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CHAPTER I

INTRODUCTION

Heat flux is the flow of heat per unit area from a higher temperature

to a lower temperature which occurs when a temperature gradient exists [Holman,

2002]. Given the proper heat flux boundary and initial conditions, the temperature

history can be solved stably. However, the process of solving for heat flux given a

known temperature history is more involved. The lack of stability and accuracy in

current methods of heat flux determination leads to the need for and investigation of

alternative methods of heat flux determination. Currently the two categories of heat

flux determination are direct measurement and data reduction. The direct measure-

ment techniques can be simplified into four categories: 1) differential temperature,

2) calorimetric methods, 3) energy supply or removal, and 4) mass transfer analogy

[Childs et al., 1999]. Although the differential temperature method is the most com-

mon in direct measurement, constraints on size, cost, and sensitivity prohibit any one

method from being suitable for all applications. The method of differential temper-

ature uses multiple thermocouples or thermopiles to measure temperature gradients.

The simplest differential temperature heat flux gage is the layered gage. Thermocou-

ples measure the temperature on both sides of a thermal resistance layer, and the

temperature gradient is proportional to the heat flux [Diller, 1993]. The gage must

be calibrated depending on the materials used and the range of temperatures and

heat fluxes in the application. These devices are typically expensive and difficult to

calibrate [Childs et al., 1999]. Furthermore, they generally have a slow response time

and can integrate high-frequency components in the data [Crim et al., 2004].

The second approach to determining heat flux is to use data reduction

techniques to estimate heat flux from temperature measurements. While temperature

measurements are inexpensive and reliable, the data reduction of temperature mea-

surements to solve for heat flux is ill-posed. The method of data reduction involves
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the inverse heat conduction problem, which is inherently ill-posed and amplifies any

noise and uncertainty in the measurements during the data reduction. However, it

can be shown that by using measurements of heating rate, which is defined as the first

time derivative of temperature, instead of temperature measurements, the solution

to the inverse heat conduction problem becomes more stable with less error[Walker,

2005]. This leads to the need for a viable method of measuring heating rate directly.

It is the aim of this thesis to show that it is possible to measure both temperature and

heating rate simultaneously using thermographic phosphors. The experiment uses a

tungsten filament to heat the phosphor over 200◦C in one second. An LED is used

to excite the phosphor, and the phosphor emission is recorded by a photomultiplier

tube. The intensity measurements are used in a curve fitting technique to extract

temperature dependent properties of the phosphor. The results of the experiment

show that thermographic phosphors can be used to estimate heating rate.
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CHAPTER II

THEORY

Inverse Heat Transfer

Interest in the inverse heat transfer problem has grown over the past

century. Although interest in the solution to the inverse problem dates back to the

early 1900’s [Tikhonov and Arsenin, 1977], one of the major recent issues to spark such

interest was the space program in the 1950’s and 1960’s. The issue of aerodynamic

heating on the surface of the space shuttle during reentry was the focus of concern

[Ozisik and Orlande, 2000]. The heating on the surface of the space shuttle is so

great that direct temperature measurement is impossible due to the survivability

of the measurement devices. However, temperature measurements could easily be

made on the inner surface of the shuttle’s insulation, where the temperature is much

lower, and those temperature measurements are used to estimate the outer surface

temperature.

A typical heat transfer problem contains some known boundary con-

ditions, initial conditions, and physical properties, and the problem calls for the

solution to some unknown temperature distribution. In general, the causal properties

are known and the problem is solved for some effect of the causal properties. In the

inverse problem, the effect can be measured and is used to estimate one of the causal

properties [Ozisik and Orlande, 2000]. In the inverse heat conduction problem, which

is of interest in the present work, the temperature is the effect that can be measured,

and the boundary heat flux is unknown and must be estimated.

Although advances have been made in the solution to the inverse heat

transfer problem, mathematically the problem is ill-posed. There are three conditions

that set apart an ill-posed problem from a well-posed problem. The three conditions

that make a problem well-posed are: 1) the solution must exist, 2) the solution must

be unique, and 3) the solution must be stable under small changes to the input data
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[Kress, 1989]. The first condition is satisfied in the inverse heat conduction problem

by intuition, such that if the measured temperature increases, there must be some

heat flux causing the temperature gradient. Mathematically, the second condition

cannot be proven for all inverse problems, so not all inverse problems are well-posed

[Ozisik and Orlande, 2000]. Finally, the inverse heat conduction problem is very

sensitive to small random error in the temperature measurements, so at the very

least the problem is ill-posed for violating the stability condition [Beck et al., 1985].

Using the inverse heat conduction problem to estimate heat flux from

temperature measurements involves a Volterra equation of the first kind. In a Volterra

equation of the first kind, the heat flux term is inside an integral, therefore mathe-

matically, the error in the solution is unbounded. The equation must be differentiated

to remove the heat flux term from within the integral, and much of the difficuly in

determining heat flux from temperature measurements comes from the differentiation

of data [Ehrich, 1954]. The equation

Y (t) =
∫ t

0

k(t, t′)Q(t′)dt′ (1)

is an example of a Volterra equation of the first kind, where Y is discrete temperature

data to be integrated. Q is the heat flux and k is a known kernel dependent on

the geometry of the problem. In an attempt to stabilize the solution to the inverse

heat conduction problem, Frankel and Keyhani [1997] introduced the idea of using

temperature derivatives rather than temperature measurements. Using heating rate

measurements to solve the inverse heat conduction problem for heat flux involves

using a Volterra equation of the second kind, which takes the form

dY (t)

dt
= Λ(t) = Q(t) −

∫ t

0

∂k(t, t′)

∂t
Q(t′)dt′. (2)

Volterra equations of the second kind are inherently more stable than Volterra equa-

tions of the first kind [Kress, 1989]. Here Λ is the measured heating rate. Recall that
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the third condition of a well-posed problem is stability of the solution under small

changes to the input data. By using a more stable equation to estimate heating rate,

the process becomes more robust, and small changes to the input have less of an

effect on the heat flux solution. Therefore, the method of using heating rate instead

of temperature as the input to the inverse heat conduction problem solves the viola-

tion of the third condition of a well-posed problem. The following example presents

solutions to the inverse heat conduction problem using temperature measurements

and heating rate measurements.

Walker [2005] simulates a one dimensional heating problem to show

the advantages of measuring heating rate rather than temperature. In the problem,

the heat flux enters one side of a slab of length L, and the boundary condition on

the other side of the slab is constant temperature. The heat flux, temperature, and

time in the problem are dimensionless, and ξ is the symbol used for dimensionless

time, where ξ = tα/L2. A square heat flux is introduced, with an amplitude of unity,

starting at ξ=0.2 and ending at ξ=0.8. A solution for temperature is made for the

forward conduction probem. To simulate actual temperature measurements, random

noise is added to the exact temperature solution (Yn), and both are displayed in

figure 1.

The forward conduction problem is also solved for heating rate, and random noise

is added to that solution to simulate heating rate measurements. The simulated heat-

ing rate measurements (Hn) and exact heating rate solution (Λ) are then compared to

the differentiated temperature measurements (Hd) in figure 2. The simulated temper-

ature measurements are used to solve the inverse heat conduction problem to estimate

heat flux, and the heat flux solution (QYn
) is compared to the square heat flux (Q) in

figure 3. The heat flux is then estimated using the simulated heating rate measure-

ments (QHn
) and heating rate from differentiated temperature measurements (QHd

)

in the inverse heat conduction problem, and the comparison with actual heat flux is

shown in figure 4. Comparing figures 3 and 4, the solution for heat flux from heating

rate meaurements is more stable than the solution using temperature measurements.
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The need for a means of measuring heating rate directly to improve estimates of the

solution to the inverse heat conduction problem emerges from this problem. The need

for heating rate measurement devices has been identified in conference proceedings

[Frankel and Keyhani, 1999, Frankel and Osborne, 2003]. The present work examines

thermographic phosphors as a means of measuring heating rate.

Thermographic Phosphors

Walker and Schetz [2003] first identified thermographic phosphors as

a potential means of measuring heating rate. Thermographic phosphors are rare

earth-doped ceramics that fluoresce when exposed to light. The emission wavelength,

intensity, and decay rate are all temperature dependent, so any of these properties

can be measured to determine temperature. Although thermographic phosphors are

generally used for steady-state temperature applications, emission is inherently tran-

sient, so intensity measurements can also be used to extract transient temperature

data, such as heating rate. The type of phosphor used and the measurement tech-

nique are generally chosen based on the application and data requirements [Allison

and Gillies, 1997].

When incident photons excite a phosphor, it begins to reemit at a

specific wavelength determined by its electronic band structure [Shionoya and Yen,

1999]. Many factors contribute to the intensity of the phosphor emission, such as ma-

terial properties, doping, temperature, and excitation source. The measured emission

intensity I is proportional to the rate of change of excited luminescence centers n∗

[Shionoya and Yen, 1999], such that

I ∝

dn∗

dt
. (3)

The number of luminescence centers (electron/hole pairs available for recombination)

is governed by the radiative and non-radiative recombination of electrons with holes
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as

dn∗

dt
= −(WR + WNR)n∗, (4)

where W is the transition rate of radiative and non-radiative mechanisms, and the

negative sign indicates emission. The transition rates are usually treated as a single

term, known as the overall lifetime, τ , such that [Shionoya and Yen, 1999]

τ−1 = WR + WNR. (5)

In general, this lifetime is temperature dependent. When the excitation source is

removed, the number of excited electrons n is governed by the differential equation

τ(T )
dn

dt
+ n = 0, (6)

where τ [T (t)] is the electron lifetime, which is a function of temperature that can

change in time. Assuming the electron lifetime is constant during the decay, the

solution to equation 6 is given as

n

n0

= exp
(

−

t

τ

)

, (7)

where n0 is the number of electrons at t = 0, which is when the excitation source is

removed. By differentiating equation 7 and recalling equation 3, the intensity can be

expressed in terms of the decay time as

I

I0

= exp
(

−

t

τ

)

. (8)

This equation is known as the standard model, where I0 is the initial emission intensity

when the excitation source is removed, at time t = 0.

The standard model is used to describe phosphor emission intensity

decay in non-contact thermometry. If the temperature is constant, then the decay

time τ , which is a function of temperature, also remains constant. In this case, the
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Figure 5: Phosphor Emission Intensity

emission intensity of a phosphor at a given temperature is recorded, and the decay

time is extracted from the emission data. This decay time is specific to a certain tem-

perature, and the relationship between decay time and temperature is given in the

calibration curve. To execute non-contact thermometry using thermographic phos-

phors, an excitation source, which is usually an LED or laser, and a device to record

the emission intensity, such as a photomultiplier tube or photo diode, are required.

The excitation source is controlled by a function generator, which pulses the light

source at a specified frequency and duty cycle. Figure 5 shows the emission intensity

of europium-doped lanthanum oxysulfide, La2O2S:Eu, excited by an LED pulsed at

100 Hz with a 20% duty cycle, with the emission data recorded by a photomultiplier

tube at 50,000 Hz. The emission amplitude is negative because photomultiplier tubes

return a negative voltage when converting light to voltage. The area of interest in

figure 5 is the decay of the emission, between 0.0023 seconds and 0.0035 seconds. The

decay curve in this area is defined by the standard model (equation 8). The unknown

parameters I0 and τ can be determined using curve fitting techniques. There are two

common approaches that can be performed on the emission decay data. The simpler

method is to convert the standard model from an exponential to a linear equation.

This is accomplished by taking the natural logarithm of both sides of equation 8,
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Figure 6: Exponential Phosphor Emission Decay Curve Converted to Linear Straight
Line

which results in

ln(I) = ln(I0) −
1

τ
t. (9)

Equation 9 takes the form of a linear equation y = mx + b by setting ln(I) = y,

ln(I0) = b, −1/t = m, and t = x. Figure 6 shows the converted data from figure 5.

Beyond t=0.0035 seconds, the line begins to curve, indicating that at this point the

plot is no longer a simple exponential. This deviation arises from the noise in the

signal and an offset inherent to the measurement system. Only the section of the

graph where the line is straight is to be considered in the curve fit. Because this view

makes it easier to see the bounds of the simple exponential, it is often desirable to

use this view to set the limits of the curve fit when using an exponential curve fit. A

linear regression of the straight line results in values for I0 and τ .

The other method is to use a non-linear curve fitting method to fit the

exponential curve to the standard model. Although this method is more computa-

tionally intensive, it is also more rigorous. The decay model in equation 8 is modified

to include an added offset term to account for the photomultiplier tube. The phos-

phor emission decays to zero, but the photomultiplier tube adds a small signal, which

must be accounted for in the equation. The dark current in the photomultiplier tube
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Figure 7: Decay Time of 100 Pulses of La2O2S:Eu at 190◦C

results in an offset voltage of 5mV. An entire set of data generally includes multiple

pulses, each with a separate decay curve. Any noise in the data causes errors in

the results for decay time. A final decay time for the experiment is determined by

averaging the decay time from each pulse in the experiment (see figure 7).

Because each phosphor has different properties, a new calibration for

each phosphor must be generated. Furthermore, many phosphors emit at more than

one wavelength. This means that a phosphor may emit at a low frequency for a lower

temperature range and at a higher frequency for a higher temperature range. For

example, the 630nm band of the phosphor used in figure 5 has a decay time of the

order of 100µs, and it is temperature sensitive in the range of 170◦C < T < 210◦C.

Different phosphors have a wide range of decay times and temperature ranges, so a

single phosphor may have multiple calibration curves. A calibration curve is created

by heating a phosphor to a known temperature and then determining a decay time

from a curve fit. This process is repeated at various steady-state temperatures until

the calibration curve is complete, which occurs when a minimum sensitivity is reached

[Allison and Gillies, 1997]. Figure 7 shows the results of an exponential curve fit of

La2O2S:Eu at 190◦C. The phosphor was heated to 190◦C, and an LED was pulsed at

100Hz with a 20% duty cycle. Emission data was recorded for one second, and each

12
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of the 100 decay curves was fit to the standard model. The average of the 100 values

of τ was 0.000257 seconds, which then became a point on the calibration curve. The

standard deviation of the averaged decay time is 0.00000167s, which is less than one

percent of the value of decay time, so the error bars are not shown in the plot of the

calibration curve. This process was repeated incrementally from 170◦C to 210◦C to

create the calibration curve, shown in figure 8.

Under transient conditions, where the temperature transients are of

the order of the decay time, the assumption of constant decay time is no longer valid.

The standard model cannot predict an accurate value for τ if the temperature change

is significant over the decay curve. If the decay time does change over the emission

decay, then τ must be expressed as a function of time. The simplest approximation

is to assume that the decay time is a linear function of time and to use a first order

Taylor series expansion of the decay time, so that

τ(t) = τ0 +
dτ

dt
t + O(t2), (10)

where τ0 is the decay time at the beginning of the decay, at t = 0. The Taylor

series expansion of τ is substituted into the governing equation (equation 6), and the

13



solution for intensity to that differential equation is [Crim et al., 2004]

I

I0

=

(

τ0

τ0 + dτ
dt

t

)

1/ dτ

dt

. (11)

Equation 11 is the power model, where I0 and τ0 are the intensity and decay time

at time t = 0. This new model contains a transient term, dτ/dt, which accounts

for any change in the decay time over the emission decay. This new term, known as

the decay time rate, is an additional parameter that can be extracted from the decay

curve using a curve fit. Notice that for small temperature changes, where

dτ/dt → 0, the power model is singular. This leads to the need for a second tran-

sient model. Walker and Schetz [2003] suggest an alternate model which retains the

exponential approximation, but treats the decay time as a linearly varying function

of temperature. As a result, decay time is approximated as a truncated Taylor series

and substituted directly into the standard model. The resulting equation is

I

I0

= exp

(

−

t

τ0 + 1

2

dτ
dt

t

)

, (12)

known as the exponential model. Because the Taylor series is substituted directly into

the standard model, it does not satisfy the governing equation. Therefore, the power

model and exponential model were set equal and solved in terms of decay time rate

(dτ/dt). This led to the addition of a 1

2
term in the denominator of the exponential

term in the exponential model. Notice that as dτ/dt → 0, the exponential model

reduces to the standard model. By fitting emission decay data to the exponential and

power models, both decay time τ and the decay time rate dτ/dt can be extracted

from phosphor emission data. The decay time is used to determine the temperature

at each pulse, and the decay time rate is used to determine the heating rate. The

heating rate can be found directly using the chain rule, where

dT

dt
=

dT

dτ

dτ

dt
. (13)
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The term dT/dτ is found using the calibration curve (figure 8). Recall from figure 8

that the calibration curve gives the relationship between temperature and decay time

for a given emission band of a phosphor. dT/dτ is recovered by differentiating the

calibration curve and taking the inverse of that value. The heating rate is then

determined by taking the product of dT/dτ from the calibration curve and dτ/dt

from the curve fit.
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CHAPTER III

EXPERIMENT

The experiment consists of two parts. The first part takes place un-

der steady-state conditions, where the phosphor is heated to different steady-state

temperatures and the decay time is recorded. The final result of this part of the

experiment is the calibration curve. The second part of the experiment takes place

under transient conditions, where the phosphor is heated and the decay time and

decay time rate are recorded. The final result of this part of the experiment is the

heating rate of phosphor.

The experimental setup is almost identical for the two parts of the

experiment. The only difference between the two setups is the method of heating the

phosphor. For the steady state part, the phosphor is painted onto a thin, square sheet

of aluminum, measuring 25mm x 25mm x 1mm. For the transient part, the phosphor

is painted onto a tungsten filament. In order to paint the phosphor onto a surface, the

phosphor, which is in powder form, is mixed with water and a ceramic binder. The

mixture contains 40% phosphor, 30% distilled water, and 30% ResbondTM ceramic

binder. This mixture is then painted onto a clean, dry surface using an airbrush.

The phosphor should be painted as a thin coat, so that the thermal properties of the

phosphor have a minimal effect on the experiment. Extra coats of the phosphor do

not have a significant effect on the emission intensity. Once painted, the surface must

cure for twenty-four hours at room temperature.

The temperature range of interest for this experiment is 170◦C < T <

210◦C, which corresponds to an excitation wavelength of 350 nm and an emission

wavelength of 630 nm for the phosphor La2O2S:Eu. A pulse generator controls a 350

nm LED, which is the excitation source. A photomultiplier tube, which is contained

in an aluminum housing to shield it from electrical and optical disturbances, is fitted

with a 630 nm bandwidth filter to isolate the phosphor emission. The photomultiplier
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Figure 9: Schematic of Experimental Setup

Table 1: List of Equipment

Equipment Name & Model Number
Power Supply Global Specialties Instruments 1315

AC/DC Power Supply
Pulse Generator DEI PDG-2510 Digital Delay/Pulse

Generator
Oscilloscope Tektronix TDS 2012 2 Channel Digital

Storage Oscilloscope
Photomultiplier Tube Hamamatsu H5783 Photosensor Mod-

ule
Infrared Thermal Imaging Camera Mikron Thermo Tracer TS7302

tube is connected to an oscilloscope and a computer, which handles the data acqui-

sition. An infrared thermal imaging camera is focused on the phosphor to read the

temperature during experimentation. Figure 9 shows a schematic of the experimental

setup, and figure 10 shows a picture of the setup.

In the steady state portion of the experiment, the phosphor is heated

to an initial temperature of 170◦C with the strip heater. The pulse generator is set

to pulse the LED at 100 Hz with a 20% duty cycle. Figure 11 shows three pulses

of the LED (top) and the phosphor emission (bottom). In order to achieve best

results, the experiment must take place in a dark room, with as little ambient light
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Figure 10: Experimental Setup
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Figure 11: LED and Phosphor Emission Pulses
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as possible. To maximize the emission signal passed from the photomultiplier tube

to the data acquisition, it is necessary to minimize the distance from the LED and

the photomultiplier tube to the phosphor. When the phosphor reaches a constant

temperature, measured by the thermal imaging camera, the phosphor emission data

is recorded for approximately one second. One second of data at 100 Hz yields 100

values for decay time, which is a sufficient number to minimize any error due to noise

by averaging. Recall figure 7, where the values for decay time at 190◦C vary between

255µs and 260µs. Because the temperature is constant, the decay time, which is a

function of temperature, should also be constant. This variance is caused by noise

in the data recorded by the photomultiplier tube, and the effect of the noise can

be minimized by averaging the decay time results. This process is then repeated

incrementally from 170◦C to 210◦C. The final results are plotted in the calibration

curve, which is seen in figure 8.

To perform transient tests, a tungsten filament was coated with phos-

phor to be used as a heating source. The filament is connected to a variable voltage

power supply. The power supply is adjusted to the desired setting and turned off.

An infrared thermal imaging camera records the temperature at a maximum of 60

frames per second, and the length of the video can be adjusted to capture the entire

experimental run. The data acquisition begins while the power supply is still switched

off, then after approximately 0.25 seconds the power supply is turned on. As the fila-

ment is heated, the amplitude of the phosphor emission intensity decreases. For this

phosphor, at a certain temperature well above its sensitivity range, the emission will

decrease to a minimum of approximately 10-15% of the maximum emission amplitude.

Once the intensity reaches its minimum value or ceases to change amplitude, the data

acquisition ends. This process of heating and data aquisition lasts between 1 and 4

seconds, depending on the amount of power supplied to the filament. For a filament

rated at 100 watts, the maximum DC voltage applied should not be much more than

9 volts. Above 9 volts, the filament temperature can get high enough to emit light

in the visible range, which may be recorded by the photomultiplier tube erroneously.
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Visible light emitted from the filament is not a problem in this experiment, as the

temperature required for visible light emission is well above the sensitivity range of

the 630nm band of La2O2S:Eu, but it could be an issue with phosphors with higher

sensitivity ranges.
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CHAPTER IV

RESULTS

Most of the results from the steady-state portion of the experiment

have been presented, as the main purpose is the creation of the calibration curve

(recall figure 8). However, a comparison should be made of the standard model to

the transient models at steady state. Figure 12 is a plot of the decay time at 190◦C.

The plot includes the same data from the standard model in figure 7 as well as the

decay time data extracted using the power and exponential models. Recall that under

steady-state conditions, the power model contains a singularity and the exponential

model reduces to the standard model. However, any noise in the emission data results

in a non-zero value for dτ/dt, so that the power model may not contain a singularity.

Even though the transient models produce results similar to those of the standard

model under steady-state conditions, the standard model is still the optimal model

to use for determining decay time. Notice that the variation in the values of decay

time for the exponential and power models are more than double that of the standard

model, as the values of standard deviation are 3.9µs versus 1.7µs, respectively. The

exponential and power models have an extra free parameter, so the estimates are

less accurate compared to estimates from the standard model. Knowing that the

temperature does not change and that the decay time is temperature dependent, a

non-zero value for dτ/dt is incorrect and represents error in the results for decay time.

Figure 13 is a plot of the values of dτ/dt extracted from the data taken at 190◦C using

the exponential model. The plot shows that there is noise causing non-zero values

as well as a non-zero average for dτ/dt. The standard deviation is 0.012, and the

average value of dτ/dt is 0.00031. Although the average value for decay time is almost

identical for the three methods, at 257.5µs for the standard model and 257.3µs for the

exponential and power models, the standard model is preferred under steady state

conditions because there is no additional source of error with a transient term. It
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Figure 12: Decay Time at 190◦C at Steady-State
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Figure 13: Decay Time Rate at 190◦C at Steady-State
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Figure 14: Decay Time, with Filament Heating at 6.4 volts

would then seem appropriate to assume that under transient conditions the standard

model is not appropriate, as there is no term to account for the change in decay time

as the temperature changes. Figure 14 is a plot of decay time determined from each of

the three models as the filament is heated at 6.4 volts. When the filament is supplied

with 6.4 volts, it heats the phosphor to over 250◦C in one second. During the 0.002

second decay of each pulse, the temperature is increasing enough to change the value

of τ . The transient models extract a value for τ at the beginning of the decay with a

transient term, dτ/dt, to account for the change in decay time during the decay. The

standard model assumes that the decay time is constant over the decay, but the decay

time is actually decreasing, so the values of τ from the standard model are lower than

the values of τ from the transient models, and this trend can be seen in figure 14.

Therefore, when dealing with transient data, only the results from the exponential

and power models are accurate.

Figure 15 is a plot of the decay time rate, dτ/dt, taken from the data

of filament heating at 6.4 volts using the exponential and power models. As expected

from the plot of decay time, the values of dτ/dt start out positive and quickly become

negative, indicating an increase in temperature. However, just past t=0.6 seconds,

the values of dτ/dt decreases further when it appears the slope of figure 14 is in-
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Figure 15: Decay Time Rate, with Filament Heating at 6.4 volts

creasing. Past t=0.8 seconds the value of decay time rate begins to increase as it

approaches zero, which is in agreement with the plot of decay time. One explanation

for the continued decrease of dτ/dt is that as the temperature increases, the intensity

decreases, so that the amplitude of the intensity of the decay is small relative to any

noise. Therefore, at higher temperatures, we expect to see a greater effect on the

parameters of the curve fit from any noise in the system.

The temperature profile of the filament heated at 6.4 volts is seen in

figure 16 as measured with a thermal imaging camera. If the section of interest, which

is the portion of the graph between 170◦C and 210◦C, is treated as a straight line,

then the slope can be approximated as 200◦C/s during the time 0.32s < t < 0.52s.

We can then use the chain rule from equation 13 to approximate the heating rate

using the phosphor data. Looking at the plot of decay time in figure 14, the slope

of the line, dτ/dt, between τ = 310µs and τ = 210µs, is approximated as -0.000417

s/s. From the calibration curve, dT/dτ is approximately -400,000 ◦C/s. The product

of these two values gives the heating rate as 167 ◦C/s. A further comparison can

be made using dτ/dt taken directly from the measurements as a parameter of the

curve fits using the exponential and power models. The average values of dτ/dt are

-0.04014 and -0.03953 using the exponential and power models, respectively. Using
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Figure 16: Phosphor Temperature During Filament Heating at 6.4 volts

these values in the chain rule yields heating rates of 16,056◦C/s and 15,812◦C/s.

These values are approximately two orders of magnitude higher than the other two

estimates, and this discrepency will be addressed later.

The experiment was run again with a lower voltage of 5.5 volts applied

to the filament. The filament heats the phosphor to over 200◦C in one second, as seen

in Figure 17. If the area of interest, from 170◦C to 210◦C, is treated as a straight line,

then the heating rate is estimated as the slope of figure 17, which is 133◦C/s. The

intensity data recorded during heating is then analyzed to extract the decay times

and decay time rates from the models. The decay times from the three models are

shown in figure 18. Recall that the decay times from 310µs to 210µs correspond to

temperatures from 170◦C to 210◦C. From the plot of decay time in figure 18, if the

decay times are treated as a straight line in the area of interest, then the slope of

that line is 0.000345 s/s. Multiplying the estimated value of dτ/dt by the previously

determined value of dT/dτ , which is 400,000 ◦C/s, the estimated heating rate using

the chain rule is 138 ◦C/s. The decay time rates extracted from the curve fit are

displayed in figure 19. The average value of dτ/dt from t = 0.57s to t = 0.86s is

-0.03326 for the power model and -0.03189 for the exponential model. Using those

values for dτ/dt in the chain rule, the resulting values of heating rate are 13,304◦C/s
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Figure 17: Phosphor Temperature During Filament Heating at 5.5 volts
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Figure 18: Decay Time, with Filament Heating at 5.5 volts
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Figure 19: Decay Time Rate, with Filament Heating at 5.5 volts

Table 2: Decay Time Rate, Heating at 6.4 volts

exponential power
τ slope -0.000417 -0.000417
dτ/dt -0.04014 -0.03953

and 12,756◦C/s respectively. Again there is a difference of two orders of magnitude

which must be addressed.

In the experiments there were three methods of estimating heating

rate. The simplest method, which is used as the standard, is to assume that the

temperature increase from 170◦C to 210◦C is linear, and to use a linear regression to

determine the slope of the line, giving the heating rate. The other two methods involve

using the chain rule (see equation 13). The dT/dτ term is found using the calibration

curve. The calibration curve (see figure 8) is assumed to be linear, and a linear

regression gives the slope as dτ/dT, of which the inverse is taken to determine dT/dτ .

Table 3: Decay Time Rate, Heating at 5.5 volts

exponential power
τ slope -0.000345 -0.000345
dτ/dt -0.03326 -0.03189
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Table 4: Estimated Heating Rates

method 6.4 Volt 5.5 Volt
Camera 200◦C/s 133◦C/s
decay time slope 167◦C/s 138◦C/s
decay time rate 16,056◦C/s 13,304◦C/s

The method of interest, which extracts dτ/dt directly from the measurement using the

power and exponential models, is referred to as the decay time rate method. The other

method assumes a linear decrease in the decay time in the region 310µs > τ > 210µs,

and uses a linear regression to estimate the slope of the line, which is dτ/dt. This

method is referred to as the decay time slope method. Looking first at the case of

heating with 6.4 volts, the estimated heating rate using the temperature information

from the thermal camera is 200◦C/s. The decay time slope method results in an

estimate of 167◦C/s. This gives a percent difference of almost 18%, which is high,

but not unreasonable due to the assumptions of linearly increasing temperature and

linearly decreasing decay time in the methods. The decay time rate method results

in an estimated heating rate of 16,056◦C/s and 15,812◦C/s for the exponential and

power models. Both of these estimates are two orders of magnitude higher than the

other estimates. Notice that although the heating rate estimates are high by two

orders of magnitude, it is almost exactly a factor of 100 by which they are too high.

If a factor of 100 is taken from the decay time rates extracted using the exponential

and power models, then the resulting heating rate estimates are 160◦C/s and 158◦C/s.

Those two heating rate estimates are close to the heating rate estimates for the other

two methods.

In the case of heating with 5.5 volts, the estimated heating rate using

the temperature from the thermal camera is 133◦C/s. The heating rate estimate from

the decay time slope method is 138◦C/s. The percent difference between these two

estimates is 3.7%, which is much smaller than the percent difference in the previ-

ous experiment. The heating rate estimates using the decay time rate method are
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Figure 20: Decay Time Extracted from Simulation
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Figure 21: Decay Time Rate Extracted from Simulation
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13,304◦C/s and 12,756◦C/s for the power model and the exponential model respec-

tively. Again, these estimates are two orders of magnitude larger than the other two

methods. If a factor of 100 is taken from the values of dτ/dt extracted from the in-

tensity decay using the power and exponential models, then the estimates for heating

rate are 133◦C/s and 127◦C/s. Those values are close to the estimates found using

the other two methods.

In an attempt to understand the error in the results of decay time

rate, a simulation of the experiment was performed. In the simulation, fake data is

created and noise is added, then a curve fit is performed to extract the known decay

time and decay time rate. The parameters are set to τ = 0.00035s and dτ/dt = 0.

Figure 20 shows the results for decay time as the amount of random noise increases.

Although the added noise increases the error in decay time, the amount of error is low

compared to the values of decay time. The amount of error in the results for decay

time in the simulation is comparable to that of the experiment. Now examine the

results for decay time rate in figure 21. Recall that in the experiment the expected

values of decay time rate were on the order of 0.0004. Notice that even with very

small amounts of noise, the error in the results is larger than what the expected

results would be for a transient case.
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CHAPTER V

CONCLUSIONS

One goal of this experiment was to show that thermographic phos-

phors can be used for thermometry under transient conditions. The two transient

models provide a term to account for the change in temperature, and therefore decay

time, during the intensity decay. The standard model is unable to account for the

temperature change, and therefore results in an average decay time over the intensity

decay. Figures 14 and 18 show that the standard model yields lower values for decay

time than the transient models do during heating. The second goal of the experiment

was to show that thermographic phosphors can also be used to estimate heating rate

using direct measurement. The technique used in this experiment is new and has not

been tested before now. This is an original attempt to measure heating rate using

thermographic phosphors. Using different methods to estimate heating rate, the val-

ues of dτ/dt extracted from the data using the transient models are too high by a

factor of 100. The cause of this error is unclear, and originally was thought to be the

result of a factor of 100 somewhere in the curve fit. However, after simulating the

experiment with known data and variable added random noise, one apparent cause

of error is random noise. If the noise can be reduced to a suitable level, it may be

possible to determine whether there are other sources of error. If random noise is

the dominating source of error and it can be significantly reduced, this method can

be used to determine heating rates for use in the solution for heat flux in the inverse

heat conduction problem.

Some sources of error in the experiment that can be improved upon

in future trials must be addressed. The use of a laser instead of an LED fully excites

the phosphor in a smaller amount of time. It also shuts off immediately when the

power is removed, where an LED may have some decay in light emission as the

power is removed. Also, the metal housing on the photomultiplier tube forces extra
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distance between the photomultiplier tube and the phosphor. If that distance can

be minimized, it will increase the magnitude of the emission intensity, resulting in a

higher emission to noise ratio. However, it is necessary to keep the metal housing on

the photomultiplier tube, as this greatly reduces electrical and optical interference.

With these changes in the experiment, the noise can be reduced, which should cause

a decrease in error in the results. However, at this time it is unclear how much noise

reduction is needed and how much noise reduction is possible.
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APPENDIX

PROGRESSION OF DATA COLLECTION

The quality of experimental data in this research has improved dra-

matically from when the experiments began. Much of the improvement was made

with the help of the Thermographic Phosphor Sensing Applications lab at Oak Ridge

National Laboratory, specifically Steve Allison. This appendix is meant to show a

progression in the quality of data recorded and also to show that the quality of data

can continue to progress.

Figure 22 shows a single pulse of phosphor emission recorded at 10,000

Hz. This data was recorded with a photomultiplier tube without aluminum housing.

In comparison of this plot to figure 5, the offset is greater here, mainly because there is

no housing to shield the photomultiplier tube from electrical and optical interference.

This experiment was run under steady state conditions, and the results for decay time

and decay time rate are seen in figures 23 and 24. Notice that the values of decay

time are significantly different between the transient and steady-state models. Also,

the values of decay time rate suggest that the decay time is steadily increasing, which

cannot be true at steady-state.

The frequency of intensity readings was increased from 10,000 Hz to

50,000 Hz in the hopes of acquiring better results. Figures 25, 26, and 27 show the

emission intensity and the results for decay time and decay time rate under transient

conditions. The offset in the emission data is the same as in the 10,000 Hz trials,

but the increase in data points increases the accuracy in the curve fits. The results

for decay time seem to be accurate early in the heating, but after 0.6 s the decay

time begins to increase and the precision decreases greatly. The results for decay

time rate seem to agree with those for decay time, as the increase in decay time is

accompanied by an increase in decay time rate. However, there is no reason for the

decay time to increase as the temperature is decreasing. The error here is due to
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Figure 22: Single Pulse of Emission Data at 10 kHz

optical and electrical interference as the emission intensity decreases. The amplitude

of the noise that the interference causes remains constant during the experiment, but

as the emission intensity decreases, the interference noise becomes more dominant.

The solution is to maximize the emission intensity that the photomultiplier tube

records, which can be done in two ways. One method is to increase the amount of

phosphor emission, which can be done by increasing the amount of excitation. The

excitation can be increased by using a more powerful excitation source, such as a

laser instead of an LED, and by minimzing the space between the excitation source

and the phosphor. Another method of maximizing the amount of emission recorded

is to minimize the space between the phosphor and the photomultiplier tube. Also,

the interference noise can be decreased by shielding the photomultiplier tube in an

aluminum housing.
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Figure 23: Decay Time Results from 10 kHz Data
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Figure 24: Decay Time Rate Results from 10 kHz Data
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Figure 25: Single Pulse of Emission Data at 50 kHz without Aluminum Shielding
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Figure 26: Decay Time Results at 50 kHz without Aluminum Shielding
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Figure 27: Decay Time Rate Results at 50 kHz without Aluminum Shielding
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