45.60) 103.57 (51.51) Exact p-value 0.0001* 

t-value -0.82 2.62 

Exact p-value 0.4111 0.0097* 
 

Significant difference, *p<0.05 
 
 
 

Table 5.8 Listed are results of Tempmean compared between trials labeled as LL and HL. The trials 
considered were ones in which the social distance parameter was set to Invasive for all variations of the eye 
gaze parameter. 
 

Clinical Observer  

label 

ASD group  

Tempmean (°°°°F) 
M (SD) 

TD group  

Tempmean (°°°°F) 
M (SD) 

Group Differences 

LL 87.61 (6.77) 89.71 (5.03) Exact p-value 0.0134* 

HL 86.66 (6.66) 90.53 (4.18) Exact p-value 0.0007* 

t-value 0.71 -1.07 

Exact p-value 0.4780 0.2842 
 

Significant difference, *p<0.05 
 

The results for significant changes in physiological signals to trials rated as 

eliciting "low engagement" (LE) versus "high engagement" (HE) within and between the 

ASD and TD groups are shown in Tables 5.9-5.11. The features of interest include 
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Tempmean measured in °F, SD of PTT, and mean values of the tonic signal from GSR 

(Tonicmean). For Straight eye gaze with varying distance, Tempmean increased 

significantly for the ASD group between LE and HE, but no difference was shown for the 

TD groups or between groups (see Table 5.9).  

 

Table 5.9 Listed are results of Tempmean compared between trials labeled as LE and HE. The trials 
considered were ones in which the eye gaze parameter was set to Straight for all variations of the social 
distance parameter. 
 

Clinical Observer  

Label 

ASD group  

Tempmean (°°°°F) 
M (SD) 

TD group  

Tempmean (°°°°F) 
M (SD) 

Group Differences 

LE 84.98 (7.15) 88.66 (6.03) Exact p-value 0.0663 

HE 88.94 (5.83) 90.36 (4.56) Exact p-value 0.1687 

t-value -2.65 -1.30 

Exact p-value 0.0098* 0.1981 
 

Significant difference, *p<0.05 
 

For trials under the condition that eye gaze varied while social distance was fixed 

to the Invasive distance, PTTstd and Tonicmean varied for LE and HE. The SD of PTT 

decreased significantly for only the TD group and between the groups showed a 

significantly larger value for the ASD group for HE only (Table 5.10). The response of 

tonic GSR is the ongoing skin conductance in the absence of any particular peaks  

 

Table 5.10 Listed are results of PTTstd compared between trials labeled as LE and HE. The trials 
considered were ones in which the social distance parameter was set to Invasive for all variations of the eye 
gaze parameter. 
 

Clinical Observer  

label 

ASD group  

PTTstd (ms) 

M (SD) 

TD group  

PTTstd (ms) 

M (SD) 

Group Differences 

LE 146.59 (88.08) 128.20 (57.73) Exact p-value 0.1475 

HE 150.11 (45.38) 109.58 (52.94) Exact p-value 1.5925e-6* 

t-value -0.29 2.08 

Exact p-value 0.7695 0.0393* 
 

Significant difference, *p<0.05 
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(i.e., absence of phasic response) and is measured in µS. Tonicmean decreased in these 

experiment conditions between LE and HE for the ASD group only, and no difference is 

shown for changes in Tonicmean between the groups for LE and HE (Table 5.11).  

 

Table 5.11 Listed are results of Tonicmean compared between trials labeled as LE and HE. The trials 
considered were ones in which the social distance parameter was set to Invasive for all variations of the eye 
gaze parameter. 
 

Clinical Observer  

Label 

ASD group  

Tonicmean (µµµµS) 
M (SD) 

TD group  

Tonicmean (µµµµS) 
M (SD) 

Group Differences 

LE 9.11 (3.81) 8.41 (5.09) Exact p-value 0.3306 

HE 7.88 (3.46) 8.71 (4.93) Exact p-value 0.2450 

t-value 2.06 -0.37 

Exact p-value 0.0410* 0.7135 
 

Significant difference, *p<0.05 
 

Discussion 

This work is the first time a large set of physiological features have been 

examined for a sizeable group of ASD and TD children during interaction with social 

stimuli presented on a VR platform for elicitation of multiple affective states. The results 

show the VR system provokes variations in both affective ratings and physiological 

signals to changes in social experimental stimuli for children with ASD and TD children. 

This work used virtual social peers to systematically manipulate specific aspects of social 

communication and provides a vital step towards development of future social 

interventions using technologies such as VR for the ASD population. Since physiological 

signals have been shown to differentiate during social interaction with a virtual 

environment, the signals could be a useful measure in real-time VR-assisted social skill 

intervention, an important therapeutic instrument for addressing the core deficits in the 

ASD population, for adaptation of the interaction. Future work will involve developing 
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an expanded set of VR social interaction scenarios and investigation of fast and robust 

learning mechanisms that would permit a virtual peer's adaptive response within complex 

social interaction tasks. Individual affective models could be made in the future with a 

sufficiently large number of examples of trails per participant to relate physiological 

features to affective states. Group models from a small number trials from each 

participant have been used to evaluate affective states of typical adults (Zhai and Barreto, 

2006). If group models were to be created from the data collected in this experiment, a 

separate ASD and TD model would be necessary considering the significant 

physiological differences detected between the groups.        
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CHAPTER VI 

 

CONTRIBUTIONS AND FUTURE WORK 

 

Contributions 

The contributions of this dissertation are in the area of psychophysiological 

analysis of affective computing. The research strategy utilizes a physiological approach 

to achieve the primary objective of developing technology-based assessment tools 

capable of identifying specific aspects of interaction that induce an affective response in 

individuals with ASD. The main contributions of this dissertation are:  

1. Individual affective models are constructed from physiological signals and 

subjective reports collected during HCI involving children with ASD. Two computer-

based cognitive tasks are designed to elicit the affective states of liking, anxiety, and 

engagement that are considered important in autism intervention. A large set of 

physiological indices are investigated that may correlate with the target affective states of 

children with ASD. Subjective reports on the affective states from a clinical observer, a 

parent, and the child are collected and analyzed. This work allows for the formation of 

affect-sensitive computer-based ASD intervention tools. Generally, an experienced 

therapist continuously monitors the affective cues of the children with ASD and adjusts 

the course of the intervention accordingly. In this work, we address the problem of how 

to make technology-based ASD intervention tools affect-sensitive by designing therapist-

like affective models of the children with ASD based on their physiological responses. A 

SVM-based affective model yields reliable prediction with approximately 82.9% success 
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when using the therapist’s reports. This is the first time, to our knowledge, that the 

affective states of children with ASD have been experimentally detected via a 

physiology-based affect recognition technique. 

2. The impact of applying the individual affective models during closed-loop HRI 

is evaluated in Chapter III. This method presents a physiology-based affect-inference 

mechanism for robot-assisted intervention where the robot can detect the affective states 

of a child with ASD as discerned by a clinical observer and adapt its behaviors 

accordingly. Chapter III is the first step toward developing "understanding" robots for use 

in future ASD intervention. This is the first time, to our knowledge, that the affective 

states of children with ASD are detected via a physiology-based affect recognition 

technique in real time. This is also the first time that the impact of affect-sensitive closed-

loop interaction between a robot and a child with ASD is demonstrated experimentally.  

3. A VR-based social interaction system for exploring physiological responses to 

social communication is designed and developed. Social interaction modules for affect 

elicitation are created using virtual environments. In Chapter IV, the VR system is 

formulated to present realistic social communication tasks to the children with ASD and 

can monitor their affective response using physiological signals. Examination of 

responses of TD children is also made for comparison. This system is capable of 

systematically manipulating specific aspects of social communication to more fully 

understand its salient components. 

4. The physiological response from interacting with the VR platform is evaluated 

to explore affective response characteristics during social interaction for the ASD and TD 

groups. Chapter V measures the discriminating capability of the physiological features 
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and identifies ones that have significant influence during social communication in the VR 

environment for the children with ASD and TD children. The affective states of anxiety, 

engagement, and enjoyment are measured by physiological signals and examined for how 

they vary with respect to the variation of specific communication factors (e.g., social 

distance and eye contact). This work is the first time a large set of physiological features 

have been examined for a sizeable group of ASD and TD children during interaction with 

social stimuli presented on a VR platform for elicitation of multiple affective states. The 

results show the VR system provokes variations in both affective ratings and 

physiological signals to changes in social experimental stimuli for children with ASD and 

TD children.  

There is increasing consensus that development of assistive therapeutic tools can 

make application of intensive intervention for children with ASD more readily accessible. 

In recent years, various applications of advanced interactive technologies have been 

investigated to facilitate and/or partially automate the existing behavioral intervention 

that addresses specific deficits associated with autism. However, the current technology-

assisted therapeutic tools for children with ASD do not possess the ability of deciphering 

the affective cues of the children, which could be critical given that the affective factors 

of children with ASD have significant impacts on the intervention practice. In Chapter II, 

a physiology-based affect modeling framework for children with ASD was presented. 

The developed model could allow the recognition of affective states of the child with 

ASD from the physiological signals in real time and provide the basis for computer-based 

affect-sensitive interactive autism intervention. In Chapter III, how to augment the 

interactive autism intervention was investigated by having a robot respond appropriately 
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to the inferred level of a target affective state based on the affective model described in 

Chapter II. VR-based intervention tools that address the social communication deficits of 

children with ASD were developed in Chapter IV and evaluated in Chapter V. 

 

Future Work 

The physiology-based affect-sensitive technology described here could be 

employed to develop new intervention paradigms, which could promote interventions for 

individuals with ASD that are practical, widely available, and specific to the unique 

strengths and vulnerabilities of individuals with ASD. With further integration, a VR and 

physiological profiling system could be effective for use in developing and adapting 

controlled environments that help individuals explore social interaction dynamics 

gradually but automatically (i.e., introducing the aspects of social communication that are 

more challenging based on physiological data).  Future work may include a reduction of 

the verbal components in the cognitive tasks which would allow application to the 

broader ASD population. Also, the research could benefit from exploring and merging 

other types of signals and features proven useful in affective computing, such as pupil 

diameter from eye-tracking data, with the current set of physiological signals. These ideas 

are currently being explored by researchers in our laboratory.  

Note that the presented work requires physiological sensing that has its own 

limitations. For example, one needs to wear physiological sensors, and use of such 

sensors could be restrictive under certain circumstances. However, none of the 

participants in our studies had any objection in wearing the physiological sensors. Similar 

observations were achieved by Conati et al. (2003) that suggested concerns for 
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intrusiveness of physiological sensors could be lessened for children in a game-like 

environment. Given the rapid progress in wearable computing with small, non-invasive 

sensors and wireless communication, physiological sensors can be worn in a wireless 

manner such as in physiological sensing clothing and accessories (Picard, 1997; 

Wijesiriwardana et al., 2004), which could alleviate possible constraints on experimental 

design. Physiology-based affect recognition can be appropriate and useful for the 

application of interactive autism intervention and could be used conjunctively with other 

modalities (e.g., facial expression, vocal intonation, etc.) to allow flexible and robust 

affective modeling for children with ASD. 

Future work may also involve designing socially-directed interaction experiments 

with embodied robots interacting with children with ASD. For example, the real-time 

affect recognition and response system described here could be integrated with a life-like 

android face developed by Hanson Robotics (hansonrobotics.com), which can produce 

accurate examples of common facial expressions that convey affective states. This 

affective information could be used as feedback for empathy exercises to help children 

with ASD recognize their own emotions.   
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APPENDIX 

 

A. PATTERN RECOGNITION USING SVM 

 

SVM, pioneered by Vapnik (1998), is an excellent tool for classification (Burges, 

1998). Its appeal lies in its strong association with statistical learning theory as it 

approximates the structural risk minimization principle. Good generalization performance 

can be achieved by maximizing the margin, where margin is defined as the sum of the 

distances of the hyperplane from the nearest data points of each of the two classes. SVM 

is a linear machine working in a high k-dimensional feature space formed by an implicit 

embedding of n-dimensional input data X into a k-dimensional feature space (k > n) 

through the use of a nonlinear mapping φ(X). This allows for the use of linear algebra and 

geometry to separate the data, which is normally only separable with nonlinear rules in 

the input space. The problem of finding a linear classifier for given data points with 

known class labels can be described as finding a separating hyperplane ( )T
W Xϕ  that 

satisfies 

 

 ( )( ) ( )01
( ) 1

kT

i i i j j i ij
y W X y w X wϕ φ ξ

=
= + ≥ −∑  (A.1) 

 

where N represents the number of training data pairs (Xi, yi) indexed by i = 1,2,…, N, 

yi∈{+1, -1} represents the class label, ϕ(X) = [φ0(X), φ1(X),…, φk(X)]
T is the mapped 

feature vector [φ0(X) = 1], and W = [w0, w1,…, wk] is the weight vector of the network.  
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The nonnegative slack variable ξi generalizes the linear classifier with soft margin to deal 

with nonlinearly separable problems. 

All operations in learning and testing modes are done in SVM using a so-called 

kernel function defined as K(Xi, X) = ϕ
T(Xi)ϕ(X) (Vapnik, 1998). The kernel function 

allows for efficient computation of inner products directly in the feature space and 

circumvents the difficulty of specifying the nonlinear mapping explicitly. One distinctive 

fact about SVM is that the learning task is reduced to a dual quadratic programming 

problem by introducing the Lagrange multipliers αi (Vapnik, 1998). Maximize  

 

 ( ) ( )
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1

0
N

i ii
yα

=
=∑   and  0

i
Cα≤ ≤  

where C is a user-defined regularization parameter that determines the balance between 

the complexity of the network characterized by the weight vector W and the error of 

classification of data. The corresponding αi multipliers are nonzero only for the support 

vectors (i.e., the training points nearest to the hyperplane). The SVM approach is able to 

deal with noisy data and over-fitting by allowing for some misclassifications on the 

training set (Burges, 1998). This characteristic makes it particularly suitable for affect 

recognition because the physiology data is noisy and the training set size is often small. 

Another important feature of SVM is that the quadratic programming leads in all cases to 

the global minimum of the cost function. With the kernel representation, SVM provides 

an efficient technique that can tackle the difficult, high-dimensional affect recognition 

problem. 
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B. BEHAVIOR ADAPTATION USING QV-LEARNING 

 

QV-learning (Wiering, 2005), a variant of the standard reinforcement learning 

algorithm Q-learning (Watkins and Dayan, 1992), was applied to achieve the affect-

sensitive behavior adaptation in the Chapter III experiments. QV-learning keeps track of 

both a Q-function and a V-function. The Q-function represents the utility value Q(s, a) for 

every possible pair of state s and action a. The V-function indicates the utility value V(s) 

for each state s. The state value V(st) and Q-value Q(st, at) at step t are updated after each 

experience (st, at, rt, st+1) by: 

 

 ( ) ( ) ( ) ( )( )1:t t t t tV s V s r V s V sα γ += + + −  (B.1) 

 

 ( ) ( ) ( ) ( )( )1, : , ,t t t t t t t tQ s a Q s a r V s Q s aα γ += + + −  (B.2) 

 

where rt is the received reward that measures the desirability of the action at when it is 

applied on state st and causes the system to evolve to state st+1. The difference between 

(B.2) and the conventional Q-learning rule is that QV-learning uses V-values learned in 

(B.1) and is not defined solely in terms of Q-values. Since V(s) is updated more often 

than Q(s, a), QV-learning may permit a fast learning process (Wiering, 2005) and enable 

the robot to efficiently find a behavior selection policy during HRI. 
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