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CHAPTER I 

 

INTRODUCTION 

 

Nuclear Factor-kappa B (NF-κB) Transcription Factor Family 

 NF-κB was first identified as a DNA binding activity in the immunoglobulin κ light 

chain gene major (J-C) intron transcriptional enhancer (Sen, 1986).  It was quickly realized that 

NF-κB was not restricted to B cells, but was ubiquitously expressed in virtually all cell types.  

The NF-κB transcription factor family is comprised of five members in vertebrate animals: 

p65/RelA, c-Rel, RelB, NF-κB1 (p50), and NF-κB2 (p52) (Figure 1).  The hallmark of the NF-

κB family is a conserved 300 amino acid Rel homology domain (RHD) within the amino 

terminus.  The RHD contains the DNA-binding domain, dimerization domain, and nuclear 

localization sequence (NLS).  RelA, RelB, and c-Rel contain a strong transcriptional 

transactivation domain (TAD) in the carboxy terminus.  The TAD coordinates interaction with 

the basal transcription apparatus, including the TATA-binding protein (TBP), transcription factor 

IIB, and the p300 and cyclic-AMP-response element (CREB)-binding protein (CBP) co-

activators (Blair, 1994; Schmitz, 1995).  While p50 and p52 proteins are capable of binding 

DNA, they are incapable of directly activating transcription for lack of a TAD.  Instead, p50 and 

p52 homodimers can function as transcriptional repressors (Ghosh, 1998).  The prototypical NF-

κB complex is the RelA/p50 heterodimer.  NF-κB activation is accomplished through the 

formation of multiple combinations of NF-κB homodimers and heterodimers which activate  
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gene transcription by binding to consensus κB sequences in the promoter elements of NF-κB-

regulated genes.   

  Inhibitors of NF-κB (ΙκB) were first described as cytoplasmic proteins that inhibit 

activity of the heterodimeric NF-κB complex (Sen, 1986).  The IκBs are encoded by a small 

multigene family that currently includes IκB-α, IκB-β, IκB-ε, IκBγ, and BCL3 (Ghosh, 1998; 

Verma, 1995).  IκBs are characterized by the presence of five to seven ankyrin motifs which 

regulate interaction with Rel proteins.  Differential sequestration of NF-κB in the cytoplasm has 

Chen, L., Greene, W. C. (2004). Shaping the nuclear action 
of NF-κB.  Nature Review Cell and Molecular Biology, 5, 
392-401.  

Figure 1
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been described for IκB-α and IκB-β.  IκB-α masks only one of the nuclear localization signals 

of an NF-κB dimer and relies on a nuclear export signal to maintain cytoplasmic localization of 

the complex, allowing shuttling of NF-κB out of the nucleus (Huang, 2000; Malek, 2001).  The 

rapid re-synthesis of IκB-α after NF-κB activation aids in the de-activation of NF-κB through 

cytoplasmic shuttling of NF-κB dimers (Huang, 2000; Turpin, 1999).  IκB-β, on the other hand, 

masks nuclear localization sequences on both NF-κB subunits, inhibiting nuclear import (Malek, 

2001).  The p50 and p52 NF-κB protein precursors, p105 and p100, also contain ankyrin repeats 

and can function as inhibitors (Ghosh, 1998).  Following cell stimulation, IκBs are 

phosphorylated on serine residues in the amino-terminus, targeting them for degradation by the 

ubiquitin/26S proteasome pathway, thus allowing NF-κB dimers to translocate to the nucleus 

(Figure 2).  The protein kinases that mediate IκB phosphorylation have been identified and are 

referred to as IκB kinase 1 (IKK1) and IκB kinase 2 (IKK2) (Didonato, 1997; Mercurio, 1997; 

Regnier, 1997).  These kinases exist in a high molecular weight complex with a structural 

regulatory subunit called IKKγ/NEMO (Rothwarf, 1998; Zandi, 1997).  Activation of the IKK 

complex by factors such as TNFα and IL-1, results in phosphorylation of serine residues within 

the activation loop of IKK1 and IKK2.  The activated IKK complex then phosphorylates the IκB 

proteins on serines 32 and 36 for IκB-α and serines 19 and 23 for IκB-β.  Phosphorylation of 

these residues leads to the binding of the β-TrCP-SCF complex, resulting in polyubiquitination 

of IκB and subsequent degradation by the 26S proteosome (Karin, 2000).  Destruction of the IκB 

enables for the nuclear translocation of the NF-κB dimers.  NF-κB binds to decameric enhancer 

motifs found in the promoters and introns of a variety of genes, including the immunoglobulin κ  
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Chen, L., Greene, W. C. (2004). Shaping the nuclear action of 
NF-κB.  Nature Review Cell and Molecular Biology, 5, 392-
401.  

Figure 2
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light chain, the human immunodeficiency virus long terminal repeat, numerous cytokines, 

chemokines, adhesion molecules, enzymes, and receptors (Fan, 2001; Ghosh, 1998; Siebenlist, 

1994; Verma, 1995) (Table 1).   

 

Table I 

Pro-inflammatory Molecules Regulated by NF-κB 
 

Tumor Necrosis Factor    Colony Stimulating Factors 
TNF-α       G-CSF 
TNF-β       GM-CSF 
 
Interleukins      Interferons 
IL-1β       IFN-β 
IL-2 
IL-6       Adhesion Molecules 
IL-12       ICAM-1 
       E-selectin 
Chemokines      V-CAM 
IL-8   Rantes      
Gro α, β, γ  CINC    Enzymes 
MIP-1   KC    COX-2 
MCP-1/JE  MIP-2    Manganese superoxide dismutase 
       Inducible nitric oxide synthase 
 

 

NF-κB-Dependent Gene Regulation 

 The role of NF-κB in the differential regulation of NF-κB-linked genes involves both 

gene- and cell-specific factors.  Recent evidence suggests that NF-κB may regulate distinct sets 

of genes in particular cell types based on the type and duration of the stimulus.  For example, in 

the murine cell line RAW 267.4, LPS treatment induces NF-κB binding to MIP-2 and MnSOD 

promoters within 20 minutes, but binding to the IL-6 promoter occurs much later (150 minutes) 

(Saccini, 2001).  These differences in NF-κB promoter binding correlated with mRNA 
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expression of these genes.  In addition to type and duration of stimulus, cell differentiation may 

influence the types of NF-κB linked cytokines produced.  For example, different patterns of NF-

κB linked cytokines were expressed in response to LPS treatment from dendritic cells and 

macrophages derived from the same monocyte precursors (Baltathakis, 2001). 

 The availability of other transcription factors (AP-1, CREB, C/EBPβ, STATs) in the 

microenvironment of specific gene promoters has been shown to influence the profile of NF-κB 

linked genes expressed following NF-κB nuclear translocation.  However, the common 

denominator of transcriptional activation may lie in the ability to recruit co-activator proteins, 

which functions to: 1) interface with the basal transcriptional machinery; 2) maintain chromatin 

in an “open” configuration by directing the acetylation of histones; and 3) stabilize NF-κB 

interactions with the promoter through modification of RelA (Ashburner, 2001; Chan, 2001; 

Chen, 2001; Gerritsen, 1997; McManus, 2001; Sheppard, 1999; Vanden Berghe, 1999; 

Wadgaonkar, 1999).  The interaction of NF-κB with CREB-binding protein (CBP) and its 

functional homolog p300 has been shown to be critical for transcriptional activity (Sheppard, 

1999).  This interaction maintains chromatin in an “open” configuration through 

acetyltransferase activity incorporated in p300/CBP or p300/CBP associated factor (p/CAF) 

(Berger, 1999; Chan, 2001; McManus, 2001).  Additional mechanisms of transcriptional 

regulation include modulation of RelA by phosphorylation or acetylation.  Phosphorylation of 

serine 276 by protein kinase A enhances the ability of RelA to interact with CBP (Zhong, 1998).  

Phosphorylation of serine 529 in the transactivation domain increases transcriptional activity 

(Wang, 1998).  Also, CBP and p300 acetylate RelA making it inaccessible to IκB-α binding and 

therefore resistant to inactivation by nuclear-cytoplasmic shuttling (Chen, 2001).   
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 Histone deacetylases (HDACs) appear to function as a counterbalance in the regulation of 

transcriptional activity of NF-κB.  For example, inhibition of class 1 histone deacetylases 

(HDAC1-3) can prolong and enhance NF-κB transcriptional activity in cultured cells 

(Ashburner, 2001; Chen, 2001).  These data suggest the balance of acetylation:deacetylation at 

specific promoters can determine transcriptional activity. 

 The data presented above supports a model of differential NF-κB linked gene expression 

by intranuclear regulation of NF-κB function through interactions with co-activators and co-

repressors.  Intranuclear regulation of NF-κB appears to play an important role in defining the 

cellular phenotype after NF-κB activation.    

 

The Biology of NF-κB 

NF-κB activation has been shown to play a critical role in a variety of biological 

processes.  NF-κB is rapidly activated by a wide range of chemically diverse agents and cellular 

stress conditions, such as lipopolysaccharide (LPS), microbial and viral pathogens, cytokines, 

and growth factors (Baeuerle, 1996).  NF-κB also serves to protect against apoptosis and regulate 

cell-cycle progression (Foo, 1999).  Activation of NF-κB has been reported at sites of 

inflammation in diverse diseases such as rheumatoid arthritis, inflammatory bowel disease, 

multiple sclerosis, psoriasis, and asthma.  NF-κB has also been shown to play a role in the 

initiation and maintenance of the oncogenic phenotype (Baldwin, 2001; Haefner, 2002).  NF-κB 

has been studied extensively in innate and adaptive immunity.  Mice that lack individual NF-κB 

proteins demonstrate defects in B- and T-cell proliferation, activation, cytokine production, and 

isotype switching (Gerondakis, 1998).  B-cell defects involving NF-κB include lack of 
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immunoglobulin class switching, lack of germinal centers, and disruption of splenic micro-

architecture.  For example, mice deficient in NF-κB1 and NF-κB2 do not produce mature B-cells 

(Franzoso, 1997).  In innate immunity, the importance of NF-κB is reflected by the many NF-κB 

dependent genes involved in defining the innate immune response (Table 1).  The role of NF-κB 

in the regulation of innate immunity is the focus of this work and will be discussed in more detail 

below. 

 

NF-κB in Innate Immunity 

 The NF-κB pathway plays key roles in both adaptive immunity and innate (non-

lymphocyte-mediated) immunity in the lungs and other organs.  Since many noxious and 

inflammatory stimuli have been shown to activate NF-κB in the lungs, the NF-κB pathway 

appears to be a focal point for induction of lung inflammation.  In vivo activators of NF-κB in 

the lungs include airway instillation of intact bacteria, LPS, ozone, and silica as well as systemic 

activators such as sepsis, hemorrhage, and direct liver injury (Blackwell, 1999a; Blackwell, 

1999c; Browder, 1999; Haddad, 1996; Mizgerd, 2000; Shenkar, 1996).  In addition to activators 

of NF-κB, the use of relatively non-specific inhibitors of NF-κB in several animal models has 

proven beneficial (Blackwell, 1996; Bohrer, 1997; Lauzurica, 1999). 

 Regulation of innate immunity in part is achieved through the recognition of specific 

patterns of microbial components, especially those of pathogens.  A family of pattern recognition 

receptors has been described, called Toll-like receptors (TLR).  To date, at least 10 Toll-like 

receptors have been described and recognize a variety of ligands (bacterial lipoproteins – TLR2, 

double stranded RNA – TLR3, lipopolysaccharide – TLR4, flagellin – TLR5 just to name a few).  

The first mammalian TLR identified (TLR4), was shown to cause induction of genes for several 
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inflammatory cytokines and costimulatory molecules when overexpressed (Medzhitov, 1997).  

Shortly after, TLR4 was shown to be involved in the recognition of lipopolysaccharide (LPS), a 

major component of Gram-negative bacteria.  In support of this data, two mouse strains have 

been shown to be hypo-responsive to LPS (C3H/HeJ has a point mutation in the intracellular 

region of the Tlr4 gene leading to the replacement of a conserved proline to histidine and 

C57BL10/ScCr has a null mutation in the Tlr4 gene).  These mice result in defects in TLR4-

signaling and consequent suppression of the response to LPS (Poltorak, 1998).  Recognition of 

LPS by TLR4 requires additional molecules.  LPS-binding protein (LBP), present in the serum, 

binds LPS which is then recognized by CD14, a glycosylphosphatidylinositol-anchored 

molecule.  Another protein, MD-2, was identified as a molecule that associates with the 

extracellular portion of TLR4 and enhances LPS responsiveness.  Signaling for TLR4 has been 

shown to be homologous to that of the IL-1R family.  Both TLR and IL-1R interact with an 

adaptor protein MyD88, which contains a Toll/IL-1 receptor (TIR) domain in its C-terminus and 

a death domain (DD) in its N-terminus.  MyD88 associates with the receptor through TIR 

domain interaction.  Upon stimulation, MyD88 recruits the serine/threonine kinase IL-1R-

associated kinase (IRAK) via DD interaction.  After IRAK phosphorylation, tumor necrosis 

factor receptor (TNFR)-associated factor (TRAF6) is recruited leading to activation of two 

distinct signaling pathways, JNK and NF-κB (Takeda, 2004).  While MyD88 has been shown to 

be important for the production of inflammatory genes in response to LPS, a MyD88-

independent pathway has also been described.  TRIF (TICAM-1), a TIR-domain containing 

adaptor, can mediate activation of NF-κB in the absence of MyD88.  Studies have shown that 

TRIF is required for early and late NF-κB responses and IRF-3 responses, but not JNK (Hayden, 

2004).  TLR4 has been identified in a variety of cell types.  In addition to a host of inflammatory 
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cells (macrophage/monocytes, neutrophils, mast cells, lymphocytes, and dendritic cells), TLR4 

expression has been identified in epithelium and epithelium (Iwasaki, 2004; Muir, 2004).      

The role of the NF-κB pathway in proper immune system function is reflected in studies 

involving NF-κB and IκB knockout mice.  RelA or IKK2 deficiency results in embryonic 

lethality secondary to liver apoptosis (Beg, 1995b).  Liver apoptosis in RelA deficient mice 

appears to be TNF-mediated as demonstrated by the production of viable pups in RelA/TNF type 

I receptor double knockout mice (Alcamo, 2001).  Although the phenotype of liver apoptosis can 

be avoided in these mice, immune defects persist in continued susceptibility to infections and 

death only a few weeks after birth from pneumonia and bacteremia (Alcamo, 2001).  IκB-α 

deficient mice are apparently normal at birth, but die within 7-10 days (Beg, 1995a; 2000; 

Klement, 1996).  Enhanced granulopoiesis, severe dermatitis, and increased TNF-α in the skin 

are present at the time of death.  Not all known NF-κB dependent genes are upregulated in IκB-

α−deficient cells, implicating additional transcriptional regulators in the activation of some NF-

κB target genes.  Also, changes in the nuclear levels of NF-κB are cell type dependent.  For 

example, thymocytes and splenocytes exhibit increased nuclear RelA/p50 and p50 homodimers 

while NF-κB complexes in embryonic fibroblasts are unchanged.  However, NF-κB activation in 

these fibroblasts results in prolonged nuclear localization of NF-κB, implicating ΙκB-α in the 

post-induction repression of NF-κB activity.  Although p50-deficient mice develop normally and 

exhibit no histopathological changes, defects in B lymphocyte function and altered susceptibility 

to infection are observed (Sha, 1995).  p50-deficient mice are more susceptible to Listeria 

monocytogenes and Streptococcus pneumonia, respond normally to Haemophilus influenza, and 

are more resistant to murine encephalomyocarditis virus.   

 



 11

 Role of Macrophages in NF-κB-Dependent Lung Inflammation 

 The relative contribution of specific cell types in the overall NF-κB dependent 

inflammatory response in the lungs is uncertain; however there is evidence that alveolar 

macrophages play a critical role in initiating lung inflammation.  Early studies using a rat lung 

inflammation model of airway LPS administration demonstrated two distinct peaks of NF-κB 

activation (Blackwell, 1999b; Blackwell, 1999d).  The initial peak was detected in alveolar 

macrophages obtained by lung lavage 15-30 minutes after LPS treatment and returned to 

baseline by 30-60 minutes.  The second peak was detected in immigrating neutrophils and lung 

parenchyma 2-4 hours after LPS.  The appearance of TNF-α and IL-1β RNA was detected at the 

same time as macrophage NF-κB activation, suggesting macrophages were the source of these 

cytokines.   

 An alternative approach to delineating the importance of alveolar macrophages in 

regulating lung inflammation is the selective elimination of macrophages by treatment with 

liposomal clodronate.  Liposomal clodronate induces apoptosis in macrophages but not in other 

cell types (Broug-Holub, 1997; van Rooijen, 1994a).  Lentsch et al. reported that NF-κB 

activation in lung tissue, cytokine gene expression, and neutrophilic influx were blocked by 

macrophage depletion in an immune complex model of lung inflammation (Lentsch, 1999).  Our 

group has performed macrophage depletion studies by administering clodronate via intratracheal 

(IT) and/or intravenous (IV) routes, demonstrating 90% alveolar macrophage depletion 48 hours 

after treatment by IT + IV route (Koay, 2002).  After aerosolized LPS challenge, neutrophilic 

alveolitis was attenuated by 80% in clodronate treated mice compared to empty liposome treated 

controls.  Reduced neutrophil influx was associated with impaired activation of NF-κB in lung 

tissue, lower concentrations of TNF-α in lung lavage fluid, and decreased MIP-2 in lung 
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homogenate.  Similarly in a systemic inflammatory model (IP injection of E. coli LPS), lung NF-

κB activation and neutrophilic alveolitis were markedly reduced in clodronate treated mice.  

These studies suggest that early NF-κB activation in alveolar macrophages induces the 

production of pro-inflammatory mediators that promote the activation of NF-κB in other lung 

cell types and subsequent neutrophilic immigration.  

 

Detection Methods for NF-κB Activation In vivo 

 Traditionally, in vivo NF-κB activation in mouse models has been elucidated using 

electrophoretic mobility shift assays (EMSA) or western blots.  The fundamental nature of these 

methods leads to some important limitations.  EMSA and western blots are semi-quantitative, 

evaluate NF-κB activation at a single time point, and do not specifically address the functional 

mechanism of gene transcription.  In tissues, a dilution effect may obscure the ability to detect 

NF-κB activation if the signal originates in a cell population which represents a minority of the 

total organ.         

 

HLL Transgenic Reporter Mouse Model 

 To quantitatively evaluate NF-κB-dependent transcriptional activity over time and 

examine the consequences of NF-κB activation in multiple organs in vivo, a transgenic reporter 

mouse model was developed in which the Photinus luciferase cDNA is driven by the proximal 

250 bases of the 5’ human immunodeficiency virus (HIV-1) long terminal repeat (LTR) [referred 

to as HLL mice (HIV-LTR Luciferase)] (Figure 3).  The HIV-LTR contains a TATA box, two 

NF-κB motifs between -82 and -103, and three Sp1 boxes between -46 and -78 (Kingman, 1996; 

Kretzschmar, 1992; Nabel, 1987).  NF-κB activation has been shown to be absolutely required 
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for transcriptional regulation of the HIV-LTR in primary cell culture experiments (Alcami, 

1995). 

 HLL mice have been used extensively in the Blackwell laboratory to evaluate the time- 

and dose-dependent, organ-specific pattern of luciferase expression as a surrogate marker for  

 

 

 

NF-κB activation in several models of lung and systemic inflammation.  For example, in a model 

of systemic (single IP dose) E. coli LPS inflammation, NF-κB dependent gene transcription is 

transiently activated in multiple organs and different organs require different thresholds for NF-

κB activation (Blackwell, 2000).  The increased expression of mRNA for a variety of NF-κB 

regulated cytokines mirrored the induction of luciferase activity in lung tissue.  Also, a close 

correlation between neutrophil chemoattractant chemokine KC and luciferase activity was 

detected in lung tissue homogenates.  In addition to cytokine and chemokine production, 

neutrophil accumulation in alveolar spaces only occurred when NF-κB activation in the lung was 

achieved.  These data support the mechanistic model that local NF-κB activation and production 

of pro-inflammatory mediators are required for coordinating neutrophil immigration. 

HLL   HIV-LTR Luciferase
• Promoter – proximal 250 bases of the 5’ human 

immunodeficiency virus (HIV-1) long terminal repeat (LTR) 
driving the expression of the Photinus luciferase cDNA 

TATAκB κB SPSP Luc Poly ASP

Figure 3 
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 The HLL mouse model has also been used to study the differential activation of NF-κB 

in various organs after either aerosolized or intraperitoneal LPS (Yull, 2003).  Figure 4 

demonstrates NF-κB- dependent luciferase activity (measured by tissue luciferase assay) in the 

major organs of the thorax (A) and abdomen (B) 4 hours after treatment with either aerosolized  

 

 

 

or IP LPS.  While chest wall and skin have substantially higher basal luciferase activity than 

lung, no induction is observed after LPS treatment.  The lung, however, displays marked up-

regulation of luciferase activity after both aerosolized and IP LPS challenge.  In the abdomen, 

high basal levels of luciferase are observed in intestine, bladder, and peritoneum.  Inducible 

luciferase activity is observed in liver, spleen, and kidney after IP LPS but not aerosolized LPS.  

Aerosolized LPS results in the induction of NF-κB luciferase activity in the lung specifically, 

whereas IP LPS results in the induction of NF-κB luciferase activity in multiple organs.  These 

A B

Figure 4:  Luciferase activity in various organs of HLL mice at baseline (control) and 
after treatment with IP or inhaled LPS.  NF-κB inducibility was achieved in the liver, 
spleen, and kidney after IP LPS.  Only the lung displayed NF-κB inducibility after IP 
and inhaled LPS.  P < 0.05 
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data demonstrate the utility of these transgenic reporter mice in defining the pattern of NF-κB 

activation in response to specific stimuli and that inducible luciferase activity in the thorax after 

LPS challenge is localized to the lung.       

 

Bioluminescence Imaging 

 The process of bioluminescence is the emission of visible light from a living organism 

mediated by an enzyme-catalyzed reaction of molecular oxygen with a light-emitting substrate 

(Figure 5).  A variety of bioluminescent systems have been identified in nature, each requiring a 

specific enzyme (luciferase) and substrate (luciferin), with the most recognizable system being 

from the American firefly Photinus pyralis.  Bioluminescence imaging involves the expression 

of the luciferase enzyme in vivo as a molecular reporter.  This technology has been utilized to 

monitor transgene expression (Benaron, 1997; Contag, 2000; Contag, 1997), infectious disease 

progression (Francis, 2000; Francis, 2001; Rocchetta, 2001), tumor growth and metastasis 

(Edinger, 2002; Rehemtulla, 2000), and transplantation (Koransky, 2001; Tang, 2003).  Early 

experiments by Contag et al. demonstrated that light emission from Photinus luciferase 

generated in internal organs of a mouse was detectable from an external vantage point (Contag, 

1995; Contag, 1996).  In collaboration with Dr. Duco Jansen (Biomedical Engineering, 

Vanderbilt University), we have developed a methodology for bioluminescence imaging of HLL 

mice by measuring Photinus luciferase activity in intact, living mice.  The bioluminescence 

apparatus consists of an intensified charged coupled device (ICCD) camera and computer 

software program that allows for visualization of bioluminescence by producing a pseudo-color 

image and quantification of photon counts over a standardized area of the mouse (Figure 5).  The 

advantages of this technology over more tradition methods include the ability to use each mouse 
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as its own control and the ability to perform multiple measurements after treatment in each 

mouse. 

 

 

 

 In developing bioluminescence imaging in the HLL transgenic reporter mouse model, the 

kinetics of luciferin administration and the correlation of photon emission with tissue luciferase 

activity have been determined.  Figure 6, shows the time course of LPS-induced luciferase 

activity in a single HLL mouse (Yull, 2003).  After a single dose of 3 µg/g IP LPS, basal 

bioluminescence was predominantly observed in the head and abdomen.  Luciferase activity 

from the thorax increases to a peak between 4 and 8 hours after LPS, returning to baseline by 24 

hours.  To demonstrate that the inducible luciferase activity in the thorax originates from the 

A B

Figure 5: A) Bioluminescence is the emission of visible light from a living organism 
mediated by an enzyme-catalyzed reaction of molecular oxygen with a light-emitting 
substrate.  B) The bioluminescence apparatus consists of an intensified charged coupled 
device (ICCD) camera and computer software program that allows for visualization of 
bioluminescence by producing a pseudo-color image and quantification of photon counts 
over a standardized area of the mouse. 
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lung, skin flap excision experiments were performed after either inhaled or IP LPS (Figure 7A) 

(Yull, 2003).  HLL mice were treated with aerosolized LPS (8 ml of a 1 mg/ml solution over 30 

minutes) or IP LPS (3 µg/g) and imaged after 4 hours.  A skin flap excision was performed over  

 

 

 

the right lung and photon counts were recorded over the right (skin removed) and left (skin 

intact) lungs.  Photon emission increased 4-fold over the left (skin intact) lung after IP and 

inhaled LPS (Figure 7B).  When the skin was removed over the right lung, baseline photon 

emission was substantially reduced, suggesting high basal luciferase activity in the skin.  The 

relative induction over the right lung (skin removed) was much greater (25-fold), implying the 

inducible luciferase activity was primarily from the lung.  Taken together, these studies 

demonstrate the power of bioluminescence imaging for detection of NF-κB dependent gene 

expression in HLL reporter mice.  This methodology allows for the quantification of lung NF-κB  

activity over time in intact, living mice. 

Baseline 1 Hr 2 Hrs 4 Hrs 8 Hrs 24 Hrs

LPS Time Course

Figure 6:  Bioluminescent detection of luciferase activity in HLL mice at baseline and 1, 
2, 4, 8, 24 hours after IP LPS.  Luciferin was given by IP injection 30 minutes prior to 
each image.  Scale for pseudocolor image corresponding to photon detection is shown to 
left (white is highest emission).  Arrow points to thorax. 
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A B

Figure 7:  A) Bioluminescent imaging of HLL mice at baseline and after treatment with IP or 
inhaled LPS.  A skin flap excision was performed over the right thorax.  B) Photon emission 
was quantified from the thorax over the right (skin flap excised) and left (skin intact) lungs. 
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Animals 

Transgenic TgN(GFPU)5Nagy mice (referred to as Nagy GFP) were obtained from Dr. 

Brigid Hogan (Duke University).  Nagy GFP transgenic mice ubiquitously express GFP under 

the control of a CMV immediate early enhancer coupled to a chicken β-actin promoter and first 

intron.  Nagy GFP mice were used as donors in Fetal Liver Transplantation experiments.  Wild-

type mice (B6;129 background) were obtained from Jackson Laboratory (Bar Harbor, ME).  

Wild-type mice were used as recipients in FLT experiments. 

Mice deficient for p105/p50 (B6;129 – Nfkb1[tmiBal] were obtained from Jackson 

Laboratory (Bar Harbor, ME).  Mice deficient for IκB-α (2000) were obtained from Fiona Yull 

(Vanderbilt University).  HLL mice were generated by Dr. Yull (Vanderbilt University).   

   

Bioluminescence 

 Mice were anesthetized and shaved over the chest before imaging.  Luciferin (1 

mg/mouse in 100 µl isotonic saline) was administered by i.v. injection, and mice were imaged 

with an intensified charge-coupled device (ICCD) camera (model C2400-32 Hamamatsu, 

Bridgewater, NJ).  This system consists of an image intensifier coupled to an 8-bit charge-

coupled device camera, allowing for 256 intensity levels for each pixel.  For the duration of 

photon counting, mice were placed inside a light tight box that housed the camera.  Light 

emission from the mouse was detected as photon counts by the ICCD camera and customized 
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image processing hardware and software (Hamamatsu, Bridgewater, NJ).  The imaging duration 

(3 min) was selected to avoid saturation of the camera during image acquisition.  Quantitative 

analysis was performed by defining standard area over the mid lung zone and determining the 

total integrated photon intensity over the area of interest.  For presentation, a 4-bit (16 intensity 

levels) digital false-color photon emission image was generated for each captured image 

according to the same false-color scale.    

 

Bone Marrow Derived Macrophages 

 Bone marrow derived macrophages were cultured as follows:  mice were euthanized by 

CO2
 inhalation and femurs isolated by surgical resection.  The bone marrow was collected by 

flushing the femurs with media (DMEM, 10% LCM, 10% FBS, Penicillin/Streptomycin) using a 

27 gauge needle and syringe.  After a single cell suspension was achieved by repeated pipeting, 

the cells were transferred to a 150 mm plate and placed at 370C.  After six days, the media was 

removed and BMDMΦ cells washed once with PBS.  The cells were lifted by addition of cold 

PBS/5 mM EDTA for 15 minutes at 40C.  Cells were re-plated (DMEM, 10% FBS, 

Penicillin/Streptomycin) and experiments performed starting on day 7 after culture.  

 

Cell Culture and Cell Lines 

 RAW 267.4 cells were obtained from American Type Culture Collection (ATCC, 

Manassas, VA)    and were maintained in Dulbecco’s Modified Eagle’s medium (DMEM) 

supplemented with 10% fetal bovine serum, 1% L-glutamine, penicillin (100 U/ml) and 

streptomycin (100 U/ml) (Gibco BRL, Gaithersburg, MD).  A549 cells were obtained from 

ATCC and were maintained in F12K Kaign’s Modification (ATCC) supplemented with 10% 
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FBS, 1% L-glutamine, and P/S.  BMDMΦ were maintained in DMEM supplemented with 10% 

fetal bovine serum (Hyclone, Logan, UT), 10% LCM media, 1% L-glutamine, and P/S.   

 

Co-culture 

 Co-culture experiments were performed in an apparatus that allows for cell-cell 

communication via the culture media.  BMDMΦ from WT, IκB-α-/+, and p50-/- mice were 

cultured as described in the Bone Marrow-Derived Macrophage section.  A549 cells were 

transiently transfected with the 8x NGL construct using Superfect as described in the 

Transfection section below.  The experiments were performed as follows: Day 1 – bone marrow 

harvested and placed into culture, Day 5 – A549 cells plated into bottom well of co-culture 

plates, Day 6 – A549 cells transfected with 8x NGL construct and BMDMΦ plated into upper 

well of co-culture plates, Day 7 – 5 µg/ml LPS added to each co-culture well and 4 hour time 

point collected and detected by luciferase assay, Day 8 – 24 hour time point collected and 

luciferase detected, Day 9 – 48 hour time point collected and luciferase detected.  

 

Extraction of Cytoplasmic and Nuclear Proteins 

 Tissue nuclear proteins were extracted from whole-lung tissue by the method of 

Deryckere and Gannon (Deryckere, 1994).  Briefly, 50 to 100 mg of tissue was mechanically 

homogenized in liquid nitrogen, to which 4 ml of buffer A (150 mM NaCl, 10 mM HEPES [pH 

7.9], 0.6% [vol/vol] NF-40, 0.2 M EDTA, 0.1 M phenylmethylsulfonyl fluoride) was added.  The 

homogenate was transferred to a 15 ml Falcon tube and centrifuged at 850 x g in a tabletop 

centrifuge for 30 sec to remove cellular debris.  The supernatant was then transferred to a 50 ml 

Falcon tube and incubated on ice for 5 min prior to being centrifuged for 10 min at 3,500 x g.  
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Supernatant was collected as a cytoplasmic extract.  The pellet was resuspended in 300 µl of 

buffer B (sterile water, 25% [vol/vol] glycerol, 20 mM HEPES [pH 7.9], 5 M NaCl, 1 M MgCl2, 

0.2 M EDTA, 0.1 M phenylmethylsulfonyl fluoride, 1 M dithiothreitol, 10 mg of benzamide per 

ml, 1 mg of pepstatin per ml, 1 mg of leupeptin per ml, 1 mg of aprotinin per ml) and incubated 

on ice for 30 min.  Following centrifugation at 14,000 rpm in an Eppendorf microcentrifuge for 2 

min, the supernatant was collected as the nuclear extract and frozen at -700C.  Protein 

concentrations in nuclear and cytoplasmic extracts were determined using the Bradford assay 

(Bradford, 1976). 

 

Fetal Liver Transplantation 

 Fetal liver transplant (FLT) experiments were performed as follows.  Timed matings 

were set up with donor mice and females checked on consecutive days until vaginal plugs were 

observed.  On day E14.5, pregnant females were euthanized by CO2 inhalation, and the uterus 

surgically removed.  Fetuses were separated using forceps and placed into culture media (RPMI 

1640, Invitrogen, Carlsbad, CA).  Embryonic livers were removed with the aid of a dissecting 

microscope, pooled into an Eppendorf tube containing 1ml RPMI, and stored on ice.  Single cell 

suspensions were prepared by drawing cells through needles of decreasing bore size (18, 23, 25 

gauge).  Recipient mice were lethally irradiated using a 137cesium gamma source by giving a split 

dose of 800 rads followed 3 hours later by 400 rads.  After irradiation, 2 x 106 donor cells were 

injected intravenously via tail vein.  To diminish infection, mice were maintained on antibiotics 

(polymyxin B and neomycin) for two weeks after FLT and acidified water (pH 2.7) for the 

duration of the experiment. 
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Fluorescence Activated Cell Sorting 

 

Fetal Liver Transplantation Studies 

 Peripheral blood samples (0.5 ml) were collected and placed in a polystyrene tube 

containing 0.1 ml 0.5 M EDTA (pH 8.0) at room temperature.  The samples were washed with 3 

ml of 1X Fluorescence activated cell sorting (FACS) Buffer (PBS with 1% bovine serum 

albumin) and centrifuged at 300 x g for 15 minutes at room temperature.  After resuspending in 

50 µl PBS, 4 µl Fc block (Pharmingen, San Diego, CA) was added and the mixture stored on ice 

for 10 minutes.  To label monocytes, 2 µl CD11b-PE and 2 µl Gr-1-APC (Pharmingen, San 

Diego, CA) was added and the mixture stored on ice for 10 minutes.  Ten milliliters of lysis 

buffer (8.29 g NH4Cl, 1 g KHCO3, 37.2 mg Na2EDTA per liter H2O, pH 7.4) was added to lyse 

red blood cells.  Subsequently, cells were centrifuged at 300 x g for 15 minutes at room 

temperature, washed with 5 ml FACS buffer, and resuspended in 3 ml FACS buffer for analysis.  

FACS was then performed using standard protocols using a Becton Dickinson FACScan flow 

cytometer.  For bronchoalveolar lavage (BAL), samples were collected in saline and placed on 

ice.  Lavage cells were pelleted at 300 x g for 15 minutes.  After resuspending in 50 µl PBS, 4 µl 

Fc block (Pharmingen, San Diego, CA) was added and the mixture incubated on ice for 10 

minutes.  To label macrophages, 2 µl of CD11b-PE (Pharmingen, San Diego, CA) was added 

and the mixture stored on ice for 10 minutes.  Cells were then washed with PBS and resuspended 

in 200 µl FACS buffer for analysis. 
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NGL Brochoalveolar Lavage 

 Bronchoalveolar lavage cells from the lung were collected by lung lavage with 3 aliquots 

of 1 ml PBS.  The samples were washed with 3 ml of FACS buffer (PBS with 1% bovine serum 

albumin) and centrifuged at 300 x g for 15 minutes at room temperature.  The supernatant was 

removed and the cells resuspended in 300 µl FACS buffer for analysis.         

 

Histology and Immunohistochemistry 

 

Histology 

 Lungs were removed en bloc after tracheal ligation, preserved in 10% neutral buffered 

formalin for 24 hours at 40C, and subsequently embedded in paraffin.  Lung tissue sections (5 

micron) were prepared in the Mouse Pathology Core Facility (Kelly Parman, Vanderbilt 

University).  H&E stains were performed using a standard protocol.   

 
CD68 and GFP Immunohistochemistry 

 To collect lung tissue, mice were perfused with 20 ml saline and lungs inflated with 1ml 

10% neutral buffered formalin (NBF).  Lungs were stored in NBF overnight at 40C and then 

paraffin embedded.  Five micron sections were cut and placed on charged slides.  Following 

paraffin removal, sections were rehydrated and placed in heated Target Retrieval Solution, High 

pH (DakoCytomation, Carpinteria, CA) for 20 minutes.  Endogenous peroxidase was quenched 

with 0.03% hydrogen peroxide and samples were treated with casein-based protein blocking 

solution (DakoCytomation, Carpinteria, CA) prior to primary antibody addition.  Tissues were 

incubated with goat anti-CD68 1:500 (Santa Cruz Biotechnology, Inc, Santa Cruz, CA) or rabbit 

anti-GFP 1:200 (Clontech, Palo Alto, CA) for 30 minutes.  Sections without primary antibody 
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served as negative controls.  The Vectastain ABC Elite (Vector Laboratories, Inc, Burlingame, 

CA) System and DAB+ (DakoCytomation, Carpinteria, CA) were used with CD68 antibodies 

and rabbit Envision+ System, HRP/DAB+ (DakoCytomation, Carpinteria, CA) were used with 

GFP antibodies to produce localized, visible staining.  Slides then were lightly counterstained 

with Mayer’s hematoxylin, dehydrated, and coverslipped. 

 Quantification of total lung macrophages and GFP positive alveolar macrophages was 

performed on serial sections immunostained with GFP and CD68 antibodies.  Sections were 

visualized under 400x magnification and digital pictures of ten serial, non-overlapping fields 

were taken using Magnifire SP software (Optronics, Goleta, CA).  The number of GFP positive 

and CD68 positive cells per field was recorded.  The results were verified by blinded analysis 

from a second observer.  

 

Lipopolysaccharide Administration 

 Gram-negative Escherichia coli lipopolysaccharide (LPS serotype 055:B5) was obtained 

from Sigma (St. Louis, MO).  A working solution of LPS was made by resuspending 1 mg LPS 

in 10 ml sterile PBS.  For intraperitoneal injections, a single dose of 3 µg LPS per gram body 

weight was administered.  For intratracheal injections, 75 µg LPS was administered.  For IP 

osmotic pump, a priming dose of 3 µg LPS per gram body weight was administered IP, followed 

by implantation of osmotic pump (Alzet, Alza Corporation, Palo Alto, CA) in the peritoneal 

cavity.  Mice were anesthetized and the osmotic pump surgically implanted into the peritoneal 

space using sterile technique.  The pump delivered 8 µg LPS (8 µl) per hour for 24 hours.    
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Liposomal Clodronate 

Liposomal encapsulation of clodronate (dichloromethylene diphosphonate) was 

performed as previously described (van Rooijen, 1994a).  Briefly, a mixture of 8 mg cholesterol 

(Sigma, St. Louis, MO) and 86 mg egg-phosphatidylcholine (DOPC, Avanti, Alabaster, AL) was 

dissolved in chloroform and then evaporated under nitrogen.  Chloroform was further removed 

by placing under low vacuum in a speedvac Savant concentrator (Holbrook, NY).  The 

clodronate solution was prepared by dissolving 1.2 g of dichloromethylene diphosphonic acid 

(Sigma, St. Louis, MO) in 5 ml of sterile PBS.  The clodronate solution (5 ml) was added to the 

liposome preparation and mixed thoroughly.  The solution was sonicated and centrifuged at 

10,000 x g for 1 hour at 40C.  The liposome pellet was removed, resuspended in 5 ml PBS, and 

centrifuged at 10,000 x g for 1 hour at 40C. Liposomes were removed, resuspended in 5 ml PBS, 

and used within 48 hours.  A single dose of liposomal clodronate was administered via 

intratracheal injection 6 weeks following FLT. 

 

Luciferase Assay 

 

Cultured Cells 

 Luciferase assay was performed using a standard protocol.  Briefly, cells were washed 

once with PBS.  Cell lysis was achieved by adding 100 µl of Passive Lysis Buffer (Promega, 

Madison, WI) with gentle agitation for 10 minutes.  Cells were collected using a cell scraper and 

transferred to an Eppendorf tube on ice.  The samples were centrifuged at 13,000 rpm at 40C for 

5 minutes.  Ten µl of supernatant was used to measure luciferase activity in a luminometer. 
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Tissue 

 Lungs were removed en bloc and homogenized in 1 ml of Passive Lysis Buffer using a 

dounce homogenizer.  The samples were transferred to an Eppendorf tube and centrifuged at 

13,000 rpm at 40C for 5 minutes.  Ten µl of supernatant was used to measure luciferase activity 

in a luminometer.   

 

Microscopy 

 All tissue sections were prepared by the Mouse Pathology Core facility (Kelly Parman, 

Vanderbilt University).  Microscopy was performed using an Olympus (Melville, NY) 

microscope.  Digital images were captured using a digital camera and Magnifire SP software 

(Optronics, Goleta, CA).   

 

Neutrophil Quantification 

 To quantify lung inflammation in vivo, neutrophils were counted on H&E stained lung 

tissue sections and recorded.  For each slide, neutrophils were counted in 10 non-overlapping 

high power fields on H&E stained lung tissue sections.  For each mouse, 3 slides were counted 

with 3 or more mice included in each treatment group.  The data is presented as the number of 

neutrophils per high power field. 

 

Pseudomonas aeruginosa Administration 

 Pseudomonas aeruginosa (strain PA103) was streaked onto trypticase soy agar plates 

(TSA) and grown in a deferrated dialysates of tripticase soy broth supplemented with 10mM 

nitrilotriacetic acid (Sigma, St. Louis, MO), 1% glycerol, and 100mM monosodium glutamate at 
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330C for 1-3 hours in shaking incubator.  Cultures were centrifuged at 8500 x g for 5 minutes 

and the bacterial pellet washed twice in Ringers lactate.  The bacteria were diluted to the 

appropriate number of colony forming units (CFU) per ml in Ringers lactate solution as 

determined by spectrophotometer.  The bacterial concentration was confirmed by diluting the 

samples and plating the known dilution on sheep blood agar plates.  Pseudomonas (106 cfu) was 

administered by IT injection. 

 

Pseudomonas aeruginosa Lung Colony Counts 

 The lungs were removed aseptically and placed in 3 ml of sterile saline.  The lungs were 

then homogenized in a tissue homogenizer in a vented hood under sterile conditions.  Serial 

dilutions of the homogenates were prepared and 10 µl of each dilution were plated in soy base 

blood agar plates (BD, Sparks, MD).  The plates were incubated for 18 hours at 370C and the 

number of colonies counted and recorded.  

 

Statistical Analysis 

 To assess differences among groups, analyses were performed with GraphPad Instat 

(GraphPad Software, San Diego, CA) using a one-way analysis of variance (ANOVA) test (p 

values < 0.05 were considered significant). 

 

Transfection 

 Transient transfection experiments were performed using Superfect (Qiagen, Valencia, 

CA) as recommended by the manufacturer.  Briefly, the cells were washed once with PBS.  The 

DNA/liposome complex was prepared by resuspending the DNA constructs in serum-free media.  
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Superfect reagent was then added and allowed to incubate at room temperature for 10-15 

minutes.  Next, serum-containing media was added to the DNA/liposome complex solution, 

mixed gently, and placed on the cells for 4 hours at 370C.  The DNA/liposome solution was 

removed and the cells washed once with PBS.  Serum-containing media was then added to the 

cells and placed at 370C overnight.  Experiments were then performed the next day.       

 

Western Blots 

 Nuclear and cytoplasmic proteins from tissue extracts were quantified by Bradford assay 

and 25 to 50 µg of protein was mixed with an equal volume of 2X sample buffer (containing 

0.1% sodium dodecylsulfate (SDS) and 2-mercaptoethanol) and boiled for 5 min.  Denatured 

proteins were separated by electrophoresis on an SDS-polyacrylamide gel along with molecular 

weight markers and standards.  Proteins were transferred to an Immobilon-P (Millipore, Bedford 

MS) membrane in a mixture of 25 mM Tris base, 192 mM glycine, and 5% [vol/vol] methanol 

(pH 8.2) at 100 V for 1 hour.  Nonspecific binding was blocked by soaking the membrane in 

phosphate-buffered saline (PBS)-5% nonfat dried milk-0.05% Tween 20 overnight at 40C.  

Immunoreactive proteins were detected by incubating the filter with specific antibodies to RelA 

1:500 (Santa Cruz Biotechnology, Inc.), IκB-α 1:500 (Santa Cruz Biotechnology, Inc.), for 1 

hour at room temperature with constant agitation.  Nonspecific binding was washed away by 

rinsing the filter in PBS containing 0.05% Tween 20.  The filters were incubated with 

horseradish peroxidase-conjugated goat anti-rabbit immunoglobulin G (Santa Cruz 

Biotechnology, Inc.) diluted 1:5,000 in Blotto (Tween-PBS-5% nonfat dried milk) for an hour at 

room temperature with constant agitation.  The filter was washed three times for 10 min with 
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Tween-PBS.  To develop the image, filters were treated with Renaissance Western blot 

luminescent reagent (NEN, DuPont) for 5 min and exposed to Biomax film for 3 to 10 min. 
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CHAPTER III 

 

RESULTS 

 

GENERATION OF NF-κB TRANSGENIC REPORTER MOUSE MODEL 

 

Introduction 

 The NF-κB transcription factor family has been shown to play a key role in innate 

immunity in the lung by regulating acute inflammation through transcriptional control of a 

variety of pro-inflammatory genes including cytokines, chemokines, adhesion molecules, and 

enzymes.  However, a detailed understanding of the function of the NF-κB pathway in individual 

lung cell types in vivo is critical for appropriately targeting therapeutic interventions that 

modulate NF-κB.  While the HLL transgenic reporter mouse model has provided valuable 

information regarding NF-κB activation in vivo, we have been unable to localize NF-κB- 

dependent luciferase production to specific cells or regions within the lung by 

immunohistochemistry or in situ hybridization.   

In order to dissect the role of NF-κB in specific lung cell types in the context of an 

integrated NF-κB dependent inflammatory response, new tools are required to measure NF-κB 

activity at the cellular level.  We have generated an NF-κB transgenic reporter mouse model 

containing a ΝF-κB enhancer coupled to the Herpes Simplex Virus thymidine kinase (HSVtk) 

minimal promoter driving expression of a GFP/Luciferase fusion protein.  This model allows for 

the detection of NF-κB activity in vivo in intact, anesthetized animals by bioluminescence and at 

the level of specific lung cell types by GFP fluorescence microscopy and immunohistochemistry 
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in lung tissue sections.  We have determined the GFP/Luciferase fusion protein half-life to be 

approximately 2.5 hours in bone marrow derived macrophages, making it ideal as a reporter for 

transcription factor activity.  In three separate methods of LPS administration (IP, IT, and IP 

osmotic pump) we have identified distinct patterns of NF-κB activation, both temporal and 

cellular, in the lung.  In addition, the role of NF-κB in regulating bacterial infection in the lung 

was investigated using a Pseudomonas aeruginosa pneumonia model.  The detection of NF-κB 

by bioluminescence and GFP immunohistochemistry correlated with the severity of lung 

inflammation and injury.  IP LPS administration resulted in a transient NF-κB activation at 4 

hours which returned to baseline by 24 hours.  IP Pump LPS administration resulted in a similar 

increase of NF-κB activation at 4 hours which persisted through 24 and 48 hours.  IT LPS 

administration resulted in a delayed NF-κB activation compared to IT LPS.  Moderate NF-κB 

activity was detected at 4 hours with a substantial increase at 24 hours.  Similar to IT LPS, IT 

Pseudomonas aeruginosa administration resulted in substantial NF-κB activation at 24 hours.  

The ability to detect NF-κB activity by GFP was accomplished by three methods 1) NF-κB 

activity was identified in specific cell types by GFP immunohistochemistry on lung tissue 

sections 2) FACS was utilized to identify NF-κB activation by GFP fluorescence in 

bronchoalveolar lavage cells after IT LPS administration 3) GFP fluorescence imaging was 

utilized to identify lung NF-κB ex vivo after IP and IP Pump LPS administration.  These results 

demonstrate the importance of this model in defining the role of NF-κB in specific cell types 

with respect to the inflammatory stimulus.  Thus, the NGL transgenic reporter mouse model 

provides a critical tool in the investigation of the role of NF-κB in regulation lung inflammation 

in vivo. 

 



 33

Results 

 

NGL Construct Design 

 In order to develop a new transgenic reporter mouse model to investigate NF-κB 

regulation in vivo, a series of DNA constructs were generated using a combination of NF-κB 

enhancer elements and promoters driving expression of a GFP/Luciferase fusion protein reporter.  

The first construct (called 4x Clon) contained a 4x NF-κB enhancer (Clontech)/SV40 minimal    

promoter driving expression of a GFP/Luciferase fusion protein.  Additionally, a series of 

constructs were generated in which tandem copies of the HIV-LTR 36 base pair enhancer 

(containing two NF-κB binding sites, GGGACTTTCC) were placed upstream of the Herpes 

Simplex Virus minimal thymidine kinase promoter driving expression of a GFP/Luciferase 

fusion protein.  These constructs were named NGL (for NF-κB GFP/Luciferase) and are referred 

to as 4x NGL, 6x NGL, 8x NGL, and 12x NGL based on the number of κB sites in the enhancer 

(Figure 8).    

 

 

• HSVtk minimal promoter (pBLCAT2 vector) 

• 8 NF-κB binding sites (GGGACTTTCC)  

• GFP/Photinus Luciferase fusion protein (Clontech) 

• SV40 PolyA 

HSVtk GFP Luc Poly AκB κB κB κB κB κB κB κB 

 

Figure 8
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In vitro Detection of NF-κB Activity by Luciferase Assay and GFP Fluorescence Microscopy 

 The NF-κB reporter constructs were tested in vitro to determine basal activity and 

inducibility after treatment with NF-κB dependent stimuli.  Transient transfection experiments 

were performed in multiple cell lines (A549 – human type II alveolar epithelium, RAW 267.4 – 

murine macrophage, NIH 3T3 – human fibroblast, HeLa – human cervical carcinoma) to ensure 

reliable expression in a wide range of cell types.  In Figure 9, RAW 267.4 cells were transfected 

with the reporter constructs described above and stimulated with 5 µg/ml LPS for 4 hours to 

activate NF-κB.  Luciferase activity was measured as an indicator of NF-κB activation.  As a 

reference, the HIV-LTR luciferase construct used to generate the HLL reporter mouse model was 

included in the experiment.  The HIV-LTR construct produced a 2-3 fold increase in luciferase 

activity over baseline after LPS treatment.  The 4x Clon construct demonstrated increased basal 

activity, as compared to the HIV-LTR construct, and only a 1 fold increase in luciferase activity 

over baseline after LPS treatment.  Interestingly, the 12x NGL construct demonstrated poor 

inducibility after LPS treatment similar to the 4x Clon construct.  The 4x, 6x, and 8x NGL 

constructs displayed significant improvements in inducibility compared to the previous 

constructs (4, 3.5, and 6 fold increases in luciferase activity over baseline after LPS treatment in 

the 4x, 6x, and 8x NGL constructs respectively). 

The NGL constructs were further investigated for the ability to detect NF-κB activity by 

fluorescence microscopy as well as standard luciferase assays (Figure 10).  A549 cells were 

transiently transfected with the 8x NGL construct and stimulated with 20 ng/ml TNF-α for 6 

hours to activate NF-κB.  Relatively few GFP positive cells (5%) were observed at baseline (A) 

corresponding to 2,247 +/- 634 RLU/µg protein.  After TNF-α stimulation, 90% of the cells were  
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GFP positive (B) corresponding to 13,258 +/- 843 RLU/µg protein (C).  These data demonstrate 

that the detection of NF-κB activity by standard luciferase assay correlates with detection by 

fluorescence microscopy and thus allows for the detection of NF-κB activity over time in the 

same cells. 

 

NF-κB Transgenic Reporter Mouse Generation  

 Based on the basal and inducible characteristics observed in vitro, the 4x and 8x NGL 

constructs were chosen for micro-injection at the Vanderbilt Transgenic/ES Cell Shared 

Resource.  In the first round of injections, 3 potential founders (out of 28) containing the 8x NGL  
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Figure 9:  Transient transfection of RAW 267.4 cells with reporter constructs to detect 
NF-κB activity by luciferase assay.  After transfection, RAW 267.4 cells were stimulated 
for 4 hours with 5 mg/ml LPS to activate NF-κB.  Baseline (Gray bars) LPS treated (Black 
bars).  Each bar represents mean +/- SEM of 3 samples per group.  Data is representative 
of three separate experiments.  
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construct (1 B6D2, 2 C57/B6 background) and 1 potential founder (out of 20) containing the 4x 

NGL construct (C57/B6) were identified by southern blot and PCR.  No transgene positive 

offspring were identified in the 4x NGL line.  The three 8x NGL lines produced transgene 

positive offspring and were further characterized.  A second round of injections using the 8x 

NGL construct produced an additional four potential founders (out of 30, B6D2 background).  

All four lines produced transgene positive offspring and were further characterized.  The line 

designated NGL 8/1 (8x NGL B6D2 from the first round of injections) was used for all 

subsequent NGL transgenic reporter experiments.  
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Figure 10: In vitro detection of NF-κB activation by fluorescence microscopy and luciferase 
assay in A549 cells transfected with 8x NGL construct.  A549 cells were transiently 
transfected with 8x NGL construct and stimulated with 20 ng/ml TNF-α for 6 hours to activate 
NF-κB.  Relatively few GFP+ cells (5%) were observed at baseline by fluorescence 
microscopy (A).  Six hours after TNF-α treatment, 90% of the cells are GFP+ by fluorescence 
microscopy (B).  TNF-α treatment resulted in a 6 fold increase in NF-κB activity as detected 
by standard luciferase assay (C).  Each bar represents mean +/- SEM of 3 samples per group. 
Data is representative of three separate experiments. 
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GFP/Luciferase Protein Half-life 

 Bone marrow derived macrophages from NGL mice were used to determine the half-life 

of the GFP/Luciferase fusion protein.  BMDMΦ were stimulated with 5 µg/ml LPS to activate 

NF-κB.  A luciferase assay time course was performed to determine the peak expression of the 

GFP/Luciferase reporter protein after stimulation.  The highest level of luciferase activity was 

detected 3 hours after LPS treatment.  At this time, cyclohexamide was added to the media to 

block protein synthesis and luciferase activity was measured after 30 min, 1, 2, and 3 hours 

(Figure 11).  The GFP/Luciferase protein half-life was determined to be 2.5 hours, similar to the 

half-life of luciferase, making it ideal as a transcription factor reporter.     
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Figure 11:  The GFP/Luciferase protein half-life was detected in NGL bone marrow derived 
macrophages.  BMDMΦ were stimulated with 5 µg/ml LPS and a time course performed to
identify the peak luciferase activity (peak luciferase detected 3 hours after LPS stimulation). 
At this time, cyclohexamide was added to block protein synthesis and luciferase activity 
detected after 30 minutes, 1, 2, 3, and 4 hours.  The GFP/Luciferase protein half-life was 
determined to be 2.5 hours.  Data is representative of two separate experiments.  
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LPS Model of Lung Inflammation 

 Despite much effort, the in vivo regulation of NF-κB in specific lung cell-types remains 

unclear.  The NGL transgenic reporter mouse model provides a valuable tool to unravel these 

complex questions by allowing for the quantification of in vivo NF-κB lung activity by 

bioluminescence and subsequent investigation of the cellular contribution to that signal by GFP 

fluorescence microscopy and immunohistochemistry.  To investigate the temporal, cell-specific 

regulation of NF-κB in the lung, we administered LPS by three separate methods to induce lung 

inflammation: a single intraperitoneal dose of LPS (3 µg/g) to induce an acute systemic 

inflammatory response, a single intratracheal dose of LPS (75 µg) to induce a localized acute 

inflammatory response, and an intraperitoneal osmotic pump (3 µg/g IP priming dose followed 

by 8 µg/hour for 24 hours IP released by pump) to induce a prolonged systemic inflammatory 

response.  Bioluminescence imaging was used to generate a time course (0, 4, 8, 24, 48 hours 

after LPS delivery) of in vivo NF-κB activity for each treatment group.  Photon counts were 

measured over the thorax to quantify NF-κB activity.  At each time point, lungs were removed to 

identify lung inflammation by histology and detect cell-specific NF-κB activity by GFP 

fluorescence microscopy and immunohistochemistry.  

 

Intraperitoneal Administration of LPS 

 NGL mice were administered a single intraperitoneal dose of LPS (3 µg/g) to induce an 

acute, systemic inflammatory response.  In vivo NF-κB activity was detected by bioluminescence 

imaging at baseline, 4, 24, and 48 hours after IP LPS administration (Figure 12).  The changes  
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observed in the bioluminescence images were quantified by measuring photon counts over the 

thorax at each time point (Figure 13).  NGL mice exhibited low level NF-κB activity in the lung 

at baseline.  A significant increase in lung NF-κB activity was observed 4 hours after IP LPS 

administration followed by a decrease to near baseline levels by 24 hours.  NF-κB activity as 

detected by bioluminescence imaging correlated with histologic evidence of lung inflammation 

as seen in Figure 14.  Untreated NGL mice displayed normal lung architecture.  Four hours after 

IP LPS, a significant influx of inflammatory cells (mostly neutrophils) was observed in the 

vessels and interstitium.  To better quantify inflammation, neutrophils were counted in the H&E 

lung tissue sections (Figure 15).  A significant increase in neutrophils was detected 4 hours after  

Baseline 4 Hours 24 Hours 48 Hours
Figure 12:  Bioluminescence imaging of NGL mice after a single IP injection of LPS (3 µg/g). 
Low level NF-κB activity is detected in the lung at baseline.  Four hours after IP LPS 
administration, a significant increase in NF-κB activity is observed in the lung followed by a 
decrease to near baseline levels by 24 hours.  NF-κB activity in the lung at 48 hours after IP 
LPS administration is comparable to untreated NGL mice.  Images are representative of two 
separate experiments.  
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LPS compared to baseline, 24, and 48 hours after LPS (p<0.05).  To determine the cellular 

contribution to the NF-κB signal detected by bioluminescence, GFP immunohistochemistry were 

performed on lung tissue sections from mice at each time point.  The detection of increased NF-

κB by bioluminescence correlated directly with increased detection of GFP positive cells by 

immunohistochemistry.  GFP was virtually undetectable in the lungs of untreated NGL mice 

(Figure 14).  Four hours after IP LPS, strong GFP immunostaining was seen in airway 

epithelium, macrophages, neutrophils, and endothelium.  As the bioluminescence signal 

decreased, the intensity of GFP immunostaining decreased, only faint staining in airway 
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Figure 13: Quantification of photon counts measured over the thorax from NGL mice treated 
with IP, IP osmotic pump, and IT LPS administration.  IP LPS administration resulted in an 
increase in photon counts at 4 hours, followed by a decrease to basal levels by 24 hours.  IP 
pump LPS administration resulted in an increase in photon counts at 4 hours which persisted 
through 48 hours.  IT LPS administration resulted in a modest increase in photon counts at 4 
hours followed by a sharp increase at 24 hours.  Photon counts decreased at 48 hours. 
Pseudomonas aeruginosa administration resulted in a modest increase at 4 hours followed by a 
sharp increase at 24 hours.  Each bar represents mean +/- SEM 3-5 mice per group.  Data is 
representative of two separate experiments.  
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epithelium and macrophages was present at 24 hours after IP LPS.  Taken together, these data 

suggest IP LPS results in an early, transient activation of NF-κB in the lung consisting of NF-κB  

 

 

activation in multiple cell types, including airway epithelium, macrophages, neutrophils, and 

endothelium.             

 

Administration of LPS by Intraperitoneal Osmotic Pump 

 To induce a prolonged systemic inflammatory response, continuous delivery of LPS into 

the peritoneal space was achieved by surgical implantation of an osmotic pump.  The mice were 
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Figure 14: GFP immunohistochemistry and H&E histology of lung tissue from NGL mice 
administered a single IP injection of LPS (3 µg/g). 
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given a priming dose of LPS by IP injection (3 µg/g) followed by peritoneal implantation of an 

osmotic pump which delivered 8 µg/hour for 24 hours.  In vivo NF-κB activity was detected by  

 

 

bioluminescence imaging at the same time points as the IP LPS group (baseline, 4, 24, and 48 

hours after osmotic pump implantation) (Figure 16).  Similarly to the IP LPS group, increased 

NF-κB activity was detected 4 hours after treatment; however, in contrast to the IP LPS group, 

persistent NF-κB activation was present at the 24 hour time point.  NF-κB activity remained 

increased at 48 hours after treatment.  This persistent NF-κB activation was reflected in the 

photon counts detected over the thorax (Figure 13).  Also, the sustained NF-κB activity 

correlated with histologic evidence of lung inflammation and injury.  Figure 13 shows a 

considerable increase in neutrophil influx in the vessels and interstitium at 4 hours, similar to the 
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Figure 15: Quantification of neutrophils in lung tissue sections of IP, Pump, IT, and 
Pseudomonas treated mice.  Neutrophils were counted in 10 non-overlapping fields per slide. 
A total of 3 slides per mouse were counted.  N = 3 or more for each group.  The number of 
neutrophils detected in the lung correlated with both the histologic evidence of lung 
inflammation and NF-κB activity as detected by bioluminescence imaging and photon counts.   
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IP group.  Consistent with NF-κB activity detected by bioluminescence, neutrophil influx was 

maintained at 24 and 48 hours after treatment.  The cellular contribution to the NF-κB  

 

 

bioluminescence signal was the same as the IP group.  GFP immunostaining revealed positive 

airway epithelium, macrophages, neutrophils, and endothelium (Figure 17).  This pattern was 

maintained at 24 and 48 hours with persistent, prominent staining particularly in airway 

epithelium.  These data demonstrate prolonged administration of systemic LPS drives NF-κB 

activation in inflammatory cells and multiple lung cell types.  NF-κB activity was observed for 

the duration of LPS delivery (24 hours) and continued through 48 hours.  NF-κB activity as 

determined by bioluminescence and GFP immunohistochemistry correlated with histologic 

evidence of lung injury, edema, and neutrophilic alveolitis.  As seen in Figure 15, a significant 

Baseline 4Hours 24Hours 48Hours 

Figure 16: Bioluminescence imaging of NGL mice after peritoneal implantation of an osmotic 
pump delivering LPS (8 µg/hour) for 24 hours.  Low level NF-κB activity is detected in the 
lung at baseline.  A substantial increase in NF-κB activity is observed in the lung 4 hours after 
Pump LPS administration.  Sustained NF-κB activity is detected in the lung at 24 and 48 hours 
after Pump LPS administration.  Images are representative of two separate experiments.  
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increase in neutrophils was detected 4, 24, and 48 hours after Pump LPS as compared to baseline 

(p<0.05) demonstrating a sustained inflammation and neutrophil influx.       

 

 

Intratracheal Administration of LPS 

 To induce a localized acute inflammatory response in the lung, a single dose of 75 µg of 

LPS was administered by intratracheal injection and in vivo NF-κB activity detected by 

bioluminescence imaging (baseline, 4, 24, and 48 hours after IT LPS) (Figure 18).  IT LPS 

challenge resulted in a modest increase in NF-κB activity at 4 hours compared to the IP LPS and 

LPS Pump groups.  The highest NF-κB activity was seen 24 hours after IT LPS followed by a 

 
 
 
G 
F 
P 

H
& 
E 

Baseline 4Hours 24Hours 48Hours

Figure 17: GFP immunohistochemistry and H&E histology of lung tissue from NGL mice 
after intraperitoneal implantation of an osmotic pump delivering 8 µg/hour LPS for 24 hours.
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substantial decrease at 48 hours.  These observations reflected the photon counts measured over 

the thorax (Figure 13).  Histology correlated with bioluminescence in that few neutrophils were  

 

 

 

observed in the lung 4 hours after IT LPS (Figure 19).  The majority of lung inflammation 

occurred 24 hours after treatment as demonstrated by a significant increase in neutrophil influx 

in vessels and interstitium.  A significant difference in the number of neutrophils was detected 24 

hours after IT LPS (compared to baseline, 4, and 48 hours) and between the 24 and 48 hours 

time-points (p<0.05) (Figure 15).  The cellular contribution to the NF-κB bioluminescence signal 

once again consisted of airway epithelium, macrophages, neutrophils, and endothelium; 

however, the timing of NF-κB activation as detected by GFP immunohistochemistry differed 

Baseline 4Hours 24Hours 48Hours 

Figure 18: Bioluminescence imaging of NGL mice after a single IT injection of LPS (75 µg). 
Low level NF-κB activity is detected in the lung at baseline.  A modest increase in NF-κB 
activity is detected in the lung 4 hours after IT LPS administration.  The highest level of NF-
κB activity occurs 24 hours after IT LPS administration followed by a substantial decrease at 
48 hours.  Images are representative of two separate experiments.  
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from the IP and Pump groups in that strong NF-κB activity did not occur until 24 hours after IT 

LPS (Figure 19).  The mechanism behind the difference in timing of NF-κB activation between 

the IP and IT LPS groups is unclear; however, it does not appear to be dose dependent, since  

 

 

 

each group receives approximately 75 µg LPS per mouse.  These data show that IT LPS 

challenge activates NF-κB in multiple lung cell types similar to IP and Pump LPS, but with a 

delayed response.   
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Figure 19: GFP immunohistochemistry and H&E histology of lung tissue from NGL mice 
administered a single intratracheal injection of 3 µg/g LPS. 
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Pseudomonas aeruginosa Model of Lung Inflammation 

 To study the role of NF-κB in the regulation of bacterial lung inflammation, NGL mice 

were administered a single intratracheal injection of 106 cfu Pseudomonas aeruginosa.  In vivo 

NF-κB activity was detected by bioluminescence imaging (baseline, 4, and 24 hours after IT  

 

 

 

Pseudomonas) (Figure 20).  A modest increase in lung NF-κB activity was detected 4 hours after 

IT Pseudomonas injection followed by a significant increase at 24 hours.  These observations 

reflected the photon counts measured over the thorax (Figure 13).  Histology correlated with 

bioluminescence in that few neutrophils were observed in the lung 4 hours after IT 

Pseudomonas, followed by increased neutrophil influx in vessels and interstitium at 24 hours 

Baseline 4Hours 24Hours

Figure 20: Bioluminescence imaging of NGL mice after a single IT injection of 106 cfu 
Pseudomonas aeruginosa.  Low level NF-κB activity is detected in the lung at baseline.  A 
slight increase in NF-κB activity is detected 4 hours after IT Pseudomonas followed by a 
considerable increase at 24 hours.  Images are representative of two separate experiments. 
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(Figure 21).  A significant increase in neutrophils was detected 24 hours after IT Pseudomonas 

compared to baseline and 4 hours after IT Pseudomonas (Figure 15).  The cellular contribution to 

the bioluminescence signal was different than the three methods of E. coli LPS delivery 

described above (Figure 21).  At 4 hours, only airway epithelium and a few scattered 

macrophages were GFP+.  No significant NF-κB activity was detected in endothelium as seen in  

 

 

 

the LPS groups.  Twenty-four hours after Pseudomonas injection, airway epithelium displayed 

an increase in GFP staining intensity and distinct GFP+ macrophages and neutrophils were 

identified.  Taken together, these data demonstrate that the pattern of cellular NF-κB activation 
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Figure 21: GFP immunohistochemistry and H&E histology of lung tissue from NGL mice 
administered a single IT injection of 106 cfu Pseudomonas aeruginosa.  
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reflects both the type of stimulus (E. coli LPS or Pseudomonas) and the method of delivery (IP 

or IT).    

 

 

 

Detection of Lung NF-κB Activity by Ex vivo GFP Fluorescence Imaging 

 NGL mice were administered LPS by either a single IP injection or by implantation of an 

osmotic pump in the intraperitoneal space as previously described.  Lungs were removed after 24 

or 48 hours and GFP detected by fluorescence imaging using an IVIS System (Xenogen, 

Alemeda, CA) (Figure 22).  Ex vivo GFP fluorescence correlated with in vivo bioluminescence 

Figure 22: Ex vivo detection of GFP fluorescence from lungs of NGL mice after IP and IP 
pump LPS administration.  NGL mice were administered LPS by either a single IP injection (3 
µg/g) or IP implantation of an osmotic pump (8 µg/hour for 24 hours).  Lungs were surgically 
removed after 24 or 48 hours and GFP fluorescence image acquired using the IVIS Imaging 
System.  Images are representative of two separate experiments. 
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photon emission.  Lung GFP fluorescence increased in both IP LPS and Pump LPS groups at 24 

hours (Figure 23).  After 48 hours, the IP LPS group returned to baseline, while GFP  

 

 

 

fluorescence in the Pump LPS group continued to increase, resulting in a significant difference in 

lung GFP fluorescence at this time.            

 

Detection of NF-κB Activity in Bronchoalveolar Lavage Cells by FACS after IT LPS 

 In the previous studies, the detection of NF-κB activity by GFP was performed by 

immunohistochemistry on lung tissue sections.  As an alternative method to monitor lung 

inflammation, we investigated the ability to detect NF-κB activation in bronchoalveolar lavage 

Figure 23: Ex vivo detection of GFP fluorescence photon counts from lungs of NGL mice after 
IP and IP pump LPS administration.  An increase in GFP fluorescence was detected in both 
groups 24 hours after LPS administration.  At 48 hours after LPS, a significant difference in 
GFP fluorescence was detected between the IP and IP pump groups (p < 0.05).  Each bar 
represents mean +/- SEM of 2 or 3 samples per group.  
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cells (macrophages and neutrophils) by FACS.  NGL mice were administered 75 µg LPS by IT 

injection.  After 24 hours, bronchoalveolar lavage cells were collected and analyzed by FACS to  

 

 

 

identify NF-κB activation by GFP detection.  In untreated NGL mice, 10.56 +/- 8.23% of lavage 

cells were GFP+ (Figure 24).  After IT LPS, a significant increase in the number of GFP+ lavage 

cells was detected (88.56 +/- 12.53%).  These data correlate with the detection of increased 

numbers of GFP+ macrophages and neutrophils in the lung 24 hours after IT LPS by GFP 

immunohistochemistry.  The ability to detect NF-κB activation, and thus lung inflammation, ex 

vivo in BAL cells provides an efficient method to monitor the response to a variety of 

inflammatory stimuli in vivo.   
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Figure 20: Detection of GFP+ bronchoalveolar cells by FACS from NGL mice 24 hours after 
administration of a single IT injection of LPS (75 mg).  At baseline, 10.56 +/- 8.23% of 
bronchoalveolar cells are GFP+.  A significant increase in GFP+ bronchoalveolar cells (88.56 
+/- 12.53%) was detected after IT LPS administration (p < 0.01).  Each bar represents mean +/-
SEM of 4 samples per group.  Data is representative of two separate experiments. 
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Summary 

 Developing effective and practical therapeutic interventions that modulate the NF-κB 

signal transduction pathway demands a thorough understanding of the initiation, duration, and 

intensity of NF-κB activation in all relevant cell types.  We have demonstrated that the timing 

and cell-specific pattern of NF-κB activity in the lung changes depending on the stimulating 

agent (E. coli LPS vs. Pseudomonas) and the method of delivery (IP, IT, and IP Pump LPS).  

These data highlight the importance of studying biological processes in a natural, intact 

environment in order to correctly elucidate the pathways and mechanisms involved.   

 Several important findings are derived from this new model.  In the context of LPS 

induced lung inflammation, NF-κB activation occurs in multiple cell types (macrophage, 

neutrophil, epithelium, endothelium).  Since the receptor for LPS (Toll-like receptor 4, TLR4) is 

not believed to be expressed in all of these cell types, the NF-κB activation observed in cells 

which do not express TLR4 must result from indirect activation by TLR4 expressing cells, most 

likely through cytokine and chemokine signaling networks.  Also, the timing of NF-κB 

activation in different cell types changes depending on the method of LPS delivery.  Compared 

to IP LPS administration, we observed prolonged NF-κB activation after IP Pump LPS and 

delayed activation after IT LPS in airway epithelium, macrophages, neutrophils, and 

endothelium.  Since NF-κB may perform different functions in different cell types, global 

inhibition of NF-κB in the lung may not be beneficial to the host.  Therefore, targeting NF-κB 

therapeutically not only requires an understanding of the cell types involved, but also knowledge 

about the timing and duration of NF-κB activation in those specific cells.   

While bioluminescence imaging is a powerful methodology for in vivo detection of NF-

κB dependent gene expression, some limitations remain.  Photon emission can be detected at the 
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organ level; however, more specific or three dimensional localization of the signal is currently 

not possible.  The GFP/Luciferase reporter protein in the NGL model provides the ability to 

detect NF-κB activity at the organ level, but provides a tool to detect NF-κB activity at the 

cellular level.  Therefore, the NGL transgenic reporter mouse model provides several advantages 

over conventional methods for studying NF-κB in vivo.  Bioluminescence imaging allows 

multiple images in the same mouse over time, reducing the number of mice needed for each 

experiment and enabling each mouse to serve as its own control.  When NF-κB activity is 

detected in a target organ by bioluminescence, the organ can be analyzed to determine the cell-

specific contribution to that signal by GFP fluorescence microscopy and immunohistochemistry.  

The ability to study signal transduction pathways in complex biological systems will provide a 

more meaningful and realistic interpretation of results.   

  In conclusion, the NGL transgenic reporter model provides a powerful tool for the study 

of the NF-κB signal transduction pathway in vivo and will hopefully lead to important 

discoveries in the role of NF-κB in development, tumorigenesis, inflammation, and other 

biological processes.   

 

Future Directions 

 The ability to study the role of activators and inhibitors of the NF-κB pathway will be 

investigated in future experiments.  For example, we have recently obtained a selective IKK2 

inhibitor which can be given by i.v. or oral administration.  We plan to investigate the ability of 

this compound to inhibit LPS induced lung inflammation in the NGL model, identifying 

inhibition in specific cell-types and the result on neutrophil influx and lung injury. 
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 We have begun initial experiments to investigate the role of NF-κB in specific tissues and 

cell types during embryonic development using the NGL model.  Because of the relatively short 

half-life of the GFP/Luciferase reporter protein, these studies should provide a better timeline for 

NF-κB activation compared to studies which utilize proteins with a longer half-life such as β-

galactosidase (half-life 24 hours). 

  

KINETICS OF ALVEOLAR MACROPHAGE REPOPULATION FOLLOWING FETAL 
LIVER TRANSPLANTATION                                                                           

 

Introduction 

 Investigating unique signaling pathways in pulmonary macrophages in the context of 

complex animal models is a challenging but attractive approach to unraveling the complexities of 

the biological processes that lead to inflammation and lung disease.  The ability to utilize cell-

specific transgenic and knockout mouse technology is limited by the lack of reliable, highly 

functional macrophage restricted promoters or other techniques that specifically isolate the 

functional contribution of macrophages.  In order to study the role of specific genes in lung 

macrophages, we have developed a method to maximally repopulate alveolar macrophages with 

cells that have altered genotypes.  We have utilized lethal irradiation followed by fetal liver 

transplantation in order to reconstitute bone marrow by hematopoietic stem cells from fetal 

livers.  FLT, in contrast to bone marrow transplantation from adult animals, results in immune 

tolerance for donor cells, absence of graft-versus-host responses, and the ability to use 

genetically modified donors that do not survive beyond embryonic day 15 (E15) (Horwitz, 1997; 

Mizgerd, 1999; Royo, 1987).  The counterpart of the adult bone marrow common lymphoid 

progenitor in E14 fetal liver was recently identified and was shown to give rise to all lymphoid 
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lineages, including the macrophage (Mebius, 2001).  While this approach has been applied to 

specifically reconstitute perivascular macrophages with cells of altered genotype/phenotype for 

study in atherosclerosis (Fazio, 1997; Linton, 1995), data applying this methodology to the study 

of lung macrophages are few.  A major obstacle to this experimental approach is that resident 

lung macrophages are long-lived, and incomplete reconstitution by donor cells can lead to 

ambiguous phenotypes that confound interpretation of results. 

 In the lungs, the extent and timing of alveolar macrophage reconstitution is not well 

defined; therefore, we undertook studies to determine the kinetics of alveolar macrophage 

reconstitution following FLT.  Fetal liver transplant experiments were performed using 

transgenic donors (Nagy GFP) that constitutively express GFP under the control of the 

cytomegalovirus immediate early enhancer coupled to a β-actin promoter.  After determining the 

percentage reconstitution of peripheral blood monocytes by fluorescence activated cell sorting 

(FACS), repopulation of alveolar macrophages with donor-derived macrophages in bone marrow 

chimeric mice was determined by identifying recipient and donor macrophages by 

immunohistochemistry on tissue sections and FACS analysis of macrophages obtained by 

bronchoalveolar lavage.  We reasoned that elimination of residual recipient macrophages 

following FLT would accelerate repopulation with donor-derived cells.  To eliminate alveolar 

macrophages, we administered liposomal clodronate by intratracheal (IT) injection.  This 

treatment has been shown to result in selective apoptosis of macrophages (Berg, 1993; van 

Rooijen, 1994b).  We administered clodronate at 6 weeks after FLT, a time point at which 

peripheral blood monocytes were reconstituted but alveolar macrophages were still 

predominantly of recipient genotype.  In these studies, we demonstrate that clodronate treatment 
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accentuated repopulation of macrophages and resulted in a greater proportion of alveolar 

macrophages that displayed the donor genotype. 

 

Results 

 

Kinetics of Peripheral Blood Monocyte Reconstitution 

 To determine the kinetics of alveolar macrophage repopulation after fetal liver 

transplantation, bone marrow chimeric mice were generated using transgenic Nagy GFP mice as 

donors and WT mice as recipients.  GFP was used as a marker to track cellular repopulation 

following lethal irradiation and FLT.  Initial experiments were performed 4 weeks after FLT to 

determine the extent of reconstitution of peripheral blood monocytes (PBM).  To evaluate PBM 

reconstitution, the percentage of donor derived monocytes in the peripheral blood of bone 

marrow chimeras was determined by FACS analysis.   The monocyte population was identified 

by forward and side scatter characteristics and by positive labeling with anti-CD11b conjugated 

phycoerythrin (PE) and anti-Gr-1 conjugated allophycocyanin (APC) antibodies (Lagasse, 1996) 

(Figure 25).  The donor monocyte population was identified by detection of endogenous GFP 

fluorescence in addition to CD-11b and Gr-1 positivity.  Figure 25, A and B, demonstrate the 

selection of the monocyte population from peripheral blood of an untreated Nagy GFP transgenic 

control animal.  Figure 25, C demonstrates the number of CD11b+/Gr-1+ monocytes that were  
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also GFP+.  Compared with untreated Nagy GFP controls, 85.7 +/- 1.6% of CD11b+/Gr-1+  

monocytes were GFP+ four weeks after FLT in Nagy GFP/WT chimeras, demonstrating near 

complete reconstitution of peripheral blood monocytes at this time (Figure 26).  

   In initial experiments, we observed that few alveolar macrophages were of donor origin 

4 weeks after FLT.  Therefore, subsequent experiments were performed in which mice were 

harvested 10 weeks after FLT.  We hypothesized that elimination of resident recipient 

macrophages (after peripheral blood monocytes were reconstituted) would enhance repopulation 

of alveolar macrophages by cells of donor origin.  To achieve this goal, mice were treated with 

IT administration of liposomal clodronate 6 weeks following FLT, a time point at which  
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Figure 25:  FACS analysis of peripheral blood cells 
from Nagy GFP transgenic mouse showing:  A) 
selection of peripheral blood monocyte population 
by forward and side scatter characteristics  B) 
analysis of population from A showing cells are 
positive for CD11b-PE and Gr-1-APC  C) 
identification of dual positive cells (CD11b and Gr-
1) that are also GFP positive. 
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peripheral blood leukocytes were predominantly of donor origin.  Mice were then analyzed at 10 

weeks following FLT to determine the degree of peripheral blood monocyte and alveolar 

macrophage reconstitution.  All experiments were performed using untreated Nagy GFP and WT 

mice as controls.  Compared to the 4 week time point, there was no significant increase in the 

number of donor-derived PBMCs at 10 weeks post-FLT (88.1% +/- 2.9 and 88.3% +/- 1.6 GFP 

positive monocytes in the 10 week and 10 week + clodronate groups, respectively) (Figure 26). 
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Figure 26:  Kinetics of peripheral blood monocyte reconstitution following fetal liver 
transplantation (FLT) with GFP+ donor cells.  CD11b/Gr-1 dual positive monocytes were 
analyzed by FACS to determine the percentage that were GFP+ (donor genotype) in the 
following groups:  wild-type mice, chimeric mice 4 weeks after FLT with GFP+ donor cells (4 
week), chimeric mice 10 weeks after FLT with GFP+ donor cells (10 week), and chimeric 
mice 10 weeks after FLT + treatment with liposomal clodronate (10 week + Clod).  Each bar 
represents the mean +/- SEM of 7 mice per group. 
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Fixation Affects the Detection of GFP by Fluorescence Microscopy and Immunohistochemistry 

 In initial experiments, the detection of GFP+ macrophages by fluorescence microscopy 

and immunohistochemistry in untreated Nagy GFP lung tissue sections was variable and 

unreliable.  The consensus within the literature for the analysis of GFP in paraffin embedded 

tissue was to use 4% paraformaldehyde (PFA) as the fixative.  We investigated the effects of 

fixation on the ability to detect GFP in various organs of Nagy GFP mice by fluorescence 

microscopy and immunohistochemistry.  Figure 27, shows the detection of GFP in lung, liver,  
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Figure 27:  Fluorescence microscopy of lung, liver, spleen, and kidney tissue sections from 
Nagy GFP mice.  Tissues were fixed for 24 hours at 40C in either 4% Paraformaldehyde [lung 
(A), kidney (C), liver (E), spleen (G)] or 10% Neutral Buffered Formalin [lung (B), kidney 
(D), liver (F), spleen (H)].  
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spleen, and kidney by fluorescence microscopy after either 4% PFA or 10% Neutral Buffered 

Formalin (NBF) fixation at 40C for 24 hours.  The ability to detect GFP+ specific cell 

populations is greatly enhanced by 10% NBF fixation in all organs examined, especially the 

identification of alveolar macrophages (Figure 27, A and B).  In addition to increased 

fluorescence detection using NBF, compared to PFA, the intensity and specificity of GFP 

immunohistochemistry is enhanced as demonstrated in Figure 28.  While the specific mechanism 

for improved detection of GFP using NBF remains unclear, optimal detection is critical for using 

GFP as a cellular marker to study the kinetics of alveolar macrophage repopulation after FLT.  

All subsequent experiments were performed using NBF fixation at 40C for 24 hours.   
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Figure 28:  GFP immunohistochemistry of lung, liver, spleen, kidney tissue sections from 
Nagy GFP mice.  Tissues were fixed for 24 hours at 40C in either 4% Paraformaldehyde [lung 
(A), kidney (C), liver (E), spleen (G)] or 10% Neutral Buffered Formalin [lung (B), kidney 
(D), liver (F), spleen (H)].  
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Identification of Donor Macrophages in the Lung by Fluorescence Microscopy 

  We evaluated lung tissue sections to determine the extent of repopulation of resident 

alveolar macrophages with GFP+ donor macrophages after FLT.  Distinct GFP+ cells, primarily 

macrophages as identified by morphology and location, were visible in Nagy GFP 

untransplanted controls (Figure 29, A).  No brightly green fluorescent cells were observed in 

untransplanted WT controls (Figure 29, B).  At 10 weeks after FLT, green fluorescent cells with 

the characteristic appearance of macrophages were observed in the lungs (Figure 29, C).  

Increased numbers of GFP+ cells were observed in lung tissue sections of clodronate treated  

A B

C D

Figure 29:  Fluorescence microscopy of lung tissue sections showing GFP+ cells in the 
following groups: A) Nagy GFP transgenic mouse, B) wild-type mouse, C) chimeric mouse 10 
weeks after FLT with Nagy GFP+ donor cells, D) chimeric mouse 10 weeks after FLT + 
treatment with liposomal clodronate.  
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mice 10 weeks following FLT (Figure 29, D); however, the inability to identify all macrophages 

with confidence warranted the use of an additional method to quantify alveolar macrophage 

repopulation.   

 

Quantification of Donor Alveolar Macrophage Repopulation in the Lung by 
Immunohistochemistry and Tissue Cell Counts 
 
 To better quantify the extent of lung macrophage repopulation after FLT, 

immunohistochemistry was used to identify alveolar macrophages using an anti-CD68 antibody 

(Lang, 2002) and cells of donor origin using an anti-GFP antibody.  Serial sections were stained 
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Figure 30:  
Immunohistochemistry of lung 
tissue sections using anti-CD68 
and anti-GFP antibodies to 
identify all macrophages (CD68) 
and donor-derived (GFP+) cells 
following FLT.  Wild-type 
controls stained for CD68 (A) 
and GFP (B) demonstrate 
CD68+ cells but no GFP+ cells, 
whereas Nagy GFP transgenic 
mice showed equal numbers of 
CD68+ (C) and GFP+ (D) cells.  
In chimeric mice 10 weeks after 
FLT with GFP+ donor cells, 
immunostaining for CD68 (E) 
and GFP (F) shows similar 
numbers of CD68+ cells 
compared to untreated controls, 
but fewer GFP+ than CD68+ 
macrophages.  In chimeric mice 
treated with liposomal 
clodronate 6 weeks after FLT, 
the number of CD68+ cells (G) 
was unchanged but GFP+ 
macrophages (H) were 
increased compared to mice 
undergoing FLT without 
subsequent clodronate 
treatment.  
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and alveolar macrophage repopulation was quantified by counting CD68+ and GFP+ 

macrophages in 10 high power fields of lung parenchyma per slide (Figure 30).    Figure 31 

illustrates the number of CD68+ and GFP+ macrophages observed in each treatment group.  

CD68 immunostaining revealed no significant differences in the number of macrophages in 

untreated Nagy GFP and untreated WT controls.  Comparatively, CD68+ macrophage numbers 

were similar at 4 and 10 weeks after FLT (with or without clodronate treatment).   No GFP+ 

macrophages were identified in untransplanted WT controls, and 4 weeks after FLT, only 1.4 +/- 

0.4 cells per field were identified as immunoreactive for GFP, representing 9.5 percent of total 

macrophages (Figure 31).  By 10 weeks after FLT, however, there were 6.8 +/- 0.4 GFP+ 

macrophages per field, representing 48 percent of total macrophages.  Mice treated with 

clodronate displayed a significant increase in GFP+ macrophages (14.4 +/- 0.5, representing 90 

percent of total macrophages) as compared to untreated 10 week FLT chimeras (p<0.001).  No 

epithelial or endothelial cells in the lung were observed to be GFP+ at any time point after FLT. 

 

Quantification of Donor Alveolar Macrophage Repopulation in the Lung by Brochoalveolar 
Lavage Macrophage FACS Analysis 
 
 In addition to immunostaining of lung sections, alveolar macrophage repopulation was 

evaluated by FACS.  Lung lavage cells were purified and stained with an anti-CD11b-PE 

antibody to identify macrophages.  Repopulation was evaluated by determining the number of  
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CD11b+ macrophages that were also GFP+.  In untreated Nagy GFP and wild-type controls, 

93.0% +/- 1.2 and 2.3% +/- 0.5 of macrophages were identified as GFP+, respectively (Figure 

32).   Ten weeks after FLT, 55.1% +/- 1.6 of alveolar macrophages were GFP+, similar to the 

number of donor macrophages identified in lung tissue sections.  In mice treated with clodronate, 

81.4% +/- 4.1 of alveolar macrophages were GFP+ (87.5% of Nagy positive control), 

demonstrating a significant increase over non-clodronate treated bone marrow chimeric mice at 

10 weeks.  These data show that elimination of resident alveolar macrophages by liposomal 

clodronate treatment improves alveolar macrophage repopulation in bone marrow chimeric mice.   
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Figure 31:  Quantification of total lung and GFP+ macrophages.  Serial lung sections were 
immunostained to identify the macrophage population (anti-CD68) and donor-derived cells 
(anti-GFP) in the following groups:  Nagy GFP transgenic mice, wild-type mice, chimeric 
mice 4 weeks after FLT with GFP+ donor cells (4 week), chimeric mice 10 weeks after FLT 
with GFP+ donor cells (10 week), and chimeric mice 10 weeks after FLT + treatment with 
liposomal clodronate (10 week + Clod).  Positive cells per field from ten sequential non-
overlapping fields per slide were counted.  Each bar represents the mean number of positive 
cells per field +/- SEM.  N=8 mice per group.  * =  p<0.001 between 4 week GPF+ cells and 
10 week GFP+ cells, and # =  p<0.001 between GFP+ cells in the 10 week group and GFP+ 
cells in 10 week + Clod group. 
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By 10 weeks, high level repopulation of alveolar macrophages by cells of donor genotype can be 

achieved. 

 

Investigation of Alveolar Macrophage Function in FLT Chimeras 

 To ensure that newly recruited donor macrophages in FLT chimera mice maintained 

normal functions, Pseudomonas aeruginosa clearance was investigated in WT and Nagy GFP 

FLT chimeras.  Alveolar macrophages and neutrophils have been shown to be critical in 

regulating Pseudomonas aeruginosa clearance (Kooguchi, 1998).  Pseudomonas (106 cfu) was  
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Figure 32:  Quantification of GFP+ alveolar macrophages in lung lavage from Nagy GFP 
transgenic mice, wild-type mice, chimeric mice 10 weeks after FLT with GFP+ donor cells (10 
week), and chimeric mice 10 weeks after FLT + treatment with liposomal clodronate (10 week 
+ Clod).  Cells were collected, labeled with anti-CD11b-PE antibody and analyzed by FACS to 
determine the percent of CD11b+ cells that were of GFP+.  Each bar represents the mean +/-
SEM.  N=6 mice per group.   * = p<0.001 between 10 week GFP+ cells and 10 week + 
clodronate GFP+ cells. 
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administered by IT injection.  After 24 hours, lungs were harvested and Pseudomonas colony 

counts determined (Figure 33).  No difference was detected between WT and Nagy GFP FLT 

chimeras, suggesting that macrophage and neutrophil function in regulating the clearance of 

Pseudomonas aeruginosa was intact in FLT chimeras.   

 

Summary 

 We have demonstrated that alveolar macrophage repopulation after lethal irradiation and 

FLT is a process that can be enhanced by selective depletion of resident alveolar macrophages in 

the recipient.  In peripheral blood, near complete reconstitution of monocytes occurs by 4 weeks 

after FLT.  Lung macrophage repopulation, however, is a slower process and few donor 

macrophages are observed in the lung at this time.  Approximately 50% of alveolar macrophages 
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Figure 33: Pseudomonas aeruginosa clearance in WT and Nagy GFP FLT chimeras 24 hours 
after 106 cfu administration.  No difference in Pseudomonas aeruginosa colony counts from 
the lung was observed between the two groups.  
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are repopulated by macrophages of donor origin 10 weeks after FLT.  To maximize repopulation, 

we eliminated resident alveolar macrophages by IT administration of liposomal clodronate, an 

agent that causes selective macrophages apoptosis. Through a mechanism of enhanced monocyte 

recruitment, we were able to increase repopulation of alveolar macrophages 10 weeks after FLT.  

At this time point, we determined that approximately 90% of alveolar macrophages were derived 

from the donor by calculating the percentage of CD68+ macrophages that were also GFP+ by 

immunohistochemistry and lung tissue cell counts.  These findings were confirmed by FACS 

analysis of alveolar macrophages obtained by brochoalveolar lavage.  In addition, FLT chimeras 

were analyzed 10 months after transplantation.  No significant difference in the number of donor 

alveolar macrophages was detected by immunohistochemistry and lung tissue cell counts or BAL 

macrophage FACS, suggesting maximal alveolar macrophage repopulation can be achieved 10 

weeks after FLT when recipient macrophages are selectively eliminated, stimulating 

repopulation with donor derived monocytes. 

 Prior studies have not adequately clarified the kinetics of lung macrophage repopulation 

following bone marrow transplantation or FLT.  In the literature, the reported rate of 

repopulation varies greatly.  For example, one study investigated the migration of donor cells 

from GFP positive transgenic mice into several tissues in bone marrow chimeras (Ono, 1999).  

GFP+ cells were detected in lung sections by fluorescence microscopy and verified as 

macrophages by immunohistochemistry with CD-11b antibodies.  Analysis of lung tissue 

demonstrated donor cells were present at seven days, suggesting rapid repopulation.  In a 

separate study, bone marrow chimeras were generated using ROSA 26 mice to track β-

galactosidase positive cells into various organs (Kennedy, 1997).  In these experiments, donor 

cells were not observed in the lung until after one month.  Only 61% of lung macrophages were 
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of donor origin one year after transplant.  These data suggest significantly slower kinetics for 

repopulation of macrophages and imply that achieving complete repopulation is impossible.  The 

efficiency of bone marrow engraftment and subsequent lung macrophage repopulation is likely 

to depend on several factors, including the method of recipient marrow depletion, the number of 

donor cells delivered, and the effects of the conditioning treatment on turnover of resident lung 

macrophages.  For example, methods used to deplete recipient marrow ranges from 

intraperitoneal administration of 5-fluorouracil to lethal irradiation by administering a single 

dose of radiation (1050 cGy) from a dual cesium source.  We utilized a protocol designed to 

achieve complete marrow depletion while minimizing damage to structural cell components.  In 

our experiments, no histological evidence of radiation induced pneumonitis in the lung was 

identified 4 or 10 weeks after FLT. 

 In addition to alveolar macrophages, other bone marrow derived immune cells, such as 

neutrophils and eosinophils, are reconstituted with cells of donor genotype following FLT; 

however, these cells are not present in the lungs in substantial numbers in the absence of an 

inflammatory stimulus.  Since lung macrophages serve a sentinel function to initiate innate 

immune responses in the lungs, it is possible to study their function using a bone marrow 

chimera strategy.  We have demonstrated that alveolar macrophage repopulation can be 

enhanced by elimination of resident macrophages by treatment with liposomal clodronate, and 

have defined the extent of alveolar macrophage repopulation using this methodology.  This 

method will allow efficient replacement of alveolar macrophages with macrophages of altered 

genotype in order to study the role of specific molecules and signal transduction components in 

macrophages in vivo. 
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ROLE OF ALVEOLAR MACROPHAGE IκB-α AND p50 IN THE REGULATION OF LUNG 
INFLAMMATION 

 

Introduction 

 While it is known that the NF-κB signal transduction pathway is important in the 

regulation of lung inflammation, the specific role of NF-κB in individual cell types in the lung 

remain unclear.  In order to obtain meaningful results from in vivo experiments designed to 

investigate the NF-κB pathway, it is necessary to ensure that all of the cellular and signaling 

pathways are intact.  For example, Alcamo et al. (Alcamo, 2001) investigated the role of RelA in 

neutrophil emigration using an E. coli LPS intranasal insufflation model.  RelA-deficient mice 

exhibit embryonic lethality secondary to liver apoptosis (Beg, 1995b).  Therefore, RelA/TNF 

type I receptor double knockout mice, which rescues the TNF mediated liver apoptosis 

phenotype, were used to investigate RelA-deficiency in vivo (Alcamo, 2001).  WT, TNFRI, and 

TNFRI/RelA deficient mice (P3-5) were administered LPS and neutrophil emigration determined 

by morphometric analysis.  WT and TNFRI mice displayed neutrophil emigration 6 hours after 

LPS treatment; however, significantly less neutrophils were observed in TNFRI/RelA deficient 

mice, suggesting RelA is essential for initiating maximal neutrophil emigration in the lung in 

response to LPS.  To determine if the above observation resulted from the inability of 

TNFRI/RelA deficient neutrophils to be recruited to inflammatory loci, FLT was performed 

using TNFRI, RelA, and TNFRI/RelA deficient mice as donors and WT mice as recipients.  Six 

weeks after FLT, mice were administered IT LPS and neutrophil emigration was determined by 

morphometric analysis.  Neutrophil emigration was comparable in all three groups, suggesting 

the emigration defect in the TNFRI/RelA deficient mice was not a cell intrinsic defect of RelA-

deficient neutrophils.  They suggest that the reduction in neutrophil recruitment in TNFRI/RelA 
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mice is due to the requirement for RelA in structural cells in addition to macrophages to produce 

neutrophil chemoattractants.  While this may be partially true, they did not adequately monitor 

alveolar macrophage repopulation in the TNFRI/RelA FLT chimeras.  Our alveolar macrophage 

repopulation kinetics data suggest that at 6 weeks post FLT, repopulation of macrophages is 

incomplete.  The presence of a substantial percentage of WT alveolar macrophages may be 

sufficient to recruit neutrophils in the TNFRI/RelA FLT chimeras, whereas the reduction in 

neutrophil recruitment observed in TNFRI/RelA deficient mice may result from the loss of RelA 

dependent activation in alveolar macrophages.  An alternative interpretation of their results is 

that RelA in alveolar macrophages is not absolutely essential for optimal neutrophil emigration 

in response to LPS.   

To study the role of NF-κB components in hematopoietic cells in the regulation of lung 

inflammation in vivo, we developed a method to replace resident hematopoietic cells with donor 

cells of an altered genotype (see Chapter IV).  Modulation of the NF-κB pathway in 

hematopoietic cells (macrophages, neutrophils, lymphocytes, etc.) was achieved by using donor 

fetal liver cells from IκB-α−/+, IκB-α−/−, or p50−/− mice.  HLL mice were used as recipients to 

measure in vivo NF-κB activity in structural cells (epithelium, endothelium, etc.) by 

bioluminescence imaging.  Clodronate was administered to all FLT chimeras as described in 

Chapter IV to ensure maximal repopulation of alveolar macrophages after FLT. 

WT, IκB-α−/+, IκB-α−/−, and p50−/− bone marrow chimeras were analyzed for signs of 

lung inflammation by histology and bioluminescence imaging at baseline and after a single IP 

injection of LPS (3 µg/g).  WT chimeras and HLL untransplanted controls exhibited the same 

response after IP LPS, early (4 hours) NF-κB activation and neutrophil influx which resolved by 

24 hours.  IκB-α−/+ chimeras displayed a distinct phenotype characterized by enhanced, 
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prolonged NF-κB activity and neutrophil influx which resolved 6 days after IP LPS 

administration.  Although the mice appeared ill during the duration of inflammation, no mortality 

was observed.  After IP LPS administration, IκB-α−/− chimeras exhibited a rapid increase in NF-

κB activity and neutrophil influx up to 24 hours.  Similarly, p50−/− chimeras displayed a rapid 

increase in NF-κB activity and neutrophil influx; however, significant mortality (72%) was 

observed at 48 hours after IP LPS. 

Since alveolar macrophages have been shown to be critical in initiating lung 

inflammation, we investigated NF-κB activation in ΙκB-α−/+ and p50−/−  BMDMΦ by Western 

blot for cytoplasmic IκB-α and nuclear RelA.  Compared to WT BMDMΦ, ΙκB-α−/+ and p50−/− 

BMDMΦ demonstrated altered cytoplasmic IκB-α levels at baseline and after LPS treatment.  

The return to basal levels of ΙκB-α protein was delayed in ΙκB-α−/+  BMDMΦ, while p50−/− 

BMDMΦ failed to generate basal levels of ΙκB-α protein after 24 hours.  Το determine the affect 

of modulation of NF-κB on other cell types, a co-culture apparatus was utilized to culture WT, 

ΙκB-α−/+, and p50−/−  BMDMΦ with A549 epithelial cells transfected with the 8x NGL construct.  

A549 cells exhibited prolonged NF-κB activity in the ΙκB-α−/+, and p50−/−  BMDMΦ co-culture 

in comparison to the WT BMDMΦ co-culture, suggesting continued NF-κB activation in 

macrophages drives sustained NF-κB activity in epithelium.  

These data suggest that IκB-α and p50 in hematopoietic cells, predominantly 

macrophages, are critical in coordinating the inflammatory response through regulation of NF-

κB activation in other lung cell types (epithelium and endothelium) and subsequent regulation of 

neutrophilic lung emigration. 
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Results 

 

Generation of Fetal Liver Transplant Chimeras 

 Fetal liver transplant chimeras were generated as described in Chapter IV: The Kinetics 

of Alveolar Macrophage Repopulation following Fetal Liver Transplantation.  Since IκB-α 

deficient mice survive only 7-10 days after birth, IκΒ-α−/+/ IκΒ-α−/+ matings were set up to 

generate IκB-α−/−, IκB-α−/+, and WT donors for transplant.  p50 deficient donors were generated 

by setting up p50-/-/p50-/- matings.  HLL mice were used as recipients for all FLT experiments in 

order to detect in vivo NF-κB activation in structural cells by bioluminescence imaging.  To 

maximize alveolar macrophage repopulation in our chimeras, the clodronate protocol as 

described in Chapter IV was used for all FLT experiments.  

  

Wild-type FLT Chimeras 

 WT FLT chimeras were studied in conjunction with HLL untransplanted control mice to 

ensure that FLT did not result in abnormal basal NF-κB activation or altered response to LPS.    

WT FLT chimeras and HLL untransplanted control mice were given a single IP dose of LPS (3 

µg/g) and NF-κB activity detected by bioluminescence imaging (Figure 34).  WT chimeras 

exhibited the same response as untransplanted HLL controls.  A significant increase in NF-κB 

activity was detected 4 hours after IP LPS and decreased to near baseline levels by 24 hours.  

The NF-κB activity observed by bioluminescence imaging correlated with quantification of 

photon counts measured over the thorax (Figure 35).  In addition, bioluminescence directly  
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correlated with histologic evidence of lung inflammation (Figure 36), as demonstrated by 

neutrophilic influx in the interstitium 4 hours after IP LPS.  A significant increase in neutrophils 

in the lung was detected 8 hours after IP LPS compared to baseline and 4 hours (p<0.05) 

followed by a decrease toward baseline through 48 hours (Figure 37).  Since the donor 

hematopoietic cells did not contain the luciferase reporter, the observation that the WT FLT 

chimeras and HLL untransplanted controls exhibited similar levels of bioluminescence suggested 

that the majority of the detected NF-κB activity was derived from the parenchyma cells.    

 

 

 

 

Baseline 4Hours 24Hours 48Hours 

Figure 34:  Bioluminescence detection of NF-κB activity in WT FLT chimeras.  WT FLT 
chimeras were administered a single IP dose of LPS (3 µg/g).  An increase in NF-κB activity 
was detected 4 hours after IP LPS administration followed by a decrease to near baseline levels 
by 24 hours.  Images are representative of two separate experiments.  
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IκB-α−/+ FLT Chimeras 

 IκB-α−/+ FLT chimeras displayed a distinct phenotype compared to WT FLT chimeras 

and untransplanted HLL controls.  IκB-α−/+ FLT chimeras were given a single IP dose of LPS (3 

µg/g) and NF-κB activity detected by bioluminescence (Figure 38).  Similar to WT FLT 

chimeras, NF-κB activity increased 4 hours after IP LPS; however, NF-κB activity continued to 

increase at 24 hours and persisted until 72 hours.  After 6 days, NF-κB activity returned to 

baseline.  These observations were supported by quantification of photon counts measured over  
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Figure 35:  Quantification of photon counts measured over the thorax in FLT chimeras. 
Untransplanted HLL controls and WT FLT chimeras displayed similar kinetics of lung NF-κB 
activity.  IκB-α-/+ FLT chimeras demonstrated enhanced and prolonged lung NF-κB activity 
for 72 hours followed by a return to baseline by 6 days.  IκB-α-/- FLT chimeras generated a 
rapid activation of NF-κB in the lung which steadily increased over 24 hours.  p50-/- FLT 
chimeras displayed similar kinetics of lung NF-κB activity compared to IκB-α-/- FLT 
chimeras.  NF-κB activity in the lung rapidly increased over 48 hours after IP LPS 
administration.  
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Figure 36:  Detection of lung inflammation by histology in WT FLT chimeras after 
administration of a single IP dose of 3 LPS (µg/g).  
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Figure 37: Quantification of neutrophils in lung tissue sections of WT, HLL, ΙκB-
α−/+, IκB-α−/−, and p50−/− mice.  Neutrophils were counted in 10 non-overlapping fields 
per slide.  A total of 3 slides per mouse were counted.  N = 3 or more for each group. 
The number of neutrophils detected in the lung correlated with both the histologic 
evidence of lung inflammation and NF-κΒ activity as detected by bioluminescence 
imaging and photon counts.  
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the thorax (Figure 35).  Histologic evidence of lung inflammation correlated with 

bioluminescence imaging (Figure 39), as demonstrated by interstitial neutrophilic influx detected 

at 4 hours after IP LPS which continued through 72 hours.  A significant increase in lung 

neutrophils over baseline was detected at all time points after IP LPS(p<0.05), demonstrating a 

sustained lung inflammation (Figure 37).  While IκB-α−/+ FLT chimeras displayed physical signs 

of illness (inactivity, ruffled fur) after IP LPS, no mortality was observed and all mice resolved 

the inflammatory insult.  These data show that the loss of a single IκB-α allele in hematopoietic 

derived cells resulted in enhanced and prolonged NF-κB activity in epithelium of the lung and 

sustained neutrophilic inflammation after a single dose of IP LPS.   

 

Baseline 4Hours 24Hours 48Hours 72Hours 6 Days

Figure 38:  Bioluminescence detection of NF-κB activity in IκB-α-/+ FLT chimeras.  IκB-α-/+

FLT chimeras were administered a single IP dose of 3 µg/g LPS.  Increased NF-κB activity 
was detected 4 hours after IP LPS administration and persisted for 72 hours.  Baseline NF-κB 
activity was not achieved until 6 days after IP LPS administration.  Images are representative 
of two separate experiments. 
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IκB-α−/− FLT Chimeras 

 IκB-α−/− FLT chimeras displayed a more severe phenotype compared to IκB-α−/+ FLT 

chimeras.  IκB-α−/− FLT chimeras were given a single IP dose of LPS (3 µg/g) and NF-κB 

activity detected by bioluminescence imaging (Figure 40).  Interestingly, no increase in NF-κB 

activity was detected at baseline.  NF-κB activity increased 4 hours after IP LPS similarly to 

IκB-α−/+ FLT chimeras; however, after 24 hours, NF-κB activity was greater in the IκB-α−/− FLT 

chimeras as determined by photon count emission (Figure 35).  Histology demonstrated 

interstitial neutrophil influx which increased through 24 hours after IP LPS (Figure 41).  A  

Baseline 4Hours

72Hours 6 Days 

24Hours 

48Hours 
Figure 39: Detection of lung inflammation by histology in IκB-α-/+ FLT chimeras after 
administration of a single IP dose of LPS (3 µg/g).  
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significant increase in neutrophils was detected at each time point after IP LPS compared to 

baseline (p<0.05) (Figure 37).  Few IκB-α−/− FLT chimeras were available for study because of a 

limited number of donors and mortality after LPS administration.  In contrast to IκB-α−/+ FLT 

chimeras, IκB-α−/− FLT chimeras displayed signs of severe illness including inactivity, secretions 

around the eye, and diarrhea. Therefore, animals were euthanized after 24 hours, prohibiting 

study beyond this time.  These data demonstrate a continuous increase in NF-κB activation and 

neutrophilic lung inflammation through 24 hours after a single dose IP LPS in IκB-α−/− FLT 

chimeras.        

 

 

 

Baseline 4Hours 24Hours 

Figure 40:  Bioluminescence detection of NF-κB activity in IκB-α-/- FLT chimeras.  IκB-α-/-

FLT chimeras were administered a single IP dose of 3 µg/g LPS.    Increased NF-κB activity 
was detected 4 hours after IP LPS administration which continued to increase through 24 
hours.  Images are representative of two separate experiments. 
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Baseline 24Hours

Figure 41: Detection of lung inflammation by histology in IκB-α-/- FLT chimeras after 
administration of a single IP dose of LPS (3 µg/g).  

Baseline 4Hours 24Hours 48Hours 

Figure 42:  Bioluminescence detection of NF-κB activity in p50-/- FLT chimeras.  P50-/-

chimeras were administered a single IP dose of 3 µg/g LPS.  An increase in NF-κB activity 
was detected 4 hours after IP LPS administration, which continued to increase through 24 and 
48 hours.  Images are representative of two separate experiments. 
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p50−/− FLT Chimeras 

 p50−/− FLT chimeras displayed a phenotype similar to IκB-α−/− FLT chimeras.  

p50−/− FLT chimeras were given a single IP dose of LPS (3 µg/g) and NF-κB activity detected by 

bioluminescence imaging (Figure 42).  NF-κB activity was minimal at baseline and rapidly 

increased over 48 hours after IP LPS.  These observations were supported by quantification of 

photon counts measured over the thorax (Figure 35).  Histology revealed neutrophil influx in the 

vessels, interstitium, and alveolar space at 4, 24, and 48 hours after IP LPS (Figure 43).  A 

significant increase in neutrophils was detected over baseline at 4, 24, and 48 hours after IP LPS 

(p<0.05) (Figure 37).  In addition to increased lung NF-κB activity and neutrophilic 

inflammation, significant mortality (72% survival at 24 hours and 28% survival at 48 hours) was 

observed after IP LPS administration (Figure 44).  These data suggest p50 deficient  

Baseline 4Hours 48Hours 

Figure 43: Detection of lung inflammation by histology in IκB-α-/- FLT chimeras after 
administration of a single IP dose of LPS (3 µg/g).  
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hematopoietic cells exhibit persistent NF-κB activation which in turn drives NF-κB activity in 

other cell types, thus prolonging the inflammatory response.     

 

Bioluminescence Correlates with Tissue Luciferase Activity 

 To ensure that bioluminescence measurements reflected tissue luciferase expression, 

luciferase assay was performed on lung tissue collected from WT and IκB-α−/+ FLT chimeras 48 

hours after IT LPS administration.  At this time, NF-κB activity, as detected by bioluminescence 

imaging, was higher in IκB-α−/+ FLT chimeras than WT FLT chimeras.  Figure 45 shows that 

lung luciferase activity in IκB-α−/+ FLT chimeras was 2 times greater (6725 +/- 725 vs. 3052 +/-  

 

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5

Pe
rc

en
t S

ur
vi

va
l

24 Hours 48 Hours N = 7 8 Hours 

Figure 44:  p50-/- FLT chimeras exhibit mortality after intratracheal administration of a single 
dose of 3 µg/g LPS resulting in 72% survival at 24 hours and 28% survival at 48 hours.  N=7 
p50-/- FLT chimeras.  
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532 RLU/µg protein) than in WT FLT chimeras, further supporting the use of bioluminescence 

as a measure of in vivo NF-κB activity. 

 

NF-κB Regulation in IκB-α−/+ and p50−/− Bone Marrow Derived Macrophages 

 NF-κB activation was determined in BMDMΦ by Western blots for cytoplasmic IκB-

α and nuclear RelA.  IκB-α−/+ BMDMΦ cells were treated with 5 µg/ml LPS and nuclear and 

cytoplasmic protein collected at baseline, 4 and 24 hours after LPS treatment.  Western blots 

were performed to identify cytoplasmic IκB-α and nuclear RelA proteins (Figure 46).  A 

decrease in IκB-α protein was detected at baseline in IκB-α−/+ macrophages compared to WT  
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Figure 45:  Detection of tissue luciferase activity from WT and IκB-α-/+ FLT lungs 48 hours 
after administration of a single intraperitoneal dose of 3 µg/g LPS.  IκB-α-/+ FLT chimeras 
exhibit a significant increase (6725 +/- 725 vs. 3052 +/- 532 RLU/mg protein) in NF-κB 
activity compared to WT FLT chimeras 48 hours after IP LPS (p < 0.05).  
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macrophages.  Four hours after LPS treatment, IκB-α protein was evident in WT macrophages; 

however, IκB-α−/+ macrophages exhibited lower levels of IκB-α protein.  By 24 hours after LPS 

treatment, basal levels of IκB-α protein were observed in both WT and IκB-α−/+ macrophages. 

Differences in nuclear RelA protein levels were detected between the two groups.  At 

baseline, RelA was virtually undetectable in WT macrophages; however, IκB-α−/+ macrophages 

possessed increased RelA corresponding to the decrease in IκB-α.  After 4 hours, both groups 

displayed a significant increase in nuclear RelA.  By 24 hours, IκB-α−/+ macrophages contained 

more RelA compared to WT macrophages.  Taken together, these data suggest that the loss of 

one allele of IκB-α in BMDMΦ resulted in the delayed cytoplasmic ΙκB-α and prolonged RelA 

nuclear localization after LPS treatment. 

WT IκB-α−/+ 

Baseline 4 Hr 24 Hr

Nuclear 

Cytoplasmic IκB-α 

WT WT IκB-α−/+ IκB-α−/+ 

Figure 46: Detection of cytoplasmic IκB-α and nuclear RelA protein by western blot in WT 
and IκB-α-/+ BMDMΦ cells after stimulation with 5 µg/ml LPS.  IκB-α-/+ BMDMΦ contained 
decreased IκB-α and increased RelA protein at baseline compared to WT BMDMΦ.  Four 
hours after LPS stimulation, increased RelA was detected in both WT and IκB-α-/+ BMDMΦ; 
however, IκB-α protein was virtually undetectable in IκB-α-/+ BMDMΦ.  While IκB-α protein 
had returned to basal levels by 24 hours after LPS stimulation, nuclear RelA protein was 
significantly higher in IκB-α-/+ BMDMΦ compared to WT BMDMΦ.  Data is representative 
of two separate experiments. 
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p50−/− BMDMΦs were treated with 5 µg/ml LPS and Western blot performed to detect 

cytoplasmic IκB-α protein (Figure 47).  Interestingly, p50−/− macrophages possessed less IκB-

α protein at baseline compared to WT macrophages, suggesting p50 plays a role in IκB-α 

homeostasis.  Four hours after LPS treatment, IκB-α protein was present in WT macrophages; 

however, IκB-α protein was undetectable in p50−/− macrophages.  As previously demonstrated, 

WT macrophages reached basal levels of IκB-α protein 24 hours after LPS treatment; however, 

p50−/− macrophages exhibited undetectable levels of IκB-α protein even after 24 hours.  These 

data implicate p50 as a critical player in regulating NF-κB activity through IκB-α homeostasis. 

The ΙκΒ-α Western blot data suggests that p50 plays a role in IκB-α homeostasis.  We 

have performed pilot experiments to detect IκB-α mRNA by Northern blot.  Our initial data  
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24 Hr 24 HrLPS Time Course 

Figure 47: Detection of cytoplasmic IκB-α protein by western blot in WT and p50-/- BMDMΦ
after stimulation with 5 µg/ml LPS.  Decreased IκB-α protein was detected in p50-/-

BMDMΦ at baseline compared to WT BMDMΦ.  In WT BMDMΦ, IκB-α protein decreased 
4 hours after LPS and returned to basal levels by 24 hours after LPS stimulation.  In contrast, 
IκB-α protein was undetectable in p50-/- BMDMΦ 4 and 24 hours after LPS stimulation.  Data 
is representative of two separate experiments.  
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shows no difference in IκB-α message between WT and p50−/− BMDMΦ 4, 24, and 48 hours 

after LPS treatment, suggesting the differences observed in IκB-α protein are possibly regulated 

through protein stability, and/or degradation via IKK phosphorylation/ubiquitination.        

 

The Role of NF-κB in Macrophage/Epithelium Communication 

 The FLT chimera studies suggest that modulation of NF-κB in macrophages can impact 

NF-κB activity in other cell types, specifically epithelium.  To study the role of NF-κB in 

macrophage/epithelium communication, BMDMΦs from WT, IκB-α−/+ and p50−/− mice were 
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Figure 48:  The role of NF-κB in macrophage/epithelium communication was investigated 
using a co-culture system.  WT, IκB-α-/+, and p50-/- BMDMΦ were placed in the top chamber 
and 8x NGL transfected A549 cells were placed in the bottom chamber of a co-culture 
apparatus.  The cells were stimulated with 5 µg/ml LPS and NF-κB activity in A549 cells 
detected by luciferase assay at baseline, 4, 24, and 48 hours after LPS.  No significant 
differences in A549 NF-κB activity were detected at baseline between the three groups; 
however, the IκB-α-/+ and p50-/- groups displayed significantly higher NF-κB activity in A549 
cells at 4, 24, and 48 hours compared to the WT group (p < 0.05).  Each bar represents mean 
+/- SEM of 3 samples per group.  Data is representative of three separate experiments. 
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cultured in a co-culture apparatus with A549 cells transfected with the 8x NGL construct.  The 

co-culture apparatus allows for cell-cell communication through shared cell culture media.  The 

cells were treated with 5 µg/ml LPS (which only activates NF-κB in BMDMΦ, not A549 cells) 

and NF-κB activity from A549 cells was detected by luciferase assay (Figure 48).  No significant 

difference in NF-κB activity in A549 cells was detected at baseline in WT, IκB-α−/+ or 

p50−/− BMDMΦ co-culture.  Four hours after LPS treatment, increased A549 NF-κB activity was 

detected in IκB-α−/+ and p50−/− co-culture (8.5% and 11.5% increase over WT in IκB-α−/+ and 

p50−/−  respectively compared to WT co-culture).  At 24 hours after LPS, the difference between 

the WT co-culture group and IκB-α−/+ and p50−/− co-culture groups increased to 21% and 28% 

respectively (p < 0.05).  At 48 hours, A549 luciferase activity decreased towards baseline in the 

WT co-culture group but IκB-α−/+ and p50−/− co-culture groups remained high (85% and 120% 

increase over WT in IκB-α−/+ and p50−/−  respectively, p < 0.05) demonstrating sustained NF-κB 

activity.  These data demonstrate that changes in the NF-κB pathway in BMDMΦ alter NF-κB 

activity in A549 cells after LPS stimulation.  Since LPS does not activate NF-κB in A549 cells, 

the differences observed in NF-κB activity in the A549 cells in the co-culture experiments result 

from changes in cell-cell communication mediated by the macrophage.  These data directly 

support the phenotype observed in the IκB-α and p50 FLT chimera studies.       

 

Summary 

The role of the NF-κB signal transduction pathway in specific cell types in the regulation 

of lung inflammation remains unclear.  Previous studies have primarily utilized in vitro cell 

culture models to investigate or manipulate the NF-κB pathway in specific cell types.  There are 
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two primary limitations inherent to these methods: 1) the nature of immortalized cell lines 

introduces factors that may not reflect normal functions 2) the experimental environment does 

not include the cellular interactions and signaling networks that exist in the in vivo environment.  

In order to elucidate meaningful information about cellular functions and molecular pathways in 

specific cell types, it is necessary to perform the experiments within the complex, integrated 

system in which the cells normally reside. 

IκB-α deficient mice are apparently normal at birth, but die within 7-10 days (Beg, 

1995a; 2000; Klement, 1996).  Enhanced granulopoiesis, severe dermatitis, and increased TNF-α 

in the skin are present at the time of death.  IκB-α-deficient B-cells were shown to exhibit 

enhanced proliferative responses, while T-cells displayed reduced proliferative responses.  IκB-

α-deficiency in macrophages has not been described.  The observation that WT, IκB-α−/+, and 

IκB-α−/− FLT chimeras showed similar NF-κB activity in the lung at baseline suggests that the 

loss of ΙκB-α alone does not lead to increased NF-κB activation.  However, after stimulation 

with a single dose of IP LPS, IκB-α−/+ and IκB-α−/− FLT chimeras demonstrated enhanced NF-

κB lung activity and neutrophilic inflammation.  The partial loss of IκB-α protein in the IκB-α−/+ 

FLT chimeras resulted in an intermediate phenotype between WT and IκB-α−/− FLT chimeras, 

characterized by prolonged and enhanced NF-κB activity which resolved by 6 days after 

stimulation.  IκB-α−/− FLT chimeras further support the role of IκB-α in de-activation, as 

characterized by an inability to resolve NF-κB activity and lung inflammation.       

Previous studies have demonstrated that LPS administration in the lungs induces nuclear 

translocation of RelA and p50 (Blackwell, 1999c; Mizgerd, 2002).  RelA increases gene 

expression through the interaction of the transactivation domain and coactivator complexes 

(Ghosh, 1998).  In RelA/TNFRI-deficient mice, intranasal LPS administration resulted in a 
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considerable reduction in neutrophil emigration and pulmonary expression of the chemokines 

KC and MIP-2 and the adhesion molecule ICAM-1, compared to WT and TNFRI-deficient mice 

(Alcamo, 2001).  These data suggest RelA is essential for regulating TNFRI-independent 

mechanisms of innate immunity for protection against pathogens.   

In contrast to RelA, p50 has been shown to both increase and decrease gene expression in 

vitro (Baek, 2002; Dechend, 1999; Franzoso, 1992; Zhong, 2002).  In p50-deficient mice, 

increased expression of multiple NF-κB-regulated genes occur during E. coli pneumonia, 

resulting in increased neutrophil recruitment and excessive inflammatory injury (Mizgerd, 2003).  

In addition, 100% mortality was observed in p50-deficient mice 72 hours after IT administration 

of 106 cfu Pseudomonas.  Our studies support previous reports and provide additional 

information about the role of p50 in regulating lung inflammation.  In p50−/− FLT chimeras, a 

single IP dose of LPS resulted in a dramatic neutrophil influx accompanied by significant NF-κB 

activity in structural cells in the lung.  Additionally, the high mortality (28% survival at 48 hours 

after IP LPS) in p50−/− FLT chimeras implicates inflammatory cells as the mediators of lethality.  

We have also performed IP LPS studies in untransplanted p50-deficient mice.  These mice also 

demonstrate dramatic neutrophil influx and significant mortality after 48 hours.  The exaggerated 

response to LPS may result from the loss of p50/p50 inhibitory function in regulating a variety of 

pro-inflammatory genes.      

The data from the FLT chimera studies and the BMDMΦ studies show that IκB-α and 

p50 are critical in a “turn-off” mechanism in the regulation of LPS induced neutrophilic lung 

inflammation.  While the macrophage is thought to be important in the initiation of lung 

inflammation, these data support the possible role of the macrophage in the resolution phase of 

lung inflammation as well.  Prolonged NF-κB activation in macrophages drives NF-κB 
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activation in support cell types (predominantly epithelia) resulting in a sustained neutrophilic 

lung inflammatory response.  The role of active turn-off of lung inflammation by NF-κB 

components is novel and may lead to a better understanding of the role of the NF-κB pathway in 

contributing to lung inflammation and injury.  Perhaps these and future studies will continue to 

unravel the complex regulatory mechanisms that coordinate the lung inflammatory response, 

leading to therapeutic interventions that enhance the innate immune response while limiting host 

derived lung injury. 

 

Future Directions 

 The role of IκB-α and p50 in the regulation of NF-κB turn-off in macrophages needs 

additional investigation.  Initial Northern blot experiments suggest the changes in IκB-α protein 

levels in IκB-α−/+ and p50−/− BMDMΦ do not result from altered IκB-α transcription.  If these 

results are confirmed, other mechanisms for decreased IκB-α protein levels will be studied.  For 

example, the possibility of continued IκB-α protein phosphorylation and degradation could be 

analyzed by determining IKK kinase activity by kinase assay.  In the BMDMΦ experiments, 

increased levels of KC and MIP-2 were detected at 24 and 48 hours after LPS in the IκB-α−/+ and 

p50−/− co-culture groups compared to the WT co-culture group.  These observations need to be 

confirmed with additional experiments.  These data demonstrate a functional consequence of 

sustained NF-κB activity in macrophages and epithelium and help to explain the sustained 

neutrophil influx observed in the FLT chimeras.  Additionally, these data would further support 

an active role for NF-κB in the turn-off as well as the turn-on mechanism of lung inflammation.   
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CHAPTER IV 

 

DISCUSSION  

 

Evidence demonstrates the macrophage plays a critical role in the initiation of lung 

inflammation.  Our data compliments these findings and suggests that NF-κB activation in the 

macrophage is a key component in this process.  Several studies have demonstrated the role of 

the macrophage in the initiation of lung inflammation.  The most convincing of these studies 

involve selective elimination of the macrophage population by administration of liposomal 

clodronate.  For example, in an immune complex model of lung inflammation, NF-κB activation 

in lung tissue, cytokine gene expression, and neutrophilic influx are blocked after liposomal 

clodronate treatment (Lentsch, 1999).  Also, we have performed macrophage depletion studies 

by administering clodronate via intratracheal (IT) and/or intravenous (IV) routes, demonstrating 

90% alveolar macrophage depletion 48 hours after treatment by IT + IV route (Koay, 2002).  In 

these studies, aerosolized LPS challenge and neutrophilic alveolitis was attenuated by 80% in 

clodronate treated mice compared to empty liposome treated controls.  Reduced neutrophil influx 

was associated with impaired activation of NF-κB in lung tissue, lower concentrations of TNF-α 

in lung lavage fluid, and decreased MIP-2 in lung homogenate.  Additionally, lung NF-κB 

activation and neutrophilic alveolitis were markedly reduced in clodronate treated mice in a 

systemic inflammatory model (IP injection of E. coli LPS).  These studies support the model that 

early NF-κB activation in alveolar macrophages induces the production of pro-inflammatory 

mediators that promotes the activation of NF-κB in other lung cell types and subsequent 

neutrophilic immigration.   



 91

To more specifically address the importance of NF-κB signaling in the macrophage in the 

regulation of lung inflammation, we replaced resident alveolar macrophages with macrophages 

with an alteration in the NF-κB signaling pathway.  Bone marrow chimeras were generated 

through fetal liver transplantation using transgenic NF-κB reporter mice as recipients (HLL 

mice) and WT, IκB-α heterozygous and homozygous, and p50 knockout fetal liver cells as 

donors.  The goal of these studies was to determine if altering the NF-κB pathway in 

macrophages would alter the inflammatory response in the lung following a single dose of IP 

LPS.   

We hypothesized that IκB-α deficient macrophages would result in NF-κB activation at 

baseline, since the inhibitory effect of IκB-α would be absent.  Surprisingly, IκB-α deficient 

FLT chimeras do not demonstrate increased NF-κB activity (as detected by bioluminescence 

imaging) or lung inflammation (as detected by histology) at baseline, suggesting that elimination 

of IκB-α function is not sufficient to activate the NF-κB pathway.  It is only after a stimulus 

(single dose of IP LPS), that the effects of IκB-α deficiency are observed.  IκB-α heterozygous 

FLT chimeras develop an increased and sustained NF-κB activation (as detected by 

bioluminescence imaging) after IP LPS which correlated with increased and prolonged lung 

inflammation as detected by neutrophil quantification.  The finding that the loss of one allele of 

IκB-α resulted in altered NF-κB activity was unexpected.  The data suggests that IκB-

α heterozygous macrophages are unable to “turn-off” NF-κB activation in the same time frame 

compared to WT macrophages, resulting in prolonged production of pro-inflammatory cytokines, 

continual activation of other cell types, and prolonged neutrophilic lung inflammation.  Similar 

to IκB-α heterozygous FLT chimeras, IκB-α homozygous knockout FLT chimeras demonstrate 

an increased and sustained NF-κB activation after IP LPS challenge.  However, while the IκB-α 
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heterozygous FLT chimeras appear to resolve the inflammatory insult with time (returning to 

baseline 6 days after IP LPS), IκB-α homozygous knockout FLT chimeras are unable to 

control/resolve the inflammatory insult and die after 24-30 hours.  These results more powerfully 

illustrate the role of IκB-α in the active “turn-off” of NF-κB activation in macrophages.  In 

addition to the evidence supporting NF-κB in macrophages, the detection of NF-κB activity by 

bioluminescence imaging highlights the importance of NF-κB activity in other cell types such as 

epithelium and endothelium, since the inflammatory cells do not carry the NF-κB reporter in 

these chimeras.  In addition to IκB-α FLT chimeras, the role of p50 in the regulation of 

macrophage NF-κB activation was investigated by generating bone marrow chimeras using HLL 

mice as recipients and p50 knockout donor fetal liver cells.  These mice displayed a similar 

phenotype as IκB-α homozygous knockout FLT chimeras, increasing NF-κB activity and 

inflammation accompanied by high mortality.   

 While these studies provide strong support that macrophage NF-κB activation is central 

to lung inflammation, the role/contribution of NF-κB in other cell types cannot be 

underestimated.  FLT not only results in repopulation of donor macrophages, but also other 

inflammatory cell types, including neutrophils and lymphocytes.  It is possible that alteration of 

NF-κB in donor neutrophils, once recruited to the site of inflammation, could contribute to the 

prolonged phenotype observed.  One possible experimental approach to address this question 

would be to perform neutrophil depletion studies in these FLT chimeras.  In the absence of 

circulating neutrophils, is prolonged NF-κB activity still observed?   

We tested our hypothesis that manipulation of the NF-κB pathway in macrophages would 

alter NF-κB activity in other cell types by performing co-culture studies using bone marrow 

derived macrophages from WT, IκB-α heterozygous and homozygous knockout, and p50 
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knockout mice and alveolar epithelial cell line containing our NGL NF-κB reporter.  These 

studies corroborated our in vivo studies.  After LPS stimulation, NF-κB epithelial reporter cells 

in co-culture with macrophages derived form IκB-α heterozygous and p50 homozygous 

knockout mice exhibited prolonged NF-κB activity compared WT macrophage co-cultures.  To 

understand how NF-κB signaling was altered in these macrophages, Western blots were 

performed to monitor the classic IκB-α degradation process.  IκB-α resynthesis appeared to be 

delayed in ΙκB-α heterozygous macrophages.  Surprisingly, p50 knockout macrophages 

appeared to be unable to generate sufficient amounts of IκB-α even after 24 hours.  These data 

suggest p50 is critical for IκB-α transcription after LPS treatment.  We have begun to investigate 

the mechanism behind these observations.  Initial Northern blot experiments for IκB-α show no 

differences in the rate of resynthesis after LPS in WT, IκB-α heterozygous, and p50 knockout 

macrophages.  We are currently performing RT-PCR for IκB-α as confirmation.  Another 

possibility for the observed decrease in IκB-α protein levels could be through continuous 

degradation.  We plan to test for changes in NF-κB signaling by performing IKK2 kinase assays.   

 Other questions remain concerning the mechanism for prolonged NF-κB activity in IκB-

α and p50 deficient macrophages.  The most plausible explanation for prolonged NF-κB activity 

in IκB-α deficient macrophages is the inability to “turn-off” NF-κB transcriptional activity 

through the ΙκB-α negative-feedback loop.  This prolonged NF-κB activation could result in 

continuous production of pro-inflammatory genes leading to enhanced and prolonged 

inflammation.  The mechanism for prolonged NF-κB activity in p50 deficient macrophages is 

more complicated.  As stated above, preliminary experiments suggest p50 is critical for IκB-α 

resynthesis, thus offering a similar explanation as in IκB-α deficient macrophages.  However, 
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p50 has been shown to effect gene transcription in numerous ways.  For example, p50 

homodimers have been shown to repress gene transcription.  Another explanation for the 

prolonged NF-κB activity could involve the loss of this inhibitory effect on the transcription of 

inflammatory genes.  Also, in the absence of p50, p65 could for dimers with other Rel family 

members such as p52, resulting in altered binding kinetics of the promoters of inflammatory 

genes normally activated in response to LPS or activation of a different set of inflammatory 

genes.  All of these possible mechanisms must be investigated further to understand p50s role in 

regulating the response of macrophages to LPS.    

 In conclusion, the following paradigm for the role of NF-κB in regulating lung 

inflammation is proposed (Figure 49).  In the normal host, the alveolar macrophage initiates the 

inflammatory cascade in response to LPS stimulus through activation of NF-κB and production 

of pro-inflammatory cytokines (such as TNF-α and IL-1).  These cytokines activate the NF-κB 

pathway in other lung cell types (predominantly epithelium) resulting in production of pro-

inflammatory cytokines and chemokines (such as KC and MIP-2) and neutrophil immigration.  

Resolution of inflammation is achieved through the active turn-off of NF-κB in the macrophage, 

resulting in NF-κB turn-off in other cell types and a return to normal neutrophil numbers.  In a 

host with altered NF-κB signaling in the macrophage through manipulation of IκB-α or p50, 

initiation of the inflammatory cascade proceeds as described above.  However, after removal of 

the inflammatory stimulus, macrophages are unable to turn-off NF-κB, resulting in continued 

production of pro-inflammatory cytokines.  Persistent macrophage activation drives the 

activation of NF-κB in other cells types (epithelium), thus perpetuating the inflammatory 

cascade.  Ultimately, prolonged NF-κB activation in multiple lung cell types leads to an 

enhanced neutrophilic lung inflammation.   
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 In conclusion, the data presented in this dissertation provide an important 

contribution to the understanding of the NF-κB signaling pathway in the regulation of 

inflammation.  Elucidating role of NF-κB in specific cell types in the lung is critical for the 

development of appropriate therapeutic interventions that enhance the innate immune response 

but limit host derived lung injury.  These studies add a new piece to the NF-κB story and will 
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hopefully lead to further discovery of the role of this important transcription factor family in the 

regulation of inflammation. 
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