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CHAPTER I 

 

STRUCTURE AND FUNCTION OF CaMKII 

 

Introduction 

 Calcium-calmodulin dependent protein kinase II, or CaMKII, has fascinated 

scientists for decades and many have spent their entire careers captivated by this enzyme.  

It is relevant to diverse disciplines due to the fact that it’s found in all human cell types 

and mediates various biological processes.  One of the most important aspects of CaMKII 

is the critical role it plays in memory.  It’s hard to imagine anything more essential to 

survival, preservation of culture, and emotional experience than memories.  This is 

illustrated by the tremendous value we place on acquiring new information and concepts, 

safeguarding cultural traditions, documenting histories, and preserving a loved one’s 

capacity to remember.  Presently we do not completely understand how memories are 

able to store, retain, and recall information and experiences.  The investigation is 

underway and proteins key for the biochemical processes associated with memory are 

currently being identified and characterized.  CaMKII has been deemed one of the 

“memory molecules” and with every new discovery, the significance of this enzyme is 

confirmed.  Investigation of CaMKII not only aids in understanding memory and other 

biological processes, but also contributes to establishing the global properties of proteins 

in general.  For instance, the knowledge gained from studying this protein also helps 

answer fundamental scientific questions applicable for proteins, such as how a protein’s 
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structure defines its function.  In the case of CaMKII, its unique features and structure 

endow the enzyme with a sophisticated mechanism that is truly remarkable. 

 

CaMKII is integral in long term potentiation 

 In the brain CaMKII is critical for the normal regulation of synaptic transmission 

(reviewed in [1]).  Brain regions such as the hippocampus, amygdala, striatum, and 

mammillary bodies are involved in memory, each integral in a specific type of memory.  

For example the amygdala is thought to govern emotional memory while the 

hippocampus is largely responsible for spatial learning and declarative learning.  These 

brain regions are made up of complex networks of neuronal cells connected by synapses 

which provide a system for inter-cell chemical communication.  Learning and memory 

are attributed to chemical changes in these synapses, thought to be mediated by long-term 

potentiation (LTP) and long-term depression (LTD) [2,3].  While LTP describes a long 

enhancement in signal transmission resultant from synchronous stimulation between 

neurons [2], LTD is an activity-dependent reduction in the neuronal synapse efficacy, 

which can last for hours [3].  These mechanisms underlie the ability of synapses to 

change their strength, a phenomenon referred to as synaptic plasticity [4].   

Signal sensitivity is strengthened by increasing the number of neurotransmitter 

receptors on the postsynaptic cell [5].  The mechanisms by which this occurs requires a 

cascade of molecules working together through protein-protein regulatory interactions, 

and cross talk with other signaling pathways [6].  In the case of a glutamatergic synapse, 

neuronal excitation allows cells to communicate by release of glutamate neurotransmitter.  

Receptors on the postsynaptic neuron, such as N-methyl D-aspartate type glutamate 
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receptors (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptors (AMPAR), receive chemical signals by binding neurotransmitters released from 

presynaptic neurons (Figure 1.1). In turn this causes depolarization of the membrane and 

influx of calcium (Ca2+) through NMDA receptors into the dendritic spine, which 

contains the postsynaptic density (PSD), a region where signaling and scaffolding 

molecules are closely packed.  The Ca2+ cation, being extremely potent and highly 

reactive, is arguably the most utilized second messenger in signaling.  Therefore, the 

influx of this molecule into the PSD is tightly regulated to mediate a myriad of diverse 

responses.  In the case of LTP and many other instances, Ca2+ transients are sensed by 

ubiquitous calmodulin (CaM), a Ca2+-dependent protein that binds and activates 

numerous enzymes [7].  Of its targets, calmodulin notably activates the family of Ca2+-

calmodulin dependent protein kinases, including CaMKII.  CaMKII activity is therefore 

tightly coupled with Ca2+ transients, serving to propagate and interpret signals through 

the phosphorylation and assembly of several substrates [8,9,10].   
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Figure 1.1 CaMKII involvement in long term potentiation of glutamatergic synapses.  This figure was 
adapted from Sheng et al., 2007 [11].  Chemical signals traverse synapses between the axonal terminal 
(green) and postsynaptic terminal (blue) by release of glutamate neurotransmitter (red dots) into the 
synapse.  Receptors including AMPAR (gold) and NMDAR (purple) bind glutamate and cause the influx of 
sodium and calcium during depolarization of the membrane.  Increases in calcium in the postsynaptic 
density are sensed by ubiquitous calmodulin (yellow) which activates CaMKII (red clusters) in turn. Once 
active, CaMKII phosphorylates numerous substrates including AMPA and NMDA receptors to modulate 
calcium signaling.   
 

 Phosphorylation is a highly specific modification which incorporates a negatively 

charged phosphate from ATP onto a phospho-accepting amino acid, frequently 

modifying the activity of the substrate protein.  This is the way in which CaMKII is able 

to propagate signaling cascades to modify function of downstream proteins and produce 

biochemical consequences.  The phosphorylation of substrates is an event that is tightly 

regulated as proteins need to be activated and inhibited at appropriate times in 

appropriate places.  Phosphorylation reactions are reversed by phosphatases to induce the 

opposite effect on substrate activity.  Synaptic plasticity requires this buffering of 

phosphorylation and therefore a balance between kinases and phosphatases must be 

maintained for normal cellular function.  This is but one of many cellular and 

biochemical mechanisms in place to regulate the effect of CaMKII activity. 
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Among the proteins which undergo phosphorylation modifications are the NMDA 

and AMPA receptors.  In this manner CaMKII-mediated phosphorylation can serve as a 

positive modulator of receptor function, modifying the very signals which activated the 

enzyme initially.  CaMKII is also one of the critical proteins for the trafficking of 

receptors in and out of the PSD, although the molecular mechanism by which the number 

of neurotransmitter receptors increases is not completely understood [1,12,13].  Through 

trafficking and phosphorylation of neurotransmitter receptors, CaMKII has been shown 

to be critical for regulation of synaptic transmission and integral in complex cognitive 

behavior like learning and memory [1,14,15,16,17,18,19].   

 

CaMKII plays a role in diseases with excitatory synaptic transmission abnormalities 

Much of the current knowledge of the role of CaMKII in these cascades has come 

from studying memory and learning disorders.  For example, alterations in CaMKII 

activity are observed in a mouse model of Angelman Syndrome, a complex mental 

disability characterized by intellectual and developmental delay [20].  Research on the 

disease model showed that behavioral phenotypes of these mice are corrected by knock-

in mutations that compensate for CaMKII hypoactivity [21]. CaMKII activity is also 

misregulated in dopamine-depleted rodent striatum, and the associated Parkinsonian 

symptoms can be corrected by CaMKII inhibition [22,23].  Furthermore, this enzyme 

plays roles in mental health disorders and drug addiction since glutamate signaling 

interfaces with dopamine pathways.  Antidepressants desipramine and reboxetine have 

been shown to up-regulate CaMKII, acting through a complex mechanism suggested to 

affect CaMKII expression and localization [24,25,26].  Additionally the enzyme plays a 
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role in cocaine addiction through reward pathways [27].  Because CaMKII is implicated 

in numerous diseases, it is a promising target for drug development.   

With approximately 40 known substrates [1,28,29,30,31], CaMKII plays pivotal 

roles in several signaling pathways beyond learning and memory.  In one example, 

CaMKII has been implicated to regulate a neuroprotective mechanism associated with 

glaucoma, a disease characterized by the death of retinal ganglion cells (RGCs) 

(reviewed in [32]).  The permanent loss in vision caused in glaucoma has been linked to 

an excessive activation of glutamate receptors, causing high intracellular concentrations 

of calcium [33,34].  Extreme levels of Ca2+ devastate the ionic balance critical for normal 

cellular function and induce neurotoxicity, activate apoptosis, and cause eventual death of 

RGCs [35].  However, cell survival mechanisms induce the production of brain derived 

neurotrophic factor protein (BDNF) which promotes cell survival by inhibiting apoptosis 

[36].  It is the interplay of these signaling cascades which decide cell fate. 

CaMKIIαB contains a nuclear localization sequence which aids in the 

translocation to the nucleus where CaMKII has been shown to be involved in the survival 

response of RGCs [37].  Previously it has been shown that NMDA receptor activation 

stimulates transcription of this particular nuclear form of CaMKII [38] and although the 

mechanism is not entirely clear, it is hypothesized that excessive glutamate signaling 

kindles this pathway.  Indeed, specific knock down of CaMKIIαB by RNAi was shown to 

significantly enhance glutamate induced death of RGCs [37].  In the nucleus CaMKII 

plays a role in Ca2+ mediated transcriptional regulation of genes through phosphorylation 

of transcription factors including CREB (Cyclic AMP-response Element Binding protein) 

[39,40,41,42].  CREB is thought to act as a neuroprotective protein against glutamate 
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receptor induced neurotoxicity by promoting expression of pro-survival genes including 

BDNF [43].   

While nuclear CaMKII has been shown to regulate the expression of BDNF, 

cytoplasmic CaMKII is involved in secretion of BDNF [32].  It has been suggested that 

since CaMKII has been shown to be associated with presynaptic vesicles, it may serve as 

a regulator of neurotransmitter as well as BDNF release [44,45].  In this case, when 

CaMKII becomes activated in the presence of high intracellular Ca2+, it promotes cell 

death by inhibiting the release of BDNF [32].  At low concentrations, BDNF will no 

longer help support the survival of existing neurons nor stimulate the growth and 

differentiation of new neurons [46,47,48,49].  Cytoplasmic CaMKII is additionally linked 

to eventual activation of the apoptotic caspase-3 protein, which promotes the execution 

phase of programmed cellular death [50,51].  Evidence for this destructive pathway 

shows that inhibition of cytoplasmic CaMKII reduces glutamate-induced cell death 

[38,52,53,54].  In these pathways, CaMKII plays a pivotal role in both the cell death and 

survival mechanisms determining the fate of RGCs. Thus specific modulation of CaMKII 

or its nuclear counterpart may be a possible neuroprotective strategy for glaucoma and 

other diseases with glutamate excitotoxicity. 
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Figure 1.2 The role of CaMKII in cell death and survival pathways of retinal ganglion cells. This figure 
adapted from Cooper et al., [32] illustrates CaMKII involvement in cytoplasmic (red arrows) and nuclear 
(green arrows) signaling pathways.  Excessive glutamate activation (red dots) leads to increased levels of 
Ca2+ (green dots) which activate CaMKII (red clusters).  Cytoplasmic CaMKII promotes cellular death by 
downstream activation of the apoptotic caspase-3 protein (grey) as well as the decreased release of cell 
survival neurotrophic factor, BDNF (orange).  In contrast NMDA (purple) activation promotes the 
transcription of nuclear CaMKII which aids in cell survival.  Here CaMKII phosphorylates transcription 
factors like CREB (blue) to increase expression of pro-survival genes inclduing BDNF. 
 

 Although cellular death via glutamate excitotoxicity was first demonstrated in 

retinal neurons [34], a comparable mechanism was subsequently observed in brain 

neurons affected by cerebral ischemia [55,56].  In the case of focal cerebral ischemia 

(stroke), a decreased oxygen supply causes cellular death to explicit regions of the brain 

and also creates a surrounding penumbra where secondary cell loss occurs (for review see 

[57]).  In this case, the ischemic conditions trigger anoxic depolarization of neurons, 

causing massive release of glutamate [58,59,60].  This excitotoxic glutamate signaling 

parallels the pathways observed in glaucoma induced RGC death, where CaMKII 

activation plays a critical role in cell fate.  The toxic effects of excessive glutamate and 
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abnormal CaMKII activity are not just thought to be responsible for neuronal cell death 

after a stroke-related brain injury, but also are critical in the case of some 

neurodegenerative diseases [61,62,63].  

 

CaMKII plays important roles in regulating normal heart function   

For regular electrical activity of the heart, contractile function must be properly 

maintained through Ca2+ cycling. Ca2+-dependent facilitation of Ca2+ channels serves to 

potentiate influx through L-type channels.  This facilitation is a plastic event critical for 

regulation of excitable cells and in the case of cardiac cells, regulates the force and 

frequency of the cardiac contraction [64].  The enzyme modulates Ca2+ influx by 

phosphorylation of the α and/or β subunits of voltage-gated Ca2+ channels [65,66,67].  

The interaction of CaMKII with the carboxy-terminus of the channel Cavα1.2 has been 

shown to be essential for this process of facilitation [68,69] and subsequently is was 

shown that targeting of CaMKII to the channel requires binding to the beta(2a) subunit 

[70]. The protein-protein interaction allows for CaMKII-mediated phosphorylation of 

channel gating and once established, the interaction may persist even after Ca2+ levels 

drop [68].  CaMKII not only regulates Ca2+ levels through the modification of channels, 

but is also integral in the sequestering of free Ca2+ into intracellular stores [71].  In these 

mechanisms, CaMKII is required for the maintenance of Ca2+ homeostasis.  When Ca2+ 

homeostasis is misregulated, myocardial dysfunction may be initiated along with 

electrical instability and arrhythmias [72].  CaMKII is central in regulating homeostatic 

proteins and in the cases of hypertrophy and heart failure, CaMKII activity is upregulated 

or is found to have increased expression [73,74].  Inhibition of this enzyme has been 
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shown to prevent myocardial infarction and restore excitation-contraction coupling 

making it a promising therapeutic strategy for cardiac diseases [75].  Inhibition of 

CaMKII may also be translated to other diseases with excitatory synaptic transmission 

abnormalities. 

 

CaMKII is sensitive to dynamic calcium transients 

Cytosolic Ca2+ concentrations are dynamically regulated by hormonal and 

electrical signals to generate spatially localized intracellular calcium transients. Since 

Ca2+ influx generates specific but diverse physiological responses and misregulation is 

often detrimental to cellular function, it is essential that cells have mechanisms in place to 

regulate levels of intracellular Ca2+.  Ca2+ signals are therefore transient, having varied 

concentrations, gradients, and localization in the cell depending on the specific cellular 

events.  This gives rise to signaling microdomains such as neuronal postsynaptic spines 

and presynaptic termini which can have concentrations that differ from the main cell 

body [76,77].  Ca2+ transients last from milliseconds to minutes but prolonged elevations, 

such as in the case of excitotoxicity, can promote cell death.  The differences in 

amplitude, frequency, and location encode which signals will be turned on and where 

[76].  Concentrations of free intracellular Ca2+ range from 10-50 nM in the resting basal 

state to 10 µM in a stimulated state [6,76,78].  Since concentrations of Ca2+ are 

millimolar in the extracellular space and in organelles, the cell uses mechanisms 

employing ligand and voltage-gated ion channels, Ca2+ pumps, and exchangers to 

carefully regulate Ca2+ levels spatially and temporally [6].  While these proteins regulate 

the influx of Ca2+, the cell also utilizes cytosolic proteins to bind Ca2+ and reduce its 
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effective concentration.  Some are buffers which bind with low affinity to limit the Ca2+ 

diffusion while others bind with high affinity to produce biochemical changes and 

physiological responses [6].  In order to terminate signals, there are several mechanisms 

for removal of cytosolic Ca2+.  Plasma membrane Ca2+-ATPases (PMCA) powered by 

ATP hydrolysis pump Ca2+ out of the cell [79], and intracellular Ca2+ is replenished by 

Sarco-Endoplasmic Reticulum Ca2+-ATPase (SERCA) activity [80].  In this way, Ca2+ 

signaling does not serve as an all or nothing switch, but rather undergoes a complex and 

sophisticated allocation mechanism.  Since CaMKII responds to Ca2+ influx, regulation 

of Ca2+ signaling is central to the mechanism in which CaMKII activity is controlled.   

 

CaMKII isoform diversity 

CaMKII or CaMKII-like proteins are found in numerous living organisms and are 

highly conserved across species, especially in mammals.  For example, the coding region 

of rat CaMKIIα mRNA is 93% identical to the human sequence and their translated 

protein products are identical in amino acid composition. CaMKII proteins of lower 

organisms like Drosophila melanogaster and Caenorhabditis elegans, also play a pivotal 

roles in behavior and cognitive function like in the case of mammals.  In  Drosophila 

melanogaster, inhibition of CaMKII was shown to disrupt learning of courtship behavior 

and acoustic priming [81,82] and also altered short-term plasticity in synaptic 

transmission of the insects [83].  In Caenorhabditis elegans CaMKII has been shown to 

regulate transport and recruiting of GLUR-1 receptors to postsynaptic structures [84], 

implicating its role in synaptic activity.  Additionally, a gain-of-function CaMKII 

mutation was able to reduce locomotor activity and alter muscle excitation properties 
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[85].  These behavioral phenotypes associated with misregulation of CaMKII suggest 

higher and lower organisms may have similar CaMKII mechanisms.  The conservation of 

the sequence and function over an impressive range of species illustrates the importance 

of this enzyme. 

CaMKII function is attributed to a family of isoforms derived from four 

alternatively spliced genes referred to as alpha [86,87,88,89], beta [90,91,92,93,94,95], 

gamma [96,97,98,99,100,101], and delta [73,99,102,103].  The gamma and delta 

isoforms are expressed in most tissues and are the abundant isoforms implicated in 

cardiac function.  In contrast alpha and beta are most prominent in neuronal tissue and 

make up to 2% of total protein in the hippocampus [6].  While CaMKII isoforms are 

predominantly cytosolic, some alternative splice variants of alpha, delta, and gamma 

contain a nuclear localization sequence which aids translocation to the nucleus where 

CaMKII likely plays a role in Ca2+-mediated gene transcription [16,88,104,105,106].  

The translated protein products for all isoforms contain three functionally distinct 

domains (catalytic, regulatory, and association) with the exception of one unique splice 

variant which lacks the catalytic domain, αKAP [89].  There are four variable regions 

within the gene that are alternatively spliced to make up 30 mammalian isoforms.  Figure 

1.3, recreated from a review written by Hudmon and Schulman [28], illustrates the 

diversity of isoforms and lists their linear structures as annotated by Tombes and Krystal 

[101].   
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Figure 1.3 Diversity of CaMKII isoforms (adapted from [99]).  Mammalian CaMKII consists of three 
domains; catalytic (blue), regulatory (red) and the most C-terminal association domain (green) which is 
connected through a linker region (white).  The core of all isoforms and splice variants contains segment A, 
consisting of the catalytic and regulatory domains, B, conserved linker region, and C and D, constituting 
the association domain except for αKAP which does not contain the catalytic domain.  Inserts, labeled by 
Roman numerals I-XI, are incorporated at variable positions V1-V4.  The asterisk denotes a single amino 
acid deletion resulting from an alteration in the splicing junction.  The linear sequence of all the variants is 
denoted according to isoform (bottom). 
 

The core sequence includes the catalytic and regulatory domains (A), a stretch of linker 

region which connects regulatory and association domains (B), and two regions of the 

association domain that are highly conserved (C and D).  Between core regions, 

alternative splicing takes place in the variable segments which are implicated in SR-

membrane targeting (V1), nuclear localization (V2), SH3-binding (V3), or unknown 

function (V4).  Although all isoforms except αKAP have conserved sequence and 

capacity to function as a Ca2+/CaM-dependent kinase, these variations introduce slight 
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yet unique differences.  For example studies showed that sensitivity to Ca2+ oscillations is 

dependent on alternative splicing of the linker region, different splice variants having 

variable CaM activation constants and rates of autophosphorylation [107].   

The catalytic domain of CaMKII is responsible for catalyzing the phosphorylation 

reaction, the transfer of the γ-phosphate of ATP to the hydroxyl group of a serine or 

threonine in a substrate protein.  The function of all Ser/Thr kinases is to catalyze this 

same reaction and therefore the CaMKII catalytic domain has a similar structural scaffold 

to other kinases (Figure 1.4A). Although substrates must also enter the catalytic cleft, 

other portions of the catalytic domain are often necessary to help anchor specific 

substrates.   
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Figure 1.4 CaMKII domains and autoregulatory features.  A) An illustration of an atomic resolution crystal 
structure of human CaMKIIδ [108] exhibits classic kinase architecture with catalytic N- and C-lobes (blue), 
between which lies the catalytic cleft where ATP binds.  B) The regulatory domain contains at least three 
autophorylation sites, Thr286, Thr305 and Thr306 (highlighted in green), a Thr286 substrate sequence 
(purple), and a calmodulin binding segment (orange). Also highlighted are the R1-R3 classifications that 
were annotated previously to designate structurally relevant portions of the regulatory domain [109]. 
 

Catalytic activity is highly controlled by the adjacent regulatory domain through 

Ca2+/CaM binding (Figure 1.4B, orange) and autophosphorylation of several residues 

(Figure1.4A, green). These autophosphorylation sites include Thr286, which endows the 

enzyme with constitutive activity when phosphorylated, and sites Thr305 and Thr306 

which prevent CaM binding.  In addition, this domain contains a “substrate” sequence 

containing site Thr286 (Figure 1.4B, purple) which is sequestered to the catalytic domain 

under inhibited conditions and is thought to prevent substrate binding [110,111].  Unique 

among protein kinases, CaMKII assembles into a dodecameric holoenzyme via the C-

terminal association domain [112,113,114]. CaMKII is the only oligomer of the 
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calcium/calmodulin dependent kinase family and its subunit composition can contain a 

heterogeneous mixture of isoforms (reviewed in [1,6,28]) although holoenzymes made of 

only α subunits have also been identified [115].  The sensitivity of CaMKII to CaM 

activation is dependent on its subunit composition which is stochastically determined by 

the relative abundance of each isoform [116].  Mixed populations of holoenzymes have 

been purified from rat forebrain with varying α:β ratios, the most active of which was 

protein containing a 3:1 ratio [117,118,119].  Isoforms comprised of other ratios only 

contributed an estimated 5-10% of activity [119].  The variable activities of heterozygous 

holoenzymes illustrate that there are consequences of isoform composition which may 

contribute to differential tuning to Ca2+ signals.  Assembly of different isoforms into the 

same molecule produces composite holoenzymes that may display a combination of 

individual properties, like sensitivity to Ca2+.  Isoforms differ in their response to Ca2+ 

suggesting each isoform has evolved to encode oscillations in subtly different ways 

[107].   

 

CaMKII exists in several discrete intermediates each with their own level of activity 

 
CaMKII responds to changes in the amplitude and frequency of calcium transients 

by undergoing a controlled transition from an autoinhibited basal intermediate to an 

autonomously active phosphorylated intermediate [120]. The activity of each 

intermediate is dependent on intricate interdomain interactions where binding and 

phosphorylation of specific residues communicate instructions for both inhibition and 

activation (for review see [28]).   CaMKII can become constitutively active independent 

of Ca2+ concentration [121], but can also exist in an inactive state which is unable to bind 
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Ca2+/CaM, thereby preventing activation [122,123].  Figure 1.5 depicts a hypothetical 

biochemical activation pathway, predicting six discrete, stable intermediates that make up 

a cycle of activation.  One subunit, taken out of the context of the holoenzyme is depicted 

for simplicity.  In a short overview of this pathway, the basal, apo state (A) is held 

inactive by an autoinhibitory interaction between catalytic (blue) and regulatory (red) 

domains.  CaM (yellow) binding to the regulatory domain disrupts this interaction to 

activate the enzyme (B).  Once bound to CaM, CaMKII can undergo an 

autophosphorylation reaction at Thr286 (C) which causes the enzyme to retain activity 

even in the absence of CaM (D).  Autophosphorylation reactions at Thr305 and Thr306 

prevent CaM binding making the activity of CaMKII independent of Ca2+/CaM (E).  

Thr286 must be dephosphorylated before autoinhibition can reinstate (F) and Thr305 and 

Thr306 must be dephosphorylated (A) before reactivation by CaM is possible.  This 

proposed mechanism leads to four active (B-E) and two inactive intermediates (A and F). 
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Figure 1.5 Biochemical intermediates of CaMKII activation (adapted from [124]). A) Apo CaMKII is 
expected to employ an autoinhibitory interaction between catalytic (blue) and regulatory (red) domains. B) 
The enzyme becomes active upon CaM (yellow) binding and C) subsequently undergoes an 
autophosphorylation reaction at Thr286.  D) Thr286 retains activity in the absence of CaM and E) becomes 
Ca2+ independent upon Thr305 and Thr306 autophosphorylation.  F) Dephosphorylation is required for the 
reinstatement of autoinhibition. 
 

This general hypothesis for activation of CaMKII is a compilation of a wealth of 

biochemical predictions that are described in more detail in the following sections. 

Many interactions occur between the catalytic and regulatory domains.  The 

inactive enzyme is predicted to employ an autoinhibition mechanism where its regulatory 

domain binds the catalytic domain to block activity (Figure1.5A).  This interaction 

ensures that during resting Ca2+ concentrations, the kinase activity is 100-1000 fold lower 

than under maximum Ca2+ stimulation [125].  Regulatory domain deletion results in a 

constitutively active kinase suggesting that removal of the regulatory domain exposes the 

substrate-binding site and generates a conformation permissive for ATP binding and 

phosphate transfer [126,127,128,129,130,131].  CaMKII is therefore hypothesized to be 

intrinsically active, but substrate binding is blocked during autoinhibition.  Additional 
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supporting evidence reports that regulatory domain peptides are able to compete not only 

with substrates, but with ATP binding as well [110,111,132]. This model is compatible 

with structures of inactive conformations of CaMKII homologs, which show regulatory 

domains bound to substrate-binding sites as well as ATP-binding domains [133,134].  

The Ca2+/CaM-binding event required for activation is predicted to abolish autoinhibition 

sterically by separating the regulatory domain from the catalytic domain (Figure 1.5B).  

The regulatory domain is consequently thought to contain a flexible region which allows 

it to disengage from the catalytic domain to accommodate Ca2+/CaM binding.  Ca2+/CaM 

activation is thought to release autoinhibition, exposing the active site [135,136].  

Subsequent to Ca2+/CaM binding, CaMKII undergoes a rapid autophosphorylation at site 

Thr286 which confers autonomous activity [137] (Figure1.5C).  Thr286 is burried in a 

hydrophobic pocket in inactive CaMKII, and presumably becomes exposed upon CaM 

activation [138].   Autophosphorylation of Thr286 is not required for kinase activity 

[139,140], but endows the enzyme with a unique mechanism to retain activity when Ca2+ 

levels drop and Ca2+/CaM dissociates. 

 

Autophosphorylation allows for CaM trapping 

CaM consists of two sets of EF hand motifs, referred to as lobes, which can bind 

four Ca2+ ions and are connected by a flexible linker [141].  This promiscuous protein 

shows considerable conformational plasticity when interacting with its many target 

proteins [142].  This property helps select for binding partners and also allows for the 

possibility of interacting with a single protein substrate in multiple ways.  Such is the 

case for CaMKII. When bound to CaMKII, Ca2+/CaM has been shown to exist in at least 
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two conformations with interlobe distances of 40 and 26 Å  [143], with the shorter 

distance presumably corresponding to a more compact state.  Because incubation with 

ATP facilitates the assumption of the compact state [143], these data are thought to 

correlate to the well established CaM trapping phenomenon, were CaMKII-bound 

Ca2+/CaM adopts a low affinity conformation when initially bound and a high affinity 

“trapped” conformation when Thr286 is autophosphorylated 

[143,144,145,146,147,148,149,150,151].  Autophosphorylation at Thr286 has been 

shown to cause a 20- to more than 1000-fold decrease in the dissociation rate of CaM 

depending on Ca2+ concentration [143,147,150,151].  Interestingly, the change in binding 

equilibrium was shown to be almost exclusively due to changes in the off rate [151].   

The trapping phenomenon has been characterized using a peptide model system. 

Peptides representing varying lengths of the CaM binding region of the CaMKII 

regulatory domain were created and the CaM-binding affinities were measured.  

Regulatory domain peptides consisting of residues 291-312 bind CaM 2500 fold more 

potently than peptides consisting of residues 296-312 indicating the N-terminal residues 

of the peptide contribute significantly to CaM binding [150].  Correspondingly, the 

differences in affinities for the shorter and longer peptides compare to the affinities 

observed for unphosphorylated and Thr286-phosphorylated CaMKII respectively 

[143,146].  The difference in affinities of peptides was contributed mainly to binding 

enthalpies including hydrogen bond and van der Waals interactions while entropy 

contributions were not significant [150].  In other studies, residues 293-295 were shown 

to be necessary but insufficient for high affinity CaM binding, indicating that these 

residues promote CaM interaction with residues 296-298 [151].  It is suggested that 293-
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295 facilitate 296-298 binding because electrostatic interactions of 296-298 are not fully 

established with the 296-312 peptide [151].  Figure 1.4B depicts the regulatory domain 

sequence of the CaM binding region (residues 295-310, orange box) and trapping region 

(residues 291-294, dotted orange box) as defined by these and other studies.  Overall, 

these studies suggest that the interaction of trapping residues (291-294) with CaM may 

contribute little to binding directly, but the presence of these residues may indirectly 

facilitate high affinity CaM binding to neighboring residues 295-312.   

This hypothesis was investigated by many groups who completed mutagenesis 

studies to determine the role of CaM trapping residues.  The region was characterized by 

measuring CaM dissociation rates under the conditions of charge elimination or reversal.  

For example, phosphorylated kinase with F293A mutation was shown to have a faster 

CaM dissociation rate than phosphorylated kinase with native Phe293 under conditions of 

either high or low Ca2+, implicating the residue in high affinity trapping.  Furthermore, 

the mutation does not significantly change rates for unphosphorylated CaMKII indicating 

that it is relatively unimportant in the case of low affinity binding [147].  These studies 

also showed that a N294A mutation results in deficient trapping confirming these sites 

are necessary for high affinity binding [147].  Results from other groups who also 

measured dissociation rates indicate CaM interactions with Phe293 and Asn294 are weak 

or absent without Thr286 phosphorylation, but strengthen upon phosphorylation of 

Thr286 [144,149].  Additionally Asn294 was shown to be disordered in the CaM-bound 

peptide structure indicating that it does not make direct contacts with CaM [152].  Other 

studies showed that a peptide comprised of residues 294-312 has a 40-fold higher affinity 

for CaM than a peptide of 296-312 [151], and a peptide of residues 293-312 has a 100-
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fold greater affinity for CaM than 296-312 [151].  Overall, these studies serve to confirm 

that residues 291-294 promote CaM trapping. 

These biochemical studies led the way for investigation of CaM structure, which 

was expected to adopt different conformations when bound to CaMKII with and without 

Thr286 phosphorylation.  In complex with unphosphoryated CaMKII, two CaM interlobe 

distances were observed at 44 and 26 Å [143].  With Thr286 phosphorylation or in 

complex with 294-309 there was one distance of 22 Å [143]. These studies indicate that 

CaM may adopt a “semicompact” conformation upon CaMKII binding, and a “fully 

compact” conformation upon autophosphorylation of Thr286.  Both lobes of CaM were 

found to be engaged in both conformations, but the compact conformation made critical 

contacts with 291-294 which are believed to be readily available for binding interactions 

only when Thr286 is phosphorylated [150].  Interestingly, ATP binding to CaMKII 

induces a conformational change in CaMKII-bound CaM facilitating the more compact 

conformation [143].   

These studies beg the question, what is the regulatory advantage of trapping?  

Since Thr286 phosphorylation imparts autonomous activity, why is there a mechanism in 

place to sequester the CaM molecule that is no longer needed to sustain activity?  One 

theory suggests that trapping impacts the free Ca2+ concentration, as high affinity binding 

of Ca2+/CaM keeps Ca2+ sequestered from the cytosol. CaMKII binding decreases the rate 

of Ca2+ dissociation from CaM and autophosphorylation of Thr286 causes a further 

decrease [9].   
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CaMKII activity in the absence of CaM 

Autophosphorylated CaMKII will have a high affinity for CaM, but when Ca2+ 

becomes depleted, CaM will dissociate (Figure 1.5D).  Although Ca2+ levels are transient, 

autophosphorylation at Thr286 eliminates the requirement of Ca2+/CaM binding 

[121,153] and allows for Ca2+-independent activity which is 30-60% that of CaM-bound 

CaMKII thereby promoting prolonged kinase activity [76].  Thr286 phosphorylation is 

predicted to prevent the reinstatement of autoinhibition in the absence of Ca2+/CaM via 

charge repulsion.  The phosphorylated CaMKII then maintains exposure of substrate and 

ATP binding sites without the steric constraints imposed by Ca2+/CaM.  Through 

autonomous activity CaMKII retains a conformational memory of prior activation.  

In contrast, autophosphorylation at Thr305 or Thr306 abrogates CaM-binding and 

generates a Ca2+-desensitized form of the kinase [122,123].  Phosphorylation at 

Thr305/Thr306 occurs in the CaM binding portion of the regulatory domain and serves to 

prevent CaM binding interactions presumably through addition of negative charges, 

although whether or not the additional bulk of the phosphate group plays a part has not 

been determined.  Thr305/Thr306 phosphorylation can occur in protein already modified 

at Thr286, or in unphosphorylated protein, resulting in two Ca2+-desensitized conformers.  

In the case of Thr286 phosphorylated autonomously active protein, phosphorylation of 

Thr305/Thr306 produces an intermediate which retains its activity.  In this sense, the 

protein is truly Ca2+ independent because it was activated in the presence of Ca2+ and 

retains activity despite not being able to bind CaM (Figure 1.5E).  However, 

phosphorylation at Thr305/Thr306 does not require prior CaM activation.  CaMKII has 

been shown to undergo basal phosphorylation at low Ca2+ concentrations (Figure 1.5F). 
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In this circumstance, the protein is held inactive due to lack of Thr286 phosphorylation 

and prevention of CaM association.  This particular intermediate must undergo 

dephosphorylation at Thr305/Thr306 by phosphatases before CaM activation can occur.  

CaMKII is thought to be dephosphorylated by protein phosphatase-1 (PP1) and protein 

phosphatases 2A (PP2A) [154].  Overall, this wealth of biochemical research indicates 

that there are at least six intermediates which are controlled by regulatory interactions 

with the catalytic domain and phosphorylation reactions.  The maintenance and balance 

of activating and inactivating factors illustrates another level of the intricacies of CaMKII 

regulation. 

 

Kinetic advantages of holoenzyme structure 

The self-regulating abilities of CaMKII become even more intricate when 

considering that twelve functional domains oligomerize to form a dodecameric 

holoenzyme [112,113,114,155,156].  When truncated from the association domain and 

supramolecular holoenzyme structure, a polypeptide consisting of catalytic and 

regulatory domains can be activated and interact with protein substrates independently.  

If monomer units do function individually as kinases, why then is the highly conserved 

multimeric structure exploited by evolution? There are several theories as well as more 

substantial lines of evidence that suggest the holoenzyme structure provides key kinetic 

advantages, introducing a level of regulatory complexity which makes this protein more 

than the sum of its parts.   

CaMKII can propagate even rapid calcium signals, on the order of 100 ns, due to 

its oligomeric assembly.  The kinase subunits are concentrated to an unusual extent in the 
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holoenzyme (estimated at 3 mM [138]), facilitating cooperative Ca2+/CaM binding 

[112,138,147] and the activity-dependent intersubunit autophosphorylation at Thr286 

[157].  This raises the conceptual questions about how intersubunit interactions occur and 

how autonomous activity is controlled.  It has been shown that CaMKII has the ability to 

escape calcium dependence at high Ca2+ frequencies [120] and the Thr286 

autophosphorylation reaction required for this autonomous activity is an intersubunit 

interaction between adjacent kinase domains in the holoenzyme [157].  The clustering of 

functional domains provides a favorable arrangement for autophosphorylation because 

kinases “finding” each other is not diffusion limited.  This is an ideal scenario for quick 

responses.  The Thr286 phosphorylation reaction requires both the “phosphorylating” 

kinase and the “substrate” kinase to be bound to Ca2+/CaM simultaneously.  CaM binding 

has also been observed to be cooperative indicating that binding of one Ca2+/CaM 

molecule facilitates subsequent binding of other Ca2+/CaM molecules.  The explanation 

of how this occurs is a subject of controversy as conflicting models have been proposed 

from varying Hill coefficients and crystal structures.  Initially, CaM binding was thought 

to be non-cooperative, with stochastic, but uncorrelated CaM binding associated with 

increases in intracellular calcium concentration [158].  Since adjacent kinase domains 

must bind CaM independently for Thr286 phosphorylation to occur in this model, the 

non-cooperativity of binding induces a delay in onset of autonomous activation and 

provides an explanation of how acquisition of calcium independence is linked to the 

frequency of signaling.  However, others have found CaM binding to be cooperative with 

apparent Hill coefficients ranging from ~2 [112,138] up to 4.3 [109] depending on the 

variant used.  In order for the holoenzyme to be sensitive to frequency and not just 
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amplitude of calcium signals, there must be an explanation as to how uncontrolled 

Thr286 phosphorylation is prevented in this model.  This is currently an unresolved 

question. 

Stoichiometric Ca2+/CaM binding produces maximal CaMKII activity, and the 

amount of substrate phosphorylation is directly dependent on the degree of this binding 

[30]. This illustrates the initial independent activity of individual subunits governed by 

the strength of the Ca2+ signal.  However, the trans-autophosphorylation of CaMKII was 

found to be frequency dependent, where the resultant autonomous activity was sensitive 

to the frequency spikes [120].  For this investigation, CaMKII was immobilized on 

plastic tubing in vitro and subjected to various Ca2+ pulse frequencies by a computerized 

valve assembly.  Autonomous activity was found to be sensitive to frequency, amplitude, 

and duration of the Ca2+ pulses, which varied among isoforms.  It has been demonstrated 

in vitro that CaMKII responds not just to the strength of the Ca2+ activation signal, but 

also to its frequency.  When CaMKII is stimulated by short Ca2+ pulses of 80 ms, it 

requires higher frequency oscillations of 10 Hz to achieve an increase in the Ca2+-

independent activity associated with Thr286 phosphorylation.  To achieve the same level 

of autonomous activity with lower stimulation frequencies of 0.8 Hz, Ca2+ pulses of 

longer than 1000 ms are required [120].  This raises the question of how frequency is 

decoded by this structure.   

Since autonomous activity does not occur every time a Ca2+ spike is detected, the 

molecule must have a mechanism in place to retain sensitivity.  The prevailing 

mechanism predicts that at high frequency, the interval between Ca2+ pulses may be too 

short to allow full dissociation of CaM. This effectively increases the likelihood of CaM 



27 

binding to adjacent subunits to stimulate Thr286 phosphorylation and CaM trapping.  

CaM trapping then further potentiates the signal by ensuring that CaM will remain 

associated with CaMKII during future pulses.  In contrast, between low frequency Ca2+ 

pulses, there may be insufficient time for the autophosphorylation reaction to occur 

before CaM dissociates.  This would prevent autonomous activity and allow for 

deactivation of the kinase.  In this manner, CaMKII responds not just to the amplitude of 

the activation signal, but also to its frequency.  Ca2+-independent activity allows CaMKII 

to function as a calcium detector and to grade is catalytic activity based on the frequency 

or duration of calcium exposure. 

 

The holoenzyme structure allows for structural scaffolding 

The structure of CaMKII not only serves to decode Ca2+ frequency, it also serves 

to target the kinase to regulatory proteins involved in Ca2+ homeostasis to maintain 

signaling fidelity.  CaMKII has been shown to bind several proteins localized in diverse 

subcellular compartments and there, interactions may require its association domain 

[29,159].  The interactions of these diverse proteins can be non-competitive indicating 

that CaMKII can interact with multiple proteins simultaneously.  This raises the 

likelihood that the multimeric CaMKII may nucleate formation of protein complexes or 

may act as a structural scaffold to maintain close proximity of binding partners.  Protein-

protein complexes can serve to amplify enzyme activity by creating spatial organization 

in specific location of the cell such as the PSD, and information can be relayed from one 

cellular location to another by assembly or disassembly of protein complexes (for review 

see [160]).  For example protein-protein interactions with CaMKII have been shown to be 
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dynamically regulated by the state of activation.  Thr286 phosphorylation positively 

modulates association with the PSD while Thr305/Thr306 phosphorylation acts as a 

negative regulator [18,20,161].   

CaMKII interaction with the NMDA receptor is thought to mediate its co-

localization to the PSD.  CaMKII has been found to phosphorylate NMDA receptors and 

has also been observed to co-localize with NMDA receptor subunits NR2A and NR2B 

[162,163,164,165,166]. Co-localization is controlled by a variety of physiological 

conditions that promote Thr286 phosphorylation which stabilizes its interaction with 

NMDA receptor subunits.  CaMKII can make simultaneous interactions with multiple 

subunits of the NMDA receptor as well as secondary interactions with other proteins, the 

assembly of which may play an important role in signaling.  Several proteins have been 

shown to interact with CaMKII, the most abundant of which may be the postsynaptic 

density-enriched protein  interaction with the Thr286 phosphorylated kinase [167] later 

identified as the NR2B subunit [154,164].  A complex of PSD95, CaMKII, and NR2A 

were found to co-purify suggesting a scaffolding role for CaMKII [168]. Some 

interactions with binding partners also serve to modulate the activity of CaMKII.  For 

example NR2B has been shown to trap the autonomous form of CaMKII [169], 

potentially keeping the kinase localized at the PSD  when Ca2+ levels are low.   

Additionally CaMKII has been shown to dynamically interact with cytoskeletal 

proteins, the most crucial for protein organization.  CaMKII binds actin filaments and 

interestingly Ca2+/CaM promotes their dissociation [170].  Binding is tuned by isoform 

composition.  For example CaMKIIβ, but not α, interacts with F-actin [171].  However 

heterozygous holoenzymes containing both α and β subunits are able to interact, allowing 
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CaMKIIα subunits to associate with F-actin through the β subunits of the holoenzyme.  

CaMKII also interacts with α-actinin, an actin-binding protein, and was found to form a 

ternary complex consisting of CaMKII, α-actinin, and densin-180 [159,172]. Densin-180 

is believed to be involved in the formation of complex protein networks that maintain the 

architecture of cells by mediating specific adhesion between presynaptic and postsynaptic 

membranes at glutamatergic synapses [173].  These data suggest CaMKII has a 

regulatory role in a number of essential cellular functions associated with actin filaments.  

CaMKII also associates with cytoskeletal microtubules [174] and phosphorylation of 

MAP2 by CaMKII blocks its actin filament bundling activity [175].  The mechanisms of 

these proteins and their association with CaMKII suggest a role of CaMKII holoenzyme 

structure in maintaining the proper functions of intracellular transport and structural 

scaffolding. 

These multiple and coincident binding partners function to provide stable anchors 

for CaMKII as well as promote formation of relevant protein complexes.  The formation 

of protein assemblies is critical for the spatial and temporal organization of molecules 

within the cell, coordinating a high fidelity intracellular information transfer.  Since 

CaMKII can be localized in different subcellular compartments, it may offer a flexible 

strategy for regulating, signaling, and achieving new responses from preexisting signaling 

components. These mechanisms, which are likely facilitated by CaMKII’s oligomeric 

assembly, would allow protein relocalization and bringing together of the components 

needed to direct the flow of information, mediate complex signaling behaviors, and 

permit signal branching to other pathways. 

 



30 

CaMKII holoenzyme structure: form equals function 

Currently there are several low resolution structures of the holoenzyme 

[112,155,156], but no atomic resolution structure was available during the studies 

presented in this document.  However, very recently an atomic resolution structure 

became available [176] and will be discussed in Chapter 6, which details future directions 

for CaMKII studies.  The 3D holoenzyme structure resolved from single particle images 

using transmission electron microscopy showed that domains come together in a 

dodecameric formation consisting of two stacked hexameric rings [155].  The central 

core of the rat CaMKIIα molecule is composed of association domains resembling a gear 

shape while the kinase domains make up foot-like appendages which connect by narrow 

density to the core.  The kinase protuberances extend outward peripherally above and 

below the plane of the core in a radial fashion (Figure 1.6A).   The structure has 6 × 2 × 2 

fold symmetry with six-fold radial symmetry from the “top” view looking down on the 

rings and the two two-fold symmetries evident from the “side” views.  All four isoforms 

of CaMKII have been visualized at 21-25 Å resolution, and there are no apparent isoform 

differences in the ultrastructure of the holoenzyme [112].  
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Figure 1.6 Oligomeric assembly of CaMKII.  A) A three dimensional reconstruction of CaMKII 
holoenzyme shows a central gear shaped core consisting of association domains with surrounding kinase 
domains extending outward in foot-like appendages [155].  The oligomer is in a dodecameric assembly of 
two stacked hexameric rings featuring 2×6×6 fold symmetry. B) A crystal structure of the association 
domain lacking catalytic and regulatory domains illustrates a high resolution view of the core assembly 
(PDB 2UXO).  Hexameric rings are shown in green and yellow from “top” and “side” views in the left and 
right panels respectively. 

Interestingly, the holoenzyme has also been described with small angle X-ray scattering 

(SAXS) analysis to reveal quite a different holoenzyme model [138].  The model predicts 

the same central core of association domains with the same symmetry; however the 

kinase domains are arrayed out in parallel fashion in the same plane as the core.  The 

assembly creates an outer ring of kinase domains, which alternate every other domain 

from the same hexameric ring. This produces a flat disk shaped holoenzyme with a height 

of approximately 50 Å in contrast to the 200 Å observed in electron microscopy (EM).  

In light of this discrepancy, the authors hypothesized that the disk conformation may be 
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representative of the autoinhibited kinase while the extended conformation could exist 

under activated conditions [138].  When Ca2+/CaM was added to the kinase, SAXS 

analysis revealed a radius of gyration increase compatible with the EM structures.  While 

this model is plausible, it does not account for the fact that the kinases observed in EM 

were not activated by CaM in vitro.  If the model is correct, CaMKII must undergo 

dramatic changes in conformation to account for a ~150 Å increase in height.  We can 

only speculate on how the consequences of this remarkable conformational change would 

impact cooperative activation, protein-protein interactions, and sensing of Ca2+ 

frequency. 

The association domain core lacking catalytic and regulatory domains has been 

visualized by several atomic resolution structures of CaMKII variants as listed in Table 

1.1.  

PDB File Description  Domains  Residues Publication 

2BDW C. elegans CaMKII  Catayltic/Reg  1-318 Rosenberg et al., 2005 [138] 

3KK8 C. elegans CaMKII  Catalytic/Reg  1-284 Chao et al., 2010 [109] 

3KK9 C. elegans CaMKII  Catalytic/Reg  1-282 Chao et al., 2010 [109] 

2VZ6 Human CaMKIIα  Catalytic/Reg  13-302 Rellos et al.,2010 [108] 

3BHH Human CaMKIIβ  Catalytic/Reg  11-303 Rellos et al.,2010 [108] 

2V7O Human CaMKIIγ  Catalytic/Reg  1-315 Rellos et al.,2010 [108] 

2VN9 Human CaMKIIδ  Catalytic/Reg  1-301 Rellos et al.,2010 [108] 

2WEL CaM bound human CaMKIIδ  Catalytic/Reg  1-327 Rellos et al.,2010 [108] 

3KL8 C. elegans CaMKII + CaMKIINtide  Catalytic  1-269 Chao et al., 2010 [109] 

1HKX Mouse CaMKIIα Association  336-478 Hoelz et al., 2003 [113] 

2F86 C. elegans CaMKII  Association  340-472 Rosenberg et al., 2006 [114] 

2UX0 Human CaMKIIγ Association  387-527 Pending publication 

2W2C Human CaMKIIδ Association  334-475 Pending publication  

3SOA Human CaMKIIβ All 7-444 Chao et al., 2011 [176] 

 

Table 1.1 Atomic resolution structures of CaMKII variants 
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Although in one structure, the protein crystallized as a tetradecamer [113], the authors 

subsequently determined the assembly is dodecameric when kinase domains are present 

[114]. Thefore, the atomic resolution data is consistent with the dodecameric assembly 

postulated from low resolution EM reconstructions [113,114].  The interfaces between 

protomers of the same ring as well as the interface between the two rings are largely 

characterized by hydrophobic interactions.  The rings are stacked in a symmetric fashion 

such that there is no stagger in the orientation of the two rings (Figure 1.6B).  The 

residues located at the two interfaces are highly conserved with only minor amino acid 

substitutions between isoforms indicating the interfaces are similar.   

Although the association domain is 15 kDa in size, assembly into the twelve 

subunit holoenzyme only requires short sequences on either end of the domain.  

Investigation of assembly by deletion mutants determined that residues 344-350 from the 

N-terminal region of the association domain as well as residues 350-478 from the C-

terminus are necessary for multimerization [162].  Interestingly, the residues required for 

oligomerization are also isoform dependent suggesting subtle variation in assembly 

contacts.  The minimum region for assembly of α homomers was found to differ from β 

homomers as well as mixed α/β heteromers [177]. 

 

Structure of the catalytic domain 

CaMKII catalytic domain adopts a similar fold to other kinases, which contain a 

highly conserved core of approximately 300 amino acids [178,179,180].  The general 

fold for kinases was first established for cAMP-dependent protein kinase [181,182] and 

CaM-dependent kinases have similar bilobate architecture with the active site located in 
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the cleft between the two lobes [108,109,134,138,176] (Figure 1.4 illustrates CaMKIIδ 

catalytic and regulatory domains [108]).  ATP binds to the smaller N-lobe which consists 

primarily of antiparallel β-sheets while the C-lobe is mainly α-helical and contains 

residues implicated in substrate recognition.  Previously Goldberg et al. compared the 

structure of autoinhibited CaMKI with that of a cAPK/ATP/inhibitor complex and found  

differences in the orientation of catalytic lobes [134].  While the “active” 

cAPK/ATP/inhibitor complex was found to be in a “closed” conformation, the catalytic 

lobes of the autoinhibited CaMKI structure were rotated toward an “open” conformation, 

with an 18° separation relavitve to the “active” complex.  Similarily, “open” 

conformations were observed in other low activity or inactive kinases including MAP 

kinase ERK2 [183], the insulin receptor tyrosine kinase [184], twitchin kinase [133], and 

nucleotide-free cAPK [185].  These were the first structural inferences that catalytic lobes 

rotate toward “closed” conformations upon activation of kinases and the inactive “open” 

conformation may be stabilized by regulatory domain interactions with the N-lobe [134]. 

 

Structures of monomeric CaMKII lacking the association domain 

Crystal structures of monomeric CaMKII, consisting of the kinase and regulatory 

domains and lacking the association domain, have led to conflicting models of 

autoinhibition. In an inactive C. elegans CaMKII structure (PDB 2BDW), the regulatory 

domains from two subunits form an antiparallel coiled coil [138] (Figure 1.7A). Although 

it partially blocks the substrate binding site, the regulatory domain does not contact the 

ATP-binding lobe as postulated from biochemical data 

[110,111,126,127,128,129,130,131,132,135,186,187,188] and from structures of the 
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homologous and monomeric CaMKI (PDB 1A06) [134]. This structure would suggest a 

unique mode of activation seemingly inconsistent with previous biochemical data.  It is 

noted that a plausible model was proposed based on the crystal structure of CaMKII for 

the mechanism of resting state inhibition [138].  The authors present a novel hypothesis 

explaining how autoinhibition occurs with an unobstructed nucleotide-binding pocket.  

The positioning of the regulatory helix is predicted to anchor Glu96, a residue thought to 

participate in ATP coordination, away from the nucleotide-binding pocket thus 

preventing ATP coordination and activation [138].  The regulatory domain coiled coil has 

been proposed to pair kinase domains in the holoenzyme stabilizing CaMKII in an 

inactive conformation and to explain cooperative activation by Ca2+/CaM binding [109].  

In this model, the CaM binding segments of regulatory domains are sequestered by the 

coiled-coil interaction between adjacent domains.  When a Ca2+/CaM molecule succeeds 

in binding one regulatory domain, it facilitates cooperative binding of a second Ca2+/CaM 

molecule to the freely available CaM binding region of the partner regulatory domain.  

Previous studies support the notion that kinase domains form a dimer within the 

holoenzyme [189,190], but there is no direct evidence that dimerization is mediated by 

the regulatory domain. Whether the regulatory domain position and dimerization are 

physiologically relevant or are the result of crystal packing constraints is an open 

question.   

During the progress of the studies presented in this document, several crystal 

structures of monomeric human CaMKII were published.  These proteins, which are 77% 

identical to the monomeric C elegans CaMKII, did not show the coiled-coil dimers 

(PDBIDs 2VZ6, 3BHH, 2V7O, 2VN9) [108].  These structures are overlaid in Figure 
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1.7C and illustrate the high conservation of structure among the four isoforms of human 

CaMKII.  They are monomeric and have catalytic domain conformations that agree 

largely with the catalytic monomer subunit of the C. elegans structure.  However, the 

discrepancy arises in the conformation of the regulatory domain.   

 

 

Figure 1.7 Comparison of CaMKII kinase domain structures.  A) The C. elegans construct lacking the 
association domain crystallized as a dimer, with a coiled-coil interface between two regulatory domains of 
adjacent monomer subunits (PDB 2BDW).  B) One subunit of the structure reveals classic catalytic kinase 
architecture and a long regulatory domain lacking contacts to the catalytic cleft.  C)  Human isoforms of 
CaMKII alpha (PDB 2VZ6), beta (3BHH), gamma (2V7O), and delta (2VN9) exhibit similar structures 
when compared to each other but the regulatory domain of the delta protein deviates from that of the C. 

elegans structure (D, boxed).  
 
In the structure of human CaMKIIδ, the regulatory domain resolved through residue 308 

appears docked against the catalytic cleft (PDB 2VN9). Figure 1.7D illustrates how this 

deviates from the regulatory domain of the C. elegans protomer.  This structure supports 

the biochemical evidence for a pseudosubstrate sequence blocking the catalytic cleft.  
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However, this conformation may also be influenced by contacts between molecules in the 

crystal lattice. Furthermore, its mechanistic implications are confounded by the presence 

of an ATP-binding site inhibitor (not depicted in Figure 1.7).  In all of the other structures 

of human CaMKII, the regulatory domain is not influenced by crystal contacts but the 

structures are only visible to residue 301. Thus, the conformation of the regulatory 

domain in the basal (apo) state is highly ambiguous.  Structures may not be truly 

representative of the regulatory domain within the autoinhibited holoenzyme in solution. 

 As predicted by the biochemical activation hypothesis, the regulatory domain is 

expected to undergo conformational changes upon CaM activation.  The CaM interaction 

was previously illustrated by a crystal structure of CaM in complex with a regulatory 

domain peptide of CaMKII (PDB 1CDM) [152] and more recently in a complex of 

Ca2+/CaM with human CaMKII consisting of only catalytic and regulatory domains 

(PDB 2WEL) [108].  The CaM structure is more completely resolved in the latter, 

although CaMKII is cleaved at the end of the catalytic domain causing it to be disjointed 

from the remainder of the structure (Figure 1.8A).  Figure 1.8 B and C illustrate from the 

“side” and “top” views respectively how residues 292-315 of the regulatory domain form 

a helical conformation, with CaM providing extensive stabilizing contacts on all sides.  

Because the CaM molecule surrounds the helix, the binding interaction likely necessitates 

a disruption of the regulatory and catalytic domains as predicted biochemically.  In this 

case the conformation of the CaM bound regulatory region is unambiguous, as it is in 

agreement with the CaM-peptide structure (PDB 1CDM) [152] as well as a structure of 

CaM bound to a CaMKI peptide which shares high similarity to the CaMKII regulatory 

domain (PDB 1MXE) [191].  The structure, while it provides key information on CaM 
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binding contacts with the regulatory domain, does not reveal the corresponding catalytic 

domain conformation and any involvement it may or may not have in stabilizing CaM.  

 

 

Figure 1.8 Crystal structure of CaM bound to CaMKII.  A) A crystal structure illustrates CaM (orange) 
bound to CaMKII regulatory domain with the catalytic domain separated by unresolved data (PDB 2WEL). 
B) “Side” and C) “top” views of the CaM portion of the structure reveals how binding to CaMKII 
regulatory residues 292-315 (red) occurs. 
 

The regulatory domain adopts a vastly different conformation in structures of C. 

elegans CaMKII partially truncated in the regulatory domain (PDB 3KK8 and 3KK9) 

[109].  The Thr286 autophosphorylation site of one protein is bound to the active site of 

another presumably mimicking a transphosphorylation intermediate.  
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Figure 1.9 Structure of an enzyme-substrate complex.  In a structure of a catalytic monomer lacking the 
association domain (PDB 3KK8), The R1 regulatory element is presented for phosphorylation at the active 
site of another monomer, presumably illustrating the transautophosphorylation reaction at Thr 286. 
 

This structure shows the R1 regulatory segment of a “substrate” kinase extended into the 

catalytic cleft of a separate “phosphorylating” kinase.  The proteins in this structure are 

positioned in a face-to-back orientation, with the interaction repeated in a chain 

throughout the crystal lattice.  The electron density map also indicates that the Thr286 

residue implicated in the acquisition of autonomous activity is unambiguously 

phosphorylated.  Residues 276-291 of the R1 element make contacts with the catalytic C-

lobe of the “phosphorylating” kinase in a random coil conformation.  This is in contrast 

to the helical segment adopted in structures of autoinhibited CaMKII.  Thus, the 

inference from functional and structural data is that regulation of CaMKII activity entails 

a complex series of conformational changes initiated at the regulatory domain and 

modulating its interactions with the kinase domain.   
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Outstanding questions and significance of structural investigations reported in this 

dissertation. 

Currently a structural and dynamic framework to link CaMKII conformation with 

activation and conformational memory is not available. Although these initial structural 

studies provide valuable information of protein conformation, they do not describe the 

conformational rearrangements or dynamics of CaMKII’s enzymatic intermediates in 

solution. These are snapshots of individual domains of subunits outside the context of the 

oligomeric assembly and are importantly, subjects of controversy.  Therefore they 

represent only the initial phase of research needed to gain a complete picture of 

conformational rearrangements.  Despite the wealth of biochemical information, so many 

questions remain unanswered.  The foundation of an accurate activation mechanism relies 

on the identification and characterization of this enzyme’s multiple intermediate states. 

However, there is no high resolution structure of the holoenzyme in all of the six 

proposed biochemical intermediates outlined in this document.  Furthermore, there are a 

seemingly infinite number of possible intermediates when considering CaMKII’s 

growing number of substrates and its role in scaffolding of multi-protein complexes.   

Existing crystal structures of monomeric kinase domains have been extrapolated 

to mechanistic models of cooperative Ca2+ sensing and catalytic activation of the 

holoenzyme [108,109,138]. Experimental testing of these models in solution in the 

absence of constraints imposed by the crystal lattice is essential for an in-depth 

understanding of the complex landscape of holoenzyme activation. Motivated by these 

conflicting models and the dearth of available information about conformational changes 

associated with activation, this document describes analysis of regulatory domain 
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dynamics in solution using systematic spin labeling and electron paramagnetic resonance 

(EPR) spectroscopy [192,193] of monomeric C. elegans CaMKII.  Using this 

spectroscopic approach, experiments can be designed to identify the structural 

characteristics of intermediates.  The approach also captures protein dynamics, a property 

unresolved in the confines of a crystal lattice which may impose structural distortions on 

protein conformation. With limited structural data, it is difficult to decipher these 

complex mechanisms of self-regulation and activation.  Developing a dynamic structural 

framework for CaMKII activation by CaM, for acquisition of conformational memory, 

and for interactions with protein partners will significantly impact the understanding of 

important biological processes and has the potential to inform new therapeutic strategies.  

This body of work describes the secondary structure, tertiary interactions, and backbone 

dynamics of the CaMKII regulatory domain in discrete catalytic intermediates that 

currently available data suggest are associated with activation. 
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CHAPTER II 

 

ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY 

 

Introduction 

Electron Paramagnetic Resonance (EPR) spectroscopy is a technique which 

detects transitions of unpaired electrons between discrete energy levels.  The criterion for 

conducting an experiment is that the molecule possesses a permanent magnetic moment 

provided by an unpaired electron.  Species that are readily detected by this method are 

free radicals and transition metals.  However, for the study of proteins which do not 

contain such species, a paramagnetic probe containing a stable free radical must be 

experimentally incorporated. There are a variety of probes of this nature including the 

well characterized methanethiosulfonate spin label (MTSSL) [194,195] used in these 

studies.  The label reacts with the protein via a cysteine disulfide linkage which is 

advantageous for investigations of protein structure since proteins can be engineered to 

contain cysteines at any desired position.  Spin label side chains can therefore be placed 

in virtually any region of interest throughout the protein.  These probes can report a 

multitude of parameters which describe the local environment of the side chain and 

provide information on protein structure and dynamics.  In order to understand how these 

parameters are detected and interpreted, first the EPR experiment must be described. 

 

 

_____________________________________________________________________________________________________________________________________ 

†Denotes figures that were adapted or recreated from the Bruker Biospin website [177]. 
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Electron spin orientation in an external magnetic field 

An electron possesses the intrinsic physical properties of charge and spin angular 

momentum.  Together these properties describe its magnetic moment, µ, which makes an 

electron behave like a magnet in an external magnetic field.  The energy of the interaction 

between the electron and the magnetic field, H0, can be described by the Hamiltonian 

operator, �;  

� = -�ZH0 

If the magnetic moment term is expanded to reveal its component parts, the Hamiltonian 

can be described in terms of SZ, the electron spin quantum operator along the z axis, g, 

the electron g factor, and B, the electron Bohr magneton. 

� = -�ZH0=	BH0SZ 
Together these terms describe the properties on which the total energy of the system is 

dependent and provide the set of possible outcomes.  In brief, the g factor is a 

dimensionless proportionality constant of known value defined by the electronic 

configuration of the radical. It relates the observed magnetic moment to its corresponding 

angular momentum, quantum number, and the appropriate quantum unit of magnetism, in 

this case the Bohr magneton, Β.  The magnetic components for the SZ operator yield 

eigenvalues of ±½ for an electron, giving rise to two solutions for the Hamiltonian.  In 

general there will be 2S +1 ways in which the electron will interact with the magnetic 

field, meaning the electron will adopt one of two energy states.  The negative lower 

energy state is referred to as α and the positive higher energy state is β.  When placed in 

an external magnetic field, an electron of lower energy -½ gBH0 will align parallel to the 

field while higher energy +½ gBH0 will align in an antiparallel fashion (Figure 2.1).  In 
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the absence of a field, there is no preference for orientation and all orientations of spins 

are of equivalent energy.   

 
 

Figure 2.1
† Minimum and maximum energy orientations of µ in a magnetic field. The lowest energy 

orientation, α, will align parallel to the field, H0, while the highest, β, will align against the field [196]. 
 
Paired electrons occupying the same orbital cannot posses the same value of MS 

[197,198] as a consequence of the Pauli Exclusion Principle.  One electron will have a 

positive MS value and the other a negative value, resulting in a cancellation of magnetic 

moments.  This property makes paired electrons diamagnetic and EPR silent, and 

illustrates why an unpaired electron is necessary for EPR spectroscopy. 

In the presence of an external magnetic field, the energy difference between the α 

parallel and β antiparallel spin orientations, ∆E, depends on the strength of the field, H0.   

ΔE = gBH0 
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Figure 2.2
† Separation of spin state energies as a function of applied magnetic field. The difference in 

energy between minimum and maximum spin orientations, ∆E, diverges linearly as the field strength 
increases. 
 
As the field strength increases, the separation between energy levels increases.  Figure 

2.2 is a diagram illustrating an isolated electron in an external magnetic field where, at 

any given value for the field, H0, there will be an energy separation, ∆E, between parallel 

and antiparallel states equal to gBH0.   

 

An EPR experiment detects energy transitions of unpaired electrons 

Transitions between the low and high energy orientations of spins can be induced 

by adding energy to the system.  An EPR experiment measures the absorption of photon 

energy during a transition event.  The relationship is described by Planck’s law, where 

∆E is the difference in energy levels, h is Planck’s constant, and ν is frequency of 

radiation: 

ΔE = hν 
According to Planck’s law, if electromagnetic radiation of proper frequency is applied to 

an electron, it will absorb the radiation and undergo a transition between energy levels.  

The corresponding frequency must match the energy separation, ∆E, between spin states 

and its value is in the gigahertz range for EPR experiments at X-band. Since the 
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difference in energy can also be described in terms of the g factor, Bohr magneton, and 

the magnetic field, the following relationship can be made:   

ΔE = hν = gBH0 
For the purposes of an EPR experiment, this mandates two important points: (1) 

measurements of transitions between energy levels must take place in a magnetic field 

and (2) energies of the spin states diverge linearly as the magnetic field increases. 

 

Figure 2.3
† The field for resonance. Absorption of electromagnetic radiation will occur when the magnetic 

field is tuned so that its energy of radiation matches the energy difference in the two spin states.  
The measurement of an electronic transition can be observed in one of two experimental 

methods.  In one experiment, the magnetic field, H0, is kept constant while the frequency, 

ν, is varied.  An absorption of energy, E, will be observed at the frequency value that 

correlates to the separation of energy states, ∆E.  Alternatively a transition can be 

observed in a constant frequency as the field is swept (Figure 2.3).  The latter is the 

method of choice due to limitations of microwave electronics.  With values of g = 2.0023 

and H0 = 0.92731 × 10-20 erg/gauss, the electronic transition will occur with an 
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electromagnetic radiation frequency of 9.5 GHz at a magnetic field strength of 0.34 Tesla 

(or 3400 Gauss). This frequency, known as X-band, corresponds to the microwave region 

(~3 cm wavelength) of the electromagnetic spectrum and is the predominant regime 

applied in EPR spectroscopy [198].   

 

The signal is dependent on the spin population difference between energy states 

The absorption signal arises from an average of many molecules, meaning 

ensembles of spins are detected in EPR experiments.  In the presence of a magnetic field, 

spins will be in both high and low energy orientations; however the lower energy state 

will be slightly more populated as dictated by the Boltzmann distribution (Figure 2.4).  

 
Figure 2.4 The Boltzmann distribution in a spin ensemble. In the absence of a magnetic field, spins will 
orient randomly with no difference in energy.  When aligned in a field, the lower energy state will be 
slightly more populated than the higher energy state at thermal equilibrium.  
There is an equal probability of a stimulated electron moving from α to β as from β to α; 

however, only the net excitation of spins will contribute to the absorption signal.  As 

determined by the Boltzmann distribution, the spin population difference between the 

states is small and most of the spins are not detected.  The spin population ratio of the 

states is temperature dependent and can be described by the following: 

 



48 

��
��

 = �������� 
��
��

 = ���������� 
N values represent the populations of the α and β states, k is the Boltzmann constant and 

T is the absolute temperature [197,198].  If the ratio is calculated for a 293K temperature 

and a 1 Tesla magnetic field, the value is ~1.0046.  Since this ratio is close to 1, the α 

state will only be slightly more populated.  This relationship also illustrates that 

sensitivity can be improved by increasing the magnetic field strength or lowering the 

temperature. 

 

Hyperfine interactions with neighboring nuclei determine the splitting of the signal. 

The local environment of the unpaired electron will affect the influence of the 

magnetic field.  The absorption pattern depends on the structure of the molecule 

containing the electron.  The MTSSL molecule has been designed to make its free radical 

unusually stable even in the presence of some biological reductants (Figure 2.5).  The 

gem dimethyl groups provide a steric hindrance for approaching redox reagents, offering 

protection for the N-O bond where the unpaired electron is localized.   

 

Figure 2.5 Diagram of the methanethiosulfonate spin label side chain.  The unpaired electron necessary for 
the EPR signal is localized on the nitroxide portion of the molecule. 
The electrons which give rise to the EPR signal, by way of their magnetic moments, will 

interact with nearby nuclear spins, resulting in additional energy states and multi-line 

spectra.  The electron spin in MTSSL will therefore couple with the nuclear spin of the 
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adjacent 14N due to their close proximity as illustrated in Figure 2.6.  The electron Ms = -

½ and +½ energy levels will be split by the nuclear IS = -1, 0, and +1 spins resulting in 

six available energy levels for the nitroxide electron.  Three allowable electronic transfers 

are possible when excited by electromagnetic radiation of three corresponding 

frequencies. 

 

Figure 2.6
† Hyperfine interactions between the electron and nucleus. The local magnetic environment of 

the neighboring 14N nucleus interacts with the unpaired electron (left panel), increasing the number of spin 
states and allowing for three electronic transitions between energies (right).  
These transitions result in three absorbance lines in an EPR spectrum of the nitroxide 

label and the field separation between them is dependent on the hyperfine coupling 

constant, A0.  A0 indicates the degree of interaction between the unpaired electron and the 

perturbing 14N nuclei and directly defines the spacing between spectral lines.  Hyperfine 

coupling is just one factor which influences the spectrum.  Spectra are also determined by 

spin label orientation and dynamics as well as relaxation processes.  

 

The EPR lineshape is dictated by the orientation of the nitroxide in the magnetic field 

In a hypothetical system where the unpaired electron is localized in a uniformly 

symmetric spherical orbital, the assumption can be made that all interactions with the 
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nucleus are uniform in all directions.  In this case the hyperfine coupling constant, A0, 

arises from only these isotropic interactions and the g factor is assumed to be the standard 

value given for a free electron.  This would result in the three equally spaced absorption 

lines of equal intensity.  In the actual case of all spin labels, the electron is occupying a 

non-symmetrical π orbital and the value for the g factor and A0 depend on the orientation 

of the spin label in the field.  They will have anisotropic contributions as the orbital 

angular momentum will experience the external magnetic field [198].  Therefore the net 

magnetic moment arises not only from the spin angular momentum, but from coupling to 

the orbital angular momentum as well.  The overall field experienced by the electron can 

be expressed as 

Heff = H0 + Hlocal 

where the effective field, Heff, is dependent on the external magnetic field, H0, and the 

presence of a local magnetic field, Hlocal, such as the 14N nuclear spin.  The position of the 

field can be defined relative to the electron as illustrated in a three dimensional Cartesian 

coordinate system (Figure 2.7). 

 

Figure 2.7
†
 Relative orientation of the nitroxide spin label and magnetic field. The spin label N-O bond is 

placed along the X axis so that the π orbital (blue) aligns with the Z axis perpendicularly with the X-Y 
plane (gray). The magnetic field, H0 is defined by angle θ from the Z axis and φ from the X-Y plane.   
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Here the π orbital containing the unpaired electron is aligned with the z axis of the 

coordinate system.  The nitrogen-oxygen bond lies in the perpendicular x-y plane along 

the x axis.  The field is represented by a vector and its position is conventionally defined 

by two spherical polar angles θ, its angle from the z axis, and φ, its angle to the x-y plane.  

Mathematically, both the g factor and A0 can be represented as symmetric tensors.  They 

describe the relationships between the magnetic field vector and the electron spin vector 

as well as between the electron spin vector and the nuclear spin vector.  For example, g 

and A0 can be divided into their component terms for each axis. 

g = gxx + gyy + gzz 
 A0 = Axx + Ayy + Azz 

In an isotropic system, all component parts would be equivalent.  

gxx = gyy = gzz 
Axx = Ayy = Azz  

In the nitroxide system, we can define these tensors anisotropically to include orientation 

dependence according to θ and φ. 

geff = gxsin2θcos2φ + gysin2θsin2φ + gzcos2θ 
Aeff = [Ax2sin2θcos2φ + Ay2sin2θsin2φ +Az2cos2θ]½ 

 

The EPR spectrum represents the time averaged reorientation of the spin label ensemble 

Only in a crystal lattice is it possible to have all labels in the same orientation with 

respect to the magnetic field.  In most systems studied by EPR spectroscopy, each 

individual spin is orientated randomly within the field and makes its own contribution to 

the EPR spectrum.  EPR spectra represent the ensemble of all spins, which, summed over 
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all molecules, represents many orientations [197].  One example of randomly orientated 

sample is spin labels in a crystalline powder.  Although the molecules are randomly 

orientated, the nitroxide is held motionless.  This gives rise to the “rigid limit” no motion 

EPR spectrum.  For the rigid limit spectrum, the components are resolved along all 

directions in the magnetic field (Figure 2.8) and the spectrum can be predicted by adding 

up the individual spectra from all random orientations.  In contrast, spin labels in solution 

will be constantly changing their positions due to molecular tumbling in addition to being 

randomly oriented.  The rapid reorientation introduces a different level of complexity to 

the g and A0 tensors.  In this case the geff and Aeff are time-averaged. 

g = �3 4 �54 �6
7  

A0 = 83 4 854 86
7  

The resultant EPR spectrum is classified as the fast motion limit and illustrates that the 

rate of reorientation of spin labels influences its splitting resolution. The spectrum has an 

absorption pattern featuring three equally spaced peaks separated by the value for the A0 

tensor (Figure 2.8). Typically, EPR spectra are reported as the derivative of the 

absorption to more easily observe their features. 

 

Figure 2.8 EPR spectra of motional extremes. The rigid limit EPR spectrum of MTSSL resolves all 
components along all direction in the magnetic field (left).  The fast motion limit spectrum of MTSSL is 
time averaged (right). 
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The two derivative spectra in Figure 2.8 illustrate the extremes of spin label motion.  

They represent the difference between randomly oriented labels that are static (left panel) 

versus randomly orientated labels undergoing motion (right panel).  Labels that are 

conjugated to proteins will have constrained motion and their spectra will fall within 

these extremes. 

 

Relaxation influences EPR lineshape 

As previously stated, the lower energy α state will be slightly more populated than 

the higher energy β state when a spin ensemble is placed in a magnetic field.  These spins 

can be described by a bulk magnetic moment vector, M, which represents all spins 

collectively.  Since spins have no preference for orientation in the absence of a magnetic 

field, M will be equal to zero.  In the presence of a field, M is proportional to the 

population difference of spin states.   Over time, a spin ensemble will return to thermal 

equilibrium as a function of relaxation which describes how spins “forget” the direction 

in which they are oriented.  The two principle relaxation terms, T1 and T2, describe the 

physical properties responsible for the relaxation of the components of M.   

T1 involves redistribution of the different spin populations in order to achieve the 

thermal equilibrium distribution of the spin states.  Spontaneous emission is very slow 

and contributes a negligible amount to spin distribution.  Mainly equilibrium is reached 

when spins interact with their surroundings, exchanging energy to equilibrate spin 

populations. The surroundings are referred to as the lattice and gives rise to the T1 

pseudonym, spin-lattice relaxation.  This transfer of energy from excited spin states to the 

lattice is non-radiative and decays exponentially over time. After the time T1, the 
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population of spins will be described by the Boltzmann distribution and the net 

magnetization vector will align with the direction of the applied magnetic field.  The T1 

value describing how fast M aligns with the field reflects the degree of coupling between 

all electron spins to the surrounding environment.  The process of spin-lattice relaxation 

contributes to the magnetic moment vector M as described by the Bloch equation. 

9:;
9<  = :�= :;

�>  
MZ is the bulk magnetization along the z-direction in the absence of a magnetic field and 

M0 is the bulk magnetization at thermal equilibrium.  The Bloch equation defines the 

interdependence between the net magnetization and the spin-lattice relaxation.  Without 

T1, the EPR experiment would be impossible.  It is critical that the system achieves a 

ground energy state following microwave absorption.  In the absence of spin-lattice 

relaxation, exciting microwave radiation would equalize the population of spin states and 

eliminate net polarization.  As described previously, it is the net polarization of spins that 

contribute to the EPR signal.  It is essential that the population be able to reach the 

Boltzmann equilibrium so that the bulk magnetization does not decay to zero. 

 Like any vector, M can be defined by its components relative to the x and y axes, 

Mx and My.  But because M originates from the spin ensemble, it also possesses a bulk 

angular momentum resultant from individual electron spin angular momenta (Figure 2.9).  

The applied magnetic field will exert a torque on the bulk spin causing M to precess 

about the magnetic field like a gyroscope [197,198,199].   
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Figure 2.9
† Precession of electron spin in the presence of a magnetic field.  The external field interacts with 

the bulk angular momentum to cause precession of the spins about the z axis. The precession causes the x 
and y component s of the bulk angular momentum to average out to zero, leaving only the z component.  
The net magnetization along the z axis results from the net population of spins aligning with the field. 
  
The precession results from time-dependent changes in the Mx and My components and 

its frequency is referred to as the Larmor frequency.  The Bloch equations can be written 

to describe these transverse components. 

9:3
9<  = γH0My - :3

�A  

9:5
9<  = γH0Mx - :5

�A  

Here γ is the electron gyromagnetic ratio, and T2 is the spin-spin relaxation time.  T2 is 

the rate at which Mxy, the transverse component of the magnetization vector, 

exponentially decays towards zero. It does not include energy exchange with the lattice 

like T1, but rather describes the relaxation from either dipolar interactions or collision 

with neighboring spins [197,198].  These energy transfers reorient or “flip” spins and 

alter their magnetic moments.   

Both T1 and T2 relaxation mechanisms contribute to the EPR lineshape.  In a 

continuous wave (CW) EPR experiment, continuous irradiation of microwaves is applied 

along the axis perpendicular to the magnetic field, H0.  This generates a steady state 
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magnetization behavior in the spin ensemble.  The Bloch equations must also take into 

account the perturbing interaction of the oscillating microwave field and the absorption of 

the radiation is illustrated by a Lorentzian function.  The function is the description of the 

spectral lines, which are subject to broadening depending on the interactions with the 

frequency.  The width of a particular absorption peak is dependent on the value for T2.  

At half height of the peak, the width is inversely proportional to T2. Therefore, faster T2 

times lead to broader lineshapes.  The T1 relaxation process also contributes to the EPR 

signal because it establishes finite lifetimes for excited states and prevents absorption 

lines from becoming infinitely narrow. 

 

The EPR lineshape is determined by the mobility of the probe 

As mentioned previously, the orientation of the probe in a magnetic field will 

affect its EPR spectrum.  The rate of motion of the nitroxide impacts the anisotropies of 

the g and A0 tensors, and will ultimately determine the lineshape.  These probe motions 

are incorporated into the qualitative EPR parameter of mobility. Mobility describes the 

motion of the probe which is dependent on how the surrounding environment restricts it. 

In the context of a labeled protein, the free electron is localized to a MTSSL probe, which 

in turn is conjugated to a protein tumbling through solution.  A labeled protein is much 

more complex than a free probe and undergoes several types of additional motion, each 

occurring on a different time scale.  Therefore, the EPR lineshape is reflective of the 

available degrees of motional freedom of the attached spin label as well as the dynamic 

properties of the tumbling macromolecule [200].  The various types of motion are 

summarized in Figure 2.10. 
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On a slow timescale the protein is tumbling randomly through solution, the rate of 

which is dependent on the size of the protein and the viscosity of the solvent.  Typically 

for large proteins over 50 kDa, the rate is too slow to have an effect on the spectrum.  

Tumbling rates (10-7 s or slower) are outside the EPR timescale, which is in the 

nanosecond regime (10-11 – 10-9 s) [192,194].  Since tumbling offers little information on 

the structure of a protein, this is not disadvantageous.  In fact for smaller soluble proteins, 

the viscosity of the solvent is often increased in order to eliminate any tumbling 

contribution to the EPR spectrum.   

Proteins are not static molecules but are comprised of dynamic domains which 

move relative to each other.  It is necessary for one protein to have the capacity to exist in 

several conformations so that it may complete its function, for example to recognize and 

bind its ligand.  Domain rearrangements can be substantial, creating interdomain distance 

changes of tens of angstroms, or subtle, such as the twisting of domains where only a few 

angstroms change is observed.  Either way, the rate of exchange between the 

conformations is typically too slow to contribute to the mobility of a spectrum (µs-ms).  

This is not to say that conformational rearrangements cannot be observed with EPR 

spectroscopy.  There is an important distinction.  Sets of spectra obtained under various 

conditions can be used to infer conformational changes.  For example, a label in the 

active site of a particular protein may show high mobility in the absence of ligand.  In a 

separate experiment, ligand is added to the system which causes immobilization of the 

site.  The two spectra from these experiments can be compared to deduce that a 

conformational change has taken place.  However, the actual transition between 

conformations was not observed directly. 
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Within each conformational state, the protein backbone can flux between a 

multitude of short lived substates, each having different torsional angles in the bonds of 

the backbone.  The rate of backbone fluctuations depends on the stability of the local 

environment, and they exist on the nanosecond-picosecond timescale. For example, 

stabilized helicies in the center of a protein will remain relatively static and will not 

significantly increase the mobility.  In comparison, loop regions where backbones are 

flexible and dynamic have faster rates and readily contribute to mobility increases.    

The isomerization of the label about the chemical bonds attaching it to the protein 

backbone will also contribute to mobility.  Each bond has a unique ability to isomerize 

which is dependent on steric restriction by neighboring atoms and the energy barrier for 

each rotamer conformation. Although there are several chemical bonds between the 

backbone of the protein and the free electron, it has been suggested that motion is largely 

restricted to rotation about the Cε-Cζ and the Cε-S bonds [194].  Since the disulfide bond 

must cross a high energy barrier to rotate and the S-Cβ bond is restricted by the Cα 

hydrogen, they are unlikely to contribute to probe mobility.  Any bond may be further 

restricted by atoms of the protein backbone or neighboring amino acid side chains.  The 

mobility of the probe therefore depends on its position within the protein as well.  The 

EPR lineshape will depend on whether or not the spin label side chain is restricted in the 

core of a protein or freely rotating as a side chain facing the solvent.   
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Figure 2.10 Types of protein motion. A hypothetical protein (blue) undergoes various types of motion 
including molecule tumbling through solution, domain movements, and backbone fluctuations.  The 
MTSSL probe also undergoes rotation about the bonds conjugating it to the protein backbone.   
Each of these types of motion will reposition the spin label with respect to the magnetic 

field but the motion of the spin label side chain is largely dictated by backbone dynamics 

and label isomerization (Figure 2.10).  These motions have the potential to alter the 

spectral lineshape because they occur on the EPR relevant timescale.  Since the EPR 

experiment does not observe just one motional transition, but many transitions of many 

molecules, the spectrum will report an average of all motions. Backbone dynamics and 

label isomerization can be distinguished from each other with a full simulation of the 

EPR lineshape [200,201].   

 

Spin labeled sites can be classified by mobility and rotational correlation times 

Due to the hyperfine interactions of the free electron with the neighboring 14N 

nucleus, a sweep of the magnetic field under constant microwave irradiation will induce 

absorption at three resonance positions.  These peaks vary according to the anisotropy of 

the label allowing for a range of lineshapes.  For example, a site buried in the 

hydrophobic core of a protein will have a very different spectrum from a loop region due 

to their contrasting mobilities.  However, spectra from one buried site versus another 

buried site will produce very similar lineshapes.  Within a range of variability, buried, 
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surface, and loop sites all have signature lineshapes which can be used to classify 

residues.  Additionally a numerical value referred to as its rotation correlation time, τ, can 

be assigned to spectra to define spin label mobility.  This value represents the rate of spin 

label isomerization; a shorter timescale indicating faster rotation and higher mobility.  

Figure 2.11 illustrates simulated spectra of a MTSSL probe with preset rotational 

correlation times.   

 

Figure 2.11 Spectral classification and rotational correlation times.  Sites can be classified by their spectral 
lineshape, which is dependent on the rate of label isomerization.  Slower reorientation rates of the label 
causes broadening of the resonance lines, which increases the breadth of the EPR spectrum as well as the 
peak widths.  Rotational correlation times indicate rotation rate, with a shorter timescale indicating a faster 
rate.  These spectra were simulated for MTSSL according to predefined correlation times. 
 
For free label or label attached to unfolded proteins, the mobility will be highest because 

the label is the most unrestricted.  Spectra will be characterized by three evenly spaced 

sharp, narrow lines with tight A0 separation between peaks.  A short rotational correlation 

timescale (100 ps) classifies these spectra suggesting the spin label has a fast rotational 

rate.  Loop regions are less mobile and are broadened in comparison.  They still possess a 

high degree of mobility because the label can freely isomerize and the protein backbone 

is flexible. They are classified by correlation times on the order of 1 ns.  As the 

correlation time increases, lines become broader.  Correlation times on the order of 10 ns 

describe surface sites which have stable, ordered backbones but freely rotating side 

chains.  The most buried sites have the longest correlation timescale and show the most 
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spectral broadening.  A 100 ns correlation time would be typical for a label placed in the 

hydrophobic core of a protein or at a protein-protein interface.  In this case mobility is the 

lowest because the label is completely restrained.  Thus the EPR lineshape is the 

interpretation of the spin label motion which can be used to characterize sites in loops, 

surface regions, or buried protein interiors.  This informational is invaluable for structural 

studies. 

Experimental spectra can be computationally simulated and rotational correlation 

times can be estimated with a microscopic order, macroscopic disorder method (MOMD) 

[202].  In this method, a set of simulation parameters and fitting procedures are 

incorporated to produce a hypothetical spectrum which has features similar to the 

experimental target.  The correlation time describes the rotational nitroxide angles 

relative to its direction of motion.  Variable parameters are used in this method to 

describe the motion of the nitroxide, which will dictate the resulting spectral lineshape.  

These parameters optimize the magnetic tensors, rotational diffusion rates, coefficient of 

the ordering potential, and diffusion tilt angles.  Typically, standard nitroxide values are 

input for g-tensors and A-tensors which have been previously measured [203].  

Otherwise parameters can be obtained from a simulation of a rigid limit, frozen solution 

spectrum. In general, fast isotropic motion is estimated by assuming the movement in the 

x, y, and z directions are equal to each other while restricted anisotropic rotation assumes 

these are not equivalent.  Anisotropic motions require an ordering potential which serves 

to constrain the spatial extent of the motion.  This term defines the orientation of the label 

by describing the potential of its movement, i.e. defining the space in which the spin label 

motion is occurring.  The strength of this ordering potential is determined by its 
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coefficient which is user-defined.  Diffusion tensor values are additionally varied to 

establish the diffusion rate as are diffusion angles which express the rotation of the 

diffusion.  Spectral line broadening can also be estimated by defining either a Gaussian or 

Lorentzian function. For fitting of experimental spectra, starting values for these 

variables are chosen using a Monte Carlo algorithm.  The appropriate simulated spectrum 

is reached when the parameters produce a simulation that converges with the 

experimental spectrum.  The rotational correlation time, τ, for the motion is obtained 

from the resulting diffusion coefficient, R. 

τ = C
D�EF 4 EG 4 EH�>�I 

While any specific simulation may converge to fit the experimental spectrum, the 

solution is not unique.  However, correlation times will not vary greatly from one 

simulation to another. 

 

Dipolar coupling is distance dependent 

In addition to side chain mobility, the distance between two paramagnetic probes 

can be measured by various EPR methods. The information obtained can define the 

spatial relationship between structural elements which yields information on the global 

organization of the molecule.  When two spin labels are in close proximity, spin-spin 

interactions between the two electrons are manifested in the CW-EPR spectrum through 

broadening of lines which are a function of inter-probe distance.  The spin Hamiltonian 

can be modified to include these interactions. 

� = 	1BH0S1 + 	2BH0S2 - ωn �LMC+LMN� + γI1A1S1 + γI2A2S2 + S1DS2 + JS1S2 
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Here ωn is the Larmor frequency of the nitrogen nucleus, γ is the electron gyromagnetic 

ratio, D is the dipolar coupling tensor, J is the isotropic spin-spin exchange factor, and 

number superscripts designate electron 1 and electron 2 [198]. There are two types of 

exchange interactions; those that occur though bonds and those that occur through space.  

Scalar J coupling describes through-bond interactions and is facilitated in orbital overlap 

or though chemical bonds.  It decreases exponentially with increasing interspecies 

distance, contributing little beyond ~8 Å.  In the case of MTSSL, the nitroxide of the spin 

label is separated from the protein backbone by approximately 7Å.  For these reasons, J 

coupling is generally disregarded in spin labeled protein systems.  Even in a system 

where spin labels are within 7Å, the dipolar interaction will be stronger than J coupling.  

The dipolar interaction term therefore represents spin coupling between probes which can 

be measured from 8-70 Å. 

In the absence of dipolar and J coupling, the Hamiltonian reduces to represent the 

sum of two non-interacting spins.  In the condition of dipolar interaction, the energy is 

inversely proportional to the cube of the distance and is dependent on the orientation in 

the external magnetic field.  It can be defined according to the angle between the field 

and an interspecies vector, θ [198,204,205] (Figure 2.12).   

 

Figure 2.12
† The interaction between two dipolar spins.  The interaction between two magnetic dipoles is 

dependent on the distance between them, r, and the angle of the magnetic field, θ. 
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The dipolar coupling, νdd, can also be written in terms of the distance and angle. The 

corresponding energy of interaction between electrons, E, can be approximated with 

point dipoles, µ, and is described as follows. 

νdd �r,θ� = U>�>�AUA
NV  · �3cos2θ – 1� · C

ZI 

E = U>UA
ZI  · �3cos2θ - 1� 

The angular dependence of the dipolar coupling is best illustrated in the Pake pattern.  

This type of spectrum specifically illustrates the dipolar frequency pattern averaged over 

all angles with respect to the magnetic field.  The Pake pattern in Figure 2.13 exhibits two 

prominent peaks separated by 2νdd (r,90°).  The frequency of separation between the two 

peaks of the Pake pattern is inversely proportional to the distance at θ = 90°.  

 

Figure 2.13
† The Pake pattern for two dipoles.  The blue trace shows two transitions with a splitting of 2νdd 

(r,90°). 
 
The Pake splitting can be related to the inter probe distance by the following equation 

where the constants are approximately correct for a nitroxide. 

r = [\N]CD :�M
^__�`ab�

I  nm 
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These relationships are the theoretical basis of distance measurements in EPR 

spectroscopy.  At distances shorter than 20 Å, the dipolar interaction is sufficiently strong 

to influence the CW EPR lineshape.  The lines will become broadened in a distance 

dependent manor, shorter distances leading to more extensive broadening.  The distance 

can be extrapolated by a convolution/deconvolution analysis [206,207] of the spectral 

lineshape (Figure 2.14).  This requires spectra of the singly labeled systems as well as the 

doubly labeled system.  The spectra from the singly labeled systems are averaged to 

create a new spectrum referred to as the sum of singles.  A Pake broadening function with 

variable distance values is applied to this spectrum until it converges to fit the 

experimental spectrum of the doubly labeled system [206,208].  The results are reported 

as distances with Gaussian distributions according to their relative probabilities.  The 

distribution of distances arises from the range of the nitroxide flexibility as well as any 

protein conformational heterogeneity.   

 

Figure 2.14 Illustration of the convolution/deconvolution method.  A) The experimental spectrum of a 
doubly labeled protein (black) is broadened relative to the sum of singles spectrum (blue). The fit for the 
convolution.deconvolution method is shown in red.  The Pake broadening function (B) used to obtain the 
fit produces the distance distribution shown in panel C. 
 
For distances greater than 20 Å, the EPR spectrum is not broadened enough to be 

resolved in CW EPR.  The values for νdd become very small at long distances and the 

inhomogeneous linewidth of the spectrum masks the dipolar interaction.  Therefore, 
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conventional CW EPR spectroscopy can be used to measure inter-probe distances only in 

the range of 5-20 Å.   

 

Time domain pulsed methods detect dipolar coupling at longer distances 

A time domain EPR method called double electron-electron resonance (DEER) is 

used to measure dipolar interactions which are unresolved in CW spectra.   This pulse 

technique can detect dipolar coupling up to 70 Å [206,209].  In CW experiments, the 

field is swept slowly under constant frequency and any resonances are detected by 

absorption of energy.  In contrast, short and intense microwaves are applied to the system 

in a pulsed experiment and all the multiple resonances coming from the sample are 

collected in the time domain.  After Fourier transformation, the various resonances are 

resolved and the spectrum can be reported in the frequency domain. 

As previously described, the bulk magnetization, M, can be represented by a 

vector in a Cartesian coordinate system.  It precesses at its Larmor frequency about the z 

axis, which is aligned with the external magnetic field (refer to Figure 2.9).  This 

particular perspective is referred to as the lab frame.  For description of the DEER 

experiment, it is helpful to redefine the coordinate system to rotate about the z axis so 

that the precessing magnetic component appears motionless.  This is designated the 

rotating frame.  The result is a stationary magnetization vector, M, aligned along the 

field.   

The microwave resonator on the pulse instrument is designed to produce a 

microwave magnetic field perpendicular to the applied magnetic field.  Since this dictates 

observation of M occurs in the x-y plane, DEER experiments must use pulses of radiation 
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to tip M into the x-y plane for detection.  Pulses are labeled by their tip angle which 

depends on the strength of the field and length of the pulse.  A π/2 pulse rotates M 90° 

into the x-y plane while a π pulse, referred to as an inversion pulse, will flip the vector 

180° along the z axis (Figure 2.15). 

 

 

Figure 2.15
†
 Tipped orientation of the bulk magnetization and spin population.  At thermal equilibrium M 

is aligned with the z axis and the spin population is represented by the Boltzmann distribution.  Application 
of a π/2 pulse equalizes the distribution and tips the magnetization into the x-y plane.  A π pulse will flip M 
onto the negative z axis and invert the spin population. 
 
Over time, a tipped system will return to equilibrium and realign with the z axis. The 

magnitude of M in the x-y plane will therefore decay over time according to the 

relaxation properties of the system.  The spin-lattice relaxation time, T1, describes how 

quickly the magnetization returns to align with the external magnetic field along the z 

axis.  The spin-spin relaxation time, or transverse relaxation time, T2, describes how 

quickly the magnetization in the x-y plane decays.  For example, a π/2 pulse tips M into 

the x-y plane.  The system is no longer in thermal equilibrium because the magnetization 

along the z axis goes to zero.  Since this net magnetization represents the difference in 

spin state populations, the spin population difference is therefore zero.  Interactions with 

its surroundings through spin-lattice relaxation will cause the system to return to thermal 
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equilibrium and adopt Boltzmann distribution of spin states.  In the case of a π pulse, M 

will rotate in an antiparallel fashion to align with the negative z axis.  Here the spin 

population is inverted and will likewise return to equilibrium by spin lattice relaxation 

interactions described by T1.   

The detected signal characterizes the total effect of a large number of spin packets 

that make up the bulk magnetization, M. The transverse relaxation time, T2, influences 

the breadth of the signal either through homogeneous or inhomogeneous broadening 

(Figure 2.16).  Homogeneous broadening describes the effect of many broad lines added 

together, each with the same Larmor frequency and linewidth.  Inhomogeneous 

broadening occurs when several narrow lines of slightly varied frequencies add together 

to appear as one broadened peak.     

 

 

Figure 2.16
†
 Homogeneous and inhomogeneous broadening of EPR lineshapes.  A) Homogeneous 

broadening determined by relaxation processes is a sum of many lines with the same frequency and 
linewidth.  B) Inhomogeneous broadening is caused by many narrow lines, each with a slightly different 
frequency. 
 
Individually each spin packet experiences a slightly different magnetic field and has its 

own precession frequency due to spin-spin interactions.  These interactions cause a 

fanning out of the spin packets throughout the x-y plane.  Dephased components spread 

out in opposite directions to cancel each other and lead to decay of the signal in the x-y 

plane over time, T2.  Figure 2.17 illustrates how the signal is dependent on the decay.  
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After the π/2 pulse, the signal is the strongest.  As the spin packets precess at their 

individual Larmor frequencies, they spread out through the x-y plane causing the net 

magnetization in the x-y plane to eventually become zero. 

 

 

Figure 2.17
†
 Dephasing of the transverse magnetization.  After a π/2 pulse, the spins will be tipped into the 

x-y plane and fan out according to their individual Larmor frequencies.  The spreading causes the net 
magnetization in the x-y plane to decay over time as a function of T2. 
 
DEER experiments employ a refocused echo method instead of observing the free 

induction decay (FID) of the π/2 pulse.  The spectrometer cannot measure directly after 

the high power microwave pulse as the FID signal would be overwhelmed.  Since most of 

the signal will decay in the instrument dead time, a standard four-pulse experiment is 

used to refocus and detect the signal after a sufficient time.   

 

The DEER pulse sequence permits detection of the refocused echo 

The pulse protocol begins with a π/2 pulse which tips spins into the x-y plane for 

detection (Figure 2.18).  The spins will begin to diphase and produce the initial FID.  

After a time, τ1, a π pulse is applied to refocus the echo.  This will flip the spins 180° in 

the x-y plane effectively causing them to precess in the opposite direction.  Spins that 

were separating are now converging toward the same position causing the refocused 
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signal.  Finally an additional π pulse is applied to refocus the echo in the opposite 

direction.  This is the observed echo and it is separated from the π pulse by τ2.   

 

 

Figure 2.18
†
 Four pulse protocol for a DEER experiment. The magnetization behavior is altered by a π/2 

pulse, followed by a π pulse which refocuses the echo, and an additional π pulse which reorients the phase 
of the echo.  At a separate pump frequency, a π pulse is applied to measure dipolar coupling between spins 
of pump frequency and spins of the observe frequency. 
 
For the DEER experiment, it is necessary to apply two microwave frequencies to the 

sample, one to observe and one to pump.  This protocol will allow for the detection of 

dipolar interactions between spins at the pump frequency and spins at the observe 

frequency.  After the observe π pulse, a π pulse at the pump frequency is applied (Figure 

2.18).  This indicates that while the observe frequency spins are being refocused, the 

spins at the pump frequency are being flipped.  Changes in the magnetization of these 

spins perturb the spins at the observe frequency only if they are dipolar coupled.  Any of 

these pump frequency dependent changes in the observed frequency contribute to the 

EPR signal.  Additionally, the start of the pump π pulse is varied by time t as the 

refocused echo is detected.  By varying this pulse through time, the influence of the 

coupling on the final signal can be determined. 
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The oscillation of the refocused echo intensity contains the information describing 

the dipolar coupling.  The echo will decay with TM, the phase memory time, meaning that 

as the distance becomes larger oscillations become slower.  TM is primarily a function of 

T2 relaxation and must be extended significantly to complete an actual experiment.  This 

is accomplished by conducting the experiment at low temperatures around ~80 K.  Since 

the samples are frozen at this temperature, the resulting data is a static representation of 

isotropically averaged spins [206,210].  The amplitude of the observe spin echo is plotted 

as a function of t and the periodicity of oscillations is related to the distance.  The rate of 

signal decay to the baseline determines the width of the distance distribution (Figure 

2.19). 

 

Figure 2.19 Relationship between the DEER modulation and the distance dependent dipolar coupling.  A) 
The oscillation frequency of the DEER signal is related to the distance between paramagnetic species.  B) 
Conversion between the time domain DEER signal and frequency domain Pake pattern can be completed 
with Fourier transformation.  C) Distance determination can be obtained by Tikhonov regularization and is 
reported as distance distribution as a function of probability. 
 

Distance information can be extracted by Fourier transforming (FFT) the signal into the 

frequency domain to obtain the Pake spectrum.  Alternatively fitting routines like a 

parameterized Gaussian model or Tikhonov regularization can be used to analyze the 

DEER signal [210].  Tikhonov regularization simulates the time domain data to fit the 

experimental data and balances fit uniqueness with the smoothness of the resulting 

distance distribution.  



72 

Distance distributions obtained from DEER analysis facilitate interpretation of the 

protein conformation as well as the direction and amplitude of any conformational 

changes.  Combined with the methods of CW EPR, these techniques provide a wealth of 

information on the environment, position, and motion of spin labeled side chains.  In 

scanning experiments where spin labels are introduced sequentially along the protein 

sequence, the information from these parameters can also result in a structure of medium 

resolution at the level of backbone fold [211,212].  These methods are tried and true, as 

changes in the EPR parameters and distances have been shown to reflect domain 

movements and conformational changes in many protein systems 

[194,207,212,213,214,215,216].  Obtaining this type of structural information on proteins 

is so important because the forms and dynamics of proteins govern their functions. Since 

proteins of any living system are the driving forces to all biological processes, this 

information is essential for deciphering molecular mechanisms.   

 

The site directed spin labeling method has experimental advantages and limitations 

For the study of proteins by EPR spectroscopy, an MTSSL probe can provide the 

necessary unpaired electron.  In this labeling technique, a probe is conjugated to a 

cysteine residue by disulfide linkage.  Any native cysteines must be replaced with non-

cysteine residues, then a cysteine at the site of choice must be introduced.  Any site can 

be mutated to cysteine and reacted with a spin label using the site directed spin labeling 

(SDSL) method (Figure 2.20). 
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Figure 2.20 Site directed spin labeling method.  A) A desired residue, in this case a phenylalanine is 
mutated to a cysteine by standard mutagenesis techniques.  B) The sulfur in the cysteine residue reacts with 
the spin label.  C) The resulting spin labeled side chain is linked through a disulfide bond. 
 

Through standard mutagenesis techniques, the codon for a desired residue is changed to a 

cysteine codon so the expressed protein will contain the cysteine replacement.  The sulfur 

moiety reacts with the MTSSL to produce the spin labeled side chain.  The physical 

properties of some side chains are essential to protein fold and the spin label may perturb 

interactions with surrounding atoms.  However, an investigation of T4 lysozyme found 

that only core residues are affected by labeling and that the thermodynamic perturbations 

were at the level of those found for natural amino acid substitutions [194].  Spin label 

side chains are generally well tolerated and the vast majority of sites can be labeled with 

this method.  Because of their local environments, some sites label more efficiently than 

others and the labeling efficiency affects the experiment.  Since the EPR spectrum 

reflects the total spin population, poor labeling will result in a low signal to noise ratio.  

In the circumstance of poor labeling, it can also be difficult to remove excess unbound 

label from the sample which will contribute to the EPR lineshape.  For DEER 

measurements, excess free spin label is too dilute to be problematic, as the signal arises 

only from dipolar coupled spins.   
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 Typically numerous sites on a protein need to be investigated to obtain a complete 

picture of protein conformation.  Since each site investigated with SDSL-EPR 

necessitates a new protein mutant, the method requires expression and purification of 

many proteins.  This is potentially a serious limitation for proteins which do not express 

in adequate yield or require extensive purification protocols.  It is necessary to be able to 

produce purified proteins in a high throughput manner.  That taken into consideration, 

EPR experiments only require a small amount of protein (as little as 100 pmol) compared 

to other structural techniques.  These experiments also have the advantage of observing 

proteins in solution.  Although the data would be considered low resolution compared to 

an X-ray structure, the more native-like environment allows for investigation of protein 

dynamics.  Proteins are not static figures, they exist in multiple conformations and their 

movements define their molecular mechanisms.  Although EPR experiments to measure 

interprobe distances are comparable with a FRET or homotransfer FRET method, EPR 

has the advantage of reporting multiple distances and their distance distributions while 

FRET reports a single distance that assumes an average dipole orientation of the two 

probes [217].  EPR also possesses advantages over other dynamic methods such as 

nuclear magnetic resonance (NMR) because there is no system size limitation.  However 

EPR is synergistic with other structural methods because having a high resolution 

structure of the protein fundamentally expedites experimental design and interpretation.  

EPR data is unique in its ability to fill the gap between structural snapshots and dynamic 

behavior of proteins.  Many model systems have been investigated with this method 

[194,207,212,213,214,215,216] and it is now widely used to study systems including 

channels, transporters, and receptors as well as soluble proteins [213,214,216].  SDSL-
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EPR is ideal for CaMKII investigation because of the profound changes in backbone 

structure and inter-domain distances associated with its mechanism of activity. 
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CHAPTER III 

 

METHODS AND BIOCHEMICAL CHARACTERIZATION 

 

Introduction 

 For SDSL-EPR, it is essential to find protein expression and purifications systems 

which are of high yield, speed, and quality. Since a high throughput CaMKII system had 

not previously been developed, it was necessary to optimize the expression cell line, 

vector, and gene as well as the purification process.  Many of the seemingly endless list 

of possibilities for these variables were investigated and eventually boiled down into one 

straightforward protocol.  The final protocol is one solution for expression and 

purification and is certainly not unique.  Although determining what will work is a trial 

and error method, it is the physical properties of the DNA, the translated protein, and the 

cellular environment which dictate success.  A wealth of information was obtained in 

decoding the details of what worked as well as what didn’t work.  These details are 

described in this chapter.  Beyond this, the rationale for mutagenesis and other alterations 

of the optimized protein are presented.  Finally data from biochemical analyses are 

described to demonstrate that protein function and structure is preserved under the 

indicated modifications. 

 

The mouse CaMKIIα isoform is unstable during bacterial expression 

 The optimization of CaMKII expression began with a mouse CaMKIIα isoform.  

This isoform is highly expressed in the brain and has been well characterized by the 
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Colbran laboratory [31,218].  If at all possible, it is preferred to work with mammalian 

proteins, since their physiology is the most similar to human proteins.  This particular 

protein is extremely highly conserved, with 99.8% homology to human CaMKIIα.  

Previously the expression was performed in Sf9 insect cell cultures by way of 

baculovirus infection.  Although these cultures yield sufficient amounts of active protein, 

they take weeks to prepare.  Therefore, the first goal was to express the protein in a 

bacterial cell line, in which expression takes mere hours.  The protein was cloned into 

two pET system vectors, pET28b+, which contains codons for an N-terminal six histidine 

affinity tag, and a tagless pET21a. These vectors were chosen because of their superior 

T7 promoter system. The T7 promoter tightly regulates foreign protein production and 

prevents any toxicity from uninduced expression of the protein during basal cell growth.  

Induction by IPTG then turns on expression when the culture is at a desired density.  

These vectors were expressed in several cells types and the growth and induction were 

varied in attempt to find the best expression conditions.  Many conditions were tried, and 

all resulted in substantial protein degradation during expression. Figure 3.1 illustrates the 

protein cleavage for just two representative expression trials for mouse CaMKIIα.  
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Figure 3.1 Western blot of mouse CaMKIIα expression.  This figure illustrates western blots of two 
separate expressions, one in BL21(DE3) cells (left panel) and the other in Rosetta 2 cells (right). The lanes 
feature time points taken after a 1 mM IPTG induction.  Numbers on the left side of the blots indicate 
positioning for molecular weight markers.  The 55 kDa CaMKII control is purified protein expressed in Sf9 
cells. 
 
Full length CaMKII protein will be observed at a molecular weight of 55 kDa on a 

protein gel.  When comparing the expression in BL21(DE3) cells to the 55 kDa control 

lane, virtually none of the expressed protein is uncleaved (Figure 3.1, left panel).  

Although Rosetta 2 cells, which are deficient in lon and ompT proteases, had significantly 

more full length protein than BL21(DE3), the yield was still too low for SDSL-EPR 

(right panel).  For a complete list of CaMKII expression trials of all tried cell types and 

vector varients, see Appendix A. 

Proteins can be truncated because of a natural abundance of a compatible 

protease, the efficiency of which can be increased if there is also a toxic effect of the 

expressed protein, instability of the protein, or a combination thereof.  Several cell lines 

with reduced proteases were tried and protease inhibitors were even added to the 

expression media.  These measures seemed to be inconsequential indicating protease 

activity could not be controlled.  To reduce susceptibility to cleavage, we addressed 
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possible toxicity toward native E. coli proteins by this promiscuous enzyme’s 

phosphorylation potential.  The previously used technique of knocking out catalytic 

activity with a D135N mutation was employed [138], however truncation was not 

reduced. This indicated any toxicity was not relieved by inactivating the enzyme.  Finally 

several truncated variants were engineered to intentionally omit the C-terminal 

association domain and its connecting flexible linker, where a large portion of proteolysis 

was believed to be occurring.  The expectation was that CaMKII would not be recognized 

by proteases without this unfolded portion.  Omission of this domain also simplifies the 

system to a monomer protein instead of the oligomer holoenzyme.  The advantages for 

completing EPR experiments in this system will be described later in this chapter.  

During expression of this monomer protein, the degradation was somewhat decreased but 

the activity was poor.  Activity was determined by the protein’s ability to incorporate a 

radioactive gamma phosphate from [γ32P] ATP onto either syntide-2, a synthetic peptide 

based on the glycogen synthase phosphorylation site, or autocamtide-2 (AC-2), a peptide 

based on the regulatory domain (see Appendix B for experimental method details).  Since 

the protein was not easily purified, assays were completed on lysed bacterial expression 

culture.  The activity values obtained were indistinguishable from blank samples which 

contained buffer instead of cellular lysate.  Extensive truncation and lack of activity 

indicated there may have been structural instabilities within the protein and we speculate 

that the protein was not able to fold properly in bacterial expression cells.  The cellular 

response to such a problem would likely be degradation of the unfolded proteins to 

prevent protein aggregation. 
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10 histidine C. elegans CaMKII is the most efficient expression construct 

Since the truncated C. elegans CaMKII homolog consisting of catalytic and 

regulatory domains was crystallized, it was a good candidate for stability.  The catalytic 

and regulatory domains of this protein are 78% identical to human CaMKIIα, meaning its 

structure is highly conserved.  In attempt to express an uncleaved protein, the C. elegans 

gene representing these domains was inserted into the pGEX vector which contains 

codons for an N-terminal glutathione S transferase (GST) tag. The high solubility of this 

tag was expected to make CaMKII a less attractive target for degradation. Simultaneously 

a 6 histidine-GST tagged construct was also created to give multiple options for protein 

purification. Paradoxically SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel 

electrophoresis) analysis of this system suggests that the tag itself gets cleaved from the 

protein during expression, rendering it completely useless.  On the other hand, the 

expression of GST-CaMKII was very high and the protein was uncleaved, however the 

tag removal proved to be an impractical catch twenty two.  EPR experiments necessitate 

the removal of this tag, as it contains several native cysteines which will label and 

contribute to EPR signals.  Removal of the tag requires temperatures non-permissive for 

retention of CaMKII activity.  Lowering temperatures to retain protein folding prevented 

thrombin cleavage of the GST tag.  This avenue was quickly abandoned, and a histidine 

tagged CaMKII expression was investigated. The gene was cloned into pET28b+ and 

expression was carried out similarly as described [138] except for a modified 16 hour 

induction.  Expression was high and truncation was reduced, showing only minor 

cleavage products in addition to the proper length protein.  For this protein it is not 

necessary to remove the histidine tag because it is relatively small and contains no 
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labeling sites.  Ni affinity was used to carry out protein purification in combination with 

gel filtration chromatography.  This straightforward protocol requires only two 

chromatography steps and allows for labeling in between (Figure 3.2).   

 

 

Figure 3.2 Protein purification method.  For purification of histidine tagged C. elegans CaMKII, culture 
lysis is first applied to a Ni affinity column.  The eluted proteins can be labeled with MTSSL and further 
purified by gel filtration.  For complete details on the protocol, refer to experimental methods. 
 
While this protocol yielded reasonably pure protein, a sharp mobile component was 

present in several EPR spectra which was feared to be a labeled impurity.  To increase 

selectivity, a 10 histidine (10His) tag was introduced to the N-terminus of the CaMKII 

gene by a Quik change protocol.  This was successful in increasing protein purity (Figure 

3.3) 

 

Figure 3.3 Comparison of protein purity of 6His and 10His CaMKII proteins.  A) Proteins for the 307 EPR 
mutant were cloned into constructs containing either a 6His or 10His N-terminal tag.  SDS-PAGE analysis 
of protein purification shows cleavage of CaMKII and extra impurities in the 6His purification.  B) 
Overlaid spectra from show only minor changes in line shape indicating the presence of extra impurities 
has little effect on the EPR signal. 
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SDS PAGE and western analysis of the 6- and 10-His tagged C. elegans proteins 

revealed two CaMKII bands, one at the appropriate size of 42 kDa and a slightly smaller 

cleavage product.  The purification of the 6His protein also resulted in the copurification 

of a small impurity which was not observed in 10His protein purification.  With the initial 

concern that impurities were causing the sharp mobile portion of the spectrum, we 

compared the EPR spectra of 6 and 10His proteins.  We found that the impurity actually 

contributes very little to the spectrum.  Spectra for 6 and 10His proteins are overlaid 

showing that only very minor differences between their lineshapes exist (Figure 3.3B).  

This indicated that the mobile portion of the spectrum is contributed by CaMKII and not 

the impurity.  Nevertheless, the 10His protein was preferred over the 6His because of its 

superior performance during purification. 

 

Protein cleaved during expression is not easily separated by purification techniques 

 Although the 10His proteins are more easily purified, they do undergo cleavage 

during expression at a site near the C-terminus.  C-terminal truncation of CaMKII has 

been established previously in E. coli expression [219] and analysis by mass 

spectrometry  reveals cleavage is occurring at end of the regulatory domain near residue 

318 (Figure 3.4, see Appendix B for method details).   
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Figure 3.4 SDS-PAGE and mass spectrometry of analysis of purified C. elegans CaMKII.  A) A 
Coomassie stained gel of purified C. elegans CaMKII catalytic and regulatory domains shows a minor 
truncated product copurifies with the appropriately sized 1-340 protein.  B) Sequence of CaMKII 1-340.  
The red fragments were recovered from mass spectrometry analysis of the truncated band excised from the 
gel while the underlined peptides were recovered from mass spectrometry analysis of the major band 
corresponding to CaMKII 1-340.  
 
The detected peptide fragment corresponding to the most C-terminal sequence from the 

truncated protein band ended at residue 318.  Because the crystal structure of this same 

protein is not resolved beyond residue 318 [138], this region is likely unstructured 

making it difficult to solve and prone to proteolysis.  Additional analysis of these two 

purification products was completed using light scattering.  During gel filtration, the 

truncated product peak overlaps significantly with the 1-340 peak but is slightly shifted to 

a longer retention time because of its smaller size.  We intentionally selected for the 

truncated peak by collecting accordingly, and obtained a sample with a significant 

amount of truncated product relative to the 340 product.  Analysis by light scattering 

revealed the two overlapping peaks with experimental molecular weights of 41010 and 

34440 Da.  These correspond well to weights calculated for residues 1-340 and 1-318 

respectively. 

 



84 

 

Figure 3.5 Light scattering analysis of CaMKII truncation. The truncated CaMKII protein and the 
appropriately sized protein are revealed as two overlapping peaks in gel filtration (black line).  The scatter 
plots represent the average particle size as determined by light scattering for the 1-340 protein (peak 1) and 
the truncated protein (peak 2).  The average molecular weight was determined and compared to the 
calculated weight for each protein (right). 
 

Instead of trying to prevent cleavage, efforts were turned toward finding a method 

to separate the cleavage products.  In order to attempt to obtain a purified protein without 

cleavage products, a His tag was introduced onto the C-terminus.  The principle behind 

this idea was that the cleavage site was close to the C-terminus.  The Ni affinity would 

therefore select for the uncleaved desired protein as well as the extremely short C-

terminal cleavage product.  Since the difference in size of these two polypeptides is 

substantial, they should be easily separated with sizing chromatography.  Unfortunately 

not all good ideas come to fruition, as the dynamics of the C-terminal region were 

influenced by the tag.  EPR spectra for site 296 are shown in Figure 3.6 for N- and C-

terminal His tagged proteins.  Comparison of lineshapes reveals subtle differences in the 

probe dynamics of these two labeled proteins.  Regardless, this protein was not suitable 

for EPR studies due to its low expression. 
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Figure 3.6 Comparison of N- and C-terminal histidine tags on EPR spectra at site 296.  Constructs of EPR 
mutant 296 were created with either an N-terminal 10 histidine affinity tag or a C-terminal 6 histidine tag in 
attempt to purify protein from its cleavage product.  The proteins were expressed, purified, labeled and 
analyzed with EPR.  The differences seen in spectra indicate the C-terminal tag (red) influences protein 
dynamics at this site. 
 
 For many protein systems, additional chromatography steps can be performed in 

attempt to separate unwanted products from the desired protein. Unfortunately, other 

chromatography techniques such as ion exchange could not be considered in this case 

because of the almost identical biochemical properties of the 1-340 and 1-318 proteins.  

At last the fact that cleavage could not be prevented during expression and could not be 

separated with standard ionic exchange or sizing chromatography was accepted.  Figure 

3.7 summarizes all of the constructs made for the optimization of protein expression and 

purification. 
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Figure 3.7 CaMKII construct diagram.  Expression optimization required the investigation of many 
different constructs to yield abundant high quality protein.  The most successful was C. elegans 10 histidine 
CaMKII, residues 1-340. 
 

 

Truncation of CaMKII during expression does not alter protein dynamics 

 Efforts were returned to the N-terminal 10His tagged C. elegans protein as it was 

the best for expression and purification.  Assessment of the consequences of having the 

truncation in our experimental system began. We observed that the degree of cleavage 

varied between mutants from virtually none up to ~15%.  The truncated residues (~319-

340) make up a variable linker region connecting regulatory and association domains.  

Although the truncation products retained the entire regulatory domain, we sought out to 

determine whether or not truncation would change features observed in our EPR spectra.  

In particular, we wanted to determine that the truncation was not causative for highly 

mobile components observed in all of our spectra for sites 302-309.  Using engineered 
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constructs consisting of residues 1-318, we verified that the truncation does not affect the 

EPR lineshapes at representative sites along the regulatory domain (Figure 3.8).   

 

Figure 3.8 EPR spectra of representative sites introduced into the 1-340 and the 1-318 backgrounds. The 
superimposable lineshapes demonstrate that the truncation does not affect the dynamics of the spin label. 
 

Spectra were nearly identical for sites 296, 300, 304, and 307 indicating cleavage of 

residues 319-340 does not alter the environments of the probes.  At this junction of 

optimization, it was not reasonable to adopt the 1-318 construct as the basis for EPR 

studies because it did not express as well as the 1-340 construct.  Therefore we completed 

studies with the 1-340 construct and we deemed it unnecessary to purify the 318-

truncated protein from the 340 desired protein.   

 

An inactive monomer protein system was necessary for EPR experiments 

 The studies presented here focus on the C. elegans CaMKII kinase monomer, 

consisting of the catalytic and regulatory domains (residues 1-340), the structure of which 

was determined previously (PDB 2BDW) [138].  The monomer system is not just a 

consequence of expression system complexities and limitations, but it is a necessary 

starting point for EPR studies. In addition to the advantage of having high resolution 

crystal structures for comparison [109,138], the monomer provides a simpler model from 

a spectroscopic perspective because it omits the complexities of holoenzyme intersubunit 

interactions.  For example, each singly labeled subunit in the twelve subunit holoenzyme 

has the potential for dipolar coupling with other labels.  Since the positioning of the 
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domains was unknown, experiments could not have been designed to avoid spin-spin 

coupling.  Spin label mobility will be masked by spectral broadening making it 

impractical to determine dynamics.  Furthermore interpretations of complex distance 

extrapolations may be problematic as it would be difficult to decipher which of the 

twelve subunits are interacting.  These complexities are eliminated by using the monomer 

system which has no potential for intersubunit interactions.  Without the association 

domain, monomer protein has been shown to be mechanistically relevant.  It successfully 

undergoes autophosphorylation and binds and phosphorylates substrates [31]. Since it can 

undergo the conformational changes associated with activation and can be expressed in a 

high throughput manner, the monomer system is the ideal starting point. 

To enable site specific incorporation of spin labels, single cysteine mutants were 

introduced in a cysteine-less CaMKII background hereafter referred to as WT*.  Native 

cysteines were replaced with residues found in homologs or with alanine; C30A, C64L, 

C115A, C126I, C199A, C272A, and C289A.  We investigated the effects of this 

mutagenesis by measuring protein activity.  WT* specific activity, measured by 

phosphorylation of peptide substrates AC-2 and syntide-2, is similar to WT monomer and 

is comparable to that of WT mouse CaMKII holoenzyme and monomer (Table 3.1). 

Therefore the cysteine substitutions do not compromise the structural and functional 

integrity of the enzyme. 
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Activity (µmol/min/µg) 

Protein Syntide-2 Autocamtide-2 

 mouse CaMKIIα holoenzyme WT  5.62 ± 0.15 5.23 ± 0.12 

 mouse CaMKIIα 1-380 WT  7.13 ± 0.16 7.85 ± 0.07 

 C.elegans 1-340 WT  6.04 ± 0.76 4.86 ± 2.80 

 C.elegans 1-340 WT*  4.59 ± 0.05 4.29 ± 0.10 

 C.elegans 1-340 D135N* None detected  None detected  

 
Table 3.1. Activities of CaMKII variants. Activities of CaMKII variants determined by incorporation of 
radio labeled phosphate from [γ32P]ATP onto the peptide substrates autocamtide-2 and syntide-2 (n = 2). 
The variations in specific activities between the different CaMKII are within values observed 
previously[220].  For D135N* the levels of radioactivities were similar to control samples without added 
enzymes. 
 
Furthermore, structural parameters deduced from far and near-UV circular dichroism 

(CD) analysis and analysis of the melting temperature are consistent with retention of 

secondary and tertiary structures.  At far UV wavelengths, the peptide bond is detected 

which gives an indication of the collective secondary structure of CaMKII (Figure 3.9 A).  

The negative bands at 222 and 208 nm, typically used as an indicator of alpha helical 

structure, are unchanged when comparing WT (black) and WT* proteins (dark gray).  

Additionally near UV wavelengths excite the aromatic chromophores in a protein and 

give an overall indication of its tertiary structure. Near UV spectra for these proteins are 

also nearly identical.  Finally, melting experiments were conducted by observing the CD 

signal at 222 nm under increasing temperatures.  These results indicate that the stabilities 

of the proteins are comparable with melting temperatures around 65°C.  We conclude that 

these proteins are properly folded and the native cysteines are non essential for protein 

function. 
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Figure 3.9 CD analysis of CaMKII mutagenesis.  A) Far- UV and B) near-UV circular dichroism analysis 
for the wild type and cysteine-less CaMKII (WT*) along with their D135N inactivated counterparts. The 
spectra are almost superimposable confirming the lack of substantial structural changes due to the cysteine 
substitutions. C) Stability curves demonstrating the lack of substantial effects on melting temperature by 
the cysteine substitutions.  
 
 

Among CaMKII’s impressive abilities to regulate itself is the autophosphorylation 

capability.  Autophosphorylation causes addition of negative charges and bulk at specific 

Thr residues, many which have been characterized and some that have only been 

proposed.  These reactions only require the presence of Mg2+ and ATP to alter the 

conformation of the protein.  Since the goal of this project is to decipher individual 

intermediate conformations, any heterogeneity introduced by varying states of 

autophosphorylation must be avoided.  Since autophosphorylation has been shown to 

occur during bacterial expression at site 286 [109], we wanted to avoid possible 

phosphorylation at site 286 and/or other autophosphorylation sites such as 253, 305, and 

306.  To circumvent heterogeneous phosphorylation, we adopted the strategy of replacing 

the highly conserved D135 in the catalytic loop [221] with asparagine.  This mutation 

inactivates WT* [138] creating a protein hereafter referred to as D135N*.  Analysis by 

mass spectrometry confirmed the absence of detectable phosphorylation in the D135N 

background.  Peptides spanning the regions of the well known Thr286, Thr305, and 

Thr306 autophosphorylation sites were abundantly represented in the analysis. No 

phosphorylation was observed in these peptides or at any other sites protein wide.  This 
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analysis indicates that the D135N mutation prevents autophosphorylation and also reveals 

that CaMKII is not phosphorylated by a native bacterial kinase during expression.  The 

D135N substitution does not change the CD signatures of the CaMKII monomer (Figure 

3.9A,B) or the half-maximal temperature of the melting curve but increases the 

cooperativity of unfolding (Figure 3.9C). We speculate that the apparent non-cooperative 

WT unfolding reflects heterogeneous autophosphorylation leading to multiple protein 

populations, each with a different melting temperature. 

 

D135N* and T286E* stably bind calmodulin 

 CaM binding is a requirement for substrate phosphorylation by CaMKII.  Active 

WT and WT* proteins were able to phosphorylate substrates (see Table 3.1), meaning 

that they are to first bind CaM for activation.  Since this type of activity cannot be 

observed for the D135N* inactivated protein, a cosedimentation assay was used to test 

the protein’s ability to stably bind CaM.  For this assay, purified D135N* protein was 

incubated with an excess of CaM-agarose resin and equilibrated in the presence of 

saturating Ca2+.  Resin was washed to remove any unbound protein and analyzed with 

SDS-PAGE.  Figure 3.10A shows a Coomassie stained gel of the experiment.  In lanes 1, 

2, and 3 are the D135N* purified protein loaded as a control, the CaM-agarose pellet 

after incubation with D135N* and washing, and the supernatant from the incubation 

respectively.  Lane 2 shows the presence of the D135N* protein indicating that it was 

able to stably bind the CaM-agarose.  Lane 3 shows no D135N* protein indicating that all 

of it was depleted from the supernatant during the binding incubation and that complete 
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binding was achieved.  In parallel, the same conditions were used with active wild-type 

mouse CaMKIIα as an assay control.  Lanes 4 through 6 show similar binding results. 

 

Figure 3.10 Cosedimentation assays for D135N* and T286E* engineered proteins.  A) Lane 1 contains 
purified protein used for the cosedimentation assay to test CaMKII binding to CaM-agarose resin.  Lane 2 
illustrates that D135N* protein is associated with the CaM-agarose after incubating and washing in the 
presence of Ca2+.  Depletion of the protein from the supernatant in lane 3 suggests complete binding.  
Lanes 4,5, and 6 show results with control mouse CaMKIIα full length wild type protein. B) The 
experiment in panel A was repeated with protein containing the T286E phosphorylation mimic. 
 

To investigate the conformational changes induced by Thr286 phosphorylation, it 

was required to introduce in a phosphomimic T286E mutant on the D135N* background. 

The nomenclature used for this mutant is T286E*.  This mimicry approach is necessitated 

by the expected heterogeneous autophosphorylation [127,222] in the WT* enzyme which 

would complicate interpretation of the EPR data.  This approach allowed us to evade 

autophosphorylation at any undesired residues but also to avoid incomplete 

autophosphorylation of the desired site.  With the T286E mutation, all proteins will have 

a charge at site 286 resulting in a completely homogeneous system.  However, it should 

be noted that introduction of negative charge by the T286E mutation does not fully mimic 

the effects of a phosphate group, and local environment of the T286E* protein may be 

somewhat different from the Thr286-phosphorylated kinase. Cosedimentation assays 

were completed on T286E* to assess its CaM-binding abilities (Figure 3.10B).  Similarily 
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to the D135N* protein, T286E* was able to stably bind calmodulin.  These assays 

demonstrate that mutagenesis of native cysteines, introduction of the T286E 

phosphorylation mimic, and/or truncation of the protein do not significantly impair the 

protein’s ability to stably bind CaM.   
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CHAPTER IV 

 

 
CaMKII CONFORMATIONS OF ACTIVATION‡ 

 
 

Rationale for EPR studies 

Within the deceptively short 40 amino acid stretch that makes up the regulatory 

domain, there is a structural basis for the regulatory capacities of CaMKII.  

Biochemically it is known to be involved in autoinhibition interactions with the catalytic 

domain and also contains a self-recognized substrate sequence which when 

autophosphorylated confers autonomous activity.  This sequence is not phosphorylated 

within its own subunit, but rather by a neighboring subunit within the oligomeric 

holoenzyme assembly [157].  How is it that this sequence fits into the active site of a 

neighboring catalytic domain but not within the catalytic cleft of its own subunit?  

Furthermore autophosphorylation of the CaM-binding region abrogates binding and is 

known to occur within a single subunit.  This implies an opposite effect where the CaM 

binding region of the regulatory domain is not recognized by a neighboring subunit.  

These studies raise the concept that the regulatory domain is highly promiscuous, able to 

interact with the catalytic domains in multiple conformations correlating to several 

discrete intermediates.  

Even with several crystal structures of individual domains, there is no 

unambiguous agreement on the conformation of the autoinhibited, apo intermediate.  

Biochemical analysis and structures of human kinase domains consisting of catalytic and 

regulatory domains predict the regulatory domain contacts the catalytic cleft.  In contrast 

_____________________________________________________________________________________________________________________________________ 

‡The majority of the text and figures described in this chapter are published in Hoffman et al., 2011 [223]. 
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the crystal structure of the C. elegans kinase domain depicts regulatory domains of 

adjacent monomers are involved in a coiled coil dimeric interface (refer to Chapter I for a 

detailed description of this model).  Existing crystal structures of monomeric kinase 

domains have also been extrapolated to mechanistic models of cooperative Ca2+ sensing 

and catalytic activation of the holoenzyme [108,109,138]. Experimental testing of these 

models in solution in the absence of constraints imposed by the crystal lattice is essential 

for an in-depth understanding of the complex landscape of holoenzyme activation.  

Motivated by these conflicting models and the dearth of available information 

about conformational changes associated with activation, we completed the first analysis 

of regulatory domain dynamics in solution using systematic spin labeling and EPR 

spectroscopy [192,193] of monomeric C. elegans CaMKII [223].  The first task was to 

define the backbone conformation of the autoinhibited regulatory domain to confirm or 

refute the controversial coiled coil hypothesis and describe the mechanism of 

autoinhibition.  This work was designed to address this and other mechanistic questions 

of the biochemically proposed activation pathway.  What is the amplitude and nature of 

the conformational changes that occur upon CaM binding? What changes take place in 

catalytic domain induced by the release of the regulatory domain during activation? What 

conformational changes are required for the onset of Thr286 mediated autonomous 

activity? Do the Thr305/Thr306 phosphorylation charges necessary to prevent CaM 

binding also cause structural changes in the regulatory domain?  We monitored 

conformational changes of the regulatory domain throughout putative biochemical 

intermediates; CaM bound, Thr286 phosphorylated, CaM bound and Thr286 

phosphorylated, and Thr305/Thr306 phosphorylated to address these outstanding 
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mechanistic questions.  Additionally, initial studies of the conformational rearrangements 

of the catalytic domain were initiated, giving preliminary evidence for the regulatory 

effects on the catalytic domain. 

For these experiments several Cys mutants were introduced into the regulatory 

domain of the inactivated D135N* monomer protein. Spin labeled CaMKII mutants were 

analyzed by EPR spectroscopy under conditions designed to stabilize the specific 

intermediates on the activation pathway. Conformational changes underlying the 

transitions between these intermediates were deduced from analysis of spin label mobility 

and proximities in spin label pairs. The mobility of a spin label refers to dynamic modes 

on the nanosecond timescale that average the anisotropic tensors of the spin labels. These 

include rotation around bonds that tether the label to the backbone and large amplitude 

motion of the backbone [194,201,212,224] (refer to Chapter II for details). The overall 

tumbling of the 40 kDa CaMKII monomer has a mimimal contribution to the EPR 

lineshape. This chapter describes the secondary structure, tertiary interactions, and 

backbone dynamics of the regulatory domain in discrete catalytic intermediates. Our 

results reveal the structural and dynamic changes underlying activation by Ca2+/CaM and 

Thr286 autophosphorylation and suggest a model of CaMKII holoenzyme activation 

which is described in Chapter V.  

 

Dynamic equilibrium of the regulatory domain in the apo intermediate  

Although the C. elegans autoinhibited non-phosphorylated kinase domain 

(referred to hereafter as the apo intermediate) crystallizes as a dimer, dimers could not be 

detected in solution using various analytical methods such as gel filtration and analytical 
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ultracentrifugation, even at moderate concentrations [109,138]. However, Rellos et al 

reported the detection of dimeric human CaMKII isoforms in solution at 4°C, with 

dissociation constants in the 200-600 µM range although the interface of this dimer does 

not seem to involve the regulatory domain [108]. Consistent with this observation, we 

found no spectroscopic evidence of regulatory domain dimerization at room temperature. 

Spin labels predicted to be within close proximity (Figure 4.1A) at the crystallographic 

coiled coil interface did not show evidence of spin-spin coupling. Site 302 of the 

regulatory domain directly faces its dimer counterpart in the structure with an inter-

residue Cβ-Cβ distance 5 Å while site 307 faces outward, perpendicular to the plane of the 

page with a 13 Å distance. 

 

Figure 4.1 CaMKII regulatory domain is not at a dimer interface.  Crystal structure of the C. elegans 

CaMKII kinase domain where two regulatory domains, each belonging to a different monomer, form a 
coiled coil (PDB 2BDW). Sites 302 and 307 are at the dimer interface separated by 5 and 13 Å 
respectively. The EPR spectra for CaMKII labeled at each site are shown for concentrations up to 200 µM. 
The absence of concentration-dependent broadening indicates that this dimer is not stable in solution. 
 

Short range distances lead to extensive dipolar coupling between the spin labels and 

broadening of the CW EPR spectrum [207,214]. No such spectral broadening was 

observed for these sites up to concentrations of 200 µM, above which the protein 

aggregated nonspecifically to form an insoluble precipitate. Thus, the coiled coil 
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regulatory domain dimer is not stable in solution at room temperature, although we 

cannot exclude the possibility that higher effective subunit concentrations in the 

holoenzyme (estimated at 3 mM) allow for this interaction [138]. However, consistent 

with our data, the coiled coil dimer was not observed in the multiple crystals of human 

CaMKII isoforms [108]. Thus, multiple lines of evidence using different experimental 

approaches suggest that the regulatory domain dimeric interface is an artifact of the 

crystallization of C. elegans CaMKII.  

In contrast to the rigid regulatory domain structure in the crystal, EPR lineshape 

analysis for a set of spin labeled mutants in this domain reveals evidence of multiple 

conformational states. In the R2 and R3 segments of the regulatory domain (residues 292-

297 and 298-314 respectively defined previously [109], Figure 1.4B), multiple 

populations of spin labels with vastly distinct mobilities are detected (Figure 4.2).  
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Figure 4.2 Apo state EPR spectra along the R2 and R3 segments of regulatory domain. A) and B) The 
lineshapes in the R2 and R3 segments show distinct evidence of at least two populations of spin labels with 
vastly different mobilities. A mobile population marked by the blue arrow reflects spin labels undergoing 
large amplitude/fast motion. Another population marked by the red circle reflects spin labels in restricted 
environments. 
 
Sharp components in these spectra (indicated by arrows in Figure 4.2A) reflect spin 

labels undergoing fast and large amplitude motion with ~1 ns effective correlation times 

(Table 4.1). This type of motion is indicative of an unstructured backbone and is 

inconsistent with an ordered α-helical backbone. Another spectral component (indicated 

by circles) arises from spin labels undergoing slower motion indicative of a sterically 

restricted environment. This spin label population cannot arise from the putative coiled 

coil since there is no evidence of spin-spin coupling (Figure 4.1).  
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Site  Correlation Time (ns) Classification  Prediction  

278  0.97  loop 

Loop  

279  0.91  loop 

282  1.52  loop 

284  0.73  loop 

285  1.59  surface  

Helix  

286  7.05  buried 

287  7.38 buried 

289  1.48 surface  

290  6.55  buried  

291  1.17  surface  

293  9.02  buried  

 Correlation Time (ns)  

Site τ1 (Slow Component) τ2 (Fast Component) % slow/fast 

296 5.59 1.15 89/11 

298 6.14 0.47 86/14 

299 1.88 1.11 30/70 

300 4.50 1.02 64/36 

301 2.77 1.05 40/60 

302 15.23 0.78 68/32 

303 4.96 0.71 66/34 

304 7.30 0.56 72/28 

305 4.42 0.86 71/29 

306 12.66 0.74 83/17 

307 34.55 0.55 88/12 

310 6.52 0.53 82/18 

312 3.82 0.48 76/24 

315 4.67 0.47 52/48 

 
 
Table 4.1 Correlations times calculated from MOMD simulations (spectral fits not shown) as described in 
the methods section.  For sites involved in the docking/undocking equilibrium correlation times are shown 
for the fast mobile and slow immobile populations as well as the relative percentage of each. For sites in 
the R1 segment, the correlation time describes the predominant motional component in the spectrum.  
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Rather, we interpret these results as evidence of an equilibrium between an 

undocked dynamic conformation (leading to fast spin label motion) and a structured 

conformation (leading to restricted motion), with the R2 and R3 segments docked to the 

catalytic domain presumably near the ATP binding site.  The EPR spectra capture two 

extremes of this equilibrium revealing that the underlying conformational change is slow 

on the EPR timescale, on the order of 100 ns.  Using nonlinear least-squares analysis (see 

Appendix B for method details), we determined the average rotational correlation time 

[202] and fraction of spin labels in each of the two populations (Table 4.1). For this 

analysis, the spectra were assumed to consist of two components, an undocked population 

correlating to spin labels undergoing fast isotropic motion and a docked population 

corresponding to labels with restricted anisotropic rotation.  Simulated spectra of each 

component were created by varying mathematical parameters used to describe the 

internal rotational motion of the nitroxide.  The appropriate simulated spectrum is 

reached when the parameters produce a simulation that converges with the features of the 

experimental spectrum.  For each experimental spectrum, “fast” and “slow” motion 

component spectra were summed in varying ratios to fit the EPR spectra for sites 302-

307.  Figure 4.3A illustrates the “fast” (green) and “slow” (orange) motion simulated 

spectra corresponding to the undocked and docked populations respectively.  The final 

simulated spectra (dotted gray line, Figure 4.3B) are made up of various percentages of 

each and are overlaid with the experimental spectra (black).  Simulating the spectra in 

this manner allowed us to determine the relative percentage of the docked and undocked 

population for each site.  We interpret these results to indicate that on average, the R3 

region of the regulatory domain is docked ~80% of the time.  There are differences in 
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percentage docked between sites which may be a result of SDSL substitutions for natural 

amino acids causing slight alterations in tertiary interactions. 

 

 

Figure 4.3 MOMD analysis of R3 docking-undocking equilibrium.  The EPR linesahpes in the CaM 
binding region were analyzed assuming two populations of spin labels with distinct motional parameters. 
Non-linear least squares fits of the experimental spectra yielded two component spectra at each site. The 
relative fraction of each component is shown in Fig. 4.6C. 
 

Lineshapes for spin labels in the R1 segment (residues 278-291) consist of single 

predominant components (Figure 4.4) demonstrating structural decoupling between R1 

and the rest of the regulatory domain. In particular, the spin label environment at residues 

286, 287 and 293 is restricted with lineshapes similar to those observed in protein 

hydrophobic cores (Table 4.1). The ordered backbone and solvent inaccessibility indicate 

that these residues are buried by contacts with the catalytic domain consistent with their 

local environments in the crystal structure (Figure 4.4C).  
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Figure 4.4 EPR spectra and correlation times of the R1 regulatory segment.  A) and B) EPR lineshapes in 
the R1 segment seem to arise from a predominant population of spin labels. The minor sharp component 
has contribution from unreacted labels. In the 285-293 segment, the mobility varies with periodicity 
indicative of an α-helix. Uniformly mobile lineshapes in the 278-284 segment are indicative of a loop 
structure.  C) The local environment of R1 residues in the crystal structure (PDB 2BDW) is shown to 
highlight the agreement with the EPR data. D) Inverse correlation times (τ -1) for sites in the R1 region 
plotted versus residue number. The correlation time was determined from non-linear least squares analysis 
of the EPR spectra. The superimposed sinusoid fit to the data has a 3.7 period. Thus, residues on the surface 
(green) (e.g. 289) have a large τ -1 while those at the interface with the catalytic domain (orange) have small 
τ

 -1. 
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Secondary structure of the regulatory domain 

In segments of secondary structure, spin label mobility varies as a function of 

residue number [194]. Quantitative analysis of spin label dynamics along the 284-293 

stretch of residues (R1 helix) reveals a periodicity strongly indicating an α-helical 

backbone (Figure 4.4A and Table 4.1). The phase of the helix is in concordance with the 

crystal structure (PDB 2BDW) [138], where the helix surface encompassing 286 and 287 

is docked against the catalytic domain (Figure 4.4C). Additionally, inverse rotational 

correlation times, τ-1, were plotted as a function of residue number and fitted with a 

sinusoidal function with 3.7 periodicity (Figure 4.4D).  The spin labels are uniformly 

mobile in the preceding 278-284 (R1 loop) segment, consistent with a local loop structure 

(Table 4.1 and Figure 4.4B). Analysis of spin label mobility from residue 296 through 

residue 307 is complicated by the multicomponent nature of the EPR spectrum. However, 

sharp and narrow spectral components for sites 299-301 (Figure 4.2B) indicate a loop 

structure (Table 4.1).  

The presence of helical secondary structures can also be deduced from 

proximities between i, and i+4 residues in consecutive helical turns.  The expected 5.5 Å 

separation between the spin labels should result in extensive broadening of the EPR 

lineshape due to strong dipolar coupling and direct overlap of the unpaired electron 

wavefunctions [207,225]. In contrast, flexible unstructured segments are characterized by 

average distances greater than 13 Å and broad distance distributions. Short range 

coupling was evident in the spectrum of spin label pairs introduced 4 residues apart in the 

285-293 region (Figure 4.5A) with a corresponding narrow distance distribution centered 

at 8 Å (Figure 4.5B). In contrast, (i, i+4) spin label pairs in the calmodulin binding 
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segment have a multimodal distance distribution consistent with a significant fraction of 

unstructured backbone with some α-helical characteristics (Figure 4.5C).  The amount of 

spectral broadening can be visualized by comparing a sum of singles spectrum, which is 

an average of spectra from each individually labeled site (Figure 4.5A, red), to the 

experimental spectra (black).  Gaussian distance distributions were extrapolated from a 

deconvolution method with the spectral fits shown in dotted gray lines.  Taken together, 

our EPR data is consistent with a solution structure in which the R1 helix is stably docked 

to the C-terminal lobe of the catalytic domain and the R3 segment is in equilibrium 

between docked and undocked conformations, thereby inhibiting the kinase in the 

absence of CaM binding.  
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Figure 4.5 (i, i+4) distances in the regulatory domain.  A) EPR spectra of (i, i+4) spin label pairs (black) 
along with the corresponding sum of singles (red) in the R1 and R3 segments. The sum of singles spectrum 
was obtained from a digital sum of the single sites spectra which do not contain contributions from the 
distance-dependent dipolar interaction. Each double mutant spectrum was fit (dashed line) as described in 
the methods section to a distance distribution between the two spin labels shown for the R1 (B) and R3 (C) 
portions of the regulatory domain. 
 
 

The CaM binding segment of the regulatory domain senses ATP binding.  

Since CaMKII activation is associated with increased affinity for ATP (see 

Chapter I), we hypothesize that the R3 dynamic equilibrium facilitates active site 

exposure for binding of both nucleotide and substrate. Thus, we predict ATP binding 

would shift the R3 equilibrium towards the undocked population.  Indeed, while the 

addition of ATP does not change the EPR lineshapes in the R1 segment, it increases the 

fraction of spin labels that are in the undocked conformation in the R3 segment.  Figure 

4.6A compares spectra in the presence (purple) and absence (black) of ATP and 

illustrates an increase in the sharp mobile peaks indicative of the undocked population. 
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Spectra for ATP-bound protein were simulated with MOMD to reveal the relative 

percentages of docked and undocked populations (Figure 4.6B).  When comparing to apo 

protein, the undocked population increases to comprise ~50% (Figure 4.6C) in the 

presence of ATP.  This allosteric modulation by ATP suggests that the R3 segment 

interacts with the nucleotide-binding lobe. Furthermore, it suggests that the R3 

equilibrium is not an artifact arising from the truncation of the association domain. Rather 

it represents a mechanism to modulate ATP affinity. 

 

Figure 4.6 ATP modulation of the CaM binding region.  A) EPR spectra of sites in the R3 segment in the 
presence of ATP (purple) overlaid with their corresponding apo spectra (black). B) The ATP-bound 
lineshapes were analyzed using the two-population model. The fast mobile component (green) and the slow 
immobile component (orange) for the ATP-bound spectrum are summed (gray dotted) to fit the 
experimental spectra (purple). C) Percentages of the fast and slow components for the apo CaMKII state 
(black bars) and the ATP-bound state (purple bars) for representative residues in the R3 segment  
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From these mobility data, we hypothesize that the R3 CaM-binding region of the 

regulatory domain is in a conformational equilibrium between two states. In one 

conformation, this region is docked against the catalytic domain presumably making 

contacts to the catalytic cleft. In the other, the domain is undocked and largely disordered 

making it accessible to solvent.  We measured distances between catalytic and regulatory 

domains to gain insight on the position of the regulatory domain in the docked state and 

the amplitude of motion in the undocked state. The measurement between site 125 of the 

catalytic domain and site 307 of the R3 region of the regulatory domain resulted in two 

distances; a short distance of 25 Å with narrow distribution and a longer distance of 42 Å 

with a broad distribution (Figure 4.7, all raw DEER data is in Appendix A). This is in 

concordance with our equilibrium hypothesis. We suggest that the short, narrow distance 

correlates with the docked conformation since site 307 would theoretically be positioned 

closely and tightly to the catalytic cleft. Undocking would place this residue farther away 

from the catalytic domain and result in a longer distance. The distribution of the longer 

42 Å distance is almost 30 Å indicating this region is quite flexible in the undocked 

conformation.  

Additionally, DEER data indicates that ATP binding shifts the relative docked 

and undocked populations to favor the undocked state. In the apo state the short distance 

comprises 60% of the signal and in the ATP bound state it is reduced to 20% indicating a 

large reduction in the docked population. Percentages calculated from MOMD 

simulations on CW data, which were averaged over multiple residues, show the same 

general trend, but differ in absolute value (Table 4.2). The average percentage of the 



109 

docked population was estimated at 80% compared to 60% from the DEER data. The 

ATP-bound state was estimated at 50% compared to 80% from DEER.  

 
Apo ATP 

%Docked %Undocked %Docked %Undocked 

125/307 DEER 
60 40 20 80 

MOMD Ave (302,204,206,307) 
80 20 50 50 

MOMD 307 
90 10 70 30 

 

Table 4.2 Percentage of docked and undocked populations of R3. 

In contrast, control distance measurements between catalytic site 125 and regulatory site 

287 of the R1 segment show one major distance at 36 Å which does not change in the 

presence of ATP (Figure 4.7B). This is consistent with mobility data implying each 

residue resides in one conformational state which is not modified in the presence of ATP.  
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Figure 4.7 Distance measurements between catalytic and regulatory domains.  A) Sites used for DEER 
distance measurements are highlighted in green in the crystal structure of human CaMKIIδ (PDB 2VN9).  
B) Distance measurements between catalytic site 125 and the R1 region of the regulatory domain from 
DEER experiments show little difference between apo (black) and ATP bound (purple) protein.  C) 
Distances measurements between 125 and 307 of R3 indicate a population shift toward a longer broader 
distance in the presence of ATP.  D) Across R1 and R3 regulatory segments, two major distances are 
detected and their ratio is modulated by ATP binding. 
 

Since we predict that the R1 segment of the regulatory domain is stably docked 

while the R3 region is undergoing a docking/undocking conformational equilibrium, we 

wondered if we could capture changes in distances between R1 and R3.  From mobility 

data we expect the undocked state to be in a flexible random coil conformation, however 

we do not know the conformation in the docked state. Our mobility data from the R3 

region is confounded by the presence of the undocked mobile population making 

secondary structure predictions for the docked conformation difficult (spectra in Figure 
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4.2A). For the doubly labeled 287/307 protein, multiple distances were observed in the 

apo state (black); the two major peaks at 28 and 36 Å (Figure 4.7D).  The peak at 28 Å 

correlates well with the distance in the crystal structure, calculated from Cβ-Cβ
 to be 29 Å.  

What is resolved of the R3 segment in the crystal structure of human CaMKIIδ (PDB 

2VN9) is docked in a random coil conformation.  Therefore, if we attribute the shorter 

distance to the docked conformation, the crystal conformation may be feasible for our 

solution protein.  We speculate the longer distance may correlate with the undocked 

conformation because the domain presumably has the ability to “stretch out” linearly 

since it is not restricted by tertiary interactions.  Additionally, this longer distance may be 

more heavily populated in the ATP bound state (red) consistent with the notion that ATP 

binding enhances the undocked population.  Although this interpretation is somewhat 

speculative from the distance distribution, the CW spectra clearly indicate an increase in 

mobility (Figure 4.7D, inlaid spectra).   Overall these results from DEER measurements 

serve to validate our model built from mobility data.  

To confirm that the shift in equilibrium arises from ATP binding, spin labels were 

introduced at representative sites along the regulatory domains in a D135N*/K42M 

background. The Lys to Met substitution, which is expected to abolish ATP binding, 

eliminates the changes in the mobile component in the R3 segment. In the apo form, the 

mutation shifts the equilibrium towards the docked conformation (Figure 4.8). Thus, it is 

likely that the shift in the R3 equilibrium results from ATP competing this segment away 

from the nucleotide-binding lobe.   
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Figure 4.8 K42M control experiments.  Spectra for protein containing the K42M mutation predicted to 
prevent ATP coordination are overlaid in the absence (black) and presence of ATP (purple). The ATP 
induced spectral changes are eliminated if the highly conserved Lys42 in the ATP-binding cleft is 
substituted by a methionine. 
 
 

Ca
2+

/CaM binding stabilizes an ordered helical conformation in the R3 segment.   

The CaM binding region, which is in equilibrium between unstructured and 

docked conformations in the apo state, undergoes conformational transitions upon 

Ca2+/CaM binding. For the (i, i+4) doubly labeled 300/304 mutant, binding induces 

spectral broadening relative to the apo state deduced from comparison of the lineshape 

and intensity (Figure 4.9).  
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Figure 4.9 A) EPR spectra of (i, i+4) spin label pairs revealing opposite changes in distance in the R1 
(286/290) and R3 (300/304) segments. Both the double mutant spectrum and that of the corresponding sum 
of singles are shown for the apo and CaM-bound intermediates. B) Spin label mobility changes in the R3 
region (red) and C) in the R1 region upon Ca2+/CaM binding. 
 
The corresponding distance distribution shifts to shorter distance indicating stabilization 

of α-helical structure (Figure 4.10B). Ca2+/CaM binding also leads to a reduction in the 
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mobile fraction of spin labels suggesting that most R3 residues are in tertiary contacts 

with CaM (Figure 4.9B).  These changes are consistent with the crystal structure of 

Ca2+/CaM bound to the corresponding CaMKII peptide (residues 293-310) (PDB 1CDM) 

[152] and a recent structure of the CaMKII/CaM complex (PDB 2WEL) [108].  

 

 

Figure 4.10 Consequences of CaM binding to the regulatory domain.  Representative distance distributions 
between (i, i+4) spin label pairs in the R1; 286/290 (A) and R3; 300/304 (B) segments. The distributions, 
consisting of the probability of given a distance P(r), were obtained from fits to the EPR spectra as detailed 
in the methods and shown in Figures S5 and S7A. Ca2+/CaM binding to R3 induces conformational 
changes along the entire regulatory segment evidenced by changes in average distance and breadth of the 
distribution (a, red trace) and increased dynamics of the R1 segment illustrated by sharper EPR lineshapes 
at sites 287 and 282 (C) and increases in the inverse correlation times (D). 
 
 

Ca
2+

/CaM mediated activation induces unfolding of the R1 helix.  

Concomitant with the ordering of the R3 helix, spin labels at a number of sites in 

the R1 segment (274-291) report substantial but reversible increases in mobility upon 
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Ca2+/CaM binding (Figure 4.9C). This is illustrated by residue 287 which in the apo state 

is buried at the interface with the catalytic domain (see above). Binding of Ca2+/CaM 

leads to a 10-fold decrease in rotational correlation time (Figure 4.10C, red trace). This 

loss of tertiary contacts with the catalytic domain is accompanied by unfolding of the 

helix, as evidenced by increased distance between spin labels at (i, i+4) residues (Figure 

4.10A).  In addition, representative site 282 which is surface-exposed in the neighboring 

R1 loop reports a 3-fold increase in mobility indicating an increase in the dynamics of the 

backbone upon CaM binding (Figure 4.10C). The increase in backbone flexibility and 

loss of tertiary contacts create an expanded loop spanning residues 278-291 surrounding 

the Thr286 phosphorylation site (Figure 4.10D).  

Unfolding in the R1 region is consistent with a recent crystal structure of CaMKII 

bound to Ca2+/CaM (PDB 2WEL) [108], in which the R1 segment is docked at the active 

site of an adjacent kinase monomer in the crystal seemingly positioning Thr286 for trans-

phosphorylation. Evidence of this interaction occurring in solution were also obtained 

from analytical ultracentrifugation at 40C revealing a rather moderate KD of 50-100 µM 

[108]. However, the mobile EPR lineshapes in the R1 segment are inconsistent with the 

formation of Ca2+/CaM/CaMKII dimers in solution. It is possible that these dimers are 

not stable at the concentrations used in the EPR experiments (50-100 µM) at 250C. In 

addition to the mobile EPR lineshapes, we failed to observe such dimers using light 

scattering (Figure 4.11) in disagreement with data reported previously [109].  
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Figure 4.11 Light Scattering on CaM-bound CaMKII.  Light Scattering analysis of WT* protein was 
analyzed in the presence of CaCl2 and 6-fold excess CaM.  One major peak was observed corresponding to 
an experimental molecular weight of 52400 Da.  The expected molecular weight for the WT*/CaM 
complex is 58005.2 Da indicating close agreement.  

 

DEER measurements made between the catalytic domain and the R1 segment 

indicate an increase in interprobe distance and distance distribution in the presence of 

CaM.  Protein labeled at 93/287 shows two short discrete distances of narrow distribution 

in the apo state which are less than 30 Å (Figure 4.12, black trace).  In the presence of 

CaM, the major distance component is centered at 45 Å with a broad 20 Å distribution 

(red trace).  This is consistent with mobility studies which indicate an undocking and 

unfolding of this region upon CaM binding, a prerequisite for T286 autophosphorylation 

and activation.   

 

Figure 4.12 Distance measurement in the presence of CaM.  A) DEER distance measurements were taken 
between site 93 of the catalytic domain and site 287 of the R1 regulatory segment. B) Distance distributions 
reveal an increase in distance length and breadth in the presence of CaM centered at 45 Å.    
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T286E phosphorylation mimic undergoes CaM-trapping phenomenon 

Autophosphorylation of CaMKII at Thr286 increases Ca2+/CaM affinity by more 

than a 1000 fold [147,151], and it has been established that the origin of this effect 

involves the transition of CaMKII-bound CaM to a high affinity “trapped” conformation 

[151].  Therefore, we assessed the mimicking ability of the T286E mutation by 

completing CaM binding and dissociation curves upon addition of EGTA chelator (see 

Appendix B for method details).  Previous studies suggest that the on-rate for CaM is not 

significantly varied under trapping conditions and that the difference in binding 

equilibrium is almost exclusively due to changes in off rates [151].  We therefore 

expected to see little change in CaM binding between proteins with and without the 

T286E phosphorylation mimic.  For these experiments, protein was not titrated to 

complete a binding reaction over time.  Instead protein samples with varying 

concentrations of CaM were prepared in the presence of saturating Ca2+ and an EPR 

spectrum was collected for each condition at equilibrium (Figure 4.11).  While overall 

changes in lineshapes are a reliable qualitative assessment, their peak heights can be used 

as a quantitative measure of spectral change.  The mobile portion of the highfield peak 

was monitored in these experiments (Figure 4.13, black arrow).  Here the overlaid spectra 

for the 287 binding experiment are shown to illustrate that the CaM binding dependent 

changes in EPR spectra occur in a dose-dependent manner.  The peak heights were 

plotted as a function of the CaM to CaMKII molar ratio and were best fitted with a 

sigmodial dose response function when comparing R2 values of various functions.  Peak 

height data was normalized to span 0 to 1.  It is important to note that the mobilities for 

the investigated sites 287 and 300 change in opposite ways; site 287 increases in mobility 
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with increasing concentrations of CaM as site 300 decreases in mobility.  Therefore their 

binding curves project in opposite directions.  

 

 

 

Figure 4.13 CaM-CaMKII association curves.  A) The lowfield mobile peak of EPR spectra representing 
various concentrations of CaM was observed.  The normalized height of the peak was plotted as a function 
of [CaM]/[CaMKII] ratio for proteins with and without the T286E phosphorylation mimic.  Sites 287 (B) 
and 300 (C) were investigated for CaM association.  Saturation for binding occurs at ~3 molar ratio. 
 

Data for proteins labeled at site 287 indicate that CaM binding saturation occurs at a 

lower CaM concentration with the T286E phosphomimic than without (Figure 4.13B).  

Although we expected the curves to be very similar, these data indicate that the protein 

containing the phosphomimic has a higher apparent affinity for CaM.  However we 

cannot rule out the possibility that the presence of the label immediately adjacent to the 

mimic may influence binding kinetics.  Any apparent affinity effect was not as prevalent 

in proteins labeled at site 300.  These experiments were not repeated.  Only one 

expression and purification was prepared for each protein and validation of these 

experiments awaits further investigations.  Nevertheless, the binding experiments show 

binding saturation at ~3 [CaM]/[CaMKII] for all curves indicating that saturating steady 

state measurements can be made above this concentration.  EPR experiments for CaMKII 

in the presence of CaM were carried out well about this threshold, at 6 [CaM]/[CaMKII]. 
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 To investigate dissociation, CaM was added to the CaMKII proteins in the 

presence of Ca2+ for complete binding.  Then samples were prepared with varying 

amounts of EGTA chelator which competes with CaM for Ca2+ binding.  It has been 

suggested that binding of CaM to CaMKII requires several Ca2+ sites to be occupied 

[152] so stripping away of even one Ca2+ ion can theoretically cause CaM to dissociate 

from CaMKII.  This would indicate that Ca2+ does not need to be fully chelated to have 

complete CaM-CaMKII dissociation.  The results of EGTA dependent dissociation are 

illustrated in Figure 4.14. 

 

Figure 4.14 CaM-CaMKII dissociation curves.  Dissociation of CaM from CaMKII was observed through 
changes in the low field mobile peak of EPR spectra taken under various concentrations of EGTA chelator.  
Peak heights are plotted as a function of [EGTA]/[CaCl2] concentration for sites 287 (A) and 300 (B) with 
and without the T286E phosphorylation mimic. 
 
For the proteins not containing the phosphomimic, a sigmodial dose response function 

was best able to fit the dissociation curves.  These curves saturate at low [EGTA]/[CaCl2] 

ratios, at approximately 0.3.  The addition of the phosphomimic causes a dramatic 

increase in required chelator to reach the same saturation.  Experimental fits for data from 

T286E* proteins were of exponential type.  These two phase functions may indicate that 

CaM dissociation is occurring by a different mechanism with the phosphomimic than 

without.  While it is difficult to speculate what mechanism is taking place, we can 

conclude that our mimic is indeed able to decrease the apparent dissociation of CaM.  
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With confirmation of CaM trapping ability, we concluded that the T286E mutation was 

appropriate for mimicking phosphorylation.   

 

Autophosphorylation induces unfolding of the R1 helix.  

Transition of CaMKII to the autonomously active intermediate is mediated by 

autophosphorylation at Thr286 which in the apo state is in a solvent inaccessible 

environment. To investigate the conformational changes induced by Thr286 

phosphorylation, we carried out mobility analysis of spin labels introduced in a 

phosphomimic T286E mutant on the D135N* background. This mimicry approach is 

necessitated by the expected heterogeneous autophosphorylation at Thr253, Thr305 and 

Thr306 [127,222] in the WT* enzyme which would complicate interpretation of the EPR 

data.  Spin labels report that the R1 helix surface buried by interactions with the catalytic 

domain in the autoinhibited apo D135N* monomer (i.e. residues 286, 287) becomes 

exposed in the T286E/D135N* mutant, with EPR lineshapes characteristic of an 

unstructured backbone (Figure 4.15A and Figure 4.16A).  
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Figure 4.15 Effects of the T286E mutation on the dynamics of the regulatory domain. A) Comparison of 
EPR lineshapes in the T286E mutant (green) to the CaM-bound intermediate (red) in R1. B) Binding of 
CaM to the T286E mutant leads to EPR lineshapes in the R1 segment consisting primarily of a highly 
mobile component. C) EPR lineshapes in the CaM-binding region. The spectrum of site 299 is consistent 
with increased contact between the spin label and CaM . 
 
Local unfolding of the helix is also manifested by increased distance between spin labels 

introduced at (i, i+4) residues (Figure 4.16B). Presumably, disruption of contacts between 

the R1 helix and the catalytic domain accounts for the lower melting temperature of 

CaMKII T286E/D135N* (Figure 4.16C). The similarity of the EPR parameters of the 
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T286E mutant to those observed in the Ca2+/CaM-bound conformation is consistent with 

the notion that Thr286 autophosphorylation prevents docking of the 287-289 segment to 

the catalytic domain thereby blocking reinstatement of autoinhibition after CaM 

dissociates. One notable difference is that the phosphorylation-mimicking mutation 

leaves the conformational equilibrium of the CaM binding R3 region intact.  

 

Figure 4.16 Conformational changes of T286 phosphorylation as mimicked by the T286E mutation.  A) 
Comparison of the inverse rotational correlation time of spin labels in three CaMKII intermediates showing 
the increase in dynamics of the R1 and R2 segments in the presence of Ca2+/CaM and in the T286E mutant. 
B) The phosphorylation-mimicking mutation T286E destabilizes the R1 helix leading to an increase in the 
width of the distance distribution between (i, i+4) spin label pairs. C) R1 helix unfolding is manifested by a 
shift in the melting temperature of T286E. D) Representative EPR lineshapes highlighting the increased 
dynamics of the regulatory domain in the CaM-bound T286E mutant.   
 
 

Phosphorylation of CaM-bound CaMKII further increases the flexibility of the R1 region.  

Autophosphorylation of CaMKII at Thr286 increases Ca2+/CaM affinity by more 
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than a 1000 fold [147,151]. While it has been established that the origin of this effect 

involves the transition of CaMKII-bound CaM to a high affinity “trapped” conformation 

[151], corresponding changes in CaMKII structure have yet to be defined. We observed 

distinct changes in backbone order upon binding of Ca2+/CaM to the T286E/D135N* 

mutant. EPR spectra in the R1 segment become sharper consistent with increased 

flexibility of the backbone (Figure 4.16D). While CaM binding alone induces an 

expanded loop conformation in the Thr286 region, addition of the phosphomimicking 

mutation causes further increases in mobility as illustrated by the spectral lineshape for 

site 289 (Figure 4.16D). With Ca2+/CaM bound to the T286E mutant, the spectra at sites 

278-291 (Figure 4.15B) are similar to those of unstructured peptides or intrinsically 

disordered proteins [226]. Thus we conclude the R1 helix experiences complete 

unfolding in the CaM-trapped intermediate (i.e. CaM-bound and Thr286 phosphorylated).   

Structural changes are also observed in the region consisting of residues 291-294 

that has been linked to Ca2+/CaM trapping [151].  Although CaM binding has no 

substantial effect on EPR lineshape at residue 293 in D135N*, CaM induces a distinct 

increase in mobility of residues 293 in T286E/D135N* (Figure 4.16D) suggesting that 

disruption of the tertiary contacts with the catalytic domain are involved in the trapping 

phenomenon. Significant changes in the immobile components are also observed at sites 

299 and 303 in the CaM-binding region (Figure 4.15C) suggesting that the T286E 

mutation affects the interactions between CaM and D135N* CaMKII.  

 

Phosphorylation of Thr305 and Thr306 does not significantly alter the R3 equilibrium 

Phosphorylation at T305 and T306 is known to prevent CaM binding, causing 
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insensitivity to calcium.  While there is no specific evidence for duel phosphorylation in 

the cell, it is not clear if autophosphorylation of Thr305 or T306 is more physiologically 

relevant.  To simplify the number of proteins which would need to be investigated and 

reduce the experiment effort, we chose to investigate both sites to determine the 

consequences of phosphorylation of these residues.  Representative sites along the 

regulatory domain were therefore investigated in protein containing a T305E/T306E 

double phosphorylation mimic.  Specifically we wanted to understand how the addition 

of negative charges may alter the docking/undocking equilibrium observed for this 

portion of the regulatory domain.  Spectra for site 307 report no significant changes in the 

relative population of each conformation (Figure 4.17A).  However, there is a small 

broadening of the spectrum over all, which indicates the label is experiencing a slightly 

different environment. Site 302 also reports an intact equilibrium with changes in tertiary 

contacts although the mobile and immobile populations become less discrete in this case.  

Site 287 of the R1 segment was also investigated and was not significantly affected by 

the phosphorylation mimics as expected.  Lastly site 293, which is implicated in CaM 

trapping, shows changes in tertiary contacts but remains largely docked as in apo protein.  

The T305E/T306E phosphorylation mimic does not disrupt the R3 docking/undocking 

equilibrium but causes minor changes in docking orientation.   
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Figure 4.17 Effects of the T305E/T306E phosphomimics.  A) Spectra for representative sites throughout 
the regulatory domain collected for apo protein (black), protein containing the T305E/T306E 
phosphomimics (magenta) and B) protein containing the T305E/T306E phosphomimics in the presence of 
ATP (navy). 
 

Since ATP binding alters the docking/undocking equilibrium of the R3 regulatory 

segment in protein lacking any phosphorylation, we investigated whether or not protein 

containing the T305E/T306E mimic would behave similarly.  Figure 4.17B illustrates 

spectra from protein containing T305E/T306E in the presence (navy blue) and absence 

(magenta) of ATP.  Similarly to nonphosphorylated protein, ATP binding did not alter 

the spectra for representative sites 287 and 293 in the R1 and R2 regulatory regions 

respectively while sites 302 and 307 of the R3 region reported increases in the undocked 

population.  In the presence of ATP, protein containing the T305E/T306E yielded spectra 

nearly identical to their nonphosphorylated counterpart proteins (data not shown).  Thus 

we predict that phosphorylation at Thr305 and Thr306 does not cause significant 

conformational changes in the regulatory domain, nor does it enhance or reduce the effect 

of ATP binding. Because the docking/undocking equilibrium is maintained under these 

conditions, we predict it to be critical for protein activity. 
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The position of the catalytic N-lobe may be flexible relative to the C-lobe and 

conformational changes may be modulated by nucleotide binding.  

When comparing structures of active and inactive kinase homologs, differences in 

positioning of the catalytic N- and C-lobes vary (see Chapter 1 for details).  Therefore the 

conformational changes associated with activation are also thought to be accompanied by 

an 18˚ shift of catalytic lobes toward each other [134,181,182].  To investigate this 

possibility, we labeled sites in the catalytic domain and made distance measurements to 

anchoring site 287 using DEER.  We found that the distance between 287 and 125 in the 

catalytic C-lobe had predominately one distance of relatively tight distance distribution in 

agreement with the crystal structure (shown previously in Figure 4.7B). In contrast, a 

distance measurement between site 17, which is located in a β strand of the N-lobe, and 

site 287 reports an almost 40 Å heterogeneous distribution from 2 to 6 nm (Figure 

4.15B). This broad distribution may reflect side chain mobility and/or potential N-lobe 

movement relative to the C-lobe. Interestingly, the distance distribution for 93/287 

reports two narrow, discrete distances at 22 and 27 Å (Figure 4.18C). Because site 93 

resides between the N- and C-lobes of the catalytic domain, this data suggests a 

conformational equilibrium may exist in this hinge region between lobes. These results 

raise the question of whether the conformational changes in the N-lobe and hinge region 

are coupled, the hinge-like movement in the catalytic cleft propagating to create larger 

motions in the N-lobe.  Additionally, ATP binding to the 93/287 protein causes a change 

in population of the two distances, now favoring the shorter distance. ATP also causes a 

shortening of the distance and tightening of the distance distribution of the 17/287 

mutant, although it is still quite heterogeneous. The change in populations illustrate that 
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ATP binding modulates these conformational changes and begs the question of whether 

or not the R3 regulatory domain docking/undocking equilibrium is coincident with the 

proposed catalytic equilibrium. 

 

Figure 4.18 ATP effect on positioning of catalytic N-lobe.  A) Sites used for DEER distance measurements 
are highlighted in green in the crystal structure of human CaMKIIδ (PDB 2VN9).  B) Distance 
measurements between site 17 on the catalytic N-lobe and anchor site 287 of the regulatory domain in the 
apo (black) and ATP bound (purple) intermediates.  C)  Distance measurements between site 93 of the 
catalytic cleft and 287 reveal two discrete distances which invert populations in the presence of ATP. 

To test the idea that the N-lobe is undergoing conformational changes relative to 

the C-lobe in the apo state, a series of double mutants were created that connect site 20 of 

the N-lobe, 134 of the catalytic cleft, and 110 of the C-lobe (Figure 4.19A). The rationale 

for deciding on these sites originated from a comparison of crystal structures of active 

PKA and inactive CaMKII.  The sites chosen were anticipated to undergo large 

conformational changes.  A 20/110 mutant measuring from the N- to C-lobe reported one 

narrow distance of 32 Å which does not imply conformational heterogeneity of the N-

lobe. Measurement between 110 and 134 of the catalytic cleft also reports one distance of 

40 Å. Interestingly, the 20/134 mutant reported distances of 22 and 45 Å which were 

much broader in distribution.  If we think of these three sites as corners of a triangle, 

sides connected to site 110 do not change length while the length of the side between 20 

and 134 can vary.  If we interpret this data in the context of a model involving rotation of 
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catalytic lobes, C-lobe site 110 would be considered an anchor point since both sets of 

data containing site 110 show discrete, single distance distributions and the helix this 

residue resides on is expected to remain largely static.  In this case, it is unlikely that site 

134 in the catalytic cleft is part of the proposed catalytic equilibrium like site 93.  Since 

there is only one predominant distance, site 134 may be statically associated with the C-

lobe.  In this case any rearrangement of lobes results in the same distance between sites 

110 and 20 which is a bit difficult to reconcile. 

 

Figure 4.19 Distance measurements between catalytic lobes.  A) Sites used for DEER distance 
measurements are highlighted in green in the crystal structure of human CaMKIIδ (PDB 2VN9) with site 
20 in the catalytic N-lobe, 110 in the C-lobe, and 134 in the catalytic cleft.  B) Measurements across 
catalytic lobes between sites 20 and 110 result in one distance unaffected by ATP.  C) Measurement from 
the N-lobe to the catalytic cleft resulted in two broad distances while D) measurement from the C-lobe to 
the catalytic cleft resulted in one narrow distance distribution, neither of which were influenced in the 
presence of ATP. 
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 Interestingly ATP did not modulate any of these distances as hypothesized. These 

results are inconsistent with data measured from 287 to the N-lobe and to the hinge 

region which show conformational changes upon ATP binding. Since neighboring site 

135 is catalytically important, SDSL of site 134 may inhibit ATP binding.  Overall these 

results do not serve to verify catalytic domain movements, but rather introduce 

mechanistic questions about lobe rotation and dynamic equilibria in the apo state.  

Resolution of catalytic conformational changes associated with ATP binding awaits 

further investigation. 

 While delineation of the catalytic domain conformational changes awaits future 

investigation, the conformational changes of the regulatory domain have been built into a 

model describing the structural basis for each intermediate.  Additionally, the structural 

implications from the data reported here are united with hypotheses and data from 

previous biochemical research to describe a novel model of CaMKII structure-function 

relationships.  This model is described in the next chapter.   
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CHAPTER V 

 

 
MODEL OF CaMKII ACTIVATION‡ 

 
 
 
CaMKII mechanism of activation; a summary of EPR results 

Our results present a novel perspective on CaMKII regulatory mechanisms 

revealing the link between dynamics and interactions of the regulatory domain and the 

activation state of the enzyme.  This work was designed to investigate how this enzyme is 

regulated by a ~40 amino acid domain especially suited to adopt several conformations.  

We found that the most important feature which allows multiple and discrete 

intermediates is its backbone flexibility and dynamic nature.  We predict that the entire 

domain has helical propensity, but is unstable enough such that it exists in equilibria 

between structured and intrinsically disordered states.  It is this exchange between order 

and disorder that endows the regulatory domain with a conformational plasticity and 

makes it exceptionally sensitive to modification.  The structural plasticity of this domain 

manifested by the conformational equilibrium described here is a central element in 

autoregulation, serving to modulate substrate and nucleotide access and affinity for 

Ca2+/CaM, as well as to regulate intersubunit interactions with neighboring catalytic 

domains.  Destabilizing phosphorylation charges or stabilizing tertiary contacts are able 

to shift the equilibrium, consequently producing the various conformations.  

Conformational changes are even coupled under some conditions, allowing a 

modification in one segment of the domain to communicate changes to another.  From 

investigation of these dynamics, we have built a model of activation describing the 

_____________________________________________________________________________________________________________________________________ 

‡A portion of text and figures described in this chapter are published in Hoffman et al., 2011 [223]. 
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conformational rearrangements that take place as the enzyme cycles from one 

intermediate to the next.  Our findings are summarized here to illustrate how 

conformational changes of the regulatory domain and its multiple interactions with the 

kinase domain underlie transitions between CaMKII intermediates.  

The cartoon illustrated in Figure 5.1 depicts our model of intermediates for one 

catalytic subunit.  In the basal state, the R3 segment containing the CaM-binding region 

partitions between an undocked, dynamic conformation and one where it interacts with 

the catalytic domain reducing affinity for nucleotides and presumably substrate access to 

the active site (Figure 5.1A). The docked conformation is consistent with the structure of 

the human CaMKIIδ isozyme (PDB 2VN9) placing Thr306 at the catalytic cleft. The 

equilibrium predicts that a population of residues are undocked approximately 20% of the 

time, leaving the catalytic cleft open for ATP and substrate binding and the CaM binding 

region disordered and freely accessible.  This implies mechanistic relevance for both 

nucleotide coordination and CaM recognition.  First the equilibrium facilitates ATP 

binding by repeatedly exposing the active site to allow ATP access without a prior CaM-

binding requirement.  Additionally, we predict the undocked and unstructured state to 

facilitate CaM recognition. 
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Figure 5.1 Model of the mechanism of autoinhibition and activation of CaMKII. The CaMKII monomer is 
represented with N- and C- lobes of the catalytic domain in blue and the regulatory domain in red. The 
ATP binding and Thr286 docking sites are indicated in gray with letters “A” and “T” respectively. A) In 
the basal, apo intermediate, the R3 segment of the regulatory domain is in a dynamic equilibrium between 
docked and undocked, flexible (indicated by parentheses) conformations.  B) ATP binding shifts the 
equilibrium toward the undocked conformation facilitating exposure of the catalytic cleft.  C) CaM 
(yellow) binding releases autoinhibition and primes the regulatory domain for phosphorylation at residue 
286. D) Autophosphorylation at Thr286 causes further flexibility of the regulatory domain and exposes site 
293 which is implicated in CaM trapping. E) While CaM dissociation allows for reinstatement of the R3 
equilibrium, the R1 helix remains predominantly unstructured. 
 

We found that saturating concentrations of ATP reduce, but do not eliminate, 

binding of R3 at or near the active site (Figure 5.1B). Thus in the docked conformation 

Thr306 remains proximal to the active site when ATP is bound, allowing slow basal 

intrasubunit autophosphorylation [122]. The event requires that nucleotide bind the 

autoinhibited kinase and that residue 306 fit into the active site of their own catalytic 

domain within the same subunit simultaneously.  Since ~50% of the regulatory domain 

population remains catalytically docked upon ATP binding, residue 306 can occupy the 

active site concurrently with ATP.  Maintaining the equilibrium in this manner is 

essential to retain the possibility for 306 autophosphorylation.  This interaction also 

explains in a structural context previous biochemical results demonstrating that 
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regulatory domain peptides compete not only with substrates but also with ATP binding 

[110,111,132,135] and that regulatory domain peptides protect reactive arginine residues 

in the nucleotide-binding site from covalent modifications that inactivate CaMKII 

[135,186]. Because cellular concentrations of ATP are well above the KD of binding to 

CaMKII, a substantial fraction of R3 is presumably in the undocked state, physiologically 

primed for Ca2+/CaM binding.  

Stable docking of the R1 helix to the catalytic domain buries Thr286, ensuring a 

stringent dependence on Ca2+ for activation. Our data supporting this proposed 

conformation cannot be reconciled with that of the C. elegans crystal structure (PDB 

2BDW), which features a dimeric interface shown to be unstable in solution [138], but is 

consistent with structures of human kinase domains (PDBIDs 2VZ6, 3BHH, 2V7O, 

2VN9) [108].   

Although CaM binding does not require initial ATP coordination, our model 

predicts ATP binding aids in the sequestering of CaM by pushing the equilibrium to favor 

the undocked conformation.  We predict the intrinsic disorder of this state may facilitate 

CaM binding by decreasing the Kd.  As shown in a structure of CaM bound to a 

regulatory domain peptide (PDB 1CDM) [152] and a recent structure of CaM bound to 

CaMKII regulatory domain (PDB 1MXE) [191], CaM completely surrounds the R3 

portion of the regulatory domain, stabilizing it from all sides [152].  Because its contact is 

so extensive, we theorize it would require less free energy for CaM to bind a freely 

accessible domain versus one that is catalytically docked and must dissociate from 

catalytic contacts.  This also sheds light on previous work which showed nucleotide 

binding was able to stabilize the CaM-CaMKII complex and that ATP increased the CaM 
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affinity for CaMKII [122,123,143,227].  We predict ATP binding serves to lower the 

regulatory domain affinity for catalytic docking, causing an increased preference for 

CaM.  In addition, CaMKII-bound CaM has been shown to adopt a more compact 

conformation in the presence of a non-hydrolyzable ATP analog [143], presumably 

making more extensive contacts with the regulatory domain.  The increased exposure of 

regulatory residues might explain this change in the conformation of bound CaM.   

Preliminary evidence also suggests that catalytic N- and C-lobes undergo a 

conformational equilibrium in the apo state.  We speculate this involves a twisting motion 

relative to one another as predicted by the 18° rotation of catalytic lobes in active and 

inactive structures of kinase homologs [134,181,182].  In the apo state, the catalytic lobes 

are predicted to be in an “open” conformation with larger inter-lobe distance 

predominantly.  According to the equilibrium, the minor population is in a “closed” 

conformation with a smaller inter-lobe distance.  Interestingly this equilibrium is 

modulated by ATP binding which may suggest the movement is concurrent with the R3 

regulatory docking/undocking equilibrium (Figure 5.2).  This model predicts that ATP 

binding serves to switch the populations to favor the “closed” catalytic lobe conformation 

and the undocked R3 regulatory segment. 

 

Figure 5.2 Catalytic equilibrium hypothesis.  The N- and C-lobes are predicted to undergo an 18° twisting 
motion relative to one another.  In the apo state (left), the domains are predominantly held in an “open” 
conformation with the R3 regulatory segment docked.  The minor population is predicted to be in a closed 
conformation (dotted lines).  ATP binding shifts the populations to favor a “closed” catalytic conformation 
with undocked R3 segment (right). 
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Our data directly demonstrates that binding of Ca2+/CaM to the R3 segment 

induces significant changes in the backbone structure and interaction of the 

regulatory/catalytic domains that cause activation. The R3 equilibrium is shifted to the 

undocked conformation fully releasing the catalytic cleft for nucleotide binding (Figure 

5.1C). The CaM-binding region is stabilized in a helical conformation consistent with 

crystal structures of Ca2+/CaM bound to the R3 regulatory segment (PDB 1CDM, 2WEL) 

[108,152]. This conformational change propagates to the R1 regulatory helix (residues 

285-293) exposing Thr286 to the solvent. We predict this separation of regulatory and 

catalytic domains abolishes autoinhibition, which is necessary for the enzyme to become 

active.  Our results are consistent with previous data illustrating that deletion or mutation 

of certain residues in the extended R1 loop produces constitutive activity 

[126,130,144,228].  The regulatory-catalytic separation presumably exposes the active 

site as well as the T-site on the catalytic domain, which has been identified as the site 

where Thr286 docks against the catalytic domain.  The T-site is also a binding site for 

several substrates including the NR2B subunit of the NMDA receptor.  Interestingly this 

substrate can only bind the active enzyme [169] in which the T-site is expected to be 

accessible.  The fact that the stabilization of the CaM-binding region coupled to the 

destabilization of the T286 phosphorylation region is mechanistically important; i.e. CaM 

binding exposes the catalytic domain for substrate binding.  

The catalytic separation is preparatory for T286 autophosphorylation as well.  It 

has been shown that T286 autophosphorylation is an intersubunit reaction in the 

holoenzyme and that CaM must be bound to both subunits simultaneously for 

autophosphorylation to occur [157,229,230,231].  This requires that the regulatory 
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domain of the “substrate” subunit must enter the active site of the neighboring “kinase” 

domain [109].  The unfolding of the R1 helix effectively expands the length of the R1 

region, presumably enabling the binding of Thr286 at the active site of a neighboring 

subunit in the holoenzyme, a prerequisite for trans-phosphorylation and transition to the 

autonomously active intermediate. It also exposes the “kinase” active site for “substrate” 

regulatory domain binding.  It is important to note that intersubunit catalytic-regulatory 

binding for T286 phosphorylation is structurally distinct from intrasubunit binding for 

autoinhibition.  For autophosphorylation, the T286 residue must be in the active site of its 

neighboring subunit (as shown in a recent structure [109]), ready to accept the phosphate 

transfer.  In contrast, T286 is catalytically docked in the T-site, away from the active site 

in the autoinhibited conformation.  The promiscuous nature of the regulatory domain 

must allow it to adopt both conformations, and we speculate the disorder created by 

CaM-binding is necessary to change its affinity to prefer intersubunit binding over 

intrasubunit autoinhibition.  In addition, undocking of the R1 segment disrupts 

interactions with helix D which was proposed to stabilize an inactive conformation of the 

catalytic domain [138]. In the CaMKIIδ/CaM structure, the orientation of the highly 

conserved E97 is altered to coordinate the sugar moiety of ATP, as seen in glycogen 

phosphorylase kinase [232]. In combination, these structural changes likely mediate the 

10-fold increase in nucleotide affinity following activation by Ca2+/CaM [122,187,188].   

Thr286 phosphorylation is thought to generate the autonomously-active form by 

blocking reinstatement of autoinhibition upon dissociation of Ca2+/CaM [121,153]. 

Indeed, we find that the phosphomimic T286E maintains the R1 helix in a predominantly 

unfolded and undocked conformation (Figure 5.1E). Although the T286 region is 
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unstructured, it is flexible to a lesser degree than CaM-bound CaMKII because the R1 

loop region is shorter.  The T-site may consequently be exposed to a lesser degree.  The 

other significant difference is that in this intermediate, the T286 region is not coupled to 

the CaM-binding region.  However, in contrast to the CaM-bound intermediate, the R3 

conformational equilibrium is restored allowing contacts with the catalytic cleft.  

Therefore the active site is occluded 80% of the time despite the availability of the 

catalytic T-site.  For enzymatic phosphorylation, substrates must either enter the active 

site while the equilibrium is undocked or alternatively bind the T-site and sterically 

induce undocking at the active site.  This implies that the energy barrier for substrate 

phosphorylation is higher in the T286 autophosphorylated intermediate than in the CaM-

bound intermediate.    This may explain the lower activity of autophosphorylated 

CaMKII, which is 30-70% that of fully activated CaM-bound CaMKII [230]. The relative 

autonomous activity of CaMKII holenzymes can be increased by using higher 

concentrations of ATP and peptide substrates [135], supporting the restoration of a 

competitive R3 interaction with the nucleotide-binding site.  However, binding of 

Ca2+/CaM to the autonomously active Thr286 phosphorylated form fully activates 

CaMKII. In support of this conclusion, we found that the R1 segment is most strongly 

disordered in Ca2+/CaM-bound/T286E CaMKII, indicative of essentially complete 

disruption of interactions between regulatory and catalytic domains (Figure 5.1D). Both 

the active site and T-site are predicted to be completely available indicating that 

substrates can bind more easily.  This suggests there is direct correlation between the 

catalytic exposure resultant for regulatory domain disorder and enzymatic activity.  The 

region between residues 291 and 294 previously implicated in the CaM-trapping 
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phenomenon [147,151] also shows conformational changes unique to this intermediate. It 

has been shown that these residues, although not known to have significant CaM contact 

[152], aid in establishing electrostatic contacts at residues 296-298 [151]. Interestingly 

sites 291 and 293 do not experience conformational changes with CaM binding alone, but 

become accessible when T286 is phosphorylated.   

The R3 equilibrium is also maintained in protein containing T305E/T306E 

phosphomimics.  We conclude the function of these charges is merely to prevent 

Ca2+/CaM binding without changing affinity for ATP or disrupting regulatory-catalytic 

interactions.  However, introduction of negative charge by the T286E, T305E, or T306E 

mutations do not fully mimic the effects of a phosphate group, and details of the local 

dynamics may be somewhat different in phosphorylated kinase. 

 

CaMKII activation model in the context of the holoenzyme 

Assembly and interaction of the CaMKII subunits in holoenzymes allow for trans-

phosphorylation of one subunit by a neighboring one and mediates cooperative CaM 

binding and substrate phosphorylation. A model was proposed on the basis of the crystal 

structure of the autoinhibited kinase domain and extensive analysis of cooperative 

substrate phosphorylation in the holoenzyme [109]. A central element in this model is 

dimerization of the auto-regulatory domain which locks the enzyme in an inactive 

conformation. Binding of Ca2+/CaM disrupts the dimer simultaneously activating the 

kinase domain of one subunit and releasing the CaM-binding region of the other subunit. 

However, we found no evidence for regulatory domain dimerization, and this model 

cannot rationalize cooperative CaMKII activation. Explanation for the experimental Hill 
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coefficient of 3 to 4 as estimated previously [109] requires the postulation of additional 

interactions between kinase domains. Moreover, the coiled-coil motif was not detected in 

a recent structure of human CaMKII kinase domains bound to ATP inhibitors (PDB 

2VN9) [108]. In this structure, part of the R3 segment of the regulatory domain was 

folded back onto the catalytic cleft consistent with our data.  

The results presented here can be extrapolated to propose an alternative model of 

autoinhibition and activation of the CaMKII holoenzyme. Rather than forming the coiled-

coil, the R3 segment is in an equilibrium that involves interactions with the catalytic 

domain partially blocking the nucleotide binding region. Although the dynamics of the 

R3 segment are likely to be modified by its linkage to the association domain in the 

holoenzyme, the effects of ATP on the R3 equilibrium demonstrate its role in activation. 

Binding of CaM disrupts the autoregulatory/catalytic domain interactions at the R3 and 

R1 segments through concomitant but opposite structural changes of the backbone. Our 

model is also consistent with previous work showing that Ca2+/CaM binding to CaMKII 

holenzymes enhances affinities for nucleotides [122,187,188].  

How is cooperativity achieved in the context of this model? We propose that upon 

unfolding, the R1 segment becomes available for binding at the active site of a 

neighboring kinase domain effectively competing with the R3 segment and displacing it. 

The shift in equilibrium would increase the apparent affinity to Ca2+/CaM hence 

accounting for the positive cooperativity with respect to Ca2+/CaM binding. Figure 5.3 

illustrates the hypothesis starting in the apo intermediate, where autoinhibition is instated.  

When Ca2+/CaM binds to one subunit, autoinhibition is released, inducing unfolding of 

the R1 regulatory segment.  This unfolding causes the R1 segment to have higher affinity 
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for its neighboring subunits active site (Figure 5.3B).  The increased affinity allows it to 

compete with the neighbor’s own R3 element which is undergoing docking and 

undocking.  Once the R1 segment is bound to the neighbor’s catalytic cleft, the 

neighbor’s R3 segment is pushed to the undocked conformation, effectively increasing 

it’s affinity for Ca2+/CaM (Figure 5.3C).   

 

Figure 5.3  Holoenzyme model of cooperative activation.  CaM binding to one subunit causes undocking 
and unfolding of R1. The released R1 can displace the R3 segment of a neighboring kinase subunit from 
the catalytic cleft.  This R3 is undocked and primed for CaM association. 
 
 

Experimental testing of the holoenzyme model 

To experimentally test this model, we monitored the R3 equilibrium in the 

presence of a peptide corresponding to the autoregulatory domain, referred to as 

autocamtide-2 (AC-2).  AC-2 mimics the unfolded and flexible R1 segment in the 

Ca2+/CaM-bound state which contains the T286 autophosphorylation region. According 

to our model this sequence can extend over to a neighboring kinase domain and compete 

with its R3 segment of the regulatory domain for binding to the catalytic cleft.  

Consequently, we expect displacement of the R3 segment, now having a preference for 

the undocked conformation.  Consistent with the model’s prediction, peptide binding 

shifts the equilibrium towards the undocked state reflected by the sharp population in the 
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EPR spectrum.  Figure 5.4 shows data collected for site 307 in the R3 regulatory segment 

in the apo state (black) and under the conditions of T286E phosphomimic (green) and in 

the presence of AC-2 (gold).  Titrations using various concentrations of AC-2 were 

carried out; however only two representative data points for each protein are shown in 

this figure for the sake of simplicity.  For the complete data set of the titrations, refer to 

Supplementary Figure 3 (Appendix A).  In the presence of AC-2, there is an increase in 

the mobile population of the spectrum which correlates to the undocked conformation.  

When added to apo protein, 64-fold excess peptide was added to achieve a ~3 fold 

increase in the mobility.  The high concentrations of peptide required in the case of 

monomeric kinase suggest a low binding affinity. However, this interaction will be 

potentiated in the holoenzyme which concentrates subunits to an unusual extent. In 

contrast, a 10-fold peptide excess correlated to a ~4.5 fold increase in mobility when 

added to protein containing the phosphomimic.  Therefore the AC-2 concentration 

threshold for undocking R3 is reduced in the T286E mutant consistent with higher 

affinity for substrate in this intermediate. 
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Figure 5.4 Shifts in the R3 equilibrium induced by binding of autocamtide-2 (AC-2).  EPR spectra for site 
307 show that the level of the mobile spectral component arising from undocked conformation of the R3 
segment increases in the presence of AC-2. The T286E mutation increases the apparent affinity of this 
interaction as evidenced by the lower molar ratio of peptide to CaMKII (x-axis) required to increase the 
mobile spin label fraction. 
 
Thus, although autophosphorylation does not perturb the R3 equilibrium, phosphorylated 

kinase domains are more likely to capture the unfolded R1 segment of a neighboring 

subunit allowing the propagation of autophosphorylation. These results are in line with 

recent studies demonstrating that addition of an inactivated kinase monomer lacking the 

regulatory domain (“decoy” kinase) leads to apparent cooperativity in the activation of an 

intact kinase monomer with respect to Ca2+/CaM [109]. The interpretation of Figure 5.4 

is consistent with a previous suggestion that CaM binding releases and unfolds the R1 

segment to act as a “molecular grappling hook” that can be captured by the decoy 
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enzyme [109]. 

 

Inhibition of CaMKII 

Similar conformational changes in the regulatory domain could be induced using 

a peptide based on the CaMKIIN sequence, a natural inhibitor of CaMKII [233,234].  

Structural evidence, as highlighted in the structural alignment in Figure 5.5, predicts this 

to be the case.  The trans-autophoshorylated kinase domain (green) features the R1 

regulatory segment of a separate kinase domain (red) bound to its catalytic cleft (PDB 

3KK8) [109].  Since these R1 residues are homologous to the AC-2 peptide, we assume 

AC-2 would bind in an analogous fashion.  A crystal structure of the kinase domain 

(blue) bound to CaMKIIN inhibitor (magenta) is overlaid to demonstrate how binding of 

CaMKIIN is similar the R1 segment corresponding to AC-2 (PDB 3KL8) [109].   

 

Figure 5.5 Structural alignment of trans-autophosphorylated kinase with CaMKIIN-bound kinase.  Crystal 
structures reveal that CaMKIIN inhibitor binds similarly to the R1 regulatory segment. 
 
The structures were interpreted to suggest CaMKIIN will block the capture of adjacent 

subunits’ R1 elements to inhibit activity [109].  This notion is consistent with previous 

evidence demonstrating that CaMKIIN competes with autocamtide binding [235].  
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Additionally CaMKIIN contains a potential pseudosubstrate sequence, RVVIED, where 

the Ile position in CaMKII substrates is a phosphorylatable Ser or Thr residue.  This 

peptide is poorly phosphorylated when Ile is mutated to Ser [234].  However, CaMKIIN 

has been shown to block Thr305 phosphorylation, but not trans-autophsophorylation at 

Thr286 [235].  This raises the conceptual question of how Thr286 becomes 

phosphorylated in the presence of CaMKIIN.  Perhaps the unphosphorylated R1 segment, 

by proximity and affinity is a better competitor for the catalytic cleft.  Once 

phosphorylated the R1 segment has lower affinity and is released, increasing the 

probability of inhibitor binding.  Since CaMKIIN was found to inhibit autonomous 

activity but not Thr286 phosphorylation [236], it may occupy the catalytic cleft only after 

Thr286 phosphorylation is complete. Once bound, it acts as a nonphosphorylatable 

pseudosubstrate to prevent other substrates from binding.  This hypothesis is consistent 

with our results revealing a higher apparent CaMKIIN affinity for protein containing the 

T286E phosphomimic (Figure 5.4). 

Interestingly, our results demonstrate that in the absence of Thr286 

phosphorylation, AC-2 and CaMKIIN are able to displace the R1 elements at low 

concentrations, presumably competing for T-site binding (Figure 5.6A).  At only five fold 

molar excess of peptide to protein without the phosphomimic, sites in the R1 region show 

increases in mobility consistent with undocking, while the R3 equilibrium is maintained 

(Figure 5.6B).  However, when CaMKIIN is added to protein containing the T286E 

phosphomimic, 5-fold excess peptide is sufficient to induce a significant increase in the 

undocked population of R3 (Figure 5.6B) 
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Figure 5.6 Concentration effects of CaMKIIN inhibitor on R1 and R3 regulatory elements.  A) Five fold 
excess CaMKIIN peptide is sufficient to displace a significant portion of the R1 regulatory segment from 
association with the catalytic domain.  B) Low concentrations of peptide are not sufficient to displace the 
R3 regulatory element in the absence of the T286E phosphorylation mimic. 
 
These results suggest that high peptide concentrations or autophosphorylation at Thr286 

are necessary for AC-2 or CaMKIIN competition with the R3 regulatory segment for 

catalytic cleft occupation.  There may be mechanistic relevance for concentration 

dependent binding.  For example, CaMKIIN has been shown to inhibit NR2B binding 

which requires T-site occupation [169,235,237].  Therefore at low concentrations the 

inhibitor may selectively inhibit phosphorylation of specific substrates which require T-

site binding.  The inhibitor has also been demonstrated to trap CaM [235], suggesting its 

binding releases the 291-295 trapping residues.  In fact, the CaMKIINβ isoform, but not 

CaMKIINα, requires continuous presence of CaM to bind CaMKIIα [236].  This may 

suggest that CaM induced undocking of R3 is required for efficient CaMKIINα 

inhibition. 

While grounded in analysis of solution dynamics under well defined biochemical 

conditions, the ultimate test of the veracity of our model awaits structural and dynamic 

analyses of the holoenzyme. This will be especially pertinent because crystals of 

monomeric human CaMKII bound to inhibitors (PDB 2VZ6, 3BHH, 2V7O, 2VN9) [108] 

suggest an interface between kinase domains different than the one originally observed 

(PDB 2BDW) [138]. Intersubunit communications predicted by cooperative CaM binding 
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and autophosphorylation have been observed by FRET studies of catalytic domain 

“pairs” which separate upon activation [190]. Given the strong amino acid 

sequence identity between catalytic/regulatory domains of the C. elegans protein studied 

here and the four mammalian CaMKII isoforms [96], it seems likely that 

the conformational dynamics defined here will represent core regulatory properties of all 

CaMKII isoforms.  However, variable linker domains that couple catalytic/regulatory 

domains to the central “hub” of the dodecameric holoenzyme likely modify these 

dynamics in unique ways.  For example, activation properties of CaMKIIβ holoenzymes 

are modulated by the length and sequence of the linker [107,116].  Elucidating 

the conformational dynamics associated with activation of various CaMKII holoenzymes 

is the next frontier in understanding CaMKII activation. 
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CHAPTER VI 

 

FIELD PERSPECTIVES AND FUTURE DIRECTIONS 

 

Introduction 

CaMKII has been studied for decades and over the years the work of many groups 

has significantly contributed to the understanding of this enzyme.  Historically, the 

contributions have been mainly biochemical in nature, revealing its role in complex 

functions but only deriving predictions of what the structural architecture might be.  In 

the past few years however, the structural exploration of the protein has begun 

[108,109,112,138,155,156] and now the ground work has been laid for determining 

structure-function relationships.  Fortuitously, the dynamic nature of CaMKII, its 

flexibility and large amplitude domain movements, makes it ideal for EPR studies.  The 

effort summarized here represents the first phase of EPR studies of CaMKII structural 

dynamics.  This work reveals significant insight into the activation mechanism and 

importantly, rationalizes a wealth of biochemical research.  While this work advances the 

understanding of CaMKII activation mechanism, there are still many unanswered 

questions that can be investigated with EPR.   

 

Continuing studies of conformational changes in the catalytic lobes in the monomer 

kinase domain 

 From the studies presented here, we suggest the catalytic N- and C-lobes may be 

undergoing a rotational twisting motion that coincides with the R3 docking-undocking 
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equilibrium.  This hypothesis needs to be tested to determine what conformational 

changes are taking place.  Although the sites chosen for the initial investigation, sites 20, 

110, and 134, were believed to undergo the largest conformational changes based on the 

structures of active and inactive kinases, they did not unambiguously detect a 

conformational equilibrium in the apo state (refer to Figure 4.16).  As suggested in the 

previous chapter, ATP binding may be inhibited by cysteine mutation and/or spin label 

attachment at site 134 in the conserved catalytic loop making it inappropriate for these 

experiments.  Therefore, an alternative set of sites may be better suited.  It may be more 

productive to triangulate sites 17, 93, and 111 since sites 17 and 93 experience the 

equilibrium and site 111 is largely static (Figure6.1).   

 

Figure 6.1 Labeling sites for DEER analysis of the catalytic domain.  The CaMKIIδ isoform is illustrated 
with catalytic domain in blue, regulatory domain in red and labeling sites in green.  The inter-residue 
distances are plotted in black.   
 
Additionally, spin labels at sites 17 and 93 report conformational changes upon ATP 

binding, which has been shown to modulate the docking-undocking equilibrium of the R3 

regulatory segment.  Depending on the results of these experiments, there will likely be 

some trial and error in choosing additional sites to complete a set of data that confirms 

the twisting model. 

 



149 

Determining where the R3 segment is docking to the catalytic domain 

 Since the R3 regulatory segment is undergoing a conformational equilibrium 

between an undocked unstructured state and a docked state, it is unlikely that a crystal 

structure will capture the position of the regulatory domain.  Therefore other types of 

experiments must be completed to determine the docked conformation.  When designing 

initial experiments for DEER studies, the regulatory domain in its docked conformation 

was hypothesized to be positioned similarly to CaMKI.  From sequence and structural 

comparisons of CaMKI with CaMKII, site 93 was expected to be in ~5 Å close proximity 

to site 307 of the R3 regulatory segment.  However, spectral broadening in CW 

experiments of this double mutant was not detected and DEER analysis revealed a broad 

inter-probe distance centered at ~32 Å.  Therefore, the regulatory domain is likely 

positioned somewhat differently in CaMKII.  This leaves open the question of where the 

regulatory domain is docking.  In order to decipher the position, several other sites should 

be investigated throughout the catalytic cleft and distances determined.  An ensemble of 

data will be necessary to position the regulatory domain. 

 

Conformational changes upon substrate binding  

 While EPR studies so far have been focused on regulation and activation of the 

enzyme, it is also of interest to understand the conformational changes that occur upon 

substrate binding.  Studies of AC-2 give insight into the regulatory domain 

conformational changes when a substrate enters the active site of the protein.  AC-2 is 

able to displace the R1 or R3 regulatory segments depending on its concentration and 

whether or not the phosphorylation mimic at site 286 is present (refer to Figure 5.4).  
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However, it is unknown whether or not other substrates employ the same mechanism.  It 

would be interesting to investigate NR2B for example, which was shown to require T-site 

binding [238].  Therefore, we hypothesize the R1 regulatory segment must be released 

for NR2B binding.  It is likely that this induces unfolding of the R1 segment, similar to 

AC-2 binding or Thr286 phosphorylation.  Studies have shown that dephosphorylation of 

T286 is attenuated when NR2B is bound [239] and binding of CaMKII to NR2B enables 

it to remain autonomously active [169].  These evidences support the notion that R1 has 

an  extended conformation upon NR2B binding, allowing a rapid 286 phosphorylation by 

a neighboring subunit.  Since NR2B is a substrate, it must also contact the catalytic cleft 

for phospho transfer and may consequently cause undocking of the R3 regulatory 

segment as well.  Interestingly, when NR2B binds to CaMKII, the affinity for the ATP 

analogue ATPγS increases by 11-fold [239] suggesting that the modification of the R3 

equilibrium enables binding at the catalytic cleft.  Additionally, NR2B has been shown to 

competitively inhibit CaMKII phosphorylation of AC-2, suggesting NR2B and AC-2 

bind to CaMKII in a similar manner [220].  CaMKIIN has also been shown to compete 

with NR2B and AC-2, and our results show CaMKIIN and AC-2 induce similar 

conformational changes in the regulatory domain.  We would therefore expect similar 

EPR results for NR2B.  To investigate these possibilities, the monomer system would be 

best to insure saturated binding as NR2B binding to all subunits in the holoenzyme may 

not be sterically favored.  Sites representative of the R1 and R3 segments, for example 

287 and 307, would be ideal for monitoring undocking with mobility studies.   

 Syntide-2, a peptide substrate based on the glycogen synthase phosphorylation 

site, has not been shown to require T-site binding.  Interestingly CaMKII phosphorylation 
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of this substrate is non-competitively inhibited by NR2B [220].  We hypothesized that 

syntide-2 would bind to the catalytic cleft and promote undocking of R3; however, 

preliminary EPR studies of syntide-2 binding did not show changes in the regulatory 

domain conformation, even under established phosphorylation conditions where the 

sample is incubated at 37˚C for 10 minutes [122].  It is currently unclear whether 1) this 

substrate is able to bind the D135N C. elegans CaMKII protein, 2) if syntide-2 has a high 

enough affinity to effectively compete with R3 for the catalytic cleft at the concentrations 

used (up to 40-fold excess), or 3) if binding of syntide-2 does not induce conformational 

changes in the regulatory domain.  Because we obtained a negative result for several 

sites, the studies were abandoned but may warrant further investigation.  Binding must be 

established first, and then conformational changes of the regulatory and/or catalytic 

domains can be investigated to determine the substrate’s effect on the R3 equilibrium.  

Additionally, there are approximately 40 known substrates and counting as well as 

scaffolding partners, any of which could be investigated with mobility studies.   

 

Comments on modeling of the R3 equilibrium 

The ultimate goal of deciphering all the conformational changes of CaMKII is to 

have an atomic resolution model of each intermediate.  This is inherently challenging due 

to difficulties in resolving flexible segments of the protein by crystallography and 

capturing the enzyme in all of its states.  Although the cartoons of conformational 

changes depicted here are descriptive, they lack the resolution needed for future goals, 

such as rational drug design.  While development of computational modeling with 

incorporation of EPR restraints is underway for Rosetta [211,240], there is an intrinsic 
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problem with modeling flexibility.  Rosetta rotamers are based largely on fragments from 

high resolution crystal structures in which unstructured regions are not resolved.  

Therefore unfolded and flexible conformations are not sampled.  The sampling can be 

skewed to select for random coil conformations but we found that because the R3 region 

has helical propensity, the resulting models rarely adopt an unstructured conformation.  

However, models of the structured docked conformation may be useful for generating 

hypotheses about where the regulatory domain is docked to the catalytic domain.  It is 

possible in theory to model the flexibility and exchange between docked and undocked 

conformations with molecular dynamics simulations; however, the exchange is slow on 

the EPR timescale, on the order of 100 ns.  This would require a considerable 

computational resource, but is possible for a monomer study.  While currently it is 

difficult to model CaMKII’s intermediates because of their disorder and slow scale 

dyanmics, these challenges present an opportunity for future programming development 

that can accommodate flexible proteins. 

 

Validating mobility in the context of the holoenzyme 

 In the work presented here, monomer protein was used to avoid the complexities 

of studying the twelve subunit holoenzyme.  As it has been shown previously, the kinase 

does not require the association domain or linker region to recognize and phosphorylate 

substrates [31]. Therefore we speculate that the conformational changes and dynamics 

observed in the monomer system will translate to the holoenzyme where association 

domains are intact.  However, the monomer model proposed here has yet to be validated 

in the context of the holoenzyme.  This is an essential next step.  While preparing this 



153 

document, a new structure featuring the human CaMKIIβ oligomeric holoenzyme was 

determined (PDB 3SOA) [176].  This is the first higher resolution (4.0 Å) structure of the 

intact protein, although an inhibitor was bound to the catalytic cleft and some 

modifications were made (Figure 6.2).  The enzyme was mutated to be inactive by K42M 

and D135N substitutions and also the Thr306 autophosphorylation site was converted to a 

valine.  Additionally this construct has a shortened linker, which can be up to 50 

additional amino acids in other isoforms.  The crystallized protein was a hybrid 

consisting of the human alpha protein where the linker region is replaced with β7 linker. 

 

 

Figure 6.2 Crystal structure of the human CaMKIIβ holoenzyme.  The structure is illustrated from the 
“top” (A) and “side” (B) views with expected dodecameric assembly (PDB 3SOA).  Interacting pairs of 
domains, one from each ring, are colored similarly. 
 
This structure will facilitate EPR studies in the holoenzyme by providing the spatial 

relationship between domains.  Labeling sites can now be designed to account for spin-

spin coupling between labels conjugated to different subunits.  Additionally, with the 

advent of a bacterial holoenzyme expression solution [176], studies of the intact oligomer 

are potentially more straightforward assuming the method produces a sufficient protein 
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yield. For validation of the model, several sites initially investigated in monomer studies 

will have to be reexamined in the holoenzyme.  Choosing the most informative sites to be 

representative is key.  For example sites 287, 293, and 306, are good representatives for 

probing the R1 regulatory segment, the CaM trapping region, and the dynamic 

equilibrium of the R3 region.   

 

Figure 6.3 Crystal structure of isolated CaMKIIβ domain.  A) The structure of one domain (ribbon outline) 
is highlighted in the context of adjacent domains (gray).  B) The regulatory domain (red) adopts a helix 
loop helix conformation, making contacts with the association domain (green). 
 
Interestingly, this structure reveals a novel conformation for the modeled regulatory 

domain, with the R3 segment in a loop conformation but not in contact with the catalytic 

domain as predicted by our model (Figure 6.3).  However the conformation of the R3 

segment may be confounded by the presence of the active site inhibitor, bosutinib 

[241,242]. One unexpected feature of this particular construct of CaMKII is the R3 

regulatory domain contact with the association domain.  The isoform crystallized lacks 

the extended linker region which is variable in sequence between various isoforms of 

CaMKII and can be as long as 50 additional amino acids (see Figure 1.3 for isoform 

diversity).  The linker is the predominant difference between isoforms, as the kinase 
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domains share 95% sequence identity and association domains share 80% identity.  

Specifically, the C. elegans protein used in the studies presented here has 30 additional 

amino acids in the linker than the crystallized protein.  This raises the question of how the 

presence of the linker region will affect the interaction between the regulatory and 

association domains.  The authors speculate that since the region where the linker would 

be inserted is located on the surface of the protein, the linker could be readily 

accommodated without disrupting the interaction of R3 residues 304-308 with the 

association domain.  It is difficult to conceptualize where and how the linker would be 

positioned without affecting this interaction observed in the crystal.  In this aspect, the 

structure is not consistent with our model which places the R3 element in a dynamic 

equilibrium docking and undocking with the catalytic cleft.  Since the association domain 

was not present in our studies, an R3-association domain interaction cannot account for 

the tertiary interactions evidenced by the immobilized component in the EPR lineshape 

observed for regulatory sites 304-308 (refer to Figure 4.2).  Furthermore the regulatory-

catalytic interactions are modulated by ATP binding in our model.  This is difficult to 

reconcile with the R3 positioning in the structure, where it is not in contact with the 

catalytic cleft.  It is unknown if this interaction exists in solution and whether or not 

crystallization and or inhibition of this construct have imposed this interaction.  Therefore 

it is essential to confirm the R3 equilibrium exists in the context of the holoenzyme with 

mobility studies.  Additionally, CW distance measurements on residues at the 

crystallographic R3-association domain interface could be measured to determine if this 

interface is stable in solution. 
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For mobility studies, the possibility of spin-spin coupling between labels on 

neighboring subunits must be considered.  Although many interprobe distances will be 

outside of the detectable range for CW EPR, sites close to the ring-ring interface may 

have spectra which exhibit dipolar coupling.  For example, site 309 of the regulatory 

domain is predicted to have an inter-residue distance of just 5 Å between neighboring 

subunits on adjacent rings. A 5 Å interprobe distance would result in extensive spectral 

broadening and would impede interpretation of the lineshape for mobility comparison 

with monomer data.  Site 307, which is a good representative of the R3 regulatory 

segment, is predicted to be 18 Å and may or may not show spectral broadening 

depending on the orientation of the probes and how similar the solution structure is 

compared to the crystal structure.  These sites must therefore be chosen with care.  Other 

regulatory sites will be well beyond the ~20 Å CW EPR range for detection of dipolar 

coupling, evading this issue.  Figure 6.4 shows an example of inter-residue distances for a 

hypothetical experiment with labels at site 293. 

 

Figure 6.4 Inter-domain distances of CaMKII holoenzyme.  The CaMKIIβ holoenzyme structure is 
depicted with five individual domains highlighted in gold, navy blue, cyan, purple, and green.  The 
remaining adjacent domains are colored in gray and shown by surface representation.  Site 293 is 
highlighted in red with inter-residue distances in white. 
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Five domains are colored individually to illustrate their positioning from the “side” view 

of the holoenzyme.  In white are the inter-residue distances which are well beyond the 

dipolar coupling range for CW EPR (up to ~20 Å).  Therefore, mobility for site 293 will 

not be masked by spectal broadening caused by dipolar coupling.   

 

Conformational equilibrium between compact and extended holoenzyme states 

Previous structural studies of CaMKII holoenzyme reveal two conformations; one 

cylindrical with catalytic domains protruding outward above and below the plane of the 

association domains and the other in a disk like conformation with catalytic and 

association domains residing in the same plane [112,138,155,156].  The difference in 

height is on the order of 150 Å and it has been hypothesized that the cylindrical and disk 

structures represent active and inactive conformations of CaMKII respectively.  The 

disruption of contacts between regulatory and catalytic domains we observe combined 

with the lengthening of the regulatory domain may make this type of conformational 

change possible.  The recent publication featuring the crystal structure of the holoenzyme 

predicts a dynamic equilibrium between a compact conformation of 100 Å height and an 

extended state with height of 150 Å in the apo autoinhibited state [176].  This implies at 

least a 50 Å change in height.  The authors carried out SAXS analysis of various 

holoenzymes and argue that because the dimensions of the molecules agree with the 

crystal structure dimensions, the crystal structure likely represents a solution structure.  

When the length of the linker was varied, SAXS analysis resulted in observation of an 

extended conformation.  From a kinetics computational model for CaMKII, the authors 
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purposed a dynamic equilibrium between compact and extended forms, the equilibrium 

of which is tunable by isoform.   

This raises the question of whether or not their proposed equilibrium is concurrent 

with the docking-undocking R3 equilibrium we observe.  Although there is no discussion 

of this concept in the manuscript perhaps due to the fact that the R3 region does not 

contact the catalytic domain in the structure, it remains a plausible hypothesis.  One 

interesting aspect of their model is that the extended conformation of the protein is 

proposed to retain autoinhibitory interactions.  If the proposed compact-extended 

equilibrium is a consequence of the R3 equilibrium we observe, then retention of 

autoinhibition is in line with our data where R1 is not is not perturbed in the apo state.  

Additionally, the compacted and extended equilibrium should be modified by the 

addition of ATP.  Our model also predicts the regulatory domain will have increased 

flexibility when activated by CaM.  We could therefore possibly observe a more extended 

conformation under this condition.  It is not clear what conformational changes would 

occur following Thr286 phosphorylation.  Since our model predicts that Thr286 

phosphorylation does not affect the R3 equilibrium, it would be interesting to determine 

whether or not the compact-extended equilibrium is modified.  Additionally, since 

Thr305 and Thr306 autophosphorylation sites are predicted to be in contact with the 

association domain even with an extended linker present in their model, it would be 

necessary to confirm that phosphorylation of these sites does not perturb the equilibrium.  

In our monomer system, phosphomimics at these sites slightly alter tertiary interactions, 

but do not significantly affect the R3 equilibrium. Finally their analysis also discovered 

that various isoforms may have preferences for either the compact or extended 
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conformations.  If these equilibria are indeed able to be observed with EPR, it would be 

interesting to compare isoform differences and determine if there is any correlation to 

activity. 

Initially, it is not clear if the predicted conformational exchange will be easily 

observed with EPR studies.  When considering using EPR to monitor this kind of change, 

the sites must be chosen with care as the limit on DEER distance measurements is ~70 Å.  

Additionally since there are twelve subunits that have the potential for interprobe spin-

spin coupling, multiple distances corresponding to both the compact and extended 

conformations will be detected.  Holoenzyme domain arrangement is symmetric and 

domains are large enough that a label will likely have detectable dipolar coupling 

potential only with two adjacent neighbors resulting in three interprobe distances.  To 

explain the complexities of these experiments, it is helpful to consider specific examples. 

Several sites in the regulatory domain are in relatively close proximity with 

interdomain residue distances around 30-60 Å, a readily detectable range for DEER 

experiments.  Site 293 for instance, illustrated in Figure 6.4, exhibits detectable inter-

residue distances of 54 Å between subunits of the same ring and 40 and 60 Å between 

rings.  Distances between other subunits are too far to be detected by DEER.  If the 

structure indeed represents the compact conformation we would expect to detect these 

three distances in a DEER experiment of apo protein.  If distances distributions are broad, 

resolution may be an issue.  The extended conformation however is unknown.  It may 

also produce multiple distances confounding observation of the compact conformation.  

Alternatively, the extended conformation may place labels outside the detectable spin-

spin coupling range and which would diminish the DEER signals.  This expected 
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negative result, while it does indicate lack of spin-spin coupling, is hardly an ideal 

observable.  It is also unknown if the spatial relationship between subunits within the 

same ring changes in the extended conformation.  

Shorter distances between probes near the ring interface may be more 

straightforward to monitor with EPR.  For example site 220 of the catalytic domain is 

predicted to have an inter-residue distance of ~20 Å in the compact state (Figure 6.5A).  

The extended state will hypothetically produce a larger interprobe distance which can 

likely be monitored with DEER experiments.   

 

Figure 6.5 Position of residues in the holoenzyme. A) Site 220 is predicted to be ~20 Å from its nearest 
neighbor while B) site 309 is ~5 Å, well within the range for CW EPR. 
 
Sites less than 20 Å, such as site 309, can also be observed with CW spectral broadening 

(Figure 6.5B show proximity of sites).  In this case if the extended state is above 20 Å, 

the resultant spectrum will consist of a broadened population and an unbroadened 

population which reflects the sum of singles.  In this manner, it may be possible to 

delineate what percentage is in each conformation.  If ATP increases the population of 

the extended conformation, it may be possible to assign specific distances to the extended 

and compact states.   
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 To understand the proposed conformational exchange between compact and 

extended forms, a bit of trial and error will be required to find the residues that best 

describe conformational changes.  Distances must be well resolved and undergo 

conformational changes within a detectable range.  While the holoenzyme structure 

provides a spatial understanding of the position of residues, subtle differences may exist 

in solution and between isoforms.  Studies of this nature will provide insight on the apo 

state equilibrium as well as what conformation the holoenzyme adopts under activated 

conditions.  Additionally, differences between isoforms that underlie the mechanism by 

which frequency is decoded may provide evidence to relate structure to function.  There 

is still much to understand about how the holoenzyme structure facilitates the function of 

CaMKII.  Investigation of the oligomer structure is at the forefront of the next frontier in 

CaMKII exploration. 

 An important aspect of defining the structures and dynamics of the biochemical 

intermediates is to aid in the rational drug design of inhibitors as inhibition has been 

shown to be a promising therapeutic strategy for diseases such as cardiac disease [75].  

However, since CaMKII is implicated in many physiological processes, it is 

advantageous to selectively inhibit particular forms of CaMKII at specific times and 

places for precise regulation.   The goal is therefore to rationally design CaMKII 

inhibitors which specifically inhibit particular intermediates associated with various 

states of activation, specific substrates, as well as subcellular localization.  For example, 

the CaMKIIN inhibitor has been shown to interfere with many regulatory mechanisms 

involving specific intermediates including translocation, localization, and 

autophosphorylation [161,171].  Because it competes with NR2B binding [235,243] and 
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activity [233,234,235,243] as well as Thr305/Thr306 autophosphorylation [235], 

scientists are currently working toward increasing the selectivity of this inhibitor [244].  

With a complete picture of each intermediate, inhibitors, via their amino acid 

composition and their localization, can be modified to have increased affinity for 

particular intermediates and particular isoforms.  Inhibitor design relies on the available 

structural knowledge of the target and the work presented in this document has 

contributed to an understanding of the dynamics and indentified equilibria for several of 

CaMKII which were not previously known.  These findings have allowed us to form a 

more accurate and complete understand of CaMKII activity and have also laid the 

groundwork for further exploration of additional intermediates, intermediates in the 

context of the holoenzyme supramolecular structure, and interactions with protein 

binding partners.  
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APPENDIX A 

 

    
Growth Induction 

 

 
Protein Vector Cell Type Temp Speed OD Type Time Temp Speed Result 

1 
CaMKIIα Full 
length 

pET28b+ 
BL21 
(DE3) 

37 250 0.8 1 mM IPTG 5 hr 37 250 Truncated 

2 
CaMKIIα Full 
length 

pET28b+ 
BL21 
(DE3) 

37 250 0.8 1 mM IPTG 4 hr 32 200 Truncated 

3 
CaMKIIα Full 
length 

pET28b+ 
BL21 
(DE3) 

37 250 0.8 1 mM IPTG 5 18 250 Truncated 

4 
CaMKIIα Full 
length 

pET28b+ 
BL21 
(DE3) 

37 250 1 1 mM IPTG 12 hr 18 200 Truncated 

5 
CaMKIIα Full 
length 

pET28b+ 
BL21 
(DE3) 

32 250 N/A Autoinduction 4 hr 32 200 Truncated 

6 
CaMKIIα Full 
length 

pET28b+ 
BL21 
(DE3) 

18 250 N/A Autoinduction 18 18 250 Truncated 

7 
CaMKIIα Full 
length 

pET28b+ Rosetta 2 37 250 0.8 1 mM IPTG 4 hr 37 250 Truncated 

8 
CaMKIIα Full 
length 

pET28b+ Rosetta 2 37 250 0.8 1 mM IPTG 4 hr 32 250 Truncated 

9 
CaMKIIα Full 
length 

pET28b+ Rosetta 2 37 250 0.8 0.4 mM IPTG 4 hr 32 200 Truncated 

10 
CaMKIIα Full 
length 

pET28b+ Rosetta 2 37 250 0.8 1 mM IPTG 5 hr 18 250 Truncated 

11 
CaMKIIα Full 
length 

pET28b+ Rosetta 2 32 250 N/A Autoinduction 4 hr 32 200 Truncated 

12 
CaMKIIα Full 
length 

pET28b+ Rosetta 2 18 250 N/A Autoinduction 18 18 250 Truncated 

13 
CaMKIIα Full 
length 

pET21a 
BL21 
(DE3) 

37 250 0.8 1 mM IPTG 4 hr 32 200 Truncated 

14 
CaMKIIα Full 
length 

pET21a 
BL21 
(DE3) 

32 250 N/A Autoinduction 4 hr 32 200 Truncated 

15 
CaMKIIα Full 
length 

pET21a 
BL21 
(DE3) 

37 250 0.8 1 mM IPTG 5 18 250 Truncated 

16 
CaMKIIα Full 
length 

pET21a 
BL21 
(DE3) 

18 250 N/A Autoinduction 18 18 250 Truncated 

17 
CaMKIIα Full 
length 

pET21a Rosetta 2 37 250 0.8 0.4 mM IPTG 4 hr 32 200 Truncated 

18 
CaMKIIα Full 
length 

pET21a Rosetta 2 32 250 N/A Autoinduction 4 hr 32 200 Truncated 

19 
CaMKIIα 316 
D135N 

pET21a Rosetta 2 37 250 0.8 1 mM IPTG 4 hr 37 250 Truncated 

20 
CaMKIIα 316 
D135N 

pET21a Rosetta 2 32 250 N/A Autoinduction 18 32 330 Truncated 

21 
CaMKIIα 340 
D135N 

pET21a Rosetta 2 37 250 0.8 1 mM IPTG 4 hr 37 250 Truncated 

22 
CaMKIIα 340 
D135N 

pET21a Rosetta 2 32 250 N/A Autoinduction 18 32 330 Truncated 

23 
CaMKIIα 340 
D135N 

pET28b+ PR 1031 32 250 N/A Autoinduction 18 32 330 
No 

Expression 

24 
CaMKIIα 340 
D135N 

pET28b+ UT 5600 32 250 N/A Autoinduction 18 32 330 
No 

Expression 

25 
CaMKIIα 340 
D135N 

pET28b+ KS 1000 32 250 N/A Autoinduction 18 32 330 
No 

Expression 

26 
CaMKIIα 340 
D135N 

pET21a PR 1031 32 250 N/A Autoinduction 18 32 330 
No 

Expression 

27 
CaMKIIα 340 
D135N 

pET21a UT 5600 32 250 N/A Autoinduction 18 32 330 
No 

Expression 

28 
CaMKIIα 340 
D135N 

pET21a KS 1000 32 250 N/A Autoinduction 18 32 330 
No 

Expression 

29 
CaMKIIα 380 
D135N 

pET21a Rosetta 2 37 250 0.8 1 mM IPTG 4 hr 37 250 Truncated 

30 
CaMKIIα 380 
D135N 

pET21a Rosetta 2 32 250 N/A Autoinduction 18 32 330 Truncated 

31 
CaMKIIα 420 
D135N 

pET21a Rosetta 2 37 250 0.8 1 mM IPTG 4 hr 37 250 Truncated 

32 
CaMKIIα 420 
D135N 

pET21a Rosetta 2 32 250 N/A Autoinduction 18 32 330 Truncated 

 
Supplementary Table 1 Mouse CaMKIIα expression trials 
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Supplementary Figure 1 Raw DEER data. 
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Supplementary Figure 2 Raw DEER data continued. 
 
 
 
 
 

 
 
Supplementary Figure 3 Titrations of AC-2.  Spectra for site 307 in the presence of varying 
concentrations of AC-2 are overlaid for the A) apo and B) T286E phosphomimicked proteins.  C) The 
normalized high field peak height is plotted as a function of [AC-2]/[CaMKII] to illustrate that the T286E 
protein (green) has a higher apparent affinity for AC-2 than the apo protein (black). 
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APPENDIX B 

 

SUPPLEMENTARY METHODS 

 
CaMKII expression, purification, and labeling  

 C. elegans CaMKII (unc-43) cDNA derived from the splice variant K11E8.d with 

codons representing residues 1-340 and an N-terminal 10 histidine sequence was cloned 

into the pET28b vector controlled by the T7 promoter.  All mutants were introduced 

using a modified Quikchange protocol and verified with DNA sequencing.  A D135N 

inactivating mutant was introduced to prevent heterogeneous autophosphorylation during 

expression [138].  Native cysteines were replaced with residues found in homologs or 

with alanine; C30A, C64L, C115A, C126I, C199A, C272A, and C289A.  Protein 

expression was carried out in E. coli BL21(DE3) as described previously except for a 16 

hour induction protocol [138]. Harvested cell pellets were resuspended in buffer 

containing 50 mM HEPES, 150 mM NaCl, 10 mM imidazole, 1 mM DTT, 0.1 mM 

PMSF, 10% (vol/vol) glycerol, pH8 and lysed by sonication.  CaMKII was purified from 

the lysate supernatant by Ni2+ affinity chromatography (Qiagen) by washing with 30 mM 

imidazole then eluting with 250 mM imidazole.  Upon elution, a 20-fold excess of (1-

oxyl-2,2,5,5-tetramethylpyrrolinyl-3-methyl)-methanethiosulfonate spin label (MTSSL; 

Toronto Research Chemicals, Inc) was added and the mixture incubated on ice for at least 

15 hours.  Labeled CaMKII was further purified by size exclusion chromatography on a 

Superdex 75 column (GE Healthcare) in 50 mM HEPES, 100 mM NaCl, 2.5 mM EDTA, 

0.02% azide, pH 7.5.  For these studies, the N-terminal His tag was not cleaved.  Spin 

labeled CaMKII mutants were washed 3 times immediately before experiments with the 
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same buffer to remove residual free spin label.  Protein concentration was determined 

using a calculated extinction coefficient of 1.065 M-1 cm-1 at 280 nm. 

The WT holenzyme and monomeric 1-380 truncation mutant of mouse CaMKIIα 

were expressed in Sf9 cells and purified in the Colbran laboratory as described previously 

[163]. 

 

SDS-PAGE and western blot analysis 

 SDS-PAGE was carried out for protein expression and purity assessment as well 

as for cosedimentation assays.  All proteins were boiled and loaded onto a 12% SDS 

polyacrylamide gel with bromphenyl blue loading buffer.  Gels were run at 70 volts for 

10 minutes through stacking and at 170 volts for 1 hour through the separating gel.  Gels 

not undergoing western blot analysis were stained with coomassie blue stain.   

For western blots, gels were transferred onto a nitrocellulose at 25 volts for 25 

minutes in a BioRad Semi Dry Transfer Apparatus in transfer buffer (1 part 10X Tris-

glycine, 4 parts methanol, 5 parts H2O). Membranes were rinsed in deionized water then 

stained with ponceau until protein bands were visible for an analysis of total protein.  For 

immunoblotting, membranes were blocked in TTBS buffer (50 mM Tris-HCl pH 7.5, 

0.1% (v/v) Tween-20, 150 mM NaCl) containing 5% milk powder (Carnation nonfat 

milk) for 1 hour.  Then membranes were incubated with goat anti-CaMKIIα polyclonal 

primary antibody (purified in Colbran laboratory) diluted into TTBS with 5% milk for 2 

hours at room temperature.  After 5 washes with TTBS, membranes were incubated for 1 

hour at room temperature with rabbit anti-goat secondary antibody conjugated to alkaline 

phosphatases (Jackson ImmunoResearch).  Following another 5 washes in TTBS, 
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membranes were developed in development buffer with 1 part BCIP and 2 parts NBT.  

The reaction was stopped by washing with 1X TTBS and proteins were imaged by 

chemiluminescence on a BioRad Gel Doc EZ apparatus. 

 

Calmodulin expression and purification  

 Calmodulin was cloned into pET3a containing a T7 promoter and expressed in E. 

coli BL21(DE3) cells. Protein expression was induced with 0.4 mM IPTG and incubated 

at 30° and 250 rpm for 3 hours. Harvested cell pellets were resuspended in 50 mM 

MOPS, 100 mM KCl, 1 mM EDTA, 1 mM DTT, 0.1 mM PMSF, pH 7.5 and lysed by 

sonication.  5 mM CaCl2 was added to lysis supernatant and loaded on a High Trap 

Phenyl HP column (GE Healthcare) with 50 mM Tris-HCl, 1 mM CaCl2, pH 7.5.  The 

protein was washed with 50 mM Tris-HCl, 1 mM CaCl2, 0.5 M NaCl, pH7.5 and eluted 

with 10 mM Tris-HCl, 10 mM EDTA, pH7.5.  Purified protein was then desalted into 50 

mM HEPES, 100 mM NaCl, 2.5 mM EDTA, 0.02% azide, pH 7.5. 

 

Activity assays   

 Specific kinase activities were determined as previously described[122] except for 

the buffer conditions which matched those of the EPR analysis.  Activity was determined 

by the protein’s ability to incorporate a radioactive gamma phosphate from [γ32P]ATP 

onto either syntide-2 (PLARTLSVAGLPGKK), a synthetic peptide based on a glycogen 

synthase phosphorylation site, or autocamtide-2 (KKALRRQETVDAL), a peptide based 

on the CaMKII regulatory domain.  Assays were carried out under the following 

conditions: 50 mM HEPES, 100 mM NaCl, 0.4 mM [γ32P]ATP, 10 mM Mg(Ac)2, 1 µM 
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CaM, 0.5 mM CaCl2, 20 µM syntide-2 or 10 µM autocamtide-2, 1 mM DTT, 1 mg/mL 

BSA. The level of radioactive gamma phosphate was normalized relative to control 

samples where buffer was added instead of CaMKII.   

 

Circular dichroism   

 Spectra were collected on a Jasco J-810 Spectropolarimeter in 20 mM phosphate 

buffer, pH 7.1.  Near UV spectra (330-250 nm) were obtained using a 0.5 mg/mL protein 

solution at room temperature.  Far UV spectra (260-185 nm) were collected at room 

temperature using a 0.1 mg/mL protein solution. Melting curves were obtained using 0.15 

mg/mL protein solution by monitoring ellipticity at 222 nm in a temperature range 

between 5-95°C at a temperature slope of 60°C/hour.   

 

Light Scattering 

 Molecular weight was determined by MultiAngle Laser Light Scattering (Dawn 

Heleos 8, Wyatt Tech) at 658 nm wavelength in tandem with size exclusion 

chromatography on a Superdex 75 column (GE Biosciences) equilibrated in buffer (50 

mM HEPES, 100 mM NaCl, 2.5 mM EDTA, 0.02% azide, pH 7.5).  Data was analyzed 

by Astra software package (Wyatt Tech.) and injected protein mass was estimated from 

refractive index detector (Agilent) assuming dn/dc to be constant 0.19. The instrument 

was calibrated for BSA (Sigma). 
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Mass Spec Analysis 

 Coomassie stained bands for SDS-PAGE were excised and cut into 1mm cubes 

and incubated in 100 mM Amic for 15 minutes.  Reduction and alkylation took place by 

first incubating in 10 mM Amic and 100 mM DTT for 15 minutes at 50°C.  To 

carbamidomethylate cysteines, 30 mM iodoacetamide was added to the solution and 

incubated at RT for 15 mins in the dark.  Dehydration was completed by removing the 

liquid and adding a 1:1 mixture of ACN and Ambic and incubating until coomassie was 

removed.  Then the gel was incubated with 100% ACN for 10 mins and desiccated in a 

speed vac.  Proteins were digested with 0.01 mg/mL trypsin in 25 mM ammonium 

bicarbonate for 2 hours at 37°C.  Peptides were extracted slices with 15-25 µL of 

ACN:H2O (60:40) with 0.1% formic acid then dried in a speed vac.  Samples were 

reconstituted in in 50 µL of 2% ACN in H2O with 0.1% formic acid and analyzed with 

LC-MS for sequence coverage and phosphorylation modification. 

 

CaM Association and Dissociation Titrations 

 For binding experiments, the concentration of CaM was varied while CaMKII 

concentration was kept constant.  The titration took place in 125-fold excess saturating 

CaCl2.  EPR spectra were obtained, normalized, and peak heights were determined for the 

mobile component of the lowfield spectral peak.  These heights were then plotted against 

the [CaM]/[CaMKII] ratio.  Dissociation experiments were completed in saturating CaM 

(6X) and CaCl2 (25X) while EGTA concentration was varied.  Peak heights were 

similarly determined and plotted against the [EGTA]/[CaCl2] ratio.  All plots were fitted 

using Prism software (GraphPad v. 4.0b). 
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Cosedimentation Assays 

 Binding reactions were carried out for 2 hours at 4 °C with the following 

reagents; 10 mM Tris HCl, 200 nM CaMKII, 5 mM CaCl2 or 5 mM EGTA, 2 mM 

Mg(CH3COO)2, 200 mM NaCl, a 50/50 slurry of CaM-equilibrated agarose, pH 7.5.  

After incubation, resin was separated by centrifugation and supernatant was removed.  

Resin was then washed 5 times with buffer containing the same reagents except for 

CaMKII and resin.  Protein complexes bound to resin were denatured by boiling and 

were then run on a 12% SDS gel and analyzed with coomassie staining. 

 

EPR spectroscopy   

 EPR spectra were collected at room temperature on a Bruker EMX spectrometer 

(X-band) at an incident power of 10 mW and 1.6 gauss modulation amplitude. Samples 

contained 50 µM CaMKII unless otherwise stated and all binding molecules were added 

in excess; 300 µM CaM/10 mM CaCl2 and/or 10 mM ATP/10 mM Mg(CH3COO)2.  All 

proteins and reagents were prepared in the same buffer used for EPR experiments: 50 

mM HEPES, 100 mM NaCl, 2.5 mM EDTA, 0.02% azide, pH 7.5. 

 

CW Distance determinations 

 Dipolar coupling between spin labels was analyzed by using a modification of the 

deconvolution method [206]. This approach requires both the dipolar broadened spectra 

and unbroadened reference spectra. The unbroadened spectrum is obtained by measuring 

the spectrum for each mutant individually followed by digital sum of the two spectra, 

termed the sum of singles. The sum of singles spectra is convoluted with a broadening 
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function, which is a sum of Pake patterns weighted by a distribution of the distance 

between the two spin labels. The distribution is modeled as a sum of gaussians and the 

number of gaussians, up to 5, is chosen based on a statistical improvement in the fit of the 

broadened spectra with the experimental spectra of the double mutant [245]. 

 

DEER Distance determinations 

 Distance measurements were carried out on a Bruker 580 pulsed EPR 

spectrometer operating at either X-band or Q-band frequency using double electron 

electron resonance (DEER) with a standard four-pulse protocol. Glycerol was added to 

30% (w/w) to all samples before freezing to 83K. Final protein concentrations were in the 

range of 75-150 µM.  DEER signals were analyzed either by Tikhonov regularization or 

multiple Gaussian peak picking to yield the distance distributions. 

 

Simulations for spectral lineshape analysis 

 Spectra were fit using the microscopic order/ macroscopic disorder (MOMD) 

model [202].  For the two component fits, the motion of one component was assumed to 

be effectively isotropic (Rx = Ry = Rz). The motion of the second component is assumed 

to undergo anisotropic rotation (Rx ≠ Ry ≠ Rz) within an ordering potential. The rotational 

correlation time, τ, for the motion is obtained from the R's:  τ = 1/(6 (Rx + Ry + Rz)
⅓). The 

uncertainty in the correlation time of the isotropic component is around 15% [201]. While 

the uncertainty is somewhat larger for the restricted component correlation time, the 

differences in the spectral lineshape demonstrates that difference between the two 

correlation times are outside the uncertainty intervals. The restriction in motion is 



173 

described by an order parameter, S, calculated from the coefficient, c20, used to describe 

the ordering potential. In addition to the ordering potential, the axis of the nitroxide was 

allowed not to be co-linear with respect to the diffusion axis and this tilt is given by the 

angles (αD, βD).  
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