

MODEL-BASED FRAMEWORK TO DESIGN QoS ADAPTIVE DRE APPLICATIONS

By

Sujata Mujumdar

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

December, 2005

Nashville, Tennessee

Approved:

Dr. Gabor Karsai

Dr. Sandeep Neema

 ii

DEDICATION

`

To,

My Family

 iii

ACKNOWLEDGEMENTS

This research was sponsored by the MoBIES Program of Defense Advanced

Research Projects Agency (DARPA)/IXO, under Contract number #F33615-C-02 -1285.

I would like to extend my deepest gratitude towards my Research Advisor, Dr.

Sandeep Neema, for providing me with an opportunity to work on this project. His

direction and guidance throughout the development of the project has been extremely

helpful. I would also like to thank Dr. Gabor Karsai for providing me with insightful

comments regarding the work done towards this thesis and for providing valuable

suggestions to improve it.

I wish to express my sincere appreciation to Nagabhushan Mahadevan who has, in

the initial phases of the project, helped me to develop certain aspects of the work.

Additionally, I wish to thank all the members and friends in ISIS who have provided me

great company when I needed a break from work.

My parents have always been my source of inspiration. They have provided me

with boundless encouragement for pursuing my goals and have given me meaningful

education. I would like to thank them for this precious gift. I would also like to thank my

in-laws for all their blessings and my husband for providing support. His belief in me and

constantly helping me to keep the right perspective on the important things has been

extremely helpful. Last, but definitely not the least, I want to thank my friend, Sayali, for

constantly checking up on the status of my work and for providing motivation to complete

it on time.

 iv

TABLE OF CONTENTS

Page

DEDICATION..ii

ACKNOWLEDGEMENTS..iii

LIST OF FIGURES..vii

LIST OF ABBREVIATIONS...ix

Chapter

I. INTRODUCTION...1

Problem Statement ...5

II. BACKGROUND AND LITERATURE REVIEW ...6

Background ..6
Quality-Of-Service (QoS) ...6

QoS Specification..6
QoS Mapping ..7
QoS Enforcement ..7
Essential elements for QoS Identification ..8

Control Theory...10
Online Control Approach (OLC) ..12
System Dynamics Representation...14

State-Space Representation...15
MIC ..15

Existing Approaches ..16
COTS Middleware...16
Quorum Technologies ...18

BBN-QuO..18
DeSiDeRaTa..20
RT-ARM..22

AQML..23
Control Theory based Applications ..24

Task Scheduling ..25
Bandwidth Allocation and QoS Adaptation in Web Servers...........26
Network Flow Control ..27
Power Management...28
Control Theory based Applications - Conclusions29

 v

Developmental Tools ...29
GME...29
MATLAB/Simulink ..31

III. DYNAMIC QoS MODELING ENVIRONMENT..32

DQME Meta-Model...32
Mission Model ...33

Mission Model – Design Specification ..33
QoS Parameters..35

Observable Parameters..35
Controllable Parameters ..36

System Dynamics ..36
System Dynamic Model – Design Specification..............................36

System Adaptation...38
System Adaptation Controllers – Design Specification...................38

Application Interface Modeling ..42
Application Interface Model – Design Specification.......................43

Translators Developed ...44
GME to C++ Code Generator ...45

Structure of the C++ Code Generator...46
GME to MATLAB Code Generator ...49

Structure of the MATLAB Code Generator.....................................49
Overall Scenario Usage of DQME ..51

IV. CASE STUDY – PCES CAPSTONE DEMO ...53

Scenario Description ..54
Modeling of the PCES Capstone Demo ..55

Brief Description..55
Roles and Mission Requirements..55
Trade-Offs..57
QoS Parameters..60

QoS – Observable Parameter Modeling ...60
QoS – Controllable Parameter Modeling ...61

Resource Managers..62
System Dynamics Modeling ...64
Adaptation Strategies...66

Code Synthesis from Models ...68
C++ Code Generator – Sample Output...68
MATLAB Code Generator – Sample Output...70

Case Study – Evaluation ..71

V. CONCLUSION AND FUTURE WORK...73

Conclusion..73

 vi

Future Work ...75

Appendix

A. GME MODELING CONCEPTS ..77

B. BRIEF DESCRIPTION OF NETWORK RELATED TERMS...............................83

REFERENCES ...84

 vii

LIST OF FIGURES

Figure Page

1. QoS characteristics define an operating space ..9

2. Feedback Control Loop..11

3. Online Control Structure [78] ..13

4. Limited look-ahead horizon approach [80] ...14

5. Logical architecture of the resource and QoS management software [53]21

6. FCS architecture employing Control-Theory for feedback control [6]....................25

7. Web Server adaptation employing Control Theory in the feedback loop [7]26

8. Model of the controlled TCP flow [62] ...27

9. Architecture of the designed control system [65] ...28

10. MIC – Applications Synthesis through the process of modeling [26]30

11. Mission model and QoS Parameters - Design Specification34

12. System Dynamics - Design Specification ...37

13. System Adaptation - Controllers design specifications ..39

14. Application Interface Modeling...43

15. Overall Scenario Usage for DQME...52

16. The PCES Capstone demonstration scenario ..53

17. Mission Models for Capstone Demonstration...57

18. Surveillance - Trade-off Modeling ..58

19. Target Tracking - Tradeoffs Modeling..59

20. BDA - Trade-off Modeling..60

 viii

21. QoS Parameters Modeling ...62

22. Capstone modeling of various resource managers..63

23. System Dynamics representation using the function models65

24. "Deviation" function expression..65

25. "BW_Compute" function expression ..66

26. System Dynamics and Utility driven QoS adaptation representation67

27. Utility model – Attributes ..67

28. Example Model ..68

 ix

LIST OF ABBREVIATIONS

DRE Distributed Real-Time and Embedded

RT-CORBA Real -Time – Common Object Request Broker Architecture

RMI Remote Method Invocation

COM Component Object Model

QoS Quality-of-Service

QuO Quality Objects

CDL Contract Definition Layer

IDL Interface Definition Layer

OMG Object Management Group

MIC Model-Integrated Computing

GME Generic Modeling Environment

OLC Online Control

DSME Domain Specific Modeling Environment

COTS Component-off-the-shelf

IP Internet Protocol

DARPA Defense Advanced Research Projects Agency

SM Service Manager

HSM Higher-level Service Manager

AQML Adaptive QoS Modeling Language

FCS Feedback Control Real-Time Scheduling

UML Unified Modeling Language

 x

DQME Dynamic QoS Modeling Environment

MBC Model Based Controller

CC Composite Controller

SRML Software Radio Modeling Language

FSM Finite State Machine

UAV Unmanned Aerial Vehicle

RUAV Reconnaissance Unmanned Aerial Vehicle

UCAV Unmanned Combat Aerial Vehicle

CAOC Combined Air and Operations Control

AOI Area Of Interest

PCES Program Composition and Embedded Systems

CPU Central Processing Unit

 1

CHAPTER I

INTRODUCTION

Performance-critical distributed systems operating in unpredictable environments

have been proliferating in the past decades [1]. Such systems are often classified as

distributed real-time and embedded (DRE) systems, and are finding increasing application

in military and defense context, flight avionics, industrial process automation, among

others. Rapid advances in middleware technologies like RT-CORBA [15], COM+ [16] and

Java RMI [17], have been primary drivers in increasing applications of DRE systems.

Designing and implementing DRE systems however, is significantly challenging

when compared to the development of traditional non-embedded systems due to a variety

of factors. The real-time reactive nature of the driving application, inherent distribution of

the application software components over a set of potentially resource constrained host

nodes, communication over a potentially unreliable and most likely unpredictable network,

unpredictability of the environment, as well as unforeseeable variability in the workload,

are all factors that interact in intractable ways to enhance the design complexity. The

design is specifically challenging, since despite of the unpredictability and unreliability of

the resources, infrastructure, and the environment, the overall application is still subject to

the most stringent reliability and predictability requirements – for example, in a mission

computing avionics application which is responsible for weapons release, an untimely

response to the pilot’s weapon’s release command could potentially result in catastrophe.

An important aspect of large-scale, mission critical DRE systems therefore, is the

necessity to guarantee a certain level of Quality-of-Service (QoS) for e.g. ensuring

 2

minimum guarantees on the system performance in terms of parameters like latency,

throughput, jitter, security and reliability (for description of these terms, see Appendix B).

In the context of DRE systems, QoS implies an adherence to a set of quality requirements

or properties in order to optimize the performance of the applications [75]. QoS adaptation

involves taking actions to tune the application parameters in order to achieve a desired QoS

level. The set of parameters used to tune and observe a DRE application are defined as QoS

Parameters. QoS parameters are used to provide certain guarantees pertaining to the

performance of an application. These guarantees are termed as QoS Guarantees [74].

Meeting stringent QoS requirements while taking into account a multitude of

factors, such as those listed above, in real-time, for a distributed application operating in

dynamic conditions is a complex task. However, ensuring QoS guarantees is crucial for

mission-critical applications; for e.g., one may need to guarantee the CPU utilization on

multiple processors to be able to meet end-to-end deadlines [2]. Failure to meet the QoS

guarantees may result in mission failures and potentially severe physical and financial

damage among other consequences [3].

The specification and implementation of QoS in DRE systems has typically been

done using ad-hoc schemes [13] [14] and using weak abstractions to adaptively meet the

design requirements. These however, are not systematic enough to ensure system integrity

or reusability. The ad-hoc schemes employed require highly skilled professionals who,

based on experience, use intuition and domain knowledge devising ways to tune the

applications in order to achieve the desired QoS behavior. This dependence on expertise,

intuition, and ad-hoc techniques makes it impossible to formally guarantee the

performance, while prohibiting a widespread adoption of the QoS adaptation technique.

 3

Prior researches sought to improve the state-of-the-art in QoS provisioning by introducing

a QoS adaptation layer on top of the middleware [68]. The rationale is to achieve a

separation of concerns between the QoS and the functional aspects of the DRE systems by

providing a mechanism to specify the QoS requirements and adaptation policies

orthogonally from the application design and implementation. The QuO [12] project at

BBN developed a QoS enabled middleware, which incorporates the adaptation layer, and

includes software infrastructure to specify and enforce the QoS adaptation policies. QuO

provides a Contract Definition Language (CDL) which is an extension of OMG’s Interface

Definition Language (IDL) that allows describing QoS adaptive behavior of the objects and

object interactions, and specifies QoS guarantees as Contracts. While this does advance the

state-of-the-art from the perspective of separation of concerns and enhanced reusability, the

approach still suffers from a degree of ad-hocism. In CDL, the QoS adaptations are

specified as modifications (or “tuning”) to QoS parameters in response to change in system

operating conditions. However, these parameter “tunings” are again based on expertise and

intuition, rather than being grounded in any mathematical or formal theory. It is worth

noting that the DRE systems and the applications implemented atop these systems belong,

from a mathematical point of view, to a class of highly complex non-linear dynamical

systems with intractable couplings and feedbacks. Adaptation of the system in an ad-hoc

manner without regards to the dynamics may potentially result in unstable behaviors.

Moreover, the CDL offers a code-centric low-level of abstraction, which is difficult to

analyze and cumbersome to manage.

The realization that a DRE system could be viewed as a complex dynamical

system, at least from the QoS perspectives, opens up the possibility of applying feedback

 4

control techniques for adaptively managing the QoS requirements. The general approach in

this class of techniques involves abstracting the DRE system as a physical plant with a set

of sensing and actuation interfaces, designing the QoS adaptation logic as a controller, and

setting up the sensing, control, and actuation feedback loop. Unfortunately, designing the

control logic has been the prerogative of control engineers who make use of Control

Theory [4] to design effective feedback loops, which makes the technique not easily

amenable to DRE systems and software engineers.

Control theoretic approaches have proved to be successful in a number of physical

plant control systems [5] [6] [7] [8]. The basic premise of control theory is runtime

feedback control even if accurate models of the system to be controlled are not available.

Many applications have made use of the control-theoretic approaches in improving the

performance of the applications. However, the control-engineers, at times, make

assumptions of the functional details of the systems. The domain engineer specializes in the

functional aspects of the system, unlike control engineers. Nevertheless, the domain

engineer is not suited to design mechanisms for QoS adaptations in these systems due to a

lack of control-theoretic background. Consequently, a framework that can capture the

domain knowledge while abstracting the control knowledge for use by domain engineers is

needed.

Model Integrated Computing (MIC) [11] provides a way for designing and

implementing such a framework, with a domain level of abstraction. GME [9] [10], a meta-

programmable environment, developed at Institute for Software Integrated Systems (ISIS),

Vanderbilt University is based on the methodology of MIC and has been refined over years

for the creation and synthesis of complex computer-based systems. GME has been used in

 5

various domains [18] [19] [20] [21] [22] [23]. Domain specific models can be constructed

to capture the domain knowledge and provide solutions to complex problems of designing

large scale DRE systems. Modeling enables the representation of systems in terms of their

environments, platforms, design of the system along with the implementation details at an

abstract level. Modeling various parameters enables the domain engineers to anticipate the

consequences of multiple integrations. The paradox of the increasing complexity during the

development of embedded systems along with reducing the time and cost for development

can be resolved by use of modeling paradigms and their underlying support such as the

frameworks for analysis of models and code synthesis.

Problem Statement

This thesis proposes a model-based framework that provides a higher level of

abstraction to the domain engineers enabling an effective representation of QoS design

problems and adaptation strategies which have traditionally been the prerogative of control-

engineers. The proposed model-based framework shall provide an ability to effectively

capture the interactions of different QoS variables, as opposed to using ad-hoc or intuitive

policies. It shall further enable domain engineers to develop functional aspects of the DRE

application in a coherent manner to ensure the seamless integration with QoS adaptations

mechanisms, while at the same time separating the functionality from QoS. The framework

will facilitate a systematic development of design time methodologies to develop the run-

time adaptations, simplifying the development of dynamically-adaptive construction of

model interpreters is also proposed for code synthesis. This code will represent the internal

logic of the designed controllers and may be used in the low-level implementation

frameworks.

 6

CHAPTER II

BACKGROUND AND LITERATURE REVIEW

This chapter reviews and presents a background on the state-of-the-art technologies

used for building QoS in DRE systems. It is divided in three sections: The first section

gives a background on the various technologies that are relevant in the context of the work

presented in this document. The second section discusses the existing approaches in the

context of DRE systems and control-theoretic approaches. The third section gives an

overview of the tools that have been used towards the implementation of the work

presented.

Background

Quality-Of-Service (QoS)

As discussed earlier, supporting the needs of complex large-scale DRE systems

requires QoS management that is adaptive to the dynamism in the environment.

Construction of a QoS framework within a system involves mapping of QoS requirements

to resources, QoS specifications that capture the QoS requirements of the application and

QoS adaptation mechanisms which realize desired QoS behavior [31].

QoS Specification

Specification of QoS can be done at various system levels for e.g., protocol layers

like transport/network, middleware or other applications. QoS Specification includes

 7

specifying requirements for performance, synchronization, QoS management, cost and the

level of service. Expected performance characteristics are needed to establish resource

commitments. Specification of synchronization includes characterizing the degree of

synchronization between related services or events. Specification of the level of service for

QoS states the degree of resource commitment required to maintain performance

guarantees. The cost of service signifies the price a user is willing to incur to obtain a

desired level of service. QoS management is the degree of QoS adaptation that can be

tolerated and scaling actions to be taken in the event the contracted QoS cannot be met.

QoS requirements are specified by the high-level parameters of an application that

convey what the user requires. An assessment of the QoS requirements should be

performed to determine if they can be met. In case the specified level of service cannot be

provided then trade-offs need to be specified.

QoS Mapping

The various resource requirements that can be derived from the QoS requirements

need to be mapped onto quantitative QoS parameters. Mapping enables the monitoring and

control of the system parameters. QoS parameters may be oriented towards performance,

format or cost of the service among others. Each QoS parameter can be viewed as a typed

variable with bounded values and the values are subject to negotiation between the system

layers.

QoS Enforcement

Resource management must be QoS-driven in order to provide and sustain QoS.

The resource management system must not only consider resource availability and resource

 8

control policies, but also an application's QoS requirements measured in terms of the QoS

parameters when allocating resources. Resources should be re-allocated in response to

variations in the system environment. All the participating elements should negotiate

collectively for ensuring that the QoS parameters will be satisfied. Negotiation involves the

dynamic adaptation, transmission and translation of QoS parameters between the various

participating layers. After resources are allocated, the resource manager components are

responsible to guarantee the sustained availability of the allocated resources. This also

requires monitoring of the resource availability and its dynamic characteristics. If a change

in the system leads to degradation in the QoS and the resource manager cannot make

appropriate resource adjustments, then the application can either adapt to the new level of

QoS or scale to a reduced level of service.

Essential elements for QoS Identification

QoS characteristics define a space in which an application has unacceptable quality

of service when the values of any of the QoS parameters fall below the minimal operating

threshold. Above a maximum operating threshold, improvements in QoS make no

difference in application operation. Between the minimum and maximum thresholds is a

space in which tradeoffs and adaptations can be made in order to maintain as high a level as

feasible of acceptable quality of service.

 9

Minimum
Acceptable
Value

Qo
S

As
pe

ct
 1

QoS Aspect 2

QoS Aspect
 3Acceptable

Minimum
Acceptable Value

Minimum
Acceptable
Value

Maximum Useful
Value

Maximum
Useful Value

Maximum
Useful
Value

Unacceptable

Unacceptable
behavior

Acceptable
behavior

Figure 1 QoS characteristics define an operating space

QoS dimensions of interest are changeable and they vary with the number of QoS

parameters that are relevant to the application. For simplication, Figure 1 illustrates only

three such dimensions; however the space can consist of any number of dimensions

corresponding to the QoS parameters relevant to the application. Moving from one point in

this QoS space to another may not occur smoothly. The underlying system, mechanisms,

and resource managers provide knobs to control the level of QoS that also define the

granularity. Adaptation of one QoS dimension may affect other QoS dimensions. Finally,

the application’s requirements will often mean that some tradeoffs and adaptations are

preferred over others. Five essential questions are posed when trying to build a distributed

system with support for dynamic adaptation in QoS space:

• What does the system need to achieve?

• Where is the system currently within the QoS space?

• Where can the system go within the QoS space?

• How can the system go from one point to another in the QoS space?

 10

• Where should the system move to in the QoS space?

These questions are addressed in the proposed model-based framework (discussed

in Chapter 3) developed for attaining and maintaining QoS in distributed real-time and

embedded systems.

Control Theory

A traditional way of achieving service level objectives in complex systems is by

adding a controller to a system in order to tune the system parameters. There are various

methodologies that make use of classical control theory [4] to build such controllers.

Application of classical control theory involves system identification that requires

mathematical models of the system to be built and designing the controllers to tune the

system parameters.

Control theory relies on the foundations of runtime feedback control to monitor and

influence the behavior of dynamic systems. A dynamic system is one that changes states in

response to various external environmental conditions or configuration changes over time.

Classical feedback control (Figure 2) consists of a feedback loop that connects the

application/plant to a controller in a closed-loop scheme. The objective here is to keep the

plant’s output close to a reference value.

 11

Figure 2 Feedback Control Loop

Based on the adaptation strategies, the controller is required to modify the plant’s

input parameters in order to achieve the desired system behavior. The desired behavior is

specified using state or reference variables. In control theory, a controller is often

responsible to control the outputs or states of the dynamic system usually achieved using a

feedback control loop as seen in Figure 2. Systems utilizing feedback are also known as

closed-loop control systems. The feedback is used to make decisions about the changes to

the control signals that drive the plant or the application.

An open-loop control system, on the other hand, doesn’t have or use the feedback

control [29]. Systems having an open-loop controller need to be well-characterized so as to

predict the inputs to achieve the desired outputs thus making feedback unnecessary. There

may be situations in which an open-loop control system may be preferred over closed-loop

ones. An example may be of a system in which periodic resetting is possible so as to

eliminate or at-least suitably control the effects of initial errors and later disturbances [30].

However, sometimes the lack of connections between the outputs of the system to the

inputs may cause poor performance of the system under control and therefore the open-

loop controller may be undesirable.

Control theory offers a systematic way to design automated and efficient resource

management schemes. Computer systems hosting applications critical to military command

 12

and control, commerce and banking among others need to obey strict QoS requirements

while operating in highly dynamic environments. To achieve the desired QoS, numerous

performance-related parameters must be continuously optimized to respond rapidly to

changing computing demands. The current state-of-the-art in designing these systems to

meet their QoS requirements involves substantial manual intervention as will be seen in

next section. If the computer system of interest is correctly modeled and the effects of its

operating environment accurately estimated, control algorithms can be developed to

achieve the desired performance objectives.

Online Control Approach (OLC)

Utilizing control theory for resource management requires the establishment of an

appropriate model of the underlying systems dynamics. This model is responsible to

capture the relationship between the observed system parameters and the control inputs

used for adjusting various parameters. An initial approximate model may be built for those

system components whose dynamics are known and parameter estimation techniques can

be used to identify the unknown parameters of the system [80]. Abdelwahed et. al. have

developed a model predictive Online Control (OLC) [78] approach in which control actions

are derived to optimize system behavior for pre-specified QoS criteria over a limited look-

ahead prediction horizon. This type of model-predictive control method is more powerful

and more widely applicable to computational systems, which may be highly non-linear

than simple feedback control. The OLC approach allows control objectives to be

represented explicitly in the form of multi-variable optimization problem that is solved at

every control step. The OLC can control processes with varied characteristics from those

 13

with relatively simple dynamics to ones with complex dynamics, as well as systems with

long delay or dead times.

Figure 3 Online Control Structure [78]

Figure 3 shows a generic online controller. Relevant parameters of the operating

environment are such as data arrival patterns are estimated and used by the system model to

forecast the future behavior over a look-ahead horizon [80]. The online controller

principally aims to satisfy the desired QoS requirements (set-point specifications) by

continuously monitoring the current system state and selecting the control inputs that best

satisfy them. The controller explores only a limited forward horizon in the system’s state

space.

 14

Time t
0

Prediction
horizon

Current
state

Initial
state

Next input

Xs

State space

Desired
operation
region

Figure 4 Limited look-ahead horizon approach [80]

As seen in Figure 4, at every time step it constructs a (limited) tree of all possible

future states given all possible control inputs, and selects the trajectory that reduces a cost-

function while satisfying constraints. The input that leads to this trajectory is chosen as the

next control input to the system. This process is repeated at each time step. This control

policy takes into account the effects of possible variations in environment inputs.

System Dynamics Representation

Capturing system dynamics is one of the most important and generally one of the

most difficult of all tasks. Static systems that generate an output on a certain input are

easier to model as at any point in time, the output is always dependent on the instantaneous

value of the inputs to the system. However, in case of dynamic systems, the output of a

system is dependent not only on the current inputs of the system but also on the past inputs

[71]. Differential equations can be used to express the relation between the inputs and the

outputs in dynamic systems. In a general case of describing the system with differential

equations, higher order derivatives of the output variables can be described as functions of

lower order derivatives of the output variables and some derivatives of the input variables.

 15

In the work presented, system dynamics have been approached using State-space

representation of the system.

State-Space Representation

A description of the system dynamics can be obtained using the state-space

representation also known as time-domain approach. It provides the dynamics as a set of

coupled first-order differential equations in a set of internal variables known as state

variables, together with a set of algebraic equations that combine the state variables into

physical output variables [72]. The concept of the state of a dynamic system refers to a

minimum set of state variables that fully describe the system and its response to any given

set of inputs. However, for complex system the set of state variables is not unique. This

means that for a system with certain inputs, outputs and ‘n’ state variables, there exists

infinite number of state-space representations for the system. For each value of time t, a

state that lies in n-dimensional state space can be obtained [68].

MIC

Model-Integrated Computing (MIC) [11] [26] developed at Institute for Software

Integrated Systems (ISIS), Vanderbilt University, is a technology that addresses the

problems of developing software integrated systems by providing rich, domain-specific

modeling environments (DSME). Domain-Specific models (DSM) focus on high level

abstractions of the problem space, avoiding low-level details. MIC is used to create multi-

aspect (See Appendix A.5) models to facilitate systems engineering analysis of the models

and to automatically synthesize applications from the models. Multi-aspect modeling, in

MIC, allows capturing of all relevant system information in various aspects. A significant

 16

application of MIC is in systems that have a tight integration between the physical

configuration and the computational structure of the system. MIC has proved to be a

powerful tool by providing adaptability in changing environments [27].

Existing Approaches

This section presents an overview of the applications using various techniques to

achieve a desired degree of QoS.

COTS Middleware

Middleware, as defined in computer science, consists of software agents that act as

intermediaries bridging the gap between different application components. One of the most

common instances of middleware is software that resides between the applications and the

underlying operating systems and networks. It is responsible to bridge the functionality

gaps between the applications and the hardware/software infrastructure [32] [33]. Top-level

applications are programmed to target the middleware, which abstracts out the OS and/or

hardware-specific functionality, thus providing a common interface for interaction with

different OS’ and/or hardware to the high-level components.

Component middleware, originally designed to support enterprise systems, has

been applied extensively to DRE systems. Component middleware is a category of

middleware that allows component services to be composed, configured and deployed to

create robust DRE systems [34]. Middleware technologies associated with components

provide standardized, off-the-shelf component interconnecting solutions supporting better

reuse of software across product families. The commercial-off-the-shelf (COTS)

component middleware is used to develop high-performance real-time embedded systems.

 17

Examples of COTS middleware include: Object Management Group’s (OMG) CORBA

[35] and Real-time CORBA [15], Sun’s Jini [36], Java RMI [17], and EJB [37]

frameworks, Microsoft’s DCOM [38], and IBM’s MQSeries message-oriented middleware

(MOM) [39].

The objective of COTS middleware is to decrease the effort required to develop

complex DRE systems by composing applications out of modular reusable software

components and services rather than building them from scratch thus reducing the overall

cycle-cost of development and testing. In the past few years, the COTS middleware has

been used to develop scalable and robust large-scale DRE systems that have managed QoS

requirements.

COTS middleware based on RT-CORBA specification allows the DRE

applications to allocate, schedule and control the processor, memory and the networking

resources. It thus allows the application developer to preserve operating system level

priorities of schedulable tasks that can be distributed among various nodes in a real-time

distributed system [40]. RT-CORBA based middleware address many QoS properties like

defining policies that control connection multiplexing, request priority and queuing order

[41]. However, the middleware based on RT-CORBA does not utilize technologies, like

the ones developed by the networking community for ensuring QoS in IP, within the

network to provide end-to-end QoS management. Additionally, the middleware also lacks

strategies for transparent configuration of the QoS properties into the application thus

having the application developers make the configuration decisions manually which tend to

be error-prone.

 18

To summarize, although usage of COTS middleware improves the reusability of

software architectures, DRE systems require explicit interfaces and mechanisms for

developing adaptive solutions. RTSJ [42] and Dynamic Scheduling RT-CORBA [43] are

COTS middleware that provide some elements that can be used for the implementations of

adaptive solutions. However, additional higher level approaches are needed that can realize

easier specification of QoS in DRE systems. COTS middleware is not yet able to provide

complete end-to-end solutions to support application development in diverse environments.

Additionally, conventional COTS middleware does not enforce complex QoS requirements

effectively as they were originally designed for applications with less stringent

requirements.

Quorum Technologies

Exploration of adaptive techniques such as dynamic scheduling, reconfiguration

and various resource management techniques is being conducted under the DARPA

Quorum program [44]. Some of the projects developed under the Quorum program are

described in this section.

BBN-QuO

Quality Objects (QuO) [12] [45] [46] [47] is a framework developed at BBN

Technologies for providing QoS adaptation in network-centric distributed applications

[48]. QuO adds QoS to CORBA and Java RMI in a manner which is appropriate for

creating applications that can adapt to environments (that are unpredictable or have strict

resource constraints). It has been used in a number of demonstrations and applications [49]

 19

ranging from wide-area distributed applications to embedded real-time systems. With QuO,

distributed applications can specify

• their QoS requirements

• the system elements that must be monitored and controlled to measure and

provide QoS

• the behavior for controlling and providing QoS and for adapting to QoS

variations that occur at run-time.

QuO thus separates the role of functional application development from the role of

developing the QoS behavior of the system. QuO middleware supports the role of

Qosketeers [12] who are responsible for defining contracts, system condition objects,

callback mechanisms, and object delegate behaviors. QuO provides an open source toolkit

[50] [51] for supporting the development of QoS features. This toolkit contains a Quality

Description Language (QDL) that describes QoS contracts and adaptive behaviors of object

[51], code generators for weaving measurement, control, and adaptation code into

application programs [50], a library of reusable system condition objects, a runtime kernel

that coordinates evaluation of contracts and monitoring of system condition objects and an

encapsulation model called Qoskets for encapsulating runtime behavior into reusable units.

To summarize, QuO provides a new modern technology enabling enhanced

usability and separation of the functional from the QoS aspects of the DRE systems.

However, it still relies on the fact that the QoS adaptations need to be controlled manually.

Human operators are required to modify or tune the QoS parameters in response to changes

in system conditions. These QoS adaptations, realized by tuning the QoS parameters, are

heavily dependent on the expertise that the operator gains over time. This approach

 20

eventually suffers from a high-degree of ad-hocism rendering the systems with complex

dynamics highly unstable.

DeSiDeRaTa

Dynamic, Scalable, Dependable, Real-Time (DeSiDeRaTa) [52] [53] project was

developed to address adaptive resource management approach to enable reconfigurable

ground and space information systems. It utilizes a dynamic path paradigm, which is

employed for modeling and resource management of distributed real-time mission-critical

systems. The dynamic path concept is used for automated QoS assessment and resource

allocation. The path may be composed of sensors, actuators and control software for

filtration, evaluation and action [54]. The primary metric used in DeSiDeRaTa is QoS that

is a measure of path latency (end-to-end). Figure 5 shows the logical architecture of the

DeSiDeRaTa QoS management software.

 21

action
selection

QoS
metrics

allocation
analysis

allocation
enactment

spec.
file

H/W
metrics

distributed
hardware

QoS
diagnosis

QoS
monitor

Sen-
sor

filter

eval

act

Actua-
tor

RT paths

resource
discovery

1

2

3 4

5

6

7

8

Figure 5 Logical architecture of the resource and QoS
management software [53]

The application programs of real-time control paths send time-stamped events to

the QoS metrics component. The QoS metrics calculates path-level QoS metrics and sends

them to the QoS monitor. The monitor checks if the observed QoS conforms to the required

QoS and notifies the QoS diagnosis component when a QoS violation occurs. The

diagnosing component notifies the action selection component of the cause(s) of poor QoS

and recommends actions to improve QoS. Action selection ranks the recommended actions

and forwards the results to the allocation analysis component; this component consults

resource discovery for host and LAN load index metrics, and determines an efficient

method for allocating the hardware resources to perform the actions, and requests that the

actions be performed by the allocation enactment component. Path-level QoS specification

is used by the adaptive resource allocator to determine if the current configuration is

achieving the desired QoS and to assist in selecting new configurations to improve QoS.

 22

Resource monitoring capabilities provide application profiles and instrumentation data.

Application profiles include hardware resource requirements for particular QoS levels.

To summarize, the DeSiDeRaTa project offers a level of abstraction in terms of a

path and provides for the monitoring and adaptive management of run-time QoS by taking

decisions to dynamically (re)allocate resources as needed. However, DeSiDeRaTa is a

middleware technology that does not offer separation between the functional aspects and

QoS.

RT-ARM

The Real-Time Adaptive Resource Manager (RT-ARM) [55] developed by

Honeywell Technologies is a reactive resource adaptation service. It is a middleware

service that adapts the rate of tasks according to changing environmental conditions. The

main components of RT-ARM are known as Service Managers (SM) [56]. The SMs are

responsible for requesting, distributing and managing resources at different levels. The RT-

ARM consists of various components like Client, Translator, Negotiator, Allocator, and

Adapter.

A Client submits requests for QoS to the RT-ARM. Applications then start

accessing the services and communicate with the resource management as a part of a

process of changing QoS. The QoS Model in RT-ARM consists of three main parts:

dimension, range and region. A QoS dimension is an aspect of a service that can be

measured in a certain way e.g, frame rate, bandwidth are QoS dimensions. Each dimension

has a QoS range (min, max). The pair (dimension, range) forms a QoS parameter. Sets of

these pairs form a QoS region. The adaptation model consists of QoS shrinking/reduction,

 23

QoS expansion/improvement used when the resources either rise/drop and feedback

adaptation.

The SMs have a hierarchical nature in which the higher level SMs (HSM) forms the

root or nodes and the lower level SMs (LSM) form the leaf-nodes. The request submitted

by the client is serviced by the HSMs. The client is thus saved from the details of lower-

level parameters. The negotiator is responsible for processing the request when the client

requests to negotiate a QoS contract. The translator performs the function of translating the

higher level request by the client into dimensions and ranges understandable by the LSMs.

The allocator allocates and releases resources when no QoS adjustments are needed. In

case the QoS adjustments need to be performed, the adapter takes charge of allocating and

releasing resources. When triggered to react, the RT-ARM manipulates the CPU usage of

key operations. The RT-ARM performs this task by manipulating subset of task invocation

event rates from application specified available rates. A QuO contract is responsible to

prompt the RT-ARM to adjust the ranges of invocation rates to re-allocate more CPU

cycles.

To summarize, the RT-ARM makes heavy use of middleware, CORBA, to obtain

QoS. However, similar to the case of DeSiDeRaTa, RT-ARM does not provide a clear

separation of concerns in terms of the functional and QoS aspects of the system.

AQML

Adaptive QoS Modeling Language (AQML) [68] is a precursor to the work

presented in this thesis for building QoS adaptations in the DRE systems. It is a model-

driven approach used for the creation of high-level graphical models. These models are

created using AQML, a domain-specific modeling language, for representing the QoS

 24

adaptation strategies. It employs Stateflow [81] models to capture the adaptive QoS

behavior of the system. A discrete FSM representation is used along with hierarchy and

concurrency for modeling QoS adaptive behavior of the system. The states represent a

discretized configuration of QoS properties. Transition objects are used for representing

transitions from one state to another. Attributes are used for showing the decomposition of

the states. Event and Data objects are modeled to capture Boolean event variables and the

data objects are used to capture data. They can be scoped as being local to a state machine

or an input/output variable of a state machine, by setting other attributes. Dataflow and

functional components can be modeled in a different aspect of the same language. The

coupling between QoS parameters and elements from the functional model can be done by

inserting appropriate references.

To summarize, the AQML modeling language supports model-driven development

of the QoS adaptive applications. However, the entire set of QoS properties are modeled

solely as states in a state machine, and hence discretized. Moreover, expressing complex

systems operating in dynamic conditions and exhibiting a continuous-time behavior in

terms of only states is insufficient. A way to express the hybrid behavior or discrete-time

and continuous-time realizations needs to be established. A way of separating concerns of

QoS from the functionality of the systems also needs to be devised.

Control Theory based Applications

Control theory has been successfully applied to various systems involving

uncertainties in the system models [57]. This section reviews some of existing applications

making use of control-theoretic approaches to achieve QoS in the respective functionalities

and concludes with a summary of the discussed applications.

 25

Task Scheduling

Research conducted by Stankovic, Lu et. al. in [6] [58] makes use of control theory

in scheduling tasks and maintaining QoS. A Feedback Control Real-Time Scheduling

Architecture (FCS) has been built that is used for adaptive real-time systems. Control

theory has been applied to design the FCS algorithms for satisfying the transient and

steady-state performance specifications of real-time systems. The architecture developed

allows one to plug in various real-time scheduling policies and QoS optimization

algorithms. Figure 6 illustrates the application of the control theory to the FCS architecture.

Figure 6 FCS architecture employing Control-Theory for feedback
control [6]

The FCS architecture has a feedback control loop composed of a Monitor, a

Controller, a QoS Actuator, and a Basic Scheduler. The scheduler is responsible to

schedule tasks depending on the scheduling policy plugged in. Based on the analytical

models, control theory is used to tune the controller and develop mathematical analyses of

performance of the controller.

 26

Bandwidth Allocation and QoS Adaptation in Web Servers

Abdelzaher, Bhatti in [7] [8] use a control-theoretic approach to provide QoS

guarantees in a web-server. Some of the QoS guarantees provided are overload protection

and performance-driven load-balancing. The work focuses on utilization control as a basic

building block to achieve complex control objectives and to satisfy a wide range of

performance requirements. They consider a client-server system in which clients send a

succession of requests to the web server, each request having a deadline by which it must

be served. The delay in the service of a request is dependent on the time taken in the

network plus the time taken by the server. Their work concentrates on server-side delay as

opposed to the int-serv [76] or the diff-serv [77] architectures that address the problem of

network delays. The architecture makes an assumption of the web server facing single

bottlenecks at any time and is geared towards serving static web content. They make use of

a utilization controller in the feedback loop as seen in Figure 7.

Figure 7 Web Server adaptation employing Control Theory in the
feedback loop [7]

The control loop seen in the figure, measures the server utilization and based on the

load conditions, determines a subset of clients that can receive service at that time. The size

 27

of the client subset is dynamic in the sense that only those many number of clients will be

selected so as to keep the web server busy at all times and the utilization at the desired

level.

Network Flow Control

Control theory presented in [62] is applied towards the application of congestion

control in the network traffic. In this work, the dynamics of the network data queues in

response to the input traffic is described using the control-theoretic approach. The

following figure shows the feedback control loop as modeled for the network traffic.

Figure 8 Model of the controlled TCP flow [62]

Figure 8 shows an integrator model (upper right box) that represents the buffer that

is considered to be the bottleneck for the TCP flow. The disturbance models the bandwidth

that is available for a flow at particular instant of time. The two transfer functions model

the propagation time from the flow source to the bottleneck queue and from the bottleneck

queue to the destination and then the source back. The Controller function has also been

 28

represented in terms of a transfer function. The feedback control scheme uses two inputs:

the reference signal and the disturbance. Due to the possibly large propagation delays, the

queue level dynamics might become unstable that needs to be controller. The design of the

controller is based on the Smith principle [63][64]. Smith predictor is also known as a

compensator for a stable process with large time delay. The controller thus designed

guarantees the source input rate promptly utilizes all of the available bandwidth.

Power Management

The work described in [65], represents a formal feedback control algorithm for

dynamic voltage/frequency scaling in a portable multimedia system. The main objective

here is to save power while maintaining a desired playback rate. The feedback control

system designed is shown in the Figure 9.

Figure 9 Architecture of the designed control system [65]

At the beginning, the frequency scaling factor is unity i.e. the decoder is run at

maximum speed. The initial value is forced by adding a constant “1” to the output of the

controller. After the operation begins, the controller is responsible to give the current

 29

decision of the frequency scaling factor that will go to the decoder system by taking into

consideration average frame delay under the previous frequency scaling conditions.

Control Theory based Applications - Conclusions

The systems discussed above make use of the control theory and classical feedback

control to achieve the desired QoS behavior. They start by observing the current system

state and subsequently taking corrective actions, if any are required, for attaining QoS. The

success of these applications, of being able to attain certain QoS level, makes the control-

theoretic approaches significantly advantageous. However, the applications discussed here

usually assume a linearized and discrete-time model for system dynamics. In contrast,

many practical systems exhibit hybrid behavior comprising both discrete-event and time-

based dynamics [61] [66] [67]. Some of the applications discussed above require human

intervention to input the reference variables to controllers to manage the trade-offs which

makes it an extremely tedious process. Moreover, the QoS is integrated within the systems

that make the techniques tightly coupled with the functionalities.

Developmental Tools

GME

Generic Modeling Environment (GME) [9] [10] is a domain specific, model-

integrated program synthesis tool that implements the MIC technology. It is used for the

creation of domain specific, multi-aspect models of large-scale engineering systems [11].

GME is configurable in the sense that it can be adapted to represent various application

domains. This is achieved by defining Meta-models. Meta-models define the domain-

 30

specific elements of the modeling language. A graphical user-interface, based on UML

notations [28], is provided in GME to facilitate the design of the system. Figure 10 gives an

architectural picture of the way in which MIC has been applied in GME.

Figure 10 MIC – Applications Synthesis through the process of
modeling [26]

The user builds a meta-model of the target domain for which the applications need

to be modeled. The user can specify the set of entities that can be created in the target

domain environment, their correct organization and interactions with other entities can also

be specified in the meta-model. In other words, the meta-model specifies a modeling

paradigm/language in terms of the syntactic, semantic and presentation information of the

target application domains. Meta-level translation stage is responsible for interpretation of

the meta-model and generating a configuration file for GME that is used to configure GME

 31

for the target environment. The model interpretation stage involves synthesis of

applications from the user created models. The models generated using GME take the form

of graphical, multi-aspect, attributed entity-relationship diagrams. The dynamic semantics

of a model can be assigned during the model interpretation process. Using GME, large-

scale, complex models that have hierarchy, multiple aspects, sets, references, and explicit

constraints can be expressed.

MATLAB/Simulink

MATLAB, developed by Mathworks [70] is a high-level computing language that

can be used for interactive algorithm development, data visualization, data analysis and

numerical computations. MATLAB can be used in a wide range of applications some of

which are financial modeling and analysis, signal and image processing, communications.

It comes equipped with a range of toolboxes developed for specific domains like real-time

systems, control systems, simulation among others. Along with MATLAB, Mathworks

supports the Simulink product family. Simulink is a platform for multi-domain simulation.

It provides an interactive graphical environment and a customizable set of block libraries

that is extensible for specialized applications. MATLAB provides the ability to write a

series of MATLAB/Simulink statements into a command file and then execute them with a

single command. This feature provided by MATLAB/Simulink has been used towards the

partial development of the work in the thesis.

 32

CHAPTER III

DYNAMIC QoS MODELING ENVIRONMENT

This chapter presents the details of the design specification and semantics for the

Dynamic QoS Modeling Environment (DQME) [79]. The chapter is broadly divided in two

sections. The first section gives an overview of the DQME meta-model elements, their

relationship with each other, their design specifications and their semantics. The second

section presents details on the code generators that have been built for synthesizing code

from the constructed domain models.

DQME Meta-Model

As discussed in Chapter 2, there are five essential questions that need to be

addressed when developing a dynamically adaptive distributed system. The elements of the

DQME paradigm address these questions for developing effective dynamic QoS

adaptation.

“Mission” model is a DQME element that allows one to capture the QoS and

functional goals of the system in a concise manner. Specification of what needs to be

achieved by the system can be performed using the Mission models. Nonetheless, to be

able to achieve the QoS goals, one needs to receive information regarding the current

system state. The QoS “Observable” parameters provided in DQME facilitate in observing

the current state of the system in QoS space. The QoS “Controllable” parameter element

provided in DQME are “tunable” elements that cause the system to move from one point to

the other in the QoS space. Depending on the current state of the system and the type of

 33

tunable parameters available, there may be multiple options for system adaptation. The

interactions between these can be specified using the system dynamics. Among all the

possible options available for system adaptation, the “Controller” models are responsible to

select adaptation strategy. While making an adaptation decision, the controller takes into

account the mission requirements of the system along with system dynamics.

A detailed explanation of the syntax and semantics of these meta-model elements is

presented in the next few sections.

Mission Model

In the DRE systems, QoS objectives are dynamic in the sense that the notion of a

preferred region of operation is linked with the notion of a mission or a mode for e.g.,

consider an aerial platform that participates in multiple missions, which may be concerned

with surveillance, tracking, or weapons delivery. A distributed application performing

information transfer with this aerial platform may have different QoS requirements for the

information transfer, based on the nature of the mission.

A Mission Model in DQME captures specification of mission dependent QoS

objectives in the form of preferred and mandatory bounds over values of QoS parameters.

The mission model thus captures the high-level requirements of the system. Whenever

there is a conflict in terms of satisfying multiple requirements, the mission model also

allows the specification of relative importance over these QoS objectives.

Mission Model – Design Specification

These models express the high-level mission requirement as mentioned earlier.

Figure 11 shows the meta-model of the mission modeling sub-language. The key concepts

 34

in this meta-model are Missions<<Folder>>, Mission<<Model>>, Roles<<Model>>,

Preference<<Connection>> and QPRef<<FCO>>.

Figure 11 Mission model and QoS Parameters - Design
Specification

Missions<<Folder>> (stereotyped as GME folder) are a collection of Mission

objects, each of which encapsulates the mission specific QoS requirements. In a highly

dynamic environment, a mission involves multiple participants each of which may have a

different set of QoS requirements dependent on the role played by that participant (ex: a

Reconnaissance UAV vs. a Combat UAV, both are UAV-s but play different roles). The

 35

Roles<<Model>> allows specification of a set of roles each of which can then be assigned

a set of QoS requirements. The QoS requirements are specified with a set of attributes

defined over references to QoS parameters. The AbsoluteLowerBound,

AbsoluteUpperBound, PreferredLowerBound and PreferredUpperBound attributes on the

QPRef, an abstract base class concretized as QCRef and QORef which are references to

QoS observable and QoS controllable parameters. The Preference<<Connection>> is an

association class that allows expressing priorities in terms of the order of satisfaction of

QoS requirements. References (a GME syntactic element) are used to specify QoS

parameter to define the QoS requirements, since the QoS parameters are instantiated in the

Application interface model (explained later in this chapter).

QoS Parameters

Observables and Controllable parameters (QoS Parameters) define the specification

of the QoS parameters of interest for the system. Together, these constitute the QoS space

of the system, and at any given point in the lifetime of the system, the value of the QoS

parameters define the operating state of the system. Therefore, from a QoS perspective, one

could view these parameters as state-variables. DQME partitions the set of QoS parameters

into observables and controllables. It is important to note that the partition set of

Controllable and the Observable QoS parameters is not disjoint. Some QoS parameters

could be members of both these sets.

Observable Parameters

These constitute QoS parameters that can be observed or computed, through some

service or provision in the underlying functional system. QoS parameters such as latency,

 36

bandwidth, CPU reservation, image quality, etc. are some examples of observable QoS

parameters for some class of systems.

Controllable Parameters

These are QoS parameters that could be directly manipulated through some service

provided by the underlying functional system. In an image processing system, image size,

Image resolution, Signal detection threshold, are examples of QoS parameters that could be

manipulated to accomplish some QoS objective. Latency is not a controllable parameter as

it could not be directly manipulated, rather changing image size as a QoS parameter, may

influence the latency of an image transmission application. Thus, controllable QoS

parameters are the knobs available to the application for QoS adaptation. The Controllable

QoS parameters in addition to being direct variables could also be in the form of packaged

adaptations, such as those provided by QuO’s Qosket encapsulation capability.

System Dynamics

The System Dynamics Models in DQME specify the potential trajectories of the

system within the multi-dimensional QoS space. These specifications capture the

dependency of the observable QoS parameters over the controllable and other observable

QoS parameters, in the form of mathematical relations.

System Dynamic Model – Design Specification

The key concepts as shown in Figure 12 are SystemDynamics<<Model>>,

Function<<Model>>, DataVariable<<Atom>>, DataFlowConn<<Connection>>.

Figure 10 shows the meta-model of the System Dynamics.

 37

Figure 12 System Dynamics - Design Specification

The expression of the possible trajectories taken by the system is done using

difference and differential equations expressed over a set of DataVariables, specifying the

evolution of these variables over time. A general form of Function notation, without linking

these directly to QoS Parameters has been used. The binding to the QoS Parameters is

made externally, when the SystemDynamics is instantiated, by making associations

between QoSParameters and DataVariables that form the port of the SystemDynamics.

The Expression attribute on the Function model captures the mathematical relation.

 38

System Adaptation

The system adaptation specification is the most important aspect of the QoS

adaptation. These specifications represent the configuration of a parameterized controller

from a suite of controllers available in the DQME. Primarily, DQME allows the use of a

model-based controller to specify the adaptation.

The Model Based Controller (MBC) is primarily based on the OLC approach

discussed in Chapter 2. It is configured by identifying the QoS space, the QoS objectives,

the system dynamics, and additionally a utility function that characterizes each point in the

QoS space with a utility value (or cost). The MBC utilizes these specifications to adapt and

guide the system during operation in a trajectory such that the utility at any given point of

time is maximized under the constraints posed by mandatory region specifications.

A discrete state-based controller is configured by defining a set of operating states,

the conditions for transitioning from these states, and side-effects of taking the transitions.

A Composite Controller (CC) is configured by expressing data propagation over a

collection of controllers. Often, these take the form of set-point specifications i.e. an outer-

loop (global) controller defines set-points for an inner-loop (local) controller.

System Adaptation Controllers – Design Specification

The Controllers design is specified using the Controller models. DQME allows

representation of multiple control techniques. These include: Model-based Control,

Discrete State-based Control, and a Composite Control that allows expression of

hierarchical controllers, where individual controllers could be expressed with either of the

above control techniques.

 39

Figure 13 shows the Controller meta-model in DQME. The key concepts as can be

seen in this meta-model are State<<Model>>, CompositeController<<Model>>,

ModelBasedController<<Model>>, DataVariable<<FCO>>, IOVar<<Atom>>,

LocalVar<<Atom>>, and Transition<<Connection>>.

Figure 13 System Adaptation - Controllers design specifications

 40

A specific type of inheritance known as interface inheritance between State,

ModelBasedController (MBC), and CompositeController (CC) is used. The Interface

Inheritance indicates that the derived class has the same interface as the base class and can

play the role of the base class, however does not inherit the containment relations where the

base class participates as a container. The implication here is that both MBC and CC can

play the role of a State in defining a State Machine. The semantic implication is that the

control action will be computed by the controller represented by the active state. Further

details of the MBC, CC, State-based Controller, and Data and I/O variables follow.

Model Based Controller

The MBC controller is derived from the abstract Controller and interface inherited

from the State (Figure 13). By virtue of inheritance from the abstract Controller, an MBC

can contain DataVariables, which constitute the ports of the MBC to which QoS

Parameters could be bound. An MBC contains SystemDynamics model and a Utility model

(Figure 12).

A Utility model captures the utility function which assigns to each point in the QoS

space a value. Variable passing between the SystemDynamics, Utility, and DataVariables is

accomplished through the DataFlowConn connection. The MBC has an attribute

“SearchMode” using which one can specify the possible type of searches in the QoS space.

The two possible values that it can take are the “Relative Search” and the “Complete

Search”. Using the “Complete Search” option, searching in the entire space of possible

values for QoS parameters is enabled. The search would return results that best satisfy the

utility. In general, this type of search strategy can be used when there are bounded and

discrete values for QoS parameters. However, the length and the resulting time-

 41

consumption of this search strategy render the approach infeasible on account of the real-

time constraints on the operation of the system. The “Relative Search” option is more

practical. This search starts with some current values and searching is done in discrete steps

from these values. The QoS Parameter values are modified to check how they can affect

the utility before deciding on some particular values.

Discrete State-Based Controller

Often, a MBC is not adequate by itself to perform control in a highly discretized

QoS space. DQME therefore allows expressing discrete state-based controllers. The

representation is a hierarchical, concurrent state-machine based formalism, similar to

Harel’s Statecharts [69], as shown in the meta-model of Figure 13.

The key concepts from this perspective are State<<Model>>, and

Transition<<Connection>>. The Decomposition attribute of the State indicates whether

the contained states are composed to encapsulate a sequential behavior or concurrency. The

attribute isInitial can be set to true for states which are the default states. The EntryAction

and ExitAction attributes capture the effects of entering and leaving the particular state. The

Trigger, Guard, and Action attributes on the Transition define the conditions for the

transition to be enabled, and its effects.

Composite Controller

A Composite Controller allows composing multiple controllers, where the

compositional semantics are those of dataflow. This type of control becomes relevant in

expressing a collaboration of controllers in a hierarchical, inner-loop/outer-loop, or

local/global type of configuration to solve an overall control problem. The key relevant

 42

modeling concepts are CompositeController<<Model>>, and

DataFlowConn<<Connection>>. The containment relation between CompositeController

and the abstract Controller class indicates that the CompositeController can contain any of

the three controller types supported in DQME.

Data Variables

The DQME concept of DataVariable is sufficient for expressing dataflow

interactions between controllers, functions, system dynamics, and utility. However, for

reasons of preciseness in terms of scoping, and managing visual complexity, DataVariable

has been expressed as an abstract concept, and specialized into IOVar and LocalVar. IOVar

represents I/O variables of the container object, while LocalVar represents variables local

to the scope of the container. While it is not apparent from the meta-model shown in Figure

13, the IOVar are defined to be visible as port of the container, while LocalVar are not

visible as ports. This helps managing the visual clutter by avoiding several unnecessary

ports, and also helps in preventing the user from making the mistake of making bindings to

LocalVar.

Application Interface Modeling

The modularization of the QoS adaptation and a systematic integration with

functional application design can be obtained using the Application interface modeling.

This model allows encapsulating the functional aspects of the system and its interfacing to

the QoS parameters. The key elements of this sub-language are described below.

 43

Application Interface Model – Design Specification

Application Container

An application container (designated AppContainer in the meta-model) is an

encapsulation of the functional application that serves as a wrapper facilitating the

integration of the application with the QoS adaptation specification.

Figure 14 Application Interface Modeling

As seen in Figure 14, this container can contain the following objects:

• A reference to the application (AppComponentRef) that it is encapsulating. The

use of Reference is motivated by the fact that the application model is defined

elsewhere.

 44

• References to ports and parameters (PPRefs) of the application, which are the

interfaces through which the QoS adaptation can interact with the application.

These interfaces are specific to the underlying functional design paradigm. A

Software Radio Modeling Language (SRML) has been plugged into the existing

version of DQME that has ports and parameters that can be used for the

manipulation of the QoS information.

• Instances of QoS (Controllable and Observable) parameters. These are

connected with the PPRefs to express the binding of the QoS Parameters to

interfaces provided by the application. The QoSParams is stereotyped as an

AtomProxy which refers to the actual QoSParams<<Atom>> defined in a

different sub-language in the DQME meta-model.

• AppInterface<<Connection>> is the association between the PPRefs and the

QoSParams as indicated above

Application Compound

An application compound (designated AppCompound in the meta-model)

represents the composition of the QoS managed system. This container contains the

controllers i.e. State-based, Model-based, or Composite Controller, an Application

container (AppContainer), and ControlConn<<Connection>>. The ControlConn

represents the flow of QoS information between the Controllers and the Application.

Translators Developed

Model creation needs to be followed by code generation for analysis, simulation

and system assembly. Generated code provides a consistency that may be missing in code

 45

developed by multiple programmers on a team. Furthermore, the potential of introducing

bugs in automatically generated code is much lesser as compared to hand-written code.

Hand-coded objects pose a significant amount of risk for systems needing a high degree of

security, persistence and extensibility. A bug in the generated code can be fixed by making

appropriate changes to code generator that ensures the propagation of the fix throughout the

system. If the generated code seems incorrect / insufficient in terms of the assigned

semantics, the models can be iterated till a correct version of the code generator / generated

code is obtained.

GME provides the users with the facility of interpreting the models created in a

particular modeling environment and attach execution semantics to the models. It provides

a framework through which the model user can extract information from the models in a

desirable way. Thus, these models are used for synthesizing applications. GME provides

various interpreter frameworks such as the Builder Object Network (BON), BON2, the

Raw COM and the Visual Basic interfaces. Choice of various interfaces provides the user

the flexibility to choose from the area of language expertise as implementation frameworks

for the model translators.

BON2 based translators, for the automatic generation of MATLAB [70] (.m file)

and C++ code, have been developed for the DQME meta-model so as to assign semantics

for the domain models. Description of the translators developed in terms of their objectives

and structural properties is presented below.

GME to C++ Code Generator

The C++ code generator elaborated here is responsible to generate C++ classes

corresponding to the controller models created by the target-user of the system. The

 46

generated C++ code emulates the controller logic that can directly be used in the low level

implementation frameworks where dynamic system adaptations need to be performed.

Structure of the C++ Code Generator

The interpreter does automatic C++ code generation for the controllers / resource

managers modeled by the user for system adaptation. The generic strategy adopted for

generation of C++ classes is by generating a C++ class corresponding to a controller

designed by the user. This statement holds true for the Model Based Controller and the

Composite Controller. However, the strategy adopted for generating a C++ class

corresponding to a discrete State based controller differs from the above. The differences

have been discussed in this section. All the classes, corresponding to the controllers, have

an ‘init’ and an ‘exec’ functions for differentiating between the initialization and the

execution semantics of the system.

Discrete State-based controllers allow the creation of other state-based controllers

within themselves as they are based on the state-flow semantics. Therefore, generation of

state-based controllers’ code needs to be done cautiously to ensure that the details

regarding the active states, transitions and actions of the states are captured effectively. In

the code generator provided for DQME, for every high level discrete State based controller,

a C++ class is generated. But C++ code for all the other State based controllers that are

contained within this parent is embedded within the parent State based class code. For

effective representation of the Finite State machine semantics, the states within the parent

state are represented as “enums”. A State variable controls the switching of control from

one state to another. A switch-case statement is used to represent the details for different

states. The transitions from one state to another have been represented as “if-else”

 47

conditions to set the state variable to a particular state. Therefore, when a transition is

enabled, the “if” would evaluate to a true and the state variable would be set to the new

state causing the control to move to the new “case”. The “guard”, if specified, will also be a

part of the “if” statement generated so that the transition can only be taken when both the

“transition” and the “guard” are true. The “onEntry” and the “onExit” conditions get

represented in terms of functions. Unique functions are generated for every “onEntry” and

“onExit” conditions for the states. The “action” attribute specifies the action to be taken

when a particular transition is taken. Therefore, it has also been represented as functions in

the C++ code. Names of functions generated are unique to every state for easy

identification. These functions are invoked after the “onEntry” of that state.

The concurrent execution of the state machines has been represented in a pseudo-

concurrent way. Depending on the number of Finite State Machines that would be present,

those many number of state variables are generated for keeping track of the current active

states in all the FSMs. The user/modeler bears the responsibility to name the data variables

within the parent state in a unique fashion as all the data variables get represented in the

same C++ class file duplication of which may lead to compilation errors. However, the user

has the flexibility to reuse the data variable names within the Composite or the Model

Based Controller as separate classes are generated for these controllers.

As the controllers can be modeled to represent data passing between them in terms

of set-point specifications or just local data passing, appropriate getters and setters have

been provided for the data variables in the public interface of the classes for enabling

communication. A Model Based Controller or a Composite Controller present within a

state is represented in terms of an instance of that particular class.

 48

For every Composite Controller, an independent C++ class is generated. Since the

composite controller is mainly used for depicting the dataflow semantics, functions are

generated to depict the data flow. The order of dataflow between models is also considered

when generating code for composite controllers.

Similarly, for every Model Based Controller, an equivalent C++ class is generated.

The generation of code for the Model Based Controller is more complex than that for the

other two controller types. The QoS adaptation mechanism is specified in this type of

controller. The System Dynamics and the Function objects modeled in this controller are

mainly responsible to depict the dynamics of the system in terms of mathematical

expressions. The Utility model shows how the system will be driven towards the

adaptation. As apparent from the meta-models above, the System Dynamics can consist of

a number of function objects. Therefore, the code generated for the system dynamics

objects represents the invocation of the functions generated (corresponding to the objects).

The generated code has to take into consideration the order in which data flows between

various function objects. If Function object A has been modeled such that the output

variables from A are needed as inputs in B and C, then A has to be executed first in the

generated code than B and C. Similarly, if Y receives inputs through its ports from W and

X, then the code generated should ensure that invocation of W and X takes place before

function Y is invoked in the code.

The function objects specified in the system dynamics are implemented as

functions. The body of these functions is equivalent to what the user expresses in the

“Expression” attribute of the object. The generation of code for the Utility objects is more

complex. The evaluation of constraints should take place before anything else for the

 49

Utility object is executed. The constraints can be specified using the “constraint” attribute

on the Utility object. Thus the function generated corresponding to the evaluation would

return a Boolean value. If the constraints are satisfied, then the Utility object specified

using “UtilityFunction” is evaluated. Depending on the search strategy i.e. either a Relative

Search or a Complete Search (can be specified for the MBC) is performed where the utility

will be maximized or minimized as desired. Sample output of generated C++ code is

shown in the next chapter.

GME to MATLAB Code Generator

Collective behavior of components can have dynamics that affect the system in

some manner. Understanding the behavior of the system when it undergoes different

mutations proves to be significant. Simulation of models can help us gain a better

understanding of the working of the system under different resource constraints and

environmental conditions. The translator presented here generates a MATLAB command

file using which such simulations can be performed for the models developed using

DQME.

Structure of the MATLAB Code Generator

This interpreter is also responsible for automatic code generation for the controllers

/ resource managers modeled by the user for system adaptation. However, this interpreter is

geared towards the construction of a MATLAB command file rather than C++ classes. The

command file generated contains a list of MATLAB Stateflow commands that when

executed, produces the required MATLAB blocks. The actual logic for the generation of

the blocks corresponding to every object found in the user-created model is implemented in

 50

parameterized helper scripts. The helper scripts are analogous to the functions serving

certain goal. Therefore, the generation of the MATLAB file is reduced to the task of

generating calls to the various helper scripts by passing appropriate parameters.

For every controller object in the user model, an equivalent call to the

“CreateControllerModel” helper script is generated. This helper script needs multiple

parameters such as the name of the controller, state chart information for this controller and

positioning co-ordinates. Since, the controller and all the objects within the controller are

represented as states, a statechart is created for every controller. This statechart further has

various finite state machines (FSM) and/or concurrent FSMs. The Statechart information

that needs to be generated consists of the input and output variables list, input and output

variables initial values list and the input and output ports list, states list, parents of the states

list (i.e. a list of states containing these states), a list of transitions and a list of states that

contain these transitions.

The interpreter assigns Stateflow semantics to all the controllers. Consequently, the

objects are converted to appropriate hierarchical States. For representing concurrent

execution of FSMs, dummy parent states are created. The creation of dummy parent state

enables the setting of the type of this parent to “PARALLEL_AND” so that the internal

states could concurrently run. For the other states that do not need parallel execution, their

types are set to “EXCLUSIVE_OR”. For the MBC, separate files are created based on the

strategy explained above where the evaluation of the constraints is done prior to evaluation

and search strategies specify the type of search in the QoS space.

The “CreateConnection” is also a parameterized helper script that is responsible to

create connections between the ports of the controllers and the application container. The

 51

“CreatePlantModel” script generates blocks for application containers. All of the helper

scripts apart from the “CreateConnection” script needs positioning information as one of

their parameters. Generation of correct positioning information is required to ensure that

the states are correctly contained within their parents as MATLAB relies on the borders of

the states to determine the child-parent state relationship.

For every Model Based Controller, a separate command (.m) MATLAB file is

generated. The approach taken to generate code for the Model Based Controller is similar

to the approach adopted for generating C++ code for MBCs. The generated code has to

take into consideration the order in which data flows between various function objects. If

Function object A has been modeled such that the output variables from A are needed as

inputs in B and C, then A has to be executed first in the generated code than B and C.

Similar to C++ code generation, the function objects specified in the system

dynamics are represented as functions in the .m file. The body of these functions is

equivalent to what the user expresses in the “Expression” attribute of the object. The

evaluation of constraints takes place before anything else for the Utility object is executed.

If the constraints are satisfied, then the Utility object specified using “UtilityFunction” is

evaluated. Depending on the search strategy i.e. either a Relative Search or a Complete

Search (can be specified for the MBC) is performed where the utility will be maximized or

minimized as desired. Sample output of generated Simulink code is shown in the next

chapter.

Overall Scenario Usage of DQME

Figure 15 shows where DQME fits in the overall scenario. The user is required to

create design time models, by constructing the mission models, specifying the tradeoffs and

 52

the QoS adaptation mechanisms. The code generators are responsible to develop code that

can be used in appropriate environments. At the meta-level translation stage, the meta-

interpreter tool is used to interpret the meta-models and generate a target configuration file

for GME. The model weaver is a tool developed at ISIS, Vanderbilt University that accepts

as inputs an xml file that is an export of the models created and a specification file provided

by the modeler and can weave out a new or enhanced xml file containing information

pertaining to the enhanced models and that meets the specifications given in the file (More

information about Model Weaver is at [82]).

Figure 15 Overall Scenario Usage for DQME

 53

CHAPTER IV

CASE STUDY – PCES CAPSTONE DEMO

This chapter presents a case study of using the DQME paradigm to model the QoS

requirements of a mission-critical, real-time system. The DARPA PCES Program’s

capstone demonstration was used to show the efficacy of designing a QoS-specified multi-

UAV surveillance and target-tracking applications with real-time requirements. The

following section presents the study-scenario and illustrates the real-time requirements of

the time-critical targets.

CAOCCAOC

Figure 16 The PCES Capstone demonstration scenario

 54

Scenario Description

The PCES Capstone demonstration scenario consists of a set of Reconnaissance

Unmanned Aerial Vehicles (RUAVs) responsible for performing theater-wide surveillance

and target tracking, a set of Combat UAVs (UCAVs) that act as weaponized UAVs and

ground vehicles for time critical targeting. Each UAV has a camera mounted on it to

capture the surrounding images. The surveillance imagery, captured by the camera

mounted on the UAVs, is sent to a Command and Control (C2) Center or a Combined Air

Operations Center (CAOC). This imagery is then analyzed and commands transmitted to

the RUAVs. RUAVs can be commanded to focus on certain areas of interest (AOI). When

a commander finds a certain AOI such as a threat or some target, he can command the

RUAV to concentrate surveillance at that AOI. On a positive identification of a threat, the

commander dispatches a ground or an air combat unit to engage the target, with the UCAV

performing battle damage assessment afterwards.

A system comprising various components that need to interact with each other in

order to achieve certain goals can be identified in this scenario. For example, the image

sent by the RUAV that finally gets displayed to the commander’s display at the CAOC

travels through a set of distributed nodes before reaching the display. These nodes may be

running on different platforms with different operating systems and may communicate

using various network protocols, thus constituting a heterogeneous system. The nodes may

be considered to form an end-to-end application string that must be traversed by the image

to reach its destination – the target image sensor or the commander’s display. In a

distributed system depicted in the picture above, there are multiple such application strings

corresponding to multiple UAVs. A significant challenge lies in the management of end-to-

 55

end QoS requirements of these application strings because of the dynamic and

heterogeneous nature of the applications. The following sections discuss the details

involved in modeling the end-to-end QoS adaptation strategies using DQME for this

scenario.

Modeling of the PCES Capstone Demo

Brief Description

Key elements identified for QoS adaptation modeling in this situation involves the

following:

Roles and Mission Requirements

UAV plays three primary roles in this scenario: Surveillance, Target Tracking and

Battle Damage Assessment. Each of these roles has certain mission requirements

associated with each of them:

• Surveillance: In this role, the RUAV performs the theater-wide surveillance. An

important mission requirement is to maximize the surveillance area along with

maintaining appropriate resolution of the imagery that is being sent to the

display of the commander to make an easy identification of the AOI. For

enabling an easy identification of threat, the speed at which the imagery is sent

is also critical. The time lag between two images arriving at the display may

thwart the purpose and prove detrimental to the mission. The maximum

possible rate, image size, and resolution are determined by the capabilities of

the camera on the RUAV. The adaptation across RUAVs will take into account

 56

the number of UAVs and the amount of resources. The tradeoffs also have been

identified along with these mission requirements and have been discussed in the

next subsection.

• Target Tracking: In this role, the RUAV has been identified to be observing an

AOI and hence performs target tracking. Obvious importance need to be given

to this RUAV (or set of RUAVs) over others. The mission requirements of

RUAV that enters the Target Tracking role, is to provide high resolution

imagery using which the human operator/commander can positively identify

target or threat. Thus, in the case of the RUAV now hovering upon the AOI, the

minimum rate is no longer dependent on the speed of the RUAV, but by the

speed of any mobile targets (or more accurately, the difference between their

speed and that of the target tracking RUAV). Likewise, if the targets are

stationary and the target tracking RUAV is centered on the AOI, cropping the

image to remove peripheral or less/un-important imagery using a different scan

size can be an option.

• Battle Damage Indication: The UAV enters this role when a target is engaged to

perform the Battle Damage Indication. The UAV needs to provide imagery

consistently and continuously until a human operator can determine that there is

sufficient detail to discern battle damage. High resolution imagery needs to be

provided in this case.

Figure 17 shows the complete Mission Modeling done for Capstone in GME.

 57

Figure 17 Mission Models for Capstone Demonstration

Additional modes, ModeA, ModeB and ModeC were specified to be able to model

multiple UAVs in different roles at any instant of time.

Trade-Offs

Occasionally, in an attempt to satisfy a certain QoS goal the other parameter values

may get disturbed. For example, to satisfy a QoS goal of sending compressed images, CPU

resources utilization may increase. Under such constraining conditions, tradeoffs needs to

be specified to determine which parameter values/goals should be given more importance

than the others. The tradeoffs for the role descriptions of the UAVs are described below.

The decisions of the tradeoffs were made by the sponsors after discussing with the domain

experts.

• Surveillance: In this mode of operation, the precedence order of tradeoff is

resolution followed by size and then the rate. The “satisfyBefore” label signifies

the ordering. The label starts from the FrameRate towards compression level

and then the FrameRate implies that a UAV in surveillance mode (RUAV) is

least concerned about the rate at which the images are transferred whereas the

 58

resolution of the images is of paramount importance. In case a choice is

required to be made for trade-offs, the application would compromise the rate

of transmission rather than the image resolution. Image compression in general

changes the overall data size and image processing time. Lossy compression

can also affect (reduce) image resolution.

Figure 18 Surveillance - Trade-off Modeling

• Target Tracking: In this mode, assuming a stationary AOI, the tradeoff order for

the privileged target tracking RUAV is the rate followed by the scan size i.e.,

changing the image size and resolution are not allowed. The minimum frame

rate can be even lower than one frame every six seconds, but the image size and

resolution cannot be lower than the minimums for surveillance role.

 59

Figure 19 Target Tracking - Tradeoffs Modeling

• Battle Damage Indication: The tradeoff order for the RUAV in the battle

damage assessment mode of the imagery is the frame rate followed by the

image size. While doing the Battle Damage assessment, the rate at which the

images are sent are more important than the size of the image sent.

 60

Figure 20 BDA - Trade-off Modeling

QoS Parameters

Depending on the roles performed by the UAVs and the mission requirements that

need to be adhered to, following are the set of QoS parameters identified for this scenario.

QoS – Observable Parameter Modeling

Observable Parameters, in the context of the Capstone model, specify the metrics

that can be measured at runtime to help calculate the current QoS. This part of the model

also selects the appropriate behavior to invoke, and subsequently measures the

effectiveness of the adaptation. These include:

• Mission attributes like the bandwidth allocated, roles of participants and

allocated CPU

 61

• Physical attributes of the UAV like the speed of the UAV, scan size, frame rate,

image size, and resolution of the UAV camera

• Run time data attributes that include actual frame rate, image size, and

resolution

• Attributes that correspond to the resources like the bandwidth capacity,

bandwidth used and CPU reservation levels

QoS – Controllable Parameter Modeling

The Controllable Parameters specify the aspects of the model that can be modified

at runtime to change the QoS. These are the “knobs” through which the changes can be

done to the system. A number of controllable QoS mechanisms and other adaptive

behaviors were identified and have been represented in the model. These include:

• CPU Reservation Level and CPU Priorities

• Image compression using various compression algorithms

• Image scaling

• Image cropping

Figure 21 gives a snapshot of the parameters modeled.

 62

Figure 21 QoS Parameters Modeling

Resource Managers

The QoS management is based on a multi-layered structure. The important

elements of the QoS management structure are:

• QoS adaptation mechanisms

• System level/Global Resource Manager

• Local Resource Managers

The Global resource manager (Figure 22) is responsible to assign bandwidth and

CPU to each UAV. While computing these values for each UAV, the controller needs to

takes into account the roles/importance of each UAV along with the amount of shared

resources available in the system.

The Local Resource Managers accept the inputs (also referred to as set-point

specifications) of the estimated values by the System Resource manager and determine new

values depending on the local adaptation scheme available for effective performance of the

UAV in that role. The global resource manager is modeled as a Composite Controller.

Composite Controllers enable easy representation of compositional semantics and data-

 63

flow in the contained controllers. The local resource managers are modeled as Model

Based Controller for representing the set of operating states, conditions for transitions, side-

effects of these transitions and internally representing the System Dynamics and Utility

models. The system level resource manager has been designed as an outer-loop controller

that defines set-points for a local level resource manager designed as an inner-loop

controller.

Figure 22 Capstone modeling of various resource managers

 64

System Dynamics Modeling

System dynamics in the Capstone project are represented using the state-space

representation. The QoS parameters, discussed above, represent the n-dimensional QoS

space. As a consequence, the system dynamics model represents all potential trajectories

that can be taken by the system in the multi-dimensional QoS space. The model has been

encapsulated at two different levels and captures the relation between the number of UAVs,

the available resources and the roles of the UAVs. This relation shows the effect on

bandwidth availability and the CPU that could get allocated to various UAVs.

The local level dynamics consider situations where an increase of usage of a

particular resource may lead to an increase/decrease of some other. For e.g., invoking

compression operation on an image will reduce the bandwidth usage but will increase the

CPU usage. Effects of this nature make capturing the local-level system dynamics more

complicated. Modeling the system dynamics normally needs an experimental and

analytical understanding of how particular adaptation strategies may affect the observable

parameters which would in turn affect the UAVs. The interactions between these are

captured and specified in the system dynamics model using mathematical relations. The

System Dynamics have been captured using the “Function” models for modeling the

system dynamics. The following picture depicts the usage of the “Function” objects to

capture the system dynamics.

 65

Figure 23 System Dynamics representation using the function
models

The mathematical expression is captured using the “Expression” attribute present

on the “Function” models. For the above represented Deviation function, the expression

value is expressed as:

Figure 24 "Deviation" function expression

For the above represented BW_Compute function, the expression value is:

 66

Figure 25 "BW_Compute" function expression

Adaptation Strategies

The adaptation strategies specified in the local resource managers uses the frame

rate, size, compression level, resolution and the allocated bandwidth (specified in terms of

set-point specifications by the global resource manager).

The following figure depicts the usage of System Dynamics and the Utility objects

for representation of the adaptation strategies in the local resource managers.

 67

Figure 26 System Dynamics and Utility driven QoS adaptation
representation

The “Utility” model shown in the picture above forms an important part of the QoS

management and is responsible to drive the QoS adaptation in terms of achieving improved

QoS. The following picture depicts the “Utility” model attributes captured:

Figure 27 Utility model – Attributes

 68

Code Synthesis from Models

Synthesis of code was performed by executing the code generators that were

developed towards the development of DQME atop the constructed models. The sample

outputs of the code generators are presented in this section.

C++ Code Generator – Sample Output

The output of this code generator is a set of classes representing the controllers

designed by the user. An example model and the equivalent generated code have been

shown below.

The model shows the “Role_Priority_Determination” model that has 6 concurrent

FSMs contained. (Role_Priority_Determination_1, Role_Priority_Determination_2 -

Role_Priority_Determination_6)

Figure 28 Example Model

 69

The sample partial output of the code for this model object is seen in Table 1

Table 1. Sample C++ code to show the init(), exec() and pseudo-concurrent executions of
FSMs

Table 2. Sample C++ code for FSM execution

//Init function impl
void Role_Priority_Determination_GlobalController::init()
{
//Initialize the state vars if any
this->StateVar_1=InitialRest;
this->StateVar_2=Surveillance2;
this->StateVar_3=Surveillance1;
this->StateVar_4=Surveillance5;
this->StateVar_5=Surveillance4;
this->StateVar_6=Surveillance3;
}

//Exec function impl
void Role_Priority_Determination_GlobalController::exec(int
importance_6,int importance_5,int importance_4,int importance_3,int
importance_2,int importance_1,int numBDA,int numTargetTracking,int
numSurveillance)
{
this->importance_6=importance_6;
this->importance_5=importance_5;
this->importance_4=importance_4;
…….
this->numTargetTracking=numTargetTracking;
this->numSurveillance=numSurveillance;
exec_dataflow1();
exec_concFSM_1();
……..
exec_concFSM_6();

//Assigning the output vars of this State Controller
this->role6=role6;
………
this->wFS_1=wFS;
this->wRes_6=wRes;

}

 70

MATLAB Code Generator – Sample Output

The output of the generator is a set of .m i.e. MATLAB files. These files contain

commands for the creation of the states, function blocks, ports and the respective

connections. Table 3 shows partial sample of the generated .m file corresponding to

Role_Priority_Determination model shown above. In the sample output below, the state

names starting with “DP_” are dummy states that are created so that their “type” could be

//Extra func impls for conc FSMs execution

void Role_Priority_Determination_GlobalController::exec_concFSM_1()
{
switch(StateVar_1)
{
case BDA:
if((importance_6 <= 0.5))
{
BDA_exec_onExit();
BDA_InitialRest_transitionAction();
InitialRest_exec_onEnter();
StateVar_1=InitialRest;
}
else
{
BDA_exec_during();
}
break;
case InitialRest:
if((importance_6 > 0.5))
{
InitialRest_exec_onExit();
InitialRest_BDA_transitionAction();
BDA_exec_onEnter();
StateVar_1=BDA;
}
else
{
InitialRest_exec_during();
}
break;

}

 71

set to “PARALLEL_AND” which would enable concurrency for the states contained

within it.

Table 3. Sample Matlab code to show the object equivalent states
and dummy states

Case Study – Evaluation

The PCES Capstone demonstration case-study, which is an instance of real-time

scenario of DRE systems, helps make apparent the advantages of using DQME to model

QoS adaptive applications. Using DQME, a clear separation of QoS properties from the

functional aspects is provided. Expression of the system dynamics is made easier with the

help of the models. Using the Function models, the data propagation and interactions and

the mathematical expression for the system was easily captured.

%States Information for GlobalController

St_0=struct('name','GlobalController','position',[50,50,400,400],'ini
tial','0','labelen','','labeldu','','labelex','','decomposition','EXC
LUSIVE_OR','vars',{{'Importance_4','Importance_3','Importance_2','Imp
ortance_1','Importance_6'……..});

DP_St_0=struct('name','GlobalController_dp0','position',[50,50,100,10
0],'initial','1','labelen','Importance_4=GlobalController.Importance_
4;Importance_3=GlobalController.Importance_3;……..}});
.
.
.

St_8=struct('name','Role_Priority_Determination','position',[50,450,1
00,100],'initial','0','labelen','importance_4=GlobalController_dp0.Im
portance_4;

DP_St_1=struct('name','Role_Priority_Determination_dp1','position',[5
0,50,100,100],'initial','1','labelen','importance_4=Role_Priority_Det
ermination.importance_4; Determination.importance_3…..}};

St_27=struct('name','BDA','position',[100,100,200,175],'initial','0',
'labelen','','labeldu','','labelex','','decomposition','EXCLUSIVE_OR'
,'vars',{{}},'initialVarValue',{{}});

 72

The overall complexity of the models can be measured by doing some quantitative

analysis. 7 System Dynamics models are constructed to capture the system and local level

dynamics in terms of the Utility models for the adaptation strategies specification. The

system dynamics and the adaptation strategies specification at the system level were

captured using over 120 data variables. For each of the local level system dynamics, an

approximate of 100 data variables is required thus adding up to approximately 800 data

variables in the entire model. The model on a whole is made up of over 500 data flow

connections to enable transfer of data. Developing complex models as these is simplified

using DQME.

The domain engineer bereft of control-theory knowledge finds it intuitive to express

the QoS as it has been elevated to a higher abstraction level. Behavioral modeling along

with the resource management strategies under varying operating conditions are easily

captured at the early stages of design time.

Code generators were used on these models for synthesizing the appropriate

controller logic. BBN’s environment supports a set of generic components and runtime

libraries that aid in run-time adaptation and control of a general class of distributed

systems. Collectively, these pieces form a fairly robust system for QoS adaptation. The

MATLAB code synthesized from the MATLAB code generator was successfully applied

towards the simulations of the PCES Capstone demo in Simulink. More details can be

found in the PCES demo presentations [83]. Covering the details of the MATLAB

Simulation is beyond the scope of this thesis as the simulations were worked on by a

different member in the team.

 73

CHAPTER V

CONCLUSION AND FUTURE WORK

Conclusion

Design and development of large-scale DRE systems has been difficult primarily

due to factors such as the real-time nature of the applications, distribution of the

components over variety of nodes that may have resource constraints and unpredictable

network and environmental conditions. Since all these factors contribute towards the design

complexity of the DRE systems it is necessary to maintain a degree of QoS in these

systems that will make certain guarantees about their performances.

As mentioned earlier, control engineers have sufficient control background but lack

domain knowledge. On the other hand, domain engineers, who have significant amount of

knowledge of the functional aspects of the system, do not have enough background of

control-engineering to design and develop QoS adaptive applications. DQME, a modeling

framework, developed and presented in this thesis provides a way for the domain engineers

to be able to develop QoS adaptive applications.

The solution presented is a modeling framework that offers a graphical way of

describing all the details of the systems at an abstract level and their relationships in a

precise way. Modeling also enables the anticipation of consequences of multiple

interactions. Additionally, unlike the low-level techniques used for developing systems that

are cumbersome to manage when the systems increase in complexity, modeling offers not

only a manageable solution but also reduce the development time.

 74

As seen in the existing literature for building QoS in DRE systems, the adaptation

strategies employed thus far, are largely ad-hoc. QuO project developed at BBN offers a

separation of concerns between the functional and QoS goals of the system; however it still

uses ad-hoc schemes for the adaptations. DQME offers a way to specify interactions

between various QoS variables in a precise way.

DQME elevates the control-engineering aspect of building QoS in a system to a

higher level of abstraction that is amenable and can be used by the domain engineers to

develop QoS-adaptive applications without needing significant amount of controls

knowledge. DQME has been specified at a meta-level to enable development of QoS in

large class of DRE systems.

DQME focuses primarily on the QoS aspect of the system, and allows the users to

plug in various meta-models representing different functional modeling and composition

techniques. Thus, it is able to offer a separation of concerns between the QoS and

functional goals of the systems. DQME supports modeling of various concepts required for

building QoS adaptation in the systems such as representation of dynamics of the system

represented as “SystemDynamics” <<Model>> along with the ability to model the

adaptation strategies using the “Utility” <<Model>> object provided by the framework.

Observation of the system state and QoS related adaptations can be made to the system

using the QoS parameters represented as “Observable” and “Controllable” <<Atom>>

parameters. Various controllers provided in DQME facilitate the representation of

adaptation mechanisms by allowing trade-off specifications.

Practical use of DQME has been illustrated through an example model of the PCES

Capstone demonstration. This case study demonstrates how DQME facilitates capturing the

 75

system dynamics and representation of the mathematical expressions. Mission

requirements of the application were easily specified using DQME. Specification of the

adaptation mechanisms were done using the controllers provided by DQME. Additionally,

specification of tradeoffs was facilitated by providing a unidirectional connection as

represented by the “Preference” connection class described in chapter 3.

Code generators have been developed that generate MATLAB and C++ code

corresponding to the controllers developed in the models. The code generators have well-

defined rules in the sense that the models have a concrete mapping onto the target language

syntax. Automatic code-generation makes it easy to generate code for the modified models

eventually saving time and eliminating the need for an additional check as there is no

involvement required by other software engineer to convert the design specifications into

the target code.

DQME, in short, presents the user with a control-centric perspective for the

representation and analysis of software adaptation in DRE systems. As the adaptation

strategies can be specified in DQME using well-defined specifications and various

interactions can be shown precisely, utilizing DQME for integrating QoS in DRE systems

at design-time is easier and less error-prone when compared with the other techniques

discussed earlier.

Future Work

Several different enhancements can be identified for future areas of investigation.

One area is the integration of a model-checking tool so as to enable formal reasoning about

the adaptation mechanisms. Integration of such a tool would permit the safety and

reachability analysis of the models constructed. This analysis addresses the question

 76

whether an unsafe region in the state-space is reachable by the system trajectories starting

from a set of initial states [73].

Formal verification of the models constructed may be the other area that could be

addressed for future enhancements to the models. Post verification process, the models

could then be subjected to the code generators that would assign execution semantics to the

models thus reducing the number of domain model iterations required before desired QoS

levels are achieved.

 77

APPENDIX A

GME Modeling Concepts

The GME modeling environment offers the user, the flexibility and freedom to

describe a system in sufficient detail for meaningful analysis of the models. Various design

choices while building models are represented by the modeling paradigm. A modeling

paradigm is defined by the kind of models that can be built using it, how they are organized

and what information is stored in them. Modeling various concepts of any particular system

under consideration requires the knowledge of the basic building blocks that GME

provides. The following sub-sections provide some information about these blocks which

have also been used to model the DQME paradigm.

A.1 MODEL

Model is an abstract representation of an object. What a model represents depends

on the domain being modeled. For instance, a process model represents functionality in a

plant in the chemical engineering domain.

A model is, in computational terms, an object that can be manipulated. It has state,

identity, and behavior. The purpose of the GME is to create and manipulate these models.

A model typically can contain various parts i.e. other objects contained within the model.

These parts could be one or more of the following:

• atoms (or atomic parts),

• other models,

• references (which can be thought of as pointers to other objects),

• sets (which can contain other parts),

 78

• connections

In the GME, each part (atom, model, reference, or set) is represented by an icon.

Parts have a simple, paradigm-defined icon. If no icon is defined for a model, it is shown

using an automatically generated rectangular icon with a 3D border.

A.2 ATOM

Atoms (or atomic parts) are simple modeling objects that do not have internal

structure (i.e. they do not contain other objects), although they can have attributes. Atoms

can be used to represent entities, which are indivisible, and exist in the context of their

parent model.

A.3 REFERENCE

References are parts that are similar in concept to pointers found in various

programming languages. When complex models are created (containing many, different

kinds of atomic and hierarchical parts), it is sometimes necessary for one model to directly

access parts contained in another. For example, in one diagram of a system a variable may

be defined, and in another diagram of the system one may want to use that variable.

In GME this can be attained through using – reference. References are objects that

refer to (i.e. point to) other modeling objects. Thus, a reference can point to a model, an

atomic part of a model, a model embedded in another model, or even another reference part

or a set. A reference can be created only after the referenced part has been created, and the

referenced object cannot be removed until all references to it have been removed. However,

 79

it is possible to create null references, i.e. references that do not refer to any objects. One

can think of these as placeholders for future use.

A.4 CONNECTION

Relationships among objects mentioned above can be expressed using connection.

A connection is a line that connects two parts of a model. Connections have at least two

attributes: appearance (to aid the user in making distinctions between different types of

connections) and directionality (as distinguished by the presence or absence of an arrow

head at the “destination” end of the line). Additional connection attributes can be defined in

the meta-model, depending on the requirements of the particular modeling paradigm.

A.5 ASPECT

Hierarchy is used to show or hide design detail within the models. However, large

and/or complex modeling paradigms can lead to situations where, even within a given level

of design hierarchy, there may be too many parts displayed at once. To alleviate this

problem, models can be partitioned into aspects.

An aspect is defined by the kinds of parts that are visible in that aspect. The

existence or visibility of an object within a particular aspect is determined by the modeling

paradigm. A given object may also be visible in more than one aspect. For every kind of

object, there are two kinds of aspects: primary and secondary. Objects/Parts can only be

added or deleted from the model from within its primary aspect. Secondary aspects merely

 80

inherit parts from the primary aspects. Different interconnection rules may apply to parts in

different aspects.

A.6 ATTRIBUTES

Models, atoms, references, sets and connections can all have attributes. An attribute

is a property of an object that is best expressed textually. Typically objects have multiple

attributes, which can be set using “non-graphical” means, such as entry fields, menus,

buttons, etc. The attribute values are translated into object values (e.g. numbers, strings)

and assigned to the objects. The modeling paradigm defines what attributes are present for

what objects, the ranges of the attribute values among others.

A.7 INHERITANCE

GME also offers a way of representing the Object-Oriented inheritance concepts

amongst the objects in a modeling paradigm. A normal object-oriented concept of

Inheritance can be denoted by plain inheritance (denoted as a triangle). GME also supports

two other special types of inheritances: an implementation inheritance and an interface

inheritance. The details of these have been explained below.

A.7.1 INHERITANCE

The semantics of inheritance are uncomplicated: specialized (i.e. child) classes

contain all the attributes of the general (parent) class, and can participate in any association

the parent can participate in. However, during meta-model composition, there are cases

 81

where finer-grained control over the inheritance operation is necessary. Therefore, two

types of inheritance operations between class objects—implementation inheritance and

interface inheritance was introduced. The union of implementation inheritance and

interface inheritance represents the normal UML inheritance.

A.7.2 IMPLEMENTATION INHERITANCE

In implementation inheritance, the subclass inherits all of the base class’ attributes,

but only those containment associations where the base class functions as the container. No

other associations are inherited. Implementation inheritance is represented graphically by a

UML inheritance icon containing a solid black dot.

A.7.3 INTERFACE INHERITANCE

Interface inheritance allows no attribute inheritance but does allow full association

inheritance, with one exception: containment associations where the base class functions as

the container are not inherited. Interface inheritance is represented graphically by a UML

inheritance icon containing an un-colored black dot.

A.8 PROXY OBJECTS

GME provides support for Proxy objects for almost all of the concepts that can be

modeled using it. Proxy objects can be treated as pointers to the actual objects. For e.g.

Atom Proxy is an object that can refer an Atom modeled in the system. This enables a

 82

clean organization of objects in groups without being constrained to include all of them in

the same modeling sheet.

 83

APPENDIX B

Brief Description of Network Related Terms

B.1 JITTER

In the field of Networking, especially the IP networks, jitter refers to the variation

in the delay of the data packets arrival [85]. This term is associated with the loss or de-

sequencing of the data packets resulting in a delay over time from point-to-point in a

network. The amount of jitter tolerable in a network is dependent on the jitter buffer

available. The more the buffer, the more the network can reduce the effects of jitter.

B.2 LATENCY

Latency refers to the time taken for the data packets to arrive at the destination end.

For precision, one-way latency is defined as the time taken from the start of data

transmission to the start of packet reception [85]. The time taken from the start of packet

transmission to the end of reception is often referred to as transmission delay. Round-trip

latency is the time taken from the source transmitting packets to the source receiving a

response.

B.3 THROUGHPUT

The amount of data that is transferred from one point to another or processed in a

specified amount of time is referred to as throughput. The data transfer rates for networks

or for disk drives are measured in terms of throughput. It is typically measured in kbps,

Mbps or Gbps [84].

 84

REFERENCES

[1] T.F. Abdelzaher, J.A. Stankovic, C. Lu, R. Zhang, and Y. Lu, “Feedback
Performance Control in Software Services,” IEEE Control Systems, vol. 23, no. 3, June
2003

[2] Chenyang Lu, Xiaorui Wang, Xenofon Koutsoukos, “End to End Utilization Control
in Distributed Real-Time Systems,” ICDCS 2004, IEEE Computer Society 2004, 456 466

[3] Chenyang Lu, Member, IEEE, Xiaorui Wang, and Xenofon Koutsoukos, “Feedback
Utilization Control in Distributed Real-Time Systems with End-to-End Tasks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 16, no. 6, June 2005

[4] www.wikipidea.org – Article on “Control Theory”

[5] A. Burns, A. Wellings. Real-Time Systems and Programming Languages, 3rd
Edition. Addison Wesley Longmain, 2001

[6] C. Lu, J. Stankovic, G. Tao, and S. Son, “Feedback Control Real-Time Scheduling:
Framework, Modeling, and Algorithms,” J. Real-Time Syst., vol. 23, no. 1-2, pp. 85-126,
July/September, 2002

[7] T. F. Abdelzaher, K. G. Shin, and N. Batti, “Performance Guarantees for Web Server
End-Systems: A Control Theoretic Approach,” IEEE Trans. Parallel & Dist. Syst., vol. 13,
no. 1, pp. 80-96, January 2002

[8] T. F. Abdelzaher and N. Bhatti, “Web Server QoS Management by Adaptive Content
Delivery,” International Workshop on Quality of Service, 1999

[9] Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J., Thomason IV C., Nordstrom
G., Sprinkle J., Volgyesi P.: The Generic Modeling Environment, Workshop on Intelligent
Signal Processing, accepted, Budapest, Hungary, May 17, 2001

[10] GME Manual and User Guide -
http://www.isis.vanderbilt.edu/Projects/gme/GMEUMan.pdf

[11] J. Sztipanovits, G. Karsai: Model-Integrated Computing, IEEE Computer, pp. 110-
112, April, 1997

[12] www.quo.bbn.com

[13] David Tacconi, Cem Saraydar, Şirin Tekinay “Ad hoc enhanced routing in UMTS for
increased packet delivery rates,” Wireless Communications and Networking Conference,
2004. WCNC, 2004 Vol 2. Pg – 1093-1098

 85

[14] Sangyoon Oh1,2, Hasan Bulut1,2, Ahmet Uyar1,3, Wenjun Wu1, Geoffrey Fox1,2
“Optimized Communication using the SOAP Infoset For Mobile Multimedia Collaboration
Applications,” Proceedings of the International Symposium on Collaborative Techniques
and Systems. May 2005, Missouri, USA

[15] Object Management Group, Realtime CORBA Joint Revised Submission, OMG
Document orbos/99-02-12 ed., March 1999

[16] Morgenthal JP 1999 Microsoft COM+ Will Challenge Application Server Market
www.microsoft.com/com/wpaper/complus-appserv.asp

[17] Wollrath A, Riggs R and Waldo J 1996 A Distributed Object Model for the Java
System. USENIX Computing Systems

[18] James R. Davis, “Model Integrated Computing: A Framework for Creating Domain
Specific Design Environments “

[19] Zonghua Gu, Shige Wang, Sharath Kodase and Kang G. Shin “An End-to-End Tool
Chain for Multi-View Modeling and Analysis of Avionics Mission Computing Software,”
24th IEEE International Real-Time Systems Symposium (RTSS'03) p. 78

[20] Gray, J., Bapty, T., Neema, S., Ledeczi, A.: "Viewpoints and Aspects in Domain-
Specific Modeling," 1st International Conference on Aspect-Oriented Software
Development, Demonstration, Enschede, The Netherlands, April 2002

[21] Sriram Narasimhan, Gautam Biswas, Gabor Karsai, Tal Pasternak, and Feng Zhao
Building observers to address fault isolation and control problems in hybrid dynamic
systems, Proceedings of the IEEE SMC 2000 Conference, 2000

[22] Peter Volgyesi, Akos Ledeczi. “Component-Based Development of Networked
Embedded Applications,” 28th Euromicro Conference, Sep 2002

[23] Larry Howard “Adaptive Learning Technologies for Bioengineering Education,”
IEEE Engineering in Medicine and Biology Magazine

[24] Christopher D. Gill, David L. Levine Douglas C. Schmidt “Towards Real-Time
Adaptive QoS Management in Middleware for Embedded Computing Systems,” Fourth
Annual Workshop on High Performance Embedded Computing, MIT Lincoln Laboratory,
2000

[25] Schantz, and A. K. Atlas, “Applying Adaptive Real-time Middleware to Address
Grand Challenges of COTS-based Mission-Critical Real-Time Systems,” in Proceedings of
the 1st IEEE International Workshop on Real-Time Mission-Critical Systems: Grand
Challenge Problems, Nov. 1999

[26] http://www.isis.vanderbilt.edu/research/mic.html

 86

[27] Earl Long, Amit Misra, and Janos Sztipanovits, “Increasing Productivity at Saturn,”
IEEE Computer, August 1998, pp. 35-43

[28] J. Rumbaugh, I. Jacobson, and G. Booch, “The Unified Modeling Language
Reference Manual,” Addison-Wesley, 1998

[29] Barr, Michael “Closed-Loop Control,” Embedded Systems Programming, August
2002, pp. 55-56

[30] Thomas Kailath “Linear Systems,” Prentice Hall, Englewood Cliffs N.J 1980 Pg. 262

[31] http://www.objs.com/survey/QoS.htm

[32] Nanbor Wang, Christopher Gill, Douglas Schmidt, Aniruddha Gokhale,
Balachandran Natarajan, Joseph Loyall, Richard Schantz, and Craig Rodrigues. “QoS-
enabled Middleware,” Chapter in Middleware for Communications, Qusay H. Mahmoud
(Editor), Wiley, July 2000

[33] A. Gokhale and D. C. Schmidt, “Techniques for Optimizing CORBA Middleware for
Distributed Embedded Systems,” in Proceedings of INFOCOM ’99, Mar. 1999

[34] Atif Memon, Adam Porter, Douglas Schmidt “Feedback-driven Design of Distributed
Real-time & Embedded Component Middleware Via Model-Integrated Computing &
Distributed Continuous Quality Assurance,” Abstract -
http://www.cs.virginia.edu/~sullivan/sdsis/Program/Adam%20Porter.pdf

[35] Object Management Group “The Common Object Request Broker: Architecture and
Specification,” 2.3 ed., June 1999

[36] Sun Microsystems, “Jini Connection Technology,”
http://www.sun.com/jini/index.html, 1999

[37] Anne Thomas, Patricia Seybold Group, “Enterprise JavaBeans Technology,”
http://java.sun.com/products/ejb/white paper.html, Dec. 1998. Prepared for Sun
Microsystems, Inc

[38] D. Box “Essential COM,” Addison-Wesley, Reading, MA, 1997

[39] IBM, “MQSeries Family,” http://www-4.ibm.com/software/ts/mqseries/, 1999

[40] Rodrigues C. “Using Quality Objects (QuO) Middleware for QoS Control of Video
Streams,” OMG Embedded and Real-Time Distributed Object Systems Workshop. January
7-10, Burlingame, CA

[41] N Wang, DC Schmidt, M Kircher, K Parameswaran “Towards a Reflective
Middleware Framework for QoS-enabled CORBA Component Model Applications,” IEEE
Distributed Systems Online, 2001

 87

[42] Bollella, Gosling, Brosgol, Dibble, Furr, Hardin, and Turnbull, “The Real-Time
Specification for Java,” Addison-Wesley, 2000

[43] Object Management Group “Dynamic Scheduling Real-Time CORBA Joint Revised
Submission,” OMG Document orbos/2000-08-12 ed., August 2000

[44] DARPA, “The Quorum Program.” http://www-
fp.mcs.anl.gov/dsl_internal/collaboration/Quorum.html, 1999

[45] Richard Schantz, Joseph Loyall, Michael Atighetchi, Partha Pal, “Packaging Quality
of Service Control Behaviors for Reuse,” 5th IEEE International Symposium on Object-
Oriented Real-time distributed Computing, April 29 - May 1, 2002, Washington, DC

[46] Pal PP, Loyall JP, Schantz RE, Zinky JA, Shapiro R, Megquier J. “Using QDL to
Specify QoS Aware Distributed (QuO) Application Configuration,” Proceedings of ISORC
2000, 3rd IEEE International Symposium on Object-Oriented Real-time distributed
Computing, March 15 - 17, 2000, Newport Beach, CA

[47] Vanegas R, Zinky JA, Loyall JP, Karr DA, Schantz RE, Bakken DE “QuO's Runtime
Support for Quality of Service in Distributed Objects,” Proceedings of the IFIP
International Conference on Distributed Systems Platforms and Open Distributed
Processing (Middleware'98), 15-18 September 1998, The Lake District, England

[48] R. Schantz, J. Loyall, C. Rodrigues, D.C. Schmidt, Y. Krishnamurthy, and I. Pyarali
“Flexible and Adaptive QoS Control for Distributed Real-time and Embedded
Middleware,” The ACM/IFIP/USENIX International Middleware Conference, June 2003,
Rio de Janeiro, Brazil

[49] J. Loyall, R. Schantz, J. Zinky, P. Pal, R. Shapiro, C. Rodrigues, M. Atighetchi, D.
Karr, J.M. Gossett, and C.D. Gill. “Comparing and Contrasting Adaptive Middleware
Support in Wide-Area and Embedded Distributed Object Applications,” In Proceedings of
the 21st IEEE International Conference on Distributed Computing Systems (ICDCS-21),
April 16-19, 2001, 625-634

[50] J. Loyall, D. Bakken, R. Schantz, J. Zinky, D. Karr, R. Vanegas, and K. Anderson.
“QoS Aspect Languages and Their Runtime Integration,” Lecture Notes in Computer
Science, 1511, Springer-Verlag. Proceedings of the Fourth Workshop on Languages,
Compilers, and Run-time Systems for Scalable Computers (LCR98), May 28-30, 1998

[51] J. Loyall, R. Schantz, J. Zinky, and D. Bakken. “Specifying and Measuring Quality of
Service in Distributed Object Systems,” In Proceedings of The 1st IEEE International
Symposium on Object-oriented Real-time distributed Computing (ISORC 98), April 20-22,
1998, 43-52

[52] L. R. Welch, B. Ravindran, B. Shirazi and C. Bruggeman, “Specification and analysis
of dynamic, distributed real-time systems,” in Proceedings of the 19th IEEE Real-Time
Systems Symposium, 72-81, IEEE Computer Society Press, 1998

 88

[53] Ryan Detter, Lonnie R. Welch, Barbara Pfarr, Brett Tjaden, and Eui-Nam Huh,
“Adaptive management of computing and network resources for spacecraft systems,” The
3rd Annual Military and Aerospace Applications of Programmable Devices and
Technologies Conference (MAPLD 2000), September 2000

[54] Lonnie R. Welch and Behrooz A.Shirazi “A Distributed Architecture for QoS
Management of Dynamic, Scalable, Dependable, Real-Time Systems,”

[55] J. Huang, R. Jha, W. Heimerdinger, M. Muhammad, S. Lauzac, B. Kannikeswaran,
K. Schwan, W. Zhao and R. Bettati, “RT-ARM: A real-time adaptive resource
management system for distributed mission-critical applications,” in Workshop on
Middleware for Distributed Real-Time Systems, RTSS-97, (San Francisco, California),
IEEE, 1997

[56] Benedikt Paats “Generalized Quality of Service: QoS from the System Architecture
Perspective,” Seminar – Communication and Multimedia, 2005

[57] C. L. Phillips and H. T. Nagle. Digital Control System Analysis and Design (3rd
edition). Prentice Hall, 1995

[58] A. Burns, A. Wellings “Real-Time Systems and Programming Languages,” 3rd
Edition. Addison Wesley Longmain, 2001

[59] C. Lu, G. A. Alvarez, and J. Wilkes. Aqueduct: “Online data migration with
performance guarantees,” In Proc. USENIX Conf. File Storage Tech., pages 219–230,
2002

[60] S. Qin and T. Badgewell “An overview of industrial model predictive control
technology,” Chemical Process Control, 93(316):232–256, 1997

[61] S. Parekh et al., “Using Control Theory to Achieve Service Level Objectives in
Performance Management,” J. Real-Time Syst., vol. 23, no. 1-2, pp. 127-141,
July/September 2002

[62] S. Mascolo “Classical Control Theory for Congestion Avoidance in High-Speed
Internet,” Proc. Conf. Decision & Control, pp. 2709-2714, 1999

[63] E. Marshall “Control of time-delay systems,” Peter Peregrinus Ltd, 1979

[64] J. Astrom, B. Wittenmark “Computer controlled systems,” Prentice Hall, Englewood
Cliffs, N. J., 1984

[65] Z. Lu et al. “Control-Theoretic Dynamic Frequency and Voltage Scaling for
Multimedia Workloads,” Proc. Int’l Conf. Compilers, Architectures, & Synthesis
Embedded Syst. (CASES), pp. 156-163, 2002

[66] P. Antsaklis, editor. “Special Issue on Hybrid Systems,” Proceedings of the IEEE.
July 2000

 89

[67] P. Antsaklis, X. Koutsoukos, and J. Zaytoon “On hybrid control of complex systems:
a survey,” European Journal of Automation, 32:1023–1045, 1998

[68] J. Gray, S. Neema et. al. “Concern Separation for Adaptive QoS Modeling in
Distributed Real-Time Embedded Systems,” http://gray-area.org/ Publications section –
Submitted, Under Review

[69] Harel, David, "Statecharts: A Visual Formalism for Complex Systems", Science of
Computer Programming, 8, 1987, pp. 231-274

[70]] http://www.mathworks.com Product: MATLAB

[71] http://cnx.rice.edu/content/m2101/latest/

[72] Derek Rowell “State-Space Representation of LTI Systems” Oct 2002

[73] Stephen Prajna, Anders Rantzer “ Primal–Dual Tests for Safety and Reachability,”s
Lecture Notes in Computer Science, Volume 3414, Jan 2005, Pages 542 – 556

[74] Networked Multimedia II End-To-End Quality-of-Service (QoS) -
http://nrg.cs.usm.my/~tcwan/Notes/MM-Ntwk-II.doc

[75] Definition of QoS -
http://compnetworking.about.com/od/networkdesign/l/bldef_qos.htm

[76] Article on “IntServ” or Integrated Services Architecture -
http://en.wikipedia.org/wiki/Integrated_services

[77] Article on “DiffServ” or Differentiated Services Architecture -
http://en.wikipedia.org/wiki/Differentiated_services

[78] Sherif Abdelwahed, Nagarajan Kandaswamy, Sandeep Neema “ Online Control for
Self-Management in Computing Systems,” 10th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’04) May 25 – 28, 2004 Toronto, Canada

[79] Sujata Mujumdar, Nag Mahadevan, Sandeep Neema, Sherif Abdelwahed “A Model-
Based Design Framework to Achieve End-To-End QoS Management,” 43rd ACM
Southeast Conference, March 18-20, 2005, Kennesaw, GA, USA

[80] DSRAS Technical Report

[81] Stateflow Semantics -
http://www.mathworks.com/access/helpdesk/help/toolbox/stateflow/ug/f26-1032049.html

[82] Model Weaver - http://www.isis.vanderbilt.edu – Projects – PCES

[83] PCES Demo Presentations - http://www.isis.vanderbilt.edu – Projects – PCES –
Presentations

 90

[84] www.webopedia.com – Terms: throughput

[85] www.wikipedia.com – Terms: Jitter, Latency

