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CHAPTER I 

 

OBJECTIVES AND SPECIFIC AIMS 

 

1.1 Objectives 

Recent developments in magnetic resonance imaging (MRI) hardware in the 

realm of increasing magnetic field strengths have pushed the boundaries of signal and 

resolutions achievable. Today, high field strength magnets (3 Tesla and greater) are being 

employed more commonly in order to obtain stronger MR signals, larger spectral 

dispersions and greater blood oxygen level dependent (BOLD) effects. However, along 

with increased gains, higher field strengths bring with them a host of challenges, primary 

among them being increased main field ( 0B ) inhomogeneity ( 0B∆ ) arising from the 

magnetic susceptibility variations between different tissues. These field inhomogeneities 

can detract heavily from the theoretical benefits of high field leading to reduced signal 

dropout and severe distortions in imaging and broader line widths in spectroscopy. 

Compensation of field inhomogeneities has traditionally been carried out by room 

temperature static global shimming using a set of discrete orthogonal shim coils designed 

to produce specific spatial field corrections to minimize field inhomogeneities. Dynamic 

shimming is a more advanced technique of field shimming, in which the shim settings are 

changed during the acquisition of data from individual slices or sub-volumes or are 

changed to accommodate temporal variations in 0B  homogeneity. Therefore, multiple 

shim settings optimal for each slice, sub-volume or time point can be applied during a 

single experiment, leading to improved localized compensation of field inhomogeneities, 
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compared with that obtained using a single global shim set. The implementation of 

dynamic shimming presents technical challenges, primary among them being slowly 

decaying eddy currents produced by rapidly switching shims. These eddy currents 

produce eddy fields, which distort the magnetic field both spatially and temporally. 

Nevertheless, with increasing field strengths and consequently higher susceptibility 

artifacts, dynamic shimming may be an important tool to improve image quality 

compared to conventional shimming techniques.  

 The overall purpose of this work is to implement and assess the ability of  

dynamic shimming to improve image quality at ultra-high field The measurement and 

compensation of eddy fields is also a focus of major effort, as it is imperative to the 

successful implementation of dynamic shimming. To this end, the work is divided into 3 

specific aims listed below. 

 

1.2 Specific aim 1: Implementation of dynamic B0 shimming 

Fieldmap based dynamic slice-wise shimming is implemented on a human 7 Tesla 

clinical scanner. Different shim calculation techniques are implemented.  Real time shim 

switching hardware is integrated for dynamic shim update and software tools are 

developed for expedited shim analysis. This work is described in chapter 3.  

  

1.3 Specific aim 2: Evaluation of dynamic B0  shimming 

 

In the second part of the work, simulations as well as phantom and invivo studies 

are performed to compare slicewise dynamic shimming to conventional image based 2
nd

 

order static global shimming. 2
nd

 and 3
rd

 order shim induced eddy currents are 
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characterized.  An order wise comparison of static and dynamic shimming methods is 

also performed to evaluate the benefits of going to higher orders from lower order shims 

and to dynamic shim update from a static shimming regime. This work is presented in 

chapter 4.  

 

1.4 Specific aim 3: Software based compensation of shim induced eddy fields 

 

Shim switching induced eddy currents can introduce significant field errors in 

dynamic shimming. In this part of the work, a novel method of prospective eddy field 

compensation (EFC) applied to higher order dynamic shim induced eddy currents is 

developed and implemented. The method does not require the use of extra hardware for 

eddy current compensation (ECC) or shim shielding and is based on an assumption of 

reaching an eddy field steady state during an imaging sequence. This work is presented in 

chapter 5. 

 

Chapter 2 provides a detailed review of magnetic field inhomogeneity, it origins, 

effects and techniques for measuring the same. It discusses in detail the primary approach 

to the prospective correction of field homogeneity, ie 0B∆  shimming, the primary topic 

of study in this thesis. It introduces an advanced form of shimming, namely dynamic 

shimming and explains its advantages over conventional shimming techniques. Finally, it 

gives a brief introduction to eddy currents in MRI, including methods of eddy current 

mitigation.  
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CHAPTER II 

 

BACKGROUND AND SIGNIFICANCE 

 

2.1. Static magnetic field  

In Magnetic resonance imaging (MRI) a strong static magnetic field with uniform 

magnitude and orientation ( 0B ) is required to polarize the nuclear spins in an object 

placed within the field.  The nuclear spins precess about the externally applied magnetic 

field 0B  with the angular frequency given by   

 00 Bγω =   (2.1) 

where γ  is a physical constant known as the gyromagnetic ratio, the value of which is 

nucleus dependent and 0ω  is the angular precession frequency, also called the Larmor 

frequency. In water, the hydrogen proton has a γ  value of approximately 2.68 x 10
8
 

radians/second/Tesla (or γ  = γ /2π = 42.58 MHz/Tesla).  In a perfectly uniform magnetic 

field, all the nuclear spins of the same species are aligned and spin with the same Larmor 

frequency about the applied magnetic field direction.  This setup provides the canvas on 

which magnetic field gradients are then applied, to encode spatial position with frequency 

for imaging.  

 

2.2. Field inhomogeneity ( 0B∆ ) 

An important aspect of the main magnetic field is the spatial uniformity, often 

expressed in parts per million (ppm) of field deviation from the specified field. In real 
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world scenarios, perfectly uniform magnets are never available. Typically, factory 

installed magnets have inherent field inhomogeneities of less than 0.5 parts per million 

(ppm) in magnitude over the imaging field of view. These small inhomogeneities result 

from imperfections in magnet construction.  

 

2.2.1    Magnetic susceptibility differences 

The introduction of an object into the field gives rise to local field perturbations. 

These field perturbations arise from differences in macroscopic magnetic susceptibilities 

(χ) within that object and between the object and the medium. χ is a dimensionless scalar 

quantity that measures the degree to which the material becomes magnetized. The field 

perturbation at any point in the object caused due to a susceptibility boundary can be 

expressed as [Bhagwandien 1994, Truong TK 2002, Yoder 2004]: 

  

00 .),,(.),,( BzyxDzyxB χ∆=∆     (2.2) 

 

where ),,(0 zyxB∆  is the inhomogeneity at location (x, y, z) inside the object, χ∆  is the 

susceptibility difference at the material boundary and ),,( zyxD is a geometry factor 

given by  

  [ ] 1..
)()()(

)(

4

1
03222

0

+
−′+−′+−′

−′
= ∫S dSB

zzyyxx

zz

B
D

π
  (2.3) 

 

where ),,( zyx ′′′  represents a point on the object's closed surface S. 0B is constant and 

therefore, the integral over S is a function only of the object's geometry.   
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 According to Eq 2.2, 0B∆  depends on: 

1. The main field strength, 0B :  0B∆  is seen to scale linearly with the main field 

strength. At high field strengths, this causes the adverse effects of 0B∆  in imaging 

and spectroscopy to be extremely detrimental.  

2. The susceptibility difference χ∆ : 0B∆  is directly proportional to the susceptibility 

difference between the two materials. In invivo scans, large susceptibility 

differences seen at the air-bone-tissue interfaces lead to high 0B∆  levels as well as 

high field gradients across individual voxels at these locations. In the human head, 

the most severe effects are seen in the inferior frontal cortex superior to the 

sphenoid and ethmoid sinuses and in the inferior temporal cortex superior to the 

auditory canals and mastoid air cells. These χ differences often produce field 

inhomogeneities of several ppm. 

3. The geometry of the object and its orientation with respect to the main magnetic 

field, as given by the geometry factor D.   

 

In addition to the static 0B∆  effect caused by the susceptibility differences at the 

tissue interfaces, 0B∆  can also vary temporally in the brain due to a variety of 

physiological processes in the body that do not necessarily originate in the head. For 

example, the field homogeneity in the brain has been shown to vary with cardiovascular 

pulsation, brain motion and respiration [Raj 2000, 2001, Hu 1995, Poncelet 1992]. In 

particular, the movement of the lungs and diaphragm during respiration causing volume 

changes can affect the field in the brain [Raj 2000]. In addition the exchange of gases 
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having different magnetic susceptibilities during respiration can also cause field 

fluctuations [Zhao 2005a].  For example, the susceptibility of air in the lungs changes 

according to the concentrations of oxygen (O2), carbon dioxide (CO2) and water vapor 

which change roughly periodically over the respiratory cycle. These 0B∆  changes can 

cause fluctuations in the signal that are sufficient to degrade measurements such as 

BOLD related *

2T changes, which require very high sensitivity and 0B  homogeneity to 

capture small signal changes. At high field, respiration has been identified as major 

source of intensity variation artifacts in functional MRI (fMRI) time series [Van de 

Moortele 2002 ].  

Intense local susceptibility changes can also arise from foreign paramagnetic and 

ferromagnetic objects in the body.  Metallic implants for example can cause severe 0B∆  

variations and image artifacts. Although some methods have been developed to correct 

for these 0B∆  changes [Cho 1988 (VAT), Lu 2009 (SEMAC), Koch 2010], in general 

these material are not amenable to MRI.    

 

2.3 Susceptibility artifacts 

 Of the sources of 0B∆  described above, static susceptibility differences at air, 

tissue and bone boundaries predominate. The artifacts caused by the susceptibility 

differences are called ‘susceptibility artifacts’, which in imaging manifest as geometric 

distortions, intensity variation and signal loss due to intravoxel dephasing of spins and 

image blurring.  The magnetic field variations interfere with the spatial encodings, which 

are based on the assumption that the static field is perfectly homogenous and the gradient 

fields are perfectly linear. Magnetic field variations alter the precession frequencies of the 
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excited spins, affecting slice selection and frequency and phase encoding. This results in 

mis-registration between actual physical location and image position, producing in-plane 

shape and slice profile distortions. Geometric distortions also induce image intensity 

variations by mapping more or less spins into an image voxel. In addition, magnetic field 

inhomogeneity reduces the effective spin–spin relaxation time 2T  to *

2T and causes signal 

loss in gradient recalled echo (GRE) images. There is no such signal loss for spin echo 

(SE) images due to the π refocusing pulse provided 0B∆  remains constant with time. 

Signal losses are worse with increasing echo time (TE) and higher field. Figure 2.1 

displays a schematic of the artifacts associated with field inhomogeneity in imaging.  The 

manifestation of 0B∆  in the form of these image artifacts can be attributed to the Fourier 

encoding and reconstruction model of MRI. The following paragraphs describe the origin 

of these artifacts in detail. 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.1: Breakdown of susceptibility induced artifacts in imaging. 

 

In a nuclear magnetic resonance (NMR) system, the signal received by a coil from 

a sample under observation may be expressed after demodulation with 0ω as 

 Signal losses due to 

intravoxel dephasing. 

(in GRE only). 

Intensity variation. Inplane pixel displacement. 

Slice profile displacement. 

Susceptibility or 0B∆  artifacts. 

T2
* 

 blurring. Echo time 

shifting 
Geometric  

Distortions 
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3)(/

0
2)()( drertS rTt−∫= ρ       (2.4) 

Where )(0 rρ  is the nuclear spin density in space and )(2 rT  is the spatial distribution of 

the 2T relaxation time due to spin-spin interactions.  The spatial sensitivity variation of 

the receive coil, diffusion properties of the sample and off resonance conditions are 

ignored in the above expression.  In the presence of the encoding gradients and off 

resonance ( 0B∆ ), additional phase is accrued by the spins, the amount of which depends 

on the strength of the additional field and the time for which they are present. Ignoring T2 

effects, Eq 2.4 can therefore be rewritten for gradient encoded signal from an infinitely 

thin slice in the x,y plane  as: 

     ∫∫ ∆−+−= dydxeeyxtS
tyxBityGtxGi PEyROx )),(()(

0
0..),()(

γγρ   (2.5) 

 

In the above expression, xG  is the readout field gradient assumed to be along the 

magnet’s x axis and yG  is the phase encoding field gradient assumed to be along the y 

axis. The gradient functions in time are assumed to be rectangular. ROt  and PEt  are the 

times for which the readout and phase encoding gradients are active. ),(0 yxB∆  is the off 

resonance factor in the image plane. During an imaging experiment, the phase accrual 

due to the gradients is controlled in a predetermined manner to Fourier encode the spins. 

However, ),(0 yxB∆  arising from the susceptibility differences imparts phase noise in the 

signal, giving rise to the image artifacts. The intensity of the artifacts are greatly 

dependent on the type of pulse sequence used, owing primarily to the relative phase 

differences accrued over time during repeated excitations which vary with different pulse 
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sequence schemes. Fast *

2T  based imaging sequences like single shot GRE and SE EPI 

are particularly sensitive to field inhomogeneities.  

 

2.3.1 Image Distortions 

 The most readily perceptible artifact caused by 0B∆  in MRI is image distortion. 

Image distortion affects both gradient and spin echo images. The amount of distortion 

varies inversely with the sampling rate (or bandwidth, BW) of the MR signal. For 2D 

imaging, the field inhomogeneity variations in the slice direction result in slice profile 

distortions, while inhomogeneities in the plane of the slice cause in-plane distortions. 

 

2.3.1.1 Image distortions in GRE and SE 

Consider the simple GRE and SE pulse sequences illustrated in Figure 2.2. TE is 

the echo time, Gx and Gy represent the readout and phase encode gradients along x and y 

respectively, RFπ/2 and RFπ represent the π/2 radiofrequency excitation and π refocusing  

 

  

 

 

 

 

 

 

Fig. 2.2 Basic MRI pulse sequences. (a) Gradient Recalled Echo (b) Spin Echo.  
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pulses. For the spin echo sequence, the RFπ pulse lies at TE/2, which refocuses the spins 

and forms an echo at TE. Let t be the time measured from the center of the positive lobe 

of readout gradient of length τRO which coincides with the center of the signal echo. Also, 

let τpe be the time for which the phase encoding gradient is active. For the GRE sequence 

in the presence of 0B∆ , we can rewrite Eq. 2.5 as  

∫∫ +∆−++−+−
= dydxeeyxtS

tTEyxBi
txGxGyGi RO

x
RO

xPEy ))(),((
))

2
(

2
)((

0
0..),()(

γ
ττ

τγ
ρ  

∫∫ ∆−+−∆−= dydxeeeyx
tyxBitxGyGiTEyxBi xPEy ),()(),(

0
00 ...),(

γτγγρ  

 ∫∫
∆

++−∆−= dydxeeyx x
xPEy G

yxB
xtGyGiTEyxBi

])
),(

[(),(

0

0

0 ..),(
τγγρ  (2.6) 

 

From Eq 2.6 it can be seen that according to the Fourier shift theorem, the additional 

phase produced in the signal by ),(0 yxB∆  will create a pixel shift in the reconstructed 

image. A pixel originally at (x, y) will be mapped to (x1, y1) in the reconstructed image 

such that 

    yy
G

yxB
xx

x

=
∆

+= 1
0

1 ;
),(

    (2.7) 

In both GRE and SE images, the in-plane image distortions occur in the frequency 

encode direction only (in this case, x). The pixel shift is proportional to the field 

inhomogeneity ),(0 yxB∆  and inversely proportional to the readout gradient strength Gx. 

The pixel shift x1-x may also be written as  

 
x

x

BW

FOVyxB
xx

.2

).,(0

1 π
γ ∆

=−  (2.8) 
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Where, FOVx and BWx are the field of view and the sampling bandwidth in the x 

direction respectively. The pixel displacement is inversely proportional to the sampling 

bandwidth and directly proportional to the field of view. Therefore, decreasing field of 

view and/or increasing receive bandwidth will help reduce geometric distortion.  

 

2.3.1.2 Image distortions in Echo Planar Imaging (EPI) 

The image distortions in EPI are much more severe than in conventional GRE and 

SE imaging. In-plane distortions in EPI are seen both in the phase and frequency encode 

directions, with those along the phase encode direction dominating. Figure 2.3 illustrates 

the basic EPI sequence. The spatial information is encoded by an alternating frequency 

encoding gradient in combination with a series of short phase encoding gradient blips.  

Let TE be the echo time, ∆ty be the duration of the frequency encode lines (or 

‘dwell time’ in the phase encode direction) and τpe the time for which each phase  

 

 

 

 

 

 

 

 

 

Fig. 2.3 Echo Planar Imaging (EPI) pulse sequence. 
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encoding blip is active. Therefore, the time at n
th

 readout line and m
th 

sample point is  

 

xy tmtnTEt ∆+∆+= (2.9) 

 

The sample numbers, n and m are zero when the phase and readout gradients are zero  

respectively. Eq. 2.5 can then be rewritten as 
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∆+∆+∆−+∆−−= dydxeeyxtS xyPEyxx

n tmtnTEyxBinyGtmxGi ))(),(())1((

0
0..),()(

γτγρ  

∫∫
∆∆

++
∆

+−∆−
∆−= dydxeeyx PEy

y

PEy
x

n
xx

G

tyxB
ynG

G

yxB
xGtmi

TEyxBi
])

),(
[]

),(
)1[((

),(

0

00

0.),(
τ

τγ
γρ  

∫∫
∆

+∆+
∆

+−∆−
∆−= dydxeeyx

eff
y

eff
yy

x

n
xx

G

yxB
yGtn

G

yxB
xGtmi

TEyxBi
])

),(
[]

),(
)1[((

),(

0

00

0.),(
γ

γρ (2.10) 

y
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∆
=

τ
,           (2.11) 

 

An additional factor of (-1)
n  

in the readout direction accounts for the reversing polarity of 

the gradient for even and odd readout lines, indexed by n.  Eq. 2.10 is analogous to Eq. 

2.6 giving a convenient formulation to express in-plane distortion in EPI. eff

yG  is the 

effective gradient that would produce the same change in phase by being turned on for 

∆ty as Gy would produce in PEτ .   In this case a pixel originally at (x, y) will be mapped to 

(x1, y1) in the reconstructed image such that 
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+−=    (2.12) 

 

The distortion in the readout direction here is seen to be similar to the non EPI case apart 

from the reversing direction as a result of the oscillating readout gradient. However, the 

distortion in the phase encode direction in this case differs significantly. Typically in EPI, 

PEτ  << ∆ty, resulting in a very low value for eff

yG . Therefore, for the same ),(0 yxB∆  and 

gradient strength, the pixel displacement in the phase encode direction is much higher 

than that in the readout direction. As a result, the distortion in EPI is predominantly 

apparent in the phase encode direction. Also, since the dwell time (∆ty) in the phase 

encode direction is large (the bandwidth is small), the distortion produced in EPI in the 

phase encode direction is significantly higher than that produced in the frequency encode 

direction in conventional GRE or SE for the same ),(0 yxB∆ .  

It can be seen from Eq. 2.12 that for bulk off-resonance where 0B∆  is 

independent of x and y, the pixel displacement is the same for all x or y which results in a 

net shift of the image. A linear field gradient in the readout direction causes a diagonal 

shearing of the image, whereas a linear field gradient in the phase encoding direction 

causes a compression or expansion of the image in the phase encoding direction. The 

final distortions depend on the complicated field distributions with respect to the spatial 

encoding directions. 
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2.3.1.3  Slice Profile Distortion 

 The distortion in the slice selection direction is analogous to the in-plane 

distortion. Figure 2.4 illustrates the distortion in slice selection in the form of the 

mapping between frequency (ω) and space along the slice selection direction (z). In the 

presence of 0B∆ at a position z1 the spins at that position precess at the frequency ωz, 

which is the nominal frequency of spins at the location z.  Therefore, an RF pulse 

intended to excite a slice at location z will excite spins at location z1 as well. 

 

 

 

 

 

 

 

 

Fig. 2.4 Frequency vs. position mapping, showing effect of local 0B∆ on slice selection. 

Moreover, if 0B∆ is non zero at location z as well, the slice profile may be significantly 

distorted.  The slice distortion is given by  

 

Gz

zyxB
zz

),,( 10
1

∆
−=                   (2.13) 
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z z1 

Slope = γ Gz 
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where Gz is the slice selection gradient. An ideal slice with a rectangular profile is 

therefore distorted according to the distribution of 0B∆ . In addition, the thickness of the 

slice may not be uniform because the magnetic field may vary along the slice as well. A 

thinner slice region will have fewer excited spins and thus lower signal whereas a thicker 

region will appear brighter. 

 

2.3.2 Intensity variation 

A direct consequence of pixel displacement is the misregistration of signal 

intensities.  Geometric distortion in any spatial encoding direction changes the actual 

voxel size and may map voxels (or parts of voxels) from different positions into one 

pixel, thereby creating intensity variations in the image.  

Consider the variable substitutions of Eq. 2.12 in Eq. 2.10. If the pixels are shifted 

to (x1, y1) from (x, y) with the transformations being a one to one function of x and y, the 

substitution of variables make the volume elements of Eq. 2.10, 

11 dydxJdxdy =                         (2.14) 

where J is the Jacobian determinant of the transformation 

11

11
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∂

∂
∂

∂
∂

∂
∂

              (2.15) 

The Jacobian is the factor by which the small elemental area dx1dy1 local to (x1, 

y1) changes when mapped to (x, y). The presence of the Jacobian allows for the signal 

intensity modulation due to geometric distortion. These changes in brightness are caused 

by mapping more or fewer spins into the voxel. The intensity is decreased when signals 
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from spins are spread out over a larger portion of the image whereas the intensity is 

increased when the signal from spins are piled up on to a smaller portion of the image.  

 

2.3.3 Intravoxel signal dephasing 

A susceptibility artifact that is often more detrimental than image distortions is the 

signal loss occurring due to dephasing of the spins within a voxel. 0B∆ gradients inside 

the voxel cause the spins within a voxel to resonate at different frequencies causing signal 

to decay faster than when 0B∆ is absent or when 0B∆ has zero gradient within the voxel. 

For a given TE therefore, the spins may be completely dephased in locations of high 

0B∆  gradients before signal acquisition. In the human head for example, the high 

0B∆ gradients around the frontal sinuses and ear canals cause the signals from tissues in 

areas to completely decay before data acquisition in GRE imaging leading to no 

information from these areas.   

Conventional GRE and SE images suffer from the same distortions for a given 

0B∆ . However, in SE, the spins dephased by 0B∆ before the RFπ pulse are refocused by 

the pulse. In other words, the phase accrued by the spins due to 0B∆ before the RFπ pulse 

(
2

0 TEB∆γ
) is compensated by the negative phase developed after the pulse 

)
2

( 0 TEB∆− γ
, since 0B∆ itself does not change sense after the refocusing pulse

1
. 

Therefore in SE, the extra phase term of TEB0∆− γ   appearing in Eqs. 2.6 and 2.10 

                                                 
1
 Assuming 0B∆ doesn’t change in time and ignoring effects such as motion, diffusion and eddy fields that 

may introduce phase changes. 
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representing GRE imaging disappears, leading to recovery of the signal. In the GRE case, 

this term represents the signal loss due to intravoxel dephasing.  

In Eqs. 2.6 and 2.10, 0B∆ is assumed to be uniform within the voxel. If 0B∆ is 

assumed to be linearly changing across a voxel of dimensions zandyx ∆∆∆ , , the signal 

magnitude can be written as [Zhao 2005 ] : 

          

       )(sinc)(sinc)(sinc),,(
z

f
zTE

y

f
yTE

x

f
xTEzyxzyxS

∂

∂
∆

∂

∂
∆

∂

∂
∆∆∆∆= πππρ    (2.16) 

 

Where ),,( zyxff =  is the frequency at this voxel, ),,( zyxρ is the spin density. The 

signal magnitude depends on the voxel size, the local frequency gradient and TE. 

Commonly in imaging, the slice thickness is larger than the in-plane voxel dimensions. 

Therefore, the signal loss depends largely on the slice thickness.  

  

2.4  0B  field mapping 

The above sections presented a detailed description of the major artifacts caused 

by field inhomogeneity.  Mapping of the 0B∆  field is valuable for the correction of these 

image artifacts, either by prospective or post processing methods. The 0B∆  fieldmaps can 

be used in post-processing steps to compute pixel shifts in the image domain and then 

restore the position to its nominal position on a pixel-by-pixel basis to correct image 

distortion. Alternatively, fieldmaps may also be used to correct the raw signal prior to 

reconstruction. Prospectively, fieldmaps can be used to correct 0B∆  offsets in a process 

known as shimming, which is a topic of extensive study in this thesis. 
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2.4.1 Techniques for 0B  field mapping 

Several techniques have been developed for mapping 0B∆ . In principle, the 

estimation of 0B∆  may be done by the measurement of susceptibility values across the 

body of interest and using the formulation in Eq 2.2. Several modeling studies have been 

performed based on this principle with reasonable accuracy of simulated fieldmaps                     

[ Bhagwandien 1994, Truong TK 2002, Yoder 2004 ]. However, very few methods have 

been actually implemented in vivo [Marques 2005]. The reasons for this lie in the 

difficulties in accurately estimating susceptibility values of complex tissue structures in 

vivo as well as high computation and time requirements. 0B∆  may also be estimated 

spatially by a point by point measurement with the use of a single inductive NMR probe 

as is usually done in the factory setting. This method however is very tedious, error prone 

and cannot map within samples.  The majority of techniques therefore involve estimation 

of fieldmaps by the measurement of phase evolution within a known period of time. 

The first methods for mapping the static field distribution proposed by Maudsley 

et al in 1979 and 1984, were based on chemical shift imaging [Maudsley 1979, 1984]. 

These methods were time consuming and inefficient as a spectrum had to be collected at 

each spatial location to derive a single proton field magnitude value. In 1985, Sekihara et 

al introduced a faster method for mapping 0B∆  in 3 dimensions based on a shifted spin 

echo method [Sekihara 1985]. This method requires minimal modifications to the 

standard spin echo sequence, with the addition of a small time delay ∆t between the RFπ 

refocusing pulse and data acquisition. Two images are gathered, one with and one 

without the modification. The difference between the acquisition times of the modified 

and the unmodified sequences causes phase shifts between the two images that depend on 
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0B∆ . If ),(

1
1),(),( yxieyxyxI φρ=  and ),(

1
2),(),( yxieyxyxI φρ= are the two images 

acquired at the two time points, the phase difference in space ),( yxφ∆  may be calculated 

as   
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Where ),(*

1 yxI is the complex conjugate of ),(1 yxI , Re{.} and Im{.} are the real and 

imaginary components of the image. Eq. 2.17 is preferred over subtraction of the 

individual image phases to find ),( yxφ∆ , as it is more robust to measurement errors. If 

t∆  is the time difference between the echo times of the two images, then ),(0 yxB∆  may 

be estimated as  
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This expression forms the basis for all imaging based field mapping methods, which 

primarily differ according to the procedure for obtaining ),( yxφ∆ .  The same 

measurement using the spin ehco sequence may also be performed by shifting the RFπ 

pulse instead of the data acquisition [ Prammer, 1988].  Figure 2.5 shows examples of 

human head fieldmaps obtained at 7 Tesla using a t∆  of 1 ms. 

A drawback of the above method is that the field of view over which 0B∆  is 

measured often contains more than one chemical shift component whose small (ppm) 

differences in γ values and hence produce additional phase shifts that are  
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Fig. 2.5 Human brain axial, coronal and sagittal fieldmaps showing field distribution in 

ppm at 7 Tesla. ∆TE was 1 ms. Field wraps are observed in the inferior regions of the 

coronal and sagittal slices. 

 

indistinguishable from the phase accrued due to 0B∆ . One example of this is fat and 

water. In order to estimate the 0B∆  accurately in these cases, the fat signal has to be 

suppressed in the fieldmapping procedure.  One method for this was proposed by 

Schneider and Glover in 1991. This method used a faster GRE sequence with similar 

modification to the SE method. However in this case, the time difference between the two 

TEs was fixed at 1/∆f  where, ∆f was the difference between the resonant frequencies of 

the two species, specifically fat and water. In this manner, at both TE and TE+∆t, the fat 

and water signal are in phase, with the only differences arising due to 0B∆ . Considering 

the difference in resonant frequencies of fat and water to be ~3.5 ppm, ∆t for field 

strengths of 1.5, 3 and 7 Tesla can be estimated to be ~ 4.5 ms, 2.25 ms and 0.97 ms.  

This method is however limited by the broadness of the fat spectrum and the different *

2T  

values of fat and water. In addition, because this is a GRE method, signal losses due to 

intravoxel dephasing cause the loss of field information in areas of high 0B∆  gradients. 

Nevertheless, this method remains one of the most popularly used 0B∆  mapping methods 

ppm 

Axial Coronal Sagittal 
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today. In all our imaging studies presented in the subsequent chapters, we have utilized 

this pulse sequence for fieldmapping at 7Tesla. Other variants of the basic method 

described above include using a spatial spectral pulse to suppress the lipid signal               

[Webb 1991], using echo planar images to obtain 0B∆  maps [Reese 1995 Reber 1998] 

and using a 3 point Dixon acquisition [ Glover 1991]. 

 

2.4.2 Phase unwrapping 

Phase accrued due to 0B∆  is extracted from the measured complex signal by the 

inverse tangent function as described previously (Eq. 2.17). The arctan function is 

uniquely defined only in the principal value range of [-π  π]. Any absolute phase that is 

out of this range is “wrapped” into the principal interval, causing a wrapped phase image. 

For the situation of MRI field mapping, if the 0B∆  is beyond ±1/(2∆t) in Hz, the phase 

difference can exceed ±π and result in a wrapped field map (Figure 2.5, coronal and 

sagittal slices, inferior regions ). Therefore, ∆t should be small enough such that ±1/(2∆t) 

covers the entire range of 0B∆ , but big enough to allow detectable phase changes 

between the two phase images [ Glover 1991]. Phase wrap often exists at air/tissue 

interfaces, where the magnetic field change is dramatic. The wrapped phase ψ(x, y) is 

related with the unwrapped phase φ(x, y) by    

 

πψππφψ ),(,),(2),(),( yxwhereyxkyxyx <−+=    (2.19) 

 

k(x,y) is a constant that depends on position. A phase unwrapping algorithm tries 

to identify the points in the phase map at which ±2π jumps occur and then restores the 
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original phase with an offset of a multiple of 2π.  Phase unwrapping is often complicated 

by noise in the measured phase map leading to ambiguity in the direction of the field 

wrap. 

 

2.5. Shimming of the main magnetic field 

The previous sections have described the origins, effects and measurement 

techniques of main magnetic field inhomogeneity. Shimming is the process by which 

optimum B0 field homogeneity is obtained over a desired volume by compensating for the 

field inhomogeneities [ Golay 1958, Anderson 1961, Golay 1971, Hoult 2009, Chmurny 

1990 ]. The majority of the work in this thesis involves the investigation of advanced 

field shimming techniques at high field. The following sections give an overview of shim 

correction calculation algorithms including a description of field expansion in spherical 

harmonics, design of shim coils and practical shimming workflow. 

A uniform B0 field is critical for MR imaging and spectroscopy. Typical imaging 

applications require 0B∆  variations over the field of view of less than 0.5 ppm (60 Hz at 3 

Tesla,  150 Hz at 7 Tesla) to avoid gross distortions and signal losses. In both single 

voxel spectroscopy and spectroscopic imaging, the requirements are even more stringent. 

Constraints on the design and manufacture of the main magnet can cause the raw B0 field 

homogeneity of a newly designed magnet to be up to a few hundred ppm. Furthermore, 

any material placed in the bore of a magnet after fabrication can also change the field 

dramatically relative to the high degree of homogeneity demanded by imaging and 

spectroscopy. To ‘shim’ the magnet therefore is to reduce the inhomogeneity of raw 

magnetic field to levels required by NMR and MRI. In the shimming process, the 
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Fig 2.6: Shim inserts in magnet bore 

indexed locations for passive shimming. 

strength of the magnetic field at every location in the desired ‘active volume’ of the 

magnet is mapped and adjusted to reduce the )(0 rB∆ . Shimming is a pre-emptive 

correction of the magnetic field and is therefore capable of correcting for geometric 

distortion as well as avoiding intravoxel dephasing. In comparison, post processing 

methods of image restoration are only capable of correcting for geometric distortion in 

images, as the signal loss due to intravoxel dephasing is irreversible. 

 Before the advent of high current density superconductors, most magnets were 

made of iron. To obtain a homogeneous field, the positions of pole pieces were adjusted 

with the aid of “shims”, a term for thin metal blocks used on machinery to adjust part 

fitting. This term has carried over to NMR to refer to the adjustments of the magnetic 

field. Shimming is accomplished in more than one step. First, by placing small 

ferromagnetic plates or rods at strategic locations within the energized magnet to tune the 

magnetic field, i.e., passive shimming, and second, by adjusting the applied currents 

through a set of so called electrical shim coils of different configurations to create small 

fields that either adjust the static magnetic field also called  active shimming  

 

2.5.1. Passive shimming  

Usually performed only during 

magnet installations and maintenance, 

passive shimming involves placing small 

ferromagnetic rods and wedges (also called 

‘shims’) along the sides of the magnet to 

compensate for field distortions. 
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Commonly, steel pieces are placed at a number of indexed positions on rails mounted on 

the inner surface of the magnet bore.  The amount of steel needed in each of these 

locations is calculated from the measured 0B∆ map and iteratively optimized. Passive 

shimming is a laborious and a time intensive process and hence done very infrequently. It 

corrects for the inherent machine inhomogeneity, but not for subject induced 

inhomogeneity.  

Subject specific passive shimming has also been suggested as a method to 

optimize subject specific 0B∆ in addition to active shimming.  Passive shim inserts have 

the capability to produce dipolar high order field gradients, which can significantly 

counter the rapidly changing roughly dipolar fields encountered in the inferior frontal 

area of the brain above the oral cavity and the sinuses.  Wilson et al in 2002 developed 

diamagnetic passive shim inserts made of Pyrolytic-graphite that were placed in the 

mouths of patients and demonstrated significant recovery of signal in the inferior frontal 

cortex [Wilson 2002, 2003, 2003a]. Others have shown increase in BOLD sensitivity in 

the orbitofrontal cortex with diamagnetic shim inserts [ Cusack 2005].  Passive shim oral 

inserts have also been made of ferromagnetic materials (Nickel–Iron permalloy) with 

similar gains in field homogeneity [ Juchem 2006].  It has also been demonstrated that 

passive shimming can be accomplished using combinations of diamagnetic and 

paramagnetic shim elements. Koch el at used diamagnetic bismuth (Bi), paramagnetic 

zirconium (Zr), and paramagnetic niobium (Nb) on acrylic cone shaped formers on 

mouse heads, to effectively minimize 0B∆ in a sample specific manner [Koch 2006a] and 

more recently this work was extended to humans [Koch 2007a]. Overall, intraoral passive 

shimming is a promising technique to compensate for rapidly changing 0B fields 
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typically seen in the human brain that are not normally corrected by regular active 

shimming methods. 

 

2.5.2. Active shimming 

In active shimming, the magnetic field is adjusted with the use of orthogonal 

spatial correction ‘shim fields’ produced by current carrying shim coils. The shim coils 

are placed in the bore, coaxially with the gradient coils and are operated by dedicated 

power supplies. The strengths of the spatially varying field produced are proportional to 

the current in the coils.  The spatially varying fields and thereby the shim coils are 

generally categorized by the ‘order’ of their spatial variation. The gradients for example 

are linear fields and therefore 1
st
 order.  The actively driven shim coils can be either 

superconductive or resistive. Superconductive shims are fitted within the cryostat and are 

generally optimized only during magnet construction. They reduce the level of 

inhomogeneity of a passively shimming magnet to the order of a few ppm. Resistive shim 

coils are installed separately in the bore and are at room temperature. These shim coils 

target subject specific inhomogeneities and are tunable by the user. 

Most clinical scanners possess up to 2
nd

 order shims that are generally referred to 

by their common names based on the description of the field produced in cartesian 

coordinates (Z2, ZX, ZY, X2-Y2, XY). Some clinical scanners as well as animal systems 

also posses 3
rd

 order shims that produce fields with 3
rd

 order spatial dependence (Z3, 

Z2X, Z2Y, Z(X2-Y2), ZXY,X3, Y3). Some magnets, for example certain high resolution 

NMR spectroscopy systems may have even higher order shim coils. (Z4, Z5 etc).  
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To calculate the currents required in the individual shim coils for field correction, 

the existing magnetic field in the bore must be decomposed into the spatial field variation 

components represented by the shims. The following sections introduce the mathematical 

framework for shimming.  

 

2.5.3 Shim Theory 

As introduced above, shimming is the process of minimizing the field offsets 

within the target volume of the magnet. If ),,(0 zyxB  is the actual field distribution, the 

ultimate aim of shimming is to eliminate the spatial dependency of ),,(0 zyxB  so as to 

reduce the field to a constant CB0  independent of location. Therefore, the process of 

shimming may be expressed as finding the solution to the multiple linear equation 

∑+=
i

ii

C zyxSczyxBB ),,(),,(00  

∑−=−=∆
i

ii

C zyxScBzyxBzyxBor ),,(),,(),,( 000   (2.20) 

 

Where ),,( zyxS i represent the spatial distributions of the magnetic correction fields used 

for compensation and ic  are their weights. In active shimming, these spatial distributions 

modeled by spherical harmonics are produced by discrete actively driven shim coils with 

currents proportional to ic . Typically, due to hardware constraints in MRI systems, shim 

coils produce up to 3
rd

 order spatial harmonics limiting the degree of correction 

practically achievable. 
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Fig. 2.7 Cartesian (x, y, z )  and 

spherical polar coordinates ( r, 

θ, φ ). The main field 0B  is 

assumed to be aligned along the 

z axis. 

 The equation that governs the behavior of the field in the bore of a 

superconducting magnet is Laplace’s equation : 
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In NMR and MRI, we assume that the field variation is less than 100 ppm at all locations. 

Considering this high degree of accuracy in the magnetic field, it can be assumed that 

field is unidirectional, (i.e. along the bore/long axis 

of the magnet) at all locations. For MRI magnets, 

this is assumed to be the ‘z’ direction. From Eqs. 

2.20 and 2.21, it is apparent that the solution to the 

shimming problem in Eq. 2.20 may be obtained by 

solving Eq 2.21 to obtain ),,( zyxS i  and ic .   

 We assume a coordinate system for shim 

analysis such that the main magnetic field aligns 

along the z axis as shown in Figure 2.7 The most 

common way of solving for Eq. 2.21 is to use spherical coordinates radius ‘r’, declination 

‘θ’ and azimuth ‘φ’.  

 The solution for Eq 2.21 is standard and is given as: 
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Here, the product )]([cos)(cos nmnm mP ψϕθ −  is the spherical harmonic of the n
th

 order 

and m
th

 degree. Cn,m and ψn,m are constants representing the weights and spatial phases of 

the harmonics. Pn,m(cosθ) are polynomials in cosθ , also called Ferrer’s associated 

Legendre functions where n and m are integers such that n≥ m ≥ 0.  Pn,m (cosθ) is defined 

as : 
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As seen in Eq 2.22, the magnetic field can be expressed as a linear combination of an 

infinite number of products of spherical harmonics and powers of distance r. The lowest 

order spherical harmonic with n = 0, m = 0 may be expressed as a constant which is equal 

to the sum of the nominal constant magnetic field CB0  and a constant term C that 

accounts for any field offset existing in practice. Eq. 2.22 may therefore be written as  
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From Eq 2.20 and 2.24, we can write the field inhomogeneity as  
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With the fieldmapping methods described in the previous section one can map 

),,(0 zyxB∆  or ),,(0 ϕθrB∆ .  Shimming is then simply the process of multiple linear 
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regression to find the coefficients Cnm that are nothing but the ‘shim coefficients’ in units 

of Field/Distance
n
.  

From Eq.2.22, it is also observed that when m = 0, the field has complete 

cylindrical symmetry. All variation of 0B  with φ disappears as the final cosine term is 

unity. The resulting functions are called the zonal harmonics, given by 
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When m ≠ 0, the spherical harmonic fields oscillate as we move around in a circle about 

the z axis with frequencies mφ, producing what are known as the tesseral harmonics.  

It should be noted that each harmonic has a particular phase, defined by the factor 

mψn,m  which essentially defines the rotation about the z axis for the tesseral harmonic. 

For complete field cancellation, it is required to adjust the amplitude as well as phase of 

the harmonics. We may write the cosine term from Eq 2.22 as  

 

)(sin)(sin)(cos)(cos)]([cos nmnmnm mmmmm ψϕψϕψϕ +=−   (2.27) 

 

which implies that the spherical harmonic with order n and degree m may be expressed as 

a linear combination of two complimentary components. Because the tesseral harmonics 

have amplitude and phase, any shim coil system must be either physically rotatable about 

the z axis or else duplicated by another shim set π/2m radians displaced from the first. 

Typically, manufacturers provide a complimentary phase shim coil (cosine or sine), with 
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which both the amplitude and phase can be cancelled as physically rotating individual 

coils is difficult. These two components are often indicated as nm and nm’.  Some texts 

refer to only the zonal coefficients as Cn and the sin(mφ) and cosine(mφ) tesseral 

components as Anm and Bnm. Table 2.1 gives the complete spherical harmonic functions 

and representation up the 3
rd

 order.  

 

2.5.4. Shim coils 

 

Shim coils are composed of current carrying loops and arcs connected in series in 

such a way as to produce a desired specific spherical harmonic in the target space of the  

 

Table 2.1: Shim spherical harmonics in cartesian and spherical harmonics.  

 

magnet. The current in the coils is proportional to the coefficients of the individual 

spherical harmonic coefficients (Cnm) obtained from the shim regression process. The 
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coils are generally referred to by their common name, which is cartesian coordinate 

based, as given in Table 2.1. For example, the zonal shim coils upto 2
rd

 order are Z0, Z, 

Z2 while the tesseral coils are XY, X2-Y2, ZX and ZY. The first order shim harmonics X, Y 

and Z are usually generated by the scanner’s gradient coils while the other harmonics 

have dedicated coils, amplifiers and a control unit that communicates with the 

spectrometer.   

In general, fields produced by current loops contain an infinite number of 

spherical harmonics. The art behind the design of shim coils lies in combining these 

individual coil elements to produce the desired pure harmonic. Romeo and Hoult showed 

that in order to produce an n, m harmonic, coil elements can be arranged geometrically in 

such a way that all orders n and degrees m less than that desired are nulled while as many 

of the higher orders and degrees are minimized or eliminated [Romeo 1984].  Zonal 

shims like Z, Z2 Z3 etc for example, employ combinations of circular coils with 

symmetric and antisymmetric current flow directions and optimized intercoil distances to 

cancel out unwanted harmonics (Helmholtz/ Maxwell configurations).  Tesseral shim 

coils employ a cylindrical design with circular end arcs (Golay saddle configuration). The 

coils are constructed on cylindrical formers placed between the imaging gradient former 

and magnet heat shields. Figure 2.8 shows examples of traditional coil layouts of zonal 

and tesseral shims. More recently, distributed wire pattern generation techniques based 

on target field [Turner 1986] and stream function [Forbes 2001, 2002, 2003] methods 

have been employed to produce the spherical harmonics. These techniques offer much 

higher control over the optimization of shim strengths, power utlization and impedance. 

In spite of best efforts however, there always remains some amount of lower or higher 
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impurity in the harmonics produced. For example, a Z2 shim coil often has some residual 

Z0 impurity. This effect has to be taken into account in any shimming procedure.  

Generally, the higher the number of shims available in the system, the better the 

field homogeneity achievable.  Having more shims however can make the shimming 

process quite complicated.  A constraining factor in the performance of shim coils is the 

current limit of the shim power supply as the strength of the field produced depends 

  

 

 

 

 

 

 

Fig. 2.8 Basic Zonal and Tesseral shim coil designs.(a) A zonal Z2 shim coil based on a 

basic 2 Helmholtz pair configuration (b) Tesseral X2-Y2 shim coil based on the Golay 

saddle configuration. 

 

directly on the amount of current in the shim coils. Also, the shim coils are usually placed 

outside the gradient former in the bore of the scanner, quite far from the sample to be 

shimmed. The field produced at a distance r by a current loop carrying current I has been 

shown to be proportional to 1/ +nrI , where n is the order of the shim [Romeo 1984].  The 

loop current I is limited by the number of turns and therefore available bore space. For 

this reason it remains difficult to produce strong 3
rd

 and higher order fields in large bore 

clinical systems. One of the approaches to tackle this problem is the use of shoulder 

slotted shim coils, which bring the shim coils close to the subjects head [Poole 2008a]. 

The inductance of the shim coil is also important in shim performance.  The higher the 

z 
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inductance, the slower is the rate of shim current change, a property that is crucial in 

applications that require rapid switching of shims. The inductance is hence always 

included as a coil design parameter.  

  It should be noted that the orthogonality of the spherical harmonics given by Eq. 

2.22 is valid only over a spherical volume of interest, encountered in traditional 

cylindrical bore magnets.  MR magnets with geometries other than cylinders, such as 

open magnets, asymmetric magnets (homogeneous region placed close to one end of a 

magnet), which are designed for easy patient access, and magnets dedicated to image 

specific body parts, use the target field and stream function methods to design the shim 

system.  

Recently, active shim coil oral inserts have also been shown to reduce 0B∆  in the 

inferior temporal cortex [ Hsu 2005 ]. This insert contains three current loops individually 

adjustable to shape the local field in a subject specific basis.  Patient comfort is however 

an issue with active local shim coils. 

 

 

2.5.5. Shimming Techniques 

 

Shimming techniques are primarily of two types, manual and automatic. Both 

techniques first obtain an estimate of the field inhomogeneity, either in the form of a free 

induction decay (FID) curve or as a fieldmap. Following that, individual shims are either 

manually or automatically adjusted to optimize 0B∆ . 

 

2.5.5.1 Manual shimming 

 

In manual FID shimming, the operator seeks to maximize the area under the FID 

curve or in other words, minimize the width of the water spectrum peak after a single 90
o
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pulse by individually adjusting the shim channels. When the area under the FID is 

maximum, the signal from the shimmed volume is being generated by a very narrow 

range of off-resonant spins, thereby minimizing 0B∆ . Manual shimming is the traditional 

approach to shimming and is present on most scanners, although not very often used in 

human imaging scans owing to time constraints.  Although experienced users can 

decipher the shim channel needing adjustment from the shape of the FID or the water 

peak, getting stuck in a local minimum is a common occurrence. In practice, FID 

shimming can be quite laborious and can require large amounts of time to obtain optimal 

field homogeneity. Often adjustment of one shim channel causes other harmonics to be 

produced due to non-orthogonal imperfections of the shim channels leading to false 

optimums.  For this reason manual shimming has to be performed in an iterative manner, 

starting from the higher order shims that generally have higher cross talk going down to 

the first and zeroth order fields. This can take up precious scanner time and is therefore 

generally avoided in human scans. Also, FID shimming optimizes the field over a whole 

volume, providing little information about the local field distributions.  

For these reasons, automatic shimming, in which the shim coils are set 

automatically, is the preferred way of shimming.  Introduced by Prammer et al in 1988, 

automatic shimming seeks to minimize 0B∆  extracted from fieldmaps by calculating the 

spherical harmonics and adjusting the shim coils all at once [ Prammer 1988].  Automatic 

shimming is usually performed as a pre-scan stage and the shim values set for the entire 

duration of the scan. There are two major types of automatic shimming that essentially 

differ in their measurement of 0B∆ , fieldmap based and projection based automatic 

shimming. 
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2.5.5.2 Automatic projection based shimming (FASTMAP) 

 

Projection based shimming is a rapid shimming procedure  based on the argument 

that Cnm  over a volume can be uniquely determined by using information from a set of 

carefully chosen linear fieldmap projections in the volume [ Gruetter 1992, 1993]. The 

projections are generally acquired using reduced field of view techniques such as 

STEAM [ Frahm 1985 ]  or PRESS [ Bottomley 1984 ]. Field information along the 

projections is extracted from repeated acquisitions having a time delay between the first 

and second RF pulse of a STEAM sequence.  Essentially, if the relative contributions of 

the individual spherical harmonics to the field along the selected projections are known, 

one can regress for the actual strength of a harmonic based on the data from all the 

projections. 

If we let the spherical harmonic term )]([cos)(cos nmnm mP ψϕθ −  be identified as 

nmW  then neglecting the constant term C that can be set to zero by adjusting the center 

frequency setting, Eq. 2.25 for the field along a projection j that runs through the center 

of the coordinate system may be written as  
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j

nm WW ϕθ≡  is a constant along the projection j and describes the 

contribution of spherical harmonic nmW  to the field along the projection  j.  j

nmW  can be 

calculated very simply from the polar formulations of nmW  . For instance, for j along the x 
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axis, the inclination θ  is 90
o 

and the azimuth φ is  0
o 

. From Table 2.1 is can be seen that 

the relative contributions of the 1
st
 order fields to the field along this projection are  
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Once ),,(0 ϕθrB j∆ has been measured along a projection, a polynomial regression to the 

n
th

 degree yields the yields the coefficients j

na  such that 
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The polynomial coefficient  j

na   is an estimate of the sum of all the harmonics of n
th

 order 

along that j. Therefore, minimizing the expression 
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with respect to nmC  in a least squares sense for each n gives the solution for the 

shimming problem. When the orientation of the projections is chosen such that  
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a simple solution to the minimization can be written as  
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Since j

nmW  can be obtained very easily for defined j , the shim solution can be obtained 

simply by linear combinations of  j

na .  To determine the first order shim setting, 

projections along the three main axes x (90,0), y (90,90) and z (0) are necessary. 6 
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orthogonal projections, xy (90,-45), yx (90, -135), zx (45,0), xz (45,180), zy (45, -90), yz 

(45,90) are used to determine all first and second order shim settings. 

The main advantage of this method, also called FASTMAP (Fast Automatic 

Shimming Technique by Mapping Along Projections) is that field can be optimized very 

quickly, since the projections do not require phase encoding. Some improved variants of 

FASTMAP include FASTERMAP which uses a semi adiabatic spin echo sequence for 

improved signal [ Shen 1997]  , FASTESTMAP which reduced the time taken by using 

an asymmetric echo planar readout gradient train [ Greuetter 2000]  and FLATNESS, 

which attempts to apply the method in slice shimming [ Shen 1999].  Projection based 

methods generally work well over reasonably homogeneous volumes with moderately 

uniform field changes. They can therefore be used reliably for applications probing small 

volumes like single voxel spectroscopy. For larger volumes like the human brain in 

entirety and the body where more than one resonance may be present or where the fields 

change rapidly, these methods often fall short. Fieldmap based methods are much better 

suited in those cases. 

 

 

2.5.5.3 Automatic fieldmap based shimming 

 

In fieldmap based shimming, shim values are obtained from the multiple linear 

regression of 2D or 3D 0B∆  maps acquired using one of the methods described in section 

2.4. The GRE based method of Glover et al. [Glover 1991] remains a very popular 

method for fieldmapping. The fieldmaps are generally thresholded based on the 

accompanying magnitude image to extract the field information from a desired shim 

region of interest (ROI).  Several different cost functions have been investigated for the 
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minimization procedure including least squares error [Prammer 1988, Glover 1991, 

Webb 1991], the maximum field deviation [ Prammer 1988 ] and the sum of the 

intravoxel gradients in the ROI  [ Wen 1995].  Of the above functions, the least squares 

error is the most frequently used. 

One of the advantages of fieldmap based shimming is its flexibility to arbitrary 

shaped ROIs. Also, fieldmap based methods have a higher immunity to signal voids than 

projection based methods. On the flipside, there exists a time penalty for fieldmap based 

shimming as an extra fieldmapping scan has to be performed before the imaging scan. 

Errors can also be introduced due to motion of the subject between the fieldmapping and 

the actual scan. In addition, it is difficult to obtain fieldmaps during the actual scan to 

track dynamic field deviations due to time constrains.  EPI and spiral acquisition based 

rapid fieldmapping [Kim 2002, Reber 1998, Reese 1995] techniques have been used for 

shimming, although these methods suffer from additional imaging artifacts in the 

fieldmap ( distortions, T2* blurring) due to the interaction of the lower bandwidths and 

0B∆ itself. 

Shimming is usually performed as a scan preparation stage. Shim coefficients 

calculated from the regression are converted into current values and communicated to the 

shim power supply unit prior to the actual scan. Usually, only a single set of shim values 

are produced which minimizes the 0B∆  variation over the entire target volume. For small 

volumes, this single ‘global’ shim setting can homogenize the field sufficiently for most 

applications.  The approach can however be inadequate for shimming over extended 

volumes, for example the whole brain or multiple slice stacks in whole-body imaging 

where 0B∆  varies considerably across the volume.  Applications such as DTI in the brain, 
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data driven functional MRI, brain connectivity studies among others require maximal 

brain coverage, where a single shim set usually does not suffice. One approach of 

attaining higher local field homogeneity over extended volumes is dynamic shimming, a 

subject of extensive discussion in this thesis. 

 

2.6. Dynamic Shimming 

 

For shimming over extended volumes or volumes over which the 0B∆  profile 

changes rapidly, the traditional global shimming method in which only one shim set is 

applied for the whole volume can be modified to dynamically update the shim settings. 

Dynamic shimming is a technique in which the shim settings can be changed during the 

acquisition of data from multiple slices or sub-volumes. Therefore, multiple shim settings 

optimal for each slice or sub-volume can be applied during a single experiment, leading 

to better localized compensation of field inhomogeneities than is obtainable using a 

single global shim set. Figure 2.9 illustrates the concept of dynamic shimming in 

comparison to traditional global shimming.  

In spite of the relative simplicity of the idea behind dynamic shimming, the 

technique has not seen widespread use in commercial scanners. The reason behind this is 

that dynamic shimming relies on the ability to change shim settings rapidly during a scan. 

On most scanners, only the first order shims controlled by the imaging gradients can be 

switched dynamically and reliably during acquisition. Unlike the gradients, shim coils are 

usually driven by low bandwidth amplifiers using slow asynchronous serial 

communication channels with the spectrometer making it difficult to precisely update 

shim values during the scan. Shim amplifiers also have long settling times that may be up 
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Fig. 2.9 Dynamic Vs Global Shimming.  

 

 

to 5 ms depending on the impedance of the connected shim coils [RRI specification 

sheet]. In addition, most commercially available scanner software does not include full 

control of the shim waveforms. Moreover, most shim coils are unshielded and can cause 

severe eddy currents when switched rapidly, degrading image quality. These technical 

challenges have hindered the widespread use of dynamic 0B shimming. One of the 

approaches taken to circumvent these hardware bottlenecks has been to introduce an 

additional shim control unit that can supply shim currents according to preloaded 

dynamic correction values during the scan. Typically, this module is synchronized with 

the pulse sequence with the use of pulse triggers generated by the spectrometer at 

appropriate times. 

 Various groups have demonstrated the potential benefits of dynamic shimming 

vis-à-vis traditional global static shimming. A slice-wise dynamic shimming method in 
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which the optimal first order shim currents were updated for every slice in a multislice 

acquisition at 2.1 Tesla was first proposed by Blamire et al in 1996. [ Blamire 1996]  

shortly followed by Morrell and Spielman at 1.5 Tesla [ Morell 1997]. Dynamic 

shimming was extended to 2
nd

 order at 4 Tesla by de Graaf et al in 2003 where the Z0 

eddy field produced by rapid switching of the Z2 shim was characterized and 

compensated using a multiple time constant compensation circuit [ deGraaf 2003] . This 

work was extended by Koch et al in 2006 to include all the 2
nd

 order shims [ Koch 

2006,2007] . Field homogeneity improvements were demonstrated in multislice whole 

brain imaging, multivoxel spectroscopy and multislice spectroscopic imaging.  All of the 

above studies made use of an external hardware unit to store and dynamically update the 

shim currents.  Zhao et al. simulated DS up to 3
rd

 order and showed that DS can yield 

better optimized field homogeneity than GS [Zhao 2005]. 

 This thesis presents the first implementation of slicewise dynamic shimming at 7 

Tesla. Chapter 3 discusses the implementation while Chapter 4 presents the results of 

comparison to static global shimming. Other issues such as shim induced eddy currents, 

shim switching strategies and relative benefits of higher order shimming have also been 

examined.  Henceforth, we will refer to dynamic shimming simply as ‘DS’ and global 

static shimming as ‘GS’ for brevity. 

 

2.7. Eddy Currents 

 

In MRI, eddy currents are induced in the conducting structures of the magnet 

assembly by the rapid switching of magnetic fields which are either in the form of 

gradients or shims. These conducting structures include the heat shields in the dewar 
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holding the superconducting magnet, magnet supports, magnet cryostat and radio 

frequency shields. The eddy fields generated in the bore by the eddy currents oppose the 

primary field (Lenz’s law) thereby increasing their rise time and introducing errors in the 

gradient performance. In dynamic shimming, shim fields are changed rapidly in 

synchronization with the scan sequence. These changing shim fields induce eddy currents 

in the bore of the magnet that in turn produce eddy fields. These fields can severely 

compromise both imaging and spectroscopy using dynamic shims. The effects, 

measurement and compensation of eddy currents associated with dynamic shimming are 

topics discussed in detail in chapter 3 and 4 of this thesis.  

The eddy fields are time varying and usually decay with multiple time constants 

that can range from 0.1 up to 1000s of milliseconds [ Jensen 1987,Morich 1988, Boesch 

1991, Robertson 1992]. Generally, eddy fields are characterized as 3 or 4 exponentially 

decaying components with, short (0.1 – 10 ms), medium (10 – 100 ms) and long (100 – 

1000s of ms) time constants.  The decay times of the fields depend on the particular 

magnet structure in which the eddy currents flow. Generally, the colder the structure, the 

more slowly decaying are the eddy currents owing to lower resistances.  If left 

uncompensated, eddy currents can severely hamper performance in both spectroscopy 

and imaging. In general, the shorter the switching time of the gradients, the more severe 

are the eddy currents. Therefore, eddy currents can be extremely problematic in 

sequences requiring rapid switching of gradients such as EPI, those requiring large and 

precisely matched gradient pulses as in diffusion weighted imaging (DWI) or in dynamic 

shimming.  
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The time varying magnetic fields can be of the same harmonic as the switched 

field as well as other cross terms. As a result, they can produce a variety of artifacts in 

imaging including ghosting, distortions and blurring.  In addition to introducing 0B  

offsets that result in phase ramps in k space that lead to bulk image shifts, linear gradient 

induced eddy currents can skew  (eddy current field  gradient along the  readout 

direction) or compress ( eddy current field  gradient along the phase encode direction) k 

space sampling, as shown in Figure 2.10.  This k space distortion results in corresponding 

distortions in image space. Higher order eddy currents that can be induced by shim 

switching may distort k space sampling even more nonlinearly. In EPI, gradient induced 

eddy fields can cause inconsistencies between odd and even echoes in k space. These 

fields add to or subtract from the ideal gradient fields and cause echo time shifts that 

alternate in the odd and even lines. These give rise to characteristic N/2 ghosts, which are 

essentially low intensity ghosts of the image at x = ± N/2 displaced from the center of the  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.10 K space distortions caused by eddy current induced field gradients (a) Eddy 

field gradient in the readout (kx) direction causing shearing of k space. (b) Eddy field 

gradient in the phase encode (ky) direction causing stretching of k space. Circles 

represent the correct sampling positions, plusses represent the actual positions. 
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image, where N is the number of pixels and x is the position along the phase encode 

direction. Higher order shim induced eddy fields can create more complicated ghosting 

patterns. 

 

 

2.7.1 Eddy current compensation techniques 

 

Traditionally, compensation of eddy currents produced by the gradients has been 

performed by a combination of two approaches. The first approach involves pre-shaping 

the gradient input waveform by the addition of several (typically 3 or 4) compensating 

waveforms representing the exponential components of the measured eddy field, so that 

the final waveform produced in the scanner follows the ideal profile [Glover Patent 1987, 

Jensen 1987]. The compensating waveforms are generated using a series of RC circuits 

that feed into the gradient amplifier. The second approach aims to reduce the production 

of eddy currents themselves by shielding the gradient coil to minimize the magnetic 

coupling between the coil and the metallic structures in magnet [Mansfield 1986, Turner 

1986a]. In this method, the gradient coil is composed of two separate components, an 

inner coil that produces the gradient field and an outer concentric ‘shield’ coil which is 

specifically designed to cancel the field produced by the primary coil outside the shield. 

This shielding may be either ‘passive’ in the form of a concentric conductive tube            

[ Turner 1986a ] or ‘active’ in the form of a current driven coil [ Mansfield 1986, Bowtell 

1991]. The gradient and the shield coil are usually supplied by a single power supply. 

Figure 2.11 illustrates the standard gradient waveform shaping circuit (a) and gradient 

coil shielding (b). 
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Both of the approaches to combating eddy currents have drawbacks. The current 

waveform method requires overdriving the gradient amplifiers, especially to compensate  

 

 

 

 

 

 

   

 

 

 

 

 

Fig. 2.11 Eddy current compensation by (a) Gradient waveform shaping ‘pre-emphasis’ 

network and (b) Gradient coil shielding. 

  

the low time constant eddy fields (due to an initial spike in current demand) leading to 

increased voltage demands. Also, the spatial variation of the induced eddy field is often 

not exactly of the same harmonic as the switched gradient owing to crosstalk between the 

gradient channels, leading to inadequate compensation. Lastly, the applied compensation 

waveforms also produce their own eddy currents, which have to be accounted for.  On the 

other hand, the coil shielding method can take up valuable bore space and can reduce the 

efficiency of the coil. Also, shielding does not compensate for eddy currents flowing in 

structures inside the gradient shield. Most modern systems therefore employ both eddy 
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current waveform compensation and active shielding in the first order gradients to 

effectively reduce eddy currents.  

The majority of the 2
nd

 and 3
rd

 order shim systems available today possess neither 

waveform compensation nor active shielding.  Historically, this has not been a problem 

as higher order shims are generally not switched rapidly during a scan. In fact, most of 

the experimental studies of eddy currents have dealt with primarily first and zeroeth order 

fields. However, DS involves the rapid switching of higher order shims in addition to the 

gradients. For successful implementation of DS, at least one method of eddy current 

compensation may be necessary if not both.  

In this thesis, we have characterized the eddy currents arising from switching of 

2
nd

 and 3
rd

 order shims. We have reported on the improvements made by the use of a 

single shielded shim coil (the Z2 coil) on image quality at 7 Tesla.  A novel software 

based prospective technique of compensation of eddy fields produced by the dynamic 

switching of 2
nd

 and 3
rd

 order shims has also been developed and its utility demonstrated.  
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CHAPTER III 

 

IMPLEMENTATION OF SLICEWISE DYNAMIC B0 SHIMMING 

 

3.1. Introduction 

 Compensation for field inhomogeneities has traditionally been carried out by 

room temperature static global shimming (GS) using a set of discrete orthogonal shim 

coils designed to produce specific spatial field corrections to minimize field 

inhomogeneities. As introduced in Section 2.5, these shim settings are usually determined 

and applied in the preparation phase and remain constant throughout the scan. Global 

shims optimize B0 homogeneity over the entire volume of interest, rather than individual 

slices or sub-volumes. Dynamic shimming (DS) is a technique in which the slicewise 

shim settings can be changed during the acquisition of data from multiple slices or sub-

volumes. Therefore, multiple shim settings optimal for each slice or sub-volume can be 

applied during a single experiment, leading to better localized compensation of field 

inhomogeneities, than obtainable using a single global shim set. With increasing field 

strengths and consequently higher susceptibility artifacts, DS can be an important tool to 

improve image quality compared to conventional shimming techniques. 

A review of earlier work on DS has been presented in section 2.5. Previous DS 

implementations include multislice shimming to 1
st
 order [Blamire 1996, Morrell 1997] 

and 2
nd

 order [de Graaf 2003, Koch 2006, 2007].  In addition, 2
nd

 order DS has also been 

demonstrated to be effective in compensating for field variations induced due to 

respiration at 7 Tesla [VanGelderen 2007]. All implementations of DS to date have 
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incorporated an external hardware module for rapid switching of shims. Furthermore, in 

addition to the basic shim switching module, Koch et al also incorporated a multiple time 

constant compensation circuit for the compensation of the eddy currents produced by 

rapid switching of the 2
nd

 order shims [Koch 2006, 2007]. 

 Slicewise DS has not been implemented previously on a 7 Tesla clinical scanner. 

With increased ∆B0 values at 7 Tesla, there is a need to evaluate the benefits that may be 

obtained with DS over static GS.  The majority of the work presented in this thesis 

involves the implementation and evaluation of slicewise DS on a 7 Tesla whole body 

imaging system. This chapter presents the implementation of DS along the following 

lines 

• Description of our scanner and shim system. 

• Shim calibration. 

• The process of shim calculation, from fieldmap data to shim values. 

• Shim calculation approaches for slicewise optimized shims. 

• The pulse program modifications and hardware additions for dynamic shim 

update. 

• The dataflow of the DS setup.   

 
3.2. Scanner and Shim system 

 The higher order DS studies were performed on a 7 Tesla whole body human 

MRI system (Philips Healthcare Inc, Cleveland Ohio, USA) with a 16 channel SENSE 

array receiver coil (Nova Medical, Inc, Wilmington, MA, USA) and a single channel 

quadrature transmit volume coil. The Philips 7T system design included 7 unshielded 3
rd

 

order shims (Z3, Z2X, Z2Y, Z(X2-Y2), XYZ, X3, Y3), 5 unshielded 2
nd

 order shims (Z2, 
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ZX, ZY, X2-Y2, XY) and 2 actively shielded shims (Z2Dynamic or Z2D, Z0). The 

actively shielded shims were designed with low inductances for dynamic operation. The 

2
nd

 order shims were wound on the gradient tube while the 3
rd

 order shims were on a 

separate tube. The shielded coils were composed of the primary coil and an outer shield 

coil connected in series. The shims were driven by amplifiers manufactured by 

Resonance Research Inc (MXH -14, ± 10A, ±95V, RRI, Billerica, MA, USA). Each 

amplifier had an additional auxiliary analog input for separate additive shim drive 

control. First-order shimming was provided via the 3 actively shielded 1
st
 order (X, Y, Z) 

gradients, controlled by the scanner’s imaging gradient amplifiers.  

The shim system control board was connected to the system computer using a 1 

Gbaud/80 Mbytes/second high speed fiber glass serial link. The control board generated 

RS 232 output at 19.2 kBaud for the static shim channels, connected by a 9 pin 

connector. The RS 232 asynchronous connection for the static shims was the main 

bottleneck in the rapid and precise switching of shims, required in DS. This 

communication setup is almost universally found in shim systems, making DS difficult. 

For the dynamic Z2 and Z0 channels, the board generated ± 10V differential waveforms, 

connected to the amplifiers via 25 pin analog connectors. Also, the scanner pulse 

programming software provided object orientated controls for the gradient channels 

which enabled complete waveform control of the gradients. Such control was however 

not present for the individual shim channels.  

To overcome the above mentioned hardware obstacles, we followed the approach 

taken by earlier DS studies. We performed the dynamic update of 2
nd

 order shims using a 

separate shim control hardware module (‘Load & Go Real Time Shims RTS’ MXV 14/4, 
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RRI, Billerica, MA, USA) which was used to store the slicewise shim values and load 

them on trigger from the scanner. Further details on the design and operation of the 

module are given in Section 3.6.  

Given this basic setup for shimming, our method was based on estimating the 

slice-wise B0 field variations from a repeated gradient echo scan with a known ∆TE and 

analyzing the fieldmaps to calculate slice-wise shim settings for DS and a global shim set 

for static GS. Shim calculation was performed entirely in Matlab2008
TM

 (Mathworks Inc, 

Natick, MA, USA). A graphical user interface (GUI) was developed in Matlab
TM

 and run 

on the console computer to enable expedited shim analysis. We performed shim 

comparison studies on phantoms and human subjects. The benefits of DS were evaluated 

by comparing the residual B0 inhomogeneity, image distortion and signal losses to those 

obtained by conventional image based static GS. 

 

3.3. Shim system calibration 

 The complete shim set up to 3
rd

 order, was calibrated using a 17 cm spherical 

doped water ‘braino’ phantom placed at magnet isocenter. Individual shims were stepped 

in the range of -80% - 80% of the rated absolute current output of the shim amplifier in 

steps of 20 % (-8A, -6A…6A, 8A) using the real time shim switching hardware.  

Multislice axial fieldmaps were obtained in hertz, using the scanner’s built-in B0 

estimation option. This option allows the introduction of a second data acquisition period 

at a user defined known ∆TE value in a gradient recalled echo (GRE) sequence. Other 

parameters of the sequence were, TR/TE = 95/4.4 ms, FOV = 300 mm, no of Slices = 11.  

A reference fieldmap obtained without any shim applied was subtracted from these 
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fieldmaps and the resulting maps were fit to the normalized set of spatial shim harmonic 

functions using a multilinear least squares regression function in Matlab 2008a.  Cross 

terms were considered significant for only those channels that had a squared correlation 

coefficient (r
2
) value > 0.9. Hence, a set of shim calibration coefficients were obtained, 

specifying the field in Hz/cm
n
 (or mT/m

n
) produced per ampere of shim current, n being 

the order of the shim. These coefficients were used in our studies to calculate the shim 

currents required for field correction. Table 3.1 gives the values of the measured shim 

calibration constants including the relevant cross terms observed. These values matched 

with the scanner’s stored factory settings, validating the procedure as well as calibrating 

the real time shim module. 

 

3.4. Shim calculation: Practicalities 

As described previously in section 2.5, shimming involves calculation of the 

individual spherical harmonic shim field magnitudes required to compensate 

for ),,(0 zyxB∆ .  These magnitudes can be converted to the actual currents required in the 

coils by the calibration constants, as given in Table 3.1. The following section describes 

the practical steps in shim calculation  

 

3.4.1 Coordinate Transformations 

Image based multislice fieldmap data acquired for shim calculation are generally 

defined only in the ‘image’ coordinates, i.e. in row, column and slice indices. These 

coordinates most often do not correspond to the shim or gradient coordinate system, 

which may be given as x, y and z. Therefore, to calculate the coefficients for the shim  
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harmonics that are defined in either cartesian or polar coordinates (Table 2.1), one has to 

transform the image space coordinates (Row,Column,Depth) to coordinates in the shim 

coordinate system (X,Y,Z). In practice, a series of transformations are required for this 

which account for slice gap/thickness, stack orientation, stack angulations and patient 

orientation.  

Figure 3.1 shows the coordinate system of 

the 7T scanner. The positive z axis is defined to be 

coming out of the front of the magnet. The x axis is 

defined to be vertical and the y axis is defined to be 

horizontal.  

Several different coordinate systems are 

employed for different definitions of the object of interest. The coordinate systems are 

1. The Image coordinate system (RCD), defining the row, column and 

depth of the image data.  

2. The Patient coordinate system (L, P, H) defining the Left hand side, 

Posterior and Head of the patient. 

3. The Angulated patient coordinate system ( L’, P’, H’) defining LPH 

system in an angulated slice. 

4. The Magnet coordinate system (X, Y, Z) defining the x,y,z coordinates 

of the magnet which coincides with the gradient and shim system. 

 

The transformations that are applied to the image based fieldmap data in the order 

of application are 

Fig 3.1 Shim coordinate system 

in our 7T scanner. 

 
x 

z 

y 

Front 

Back 
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1. Slice Orientation Transformation : This transformation, transforms the image 

coordinates to the patient coordinates which vary depending on whether the 

slice was axial, coronal or sagittal slice orientation. 

 

2. Angulation Transformation :The Angulation transformation obtains slice 

rotated coordinates from the patient coordinates, depending on the slice 

angulation. 

 

3. Patient Orientation Transformation :The patient orientation transformation 

obtains the shim/magnet system coordinates from the patient coordinates. This 

transformation considers the patient position, i.e. ‘head first’ or ‘feet first’ and 

the patient orientation i.e. ‘prone’ or ‘supine’. 

 

Therefore, to obtain the shim system coordinates of any arbitrarily positioned and 

rotated slice in the scanner, the series of transformations can be written as  
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         (3.1) 

 

3.4.2 Multiple Regression and optimization functions 

Once the fieldmap data has been transformed to the actual shim (x,y,z) 

coordinates, one can perform multiple linear regression to calculate the shim coefficients.  
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A set of normalized shim harmonic function values as given in Table 3.2 are calculated 

for each x,y,z location in the shim ROI which provide the ),,( zyxSi  in Eq. 2.20.  The 

regression can be performed by several different methods differing in the cost function 

employed.  Three commonly used cost functions include 

1. Sum of squares of field values (or Least Squares Method)  

This method obtains the shim coefficients that minimize the sum of squares of the   

error between the measured and the estimated field. Therefore, it finds ic  such 

that  

   

2

1 1

),,(),,(∑ ∑
= =









−∆

P

p

N

i

pppiippp zyxSczyxB                     (3.2) 

 

is minimized. P is the number of pixels in the shim ROI. N represents the number 

of spherical harmonics. The least squares optimization method optimizes the 

actual pixelwise deviations of the field ),,(0 zyxB∆ , which is directly related to 

image distortion (Eq 2.7). Therefore, employing this method of shim calculation 

in DS vs GS studies would be expected to yield greater benefits in distortion 

reduction compared to voxel wise signal recovery. However, most current GS 

algorithms employ the least squares method for shim calculation. In our studies, 

we used the least squares optimization routine ‘lsqlin’ in Matlab 2008a for 

implementing this regression technique. 

2. Sum of squares of Intravoxel gradients 

This optimization method seeks to minimize the signal loss due to the field 

gradients across a voxel [Wen 1995].  Since the signal loss in a voxel is directly 
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related to the amount of spin dephasing caused by the 0B  gradients across the 

voxel (Eq 2.16), minimizing the intravoxel gradients maximizes the signal. 

Therefore, the quantity to be minimized is 
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                            (3.3) 

 

which is the least squares sum of the field gradients across the voxels in the shim 

volume of interest (VOI). Therefore, this method of shim calculation in DS vs GS 

studies would be expected to yield greater benefits in signal recovery compared to 

image distortion. In our studies, we used the ‘fmincon’ optimization routine in 

Matlab 2008a for implementing this regression technique. 

As an alternative to this method, one may also optimize the field based on 

maximizing the signal. Since the signal in a voxel is related to the sinc of the 

intravoxel gradients (Eq. 2.16), one may attempt to minimize the signal loss by 

maximizing this function.  

 

3. Peak to Peak value of the field 

In this method, the peak to peak value of the field is minimized [ Prammer 

1988]. Consequently, the worst case field errors are minimized, which may not be 

the case in the two earlier methods. This method can however be susceptible to 

noise in the fieldmap and effective noise removal is required to make it robust. In 

our studies, we used the ‘fmincon’ optimization routine in Matlab 2008a for 

implementing this regression technique. 
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In all the methods described above, the optimization has to be constrained to the 

actual current limits of the shim amplifiers. It has been shown that for global shimming, 

constrained optimization methods performed significantly better than simple truncation 

methods, where the shim values are truncated according to the shim current limits [Wen 

1995]. We employed constrained optimization in all our DS and GS studies. The shim 

values were constrained at ±10 Amperes, the current limit of the shim amplifiers. 

Constraining the shims was found to be particularly important in the case of the weak 3
rd

 

order shims and the shielded 2
nd

 order Z2 shim. Section 4.1.2 presents further results on 

shim constraining in the context of higher order slicewise DS. 

 

3.4.3 Stack Offset Correction 

 

For calculation of shim correction values ic for a given stack of slices, the origin 

of the X,Y,Z coordinate system is in practice, assumed to be at the center of the stack. 

This is correct when the stack is centered at the true magnet isocenter. However, when 

the stack is translated in any direction, the ic  coefficients have to be adjusted for the 

offset [Hoult  1987].  The corrected shim coefficients then are those shim values that 

would give the same residual field for the offset stack as what is predicted when 

assuming the stack to be at the origin of the shim coordinate system. For example, 

consider a z
2
 field perturbation located at an offset location given by a. The field may be 

defined in the magnet coordinate system as 222 2)( azazaz +−=− . Therefore, if a -z
2
 

correction field (as calculated in the offset slice coordinate system shim regression) is 

applied, a linear and constant field of 22 aza+−  remains uncompensated. These linear 
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and constant fields therefore have to be compensated in addition to the basic z
2 

field 

correction. In general for accurate higher order inhomogeneity compensation at offset 

locations, lower order cascading fields in addition to the basic higher order correction are 

required. These lower order corrections can be calculated by the expansion of the 

cartesian shim definitions as in the example above. The corrections for the individual 2
nd

 

and 3
rd

 order shim coefficients are  

For 2
nd

 order shimming 

Z  =  Z -[ 2 *  Z2 *  zo +  ZX  *  xo + ZY  *  yo ] 

X = X - [-Z2 * xo + ZX * zo + 2 * X2Y2 * xo + 2 * XY * yo] 

Y = Y - [-Z2 * yo + ZY * zo – 2 * X2Y2* yo + 2 * XY * yo] 

For 3
rd

 order shimming 

 Z = Z + [2 * Z2 * zo + ZX * xo - ZY * yo + 3 * Z3 * (zo
2
 - (xo

2
 + yo

2
)/2) 

          + 8 * Z2X* xo* zo - 8 * Z2Y* yo* zo + Z(X2-Y2) * (xo
2
 - yo

2
) - 2 * ZXY * xo * yo];     

 

X = X + [- Z2 * xo + ZX * zo + 2 * X2-Y2 * xo - 2 * XY * yo - 3 * Z3 * xo * zo  

           + Z2X * (4 * zo
2
 - 3 * xo

2
 - yo

2
) + 2 * Z2Y * xo * yo + 2 * Z(X2-Y2) * xo * zo  

           - 2 * ZXY * yo * zo + 3 * X3 * (xo
2 

- yo
2
) - 6 * Y3 * xo * yo]; 

 

Y = Y +   [Z2 * yo + ZY * zo + 2 * X2-Y2 * yo + 2 * XY * xo + 3 * Z3 * yo * zo  

           + 2 * Z2X * xo * yo + Z2Y * (4 * zo
2
 - xo

2
 - 3 * yo

2
) + 2 * Z(X2-Y2) * yo * zo  

           + 2 * ZXY * xo * zo + 6 * X3 * xo * yo + 3 * Y3 * (xo
2
 - yo

2
)]; 

                                                                                             

Z2 = Z2 + [3 * Z3 * zo + 4 * Z2X * xo - 4 * Z2Y * yo];                              
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ZX = ZX + [-3 * Z3 * xo +8 * Z2X * zo +2 * Z(X2-Y2) * xo -2 * ZXY * yo];                                              

ZY = ZY + [3 * Z3 * yo + 8 * Z2Y * zo +2 * Z(X2-Y2) * yo +2 * ZXY * xo];                            

X2-Y2 = X2-Y2 + [-Z2X * xo - Z2Y * yo + Z(X2-Y2) * zo + 3 * X3 * xo - 3 * Y3 * yo];                               

XY = XY + [Z2X * yo- Z2Y * xo + ZXY * zo + 3 * X3 * yo + 3 * Y3 * xo];   

 

Where xo , yo  and  zo are the stack offsets in the magnet coordinate system. The shim 

coefficients are represented by their common names.      

In our work the above formulations including the coordinate transformations, 

three different regression methods and stack offset correction were implemented for both 

global and dynamic shimming. Global shim calculation followed the general shimming 

procedure described above and in section 2.5. For slicewise shim calculation however, 

additional steps were performed, which are described in the following section.  

                                                                      

3.5 Calculation of Dynamic Slicewise shims 

 
Two different approaches can be used to calculate slicewise shims based on 

multislice fieldmaps.  

 

3.5.1 Calculation by considering three slices together 

 In this approach, fieldmap data from a set of slices, typically 3, centered on the 

slice of interest are used to calculate the shim coefficients for that slice. All the shim 

coefficients are obtained from a single regression. This procedure is therefore similar to a 

global shim fit with only three slices, repeated for every slice in the stack. Even though 

the shims are calculated for only one central slice, data from the adjacent slices is used in 
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the regression. In this technique, if the fields in the adjacent slices are very different, the 

inplane field correction for the central slice may be compromised since the shims will 

globally fit the data from the three slices.  

 

3.5.2 Calculation by degeneracy analysis for inplane shims 

In the second method of slicewise shim calculation, the inplane and through plane 

shim corrections are estimated separately. In this way, the inplane correction can be 

localized to the slice of interest only, while the through plane correction is calculated 

using the adjacent slice data.  

When calculating the inplane shim corrections using data from only a single slice, 

an infinitesimal slice thickness is assumed since there is no through slice field 

information considered. This leads to different shim harmonics manifesting in the same 

inplane functional form. The assumption of linear independence between shim terms no 

longer holds, leading to degeneracy in the regression [Shen 2000, Koch 2006]. An 

analytical solution to this degeneracy problem was presented in detail by Koch et al, 

where the complete shim set is reduced to a subset of linearly independent shims for any 

slice orientation [Koch 2006]. In order to extract the non-degenerate shim set, a 

coordinate transformation from the magnet coordinate system, i.e., x, y, z to the slice 

coordinate system or R, C ,D is employed.  If α, β, and γ represent the angular rotations of 

the imaging plane about the three magnet coordinate axes x, y and z, the new coordinates 

are related to the original coordinates by the transformation matrix:  
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Thereafter, equating the through-plane (depth) coordinate value for any slice, to the x,y,z  

linear sum from Eq 3.7, yields a set of relations between the magnet coordinates. The 

reduced shim set can then be obtained by inserting the relationships between these 

magnet coordinate directions into the shim functions and subsequently removing 

functional redundancies from the shim set.  

 For example, consider a slice rotated 45
o 

about the y axis (α = 0, β = 45
 o

, γ = 0) as 

shown in figure 3.2. Since the slice is at the origin, the depth coordinate is equal to 0. 

 

                                                                                                          

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Extraction of non degenerate 3
rd

 order shim set for a slice at β = 45
o 

. 
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Substituting this relationship in the shim functions we see that the shims pairs (X, Z), 

(X2-Y2, Z2), (ZY, XY) and (Z2Y, Y3) reduce to the same functional forms as shown in 

Figure 3.2 leading to redundancy of the shim terms. The redundancy can be removed by 

eliminating one shim from every shim degenerate pair yielding a reduced shim set which 

includes only the shims: Y, Z, Z2, ZX, ZY, Z3, Z2X, Z2Y, ZXY, Z(X2-Y2), X3 in this 

case. The fieldmap data for this slice are then fit only to the reduced shim set to obtain in-

plane correction values. The choice of the reduced shim set is flexible and may vary 

depending on the particulars of the scanner and shim system. For example, if the system 

includes a shielded Z2 coil, Z2 may be preferred in this case over X2-Y2.   

 For calculating the through-plane shims, it is assumed that the through-plane 

fields for usual slice widths can be approximated as simple linear gradients. This is 

reasonable for typical imaging slice thicknesses. However, it is important to preserve the 

inplane shim setting when applying the through plane shims since in angulated slices, the 

linear gradients will have an inplane component as well. For non oblique slices, the shim 

coefficients are just the gradient in the through plane direction, which does not affect the 

inplane field, e.g. the Z gradient for an axial slice. For oblique slices, the projections of 

the field gradient normal to the slice (or through-plane direction) onto the principal 

gradient directions (x,y,z) give the through-plane shim corrections. These corrections add 

up to the required field gradient in the direction normal to the plane, while cancelling out 

in-plane, thus preserving the in-plane field.  

 The above method of slicewise shim calculation has certain important differences 

from the previously described 3 slice method. First, since the inplane shim values are 

calculated using data from only the target slice rather than 3 slices, the inplane field is 
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better optimized. However, since only a linear though plane correction is performed, the 

through plane field variation may not be compensated as well as the first method, leading 

to higher signal losses. This may become increasingly important as the slice thickness 

increases. Secondly, since only a reduced set of shims are switched dynamically, the 

amount of eddy currents produced are reduced. This becomes important especially in low 

bandwidth imaging where eddy current effects are severe. Both the methods have been 

implemented in our work. For the majority of our comparison studies with static 

shimming, we have employed the second method with degeneracy analysis.  

 Figure 3.3 illustrates the Matlab 2008a based shim tool GUI developed for 

expedited shim analysis. The tool was run on the console computer and was easily 

distributable to intended clients. It included image based DS and GS, with options for 

other relevant parameters including fieldmap thresholding techniques, shim switching 

patterns,  choice of shielded/unshielded coils etc.
1
 The tool communicated with the RTS 

via the RS 232 COM1 communication port of the scanners console computer. 

 

3.6 Dynamic shim update 

During the scan, the slicewise shim values were updated prior to slice selection 

(or RF excitation) for every slice. The first order and higher order shims were updated 

differently.  

 

 

 

                                                 
1
 Details of the tool features, user directions and run environment requirements are available in a separate 

user manual. Contact Saikat Sengupta at saikat.sengupta@vanderbilt.edu for details. 
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Figure 3.3 Matlab 2008a based shimming tool run on the console computer.  

 

 

 
1

st
 order shim update 

 The 1
st
 order slice wise shim coefficients in mT/m obtained from the shim 

regression were written into text files and saved on the console computer for the pulse 

program to read during the scan operation.  1
st
 order dynamic corrections were performed 

using the gradient control for X, Y and Z gradients. The values were read into an array in 

the pulse program from the text files and applied before every slice excitation using an 

inbuilt pulse program function. The sequential order of the shim values in the text files 
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were matched to the planned slice order. User interface controls were added to display 

and modify the first order shim values if required. 

 

2
nd

 and 3
rd

 order shim update 

 Dynamic update of 2
nd

 and 3
rd

 order shims was performed using a separate shim 

control hardware module. (‘Load & Go Real Time Shims, RTS’ MXV 14/4, Resonance 

Research Inc, Billerica, MA, USA). The RTS system is a multi-channel small signal 

driver capable of providing pre-programmed signals to the scanner shim amplifiers to 

allow DS operations. The RTS  consisted of a solid state hard drive computer to process 

custom commands and store shim values, RS232 serial communication ports for shim 

value inputs and digital to analog converters (16 bit DAC, 4 DACs per channel, 15 

channels) controlled by a digital I/O bus from the computer. The shim program on the 

console computer communicated with the RTS via an RS232 serial connection, with 

custom commands to send in the shim values, along with the shim ordering based on the 

parameters of the proposed imaging sequence. The hard drive stored the shim files that 

were loaded prior to the scan. The RTS was connected to the auxiliary input of the shim 

unit via an analog connection. Fig 3.4 illustrates the main components of the module, the 

most relevant commands used for control and the connection of the box to the shim 

cabinet. The shim values were supplied to the RTS in the form of 16 bit i.e. from  -32767 

to 32767, which corresponded to 10  to -10 amperes (-3276.7 DAC units /Amp). 

Therefore, the shim values calculated in Hz/cm
n 

 were converted to DAC units for upload 

using the commands shown in Figure 3.4. 
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 The RTS module did not allow for random access of the stored shim values and 

applied the values loaded in a predetermined loop wise fashion. Also the shim order once 

loaded could not be altered. Therefore, care had to be taken to match the shim order 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

with the slice order of the intended scan. For simplicity, most of our scans were acquired 

with ascending slice order and with a single package
1
 although other slice orders 

(descending, default, interleaved, centric and reverse centric) have also been 

implemented.  Also, the number of shim set loops had to be adjusted according to other 

factors such as matrix size, SENSE factor, dummy scans etc.  Errors in the above steps 

                                                 
1
 In the scanner, ‘Package’ referred to the set of slices that could be fit within a user defined TR. If the 

prescribed TR was too low for a give number or slices, the stack was split into 2 or more packages, altering 

the slice ordering.  
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Figure 3.4 The RRI Real Time shim module (a) Components and primary RS 232 

control commands (b) The module mounted in the shim cabinet (top) and connected to 

the shim auxiliary supply (bottom) . 
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resulted in shim values being wrongly prescribed leading to bad shim performance and/ 

or ghosting artifacts. 

 During the scan, shim files preloaded into the module memory were applied on 

receipt of a positive going CMOS (complementary metal–oxide–semiconductor) trigger 

pulse from the spectrometer clock in a sequential loop-wise fashion.  These 5µs long 

trigger pulses were preprogrammed into the pulse sequence before every excitation pulse. 

The time taken by the module to acknowledge the trigger, update the DACs and load the 

shim file was ~5-8 ms and the time required for shim amplifier current output 

stabilization was an additional ~3 ms (rated shim channel rise time, ~1ms + settling time, 

~2 ms), making the total time required for output current update of all shims ~10 ms. To 

allow for this DAC update and amplifier settling, a time interval of 10 ms was added 

before every excitation pulse. Figure 3.5 illustrates slices 1 and 2 from a 2
nd

 order 

dynamically shimmed phantom acquired with time delays between the shim application 

and RF excitation of 5,6,7 and 10 ms.  In slice 1, ghosting artifacts in the phase encode 

direction (left-right) due to the settling of the shim amplifiers are evident
1
. The ghosts are 

severe in the 5ms case and decrease in intensity with the increase in the delay, as 

expected. The images acquired with 10ms delay are relatively ghost free. In slice 2 all the 

images are free of apparent ghosting. The difference in the ghosting intensity of the 1
st
 

and 2
nd

 slices may be explained by the fact that the shim switch from the last to the 1
st
  

slice is much larger than that from the 1
st
 to the 2

nd
 slice, thereby necessitating longer 

settling times. After the scan, a final trigger forced the output of the shims to 0 Amps. An 

external hardware reset switch controlled by the operator was also used to clear the file 

                                                 
1
 In fact, the ghosting may be due to a combination of amplifier settling and short time constant eddy 

currents. Eddy currents are dealt in detail in section 4.5. 
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memory in preparation for the next scan. The RTS did not provide controls for the X3 

and Y3 channels and had separate outputs for Z2 (labeled Z4) and Z2D (labeled Z2). It 

also had outputs for X, Y, Z and Z0 which were not used in our implementation. 

 

 

 

 

 

 

 

 

 

 

 

 

Center frequency (f0) update 

 

The slicewise f0 shifts associated with the dynamic addition of the shims were 

written in a text file and read by the pulse program prior to the start of the scan, along 

with the 1
st
 order corrections. In the DS scan, the scanner’s default f0 determination 

preparation phase was skipped so that the slicewise f0 values were added to the f0 from 

the field mapping scan. The f0 was adjusted dynamically for every slice using the 

spectrometer’s f0 setting along with the application of the 1
st
 order shims.  

In addition to the static f0 changes, dynamic eddy current related f0 changes also 

originated from unshielded shim switching. The above procedure did not correct for the 

Figure 3.5 2
nd

 order Dynamically shimming spherical phantom images showing effect 

of delay times on image ghosts (a) Slice 1 with 5, 6, 7 and 10 ms delay times (b) Slice 

2 with the same delay times.  

5 ms 

7 ms 10 ms 

6 ms 5 ms 

7 ms 10 ms 

6 ms 

Slice 1 Slice 2 
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eddy current induced f0 shifts.  These changes added to the static f0 changes and decayed 

with multiple time constants. Compensation for these continuously changing f0 offsets 

required Z0 shim waveform compensation which the current RTS did not include. We did 

not include hardware based shim eddy current compensation in this work, as it required 

additional, multiple waveform shaping circuits for each shim channel. A novel method of 

software based eddy current related f0 compensation developed as a part of this work is 

presented in chapter 4. 

 

 

3.7 Workflow of Dynamic Shimming 

 
The overall workflow of DS illustrated in Figure 3.6 can be summarized in the 

following steps. 

1. A multi slice dual echo GRE 0B∆  mapping scan covering the same slice planes 

with the same geometry as required for the main application scan is acquired. 

2. 0B∆  maps and images, user defined shim ROI and scan geometry are exported to 

the shim tool on the console. 

3. Slicewise shims are calculated using the shim tool. 

4. The slicewise 1
st
 order and f0 corrections generated by the shimming program are 

fed back to the scanner as text files, The RTS module is loaded with the higher 

order (2
nd

 or 3
rd

) shim coefficients. 

5. The application scan is run with the DS option. f0 preparation phase is skipped.  

The pulse program loads the slice wise 1
st
 order shims and f0 values from the text 

files during the acquisition of multi slice data. Simultaneously, triggers from the 

spectrometer prompt the RTS to load the appropriate higher order shim currents. 
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6. At the end of the scan, an extra trigger is given to the RTS to indicate scan 

termination and force the shim values to 0 Amps. 

 

 

 

 

 

 

 

. 

 

 

 

Figure 3.6 Operational diagram of Dynamic Shimming 

 

 

 

 

 

f0 phase skipped 
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CHAPTER IV    

 

EVALUATION OF SLICEWISE DYNAMIC B0 SHIMMING  

 

Chapter III presented the details of implementation of fieldmap based slicewise 

dynamic and static global shimming on our high field 7 Tesla scanner. To evaluate and 

compare the performance of the shimming techniques, simulations and experiments were 

performed in phantoms and humans that measured the post shim fields, image distortions 

and signal losses. In addition, eddy currents produced by switching of 2
nd

 and 3
rd

 order 

shims were measured and characterized. Finally, an orderwise comparison of global and 

dynamic shimming was performed to elucidate the relative benefits of going to higher 

orders and from global to dynamic shims. This chapter presents the above studies in 

detail along with other observations relevant to the real world utility of dynamic 

shimming at high field. 

 

4.1 Comparisons of shim techniques in simulations 

 

4.1.1 Orderwise shim comparison simulations 

We performed simulations to evaluate the benefits of going to higher orders in DS 

versus GS. Human head fieldmaps were acquired in the axial orientation for 24 subjects 

with a repeated echo GRE sequence which is a part of the scanners default B0 mapping 

sequence (FOV 250 x 250 mm, 64 x 64 pixels, 25 slices, slice thickness/gap = 3/1 mm, 

TR/TE/∆TE = 195/4/1 ms, SENSE acceleration factor = 3). The fieldmaps were skull 
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stripped to extract the brain as the shim ROI. Slice-wise dynamic shim residual fields 

were calculated using the degeneracy analysis with 4 terms (1
st
 order), 9 terms (2

nd
 

order), 16 terms (3
rd

 order) and 18 terms (3
rd

 order + Z4 and Z5). Global shim residual 

fields were also obtained for the four conditions. Post shim fieldmap standard deviation 

values over the entire brain were then calculated to give a measure of field 

inhomogeneity.   

 

Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.1 displays the mean and 95% confidence interval (CI) values of the post 

shim field standard deviations over the 24 subjects. DS clearly performed better than GS 

Fig. 4.1.Comparison of whole brain residual field homogeneity of simulated shimmed 

fieldmaps across DS and GS shim types and orders. n =24. * Significant at p < 0.001 
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for all orders evaluated. Furthermore, the gains of using DS over GS increased with 

increasing number of terms in the shimming. Essentially, the field homogeneity 

improvements with GS plateaued earlier than those with DS. Overall, two conclusions 

could be drawn from these simulations. First, it corroborated work by earlier studies 

demonstrating the benefits of DS compared to GS.  Second, it suggested that even though 

going to 3
rd

 order GS does not provide substantial benefit over 2
nd

 order GS, going to 3
rd

 

order DS from 2
nd

 order DS may still provide some improvement. In practice however, 

3
rd

 order DS is difficult owing to strong eddy currents produced by the 3
rd

 order shims. 

 

4.1.2 Effect of constraining peak shim demand in DS 

Constraining the shims coefficients to the specified current limits of the amplifiers 

has been shown to be beneficial in comparison to hard truncation of the shim values in 

GS [Wen 1995, Clare 2006]. We performed DS simulations of the same data set 

introduced in the previous section to evaluate the effect of constraining the shim 

coefficients in DS. The simulations were performed for 2
nd

 and 3
rd

 order DS, with and 

without the current constrains.  The residual field homogeneity was evaluated by 

calculating the standard deviation of the field over the whole volume as before. The 

slicewise shim coefficients were also recorded.  

 

Results 

Figure 4.2 shows the simulated residual field variations after constrained and non- 

constrained DS as well as slice wise shim values for representative 1
st
 (Z), 2

nd
 (Z2) and 

3
rd

 (Z2X) order shims. The bar plots show mean and 95% CI values of the fieldmap 
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standard deviations over the 24 subjects. Constraining the shim calculation did not 

hamper the performance of DS significantly for either 2
nd

 or 3
rd

 order DS. However, the 

slice to slice shim variation observed in all three orders, was considerably higher in the 

unconstrained setting. Higher shim switches can lead to increased eddy currents and 

amplifier settling noise. Therefore, even if the non constrained shim demands lie within 

the current limits of the shim amplifiers, as was the case for example in the Z2 shim          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig.4.2.Comparison of whole brain residual field homogeneity of simulated 

constrained and non-constrained 2
nd

 and 3
rd

 order Dynamic shimming with plots 

showing increased slice to slice shim variation for representative 1
st  

(Z1),  2
nd

 (Z2) 

and 3
rd

 (Z2X) order shims in unconstrained dynamic shimming. 
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(current limit for Z2 was 10A, -19.7 Hz/cm
2
), the higher shim variation predicted worse 

performance. In all our imaging studies, shim constraints were included to limit the 

corrections to ±10 Amps. 

 

4.2. Unshielded Z2 coil vs Shielded Z2 (Z2D) coil 

Prior to full scale comparisons of dynamic and global shimming, imaging 

experiments were performed with the unshielded and shielded Z2 coils (single shot 

gradient echo EPI, 9 slices, FOV = 250 x250 mm, 192 x 192 pixels, TR/TE = 2000/26ms, 

SENSE acceleration factor = 3) to make a choice between the two coils. The RTS 

provided dynamic control for both of these coils. The efficiency of the shielded coil was  

-0.58 Hz/cm
2
, around a third of that of the unshielded coil which had an efficiency of       

-1.97Hz/cm
2
. Using the shielded coil would therefore decrease the available range of 

shim gradient field. For the static shimming techniques including the scanner default 

shimming, the unshielded coil is used. 

 

Results 

Figure 4.3 shows dynamically shimmed SS EPI images obtained with the same 

imaging parameters and shim correction fields, using the unshielded (Z2) and shielded 

(Z2D) coils.  The images with the shielded coil show considerably lesser ghosting 

artifacts than those using the unshielded coil, which produced virtually unusable images. 

These artifacts were most likely due to uncompensated self and Z0 eddy fields caused by 

the unshielded Z2 coil.  The shielded coil was therefore employed in all our subsequent 

studies. 
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4.3. Phantom and human studies: 2

nd
 order DS vs. 2

nd
 order GS 

All studies were performed on the 7 Tesla whole body human MRI system 

(Philips Healthcare Inc, Cleveland Ohio, USA) with a 16 channel SENSE array receiver 

coil (Nova Medical, Inc, Wilmington, MA, USA) and a single channel quadrature 

transmit volume coil. First-order shimming was provided via the 3 actively shielded 1
st
 

order gradients, controlled by the scanner’s imaging gradient amplifiers and 2
nd

 order 

shims were controlled using the external shim switching hardware module connected to 

the auxiliary input of the shim system. Our method was based on estimating the slice-

wise B0 field variations from a repeated GRE scan with a known ∆TE and analyzing the 

fieldmaps to calculate slice-wise shim settings for DS. Shim calculation was performed 

entirely in Matlab2008
TM

 (Mathworks Inc, Natick, MA, USA) with the graphical user 

interface (GUI) run on the console computer to enable expedited shim analysis. We 

performed studies on phantoms and human subjects. The shielded Z2D coil was used in 

all DS experiments. The benefits of DS were evaluated by comparing the residual B0 

inhomogeneity, image distortion and signal losses to those obtained by conventional 

image based static GS. 

Fig. 4.3.Comparison of unshielded and shielded coil in SS EPI imaging. Images 

obtained with the unshielded coil show increased ghosting artifacts. 

Z2 

Z2D 
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4.3.1 Phantom experiments 

A 17 cm diameter, spherical “Braino” phantom (GE Medical Systems, 

Milwaukee, WI, USA), containing doped water was used as a test phantom. Low 

resolution fieldmaps using a repeated GRE sequence with a known ∆TE (64 x 64 pixels, 

300 mm FOV, 25 slices, first TE/∆TE = 4/1 ms, slice thickness/gap = 2/2 mm) were 

obtained in the three principal orientations, with all shims set to 0 Amps. Using a region 

of interest (ROI) defined by all voxels with nonzero signal in every slice, slice-wise shim 

coefficients up to 2
nd

 order were calculated using the degeneracy analysis described in 

section 3.5.2 along with least squares minimization and fed to the external shim 

switching hardware module For GS, a single shim set was calculated with the same 

regression algorithm, for the entire ROI.  GRE image sets including underlying fieldmaps 

were then acquired at 128 x 128 pixel resolution using the same slice geometries, flip 

angle, readout bandwidth and echo times with both static and dynamic shims. Results 

were compared in terms of the slicewise standard deviations of the post shim fieldmaps. 

 

Results 

Figure 4.4 compares slice-wise B0 inhomogeneity following 2
nd

 order GS and DS 

in the spherical phantom. The standard deviation of the residual ∆B0 expressed in ppm 

was lower for DS than GS fieldmaps, for all slices and orientations, with the largest 

improvements observed in the coronal slices. Figure 4.4a shows the first, middle (13
th

) 

and last (25
th

) slice fieldmaps for all three orientations, illustrating the improvements 

made by DS. Figure 4.4b displays the simulated fieldmaps for the corresponding slices 

shown in Figure 4.4a. For all slices, the experimental and simulated fieldmaps matched 



 79 

closely validating the accuracy of the DS and GS implementations. Minor differences 

may arise from small errors in shim calibration and eddy currents in DS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The residual maps also showed strong 3
rd

 order field variations, as expected. 

Figure 4.5 shows the slicewise residual field standard deviation values, in all three 

orientations. 

 

4.3.2 Human experiments 

 All human volunteers provided informed written consent and were scanned 

under an institutional IRB approved protocol. Low resolution fieldmaps (64 x 64 pixels,  

 

Slice 

DS 

GS 

1 13 25 1 13 25 1 13 25 

ppm 

 
Sagittal 

b Simulated 

DS 

GS 

Slice 

  

1 1 13 25 13 25 1 13 25 

 

Coronal Axial 

a Experimental 

Fig 4.4. Spherical phantom fieldmaps in ppm of slices 1, 13 and 25 from 25 slice 

volumes for 3 principal orientations after 2
nd

 order DS and GS (a) Fieldmaps from 

experiments. (b) Fieldmaps from simulations. Fieldmaps from experiments and 

simulations match closely. Residual fields contain high degree of 3
rd

 order spatial 

harmonics as expected.  
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250 mm FOV, 25 slices, first TE/∆TE = 4/1 ms, slice thickness/gap = 3/1 mm for axials 

and 3/2 mm for coronals, total scan duration = 11.7 secs) were obtained for 12 subjects 

(10 axial and 4 coronal stack orientations, same orientation not repeated for any subject) 

with all shims zeroed. The fieldmaps were masked using skull stripping [Smith 2002] 

combined with an operator defined ROI to delineate the final shim region. Dynamic and 

global shimming coefficients were calculated and the shim switching module was loaded 

with the slicewise shim values. High resolution GRE images and fieldmaps (256 x 256 

pixels, same image geometry as the fieldmaps, TR/ first TE/∆TE = 820/20/1 ms, readout 

bandwidth = 1349 Hz/pixel, SENSE acceleration factor = 2) were acquired with DS and 

static GS conditions. The fieldmaps were evaluated by calculating the slice-wise standard 

deviations within the ROI. Since the distribution of the slicewise fields were quite often 

Axial

0

0.02

0.04

0.06

0.08

0.1

0.12

1 5 9 13 17 21 25

Slice Number

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 (

p
p

m
)

Dynamic Shimming

Global Shimming

Coronal

0

0.02

0.04

0.06

0.08

0.1

0.12

1 5 9 13 17 21 25

Slice Number

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 (

p
p

m
 )

Sagittal

0

0.02

0.04

0.06

0.08

0.1

0.12

1 5 9 13 17 21 25

Slice Number

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 (

p
p

m
) 

 Fig 4.5. Slice-wise spherical 

phantom fieldmap standard 

deviations in 3 principal 

orientations for the 25 slice imaging 

volumes; 2
nd

 order DS vs 2
nd

 order 

GS. Dynamically shimmed fields 

had higher homogeneity for all 

slices and orientations. 
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seen to be non-normal, in addition to the standard deviation, the range covering the 

central 80% of pixel values (generalization of the interquartile range to the central 80%, 

as presented by Koch et al [Koch 2006]) and the fraction of nonzero field pixels greater 

than 50 Hz (0.167 ppm, corresponding to ~2.5 pixel inplane displacement at 19.4 

Hz/pixel bandwidth) were also calculated within the entire multislice ROI as well as the 

whole brain.   

To evaluate distortions arising from low bandwidth acquisitions in the presence of 

field inhomogeneity, single shot gradient echo axial EPI images were acquired with the 

same geometry, TR/TE = 2755/29 ms, SENSE acceleration factor R = 1, 128 x 128  

pixels and phase encoding bandwidth = 19.4 Hz/pixel. The resulting images were rigidly 

registered using an inhouse rigid registration tool to the GRE images to eliminate bulk 

shifts arising from slice-wise base frequency (f0) offsets. Subsequently the images were 

non-rigidly registered to the GRE image using the multilevel Adaptive Bases Registration 

algorithm (ABA)
 
[Rohde 2003 ], which yielded complete deformation maps of the two 

echo planar source images indicating inplane pixel shifts. The registration was 

constrained to the phase encoding direction only. The standard deviation of the pixel shift 

deformation map was calculated to yield a measure of the amount of distortion in the 

echo planar images. This method gives a more complete picture of distortion, based on 

measuring the mutual information between images, thereby capturing distortion 

information from the entire image as compared to only the edges or a single profile. 
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Results 

Figures 4.6a and 4.6b display fieldmaps of five axial and coronal slices from different 

subjects. The shim ROI is the box shown in the 1
st
 DS slice image, propagated to all the 

slices. Most of the slices show large reduction in field variation. Figures 4.6c and 4.6d 

show the slice-wise standard deviation of the field within the ROIs. We observed larger 

gains in fieldmap homogeneity with DS compared with GS in the inferior axial slices and 

the anterior coronal slices. In these locations, higher pre-shim field inhomogeneity 

variation was observed owing mainly to large susceptibility gradients caused by air–

bone–tissue interfaces of the frontal sinuses and the ear canals. 

Results from single shot echo planar imaging (SS EPI) showing image distortions 

are shown in Figure 4.7. Five axial slices with the image outlines from corresponding 

high bandwidth structural GRE images, superimposed for reference are displayed. 

Globally shimmed images have larger pixel shifts and extend further beyond and within 

the reference GRE outline. Areas of distortion correspond closely to their underlying 

fieldmap values (Figure 4.6a), with high positive field deviations causing pixel shifts to 

the left and vice versa (phase encoding was left – right). DS reduced distortions 

considerably, especially in the frontal areas of the brain which have high distortion when 

static 2
nd

 order GS is employed. The above method of visualizing distortion provides only 

a qualitative estimate of the pixel shifts. Furthermore, it illustrates pixel shifts lucidly 

only for the edge pixels where the high bandwidth image edge may be referenced.  
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FIG.4.7. Single shot EPI geometric distortion comparison between 2
nd

 order DS and GS 

acquisitions for selected axial slices (slice numbers indicated between the top and bottom 

rows). The green outlines derived from high bandwidth FFE images (not shown) serve as 

references. DS shows lesser distortions compared to GS, especially in the locations 

pointed out the arrows.  

  

 Figures 4.8a, b and c show results obtained from the ABA registration 

technique employed for holistic distortion evaluation for one slice (slice 15 in Figure 

4.6a) with the corresponding GS and DS fieldmaps. Figure 4.8d shows the slice-wise 

standard deviation of the final pixel displacement maps, a measure of distortion obtained 

from the registration of the EPI images (phase encoding bandwidth = 19.4 Hz/pixel, 

phase encoding direction was right -left) to the high bandwidth low distortion GRE 

images. In the deformation maps that indicate the pixel displacement from the EPI to the 

GRE images, positive deformation values indicate pixel shifts to the right and negative 

values indicate shifts to the left. DS echo planar images had smaller pixel displacements 

in the phase encoding direction compared to GS images for all slices. Importantly, the 

deformation maps indicating pixel shifts correlated spatially to the underlying fieldmaps. 

Also, the magnitude of the pixel deformation agreed with the ∆B0 value at the given 

phase encode bandwidth (as per Eq. 2.8) validating the method and giving a good 

measure of distortion. 
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 Figures 4.9a and b give estimates of the field flattening in the entire multislice 

shim ROI and the whole brain after DS and static GS in terms of field standard deviation, 

the central 80% pixel value range and the fraction of nonzero field value pixels greater 

than 50 Hz (Mean +/- 95% confidence interval).  As shown, DS improved all three 

measures of field inhomogeneity over both the shim ROI and the whole brain.  
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4.4. Signal simulations and T2

*
 measurements 

 

The studies presented above were performed with the degeneracy analysis for 

slice-wise shim calculation as has been adopted in previous implementations of slice-

wise dynamic shimming reported in literature [Koch 2006, Poole 2008].  Our results are 

consistent with the results of these earlier studies, confirming the benefits of DS over GS 

in improving the in-plane field inhomogeneity over extended volumes at high field. 

However, the question of through plane inhomogeneity which is often a major 

contributor to the intravoxel signal loss has not been addressed adequately. Signal loss is 

related to the strength of the intravoxel gradients. In GS, the signal loss can be estimated 

directly from the measured fieldmap by calculating the voxelwise field gradients. 

However, for DS, the residual fields as measured above do not provide the estimates for 

the through slice field gradients. This is because the final residual multislice field no 

Fig. 4.9.  B0 field homogeneity measures (Mean and 95% CI) after 2
nd

 order DS and 

GS (12 subjects, 10 axial, 4 coronal) calculated within (a) the shim ROI and (b) the 

whole brain. Homogeneity measures include standard deviation, the central 80% 

pixel range and the fraction of nonzero field value pixels greater than 50 Hz (0.167 

ppm, corresponding to ~2.5 pixel inplane displacement at 19.4 Hz/pixel bandwidth). 
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longer retains the information on the through slice field present at the time of slice 

acquisition. One may be able to obtain that information by acquiring the entire volume 

once for every slice field setting. Such an approach is obviously not efficient. The 

estimation of the signal improvement therefore, has to be performed directly from the 

images or from T2
*
 maps obtained by multi-echo imaging. In this section, we present 

simulations and imaging studies performed to investigate this aspect of dynamic field 

correction. 

Slice-wise shim calculation with the degeneracy analysis assumes the through 

slice field gradient to be linear. This is because the application of a higher order shim for 

the through slice correction after the inplane field has been optimized disturbs the inplane 

field correction. A linear through slice correction may be acceptable in thin (how thin 

remains an unsolved question) slices, but as the slice thickness is increased, this 

assumption does not hold true. For thicker slices, the through slice gradient may well be 

of 2
nd

 or higher order in places. Consequently, the through slice field gradients may not 

be adequately compensated by this method leading to signal losses. Increase in the slice 

gaps exaggerates the problem as even though the through slice signal loss does not 

decrease in itself (since it depends on the voxel size), the estimation of the through slice 

field is compromised due to sparser sampling. 

One approach to overcoming this drawback is to optimize the slicewise fields 

based on the voxel signal itself. We have noted the optimization functions that can be 

used for this approach in section 3.4.2. In the following studies we have utilized the 

signal formulation in Eq 2.6 to maximize the intravoxel signal. The degeneracy analysis 

has not been included for the signal optimization. 
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Methods 

Fieldmaps were acquired for the whole brain in the axial orientation with the 

same parameters as reported previously for 3 subjects. (25 slices, 64 x 64 matrix, slice 

thickness/gap = 3/1 mm, first TE/∆TE = 4/1 ms).  Post shim fields were simulated as 

described earlier with 2
nd

 order DS and 2
nd

 order GS. For 2
nd

 order DS, two different 

optimization routines were employed 

1. Least squares calculation using the degeneracy approach assuming a 

linear though slice gradient. 

2. Nelder-Mead simplex algorithm (fminsearch in Matlab 2008a, Lagarias 

1998) for minimizing the number of pixels in the slice of interest 

having signal less than 95% of the peak signal. We used the 95% 

threshold arbitrarily. The peak signal is calculated from Eq 2.6 

assuming the intravoxel gradients and TE to be 0. The optimization 

was performed using all the 2
nd

 order shim terms, thereby allowing 2
nd

 

order through plane correction.   

 

The intravoxel gradient optimization routine was considerably more time consuming than 

the least squares field optimization.  It was also sensitive to starting conditions. To limit 

the convergence time required for the technique, two modifications were added. First, a 

least squares optimization using the set of 3 slices was performed prior to the gradient 

optimization to provide a rapid initial estimate for the shim values. Second, the Z0 term 

was not optimized as it did not contribute towards the field gradient and was calculated 

from the shim corrections later. These modifications reduced the time of convergence 
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from around 6 minutes to less than a minute for the 25 slice volume on a 1.6 GHz 

processor machine. 3 slice post shim volumes centered on the slice of interest were 

simulated for every slice, yielding a 64x64x25x3 post DS matrix. After shimming, 

slicewise signal maps were calculated from the above volumes using Eq 2.6 for TE = 10 

ms. 

T2
*
 measurements were performed in the scanner with each of the above 

shimming methods to provide an estimate of the signal loss. A multiecho GRE sequence 

was used for getting signal decay samples (TR/first TE/∆TE = 723/1.38/3 ms, 8 echoes, 

voxel size 3.9 x 3.9 x 3 mm). Voxelwise T2
*
 values were calculated by the scanner’s 

built-in algorithm [Dahnke 2005]. Post shim fieldmaps were also measured in the scanner 

at the same resolution to evaluate and compare inplane field improvements with the three 

methods.   

 

Results 

Figure 4.10 shows results from the signal simulations. Figure 4.10a shows 

normalized signal maps of six slices spanning the 25 slice volume for one subject. The 

signal optimized DS maps show higher signal compared to the two other shimming 

methods. DS with the degeneracy analysis (DS2_NDG) reveals greater signal loss in 

most slices, indicating that the 1
st
 order through slice gradient assumption may be 

inaccurate, at least at the given slice geometry.  Figure 4.10b and c show the histogram 

and cumulative sum plots of the signal maps over the entire 25 slice volume for pixels 

having greater that 80% of the maximum signal at the TE of 10 ms considered. DS by 
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signal optimization is clearly seen to yield a larger number of pixels with higher signal 

than both the other methods.  
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Fig. 4.10 Signal Simulation results. (a) Simulated signal maps at TE = 10 ms 

normalized to the maximum signal. DS2 with degeneracy analysis (top row), DS2 with 

signal optimization (mid row) and static GS2 (bottom row). Signal optimized DS2is 

predicted to considerably improve signal compared to DS2 with degeneracy analysis 

and GS2. (b) Histogram of whole volume signal maps, showing greater number of 

pixels with higher signal when slicewise signal is optimized (c) Cumulative histogram 

of the same. 
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Figure 4.11a shows T2
*
 maps obtained from the multiecho GRE sequence for slices 

shown in Figure 4.10a while Figure 4.11b show signal ratio maps calculated from the T2
* 

value as  

msteSS
Tt

10,/
*
2/

0 == −
 

Both the T2
* 

and the signal ratio maps show a reasonable correlation with the simulated 

signal maps in Figure 4.10a. For example, in slice 5 the frontal temporal lobes exhibit 

low signal in the simulated maps with GS, while the posterior areas have low signal in  
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Fig. 4.11 Maps of T2
* 

(top) and Normalized signal (bottom) obtained from the 

multiecho GRE data with the three shim types.  
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the DS2_NDG shim technique. These patterns are reflected in the corresponding 

measured T2
*
 and signal ratio maps. Figure 4.12 shows the cumulative T2

* 
 histograms of 

the three shim techniques upto 50 ms. A shift towards the right in the cumulative plot 

with the signal optimized DS method relative to the other two methods indicates that the 

least number of pixels lie below any given T2
* 

 value in the maps obtained with the 

former technique. 

 

 

 

 

 

 

 

 

 

Fig. 4.12 Cumulative histogram of the T2
* 

  values with the three shim techniques. 

 

 

 

 

 

 

 

 

 
 

Fig. 4.13. Post shim in-plane field slicewise standard deviations for the three methods. 
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Figure 4.13 shows the slicewise inplane field standard deviations obtained by the three 

methods.  The DS approach with the degeneracy analysis performs the best in all slices. 

This is expected as this approach optimizes the inplane field using data from the slice of 

interest only.  The signal optimized dynamic shim is seen to compromise on the inplane 

field correction. However, it is still seen to have higher in-plane residual homogeneity 

than the static GS method. In view of the signal recovered, a slight compromise on the 

inplane field and hence image distortion may be acceptable. With the advent of parallel 

imaging techniques with ever increasing acceleration factors and the availability of 

reasonably robust prospective and retrospective distortion correction methods, the 

problem of image distortion may be considered less critical than signal loss. This is 

underscored by the fact that increasing acceleration causes higher signal loss due to 

increase in their geometry factors even while improving distortions.  

The results of the T2
* 

measurements presented above show a slight increase in 

signal recovery when using the signal optimized DS method, compared to the other 

shimming methods. However, these results do not entirely agree with the simulated 

results which predict higher differences. One reason for this might be eddy currents 

caused by switching of all the higher order shims.  Further studies are required to perfect 

this optimization technique and accompanying data processing methods to reconcile the 

measurements with simulations and extract the maximum signal recovery. 

 

4.5. Shim induced eddy field measurements 

 Rapid switching of unshielded shims can generate severe eddy currents in the 

conducting structures of the magnet, which produce eddy current fields that degrade 
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image quality.  The first order shims driven by the gradient channels, are actively 

shielded, have pre-emphasis and therefore produce only minimal eddy currents. The 

higher order shims, however, can produce substantial same order and lower order eddy 

currents. We characterized the eddy currents produced by the switching of 2
nd

 and 3
rd

 

order shims using the method of Terpstra et al. [Terpstra 1998] adapted for shims instead 

of first order gradients. The method employs a stimulated echo acquisition mode 

(STEAM) imaging sequence shown in Figure 4.14 to selectively excite a bar along a 

given direction. [Frahm 1985, 1987] 

 

 

 

 

 

 

 

 

 

 

 

  

  

 A bar was excited in the spherical “braino” phantom, along the direction where 

the shim of interest produced the maximum field (e.g., 45
o
 about the Z axis for a XY 

shim). A 1A test shim pulse was turned on for 5 seconds and then turned off. Phase data 

RF 
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Fig 4.14. Stimulated echo imaging (STEAM) pulse sequence for shim localization in 

shim eddy current measurement. 

Non selective Selective 
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were collected after waiting exponentially increasing amounts of time (t in Figure 4.14) 

in every TR, with phase encoding gradient set to zero. (FOV 300 mm, bar length 300 

mm, bar width 20 mm, TE = 15 ms, Mixing Time = 100 ms, time after pulse switch off = 

5 + phase encode line number 
1.8

 ms, TR = 3000 ms). Phase measurement was performed 

once with the shim pulsed and once without, for reference data. Phase versus time maps, 

i.e. phase along the excited bar for every time point, were obtained by unwrapping the 

phase data spatially and subtracting the reference map. Every time point phase data along 

the bar from these maps were then fit to a combination of the switched shim and lower 

order shims i.e.  0
th

, 1
st
, 2

nd
 orders for the 2

nd
 order shims and 0

th 
through 3

rd
 order, for the 

3
rd

 order shims such that  
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Eddy field decay amplitudes and time constants for each of these field harmonics were 

then determined by fitting the data ( )()(0 tGandtB shim ) for each of these harmonics to a 

sum of up to 3 exponential decay functions representing short, medium and long time 

constants such that 

∑
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i
ieAtG     (4.2) 

 

Using a STEAM based imaging approach enabled the rapid and easy measurement of the 

shim induced eddy currents. Free induction decay based measurement approaches would 

require careful and tedious placement of small samples in space. Such a procedure would 



 96 

be error prone and time consuming. Alternatively, a water sample tube could also be used 

with a properly adjusted holding frame to do the same measurement. The imaging based 

approach is however considerably easier to implement, flexible and much faster. The 

measurement for a single shim channel including the reference scan could be performed 

within 10 minutes.  

 

Results 

 Eddy currents from shielded and pre-emphasized first order gradients were not 

probed as gradient switching for those terms are already compensated. Most 2
nd

 order 

shims were seen to produce decaying B0 and self eddy fields following shim switch, 

while XY and X2-Y2 shims produced additional minor 1
st
 order fields. Of the 2

nd
 order 

shims, the unshielded Z2 coil produced the largest B0 variations per Hz/cm
2
 of shim field.  

 

 

 

 

 

 

 

 

 

 Figure 4.15a and b illustrate frequency time maps obtained after switching off 

XY and Z2X shim pulse. The XY decay map reveals a predominantly 2
nd

 order 
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Fig  4.15. Frequency time maps of XY and Z2X shim induced eddy fields along the 
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component monotonically decaying while the Z2X map shows an oscillating 1
st
 order 

field. Figure 4.16a shows an example of a XY shim eddy field decaying with time after a 

step change of ±1Amp (±3.13 Hz/cm
2
).  Third order shims produced smaller B0 variations 

than 2
nd

 order shims, but they coupled very strongly with 1
st
 order gradients, with long 

time constants ranging from hundreds of milliseconds to a few seconds. Figure 4.16b 

shows the X gradient eddy decay observed after 1Amp switching of the Z2X shim, 

illustrating the long time required for the gradient field to decay. The longest time 

constants for the 3
rd

 order shim were found to be, in general, longer than those for the 2
nd
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Fig.4.16. Eddy current results (a): Eddy field decay after switch OFF of a XY shim pulse 

from 1 and -1A (3.13 Hz/cm
2 

/A). The shim component reduces to non significant levels 

around 1000 ms after shim turn off. (b) X shim eddy field produced by switching off the 

3
rd

 order Z2X field from 1A (-0.0155 Hz/cm
3 

/A) (c & d) Z2 and B0 eddy fields produced 

by switching the unshielded Z2 (-1.97Hz/cm
2 

/A) and Z2D (-0.58 Hz/ cm
2 

/A) coils from -

3Hz/cm
2 

to 0 Hz/cm
2
. Z2D coil is seen to produce much smaller field variations after 

switching than the unshielded Z2 coil as expected. 
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Table .4.1. 2
nd

 and 3
rd

 order shim eddy current Amplitudes and Time constants, given per 

Ampere of shim switch.  



 99 

order shims, except for the unshielded Z2 coil. Many of the eddy fields were also 

observed to have reversing polarities as seen in Figures 4.16b and 4.16d. Some of the 

measurements revealed a very rapidly decaying initial component with time constant less 

than a millisecond.  However, these signals were not perfectly reproducible, most likely 

owing to the slight shim DAC update time variation. With better control of the shim ramp 

and DAC update times it might be possible to characterize these signals more accurately. 

The unshielded Z2 shim coupled strongly to B0, producing large long time constant 

variations in the main magnetic field. Figures 4.16c and 4.16d show the decay of the self 

eddy field and B0 when Z2 and Z2D coils are switched off from a value of -3Hz/cm
2 

( 1.5 

and 5 Amperes for the Z2 and Z2D coil respectively). The Z2D coil generated a smaller 

and faster decaying B0 and self eddy fields compared to the Z2 coil, as expected. Table 

4.1 compiles the amplitudes and time constants from all the shims in our system, which 

can be used to calibrate eddy current compensation circuits. 

 

 
4.6 Orderwise comparisons of shim types 

 
 To investigate the relative benefits of increasing orders of global and dynamic 

shimming in whole brain experiments and also to identify shimming techniques that may 

yield improvements in static GS without the need for dynamic higher order shim 

switching hardware, a separate set of human experiments was conducted. In addition to 

standard global and dynamic shimming, a hybrid shim approach was employed in which 

1
st
 order shims were switched dynamically on top of a static global 2

nd
 or 3

rd
 order shim 

(GS2DS1 or GS3DS1). Shim calculation for this technique followed the standard GS 

calculation described previously with residual slicewise first order field corrections 
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calculated and added for each slice dynamically during the scan using the imaging 

gradients. Such a technique required no additional scans, an insignificant time penalty 

(additional 1
st
 order shims were obtained within ~10 seconds for a 25 slice volume on a 

1.6 GHz processor machine) and was expected to yield better shim performance than a 

static global shim, without the use of any higher order dynamic shim switching hardware. 

Such an approach could therefore be employed in any scanner. 7 shim types were 

investigated including GS1, GS2, GS2DS1, GS3, GS3DS1, DS1 and DS2 where the 

number refers to the order of the shim. Only DS2 required the RTS. GRE field mapping 

experiments as described previously were carried out in the axial and coronal orientations 

(axial n = 7, coronal n = 5, 128 x 128 pixels, 25 slices TR/first TE/∆TE = 320/10/1 ms, 

slice thickness/gap = 3/1 mm for the axials, 3/2 mm for the coronal, 250 x 250 mm FOV, 

SENSE acceleration factor = 2) for each of the 7 shim types. Fieldmaps were analyzed 

for shim performance with the full volume metrics described previously (field standard 

deviation, the central 80% pixel value range and the fraction of nonzero field value pixels 

greater than 50 Hz)  calculated over the whole brain. To evaluate the significance of 

differences in the 2
nd

 and higher order shims (GS2, GS2DS1, GS3, GS3DS1 and DS2) a 

Repeated Measures Analysis of Variance (ANOVA) was performed on the 5 groups, with 

post hoc paired t tests at α = 0.05. A conservative Bonferroni correction was applied on 

the post hoc tests to account for the multiple testing. We did not include the 1
st
 order 

shims in the test as most scanners already possess and routinely use 2
nd

 order static shims 

at the least if not 3
rd

 order. Moreover, 2
nd

 order shims have been previously shown to 

perform significantly better than 1
st
 order shims in many studies [Jaffer 1996, Zhao 2005, 

Koch 2006, Poole 2008]. 
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Fig .4.17. Results from Orderwise comparison of shims including 1
st
 and 2

nd
 order GS 

and DS (GS1,GS2,DS1,DS2) and two combined shims (GS2DS1 and GS3DS1) for 7 

axial and 5 coronal subjects. Axial: Right Column, Coronal: Left Column. 
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Results 

Figure 4.17 shows the results of shim order comparison in axial and coronal 

orientations. As predicted, the shim performance measured by the volume standard 

deviation, central 80% range and the fraction of pixels > 50 Hz over the whole brain  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2:  Post hoc test results showing statistical significance (* implies significant at α 

= 0.05 with Bonferroni correction) between individual shims with the three measures. 

 

improved with increasing shim order for both axial and coronal orientations and matched 

the simulation results presented in section. In both orientations 2
nd

 order DS performed 

the best, even when compared to 3
rd

 order GS while 1
st
 order GS had the most residual 

inhomogeneity. Greater improvements were observed in going from 1
st
 to 2

nd
 orders in 

the coronal orientation than the axial orientation for DS.  2
nd

 order GS performed better 

than 1
st
 order DS in coronal orientation according to all three measures.  

 The repeated measures ANOVA revealed significant differences in the set of 5 

shims types tested (p < 0.01). Table 4.2 shows the results of post hoc tests with 

Bonferroni correction. Importantly, the combined global and dynamic shimming 

Axial Coronal 
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techniques GS2DS1 and GS3DS1 implemented without any higher order shim switching 

hardware improved field homogeneity significantly over 2
nd

 and 3
rd

 order GS by almost 

all the measures. Greater improvements were observed in the axial orientation.  The 

highest improvements were observed in the inferior axial slices where strong linear 

residual fields post 2
nd

 order GS (Figure 4.6 a, c) were compensated for by the slicewise 

additional 1
st
 order dynamic corrections. Similar improvement was not achieved in the 

coronal orientation indicating the presence of primarily higher order residual fields post 

GS.  These results demonstrated that GS2DS1 and GS3DS1 were options which could 

improve field homogeneity over static GS2 and GS3 without the use of real time shim 

switching hardware.  Significant differences between DS2 and GS3DS1 (the best one 

could do without the use of time higher order shim switching) were seen in only two 

measures, the fraction > 50 Hz in the axial and standard deviation in the coronal 

orientation. Results shown in Figure 4.17 however suggested that DS2 did improve field 

homogeneity over GS3DS1 as quantified by all three paratmers.  

 

4.7 Artifacts in uncompensated DS 

In the previous sections, the results of experimental evaluation of DS on a high 

field imaging system have been presented. DS was shown to yield lower residual field 

inhomogeneity, lower distortion and higher residual signal than image based static GS 

These results are consistent with earlier studies of DS at lower field strengths. However, 

all the experiments reported here, including the SSEPI studies were performed using 

unshielded (except for the shielded Z2) and uncompensated higher order shims. While 

the present setting yielded artifact free images with the imaging parameters used, 
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specifically SS EPI at TR/TE = 2755/29 ms, 25 slices and SENSE acceleration factor = 1, 

pushing the limits of these factors led to severely increased ghosting and SENSE 

reconstruction artifacts.  

As TR was reduced, number of slices increased, SENSE factor increased and the 

range of pre-shim 0B∆  increased (leading to higher shim demands), ghosting artifacts 

became predominant, severely hampering image quality.  The artifacts were seen to be 

severe even with the use of the shielded Z2 coil. Examples of artifactual SSEPI 2
nd

 order 

DS images are shown in Figure 4.18.  
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Fig.4.18. Examples of ghosting artifacts 

observed in DS (spherical phantom: 4 

slices, head phantom: 1 slice, human 

head; 5 slices) when high SENSE 

factors (R) are employed. Image with R 

= 1 does not present artifacts.  
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The spherical phantom and human head images were acquired with a TR/TE = 

2000/22 ms, 37 slices. The SENSE acceleration factor was 3 for the human scan while 

the phantom scan was repeated with R = 2 and 3. A copper sulphate head shaped 

phantom was also imaged at acceleration factors of R = 1, 2 and 3.   These paratmers are 

typical of whole brain functional MRI studies, which otherwise might benefit greatly 

from DS. The severe artifacts seen here seriously limit the practical utility of non 

compensated DS. A closer look at the spatial structure of the artifacts reveals a similarity 

to SENSE reconstruction artifacts. [Pruessmann 1999, 2001]. The ghosting pattern is seen 

to increase in complexity with increasing reduction factor closely mirroring the image 

aliasing patterns in parallel imaging. 

The effect of TR on the intensity of the artifacts provides further clues to the 

underlying reason. Figure 4.19a shows SSEPI images of the head shaped phantom 

acquired with 2
nd

 order DS at TRs of 3, 4.3, 5.6, 6.8 seconds. The ghosting artifacts 

decrease with increasing TR, pointing to decaying eddy currents being the source. Figure 

4.19b displays the same slice with a static 2
nd

 order global shim and first order dynamic 

shim (which is compensated for eddy currents) acquired at a TR of 3 seconds.  The 

artifacts are considerably reduced in both cases, further reinforcing the hypothesis that 

the artifacts are caused by eddy current fields produced by rapidly switching shims. 

One of the possible reasons for the enhanced artifacts could be time varying eddy 

fields of various orders produced by dynamic shim switching leading to off-resonance 

and erroneous SENSE reconstruction. It has been shown that the SENSE reconstruction 

is ill conditioned in the presence of B0 inhomogeneities and in general non cartesian k 

space trajectories (that may be either intentional as in spiral or radial sampling or caused  
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by eddy fields), leading to structured noise amplification in the reconstruction                   

[Pruessmann 2001, Sutton 2001].  In general, the interaction of off-resonance with 

parallel imaging reconstruction has been described previously [Sutton 2001, 2003, 

Barmet 2005]. One technique that has been proposed in order to deal with B0 

inhomogeneities in SENSE is the iterative conjugate gradient reconstruction (ICGR) 

method. [Sutton 2003].  This technique models the reconstruction problem as a solution 

to a general ‘system matrix’ equation. The system matrix includes in addition to the 

Fourier encoding terms, the field inhomogeneity, coil sensitivities and in theory any other 

known signal perturbations. The ICGR method has been shown to correct for ∆B0 related 

artifacts in SENSE [Barmet 2004, 2005].  One important caveat however, is that the field 

inhomogeneity has to be known at the time of image acquisition.  In DS, due to rapid 

switching of shims, eddy current fields are changing continuously. In order to account for 

these changing fields in the ICGR method, one will have to perform real time mapping of 

Fig .4.19 (a) Artifacts decrease with increasing TR. Single slice is displayed with TRs 

in msecs  (b) 1
st
 order DS and Static global shimming do not produce artifacts.  
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higher order fields. Continuous field monitoring by multiple NMR probes has been 

shown to improve iterative image reconstruction. [Pruessmann 2005, Wilm 2009]. We 

have not conducted in depth modeling and characterization of the above artifacts. In 2
nd

 

and 3
rd

 order DS however, these artifacts remain truly debilitating and prevent us from 

applying uncompensated DS in most real world applications. 

Apart from advanced reconstruction techniques like ICGR, there are several 

approaches that vary in their cost and effectiveness that may be adopted to deal with the 

above artifacts. The approaches may be broadly classified into hardware and software 

based methods. The list below gives an overview of the possible solutions 

Hardware Based 

1. Fully shielded shim coil set: Using a fully shielded shim coil set similar to 

the gradients can reduce eddy currents substantially. Currently, only the Z2 

and Z0 coils are shielded in our scanner. However, this is an expensive and 

inefficient solution. More practically, improved shielding on only certain 

coils like the Z2 may provide acceptable performance.  

2. Full eddy current compensation on higher order shims: Eddy current 

compensation on the shim waveform control can also reduce eddy current 

effects to a high degree. This again is an expensive solution given the number 

of shim channels present in a typical higher order shim system
1
. 

3. Spatio-Temporal Field monitoring: It is also possible to monitor and correct 

for the eddy current fields in real time using an arrangement of NMR probes 

[DeZanche 2008, Barmet 2008, Wilm 2009] or using separate spherical 

                                                 
1
 We have recently acquired a second generation RTS, the MXV 14/4 from Resonance Research Inc, 

MA,USA that includes full eddy current compensation for higher order shims. 
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harmonic inductive detection coils in the bore [Edler 2008]. While still 

requiring considerable hardware resources, both of these techniques are more 

economical than the two above methods. However they have not been 

adequately validated invivo. 

Software Based 

4. Smarter switching strategies: Better optimized shim switching strategies may 

be investigated to minimize eddy current effects. These may include 

switching about a central value so that long time constant eddy currents are 

cancelled   [Wider 1994 , Alexander 1997] , applying shim switches 

immediately after the data acquisition for the preceding slice, optimizing the 

slice order for minimizing slice to slice shim switches or other similar 

techniques.  These techniques however in most probability will not be 

sufficient to fully eliminate the eddy currents. 

5. Using combined shims:  Using combined shim techniques such as GS2DS1 

or GS3DS1 described in section 4.6 that perform better than simple static GS 

can provide at least partial benefits of DS, without the complicating effects of 

eddy currents. 

6. Using software based eddy current compensation strategy: One can also 

employ software based eddy current compensation strategies that include 

correction of eddy current effects by post processing of raw data signal given 

the prior knowledge of the modified phase and k-space trajectories in the 

presence of eddy fields. [Ordidge 1986, Crozier 1992, Duyn 1998, Ma 2007]. 

These strategies however suffer from the basic drawback of most post 



 109 

processing methods, in that signal once lost due to eddy field intravoxel 

gradients may not be recovered. Furthermore, the eddy current calibration 

scans do not generally reproduce the effects observed in an actual scan, 

particularly those of the long time constant fields. We have proposed a novel 

prospective eddy field compensation method presented in the following 

chapter that overcomes the above drawback. 

In general, all the software based methods are more economical than hardware 

based methods. However, they suffer from being non-generalizable. In summary, 

some form of eddy current compensation will be necessary to realize the absolute 

potential of 2
nd

 and 3
rd

 order DS. 

 

4.8 Discussion 

 We have implemented higher order dynamic slice-wise B0 shimming on a 7 Tesla 

whole body MRI system, by incorporating an external hardware module to store shim 

values and access the shim supply, in addition to standard communication to the shim 

unit from the spectrometer. We have also presented a comparison of shimming 

techniques including hybrid approaches which do not require shim switching hardware, 

to evaluate the relative benefits of going to higher orders and to DS from GS.  Finally we 

have presented 2
nd

 and 3
rd

 order shim induced eddy current measurements. 

 Using the RTS module allowed us to access the shim supply and partly 

circumvent the hardware limitations that make DS difficult. The shim amplifiers 

nevertheless were relatively low bandwidth with long settling times (+/- 15 ppm of 

nominal full scale within 2 ms rated) when connected to the inductive shim coil loads in 
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the magnet. In addition, the current RTS module added 5 - 8 ms of variable DAC update 

time. As a result, a 10 ms time delay had to be added after each trigger before MR signal 

excitation, which added considerable time to the GRE scans. This settling time also 

depended on the magnitude of the shim switch. Therefore, one might be able minimize 

the time penalty in the GRE DS by extending the delay for the largest shim switches 

while minimizing the delays for the other switches.  Our system did not allow extending 

the ramp time of the shims which may help to reduce the amplifier settling noise, very 

short time constant eddy currents and shim acoustic noise. A final goal in this regard 

would be to minimize DAC update and amplifier settling times and providing fast, 

flexible control of the shims via the spectrometer and software objects in the pulse 

programming environment. In general, to minimize amplifier settling and eddy current 

effects, the shim switch can be made as much before excitation as possible, for instance, 

just after the acquisition of the preceding slice.   

DS showed considerable improvements over static GS, reflected in terms of 

fieldmap homogeneity, in plane geometric distortion. DS yields the greatest benefits over 

GS when the imaging volume is relatively large and the inhomogeneity changes 

substantially over the volume. For smaller volumes with more uniform homogeneity 

profiles, the improvements obtained by DS over GS are relatively small. We have 

compared DS to an image based static GS instead of a projection based shimming 

method, such as FASTMAP. In our experience, projection based methods did not 

perform well in whole brain studies at 7 Tesla, when the ROI was extended into the 

frontal and inferior regions of the brain. The reason for this was not investigated, 

although we suspect that signal voids in these areas of the brain cause errors in estimating 
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the shims. Also, when calculating shim coefficients, fieldmap thresholding is an often 

overlooked but critical step, which can otherwise lead to large errors and increased 

variation in shim values. For example, in the brain fieldmaps, it is essential to exclude the 

scalp field information. It was also found necessary to constrain the shim calculation to 

limits based on shim amplifier ratings, especially for the weaker Z2D. Constraining the 

shim calculation also reduced variations in shim values from slice to slice, leading to 

smoother shim transitions and reduced eddy current related artifacts.  

The benefits in signal recovery by DS as evident from the T2
*
 maps were not 

significant when compared to GS, even though large improvements were predicted in the 

simulations. DS by optimizing the signal however was seen to improve signal recovery 

over the degeneracy method. Future studies should be focused on investigating these 

differences between the predicted and measured signal.  

 In our measurements, higher order unshielded shims produced strong B0, self or 

cross term eddy fields, with multiple decay time constants varying from milliseconds to 

seconds. Of the 2nd order shims, the Z2 unshielded channel had the strongest eddy 

currents with the longest time constants as was also observed by Koch et al.
 
[Koch 2006]. 

In the imaging experiments, the tesseral second order shims most often operated with 

interslice switches of much lesser than 10% of maximum (1 Amp), both on humans and 

phantoms leading to minimal eddy field effects from those unshielded shims. However 

the Z2 harmonic was observed to contribute significantly to the field corrections, 

rendering it indispensable. The presence of the actively shielded Z2 shim coil in our 

scanner was absolutely critical in limiting the eddy currents and image artifacts in SSEPI. 

Our results with eddy current measurement and imaging comparing Z2 and Z2D 
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precluded the use of an unshielded Z2 coil in DS (Figure 4.3). Careful thresholding of the 

fieldmaps to remove erroneously unwrapped field regions and spike noise pixels before 

calculating the inplane and the through plane shims, removing scalp and extraneous field 

information and constraining the shims helped considerably in reducing the slice to slice 

shim variations. These steps in conjunction with using the Z2D shim coil were critical in 

allowing SS EPI images without considerable ghosting artifacts with the parameters used. 

The use of a Z2D coil however came at the cost of reduced shim strength, -0.58 

Hz/cm
2
/A vs -1.97 Hz/cm

2
/A for the unshielded Z2 coil. In future implementations of 

DS, both the Z2 coils will be used simultaneously. The unshielded coil will provide a 

constant value to which slicewise Z2D changes will be added, increasing the Z2 dynamic 

range. It is important to note that using the Z2D coil does not completely eliminate eddy 

fields from Z2 switching, especially in the B0 channel as observed in our measurements. 

Improvements in shim coil shielding techniques and addition of shim eddy current 

compensation will improve DS in the future. The eddy current values measured here may 

be used as initial estimates for adjusting a compensation system. The pre-emphasis shim 

currents will produce their own eddy current fields, which have to be compensated in an 

iterative manner. Our measurements did not separate any non-eddy current effects that 

can also result in field changes i.e., current non-constancy effects or vibration induced 

emfs that are not compensated for by the shim amplifiers [Nixon 2008].   

Third order shims, especially Z3, Z2X and Z2Y, were seen to produce very strong 

first order fields with long time constants in the Z, X and Y directions respectively, when 

the shims were switched dynamically. The magnitudes of these first order fields decayed 

with time and scaled with the switch magnitude of the 3
rd

 order shims. These fields were 
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different from static interactions between the 3
rd

 and 1
st
 order shims, which were, 

themselves quite large (e.g. -22.57 Hz/cm of X per Hz/cm
3
 of Z2X, -7.08 Hz/cm of Y per 

Hz/cm
3
 Z2Y). The absence of an effective compensation system for these first order 

decaying eddy fields hindered us from implementing 3
rd

 order DS. Compensation of 

these strong linear eddy fields may not be trivial however, as it might entail interfering 

with the gradient signal channels. 

 

4.9 Conclusion 

 Dynamic slice-wise shimming has been implemented on a 7 Tesla high field 

imaging system and has been shown to produce better field homogeneity compared to 

static GS method in phantom as well as human whole brain studies. The results 

demonstrate the feasibility and benefits of DS in high field imaging. Larger benefits were 

observed in improving inplane distortion than reducing intravoxel signal losses. Future 

studies should focus on improving signal levels while perhaps compromising to some 

extent on inplane distortions. The use of a shielded Z2 coil was found to be necessary for 

obtaining ghosting artifact free images with DS.  2
nd

 and 3
rd

 order unshielded shims were 

seen to produce long time constant eddy currents of self and lower orders. Finally, a 

combination of 2
nd

 and 3
rd

 order global and 1
st
 order dynamic shims was also found to 

improve field homogeneity over 2
nd 

and 3
rd

 order GS, but not over 2
nd

 order DS

 Eddy current effects severely limited the application of higher order dynamic 

shimming in invio studies. Image quality was severely hampered in pulse sequences 

typically used for whole brain fMRI studies with high SENSE factors. If 2
nd

 and 3
rd

 order 

DS is to be used in real world applications utilizing low bandwidth sequences, eddy 
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current compensation will be necessary. Further work is also needed in optimizing shim 

switching strategies, shim coil shielding, and software control of shims for a more robust 

implementation of DS to maximize its benefits. 
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CHAPTER V 

 

SOFTWARE BASED PROSPECTIVE COMPENSATION OF  

SHIM INDUCED EDDY FIELDS IN STEADY STATE 

 

 

 
5.1. Introduction 

 

The performance of DS is severely limited by eddy currents and resulting eddy 

fields (fields produced by the eddy currents) induced by the switching of 2
nd

 and 3
rd

 order 

unshielded shims. Eddy currents flow in the conducting structures of the magnet and 

cause severe field deviations leading to signal losses, distortion and ghosting in imaging 

[Ahn 1991 1991a, Hughes 1992]. These fields are time varying and decay with multiple 

time constants. In higher order shims, the time constants range from a few milliseconds to 

several seconds as observed in our measurements (Table 4.1) and previously reported [De 

Graaf 2003, Koch 2006]. Traditionally, eddy current effects produced by first order 

gradient switching have been minimized by actively shielded gradient designs [Mansfield 

1986] and residual eddy current effects compensated by using shaped current waveforms 

in the gradients [Jensen 1987, Glover 1987] as introduced in section 2.7.1. However, the 

shielding and hardware compensation approaches, when extended to shims, require 

extensive hardware additions that are typically not available for higher order shims.  

In their studies of higher order DS, de Graaf et al. in 2003 developed an analog 

Z2-Z0 compensation unit to correct for the time varying Z0 fields produced by the 

unshielded Z2 shim coil switching [de Graaf 2003]. Koch et al [Koch 2006] extended this 

to include all the 2
nd

 order shim eddy currents. However, the inclusion of pre-emphasis 

on the shims reduced the available shim strengths considerably. In particular the 
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important Z2 shim was reported to be weakened by up to 75%. Although most 2
nd

 order 

shims in our whole brain DS experiments were seen to operate at less than 25 % of peak - 

peak levels, the 3
rd

 order shim demands observed in simulations often exceeded 75% of 

available range. Therefore, shielding may not be an option for the already weak 3
rd

 order 

shims and for potential higher order shims. Compensation for all the higher order shims, 

i.e. 5 second order, 7 third order channels and additional Z0 channels using multiple time 

constant circuits (Figure 2.11a) will require complex and expensive hardware and 

calibration. Furthermore, compensation of 1
st
 order eddy fields produced by 3

rd
 order 

shim switching may potentially involve delicate adjustments to the gradient current 

drives and existing gradient eddy current compensation (ECC) systems which should be 

avoided whenever possible for the sake of gradient stability.  

Some scanners include certain shims that are actively shielded, most commonly 

the Z2 shim (as was the case in our 7 Tesla Philips system). Although this helps to 

mitigate the eddy current problem, actively shielded shims still require compensation for 

perfect correction (Figure 4.16 c & d). More often than not, only one or two shims have 

such active shielding. Active shielding of shims also requires additional hardware that 

includes the outer shield coil that takes up bore space, separate control boards similar to 

those of the first order gradients, dedicated communication channels and software object 

controls for precise dynamic operation of the actively shielded coils. Finally, active 

shielding also reduces the available strength of the shim coil. Overall, hardware based 

compensation of higher order shim induced eddy currents by either method can prove to 

be complicated, inefficient and very expensive.  
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In this chapter, we present a novel method of software based prospective eddy 

field compensation (EFC) applied to higher order multislice DS. The technique is 

independent of the object scanned, slice-wise shim amplitude and dynamic shim 

switching pattern. It does not require the use of extra hardware for ECC or shim 

shielding. The method is based on an assumption of reaching an eddy field steady state 

during a DS imaging sequence. This method requires a single one-time calibration scan 

that characterizes the eddy field behavior of the shim system and derives correction 

factors that are then used to prospectively correct for the eddy fields produced during any 

DS acquisition.  

 

 
5.2. Effects of eddy fields from higher order shims 

 
The measurement of eddy currents in our 7 Tesla scanner has been presented 

previously in section 4.5.  These results showed the step response of individual shims, 

sampled in time. The time constants and amplitudes were measured from the step 

response by multiexponential fitting. It is interesting however to visualize the effect of 

the shim switching induced eddy fields in an actual multi-slice DS experiment where the 

shims are stepped continuously and hence result in the linear convolution of the 

switching pattern and the step response. 

GRE fieldmapping experiments with DS were performed with a copper sulphate 

human head shaped phantom.  In the first experiment, only the Z2X 3
rd

 order shim was 

switched dynamically for 11 axial slices with shim values of [ 2.96,2.96,1.48,1.48,0,0,     

-1.48,-1.48,-2.96,-2.96,0] mT/m
3 

. Two other fieldmaps were acquired, one with all slices 

set to Z2X = 2.96 mT/m
3
 and one reference map with all shims set to 0 mT/m

n 
.  In the 
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second experiment, full 3
rd

 order DS with fieldmapping was performed on 9 slices of the 

head phantom over a range of TRs, specifically , 168, 600, 1200, 2000 and 3000 ms.  

Figure 5.1 shows the fieldmaps acquired from the above experiments. Figure 5.1a 

shows odd slices from the first experiment, after reference subtraction. In the case where 

the Z2X shim is kept at a constant value of 2.96 mT/m
3 

, the field seen is as expected, 

showing 3
rd

 order Z2X variation. However in the case where the shim is switched 

between different values, very strong linear fields in the X (up-down) direction are 

observed in the slices, which are not explained by the applied Z2X value.  
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FIG 5.1. Fieldmaps showing fields generated by dynamic switching of shims.(a) Effect 

of varying vs same Z2X  shim values (b) Effect of increasing TR while Z2X switching. 
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The strengths of these fields are also not explained by the static interaction of 

Z2X with the X gradient, which is relatively minor (Table 3.1). In addition, the fact that 

small linear fields are observed in the 5
th

 and 11
th

 slices where the Z2X value was 0, 

implies that there is a slice to slice interaction in time, pointing to presence of slowly 

decaying eddy fields.  

Figure 5.1b shows the fieldmaps for three slices from the 2
nd

 experiment. One can 

see strong linear X fields produced by the interaction of Z2X and X through the different 

TRs. However, the strength of this field is seen to vary for the same slice with TR. This 

evidence strongly suggests that these interactions are produced by eddy fields that vary in 

time and therefore depend on the time between the slices, i.e. the time between shim 

switches. If these interactions were from static cross terms, they would be expected to be 

fixed with time.   

 

5.3. Theory: Steady state model of dynamic shim induced eddy fields 

In our scanner, switching of the 2
nd

 order shims were seen to produce strong self 

and 0
th

 order eddy fields while switching of the 3
rd

 order shims are seen to produce self, 

0
th

 and very strong 1
st
 order fields as shown above and in section 4.5. Other DS studies 

with 2
nd

 order shim switching have also reported similar interactions [Koch 2006]. Some 

of the dominating interactions observed in our measurements were the unshielded Z2 

shim coupling to Z0, Z2X coupling to X and Z2Y coupling to Y. These fields had large 

decay time constants of up to a few seconds and superimposed on the existing static field 

interactions. Dynamic higher order shimming using unshielded shim coils was found to 

be unfeasible when ECC is not used.  
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For our method of higher order shim EFC, we make three assumptions. First, we 

assume that in a multi slice DS GRE experiment, the time varying eddy fields reach a 

steady state in which the magnitudes of these fields do not change from shot to shot for 

the same slice. This is a reasonable assumption in a DS multi-slice GRE experiment 

where the same set of shim values are applied cyclically and switched at a fixed time 

interval (which is usually the repetition time (TR) / number of slices, irrespective of the 

actual slice order). Second, we assume that the eddy fields produced depend not only on 

the most recent switch of higher order shim but also on the previous switches. Third, we 

ignore any change in eddy field magnitude during the GRE data readout window. Given 

the high sampling bandwidths in GRE imaging and relatively long time constants of the 

higher order shim eddy currents, this is reasonable. It follows then, that in an n slice DS 

experiment we can write: 
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∆G is a n×n-1 matrix of the slice wise shim differences such that ∆Gij = Gi – Gj  where 

Gi is the shim setting for slice i and C is a n-1 element vector of correction factors which 

gives the contributions of the n-1 recent shim switches to the eddy field of any harmonic 

prevailing during acquisition of any slice. Therefore, in a regular multislice DS GRE 

experiment where shim values are updated in every slice, C1  is the contribution of the 

most recent shim switch to the eddy field in any slice, C2  is the contribution of the next 

recent shim switch and so on.  

 Eddy currents are generated when conducting structures are placed in the vicinity 

of time varying magnetic fields such as those generated by dynamically switched shims. 

By Faraday’s law, the magnitude of the currents will depend on the rate of change of the 

magnetic flux and the geometry and impedance of the shim coils and conducting 

structures. The time constants with which the eddy currents in the conducting structures 

of the magnet decay depend on the physical properties of the structures, such as their 

size, impedance and temperature [Ahn 1991]. Therefore, the eddy currents and hence the 

eddy fields produced in the magnet for any particular shim switching pattern should 

remain the same regardless of the object imaged. Furthermore, since the correction factor 

vectors C specify only the relative contributions of the recent shim switches to the eddy 

field, C is also independent of the actual shim amplitudes. 

 C may be estimated for the eddy interaction between any pair of shim harmonics 

by using just a one time calibration scan. For example, the time varying Z0 field 

produced by Z2 shim switching yields a vector for Z2 to Z0 interaction denoted as 

C_Z2_Z0, which remains invariant with varying shim switching patterns, amplitudes, 

slice geometry and imaged object, for a fixed time between shim switches (∆tss) and 
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number of shim switches. Therefore, for that particular ∆tss, C can be used to calculate 

the eddy fields expected for the given ∆G to prospectively compensate for them, 

assuming that the structures in the magnet in which the eddy currents flow and their 

relevant properties remain the same. Therefore, a complete one time calibration of all the 

shim eddy interactions for a particular multislice DS experiment parameterized only by 

∆tss yields a set of C vectors which can compensate for all eddy fields without the use of 

any hardware eddy current compensation. For a standard higher order shim system with 

12 higher order shims and 16 channels in all (including X, Y, Z and Z0) for example, the 

entire matrix of correction factors including self and cross terms would be an n-1x16x16 

array.  

The above formulation can be extended to a range of ∆tss and slices to yield C 

vectors for a complete generalized solution. As ∆tss and the number of slices change for a 

particular ∆tss, the steady state is set up differently which results in different correction 

factors.  

In the following sections, we present the experiments performed to prove the 

invariability of C to various experimental parameters including the sample, the actual 

shim switching pattern and shim values. The C vectors derived from phantom calibration 

scans were applied in phantom and human DS experiments. Results from 2
nd

 and 3
rd

 

order multislice GRE and single shot EPI DS experiments performed on phantom and 

humans without the use of any hardware based higher order eddy current compensation 

or shim shielding are presented. 
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5.4 Generation of steady state   

To investigate the formation of eddy field steady state during a DS experiment, a 

25 slice, 30 dynamic, single shot EPI scan was performed on a 17 cm diameter spherical 

doped water “braino” phantom with complete 2
nd

 order DS and with static 2
nd

 order 

pencil beam projection based shim (PB2).  The phase encodes were turned off and raw k 

space data was acquired. No dummy scans were employed. The first few dynamics 

images therefore were expected to be acquired under the transient eddy fields, converging 

to a steady state. Figure 5.2 shows the difference between the first 7 and the 8
th

 dynamic 

raw phase data for slice 1, for both the shim types.  

 

 

 

 

 

 

 

 

 

In the static shim case, the dynamic to dynamic phase variations are minimal, as 

expected.  However in the DS case, an initial phase transient is clearly seen most likely 

corresponding to the slowly decaying eddy fields reaching a steady state with continuous 

shim switching. These results implied that it required about five dynamics in the DS case 

to develop an eddy field steady state. A more rigorous modeling analysis based on 

DS2 

Static 

PB2 

    1                       2                     3                     4             5                 6                       7             rad 
 

FIG 5.2. Generation of steady state. Raw k space phase difference of dynamics 1-7 

from the 8
th

  dynamic of an EPI scan showing steady state generation when using 2
nd

 

order DS in comparison to static 2
nd

 order Pencil Beam shim where phase variations 

between the dynamics are minimal. 
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convolution of the eddy field characteristics may yield a better understanding of the 

steady state buildup.   

 

5.5 Calibration scans and reproducibility of correction factors 

 Calibration scans were performed on the shim system to obtain C vectors for all 

eddy field interactions at a ∆tss = of 18.7 ms and also to test for invariability of C with the 

sample, actual shim values and switching pattern. The scans were performed on different 

days on two different phantoms, a spherical and a human head shaped phantom. 

Multislice GRE DS fieldmapping experiments were performed with a ∆TE of 1ms. 

Individual 2
nd

 and 3
rd

 order shims were switched in different arbitrary patterns for 9 slice 

(Figure 5.3a, 4 Z2Y shim patterns, 3 in head phantom, 1 in spherical phantom; 1 Z2X 

pattern, TR/first TE/∆TE = 168.0/4.4/1.0 ms, slice thickness/gap = 2/2 mm) and 25 slice 

(Figure 5.3b; 3 unshielded Z2 patterns, spherical phantom, TR/first TE/∆TE = 

467.0/4.4/1.0 ms, slice thickness/gap = 2/2 mm) axial scans. All other shims were set to 

0.  
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Reference fieldmaps acquired without any shims applied were subtracted from the above 

fieldmaps. The Z0 offsets expected due to slice position were also subtracted. Shim 

decomposition up to 3
rd

 order was performed to identify the harmonics that correlated 

strongly with the switched shim pattern (cutoff r
2
 = 0.9). The slicewise coefficients of the 

relevant harmonics were then used as Ge in Eq.5.2 to calculate ‘initial’ C vectors. These 

‘initial’ C vectors for each particular interaction, for example, C_Z2Y_Y, i.e. changes in 

the Y shim due to switching of Z2Y, obtained from different calibration scans were 

averaged and fit to a second order polynomial to yield the final C vectors.  

 For calculating the C vectors for the ‘self’ shim interactions, i.e. the eddy fields in  

the shim harmonic that is switched, the 2
nd

 order shims (unshielded Z2, shielded Z2, ZX, 

ZY, X2Y2 and XY) were switched individually in 25 slice axial GRE spherical phantom 

fieldmapping scans with the second switching pattern shown in Figure 5.3b (or its 

inverse). The applied shim values, i.e. the intended ideal fields were subtracted from the 

actual values obtained for that harmonic from fieldmap shim decomposition. This yielded 

the field deviations from ideal which we attributed to the eddy current fields as Ge. These 

slicewise difference fields were then used as Ge in calculating C for these interactions. In 

this manner, the entire n-1x16x16 correction factor matrix describing the interactions for 

whole shim system for a particular ∆tss was populated.  

 Figures 5.4a and 5.4b demonstrate the invariability of the C vectors with the 

imaged object and the shim switching pattern for a particular ∆tss. Figure 5.4a shows four  

Z2Y-Y C vectors obtained from four different calibration scans with the shim switching 

patterns given in Figure 5.3a using the spherical and head phantoms, showing high 
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reproducibility.  Figure 5.4b illustrates the Z2_Z0 C vectors obtained from separate 25 

slice calibration scans with different shim switching patterns shown in Figure 5.3b. The C  

 

 

 

 

 

 

 

 

 

 

vectors show a very high degree of agreement, irrespective of the shim amplitudes, 

switching patterns, phantom used and day of scanning. The high degree of repeatability 

in the C vectors observed here is critical to the successful operation of this method.  

 

Adjustment of C vectors by inclusion of static cross terms 

 The phantom calibration scans yielded C vectors that described the interaction 

between any pair of shims. However, the C vectors calculated according to Eq. 5.2 were 

observed to predict an estimate of Ge having a constant offset from the actual Ge for all 

slices. Empirically, this offset was observed to be the mean value of the switched shim 

over all the slices multiplied by the static interaction factor between the relevant pair of 

shims. Therefore, in steady state, the eddy fields were observed to superimpose on this 
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slicewise static interaction level that was constant for all slices. To account for this offset, 

an additional unity column was added to ∆G making it an n x n element matrix, where n 

is the number of slices and C was changed to an n x 1 element vector with the final 

element specifying the value of the static cross term. With this adjustment, the calibration 

process not only accounted for the time varying eddy fields but also the static cross terms 

between the shims. These modified C vectors hence produced were used in all our 

experiments for eddy field compensation including the phantom and human scans. 

 

5.6 2
nd

 and 3
rd

 order DS studies with steady state eddy field corrections 

The correction factors obtained from the calibration scans were used for 

prospective correction of the eddy fields in complete 2
nd

 and 3
rd

 order DS experiments in 

both phantoms and human heads. Both GRE fieldmapping and single shot EPI scans were 

performed using unshielded shims, with and without the corrections. The following 

sections present the experiments performed and results obtained. 

 

5.6.1. Phantom experiments: Self shim eddy field correction 

 To validate the ‘self’ channel correction, the calibration scan experiment was 

repeated. However, the ‘self’ C vectors derived as described before were now used to 

calculate the field deviations expected due to the self eddy fields using Eq 5.1 based on 

the ∆G matrix calculated from the intended shim values. These corrections were used to 

prospectively adjust the slicewise individual shim value. The shielded Z2 shim was not 

adjusted as it compensated intrinsically for the self eddy fields produced and hence 
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served as a reference for comparing the performance of the unshielded Z2 coil with and 

without correction. 

 Figure 5.5 (a–d) shows the measured values of the 2
nd

 order tesseral shim 

harmonics (XY, X2-Y2, ZY and ZX) obtained from the 25 slice spherical phantom scans 

before and after applying ‘self’ correction. The prescribed values are also plotted. In the 

absence of correction, the eddy fields in the self channels prevent the shims from 

reaching the prescribed level. As a result, incorrect slicewise shim fields are observed.  

With correction, the fields are adjusted to closely match the slicewise prescribed values. 

The field errors observed without corrections should not be confused with calibration 

errors. 
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 Figure 5.6 compares the performance of the shielded Z2 coil without correction to 

the unshielded Z2 coil with correction. The shielded Z2 coil follows the prescribed field 

closely, as expected. Without correction, the field from the unshielded Z2 coil is severely 

compromised by the self eddy fields. The initial slices are maximally influenced owing to 

the largest switch in shim values from the last to the first slice (ascending non interleaved 

slice order was used). After correction, the slicewise fields agree with the ideal values 

and the ones produced by the shielded Z2 coil Therefore, the Z2_Z2 C vector gives us a 

entirely software based correction for the self eddy field produced by the unshielded, 

uncompensated Z2 coil. These results indicate that one may be able to produce 

unshielded shim coil performance similar to that of a shielded coil very easily by 

prospectively applying the steady state software based corrections.    
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5.6.2. Complete DS GRE Fieldmapping experiments: Phantoms 

 For validation of the correction technique for complete 2
nd

 and 3
rd

 order DS, 9 

slice spherical phantom (64 x 64, TR/first TE/∆TE = 77.0/4.4/1.0 ms, slice thickness/gap 

= 2/2 mm) and 25 slice head phantom (64 x 64, TR/first TE/∆TE = 215.0/4.4/1.0 ms, 

slice thickness/gap = 2/2 mm) axial fieldmaps were obtained. All shim currents set to 0 

mT/m
n
. Using a region of interest (ROI) defined by all voxels with nonzero signal in 

every slice, slice-wise shim values up to 2
nd

 order ( for the spherical phantom) and 3
rd

 

order (for the head phantom) were calculated. The slicewise shim eddy field corrections 

for all the shim channels were obtained using the complete correction factor matrix 

derived from the calibration scans and prospectively added to the shim values. 

Dynamically shimmed GRE based fieldmaps were then acquired at 128 x 128 pixel 

resolution with and without the eddy field corrections at a ∆tss of 18.7 ms, which matched 

the ∆tss of the calibration scans.  

 Figure 5.7 illustrates the corrections obtained in complete 2
nd

 and 3
rd

 order 

phantom DS experiments. Figure 5.7a shows 9 axial slice fieldmaps acquired of a 

spherical phantom using 2
nd

 order DS, with and without eddy field corrections. The 

fieldmaps without eddy field corrections included conventional static Z2 to Z0 correction 

of -2.08 ppm/mT/m
2
 of Z2 for all slices. The fieldmaps without the steady state 

corrections however show residual field offsets that are different for different slices and 

are not compensated by just the static correction. These offsets caused by eddy fields 

from Z2 switching are compensated in the scans with the steady state correction. The 

steady state correction includes the static interaction correction as well, which is 

inherently captured in the modified C vector.  
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 Figure 5.7b shows selected slice fieldmaps from a 25 slice head phantom scan 

using 3
rd

 order DS. In all slices, severe field gradients caused by 3
rd

 to 1
st
 order eddy field 

interactions are corrected using this method, without any hardware ECC or individual  

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

prescanning. The resultant fieldmaps are well shimmed. This indicates that 3
rd

 order DS 

is possible without using hardware ECC or shielded shim coils. 

 

5.6.3. Complete DS single shot EPI experiments: Phantoms 

 

 In order to validate the corrections in low bandwidth imaging, single shot GRE 

EPI scans were performed on the spherical phantom using the T/R volume coil. 25 axial 
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FIG. 5.7. Correction results from 2
nd

 and 3
rd

 order DS phantom experiments. (a): 

Fieldmaps in ppm from a 2
nd

 order DS scan, without and with Z2 to Z0 eddy field 

correction. (b) Fieldmaps from 3
rd

 order DS scan, without and with Z2X to X and Z2Y 

to Y corrections. In all cases severe field offsets and gradients are corrected. 
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slices were acquired with the same scan geometry as the GRE scans, with TR/TE = 

1420/23 ms and no SENSE acceleration, giving a ∆tss of 57 ms. The scans were 

performed with 2
nd

 and 3
rd

 order DS, with and without the steady state field corrections. 

The scans without the eddy field corrections included the static cross term corrections. 10 

dummy scans were used to allow the eddy fields to reach a steady state.  

 It was necessary to perform an offline reconstruction to eliminate severe FOV/2 

ghost artifacts, most likely caused due to short time constant eddy currents distorting k- 

space sampling. For this purpose, the scanner inbuilt first order phase correction was 

found to be inadequate in correcting for these artifacts. For this purpose, an established 

phase correction method using the odd and even echo lines of the phase measurement 

scan was used [Bruder 1992, Hu 1996]. A phase calibration preparation was run on the 

scanner prior to the actual EPI scan.
1
 The preparation stage consisted of two scans similar 

to the actual scans, but without any phase encodes blips. The two scans had different TEs, 

the difference being equal to dwell time in the phase encode direction. Therefore, the 

even numbered echoes of the first scan occurred at the same time as the odd numbered 

echoes of the second scan. This ensured that those two echoes experienced the same 

degree of eddy fields. Care was taken to ensure that the slicewise dynamic shim values 

were also applied during the echo phase offset determining preparation stage.  

 Complex raw data was extracted for the actual scan, along with the echo phase 

calibration data for odd and even lines of k-space. After inverse Fourier transforming the 

calibration data along the readout direction, phase offsets between pairs of consecutive 

lines were determined by multiplying the phase from odd calibration lines with the 

conjugate of the phase from even calibration lines in the k-t space. These alternate line 

                                                 
1
 The Philips scanner runs a phase calibration preparation scan as its default setting for all EPI scans. 
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phase correction factors hence obtained were then multiplied to the phase of the k-t 

transformed raw data to yield a phase corrected raw data set. Following this, inverse 

Fourier transform was performed along the phase encode direction to yield the final 

corrected image.  

Figure 5.8 display the results from the EPI scans. The images without the eddy 

field corrections show severe distortions, bulk shifts and ghosting. The distortions are 

primarily in the form of skewing indicating large field gradients along the frequency 

encode (up-down, or x) axis.  These effects are almost perfectly corrected by the steady 

state field corrections.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.6.4. Complete DS GRE Fieldmapping experiments: Humans 

 All human volunteers provided informed written consent and were scanned 

under an IRB approved protocol. For the human scans, low resolution fieldmaps (n = 4, 
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Figure 5.8 25 slice single shot EPI phantom images without and with ECSS correction 

after N/2 correction for 3
rd

 order DS. Images without correction show severe 

distortions, bulk shifts and ghosting that are corrected by the method. 
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64 x 64 pixels, 25 slices, TR/first TE/∆TE = 196.0/3.9/1.0 ms, slice thickness/gap = 3/1 

mm) were obtained with all shims zeroed. The fieldmaps were masked using skull 

stripping to delineate the shim region. Slice-wise shim coefficients up to 3
rd

 order were 

calculated. Dynamically shimmed GRE images and fieldmaps (128 x 128 pixels, TR/first 

TE/∆TE/∆tss = 467.0/4.4/1.0/18.7 ms) were acquired with and without the prospective 

steady sate eddy current corrections. The scans without the eddy field corrections 

included the static cross term corrections.  

 The C matrix used for the eddy field correction in the human DS experiments was 

derived entirely from calibration scans run on phantoms. No calibration scans were run 

on human subjects. Also, the slice gaps and thicknesses used in the human scans (3/1 

mm) were different from those used in the phantom calibration scans (2/2mm). 

 Figure 5.9 shows fieldmaps from 25 slice human head 3
rd

 order DS scans with 

and without corrections. The fieldmaps without corrections show severe offsets and field 

gradients due to the eddy currents produced by 2
nd

 and 3
rd

 order shim switching. The 

magnitude of the field is well in excess of 1 ppm at places, and the x and y field gradients 

exceed 0.1 mT/m, which can cause significant pixel displacements even at high readout 

bandwidth GRE imaging (bandwidth 0.032 mT/pixel here). In comparison, the fieldmaps 

with the correction show well shimmed fields, with excellent homogeneity. These results 

strongly suggest that the method is applicable under the higher and more arbitrary 

slicewise shim correction demands usually encountered in the human brain and the C 

factors obtained from phantom calibrations are very reliably translatable to human scan. 
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5.6.5. Complete DS single shot EPI experiments: Humans 

 

In order to validate the corrections in low bandwidth imaging in humans, single 

shot GRE EPI scans were performed on an individual subject using the T/R volume coil. 

25 axial slices were acquired with the same scan geometry as above, with TR/TE = 

2765/27 ms, 128 x 128 pixels, no SENSE acceleration and 10 dummy scans. The ∆tss was 

110 ms. The scans were performed with 2
nd

 and 3
rd

 order DS with and without the steady 

state field corrections. Reconstruction with N/2 ghost correction using raw data was 

performed in a similar fashion as described previously for the phantoms. 

 The single shot echo planar images show considerable improvements with steady 

state field corrections in both 2
nd

 and 3
rd

 order DS. Selected slices after N/2 ghost 

removal are shown in Figure 5.10. The uncorrected 2
nd

 order DS images show bulk shifts 

in the phase encode (left-right) direction as a result of 2
nd

 order shim to Z0 eddy field 

interactions. These shifts are corrected by the field corrections, indicating the 

compensation of Z0 eddy fields. The 3
rd

 order DS images without correction show very 

poor quality with large distortions, shifts, signal losses and ghosting. Significant in-plane 

skewing as well as stretching distortions are observed and indicate large field gradients in 

the frequency and phase encode directions. These correlate well with the gradients 

observed in the fieldmaps, as expected. In some slices (for example in slice 1), signal is 

lost completely. The steady state corrections correct for these effects to a large extent 

leading to greatly improved image quality.  
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FIG. 5.10. Slices from 2
nd

 and 3
rd

 order dynamically shimmed single shot EPI scans 

before and after steady state field corrections for the human head. Images shown are 

post phase correction for odd and even echoes. Uncorrected DS2 images show left -

right bulk shifts arising from Z2 to Z0 interactions and ghosting that are corrected by 

the method. Uncorrected DS3 images show severe distortions, bulk shifts and signal 

losses due to 3
rd

 order to 1
st
 order interactions, corrected to a large extent by the 

steady state corrections. High bandwidth gradient echo images and slice numbers are 

shown in the left panel.  
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5.7 Generalization of steady state correction 

The eddy field correction procedure described here is based on the assumptions of 

steady state conditions set up by rapid cyclic shim switching. Therefore, the medium and 

long time constants of the eddy fields, ∆tss and number of slices or shim switches per 

cycle are parameters that determine the C vectors. To investigate the variation of the C 

vectors with ∆tss and the number of slices, two sets of scans were performed 

 The first experiment probed the variation of C, specifically C_Z2_Z0 with 

changing ∆tss. 9 slice axial GRE fieldmaps scans were performed using the spherical 

phantom with only the unshielded Z2 shim switched in the switching pattern = 0,-0.4,0,-

0.4,0,-0.4,0,-0.4,0 mT/m
2
 for a range of TRs (TR/∆tss = 168/19, 250/28, 500/55, 750/83, 

1000/111, 2000/222, 5000/555, 10000/1111, 15000/1666, 25000/2778, 40000/4444 ms). 

The fieldmaps were analyzed as described above and C_Z2_Z0 vectors obtained for each 

of the ∆tss. 

 In the second set of scans, only the Z2X shim was switched between 0 and -0.37 

mT/m
3 

(1Amp) for alternate slices of GRE field mapping scans with the head phantom. 

The scans were repeated for 5, 8, 9, 11, 15 and 25 slices. The ∆tss was 18.7 ms for all the 

scans. C_Z2X_X for all the scans was obtained from the fieldmaps acquired. 

 The extension of the method to varying ∆tss is important for its general 

applicability. Figure 5.11a shows the Z2_Z0 correction factors obtained from 9 slice 

scans with TRs / ∆tss ranging from a minimum allowed of 168/ 19 ms to 40.0/4.4 secs.  

The C vectors up to around TR/ ∆tss of 2000/222 ms coincide with each other, with 

subsequent vectors deviating increasingly from the initial cluster. With increasing TR’s 

above 2000 ms, the correction factor values from all the switches except the most recent 
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have decreasing absolute values, indicating progressively declining contributions to the 

eddy fields from these switches.  However, for a large range of commonly employed  

 

 

 

 

 

 

 

 

 

 

TRs, the C vectors do not vary significantly and therefore may be successfully used in a 

range of experiments.  

 Figure 5.11b shows the variation of C vectors with number of slices for the same 

∆tss. The C vectors change significantly with the number of slices with the n
th

 recent 

switch accounting for lesser amounts of the eddy fields as the number of slices are 

reduced. The variation in the C vectors reflects the effect of the shim switching cycle 

period on the steady state field developed.  

 

5.8. Discussion 

 A promising new method for software based prospective compensation of eddy 

fields produced by shim switching in DS experiments has been described and 
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demonstrated. The method does not require expensive ECC hardware, shim shielding or 

individual prescanning and has the potential to greatly reduce eddy current related field 

perturbations in DS. The method is based on the assumption of reaching an eddy field 

steady state during a DS experiment. 

 In addition to not requiring any form of compensation hardware or shim 

coil shielding, the eddy fields are measured from the actual imaging scan. This is in 

contrast to traditional eddy field measurement techniques, in which only a step response 

of the shim is measured. As a result, the convolution effects of rapid repeated shim 

switching are not captured using the traditional methods. Furthermore, other effects like 

temporal field fluctuations from pulsed gradient coil vibrations which are usually not 

compensated can also be potentially accounted for using this method, since they may also 

be assumed to reach a steady state with shim switching. Also, this method does not 

reduce the dynamic range of the shims, as is often the case in shim shielding or hardware 

shim waveform shaping. 

 The C vectors derived from the calibration scans have been shown to be fixed 

over a range of imaged objects including the human head, shim switching patterns and 

actual shim values. The correction factors translate into a characterization of the eddy 

current behavior of the shims and the magnet structure. The modified n element C vectors 

inherently account for the dynamic eddy fields as well as the static interactions on which 

the eddy fields superimpose. The last element of the modified C vector was seen to be 

equal to the mean value of the switched shim multiplied by the static interaction factor 

between the two shim harmonics.  
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 The C vectors have been demonstrated to be largely consistent over a range of 

TRs. The Z2_Z0 interaction considered here as a representative example has highly 

coincident C vectors up to TRs of at least 2000 ms or ∆tss of 222 ms. As long as the 

shims are switched in a cyclic manner with a fixed period and ∆tss , we hypothesize the 

calibration factors will be reproducible irrespective of the sequence type. Results from 

the EPI scans for example show that even though we introduced the theory in the context 

of GRE scans, the correction procedure is independent of the sequence and is dependent 

only on ∆tss and number of slices. Most of the commonly employed GRE and EPI based 

scans have much smaller ∆tss values and therefore, a single C matrix should be sufficient 

to compensate for all regular multislice GRE DS scans.  This technique should also be 

applicable to 3D GRE scans, which may of interest in parcellated DS techniques [Poole 

2007]. For EPI scans commonly used in functional MRI, certain number of dummy scans 

over the volume may be employed to reach shim steady state, before actual data 

acquisition. This is not a hindrance as dummy scans are commonly employed in most 

dynamic echo planar functional experiments. Further work is however needed to evaluate 

the robustness of the C vectors with respect to different sequences, especially in long TR 

scans such as in multislice spectroscopic imaging. 

 Going further, one may be able to develop a complete general model of the C 

vector that will model the variation of C with respect to the ∆tss and number of slices for a 

given scanner. Under normal day to day operating conditions, the correction factors are 

not expected to change significantly. Therefore, information from a single one time 

phantom calibration scan can be used to develop the general model describing the 

complete interaction between the shims in the system. Such a calibration scan may be for 
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example included in a periodic quality assurance procedure to account for long term 

changes in the magnet’s behavior. This general model may then be employed for 

compensation of eddy fields in any given scan. 

 This technique may not work in cases where the shims may be switched randomly 

where steady state is not set up, for instance in compensation of respiration induced field 

fluctuations. In that particular instance though, only 1
st
 order DS or 1

st
 order DS on top of 

2
nd

 order global shims may be sufficient. We have also ignored the short time constant 

effects of shim switches in our steady state assumptions. The short time constants of the 

shim eddy currents range from less than a millisecond to a few milliseconds [Koch 2006]. 

The fields with very short time constants (< 1 ms) may not be included in the steady state 

and practically may not influence the signal, as usually a delay of ~5 ms is added after 

shim switching for shim amplifier settling. Alternatively, the ramp times may be 

extended to reduce the shortest time constant eddy currents. The slightly longer time 

constant fields would contribute to variations or noise in the C vectors, depending on the 

actual shim switch value. The effects of these fields on k-space may be calibrated and 

compensated for in phase measurement preparation stages as was done for the echo 

planar imaging results presented here. The long time constant eddy fields and their build 

up however are more difficult to calibrate using preparation phase measurements. The 

steady state correction method however compensates for these long time constant effects. 

   

5.9. Conclusion 

 A novel method for software based prospective compensation of eddy fields 

produced by dynamic shim switching has been described and demonstrated. The method 
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is based on the assumption of reaching an eddy field steady state generated during a 

dynamic B0 shimming experiment. The static and dynamic interactions of the entire shim 

system are characterized and represented by a single correction factor matrix derived 

from a one time phantom calibration scan. The method is shown to be independent of the 

shim switching pattern, imaged object and the actual shim values. The method does not 

require expensive hardware, shim eddy current compensation or shim shielding thereby 

providing an economical and efficient alternative. Future work will involve developing a 

general model of correction factors parameterized in terms of ∆tss and number of slices 

that will enable software eddy field correction for any multislice DS experiment.  
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE WORK 

 

 

The overall purpose of this work was to improve image quality at high field by 

the utilization of advanced B0 shimming techniques. Slicewise dynamic B0 shimming was 

the primary approach investigated. Specifically, the aims of this work were to 1) 

Implement slicewise dynamic B0 shimming on a 7 Tesla ultra high field scanner 2) To 

evaluate its benefits versus traditional static global shimming and investigate eddy 

currents produced by higher order shim switching 3) To develop, implement and evaluate 

a software based prospective based eddy field compensation system. 

 Dynamic slice-wise shimming was implemented on a 7 Tesla high field 

imaging system and was shown to produce better field homogeneity, lesser distortion and 

lesser intravoxel signal losses compared to static GS method in phantom as well as 

human whole brain studies. Larger benefits were observed in improving inplane 

distortion than reducing intravoxel signal losses. The results demonstrated the feasibility 

and benefits of DS in high field imaging. Eddy currents produced by switching of order 

higher order unshielded shims were also characterized. 2
nd

 and 3
rd
 shims were observed 

to induce high amplitude rapidly decaying as well as lesser amplitude long time constant 

eddy currents of self and lower orders. The time constants and amplitudes extracted 

herein provide a starting point for hardware eddy current circuit setting in the future. The 

incremental benefits of higher shim orders with both static global and dynamic shimming 

have also been compared. 2
nd

 order DS was found to yield the minimum residual 
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inhomogeneity of all the shim orders evaluated, including 3
rd
 order global static shim. 

These results indicate that it might be more beneficial to include dynamic 2
nd

 order 

switching capability in a shim system than to include 3
rd
 order static shim coils. 

Furthermore, combinations of 2
nd

 and 3
rd
 order global and 1

st
 order dynamic shims were 

found to improve field homogeneity over pure 2
nd 

and 3
rd
 order GS.  These combined 

shim approaches may provide viable image quality improvement alternatives to 

establishments that do not posses resources to add real time shim switching hardware to 

their existing systems. An easy to use shimming tool GUI has also been developed and 

deployed on the scanner to enable other users to include these advanced shimming 

options in their studies. 

 The use of a shielded Z2 coil was found to be critical for obtaining ghost 

artifact free echo planar images with DS. However, as the SENSE factor and shim 

switching demands were increased, ghosting artifacts increased significantly to the point 

of rendering the images unusable. Based on empirical evidence, we hypothesize that the 

artifacts are caused by the interaction of eddy current fields and SENSE reconstruction. 

These artifacts remain the bottleneck for seamless application of 2
nd

 and 3
rd
 order DS.  Of 

the potential methods to minimize these artifacts, hardware eddy current compensation, 

although expensive, may be the most generally applicable. 

 In view of the challenges posed by eddy currents, we have proposed a novel 

economical software based prospective shim eddy field compensation system. The 

feasibility of this method has been demonstrated in phantom and human scans. The 

method can potentially be utilized for correcting the above mentioned artifacts. Further 

work needs to be done to establish the general applicability of this method. 
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 Ideally, a DS system would be akin to a typical gradient system. It would 

include fully shielded and eddy current compensated shim coils and would be driven by 

high bandwidth amplifiers to minimize amplifier ripple. In addition, it would include 

mechanisms for fast, precise and random shim switching that are controlled by the 

spectrometer based on the sequence demands. Finally, full dynamic software control 

would be needed for each individual shim channel for precise waveform (strength, 

duration, ramp etc) and switching control.  

The following list proposes areas of future work that may be carried out to 

maximize the benefits of DS and to answer unresolved questions that have presented 

themselves during the course of this work 

 

1. Improve Signal recovery by use of DS : The results of T2
*
 mapping with dynamic 

and global shimming are inconsistent with simulated results. Future work will have 

to address this difference. 

 

2. Hardware eddy current compensation of higher order shims: To minimize the 

eddy currents produced by shim switching and related artifacts, hardware eddy 

current compensation by shim waveform shaping will be necessary. This work will 

involve calibration of shim – Z0 cross and self shim channels to cancel out short 

medium and long time constant fluctuations. 

 

3. Variety of application studies on the 7T and 3T: Shimming, being a fundamental 

component of NMR, a perfectly eddy current compensated DS system will enable 
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a host of application studies where the benefits of DS over GS can be realized. The 

benefits will be maximized when extended volumes are investigated. We have 

demonstrated this in the case of resting state connectivity. Other studies may 

include whole brain fMRI and DTI, whole body imaging, leg muscle DTI, spine 

imaging etc. 

 

 

4. Compensation of respiration induced field inhomogeneities by DS: Compensation 

of respiration induced field fluctuations in the brain with DS has been 

demonstrated earlier [Van Gelderen 2007]. A combination of slicewise and 

respiratory field fluctuation driven DS may provide further benefits. 

 

5. Investigation of SENSE and eddy current interaction: The effects of 

inhomogeneity and eddy currents on SENSE reconstruction have been reported 

previously [Sutton 2003, Barmet 2005]. It may be of interest to replicate in 

simulations the artifacts encountered in this work, thereby providing a deeper 

understanding of the above mentioned interaction. 

 

6. Extension of ECSS to include multichannel data and robust general model. : The 

ECSS method introduced in chapter 5 may be extended to include multichannel 

data in echo planar scans. As a prospective correction method, this may potentially 

be effective in correcting the eddy current related artifacts.  Further work may also 
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involve developing a robust general model of the correction factors for universal 

applicability. 

 

7. Integration of improved B0 shimming in B1 profile correction. : Improved B0 

shimming can prove to be instrumental in improving correction of inhomogeneous 

B1 profiles encountered at high field. Integration of DS with B1 shimming methods 

would yield more complete solution for the inhomogeneity effects at high field. 

8. Optimization of FASTMAP shim at 7T:  In our experience, FASTMAP based 

higher order shimming methods have been unreliable in high field experiments. 

Given the time penalties associated with fieldmap based shimming a more robust 

projection based shimming method would greatly benefit the imaging community. 

  

To summarize, the work presented in this thesis contributes towards tackling a major 

technical challenge in high field imaging, namely B0 inhomogeneity.  DS has been shown 

to be a potentially valuable tool to improve field homogeneity at 7 Tesla.  Further work 

will be required to perfect the methods presented and answer new questions that present 

themselves as we continue to push the boundaries of high field imaging. 
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