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CHAPTER I 

 

INTRODUCTION 

 

Williams syndrome (WS) is a rare neurodevelopmental disorder caused by the deletion of 26 

genes on chromosome 7q11.23. WS has a well-defined auditory phenotype, characterized by a 

strong attraction and emotional reactivity to music, abnormal sensitivity to sounds (hyperacusis) and 

an aversion to or avoidance of sounds (phonophobia). Auditory abnormalities reported in WS also 

affect a wide range of neurodevelopmental, neuropsychiatric and neurological disorders. Little is 

known about sensory modulation, or the demonstration of maladaptive emotional and behavioral 

responses to sensory stimuli in WS. This study aims to describe a neural basis for impaired sensory 

modulation in atypical auditory processing characteristic of the WS phenotype.  

 The theoretical basis for the approach to exploring a neural basis for sensory modulation and 

atypical auditory processing in WS is presented in Chapter II. Included are a review of current 

literature describing sensory modulation in WS, a description of neural correlates of auditory 

processing and cortical plasticity, and a review of mechanisms of auditory processing specific to WS.  

 Chapter III presents a cross-sectional study of sensory modulation in individuals with WS, 

aged 5 – 49 years, compared to normative data. The study is the first known, at the time of 

publication, to quantitatively describe the role of atypical sensory perception in impaired sensory 

modulation, independent of clinical diagnoses, in individuals with WS over the age of 10. The 

influence of age on sensory modulation in WS is also investigated. 

 Studies suggesting a neural basis for atypical auditory processing in WS are described in 

Chapters IV and V. Therein, adults with WS are compared to age-, sex- and handedness-matched 

neurotypical control participants. Chapter IV utilizes whole brain resting state functional connectivity 

analyses to describe a neural basis for atypical auditory processing in WS. In Chapter V, a novel 
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image processing pipeline is presented in an analysis of diffusion-weighted neuroimaging data to 

describe a neural basis for atypical auditory processing in WS.  

 Chapter VI gives perspective to impaired sensory modulation in WS based on the three studies 

that comprise this dissertation. A summary of findings from each study is given and future directions 

are discussed. 
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CHAPTER II 

 

BACKGROUND 

 

Williams Syndrome 

Williams Syndrome (WS) is a rare, genetic neurodevelopmental disorder caused by the deletion of 

~26 genes on chromosome 7q11.23 (Peoples et al. 2000) and is characterized by mild to moderate 

intellectual disability, congenital heart defects, dysmorphic facial features and an atypical 

neurocognitive and behavioral profile (Meyer-Lindenberg, Mervis, and Berman 2006; Pober and 

Dykens 1996). It is estimated to affect between 1 in 7,500 to 1 in 20,000 live births (Strømme, 

Bjømstad, and Ramstad 2002; Wang et al. 1997). The neurocognitive profile of WS is defined by 

visuospatial deficits and relative strengths in socially-expressive language and heightened facial 

processing abilities (Mervis et al. 2000; Bellugi et al. 2000). The WS behavioral profile is described by 

non-social anxiety and fears (Dykens 2003; Dykens and Rosner 1999; Einfeld, Tonge, and Florio 

1997; Leyfer et al. 2006; Udwin 1990; Udwin and Yule 1991), distractibility (Leyfer et al. 2006; Udwin 

and Yule 1991; Greer et al. 1997; Tomc, Williamson, and Pauli 1990), heightened empathy and 

hypersociability (Dykens and Rosner 1999; Jones et al. 2000; Bellugi et al. 1999; Doyle et al. 2004; 

Frigerio et al. 2006; Hohman et al. 2013). The most frequently reported sensory feature in WS is 

atypical auditory processing, specifically, a strong attraction to music (Hopyan et al. 2001; Don, 

Schellenberg, and Rourke 1999; Levitin et al. 2004; Levitin and Bellugi 1998; Dykens et al. 2005) and 

a fascination with sounds (Einfeld, Tonge, and Florio 1997; Don, Schellenberg, and Rourke 1999; 

Levitin et al. 2005), paired with auditory hypersensitivity (hyperacusis) and phonophobia (Nigam and 

Samuel 1994; Gothelf et al. 2006; Elsabbagh et al. 2011; Klein et al. 1990).  
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Sensory Modulation in Williams Syndrome 

Sensory modulation involves filtering and gating of multiple sensory inputs and is essential for 

efficient processing of sensory signals. Regulation of neural messages in a graded and adaptive 

manner is given by facilitation or inhibition of responses to sensory input from basic sensory 

processing systems, allowing isolation of relevant or salient information from the array of sensations 

experienced (Dunn 1997). Impairments in sensory modulation present as patterns of hypo-

responsiveness and hyper-responsiveness, both of which may occur in the same individual and 

across multiple sensory modalities (Dawson and Watling 2000; Baranek et al. 2006; Baker et al. 

2008). Sensory features are often exhibited in individuals as difficult temperaments, problem 

behaviors, distractibility, difficulty regulating arousal levels, and difficulty establishing relationships 

(Baker et al. 2008; Mangeot et al. 2001; Baranek et al. 2002; Dunn 2001). It has been suggested that 

features of behavioral phenotypes in a variety of neurodevelopmental, neuropsychiatric and 

neurological disorders are secondary to findings of impaired sensory modulation (Mangeot et al. 

2001; Baranek et al. 2002; Dunn and Bennett 2002; Tomchek and Dunn 2007).  

The hallmark of impaired sensory modulation in WS is the auditory phenotype: a strong attraction 

and emotional reactivity to music is reported to surpass that of typically developing (TD) individuals 

(Don, Schellenberg, and Rourke 1999; Levitin et al. 2004; Dykens et al. 2005). Though medically 

defined as ‘an abnormal sensitivity to sound’ (Dirckx 2001; Venes, Thomas, and Taber 2001), 

previous literature indiscriminately uses the word ‘hyperacusis’ to describe abnormal auditory 

symptoms including an aversion to or avoidance of sounds (phonophobia) (Levitin et al. 2003; Zarchi, 

Attias, and Gothelf 2010),  leaving the distinction between the psychoacoustic and emotional aspects 

of sound perception undifferentiated (Anari et al. 1999; Baguley 2003; Katzenell and Segal 2001; 

Khalfa et al. 2002; Marriage and Barnes 1995; Phillips and Carr 1998). In the only study to 

behaviorally discriminate between the symptoms of hyperacusis and phonophobia in WS, Levitin et al. 

(2003) found rates of hyperacusis in WS (80%), autism (33%), Down syndrome (33%) and TD (4%) 

groups. Corresponding rates of phonophobia were 91% in WS, 27% in autism, 7% in Down syndrome 
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and 2% in TD. Reports of phonophobia in WS commonly describe a fear of loud or startling sounds 

that are characterized by broad-band frequencies and high intensities (Levitin et al. 2005; Gothelf et 

al. 2006; Klein et al. 1990).  Compared to <1% in the TD group, there was a 9% prevalence of 

individuals with WS reporting a fascination with certain sounds. It was found that the response to 

these sounds (typically broad-band noise sounds) began as an auditory aversion (Levitin et al. 2004). 

Alongside the behavioral phenotype and prevalence of sensory features in WS, are reports of 

maladaptive functioning, difficult temperaments and difficulty establishing social relationships. 

Longitudinal and adult studies in WS report behavioral features, social and emotional difficulties that 

persist into adulthood (Dykens 2003; Davies, Udwin, and Howlin 1998; Einfeld, Tonge, and Rees 

2001; Gosch and Pankau 1997; Plissart et al. 1994; Udwin et al. 1998). We hypothesize that these 

behaviors have a basis in impaired sensory modulation in WS (John and Mervis 2010).  

 The role of atypical sensory perception in impaired sensory modulation has not been 

quantitatively described, using a measure that is independent of influence from clinical diagnoses, in 

individuals with WS over the age of 10. This gap limits an imperative understanding of atypical 

sensory modulation and the developmental mechanisms by which behavioral outcomes are achieved. 

Patterns of sensory processing have not been characterized in the WS population as a whole. 

Chapter III describes multimodal sensory processing in WS, using a caregiver report, which is 

independent of any diagnostic bias, in individuals ages 16-49. Describing patterns of sensory 

processing in a wide age span of individuals with WS will provide a developmentally-informed basis 

for understanding atypical sensory modulation in WS.  

 

Auditory Pathways and Neural Correlates 

The central auditory pathway consists of three main relay nuclei that conduct synaptic 

transmission between the auditory nerve of the cochlea and the auditory cortex: the cochlear nucleus, 

the contralateral inferior colliculus (IC), and the contralateral medial geniculate body (MGB). All 

ascending auditory input is channeled through the IC, which projects to the MGB, the thalamic relay. 
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Ventral nuclei of the MGB exclusively receive auditory input, whereas the medial and dorsal nuclei 

also receive visual and somatosensory projections. Brodmann areas (BA) and other spatial reference 

systems similarly define cortical auditory areas by function and cytoarchitecture (Brodmann 2006).  

The primary target of all afferent auditory input is the auditory cortex, which lies on the superior 

temporal gyrus (STG) and has three subdivisions. The first subdivision is called the core, or primary 

auditory cortex (BA 41), and lies on the anterior portion of the transverse temporal gyrus (Heschl’s 

gyrus). The core receives dense, point-to-point input from the ventral MGB, thus it contains a precise 

tonotopic map (Lauter et al. 1985). It is highly responsive to pure tones and encodes the spectral and 

temporal features of sound (deCharms, Blake, and Merzenich 1998). The core projects to two 

adjacent areas that comprise the secondary auditory cortex (BA 42): the belt and parabelt (Kaas, 

Hackett, and Tramo 1999). Projections from the core synapse in the surrounding belt area, which is 

most responsive to complex sounds, such as modulated tones, noise bursts or clicks, and is 

responsible for the formation of auditory spatial representations (Morel, Garraghty, and Kaas 1993; 

Rauschecker, Tian, and Hauser 1995). The parabelt receives projections from the belt in the third 

stage of hierarchical cortical processing and is most responsive to band-passed noise bursts. Its 

caudal neurons are sensitive to motion and direction and respond to sound in contralateral 

space(Hikosaka et al. 1988; Leinonen, Hyvärinen, and Sovijärvi 1980). The secondary auditory cortex 

projects to the perirhinal cortex (PRh) in the medial temporal lobe and the basolateral amygdala. 

Despite the hierarchical structure of serial processing from the MGB to BA 41, parallel afferent 

pathways originate from polysensory MGB neurons. Dorsal MGB neurons project to secondary 

auditory cortex. Medial MGB projects to BA 41, secondary auditory cortex and PRh. Both medial and 

dorsal divisions of the MGB also project to the basolateral amygdala, which in a pathway with the 

prefrontal cortex, includes part of the STG known as BA 22. 

Cytoarchetectonic studies of the primary auditory cortex in WS found larger pyramidal cells 

bilaterally in layer II and in the left hemisphere of layers III and VI (Galaburda and Bellugi 2011; 

Holinger et al. 2005). Findings were interpreted as being consistent with increased connectivity in the 
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auditory cortex of individuals with WS.  Magnetic resonance imaging (MRI) studies found decreased 

overall brain and cerebral volumes in WS with relative preservation of the superior temporal gyrus, 

frontal lobe and amygdala – key regions in cortical auditory processing (Reiss et al. 2000). 

 

Cortical Plasticity: Gating and Modulation 

Sensory modulation of thalamo-cortical signaling is influenced by inhibitory modulation of the 

medial geniculate body (MGB) from the reticular nucleus of the thalamus, without which neurons are 

hyperexcitable (Jones 2002). Evoked response potential (ERP) tests indicate a shorter refractory 

period for thalamo-cortical neuron response in WS, suggesting that auditory processing is mediated 

by hyper-excitability (Bellugi et al. 1990). Cholinergic neurons in the forebrain project ipsilaterally from 

the nucleus basalis (NB) to the neocortex, amygdala and reticular nucleus of the thalamus, and 

provide a gate for plasticity mechanisms (Levey, Hallanger, and Wainer 1987; Mesulam et al. 1983; 

Hasselmo 1995; Singer 1986; Weinberger 1993). Animal studies in the auditory cortex further support 

NB activity in gating cortical plasticity and demonstrate that differences in spectral and temporal 

features of sensory input can drive distinctly different cortical reorganizations (Hars et al. 1993; 

Kilgard and Merzenich 1998).  

Taken together, these findings suggest synaptic plasticity provides a neural basis for cortical 

reorganization that is continually shaped by sensory experiences (Buonomano and Merzenich 1998; 

Edeline 1999; Katz and Shatz 1996; Wolf Singer 1995; Kilgard et al. 2001).  Studies described in 

Chapters IV and V will be the first to assess multimodal sensory processing in WS that reflects 

synaptic and cortical plasticity, influenced by a known genetic basis or impaired sensory modulation  

 

Mechanisms of Atypical Sensory Processing in Williams Syndrome 

The most widely reported aspect of sensory processing in WS is the WS auditory phenotype, 

which includes emotional reactivity to music, hyperacusis, and sound aversion and attraction. The 

literature often struggles to differentiate between these key facets: 
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Emotional Reactivity to Music  

Using event-related potential (ERP) to measure electrophysciological response to a stimulus, 

significantly increased amplitude of left lateralized auditory evoked middle latency responses (mAEF) 

in the primary auditory cortex of individuals with WS and professional musicians was shown to 

correspond with increased left auditory cortex volume (Wengenroth et al. 2010; Schneider et al. 2002). 

This suggests impaired thalamo-cortical gating may underlie the WS musical phenotype.  Functional 

neuroimaging studies of music and noise processing showed that individuals with WS might have 

different neural organization, compared to TD controls. Individuals with WS employed a wider set of 

neural regions in response to music, including recruitment of the amygdala, brain stem, and occipital 

areas, which implicate limbic and polysensory mechanisms in atypical auditory processing (Levitin et 

al. 2003; Thornton-Wells et al. 2010).  

 

Hyperacusis 

The severity of hyperacusis reports are subjective and typically measured through self or 

caregiver report. In WS, as in other individuals with hyperacusis, audiometric detection thresholds 

have demonstrated a lack of correlation between peripheral hearing dysfunction and symptoms 

(Elsabbagh et al. 2011). The sensitivity of inferior colliculus (IC) neural populations to interaural sound 

level differences (of more than 20 dB) is radically altered by modulatory changes to descending 

auditory pathways from the primary auditory cortex (Nakamoto, Jones, and Palmer 2008). Gothelf et 

al. demonstrated a prolongation of brain stem evoked auditory responses, reflecting an absence of 

the acoustic startle reflex, in children with WS reporting symptoms of hyperacusis and an 

exaggerated startle response since infancy (Gothelf et al. 2006). Models of the acoustic startle reflex 

include synaptic pathways in the cochlea, reticulospinal axon bundle and reticular formation, which 

exert inhibitory influence on MGB auditory afferents (Jones 2002; Yeomans and Frankland 1995; 

Davis et al. 1982; Kandler and Herbert 1991; Lingenhöhl and Friauf 1992; Pellet 1990; Prosser and 
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Hunter 1936). Though the exact neural mechanism for hyperacusis is unknown, these studies 

suggest a basis of impaired modulation in cortico-thalamic signaling.  

 

Sound Aversion and Attraction 

Fear and aversion indicate the association of the limbic system, which processes emotionally 

relevant stimuli, in phonophobia. Zald et al. demonstrated that the amygdala responds to aversive 

auditory stimuli in a manner similar to how it would respond to aversive stimuli in other sensory 

modalities (Zald and Pardo 2002). Acoustic and nociceptive input is sent from the medial MGB, 

secondary auditory cortex and perirhinal cortex (PRh) to the amygdala. Locally integrated input is 

then sent to activate brain stem nuclei, producing behavioral and autonomic expressions of fear 

(Phillips and LeDoux 1992). Levitin et al. report that objects of auditory fascination in WS originate as 

aversive sounds (Levitin et al. 2005), supporting limbic involvement.  

Though the physiologic mechanisms of hyperacusis, phonophobia and auditory fascination are poorly 

understood, they likely stem from different physiological correlates and etiologies related to 

neurodevelopmental impairment (Phillips and Carr 1998; Levitin et al. 2005). A neural basis for other 

modalities of sensory processing are less studied, and reports focus on uni-modality findings. 
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CHAPTER III 

 

NEURODEVELOPMENTAL PATTERNS OF SENSORY PROCESSING IN WILLIAMS SYNDROME 

 

Background 

Individuals with Williams syndrome (WS) demonstrate impaired sensory modulation, which is 

demonstrated as poor adaptive and execute functioning, problem behaviors and difficult 

temperaments (Baker et al. 2008; Mangeot et al. 2001; Baranek et al. 2002; Dunn 2001). The role of 

atypical sensory perception in impaired sensory modulation has not been quantitatively described, 

independent of clinical diagnoses, in individuals with WS over the age of 10. This gap limits an 

imperative understanding of atypical sensory modulation and the developmental mechanisms by 

which behavioral outcomes are achieved. Atypical sensory modulation has been described in multiple 

neurodevelopmental disorders, including ADHD, Autism, Angelman Syndrome and Fragile X 

Syndrome, but patterns of sensory processing have not been characterized in the WS population as a 

whole. This study aims to describe patterns of sensory processing in a wide age span of individuals 

with WS to provide a developmentally-informed basis for understanding impaired sensory modulation 

in WS. 

 

Sensory Assessment Measures and Theoretical Model 

The Sensory Profile Caregiver Version (SP-C) is a judgment-based, 125-item questionnaire that 

provides a standard method to measure an individual’s sensory processing abilities. It is most 

appropriate for children 5 – 10 years of age, but has also been used in older individuals in studies of 

neurodevelopmental disorders. The SP-C was created to measure sensory processing without the 

bias of other clinical diagnoses or environmental contexts (Dunn 1999; Brown and Dunn 2002).  

The 125 items on the SP-C are answered by the caregiver who rates each item using a 5-point 

Likert-scale. Typically, it takes 20-30 minutes for a caregiver to complete the Sensory Profile. There 
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are three main Sections of the questionnaire: (1) Sensory Processing, (2) Modulation, and (3) 

Behavioral and Emotional Responses. The Sensory Processing section includes six sub-sections: 

Auditory Processing, Visual Processing, Vestibular Processing, Touch Processing, Multisensory 

Processing, and Oral Sensory Processing. The Modulation Section includes five sub-sections: 

Sensory Processing Related to Endurance/Tone, Modulation related to Body Position and Movement, 

Modulation of Movement Affecting Activity Level, Modulation of Sensory Input Affecting Emotional 

Responses, and Modulation of Visual Input Affecting Emotional Responses and Activity Level. The 

Behavior and Emotional Responses section includes three sub-sections: Emotional/Social 

Responses, Behavioral Outcomes of Sensory Processing, and Items Indicating Thresholds for 

Response. 

There are three ways to analyze the Sensory Profile to interpret patterns of sensory processing. 

The first is to use the Section Summary scores, a raw tally of scores in each of the fourteen sub-

sections. Section Summary scores give a visual representation for understanding which specific 

categories are interfering most with an individual’s sensory processing.  

A second way to analyze the Sensory Profile is by Factor scores, which are derived from 

normative data collected by SP-C developers, that show meaningful clusters of items in independent 

groups (Dunn and Brown 1997). From a principal-components factor analysis, nine factors were 

found to account for 47.8% of the variance in individuals without disabilities. The nine Factors Scores 

are: Sensory Seeking, Emotionally Reactive, Low Endurance/Tone, Oral Sensory Sensitivity, 

Inattention/Distractibility, Poor Registration, Sensory Sensitivity, Sedentary, and Fine 

Motor/Perceptual. Factor Scores reveal patterns related to an individual’s responsivity to stimuli in an 

environment and use two-tailed cut scores, which are more representative of the normal distribution 

curve. 

It is stated by the developers that in some cases Quadrant Scores, the third way to analyze the 

Sensory Profile, may be more beneficial for interpretation than Factor Scores. Dunn’s Theoretical 

Model for Sensory Processing is the basis of Quadrant Scores (Dunn 1997). The theoretical model is 



!12 

based on an individual’s neurological and behavioral response patterns (Figure 1). The neurological 

threshold continuum is along the vertical axis, while the behavioral threshold continuum is along the 

horizontal axis. Low neurological thresholds (more frequent responses to stimuli) are at the bottom, 

and high thresholds (less frequent responses to stimuli) are at the top of the vertical axis. The 

behavioral continuum is described by acting in accordance (passive reaction) on the left and acting to 

counteract (active reaction) on the right. The continua interact to create four quadrants of 

responsivity: Registration (upper left quadrant), Sensation Seeking (upper right quadrant), Sensitivity 

to Stimuli (lower left quadrant), and Sensation Avoiding (lower right quadrant). Individuals’ scores 

represent any combination of behavioral patterns, which may even coexist because they represent 

various forms of modulation. Each quadrant is represented by its own continuum, where an individual 

may score more similarly or less similarly to normative data. Outlying scores are not necessarily 

indicative of sensory processing that interferes with performance. In the Registration quadrant, lower 

scores may indicate that the individual notices sensory input that is not helpful for participation, while 

high scores may mean the individual misses sensory input needed for participation. Low scores for 

Sensory Seeking may indicate an individual does not seek enough sensory input to sustain 

participation. High scores may indicate the individual may seek sensory input in ways that are 

excessive and disruptive to participation. Low Sensory Sensitivity score may mean an individual fails 

to detect particular sensory input needed for participation, while high scores may mean the individual 

is so distracted by sensory input that it interferes with participation. In the Sensation Avoiding 

quadrant, low scores may indicate an individual fails to notice the sensory input needed for 

participation. High scores may mean the individual is overwhelmed by sensory input to the degree 

that it interferes with participation. Each Quadrant Score is scored using different SP-C cut scores, 

giving an appropriate classification score for each. 

Scores from each of the three methods of analysis use a classification system to categorize 

sensory processing abilities. Twenty-seven (14 Section, 9 Factor, and 4 Quadrant scores) 

classification scores were derived from normative data during instrument testing in individuals with 
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Figure 1. Relationship Between Behavioral Responses and Neurological Thresholds. Dunn’s Theoretical Model of 

Sensory Processing defines a neurological threshold continuum on the vertical axis and behavioral response continuum 

on the horizontal axis. These continuua interact with each other to give four basic quadrants: Registration, Sensation 

Seeking, Sensory Sensitivity, and Sensation Avoiding. Figure adapted from Dunn (1997). 
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and without disabilities. The five classification scores include: Typical Performance, Probable 

Difference (More Than Others or Less Than Others), and Definite Difference (Much More Than 

Others or Much Less Than Others). A Typical Performance score is within one standard deviation of 

the mean scores for individuals without disabilities. A Probable Difference score corresponds to a 

score between one and two standard deviations from normative scores. A Definite Difference score is 

two standard deviations above or below normative scores for children without disabilities.  

 

Methods 

 

Participants and Recruitment  

Fifty-six caregivers of individuals with WS who ranged in age from 5 to 49 years old (20.4 ± 

11.9 years of age, 24 females) were recruited at the Williams Syndrome National Convention and at 

the ACM Lifting Lives Music Camp at the Vanderbilt Kennedy Center for Research on Human 

Development. Caregivers were asked to complete the Sensory Profile Caregiver Version, which took 

most individuals 20-30 minutes to complete. Some questionnaires were collected on paper and some 

by sending a private and individualized link to a website where we had posted the questionnaire. All 

study protocols were approved by the Vanderbilt University Internal Review Board.  

 

Statistical Analyses 

Data were analyzed within-group for three different groups: a Children’s group ([age]: 6.7 ± 

1.4; 8 females), an Adolescents/Adults group ([age]: 25.5 ± 9.7, 16 females), and an All Subjects 

group ([age]: 20.4 ± 11.9, 24 females), which combined the Children’s and Adolescents/Adults group. 

Group Section Summary scores, group Factor Summary scores and group Quadrant scores were 

analyzed according to the SP-C classification system. Using two-tailed Spearman rank correlation 

tests (ρ = correlation coefficient), group Summary scores, group Factor scores and group Quadrant 

scores were correlated with age in three different within-group analyses: the Children’s group (aged 5 
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– 10, N = 15), the Adolescent/Adult group (aged 11 – 49, N = 41), and the All Subjects Group (aged 5 

– 49, N = 56). Although the clustered items from the factor analysis that defined each of the nine 

Factors are not published in the User’s Manual, the Quadrant scores are derived from Section scores. 

We chose to conservatively correct for 125 measures, which represent the 125 items on the SP-C 

questionnaire, the basis for all summary scores. For each group analysis we used an experiment-

wise Type I error rate of 0.05. The Bonferroni-corrected α for each of the three analyses was given by 

the number of items on the SP-C after correcting for multiple comparisons (125 items, α = 0.0004). 

Analyses were conducted using the Sensory Profile Select Scoring Assistant software package 

(Sensory Profile Select Scoring Assistant 2006) and SPSS (IBM SPSS Statistics for Windows 2012), 

guided by classification system algorithms in the Sensory Profile Caregiver Version User’s Manual. 

 

Results 

 

Sensory Profile Results in Children, Ages 5 – 10  

 

Section Summary  

 Fourteen sub-sections comprise the three main sections (Sensory Processing, Modulation, 

Behavioral and Emotional Responses) of the Section Summary Scores that evaluate sensory 

processing abilities based on two-tailed cut scores. In children with WS (aged 5 – 10, N = 15), group 

scores on three of the fourteen sub-sections were classified as a Typical Performance, one in each of 

the three main sections, Sensory Processing, Modulation, Behavioral and Emotional Responses, 

respectively: Visual Processing ([mean ± SD]: 32.4 ± 5.7), Modulation of Movement Affecting Activity 

Level ([mean ± SD]: 23.7 ± 3.3), and Emotional Social Responses ([mean ± SD]: 66.1 ± 6.0). In three 

subsections, Summary group scores were classified as More Than Others/Probable Difference: 

Touch Processing (Sensory Processing, [mean ± SD]: 72.3 ± 9.2), Oral Sensory Processing (Sensory 

Processing, [mean ± SD]: 42.5 ±8.4), Modulation Related to Body Position and Movement 
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(Modulation, [mean ± SD]: 37.0 ±5.2), Modulation of Visual Input Affecting Emotional Responses and 

Activity Level (Modulation, [mean ± SD]: 14.2 ± 1.9), and Items indicating Thresholds for Response 

(Behavioral and Emotional Responses, [mean ± SD]: 11.5 ±2.2). The remaining six sub-sections 

Summary group scores were classified as Much More Than Others/Definite Difference. Three were in 

the Sensory Processing section: Auditory Processing ([mean ± SD]: 22.8 ± 6.2), Vestibular 

Processing ([mean ± SD]: 42.9 ± 6.5), and Multisensory Processing ([mean ± SD]: 21.0 ± 5.0). Two 

were in the Modulation section: Sensory Processing Related to Endurance/Tone ([mean ± SD]: 29.2 ± 

6.9) and Modulation of Sensory Input Affecting Emotional Responses ([mean ± SD]: 11.7 ± 2.9). One 

was in the Behavioral and Emotional Responses section: Behavioral Outcomes of Sensory 

Processing ([mean ± SD]: 16.7 ± 3.4) and. See Table 1. 

 

Factor Summary 

 Across all fifteen children, aged 5 – 10 years, Factor Summary group scores were evaluated 

using two-tailed cut scores. Two of the group Factor scores were classified as a Typical Performance: 

Poor Registration ([mean ± SD]: 34.1 ± 3.1) and Sedentary ([mean ± SD]: 13.0 ± 4.0). Three group 

Factor scores were classified as More Than Others/Probable Difference: Sensory Seeking ([mean ± 

SD]: 59.5 ±9.0), Emotionally Reactive ([mean ± SD]: 56.6 ± 7.1), and Oral Sensory Sensitivity ([mean 

± SD]: 31.8 ± 7.8). The four remaining group Factor scores were classified as Much More Than 

Others/Definite Difference:  Low Endurance/Tone ([mean ± SD]: 29.2 ± 6.9), Inattention/Distractibility 

([mean ± SD]: 19.3 ± 5.9), Sensory Sensitivity ([mean ± SD]: 13.5 ± 4.3), and Fine Motor/Perceptual 

([mean ± SD]: 5.1 ± 2.4). See Table 2. 

 

Quadrant Summary 

 A Sensory Profile Quadrant Summary was assessed for children, aged 5 – 10 years. Each of 

the four group Quadrant scores was assessed using two-tailed cut scores. The Quadrant with the 

most individual scores classified as Much More Than Others/Definite Difference was the Registration  
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Table 1. Sections Summary Scores for All Groups. Classification of section scores are reported for the Children’s group 

(N = 15), Adolescent/Adult group (N = 41), and All Subjects group (N = 56), which is comprised of the Children’s and 

Adolescent/Adult group. Performance scores classified based on normative scores (NS). Typical Performance (TP), < 1 

SD from NS; More Than Others/Probable Difference (PD), 1 – 2 SD from NS; Much More Than Others/Definite Difference 

(DD), > 2 SD from normative scores. 

  

Section Summary TP (< 1 SD) PD (1-2 SD) DD (> 2 SD) TP (< 1 SD) PD (1-2 SD) DD (> 2 SD) TP (< 1 SD) PD (1-2 SD) DD (> 2 SD)

Sensory Processing

  1. Auditory Processing X X X

  2. Visual Processing X X X

  3. Vestibular Processing X X X

  4. Touch Processing X X X

  5. Multisensory Processing X X X

  6. Oral Sensory Processing X X X

Modulation

  7. Sensory Processing   
Related to Endurance/Tone

X X X

  8.Modulation Related to 
Body Position and Movement

X X X

  9. Modulation of Movement                
Affecting Activity Level

X X X

  10. Modulation of Sensory 
Input Affecting Emotional 
Responses

X X X

  11. Modulation of Visual 
Input Affecting Emotional 
Responses and Activity Level

X X X

Behavior and Emotional Responses

  12. Emotional/Social 
Responses

X X X

  13. Behavioral Outcomes of 
Sensory Processing

X X X

  14. Items Indicating 
Thresholds for Response

X X X

Children's Group (aged 5 - 10) Adult/Adolescent Group (aged 11 - 49)All Subjects Group (aged 5 - 49)
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Table 2. Factor Summary Scores for All Groups. Classification of section scores are reported for the Children’s group (N = 

15), Adolescent/Adult group (N = 41), and All Subjects group (N = 56), which is comprised of the Children’s and 

Adolescent/Adult group. Performance scores classified based on normative scores (NS). Typical Performance (TP), < 1 

SD from NS; More Than Others/Probable Difference (PD), 1 – 2 SD from NS; Much More Than Others/Definite Difference 

(DD), > 2 SD from normative scores.  

  

Factor Summary TP (< 1 SD) PD (1-2 SD) DD (> 2 SD) TP (< 1 SD) PD (1-2 SD) DD (> 2 SD) TP (< 1 SD) PD (1-2 SD) DD (> 2 SD)

1. Sensory Seeking X X X

2. Emotionally Reactive X X X

3. Low Endurance/Tone X X X

4. Oral Sensory Sensitivity X X X

5. Inattention/Distractibility X X X

6. Poor Registration X X X

7. Sensory Sensitivity X X X

8. Sedentary X X X

9. Fine Motor/Perceptual X X X

All Subjects Group (aged 5 - 49) Children's Group (aged 5 - 10) Adult/Adolescent Group (aged 11 - 49)
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Quadrant (80%), followed by the Sensory Sensitivity Quadrant (60%), the Sensation Avoiding 

Quadrant (47%), and the Sensation Seeking Quadrant (40%). Within the Registration Quadrant, 7% 

of individuals were classified as having a Typical Performance, 13% were classified as More Than 

Others/Probable Difference, and 80% as Much More Than Others/Definite Difference. The average 

Registration Quadrant score was 48.4 ± 11.5, which was classified as Much More Than 

Others/Definite Difference. In the Sensation Avoiding Quadrant, 20% were classified as Typical 

Performance, 33% as More Than Others/Probable Difference, and 47% as Much More Than 

Others/Definite Difference. The average Sensation Avoiding Quadrant Score was 105.7 ± 9.8, which 

was classified as More Than Others/Probable Difference. The Sensory Sensitivity Quadrant scores 

showed 7% of individuals with Typical Performance, 33% with More Than Others/Probable Difference, 

and 60% Much More Than Others/Definite Difference. The average Sensory Sensitivity Quadrant 

Score was 67.4 ± 9.4, which was classified as Much More Than Others/Definite Difference. In the 

Sensation Seeking Quadrant, 13% of individuals were classified as having a Typical Performance, 

47% as More Than Others/Probable Difference, and 40% were classified as Much More Than 

Others/Definite Difference. The average Sensation Seeking Quadrant Score was 92.9 ±12.4, which 

was classified as a More Than Others/Probable Difference. See Table 3. 

 

Sensory Profile Results in Children, Adolescents/Adults 11 – 49  

 

Section Summary  

 Group Summary scores for forty-one adolescents and adults, aged 11 – 49 years, were 

assessed using two-tailed cut scores. Two sub-section group scores were classified as Typical 

Performance: Oral Sensory processing ([mean ± SD]: 45.9 ± 10.0) in the Sensory Processing section 

and Items Indicating Thresholds for Response ([mean ± SD]: 12.8 ±1.8) in the Emotional and 

Behavioral Responses section. Group scores in eight sub-sections were classified as More Than 

Others/Probable Difference. Four were in the Sensory Processing section: Auditory Processing  
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Table 3. Quadrant Summary Scores for All Groups. Classification of section scores are reported for the Children’s group 

(N = 15), Adolescent/Adult group (N = 41), and All Subjects group (N = 56), which is comprised of the Children’s and 

Adolescent/Adult group. Performance scores classified based on normative scores (NS). Typical Performance (TP), < 1 

SD from NS; More Than Others/Probable Difference (PD), 1 – 2 SD from NS; Much More Than Others/Definite Difference 

(DD), > 2 SD from normative scores. 

  

Quadrant Summary TP (< 1 SD) PD (1-2 SD) DD (> 2 SD) TP (< 1 SD) PD (1-2 SD) DD (> 2 SD) TP (< 1 SD) PD (1-2 SD) DD (> 2 SD)

1. Registration X X X

2. Sensation Seeking X X X

3. Sensory Sensitivity X X X

4. Sensation Avoiding X X X

All Subjects Group (aged 5 - 49) Children's Group (aged 5 - 10) Adult/Adolescent Group (aged 11 - 49)
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([mean ± SD]: 27.4 ± 5.5), Visual Processing ([mean ± SD]: 31.3 ± 6.6), Touch Processing ([mean ± 

SD]: 71.1 ± 10.7), and Multisensory Processing ([mean ± SD]: 25.0 ± 4.3). Three were in the 

Modulation section: Modulation Related to Body Position and Movement ([mean ± SD]: 38.6 ± 5.6), 

Modulation of Movement Affecting Activity Level ([mean ± SD]: 21.0 ± 3.8), and Modulation of Visual 

Input Affecting Emotional Responses and Activity Level ([mean ± SD]: 13.7 ± 2.9). The last, in the 

Emotional and Behavioral Responses Section, was Emotional/Social Responses ([mean ± SD]: 61.3 

± 10.1). Much More Than Others/Definite Difference group score classification was found for four 

sub-sections across all three main sections: Vestibular Processing (Sensory Processing, [mean ± 

SD]: 43.0 ± 6.5), Sensory Processing Related to Endurance/Tone (Modulation, [mean ± SD]: 28.9, 

7.7), Modulation of Sensory Input Affecting Emotional Responses (Modulation, [mean ± SD]: 12.2 ± 

3.1), and Behavioral Outcomes of Sensory Processing (Behavioral and Emotional Responses, [mean 

± SD]: 16.4 ± 3.6). See Table 1. 

 

Factor Summary 

 Scoring for group Factor scores used two-tailed cut scores. In the Adolescent/Adult Group, two 

factors were classified as Typical Performance: Sensory Seeking ([mean ± SD]: 69.3 ±8.4) and Poor 

Registration ([mean ± SD]: 34.6 ± 5.8). Four group Factor scores were classified as More Than 

Others/Probable Difference: Emotionally Reactive ([mean ± SD]: 52.5 ± 10.1), Oral Sensory 

Sensitivity ([mean ± SD]: 32.3 ± 8.6), Inattention/Distractibility ([mean ± SD]: 23.9 ± 4.8), and 

Sedentary ([mean ± SD]: 9.7 ± 3.7). The three remaining group Factor scores were classified as 

Much More Than Others/Definite Difference: Low Endurance/Tone ([mean ± SD]: 30.5 ± 8.6), 

Sensory Sensitivity ([mean ± SD]: 11.9 ± 4.5), and Fine Motor/Perceptual ([mean ± SD]: 7.2 ± 2.9). 

See Table 2. 
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Quadrant Summary 

 A Quadrant Summary was assessed for the Adolescent/Adult group, aged 11 – 49 years. Each 

of the four group Quadrant scores was assessed using two-tailed cut scores. The Quadrant with the 

most individual scores classified as Much More Than Others/Definite Difference was the Registration 

Quadrant (76%), followed by the Sensory Sensitivity Quadrant (68%), the Sensation Avoiding 

Quadrant (54%), and the Sensation Seeking Quadrant (17%). Within the Registration Quadrant, 20% 

of individuals were classified as having a Typical Performance, 5% were classified as More Than 

Others/Probable Difference, and 76% as Much More Than Others/Definite Difference. The average 

Registration Quadrant score was 51.3 ± 11.0, which was classified as Much More Than 

Others/Definite Difference. In the Sensation Avoiding Quadrant, 22% were classified as Typical 

Performance, 24% as More Than Others/Probable Difference, and 54% as Much More Than 

Others/Definite Difference. The average Sensation Avoiding Quadrant Score was 100.2 ± 16.3, which 

was classified as Much More Than Others/Definite Difference. The Sensory Sensitivity Quadrant 

scores showed 14% of individuals with Typical Performance, 20% with More Than Others/Probable 

Difference, and 66% Much More Than Others/Definite Difference. The average Sensory Sensitivity 

Quadrant Score was 64.4 ± 13.7, which was classified as Much More Than Others/Definite Difference. 

In the Sensation Seeking Quadrant, 61% of individuals were classified as having a Typical 

Performance, 22% as More Than Others/Probable Difference, and 17% were classified as Much 

More Than Others/Definite Difference. The average Sensation Seeking Quadrant Score was 104.4 

±13.7, which was classified as a Typical Performance. See Table 3. 

 

Sensory Profile Results in All Subjects Group, Ages 5 – 49  

 

Section Summary 

 Fourteen item sub-sections comprise the three main sections (Sensory Processing, Modulation, 

Behavioral and Emotional Responses) of the Section Summary Scores that evaluate sensory 
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processing abilities based on two-tailed cut scores. Across all fifty-six subjects, aged 5 – 49, a Typical 

Performance was classified based on group scores from two of fourteen sub-sections. Both were in 

the Behavioral and Emotional Responses section: Emotional/Social Responses ([mean ± SD]: 62.6 ± 

9.4) and Items Indicating Thresholds for Response ([mean ± SD]: 12.4 ± 2.0). Eight sub-sections 

showed group scores categorized as a probable difference. From the Sensory Processing main 

section, there were five sub-sections: Auditory Processing ([mean ± SD]: 26.2 ± 6.0), Visual 

Processing ([mean ± SD]: 31.6 ± 6.3), Touch Processing ([mean ± SD]: 71.5 ±10.2), Multisensory 

Processing ([mean ± SD]: 23.9 ± 4.8), and Oral Sensory Processing ([mean ± SD]: 45.0 ± 9.5). The 

other three Probable Differences group scores were found in the Modulation section: Modulation 

Related to Body Position and Movement ([mean ± SD]: 38.2 ± 5.5), Modulation of Movement 

Affecting Activity Level ([mean ± SD]: 21.8 ± 3.8), and Modulation of Visual Input Affecting Emotional 

Responses and Activity Level ([mean ± SD]: 13.8 ± 2.6). Four definite Differences were found in 

Section Summary group scores across all three main sections: in the Sensory Processing section, 

Vestibular Processing ([mean ± SD]: 43.0 ±6.4), in the Modulation section, Sensory Processing 

Related to Endurance/Tone ([mean ± SD]: 28.9 ±7.5) and Modulation of Sensory Input Affecting 

Emotional Responses ([mean ± SD]: 12.1 ± 3.0), and in the Behavioral and Emotional Responses 

section, Behavioral outcomes of sensory processing ([mean ± SD]: 16.5 ± 3.5). See Table 1. 

 

Factor Summary 

 Across all fifty-six subjects, aged 5 – 49 years, Factor Summary group scores were evaluated 

using two-tailed cut scores. Two of the nine Factor Scores were classified as Typical Performance: 

Sensory Seeking ([mean ± SD]: 66.7 ± 9.6) and Poor Registration ([mean ± SD]: 34.5 ± 5.2). Four 

Factor Scores were classified as a More Than Others/Probable Difference: Emotionally Reactive 

([mean ± SD]: 53.6 ±9.5), Oral Sensory Sensitivity ([mean ± SD]: 32.2 ± 8.3), Inattention/Distractibility 

([mean ± SD]: 22.6 ± 5.5), and Sedentary ([mean ± SD]: 10.6 ± 4.0). The remaining three Factor 

Scores were classified as Much More Than Others/Definite Difference ‘more than others’: Low 
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Endurance/Tone ([mean ± SD]: 30.1 ±8.1), Sensory Sensitivity ([mean ± SD]: 12.3 ± 4.5), and Fine 

Motor/Perceptual ([mean ± SD]: 6.6 ± 2.9). See Table 2. 

 

Quadrant Summary 

 A Sensory Profile Quadrant Summary was assessed for all subjects, aged 5 – 49 years. Each 

of the four group Quadrant scores was assessed using two-tailed cut scores. The Quadrant with the 

most individual scores classified as Much More Than Others/Definite Difference was the Registration 

Quadrant (77%), followed by the Sensory Sensitivity Quadrant (66%), the Sensation Avoiding 

Quadrant (52%), and the Sensation Seeking Quadrant (23%). Within the Registration Quadrant, 16% 

of individuals were classified as having a Typical Performance, 7% were classified as More Than 

Others/Probable Difference, and 77% as Much More Than Others/Definite Difference. The average 

Registration Quadrant score was 50.5 ± 11.1, which was classified as Much More Than 

Others/Definite Difference. In the Sensation Avoiding Quadrant, 21% were classified as Typical 

Performance, 27% as More Than Others/Probable Difference, and 52% as Much More Than 

Others/Definite Difference. The average Sensation Avoiding Quadrant Score was 101.7 ± 14.9, which 

was classified as Much More Than Others/Definite Difference. The Sensory Sensitivity Quadrant 

scores showed 14% of individuals with Typical Performance, 20% with More Than Others/Probable 

Difference, and 66% Much More Than Others/Definite Difference. The average Sensory Sensitivity 

Quadrant Score was 65.2 ± 12.7, which was classified as Much More Than Others/Definite Difference. 

In the Sensation Seeking Quadrant, 48% of individuals were classified as having a Typical 

Performance, 29% as More Than Others/Probable Difference, and 23% were classified as Much 

More Than Others/Definite Difference. The average Sensation Seeking Quadrant Score was 101.3 

±14.2, which was classified as a More Than Others/Probable Difference. See Table 3. 
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Age Correlation Analyses 

 Using two-tailed Spearman rank correlation tests (ρ = correlation coefficient), group Section 

Summary scores, group Factor scores and group Quadrant scores were correlated with age in three 

different within-group analyses: the Children’s group (aged 5 – 10 years, N = 15), one for the 

Adolescent group (aged 11 – 49 years, N = 41), and one for the All Subjects Group (aged 5 – 49 

years, N = 56), the latter of which combined the subjects from each of the other two groups. There 

were no nominally or otherwise significant correlations in the Children’s group (N = 15) with any of the 

Section, Factor, or Quadrant scores. 

 

Adolescent/Adult Group Age Correlations  

 In the Adolescent/Adult group (N = 41), there were two significant age correlations with Section 

scores, two significant correlations with Factor scores, and an additional 14 nominally significant 

correlations across Section, Factor and Quadrant scores. Two significant correlations were found in 

the Sensory Processing section of the Section Summary: Multisensory processing was positively 

correlated with age (ρ = 0.618, p < 0.0001) and Oral Sensory Processing was positively correlated 

with age (ρ = 0.553, p < 0.0001). Significant and positive age correlations were also found with 

Sensory Seeking Factor scores (ρ = 0.533, p < 0.0001) and Inattention/Distractibility Factor scores (ρ 

= 0.606, p = p < 0.0001). 

Nominally Significant are correlations with Section scores included: Auditory Processing 

(Sensory Processing, ρ = 0.482, p = 0.001), Visual Processing (Sensory Processing, ρ = 0.355, p 

=0.023), Touch Processing (Sensory Processing, ρ = 0.395, p = 0.011), Sensory Processing Related 

to Endurance/Tone (Modulation, ρ = 0.360, p = 0.021), Emotional/Social Responses (Behavioral and 

Emotional Responses, ρ = 0.383, p = 0.013), Behavioral Outcomes of Sensory Processing 

(Behavioral and Emotional Responses, ρ = 0.374, p 0.016), and Items Indicating Thresholds for 

Response (Behavioral and Emotional Responses, ρ = 0.395, p = 0.011). Four nominally significant 

and positive correlations were found with Factor scores: Emotionally Reactive (ρ = 0.403, p 0.009),  
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Age Correlated       
Section Score

Group ρ p-value

A.#Auditory#Processing AS 0.490** <#0.0001

A/A 0.482 0.001

B.#Visual#Processing A/A 0.355 0.023

D.#Touch#Processing A/A 0.395 0.011

E.#Multisensory#Processing AS 0.585** <#0.0001

A/A 0.618** <#0.0001

F.#Oral#Sensory#Processing AS 0.419 0.001

A/A 0.553** <#0.0001

G.#Sensory#Processing#Related#
to#Endurance/Tone A/A 0.360 0.021

I.#Modulation#of#Movement#
Affecting#Activity#Level AS P0.272 0.043

L.#Emotional/Social#Responses A/A 0.383 0.013

M.#Behavioral#Outcomes#of#
Sensory#Processing A/A 0.374 0.016

AS 0.415 0.001

A/A 0.395 0.011

Sensory(Processing

Modulation

Behavioral(and(Emotional(Responses

N.#Items#Indicating#Thresholds#
for#Response

 
 

Table 4.A. Age Correlations with Section Scores. Significant (p < 0.0001) and nominally significant (p < 0.05) age 

correlations are reported for within group tests. All Subjects group (AS, N = 56), Adolescent/Adult group (A/A, N = 41). No 

nominally or otherwise significant correlations were found within the Children’s group (N = 15). ** = significant correlation 

(p < 0.0001), ρ = Spearman rank correlation coefficient. 
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Age Correlated     
Factor Scores

Group ρ p-value

1.#Sensory#Seeking AS 0.640** <#0.0001

A/A 0.533** <#0.0001

2.#Emotionally#Reactive A/A 0.403 0.009

3.#Low#Endurance/Tone AS 0.272 0.043

A/A 0.373 0.016

4.#Oral#Sensory#Sensitivity AS 0.277 0.039

A/A 0.498 0.001

5.#Inattention/Distractibility AS 0.565** <#0.0001

A/A 0.606** <#0.0001

8.#Sedentary AS L0.334 0.012

9.#Fine#Motor/Perceptual AS 0.492** <#0.0001

A/A 0.412 0.007

Table 4.B. Age Correlations with Factor Scores. Significant (p < 0.0001) and nominally significant (p < 0.05) age 

correlations are reported for within group tests. All Subjects group (AS, N = 56), Adolescent/Adult group (A/A, N = 41). 

No nominally or otherwise significant correlations were found within the Children’s group (N = 15). ** = significant 

correlation (p < 0.0001), ρ = Spearman rank correlation coefficient. 

!
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Table 4.C. Age Correlations with Quadrant Scores. Significant (p < 0.0001) and nominally significant (p < 0.05) age 

correlations are reported for within group tests. All Subjects group (AS, N = 56), Adolescent/Adult group (A/A, N = 41). No 

nominally or otherwise significant correlations were found within the Children’s group (N = 15). ** = significant correlation 

(p < 0.0001), ρ = Spearman rank correlation coefficient.  

Age Correlated 
Quadrant Scores

Group ρ p-value

1. Registration AS 0.285 0.033

A/A 0.375 0.016

2. Sensation Seeking AS 0.553** < 0.0001

A/A 0.442 0.004

3. Sensory Sensitivity A/A 0.492 0.001
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Low Endurance/Tone (ρ = 0.373, p = 0.016), Oral Sensory Sensitivity (ρ = 0.498, p = 0.001), and Fine 

Motor/Perceptual ρ = 0.412, p = 0.007). Three positive and nominally significant age correlation were 

also found with Quadrant scores: Registration (ρ 0.375, p = 0.016), Sensory Seeking (ρ = 0.442, p = 

0.004), and Sensory Sensitivity (ρ = 0.492, p = 0.001). See Table 4. 

 

All Subjects Age Correlations 

 In the All Subjects Group (N = 56) we found six positive correlations with age. Two were with 

Section scores: Auditory Processing (Sensory Processing, ρ = 0.490, p < 0.0001) and Multisensory 

Processing (Sensory Processing, ρ = 0.585, p < 0.0001). Three were with Factor scores: Sensory 

Seeking (ρ = 0.640, p < 0.0001), Inattention/Distractibility (ρ = 0.565, p < 0.0001), and Fine 

Motor/Perceptual (ρ 0.492, p < 0.0001). One was with the Sensory Seeking Quadrant scores (ρ = 

0.553, p < 0.0001). Another seven nominally significant age correlations were found with Section, 

Factor and Quadrant scores. 

 Two positive and one negative nominally significant age correlations were found with Section 

scores: Oral Sensory Processing (Sensory Processing, ρ = 0.419, p = 0.001), Modulation of 

Movement Affecting Activity Level (Modulation, ρ = -0.272, p = 0.043), and Items Indicating 

Thresholds for Response (Behavioral and Emotional Responses, ρ = 0.415, p = 0.001). Two positive 

and one negative age correlation were found with Factor scores: Low Endurance/Tone (ρ = 0.272, p 

= 0.043), Oral Sensory Sensitivity (ρ = 0.277, p = 0.039), and Sedentary (ρ = -0.344, p = 0.012). One 

positive age correlation was found with Registration Quadrant scores (ρ = 0.285, p = 0.033). See 

Table 4. 
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Discussion 

 

Sensory Integration and the Influence of Social Context in Assessing Patterns of Sensory Processing 

in Williams Syndrome 

 From the perspective of sensory integration, an individual uses perceived information, 

processes it (modulation) and uses it to organize behaviors. When an individual’s ability to accurately 

perceive information from the environment and within his/her own body is compromised, so is the 

ability to process the information and respond appropriately, which lends itself to atypical behavioral 

and emotional responses, which may take the form of hyper- or hypo-responsivity. Section Summary 

scores give the ability to understand patterns of sensory processing by providing a visual summary of 

an individual’s sensory processing abilities. While Quadrant Summary scores take items from the 

questionnaire and categorize them to classify an individual’s responses as hyper- or hypo-responsive. 

Factor Summary scores give an additional mechanism to consider sensory processing abilities by 

revealing patterns related to an individual’s responsivity to stimuli in the environment.  

Although the SP-C is most appropriate for individuals 5 – 10 years of age, the instrument has 

successfully been used in older individuals to assess sensory processing in neurodevelopmental 

disorders. We conducted all analyses for each of the three groups to be sensitive to the psychometric 

validity of the assessment. Importantly, the Sensory Profile Caregiver Version assesses an 

individual’s sensory processing abilities using questionnaire items that are not biased by other clinical 

diagnoses or environmental assumptions, such as social context, unlike most other similar 

assessments. It is especially important that any social context not be an influential factor in the 

assessment of sensory processing abilities in individuals WS, given the phenotypic hyper-sociability. 

Such context would confound an understanding of sensory processing patterns in individuals with WS. 

As we proceed to discuss findings from Section, Factor and Quadrant scores and potential 

interventions to address each, it is important to note the scope of this study only provides a limited 
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discussion of interventional therapies. The full range of therapeutic interventions, including 

‘establish/restore’, ‘adapt’, ‘alter’, ‘prevent’, and ‘create’, should be considered. 

 

Significance and Interpretation of Section Summary Classifications 

Section Summary score classifications for the Children’s group revealed Definite Differences in 

sensory processing, modulation and behavioral and emotional responses. Scores on these sub-

section items were more than two standard deviations greater than normative data scores. As 

expected, the items included Vestibular Processing, Sensory Processing Related to Endurance and 

Tone, Modulation of Sensory Input Affecting Emotional Responses and Behavioral Outcomes of 

Sensory Processing. Vestibular processing issues likely play a role in phenotypic gross motor deficits, 

such as gait, and atypical auditory processing. Dilts and colleagues associated sensory integrative 

dysfunction with the WS behavioral phenotype, citing sensitivity to sound and vestibular processing 

(Dilts, Morris, and Leonard 1990). Mervis and colleagues reported sensory modulation differences in 

individuals with WS related to their ability to use their muscles and noted auditory processing 

impairments (John and Mervis 2010). Sensory Processing Related to Endurance/Tone reflects an 

individual’s ability to sustain performance. Greater differences from normative data on this item reflect 

difficulties in tiring easily and poor endurance, often observed in WS. Another Modulation item, 

Modulation of Sensory input affecting Emotional Responses describes an individual’s ability to use 

perceived body information to generate emotional responses. Differences much more than others on 

the Behavioral and Emotional Responses item, Behavioral Outcomes of Sensory Processing, 

indicates an individual’s difficulty in employing psychosocial coping strategies. 

Auditory Processing (AP, 22.8 ± 6.2), and Multisensory Processing (MP, 21.0 ± 5.0) were also 

classified as Much More Than Others/Definite Difference in the Children’s group, as was Vestibular 

Processing, and they were classified as More Than Others/Probable Difference in the 

Adolescent/Adult (AP: 27.4 ± 5.5; MP: 25.0 ± 4.3) and All Subjects (AP: 26.2 ± 6.0; MP: 23.9 ±4.8) 

group. An analysis should be conducted to assess whether these scores are significantly different 
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from each other across the three groups, though the classification scores lend themselves to 

separating the sub-sections. This would provide a better understanding of Auditory Processing and 

Multisensory Processing in the neurodevelopmental trajectory of WS. 

 The All Subjects group (aged 5 – 49) collectively scored Definite Differences on the exact 

same four items, demonstrating a pattern of impaired sensory processing. Not only may this imply 

long-term difficulties in these areas, a previously unstudied topic, but this pattern of sensory 

processing reflects a fluid impairment in sensory modulation from perception (Sensory Processing 

items), to the transmission of neural signals through facilitation and inhibition, to reported difficulties in 

WS with behaviors such as temperament, regulating arousal levels and establishing relationships. 

This type of fluid pattern of sensory processing is often indicative of sensory integration dysfunction. 

Most often, occupational therapy is sought to improve integration and ameliorate symptomology. At 

the time of publication, this is the first known study to report cross-sectional patterns of sensory 

processing across a wide age range in WS, comprising neurodevelopment. 

 

Significance and Interpretation of Factor Summary Classifications 

Factory Summary Scores show meaningful clusters of items from sub-sections that account for 

variance in the SP-C normative sample and can be helpful in individualizing plans for intervention. 

Much More Than Others/Definite Differences in Factors for the Children’s Adolescent/Adult and All 

Subjects group were again the same, providing insight into a longitudinal pattern of sensory 

processing in WS. The Factors were Low Endurance/Tone, Sensory Sensitivity and Fine 

Motor/Perceptual. A Much More Than Others/Definite Difference classification for the Low 

Endurance/Tone Factor implies difficulty in regulating arousal levels and uninterested behavior. 

Individuals may tire easily and have a dull affect, as is common in individuals with WS. Including more 

sensory information in all experiences may be therapeutic for these individuals, increasing the 

likelihood that hypo-sensitive thresholds will met, activities will be more interesting, and individuals 

will notice and respond to more cues in the environment.  
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Sensory hyper-sensitivity may be observed in distractible or hyperactive individuals. 

Distractibility and the WS auditory phenotype, described by hyperacusis and vestibular sensitivity, 

well-characterize sensory hyper-sensitivity in WS. Providing more experiences that continually 

engage the individual in a task may be therapeutic by minimizing repeated firing of thresholds that 

underlie hyper-responsivity. 

The Fine Motor/Perceptual Factor reflects difficulty with neurodevelopmental, fine motor skill. 

Individuals classified as having a Much More Than Others/Definite Difference for this Factor often 

have difficulty with puzzles, writing and dexterity. Individuals with WS have notable impairments in 

performing pegboard tasks. For some, these impairments are not present, while in others adaptive 

skills, sometimes learned through occupational therapy, overcome these difficulties. To one end, 

some individuals with WS that attend the ACM Lifting Lives Music Camp at the Vanderbilt Kennedy 

Center are skilled guitar and piano players. Occupational therapy can ameliorate some difficulties 

related to fine motor issues, allowing individuals to better adapt to the environment around them. A 

follow up study should be conducted to explore the relationship of inborn impairment versus adaptive 

skills as they relate to fine motor tasks such as the pegboard and musical instruments that require 

dexterity. 

Children with WS scored Much More Than Others/Definite Difference for 

Inattention/Distractibility. This Factor was classified as a More Than Others/Probable Difference for 

the other two groups. Individuals with WS struggle with sustained attention and distractibility. 

Individuals with autism and Attention Deficit Hyperactivity Disorder also struggle with this Factor. 

Consistently and actively engaging an individual in a task may either help increase sensory input, 

possibly allowing the individual to meet threshold needs and better focus on relevant input, or 

decrease extraneous sensory input, allowing the individual to focus on relevant stimuli. Assessing 

Quadrant scores for each individual would give the best approach to intervention for difficulty with 

inattention and distractibility. 
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Significance and Interpretation of Quadrant Summary Classifications 

 Individuals in all three groups were classified as having a Much More Than Others/Definite 

Difference score for the Registration and Sensory Sensitivity Quadrant. These hyper-responsive 

scores are both on the neurological threshold. Registration Quadrant scores indicate individuals may 

miss sensory input that is needed for participation. Conversely, the Sensory Sensitivity scores imply 

individuals may be too distracted by other stimuli to participate. Perplexing findings warrant further 

investigation on the individual level. Future studies should follow up by using Threshold Patterns for 

interpretation. Most of the 125 items on the questionnaire are assigned as a Low or High Threshold 

item. Low threshold items indicate sensory sensitivity or sensory avoiding patterns. High threshold 

items indicate poor registration or sensory seeking patterns. Cut scores are not provided for threshold 

codes, but give the researcher a better idea of which items are most contributing atypical sensory 

processing. Using threshold patterns would indicate whether an individual, who was classified as 

having a Definite Difference on both neurological threshold quadrants, is struggling more with hyper- 

or hypo-responsivity issues. 

 

Significance and Interpretation of Age Correlations 

 Normative data from the SP-C shows that in the neurotypical population a child’s sensory 

processing abilities do not change after the age of five. To assess cross-sectional patterns of sensory 

processing in individuals with WS, we performed correlation analyses within each of the three groups 

for each of the three methods of analyzing the SP-C. At the time of this publication, this is the first 

known study of patterns of sensory processing in individuals with WS over the age of ten. Most 

interesting to the contribution of neurodevelopment are correlations within the All Subjects group, 

which spans the entire age range. After correction for multiple comparison, age was significantly 

correlated with two Sensory Processing Section scores, three Factor scores, and one Quadrant score. 

 Age was positively correlated with two Section Summary scores in the All Subjects group. 

Auditory Processing was positively correlated with age (ρ = 0.490, p = < 0.0001). Similar to the 
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neurotypical population, auditory difficulty increased with age in WS. Across our All Subjects group, 

Auditory Processing Section scores are classified as a Probable Difference, they are classified as a 

Definite Difference in the Children’s group, and a Probable Difference in the Adult/Adolescent group. 

This is reflective of the WS auditory phenotype. If a statistical calculation were performed, it may 

reveal a sensitive period during which WS auditory processing improves. But, without data points for 

the SP-C normative data, or a control group, we cannot compare the trajectories of developmental 

auditory processing. It is possible that because individuals with WS have significantly more difficulty 

with auditory processing from a young age, by an older age the auditory difficulties remain greater 

than those of neurotypical individuals. A future study should increase the sample size and collect data 

on a control group, to compare trajectories.  

 Multisensory Processing was positively correlated with age in the All Subjects group (ρ = 0.585, 

p < 0.0001). Within the Sensory Processing sub-section of the Section Summary, which probes basic 

sensory processing, the All Subjects WS group was classified as having a Definite Difference or 

Probable Difference on all six sub-sections. The inverse effectiveness principle states that a given 

measurement of multisensory integration covaries significantly and negatively with a given 

measurement of unimodal stimulus intensity (response enhancement is greatest when unimodal 

stimuli are minimally effective). It is possible that with impairment in basic sensory processing, the 

inverse effectiveness principle would facilitate enhanced sensory perception. Neurodevelopmentally 

driven, synaptic pruning may play a role in the increased difficulty with multisensory processing in WS, 

as demonstrated by the positive correlation. 

 Three Factor scores were positively correlated with age in the All Subjects group: Sensory 

Seeking (ρ = 0.640, p < 0.0001), Inattention/Distractibility (ρ = 0.565, p = 0.0001), and Fine 

Motor/Perceptual (ρ = 0.492, p < 0.0001). Each of the Factors becomes farther from normative data 

with age, in the direction of More Than Others. Individuals with WS exhibit more sensory seeking 

behaviors, become more inattentive/distractible, and have increased fine motor/perceptual difficulties 

with age. This may be a normal part of the neurodegenerative process or a mark of a shift away from 
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neurodevelopment. The Sensation Seeking Quadrant is positively correlated with age (ρ = 0.553, p < 

0.0001) in the All Subjects Group. This suggests, similar to the correlation with the Sensory Seeking 

Factor score, that individuals with WS engage in more seeking behaviors as they age. 
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CHAPTER IV 

 

RESTING STATE NETWORKS DEMONSTRATE IMPAIRED SENSORY MODULATION IN 

WILLIAMS SYNDROME 

 

Background 

 

Resting State Functional Connectivity Networks 

Functional MRI (fMRI) measures blood oxygenation level dependent (BOLD) signal. Functional 

connectivity (FC) is a measure of the temporal coherence of BOLD signal fluctuations among brain 

regions and identifies brain networks. Differences in FC can reflect experience-dependent plasticity, 

driven by impaired sensory modulation (Buonomano and Merzenich 1998; Edeline 1999; Katz and 

Shatz 1996; Singer 1995). In the absence of goal-directed brain activation and external stimuli, 

temporally coincident, low frequency (< 0.1 Hz) BOLD signal fluctuations reflect baseline neuronal 

activation and define functionally distinct resting state networks, including the auditory processing 

network (Laureys et al. 2000; Greicius et al. 2009; Damoiseaux et al. 2006; Biswal et al. 1995; 

Cordes et al. 2000). Altered FC associated with atypical auditory processing has been demonstrated 

in autism, schizophrenia and dyslexia, (Just et al. 2004; Shergill et al. 2003; Schulte-Körne et al. 

1998) but FC has not been used to describe auditory processing networks in WS. 

 

Sensory Assessment Measures and Theoretical Model 

The Adult/Adolescent Sensory Profile (SP-A) questionnaire is a self-report method used to 

measure an individual’s sensory processing abilities, independent of clinical diagnoses (Brown and 

Dunn 2002). Based on Dunn’s theory of sensory processing, the self-report questionnaire includes 

multi-modal sensory items that fall on a neurological or behavioral threshold continuum. The 

behavioral threshold continuum focuses on behavioral responses to sensory input. The neurological 
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threshold continuum, related to sensory processing and modulation, includes two categories: Auditory 

Registration and Auditory Sensitivity items. These represent the low and high end, respectively, of the 

neurological threshold continuum in Dunn’s model of sensory processing. Auditory Registration items 

reflect sensory processing/stimulus detection, whereas Auditory Sensitivity items reflect sensory 

modulation/gating. Decreasing Auditory Registration scores indicate increased auditory hyper-

responsivity, whereas increasing Auditory Sensitivity scores indicate increased auditory hyper-

responsivity. This study uses auditory neurological threshold scores as a ‘behavioral’ measure of 

sensory processing, which is correlated with quantitative ‘brain’ measures from neuroimaging 

assessment. The brain-behavior link drives at elucidating a neural basis for atypical auditory 

processing in WS.  

 

Methods 

Participants and Recruitment  

Eighteen adults with WS (25.9 ± 8.5 years of age) and eighteen age- and sex-matched 

typically developing (TD) control participants (27.1 ± 7.1 years of age) were recruited for functional 

and structural neuroimaging. WS participants were recruited from the ACM Lifting Lives Music Camp 

at the Vanderbilt Kennedy Center for Research on Human Development. The majority of our WS 

participants were veterans of our previous neuroimaging studies, experienced and tolerant of the 

scanner environment and noises. TD control participants will be recruited from the Nashville area 

through flyers and a volunteer database. Exclusion criteria included a) non-removable ferromagnetic 

material on or in the body, b) claustrophobia, c) pregnancy, d) deafness, and e) ambidextrous 

individuals (assessed by Edinburgh Handedness Inventory) (Oldfield 1971). WS participants under 

age 16 were not included because the minimum age required to attend the camp is 16.  Additional 

control participant exclusion criteria included psychotropic medication within 8 weeks of their scan 

and a presence or history of neurological or neuropsychiatric disease, which can confound measures 

of BOLD fMRI signal and WM integrity.  
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Intellectual and Sensory Processing Assessment  

The Kaufman Brief Intelligence Test, Second Edition (KBIT-2) is a brief measure of verbal and 

nonverbal intelligence, developed for research or screening purposes in clinical or typically 

developing populations. Standard scores are obtained for verbal, nonverbal and IQ composite 

measures (typically developing population: mean = 100, SD = 15). The KBIT-2 is validated for use 

with individuals ages 4 through adulthood. KBIT-2 scores correlate highly with other full scale IQ tests 

and have been successfully used in WS and other samples with intellectual and developmental 

disabilities (Kaufman and Kaufman 2004; Mervis et al. 2012). Administration is brief, accommodating 

a population that presents functional or behavioral challenges that would otherwise preclude the use 

of a longer intellectual assessment. 

A qualified Ph.D.-level student trained in neuropsychological assessments administered the 

Kaufman Brief Intelligence Test, Second Edition (KBIT-2) and Adult/Adolescent Sensory Profile (SP-

A) questionnaire to all participants. Sensory measures were collected by self-report. Given the 

intellectual challenges faced by some individuals with WS, the SP-A was modified to a 5th grade 

reading level for both groups. SP-A questions were read out loud to WS participants and their verbal 

responses recorded, while TD participants read and responded to questions on a touch screen. 

Participants were free to take as many breaks as needed to avoid exhaustion.  

Sensory assessment data were analyzed independently. Auditory Registration and Auditory 

Sensitivity items on the SP-A are from the neurological threshold continuum of Dunn’s model of 

sensory processing. Items from these two categories were extracted from the SP-A and summed 

separately. The SP-A does not offer normative data for modality- and threshold- specific items. 

Therefore, individual Auditory Registration and Auditory Sensitivity items were summed separately to 

obtain individual scores for these two categories. 
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Image Acquisition and Processing 

All images were acquired with slices parallel to the anterior commissure-posterior commissure 

line during a single scan session on a 3 Tesla Philips Achieva MRI scanner (Philips Healthcare, Inc.), 

located at the Vanderbilt University Institute of Imaging Science. During scanning procedures, 

participants wore foam earplugs in both ears and Philips headphones to attenuate noise. A high-

resolution T1-weighted anatomical volume (TR=4.6 ms, TE=9 ms, FOV=256 mm2, 1 mm isotropic 

voxels, 170 sagittal slices, 6 min 30 sec duration) was collected to provide a template for image 

registration. A whole-brain, T2*-weighted echo planar imaging resting state BOLD functional image 

(EPI, TR=2000 ms, TE=35 ms, FOV=240 mm2 flip angle=79°, 1.875x1.875x3.85 mm3 voxels, 0.35 

mm gap, 33 axial slices, 5 min 30 sec duration) was collected with the participant’s eyes closed in the 

absence of external stimuli. Total scan time was 35 minutes, which also involved diffusion tensor 

imaging for the study presented in Chapter V. This was tolerable for all participants. 

All functional images underwent quality assurance and preprocessing procedures in SPM8 

(Statistical Parametric Mapping 2009) and the Artifact Detection Tools (ART) (Whitfield-Gabrieli, 

Nieto-Castanon, and Ghosh 2011) toolbox, which included slice-time, motion correction realignment, 

T1W-EPI coregistration, 3-D spatial normalization to MNI152 and spatial smoothing (8mm FWHM). 

Each individual’s T1W image was segmented into three tissue maps: gray matter (GM), white matter 

(WM) and cerebrospinal fluid (CSF). The T1W image and each of the tissue maps were normalized to 

MNI152 space. All images were visually inspected for artifacts. Although most studies employ 

movement thresholds, we also included a global signal threshold since global (whole brain) signal 

correlates with respiration-induced fMRI signal fluctuations. Preprocessed functional images 

underwent evaluation using the following threshold criteria to define outliers: global signal, z ≥ 2; 

translation ≥ 2 mm, rotation ≥ 0.0349 radians. An output matrix of SPM movement and threshold 

outliers was generated by ART. 

Following processing in SPM8 and ART, the CONN Functional Connectivity Toolbox 

(Whitfield-Gabrieli 2010) was used to perform ROI-based, seed-driven resting state functional 
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connectivity (rsFC) analyses. Each subject’s normalized structural and functional images, tissue 

maps and ART output matrix were used as input into CONN. Three of the inputs (ART matrix, WM 

and CSF tissue maps) were used as regressors to estimate and reduce noise. A band-pass filter 

(0.01-0.1 Hz), selective for intrinsic resting state BOLD fluctuations, was applied to further reduce 

noise and increase sensitivity. 

Analyses were conducted within-group (WS group and TD group) and between-group (WS vs. 

TD) and for each of these groups, two analyses were performed: one used left primary auditory 

cortex (BA 41) as the seed ROI and one used right BA 41. Each of the six total rsFC analyses 

assessed connectivity between the seed ROI (BA 41) and every other Brodmann area (BA) using a 

BA template built into CONN. Bivariate correlation measures (Fisher transformed r-values) were 

derived from each rsFC analysis. Fisher transformed r-values (also called z-scores) reflect the 

temporal coherence of BOLD signal fluctuations between the seed and each target ROI, and serve as 

a quantitative measure of connectivity between the seed-target ROI pairs.  

For visualization purposes, a seed-voxel resting state functional connectivity map was created 

for each of the seed ROIs (left and right BA 41), using the same image processing pipeline, was 

created to spatially localize connectivity between the left and right primary auditory cortex in each 

group. Seed voxel maps were projected onto 3D rendered T1W MNI 152 images (p < 0.001, k=3000). 

Figures 2a and 2b show projected seed-voxel maps for the WS and TD group, respectively. In each 

image, voxels functionally connected to the left primary auditory cortex (BA 41) are shown in red (p < 

0.001). Voxels functionally connected to the right BA 41 are shown in green (p < 0.001). Where there 

is overlap, voxels functionally connected to both left and right BA 41 are shown in brown. 

 

Statistical Analyses 

Participant age, neurocognitive (verbal, nonverbal, composite IQ), sensory (Auditory 

Registration, Auditory Sensitivity) and rsFC (within- and between-group-derived Fisher transformed z-

scores) variables are continuous and were tested within-group for normality using a Shapiro-Wilk test.  
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Figure 2. Within-group seed-voxel connectivity. Seed-voxel connectivity between left (red) and right (green) primary 

auditory cortex (BA 41) in (a) WS and (b) TD groups (NWS=18, NTD=18; p< 0.001, k=3000). Voxels functionally connected 

to left and right BA 41 (brown) demonstrate contralateral co-activation. Seed-voxel maps are projected onto T1W 3D 

rendered MNI152 images with a near hemi-quadrant cut-out. 
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Two-tailed t-tests or Mann-Whitney tests (for variables where data were not normally distributed) 

were used to assess between-group differences.  

Significant seed-target ROI pairs describe connectivity values (z-scores) between two ROIs, 

one of which is the seed ROI (left or right BA 41), the other, another BA ROI, that reached the 

significance level of p < 0.05. Significant seed-target pairs from within- and between-group FC  

analyses were identified for significance testing and correlational analyses. For within-group analyses, 

where the WS and TD groups showed the same target ROI, we conducted two-tailed t-tests to 

compare within-group WS versus TD z-scores. For within- and between- group bilateral target ROIs, 

we tested for laterality differences using two-tailed t-tests. For each group, we performed Spearman 

rank correlation analyses between FC z-scores in these ROI pairs and each of the following 

variables: Auditory Registration, Auditory Sensitivity, age, and IQ (verbal, nonverbal, composite). We 

tested for partial correlations between age, Auditory Registration and Auditory Sensitivity scores. 

Since the two auditory scores are intercorrelated, as are the three IQ measures, we chose to correct 

for only 3 sets of measures (age, auditory scores, IQ scores). Using a liberal experiment-wise Type I 

error rate of 0.05, the Bonferroni-corrected α for each analysis was given by the number of significant 

target ROI z-scores after correcting for multiple comparisons (WS group: 22 ROIs, α = 0.00057; TD 

group: 28 ROIs, α = 0.00045; Between-Groups, WS vs. TD: 17, α = 0.00074).  

Statistical analyses were performed in SPSS (IBM SPSS Statistics for Windows 2012) 

software. All study protocols were approved by the Vanderbilt University Internal Review Board. 

 

Results 

 

Intellectual and Sensory Processing Assessment  

Participant age was normally distributed in the TD group, but not in the WS group. A Mann-

Whitney test found no significant difference in mean age between the WS (25.9 ± 8.5) and TD control 

(27.1 ± 7.1) groups. Verbal and composite IQ scores were normally distributed in both groups, while 
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nonverbal scores were normally distributed only in the WS group. As expected, Mann-Whitney (for 

nonverbal IQ) and t-tests showed TD control group KBIT-2 scores ([mean ± SD]; verbal: 118 ± 17, 

nonverbal: 117 ± 14, composite: 120 ± 15) were significantly higher than the WS group scores ([mean 

± SD]; verbal: 79 ± 15, nonverbal: 67 ± 17, composite: 70 ± 17) on all three measures of IQ (verbal: t= 

-7.3, nonverbal: z = -5.0, composite: t = -9.3; p < 0.0001). Of note, consistent with the WS phenotype, 

within the WS group, the mean of verbal standard scores was significantly higher than that of 

nonverbal standard scores ([mean ± SD]; verbal: 78 ± 15.3, nonverbal: 67.1 ± 17.3, t = 5.3, p < 

0.0001). 

SP-A Auditory Registration and Auditory Sensitivity scores were normally distributed in both 

groups. SP-A Auditory Registration scores were not significantly different between WS (9.6 ± 1.9) and 

TD (9.4 ± 1.9) groups. Auditory Sensitivity scores were significantly higher in the WS (10.7 ± 2.3) 

versus TD (7.9 ± 2.1) groups (t = 3.8, p < 0.001). Within each group, Auditory Registration and 

Auditory Sensitivity scores were significantly different (WS: t = -1.9, p = 0.071; TD: t = 2.2, p = 0.046). 

The two auditory scores were not significantly correlated with each other in either group, but were 

correlated to a greater degree in WS than in the TD group (WS: r = 0.31, p = 0.21; TD: r = -0.076, p = 

0.211).  

 

Resting State Auditory Functional Connectivity Networks and Correlations Analyses 

 

Auditory Network Validation and Power Calculations 

Contralateral co-activation is a term used to describe functional connectivity between a seed 

ROI and the same ROI in the contralateral hemisphere. Contralateral co-activation for both left and 

right seed ROIs is seen in both groups, representative of the resting state auditory network. A post-

hoc power analysis was performed based on z-scores. This study had 80% power to detect 

significance (at an α ≤ 0.05) with an effect size of d = .96, which corresponds to a between-group 

difference of approximately one standard deviation of the group mean. We had 80% power to detect 
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correlation coefficients with target ROIs from the WS group (r ≥ 0.799), TD group (r ≥ 0.813) and 

between-groups (r ≥ 0.799) maps, after multiple corrections. 

WS Group Auditory Network and Correlations 

In a WS group seed-driven, ROI-based rsFC analysis, an auditory connectivity network 

emerged from a left BA 41 seed. Significant bilateral target ROIs included: right primary auditory 

cortex (BA 41), left primary motor cortex (BA 4), and bilateral auditory cortex (BA 42), insula (BA 13), 

superior temporal gyrus (BA 22) and subcentral area (BA 43). A separate, right-dominant auditory 

network was functionally connected to the right primary auditory cortex (BA 41) seed, including 

ipsilateral connectivity with insula (BA 13), subcentral area (BA 43), middle temporal gyrus (BA 21), 

premotor cortex (BA 6), primary motor cortex (BA 4), and primary somatosensory cortices (BA 2 and 

BA 3). Right BA 41 was also functionally connected with left BA 41 and bilaterally with superior 

temporal gyrus (BA 22) and auditory cortex (BA 42). No negative correlations were found with either 

seed ROI. Table 5 lists the significant target ROIs for the WS group (pFDR < 0.0001). Figure 3 shows 

the individual connectivity values for each of the target ROIs functionally connected to left and right 

BA 41 seed ROIs (pFDR < 0.0001).  

In the case of bilateral target ROIs functionally connected to the same seed ROI, we 

determined differences in laterality using a paired t-test. Bilateral target ROIs from left BA 41 include 

insula (BA 13; t = 6.44, p < 0.0001), superior temporal gyrus (BA 22; t = 6.94, p < 0.0001), primary 

auditory cortex (BA 42; t = 4.52, p < 0.0001), and subcentral gyrus (BA 43; n.s.). Right BA 41 bilateral 

target ROIs were: superior temporal gyrus (BA 22; t = -4.83, p < 0.0001) and primary auditory cortex 

(BA 42; t = -6.43, p < 0.0001). Based on t-stats, seed ROIs were more connected with ipsilateral 

target ROIs than contralateral. 

Using two-tailed Spearman rank correlation tests (ρ = correlation coefficient), z-scores from 

significant connectivity pairs in the WS group were correlated with age, Auditory Registration and 

Auditory Sensitivity scores (Table 6). We found one nominally significant correlation. Right BA 41  
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ROI Seed BA ROI T 

          
Left BA 41 BA 42 Left  Primary auditory cortex 19.24 

  BA 13 Left Insular cortex 16.53 

  BA 22 Left Superior temporal gyrus 13.2 

  BA 43 Left Subcentral area 12.65 

  BA 42 Right Primary auditory cortex 7.91 

  BA 13 Right Insular cortex 7.43 

  BA 41 Right Primary auditory cortex 7.36 

  BA 43 Right Subcentral area 7.07 

  BA 22 Right  Superior temporal gyrus 6.14 

  BA 4 Left Primary motor cortex 6.10 
          

Right BA 41 BA 22 Right Superior temporal gyrus 13.83 

  BA 42 Right Primary auditory cortex 10.95 

  BA 13 Right  Insular Cortex 10.44 

  BA 43 Right Subcentral area 8.84 

  BA 42 Left Primary auditory cortex 8.13 

  BA 41 Left Primary auditory cortex 7.36 

  BA 21 Right Middle temporal gyrus 6.97 

  BA 22 Left Superior temporal gyrus 6.50 

  BA 2 Right Primary somatosensory 
cortex 6.30 

  BA 6 Right  Premotor cortex 6.19 

  BA 4 Right Primary motor cortex 5.69 

  BA 3 Right 
Primary somatosensory 
cortex 5.63 

          
 
Table 5. WS group target ROIs. ROIs functionally connected to left and right primary auditory cortex (BA 41) in seed-

driven, ROI-based WS group rsFC analysis (N = 18, pFDR < 0.0001).  
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Figure 3. WS group connectivity. Individual connectivity values (Fisher transformed r-values, also called z-scores, y-axis) 

are shown for WS group (N = 18) BA target ROIs (x-axis) functionally connected to (a) left and (b) right BA 41 seed ROIs 

(pFDR < 0.0001). Red bar represents mean r-value for each target ROI. 
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  Seed ROI Correlated IQ Measure Target ROI ρ p-value 
      

Within-group           

WS Group Left BA 41 none       

  Right BA 41 Age Right BA 6 -0.566 0.014 

TD Group Left BA 41 Age Left BA 4 0.575 0.012 

      Left BA 21 0.626 0.005 

      Right BA 43 0.479 0.044 

    Aud Sensitivity Left BA 3 -0.492 0.038 

  Right BA 41 Age Left BA 43 0.529 0.024 

    Aud Registration Right BA 21 0.469 0.05 

      Right BA 22 0.601 0.008 

      Left BA 42 0.506 0.032 

    Aud Sensitivity Left BA 22 0.524 0.026 

Between-group (WS > TD ROIs)       

WS Group none         

TD Group Left BA 41 none       

  Right BA 41 Aud Registration Left BA 9 -0.645 0.004 

      Left BA 10 -0.622 0.006 

Between-group (TD > WS ROIs)       

WS Group Left BA 41 none       

  Right BA 41 Age Right BA 23 0.502 0.034 

      Right BA 31 0.474 0.047 

    Aud Registration Right BA 31 0.699 0.001 

    Aud Sensitivity Left BA 5 0.558 0.016 

      Left BA 29 -0.521 0.027 

TD Group none         

            

 
Table 6. Connectivity correlated with measures of auditory processing and age. Nominally significant correlations with age, 

Auditory Registration and Auditory Sensitivity scores are listed (p < 0.05). Age and auditory measures were correlated 

with significant within- and between-group-derived connectivity values (Fisher transformed r-values, also called z-scores) 

in a Spearman’s Rank correlation (ρ = correlation coefficient). NWS=18, NTD=18, within-group connectivity pFDR < 0.0001, 

between-group connectivity p < 0.05. Aud = auditory. 
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ipsilateral connectivity with BA 6 is negatively correlated with age (ρ = -0.566, p = 0.014). The 

correlation did not survive Bonferoni correction. 

 

TD Group Auditory Network and Correlations 

In the TD group, left BA 41 was functionally connected to the following regions (pFDR < 

0.0001): right BA 41, left somatosensory association cortex (BA 5), left primary motor cortex (BA 4), 

left primary somatosensory cortex (BA 3), left middle temporal gyrus (BA 21), and bilateral superior 

temporal gyrus (BA 22), auditory cortex (BA 42), insula (BA 13) and subcentral area (BA 43). Right 

BA 41 was functionally connected to an ipsilaterally-dominant network of target ROIs (pFDR < 

0.0001), including: primary motor cortex (BA 4), premotor cortex (BA 6), primary somatosensory 

cortices (BA 3 and BA 1). At a significance threshold of p < 0.0001, right BA 41 showed contralateral 

connectivity with left BA 41 and bilateral connectivity with insula (BA 13), auditory cortex (BA 42), 

subcentral area (BA 43), superior temporal gyrus (BA 22) and middle temporal gyrus (BA 21). No 

negative correlations were found with either seed ROI. Table 7 lists the significant target ROIs for the 

TD group (pFDR < 0.0001). Figure 4 shows the individual connectivity values for each of the target 

ROIs functionally connected to left and right BA 41 seed ROIs (pFDR < 0.0001).  

Again, for the TD group, we determined differences in laterality using a paired t-test. Bilateral 

target ROIs from left BA 41 include insula (BA 13; t = 5.59, p < .0001), superior temporal gyrus (BA 

22; t = 5.25, p < 0.0001), primary auditory cortex (BA 42; t = 5.28, p < 0.0001), and subcentral gyrus 

(BA 43; t = 2.61, p = 0.018). Right BA 41 bilateral target ROIs were: insula (BA 13; t = -5.24, p < 

0.0001), middle temporal gyrus (BA 21; n.s.) superior temporal gyrus (BA 22; t = -3.75, p = 0.002), 

and primary auditory cortex (BA 42; t = -6.08, p < 0.0001). Seed ROIs were also more connected with 

ipsilateral target ROIs than contralateral in the TD group. 

Using two-tailed Spearman rank correlation tests (ρ = correlation coefficient), we assessed the 

association of z-scores from significant connectivity pairs in the TD group were correlated with age, 

Auditory Registration and Auditory Sensitivity scores (Table 6). We found four nominally significant  
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ROI Seed BA ROI T 

          
Left BA 41 BA 22 Left Superior temporal gyrus 19.12 

  BA 42 Left Primary auditory cortex 17.65 

  BA 13 Left Insular cortex 15.39 

  BA 41 Right Primary auditory cortex 12.18 

  BA 42 Right Primary auditory cortex 11.39 

  BA 13 Right Right Insular cortex 11.36 

  BA 43 Left Subcentral area 11.17 

  BA 22 Right Superior temporal gyrus 9.67 

  BA 43 Right Subcentral area 7.50 

  BA 4 Left Primary motor cortex 6.18 

  BA 5 Left Somatosensory association cortex 6.06 

  BA 3 Left Primary somatosensory cortex 5.56 

  BA 21 Left Middle temporal gyrus 5.46 

Right BA 41 BA 13 Right Insular cortex 15.40 

  BA 42 Right Primary auditory cortex 14.07 

  BA 43 Right Subcentral area 13.92 

  BA 41 Left Primary auditory cortex 12.18 

  BA 22 Right Superior temporal gyrus 11.51 

  BA 22 Left Superior temporal gyrus 11.20 

  BA 42 Left Primary auditory cortex 10.47 

  BA 13 Left Insular cortex 9.96 

  BA 43 Left Subcentral area 8.83 

  BA 4 Right Primary motor cortex 8.04 

  BA 21 Left Middle temporal gyrus 7.63 

  BA 21 Right Middle temporal gyrus 7.38 

  BA 6 Right Premotor cortex 7.20 

  BA 3 Right Primary somatosensory cortex 7.08 

  BA 1 Right Primary somatosensory cortex 6.64 

          

Table 7. TD group target ROIs. ROIs functionally connected to left and right primary auditory cortex (BA 41) in seed-

driven, ROI-based TD group rsFC analysis (N = 18, pFDR < 0.0001).  
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Figure 4. TD group connectivity. Individual connectivity values (Fisher transformed r-values, also called z-scores, y-axis) 

are shown for TD group (N = 18) BA target ROIs (x-axis) functionally connected to (a) left and (b) right BA 41 seed ROIs 

(pFDR < 0.0001). Red bar represents mean r-value for each target ROI. 
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correlations from left BA 41 connectivity. Three positive correlations were with age, for target ROIs 

left BA 4 (ρ = 0.575, p = 0.012), left BA 21 (ρ = 0.626, p = 0.004), and right BA 43 (ρ = 0.479, p = 

0.044). Left BA 41 connectivity with left BA 3 was negatively correlated with Auditory Sensitivity 

scores (ρ  = -0.492, p = 0.038). Five positive correlations were found in tests of right BA 41 

connectivity. Connectivity between the right BA 41 seed and BA 43 was correlated with age (ρ = 

0.529, p = 0.024). Three positive correlations with Auditory Registration were found with connectivity 

between right BA 41 and BA 21 (ρ = 0.469, p = 0.05), right BA 22 (ρ = 0.601, p = 0.008), and left BA 

42 (ρ = 0.506, p = 0.032). The fifth was connectivity between right BA 41 and BA 22, which was 

correlated with Auditory Sensitivity (ρ = 0.524, p = 0.026). None of the correlations survived Bonferoni 

correction. 

 

Between-Group Differences in Auditory Network and Correlations 

Where the same seed-target connectivity pairs were significant in the within-group WS and TD 

maps, using two-tailed t-tests, we compared within-group z-scores in the WS versus TD group. From 

the right BA 41 seed-driven maps, connectivity with right primary motor cortex (BA 4) was significantly 

greater in the TD than WS group (TWS = 5.69, TTD = 8.04; t = -2.23, p = 0.032).  

In between-group maps, derived from seed-driven rsFC analyses using left or right BA 41 seed 

regions, we found nominally significant differences in the auditory network. Nominally significant z-

scores were greater in the WS group than the TD group between right BA 41 and left-lateralized 

ROIs: inferior prefrontal gyrus (BA 47), anterior prefrontal cortex (BA 10), anterior cingulate cortex 

(BA 33), dorsolateral prefrontal cortex (BA 9), and supramarginal gyrus (BA 40). Nominally significant 

connectivity was greater in the TD versus WS group from left BA 41 to target ROIs, including: left 

piriform cortex/parahippocampal gyrus (BA 27) and bilateral somatosensory association cortex (BA 5). 

From right BA 41, connectivity was greater in the TD than the WS group with target ROIs (p < 0.05), 

including: right primary motor cortex (BA 4), left cingulate cortex (BA 30), right dorsal posterior 

cingulate (BA 31), and bilateral retrosplenial cingulate cortex/posterior cingulate cortex (BA 29),  
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ROI Seed Group BA ROI T 
            

Left BA 41 TD > WS BA 27 Left Piriform cortex/PHCG 2.58 

    BA 5 Left Somatosensory association cortex 2.43 

    BA 5 Right Somatosensory association cortex 2.06 

Right BA 41 TD > WS BA 29 Left Retrosplenial cingulate cortex/PCC 2.64 

    BA 29 Right Retrosplenial cingulate cortex/PCC 2.59 

    BA 5 Left Somatosensory association cortex 2.47 

    BA 23 Right Ventral posterior cingulate cortex 2.28 

    BA 5  Right Somatosensory association cortex 2.11 

    BA 4 Right Primary motor cortex 2.11 

    BA 23 Left Ventral posterior cingulate cortex 2.02 

    BA 30 Left Cingulate cortex 1.86 

    BA 31 Right Dorsal posterior cingulate 1.72 

  WS > TD BA 47 Left Inferior prefrontal gyrus 3.05 

    BA 10 Left  Anterior prefontal cortex 2.37 

    BA 33 Left Anterior cingulate cortex 1.94 

    BA 9 Left Dorsolateral prefrontal cortex 1.89 

    BA 40 Left Supramarginal gyrus 1.83 

            

 
Table 8. Between-group target ROIs. Target ROIs from between-group BA 41 seed-driven, ROI-based, rsFC analysis. 

ROIs functionally connected to left and right primary auditory cortex (BA 41) in between-group rsFC analysis (NWS=18, 

NTD=18, p < 0.05). 
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somatosensory association cortex (BA 5), and ventral posterior cingulate cortex (BA 23). No negative 

correlations were found with either seed ROI. Table 8 lists significant between-group target ROIs       

 (p < 0.05). Figure 5 shows box plots of individual connectivity values for each of the BA target ROIs 

functionally connected to left and right BA 41 seed ROIs (p < 0.05).  

Four bilateral seed-target connectivity pairs were found in the between-groups analysis: right 

BA 41 – BA 23 (TD > WS), right BA 41 – BA 29 (TD > WS), right BA 41 – BA 5 (TD > WS), and left 

BA 41 – BA 5 (TD > WS). Each was tested for laterality, using two-tailed t-tests, within the WS and 

TD group separately. Three of the eight tests were significant. The TD group showed significant 

laterality differences for right BA 41 – BA 29 (R > L, t = -2.48, p = 0.024) and left BA 41 – BA 5 (L > R, 

t = 2.11, p = 0.050). In the WS group, laterality was significantly different for right BA 41 – BA 5 (R > L, 

t = -2.40, p = 0.028). 

Using two-tailed Spearman rank correlation tests (ρ = correlation coefficient), z-scores from 

significant connectivity pairs in the between-groups analysis were correlated with age, Auditory 

Registration and Auditory Sensitivity scores (Table 6). We found two nominally significant correlations 

with WS > TD target ROIs. Auditory registration was negatively correlated with connectivity between 

right BA 41 and: left BA 9 (ρ = -0.0645, p = 0.004) and left BA 10 (ρ = -0.622, p = 0.006). Five 

nominally significant correlations were found with TD > WS target ROIs. Age was correlated with 

connectivity between right BA 41 and two target ROIs: right BA 23 (ρ = 0.502, p = 0.034) and right BA 

31 (ρ = 0.474, p = 0.047). Left BA 41 connectivity with right BA 31 was correlated with Auditory 

Registration scores (ρ = 0.699, p = 0.001). Auditory Sensitivity was correlated with connectivity 

between right BA 41 and two target ROIs: left BA 5 (ρ = 0.558, p = 0.016) and left BA 29 (ρ = -0.521, 

p = 0.027). None of the correlations survived Bonferoni correction. Connectivity with left BA 41 target 

ROIs showed no nominally significant correlations with age, Auditory Registration or Auditory 

Sensitivity scores. 
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Figure 5. Between-group connectivity.  Box plots (box = IQR [Q1-Q3], line = median value, whiskers = 1.5*IQR, ¢ = outlier 

[Q3+IQR or Q1-IQR], * = extreme outlier [≥Q3+IQR or ≤Q1-IQR]) show the distribution of individual connectivity values 

(Fisher transformed r-values, also called z-scores, y-axis) within each target ROI (x-axis) by group (WS = blue, TD = 

green) for (a) left and (b) right BA 41 seeds in a seed-driven, ROI-based rsFC analysis (NWS=18, NTD=18, p < 0.05). For 

target ROIs to the left of the vertical dashed line, functional connectivity is greater in TD than WS. Connectivity in target 

ROIs to the right of the vertical dashed line is greater in WS than TD.  
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IQ Correlations with Auditory Networks 

Based on a 2012 study by Pryweller et al., we expect that IQ does not affect BOLD signal, nor 

subsequent rsFC connectivity values derived from rsFC analyses. Therefore, we remained sensitive 

to reporting correlations with measures of IQ. Table 9 reports nominally significant IQ correlations 

with WS, TD and between-group z-scores. No correlation tests survived correction for multiple 

comparisons. 

 

Discussion 

 

Participant Selection 

 The choice of an appropriate control group and matching criteria is very important and often 

controversial. For the studies described herein, we were primarily interested in understanding how 

individuals with WS differ from typically developing individuals. By matching on age, sex and 

handedness, we attempted to control for these factors. In the present study, we measured resting 

state connectivity, void of cognitive demand. Given the wide range of intellectual disability in WS, for 

some fMRI studies that require a higher cognitive load, individuals with other intellectual and 

developmental disabilities may provide a more appropriate, cognitively matched contrast group to 

control for potential confounds related to cognitive demand. 

 

Intellectual and Sensory Assessment  

As expected, KBIT-2 scores were significantly different between groups across all three 

measures of IQ (p < 0.0001). The fact that TD group mean scores for each measure are slightly 

outside of one standard deviation above normal may be attributed to the fact that the majority of our 

TD participants were Vanderbilt University undergraduate and graduate students. The 95% 

confidence intervals of TD group scores overlap with the normal range of IQ scores (TD group mean 

[lower – upper 95% CI]; verbal: 117.9 [109.5-126.3], nonverbal: 116.7 [110.0-123.4], composite:  
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  Seed ROI Target ROI Correlated IQ 
Measure ρ p-value 

            

Within-group           

WS Group Left BA 41 Left BA 13 Verbal 0.530 0.024 

            

    Right BA 43 Verbal 0.584 0.011 

      Nonverbal 0.496 0.036 

      Composite 0.571 0.013 

            

  Right BA 41 Right BA 2 Nonverbal 0.495 0.037 

    Right BA 3 Nonverbal 0.489 0.04 

    Right BA 6 Verbal 0.549 0.018 

            

TD Group Left BA 41 none       

            

  Right BA 41 Right BA 21 Composite -0.505 0.032 

            

Between-group (WS > TD ROIs)       

WS Group none         

TD Group none         

            

Between-group (TD > WS ROIs)       

WS Group Left BA 41 Left BA 5 Verbal 0.562 0.015 

      Nonverbal 0.556 0.017 

      Composite 0.498 0.035 

            

TD Group Right BA 41 Right BA 29 Verbal 0.476 0.046 

            
 
Table 9. Connectivity correlated with measures of IQ . Nominally significant correlations with IQ measures are listed (p < 

0.05). IQ measures were correlated with significant within- and between-group-derived connectivity values (Fisher 

transformed , also called z-scores) in a Spearman’s Rank correlation (ρ = correlation coefficient). NWS=18, NTD=18, within-

group connectivity pFDR < 0.0001, between-group connectivity p < 0.05.    
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119.7 [112.2-127.2]). Although there is considerable inter-individual variability, most studies indicate a 

range of IQ scores from 40 to 100, with a mean of about 60 in WS (Elison, Stinton, and Howlin 2010; 

Howlin, Davies, and Udwin 1998; Martens, Wilson, and Reutens 2008; Searcy et al. 2004). IQ scores 

for the WS group reflect this range and mean IQ. Importantly, inclusion of individuals that represent 

the full range of intellectual disability associated with WS, especially in a task with low cognitive load, 

has the benefit of increased generalization of the findings (Pryweller et al. 2012). Though the 

significance and size of the difference is still debated, studies consistently find verbal IQ is greater 

than non-verbal IQ in WS (Howlin, Davies, and Udwin 1998; Searcy et al. 2004; Boddaert et al. 2006; 

Don, Schellenberg, and Rourke 1999), which is consistent with the neurocognitive profile (Mervis et al. 

2000; Martens, Wilson, and Reutens 2008; Bellugi et al. 1990).The significantly higher verbal versus 

nonverbal IQ scores are consistent with the WS phenotype and validates our representative WS 

sample (t = 5.3, p < 0.0001). 

The Adult/Adolescent Sensory Profile (SP-A) questionnaire provides a standard method to 

measure an individual’s sensory processing abilities. At the time of administration, the SP-A was the 

only measure of sensory processing independent of clinical diagnoses. Other existing sensory 

questionnaires and behavioral assessments were all largely influenced by contributions of social 

context that were biased toward expectations of normal or decreased sociability in the participants. 

Those measures would confound our study due to the phenotypic heightened sociability in individuals 

with WS. Although a behavioral threshold continuum complements Dunn’s theory, it is focused on 

behavioral and emotional responses to sensory stimuli. We therefore chose to use only neurological 

threshold items from the auditory section of the SP-A in our analysis. These items differentiate neural-

based contributions to sensory processing based on stimulus detection (Auditory Registration scores) 

versus gating (Auditory Sensitivity scores), further making the SP-A an optimal choice in our study to 

link quantitative rsFC brain values with auditory sensory processing in our study. 

 The lack of a significant difference between groups for Auditory Registration scores suggests 

auditory perception is similar in TD and WS individuals. Auditory Sensitivity scores were significantly 
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higher in the WS group (t = 3.8, p < 0.001), reflecting differences in sensory modulation/gating and 

suggesting increased auditory hyper-responsivity. The absence of a within-group significant 

correlation between the two auditory scores in either group validates the ability of Auditory 

Registration and Auditory Sensitivity scores to differentiate between neural-based contributions to 

sensory processing. Higher group scores on both auditory measures, taken with a positive correlation 

trend between measures in WS (r = .31), and a negative trend in the TD group (r = -0.76), suggests 

auditory hyper-responsivity in WS, compared to TD individuals. 

 

rsFC Analyses 

 

Methodological Contributions 

Preprocessing methods contributed to overcoming a potential structural confound. Compared 

to a neurotypical brain, the cerebral volume of the WS brain is reduced, with the exception of 

seemingly preserved cerebellar and superior temporal gyrus volumes. Decreased cerebral volume 

can be attributed to a disproportionate reduction of WM compared to GM. The WS brain also has a 

disproportionately high volume ratio of frontal to posterior regions (Reiss et al. 2000). Potentially 

confounding differences in structural variation between groups was attenuated by normalizing images 

from both groups during preprocessing. Another preprocessing step was used to identify movement-

related outliers. It might be expected that a lower functioning individual would have more difficulty 

remaining still during a scan session. This may give rise to suspicion regarding WS datasets 

exceeding the movement threshold criteria. Using standard motion thresholds in ART (2 mm 

translation, 2 deg/0.0349 radians rotation), not one of our participants in the WS or TD group 

exceeded either threshold during any of the 150 EPI volumes. A contributing factor for the WS group 

may have been the fact that most of our WS participants had participated in previous neuroimaging 

studies and were experienced and tolerant of the scanner environment and noises. Additionally, the 
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total scan duration of 35 min was short enough to be tolerable to all participants, promoting a lack of 

motion. 

Because it incorporates CompCor methodology, CONN Functional Connectivity Toolbox was 

an optimal choice for our ROI-based, seed-driven rsFC analyses. Other noise reduction methods 

regress the mean global signal out of ROIs, possibly eliminating valid contributions to BOLD signal. 

Instead, the CompCor method models the influence of noise as a voxel-specific, linear combination of 

multiple empirically-estimated noise sources (Behzadi et al. 2007). In such, a principal components 

analysis is used to derive noise from ROIs. These components are then included in the rsFC analysis 

as nuisance parameters, thereby increasing sensitivity and specificity, compared to whole brain signal 

regression (Chai et al. 2012).  

 

Within-Group Discussion 

 

Within-Group Auditory Functional Connectivity Networks 

Comparatively speaking, seed-driven, ROI-based rsFC analyses, revealed two similar within-

group auditory networks of functional connectivity based on left and right BA 41 seeds. Both the WS 

and TD within-group networks included auditory and extra-auditory sensory and limbic regions. From 

the left BA 41 seed, both groups showed significant connectivity with the contralateral primary 

auditory cortex (BA 41), ipsilateral primary motor cortex (BA 4), bilateral connectivity with superior 

temporal gyrus (BA 22), primary auditory cortex (BA 42), subcentral area (BA 43), and insula (BA 13). 

Left BA 41 in the TD group was also significantly connected to ipsilateral somatosensory association 

cortex (BA 3), middle temporal gyrus (BA 21) and primary somatosensory association cortex (BA 5). 

From the right BA 41 seed, both groups showed significant connectivity with the contralateral primary 

auditory cortex (BA 41), ipsilateral primary somatosensory cortex (BA 3), premotor cortex (BA 6), and 

primary motor cortex (BA 4). In the TD group, right BA 41 was significantly connected to the 

contralateral primary auditory cortex (BA 41) and bilaterally to superior temporal gyrus (BA 22), 
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primary auditory cortex (BA 42), subcentral area (BA 43), insula (BA 13), and middle temporal gyrus 

(BA 21). However, the WS group was only significantly bilaterally connected to superior temporal 

gyrus (BA 22), and primary auditory cortex (BA 42), while significant connectivity was found 

ipsilaterally with the subcentral area (BA 43), insula (BA 13), middle temporal gyrus (BA 21), and 

contralaterally to primary auditory cortex (BA 41).  Right BA 41 was significantly correlated in both 

groups with the ipsilateral primary somatosensory cortex (BA 3), primary motor cortex (BA 4) and 

premotor cortex (BA 6). In addition, each group had one significant ipsilateral correlation with a target 

ROI in the primary somatosensory cortex that the other group did not: in the TD group, it was with BA 

1, and in the WS group, with BA 2. 

The left BA 41 seed-driven maps show connectivity in the TD group with somatosensory and 

middle temporal gyrus areas that the WS group does not show, while the right BA 41 seed-driven 

maps produce more similar target ROIs in each group. Since we used an ROI-ROI connectivity 

analysis, we can compare z-scores with target ROIs present in both within-group maps. The following 

left BA 41 seed-driven target ROIs were compared between groups: right primary auditory cortex (BA 

41), left primary motor cortex (BA 4), left superior temporal gyrus (BA 22), right BA 22, left primary 

auditory cortex (BA 42), right BA 42, left insula (BA 13), right BA 13, left subcentral area (BA 43), and 

right BA 43. A comparison of right BA 41 seed-driven group ROIs included left primary auditory cortex 

(BA 41), right primary motor cortex (BA 4), right premotor cortex (BA 6), right primary somatosensory 

cortex (BA 3), right middle temporal gyrus (BA 21), left superior temporal gyrus (BA 22), right BA 22, 

left primary auditory cortex (BA 42), right BA 42, right insula (BA 13), and right subcentral area (BA 

43). Within-group connectivity values from common target ROIs, using a two-tailed test of means, 

revealed only one significant difference. From the right BA 41 seed-driven maps, connectivity with 

right primary motor cortex (BA 4) was significantly greater in the TD than WS group (TWS = 5.69, TTD 

= 8.04; t = -2.23, p = 0.032).  

Compared to TD individuals, decreased auditory input to BA 4 may play a role in motor 

coordination impairments in WS, which include weaknesses in balance and proprioception, 
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stereoacuity, and gait (Dilts, Morris, and Leonard 1990; Van der Geest et al. 2005; Morris et al. 1990; 

Hocking et al. 2009). Considering the influence of mirror neurons in BA 4, decreased connectivity in 

WS may offer support to Sparaci et al., who showed individuals with WS have difficulty understanding 

motor acts and motor intentions performed by others (Sparaci et al. 2012).  

 

Asymmetry in Within-Group Networks 

 

Laterality 

It is also notable that insula (BA 13), subcentral area (BA 43) and middle temporal gyrus (BA 

21) were significantly correlated with right BA 41 bilaterally in the TD group, but only ipsilaterally in 

the WS group. In left seed-driven networks, within-group bilateral insula (BA 13) connectivity was not 

significantly different for left or right BA 13. Since contralateral connectivity with these ROIs was not 

strong enough to be present in the right seed-driven WS group network, they were not tested 

between-groups with the identical TD target ROI. However, the absence of significant connectivity 

between right BA 41 and these three contralateral target ROIs should not be overlooked on the group 

level. Differences in connectivity may underlie a number of insular functions, potentially related to the 

WS behavioral phenotype.  

 

Insula and Empathy 

Diverse functions of the insula include the integration of sensory perceptions (Olausson et al. 

2005; Eickhoff et al. 2006; Naito et al. 2003; de Araujo et al. 2003; J. Wang et al. 2005; Schoedel et al. 

2008) and emotional and interoceptive salience (Northoff et al. 2006; Modinos, Ormel, and Aleman 

2009). The role of the insula in vestibular function (Naito et al. 2003) may contribute to motor 

impairment or visuospatial deficits in individuals with WS. Right anterior insula is a substrate for 

interoceptive awareness by its representation of subjective states of feeling (Critchley et al. 2004). 

Left anterior insula has been associated with self-reflection and the processing of affective states that 
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contribute to our sense of self (Modinos, Ormel, and Aleman 2009). Where left BA 41 ipsilateral 

connectivity with insula is increased in WS, compared to the TD group, the subtle hemispheric 

distinction may reflect a contribution to the phenotypic positive attitude and self-concept carried by 

individuals with WS (Plesa-Skwerer et al. 2004, -). This increased connectivity could also underlie 

phenotypic increased attraction to music in WS, given the roles of insula in passive music listening 

and emotional processing (S. Brown, Martinez, and Parsons 2004). 

Compared to the TD group, the WS networks show reduced contralateral connectivity with the 

insula from both seed ROIs and ipsilaterally with right BA 41. One group performed a study in WS 

that showed decreased anterior insula volume along with compromised white matter integrity 

connecting the amygdala to the insula, resulting in disrupted function between the insula and limbic 

regions. These findings were correlated with phenotypic heightened empathy in WS (Jabbi et al. 

2012). Empathy has been correlated with empathic traits, emotional concern and perspective taking, 

where the latter is more interoceptive. Individuals with WS have heightened empathy, but show a 

significant decrease in perspective taking abilities, compared to empathic concern. This may 

correspond with the three observed seed-insula pairs for which connectivity is lower in the WS group 

than in the TD group. The auditory mirror neuron system, specifically, has been linked with behavioral 

measures of empathy in WS (Hohman et al. 2013; Gazzola, Aziz-Zadeh L., and Keysers C. 2006; 

Galati et al. 2008; T. Singer 2006).  

The insula is large and likely contains multiple functional domains. Thus, without the ability to 

localize voxels functionally connected to BA 41 within BA 13, it is difficult to either refute or confirm 

these findings based on our rsFC methods. In an ROI-based analysis, Conn simply takes the average 

signal within an ROI to calculate intra-ROI connectivity. Voxel-wise connectivity analyses would 

reveal the spatial extent of what is possibly a heterogeneous signal in large, functionally diverse ROIs. 

However, if our insula connectivity is more anterior, findings of increased rsFC would certainly 

support phenotypic empathy through decreased interoceptive awareness. Anterior insula connectivity 

may support phenotypic non-social fears and anxiety observed in WS. Individuals with WS are very 
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fearful of pictures of scary or mutilating objects, such as needles. A study by Jabbi et al. suggests the 

WS hemi-deletion confers the phenotypic anxiety coupled with disrupted insula function (Jabbi et al. 

2012). Given the diversity in function of the insula, and its overlap with the WS phenotype, there is 

likely an underlying contribution of auditory connectivity with the left insula. 

 

Gustatory Function 

 The subcentral area (BA 43) is dedicated to sensorimotor representation and taste. We know 

from hosting our annual Academy of Country Music (ACM) Lifting Lives Music Camp for individuals 

with WS, that they are commonly picky eaters. At meal times, campers with WS prefer bland foods, 

such a hamburgers and hot dogs, and typically do not like food that is mixed (e.g. a burrito). Food is 

often considered too spicy, when it would not be by the general population, and food texture is an 

obstacle for some. On the whole, they like junk food, such as chips, soda and cookies. Without a 

dedicated measure, it is difficult to quantify food preferences in WS. Subjectively speaking, based on 

our campers over the last eight years, food issues seem to be sensory based. Follow up with a 

sensory measure would allow us to gain perspective on what is likely an issue based in sensory 

modulation differences. Decreased contralateral connectivity between the left BA 41 seed and BA 43 

target ROI, compared to the TD group network, may lend support to this idea as well. 

  

Mirror Neurons 

Compared to the TD group, individuals with WS showed decreased connectivity to the middle 

temporal gyrus (BA 21). While in the TD group significant connectivity was found between left BA 21 

and BA 41 from both seed ROIs, and between right BA 21 and right BA 41, only right BA 21 found 

significant connectivity from the ipsilateral seed. Middle temporal gyrus is involved in processing 

visual information and complex sounds, and has also been linked to the mirror neuron system (Mirz et 

al. 1999; Rizzolatti et al. 1996; Chou et al. 2006; Arévalo, Baldo, and Dronkers 2012). Thornton-Wells 

et al. found occipital activation during auditory stimulation, suggesting a cross-modal mechanism for 



!65 

auditory processing in WS (Thornton-Wells et al. 2010). Decreased connectivity to BA 21 in the WS 

group, compared to the TD group, may support this idea on the level of occipital activation in WS as a 

compensatory mechanism for auditory processing. It may also suggest differential involvement in the 

mirror neuron system in WS. The role of left BA 21 in deductive reasoning may support a role for 

decreased connectivity in neurocognitive impairments in WS. 

 

Comparison of Within Group Maps 

The WS group had 22 significant target ROIs, while the TD network had 28. Of 10 left seed-

driven target ROIs in the WS group, and excluding bilateral target ROIs, three left-hemispheric and 

two right-hemispheric target ROIs remain. The right seed-driven WS group auditory network can be 

characterized as right-dominant because, excluding bilateral ROIs, there are seven right and one left 

hemispheric target ROIs. The left seed-driven TD group map, excluding bilateral target ROIs, consists 

of only left-hemispheric target ROIs, none in the right hemisphere. The right seed-driven TD group 

auditory network can be characterized as right-dominant, with one non-bilateral target ROI in the left 

hemisphere and four in the right. Perhaps because the left-hemisphere is auditory dominant in most 

individuals, target ROIs may be more evenly distributed, involving several ROIs in both hemispheres, 

whereas the right auditory cortex may subserve more ipsilateral targets. This, and the fact that 

laterality tests show ipsilateral preference in connectivity, may explain why within-group maps are 

right-dominant only for right seed-driven auditory networks.  

 

Within-Group Covariate Correlations 

Only one significant correlation was found in the WS group: age was negatively correlated with 

connectivity between right BA 41 and right primary motor cortex (BA 6). This correlation of 

diminishing motor connectivity with increasing age is likely due to the typical course of 

neurodevelopment, and may be accelerated in WS, befitting phenotypic motor impairment, since the 

same correlation was not significant within the TD group.  
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In the TD group, right BA 41 ipsilateral connectivity with superior temporal gyrus (BA 22) is 

positively correlated with Auditory Registration (ρ = 0.601, p = 0.008), indicative of hypo-responsivity 

that may suggest atypical sensory modulation driven by inhibitory mechanisms. Right BA 41 

contralateral connectivity with BA 22 is positively correlated with Auditory Sensitivity (ρ = 0.524, p = 

0.026), indicative of hyper-responsivity in sensory modulation, which may be influenced by 

mechanisms of sensory-driven synaptic plasticity. Left lateralized BA 22 function has been associated 

with phoneme and auditory language processing, while nonverbal sounds, prosody and musical notes 

processing have been attributed as right lateralized (Ahmad et al. 2003; Tervaniemi et al. 2000; 

Bernal, Altman, and Medina 2004; Wildgruber et al. 2005). The ipsilateral correlation with Auditory 

Registration may indicate reduced ability for detection of nonverbal sounds and musical notes. By 

contrast, we might expect the WS group to demonstrate increased cortical hyper-responsivity to 

support the phenotypic attraction to music and other sounds. The TD group contralateral correlation 

with Auditory Sensitivity may indicate an expected relative strength in auditory language processing, 

which may be supported by group differences in verbal IQ scores.  There were no significant 

correlations with BA 22 in the WS group. However, connectivity between right BA 41 and right BA 21 

showed a negative correlation trend with Auditory Registration (ρ = -0.152, n.s.), indicating hyper-

responsivity, and a relative strength in the detection of nonverbal sounds and musical notes, 

compared to the TD group. This correlation trend lends itself to the WS musical phenotype. 

Connectivity between right BA 41 and left BA 22 showed a weak negative correlation trend with 

Auditory Sensitivity (ρ = -0.023, n.s.). This trend, opposite the TD group, reflects decreased sensitivity, 

which may be related to auditory language processing.  

 

Between-Group Discussion and Covariate Correlations 

Between-groups connectivity maps show the TD group is functionally connected to more 

medial regions, with dominating target ROIs in somatosensory and cingulate regions, while the WS 

group shows more rsFC with frontal ROIs. Twelve significant connectivity pairs showed greater 
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connectivity in the TD group (three from left BA 41, nine from right BA 41), compared to WS, and only 

five that were greater in the WS group (all from right BA 41), compared to the TD group. Two-tailed 

tests of laterality for bilateral connectivity pairs showed a preference for ipsilateral connectivity, similar 

to within-group laterality test results.  

For three between-group connectivity pairs, WS group z-scores were significantly correlated 

with auditory scores. In two of the pairs, the target ROI was part of the posterior cingulate cortex 

(PCC): connectivity between right BA 41 and right dorsal PCC (BA 31) was positively correlated with 

Auditory Registration scores, and connectivity between right BA 41 and left retrosplenial cingulate 

cortex/PCC (rsPCC; BA 29) was negatively correlated with Auditory Sensitivity. Both WS correlations 

indicate hypo-responsivity in WS, where the former implies a reduced ability to detect stimuli, and the 

latter, impaired sensory modulation, likely driven by inhibitory mechanisms. Similarly, for all of the 

PCC target ROIs in the between-group analysis (bilateral BA 29, bilateral BA 23, right BA 31), 

correlation trends between connectivity and Auditory Sensitivity in the WS group are negative, and 

with Auditory Registration scores are positive (except for with left BA 29). In the TD group, the 

correlation between right BA 31 connectivity and Auditory Registration is negative, but to a much 

slighter degree than in WS (WS ρ = 0.699, TD ρ = 0.122). The correlation trend in the TD group is in 

the opposite direction, compared to the WS group, for left BA 29 and Auditory Sensitivity scores (WS 

ρ = -0.542, TD ρ = 0.443), indicating sensory gating versus inhibition. Both PCC regions, BA 29 and 

BA 31, have been implicated in the ability to exercise social reasoning and precautions along with 

insula, a within-group target ROI that showed reduced connectivity in WS, compared to the TD group, 

in our study (Fiddick, Spampinato, and Grafman 2005). BA 31 has been linked to the role of empathy 

in social cohesion (Farrow et al. 2001). As noted earlier, individuals with WS have a reduced function 

of empathy related to perspective taking, or theory of mind, while their ability for empathic concern is 

seemingly preserved. Also hyper-social, phenotypically, individuals with WS are vulnerable, often 

socially engaging with strangers, demonstrating a diminished ability for social reasoning (Fisher, 

Moskowitz, and Hodapp 2013; Riby et al. 2013). Teaching social awareness, safety and decision 



!68 

making to counter these behaviors is a common component of intervention for WS (Jawaid et al. 

2012). Neural hypo-responsivity between the auditory cortex and PCC, may support a sensory-driven 

basis for the WS phenotype. 

In the third significant test, WS group z-scores between right BA 41 and left BA 5, from the 

between-group analysis, were positively correlated with Auditory Sensitivity scores (Table 2). This 

result indicates the presence of neural mechanisms that promote hyper-respsonsivity, such as 

sensory-driven synaptic plasticity. The correlation trend in the TD group was opposite that of the WS 

group (TD ρ = -0.250, WS ρ = 0.558), where only the latter was significant. Differential neural 

mechanisms likely underlie connectivity to this region, where connectivity is greater in the TD versus 

WS group, and may have a wide range of functional implications supporting diverse aspects of 

somatosensory processing and association, including the mirror neuron system. 

Connectivity from right BA 41 to frontal regions (BA 47, BA 10, BA 33, BA 9) is purely 

contralateral and significantly greater in WS than the TD group. The left-lateralized function of these 

emotional and cognitive processing regions is a shared investment in empathy (specifically, judgment 

of others), forgivability, self-reflection and music processing (Farrow et al. 2001; Johnson et al. 2002; 

Vuust et al. 2006). Previously mentioned, have been the relative strengths of WS: empathic concern, 

a positive attitude about one’s self, and a heightened emotional relationship with music.  

The social cognition pathway consists of neural substrates of social cognition, or Theory of 

Mind (Bigler et al. 2007; Adolphs 2003; Takahashi et al. 2004). From our data, we can conceive of a 

left-lateralized model of the social cognition pathway, characterized by hyper-responsivity, that 

supports atypical auditory processing and impaired social cognition in WS. Compared to the TD 

group, WS has significantly increased connectivity between right BA 41 and left BA 33, among other 

prefrontal regions. Dense paralimbic connections exist between BA 33 and the amygdala, from which 

excitatory projections synapse in BA 22, the region that sends afferents to emotional and cognitive 

processing regions of the prefrontal cortex. Our data also suggests hyper-responsivity between right 

BA 41 and left BA 22.  
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Limitations and Future Directions 

Limitations inherent to resting state fMRI include the small sample size and likely heterogeneity 

of the sample. Given that this is a study of auditory networks, we must consider the possibility that 

scanner noise could be modulating resting state networks. Foam earplugs and headphones were 

used to attenuate noise in our study, which used an EPI sequence. Using a spiral imaging sequence 

may further attenuate noise produced by changing directions in k-space during an EPI sequence. 

Noise-cancelling headphones might also attenuate noise; however, the sound frequency generated 

by noise-cancelling technologies could cause increased signal in frequency-specific regions of the 

auditory cortex. 

The literature does not agree on a cytoarchitectural definition of the auditory cortex, 

anatomically corresponding with better-defined functional subdivisions. Because the symptoms of 

atypical auditory processing in WS are well-documented, we chose to use a BA template in ROI-

based rsFC analyses. Conducting parallel, ROI-based analyses using an anatomical template, such 

as MNI, could lead to a better understanding of anatomical contributions to functional distinction. In 

addition, using self-reports or clinical assessment of auditory symptoms (emotional reactivity to music, 

hyperacusis, sound attraction and aversion) as a covariate may help distinguish between differential 

mechanisms that underlie the complex and paradoxical auditory phenotype in WS. For instance, 

connectivity between BA 41 and the inferior colliculi, which modulate sound intensity, might be related 

to hyperacusis in WS. Hyperacusis has also been described by a absent acoustic startle reflex in WS. 

The dorsal and medial nuclei of the medial geniculate body (MGB) in the thalamus project 

polysensory afferent input to BA 42 and the amygdala. Atypical connectivity in these pathways may 

subserve auditory symptoms in WS related to emotional reactivity to music and sound attraction and 

aversion. Cortical, hierarchical auditory pathways, especially between BA 41 and amygdala, including 

BA 42, should also be considered in the potential contribution of connectivity differences to these 

aspects of the auditory phenotype. Afferent thalamo-cortical connectivity between ventral nuclei of the 

MGB and BA 41, exclusive to auditory signal, may influence any of the WS auditory symptoms. While 
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all of the previously mentioned pathways are excitatory, and increased rsFC in afferent pathways may 

support EEG findings of thalamo-cortical and cortical hyper-excitability, one must not overlook the 

potential for increased rsFC in inhibitory contributions of the reticular nucleus of the thalamus to the 

MGB, which may drive hyper-excitability rooted in thalamic pathways. Structural connectivity should 

be considered in these same pathways, as WM integrity could directly impact functional connectivity, 

which might underlie auditory differences in WS. 

WS is a rare neurodevelopmental disorder with a specific genetic etiology, and it would be 

important to conduct similar studies in other groups with pathological auditory processing.  This would 

contribute to a better understanding of symptoms such as hyperacusis and sound attraction and 

aversion and would test the generalizability of our findings to typical neurodevelopment or other 

etiologically-distinct neurodevelopmental disorders. Future translational studies in WS should also 

investigate the role of specific genes in the WS deletion region on auditory pathology. 
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CHAPTER V 

 

WHITE MATTER INTEGRITY DIFFERENCES SUPPORT IMPAIRED AUDITORY SENSORY 

PROCESSING IN WILLIAMS SYNDROME 

 

Background 

 

Diffusion Imaging in Auditory Processing 

Sensory processing can be influenced by the structural connectivity of involved brain regions. 

Structural connectivity can be measured using diffusion tensor imaging (DTI), which is a magnetic 

resonance imaging (MRI) technique that the diffusion of water molecules in white matter (WM) 

microstructure in thalamo-cortical and intra-cortical pathways. WM integrity in these pathways is 

assessed by fractional anisotropy (FA), a DTI parameter providing a quantitative measure of the 

principal direction of water diffusion through axonal membranes. FA is sensitive to cell density, 

edema, myelination and structural organization of axons. Changes in FA can be interpreted as a 

reflection of experience-dependent plasticity in WM microstructure(Schlaug, Marchina, and Norton 

2009; Scholz et al. 2009). By linking the FA of adjacent voxels, WM fiber tracts can be traced, giving 

the underlying structural connectivity between two brain regions. DTI-based structural connectivity 

has been used to confirm coincident functional and structural properties of the human auditory cortex 

(Upadhyay et al. 2008; Upadhyay et al. 2007).  

Studies of structural connectivity in WS are limited. Whole-brain, voxel-wise analyses have been 

used to evaluate the WM integrity of large fiber bundles carrying axons from several smaller tracts 

(Hoeft et al. 2007; Marenco et al. 2007; Arlinghaus et al. 2011; Avery et al. 2011). This technique 

limits the characterization of smaller, functionally distinct tracts. Avery et al. described differences in 

WM integrity in amygdala-prefrontal tracts (Avery et al. 2011). There are no studies of structural 

connectivity related to auditory processing in WS. The proposed study will use ROI-based 
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methodology to assess the WM integrity of fiber tracts involved in auditory processing. Tracts will be 

selected using atlas-based auditory seed regions and auditory seed regions derived from functional 

connectivity analyses. 

 

Diffusion Tensor Imaging 

Diffusion is a random transport phenomenon describing the movement of molecules from one 

spatial location to another, in a given period of time. It is described by Einstein’s diffusion equation 

where the diffusion coefficient (D mm2/s) is proportional to the mean squared displacement (Δr2) 

divided by the number of dimensions (n), in a given period of time (t): 

D = ! !!!!!"#       [Eqn. 1] 

In the absence of boundaries, the displacement of water molecules is described by a Gaussian 

probability density: 

P! Δr,Δt = !1/ 2!DΔt !! !!!!/!!!"       [Eqn. 2] 

However, displacement of intracellular water molecules in WM is hindered or restricted by cellular 

membranes. Hindered and restricted diffusion decrease the apparent diffusivity of water, related by 

the apparent diffusion coefficient (ADC), a parameter measured by diffusion tensor imaging (DTI). 

This decrease is observed in directions perpendicular, but not parallel to, WM fiber orientation. 

Magnetic resonance (MR) signal due to diffusion is a measure of ratios of two MR signals:  

!!
!!
= !!(!!.!"#) .     [Eqn. 3] 

The diffusion attenuation coefficient (ADC) can then be estimated by the difference in the amplitude 

of the two diffusion-encoding gradients (b). In the case of isotropic diffusion, ADC will be the same in 

each of the three orthogonal planes of the brain. However, this is not the case with anisotropic 

diffusion, where changes in the diffusion-encoding gradient direction reveal greater attenuation in the 

direction of displacement per unit time of the water molecules due to hindered and restricted 

membranes. Therefore, ADC must be measured separately in each orthogonal plane to characterize 
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the Gaussian diffusion in which the displacements per unit time are not the same in all three 

directions in the diffusion tensor. The matrix in Equation 4 is used to characterize displacements in 

three dimensions. 

! = !
!!! !!" !!"
!!!" !!! !!"
!!" !!" !!!

     [Eqn. 4] 

The diffusion tensor may also be considered an ellipsoid, whose surface can be defined in each plane 

by the distance that a Gaussian molecule will diffuse from the origin, during a given period of time 

(Figure 6). The axes of the ellipsoid are given by the eigenvectors (!) and the length of each 

(eigenvalue) is given by the diffusion distance, during a given time(Koay et al. 2006). 

 Three measurable parameters of interest from the diffusion ellipsoid are: (1) axial diffusivity, 

the amount of diffusion along the primary axis of the ellipsoid (λ1), (2) radial diffusivity (RD), the 

average diffusion along the secondary axes given by Equation 5, and (3) fractional anisotropy (FA), 

an index which measures the fraction of the diffusion tensor which can be attributed to anisotropic 

diffusion. The FA (Equation 6) index normalizes variance by the magnitude of the entire diffusion 

tensor and gives measure to signal transmission in white matter microstructure. 

RD = ! (!!!!!!!)! !     [Eqn. 5] 

FA = !
! !

!!!! ! !!! !!!! ! !!! !!!! ! !!!

!!!!!!!!!!!!!!
     [Eqn. 6] 

 Since there are many combinations of eigenvectors that can produce the same ellipsoid shape, 

FA is very sensitive to WM microstructural changes, but not specific to the type of change, whether it 

is driven by axial or radial changes in diffusivity. For example, an observed decrease in FA may be 

driven by increased RD, decreased λ1, or changes in both. Measuring each of these three parameters 

can maximize characterization of the underlying neuropathology. Changes in RD are modulated by 

myelin in WM, such that an increase in RD in the absence of λ1 change is indicative of demyelination  
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Figure 6. Diffusion Tensor Ellipsoid. Eigenvectors define the direction of diffusion. Diffusion distance, during a given time, 

defines the length of each ellipsoid axis. 
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(Beaulieu and Allen 1994; Song et al. 2002). Changes in λ1 are more specific to axonal degeneration 

(Harsan et al. 2006; Sun et al. 2006). Increased FA has been found in acute ischemia, while 

decreased FA has been found to follow the acute phase, specific to chronic lesions (Liu et al. 2007; 

Sorensen et al. 1999; Yang et al. 1999). 

 The interpretation of DTI measurements may be complicated by several common sources of 

noise. Thermal and physiological noise often introduce image noise. Image artifacts are often due to 

poor inter-subject registration, due to eddy currents or subject motion. Partial volume averaging 

artifacts may result from single voxels which contain cerebrospinal fluid, grey matter and/or white 

matter that cannot be disambiguated. Brain regions with crossing fibers, notably the centrum 

semiovale and uncinate, may result in lower FA measurements in that region. Focusing on more 

homogeneous brain regions may reduce noise. The most homogeneous region in the brain is the 

body of the corpus callosum, where fibers are densely packed and are all right-left oriented fibers. In 

addition, new DTI methods, such as high angular resolution diffusion imaging (HARDI) are better able 

to resolve crossing fibers (Frank 2002; Alexander, Barker, and Arridge 2002), increasing the 

correlation of measured FA with actual individual fiber anisotropy. These techniques require 

increased acquisition time, but tractography analyses give much more promising results. 

 

Methods 

 

Participants and Recruitment  

Eighteen adults with WS (25.9 ± 8.5 years of age) and eighteen age- and gender-matched 

typically developing (TD) control participants (27.1 ± 7.1 years of age) were recruited as described in 

Chapter IV. All study protocols were approved by the Vanderbilt University Internal Review Board. 
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Intellectual and Sensory Processing Assessment  

The Kaufman Brief Intelligence Test, Second Edition (KBIT-2) and Adult/Adolescent Sensory 

Profile (SP-A) questionnaire were administered to all participants and analyzed as described in 

Chapter IV.  

 

Image Processing 

 

Image Acquisition 

All images were acquired with slices parallel to the anterior commissure-posterior commissure 

line during a single scan session on a 3 Tesla Philips Achieva MRI scanner (Philips Healthcare, Inc.), 

located at the Vanderbilt University Institute of Imaging Science. During scanning procedures, 

participants wore foam earplugs in both ears and Philips headphones to attenuate noise. A high-

resolution T1-weighted anatomical volume (TR=4.6 ms, TE=9 ms, FOV=256 mm2, 1 mm isotropic 

voxels, 170 sagittal slices, 6 min 30 sec duration) was collected to provide a template for image 

registration. Diffusion weighted data was acquired using a HARDI sequence (2.5 mm2 isotropic 

voxels, 50 axial slices, 14 min 34 sec). We collected 92 diffusion directions (b=1600 s/mm2) and one 

T2-weighted volume (b=0 s/mm2).  Total scan time was 35 minutes, which included resting state fMRI 

data, which was presented in Chapter IV. This was tolerable for all participants. 

 

Image Preprocessing Pipeline 

A novel, processing pipeline was developed to prepare data for analysis in Reproducible 

Objective Quantification Scheme (ROQS) (Niogi, Mukherjee, and McCandliss 2007). In the pipeline 

(Figure 7), all images were visually inspected for artifacts and underwent quality assurance and 

preprocessing procedures using the following software: DTI Studio (Jiang et al. 2006), Brain Voyager 

(v.2.3) (Goebel, Esposito, and Formisano 2006; Formisano, Di Salle, and Goebel 2005), and FMRIB 

Software Library (FSL) (Jenkinson et al. 2012; Smith et al. 2004).  
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Figure 7. Preprocessing Pipeline  
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Prior to coregistration, individual T1W/3D and HARDI images each went through separate 

preprocessing steps. Raw HARDI images from the Philips scanner were exported in PAR/REC format 

and opened in DTI Studio, where they were converted to ANALYZE format. These images were then 

eddy current corrected using FSL’s FDT Diffusion Toolbox. Using affine registration to the T2-

weighted reference volume (b=0 s/mm2), each of our 92 diffusion gradients (b=1600 s/mm2) was 

corrected for gradient coil-induced stretches and shears, and simple head motion. Brain extraction  

was performed using FSL’s BET Brain Extraction toolbox. A fractional intensity threshold of 0.5 was 

applied to strip the image of all but brain tissue.  

Raw T1W/3D images were exported from the scanner as PAR/REC files, reconstructed in 

Brain Voyager (ver.2.03), and saved in VMR format, native to Brain Voyager. Original neurological 

orientation was preserved in reconstruction and saving.  Spatial transformations were applied on an 

individual basis to reorient the T1W/3D image to anterior commissure – posterior commissure 

(ACPC) orientation. Re-oriented images were converted from VMR format the NIfTI using Brain 

Voyager’s NIfTI-1 Converter Plugin (ver.1.08). NIfTI files were then opened in FSL for brain extraction 

using the BET Brain Extraction Toolbox. A fractional intensity threshold of 0.3 was applied to strip all 

non-brain tissue from the image.  

Each subject’s skull stripped HARDI and T1W/3D images were coregistered using FMRIB’s 

Linear Registration Tool (FLIRT) in the FSL command line window. The 4D HARDI image was first 

split into 3D diffusion images (92 diffusion-weighted and one T2-weighted image). The FLIRT 

command was used to register the ACPC oriented T1W/3D image for each subject to each of its 3D 

images, resulting in 93 ACPC oriented images. The images were merged back to their original 

sequence using the fslmerge command in the FSL command window. 

 Each subject’s ACPC-oriented, 4D HARDI image was opened in DTI Studio and 

converted from NIfTI to DAT format so that all original image parameters could be read. Tensor fit 

was performed in DTI Studio on each individual HARDI image. Pixel-based outlier rejection was used 

to eliminate noisy pixels by the following threshold criteria: “Minimum bad area” = 80 (suggested 
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value is 30 pixels per 1 mm2), “Minimum Z-value” = 2 (standard deviations from global mean signal), 

“Minimum B0-Value” = 100 (intensity threshold to remove floor noise). For each subject, the tensor fit 

produced output files that would serve as input files to calculate fractional anisotropy in each of 21 a 

priori WM fiber tract ROIs in ROQS post-processing software. A binary mask was also produced by 

DTI Studio, which contained only rejected pixels based on these thresholds. The mask was used for 

qualitative visual inspection.  

Output files included three eigenvectors, three eigenvalues, a single file with all three 

eigenvectors, an FA map, a trace image, and an ADC map. However, further calculation was required 

to transform DTI Studio output into an appropriate ADC map that only contained the average of 

diffusion-weighted images. The first 92 ADC images were concatenated in DTI Studio, which 

excluded only the T2-weighted non-diffusion image, and exported to FSL. The fslsplit command was 

used to split the 4D file back into 92 3D images. Fslmaths was used to calculate the average ADC 

across all 92 images, producing a single 3D average ADC image for each subject. 

 

Image Post-processing in ROQS 

 ROQS is a software-based tool for determining regional white matter measurements of 

diffusion tensor imaging parameters. The technique exploits fiber information from the diffusion tensor 

to segment 21 anatomically distinct WM fiber tracts for quantitative DTI analysis, such as fractional 

anisotropy. ROQS is able to segment WM fiber tracts faster than manual delineation and with better 

reproducibility and accuracy (Niogi, Mukherjee, and McCandliss 2007). ROIs are delineated on a 

best-fit 2D slice, per the ROQS manual. Using each individual’s FA map, eigenvectors, and 

eigenvalues, trace and average ADC, we were able to manually segment all 21 a priori WM fiber tract 

ROIs given by ROQS in each of our 36 individuals. Bilateral ROIs were segmented individually for 

each hemisphere. Whole brain ROIs were derived from commissural, association and projection 

fibers. We obtained a measure of FA from each ROI, for each individual. For the TD group and the 
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WS group separately, within each ROI, outliers (having an individual FA value greater or less than 3 

standards from the group average) were excluded for quality assurance.  

 

Statistical Analyses 

Participant age, neurocognitive (verbal, nonverbal, composite IQ), sensory (Auditory 

Registration, Auditory Sensitivity) and quantitative DTI parameter (FA, RD, λ1) variables are 

continuous and were tested within-group for normality using a Shapiro-Wilk test. Two-tailed t-tests or 

Mann-Whitney tests (for variables where data were not normally distributed) were used to assess 

between-group differences. Using an experiment-wise Type I error rate of 0.05, the Bonferroni-

corrected α for 21 ROIs between-group tests was α = 0.00277. 

Nominally significant between-group ROIs for each of the three DTI parameters were identified 

for correlational analyses. For each DTI parameter, we performed Spearman rank correlation 

analyses between the DTI variable in the nominally significant ROIs and each of the following 

variables: Auditory Registration, Auditory Sensitivity, age, and IQ (verbal, nonverbal, composite). 

Since the three IQ measures are intercorrelated, we chose to correct for only 4 sets of measures (age, 

Auditory Registration scores, Auditory Sensitivity scores, IQ scores). Using an experiment-wise Type 

I error rate of 0.05, the Bonferroni-corrected α for each analysis was given by the number of ROIs 

found significantly different between-groups for each DTI variable after correcting for multiple 

comparisons (FA tests: 3 ROIs, α = 0.00417; RD tests: 5 ROIs, α = 0.0025; λ1 tests: 9 ROIs, α = 

0.00139). Statistical analyses were performed in SPSS (IBM SPSS Statistics for Windows 2012) 

software.  
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Results 

 

Intellectual and Sensory Processing Assessment  

Participant age was normally distributed in the TD group, but not in the WS group. A Mann-

Whitney test found no significant difference in mean age between the WS (25.9 ± 8.5) and TD control 

(27.1 ± 7.1) groups. Verbal and composite IQ scores were normally distributed in both groups, while 

nonverbal scores were normally distributed only in the WS group. As expected, Mann-Whitney (for 

nonverbal IQ) and t-tests showed TD control group KBIT-2 scores ([mean ± SD]; verbal: 118 ± 17, 

nonverbal: 117 ± 14, composite: 120 ± 15) were significantly higher than the WS group scores ([mean 

± SD]; verbal: 79 ± 15, nonverbal: 67 ± 17, composite: 70 ± 17) on all three measures of IQ (verbal: t= 

-7.3, nonverbal: z = -5.0, composite: t = -9.3; p < 0.0001). Of note, consistent with the WS phenotype, 

within the WS group, the mean of verbal standard scores was significantly higher than that of 

nonverbal standard scores ([mean ± SD]; verbal: 78 ± 15.3, nonverbal: 67.1 ± 17.3, t = 5.3, p < 

0.0001). 

SP-A Auditory Registration and Auditory Sensitivity scores were normally distributed in both 

groups. SP-A Auditory Registration scores were not significantly different between WS (9.6 ± 1.9) and 

TD (9.4 ± 1.9) groups. Auditory Sensitivity scores were significantly higher in the WS (10.7 ± 2.3) 

versus TD (7.9 ± 2.1) groups (t = 3.8, p < 0.001). Within each group, Auditory Registration and 

Auditory Sensitivity scores were significantly different (WS: t = -1.9, p = 0.071; TD: t = 2.2, p = 0.046). 

The two auditory scores were not significantly correlated with each other in either group, but were 

correlated to a greater degree in WS than in the TD group (WS: r = 0.31, p = 0.21; TD: r = -0.076, p = 

0.211).  
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Figure 8. Validation of WM Fiber Tracts. Twenty-one, a priori white matter fiber tract ROIs are identified and labeled on 

four axial slices from a single representative Williams syndrome subject. Commisural ROIs: body of the corpus callosum 

(BCC), genu (GENU) and splenium (SPL). Bilateral ROIs: centrum semiovale (CS), cingulum (CING), anterior corona 

radiata (ACR), superior corona radiata (SCR), inferior longitudinal fasciculus (ILF), inferior portion of the superior 

longitudinal fasciculus (iSLF), superior portion of the superior longitudinal fasciculus (sSLF), posterior limb of the internal 

capsule (PLIC), and uncinate fasciculus (unc). Anterior-posterior fiber tracts (green), inferior-superior fiber tracts (blue), 

right-left fiber tracts (red). 
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White Matter Integrity 

 

Segmentation of WM Fiber Tracts  

Twenty-one, a priori WM fiber tracts segmented from each individual’s ACPC oriented HARDI 

image included the body of the corpus callosum (BCC), genu of the corpus callosum (GENU), 

splenium of the corupus callosum (SPL), and bilaterally: centrum semiovale (CS), cingulum (CING), 

superior corona radiata (SCR), superior longitudinal fasciculus – inferior portion (iSLF), superior 

longitudinal fasciculus – superior portion (sSLF), anterior corona radiate (ACR), posterior limb of the 

internal capsule (PLIC), uncinate (UNC), and inferior longitudinal fasciculus (ILF) (Figure 8). Bilateral 

fiber tracts were segmented separately for each hemisphere, and FA, axial diffusivity (λ1), and radial 

diffusivity (RD) were measured in each. 

 

Fractional Anisotropy, Radial and Axial Diffusivity in White Matter Fiber Tracts 

 Within each group, fractional anisotropy (FA) was normally distributed across subjects in all 21 

ROIs except for the right ACR in the WS group, and the right SCR, right sSLF, right ACR, left PLIC 

and right ILF in the TD group. Radial diffusivity (RD) was not normally distributed in the left CING of 

either group, or in the left iSLF, right iSLF and right ILF in the WS group, nor in the right SCR and 

right sSLF in the TD group. Axial diffusivity (λ1) was not normally distributed in any of the 21 ROIs in 

the WS group, nor in the right CS, left ILF, and right ILF in the TD group. 

Significant between-group differences survived corrections for multiple comparisons using an 

experiment-wise Type I error rate of 0.05, the Bonferroni-corrected α for 21 ROIs (18 bilateral) was α 

= 0.00277. Nominal group differences were significant at an uncorrected p < 0.05, but did not survive 

corrections for multiple comparisons. Significant group differences in FA were found in BCC (TD > 

WS, t = -3.78, p = 0.001), right PLIC (TD > WS, z = -3.40, p < 0.0001) and nominally in left PLIC (TD 

> WS, t = -2.52, p = 0.017) and SPL (TD > WS, t = 2.49, p = 0.018). See Table 10.A. Nominally 

significant group differences in RD were found in left CS (TD > WS, t = -2.82, p = 0.008), right sSLF 



!84 

 
 
 
 

 
 

 
 
Table 10.A. Group Fractional Anisotropy Values and Tests of Means. WS (N=17) and TD (N=18) group mean fractional anisotropy values are shown for each of 

the twenty-one, a priori white matter fiber tract ROIs derived from ROQS: centrum semiovale (CS), cingulum (CING), body of the corpus callosum (BCC), superior 

corona radiata (SCR), inferior portion of the superior longitudinal fasciculus (iSLF), superior portion of the superior longitudinal fasciculus (sSLF), anterior corona 

radiata (ACR), genu, splenium (SPL), posterior limb of the internal capsule (PLIC), uncinate fasciculus (UNC) and inferior longitudinal fasciculus (ILF). T- and z-

statistics are listed with p-values from two-tailed between-group t-tests and Mann Whitney tests (where values were not normally distributed). L- = left-hemispheric 

ROI; R- = right-hemispheric ROI; * = nominally significant between-group test; ** = significant between-group test; ° = z-statistic, otherwise t-statistic is reported. 

  

R-CS L-CS R-CING L-CING BCC ** R-SCR L-SCR R-iSLF L-iSLF R-sSLF L-sSLF

WS Mean 4.20E-01 4.40E-01 4.60E-01 4.20E-01 5.50E-01 4.80E-01 4.50E-01 4.30E-01 4.20E-01 4.40E-01 4.80E-01

   SD 6.00E-02 5.00E-02 9.00E-02 8.00E-02 4.00E-02 5.00E-02 6.00E-02 4.00E-02 6.00E-02 5.00E-02 6.00E-02

TD Mean 4.34E-01 4.21E-01 4.88E-01 4.54E-01 5.93E-01 4.93E-01 4.72E-01 4.38E-01 4.43E-01 4.47E-01 4.67E-01

  SD 3.92E-02 4.48E-02 3.60E-02 4.26E-02 3.42E-02 3.67E-02 5.98E-02 4.01E-02 4.27E-02 4.74E-02 4.07E-02

test-stat -0.51 1.15 -1.14 -1.56 -3.78 -0.86 -1.78° -0.27 -1.36 -0.64 -0.40°

p-value 0.612 0.258 0.265 0.129 0.001 0.396 0.077 0.788 0.184 0.527 0.708

(cont'd) R-ACR L-ACR GENU SPL * R-PLIC ** L-PLIC * R-UNC L-UNC R-ILF L-ILF

WS Mean 3.70E-01 3.70E-01 5.90E-01 6.60E-01 5.50E-01 5.60E-01 4.00E-01 4.20E-01 4.90E-01 4.30E-01

   SD 8.00E-02 6.00E-02 5.00E-02 4.00E-02 3.00E-02 3.00E-02 4.00E-02 7.00E-02 5.00E-02 5.00E-02

TD Mean 3.85E-01 3.52E-01 6.08E-01 6.93E-01 5.78E-01 5.77E-01 4.11E-01 4.08E-01 4.51E-01 4.53E-01

  SD 5.67E-02 6.87E-02 1.64E-02 3.12E-02 1.35E-02 2.61E-02 5.50E-02 4.75E-02 7.05E-02 6.88E-02

test-stat -0.79 -1.24° -1.31 -2.49 -3.40° -2.52 -0.54 0.52 1.72 -1.58°

p-value 0.433 0.219 0.207 0.018 < 0.0001 0.017 0.596 0.605 0.095 0.118
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Table 10.B. Group Radial Diffusivity Values and Tests of Means. WS (N=17) and TD (N=18) group mean fractional anisotropy values are shown for each of the 

twenty-one, a priori white matter fiber tract ROIs derived from ROQS: centrum semiovale (CS), cingulum (CING), body of the corpus callosum (BCC), superior 

corona radiata (SCR), inferior portion of the superior longitudinal fasciculus (iSLF), superior portion of the superior longitudinal fasciculus (sSLF), anterior corona 

radiata (ACR), genu, splenium (SPL), posterior limb of the internal capsule (PLIC), uncinate fasciculus (UNC) and inferior longitudinal fasciculus (ILF). T- and z-

statistics are listed with p-values from two-tailed between-group t-tests and Mann Whitney tests (where values were not normally distributed). L- = left-hemispheric 

ROI; R- = right-hemispheric ROI; * = nominally significant between-group test; ** = significant between-group test; ° = z-statistic, otherwise t-statistic is reported. 

  

R-CS L-CS * R-CING L-CING BCC R-SCR L-SCR R-iSLF L-iSLF R-sSLF * L-sSLF *

WS Mean 4.58E-04 4.55E-04 4.73E-04 4.97E-04 5.44E-04 4.29E-04 4.48E-04 4.65E-04 4.76E-04 4.60E-04 4.49E-04

   SD 3.25E-05 3.73E-05 7.21E-05 5.96E-05 4.21E-05 2.21E-05 3.80E-05 4.72E-05 5.45E-05 3.62E-05 3.55E-05

TD Mean 4.75E-04 4.86E-04 5.01E-04 5.15E-04 5.28E-04 4.32E-04 4.40E-04 4.89E-04 4.93E-04 4.85E-04 4.66E-04

  SD 2.34E-05 2.92E-05 5.88E-05 4.33E-05 4.69E-05 1.87E-05 3.28E-05 2.75E-05 3.30E-05 3.31E-05 2.65E-05

test-stat -1.80 -2.82 -1.58° -0.99 1.03 -0.42 -1.12° -1.65° -0.56° -2.13 -1.98°

p-value 0.080 0.008 0.118 0.332 0.309 0.679 0.273 0.103 0.590 0.041 0.049

(cont'd) R-ACR L-ACR GENU SPL R-PLIC * L-PLIC R-UNC * L-UNC R-ILF L-ILF

WS Mean 5.44E-04 5.46E-04 4.83E-04 4.65E-04 3.97E-04 4.03E-04 5.16E-04 5.27E-04 4.95E-04 5.58E-04

   SD 5.74E-05 5.04E-05 5.67E-05 5.82E-05 1.84E-05 2.54E-05 3.39E-05 4.79E-05 4.55E-05 5.72E-05

TD Mean 5.53E-04 5.82E-04 4.98E-04 4.45E-04 3.80E-04 3.88E-04 5.45E-04 5.50E-04 5.11E-04 5.33E-04

  SD 5.49E-05 5.90E-05 3.18E-05 6.12E-05 2.88E-05 1.94E-05 3.53E-05 2.34E-05 4.61E-05 4.41E-05

test-stat -0.50 -1.91 -0.93 0.97 2.12 1.89 -2.46 -1.82 -1.02 -1.25°

p-value 0.620 0.064 0.359 0.338 0.042 0.068 0.019 0.082 0.313 0.219



!86 

 
 
 
 

 
 

 
 

Table 10.C. Group Axial Diffusivity Values and Tests of Means. WS (N=17) and TD (N=18) group mean fractional anisotropy values are shown for each of the 

twenty-one, a priori white matter fiber tract ROIs derived from ROQS: centrum semiovale (CS), cingulum (CING), body of the corpus callosum (BCC), superior 

corona radiata (SCR), inferior portion of the superior longitudinal fasciculus (iSLF), superior portion of the superior longitudinal fasciculus (sSLF), anterior corona 

radiata (ACR), genu, splenium (SPL), posterior limb of the internal capsule (PLIC), uncinate fasciculus (UNC) and inferior longitudinal fasciculus (ILF). T- and z-

statistics are listed with p-values from two-tailed between-group t-tests and Mann Whitney tests (where values were not normally distributed). L- = left-hemispheric 

ROI; R- = right-hemispheric ROI; * = nominally significant between-group test; ** = significant between-group test; ° = z-statistic, otherwise t-statistic is reported.  

R-CS * L-CS R-CING ** L-CING ** BCC ** R-SCR L-SCR R-iSLF L-iSLF * R-sSLF ** L-sSLF

WS Mean 8.95E-04 9.15E-04 1.00E-03 9.86E-04 1.38E-03 9.45E-04 9.30E-04 9.16E-04 9.24E-04 9.25E-04 9.90E-04

   SD 1.04E-04 1.03E-04 1.49E-04 1.55E-04 2.05E-04 1.33E-04 1.25E-04 9.43E-05 1.08E-04 1.12E-04 1.24E-04

TD Mean 9.67E-04 9.60E-04 1.15E-03 1.11E-03 1.54E-03 9.90E-04 9.75E-04 9.65E-04 9.94E-04 1.01E-03 1.02E-03

  SD 4.57E-05 4.86E-05 9.70E-05 7.54E-05 4.39E-05 4.74E-05 5.54E-05 3.56E-05 5.24E-05 4.22E-05 4.77E-05

test-stat -2.81° -1.45° -3.61° -3.28° -4.26° -0.97° -1.25° -1.78° -2.48° -3.23° -0.64°

p-value 0.004 0.153 < 0.0001 0.001 < 0.0001 0.335 0.219 0.077 0.013 0.001 0.525

(cont'd) R-ACR * L-ACR GENU ** SPL R-PLIC * L-PLIC R-UNC * L-UNC R-ILF L-ILF

WS Mean 9.29E-04 9.39E-04 1.36E-03 1.50E-03 1.02E-03 1.04E-03 9.80E-04 1.03E-03 1.10E-03 1.11E-03

   SD 1.24E-04 1.01E-04 2.38E-04 2.74E-04 1.53E-04 1.56E-04 1.29E-04 1.43E-04 1.59E-04 1.49E-04

TD Mean 1.01E-03 9.97E-04 1.50E-03 1.63E-03 1.09E-03 1.09E-03 1.08E-03 1.07E-03 1.08E-03 1.13E-03

  SD 6.13E-05 7.87E-05 6.28E-05 1.04E-04 2.83E-05 3.19E-05 8.58E-05 7.54E-05 8.46E-05 1.08E-04

test-stat -2.64° -1.85° -3.53° -1.88° -2.77° -1.17° -2.62° -0.97° -1.68° -1.19°

p-value 0.007 0.067 < 0.0001 0.062 0.005 0.245 0.007 0.335 0.096 0.245
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Group WM Tract DTI Variable Correlated Measure ρ p-value

WS Group Left PLIC FA Auditory Registration -0.516 0.034

Right PLIC RD Age 0.498 0.042

Auditory Registration 0.676 0.003

TD Group BCC ** FA Auditory Sensitivity -0.604 0.008

Left CS RD Age 0.620 0.006

WS Group Right sSLF RD Composite -0.484 0.049

TD Group Composite 0.500 0.034

Verbal 0.486 0.041

Right sSLF -0.495 0.037

Right PLIC -0.476 0.046

    Right sSLF ** 0.474 0.047

Right PLIC λ1 Verbal -0.469 0.050

Right ACR 0.515 0.029

Left PLIC FA

RD Verbal

 
 

Table 11. Measures of Diffusion Correlated with Covariates in WM Fiber Tracts. Diffusion measures from white matter 

fiber tract ROIs, within which fractional anisotropy (FA), radial diffusivity (RD) or axial diffusivity (λ1) were significantly (**) 

or nominally different between groups, were correlated with age, Auditory Registration and Auditory Sensitivity scores, 

and IQ using Spearman’s Rank correlation tests (ρ = correlation coefficient). ROIs include: centrum semiovale (CS), body 

of the corpus callosum (BCC), superior portion of the superior longitudinal fasciculus (sSLF), anterior corona radiata 

(ACR), posterior limb of the internal capsule (PLIC). Nominally significant correlations are reported (p < 0.05) for each 

group. NWS=17, NTD=18.  
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(TD > WS, t = -2.13, p = 0.041), left sSLF (TD > WS, z = -1.98, p = 0.049), right PLIC (WS > TD, t = 

2.12, p = 0.042) and right UNC (TD > WS, t = -2.46, p = 0.019). See Table 10.B.. Significant group 

differences in λ1 were found in right CING (TD > WS, z = -3.61, p < 0.0001), left CING (TD > WS, z = 

-3.29, p = 0.001), BCC (TD > WS, z = -4.26, p < 0.0001), GENU (TD > WS, z = -3.53, p < 0.0001), 

and right sSLF (TD > WS, z = -3.24, p = 0.001). See Table 10.C. An additional six nominally 

significant between-group differences in λ1 were found in left CS (TD > WS, z = -2.81, p = 0.004), left 

iSLF (TD > WS, z = -2.48, p = 0.013), right ACR (TD > WS, z = -2.64, p = 0.007), right PLIC (TD > 

WS, z = -2.77, p = 0.005), right UNC (TD > WS, z = -2.62, p = 0.007), and left iSLF (TD > WS, z = -

2.48, p = 0.013).  

 

White Matter Integrity Correlations with Covariates 

Using two-tailed Spearman Rank correlation tests, we correlated DTI parameter values with 

age, Auditory Registration and Auditory Sensitivity scores, and IQ (Table 11). Within ROIs that 

showed significantly different DTI parameter values between-groups, two nominally significant 

correlations were found. In the TD group, FA in the BCC was significantly correlated with Auditory 

Sensitivity scores (ρ = -0.604, p =0.008) and λ1 was significantly correlated with verbal IQ scores in 

the right sSLF (ρ = 0.74, p = 0.47). There were no significant between group differences in any fiber 

tract for any DTI parameter in the WS group. 

Ten nominally significant correlations were found within fiber tract ROIs for which group DTI 

parameter values and IQ were nominally different between groups – three were found in the WS 

group, seven in the TD group. In the WS group, FA was negatively correlated with Auditory 

Registration scores in the left PLIC (ρ = -0.516, p = 0.034). Also in the WS group, RD was negatively 

correlated with composite IQ scores in the right sSLF (ρ = -0.484, p = 0.049) and positively correlated 

with age (ρ = 0.498, p = 0.042) and Auditory Registration scores (ρ = 0.676, p = 0.003) in the right 

PLIC. In the TD group, FA in the left PLIC was positively correlated with measures of composite (ρ = 

0.500, p = 0.034) and verbal IQ (ρ = 0.486, p = 0.041). Also in the TD group, RD was positively 
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correlated with age in the left CS (ρ = 0.620, p = 0.006) and verbal IQ scores in the right sSLF (ρ = -

0.495, p = 0.037) and right PLIC (ρ = -0.476, p = 0.046).  Additionally, the TD group showed two 

nominal correlations between axial diffusivity and verbal IQ scores: within the right PLIC (ρ = -0.469, 

p = 0.050) and the right ACR (ρ = 0.515, p =0.029). Nominally significant correlations can also be 

found in Table 11. None of the correlation tests survived Bonferroni correction. 

 

Discussion 

 

Participant Selection 

 The choice of an appropriate control group and matching criteria is very important and often 

controversial. For the studies described herein, we were primarily interested in understanding how 

individuals with WS differ from typically developing individuals. By matching on age, sex and 

handedness, we have attempted to control for these factors.  

 

 

Intellectual and Sensory Assessment  

As expected, KBIT-2 scores were significantly different between groups across all three 

measures of IQ (p < 0.0001). The fact that TD group mean scores for each measure are slightly 

outside of one standard deviation above normal may be attributed to the fact that the majority of our 

TD participants were Vanderbilt University undergraduate and graduate students. The 95% 

confidence intervals of TD group scores overlap with the normal range of IQ scores (TD group mean 

[lower – upper 95% CI]; verbal: 117.9 [109.5-126.3], nonverbal: 116.7 [110.0-123.4], composite: 

119.7 [112.2-127.2]). As described in Chapter IV, although there is considerable inter-individual 

variability, most studies in WS indicate a range of IQ scores from 40 to 100, with a mean of about 60 

(Elison, Stinton, and Howlin 2010; Howlin, Davies, and Udwin 1998; Martens, Wilson, and Reutens 

2008; Searcy et al. 2004). IQ scores for the WS group reflect this range and mean IQ. Importantly, 
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inclusion of individuals that represent the full range of intellectual disability associated with WS. 

Studies consistently find verbal IQ is greater than non-verbal IQ in WS (Howlin, Davies, and Udwin 

1998; Searcy et al. 2004; Boddaert et al. 2006; Don, Schellenberg, and Rourke 1999), which is 

consistent with the neurocognitive profile (Mervis et al. 2000; Martens, Wilson, and Reutens 2008; 

Bellugi et al. 1990).The significantly higher verbal versus nonverbal IQ scores is consistent with the 

WS phenotype and validates our representative WS group (t = 5.3, p < 0.0001). 

As discussed in Chapter IV, the Adult/Adolescent Sensory Profile (SP-A) questionnaire 

provides a standard method for measuring an individual’s sensory processing abilities. At the time of 

administration, the SP-A was the only measure of sensory processing independent of clinical 

diagnoses. We chose to use only neurological threshold items from the auditory section of the SP-A 

in our analysis. These items differentiate neural-based contributions to sensory processing based on 

stimulus detection (Auditory Registration scores) versus gating (Auditory Sensitivity scores), further 

making the SP-A an optimal choice in our study to link quantitative brain diffusion values with auditory 

sensory processing in our study. 

  The lack of a significant difference between groups for Auditory Registration scores suggests 

auditory perception is similar in TD and WS individuals. Auditory Sensitivity scores were significantly 

higher in the WS group (t = 3.8, p < 0.001), reflecting differences in sensory modulation/gating and 

suggesting increased auditory hyper-responsivity in WS. The absence of a within-group significant 

correlation between the two auditory scores in either group validates the ability of Auditory 

Registration and Auditory Sensitivity scores to differentiate between neural-based contributions to 

sensory processing. Higher group scores on both auditory measures, taken with a positive correlation 

trend between measures in WS (r = .31), and a negative trend in the TD group (r = -0.76), suggests 

auditory hyper-responsivity in WS, compared to TD individuals. 
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Methodological Contributions 

Creating a novel preprocessing pipeline provided uniform preprocessing procedures across 

individual datasets that serve to reduce potential differences in diffusion measurement that may be 

attributed to manual preprocessing and individual subjectivity in decision-making that could be 

introduced by multiple analysts processing different datasets in the same group study. ROQS is a 

semi-automated technique that exploits the fiber orientation information from the diffusion tensor in 

conjunction with a binary masking and chain-linking algorithm to segment anatomically distinct white 

matter tracts for subsequent quantitative analysis of DTI parameters. One strength of ROQS is the 

greatly improved inter-rater reliability in ROI selection. However, since fiber tract ROIs selection is 

semi-automated and ROIs must be selected as a 2D slice, ROI selections may be noisy if they do not 

contain fibers oriented in just one homogeneous direction, and the selections may not be 

representative of the entire 3D fiber tract. These potential limitations are addressed in the ROQS 

documentation, where authors discuss how they have minimized these obstacles. When selecting a 

large ROI in ROQS, it is still possible that sub-ROI regions that contain differences in DTI measures 

may be filtered out, as the program averages DTI measures across the entire ROI selection. More 

accurate detection and localization of small sub-ROI differences would benefit from a voxel-based 

method, such as TBSS, to evaluate whole brain fiber tracts.  

Another aspect of ROQS is that ROIs are selected on each individual brain in native space. 

While this avoids noise introduced by commonly used non-linear standard space transformations, 

giving more accurate individual diffusion measures, it also introduces the possibility that ROI 

selections are less uniform across subjects due to differences in orientation during axial slice ROI 

selection. To avoid this potential confound, we chose to transform each individual brain into ACPC 

orientation. Since the anterior and posterior commissure, used to transform images to ACPC, cannot 

be identified on a diffusion-weighted image due to its inherently lower spatial resolution, we 

transformed each individual’s high-resolution T1W/3D image to ACPC and then individually registered 

each gradient of each diffusion-weighted image to the ACPC transformed T1W/3D image using FSL’s 
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rigid registration algorithm. By coregistering an image of lower spatial resolution to one of higher 

resolution, we did create a potential partial volume averaging artifact by slicing 2.5 mm2 pixels into 1 

mm2 pixels. This potential artifact was attenuated by the semi-automated ROQS ROI selection. If one 

intends to use TBSS, one should try to modify the processing pipeline so that the higher resolution 

T1W/3D image is registered to the lower resolution diffusion-weighted image. 

Common algorithms for outlier rejection during tensor fit exclude entire slices of gradients in 

diffusion-weighted images. Sometimes, we found, using DTI Studio for slice-based outlier rejection 

excluded entire slices when very few bad pixels were present. We instead turned to using pixel-based 

outlier rejection to exclude user-defined bad pixels in an automated algorithm. By doing so, we were 

able to prevent any whole slice from unnecessary rejection. Bad pixels were simply replaced by an 

intensity value of zero.  During ROQS semi-automated ROI selection, ROI boundaries were drawn to 

exclude these pixels, giving more accurate DTI measures for selected ROIs. In the case of TBSS, 

one should use caution. TBSS default preprocessing algorithms are scripted and automated, allowing 

little user-defined input. By this method, all 92-gradients of every diffusion-weighted image are 

combined in a multiplicative fashion, leaving pixels with an intensity value of zero in the combined 3D 

“average” image in every place where there are zero-value pixels in any of the 92 gradients. The 

result is an average image that does not actually average a pixel across all gradients, but in a 

multiplicative fashion leaves zero-intensity pixels in more pixels than expected. This often creates 

zero-pixel artifacts in the middle of WM fiber tracts, interfering with the ability of TBSS to create a 

mean FA skeleton and perform voxel-wise calculations. While the reported novel processing pipeline 

is appropriate for ROQS-based diffusion analyses, one should use caution when applying TBSS 

methodology to the output of the pipeline. 
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Diffusion Analyses 

 

Diffusion Measures and Covariate Correlations in Commissural Fibers 

 Commissural fibers are dense bundles of axons that provide structural inter-hemispheric 

communication. Two commissural fiber tracts showed three significant between-group differences in 

DTI parameters: BCC (FA, TD > WS; λ1, TD > WS; p < 0.0001) and GENU (λ1, TD > WS, p < 0.001). 

Reduced FA and axial diffusivity in the body of the corpus callosum (BCC) and genu indicate reduced 

white matter integrity, reflected in increased isotropic diffusion in these fiber tracts, compared to the 

TD group. Increased RD has been reported in the body of the corpus callosum in individuals with 

autism spectrum disorders(A. L. Alexander et al. 2007). Although not statistically significant, a trend of 

increased RD was found in our WS group in the BCC, compared to the TD group. While increased 

RD, decreased FA and decreased λ1 all reflect decreased anisotropy, only group differences in FA 

and λ1 (TD > WS) were statistically significant in our study. Overall, decreases in FA (BCC) and λ1 

(BCC, GENU) in the WS group point to decreased anisotropy in these regions. At birth, the number of 

callosal fibers is thought to be fixed (~ 200 M), but ongoing developmental changes in fiber 

redirection, pruning and demyelination influence decreased fiber density and decreased 

anisotropy(Luders, Thompson, and Toga 2010). Decreased axial diffusivity in WM fibers of the BCC 

and GENU in the WS group may be indicative of decreased myelination compared to the TD 

group(Xie et al. 2009). This would decrease nerve transmission speed to and from cortical regions 

innervated by the BCC – parietal cortex, motor cortex, premotor and supplementary motor regions – 

and the GENU – prefrontal cortex, premotor and supplementary motor regions. Supplementary motor 

regions include Broca’s area, which is heavily involved in language processing and influenced by 

auditory processing. Postnatal fiber redirection and pruning in WS may underlie decreased fiber 

density, and subsequent reductions in BCC FA, compared to the TD group. A longitudinal study of 

diffusion in the corpus callosum may give further insight into the timing of influence during the 

developmental trajectory in WS. 
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The BCC is the only fiber tract with a significant between-group difference in a DTI parameter 

that is also correlated with an auditory covariate. The TD group shows a nominally significant 

negative correlation in the BCC between FA and Auditory Sensitivity scores (ρ = -0.604, p = 0.008), 

while the WS group shows a trend in the opposite direction (ρ = 0.153, p = 0.557). In the case of the 

TD group, interpretation gives rise to auditory hyper-responsivity in the presence of decreasing FA. 

This negative correlation is counterintuitive to the emerging model of auditory connectivity in WS, 

where increased FA is correlated with auditory hyper-responsivity. The trend in the WS group for this 

same correlation test fulfills said model. The perplexing relationship in the BCC of the TD group may 

indicate neurotypical sensory modulation or unexpected sensory modulation, perhaps reflective of 

complex inhibitory and excitatory effects at multiple nuclei. It is also likely that FA in the large semi-

automated ROQS-derived ROI of the BCC is being driven by a sub-ROI heterogeneity. For example, 

fiber density in the BCC progressively decreases from the genu toward the posterior portion of the 

BCC, where it is least dense(Aboitiz et al. 1992). Using a voxel-wise method such as TBSS, or 

tractography to localize changes in diffusion may reveal different results in correlation tests with 

auditory covariates. Correlation tests did not survive correction for multiple comparisons. 

 

Diffusion Measures and Covariate Correlations in Association Fibers 

 Association fibers carry intra-hemispheric information. Significant between-groups differences 

were found in the superior portion of the right superior longitudinal fasciculus (sSLF) and bilaterally in 

the cingulum (CING). The sSLF is a ROQS-derived fiber tract ROI that is closely associated, and 

often overlapping, with the arcuate fasciculus (AF), the bundle of axons connecting Wernicke’s to 

Broca’s areas. While the function of the AF is not well studied in the right hemisphere, it is 

responsible for conveying the sound, rather than meaning, of words. One study linked the pathology 

of tone deafness to the superior portion of the AF(Loui, Alsop, and Schlaug 2009). While individuals 

with WS have a heightened interest in and passion for music, most are not skilled above average in 

making music. This could translate to superior AF pathology based on sound processing impairment. 
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Future studies should consider the use of quantitative measures of musicality as covariates in a 

neuroimaging study of auditory processing in WS. 

 Receiving afferents from the thalamus and spinothalamic tract, the cingulum projects from the 

subcallosal gyrus to the uncus, parahippocampal gyrus and hippocampus of the temporal lobe. 

Overall, the cingulum subserves limbic communication. Anterior portions of the cingulum have been 

linked to apathy and depression, while posterior portions have been more related to cognitive function. 

In the WS group, axial diffusivity in the cingulum was reduced bilaterally, compared to the TD group. 

Decreased λ1, and subsequently increased isotropy, may give rise to decreased neural transmission 

speed and subserve the phenotypic heightened sense of emotionality experienced by individuals with 

WS related to musicality. 

 In the TD group, radial diffusivity in the left CS was positively correlated with age (ρ = 0.620, p 

= 0.006), at a nominally significant level. Age-related decreases in anisotropy, as measured by 

increasing RD, are likely a part of typical neurodegeneration, possibly driven by pruning or age-

related demyelination. Correlation tests did not survive correction for multiple comparisons.  

 

Diffusion Measures and Covariate Correlations in Projection Fibers 

Afferent and efferent projection fibers connect the cortex with lower brain areas and the spinal 

cord. Posterior to the genu, the posterior limb of the internal capsule (PLIC) contains corticospinal 

fibers and superior thalamic radiations with primary projections to motor and sensory cortices. Most 

thalamocortical fibers and cortical efferents are associated with glutamate. FA in the right PLIC was 

significantly decreased in the WS group, compared to the TD group (TD > WS, p < 0.0001). While FA 

is the most sensitive DTI measure, it is not specific to neuropathology. Using tractography, one study 

found decreased FA following acute damage to the PLIC to be the best predictor associated with poor 

motor outcome and axonal damage(Puig et al. 2011). In our WS group, we observe difficulties in 

gross and fine motor control, common in the WS population. Findings of decreased anisotropy based 

on reduced FA values, compared to the TD group, may relate to observed motor difficulties.  
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Three nominally significant correlations were found in projection fibers in the WS group. Radial 

diffusivity in the right PLIC was positively correlated with age (ρ = 0.498, p = 0.042). The directionality 

of this relationship is identical to the nominally significant correlation found in the left CS in the TD 

group. Again, anisotropy reduction with aging is driven by increasing RD. This is likely a phenomenon 

of normal aging driven by demyelination or pruning. 

In the WS group, FA in the left PLIC was negatively correlated with Auditory Registration 

Scores (ρ = -0.516, p = 0.034). Here, increased anisotropy is correlated with impaired sensory 

processing. RD in the WS group right PLIC was positively correlated with Auditory Registration 

scores. This test shows increased anisotropy, driven by decreased RD, is correlated with impaired 

sensory processing. Because RD is tightly coupled with FA (Equation 6), decreased RD reflects 

increased anisotropy, as measured by FA. Both correlation tests demonstrate increased anisotropy 

correlated with decreased Auditory Registration scores, indicative of hyper-responsive auditory 

processing in projection fibers. The use of tractography would localize diffusion differences in such a 

large fiber bundle, identifying the affected tracts. If projections from the medial geniculate body of the 

thalamus were identified in a pathway to the PLIC, based on the correlation, one could associate 

impaired auditory processing in WS with hyper-responsive auditory cortico-thalamic fibers. 

Correlation tests did not survive correction for multiple comparisons. 

 

Limitations and Future Directions 

 The use of whole brain voxel-wise methods, such as TBSS and tractography would localize 

and strengthen findings of WM integrity differences that underlie impaired auditory processing in WS. 

This would also ameliorate the characterization of neuropathology in diffusion differences. Structural 

connectivity should be considered in pathways identified in the WS resting state auditory network, as 

WM integrity could directly impact functional connectivity, which might underlie auditory differences in 

WS. 
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WS is a rare neurodevelopmental disorder with a specific genetic etiology, and it would be 

important to conduct similar studies in other groups with pathological auditory processing.  This would 

contribute to a better understanding of symptoms such as hyperacusis and sound attraction and 

aversion and would test the generalizability of our findings to typical neurodevelopment or other 

etiologically-distinct neurodevelopmental disorders. Future translational studies in WS should also 

investigate the role of specific genes in the WS deletion region on auditory pathology. 
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Impaired Sensory Modulation in Williams Syndrome 

 In Chapter III, we aimed to describe neurodevelopmental patterns of sensory processing in a 

wide age range of individuals with WS. At the time of publication, this was the first known study to 

assess sensory processing in individuals with WS over the age of ten. By collecting the Sensory 

Profile Caregiver (SP-C) report from fifty-six caregivers of individuals with WS, we measured sensory 

processing abilities in individuals with WS 5 – 49 years of age. Using the SP-C classification system 

based on normative data, Section Summary, Factor and Quadrant scores suggest multisensory 

involvement in WS sensory processing that significantly differs from neurotypical individuals. Based 

on normative data, significant sensory modulation impairments likely drive inattention, difficulty 

regulating arousal levels, and low endurance/tone. These behavioral and emotional responses to 

sensory input can be reflected in difficult temperaments, problem behaviors, and poor psychosocial 

coping strategies. Based on Spearman rank correlation tests with age, neurodegeneration, or a shift 

from neurodevelopment, may play a role in factors involved in sensory modulation impairments. 

 

Functional Connectivity 

 In Chapter IV, we aimed to explore the functional neural basis for atypical auditory processing 

in WS. Using a TD control group matched to our WS participants on age, sex and handedness, we 

conducted resting state fMRI, and intellectual and sensory assessment. Right and left BA 41 seeds 

were used in ROI-based, seed-driven rsFC analyses. Within-group rsFC maps showed contralateral 

co-activation of the primary auditory cortices (pFDR < 0.0001), indicative of the auditory resting state 

network. Between-group connectivity differences were found in executive and somatosensory regions 

(TD > WS), and medial prefrontal regions (WS > TD) (p < 0.05) Significant z-scores from within- and 
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between-group rsFC analyses were correlated with age, Auditory Registration, Auditory Sensitivity 

and IQ scores. Future studies should incorporate voxel-based specificity and explore differences in 

WM integrity that may contribute to the WS auditory phenotype. In summary, cortical hyper-

responsivity, characterized by increased connectivity and impaired sensory modulation in left-

lateralized emotional and cognitive processing regions, may contribute to a neural basis for atypical 

auditory processing and social cognition in WS. 

 

Structural Connectivity 

 Chapter V aimed to explore the neural basis for atypical auditory processing in WS. Using a 

TD control group matched to our WS participants on age, sex and handedness, we conducted high 

angular resolution diffusion imaging (HARDI), and intellectual and sensory assessment. A novel 

pipeline was developed to obtain uniformly preprocessed HARDI images and eliminate subjective 

user errors. Diffusion measurements of fractional anisotropy (FA), radial diffusivity (RD) and axial 

diffusivity (λ1) were made in 21 whole brain fiber tract ROIs using the Reproducible Objective 

Quantification Scheme, a semi-automated method for white matter (WM) ROI selection. Significant 

between-group differences were found in the body of the corpus callosum (TD > WS; FA, p = 0.001; 

λ1, p < 0.0001), right posterior limb of the internal capsule (TD > WS; FA, p < 0.0001), right cingulum 

(TD > WS; λ1, p < 0.0001), left cingulum (TD > WS; λ1, p = 0.001), right superior portion of the 

superior longitudinal fasciculus (TD > WS; λ1, p = 0.001), and the genu (TD > WS; λ1, p < 0.0001). In 

ROIs where diffusion was significantly different between groups, the significant diffusion measure was 

tested for correlation with age, Auditory Registration, Auditory Sensitivity and IQ scores. Nominally 

significant correlations demonstrated impaired auditory sensory processing was characterized by 

hyper-responsivity and correlated with increased anisotropy in WS projection fibers. Future studies 

should incorporate voxel-based specificity and explore differences in structural connectivity that may 

contribute to the WS auditory resting state functional connectivity network. In summary, hyper-

responsivity, characterized by increased anisotropy and impaired sensory modulation in projection 
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fibers, may contribute to a neural basis for atypical auditory processing and phenotypic motor control 

deficits in WS. 

 

A Neural Basis for Impaired Sensory Processing in Williams Syndrome 

 Based on caregiver and self-reports, differences in sensory processing and modulation drive 

inappropriate behavioral and emotional responses in Williams syndrome (WS), which ameliorate with 

age. Resting state functional connectivity shows that left-lateralized emotional and cognitive 

processing regions are implicated in cortical hyper-responsivity and impaired sensory modulation 

related to auditory processing in WS. Diffusion-based neuroimaging shows that thalamocortical 

hyper-excitability and decreased inter-hemispheric communication are implicated in impaired sensory 

modulation related to auditory processing in WS. Taken together, these findings suggest hyper-

responsivity as a neural basis for impaired sensory modulation in WS. 
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