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CHAPTER I 

 

ALTERATIONS IN SENSORY PROCESSING IN AUTISM 

 

General Introduction to Autism 

 Autism Spectrum Disorders (ASD) are a group of neurodevelopmental disorders 

which are diagnosed using the following triad of symptoms: impairments in social 

interaction, impairments in language, restricted, repetitive, and stereotyped behavior, 

interests, and activities2.  A great deal of heterogeneity in the severity of the three 

symptom classes exists amongst individuals affected by this disorder giving rise to 

distinct diagnoses such as Autism, Asperger’s, and Pervasive Developmental Disorder-

Not Otherwise Specified (PDD-NOS)2.  When incorporating all disorders on the autism 

spectrum, the current prevalence estimate indicates that one in every 150 children is 

affected by ASD3.  Twin and family studies have shown that ASD may be the most 

‘genetic’ of neuropsychiatric disorders, with concordance rates of 82–92% in 

monozygotic twins versus 1–10% in dizygotic twins with a sibling recurrence risk of 6%4.  

Studies of rare single nucleotide polymorphisms (SNPs) and genome wide association 

studies suggest that while a portion of cases of autism may be due to rare SNPs that 

follow Mendelian genetics, in the vast majority of individuals with autism a complex 

interplay between several genes and the environment are likely to contribute to their 

autistic symptomology4-7.  The complexity of the genetic and environmental influences 

on autistic symptomology creates the extreme heterogeneity observed in autism and 

contributes to the difficulty in studying autism as a unified disorder.  
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Sensory Observations in Autism 

In addition to the diagnostic triad of symptoms, sensory and perceptual 

disruptions are frequently associated with ASD.   In fact, the original depiction of autism 

published by Kanner in 1943 included descriptions of sensory abnormalities such as 

fascination with particular stimuli as well as aversions to innocuous stimuli8.  Many 

studies have since been published which seek to characterize these sensory 

disturbances in ASD.  One insight into the sensory disturbances in autism comes from 

autobiographical reports.  For example, Temple Grandin, a well known high-functioning 

professor with autism, describes her hearing experiences as “like having a sound 

amplifier set on maximum loudness”9.  Retrospective analysis of home videos of infants 

who would later be diagnosed as autistic have found symptoms of abnormal reactions to 

sensory stimuli indicating that sensory disruptions are present even before a diagnosis is 

made10.  Other reports indicate a difficulty for individuals with ASD to process stimuli 

from multiple senses concurrently which often results in “sensory overload.”  Lovaas et 

al. trained children with autism, mental retardation, and typical development (TD) to 

respond to a multisensory cue (visual, auditory, and tactile) then tested which of the 

cues elicited a response.  They found that children with TD, and to some extent children 

with mental retardation, did respond to each stimulus when presented separately.  

However, children with autism tend to respond to one component of the multisensory 

stimulus (i.e. visual, auditory, or tactile).  The authors concluded that this finding may 

have resulted from an overselectivity of attention within a multisensory object11.  

 One strategy for quantifying sensory disturbances in ASD that has been used 

extensively since 1977 is the sensory questionnaire.  These questionnaires are 

administered to parents or caregivers and usually include items from all modalities and 

both hypo- and hyper-responsiveness to stimuli from each modality. Hyper-

responsiveness is generally characterized by sensory aversions including avoidance 
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and/or sensitivity to loud noises, lights, particular textures or food, etc.  Hypo-

responsiveness includes behaviors involving both the lack of orienting to sensory events 

(i.e. not responding to sounds or the child’s name being called) and sensory fascinations 

or the need for increased sensory stimulation (swinging, starting at lights, mouthing 

objects, etc)12.  These studies have shown that abnormal reactions to sensory 

stimulation as reported by parents are nearly universal in ASD with estimates up to 90% 

of individuals with ASD showing sensory symptoms13,14.  These studies have also shown 

that sensory disruptions are present in multiple modalities and include both hypo- and 

hyper-responsiveness to stimulation13-20.  Collectively, this literature represents the entire 

range of both age and ability in autism indicating that sensory disturbances are an 

integral component in autism13-20. Although this literature is vital in describing and 

quantifying abnormal reactions to sensory stimulation, it does not provide any 

information as to the underlying mechanisms of sensory disruption in ASD.  

 

Unisensory Perception in Autism 

The initial studies into sensory disturbances in autism revealed the extent and 

nature of the unusual responses that many children with autism have to events in their 

environment; however, observational and survey studies are unable to determine 

whether these unusual reactions are due to differences in the neural processing of 

sensory stimuli (and the nature of these potential differences) or a higher level emotional 

or attentional modulation of sensory stimulation.  Many studies have sought to address 

this question by utilizing psychophysical testing and brain imaging to investigate 

potential differences in perceptual abilities and neural processing.  The following section 

will outline important findings in this domain in each of the main sensory modalities and 

describe the generalities that have been observed across the modalities. 
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Vision 

Many studies have investigated how the perception and neural processing of 

visual information differs in individuals with autism.  Many diverse aspects of visual 

processing have been studied ranging in complexity from simple detection of visual 

gratings modulated in contrast/luminance to processing of faces and complex scenes.  

The pattern of relative strengths and weaknesses in visual perception in autism suggest 

unique disruptions in the neural networks that subserve visual processing in the brain.  

Many studies have shown intact and even superior performance on tasks involving 

relatively simple visual stimuli.  For example, children and adults with autism are able to 

find simple figures such as a triangle embedded in a complex figure much faster than 

typically developing controls21-24.  Similarly, individuals with autism show enhancements 

in visual search paradigms.  In these tasks, participants are instructed to find a particular 

object in an array of distractors of increasing number (set size).  In a feature search, the 

target differs in one feature such as color or shape and can be quickly located 

regardless of the number of distractors (i.e. little increase in reaction time as the set size 

increases).  In a conjunction search the target differs on two features such as color and 

shape and must be identified by integrating the two features for each distractor resulting 

in markedly increased reaction times as set size increases25.  Individuals with autism 

have shorter reaction times than typically developing controls for larger set sizes during 

conjunction search demonstrating their superiority in visual search26-28.  This perceptual 

superiority suggests that visual processing may be conserved or even enhanced in 

autism; however, the simple nature of the stimuli (i.e. involving basic aspects of visual 

features such as color and/or shape) may restrict this observation to low-level visual 

processing. 

 Another aspect of visual perception that has been studied is the detection and 

discrimination of sinusoidal visual gratings that can differ in contrast, spatial frequency, 
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and orientation.  Jemel and colleagues showed that individuals with autism could detect 

a sinusoidal visual grating at a lower contrast than TD controls29.  The superior detection 

of visual gratings lends support to the hypothesis that the autistic brain may be more 

adept at processing simple visual information; however, these studies alone cannot 

determine whether superior detection of simple visual stimuli comes at the expense of 

more complex processing or whether higher order processing is relatively spared.  

Bertone and colleagues tested this hypothesis by altering the complexity of the stimulus 

to be discriminated.  In this task, participants were asked to discriminate the orientation 

of a grating that could be luminance-defined (V1-dependent processing) or texture 

defined (V2-dependent processing).  Individuals with ASD were superior at identifying 

orientation for luminance-defined gratings but inferior at identifying orientation for 

texture-defined gratings indicating that visual stimulus complexity has an inverse 

relationship with perceptual performance in autism30.   

 Another extensively studied aspect of visual processing in autism is motion 

perception.  Early studies of the ability of individuals with autism to detect the direction of 

a random dot display suggest that they needed a higher percentage of coherent dots 

(moving in the same direction) to perform at the same level as TD controls31,32.  This 

finding as well as the superior performance on tasks with simple static visual stimuli led 

to the hypothesis that autism was characterized by a deficit in the dorsal visual 

(responsible for location and motion perception) pathway but enhanced processing in 

the ventral (responsible for fine spatial detail and form) pathway32.  Recent research, 

however, suggest that the pattern of enhancements and disruptions is better explained 

by stimulus complexity rather than divergent visual pathways.  For example, many 

recent studies have reported that individuals with autism perform just as well as controls 

in detecting the direction of a random dot display but are inferior at detecting the identity 

and direction of movement of point light displays that depict biological motion (e.g. a 
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walking person)33-35.  Disruptions in the perception of biological motion in autism have 

been observed in children as young as three years old36.  These studies in conjunction 

with the above study by Bertone et al. have reported that within both the dorsal and 

ventral pathway, the perception of individuals with autism is spared or even enhanced 

for simple/low-level stimuli but disrupted for relatively higher order stimuli. 

 One very complex aspect of visual processing which has been extensively 

studied is face processing.  Behavioral studies have shown that people with autism are 

less able to discriminate features of faces or the emotion displayed on the face when 

compared to controls37-39.  Similarly, activation in the fusiform gyrus on the ventral 

surface of the brain, which has been repeatedly associated with the processing of faces 

and facial recognition, is markedly decreased in individuals with autism40-44.  

Furthermore, current studies have provided evidence to suggest an impaired network 

processing mechanism as the basis for the disrupted face processing in autism45-47.  

However, it is still unclear whether the disrupted face processing in autism is due to 

altered face processing networks or a tendency of individuals with autism to avoid 

looking at faces38.  Furthermore, it is still unknown whether the disruptions observed in 

the network for processing faces is due to differences in the pattern of looking behavior 

in autism or if individuals with autism avoid looking at faces because they do not provide 

the same social information due to disrupted processing. 

 The theory of weak central coherence has been a major theory in autism that 

seeks to explain the dichotomy observed in the performance of individuals with autism 

on psychophysical tasks.  This theory proposes that autism is characterized by a 

processing bias for featural or low-level information at the expense of global 

processing48. Importantly, Nakahachi and colleagues have investigated whether 

individuals with autism show diminished holistic processing compared to controls.  

Participants were asked to detect changes in scenes that could either be related to the 
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theme of the scene or unrelated to the theme of the scene. For example, a related 

change would be a child holding a bowl instead of a plate in a scene of a family engaged 

in washing dishes. An unrelated change in the same scene would be a different pair of 

shoes in the corner of the room. ASD participants showed lower accuracy for changes 

related to the theme of the scene but not for changes unrelated to the theme when 

compared to controls49. In the same experiment, participants discriminated between 

Thatcherized faces (faces in which features such as the eyes and mouth are inverted) 

and normal faces presented upright or inverted. Typical adults can discriminate 

Thatcherized faces from normal faces much faster when they are presented upright than 

when they are presented inverted.  This is theorized to occur because people tend to 

process faces holistically when upright but not when inverted50.  Participants with ASD 

showed longer reaction times than controls for upright faces but not for inverted faces51.  

Another study found an inverse relationship between disrupted higher order processing 

(Global Dot Motion Task) and a measure of central coherence (Children’s Embedded 

Figures Test) in ASD also lending support to the weak central coherence model52.   

These experiments together indicate that individuals with autism may have disruptions in 

processing complex stimuli holistically. 

 

Audition 

 Investigations into the perception and processing of auditory stimuli are less 

numerous than studies of visual processing; however, these studies follow the same 

pattern of demonstrating intact or enhanced perception of simple stimuli but disrupted 

perception of more complex stimuli.  For example, Bonnel et al. showed that high-

functioning individuals with autism were superior at discriminating pitch as well as 

categorizing “high” vs. “low” tones when compared to controls53.  O’Riordan et al. later 

replicated the finding of enhanced pitch discrimination in autism54.  This is directly 
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comparable to enhanced discrimination of visual gratings and strongly suggests a 

general change in the way that sensory information in processed in different modalities.   

 In further accordance with studies of visual processing, individuals with autism 

show disruptions in the perception of complex auditory stimuli such as speech including 

a reduced ability to discriminate different speech sounds, phonemes, etc.   For example, 

discrimination of a particular vowel sound may be disrupted while in the context of a 

word or phoneme but not disrupted in isolation55.  Disruptions in language are a core 

symptom in autism, making it unclear whether poor speech discrimination is a feature of 

disrupted auditory processing or specific to language stimuli but not other relatively 

complex auditory stimuli.  However, many researchers have attempted to replicate the 

findings of Bertone et al. in the auditory modality by showing that the perception of 

complex but not social/speech auditory stimuli is selectively disrupted compared to 

simple auditory stimuli.  One such study compared the ability of autistic and TD 

individuals to discriminate pure tones as well as temporally and spectrally complex 

sounds56.  The autism group showed enhanced discrimination of pure tones but similar 

discrimination of complex sounds; however, neural imaging using fMRI diverged from 

the behavioral observations and revealed a greater activation in primary auditory cortex 

but less activation in non-primary auditory cortex56.  Though behavioral differences were 

not found in this study, the functional differences in activation suggests that the 

processing of auditory stimuli may be altered in autism and may differentially affect the 

perception of simple versus complex stimuli.   

 

Somatosensation 

Surprisingly few studies have been published to date investigating differences in 

the processing of tactile information in individuals with ASD.  Interestingly, the studies 

that have been published are in accordance with reports of enhanced processing of low 
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level stimuli but disrupted processing of higher order stimuli.  For example, Cascio et al. 

.have found enhanced detection abilities in the tactile modality for some but not all 

measures.  For example, no differences between groups were found for warm/cool 

detection or ratings of pleasantness for texture.  The ASD group did have lower 

thresholds for thermal pain as well as lower thresholds for vibration detection on the 

forearm but not the palm57.   

The relationship between stimulus complexity and perceptual performance in 

autism was examined directly by Minshew and Hobson in the tactile domain.  In this 

study the authors differentiated simple vs. complex tactile processing by comparing 

scores on both simple and complex composite scales between individuals with ASD and 

without ASD.  The simple sensory composite included the following items: localization of 

cutaneous sensation, sharp vs. dull pressure, and muscle and joint sensation; whereas, 

the complex sensory composite included the following items: finger-tip writing, tactile 

finger recognition, wrist shape drawing, and tactile form recognition.  The number of 

errors made in each composite determined performance.  Similar to vision, a dichotomy 

in performance between simple vs. complex processing in ASD was observed.  Error 

rates for the simple sensory composite were similar between groups, whereas, error 

rates were much higher in individuals with ASD for the complex sensory composite58.  

This study suggests that the inverse relationship between stimulus complexity and 

perceptual abilities in ASD may be an amodal phenomenon, affecting all modalities.   

 

Multisensory Integration in Autism 

Multisensory processing in autism has not been studied as extensively as 

unisensory processing.  Accordingly, much less is known about whether deficits in the 

integration of information across modalities exist in autism and what the nature and 

degree of these disruptions may be; however, the presence of deficient processing in all 
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modalities is suggestive of a larger multisensory defect.  This section will review the few 

articles, which have studied multisensory integration in autism and attempt to link them 

to the known disruptions in unisensory perception.  

 

Integration of Complex and Social Multisensory Stimuli in Autism  

 The vast majority of studies of multisensory integration in autism have focused 

on complex stimuli such as speech or other forms of communication.  Williams et al. 

.presented visual, auditory, and audiovisual syllables such as “ba,” “da,” and “tha” to 

children with ASD.  The authors found that children with ASD were less accurate at 

identifying unimodally-presented syllables.  The children with ASD also did not benefit 

from the congruent multisensory (same information presented in both modalities) 

presentation of “ba” as compared to the incongruent presentation of visual “da” with 

auditory “ba;” whereas, the controls did benefit from congruent multisensory 

presentations of “ba.”  This suggests that the children with ASD were not able to utilize 

the visual information to improve their performance.  However, the deficit in multisensory 

integration seen in the ASD group could be due to their decreased ability to interpret the 

visual stimuli.  When visual only performance was statistically controlled for, group 

differences disappeared.  Also when a group of children with ASD were trained to lip-

read, they did show a benefit from the congruent presentation of “ba” which contrasted 

with their performance before training59.   

Smith et al. did find deficits in multisensory integration of speech stimuli in 

addition to the unisensory deficits.  In this task adolescents with autism were presented 

with auditory speech stimuli in noise and asked to repeat the words that they heard.  

These stimuli were presented in an adaptive staircase procedure in which correct 

responses resulted in a decrease in speech volume relative to noise whereas incorrect 

responses resulted in an increase in speech volume relative to noise.  This staircase 
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was run twice: once with auditory only stimuli and once with congruent audiovisual 

stimuli.  Both the ASD and TD group showed similar performance on the auditory only 

task and improvements with the addition of the congruent visual stimuli; however, the TD 

adolescents showed significantly more improvement from the visual stimuli than the ASD 

group.  Similar to the Williams et al. study, lipreading was found to be deficient in ASD 

and significantly affected the ability of the visual stimuli to improve performance.  Unlike 

the Williams et al. study, this study found that when visual and auditory performance was 

statistically accounted for, a significant effect still remained suggesting disrupted 

multisensory integration of speech stimuli in autism60. 

Magnee et al. studied the processing of multisensory speech stimuli by recording 

EEGs while adults with autism and typical controls observed a woman producing either 

congruent or incongruent speech syllables (/ada/ or /aba/).  To investigate early pre-

phonological processing, the multisensory ERP waveform was compared to the sum of 

the unisensory waveforms, and differences in the latency and amplitude between the 

multisensory and summed waveforms were compared across groups.  Both groups 

showed similar reductions in the amplitude of the N1 and P1 components in response to 

the multisensory stimuli; however, the autistic adults showed a smaller decrease in the 

latency of the N1 and P1 components in response to multisensory stimuli though this 

difference did not reach significance in the small study sample.  The authors concluded 

that early pre-phonological processing is conserved in autism though clear differences 

were observed in the multisensory waveform.  To investigate later, more complex, 

phonological processing, the authors compared the multisensory waveforms in response 

to congruent versus incongruent stimuli.  The congruent and incongruent waveforms of 

typical adults were significantly different from each other starting at 590 ms after 

incongruency (750 ms after auditory onset).  Interestingly, the multisensory waveforms 
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of autistic adults were indistinguishable, suggesting a deficit in later phonological 

processing of multisensory speech stimuli61. 

A study by Taylor et al. suggests that multisensory processing of speech stimuli 

may improve to a typical level during later development.  The authors tested the ability to 

identify unisensory syllables and the susceptibility to the McGurk effect in autistic and 

typical children aged 7-16 years.  They found that visual accuracy improved with age for 

both groups though the improvement in autistic children was much steeper.  Both groups 

were highly accurate for identifying auditory syllables throughout the age range.  Typical 

children showed similar rates of reporting the McGurk effect at all age levels; however, 

older children with autism reported the McGurk effect much more often than younger 

children with autism.  The oldest children with autism in the study did not show deficits in 

unisensory or multisensory perception of speech stimuli when compared to their typical 

peers.  This study shows that the disruptions in multisensory processing observed in 

autism may not persist into adulthood and may be a potential target for sensory 

therapies which could improve the processing of multisensory speech stimuli at an 

earlier stage of life62. 

One study examined the perception of temporal synchrony in audiovisual stimuli 

in autism.  In this study, children with autism participated in a preferential looking 

paradigm in which linguistic or non-linguistic stimuli were presented synchronously on 

one screen and at a delay of 3 seconds on a second screen. Children with TD and 

children with other developmental disabilities showed preferential looking for both 

linguistic and non-linguistic asynchronous stimuli; however, children with autism only 

showed preferential looking for asynchronous non-linguistic stimuli. This study 

demonstrates that temporal multisensory processing may be disrupted in autism and 

that it may also follow the pattern of increased disruptions for complex/social or verbal 

stimuli than for simple/non-social or non-verbal stimuli63. 
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Integration Of Simple Multisensory Stimuli In Autism 

A few studies have examined the integration of simple multisensory stimuli in 

autism, one of which was published recently by Van der Smagt et al.  In this study high-

functioning adults with autism and controls completed a task, which incorporated a well-

known multisensory illusion known as the flash-beep illusion.  This illusion occurs when 

one flash is presented with two or more beeps, shifting the perception of one flash to two 

flashes.  The authors found no differences between groups on the strength of this 

illusion, suggesting that multisensory integration of low-level stimuli is intact in high-

functioning autism64. 

The multisensory studies reviewed thus far suggest the same dichotomy 

between simple vs. complex/social or verbal stimuli seen in individuals with autism for 

unisensory stimuli.  Mongillo et al. recently tested this hypothesis by running children 

with ASD on a battery of multisensory psychophysical tasks that included both tasks 

incorporating human faces and tasks incorporating inanimate objects.  Differences were 

observed between ASD and TD performance of tasks involving human faces (i.e. 

male/female face classification, Mcgurk, and AV vowel match/mismatch); however, no 

differences were observed for tasks involving objects (ball composition and size 

match/mismatch).  This study, however, cannot differentiate stimulus complexity from 

the social nature of facial stimuli65. 

ERP studies of multisensory integration of simple stimuli in autism complicate the 

hypothesis that individuals with autism are able to appropriately integrate simple but not 

complex multisensory stimuli.  Magnee et al. used a cross-modal P50 gating paradigm to 

assess the integration of simple multisensory stimuli in adults with autism.  They found 

that both an auditory and visual conditioning stimulus was able to suppress the 

amplitude of the P50 component in response to a test auditory stimulus66.  This study 

lends support to the hypothesis that the integration of simple multisensory stimuli is 
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preserved in autism; however, an ERP study recently published by Russo et al. found 

that the integration of simple stimuli might be impaired in high functioning children with 

autism.  In this study, EEG’s were recorded while children with autism and typical 

development were presented with auditory and somatosensory stimuli.  Waveforms in 

response to the multisensory stimuli were compared to the summed waveforms for the 

unisensory stimuli.  Significant differences between the multisensory and summed 

waveforms fit the expected temporal and topographic pattern (significant differences 

beginning around 100 ms across several electrode locations) in typical but not autistic 

children.  The autistic children tended to show less pronounced and delayed (by 

approximately 200 ms) differences between the multisensory and summed waveforms.  

The results of this study could indicate that children with autism are less able to integrate 

even simple multisensory stimuli; however, since behavioral responses were not 

collected, the alterations in multisensory processing could represent a different neural 

strategy for integrating the stimuli (e.g. a shift from early processing in secondary 

sensory areas to later processing in association cortex)67. 

Although previous studies have provided evidence to support the idea that the 

integration of complex multisensory stimuli seems more impaired than the integration of 

simple stimuli, this hypothesis cannot be properly evaluated because of the limited 

number of articles studying multisensory processing in autism. For example, the ERP 

study by Russo et al. described above shows that the integration of simple multisensory 

stimuli may be disrupted in autism and does not support the hypothesis proposed by 

Mongillo et al. The extreme heterogeneity in autism could explain the apparent decrease 

in the ability of children with autism to integrate simple multisensory stimuli.  A study by 

Martineau et al. suggests that a large range in the ability of individuals with autism to 

integrate simple multisensory stimuli may exist.  In their 1991 study they separated their 

autistic participants into three groups based on differences in the ERP waveform in 
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response to a tone presented alone as compared to a tone followed by a flash. The 

three subgroups differed in the initial response to the tone alone as well as the degree to 

which the waveform was modulated by the flash with only one group having similar 

responses to the TD group.  Interestingly, the three groups also differed on measures of 

autistic behavior used at the time of publication67. 

Importantly, both unisensory and multisensory atypicalities in autism have been 

extensively studied. Despite the numerous reports of impaired sensory disruptions in 

individuals with autism, there is still paucity of studies aimed at understanding the basic 

aspects of sensory processing and how they are altered in autism. The following 

sections will highlight research into anatomical and functional disruptions in autism, 

which are likely to result in dysfunction of the fundamental aspects of sensory 

processing.  

 

Anatomical Changes in the Autistic Brain 

Many studies have sought to identify key changes in the anatomy of the autistic 

brain using post mortem brain tissue and MRI and to determine whether these changes 

serve a causative function.  Disruptions in both gray matter and white matter volume and 

organization have been found in the brains of individuals with ASD.  This section will 

review these studies with emphasis on those that sought to link anatomical changes to 

the disruptions in sensory processing described above.   

 

Gray Matter 

   The first anatomical observation in autism was an increase in head size early in 

life, which was later discovered to be due to an increase in the number of cells within the 

brain.  This period of early overgrowth (before two years of age) is followed by a slowing 

of growth later in development68. These gross anatomical disruptions led researchers to 
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investigate whether the volume and organization of the neurons comprising the gray 

matter is changed in autism.  Emerging studies have investigated and found differences 

in gray matter volume in brain structures thought most likely to result in the pattern of 

symptoms observed in autism such as frontal cortex, temporal lobe (cortex and medial 

temporal lobe structures such as the amygdala), and the cerebellum69,70.  

 

White Matter 

 The volume, organization, and integrity of white matter in the autistic brain have 

been extensively studied. Reports of alterations in white matter volume have been 

shown mainly as decreases in key structures such as the corpus callosum and inferior 

longitudinal fasciculus70,71.  The corpus callosum has been one of the most studied white 

matter structures in autism with researchers finding decrease in the volume of either the 

entire corpus callosum or in particular subregions72,73.  Furthermore, the anatomical 

studies have suggested impaired functional connectivity and transmission of information 

between the two hemispheres in individuals with autism. Although changes in white 

matter volume are intriguing, they cannot truly inform researchers as to the exact nature 

of differences in the pattern of connectivity in the autistic brain.  Recent years have seen 

an explosion of studies published which use diffusion tensor imaging (DTI) to investigate 

the integrity and organization of white matter tracts between particular brain areas in 

autism.  Several studies have found a general decrease in functional anisotropy (FA) 

which measures the propensity for water to flow in one direction (e.g. along an axon) 

versus in many directions (e.g. gray matter)74.  Decreases in FA can be attributed to a 

disruption in the organization of many single axons to form a singular cohesive tract or to 

disruptions in the axonal membranes affecting their ability to prevent water molecules 

from exiting the membrane (e.g. loss or disruption of myelin wrapping)75.  Decreases in 

FA are usually attributed to disruptions in the connectivity of the brain areas that project 
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through the fiber tract.  One of the major areas to show decreased FA in autism is the 

corpus callosum, validating volumetric studies showing that the two hemispheres are 

under-connected76-78.  Many researchers have also found decreased FA in the frontal 

lobe white matter indicating that individuals with autism may have reduced connectivity 

with the higher order reasoning parts of their brains79,80.  Lower FA has also been found 

in tracts associated with areas such as the amygdala and FFA suggesting that they also 

may be less connected from the rest of the brain81.  Interestingly, the white matter 

connecting many of the structures subserving both unisensory and multisensory 

processing such as the white matter in the temporal lobe (including the superior 

temporal sulcus (STS) and the temporal-parietal junction (TPJ)) have been found to 

have lower FA as well82.  Although no studies have currently investigated whether the 

decreased FA in tracts connecting sensory areas is correlated to the magnitude of 

sensory disruption in autism, it seems likely that the pattern of superior or unaffected 

perception of local detail and disrupted perception of complex stimuli may be due to 

decreased connectivity between distant regions. 

 

Minicolumns 

 Minicolumns are architectonic structures found in cortex that are composed of 

vertically oriented pyramidal neurons at the core and GABAergic interneurons in the 

periphery thus uniting vertical and horizontal components of cortex.   The minicolumn is 

the smallest network for information processing in the brain, and neurons within a 

minicolumn usually respond to similar sensory input (i.e. all neurons within one 

minicolumn will have the same receptive field). The inhibitory interneuron surround is 

responsible for the “fine-tuning” and sharpening of sensory information via lateral 

inhibition (inhibition of nearby neurons representing an adjacent area of space, 

frequency, or other sensory feature)83,84.  Using post-mortem tissue, Casanova and 
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colleagues found that minicolumns in individuals with autism tend to be narrower, more 

numerous, and denser85,86.   The disruptions in minicolumn structure have been 

incorporated into the minicolumnopathy and decreased ratio of excitation/inhibition 

theories that will be discussed in detail later in this chapter87,88. 

 

Functional Changes in the Connectivity of Neural Networks in the Autistic Brain 

 The anatomical disruptions in the structure and organization of both gray and 

white matter highlighted above are likely to result in vast consequences on a functional 

level.  Studies utilizing electroencephalogram (EEG) and functional magnetic resonance 

imaging (fMRI) have elucidated several key changes in the functioning of neural 

networks in the brains of individuals with ASD.  The most influential and studied is the 

functional connectivity of neural networks in the autistic brain.  Whereas structural 

connectivity refers to the physical connections between neurons (i.e. axons and synaptic 

strength), functional connectivity refers to the temporal correlation of neuronal activity 

between distinct brain structures that may or may not be physically directly connected89.  

This section will highlight the current knowledge of disrupted functional connectivity and 

explore the consequences of such disruptions on sensory processing in ASD. 

 

EEG: Oscillations  

Many researchers have begun to use EEG to study functional connectivity in 

autism both during rest and during the performance of sensory and cognitive tasks.  By 

measuring the amplitude (power) and temporal correlation (coherence) of neuronal 

oscillations of varying frequencies, researchers have begun to examine differences in 

the strength and effectiveness of connections between proximal and distal brain regions.  

Studies of coherence during the resting state show that distant brain regions tend to be 

less temporally correlated in autism than in typical development90-93.   Electrodes over 
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the frontal cortex seem to show a stronger decorrelation with electrodes over other parts 

of cortex in autism92.  Decreases in EEG coherence have been observed across several 

frequency ranges including gamma (> 30 Hz; associated with integrative processes), 

alpha (8-10 Hz; associated with inhibitive and/or long range associative processes), 

theta (3-6 Hz; associated with short term memory), and delta (1.5 – 3.5 Hz)91,94,95.   

Researchers have also measured changes in amplitude (power) of gamma 

oscillations as a way to measure potential disruptions in connectivity in autism.  Gamma 

oscillations are theorized to represent integrative processes that combine information 

from many disparate areas of the brain; therefore, a decrease in gamma power could 

reflect disrupted integrative processes and a lack appropriate connectivity89,95.  Several 

recent studies have reported decreases in both evoked (time-locked to stimulus 

presentation and thought to represent sensory encoding) and induced (not time-locked 

to stimulus presentation and thought to represent higher-order and/or cognitive 

processing related to stimulus and task) gamma power90,96,97.  Brown et al. found a 

decrease in gamma power in response to Kanizsa shapes (shapes with illusory 

contours) in autistic children even though they were able to detect the illusory shapes as 

accurately and quickly as their typically developing peers98.  A later study of Kanizsa 

figures in autism by Stroganova et al. found that a global change in gamma power could 

not fully explain differences in the neural processing of illusory contours.  They found 

that the pattern of phase locked beta and gamma oscillations could differentiate between 

illusory and control conditions in both groups.  Interestingly, children with autism 

displayed differences in the timing and topography of the phase locked gamma and beta 

oscillations which suggested that children with autism use a different network to process 

illusory figures which may favor lower-level processing99.  Grice et al. found that gamma 

power over frontal cortex did not differ significantly for upright faces as compared to 

inverted faces in individuals with autism whereas typical individuals showed a dramatic 
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increase in gamma activity in response to upright faces100.  The studies above 

demonstrate that individuals with autism show disruptions in the integrative processes 

that underlie sensory and cognitive functioning.  Anatomical studies of white matter as 

well as EEG studies of neural oscillations have led researchers to propose that autism is 

characterized and caused by functional disconnectivity between distant brain regions89.  

fMRI studies of functional connectivity between brain regions in autism have also 

contributed to this theory. 

 

fMRI: Functional Connectivity  

    Several studies have used fMRI in autism to correlate activity between brain 

regions during the performance of sensory and cognitive tasks as well as at rest.  

Horwitz et al. found reduced connectivity between several regions in autism during 

rest101.  Disruptions in functional connectivity in autism have also been found in the 

networks subserving tasks that children with autism are known to have difficulty with 

including sentence comprehension102, face processing103,104, visuomotor tasks105, 

emotion recognition106, executive planning tasks107, source recognition108, and visual 

search109.  One issue with all the above studies is that they measure changes in 

functional connectivity within a predetermined network.  As observed in the Stroganova 

study described above, individuals with autism may be utilizing a different network during 

the completion of the studied tasks.  Thus, autism may be characterized not by a 

decrease in the connectivity within the neural network subserving a particular 

cognitive/sensory task but by the usage of different networks for cognitive and sensory 

processing.  Welchew et al. measured functional connectivity between 90 regions of 

interests (ROIs) during an emotion recognition task and found that children with autism 

did show decreased functional connectivity between areas that are known to be 

connected within this network. Interestingly, children with autism showed an increase in 
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connectivity between areas thought to be outside the network subserving emotion 

recognition even though these connections were “long-ranged” 106.  This study highlights 

the complexity of the differences in neural processing in autism and shows that a global 

decrease in functional connectivity between distant brain areas may be insufficient in 

explaining the perceptual deficits and other symptomology seen in autism.  Adding a 

further degree of complexity, some studies have shown an increase in thalamocortical 

and/or subcortico-cortical connectivity accompanied by a decrease in cortico-cortical 

connectivity in individuals with autism110.  Studies of functional connectivity in autism are 

proving to be an exciting and informative new area of research in the field; however, 

many studies demonstrate the complexity of this new area of study and the need for 

further investigation of the neural networks and the connectivity between the nodes of 

the networks underlying sensory perception in autism.  

 

Potential for Disruptions in Fundamental Sensory Processing in Autism 

Although unisensory and, to a lesser extent, multisensory perception has been 

studied extensively in autism, surprisingly little is known about the fundamental ways in 

which the neural processing of sensory information differs in autism.  Disruptions in the 

organization of neurons and their axons as well as disordered communication between 

cortical and subcortical structures are likely to result in extensive and fundamental 

disruptions in sensory perception.   The remainder of this introduction will focus on the 

basic aspects of unisensory and multisensory processing which may potentially be 

disrupted in autism. 

 

Unisensory Filtering as a Potential Sensory Disruption in Autism 

 A theory that has important implications for sensory processing in ASD is the 

minicolumnopathy theory proposed by Cassanova. This theory is based on the 



	
   22	
  

anatomical observations of alterations in the architecture of the minicolumn in the 

neocortex in postmortem tissue of individuals with autism.  The cortical column is a basic 

building block of sensory information processing; therefore, disruptions in the 

organization of neurons within the minicolumn and connections between minicolumns 

are likely to result in serious consequences for sensory processing85,86,88.  Importantly, 

Cassanova et al. have proposed that these anatomical alterations will result in 

decreased lateral inhibition in autism because the inhibitory surrounding neuropil is the 

largest contributor to decreases in the width of minicolumns in autism87,88.  The authors 

further propose that decreased lateral inhibition could account for the dichotomy seen 

between performance of tasks using simple vs. complex stimuli and that it has important 

implications for the “filtering capacity of the neocortex” 88. 

 A second proposed neural mechanism for ASD which is closely related to the 

minicolumnopathy theory is founded on a decreased signal-to-noise ratio in neural 

encoding111.  Under typical conditions, neural responses are sharply tuned to particular 

features of sensory stimulation.  This precise tuning has been clearly shown to depend 

on a delicate balance between excitatory and inhibitory transmission within the center-

surround receptive field structure that typically characterizes sensory neurons.  The 

decreased ratio of excitation/inhibition theory proposes that autism is characterized by 

disruptions in this balance.  Specifically, Rubenstein and Merzenich propose that, given 

the pattern of sensory observations in autism and the increased rate of epilepsy in 

autism a decrease in inhibitory processing in autistic cortex results in less precision in 

the tuning of sensory neurons to specific sensory features111.  

 Center-surround receptive fields are a fundamental building block in the 

perception of both simple and complex sensory information.  This receptive field 

structure is found at the earliest stages of sensory processing.  Inhibition has an 

increasingly important role in shaping more complicated receptive field structures found 
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at later stages of sensory processing; therefore, an alteration in precise inhibitory 

processing would have an increasingly disruptive role in the perception of complex 

sensory stimuli112.  This exact pattern has been found in studies of sensory processing in 

autism, making this theory an attractive explanation for the etiological cause of disrupted 

sensory processing in autism.  However, the observed concordance between the pattern 

of sensory abnormalities in autism and the likely consequences of disrupted inhibition is 

not decisive evidence to support disruptions in the tuning of sensory neurons playing a 

causative role in autism.   

A direct perceptual consequence of altered inhibitory and excitatory processing 

within minicolumns is a disruption in a person’s ability to filter extraneous sensory 

information to improve task performance113.   One method for approximating the filtering 

capabilities in a sensory system is by measuring the critical bandwidth, originally 

demonstrated by Fletcher in the auditory modality. He showed that a constrained range 

of frequencies only masks the detection of a pure tone.  Specifically, he demonstrated 

that the detection of a sinusoidal signal was increasingly disrupted by increasing the 

bandwidth (BW) of narrowband noise until a particular BW (the critical BW) beyond 

Figure 1.1: Perceptual thresholds as a function of noise bandwidth in vision 
and audition. 1 
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which further increases in noise BW did not produce decrements in performance114.  

Conversely, the critical band can be ascertained by notching white noise (removing a 

range of frequencies centered at the target frequency) and measuring resulting changes 

in the accuracy of detecting a target tone115.  A similar observation was reported for 

visual stimuli by Pelli and Stromeyer and Julesz who demonstrated that increasing the 

spatial frequency BW of visual noise resulted in increased threshold for detecting 

sinusoidal gratings until a critical BW, beyond which increases in the BW of the noise did 

not result in increased thresholds1,116. (Figure 1.1)  Studies of the critical BW could 

elucidate differences in filtering characteristics in autism and contribute to our 

understanding of the basic processing of sensory information in autism. 

 

Multisensory Integration as a Potential Sensory Disruption in Autism 

Although multisensory integration in autism has been investigated in a limited 

number of studies, none of these studies have examined the fundamental aspects of 

multisensory processing.  Many of these studies have focused on whether individuals 

with autism are able to effectively utilize information from more than one sense to 

improve or alter the perception of a multisensory stimulus.  The remainder of this chapter 

will introduce the current knowledge of multisensory processing in the typical brain and 

highlight connections between neurological mechanisms of multisensory integration and 

known disruptions in neural anatomy and functioning in autism.   

 

Benefits of Multisensory Integration 

We live in a world that is rich in information from many sensory modalities.  Each 

event in our environment can usually be perceived through more than one sense with 

different senses adding unique perceptual information to our understanding of the 

happenings in the world around us.  Our ability to accurately combine information from 
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multiple senses has evolved to strongly improve our functioning in many ways ranging 

from increasing our basic survival (avoiding dangers and locating vital objects) to 

improving our ability to communicate with each other117.   In fact, congruent stimulation 

from multiple modalities has been consistently shown to improve performance in both 

laboratory and “real world” settings.  One benefit of multisensory integration is an 

improvement in the detection of a multisensory stimulus.  Multisensory stimuli are 

detected both more accurately and quickly118-123.  Perhaps the greatest benefit of being 

able to utilize information from multiple senses is an improvement in the discriminability 

of non-salient or ambiguous unisensory cues.  For example, understanding speech in a 

noisy environment is greatly improved by lip reading (cocktail party effect)124-127.  

Additionally, external events are much easier to localize if we can perceive them in more 

than one modality128,129.  Discrimination of the direction of movement of simple stimuli is 

also much improved by congruent multisensory information130-132.  Although, localization 

ability has never been studied in autism, speech comprehension and motion 

discrimination are both known to be disrupted in autism are important for social 

functioning.  Given the immense importance of multisensory integration in our daily lives, 

disruptions in multisensory processing could have far reaching consequences to the 

daily functioning of individuals with autism.   

 

Contribution Of Multisensory Illusions To Our Understanding of Multisensory Integration 

Many insights into how our brains combine and integrate information from our 

various senses come from multisensory illusions.  One of the most well know of these 

illusions is the ventriloquist effect.  In this illusion the perceived location of a sound (a 

speaker’s voice) is shifted toward the location of a visual event (a dummy’s moving 

lips)133-135.  The ability of a visual stimulus to influence the localization of an auditory 

stimulus has been extended into laboratory settings using simple light flashes and tones.  
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When participants are asked to judge the location of a coincident flash and tone that are 

separated in space, the location of the multisensory stimulus is biased toward the 

location of the flash136.  Because the human visual system is more adept at spatial 

discriminations than the auditory system, researchers have theorized that the brain 

weights information from the more reliable modality when the unisensory components of 

a multisensory stimulus are discordant137.  Whereas the visual system is reliable in the 

spatial domain, the auditory system is much more accurate in the temporal domain.  

Accordingly, multisensory tasks that rely on temporally precise information are more 

influenced by the auditory modality138-140.  For example, Morein-Zamir and colleagues 

observed that the addition of two non-informative auditory cues to a visual temporal 

order judgment (TOJ) task improves visual performance if the second auditory cue is 

presented following the second visual stimulus by a slight delay (e.g. 100 ms).  This task 

has been coined the “temporal ventriloquist” effect because some researchers have 

theorized that the tones are “pulling” the visual stimuli apart in time139.  Multisensory 

illusions are not only characterized by one modality biasing the perception of another 

modality.   For example, in the McGurk effect, discordant visual and auditory speech 

stimuli are fused into a novel percept (e.g. a visual “ga” and an auditory “ba” is perceived 

as either “da” or “tha.”)141.   

 

Principles of Multisensory Integration 

The benefits of the integration of multisensory information are strongly dependent 

on the brain’s ability to accurately and precisely bind appropriate unisensory 

components.  This section will describe the principles that govern the binding of 

unisensory information into a unified multisensory percept. 

Multisensory stimuli, which are composed of temporally aligned unisensory 

components, are likely to be associated with a single external event.   The first 
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indications of the temporal properties of multisensory integration arose from studies of 

multisensory neurons in the superior colliculus (SC).  Many of these neurons show 

superadditive enhancements in response to multisensory stimuli.  However, the 

unisensory components of the multisensory stimulus must be presented in close 

temporal proximity with one another to produce such enhancements.  Interestingly, the 

unisensory components need not be absolutely synchronous.  Instead, a relationship 

between temporal proximity and enhancements observed exists such that stimuli 

presented close in time lead to larger enhancements than stimuli present farther apart in 

time142,143.  This same relationship has been observed in numerous psychophysical and 

imaging studies144-153.  Several studies have also defined a “temporal window” of 

multisensory integration within which multisensory stimuli are likely to be perceptually 

bound146,153-156.  One such study, which was published by Shams et al. defined a 

temporal window for the flash-beep illusion introduced previously.  In this study, one 

flash was paired with two beeps with stimulus onset asynchronies ranging from 25 to 

250 ms153.  Whereas the first beep was always presented coincident with the flash, the 

second beep could either be presented before or after the flash.  The authors were able 

to use this task to define a temporal window of approximately 100 ms over which 

participants were likely to report two flashes. Hairston et al. observed that the temporal 

window of integration can be delineated by systematically varying the SOA between the 

second visual and the second auditory stimulus for the task designed by Morein-Zamir 

and colleagues described above146. 

Similar to the temporal principle, the spatial principle was first observed in single 

neurons in the SC where it was found that spatially coincident multisensory stimuli tend 

to elicit superadditive neuronal responses whereas spatially disparate stimuli result in 

subadditive or inhibited responses143,157.  Psychophysical studies tend to follow the 

spatial principle as well with higher rates of integration and binding of spatially proximate 
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stimuli as opposed to spatially disparate stimuli158-161.  The final principle of multisensory 

integration (inverse effectiveness) was also first described in the single neuron model of 

the cat SC where it was discovered that weaker unisensory stimuli when presented 

together resulted in a much higher relative increase in firing rate.  In fact, a clear 

relationship between stimulus effectiveness (i.e. ability to drive neuronal responses 

when presented alone) and increased relative firing rate was observed162-164.  Inverse 

effectiveness has also been clearly demonstrated in studies of human perception.  For 

example, highly salient light flashes and tone pips do not generally show increases in 

accuracy when presented together (due to high accuracy of detecting the unisensory 

components) but improvements in reaction time165.  If instead the light flash and tone pip 

are difficult to detect alone, the increase in accuracy in detecting them together will be 

dramatically increased166. 

 

Neurological Mechanisms Of Multisensory Integration 

 The superior colliculus is perhaps the most studied multisensory structure in the 

brain.  The SC receives both ascending and descending sensory input from the visual, 

auditory, and somatosensory systems.  This input converges on neurons in the SC 

giving them the capacity to both respond to and integrate information from multiple 

modalities.  Input from ascending subcortical structures appear to function in a direct 

excitatory manner, thus giving multisensory neurons in the SC the ability to respond to 

inputs form multiple modalities167-170.  Interestingly, descending cortical input appears to 

play a modulatory role in the integration of multisensory information.  When cortical 

areas of major input to the SC (e.g. AES in the cat) are deactivated using cooling coils, 

SC neurons maintain their ability to respond to multiple modalities; however, they lose 

the capability to effectively integrate the ascending sensory input (i.e. neurons respond 

in an additive manner and do not show superadditivity)171,172.    
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 Superadditive multisensory responses have been well documented and 

characterized in both the SC and cat cortical areas such as the anterior ectosylvian 

sulcus (AES); however, multisensory integration in single neurons is not only 

characterized by superadditive responses.  Modulatory and inhibitory responses are also 

common.  For example, a neuron may respond to a visual stimulus but not an auditory 

stimulus when presented in isolation; however, the neuron may increase or decrease its 

firing rate when the two stimuli are presented together173-175.  Whereas simple excitatory 

interactions are sufficient to account for superadditive multisensory responses; more 

complicated interactions between excitation and inhibition are necessary for producing 

modulatory responses167.  Antagonism of GABA receptors has been shown to block 

inhibitory multisensory interactions in cat SIV cortex176.  Additionally, recent studies of 

spatiotemporal receptive fields (STRF) in SC and cortical multisensory neurons 

demonstrate that the receptive fields of multisensory neurons are much more 

complicated than originally thought, and inhibition is likely to be essential in shaping 

these receptive fields175,177.  A disruption in the balance between excitation and inhibition 

as has been proposed in autism would have vast consequences to the precision and 

nature of multisensory integration. This lack of precision in the integration of simple 

stimuli or in the individual aspects of a complex multisensory stimulus such as speech 

are likely to result in severe deficits in the integration of complex multisensory stimuli.  

Additionally, disruptions in inhibition would strongly impact the nature of modulatory 

interactions in multisensory neurons. 

Human imaging and animal physiology studies have identified several key areas 

of multisensory integration.  Several of these areas overlap with areas known to be 

disrupted in autism.  One such area of overlap is the superior temporal sulcus (STS) 

which is an association area that receives input from visual and auditory cortices178.  The 

STS is thought to process complex perceptual information such as speech, biological 
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motion, and social cues179-181.  Given the multisensory nature of such complex 

perceptual stimuli, it is not surprising that the STS is also very strongly associated with 

multisensory integration178,182-185.  Many fMRI studies have shown activation of the STS 

in response to the presentation and/or integration of multisensory speech stimuli182,186.  

Activation of the STS is associated with the perception of the McGurk effect during fMRI 

studies187.  In fact, disruption of the normal functioning of the STS using transcranial 

magnetic stimulation (TMS) has been shown to decrease the perception of the McGurk 

effect187 demonstrating is important role in the integration of speech stimuli.  fMRI 

studies have also shown that the processing of multisensory stimuli within the STS 

follow the principles of multisensory integration signifying its importance as a locus of 

multisensory integration in human perception186.  Importantly, the STS is able to 

dynamically alter its functional connectivity with unisensory areas depending on the 

reliability of the component unisensory information182.  This flexibility in connectivity 

serves to optimize the integration of information from multiple senses and expected to be 

severely disrupted in autism. Electrophysiological studies in primates confirm the 

importance of precise functional interactions between unisensory cortex and the STS in 

the integration of complex social multisensory stimuli178.  Disturbed functional 

connectivity in autism is not the only implication for disrupted integration of multisensory 

inputs in the STS.  Both functional (decreased fMRI activation during rest) and 

anatomical (cortical thinning) studies show disruptions in the STS in autism179,188-190.  

fMRI studies of social cognition (e.g. face and voice perception) have shown decreased 

activation of STS in autism which are correlated with disruptions in social cognition109,191.  

 Higher order association areas are not the only cortical sites, which have been 

shown to integrate multisensory information.   Many studies have indicated that 

connectivity between primary and/or secondary sensory areas may also play a role in 

integrating multisensory stimuli.  Retrograde tracer injections into primary and secondary 
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unisensory cortices (visual, auditory, and somatosensory) have identified feedback 

connections from association as well as other primary and secondary unisensory 

cortices192-196.  

 The importance of both structural and functional connectivity between brain 

areas in the integration of multisensory information observed in studies of the SC, STS, 

and sensory specific cortices is validated in EEG and MEG studies of oscillatory activity 

during the completion of multisensory tasks.  Increases in gamma and beta band activity 

have been associated with multisensory integration in a number of studies197-201.  For 

example, trials in which an illusory flash was perceived during the flash beep illusion 

were characterized by significantly increased gamma power as compared to trials during 

which an illusory flash was not perceived202.   

Given the importance of both functional and structural connectivity in the precise 

integration of multisensory information, the disruptions in connectivity observed in both 

anatomical and functional studies of autism are likely to result in dysfunctional 

multisensory processing.  For example, Brock et al. theorize that the dissociation 

between performance on simple vs. complex perceptual tasks might be due to a deficit 

in temporal synchronization between local networks (functional connectivity) rather than 

a general “cognitive style” as proposed by the weak central coherence model203.  This 

disruption in temporal binding between cortical and subcortical regions could also 

manifest as a disruption in multisensory integration, since multisensory “binding” is also 

thought to rely on the precise synchronous activity within and across various brain 

regions.  Altered temporal binding in ASD could manifest as a disruption in multisensory 

integration and, in particular, as a distortion in the temporal dynamics of multisensory 

binding (e.g. integrating multisensory stimuli over a larger period of time).   

 

 



	
   32	
  

Introduction to Current Topics 

Autism spectrum disorders (ASD) form a continuum of developmental disorders 

which are characterized by deficits in communication and social interactions, as well as 

by repetitive behaviors and restricted interests.   Sensory disturbances are also 

frequently reported in clinical and autobiographical accounts.  A number of studies have 

highlighted that high functioning individuals with ASD have enhanced perceptual abilities 

for fairly simple stimuli but that complex stimuli tend to disrupt performance on 

psychophysical tasks.  In an effort to account for the observed dissociations between 

performance on simple and complex perceptual tasks in individuals with ASD, Brock et 

al. (2002) theorized that ASD might be characterized by a deficit in temporal 

synchronization between local neural networks.  Binding of multisensory events into 

unified percepts depends on temporal synchronization among neural networks; 

therefore, disruption in temporal binding could manifest as a disruption in multisensory 

integration and/or a distortion in the temporal characteristics of multisensory binding.  

The observed dissociation between performance on simple and complex perceptual 

tasks in addition to anatomical evidence that the architecture of minicolumns may be 

disrupted in autism suggest that the ability to filter specific frequency information may be 

an additional aspect of basic sensory processing which is disrupted in ASD.  In the 

current document, we sought to characterize some of the basic characteristics of 

unisensory and multisensory perception in ASD including temporal processing and 

frequency filtering, with the hypothesis being that there would be disruptions in these 

processes.  The following chapters will present evidence for the existence of these 

disruptions and discuss their importance in autistic symptomology.   
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CHAPTER II 

 

AN EXTENDED MULTISENSORY TEMPORAL BINDING WINDOW IN AUTISM 

SPECTRUM DISORDERS: MULTISENSORY TEMPORAL BINDING IN ASD† 

 

Abstract 

Autism spectrum disorders (ASD) form a continuum of neurodevelopmental 

disorders, characterized by deficits in communication and reciprocal social interaction, 

as well as by repetitive behaviors and restricted interests.  Sensory disturbances are 

also frequently reported in clinical and autobiographical accounts. However, surprisingly 

few empirical studies have characterized the fundamental features of sensory and 

multisensory processing in ASD.  The current study tested for potential differences in 

multisensory temporal function in ASD by making use of a temporally-dependent low-

level multisensory illusion. In this illusion, the presentation of a single flash of light 

accompanied by multiple sounds often results in the perception of multiple flashes.  By 

systematically varying the temporal structure of the audiovisual stimuli, a “temporal 

window” within which the auditory and visual stimuli are likely to be bound into a single 

perceptual entity can be defined.  The results revealed that children with ASD report the 

flash-beep illusion over an extended range of stimulus onset asynchronies (SOAs) 

relative to children with typical development, indicating that children with ASD have 

altered multisensory temporal function.  These findings provide valuable new insights 

                                                
† The contents of this chapter were first published as: 
Jennifer H. Foss-Feig*, Leslie D. Kwakye*, Carissa J. Cascio, Courtney P. Burnette, Haleh 
Kadivar, Wendy L. Stone, and Mark T. Wallace An Extended Multisensory Temporal Binding 
Window in Autism Spectrum Disorders: Multisensory temporal binding in ASD Exp Brain 
Res 203(2):381-9 , DOI: 10.1007/s00221-010-2240-4. (*) Indicates joint first authorship 
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into our understanding of sensory processing in ASD and may hold promise for the 

development of more sensitive diagnostic measures and improved remediation 

strategies.  

 

Introduction 

Autism spectrum disorders (ASD) comprise a continuum of neurodevelopmental 

disorders typically characterized by a triad of symptoms that includes deficits in social 

reciprocity and communication skills, and repetitive behaviors and restricted interests 1. 

In addition, reports of altered sensory processing abound in autobiographical, caregiver 

and clinical reports, and detail a host of sensory aversions, sensitivities, and fascinations 

in individuals with ASD 2-13.  Indeed, reports of sensory disturbances date back to 

Kanner’s original description of autism 14. 

Several recent empirical studies have further highlighted changes in sensory 

processes in individuals with ASD. Interestingly, some of these studies have shown 

superior visual, auditory, and somatosensory perceptual discrimination in individuals with 

ASD relative to control subjects 15-17.  Other studies suggest that these enhanced 

perceptual abilities are limited to fairly simple stimuli and that disrupted performance 

characterizes responses to more complex stimuli 18,19. In addition to differences in 

sensory processing within individual sensory systems, there is some evidence that 

alterations in the integration of information across the different senses (i.e., multisensory 

integration; see 20) may exist in individuals with ASD, though strong empirical support for 

this is lacking.  

In an effort to account for the observed dissociation between performance on 

simple and complex perceptual tasks in individuals with ASD, it has been theorized that 

the critical deficit may lie in the temporal synchronization among local neural networks 21. 
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In support of this view, several studies have shown differences in various aspects of 

sensory temporal function in individuals with ASD, including duration and rate 

processing 22-24.  Temporal synchronization is also likely to be critically important in the 

binding of multisensory stimuli into unified perceptual constructs (Senkowski 2008), and 

alterations in multisensory temporal function could give rise to significant deficits in 

perceptual abilities.  

A recent study sought to directly examine multisensory processing in ASD using 

the sound-induced double-flash (“flash-beep”) illusion, in which the pairing of multiple 

auditory cues (i.e., beeps) with a single visual cue (i.e., flash) frequently results in the 

perception of additional flashes 25. Using the flash-beep task, no differences were found 

in the strength of illusion between individuals with ASD and controls, suggesting intact 

multisensory binding mechanisms 26. However, the flash-beep illusion is critically 

dependent on the temporal structure of the visual and auditory cues 27, a dependence 

not explored in the Van der Smagt study. Given previous findings of impaired temporal 

processing in ASD, we hypothesized that changes in the temporal structure of the visual 

and auditory cues in the flash-beep task might reveal differences in the temporal 

“binding window” for multisensory stimuli in individuals with ASD.  

 

Methods 

Participants 

Forty-six children (29 with ASD and 17 with typical development (TD)) comprised 

the study sample. Eligibility criteria for children in both groups were as follows: a) age 8-

17 years; b) normal or corrected-to-normal hearing and vision; c) Full Scale IQ (FSIQ) 

above 70; and d) no evidence or past diagnosis of a specific reading disorder. Adequate 

cognitive functioning for inclusion in the study (i.e., FSIQ above 70) was confirmed using 
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the Wechsler Abbreviated Scale of Intelligence (WASI; 28) unless a child had completed 

cognitive testing in the past year and the parents could provide the scores. Reading 

abilities were screened using the Letter-Word Identification and Word Attack subtests of 

the Woodcock-Johnson Tests of Achievement – Third Edition (WJA-III:29), since 

differences in multisensory processing have been demonstrated in individuals with 

reading disorders 30.  All children in both groups were required to have reading standard 

scores above 70 on both subtests.   Additional eligibility criteria for the ASD group 

required that children: a) have a confirmed diagnosis of Autistic Disorder, Asperger’s 

Disorder or Pervasive Developmental Disorder-Not Otherwise Specified; and b) have no 

history of seizure disorders or identified genetic disorders (e.g., Fragile X, tuberous 

sclerosis). ASD diagnosis was confirmed with the Autism Diagnostic Observation 

Schedule (ADOS 31, Module 3 by a research-reliable examiner. Parents of children with 

ASD completed the Autism Diagnostic Interview – Revised (ADI-R; 32) with a trained, 

research-reliable interviewer to confirm history of ASD.  All children included in the ASD 

group met criteria for autism or autism spectrum on the ADOS and ADI-R and also had 

prior clinical diagnoses of ASD confirmed by a licensed clinical psychologist as part of 

this study. Five children with ASD who passed the telephone screening did not meet 

eligibility criteria during the diagnostic session (three based on diagnosis, two based on 

cognitive functioning levels) and therefore did not participate in the psychophysics 

session. Two additional children with ASD who attempted the experimental procedures 

were excluded from analyses due to difficulties with attention, comprehension, and/or 

compliance.  Additional eligibility criteria for children with TD were as follows: a) no 

history of or current psychiatric, neurological, or learning disorders (e.g., ADHD, 

depression, epilepsy) or symptoms of ASD; and b) no first-degree relatives with ASD. 

Parent report of ASD symptoms was obtained using the Lifetime version of the Social 
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Communication Questionnaire (SCQ; 33); all children with TD had SCQ scores below at-

risk cutoff for ASD.  Finally, because it was the primary measure of interest, children who 

failed to report the flash-beep illusion were excluded from analyses.  One child with ASD 

was excluded based upon this criterion. The resulting sample consisted of 21 children 

with ASD and 17 children with TD.  No group differences in age, gender, Full Scale IQ, 

Verbal IQ, Performance IQ, or word reading abilities were found (Table 2.1). Significant 

group differences were found for parent report of ASD symptoms on the SCQ (t (35) = 

8.41, p < 0.001).  

Parents of all participants gave informed consent and all children in both groups 

gave assent prior to participation in any component of this study. All children received 

compensation for their participation at each visit.  All recruitment and experimental 

procedures were approved by the Vanderbilt University Institutional Review Board. 

 

General Procedure 

Participants sat in a light- and sound-attenuated room and wore headphones 

through which auditory stimuli were presented.  They indicated their responses to the 

visual task stimuli, presented on a computer monitor, through button presses on a 

 
 
Measure ASD TD 

Gender n.s. 17M; 4F 14M; 3F 

Age n.s. 12.60 ± 2.6 12.09 ± 2.2 

Verbal IQ n.s. 105.10 ± 17.6 109.41 ± 12.5 

Performance IQ n.s. 109.80 ± 18.3 103.41 ± 7.32 

Full Scale IQ n.s. 108.45 ± 18.7 107.29 ± 9.3 

Social Communication 
Questionnaire** 

19.84 ± 8.1 2.71 ± 2.3 

 n.s. – non-significant; ** - p<.001 

Table 2.1. Participant Demographics. 
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response box. Visual stimuli were presented as white flashes against a black 

background on a high-refresh rate PC monitor (NEC Multisync FE992, 22 inch screen; 

150 Hz refresh rate; 640x480 pixel resolution).  Auditory stimuli were presented via 

noise-canceling extra-aural headphones (Philips SBC HN110) to both ears (peak sound 

level - 96 dB SPL).  Stimulus presentation was controlled using E-Prime (Psychology 

Software Tools Inc., Pittsburgh, PA, USA).  Responses (i.e., accuracy and response 

time) were recorded via a Serial Response box (Psychology Software Tools Inc., 

Pittsburgh, PA, USA).   

Participants were monitored by the experimenter, using closed-circuit CCD video 

cameras, to ensure that they were engaged in the tasks. Eye gaze was not monitored, 

but participants were instructed to fixate on a central cross that preceded all stimulus 

presentations. On the rare occasions when a participant was not on-task, a variety of 

strategies were implemented to increase engagement (e.g., reminders to stay on task, 

additional breaks, parent in the testing room, etc). Participants were allowed to take 

breaks as necessary to increase compliance and maintain effort, motivation, and on-task 

behavior. All participants completed the experimental task within a single session. 

 

Flash-Beep Task 

This task explored the sound-induced illusory flash phenomenon (here termed 

the flash-beep illusion), wherein the addition of multiple auditory stimuli (beeps) 

presented in conjunction with a single visual stimulus (flash) often results in the illusory 

perception of additional flashes 25. Importantly, the relative timing of the flash and beeps 

is crucial to the perception of the illusion in typical adults (i.e., beeps presented in close 

temporal proximity to the flash are more likely to produce illusory flashes 27). In all trials, 

participants were asked to report the number of flashes perceived. At the start of each 
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trial a white fixation cross appeared at the center of the black screen.  Visual stimuli 

consisted of the brief (20 ms) appearance of a white circle (4.2 cm in diameter 

subtending 4.37° of visual space) 4 cm (4.17°) below the center of the fixation cross. The 

circle was presented either once or twice, with a 50 ms interstimulus interval on double-

flash trials.  Flashes could be accompanied by no, one, or two beeps (7 ms duration, 

ramped on and off for 3 ms each; 1850 Hz frequency) depending on condition.  

Conditions containing one flash and two beeps were used to explore the temporal 

dependence of the flash-beep illusion in children with ASD and TD.  In these conditions, 

the two beeps were presented at varying stimulus onset asynchronies (SOAs) relative to 

the single flash in order to determine the temporal window within which multisensory 

integration (i.e., report of the illusory percept) occurred. Whereas the onset of one of the 

beeps always coincided with the onset of the single flash, the second beep was either 

delayed by 25-500 ms relative to the offset of the flash (i.e., positive SOAs) or occurred 

25-500 ms prior to the flash (i.e., negative SOAs). The SOA increments in both 

directions were as follows: 25, 50, 100, 150, 200, 300, 400, 500 ms (Figure 2.1). Ten 

trials for each condition were presented in random order (giving rise to 160 total illusory 

trials), pseudo-randomly interleaved with several other trial types that were included in 

the task to limit cognitive bias.  These other trial types included those containing two 

flashes and two beeps, where the SOAs between the beeps and the flashes were similar 

in structure to the illusory trials (120 total trials), as well as ten trials each of the following 

other conditions: one flash, no beeps; one flash, one beep; two flashes, no beeps; and 

two flashes, one beep. Altogether, participants were presented with 320 total trials, 50% 

of which represented one-flash/two-beep conditions used to explore the temporal 

dependence of the flash-beep illusion.  Because of the length of time required to 

complete the task (e.g., 12-20 minutes, depending on the participant’s pace), the task 
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was divided into two blocks with a break in the middle. Participants were allowed to take 

a break as needed and could restart the task with a button press. Participants indicated 

their response (i.e., how many flashes they perceived) by pressing buttons labeled “1” 

and “2”.  Prior to completing the task, participants completed six practice trials in which 

they counted flashes presented without auditory stimuli. They were subsequently 

reminded that their task was to count the flashes and they were explicitly instructed to 

ignore the beeps.  

 

Data Analysis 

The mean number of flashes perceived at each one-flash/two-beep SOA 

condition was calculated separately for each individual.  Differences in the proportion of 

trials on which an illusory flash was reported (i.e., the participant indicated seeing two 

flashes when only one was presented) were examined between groups using 

independent samples t-tests at each SOA condition.  Performance differences on the 

one-flash/one-beep control condition were examined in a similar manner to test for any 

response biases. In an effort to provide a unitary measure of the processing differences 
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Figure 2.1. Task design. 
In illusory conditions, two 
beeps were presented with 
a single flash. One beep 
was always presented 
coincidently with the single 
flash.  For positive SOA 
conditions, a second beep 
was presented with variable 
delay (25-500 ms) following 
the onset of the coincident 
flash-beep presentation.  
For negative SOA 
conditions, an initial beep 
was presented preceding 
the onset of the coincident 
flash-beep presentation by 
variable temporal 
increments (25-500 ms). 
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between the two groups, a temporal “window” was defined as the contiguous span of 

consecutive one-flash/two-beep SOAs at which the mean number of flashes reported 

was significantly greater than the mean number of flashes reported on the one-

flash/one-beep condition.  To examine the temporal window of this multisensory illusion 

in children with ASD and TD, paired-sample t-tests comparing the proportion of trials on 

which two flashes were reported for each one-flash/two-beep SOA condition to the one-

flash/one-beep control condition were conducted separately for the ASD and TD groups.  

Corrections for multiple comparisons were not conducted because the method of 

analysis described above was planned a priori.  Family-wise error was limited in the 

determination of the temporal window by requiring continuous significant differences 

from the one-flash/one-beep condition.   

 

Results 

The proportion of trials on which participants perceived two flashes was 

determined at each of the SOA conditions that manipulated the temporal structure of the 

single flash and two beeps. Higher proportions of reports of perceiving two flashes 

indicate a greater strength of illusion.  Between-group comparisons in the proportion of 

trials on which two flashes were reported were conducted for each of the one-flash/two-

beep SOA conditions as well as for the one-flash/one-beep condition, which served as a 

control condition against which to measure response bias.  On the one-flash/one-beep 

condition, children in both groups did not always report a single flash, indicating that 

there was some degree of response bias.  In both groups, the proportion of trials on 

which two flashes was reported was significantly different from zero (ASD group 

(M=0.15; SD=.20): t (20) = 3.468, p = .002; TD group (M=0.08; SD=.13): t (16) = 2.599, p 
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= .02).  Most importantly, these values, and thus the assumed response bias, did not 

differ between groups (t (36) = 1.196, p = .24).   

For the one-flash/two-beep condition, between-group comparisons of the probability of 

reporting the illusion (i.e., proportion of trials on which the illusory second flash was 

reported) were conducted at each SOA condition.  Significant group differences were 

observed, with children with ASD more frequently reporting two flashes than children 

with TD at the following SOAs: -500ms, -300ms, -200ms, -25ms, +25ms, +200ms, 

+300ms, and +400ms (all p’s < .05). Additionally, a difference approaching significance 

was seen at an SOA of -400ms, (p = .056).  This result indicates that children with ASD 
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Figure 2.2. Group results.  The strength of flash-beep illusion is greater in ASD than in TD across 
several SOA conditions (asterisks represent p < 0.05).  Furthermore, the temporal window for 
multisensory integration is extended in ASD. Significant increases in the proportion of trials on which an 
illusory second flash was reported over the proportion reported on the one-flash/one-beep control 
condition (represented here as an SOA of 0 ms) extend from  -150ms to +150ms in children with TD, but 
from -300ms to +300ms in children with ASD. This difference represents a two-fold increase in the 
temporal binding window for audiovisual stimuli in ASD. 
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show a greater propensity to report the flash-beep illusion when compared with children 

with TD (Figure 2.2).  

An additional analysis was structured in order to define differences in the 

temporal window of multisensory integration between ASD and TD children. In children 

with TD, significant increases in the proportion of trials on which two flashes were 

reported (above the one-flash/one-beep baseline) were seen at the following one-

flash/two-beep SOAs: -150ms, -100ms, -50ms, -25ms, +25ms, +50ms, +100ms, and 

+150ms (all p’s < 0.005).  In comparison, in children with ASD, significant increases in 

the proportion of trials on which two flashes were reported were seen at the following 

SOAs: -500ms, -300ms, -200ms, -150ms, -100ms, -50ms, -25ms, +25ms, +50ms, 

+100ms, +150ms, +200ms, and +300ms (all p’s < 0.05). These findings suggest an 

approximate doubling in the size of the temporal binding window in children with ASD, in 

that the contiguous span of SOAs at which the illusion is observed is approximately 300 

ms in TD (i.e., from –150ms to +150ms) and approximately 600 ms in ASD (i.e., from –

300ms to +300ms)  (Figure 2).  Further validating the significance of these findings is the 

observation that the windows defined for each group show continuous significance at all 

SOAs within the window.  Similarly, the between-group comparisons show continual 

significance at the SOAs outside of the TD temporal window but inside the ASD 

temporal window (i.e., -200, +200, -300, and +300 ms).   
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 To further address the potential influences of response bias on the perceptual 

reports, additional analyses focused on the other control conditions beyond the one-

flash/one-beep condition described above (i.e., two-flashes/zero-beeps, two-flashes/one-

beep, two-flashes/two-beeps, one-flash/zero-beeps) in a subset of children (Figure 2.3).  

Although none of these analyses revealed a significant difference between the two 

groups, in the two-flash/one-beep condition, children with ASD (40% of trials) were more 

likely to accurately report two flashes than were children with TD (17% of trials), a 

difference that approached significance (t (6) = 2.375, p = .06). On other control 

conditions, performance was nearly identical between the two groups. For example, on 

the two-flash/zero-beep condition, children with TD reported two flashes on 52% of trials, 

while children with ASD reported two flashes on 48% of trials (t (6) = -1.77, p = .87). 
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Figure 2.3. Percent of trials on which two flashes were reported for each control trial type for a 
subset of children with ASD and TD.  Children with ASD did not differ significantly from children with 
TD in their report of two flashes for any trial type tested.  This finding suggests that the observed 
increase in the report of two flashes across several illusory conditions in children with ASD is not 
attributable to an increased bias for reporting two flashes relative to children with TD.  
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While the low accuracy for the two-flash/zero-beep condition across both children with 

ASD and TD suggests that visual temporal acuity may be low in children relative to 

adults, the lack of differences between groups suggests that differences in visual 

temporal acuity do not play a role in the highlighted perceptual differences.  The results 

of the control conditions suggest that the extended temporal window of multisensory 

integration in ASD discussed above is mainly the result of alterations in sensory 

processing and is not purely driven by differences in cognitive bias.     

 

Discussion 

The results of the current study suggest that children with ASD have an extended 

temporal window within which they bind together multisensory stimuli, as evidenced by 

their heightened propensity to report the flash-beep illusion over an extended range of 

stimulus onset asynchronies (i.e., SOAs) between the component visual and auditory 

stimuli.  Although our results are in accord with a previous study showing intact 

integration of low-level visual and auditory stimuli in individuals with ASD (i.e., in that 

integration of multisensory information does occur) (Van der Smagt et al., 2007), we 

have refined our understanding by showing for the first time alterations in the temporal 

constraints within which audiovisual stimuli are bound in children with ASD.  

The finding of intact integrative processes is in contrast to prior studies that have 

reported a decreased ability for individuals with ASD to integrate information across 

multiple modalities 34,35. However, these studies focused on audiovisual speech stimuli, 

which are rich in social and contextual information and typically also are associated with 

affective demands.  The processing of these communication signals may itself be altered 

in ASD, making it difficult to parse apart alterations in basic sensory function. Consistent 

with this interpretation is work that has reported that children with ASD performed 
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comparably to children with TD on multisensory tasks involving non-speech stimuli but 

disparately on multisensory tasks involving speech stimuli 36.  The current study confirms 

that individuals with ASD are able to integrate simple, non-linguistic audiovisual 

information. However, our results also highlight a striking difference in the integration of 

low-level multisensory stimuli, specifically in the temporal constraints within which 

auditory stimuli can influence visual perceptions in generating a compelling illusion.  

There are several possible neurophysiological mechanisms for the enlarged 

temporal binding window seen in children with ASD, which fit within the conceptual 

framework of previously proposed neurally-based models.  Brock et al. (2002) have 

posited that a core neurological cause of autism may be rooted in disruptions in temporal 

processing. According to this theory, perceptual binding is a result of strongly correlated 

activity among a network of interconnected brain regions, and alterations in these 

patterns of correlation in ASD result in concomitant reductions in binding. The current 

study suggests that rather than these networks being completely decoupled in ASD, the 

time constants between brain regions may instead be altered in such a way so as to 

continue to support binding, but over an atypically large set of temporal intervals.  A 

second proposed neural mechanism for ASD is founded on a decreased signal-to-noise 

ratio in neural encoding 37.  In this view, a briefly presented unisensory (e.g., auditory) 

stimulus typically results in a discrete neural response time-locked to the presentation of 

the stimulus. In contrast, the same stimulus presented to an individual with autism may 

result in a response whose neural signature is less clearly time-locked to the stimulus 

event. Extending this theory into the multisensory domain, it can be envisioned that 

increased temporal variability in the unisensory responses could necessitate a 

compensatory enlargement in the time interval over which multisensory stimuli can 

influence one another. Future studies will focus on devising methods for distinguishing 
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between these and other potential neural mechanisms for the extended temporal binding 

window in ASD.   

Autism spectrum disorders are extremely heterogeneous, and our task and study 

design limited us to evaluating children with relatively intact intellectual abilities (i.e., IQ 

score above 70).  Thus, our findings may not generalize to lower functioning individuals 

with ASD and a concomitant intellectual disability.  Although the task employs low-level 

stimuli and simple behavioral responses (hence offering promise for extending it to more 

impaired participants), continued adaptation and streamlining of this experimental design 

for use with a broader sample of children with ASD will be the focus of future research.  

The extended temporal window for multisensory integration described in the 

current study is likely to have far-reaching consequences for children with ASD. At a 

very basic level, an alteration in the characteristics of the incoming sensory stream will 

have profound implications for all brain regions and processes “upstream” of the 

impacted (multi)sensory domain, since the integrity of the sensory signaling will have 

been altered or compromised. Differences in the processing and integration of sensory 

stimuli for individuals with ASD could underlie the atypical responses to sensory stimuli 

so frequently reported in the autism clinical literature. For instance, if integration is 

occurring over an extended temporal window, it could cause difficulty with responding to 

input from a specific modality if there is concurrent input from other modalities. 

Difficulties identifying the source modality of information, as have been reported in ASD, 

could also be explained by altered multisensory temporal function. In addition, numerous 

activities of daily life are dependent on the ability of the nervous system to precisely 

match stimuli from multiple modalities.  For example, the dynamic auditory and visual 

stimuli involved in any social interchange (e.g., subtle changes in facial expression, tone 

of voice, body language) must all be integrated sequentially and seamlessly with precise 
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temporal accuracy for the interaction to be successful.  Misalignment or inappropriate 

integration of this basic sensory information would likely negatively impact this 

interaction by changing the information content and, with such altered experiences 

repeated over time, would be expected to impair complex social abilities such as 

empathy and reciprocity as well as endow social interaction with confusing and irrelevant 

associations.  These results could also be relevant to others’ findings of reduced 

integration in more complex (e.g., speech) stimuli, though future research is necessary 

to elucidate the role an expanded temporal window for binding low-level sensory stimuli 

plays in impaired integration of higher-order cross-modal input. 

In conclusion, this study represents an important first step in our understanding 

of the temporal processing of multisensory stimuli in ASD.  Further research is needed to 

fully characterize the extent of these multisensory processing changes in ASD, to 

elucidate their neural substrates, and to relate these findings to the core deficits in ASD.  

It is anticipated that this line of investigation will ultimately contribute to a broader 

understanding of this disorder and lead to improved diagnostic instruments and more 

targeted interventions.  
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CHAPTER III 

 

ALTERED AUDITORY AND MULTISENSORY TEMPORAL PROCESSING IN AUTISM 

SPECTRUM DISORDERS: AUDIOVISUAL TEMPORAL PROCESSING IN ASD † 

 

Abstract 

Autism spectrum disorders (ASD) are characterized by deficits in social 

reciprocity and communication, as well as repetitive behaviors and restricted interests. 

Unusual responses to sensory input and disruptions in the processing of both unisensory 

and multisensory stimuli have also frequently been reported. However, the specific 

aspects of sensory processing that are disrupted in ASD have yet to be fully elucidated.  

Recent published work has shown that children with ASD can integrate low-level 

audiovisual stimuli, but do so over an extended range of time when compared with 

typically-developing (TD) children. However, the possible contributions of altered 

unisensory temporal processes to the demonstrated changes in multisensory function 

are yet unknown. In the current study, unisensory temporal acuity was measured by 

determining individual thresholds on visual and auditory temporal order judgment (TOJ) 

tasks, and multisensory temporal function was assessed through a cross-modal version 

of the TOJ task. Whereas no differences in thresholds for the visual TOJ task were seen 

between children with ASD and TD, thresholds were higher in ASD on the auditory TOJ 

task, providing preliminary evidence for impairment in auditory temporal processing.  On 

the multisensory TOJ task, children with ASD showed performance improvements over a 

wider range of temporal intervals than TD children, reinforcing prior work showing an 

extended temporal window of multisensory integration in ASD. These findings contribute 
                                                
† Kwakye LD, Foss-Feig JH, Cascio CJ, Stone WL and Wallace MT (2011) Altered auditory and 
multisensory temporal processing in autism spectrum disorders. Front. Integr. Neurosci. 4:129. 
doi: 10.3389/fnint.2010.00129 



 73 

to a better understanding of basic sensory processing differences, which may be critical 

for understanding more complex social and cognitive deficits in ASD, and ultimately may 

contribute to more effective diagnostic and interventional strategies.   

 

Introduction 

Autism spectrum disorders (ASD) are characterized by deficits in social 

reciprocity, communication, and behavioral flexibility that emerge in the first few years of 

life 1. Sensory disturbances were reported in Kanner’s original description of autism 2, 

and have been reported consistently in the clinical literature 3-6. Though not currently part 

of the diagnostic criteria for ASD, the presence of unusual sensory behaviors has been 

proposed for inclusion in updated diagnostic criteria for the DSM-V, highlighting 

emerging consensus that sensory abnormalities are central features of ASD.   Reports of 

abnormal sensory function that span the visual, auditory, gustatory, and tactile domains 

reinforce the “multisensory” nature of sensory processing alterations in ASD (for review, 

see 7, and emerging evidence suggests that abnormalities also extend to the selective 

integration of information across the different sensory modalities (i.e., multisensory 

integration – see 8). 

Although evidence for deficits in sensory (and multisensory) processing is 

abundant in the ASD literature, there are also a number of reports detailing enhanced 

perceptual capabilities in response to specific sensory stimuli.  For example, 

discrimination of discrete details within complex visual spatial displays has widely been 

found to be a relative strength in ASD 9-12 and at least one study has reported enhanced 

visual acuity in autism 13. Similarly, in the auditory domain, Bonnel and colleagues have 

shown that individuals with autism have superior pitch discrimination and categorization 

abilities in comparison to controls 14. In an effort to reconcile these findings showing both 

impaired and enhanced sensory function in ASD, it has been suggested that perceptual 
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abilities may depend on the nature and complexity of the sensory stimuli, with 

impairments characterizing responses to more complex stimuli and enhancements seen 

more often with simple stimuli 15,16.  For instance, in the same study, adolescents and 

adults with autism were found to show superior orientation discrimination of luminance-

defined gratings but inferior discrimination of texture-defined gratings that are believed to 

be processed further along the visual pathway 17. Given that multisensory function 

depends on stimulus integration, it may be an inherently complex process even when 

the component stimuli are exceedingly low level. Such a view is supported by the 

tendency for multisensory processing to occur both within and beyond primary sensory 

cortices 18. Hence, a better understanding of multisensory processing in ASD, as well as 

the processing of component unisensory stimuli used to test multisensory function, may 

provide important clues into the neural bases of sensory differences in ASD. 

In addition to these broad sensory findings, there has been some indication that 

the temporal aspects of sensory information processing also may be impacted in ASD. 

Szelag and colleagues found that children with autism had difficulty reproducing the 

lengths of both auditory and visual unisensory stimuli of standardized durations 19. Other 

studies have found atypical neural responses to changes in the pitch of repeated, 

sequential auditory stimuli in children and adults with ASD 20,21.  Extending to 

multisensory function, children with ASD showed impairments in the detection of 

violations of temporal synchrony of audiovisual linguistic stimuli in comparison to 

typically developing children and to those with non-autistic developmental delays 22.  

Together, these studies suggest alterations in the processing of basic timing information 

contained within both simple and complex (i.e., linguistic) sensory stimuli, both within 

and across sensory systems. However, although these studies establish the presence of 

temporal processing abnormalities in ASD, the extent of these deficits is unknown.  

Further characterization of these differences using low-level stimuli devoid of social or 
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linguistic context is necessary to clarify the nature and scope of alterations in temporal 

processing specific to basic sensory functioning. 

Our results from a previous study revealed an expanded temporal window for 

multisensory integration in children with ASD 23.  This result not only replicated a 

previous finding that individuals with ASD are capable of integrating basic auditory and 

visual information 24, but also extended this work to show that significant changes in 

basic multisensory function appear to lie in the temporal realm. However, given the 

nature of the task employed in our previous study (a common multisensory illusion in 

which there is no direct measure of unisensory temporal acuity), it was not possible to 

determine the potential contribution of changes in unisensory temporal function to the 

demonstrated change in multisensory performance.  

The goal of the current study was to expand upon this previous finding of an 

extended temporal binding window for simple audiovisual input in autism spectrum 

disorders.  To this end, we examined both unisensory and multisensory temporal 

processing abilities in a single sample of children and adolescents with ASD. First, 

temporal acuity in the auditory and visual systems was examined using temporal order 

judgment (TOJ) tasks to establish baseline auditory and visual temporal resolution 

abilities. Then, task-irrelevant auditory signals were added to the visual TOJ task in 

order to assess multisensory binding processes and their temporal constraints. Previous 

work has shown that the addition of task-irrelevant auditory stimuli can improve 

performance on the visual TOJ task, but only if presented within a particular window of 

time that reflects the duration of the multisensory temporal binding process 25-27. Due to 

the inherently multisensory nature of language and social stimuli, an enlargement in the 

temporal window of multisensory binding is likely to have far-reaching consequences for 

children with ASD. Clarification of the nature and extent of temporal processing 

differences in ASD represents an important step in understanding the level at which 
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sensory processing is altered in this disorder, which could in turn be important for 

developing targeted interventions. 

 

Methods 

 

Participants 

Thirty-five children with ASD and 27 with typical development (TD) comprise the 

study sample, which overlaps in part with the sample reported in 23. Eligibility criteria for 

children in both groups were as follows: a) age 8-17 years; b) normal or corrected-to-

normal hearing and vision; c) Full Scale IQ (FSIQ) score above 70; and d) no evidence 

or past diagnosis of a specific reading disorder. Adequate cognitive functioning for 

inclusion in the study (i.e., FSIQ score above 70) was confirmed using the Wechsler 

Abbreviated Scale of Intelligence (WASI; 28) unless a child had completed cognitive 

testing in the past year and the parents could provide the scores. Reading abilities were 

screened using the Letter-Word Identification and Word Attack subtests of the 

Woodcock-Johnson Tests of Achievement – Third Edition (WJA-III: 29), since differences 

in multisensory processing have been demonstrated in individuals with reading 

disorders.  All children in both groups were required to have reading standard scores 

above 70 on both WJA-III subtests.   Additional eligibility criteria for the ASD group 

required that children: a) have a confirmed diagnosis of Autistic Disorder, Asperger’s 

Disorder or Pervasive Developmental Disorder-Not Otherwise Specified; and b) have no 

history of seizure disorders or identified genetic disorders (e.g., Fragile X, tuberous 

sclerosis).  Children with ASD were not excluded based on use of psychotropic 

medication. 

Children’s prior ASD diagnoses were confirmed in the present study using gold-

standard procedures: the Autism Diagnostic Observation Schedule (ADOS; 30) was 



 77 

administered by a research-reliable examiner, parent(s) completed the Autism 

Diagnostic Interview – Revised (ADI-R; 31) with a research-reliable interviewer, and 

DSM-IV-based clinical diagnoses were made by a licensed clinical psychologist on the 

basis of this information. All children included in the ASD group met criteria for autism or 

autism spectrum on both the ADOS and ADI-R at a session scheduled prior to 

psychophysical testing.  Additional eligibility criteria for children with TD were as follows: 

a) no history of or current psychiatric, neurological, or learning disorders (e.g., ADHD, 

depression, epilepsy, dyslexia) or symptoms of ASD; and b) no first-degree relatives with 

ASD. Parent report of ASD symptoms was obtained using the Lifetime version of the 

Social Communication Questionnaire (SCQ; 32); all children with TD had SCQ scores 

below the at-risk cutoff for ASD. No differences in age, gender, or Full Scale IQ score 

were found between groups (Table 3.1). As expected, a significant group difference was 

found for parent report of ASD symptoms on the SCQ, t (56) = 11.75, p < .001.  

 

 

Parents of all participants gave informed consent and all children in both groups 

gave assent prior to participation in any component of this study. All children received 

compensation for their participation at each visit.  All procedures were approved by the 

Vanderbilt University Institutional Review Board. 

 

 
 

 ASD TD 

Gender
 

30 M; 5F  

Age
   

   

   

   

 
  

  

Measure

22 M; 5 F

12.21 ± 2.7

Social Communication Questionnaire **

Full Scale IQ

3.00 ± 2.720.11 ± 6.8

109.54 ± 10.8102.91 ± 18.7

11.73 ± 2.4

Table 3.1:  Participant Demographics. 
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General Procedure 

Participants sat in a light- and sound-attenuated room and wore headphones 

through which auditory stimuli were presented. Visual stimuli were presented as open 

white circles against a black background on a high-refresh rate PC monitor (NEC 

Multisync FE992, 22 inch screen; 150 Hz refresh rate; 640x480 pixel resolution).  

Auditory stimuli were presented via noise-canceling supra-aural headphones (Philips 

SBC HN110) to both ears (90 dB peak SPL).  Stimulus presentation was controlled 

using E-Prime (Psychology Software Tools Inc., Pittsburgh, PA, USA).  Responses (i.e., 

accuracy and response time) were recorded via a Serial Response box (Psychology 

Software Tools Inc., Pittsburgh, PA, USA).   

Participants were monitored continuously via closed-circuit video cameras to 

ensure that they were engaged in the tasks.  On the rare occasions that a participant 

was not on-task, a variety of strategies were implemented to increase engagement (e.g., 

reminders to stay on task, additional breaks, parent in the testing room, etc). Participants 

were allowed to take breaks as necessary to increase compliance and maintain effort, 

motivation, and on-task behavior. All participants completed each of the tasks described 

below within a single session; while some participants had difficulty completing one or 

more tasks or produced data that could not always be reliably interpreted (see below for 

further details, broken down by task), data from the maximum number of participants 

possible were included for analyses of individual tasks.  

 

Tasks 

 

Visual TOJ Task 

The visual TOJ task was used to test temporal acuity of the visual system and 

was the first task completed.  In this task, participants were asked to determine which of 
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two circles (above and below a fixation cross) presented in close temporal proximity (i.e., 

stimulus onset asynchronies [SOAs] ranging between 7 and 252 ms) appeared on the 

computer screen first.  Following instructions, a white fixation cross appeared on a black 

screen.  After a delay of 1000 ms, the first of two circles appeared, either 7 cm above or 

below the fixation cross, and remained on the screen.  Following a variable SOA, a 

second circle appeared at the location opposite the first circle (e.g., above the fixation if 

the first circle appeared below).  (Figure 3.1) Participants indicated via button presses on 

the response box their judgment as to which of the two circles appeared first (i.e., “top 

first” or “bottom first”).  Following a response, both circles disappeared simultaneously 

and a new trial began.  Participants completed 10 practice trials (visual SOA 91-119 ms 

in 7 ms increments presented randomly), which included feedback regarding response 

accuracy, before completing the full task. The practice session was repeated until 

participants could correctly identify which circle occurred first on a majority of trials. 

After practicing the task, a staircase procedure was used to determine the 

threshold SOA necessary for each participant to perform the visual TOJ task between 70 

and 75% accuracy. An adaptive staircase procedure, in which three independent 

staircases were run concurrently, was used.  One staircase started at an SOA of 84 ms, 

the second started at an SOA of 7 ms, and the third started at an SOA of 56 ms. The 

initial step size (i.e., amount by which the SOA was adjusted) was 28 ms, which was 

decreased to 14 ms after five reversals in response accuracy and decreased again to 7 

ms after an additional four reversals.  The SOA increased one step (i.e., became longer) 

after each incorrect response, and decreased one step (i.e., became shorter) after two 

consecutive correct responses.  Each staircase terminated after sixteen reversals in 

response accuracy and an average was calculated from the last five reversals to 

produce the threshold SOA. The mean threshold value was calculated from the three 

staircase outputs and then rounded to the nearest value compatible with the vertical 
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scan rate of the monitor (i.e., multiple of 7 ms). Following the staircase procedure, 

participants performed a shorter confirmation procedure with SOA values set relative to 

their individual threshold. In this process three SOAs were used relative to the calculated 

threshold: 0 ms (i.e., threshold), 7 ms above, 7 ms below. Each of these SOAs was 

repeated 20 times in a random order; at each SOA, the first visual stimulus appeared 

above fixation on half of the trials. If results of the confirmation procedure did not indicate 

that 70-75% accuracy rates had been produced for any of the three SOAs (i.e., 

performance was not near threshold), the confirmation procedure was repeated with 

higher or lower SOA values, depending on whether accuracy rates were too low or too 

high in the initial confirmation procedure. 

 

 

 

 

Figure 3.1:  Task design.  A. 
Visual TOJ task. B. Auditory 
TOJ task. C. Multisensory TOJ 
task. In multisensory conditions, 
two circles are presented 
sequentially above and below 
the central fixation point.  One 
beep is always presented 
simultaneously with the first 
circle, whereas the second beep 
is presented with a varied delay 
(0-500 ms) from the onset of the 
second circle.  See text for 
additional detail.  
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Multisensory TOJ Task 

This task always followed the visual TOJ task. Here, task-irrelevant auditory 

stimuli were added to the visual TOJ task. Previous work has shown that such auditory 

stimuli are capable of improving performance on the visual TOJ task (i.e., enabling 

individuals to discriminate between the two visual stimuli when they are presented at 

shorter intervals), but only if the auditory cues are presented within a defined temporal 

structure relative to the visual stimuli 25-27.  Although the mechanisms responsible for 

these multisensory-mediated performance enhancements remain unknown, some have 

theorized that they are due to a temporal shift in the perception of the visual stimulus 

toward the auditory stimulus (i.e., temporal ventriloquism (Spence and Squire, 2003)). In 

contrast, others have theorized that the auditory stimulus speeds the processing of the 

visual stimulus, thus allowing the participant to discriminate smaller time intervals 

between the visual stimuli (Hairston et al., 2006; Keetels and Vroomen, 2010).   

For this task, visual stimuli were presented as described above for the visual TOJ 

task except that, on each trial, the SOA between the two visual stimuli (visual SOA) was 

fixed according to each individual’s threshold value. Two identical sounds were also 

presented on 89% of trials through supra-aural headphones, with the first sound always 

occurring synchronously with the first visual stimulus onset.  The second sound was 

delayed by 0-500 ms relative to the onset of the second visual stimulus (multisensory 

delay increments were as follows: 0, 50, 100, 150, 200, 300, 400, 500 ms) (Figure 3.1). 

A randomly interleaved no-sound (i.e., visual only) condition provided baseline 

performance and represented the remaining 11% of trials. This baseline was also used 

to ensure reliability of the behavioral threshold by identifying participants who’s baseline 

accuracies were significantly different from the established threshold and excluding 

these data form further analysis (ASD: n = 14; TD: n = 11). 
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Each condition was presented 16 times in random order; at each multisensory 

delay as well as in the visual only condition, the first visual stimulus appeared above 

fixation on half of the trials. Participants were told from the outset that while they often 

would be hearing sounds through the headphones, the task was the same as in the 

visual TOJ (i.e., determine whether the top or bottom circle appears first) and that they 

should ignore the sounds.  Given that sounds were presented binaurally through 

headphones with no interaural timing or amplitude level differences, they did not provide 

any task-relevant spatial information that would have provided clues as to whether the 

“top” or “bottom” circle occurred first.  However, though not relevant for making the 

spatial discriminations required in this task, the auditory cues did provide temporal 

information. 

 

Auditory TOJ Task 

The auditory TOJ task was designed to test auditory temporal acuity and was 

completed last.  In this task, participants heard two identical clicks, one presented to 

each ear in close temporal proximity, and were asked to make a judgment as to which 

ear the first click was presented.  Following instructions, a white fixation cross appeared 

on a black screen for 1000 ms. Immediately following the 1000 ms fixation, the first of 

two auditory stimuli was presented through headphones to either the right or left ear. 

Following a variable stimulus onset asynchrony (SOA), a second identical auditory 

stimulus was presented through the headphones to the opposite ear. The fixation cross 

then turned red, signaling participants to respond.  (Figure 3.1) Participants indicated in 

which ear they had heard the first auditory stimulus by pressing a button on the 

response box (i.e., “left first” or “right first”). Following a response, a new trial began. As 

in the visual TOJ task, prior to completing the full task, participants completed a 10-trial 

practice including feedback regarding response accuracy. 
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After the practice session, participants completed an adaptive staircase 

procedure similar to that used in the visual TOJ task with three independent, interleaved 

staircases (each starting at an SOA of 100 ms) to determine the SOA necessary to 

discriminate the order of clicks at approximately 75% accuracy. The SOA between 

auditory stimuli changed from a step size of 10 ms for the first five reversals to a step 

size of 5 ms for the next four reversals, then to 1 ms steps until sixteen reversals were 

reached.  An average threshold SOA was calculated from the final ten reversals of each 

staircase, then entered into a confirmation procedure as in the visual TOJ task.  In the 

confirmation procedure, three SOAs were used relative to this threshold: 0 ms (i.e., 

threshold), 10 ms above, 10 ms below. If results of the confirmation procedure did not 

indicate that 70-75% accuracy rates had been attained for any of the three SOAs, the 

confirmation procedure was repeated with higher or lower SOA values. 

 

Data Analysis 

Response accuracy and timing data were recorded for each trial within each 

task.  For unisensory tasks, participant data were included if: a) the participant 

comprehended instructions and was on-task; and, b) a threshold value at which the 

participant performed the task at 75% accuracy could reliably be determined.  For 

unisensory TOJ tasks, threshold values for each participant were obtained from the 

staircase confirmation procedures described above.   

For the multisensory task, participant data were included if: a) the participant 

comprehended instructions and was on-task; b) the participant performed the visual-only 

control trials (see below) at between 60-89% accuracy; and c) the participant showed at 

least some multisensory gains with the addition of task-irrelevant auditory stimuli. For the 

multisensory TOJ task, accuracy gains at each multisensory delay were defined by 

subtracting the accuracy rate for the visual-only baseline trials from the accuracy rate at 
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each of the multisensory delay conditions.  Similarly, improvements in response time 

were determined for each multisensory delay by subtracting the average response time 

for visual-only trials from the average response time for each of the different delays 

conditions.   

 

Group Differences 

Data from each experiment were first analyzed using independent samples t-

tests to examine any between-group differences on the dependent variables of interest.  

Specifically, for the auditory and visual TOJ tasks, t-tests were used to explore potential 

group differences in threshold SOA values.  For the multisensory task, in order to 

explore potential groups differences in improvements in multisensory temporal 

processing, separate ANOVAs for accuracy and response time gains were conducted 

with SOA as the within-subjects variable and group as the between-subjects variable in 

each.  Independent-sample t-tests were also conducted with the accuracy and response 

time gain values at each delay to determine whether the magnitude of multisensory 

integration-related performance gains differed between groups at any of the delay 

conditions.  

 

Differences in the Temporal Window of Multisensory Integration 

The temporal binding window for integration was defined as the span of 

consecutive multisensory delay conditions within which there were significant gains in 

accuracy or (analyzed separately) significant improvements in response time at all 

included delay conditions. To determine the delay conditions at which significant 

accuracy and response time improvements were observed within each group, one-

sample t-tests were conducted for each multisensory delay condition, comparing percent 

accuracy gain or decrease (improvement) in response time to an alternative value of 0, 
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representing no gain in accuracy or response time relative to the visual-only baseline 

condition.  These analyses were run separately for the ASD and TD groups in order to 

examine group-specific temporal binding windows.  P-values were not corrected for 

multiple comparisons because the t-tests were planned a-priori.  Family wise error was 

limited by requiring continuous significance across the entire temporal window of 

integration. 

 

Results 

 

Performance on the Unisensory TOJ Tasks 

To determine whether visual and auditory temporal processing differ in children 

with ASD as compared to children with TD, we determined the threshold SOA values at 

which participants could report which of two stimuli occurred first at approximately 75% 

accuracy. On the visual TOJ task, data from one child with ASD were excluded because 

it was impossible to determine a threshold value from the confirmation procedure; 

remaining groups (ASD: n=34; TD: n=27) did not differ on gender, age, or IQ score (ps > 

0.19). Performance on the visual TOJ task did not differ significantly between groups.  

On average, children with ASD required 52.7 ms to determine which circle onset first, 

whereas children with TD required 60.7 ms, a difference that did not reach statistical 

significance, t (58) = -1.01, p = 0.32, (Figure 3.2).  For the auditory TOJ task, 15 children 

with ASD were excluded from analyses due to non-compliance, inattention, or inability to 

comprehend the task (n = 4), or inability to verify the auditory threshold from the 

confirmation procedure (i.e. accuracy lower than 75% (n = 11)).  Children with ASD who 

were excluded from analyses for this task did not differ from those were included on age, 

gender, or Full Scale IQ (ps > 0.12). Five children with TD completed an alternate 

version of the auditory TOJ task, thus their data are not included here, though they are 
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included in visual and multisensory TOJ analyses.  Remaining groups (ASD: n=20; TD: 

n=22) did not differ on gender, age, or IQ score (ps > 0.18). In contrast to results for the 

visual TOJ task, performance on the auditory TOJ task did differ significantly between 

groups.  Children with ASD required 48% more time between auditory stimuli to reliably 

determine which click occurred first.  Thus, whereas children with ASD required 107.8 

ms to perform at threshold, children with TD required only 73.0 ms, t (40) = 3.98, p = 

.0002, (Figure 2).  

 

Performance on the Multisensory TOJ Task 

In addition to assessing visual temporal acuity, the visual TOJ staircase 

procedure also allowed us to specify the visual SOA within the multisensory TOJ task for 

each participant such that performance was approximately equivalent (75%) across all 

individuals.  In this way we could then determine the effect of task-irrelevant auditory 

stimuli on performance during this visual task, as well as assess the temporal aspects of 

0

10

20

30

40

50

60

70

80

V
isu

al
 S

O
A 

(m
s)

0

20

40

60

80

100

120

140
ASD
TD

A
ud

ito
ry

 S
O

A 
(m

s)

A B
*

Figure 3.2: Threshold values for visual and auditory temporal order judgment tasks. 
Children with autism spectrum disorders (ASD) show similar thresholds to typically developing 
children for the visual TOJ task (A). However, children with ASD show significantly larger 
thresholds for the auditory TOJ task (B). (* p< .05) Note that each of these threshold values was 
confirmed via a validation procedure (see text for additional detail).  Error bars represent 
standard error of the mean (SEM).   
 



 87 

the performance enhancements that represent the hallmark of multisensory integration 

in this task. Twenty-five participants (ASD: n = 14; TD: n = 11) who completed 

experimental procedures were excluded from the multisensory analysis because their 

accuracies on visual-only trials within the multisensory task were well outside of the 

individually established threshold criterion (i.e., < 60% (23 participants) or > 89% (two 

participants)).  The latter two participants were excluded because their high accuracy 

presented a ceiling issue; there was no room for improvement in these participants.  The 

remaining 23 participants likely did not meet their initial thresholds because of fatigue 

from working at threshold for approximately 30-45 minutes.  Because this study was 

primarily interested in measuring differences in temporal multisensory processing, seven 

additional participants (ASD: n = 5; TD: n = 2) were excluded because they did not show 

improvements in accuracy with the addition of auditory stimuli.  Interestingly, these 

seven participants showed strong performance decrements with the addition of the 

auditory stimuli.  Unfortunately, there were too few participants who showed these 

performance decrements to analyze whether they comprise a unique subsample of 

children.  Importantly, there were no significant differences in exclusions from the 

multisensory task based on group, χ2 (3, N = 62) = 3.53, p = .32. Further, remaining 

groups (ASD: n = 16; TD: n = 14) did not differ on gender, age, or IQ score (ps > 0.59). 

Due to the large number of participants excluded from analyses for the 

multisensory task, we first used between-groups, independent-sample t-tests to compare 

the unisensory thresholds for the remaining ASD and TD subsets in order to confirm that 

the differences in unisensory temporal acuity  (i.e., equivalent visual TOJ thresholds, but 

higher auditory TOJ thresholds in ASD relative to TD ) observed for the larger samples 

analyzed in the unisensory tasks held for the subsample who successfully completed the 

multisensory task.   As for the larger samples, we found that auditory thresholds 

remained significantly higher in children with ASD (t(26)=2.11, p=0.02) whereas visual 
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thresholds did not differ between groups (t(26)=1.24, p=0.23).  This finding suggests 

that, despite the large number of participants excluded across both groups, the 

remaining subset described in the analyses below is representative of the full sample in 

displaying similar patterns of unisensory temporal functioning. 

To test for multisensory integration-related performance gains related to the 

addition of task-irrelevant auditory stimuli to the visual TOJ task, we conducted between-

group comparisons for both the accuracy and the response times for trials in which there 

was no delay between the onsets of the second visual and auditory stimuli (i.e., 

multisensory delay = 0) and trials in which only visual stimuli were presented (i.e., visual-

only trials) (Figure 3.3).  Accuracy and response times for visual-only trials did not differ 

significantly between children with ASD and children with TD, (accuracy: t (28) = .60, p = 

.55; response time: t (28) = .22, p = .83), confirming that both groups performed 

equivalently on the baseline visual task in the context of the multisensory TOJ task. 

However, one-sample t-tests for the 0 ms multisensory delay condition revealed that 

children with ASD significantly improved with the addition of the simultaneous auditory 

stimuli in both performance accuracy, t (15) = 2.47, p = .02 and response time, t (15) = 
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Figure 3.3: Performance accuracy (A) and response time (B) for simultaneous multisensory 
trials (i.e., multisensory delay = 0) compared to visual only trials. Error bars represent standard 
error of the mean (SEM). 
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5.48, p < .001, whereas children with TD improved significantly in response time, t (13) = 

3.07, p = .005, but not in performance accuracy, t (13) = -.31, p = .38.    

 

Temporal Dependence of the Multisensory TOJ Task 

In accordance with previous studies 25-27, we found that delaying the second 

auditory stimulus relative to the second visual stimulus led to significant improvements in 

both accuracy and response time over a specific range of multisensory delays for both 

the ASD and TD participants.  

Separate ANOVAs with SOA as the within-subjects factor and group as the 

between-subjects factor were conducted for improvements in both accuracy and 

response time.  The main effect of SOA was significant for both the accuracy, F (7,210) 

= 3.38, p<0.002, and response time, F (7,210) = 20.9, p<.001, data, confirming the 

relationship between temporal proximity and probably of integration.  The main effect of 

group was significant for the accuracy, F (1,30) = 4.45, p<0.04, but not response time, F 

(1,30) = 1.14, p<0.29, data, indicating that children with ASD show greater performance 

gains with the addition of auditory stimuli than do children with TD.  The interaction 

between SOA and group was not significant for either accuracy, F (7,210) = 1.53, 

p<0.16, or response time, F (7,210) = 0.50, p<0.83, indicating that the global relationship 

between temporal proximity of auditory and visual stimuli and improvement in 

performance does not differ between groups.   

The temporal window was defined for each group as the contiguous span of 

multisensory delays within which significant improvements over the visual-only baseline 

were observed.  Windows were defined separately for each group using both the 

accuracy and response time data. Interestingly, the range of delays (i.e., the 

multisensory temporal window) that led to these performance improvements differed 

substantially between groups (accuracy: Figure 3.4; response time: Figure 3.5). 
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Figure 3.4: Percent improvement in accuracy relative to visual only performance as a 
function of multisensory delay. Whereas typically developing children show improvements for 
short delays (i.e., 50-150 ms), children with ASD show improvements for both moderate and short 
delays (i.e. 0-300 ms). The solid line indicates continuous significant (p<.05) differences from zero 
(i.e., the multisensory temporal window). Error bars represent standard error of the mean (SEM). 
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Figure 3.5: Improvement in response times relative to visual only performance as a function 
of multisensory delay. Whereas typically developing children show improvements for short delays 
(i.e., 0-200 ms), children with ASD show improvements for both moderate and short delays (i.e. 0-
300 ms). The solid line indicates continuous significant (p<.05) differences from zero. Error bars 
represent standard error of the mean (SEM). 
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Children with ASD showed significant improvements in accuracy from the 0 ms 

delay condition to the 300 ms delay condition.  In contrast, children with TD showed 

significant improvements in accuracy from the 50 ms delay condition to the 150 ms delay 

condition (Table 3.2), a finding consistent with prior work in typical adults 26.  Lending 

additional support to the differences in temporal binding window size, children with ASD 

showed significantly more improvement in accuracy when compared to their typically 

developing peers for the 200 ms, t (28) = 2.64, p = .013, and 300 ms, t (28) = 2.18, p = 

.038 multisensory delay conditions (i.e., at multisensory delay conditions that were inside 

the temporal binding window for children with ASD, but outside the window for children 

with TD).  Thus, the extent of the multisensory temporal window for improvements in 

accuracy in children with ASD was approximately doubled compared to children with TD.   

With regard to response times, children with ASD showed faster responses from 

the 0 ms delay condition to the 300 ms delay condition.  In contrast, children with TD 

showed improvements in response time from the 0 ms delay condition to the 200 ms 

delay condition (Table 3.3).  Although children with TD showed significant improvements 

in response time over a greater range of delays relative to those for which they showed 

improvements in accuracy, children with ASD still showed improvements in response 

time for approximately 100 ms longer than children with TD.   
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Discussion 

 

General Findings 

The results of the current study validate and extend our previous finding of a 

prolonged temporal window of multisensory integration in autism spectrum disorders 23.  

Previously, we demonstrated this expanded window of temporal integration within the 

context of a multisensory illusion (i.e., the sound-induced double flash [flash-beep] 

illusion).  In the current study, we expand on this finding by establishing that children 

with ASD show gains in performance resulting from multisensory stimuli over a longer 

temporal window than typically-developing children on a temporal order judgment task. 

These performance gains manifest both as improvements in accuracy and as faster 

responses relative to the unisensory (i.e., visual) baseline condition across an increased 

range of multisensory delays.   Together, these two studies provide converging evidence 

that multisensory temporal processing, and more specifically the multisensory temporal 

binding window, is significantly altered in ASD.  

By measuring temporal processing both within and across sensory systems, the 

current study provides a perspective on the relative contributions of unisensory 

processing changes to alterations in multisensory function. Thus, whereas visual 

temporal acuity was comparable across groups as measured using a standard visual 

TOJ task, both auditory and multisensory function were significantly impacted in ASD. 

Our findings of intact visual temporal processing are among the first that indicate that 

basic visual temporal processing may be spared in children with ASD. In fact, there is 

very limited literature on basic visual temporal processing in ASD, relative to a fairly 

extensive literature on visual spatial processing in which intact and enhanced 

discrimination abilities are consistently found, particularly for simple stimuli (for review 

see 33). This work on visual capabilities has been extended to motion perception (for 
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review see 34). Interestingly, it has been shown that detection of first-order motion 

appears to be intact in ASD, while second-order motion detection is impaired  (17). In 

addition, deficits are seen when the motion is derived from higher-order (e.g., biological) 

cues likely to reflect greater integrative processes. The current study extends our 

knowledge of visual function in autism by providing the first evidence  that spared 

perception for basic visual features may also extend to the temporal domain. 

 

Alterations in Auditory Temporal Processing in ASD 

The observed difference in auditory TOJ performance is consistent with prior 

psychophysical and electrophysiological studies of temporal processing conducted in 

individuals with ASD.  Previous behavioral studies have shown that individuals with ASD 

have difficulties reproducing auditory stimuli of standardized duration (Szelag et al., 

2004), as well as difficulties detecting duration changes among auditory stimuli (Lepsisto 

et al., 2006).  In two separate studies, Lepisto and colleagues demonstrated reduced 

mismatch negativity in response to duration changes in non-speech sounds (Lepisto et 

al., 2005; Lepisto et al., 2006), providing electrophysiological evidence indicating atypical 

responses to the temporal structure of discrete auditory stimuli.  Results of the present 

study extend these findings by suggesting that the ability to discriminate timing 

information between sequential stimuli is also impaired in ASD.   

These differences in auditory temporal function could reflect a decreased ability 

of neurons in the primary auditory cortex of children with ASD to resolve differences in 

the onset of neural signals produced by the individual auditory stimuli.  A delay in 

primary auditory cortical response would be consistent with findings from 35, who 

reported delayed latency of evoked potentials in superior temporal gyrus in response to 

tones of various pitch in individuals with ASD. Similarly, 36 demonstrated delayed 

mismatch negativity to both speech and non-speech sounds, suggesting that not only is 
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the neural response to timing information in auditory stimuli atypical, but the timing of the 

brain's response itself is delayed in response to auditory input. At a mechanistic level, 

these delays may be the result of decreases in the signal-to-noise ratio of neural 

signaling processes for auditory cues in autism, resulting in poorer time-locking of neural 

responses to discrete sensory events 37.   Results from 38 support this hypothesis by 

showing that the ERP response to auditory speech stimuli in the absence of background 

noise for children with ASD was similar to that with background noise for children with 

TD, suggesting degraded response to auditory stimuli at baseline in ASD.  

Electrophysiological studies examining the neural response to timing differences 

between auditory stimuli could help clarify the potential contributions of a reduced signal-

to-noise ratio to decreased auditory temporal acuity in ASD. 

An alternate hypothesis related to our auditory TOJ findings is that poorer 

performance in children with ASD relative to children with TD on the auditory TOJ task 

may be the result of deficits in inter-hemispheric communication, rather than reflecting 

deficits in the basic encoding of auditory stimuli. Numerous studies have shown 

lateralization changes in autism 39-41. Since participants in the current study were asked 

to distinguish between auditory stimuli presented to the left and right ears, disruptions in 

lateralization could play a substantive role in the differences observed between groups.  

Further studies are needed to clarify whether individuals with ASD show decreased 

temporal acuity for auditory tasks which do not rely on spatial information. 

 

Comparisons with Prior Studies of Multisensory Processing in ASD 

The current study further confirms previous findings of intact multisensory 

integration for low-level stimuli 23,24. The results of these three studies stand in contrast 

to other published reports of disrupted audiovisual integration in the context of ASD 42,43. 

In reviewing these studies, the most straightforward source of these differences seems 
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to lie in the more complex and social nature of the auditory information (i.e., language) 

used in the latter set of studies. Deficits seen with the use of such stimuli could reflect 

processing problems at levels well upstream of the sensory and integrative processes 

being indexed by more simplistic audiovisual stimuli. 

 

Mechanistic Implications:  Toward the Brain Bases for Altered Multisensory 

Temporal Binding 

As discussed previously 23, there are several possible neural mechanisms for the 

extended temporal window of multisensory integration in children with ASD.  Rubenstein 

and Merzenich’s decreased signal-to-noise ratio hypothesis described above within the 

auditory system could extend to the multisensory domain, where a protracted time 

window within which crossmodal stimuli can interact may emerge as a result of -- and 

possibly even as a compensatory mechanism for -- the imprecise time-locking of neural 

responses to stimuli within individual sensory domains.  Alternatively, the current data 

are also consistent with the temporal binding deficit hypothesis proposed by 44, which 

suggests that activity within networks of interconnected sensory areas are not as 

strongly correlated in ASD, resulting in disruptions in the binding of perceptual 

information.  It may be the case that these neural signals are not so drastically 

uncorrelated as to cause decoupling across regions (as initially hypothesized by Brock 

and colleagues), but instead occur in such a way as to necessitate an extended 

temporal binding window within which two stimuli can continue to be bound as part of 

one event. Further study is needed to provide additional support for one or the other of 

these theories, or to identify additional mechanistic possibilities. Such studies, if capable 

of employing neuroimaging tools such as fMRI and EEG/ERP, will be vital for improving 

our understanding of how the neural networks subserving multisensory integration may 
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be disrupted in ASD and how these disruptions could result in an enlargement in the 

temporal window of multisensory integration.   

 

Disrupted Temporal Multisensory Processing: A Common Disruption in 

Developmental Disorders? 

An enlargement in the temporal window of multisensory integration has been 

found in other developmental disorders including developmental dyslexia (Hairston et al., 

2005).  Due to the multisensory nature of the relevant stimuli in the human environment, 

disruptions in the temporal fidelity with which auditory and visual stimuli are paired 

together and integrated could lead both to symptoms of dyslexia (e.g., difficulty mapping 

written words to their phonemic representation in speech) and of ASD (e.g., difficulty 

combining speech signals with visual cues from facial expressions and gestures to 

interpret others’ communicative intent).  However, it is important to note that, while both 

groups demonstrate an enlarged temporal binding window for audiovisual stimuli, some 

differences in the nature and extent of temporal processing abnormalities between the 

two disorders exist.  For example, with regard to unisensory temporal processing, 

individuals with dyslexia show both auditory and visual temporal processing impairments 

(e.g., Hairston et al 2005; Laasonen, Service, and Visru, 2001), while our results suggest 

that individuals with ASD have impairment in auditory but not visual temporal 

processing.  These differences may reflect divergent disorder-specific neural dysfunction 

related to temporal processing that ultimately results in similar disruptions of 

multisensory temporal processing.  Along these lines, it has been proposed that autism 

results from local hyperconnectivity with long-range hypoconnectivity (Rippon, Brock, 

Brown, and Boucher, 2007), whereas dyslexia involves proximal hypoconnectivity but 

distal hyperconnectivity (Williams and Casanova, 2010).  These opposite patterns might 

both result in atypical temporal multisensory function, but would likely result in divergent 
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patterns of strengths and weaknesses in ASD and dyslexia. Alternatively, morphological 

or functional abnormality in one or more discrete brain regions that form these 

connected networks could contribute to the shared profile of an enlargement in the 

multisensory temporal binding window, while simultaneously giving rise to ASD- or 

dyslexia-specific dysfunction.  Future research into the neural underpinnings of the 

enlarged temporal window in both disorders should be directed toward distinguishing 

convergent and divergent neural abnormalities that could impact temporal multisensory 

processing, and should include subcortical structures such as the cerebellum that have 

been implicated in both disorders and may contribute to optimizing the temporal 

integration of sensory inputs (Nicolson and Fawcett, 2005).  Further investigation may 

elucidate different mechanisms resulting in similar patterns of multisensory temporal 

function, as well as clarify the specificity of altered temporal multisensory function in 

producing the divergent symptomology in developmental disorders. 

 

Conclusions and Implications 

We are constantly bombarded by information from all senses, and our brains 

must combine individual unisensory events that are temporally proximal and likely to 

have occurred together into a unitary multisensory percept.  A disruption in the temporal 

precision with which a multisensory perception is created from its component unisensory 

parts is likely to be compounded at subsequent processing stages and lead to more 

pronounced disruptions in the understanding of complex stimuli such as speech, as have 

been reported in other studies.  The extended temporal multisensory window described 

in the current study is likely to have far-reaching consequences for children with ASD 

and could account for core deficits in social and communication abilities, though the 

present study does not allow this to be tested empirically on an individual level since the 

multisensory TOJ task does not give an accurate estimate of the temporal window for 



 99 

individual participants. Nonetheless, enlargement of the temporal window during 

language acquisition could impair a child’s ability to correctly associate the visual and 

auditory components of speech, thus delaying or (if severe enough) preventing the 

acquisition of language.  With regard to core social deficits, numerous auditory and 

visual stimuli involved in a social interaction (e.g., subtle changes in tone of voice, facial 

expression, and body language) must all be integrated seamlessly for the interaction to 

be successful.  Altered experiences with multisensory processing from early ages may 

have detrimental effects on subsequent development of complex social abilities such as 

empathy and reciprocity. Research into when and how enlargements of the temporal 

window for multisensory integration first emerge and how they might result in social 

communication deficits central to ASD should be an important focus of future studies, as 

altered multisensory temporal processing may serve as an early marker of later deficits 

or suggest potential targets for intervention.   

In conclusion, this study demonstrates that the temporal processing of auditory 

and multisensory stimuli is disrupted in ASD, providing empirical evidence in support of 

the clinical and anecdotal literature that consistently reports sensory functioning 

impairments in ASD.  A limitation of the study is the inherent bias toward high functioning 

ASD necessitated by the cognitive and attentional demands of the psychophysical tasks 

used.  In fact, even in the high functioning population used in this study, many of the 

participants were not able to complete one or more of the tasks.  Further research is 

needed to fully characterize the nature and extent of these unisensory and multisensory 

temporal processing differences in ASD, to elucidate their neural substrates, to clarify 

their profile in lower-functioning individuals, to assess their emergence early in 

development, and to relate these findings to the core deficits in ASD.  It is anticipated 

that this line of investigation will ultimately contribute to a broader understanding of ASD 
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and lead to more sensitive diagnostic instruments and more specific remediation 

strategies.  
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CHAPTER IV 

 

TEMPORAL MULTISENSORY PROCESSING AND ITS RELATIONSHIP TO AUTISTIC 

FUNCTIONING 

 

Abstract 

Autism spectrum disorders (ASD) form a continuum of neurodevelopmental 

disorders characterized by deficits in communication and reciprocal social interaction, 

repetitive behaviors, and restricted interests.  Sensory disturbances are also frequently 

reported in clinical and autobiographical accounts. However, few empirical studies have 

characterized the fundamental features of sensory and multisensory processing in ASD.  

A recently published study has shown that children with ASD can integrate low-level 

multisensory stimuli, but do so over an enlarged temporal window when compared to 

typically developing (TD) children.  The current study sought to expand upon our 

previous findings by examining differences in the temporal processing of low-level 

multisensory stimuli in high-functioning (HFA) and low-functioning (LFA) children with 

ASD in the context of a simple reaction time task.  Contrary to previous findings, children 

with both HFA and LFA showed decreased improvements in performance in response to 

multisensory stimuli as compared to their TD peers.  Additionally, the temporal window 

of integration was not found to be larger for children with HFA or LFA.  These findings 

add complexity to our understanding of the multisensory processing of low-level stimuli 

in ASD and may hold promise for the development of more sensitive diagnostic 

measures and improved remediation strategies in autism.  
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Introduction 

 Autism Spectrum Disorders (ASD) are a group of neurodevelopmental disorders 

which are diagnosed using the following triad of symptoms: impairments in social 

interaction, impairments in language, and restricted, repetitive, and stereotyped behavior, 

interests, and activities1.  In addition to the diagnostic triad of symptoms, sensory and 

perceptual disruptions are frequently associated with ASD.   In fact, the original depiction 

of autism published by Kanner in 1943 included descriptions of sensory abnormalities 

such as fascination with particular stimuli as well as aversions to innocuous stimuli 2 

which have since been reported consistently in autobiographical, caregiver and clinical 

reports 3-6.   

 Many empirical studies have further investigated changes in sensory processing 

in ASD. Interestingly, some of these studies have shown superior unisensory perceptual 

discrimination in individuals with ASD relative to control subjects 7-9.  For example, 

discrimination of fine visual spatial detail has widely been found to be a relative strength 

in ASD 10-13.  Other studies suggest that these enhanced perceptual abilities are limited 

to simplistic stimuli and that relatively more complex stimuli result in perceptual 

disruptions 14,15. 

In addition to disruptions in unisensory processing, there is evidence for 

alterations in the binding of information across sensory systems (i.e., multisensory 

integration)16; however, multisensory processing in autism has not been studied as 

extensively as unisensory processing.  Accordingly, much less is known about whether 

deficits in the integration of information across modalities exist in autism and what the 

nature and degree of these disruptions may be.  Interestingly, the multisensory studies 

published thus far suggest the same dichotomy between simple vs. complex/social or 

verbal stimuli seen for unisensory stimuli16-19.   
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There has been some indication that the temporal aspects of both unisensory 

and multisensory information processing may also be impacted in ASD20-23.  Previous 

chapters have explored whether disruptions in the temporal processing of multisensory 

information are present in children with ASD.  In chapter two, we showed intact 

integration but an expanded temporal window of multisensory integration for a 

multisensory illusion in children with ASD24.  In chapter three, we did not only replicate 

these findings by showing an increase in the temporal window of integration in a 

multisensory temporal order judgment task, but we also expanded upon our knowledge 

of multisensory processing in ASD by exploring the role of unisensory temporal 

processing in the multisensory temporal processing25.  Together, these two studies 

provide converging evidence that multisensory temporal processing but not the ability to 

integrate low-level multisensory stimuli is significantly altered in high-functioning children 

with ASD.   

Although our prior work was instrumental in defining the role of temporal 

multisensory processing in high-functioning children with ASD, our results from chapters 

two and three may not generalize to lower-functioning children.  Additionally, although 

we have demonstrated an enlarged temporal window for two dissimilar multisensory 

tasks, both multisensory effects result from the influence of task-irrelevant auditory 

information on visual perception.  Other multisensory tasks may be subserved by 

different neurological networks and thus may be differentially impacted in ASD.  The 

goal of the current study was to expand upon our previous findings by examining 

whether there are differences in the temporal processing of low-level multisensory 

stimuli in high-functioning (HFA) and low-functioning (LFA) children with ASD.  To this 

end, we have investigated the ability of children with typical development (TD), HFA, and 

LFA to benefit from the presentation of low-level audiovisual stimuli in a simple reaction 

time task26-31.   
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Methods 

 

Participants 

Twenty-seven children with ASD and 34 with typical development (TD) comprise 

the study sample.  Additionally, children with ASD were split into a high-function autism 

(HFA) and low-functioning autism (LFA) group based their cognitive functioning (i.e. 

children in the HFA group had Verbal IQ scores over 70; children in the low functioning 

group had Verbal IQ scores below 70) resulting in 16 children in the HFA group and 11 

children in the LFA group.  Eligibility criteria for children in all groups were as follows: a) 

age 6-17 years; b) normal or corrected-to-normal hearing and vision; and c) no evidence 

or past diagnosis of a specific reading disorder.  Cognitive functioning was assessed 

using the Wechsler Abbreviated Scale of Intelligence (WASI32) unless a child had 

completed cognitive testing in the past year and the parents could provide the scores. 

Additional eligibility criteria for the ASD group required that children: a) have a confirmed 

diagnosis of Autistic Disorder, Asperger’s Disorder or Pervasive Developmental 

Disorder-Not Otherwise Specified; and b) have no history of seizure disorders or 

identified genetic disorders (e.g., Fragile X, tuberous sclerosis).  Children with ASD were 

not excluded based on use of psychotropic medication. 

Children’s prior ASD diagnoses were confirmed in the present study using gold-

standard procedures: the Autism Diagnostic Observation Schedule (ADOS; 33) was 

administered by a research-reliable examiner and DSM-IV-based clinical diagnoses 

were made by a licensed clinical psychologist on the basis of this information unless a 

child had completed diagnostic testing in the past year. Additional eligibility criteria for 

children with TD were as follows: a) no history of or current psychiatric, neurological, or 

learning disorders (e.g., depression, epilepsy, dyslexia) or symptoms of ASD; and b) no 

first-degree relatives with ASD. Parent report of ASD symptoms was obtained using the 
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Lifetime version of the Social Communication Questionnaire (SCQ; 34); all children with 

TD had SCQ scores below the at-risk cutoff for ASD.  No differences in age, gender, or 

Full Scale IQ score were found between the TD and HFA groups (Table 4.1).  As 

expected, a significant group difference was found for parent report of ASD symptoms 

on the SCQ, t (48) = 9.81, p < .001.  No differences in age, gender, or SCQ were found 

between the HFA and LFA groups.  As expected, a significant group difference was 

found for Full Scale IQ scores, t (25) = 5.46, p < .001. 

 

Table 4.1:  Participant Demographics. 

Measure TD HFA LFA 

Gender 23M;11F 13M;3F 10M;1F 

Age (months) 136 (38.2) 129.6 (26.9) 118.5 (19.7) 

Verbal IQ 112.6 (19.3) 117.7 (20.4) 62.8(7.3) * 

Performance IQ 110.5 (13.2) 117.3(20.4) 74.2 (24.1) * 

Full Scale IQ 112.2 (15.7) 117.5 (16.5) 67.8 (13.0) * 

SCQ 2.82 (2.64) * 20.4 (8.0) 26.5 (11.1) 

*-Indicate significant differences  compared to the HFA group. 

Parents of all participants gave informed consent and all children in both groups gave 

assent prior to participation in any component of this study. All children received 

compensation for their participation at each visit.  All procedures were approved by the 

Vanderbilt University Institutional Review Board. 
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General Procedure 

Participants sat in a light- and sound-attenuated room. Visual stimuli consisted of 

a brief presentation (60ms duration) of a round white owl (4.2 cm in diameter subtending 

4.37° of visual space) and presented at 4 cm (4.17°) below the center of the fixation 

cross on a CRT monitor (Iiyama Vision Master Pro 513, 22 inch screen; 60 Hz refresh 

rate; 640x480 pixel resolution).  Auditory stimuli consisted of a 1850 Hz tone presented 

for 60 ms (ramped on and off for 5ms) and were presented via speakers (Solio W30351) 

located in front of the participants at a level of 85 dB peak SPL.  (Figure 4.1)  This task 

explored the redundant signals effects wherein the presentation of multisensory stimuli 

Time

Auditory

Visual

-60 -75ms +60- 600ms
60ms 60ms 60ms

60ms

Figure 4.1: Task design.  For simultaneous multisensory conditions, a small round owl is 
presented coincidentally with a beep.  For positive SOA’s, the beep is presented after the 
owl with variable delays (60-600ms).  For negative SOA’s, the beep is presented before the 
owl with variable delays (60-75ms). 
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results in speeded response times26-31.  Trial types consisted of auditory only (auditory 

stimuli), visual only (visual stimuli), and multisensory (both visual and auditory stimuli).  

The stimulus onset asynchrony (SOA) ranged in multisensory trials between -75 ms 

(onset of auditory stimulus occurring 75 ms before the onset of the visual stimulus) to 

600 ms (onset of the visual stimulus occurring 600 ms before the onset of the auditory 

stimulus).  The SOA increments are as follows: -75, -60, 0, 60, 75, 100, 150, 200, 250, 

300, 400, 500, 600 ms.  All multisensory trials were repeated 30 times and unisensory 

trials were repeated 195 times thus equating the total number of unisensory and 

multisensory trials.  The inter-trial interval varied randomly between 750 and 3000 ms. 

Stimuli were split into two blocks, and the participants were given a break between 

blocks.  Stimulus presentation was controlled using E-Prime (Psychology Software Tools 

Inc., Pittsburgh, PA, USA).  Responses were recorded via a Serial Response box 

(Psychology Software Tools Inc., Pittsburgh, PA, USA).   

Participants were monitored continuously via closed-circuit video cameras to 

ensure that they were engaged in the tasks.  On the rare occasions that a participant 

was not on-task, a variety of strategies were implemented to increase engagement (e.g., 

reminders to stay on task, additional breaks, parent in the testing room, etc). Participants 

were allowed to take breaks as necessary to increase compliance and maintain effort, 

motivation, and on-task behavior. All participants completed the study procedures 

described below within a single session.  

 

Data analysis 

 

Calculation of Response Times 

Response timing data was recorded for each trial, and response times were 

calculated from this data as the amount of time between the onset of the first stimulus in 
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the trial (i.e. the onset of the beep for negative SOA’s or auditory only trials and the 

onset of the owl for positive SOA’s or visual only trials) and the response.  Response 

times less than 100ms or more than 800ms were considered unrelated to the stimulus 

presentation and excluded from analysis.  If a participant responded more than once 

during a trial, the first response within the accepted time frame (between 100-800ms) 

was used to calculate response time.  Multiple responses during a single trial were 

uncommon overall but occurred more frequently for multisensory trials with long SOA’s 

in which participants may have been responding to the visual and auditory stimuli 

separately.  An averaged response time was then calculated for each trial type for each 

participant.   

 

Group Differences in Overall Performance 

Given that cognitive functioning was not equated between the TD and LFA 

groups, the TD group was not compared directly to the LFA group.  Instead, both the TD 

and LFA groups were compared separately to the HFA group.  Response times for 

unisensory trials were compared using independent samples t-tests to examine any 

between-group differences in the detection of visual and auditory stimuli.  In order to 

explore potential groups differences in performance on multisensory trials, an ANOVA 

was conducted for response time with SOA as the within-subjects variable and group as 

the between-subjects variable.  

 

Differences in Improvement in Response Time for Multisensory Trials 

 The improvement in response time for multisensory trials was determined 

separately at each SOA by subtracting the average unisensory response time of the 

modality, which was presented first within the multisensory trial type from the average 

multisensory response time.  For example, the average visual response time would be 
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subtracted from the average response time for multisensory trials with an SOA of 75ms; 

however, the average auditory response time would be subtracted from the average 

response time for multisensory trials with an SOA of -75ms.  SOA’s that resulted in 

significant improvements in response time were determined by comparing the 

improvement in response time to an alternate value of 0 using one-sample t-tests 

separately for each group at each SOA.  In order to explore potential groups differences 

in improvement in response time from the presentation of multisensory stimuli, an 

ANOVA was conducted for improvements in response time with SOA as the within-

subjects variable and group as the between-subjects variable.  Additionally, a global 

improvement in response time variable was calculated by averaging the improvements 

in response time across the shortest SOA’s trials types which were the most likely to 

result in speeding of response time (i.e. -75 – 100ms).  Independent samples t-tests 

were used to compare the global improvement in response time between the groups. 

 

Differences In The Temporal Window Of Multisensory Integration 

The temporal binding window for multisensory integration was determined 

individually for each participant by fitting a sigmoid curve to individual average response 

time by SOA data for positive SOA’s only.  Participants were only included in the 

analysis if the sigmoid function appropriately fit the participant’s data (R2 > .4).  The 

temporal window was defined as the SOA, which corresponded to 50% of the maximum 

response time.  Temporal window values were compared between groups using 

independent samples t-tests. 
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Results 

 

Performance on Unisensory Trials 

 To determine whether performance on visual and auditory trials differed in 

children with HFA as compared to children with TD and LFA, we determined the average 

response time for each participant for both the visual only and auditory only trials.  

Average response times for auditory-only trials were 295.9 ms for children with TD, 

297.2 ms for children with HFA, and 311.4 ms for children with LFA.  Average response 

times for visual-only trials were 303.4 ms for children with TD, 299.8 ms for children with 

HFA, and 324.1 ms for children with LFA.  (Figure 4.2)  Auditory and Visual response 

times did not significantly differ between the TD and HFA groups (auditory: t(48)=0.07, 

p=0.95; visual t(48)=0.19, p=0.85) or the HFA and LFA groups (auditory: t(25)=0.49, 

p=0.63; visual t(25)=0.89, p=0.38) indicating that all children responded within a similar 

time frame on unisensory trials.   
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Figure 4.2: Average response times for visual only and auditory only trials.  
Children with TD, HFA, and LFA show similar response times for visual and auditory 
trials.  Error bars represent standard error of the mean (SEM). 
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Temporal Dependence of Performance on Multisensory Trials 

 Performance on multisensory trials was compared between children with TD and 

HFA by conducting an ANOVA with SOA as the within-subjects factor and group as the 

between-subjects factor on averaged response times.  Performance on multisensory 

trials was compared separately for children with HFA and LFA by conducting an ANOVA 

with the same factors. (Figures 4.3 and 4.4)  The main effect of SOA was significant for 

both the comparison between children with TD and HFA (F(12,456)=9.23, p<.001) and 

the comparison between children with HFA and LFA (F(12,228)=4.47, p<.001) indicating 

that the temporal structure of multisensory stimuli had a strong effect on response times 

for all groups.  Neither main effect of group nor the interaction between group and SOA 

were significant for either the comparison between children with TD and HFA (group: 

F(1,38)=0.08, p=.78; interaction: F(12,456)=0.73, p=.73)  or the comparison between 

children with HFA and LFA (group: F(1,18)=0.73, p=.41; interaction: F(12,228)=1.34, 

p=.20) indicating that all groups responded over a similar time frame for each of the 

multisensory trial types.  Similarly, independent samples t-tests did not reveal significant 

group differences between the HFA group and TD and LFA groups at any SOA.  
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Figure 4.3: Response times for multisensory trials for TD and HFA groups.  Multisensory 
SOA strongly influenced response times for both groups; however, the pattern of response times 
for multisensory trials did not significantly differ between groups.  Error bars represent standard 
error of the mean (SEM). 

Figure 4.4: Response times for multisensory trials for HFA and LFA groups.  Multisensory 
SOA strongly influenced response times for both groups; however, the pattern of response times 
for multisensory trials did not significantly differ between groups.  Error bars represent standard 
error of the mean (SEM). 
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Improvements in Performance on Multisensory Trials 

 In accordance with previous studies, we found that the presentation of 

audiovisual stimuli resulted in significant improvements in response time as compared to 

unisensory stimuli over a limited range of SOA’s.  (Figures 4.5 and 4.6)  Children with 

TD showed significant improvements in response time for the following SOA’s: -75ms 

(t(33)=3.66, p<0.05), -60ms (t(33)=3.97, p<0.05), 0ms (t(33)=4.67, p<0.05), 60ms 

(t(33)=5.32, p<0.05), 75ms (t(33)=2.12, p<0.05), 100ms (t(33)=2.64, p<0.05).  In 

contrast, children with HFA only showed significant improvements in response time for 

the following SOA’s: -60ms (t(15)=2.56, p<0.05), 0ms (t(15)=2.75, p<0.05), 60ms 

(t(15)=2.04, p<0.05).  Children with LFA only showed significant improvements for the 

0ms SOA (t(10)=2.76, p<0.05).   

 Improvements in performance on multisensory trials were compared between 

children with TD and HFA by conducting an ANOVA with SOA as the within-subjects 

Figure 4.5: Improvement in response times for multisensory trials for TD and HFA groups.  
Whereas, children with TD show significant improvements in reaction times across SOA’s 
ranging from -75 – 100ms, children with HFA only show significant improvements from -60 – 
60ms.  Error bars represent standard error of the mean (SEM). 
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factor and group as the between-subjects factor on averaged response times.  

Performance on multisensory trials was compared separately for children with HFA and 

LFA by conducting an ANOVA with the same factors. (Figures 4.5 and 4.6)  The main 

effect of SOA was significant for both the comparison between children with TD and HFA 

(F(12,456)=8.15, p<.001) and the comparison between children with HFA and LFA 

(F(12,228)=3.11, p<.001) indicating that the temporal structure of multisensory stimuli 

had a strong effect on improvements in response time for all groups.  Neither main effect 

of group nor the interaction between group and SOA were significant for either the 

comparison between children with TD and HFA (group: F(1,38)=1.032, p=.32;  

interaction: F(12,456)=0..59, p=.85)  or the comparison between children with HFA and 

LFA (group: F(1,18)=0..23, p=.64; interaction: F(12,228)=.95, p=.49).  This lack of a 

significant difference indicates that all groups showed similar improvements in response 

time as a function of SOA; however, as was reported above, children with HFA and LFA 

showed significant improvements in response times across fewer SOA’s than TD 
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Figure 4.6: Improvement in response times for multisensory trials for HFA and LFA 
groups.  Whereas, children with HFA show significant improvements in reaction times across 
SOA’s ranging from -60 – 60ms, children with LFA only show significant improvements for 
simultaneous audiovisual presentations.  Error bars represent standard error of the mean (SEM). 
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children.  The ANOVA may not be revealing differences between groups because of the 

large variability in response times and the significant proportion of SOA’s that do not 

result in significant improvements in response times.  In order to optimize the ability to 

detect significant group differences, the improvements in response time were averaged 

for multisensory trials with short SOA’s (-75ms – 100ms).  On average, children with TD 

improved by 26.6 ms for multisensory trials with short SOA’s.  In contrast, children with 

HFA improved significantly less (13.3 ms (t(48)=2.08, p=.04).  Children with LFA 

improved less than children with HFA (9.2 ms), but this difference was not significant 

(p(25)=.062, p=.54). (Figure 4.7) 

 

 

 

Differences in the Temporal Window of Multisensory Integration 

 Individual estimates of the temporal window of multisensory integration were 

calculated to investigate differences in temporal multisensory processing in autism.  A 

sigmoid curve was fit to individual response time by SOA data and the window of 

integration was defined as the SOA, which results in 50% of the maximum response 

time.  Participants were only included in the analysis if the sigmoid function appropriately 

the participant’s data (R2 > .4).  Twenty-two children with TD, 13 children with HFA, and 

3 children with LFA were included in this analysis.  Children with TD had an average 

Figure 4.7: Average improvement 
in response times for 
multisensory trials with short 
SOA’s.  Children with HFA show 
significantly smaller improvements in 
response time as compared to TD 
children (asterisks represent p < 
0.05).  Children with LFA show 
similarly small improvements in 
response time.  Error bars represent 
standard error of the mean (SEM). 
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window size of 93.2 ms and did not significantly differ from children with HFA (78.1ms).  

Children with LFA had much larger temporal windows (151.7ms); however, they did not 

differ significantly from children with HFA.  (Figure 4.8) 

  

 

 

 

Discussion 

 The results of the current study suggest that the integration of low-level 

multisensory stimuli may be disrupted in children with both HFA and LFA during the 

completion of certain tasks, as evidenced by their decreased gains in performance 

resulting from multisensory stimuli.  Furthermore, we showed that multisensory 

integration occurred over a similar range of SOA’s for children with ASD and TD, 

suggesting that the temporal window of integration is not enlarged for children with ASD 

in this task.  The results of this study are in direct conflict with our results from previous 

studies which showed intact multisensory integration over an extended range of SOA’s 

both within the context of a multisensory illusion (flash-beep illusion)24 and during the 

completion of a multisensory TOJ task25.  This study adds complexity to our 

understanding of the integration of multisensory stimuli in autism by demonstrating that 

0	
  

50	
  

100	
  

150	
  

200	
  

250	
  

W
in
do
w
	
  S
iz
e	
  
(m
s)
	
  

TD	
   HFA	
   LFA	
  

Figure 4.8: Temporal window of 
integration.  Children with HFA do 
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the context within which integration occurs strongly influences the nature of the 

behavioral disruptions resulting from altered multisensory processing.   

 Although our current results differ from our previous findings of intact 

multisensory integration over an enlarged temporal window, they are in accord with a 

recently published report by Russo and colleagues in which EEGs were recorded while 

children with autism and typical development were presented with low-level auditory and 

somatosensory stimuli.  Waveforms in response to the multisensory stimuli were 

compared to the summed waveforms for the unisensory stimuli.  The autistic children 

tended to show less pronounced and delayed (by approximately 200 ms) differences 

between the multisensory and summed waveforms indicating disrupted integration of 

low-level multisensory stimuli35.  Although behavioral responses were not recorded, the 

results of this study imply that children with autism would receive a smaller benefit in 

response time for the multisensory stimuli, as we have shown in the current study.  

Interestingly, the differences in the temporal pattern of results in the Russo study 

suggest an intriguing explanation for our current finding of disrupted multisensory 

integration.  Because responses to both unisensory and multisensory stimuli occur very 

quickly in detection tasks, delayed neurological integration of multisensory stimuli could 

occur too late to improve performance as strongly in children with autism as compared to 

TD children.  In contrast, responses during the flash-beep and multisensory TOJ task 

occur much later and thus could still be strongly influenced by delayed processing of 

multisensory information.   

 Differences in the attentional modulation of multisensory processing in children 

with ASD may also explain the disruptions in multisensory integration observed in this 

study.  In our prior studies utilizing the flash-beep and multisensory TOJ tasks, 

participants were instructed to focus on the primary visual task and to ignore the auditory 

stimuli24,25.  However, in the current study, participants were asked to divide their 
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attention between two modalities and detect both visual and auditory events.  A prior 

study by Ciesielski and colleagues demonstrated that individuals with ASD showed 

disruptions in performance when their attention was divided between two modalities (i.e. 

decreased accuracy and response time for detecting separate visual and auditory 

targets) but not when asked to focus on one modality.  Additionally, the slow negative 

wave component of their ERP waveforms did not show an attention-based modulation in 

amplitude for participants with ASD as was observed in participants with TD36.  These 

observed differences in the interaction between attention and the processing of 

multisensory information in autism could lead to the decreases in gains in performance 

observed in the current study. 

 Given the discrepancy between our current finding of disrupted integration of low-

level multisensory stimuli and our previous findings of intact integration of similar stimuli 

over an enlarged temporal window, future investigations into the temporal processing 

and integration of low-level stimuli in a variety of tasks may be necessary to adequately 

identify the primary disruption in multisensory processing in ASD.  Additionally, studies 

investigating the role of attention in multisensory integration could determine whether the 

pattern of results observed in this study may be attributable to alterations in the 

interaction of attention and multisensory processing.   

 Although the results of the current study did not reveal significant differences in 

temporal multisensory processing and integration in children with LFA as compared to 

HFA, the disrupted integration of low-level multisensory stimuli observed in both groups 

differs from previous reports and thus may not be capturing the impact of functioning 

level on temporal multisensory processing which may exist for other tasks.  To this end, 

further investigations into the temporal processing in both low- and high-functioning ASD 

are needed to clarify whether differences exist in this domain. 
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CHAPTER V 

 

DISRUPTED FREQUENCY FILTERING IN AUDITION AND VISION IN AUTISM 

SPECTRUM DISORDERS 

 

Abstract 

Autism spectrum disorders (ASD) are characterized by disrupted social 

interactions, disordered language and communication, and by restrictive interests and 

repetitive behaviors.  Although not part of the main diagnostic criteria, alterations in 

sensory responsiveness and perception are also prevalent in autistic individuals.  

Etiological theories such as the increased excitation/inhibition ratio theory and the 

minicolumnopathy theory implicate a reduced capacity for neurons in the autistic brain to 

filter sensory information as precisely as neurons in a typically developing brain.   To 

investigate whether individuals with ASD show changes in sensory filtering, we 

determined the critical bandwidth for auditory and visual stimuli separately by measuring 

the threshold of detecting a 2 kHz pure tone (auditory) and a 3 c/d gabor patch (visual) in 

a notched noise masker as a function of notch width in children with ASD and typical 

development (TD).  Our results suggest that individuals with ASD do show disruptions in 

frequency filtering in the degree of masking (i.e. changes in the threshold for detecting 

the pure tone or gabor for the smallest notch widths only) but not the range of 

frequencies that are able to mask the pure tone or gabor (i.e. changes in the critical 

bandwidth).  Furthermore, a comparison between children with high-functioning autism 

(HFA) and low-functioning autism (LFA) suggests that the degree and nature of these 

sensory filtering disruptions are related to functioning level and modality in autism.  

Whereas high-functioning children with ASD tend to show higher thresholds for the 

auditory task but lower thresholds for the visual task, lower functioning children with ASD 
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tend to show higher thresholds for both tasks when compared to typically developing 

children.  These changes in sensory filtering capacities represent a unique way of 

looking at the nature of the sensory disturbances seen in autism, and may represent an 

important window into the etiology of autistic symptomology and its relationship to the 

core disrupted domains including communication and social interactions. Furthermore, 

these results are likely to provide important insights for the development of better 

interventional strategies for those living with autism. 

 

Introduction 

 Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder which is 

characterized by impairments in social interactions and language, and restricted, 

repetitive, and stereotyped behavior, interests, and activities1.  Although not part of the 

classic diagnostic triad of symptoms, sensory and perceptual disruptions are frequently 

associated with ASD.   In fact, the original depiction of autism published by Kanner in 

1943 included descriptions of abnormal reactions to sensory stimulation2 which have 

since been shown to span all sensory domains and be nearly universal in ASD3-10.  

Many diverse aspects of visual processing have been studied ranging in 

complexity from simple detection of visual gratings modulated in contrast/luminance to 

processing of faces and complex scenes. Many studies have shown intact and even 

superior performance on such tasks (among others) lending support to the hypothesis 

that the autistic brain may be more adept at processing simple visual information11-18.  

Bertone et al tested this hypothesis by altering the complexity of the stimulus to be 

discriminated.  In this task, participants were asked to discriminate the orientation of a 

grating which could be luminance-defined (lower order) or texture defined (higher order).   

Individuals with ASD were superior at identifying orientation for luminance-defined 
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gratings but inferior at identifying orientation for texture-defined gratings indicating that 

visual stimulus complexity has an inverse relationship with perceptual performance in 

autism19.  The pattern of relative strengths and weaknesses in visual perception in 

autism suggest unique disruptions in the neural networks which subserve visual 

processing in the brain.   

 Investigations into the perception and processing of auditory stimuli are less 

numerous than studies of visual processing; however, these studies follow the same 

pattern of intact or enhanced perception of simple stimuli but disrupted perception of 

more complex stimuli.  For example, several studies have shown that high-functioning 

individuals with autism were superior in discriminating pitch20,21.  This is directly 

comparable to enhanced discrimination of visual gratings and strongly suggests a 

general change in the way that sensory information in processed in different modalities.  

In further accordance with studies of visual processing, individuals with autism show 

disruptions in the perception of complex auditory stimuli such as speech including a 

reduced ability to discriminate different speech sounds, phonemes, and syllables.  For 

example, discrimination of a particular vowel sound may be disrupted while in the 

context of a word or phoneme but not disrupted in isolation22.  

 One theory which has important implications for sensory processing in ASD is 

the minicolumnopathy theory proposed by Cassanova. This theory is based on 

anatomical observations of reductions in the architecture of minicolumn in the neocortex 

in postmortem tissue of individuals with autism23-25.  Importantly Cassanova et al have 

proposed that these anatomical alterations will result in decreased lateral inhibition in 

autism.  The authors further propose that decreased lateral inhibition could account for 

the dichotomy seen between performance of tasks using simple vs. complex stimuli and 

that it has important implications for the “filtering capacity of the neocortex24,26.”   
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 A second proposed neural mechanism for ASD which is also suggestive of 

disrupted filtering in ASD is founded on a decreased signal-to-noise ratio in neural 

encoding (Rubenstein and Merzenich 2003).  Under typical conditions, neural responses 

are sharply tuned to particular features of sensory stimulation.  This precise tuning has 

been clearly shown to depend on a delicate balance between excitatory and inhibitory 

transmission within the center-surround receptive field structure in the cortex.  The 

decreased ratio of excitation/inhibition theory proposes that autism is characterized by 

disruptions in this balance.  Specifically, Rubenstein and Merzenich propose that a 

decrease in inhibitory processing in autistic cortex results in less precision in the tuning 

of sensory neurons to specific sensory features27.   

A direct perceptual consequence of altered inhibition within minicolumns is a 

disruption in a person’s ability to filter extraneous sensory information to improve task 

performance28.  One method for approximating the filtering capabilities in a sensory 

system is by measuring the critical bandwidth which was originally demonstrated by 

Fletcher (1940) in the auditory modality.  He showed that the detection of a sinusoidal 

signal was increasingly disrupted by increasing the bandwidth (BW) of narrowband noise 

until a particular BW (the critical BW) beyond which further increases in noise BW did 

not produce decrements in performance29. A similar observation was reported for visual 

stimuli by Pelli (1981)  and Stromeyer and Julesz (1972) who demonstrated that 

increasing the spatial frequency BW of visual noise resulted in increased thresholds for 

detecting sinusoidal gratings until a critical BW, beyond which increases in the BW of the 

noise did not result in increased thresholds30,31.  Conversely, the critical band can be 

ascertained by notching white noise (removing a range of frequencies centered at the 

target frequency) and measuring resulting changes in the accuracy of detecting a target 

tone32. 
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 The current study sought to examine differences in unisensory frequency filtering 

by measuring changes in the threshold for detecting sinusoidal signals (pure tone 

(auditory modality) and gabor (visual modality)) in noise of varying notch BW’s in 

children with ASD and typical development (TD).  Additionally, we investigated 

differences in the critical bandwidth for both the visual and auditory modalities in children 

with ASD and TD.  Futhermore, we investigated the impact of functioning level in ASD 

by determining whether unisensory frequency filtering differs in children with high-

functioning (HFA) and low-functioning (LFA) autism.   

 

Methods 

 

Participants 

Twenty-seven children with ASD and 31 with typical development (TD) comprise the 

study sample and overlap with the participants from chapter four.  Additionally, children 

with ASD were split into a high-function autism (HFA) and low-functioning autism (LFA) 

group based their cognitive functioning (i.e. children in the HFA group had IQ scores 

over 70; children in the low functioning group had IQ below 70) resulting in 16 children 

with HFA and 11 children with LFA.  Eligibility criteria for children in both groups were as 

follows: a) age 6-17 years; b) normal or corrected-to-normal hearing and vision; and c) 

no evidence or past diagnosis of a specific reading disorder.  Cognitive functioning was 

assessed using the Wechsler Abbreviated Scale of Intelligence (WASI33) unless a child 

had completed cognitive testing in the past year and the parents could provide the 

scores. Additional eligibility criteria for the ASD group required that children: a) have a 

confirmed diagnosis of Autistic Disorder, Asperger’s Disorder or Pervasive 

Developmental Disorder-Not Otherwise Specified; and b) have no history of seizure 
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disorders or identified genetic disorders (e.g., Fragile X, tuberous sclerosis).  Children 

with ASD were not excluded based on use of psychotropic medication. 

Children’s prior ASD diagnoses were confirmed in the present study using gold-standard 

procedures: the Autism Diagnostic Observation Schedule (ADOS34) was administered by 

a research-reliable examiner and DSM-IV-based clinical diagnoses were made by a 

licensed clinical psychologist on the basis of this information unless a child had 

completed diagnostic testing in the past year. Additional eligibility criteria for children 

with TD were as follows: a) no history of or current psychiatric, neurological, or learning 

disorders (e.g., depression, epilepsy, dyslexia) or symptoms of ASD; and b) no first-

degree relatives with ASD. Parent report of ASD symptoms was obtained using the 

Lifetime version of the Social Communication Questionnaire (SCQ35); all children with 

TD had SCQ scores below the at-risk cutoff for ASD.  No differences in age, gender, or 

Full Scale IQ score were found between the TD and HFA groups (Table 5.1).   

 

Table 5.1:  Participant Demographics. 

Measure TD HFA LFA 

Gender 23M;11F 13M;3F 10M;1F 

Age (months) 136 (38.2) 129.6 (26.9) 118.5 (19.7) 

Verbal IQ 112.6 (19.3) 117.7 (20.4) 62.8(7.3) * 

Performance IQ 110.5 (13.2) 117.3(20.4) 74.2 (24.1) * 

Full Scale IQ 112.2 (15.7) 117.5 (16.5) 67.8 (13.0) * 

SCQ 2.82 (2.64) * 20.4 (8.0) 26.5 (11.1) 

*-Indicate significant differences  compared to the HFA group. 
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As expected, a significant group difference was found for parent report of ASD 

symptoms on the SCQ, t (56) = 11.75, p < .001.  No differences in age, gender, or SCQ 

were found between the HFA and LFA groups.  As expected, a significant group 

difference was found for Full Scale IQ scores. 

Parents of all participants gave informed consent and all children in both groups 

gave assent prior to participation in any component of this study. All children received 

compensation for their participation at each visit.  All procedures were approved by the 

Vanderbilt University Institutional Review Board. 

 

General Procedure 

Participants sat in a light- and sound-attenuated room. Visual stimuli were 

presented on a gamma corrected CRT monitor (Iiyama Vision Master Pro 513, 22 inch 

screen; 60 Hz refresh rate; 1280x1040 pixel resolution).  Auditory stimuli were presented 

via speakers (Solio W30351) located in front of the participants.  Stimulus presentation 

and response recording was controlled using MATLAB and the Psychophysics Toolbox36.   

Participants responded via a touchscreen using a stylus (Magic Touch, Keytec).  

Participants were monitored continuously via closed-circuit video cameras to ensure that 

they were engaged in the tasks.  On the rare occasions that a participant was not on-

task, a variety of strategies were implemented to increase engagement (e.g., reminders 

to stay on task, additional breaks, parent in the testing room, etc). Participants were 

allowed to take breaks as necessary to increase compliance and maintain effort, 

motivation, and on-task behavior.  Participants could complete each of the tasks 

described below within a single session, or they could complete the visual CB task in 

one session and the auditory CB task in a separate session. 
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Tasks 

 

Visual Critical Bandwidth Task 

The visual critical bandwidth (CB) task was used to test the capacity of the visual 

system to filter spatial frequency information.  In this task, participants were asked to find 

a Gabor patch (2°x2°, 3 c/d, vertical orientation) on a computer monitory, which could be 

located at the top or bottom of the screen.  The Gabor was embedded in notched 

spatial-frequency filtered noise (with the notch centered at 3c/d, 20% root-mean-square 

contrast) which varied in the BW of the notch.  Six notch BW levels were selected 

(0,1,1.5,2,3, and 4 octaves) to maximize the potential of observing group differences as 

well as to incorporate the CB for the majority of participants.  (Figure 5.1) 

Participants completed a minimum of 10 practice trials (Gabor of 20% contrast) 

Figure 5.1: Visual CB task and stimuli.  (A) Children touched the location of  a vertically 
oriented Gabor embedded in notched visual noise using a touchscreen.  (B) Fourier 
representation of visual notched noise.  The black ring indicates the spatial frequencies 
which have been removed for all orientations.  Gray dots indicated the Gabor. 
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before completing the full task.  The practice ended when participants were able to 

obtain an accuracy rate of 90% on the last 10 trials.  After practicing the task, an 

adaptive staircase procedure was used to determine the threshold percent contrast 

necessary for each participant to perform the visual CB task between 70 and 75% 

accuracy for each notch BW level. The initial step size (i.e. amount by which the percent 

contrast was adjusted) was 5% contrast, which was decreased to 1% contrast after three 

reversals in response accuracy and decreased again to .5% contrast after an additional 

six reversals.  The percent contrast increased one step (i.e., became more visible) after 

each incorrect response, and decreased one step (i.e., became less visible) after two 

consecutive correct responses.  Each staircase terminated after sixteen reversals in 

response accuracy and after an accuracy rate of at least 60% was reached for the last 

five reversals.  An average was then calculated from the last five reversals to produce 

the threshold percent contrast.   

 

Auditory CB Task 

The auditory critical bandwidth (CB) task was used to test the capacity of the 

auditory system to filter frequency information.  In this task, participants were presented 
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Figure 5.2: Frequency 
representation of auditory 
stimuli.  Notched noise was 
composed of two broad 
noise bands position 
symmetrically about the 
target frequency (2kHz).   
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with two sequential intervals (200ms each, spectrum level of 40 dB) of notched noise 

separated by 1000ms.  The notched noise was created using procedures described by 

Patterson in 197632 and was composed of two broad noise bands positioned 

symmetrically about the target tone (2kHz,100ms).  Six notch BW levels were selected 

(10,200,400,800,1200, and 1600 Hz) to be consistent with previous studies of auditory 

filtering using notched noise32.  (Figure 5.2)  The target tone was presented during either 

the first or second interval of noise.  To aid in task comprehension, the noise intervals 

were paired with differently colored fish (first interval was always paired with the yellow 

fish and the second interval was always paired with green fish) presented on the monitor.  

The children were told that the target tone was the sound of the fish singing and that the  

noise was the sound of the ocean.  The children were then instructed to identify which 

Time

noise

tone

Figure 5.3: Auditory CB task.  Intervals of noise were paired with the appearance of 
differently colored fish.  The target tone was presented during either the first or second interval 
of noise.  Children were instructed to touch the fish that “was singing” (i.e. the interval during 
which the target tone was presented) using a touchscreen. 



	
   138	
  

fish they heard sing.  (Figure 5.3)  Participants completed a minimum of 10 practice trials 

(tone level of 80 dB) before completing the full task.  The practice ended when 

participants were able to obtain an accuracy rate of 90% on the last 10 trials.  After 

practicing the task, an adaptive staircase procedure was used to determine the threshold 

level necessary for each participant to perform the auditory CB task between 70 and 

75% accuracy for each notch BW level.  The initial step size was 2 dB, which was 

decreased to 1 dB after three reversals in response accuracy and decreased again to .5 

dB after an additional six reversals.  The level of the tone increased one step (i.e., 

became louder) after each incorrect response, and decreased one step (i.e., became 

softer) after two consecutive correct responses.  Each staircase terminated after sixteen 

reversals in response accuracy and after an accuracy rate of at least 60% was reached 

for the last five reversals.  An average was then calculated from the last five reversals to 

produce the threshold level.   

 

Estimation of the Critical Bandwidth in Vision and Audition 

An additional staircase was used to estimate the CB in each participant for both 

the visual and auditory tasks.  The threshold value for the smallest notch (0 octaves for 

vision; 10 Hz for audition) was used to determine the signal to noise ratio for the CB 

staircase.  After completing all of the threshold percent contrast (vision) or threshold 

level (audition) staircases, an adaptive staircase procedure was used to determine the 

notch BW necessary for each participant to perform the CB task between 90 and 95% 

accuracy for both the visual and auditory tasks.  The initial step size was 30 Hz for the 

auditory and .1 octaves for the visual, which was decreased to 10 Hz for the auditory, 

and .05 octaves for the visual after three reversals in response accuracy and decreased 

again to 2 Hz for the auditory and .01 octaves for the visual after an additional six 

reversals.  The notch BW increased one step (i.e., wider) after each incorrect response, 
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and decreased one step (i.e., became narrower) after four consecutive correct 

responses.  Each staircase terminated after sixteen reversals in response accuracy and 

after an accuracy rate of at least 85% was reached for the last five reversals.  An 

average was then calculated from the last five reversals to produce the CB level.   

 

Data Analysis 

 Given that cognitive functioning was not equated between the TD and 

LFA groups, the TD group was not compared directly to the LFA group.  Instead, both 

the TD and LFA groups were compared separately to the HFA group.  In order to 

explore potential groups differences in filtering capacity for the visual and auditory CB 

tasks, an ANOVA was conducted for thresholds with notch BW as the within-subjects 

variable and group as the between-subjects variable.  Independent samples t-tests were 

also conducted at each notch BW to determine group differences in threshold values 

specific to notch BW. 

 

Results 

 

Influence of Notch Bandwidth on Visual Thresholds 

 Thresholds for the detection of a 3 c/d gabor embedded in notched visual noise 

were measured via an adaptive staircase for six notch bandwidths (0,1,1.5,2,3, and 4 

octaves).  To test for differences in the ability of children with TD, HFA, and LFA to filter 

extraneous spatial frequency information, we conducted a repeated measures ANOVA 

with notch BW as the within subjects factor and group as the between subjects factor.  

Notch BW was found to have a significant effect on visual thresholds (F(5,255)=57.15, 

p<.001) confirming the expected decrease in visual thresholds with increasing notch BW.  

Importantly, the main effect of group was also significant (F(2,51)=9.57, p<.001), 
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indicating that children with TD, HFA, and LFA differed in their ability to filter frequency 

information in the visual modality.  The interaction between notch BW and group was not 

significant (F(10,55)=1.13, p=0.34), indicating that the three groups did not differ in the 

relationship between notch BW and visual thresholds.  (Figure 5.4)  To test for group 

differences at each notch BW, we conducted independent samples t-tests between the 

TD and HFA groups and between the HFA and LFA groups.  This analysis revealed that 

children with HFA had significantly lower thresholds for detecting gabors embedded in 

notched visual noise with a notch BW of one octave (t(46)=2.25, p=0.03), indicating that 

visual spatial frequencies spectrally similar to the target frequency (of the gabor) are less 

able to mask the gabor in HFA.  Interestingly, the children with LFA showed a marked 
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Figure 5.4  Visual thresholds as a function of notch bandwidth.  Children with HFA 
show significantly lower thresholds at notch BW’s of one octave as compared to children 
with TD.  Asterisks indicate significant differences between HFA and TD (p < 0.05).  
Children with LFA show significantly higher thresholds for notch BW’s between zero and 
two octaves as compared to children with HFA.  Pound signs indicate significant 
differences between HFA and LFA (p < 0.05).  Error bars represent standard error of the 
mean (SEM). 
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increase in their visual thresholds as compared to children with HFA across the four 

smallest notch BW’s: 0 octaves (t(25)=3.25, p=.003), 1 octave (t(25)=3.83, p<.001), 1.5 

octaves (t(25)=3.06, p=.005), (t(25)=2.49, p=0.02).  Whereas children with HFA were 

less affected by spatial frequencies spectrally similar to the target frequency, children 

with LFA were much more affected by a larger range of frequencies.   

 

Differences in the Visual Critical Bandwidth 

 The width of the visual critical bandwidth (CB) was estimated via a staircase 

which adaptively altered the width of the notch BW for each participant.  Individual 

thresholds for the zero octaves notch BW condition were first determined and used to 

set the signal to noise ratio for the CB staircase.  On average, children with HFA had a 

visual CB of 1.26 octaves, whereas children with TD had a visual CB of 0.93 octaves, a 

difference which was marginally significant (t(45)=1.76, p=0.09), indicating that a larger 

range of spatial frequencies may disrupt the detection of a gabor in HFA as compared to 

TD.  The visual CB was approximately 1.52 octaves in LFA and not statistically different 

from HFA, indicating that a similar range of frequencies are able to mask a gabor in 

children with HFA and LFA.  (Figure 5.5) 

 

 

Figure 5.5 Visual CB values.  
Children with HFA show marginally 
larger visual CB’s as compared to 
children with TD.  The visual CB’s for 
children with LFA do not statistically 
differ from children with HFA.  Error 
bars represent standard error of the 
mean (SEM). 
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Influence of Notch Bandwidth on Auditory Thresholds 

Thresholds for the detection of a 2 kHz tone presented in notched noise were 

measured via an adaptive staircase for six notch bandwidths (10, 200, 400, 800, 1200, 

and 1600 Hz).  Due to the difficulty and the high attentional demands required to 

completely this task, only one participant with LFA was able to successfully complete all 

study procedures for the auditory CB tasks.  The comparison with LFA was excluded 

from the auditory task because of the inability to conduct statistical analyses with only 

one data point.  Several children with TD and HFA were also not able to complete the 

auditory CB task and have been excluded from further analyses.   The study population 

for the auditory CB is comprised of 16 children with HFA and 29 children with TD.   

To test for differences in the ability of children with TD and HFA to filter 

extraneous frequency input, we conducted a repeated measures ANOVA with notch BW 

as the within subjects factor and group as the between subjects factor.  Notch BW was 

found to have a significant effect on auditory thresholds (F(5,180)=69.5, p<.001) 

confirming the expected decrease in auditory thresholds with increasing notch BW. The 

main effect of group was not significant (F(1,36)=0.97, p=0.33), indicating that children 

with TD and HFA were similarly able to filter frequency information in the auditory 

modality.  The interaction between notch BW and group was not significant 

(F(5,180)=0.55, p=0.74), indicating that children from both groups did not differ in the 

relationship between notch BW and visual thresholds.  (Figure 5.6)  To test for group 

differences at each notch BW, we conducted independent samples t-tests between the 
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TD and HFA groups.  This analysis revealed that children with HFA had significantly 

higher thresholds for detecting pure tone targets presented in notched noise with a notch 

BW of 200 Hz (t(44)=2.07, p=0.05) and 400 Hz (t(44)=2.35, p=0.03), indicating that 

frequencies spectrally similar to the target frequency mask the perception of the target to 

a greater extent in HFA.  

 

Differences in the Auditory Critical Bandwidth 

 The width of the auditory critical bandwidth (CB) was estimated via a staircase 

which adaptively altered the width of the notch BW for each participant.  Individual 

thresholds for the 10 Hz notch BW condition were first determined and used to set the 

signal to noise ratio for the CB staircase.  On average, children with HFA had an 

auditory CB of 242.2 Hz, whereas children with TD had an auditory CB of 305.9 Hz, a 

Figure 5.6 Auditory thresholds as a function of notch bandwidth.  Children with HFA 
show significantly higher thresholds at notch BW’s of 200 Hz and 400 Hz as compared to 
children with TD.  Asterisks indicate (p < 0.05).  Error bars represent standard error of the 
mean (SEM). 
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difference which did not reach significance (t(44)=-1.08, p=0.30), indicating that a similar 

range of frequencies are able to mask the detection of a pure tone in HFA as compared 

to TD.  (Figure 5.7) 

 

 

 

 

 

Discussion 

Our results suggest that individuals with ASD do show disruptions in frequency 

filtering in the degree of masking (i.e. changes in the threshold for detecting the pure 

tone or gabor for the smallest notch widths only) but not the range of frequencies that 

are able to mask the pure tone or gabor (i.e. changes in the critical bandwidth).  

Furthermore, a comparison between children with high-functioning autism (HFA) and 

low-functioning autism (LFA) suggests that the degree and nature of these sensory 

filtering disruptions are related to functioning level and modality in autism.  Whereas 

high-functioning children with ASD tend to show higher thresholds for the auditory task 

but lower thresholds for the visual task, lower functioning children with ASD tend to show 

higher thresholds for both tasks when compared to typically developing children.   
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Figure 5.7 Auditory CB values.  
Children with HFA show similar 
auditory CB values as compared to 
children with TD.  Error bars 
represent standard error of the mean 
(SEM). 
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The finding of improved filtering ability in the visual modality for high-functioning 

children with ASD but disrupted filtering in low-functioning children with ASD adds 

complexity to our understanding of the minicolumnopathy and increased ratio of 

excitation/inhibition theories23,27.  Disruptions in lateral inhibition may not be uniform in 

autism.  Instead, differences in the degree of disruptions may result in divergent 

alterations in frequency filtering for high- as compared to low-functioning ASD.  This 

possibility will be discussed in detail in the following chapter.   

Our finding of disrupted filtering of auditory information in ASD may be 

attributable to the temporal content of the auditory stimuli.  Whereas the target stimulus 

in the visual task remained on the screen until participants made a response, the 

auditory target was presented for a short period of time (100 ms).  Given our finding of 

altered temporal processing in the auditory system, the disruption in auditory frequency 

filtering observed in ASD may result from the intersection of altered processing of 

frequency and temporal information in the auditory system. 

Our finding of improved filtering ability in high-functioning ASD is consistent with 

previous psychophysical reports of superior perception and discrimination of simple 

visual stimuli in ASD11-19.  Perhaps a small increase in the excitability of neurons in lower 

visual cortices improves the filtering capacity of the visual system for simple aspects of 

visual information such as spatial frequency thus improving the ability of individuals with 

high-functioning ASD to discriminate fine spatial detail in visual stimuli. 
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CHAPTER VI 

 

GENERAL DISCUSSION AND FUTURE DIRECTIONS 

 

Summary of Results 

The results presented in chapter two offered the first evidence that multisensory 

temporal processing is disrupted in ASD.  Specifically, we found that children with ASD 

have an extended temporal window within which they bind together multisensory stimuli, 

as shown by their increased likelihood of reporting the flash-beep illusion across an 

extended range of temporal disparities between the component visual and auditory 

stimuli.  Additionally, we showed that high-functioning children with ASD are able to 

effectively integrate information from low-level multisensory stimuli, in that they show a 

high incidence of illusory percepts.   

The results presented in chapter three expanded upon these findings by 

demonstrating that children with ASD show gains in their performance resulting from 

multisensory stimuli on a temporal order judgment task over a longer temporal window 

than typically-developing children. These performance gains manifest both as 

improvements in accuracy and as faster responses relative to the visual only condition 

across an increased range of multisensory delays.   By measuring temporal processing 

both within and across sensory systems, the results of chapter three also provide insight 

into the relative contributions of changes in unisensory temporal processing to 

alterations in multisensory functioning.  Thus, whereas visual temporal acuity was 

equivalent across groups as determined using a visual TOJ task, both auditory and 

multisensory temporal processing were significantly disrupted in ASD. The difference in 

auditory TOJ performance is consistent with prior psychophysical and 

electrophysiological studies of temporal processing in individuals with ASD; however our 
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findings of intact visual temporal processing are among the first that indicate that basic 

visual temporal processing may be spared in children with ASD.  Additionally, a series of 

correlational analyses revealed that unisensory temporal acuity as measured by the TOJ 

tasks for both vision and audition was associated with both the strength of integration 

and the temporal window of integration in the flash-beep task such that participants who 

had higher thresholds for the visual and auditory TOJ tasks were more likely to report 

the flash-beep illusion over a longer range of audiovisual temporal disparities (SOA’s) 

indicating that temporal processing within unisensory systems has a strong influence on 

the temporal dynamics of multisensory integration.  Together, these results provide 

converging evidence that multisensory temporal processing but not the ability to 

integrate low-level multisensory stimuli is significantly altered in high-functioning children 

with ASD.   

The results presented in chapter four added a layer of complexity to our findings 

from chapters two and three by examining changes in multisensory temporal processing 

into both high-functioning and lower-functioning children with ASD during the completion 

of a simple reaction time task.  These results suggest that the integration of low-level 

multisensory stimuli may be disrupted in high- and low- functioning children with ASD 

during the completion of certain tasks, as evidenced by their decreased gains in 

performance resulting from multisensory stimuli.  Furthermore, we showed that 

multisensory integration occurred over a similar range of SOA’s for children with ASD 

and TD, suggesting that the temporal window of integration is not enlarged for children 

with ASD in this task.  Though the results presented in chapter four differ from our 

results from chapters two and three, a difference in the temporal processing of 

multisensory stimuli may be able to account for our results from all three chapters. 

Though the nature of the alterations seen in multisensory processing may vary in 

different multisensory tasks, the results from chapters two, three, and four clearly 
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demonstrate that disrupted multisensory processing and integration of low-level stimuli 

are core features in autism. 

Our results from chapter five suggest that individuals with ASD do show 

disruptions in frequency filtering in the degree of masking (i.e. changes in the threshold 

for detecting the pure tone or gabor for the smallest notch widths only) but not the range 

of frequencies that are able to mask the pure tone or gabor (i.e. changes in the critical 

bandwidth).  Furthermore, a comparison between children with high-functioning autism 

(HFA) and low-functioning autism (LFA) suggests that the degree and nature of these 

sensory filtering disruptions are related to functioning level and modality in autism.  

Whereas high-functioning children with ASD tend to show higher thresholds for the 

auditory task but similar thresholds for the visual task, lower functioning children with 

ASD tend to show higher thresholds for both tasks when compared to typically 

developing children.  Additionally, a series of correlational analyses revealed several 

links between performance on the multisensory detection task and the critical band tasks.  

Notably, thresholds for detecting a pure tone embedded in noise with the largest range 

of frequencies removed (1600 Hz notch width) was positively correlated with the 

temporal window of integration for the detection task, whereas the auditory critical 

bandwidth was negatively correlated with the degree of improvement for the detection 

task.  These correlations suggest that the efficiency of extracting relevant information in 

audition is associated with both the strength and temporal dynamics of multisensory 

integration.  These changes in sensory filtering capacities represent a unique way of 

looking at the nature of the sensory disturbances seen in autism, and may represent an 

important window into the etiology of autistic symptomology and its relationship to the 

core disrupted domains including communication and social interactions which will be 

discussed in detail below. 
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Current Results in the Context of Established Theories of Sensory Functioning in Autism 

As discussed previously, Rubenstein and Merzenich’s decreased signal-to-noise 

ratio hypothesis proposes that autism is characterized by disruptions in the balance 

between excitatory and inhibitory transmission within the center-surround receptive field 

structure in the cortex and that this disruption alters the well-defined tuning of neural 

responses to particular features of sensory stimulation1.  The minicolumnopathy theory is 

based on neuroanatomical findings and proposes that this disruption in the balance 

between excitation and inhibition functions within the minicolumns found in the cortex to 

disrupt the perception of sensory information2-4.  The finding of intact filtering ability in 

the visual modality for high-functioning children with ASD but disrupted filtering in low-

functioning children with ASD offers an interesting dilemma in assessing the relevance 

of this theory to autism.  However, the divergent effects seen in high versus low 

functioning autism can still be encompassed by the intersection of this theory and the 

minicolumnopathy theory discussed previously.  Many researchers have theorized that 

the anatomical disruptions observed in minicolumns are likely to result in local over-

excitability2,3,5.  It is possible that the balance in excitatory and inhibitory processing is 

undisturbed in high-functioning children with ASD but severely disturbed in low-

functioning ASD. In the case of low-functioning autism, a severe disruption in inhibitory 

processing might result in a dramatic increase in local excitability thus extending the 

range of frequencies to which a neuron responds, decreasing its ability to filter 

extraneous frequency input.   

The multisensory component of our results may also align with differential effects 

of the degree to which the balance of excitation and inhibition is disrupted.  In the 

temporal realm, a briefly presented unisensory (e.g., auditory) stimulus typically results 

in a discrete neural response time-locked to the presentation of the stimulus6.  In 

contrast, the same stimulus presented to an individual with ASD may result in a 
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response whose neural signature is less clearly time-locked to the stimulus event. 

Extending this theory into the multisensory domain, it can be envisioned that increased 

temporal variability in the unisensory responses could necessitate a compensatory 

enlargement in the time interval over which multisensory stimuli can influence one 

another.  Although our results may be explainable by the decreased ratio of 

excitation/inhibition, this theory must be refined to be able to account for differences in 

the filtering capacity of individuals with high functioning versus low functioning autism. 

The data presented in this document are strongly supportive of the temporal 

binding deficit hypothesis which states that perceptual binding is a result of strongly 

correlated activity among a network of interconnected brain regions, and alterations in 

these patterns of correlation in ASD result in concomitant reductions in binding7.  These 

neural signals may not be so drastically uncorrelated as to cause decoupling across 

regions (as was initially hypothesized by Brock and colleagues), but instead the time 

constants between brain regions may be altered in such a way so as to continue to 

support binding, but over an atypically large set of temporal intervals.  However, the 

temporal binding of multisensory stimuli may be disrupted in certain multisensory tasks 

as was found in chapter four.  It is possible that the multisensory networks underlying 

different multisensory tasks may be characterized by different degrees of disruption in 

temporal binding such that an enlargement in the temporal window of integration results 

from slight perturbations but decreases in the ability to integrated information from 

multiple modalities results from large perturbations. 

Our results offer indirect support that disrupted functional connectivity between 

brain regions is an important etiological factor in disrupted sensory processing in 

autism8-11.  The precise temporal correspondence of neuronal activity within sensory 

networks (functional connectivity) within multisensory networks has been shown to be an 

important factor in multisensory integration12-16.  The disruption in multisensory 
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processing observed in our studies is likely to be the result of dysfunctional connectivity 

within the multisensory network subserving the integration in each of the tasks.  Similar 

to the temporal binding deficit hypothesis, a slight dysfunction in the connectivity of 

multisensory networks might only alter the accuracy of multisensory processing in the 

temporal realm leading to the enlargement of the temporal window.  A much stronger 

dysfunction in connectivity in could impair the networks ability to integrate multisensory 

information leading to weaker benefits from the perception of multisensory stimuli.   

 

Potential Hierarchical Neurobiological Model of Observed Sensory Disruptions in Autism 

 Many of the neurological theories for sensory disruptions in autism are not 

mutually exclusive of each other.  Instead they attempt to explain differences in the 

brains of individuals with autism at varying levels of neural processing1,7,8.  This section 

proposes a model for the sensory disruptions presented in this document that 

encompasses a broad range of neural processing levels.  Disrupted functional 

connectivity8,9,17 is at the core of this model and posits that dysfunction in the 

connectivity between unisensory and multisensory brain areas reduces the ability of 

multisensory networks to appropriately integrate multisensory information. The binding of 

component unisensory information into a unified multisensory construct is disrupted in 

autism by the lack of precise temporal correspondence within brain areas comprising the 

multisensory network.  

 There are many anatomical dysfunctions which could result in disruptions in 

functional connectivity in neural networks.  A disruption in the balance of excitatory and 

inhibitory processing within a specific brain area could strongly affect the temporal 

properties of the output of that area1,3.  As discussed previously, inhibition is essential in 

both the tuning and the shaping of a neuron’s response to external sensory input3.  

Neurons do not continuously fire in response to a stimulus.  Instead, precise inhibitory 
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feedback results in a discrete neural response18.  Disruptions in inhibition could alter the 

temporal pattern of neuronal activity within a sensory region in response to a stimulus 

which in turn would convey temporally degraded information to other sensory areas in its 

network.  The temporally “noisy” output of sensory information from brain regions 

comprising a multisensory network would lead to disruptions in the synchronization of 

these brain regions and impair their ability to effectively integrate information across the 

network16,19.  Thus disruptions in the balance of excitation and inhibition may alter the 

connectivity within multisensory networks as well as the filtering capacity of individual 

neurons as discussed above.   

 Another anatomical alteration that could result in disrupted connectivity is a 

disorganization in the structure of axonal connections between areas.  As discussed in 

chapter one, DTI, MRI, and post-mortem studies have revealed that the integrity and 

organization of white matter is disrupted in autism20-22. Decreases in the volume of major 

white matter structures, as has been shown in several studies of autism, could represent 

a reduction in the number of axons connecting distant brain regions.  The functional 

connectivity of a network is strongly dependent on the structural connectivity between 

individual nodes in the network23.  Thus a deficit in the structural connectivity between 

brain regions could lessen the ability of these regions to effectively drive other regions 

within its network.  Additionally, disorganization in the connections within a network 

could severely degrade the quality of information transmitted.  For example, a 

multisensory network that serves to integrate visual and auditory spatial information 

would be greatly disrupted if the spatial maps encoded in the unisensory structures did 

not precisely overlap in the multisensory structures within the network24.   

 The reduction in the integrity of white matter in autism as shown in DTI 

studies21,25,26 strongly implicates alterations in the development of myelin as a causative 

factor in sensory disruptions in autism27. Myelin is composed of fatty tissue that wraps 
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around and electrically insulates axons thus speeding the transmission between 

neurons27.  Inconsistency in the extent of myelination of individual axons within a fiber 

tract connecting two brain regions could produce greater variability in the timing of input 

from one region to another.  This variability could manifest on a trial by trial basis such 

that a given stimulus may activate a slightly different subset of neurons whose axons are 

myelinated to varying degrees.  Alternatively, increased variability in the timing of inputs 

from individual axons between areas could result in an increase in the amount of time 

over which information is transmitted from one area to another thus decreasing the 

temporal precision in the communication between the two areas.  As was discussed in 

chapter four, a recent event-related potential (ERP) study of multisensory integration in 

ASD revealed a delay in the multisensory interactions of ERP waveforms28 potentially 

representing delayed neural multisensory interactions.  This delay in multisensory 

integration may be a factor in the decreased ability of children with both high- and low-

functioning ASD to benefit from the presentation multisensory stimuli in a simple reaction 

task.  Disruptions in myelination may be an etiological cause of this observation and 

represent another aspect of altered temporal processing of multisensory information in 

autism.   Disruptions in myelination are important factors in several recent animal models 

of autism, highlighting its potential importance in our understanding of the neurological 

basis of sensory disruptions in autism29,30.   

 As discussed in chapter one, autism is an extremely heterogeneous disorder that 

is caused by a complex interplay between many genetic and environmental factors31-35.  

These factors may converge to disrupt a common neurological process such as the 

appropriate connectivity between distant brain regions by selectively impairing one or 

more aspects of neuronal processing and/or neuroanatomical dysfunction.  The degree 

to which the functioning of an individual with autism is impaired may be due to the 

severity of disruption of a specific neuronal process (e.g. imbalanced inhibitory and 
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excitatory processing) or by a weaker impact on several neuronal processes.  Adding a 

layer of complexity, the neuronal processes described above do not function in isolation.  

Instead, highly complex interactions between each of the processes exist such that 

particular pairs of neuronal/anatomical alterations may more strongly influence sensory 

disruptions in autism.   

 

Contributions of the Processing of Simple Stimuli to the Perception of Complex Stimuli in 

Autism 

By using simple stimuli and tasks, we can isolate fundamental differences in 

sensory perception in autism.  However, we rarely encounter such simple stimuli in our 

environment.  Instead, our brains deconstruct the complex stimuli that we perceive into 

their constituent components that are then processed separately and ultimately 

reconstructed in higher brain centers36.  Thus alterations in the processing of simple 

stimuli are likely to be a factor in the processing of the integral features of complex 

stimuli including their spectral and temporal content.  The disruptions in basic sensory 

processing in autistic individuals described in this document are likely to have a strong 

impact on the perception of complex unisensory and multisensory stimuli such as 

speech and social cues.  For example, because both auditory and visual speech stimuli 

contain complex congruent temporal information16,37-39, deficits in the temporal 

processing of simple multisensory stimuli are likely to contribute to the decreased 

integration of audiovisual speech stimuli observed in autism40.  Similarly, frequency 

channels in audition and vision are vital in the perception of socially relevant stimuli such 

as speech, faces, and letters41-46.  Thus, alterations in the width of these filters will distort 

the perception of these social stimuli and may be contribute to their disrupted perception 

in autism.  
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Potential Impact of Observed Disruptions in Sensory Processing to Autistic 

Symptomology 

We live in a world rich in information from many sensory modalities.  Each event 

in our environment can usually be perceived through more than one sense with different 

senses adding unique perceptual information to our understanding of the happenings in 

the world around us.  Our ability to accurately combine information from multiple senses 

has evolved to strongly improve our functioning in many ways ranging from increasing 

our basic survival (avoiding dangers and locating vital objects) to improving our ability to 

communicate with each other47.  Given the immense importance of multisensory 

integration in our daily lives, the disruptions in multisensory processing as described in 

previous chapters could have far reaching consequences for individuals with autism.  In 

fact, each of the characteristic symptoms of autism comprising the diagnostic triad is 

inextricably linked to multisensory integration.  Communication is strongly enhanced by 

our ability to accurately integrate visual and auditory speech information.  For example, 

lip-reading greatly improves our understanding of speech in a noisy environment16.  

Social information is also presented in multiple modalities.  Facial expressions, prosody, 

and gestures all convey important social cues that must be appropriately combined to 

comprehend another person’s intentions, beliefs, and understanding48  

 Disruptions in the integration and temporal processing of multisensory 

information could have a strong impact on autistic symptomology.  Not only would a 

decrease in the ability to integrate multisensory information impede the vital benefit in 

understanding speech and social stimuli16,48, but the inappropriate binding of the simple 

components of complex stimuli such as speech and social cues could actually serve to 

confuse the perception of these stimuli in individuals with autism.  Furthermore, 

indiscriminant binding of unisensory information in the environment into an inappropriate 

multisensory percept could cause the experience of the world to be incredibly chaotic for 
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individuals with autism.  An intense need for structure, organization, and limited 

experiences could be a natural result of such a chaotic environment.   

 Given the potential of disruptions in the precision of multisensory processing 

having detrimental effects on social functioning, communication, and behavioral 

responses to the environment, we must consider the possibility that disrupted 

multisensory integration could play a direct causative role in the etiology of autism.  The 

likelihood of disrupted temporal multisensory processing being the sole cause of autism 

is extremely low considering both that altered temporal multisensory processing has 

been shown in other disorders such as dyslexia and schizophrenia which are quite 

distinct from autism49,50 and that the extensive heterogeneity seen in autistic 

symptomology and genetic risk factors does not support the concept of any single 

etiological cause of autism34,35,51.  Disruptions in multisensory processing are still likely to 

contribute to autistic symptomology in at least a subset of individuals with autism. For 

example, multisensory integration is vital in improving our perception of degraded 

unisensory information16. Just as multisensory integration improves our understanding 

speech in a noisy environment, an individual with autism who may have noisy neural 

processing of auditory speech information should be able to benefit from concurrent 

visual speech information if he was able to appropriate integrate the auditory and visual 

speech stimuli16. Thus, a decrease in the ability to appropriately integrate information 

from multiple modalities would remove one pathway which could compensate for 

disrupted perception of unisensory cues.   

 

Future Directions 

Drawing from the work presented in this document we can suggest several key 

studies that will expand our knowledge of sensory filtering and multisensory temporal 

processing in autism. 
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Potential Interactions between Temporal Processing and Frequency Filtering 

 Filtering and temporal processing do not function in isolation in the brain.  Instead, 

both factors strongly interact to direct neural responses to sensory stimulation52-54.  

Given the disruptions in both the filtering and temporal domains in autism, elucidation of 

the interaction between these two factors could drastically improve our understanding of 

how sensory information is processed in autistic individuals.  In human studies, it has 

been shown that both the spectral content and temporal proximity of noise influences the 

detectability of a target55,56.  Moore et al demonstrated that the ability of a particular 

frequency to mask another frequency is not uniform in time.  Instead the critical band 

narrows with increasing temporal disparity57.  Individuals with autism may not show this 

pattern, adding insight into the nature of the interactions between the processing of 

temporal and frequency information in autism.  

 Another interesting area of investigation into the interactions between filtering 

and multisensory processing is the study of cross-modal filtering.  In the case of 

audiovisual interactions, frequency is not an inherently associated feature between the 

auditory and visual systems.  Particularly, spatial frequency in vision and spectral 

frequency in audition have no inherent relationship.  However, frequency is a shared 

feature between the auditory and somatosensory systems (vibration in Somatosensation 

and pitch in audition) such that a range of frequencies is perceivable by both 

modalities58-60.  Importantly, recent work by Yau and colleagues demonstrates that 

frequency channels in the auditory and somatosensory systems may be linked.  Notably, 

they found that both pure tone and broadband auditory maskers were able to disrupt 

performance on a tactile frequency discrimination task only if the auditory and 

somatosensory stimuli were similar in frequency composition.  This cross-modal “critical 

band” signifies an interesting intersection between the aspects of sensory processing 
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which we have shown to be disrupted in autism61. A similar study in autism could reveal 

whether filtered unisensory information is integrated in the same manner in autistic 

individuals.  This interaction would be particularly interesting to study between low- and 

high-functioning children with autism who differ in their ability to filter frequency 

information.  Accordingly, low functioning children would be expected to show less 

disruption of the tactile task due to the auditory masker; however, a greater range of 

auditory frequencies may be able to disrupt tactile performance though to a lesser extent.  

A deviation from this pattern would suggest that filtering within one modality does not 

simply transfer to other modalities in autism.  

 

Temporal Multisensory Processing and Filtering in Higher-Order Stimuli 

Multisensory speech tasks such as the McGurk effect and the benefit in speech 

comprehension with the presentation of multisensory stimuli are also temporally 

constrained; however, the temporal window is typically larger for these tasks than for 

tasks involving simple stimuli62.  Given the heightened deficits in sensory processing for 

complex stimuli both within and across all sensory modalities63,64, children with autism 

may show a greater enlargement in the temporal window for the integration of complex 

stimuli than for simple (flash and tone) stimuli.  However, if the primary cause of 

disrupted multisensory temporal processing is a shift in the locus of multisensory 

integration unisensory cortex to association cortex for low-level stimuli (as mentioned 

above), the temporal window of integration of complex social and speech stimuli would 

likely be similar in individuals with autism.  These conflicting hypotheses can easily be 

tested by comparing the size of the temporal window on a variety of speech and non-

speech tasks between children with ASD and TD.   

In the filtering domain, frequency channels are known to play a vital role in the 

perception of complex stimuli such as faces, letters, and speech such that a specific 
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frequency channel mediates the perception of a complex stimulus41-46.  For example, 

Tanskanen et al showed that a specific range of spatial frequencies (11-16 

cycles/image) were able to disrupt the identification of faces, highlighting the important 

role of this frequency channel in face identification65.  Interestingly, Majaj et al 

demonstrated that the frequency channel used by an observer is selected bottom-up by 

stimulus features and not top-down by the observer.  In this study, stimuli (e.g. letters of 

different fonts and sizes and visual gratings) were masked by low-pass or high-pass 

visual noise of varying cut off frequencies.  The authors observed a sigmoidal 

relationship between cut off frequency and threshold for each stimulus.  Interestingly, the 

width of the channels (as measured by the sigmoidal slope) did not vary amongst the 

stimuli.  Instead, the center frequency of the channel varied between stimuli and was 

invariably associated with each stimulus over hundreds of trials46.  A similar study could 

show whether individuals with autism use the same frequency channels as typical 

individuals for each stimulus and whether the channels have the same width.  

Additionally, a comparison of alterations in the width and center frequency of channels 

for letters versus faces could show a preferential deficit for the processing of faces within 

spatial frequency channels contributing to our understanding of disrupted facial 

processing in autism66. 

 

Influence of the Processing of Simple Stimuli on the Perception of Complex and 

Autistic Symptomology 

As discussed above, the disruptions in the processing of simple stimuli observed 

in children with autism are likely to strongly influence their perception of complex speech 

and social stimuli and thus significantly contribute to autistic symptomology.  By 

correlating individual measurements of the temporal window of multisensory integration 

with the degree of benefit from the presentation of audiovisual speech stimuli, we can 
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determine whether there is a relationship between the degree of disruption in 

multisensory temporal processing and the ability to integrate complex multisensory 

stimuli.  Similarly, we can investigate the impact of alterations in frequency filtering on 

the perception of complex stimuli such as speech and faces by correlating the width of 

the critical band to the accuracy of speech recognition and emotion recognition.  

Disruptions in the perception of complex speech and social stimuli are inherent aspects 

of autistic symptomology31; therefore, any influence of temporal multisensory processing 

and frequency filtering on the perception of complex stimuli is likely to extend to autistic 

symptomology.  This hypothesis can also be tested by correlating individual 

measurements of the temporal window of integration and notch widths in both the visual 

and auditory modalities to measures of autistic symptomology in each of the three 

categories.  Significant correlations would provide intriguing evidence of the importance 

of these basic sensory disruptions to autistic functioning and inform our understanding of 

the neurological mechanisms of autistic symptomology.  

 

Role of Perceptual Learning in Remediation 

 Given the role of multisensory processing in everyday functioning as discussed in 

the section above, improvement in the ability of individuals with autism to accurately 

integrate temporal multisensory information could attenuate autistic symptomology or at 

a minimum offer a pathway to compensate for poor perception of unisensory social and 

speech stimuli.  Powers et al recently showed that perceptual training could narrow the 

temporal window of multisensory integration in typical adults67.  A similar training 

protocol could also narrow the temporal window for the integration of simple stimuli to a 

typical width in children with autism and thus could potentially both improve their ability 

to integrate complex multisensory stimuli and alleviate their autistic symptomology.  

Powers et al recently demonstrated that the plasticity underlying the narrowing of the 



	
   166	
  

temporal window takes place within a multisensory network comprised of both 

unisensory (visual and auditory cortex) and multisensory (STS) brain areas68.  As was 

discussed in chapter one, the STS plays an integral role in the perception of many 

higher-order social stimuli such as biological motion and speech and is thought to be a 

major locus of dysfunction in autism25,69-71.  An improvement in the temporal functioning 

of STS via perceptual training may be able to improve the perception and integration of 

social/complex multisensory stimuli such as speech.   

As discussed above, perceptual training can narrow the temporal window of 

multisensory integration and may be effective in contracting the enlarged temporal 

window observed in autism to a typical width67.  By measuring the severity of autistic 

symptomology both before and after training, we could assess whether perceptual 

training is a good tool for remediation in autism.  Furthermore, a significant positive 

correlation between degree of narrowing of the temporal window and improvement in 

autistic symptoms would provide strong support of a causative role of temporal 

multisensory processing in autistic etiology.  This study, however, would not be capable 

of revealing a relatively small influence of temporal multisensory processing on autism 

severity.  A measure of the ability to integrate complex multisensory stimuli such as 

speech and social cues may be a more successful comparison with the temporal window 

than measures of autistic symptomology. 

 

Use of Imaging Tasks in Identifying Neural Correlates of Disrupted Temporal 

Multisensory Processing in Autism  

 ERP’s have proven to be an important tool for studying the neural correlates of 

multisensory integration at the perceptual level.  ERP studies of the multisensory 

detection task described in chapter four have demonstrated super-additive multisensory 

ERP waveforms, showing similarity to multisensory interactions at the single neuron 
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level72,73.  These multisensory enhancements from audiovisual stimuli were observed 

over fronto-central and occipito-parietal electrode sites and occurred shortly after 

presentation of the multisensory stimuli (approximately 50 ms and 100 ms) indicating 

that the multisensory interactions arose at an early sensory processing stage80.    

Multisensory interactions in ERPs have also been shown to decrease with increased 

temporal disparity between the unisensory components, demonstrating that ERPs are 

useful in the study of temporal multisensory processing14.  Many ERP studies have also 

localized the multisensory interactions seen in the ERP waveforms to specific areas in 

the brain74-76.  Because ERP recordings mimic the multisensory interactions seen at the 

neuronal level, diminish with temporal disparity, and can be localized to specific areas of 

the brain, we think that this method could be extremely useful for studying the 

neurophysiological correlates of temporal multisensory integration in children with ASD 

and could improve our understanding of how the brains of autistic individuals process 

multisensory input.  Additionally, studies of neural oscillations would be instrumental in 

testing the hypothesis that disruptions in connectivity within multisensory networks 

underlie the alterations in multisensory processing shown in previous chapters.  As was 

discussed in chapter one, increases in the power and coherence of EEG oscillations 

have been strongly associated with multisensory integration13,14,19,77-80 and have been 

shown to be influenced by temporal synchrony14.  Analysis of oscillatory activity during 

the completion of multisensory tasks may reveal decreases in the amplitude and 

coherence of oscillations in children with ASD thus lending support to the hypothesis that 

connectivity plays a vital role in the disrupted integration of multisensory information in 

autism.  Decreases in the inter-trial coherence of oscillatory activity in autistic individuals 

would indicate an increase in the variability of neural responses to multisensory stimuli, 

suggesting that the observed disruptions in multisensory processing may be due to 

“noisy” neural responses to sensory stimulation.  An analysis of inter-electrode 
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coherence could elucidate whether decreases in functional connectivity can account for 

the observed differences in multisensory processing.  Alternatively, a decrease in 

coherence between electrode locations thought to be associated with multisensory 

integration in individuals with autism would indicate a decoupling of activity within a 

multisensory network.  By comparing differences in inter-trial coherence and inter-

electrode coherence, we can isolate the relative contributions of variability of neural 

responses to multisensory stimuli as compared to variability within a multisensory 

network.   

 As mentioned above, the observed disruptions in multisensory processing could 

be the result of an alteration in the network of brain regions subserving the integration 

multisensory information.  Specifically, the locus of integration of low-level stimuli may 

shift from unisensory cortex to a higher-order association area.  An analysis of 

differences in the topography of ERP activity could indicate a change in the multisensory 

network in autism.  ERP source localization analyses such as the brain electrical source 

analysis (BESA) or the low-resolution electromagnetic tomography (LORETA) 

techniques may be able to identify the neural sources of ERP activity observed on the 

scalp in individuals with ASD vs TD81.  Additionally, the concurrent recording of fMRI 

data could confirm whether a different network of brain regions are associated with 

multisensory integration in individuals with ASD. 

 

The Use of Animal Models for Studying the Role of Disrupted Neuronal 

Functioning in Temporal Multisensory Processing and Frequency Filtering 

 Although psychophysical and imaging studies of the fundamental aspects of 

sensory functioning are vital in identifying key areas of disruptions in autism, they are 

unable to directly test the contribution of alterations in neuronal functioning, neural 

anatomy, and their interactions to disrupted sensory perception.  Many animal models of 
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autism exist which impact a specific aspect of neural processing and/or anatomy thought 

to be disrupted in autism.  In fact, some of these animal models are based on emerging 

findings from genetic studies of autism which have identified and implicated candidate 

genes in autism.  Importantly, animal models which show disruptions in inhibitory 

signaling82, neural organization83, and myelination29,30,84 are currently being used to study 

autistic etiology.  Animal models have also been extensively used to study the 

relationship between neuronal processing and sensory perception for both multisensory 

integration and frequency filtering54,85-88.  With the current availability of animal models of 

specific aspects of sensory functioning and specific disruptions in neural processing 

thought to be involved in autism, future research could utilize a combinatorial approach 

of these two types of animal models to investigate the influence of specific alterations in 

neural processing and anatomy on multisensory processing and frequency filtering.  For 

example, the temporal pattern of neuronal activity in response to the spectral content of 

auditory stimuli have been extensively studied using the spectro-temporal receptive field 

(STRF) in rodents54,89,90.  Additionally, changes in an animal’s behavioral performance 

have been linked to alterations in neuronal STRF’s91.  This model could be a powerful 

tool for investigating potential disruptions in the neural processing of frequency 

information in animal models of autism. This model could delineate the relative 

contributions of disrupted inhibitory signaling, neural organization, and myelination to 

alterations in frequency filtering as well identify specific potential neural substrates for 

these alterations (e.g. broader neuronal tuning of frequency, increased/decreased 

neuronal responsiveness to differing frequencies, increased variability of neuronal 

responses, and/or alterations in the temporal patterning of neuronal responses). 
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Conclusions 

 The work described in this document represents the first attempt to investigate 

disruptions in some of the basic aspects of unisensory and multisensory processing in 

autism spectrum disorders.  Our results demonstrate that children with autism show both 

alterations in their ability to filter extraneous frequency information in both the visual and 

auditory modalities and disrupted temporal processing of both auditory and multisensory 

stimuli.  Furthermore, we have shown that the functioning level in autism determines the 

nature and extent of the disruptions in frequency filtering and temporal multisensory 

processing.  These results form the foundation of future studies wherein the neural 

correlates of these disruptions may be determined and the contributions of these 

disruptions to autistic symptomology may be defined.  Finally, we hope that these results 

will provide important insights for the development of better interventional strategies for 

those living with autism. 
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APPENDIX 

 

Description of Factors in Appendix 

 

Key Factors from Chapters Two and Three 

 

ATOJ  Threshold for auditory temporal order judgment task in ms 

 

VTOJ  Threshold for visual temporal order judgment task in ms 

 

TOJwin Temporal window for multisensory temporal order judgment task 

measured as the time span across which the participant showed 

improvement in accuracy greater than zero 

 

TOJmax The maximum improvement in accuracy for the multisensory temporal 

order judgment task 

 

FBwin Temporal window for flash-beep task measured as the time span across 

which the participant showed reports of the flash-beep illusion greater 

than zero 

 

FBmax  The maximum report of the flash-beep illusion 
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Key Factors from Chapters Four and Five 

 

Arxn  Average response time for auditory-only trials during the detection task 

 

Vrxn  Average response time for visual-only trials during the detection task 

 

Detectwin Temporal window of integration for the multisensory detection task as 

determined using a sigmoid fit (see chapter four) 

 

Detectimp Average improvement in response time for multisensory trials as 

compared to unisensory trials for -60 – 100 ms SOA’s (see chapter four) 

 

ACB  Auditory critical bandwidth as determined via staircase (see chapter five) 

 

VCB  Visual critical bandwidth as determined via staircase (see chapter five) 

 

Amin Auditory threshold for detecting pure tone at smallest notch width (10 Hz) 

 

Vmin Visual threshold for detecting gabor at smallest notch width (0 octaves) 

 

Amax Auditory threshold for detecting pure tone at largest notch width (1600 

Hz) 

 

Vmax Visual threshold for detecting gabor at largest notch width (4 octaves) 
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Correlations 

 

 ATOJ VTOJ TOJwin FBmax FBwin 

VTOJ r 0.634**     

p <0.001     

TOJwin r 0.132 0.090    

p 0.351 0.486    

FBmax r 0.434** 0.350* 0.028   

p 0.009 0.031 0.865   

FBwin r 0.487** 0.476** 0.012 0.549**  

p 0.003 0.003 0.945 <0.001  

TOJmax r 0.157 0.091 0.780** 0.186 -0.016 

p 0.271 0.483 <0.001 0.264 0.925 

 

 

 

 

 

 

 

 

Figure A1. Correlational matrix for key factors from chapters two and three.   
“r” indicates Pearson correlation coefficient.   

* p < 0.05 

** p < 0.01 

 



	
   183	
  

	
   	
   Vrxn Arxn Detectwin Detectimp VCB ACB Vmin Vmax Amin 

Arxn r 0.885** 	
   	
   	
   	
   	
   	
   	
   	
  

 p <0.001  	
   	
   	
   	
   	
   	
   	
  

Detectwin r 0.144 0.048  	
   	
   	
   	
   	
   	
  

 p 0.390 0.775  	
   	
   	
   	
   	
   	
  

Detectimp r 0.193 0.266* 0.010 	
   	
   	
   	
   	
   	
  

 p 0.014 0.042 0.953 	
   	
   	
   	
   	
   	
  

VCB r -0.219 -0.255 -0.277 -0.281 	
   	
   	
   	
   	
  

 p 0.244 0.174 0.238 0.133 	
   	
   	
   	
   	
  

ACB r -0.493 -0.611* -0.187 -0.593* 0.150 	
   	
   	
   	
  

 p 0.073 0.020 0.581 0.025 0.610 	
   	
   	
   	
  

Vmin r 0.306* 0.212 0.109 -0.278 -0.644** -0.206 	
   	
   	
  

 p 0.049 0.177 0.579 0.075 0.000 0.544 	
   	
   	
  

Vmax r -0.109 -0.168 -0.061 -0.125 0.045 0.181 0.230 	
   	
  

 p 0.501 0.300 0.767 0.442 0.825 0.594 0.154 	
   	
  

Amin r 0.076 0.178 0.136 -0.081 0.423* -0.668* -0.148 -0.088 	
  

 p 
0.647 0.278 0.508 .0623 0.045 0.018 0.402 0.628 

 

Amax	
   r 
0.060 0.011 0.454* -0.280 0.269 0.174 0.251 0.122 

0.096 

	
   p 
0.722 0.949 0.020 0.093 0.193 0.590 0.152 0.497 0.585 

 

 

Figure A2. Correlational matrix for key factors from chapters four and five.   
“r” indicates Pearson correlation coefficient.   

* p < 0.05 

** p < 0.01 
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Scatterplots of Significant Correlations 
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Figure A3. Scatterplot of 
VTOJ and FBwin.    

Visual TOJ thresholds are 
positively associated with the 
temporal window of 
integration for the flash-beep 
task indicating that visual 
temporal acuity is associated 
with multisensory temporal 
processing. 

 

Figure A4. Scatterplot 
of VTOJ and FBmax.    

Visual TOJ thresholds 
are positively associated 
with the maximum report 
of the flash-beep illusion 
indicating that visual 
temporal acuity is 
associated with the 
degree of multisensory 
integration. 
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Figure A5. Scatterplot of 
VTOJ and ATOJ.    

Visual TOJ thresholds are 
positively associated with 
auditory TOJ thresholds 
indicating that visual temporal 
acuity is associated with 
auditory temporal acuity. 

 

Figure A6. Scatterplot of 
ATOJ and FBwin.    

Auditory TOJ thresholds are 
positively associated with the 
temporal window of 
integration for the flash-beep 
task indicating that auditory 
temporal acuity is associated 
with multisensory temporal 
processing. 
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Figure A7. Scatterplot of 
ATOJ and FBmax.    

Auditory TOJ thresholds are 
positively associated with the 
maximum report of the flash-
beep illusion indicating that 
auditory temporal acuity is 
associated with the degree of 
multisensory integration. 

 

Figure A8. Scatterplot of 
FBwin and FBmax.    

The temporal window of 
integration for the flash-
beep task is associated 
with the maximum report of 
the flash-beep illusion 
indicating that the degree of 
multisensory integration is 
associated with the 
temporal processing 
multisensory information. 
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Figure A9. Scatterplot of 
TOJwin and TOJmax.    

The temporal window of 
integration for the 
multisensory TOJ task is 
associated with the 
maximum report of the 
flash-beep illusion 
indicating that the degree of 
multisensory integration is 
associated with the 
temporal processing 
multisensory information. 

 

Figure A10. Scatterplot of 
Vrxn and Arxn.    

The average response time 
for visual-only trials is 
highly correlated with the 
average response time for 
auditory-only trials in the 
detection task. 
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Figure A11. Scatterplot of 
Vrxn and Vmin.    

The average response time 
for visual-only trials for the 
detection task is associated 
with the threshold for 
detecting a gabor in visual 
white noise indicating that 
visual perceptual ability 
may general across tasks. 

 

Figure A12. Scatterplot of 
VCB and Vmin.    

The visual critical 
bandwidth is associated 
with the threshold for 
detecting a gabor in visual 
white noise indicating that 
the visual CB is associated 
with efficiency of extracting 
a visual signal from noise. 
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Figure A13. Scatterplot of 
VCB and Amin.    

The visual critical 
bandwidth is associated 
with the threshold for 
detecting a pure tone in 
filtered noise with the 
smallest notch width 
indicating that perceptual 
abilities may general across 
modalities. 

 

Figure A14. Scatterplot of 
ACB and Amin.    

The auditory critical 
bandwidth is associated 
with the threshold for 
detecting a pure tone in 
filtered noise with the 
smallest notch width 
indicating that the auditory 
CB is associated with 
efficiency of extracting an 
auditory signal from noise. 
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Figure A15. Scatterplot of 
Arxn and ACB.    

The average response time 
for auditory-only trials for 
the detection task is 
associated with the auditory 
CB indicating that visual 
perceptual ability may 
general across tasks. 

	
  

Figure A16. Scatterplot of 
ACB and Detectimp.    

The auditory CB is 
associated with the average 
improvement in response 
time for multisensory trials 
with a short SOA indicating 
that the efficiency of 
processing within the 
auditory system is 
associated with the degree 
of multisensory integration. 
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Figure A17. Scatterplot of 
Arxn and Detectimp.    

The average improvement 
in response time for 
multisensory trials with a 
short SOA is associated 
with the average response 
time for auditory-only trials 
in the detection task 
indicating that longer 
unisensory response times 
may result in a greater 
potential for improvement 
with multisensory stimuli. 

 

Figure A18. Scatterplot of 
Amax and Detectwin.    

The threshold for detecting 
a pure tone in filtered noise 
with the largest notch width 
is associated with the 
temporal window of 
multisensory integration for 
the detection task indicating 
that the efficiency of the 
auditory system in 
extracting a signal from 
noise may be associated 
with temporal multisensory 
processing. 
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Skewness and Kurtosis of Key Factors 

 

 

Factors Skewness Kurtosis 

Statistic Std. Error Statistic Std. Error 

TOJwin 1.138* .297 .099 .586 

ATOJ .438 .330 .242 .650 

VTOJ 1.186* .304 1.308* .599 

TOJmax .031 .304 -.215 .599 

FBwin .645 .383 -.854 .750 

FBmax -.725 .383 -.282 .750 

 

 

 

 

 

 

 

 

 

 

 

Figure A19. Characterization of the distribution of key factors from chapters two and three.   
* indicates significant effect of either Skewness or Kurtosis in the distribution. 
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Factors Skewness Kurtosis 

Statistic Std. Error Statistic Std. Error 

Vrxn .799* .311 .847 .613 

Arxn .316 .311 -.176 .613 

Detectwin 2.323* .383 6.474* .750 

Detectimp .983* .311 2.595* .613 

Vcb -.638 .427 -.612 .833 

Acb -.249 .597 -.344 1.154 

Vmin 2.327* .365 9.625* .717 

Vmax 2.083* .374 4.737* .733 

Amin -.430 .378 -.663 .741 

Amax .716 .388 .031 .759 

 

 

 

 

 

 

 

 

 

 

Figure A20. Characterization of the distribution of key factors from chapters four and five.   
* indicates significant effect of either Skewness or Kurtosis in the distribution. 
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Histograms of Non-Normal Distributions 
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