ACKNOWLEDGEMENTS

This work was made possible with the financial support from the National Institute of Health. I am grateful to all the members of Yang Lab, past and present, with whom I had the pleasure to work. I am grateful to members of my Dissertation Committee, who each have spent a generous amount of time and effort to teach me about scientific research. I especially thank Dr. Elizabeth Yang, my teacher and mentor, who has managed to make a scientist out of me. I am grateful to all the past members of the Yang lab, especially Anuja Chattopadhyay, ChiWu Chiang, and Courtney Greider, who have been instrumental in my development as a scientist. I am grateful to all the present members of the Yang lab, with whom I had the pleasure to work.

Nobody has been more eager to see me succeed than my family. I thank my parents, who have been incredibly loving and supportive. Many thanks to my husband, who has helped me through the last, difficult years of graduate school.

TABLE OF CONTENTS

		Page
ACKNOV	WLEDGEMENTS	iv
LIST OF	FIGURES	viii
Chapter		
I.	INTRODUCTION	1
	The Bcl-2 family Bcl-2 and Bcl-x _L Bad Bak/Bax Apoptosis Mitochondria Caspases Bcl-2 and the Cell Cycle Cell Cycle and Quiescence Myc Cyclin-dependent kinase inhibitor p27 Akt/PKB Summary	48914172021
II.	MATERIALS AND METHODS Cell culture Murine T cell isolation Retroviral infection Cell Cycle Analysis Immunoblots RNA/DNA staining ATP measurements. TMRE and MTG staining of mitochondria	25 26 26 27 28
III.	BCL-2 AND BCL-X _L DELAY CELL CYCLE ENTRY BY ENHANC ARREST	30 30 31 and cell

	Subcellular localization was not able to separate the cell death and
	cell cycle functions of Bcl-x _L 34
	Activation of Myc and cyclin D proteins during cell cycle entry is
	unaffected by Bcl-x _L and Bcl-2, but cyclin/cdk activities are
	inhibited36
	Bcl-x _L does not affect the rate of exit to G ₀ in NIH3T3 cells39
	Bcl-x _L delays the increases in RNA accumulation and cell size
	during stimulation of cell cycle entry41
	Bad expression reverses the effects of Bcl-x _L on cell size and RNA
	content46
	Bcl- x_L expression enhanced G_0 arrest
	Summary
IV.	BCL-2/BCL-X _L MAY ACT ON THE MYC PATHWAY TO DELAY CELL
	CYCLE ENTRY
	Introduction56
	Results56
	Bcl-x _L and Bcl-2 expression does not delay S phase entry in myc ^{-/-}
	cells56
	p27 is not elevated in Bcl-2/Bcl-x _L expressing myc ^{-/-} cells58
	Bcl-2/Bcl-x _L does not affect the ability of Myc to transcriptionally
	regulate p2760
	Overexpression of p27 in myc ^{-/-} cells slows cell cycle time62
	Bcl-x _L expression delays S phase entry in cells with reduced Myc
	expression
	Summary 66
	Summary
V.	BCL-2/BCL-X _L REGULATES CELL CYCLE BY MECHANISMS
٧.	INDEPENDENT OF APOPTOSIS INHIBITION
	INDEFENDENT OF AFOFTOSIS INHIBITION
	Introduction68
	Results70
	zVAD-fmk partially recapitulates the Bcl-x _L cell cycle delay
	phenotype70
	zVAD-fmk treatment of Rat1MycER cells does not recapitulate the
	Bcl-2 cell cycle phenotype76
	Caspase 9 dominant negative mutant partially recapitulates the
	Bcl-x _L cell cycle delay phenotype in NIH3T3 cells78
	Caspase 9 dominant negative mutant does not affect cell cycle
	arrest or entry in Rat1MycER cells80
	Inhibition of cell death in FL5.12 cells by mAkt does not
	recapitulate the Bcl-x _L cell cycle phenotype83
	Bcl-2/Bcl-x _L delays the increase in ATP content during cell cycle
	entry in NIH3T3, Rat1MycER, and primary T cells85
	Elevated ATP does not reverse the cell cycle effect of Bcl-x _L 90
	Bcl-x _L cells exhibit lower MMP during cell cycle arrest92

	Bcl-x _L delays cell cycle entry in 143B ρ0 cells	
VI.	CONCLUDING REMARKS AND FUTURE DIRECTIONS	
	Concluding Remarks10	6
	Future Directions	8
	The effect of Bcl-2/Bcl-x ₁ on cell growth pathway regulators 11	0
	The effect of Bcl-2/Bcl-x _L on Myc's cell growth function11	5
	Models of Bcl-2/Bcl-x _L Function11	
	The effects of Bcl-2/Bcl-x _L on autophagy11	
	The effects of Bcl-2/Bcl-x ₁ on mitochondrial fusion/fission 11	
	Retrograde signaling12	
REFERE	ENCES12	4

LIST OF FIGURES

Figure	S P	age
	Diagram of representative members of the Bcl-2 family	
2.	Bcl-2 family members in receptor- and mitochondria-mediated apoptosis	10
3.	Bcl-2 and Bcl-x _L delay serum stimulated, Raf-induced, Myc-induced, but not	
	E2F-1-induced cell cycle entry	
	Molecular events and phases of cell cycle progression	
	Y28F-Bcl-2 inhibits Myc-induced cell cycle entry and Myc-induced apoptosis	
	Y28F-Bcl-2 delays serum-induced cell cycle entry	
7.	Bcl-2 targeted to the endoplasmic reticulum or the mitochondrial outer membrateains cell cycle delay activity	
8.	Induction of Myc and cyclin D is not affected by Bcl-x _L during cell cycle entry	
	Bcl-x _L does not increase the rate of G ₀ entry	
	Bcl-2 expression retains cells in G ₀ during serum-stimulated cell cycle entry following serum starvation	
11	Bcl-2 expression retains cells in G ₀ during serum-stimulated cell cycle entry	
11.	following contact inhibition	
12	Bcl-2 transgenic murine T cells are smaller in size and contain less RNA than	
12.	wild type T cells	45
13.	Bcl-x _L delays cell size and RNA increase following cell cycle stimulation, which	
10.	is reversed by Bad expression	
14.	Enhanced G ₀ arrest contributes significantly to the cell cycle delay function of	
	Bcl-x _L	
15.	Enhanced cell cycle arrest is the major mechanism of Bcl-2/Bcl-x _L -mediated co	ell
	cycle entry delay	
16.	Bcl-2/Bcl-x _L expression does not delay S phase entry in myc ^{-/-} cells	57
	Bcl-2 expression in myc ^{-/-} cells did not result in p27 elevation	
18.	Bcl-x _L does not affect the transcriptional repression of p27 by Myc	61
19.	myc-/- cells overexpressing p27 exhibit a slowed growth rate and a delayed cell	11
	cycle re-entry	
20.	Bcl-x _L delays cell cycle entry in cells with knocked down Myc	65
	Knocking down Myc results in elevation of p27	
22.	zVAD-fmk-treated NIH3T3 cells exhibit a partial cell cycle phenotype	71
23.	zVAD-fmk-treated NIH3T3 cells do not exhibit enhanced G ₀ arrest	73
24.	zVAD-fmk-treated NIH3T3 cells do not upregulate p27 during cell cycle arres	t 75
25.	zVAD-fmk-treated Rat1MycER cells do not exhibit delayed cell cycle entry	77
	NIH3T3 caspase 9 DN exhibit a partial cell cycle delay phenotype	
	NIH3T3 caspase 9 DN do not exhibit enhanced G ₀ arrest	
28.	Rat1 caspase 9 DN cells do not exhibit a cell cycle delay phenotype	84
	Rat1MycER caspase 9 DN cells do not exhibit enhanced G ₀ arrest	
	Induction of mAkt in the FL5.12 cells	
	FL5.12 cells expressing mAkt are protected from cell death	
32.	FL5.12 mAkt cells do not exhibit enhanced G ₀ arrest	91

33. F	Peak ATP is delayed in cell lines and primary T cells expressing Bcl- $x_L/Bcl-2$	93
34. E	Elevation of cellular ATP does not reverse the cell cycle delay phenotype of Bo	el-
X	X _L	95
	Bcl-x _L may regulate mitochondrial membrane potential or number	
36. E	Bcl-x _L does not enhance cell cycle arrest in 143B ρ0 cells	99
	Diagram of the electron transport chain and other major components of mitochondrial membranes	104
	Bcl-2/Bcl-x _L regulates cell cycle arrest by mechanisms in addition to cell death nhibition	
	Bcl-x _L may control cells growth by affecting the pathways that regulate cell growth, such as the mTOR or the c-Myc pathways	111
40. F	Possible modes of action for Bcl-2/Bcl-x _L in cell cycle arrest	121