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CHAPTER I 

 

INTRODUCTION 

 

1.1  Motivation 

Mathematical optimization methods are useful in developing cost-effective designs of large 

systems with many design parameters, objectives and constraints. However, when the 

optimization is deterministic, it cannot assure satisfactory performance over the entire range of 

operating conditions. Many parameters of the design problem are random and cannot be 

controlled. In such cases, the optimal solution obtained from a deterministic optimization may 

violate the imposed constraints with an unacceptable probability. If the worst case scenario is 

used, then the solution obtained may not be as cost effective. Empirical safety factors are used 

with deterministic optimization to account for the uncertainties. However, such an approach may 

miss the true optimum if some constraints are too conservative or be unreliable if some 

constraints are not conservative enough. 

This makes reliability-based design optimization (RBDO) a valuable tool that can help obtain 

cost effective designs under uncertain conditions. It can assist in decision-making and provide 

quantification of the uncertainty associated with the design. Robustness is also a very important 

issue, i.e. it is desirable to have a design which is insensitive to variations in the system 

variables. This can be achieved in RBDO by optimizing the mean value of the objective as well 

as minimizing the variance of the objective. Formulations to handle such multi-objective robust 

design problems need to be developed. 

The RBDO methodology has been successfully used to solve mathematical problems but due to 

its high computational cost its use in the industry is still minimal. This creates a need for 

developing algorithms which solve the RBDO problem efficiently.  

 

1.2 Objectives 

Several procedures have been developed in the literature for reliability-based design optimization 

(RBDO), including the Reliability Index Approach (RIA), the Performance Measure Approach 

(PMA), and more recent techniques wherein the reliability and optimization calculations are 
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decoupled. This study seeks to address the motivations and issues presented in the previous 

section through the following objectives: 

(i) This study extends the decoupled RBDO approach to include standard deviations as 

design parameters and wherein simulation or other methods can replace the traditional 

first order analytical method for reliability assessment. The accuracy and 

computational efficiency of the various RBDO methods are compared. 

(ii) The methods are extended to robust design and their applicability is investigated. 

Formulations to handle the multi-objective robust design problem are given. The study 

also investigates a single loop method and extends it for the robust design problem.  

(iii) The developed methods are finally implemented on an automotive crash safety 

problem. 

 

Objective 1:  The decoupled approach which is discussed in Chapter 2 does not have the ability 

to use different reliability assessment techniques. For highly non-linear constraints the first order 

reliability method will not give accurate results hence simulation based methods might be 

required. Hence there is a need to develop algorithms wherein simulation-based reliability 

assessment can replace the first order reliability assessment when necessary. Also current 

techniques do not have the ability to consider standard deviations of variables as design 

parameters. This problem is also addressed in the study. 

 

Objective 2: Robust design requires that both the optimization of the mean value of the 

objective and minimization of the variance of the objective happen simultaneously. Efficient 

multi-objective reliability-based optimization techniques are required for this purpose. An 

accurate and efficient method is required to estimate the variance of the objective.  In this study, 

formulations which help in solving such multi-objective RBDO problems are given and applied 

to mathematical and practical problems.  

 

Objective 3: The developed methods are applied to a complex automotive crash safety problem. 

The objective of the problem is to maximize the star rating and constraints are the FMVSS 

criteria for neck chest and head injuries coefficients for two different load cases. This problem 

shows the suitability and applicability of the developed methods to complex practical problems. 
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1.3 Organization of the Thesis 

The remainder of the thesis is organized as follows. Chapter 2 provides a brief description of 

various design optimization techniques. The state of the art reliability-based design optimization 

methods are also discussed and their formulations explained. In Chapter 3 the improved RBDO 

technique is introduced and applied to two simple examples. Chapter 4 discusses the new 

formulations for robust design. Finally Chapter 5 applies the techniques developed in Chapter 3 

and 4 to the crash safety problem. The results are graphed and tabulated for comparison. The 

conclusions of the study are given in Chapter 6. 
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CHAPTER II 

 

DESIGN OPTIMIZATION 

 

2.1 Introduction 

The process of finding the most optimal design is complicated by the uncertainty, which is 

caused by random variations in material properties, loading, and environmental conditions. 

Compromises have to be made between performance, cost, risk and quality attributes to obtain a 

reliable and cost effective system, including the variations in design parameters. 

Design optimization can be done by any of the following techniques.  

1. Deterministic optimization. 

2. Safety factor based design optimization. 

3. Reliability-based design optimization. 

4. Robust design 

A description of each is provided here with respect to a hypothetical two-dimensional problem. 

The problem consists of two design variables represented by the design vector x=[X1, X2]. The 

aim is to minimize the objective function, fo(x) subject to two constraints, G1(x) and G2(x). 

 

2.2 Deterministic Optimization 

Deterministic optimization obtains the solution by performing a simple mathematical 

optimization procedure. This can be represented as  
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If the randomness in the involved variables is considered then the optimum will not occur 

exactly at the point A but will have high probability of occurring in an area around A. Most of 

this area lies in the infeasible domain. This indicates a high probability of failure of the system. 

This leads to the use of safety factors in design optimization.  
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Figure 2.1: Deterministic optimization 

 

2.3 Safety-factor based design optimization 

In safety-factor-based design each of the limit states is offset by a factor of safety. This makes 

the feasible domain smaller. Deterministic optimization now gives a solution that is more 

feasible than the one obtained earlier. But if the safety factor is too high then we might get an 

over safe design which has an unnecessarily high cost and if the safety factor is too low then we 

still have a high probability of failure.  

 

A
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Figure 2.2: Safety factor based deterministic optimization 

 

2.4 Reliability-based design optimization 

Due to the uncertainty in determining the appropriate safety factors, direct reliability based 

design, where an optimum solution is achieved with respect to a target system reliability, is more 

desirable. This ensures both cost effectiveness and a low probability of failure. In such an 

optimization procedure the constraints are not deterministic but in fact are replaced by reliability 

assessment for those limit states. Since the reliability assessment, which can be done by several 

methods such as FORM, inverse FORM or simulation, is an iterative procedure, the number of 

function evaluations increases in reliability based optimization when compared to deterministic 

or safety factor based optimization.  

Fig 2.3 shows a comparison between the reliability based optimum (B) and the deterministic 

optimum (A). 
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Figure 2.3: Comparison between RBDO and deterministic optimization 

 

The basic formulation of an RBDO problem is shown in Eq. (2.2). 
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In Eq. (1) f0 is the objective function and Rt is the target reliability associated with the ith 

constraint function (gi). fj are the deterministic constraints, x is the vector of random design 

variables and d is the vector of deterministic design variables. The reliability of a limit state is 

related to its distance from the origin in the standard normal coordinate system .This will be 

discussed in detail later.  

Earlier research in RBDO has been done using minimization of weight, minimization of cost and 

minimization of probability of failure as objective functions. More recently Royset et al (2001) 

used life cycle cost as the objective function to be minimized. The reliability assessment in the 

constraint, which can be done by several methods such as FORM, inverse FORM or Monte 

Carlo simulation, is an iterative procedure. Therefore the number of function evaluations 
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increases considerably in reliability-based optimization when compared to deterministic or safety 

factor based optimization. In order to improve the computational efficiency of RBDO, several 

approaches have been developed in the literature where the reliability calculations are decoupled 

from the optimization loop.  

The reliability constraints in RBDO techniques have mostly been computed by using the FORM 

method. The probability in the reliability constraint is replaced by the reliability index ( )β , 

which is defined as the minimum distance from the origin to the limit state surface (failure 

surface) in the standard normal coordinate system. The reliability index is related to the 

probability of failure (pf) and the reliability (R) of the linearized constraint function as  

( ) ( )βΦβΦ −=−=−= 11 Rp f       (2.3) 

where ( )βΦ  is the cumulative standard normal distribution. Tu et al (1999) developed a 

performance measure approach where inverse reliability analysis was used to define the 

reliability constraint. All nested double loop methods follow a procedure similar to the one 

shown in Fig. 2.4. 

 

 
Figure 2.4: Concept of nested double loop RBDO methods 

 

The bold arrows show the iterations caused by the optimization process and the thin arrows 

signify FORM or inverse reliability-based iterative procedure. For each iteration of the outer 

loop, the reliability constraints need to be evaluated, thus increasing the number of function 

evaluations.  
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2.4.1 Reliability Index Approach (RIA) 

This is the traditional approach of reliability-based optimization where the FORM analysis of the 

limit state is used to evaluate the reliability constraints of the optimization problem. This can be 

mathematically represented as 
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The reliability constraints are met by ensuring that the reliability index (β) of each limit state (or 

failure mode) of the system is greater than a target value of reliability index (βt). The first order 

reliability index β is obtained by performing the FORM analysis , which in itself is an 

optimization problem in the standard normal space and can be written as  
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The minimum distance point obtained from the above optimization is called the most probable 

point (MPP). Note that a separate iterative analysis needs to be performed to find the MPP and 

reliability index for each limit state. Many MPP search algorithms are available; the Rackwitz-

Fiessler (1978) method is most commonly used. 

 

2.4.2 Performance Measure Approach (PMA) 

This method was proposed by Tu et al (1999) and is computationally more efficient than RIA for 

inactive constraints. For active constraints, Tu et al (2001) found RIA to be more efficient. PMA 

is based on the inverse FORM, where the performance function value is computed corresponding 

to a given value of the reliability index. The RBDO problem under PMA can be mathematically 

represented as 
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In Eq. (2.6) the first order probabilistic measure gi(x,d) is the solution of a non-linear 

optimization problem in the standard normal space, as shown in Eq. (2.7). In Eq. (2.6) only the 

active reliability constraints will converge to zero. The rest will converge to values denoted by 

gi* which is the performance measure of the ith limit state corresponding to the target reliability 

index (βti).  

ti

i

uts
ug
β=

′

  ..
)(  min

        (2.7) 

gi’(u) is the function gi(x,d) in the standard normal space. The optimum point obtained on the βt 

hyper-sphere is the MPP with a prescribed target reliability index βt.  

The reliability constraint in Eq. (2.6) can be written as gi(x) ≥ gi* because  

 R )( }g (x)g { Prob t ti
*

ii ==≥ βΦ       (2.8) 

where Rt is the target reliability that needs to be achieved. The active limit state will have g* 

value as zero. Since the MPP search, done by inverse reliability analysis, is also an iterative 

procedure therefore PMA is also a nested-double loop method.  

 

2.4.3 Decoupled Methods 

The objective of decoupled RBDO methods is to reduce the number of function evaluations. 

Methods to separate the reliability calculations from the optimization loop are desirable to 

increase the efficiency of the optimization procedure. Also, if decoupling is achieved it will be 

easier to implement different reliability analysis procedures for different constraints. A valuable 

approach is to use deterministic optimization to get a good initial design and then use the 

reliability analysis techniques to shift the solution to a point where it can satisfy the reliability 

constraints as well. 

The general concept of decoupled RBDO is shown in Fig. 2.5. 
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Figure 2.5:  Decoupled RBDO methods 

 

In Fig. 2.5, OL denotes optimization loop and RL the reliability loop. The optimization loop does 

not contain any reliability loops within and hence the decoupling is achieved. The MPP obtained 

from the previous reliability loop is used to define the performance of the limit state for the 

particular values of means of random design variables (µ and the deterministic design variables 

(d). Decoupled RBDO can be done using either direct FORM (Zou and Mahadevan, 2004) or 

inverse FORM (Du and Chen, 2001, Wu et al, 2001, Royset et al, 2001). Decoupled methods 

based on the RIA approach have also been developed. This thesis follows the inverse FORM-

based decoupling, i.e., methods based on PMA. 

The procedure followed in existing decoupled PMA methods can be understood by the flow 

diagram in Fig. 2.6. 
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.  

Figure 2.6:  Flow diagram of the decoupled PMA 

 

In Fig. 2.6, si is the shifting vector and measures the performance of the limit state i. As x tends 

to the design point x*, the shifting vector si attains a constant value, and so we obtain gi* which 

is the performance value of the limit state. If there are multiple limit states then the other limit 

state boundaries should also be shifted towards the feasible region by the distance equal to the 

difference between the optimal values and the most probable points. Thus the shifting vector 

value will be different for each limit state. Other random parameters (p) associated with limit 

states can also be included in the calculations. Note that the reliability loop also gives MPP 

(pMPP) values for these parameters after every reliability iteration and this will be the starting 

value for the next reliability iteration. The decoupled PMA approach is used in this thesis. 

The decoupled PMA method is extended in Chapter 3 to handle the following situations: 

1. Standard deviations can be included as design parameters which helps in robust design. 

2. Reliability assessment is done using methods other than FORM when necessary, e.g. Monte 

Carlo simulation, allowing a modular approach for different limit states.  

 

2.4.4 Single Loop Methods 

These methods convert the RBDO problem into a deterministic single loop optimization. The 

constraints in the single loop methods are approximated by the first order method (FORM or 

inverse FORM). The nested optimization is eliminated by satisfying the optimality conditions at 
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the MPP. Such methods based on the FORM approximation (RIA type) have been developed by 

Friis-Hansen and Madsen (1992) and Kushel and Rackwitz (1997, 2000). Single loop methods 

using inverse FORM (PMA type) have been formulated by Chen et al (1997) and more recently 

by Liang et al (2004). In this thesis the PMA-based method developed by Liang et al (2004) is 

used, as shown in Eq. 2.9. 
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This method does not perform the reliability assessment iteratively, instead makes use of 

derivatives which are calculated only when the optimizer changes any of the design variable 

values. Thus the method gets rid of unnecessary gradient evaluations and gives accurate results 

efficiently. The choice of initial design affects the stability of this method. A good initial design 

such as the deterministic optimum might be helpful in reducing this instability. The single loop 

method is extended in Chapter 4 for robust design problems and the results obtained are 

compared with the decoupled approach. 
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CHAPTER III 

 

IMPROVED DECOUPLED APPROACH 

 

3.1 Introduction 

The proposed decoupled RBDO approach has two features: 

1. Inclusion of standard deviations of variables as deterministic design parameters. 

2. Inclusion of simulation based reliability assessment to replace the existing FORM-based 

approach when necessary. 

 

3.2 Decoupled approach with standard deviations as design parameters 

The inclusion of standard deviations as design parameters will help deal with robust design 

problems. Here we find the shifting vector in the standard normal space, as opposed to the 

origional decoupled RBDO method where we calculate the MPP in the design space. The 

standard deviations are treated as determinisitic design parameters. 

The algorithm is as follows: 

1. Initialize K=1 , si= 0 , pMPPi = µpo , UMPPi = 0 , σ x = σ 0 , µx
K = µx

o . 

2. The shifting vector can be defined as xMPPi i
Us σ×=   

3. Perform deterministic optimization.  
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4. K=K+1, dK = d , µx
K = µx and σ K = σ 

x 

5. Reliability Assessment of each limit state is done using inverse reliability analysis and 

the new value of most probable point (UMPPi and pMPPi) corresponding to the target 

reliability is found. 

6. Find the objective function value and check its convergence. Check feasibility of limit 

states. 

7. Stop if the convergence and feasibility criteria are fulfilled; otherwise repeat steps 2 to 6. 

The reliability assessment in step 3 is done using the inverse reliability method where the MPP 
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(inverse reliability based) is found corresponding to the target reliability (βt value) as shown in 

Eq. 2.7. 

The MPP obtained will lie on the βt circle. The MPPs for both violated as well as inactive 

constraints are shown in Fig. 3.1. If at this MPP point the value of the limit state is less than zero 

then it implies that the design solution has not yet achieved the target reliability (If for that limit 

state a positive value denotes safe region).  

 

 
Figure 3.1:  Reliability assessment in standard normal space 

 
The standard normal values of the inverse reliability-based MPP are passed on to the next 

optimization calculation:  
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The MPPs will again have to be updated for the new values of design variables and the 

sequential calculations will continue till the converged objective function value is obtained. At 

the converged solution the target reliability is achieved with a first-order approximation. 
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3.3 Simulation-Based Reliability Assessment 

The above method can be extended to include the option of reliability assessment by Monte 

Carlo Simulation (MCS) using the following procedure. In step 5 in the above algorithm, MCS is 

used instead of inverse FORM for calculating the failure probability of the limit state. Then, the 

simulation based sensitivities (SXi) are given by  

( )[ ]ΩiX UES
i

=        (3.2) 

Thus the sensitivity of the ith variable is approximated by the average of the standard normal 

variables in the failure samples (Wu, 1999). For low probability of failure or large Ui* value the 

directional cosines proportional to the simulation based sensitivities. Therefore the direction 

cosines can be computed as 
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These values can then be used in the calculation of the most probable points using Eq. 3.4. 

tiMPPi
U βα ×=         (3.4) 

These standard normal MPPs can then be used in calculating the shifting vector and thus used in 

the SORA method. 

 

3.4 Using Correction Factors in Simulation-based SORA 

The simulation method shown above makes a first order approximation in Eq. 3.4. This 

drawback can be removed by using a corrected βt. The correction in βt depends on the amount of 

nonlinearity in the associated limit state. The amount of nonlinearity in a limit state can be 

estimated by comparing the probability of failure values obtained from both FORM and Monte 

Carlo simulation. For this we follow a semi-heuristic procedure to ensure convergence.  

1. Obtain the reliability index (βFORM) from FORM analysis of the limit state.  

2. Obtain the reliability index (βSIM) from the simulation analysis by using  



 17

⎟
⎠
⎞

⎜
⎝
⎛= −

N
n

SIM
1Φβ        (3.5) 

where: 

n = Number of failed samples in the simulation. 

N= Total number of samples. 

Φ = Cumulative standard normal distribution. 

3. Find the  error in simulation by  
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4. If βSIM and βFORM are approximately equal i.e. 

100
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×
≤       (3.7) 

Then Correction Factor CF = 1. 

5. If βSIM or βFORM are much greater than 2*βTarget then take them to be equal to  2*βTarget 

This is done to reduce the computational effort to calculate the reliability index of inactive 

constraints having high reliability. 

6. If βSIM < 0.2*βTarget OR βFORM < 0.2*βTarget Then  
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7. For all other cases the correction factor is given by 

SIM

FORMCF
β

β
=         (3.9) 

For convergence we make sure that all the constraints satisfy the target reliability restriction. We 

assume failure of the limit state if  

100
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Once the correction factors for each of the limit states are obtained we get the standard normal 

MPP for each limit states using Eq. 9 instead of Eq. 4. 

CFU etTiMPPi
××= argβα       (3.11) 
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3.5 Examples 

The above described improved methods are tested on two examples. 

 

3.5.1 Example 1 (Tu et al, 1999) 

Consider a system defined by two independent, normally distributed system parameters X = 

[X1,X2]T with constant standard deviations σ1=0.3 and σ2=0.3. The design vector is d = [d1, d2]T 

=  [µX1, µX2]T.  The RBDO problem is defined for a target reliability of Pft in Eq. 3.12. 
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where βt is the target reliability index. The three limit states for the optimization problem in Eq. 

3.12 is given in Eq. 3.13. 
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Solution: 

The RBDO is performed using three different initial design points i.e. (1, 4) (5, 5) and (7, 9). The 

standard deviations of X1 and X2 in the above problem were treated as constants. The target 

reliability index, βt is set at 3.0 which corresponds to a reliability of 99.87%. The improved 

decoupled method is employed for optimization using two reliability assessment approaches: (1) 

Inverse FORM; and (2) Monte Carlo Simulation with correction factors (CF); both of which 

have been discussed in section 4. 
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Table 3.1: Example 1:  RBDO solution  
SORA with inverse FORM Simulation based SORA with CF 

 d1 d2 Cost Function 
Evaluations d1 d2 Cost Function 

Evaluations 
1 3.439 3.287 6.726 569 3.439 3.286 6.725 120575 
2 3.439 3.287 6.726 549 3.436 3.285 6.721 180797 
3 3.439 3.287 6.726 549 3.437 3.286 6.723 150696 

 

Discussion: The results above show that the improved method works efficiently. Simulation can 

effectively replace the Inverse FORM analysis. In this case the FORM approximation of the limit 

states gave a good estimate of the reliability so the simulation result is similar to that of inverse 

FORM. Note that simulation is used only when FORM is either inaccurate or fails to converge. 

 

3.5.2 Example 2 

Ford side impact beam problem: The optimization problem is defined in Eq. 3.14 The design 

variables and parameters involved are defined in Table 3.2.  

Minimize : Weight (W) 
s.t. 
  VB-Pillar ≤ 9.9 (m/s) 
  Vfront door ≤ 15.69 (m/s)   
  V*C1 ≤ 0.32 (m/s) 

V*C2 ≤ 0.32 (m/s) 
V*C3 ≤ 0.32 (m/s)    (3.14) 

  Dupper rib ≤ 32 (mm) 
  Dmiddle rib ≤ 32 (mm) 
  Dlower rib ≤ 32 (mm) 
  Abdomen Load ≤ 1.0 (KN) 
  Pubic Symphysis  Force≤ 4.0 (KN) 
where  
  V = Velocity 
  D = Deflection 
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Table 3.2: Example 2: Variables 

Variables Lower 
Bound Mean Upper 

Bound 
Standard 
Deviation

X1 Thickness of B-Pillar inner (mm) 0.500 TBD 1.500 0.030 
X2 Thickness of B-Pillar reinforcement (mm) 0.450 TBD 1.350 0.030 
X3 Thickness of floor side inner (mm) 0.500 TBD 1.500 0.030 
X4 Thickness of cross member #1 & #2 (mm) 0.500 TBD 1.500 0.030 
X5 Thickness of door beam (mm) 0.875 TBD 2.625 0.050 

X6 Thickness of door belt line reinforcement 
(mm) 0.400 TBD 1.200 0.030 

X7 Thickness of roof rail (mm) 0.400 TBD 1.200 0.030 
X8 Material property of B-Pillar inner - 0.345 - 0.006 
X9 Material property of floor side inner - 0.192 - 0.006 
X10 Barrier height (mm) - 0.000 - 10.00 
X11 Barrier hitting position (mm) - 0.000 - 10.00 

 

Variables X1-X7 are design variables. X8-X11 are random variables. All the constraints are 

treated as probabilistic with the target reliability as 90% which corresponds to a β value of 1.28. 

The response surfaces for all the constraints are available. 

Solution: The RBDO is performed with three different initial designs (nominal values, lower 

bound, and upper bound).  The improved decoupled approach is employed. The results, obtained 

using the Inverse FORM method for reliability assessment, are given in Table 3.3. 

 

Table 3.3: Example 2: RBDO results using inverse FORM 

S.No. X1 X2 X3 X4 X5 X6 X7 Weight Function 
Evaluations

1 0.500 1.306 0.500 1.323 0.875 1.200 0.400 24.586 1414 
2 0.500 1.306 0.500 1.323 0.875 1.200 0.400 24.586 1338 
3 0.500 1.306 0.500 1.323 0.875 1.200 0.400 24.586 1390 

 

The RBDO was also performed using the simulation method with correction factors. The results 

obtained for four different initial designs are shown in Table 3.4.  

 

Table 3.4: Example 2: RBDO results using simulation with correction factors. 
S.No X1 X2 X3 X4 X5 X6 X7 Weight 

1 0.500 1.309 0.500 1.397 0.875 1.200 0.400 24.901 
2 0.500 1.308 0.500 1.395 0.875 1.200 0.400 24.894 
3 0.500 1.308 0.500 1.408 0.875 1.200 0.400 24.945 
4 0.500 1.309 0.500 1.386 0.875 1.200 0.400 24.856 
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The computational effort is very high for this method (takes between 100,000 to 200,000 

function evaluations to reach a converged solution) but the results meet the reliability 

requirement more accurately. The comparison of the achieved reliability indices for each limit 

state as obtained from inverse FORM and the four simulation runs are given below. 100,000 

samples were used for each limit state to calculate the achieved reliability. 

 

Table 3.5: Example 2: Comparison of Reliability Index achieved for each limit state 
Method LS1 LS2 LS3 LS4 LS5 LS6 LS7 LS8 LS9 LS10
Simulation 1 2.560 1.269 2.560 2.560 2.560 2.560 1.283 2.560 2.560 2.264
Simulation 2 2.560 1.286 2.560 2.560 2.560 2.560 1.263 2.560 2.560 2.209
Simulation 3 2.560 1.264 2.560 2.560 2.560 2.560 1.291 2.560 2.560 2.245
Simulation 4 2.560 1.261 2.560 2.560 2.560 2.560 1.273 2.560 2.560 2.135
Inverse 
FORM 2.560 1.245 2.560 2.560 2.560 2.560 0.828 2.560 2.560 2.346

 

Discussion: As expected the simulation based RBDO required higher computational effort but 

satisfied the target reliability conditions to a greater extent. In Table 3.5 the limit states not 

satisfying the target reliability are shown in bold font. It can be observed that the simulation 

results give a reliability index closer to the target. The difference is more noticeable in limit state 

7 (LS7). 

 

3.6 Summary 

The decoupled PMA-based RBDO method is extended in this chapter to replace the first order 

reliability method with Monte-Carlo simulation to satisfy the feasibility of the nonlinear limit 

states more accurately. Due to the use of Monte-Carlo simulation the number of function 

evaluations is more than in the traditional methods. The proposed method also helps to include 

standard deviations as design parameters 
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CHAPTER IV 

 

ROBUST DESIGN 

 

4.0 Overview 

Uncertainties in the design and system variables create variability in the objective function and 

constraints in design optimization. RBDO does not consider this variability and in effect 

optimizes the mean value of the objective function. Robust design under uncertainty however is 

a bi-objective optimization:  

1. Optimize the mean value of cost/objective function ( )fµ , and 

2. Minimize the variance of the objective function ( )2
fσ . 

The constraints for the above optimization will stay probabilistic to ensure the reliability 

requirements. In this section we suggest formulations for implementing the decoupled and single 

loop methods for the robust design problem. The applicability of these formulations is also 

discussed. The two issues in reliability-based robust design problems are  

1. Compute the variance of the objective function. 

2. Select a suitable algorithm for bi-objective optimization. 

 

4.1 Variance of the Objective Function 

Several formulations used to compute the variance of the objective function (f) are discussed 

below.  

1) The first approach is to use the first order variance using the Taylor series expansion. This 

gives the variance of the objective as  
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If there is no correlation between the design variables then Eq. (4.2) can be rewritten as  
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The drawback of using this method is that the value of the derivatives, computed in the above 

expressions, are zero around the point of minima or maxima. This results in the value of variance 

to be close to zero. 

2) The second way to represent the variation is through a percentile formulation (Du et al 

2003). The variation in the objective in this case can be represented by  
122

1

ααα
α∆ fff −=       (4.3) 

where 2αf  and 1αf  are the values of objective function evaluated at the α2 and α1 percentile 

values. α1 and α2 lie on either side of the mean as shown in the Fig. 4.1.  

 

 
Figure 4.1: Percentile difference formulation. 

 

When their difference is minimized, it automatically leads to the minimization of variance. It 

should be noted that Eq. 4.3 is not an estimate of the variance but is a function which when 

reduced leads to the reduction of variance. If the mean of the objective also needs to be 

minimized then we just need to minimize fα2.  On the other hand if the mean needs to be 

maximized then we need to maximize just the fα1 value. This can be better explained in Fig. 4.2. 
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Figure 4.2: Comparison of PDFs of objective function for two designs. 

 

With reference to Fig. 4.2 (Du et al, 2003), if we have two designs then, on performing the 

minimization, the percentile formulation will choose design 1 over design  2 because design 1 

has a lower α2 percentile value ( )22
21
αα ff <  even though design 2 has a lower mean (µ2<µ1). 

Similarly if the mean of the objective function needs to be maximized then we just need to 

maximize the lower percentile value (i.e. fα) of the objective function. Thus the percentile 

formulation gives the more robust solution as the optimal one and reduces the bi-objective 

optimization to a single objective optimization. 

3) Another method used to represent the variance uses a variation of the Simpson’s rule (Youn 

and Choi, 2004; Taguchi. 1989; D’Errico and Zaino, 1988).  A weighted three level numerical 

integration is performed on the first two moments of the objective function, thereby giving an 

estimate of its mean and variance. In this method, the function is first evaluated using the mean 

values of the design variables. Then the function’s 95.84th and 4.16th percentile values, which 

correspond to a reliability index of ±√3, are calculated using the inverse reliability analysis. The 

weighted sum of these three function values gives us an estimate of the mean of the objective 

function. The value of the weights is given in Eq. 4.4. 
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fffxf βµβµ     (4.4) 

The variance about this mean value is given by Eq. 4.5. 
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The objective function for robust design will be the weighted sum of the mean and variance 

values obtained in the above equations. This will be discussed later in the chapter. 

4) The most accurate method to estimate the variance is by Monte Carlo Simulation. Random 

samples are generated for the input design variables and the objective function is evaluated for 

all these samples. The mean and variance of the samples can be calculated using simple 

statistical analysis.  

The variances obtained from the first two methods are based on sensitivities obtained using 

derivatives about just the mean value. For obtaining close to true variances of the objective, 

sensitivities will need to be derived using a more global technique. These techniques are mostly 

simulation-based hence require more computational effort. In the third method the variance is 

calculated using function and sensitivity evaluations at three points to incorporate a more 

accurate behavior of the function about the mean value.  

The above techniques use the local sensitivities of the variables to estimate the variance. The 

local sensitivities are derivative-based and involve changing one variable at a time keeping the 

other variables constant. On the other hand, during global sensitivity analysis several variables 

are changed at the same time and their effect on the output is observed. This helps in capturing 

the interaction effects as well. Therefore, global sensitivity analysis can be defined as the study 

of a response or output for the entire range of an input variable. Some methods based on 

conditional variance estimation have been developed where the sensitivity with respect to a 

variable xi is defined as 

( )[ ]
[ ]yVar

xyEVar
S i

xi

/
=       (4.6) 

But, most global sensitivity analysis techniques stem from the Sobol indices (Sobol, 1993) where 

the function is decomposed into increasing order terms through functional ANOVA. The first 

order terms represent the main effects while the higher order terms correspond to the interaction 

effects. Consider an integrable function ( )xfy =  defined in an n-dimensional unit hypercube nI  

and, nIx ∈ . It is also assumed that the function is square integrable. This function can be written 

as 
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Eq. (4.7) can be simplified to give 
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where nii s ≤<<≤ ...1 1  and all member functions are orthogonal, therefore they can be written 

as integrals of ( )xf . This property is illustrated in Eq. (4.9). 
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Eq. (4.8) leads to the necessary condition required for Eq. (4.7) to be called an ANOVA 

decomposition, i.e. 
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Since the function ( )xf  is square integrable, therefore all its member functions are also square 

integrable. Therefore on squaring (4.8) and integrating over nI  we get 
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The above equations can be rewritten as  
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The sensitivity with respect to a particular term is defined by  

D
D
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=        (4.13) 

The 
siiD ...1
 can be calculated using Monte-Carlo simulation based techniques (Saltelli et al. 1997).  

It has also been shown that  
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The sensitivity with respect to a particular variable can then be defined by the total sensitivity 

index which is the sum of the sensitivities of all the terms containing that particular variable. 

Further, global sensitivity analysis methods have some common features with robust design. In 

robust design, we need to minimize the variance of the objective function involved. This 

objective can be a complex response surface for which the variance calculation can be 

cumbersome and inaccurate. Chen et al. (2004) represent this complex multivariate response 

surface as a product of some standard univariate basis functions. These functions satisfy the 

conditions for the ANOVA decomposition explained above and thus the global sensitivity 

analysis based methods can be employed for variance estimation. Basis functions for some 

standard response surfaces are given by Jin (2004).   

This study implements the local techniques discussed above, and compared them using one 

linear and two nonlinear functions. The first two functions are constituted of three 

variables ]X ,X ,[XX 321= . All three are normally distributed with means as [9, 5, 3] and 

standard deviations of [1, 0.5, 0.25]. The third function is consists of only one variable i.e., X2. 

The functions are given in Eq. 4.15. 
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The values of variances obtained are given in Table 4.1. Ten thousand samples were used in the 

Monte Carlo estimation of the variance. 

 

Table 4.1: Comparison of variance estimation techniques. 
 F1 F2 F3 
Variance  
Estimation Method ( )XF1

µ  ( )
2

1 XFσ N1 ( )XF2
µ ( )

2
2 XFσ  N2 ( )XF3

µ  ( )
2

3 XFσ N3 

First order  26.00 33.31 4 18.12 345.07 4 0.38 0.178 2 
3-point  
numerical  
integration 

26.00 33.31 21 17.29 351.46 33 1.66 4.97 17 

Monte Carlo  
Simulation 26.04 33.97 10000 17.30 343.59 10000 1.86 5.01 10000
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In Table N1, N2 and N3 correspond to the number of function evaluation for F1, F2 and F3 

respectively. It is seen that the first order method gives a good estimate of the variance for a 

linear function and is most computationally efficient. The estimate is reasonable for any arbitrary 

nonlinear function as well. For a non-linear function where the means of the design variable are 

close to its minima or maxima (F3), the first order method fails as is shown by the results of the 

third function. In such a case, the numerical integration method should be used.  

 

4.2 Multi-objective Optimization 

Many techniques are available for performing multi objective optimization; these convert 

multiple objectives into a single objective. Two of these methods are discussed here. 

1) The weighted sum approach is a simple, but popular method to combine the two objectives 

( ) ( ) ( )( )xfxf oo
wwMin σµ ×−+× 1        (4.16) 

The weight (w) need to be decided subjectively. The weight can be varied to generate a set of 

non-dominant solutions also called the pareto set. 

2) In the ε -constraint method, one of the objectives is converted into a constraint, by setting it 

to a target value. For the robust design problem the resulting optimization problem becomes 
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when the target is set for the mean of the objective function. Alternatively, if the target is set for 

the standard deviation of the objective then the problem can be formulated as 

( )( )

( ) TARGETo

o

fxf

xf

ts

Min

σσ

µ

≤

..

   
       (4.18) 

The other probabilistic constraints will remain unchanged. Finding a target value for the mean or 

standard deviation of objective can be difficult hence the weighted sum formulation is applied in 

this study. The percentile formulation and the weighted sum formulation are compared with the 

help of two examples, using both the decoupled and single loop formulations. 
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4.3.1 Example 1  

This problem is same as the Example 1 discussed in Chapter 3. The robust design procedure for 

the problem was performed using three different initial design points i.e. (1, 4) (5, 5) and (7, 9). 

The standard deviations of X1 and X2 in the problem were treated as constants. A range of results 

is obtained for different combinations of initial design and weights (0.5, 0.1) as is shown in 

Table 4.2. The first order method was used to evaluate the variance as the objective function in 

this problem is linear. The target reliability index, βt is set at 1.28 corresponding to 90th 

percentile formulation. The decoupled PMA approach is used to address the robust design 

problems. For the percentile formulation, the α2 percentile value to be minimized is taken as 90th 

percentile, for the sake of illustration. 

 

Table 4.2: Example 1: Robust design without σ’s as design parameters 

Method Cost Function 
Evaluations

Weighted Sum + 
Decoupled method 6.726 570-579 

Weighted Sum + Single 
loop method 6.726 132-177 

Percentile formulation 
+ Decoupled method 6.726 827-877 

Percentile formulation 
+ Single loop method 6.726 166-196 

 

The number of function evaluations for the different initial points were different hence a range is 

provided in the above table. On comparing the results in Table 4.2, it can be seen that both the 

formulations give the same solution. Also, the results are the same as the RBDO. This is because 

for a linear objective function with constant standard deviations the robust design problem 

collapses to a RBDO problem. Note that the number of function evaluations for percentile 

formulation is more than the weighted sum formulation when both objectives have equal 

weights. 

The above procedure was performed again, considering standard deviations as deterministic 

design parameters. The standard deviations were given bounds as σ1,σ2= [0.3,0.5]. The results 

obtained are shown in Table 4.3. 
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Table 4.3: Example 1: Robust design with σ’s as design parameters 

Method Cost Function 
Evaluations

Weighted Sum + 
Decoupled method 6.192 729-2247 

Weighted Sum + Single 
loop method 6.192 114-261 

Percentile formulation 
+ Decoupled method 6.192 1036-1086 

Percentile formulation 
+ Single loop method 

6.147-
6.192 443-621 

 

When the standard deviations are considered as design parameters, for this problem, they reach 

their lower bounds. Once again, the computational efficiency of the single loop method is higher 

than that of the decoupled approach. Some convergence issues were noted for certain initial 

designs in the case of the single loop method.  

 

4.3.2 Example 2 

This problem is same as the Example 2 discussed in Chapter 3. The formulation from Eq. (4.16) 

is used as the objective for weighted sum formulation. The variance is evaluated, like in Example 

3, using the first order method since in this case also the objective function is linear. The 3-point 

numerical integration method could also be used but wasn’t because of its computationally more 

intensive than the first order method. First, the standard deviations are not treated as design 

variables and all variables are assumed to be uncorrelated normals. The results using the 

different approaches are given in Table 4.4. 

 

Table 4.4: Example 2: Robust design without σ’s as design parameters 

Method Weight Function 
Evaluations 

Weighted Sum + 
Decoupled method 24.586 2172-2496 

Weighted Sum + Single 
loop method 24.562 570-1002 

Percentile formulation + 
Decoupled method 24.586 3931-5016 

Percentile formulation + 
Single loop method 

24.562-
25.585 867-1235 
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A range in values of the number of function evaluations is provided as different initial designs 

lead to different number of function evaluations. It can be observed that both the methods (i.e. 

percentile and weighted sum) result in the same solution. In fact the results are the same as the 

RBDO solution obtained in Table 3.3. The reason for this is the same as in Example 1, i.e. linear 

objective function. Also the computational effort for the percentile formulation was found to be 

higher than the weighted sum method. This was also observed previously for Example 1. In the 

weighted sum approach, when the weight is kept unreasonably low there is difficulty in the 

convergence of some variables when using the single loop method. 

Next, the standard deviations are treated as deterministic design parameters and their bounds are 

given in Table 4.5. 

 

Table 4.5: Bounds on σ’s of the design variables 

Variable Description of Variable 
(in mm) 

Lower 
Bound 

Upper 
Bound 

X1 Thickness of B-Pillar inner  0.020 0.040 
X2 Thickness of B-Pillar reinforcement  0.020 0.050 
X3 Thickness of floor side inner  0.020 0.040 
X4 Thickness of cross member #1 & #2  0.020 0.040 
X5 Thickness of door beam  0.040 0.060 
X6 Thickness of door belt line reinforcement  0.020 0.040 
X7 Thickness of roof rail  0.020 0.040 

 

The results for the robust design optimization including standard deviations as design variables 

are shown in Table 4.6. 

 

Table 4.6: Example 2: Robust design with σ’s as design parameters 

Method Weight Function 
Evaluations

Weighted Sum + 
Decoupled method 24.556 3738-4512 

Weighted Sum + 
Single loop method 

24.555-
25.345 1668-2202 

Percentile formulation 
+ Decoupled method 

24.554-
24.555 2744-3269 

Percentile formulation 
+ Single loop method 24.557 2706-2806 
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When standard deviations are treated as design parameters they move to their lower bound. For 

all cases the single loop was found to be superior in computational efficiency to the decoupled 

method. For some initial designs and very low weight values the decoupled loop was able to 

converge to a lower optimal solution than single loop but used more function evaluations. 

 

4.4 Summary 

The above observations and comparisons between the RBDO and robust design results lead to 

the following conclusions.  The robust design problems can be classified into three groups based 

on the order of the objective function and the choice of design parameters.  

1. Linear objective function and constant standard deviations for the design variables: For 

such problems the robust design solution will be equal to the RBDO solution. 

2. Linear objective function and constant COV : If the objective function is linear then it has 

the form  

∑= ii Xf αMin            (4.19) 

This case can be divided into two sub-cases: 

a. All αi’s are positive: In this case, the RBRD (reliability-based robust design) 

solution will collapse to the RBDO solution. 

b. If some αi’s are negative: In this case, the RBRD solution should be different as 

the first order variance will become a competing objective to the first order mean. 

3. Nonlinear objective function: If the objective function is nonlinear then RBRD will give 

a solution different from RBDO, because the derivatives are not constant. 
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CHAPTER V 

 

CRASH SAFETY PROBLEM 

 

5.1 Introduction 

The crash safety problem provided by General Motors involves maximizing the NCAP (new car 

assessment program) Star Rating for the design. The design objective is to satisfy the FMVSS 

(Federal motor vehicle safety standard) 208 occupant safety criteria as well. 

 

5.2 Importance of the problem  

In 1978 the New Car Assessment Program (NCAP) in the United States was initiated with the 

primary purpose of providing consumers with a measure of the relative safety potential of 

vehicles in frontal crashes. NCAP now supplies consumers with important comprehensive 

information, including frontal and side crash test results, to aid them in their vehicle purchase 

decisions. Vehicles that are rated higher on these safety ratings are considered safer. The 

increasing reliance of consumers on these ratings to make decisions regarding their purchase 

necessitates that GM maximize the star rating on their products. 

 

5.3 Background 

Researchers have used crash test data to determine the likelihood of injuries that may be 

sustained in a crash. In addition, that data was used to create the NHTSA's star system. This 

system makes automobile safety ratings easier for consumers to understand when buying a car.  

In frontal crashes, the star rating is determined by the worst score on two criteria:  

• Head Injury Criteria (HIC)  

• Chest deceleration (Chest G) 

In order to receive a five-star rating, both of these criteria must be below the level that indicates a 

10-percent chance of severe injury. There is a star rating for each of the front seat passengers, for 

each type of test that was run (frontal or side impact).  
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Table 5.1: Rating for frontal-impact tests 
# of Stars Result 

5 10% or lower chance of serious injury 
4 11% to 20% chance of serious injury 
3 21% to 35% chance of serious injury 
2 36% to 45% chance of serious injury 
1 46% or greater chance of serious injury 

 

The star rating shown in Table 5.1 is what we wish to maximize in this study. 

 

5.4 Problem setup 

The objective function chosen is to minimize the total probability of serious injury or the total 

injury probability. The Star rating can be calculated from Table 1 knowing the total injury 

probability. The total injury probability is the union of the probability of serious head injury 

(PHIC) and the probability of serious chest injury (PCG). PHIC and PCG can be obtained from 

empirical equations which require the head injury coefficient (HIC) and chest deceleration (CG) 

value. The objective function used is computed as shown in Eq. 5.1. 
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100*valuexvaluex
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        (5.1) 

Once a converged solution for the total injury probability is obtained, the star rating is 

determined from Eq. 5.2.  
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   (5.2) 

The constraints are based on the FMVSS 208 safety criteria, which give the critical values of 

chest deceleration, head injury coefficient value, various neck injury coefficients and chest 

compression obtained from crash tests for dummies of various sizes. We also have additional 
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constraints based on the chest deceleration and head injury coefficient we get for the NCAP load 

case where the crash tests are done with speeds different from those used for the FMVSS 208 

criteria. A total of nine constraints were identified for the design at hand. Response surfaces were 

made available for all the nine constraint functions. These response surfaces will be used to 

estimate the response of the limit states. All constraints are probabilistic and need to satisfy a 

97% reliability criterion.  This corresponds to a reliability index of 1.89. 

Now that the objective and the constraints are listed, the optimization problem is written as 

Minimize (Total Injury Probability) 
s.t. 
Prob (NCAP Chest g 3ms < 60) > 0.97 
Prob (NCAP HIC 36 ms < 1000) > 0.97 
Prob (50th %ile Unbelted NTF < 1) > 0.97 
Prob (50th %ile Unbelted NTE < 1) > 0.97 
Prob (50th %ile Unbelted HIC 15 ms < 700) > 0.97 
Prob (50th %ile Unbelted Chest Compression < 63.0) > 0.97 
Prob (5th %ile Unbelted NTF < 1) > 0.97 
Prob (5th %ile Unbelted NCF < 1) > 0.97 
Prob (5th %ile Unbelted Chest Compression < 53.0) > 0.975 

Here NTF, NTE and NCF are the neck injury coefficients for the different load cases. The 

corresponding design and other random variables and their distributions are given in Table 5.2 

and Table 5.3. 

 

Table 5.2: Design variables 
Variable Range for Means Range for � s Nominal Values 
 LB UB LB UB Mean Std 
Tether Length (mm) 175 300 8.75 15 237.5 11.875 
Vent Area Scale 1.366 3.534 0.0683 0.1767 2.45 0.1225 
Twist Shaft Level (N) 2500 6000 125 300 4250 212.5 
Knee Bolster Stiffness Scaling 1 1.5 0.05 0.075 1.25 0.0625 
Inflation Output 1 1.4 0.05 0.07 1.2 0.06 
Pre-Tension Spool (mm) 25 55 1.25 2.75 40 2 
Pre-Tension Firing Time (s) 0.005 0.01 0.00025 0.0005 0.0075 0.000375 
Column Strokes (mm) 25 75 1.25 3.75 50 2.5 
Air Bag Size Scaling 1 1.25 0.05 0.0625 1.125 0.05625 
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Table 5.3: Noise variables 
Variable Mean Std. Dev. 

FBD 0.45 0.1166667 
FSD 0.45 0.1166667 
FDB 0.3 0.06667 
FDT 0.3 0.06667 
FAC 0.45 0.1166667 
FAH 0.45 0.1166667 
DTx1 3.029 0.0127 
DTx3 2.884 0.0127 
Dty -0.395 0.0127 

DTz1 0.885 0.00635 
DTz3 0.903 0.00635 
AFT1 0.15 0.001 
AFT2 0.02 0.001 
CBL 4459 148.273333 
PvA1 -0.38397 0.02181945 
PvA2 -0.35779 0.021819443 
PvA3 0.357793 0.021819443 

 

5.5 Solution  

5.5.1 Preliminary Analysis  

First a preliminary analysis was done to check the feasibility of the constraints. In order to do 

this, the response surface of the constraint function was minimized within the bounds provided 

for the design variables, using the mean values of the random variables. All the limit states were 

found to be feasible as shown in Table 5.4. 

 

Table 5.4: Preliminary analysis of limit states 
Limit state Target Minimum Maximum 
NCAP HIC ( 36 ms ) 1000 63.37 6168.55 
NCAP Chest G ( 3ms ) 60 35.6278 53.6995 
50th %ile Unbelted Chest 
Compression 63 35.5471 63.1908 

50th %ile Unbelted NTE 1 -0.03017 1.23058 
50th %ile Unbelted NTF 1 0.06844 1.55763 
50th %ile Unbelted HIC ( 15 ms ) 700 25.7583 5776.41 
5th %ile Unbelted Chest 
Compression 52 46.2757 61.958 

5th %ile Unbelted NCF 1 -0.22032 1.91607 
5th %ile Unbelted NTF 1 0.270233 3.76295 

 



 37

Both the improved RBDO methods proposed in chapter 3 and the robust design methods 

discussed in chapter 4 were used to solve the problem.  First the results obtained for the RBDO 

techniques will be shown and then for robust design. 

 

5.5.2 Reliability based design optimization 

The optimization was done by considering variables in Tables 5.2 and 5.3 as the design and 

random variables respectively. Initially the tolerance was set at 10-6 which was one order of 

magnitude smaller than the smallest standard deviation. 100 initial designs were first obtained 

using optimosymmetric latin hypercube sampling method. When the optimization was executed 

with these initial designs, different results were observed. Some of these results are shown in 

Table 5.5. 

 

Table 5.5: RBDO solution with tolerance =10-6 

Solution 
No. 

Tether 
Length 
(mm) 

Vent Size 
(Scaling) 

Twist 
Shaft 
Level 
(N) 

Knee 
Bolster 
Stiffness 
(Scaling)

Inflator
Output 

(Scaling)

Pre-
tension
Spool 
(mm) 

Pre-
tension
Firing 
Time 
(mS) 

Column 
Stroke 
(mm) 

AirBag 
Size 

(Scaling)

Mean 
Star 

Rating

1 300.0 1.366 4250.0 1.000 1.400 55.0 5.00 50.05 1.0139 5.347 
2 175.0 1.366 2500.0 1.000 1.400 55.0 5.00 25.04 1.0262 5.248 
3 300.0 1.366 6000.0 1.000 1.400 55.0 5.00 75.00 1.0642 5.179 
4 175.0 1.366 4250.0 1.500 1.400 55.0 10.00 25.13 1.0697 5.238 
5 175.0 1.366 2500.0 1.000 1.400 55.0 5.00 75.00 1.0930 5.327 
6 175.0 1.366 6000.0 1.000 1.400 55.0 5.00 75.00 1.1516 5.144 
7 300.0 1.366 2500.0 1.000 1.400 55.0 5.00 50.04 1.0000 5.365 

 

Later the tolerance was decreased to 10-12 and it was found that there were only three solutions to 

which the optimization converged each time. These solutions are listed in Table 5.6. On further 

study it was found that even large changes in a design variable brought about very little change 

in the objective, this necessitated the very low tolerance value.  
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Table 5.6: RBDO solution with tolerance =10-12 

Solution 
No. 

Tether 
Length 
(mm) 

Vent Size 
(Scaling) 

Twist 
Shaft 
Level 
(N) 

Knee 
Bolster 
Stiffness
(Scaling)

Inflator 
Output 

(Scaling)

Pre-
tension
Spool 
(mm) 

Pre-
tension
Firing 
Time 
(mS) 

Column 
Stroke 
(mm) 

Air Bag
Size 

(Scaling)

Mean
Star 

Rating

1 300.0 1.366 3169.1 1.301 1.400 55.0 5.00 75.00 1.0000 5.393 
2 175.0 1.366 3328.2 1.286 1.400 55.0 5.00 75.00 1.1060 5.328 
3 175.0 1.366 3330.5 1.500 1.400 55.0 10.00 75.00 1.1110 5.323 

 

The solutions are graphically compared. Using the obtained solution as the mean values of the 

design variables, 1000 samples are generated and the corresponding HIC and Chest G values are 

calculated. The HIC vs Chest G graphs for the three solutions are given in Fig 5.7 (a), 5.7 (b) and 

5.7 (c) respectively. The star rating contours are drawn to easily observe how the solution ranks 

on the safety scale. 

 

 
Figure 5.1 (a): Plot of the first solution from Table 5.6 
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Figure 5.1 (b): Plot of the second solution from Table 5.6 

 
Figure 5.1 (c): Plot of the third solution from Table 5.6 

 

It can be seen that quite a few samples for the first solution and two samples for the third 

solution have a negative value for HIC. This is not possible as HIC is not defined for negative 

values. This could be because most of the design variables converged to either one of the bounds 

and the response surfaces were not accurate in this region. Therefore, the original bounds are 

narrowed by a value of 2σ to get the new design bounds, as shown in Table 5.7. 
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Table 5.7:  Design bounds 

Variable 
Variable 
Range Std. Dev. Range Design Bounds 

 LB UB LB UB LB UB 
Tether Length (mm) 175.0 300.0 8.750 15.00 1.93E+02 2.70E+02 
Vent Area Scale 1.366 3.534 0.0683 0.1767 1.50E+00 3.18E+00 
Twist Shaft Level (N) 2500 6000 125.0 300.0 2.75E+03 5.40E+03 
Knee Bolster Stiffness 
Scaling 1.000 1.500 0.050 0.075 1.10E+00 1.35E+00 

Inflation Output 1.000 1.400 0.050 0.07 1.10E+00 1.26E+00 
PreTension Spool (mm) 25.00 55.00 1.250 2.75 2.75E+01 4.95E+01 
PreTension Firing Time (s) 0.005 0.010 0.00025 0.0005 5.50E-03 9.00E-03 

 

The optimization was then performed within the above design bounds and the result turned out to 

be infeasible. It was found that a target reliability of 97% could not be satisfied as the design 

space was getting too constrained. The target reliability was therefore reduced to 90% and the 

corresponding reliability index reduced to 1.28 from the previous value of 1.96. The new results  

after performing the sequential optimization and reliability analysis are given in Table 5.8. The 

graphical plots for the solutions obtained in Table 5.8 do not show any negative values for HIC. 

 

Table 5.8.  Results within the Design Bounds 

Solution 
No. 

Tether 
Length 
(mm) 

Vent 
Size 

(Scaling) 

Twist 
Shaft 
Level 
(N) 

Knee 
Bolster 
Stiffness 
(Scaling)

Inflator 
Output 

(Scaling)

Pre-
tension 
Spool 
(mm) 

Pre-
tension 
Firing 
Time 
(ms) 

Column 
Stroke 
(mm) 

AirBag 
Size 

(Scaling)

Design 1: Star rating = 5.27 
1 270.00 1.50 3244.0 1.21 1.26 49.50 5.50 67.50 1.10 

Design 2: Star rating = 5.25 
2 193.00 1.50 3266.0 1.20 1.26 49.50 5.50 67.50 1.10 

 

The plots of samples from the two solutions in Table 5.8 are shown in Fig 5.2 (a) and (b). 
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Figure 5.2(a): Plot of the first solution from Table 5.8 

 

 
Figure 5.2(b): Plot of second solution from Table 5.8 

 

5.5.3 Robust Design 

Optimization was done using both the weighted sum and percentile formulations. For the 

weighted sum approach the original bounds, as given in Table 5.2 and the same initial design 

points (OSLH samples), as used in the calculation of the RBDO solution in Table 5.5, were 

employed. The standard deviations were assumed to be constant. The target reliability was set to 

97%. 
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Table 5.9. Results using  weighted sum method for robust design 

w 
Tether 
Length 
(mm) 

Vent 
Size 

(Scaling) 

Twist 
Shaft 
Level 
(N) 

Knee 
Bolster 
Stiffness 
(Scaling)

Inflator 
Output 

(Scaling)

Pre-
tension 
Spool 
(mm) 

Pre-
tension 
Firing 
Time 
(ms) 

Column 
Stroke 
(mm) 

AirBag 
Size 

(Scaling) 

Star 
Rating

Function 
Count 

0.90 0.175 1.679 5037.2 1.356 1.191 0.054 0.0088 71.43 1.052 5.178 147320 
 

The variance in the above formulation is calculated using the first order method discussed in the 

previous chapter. For the percentile formulation, the optimization was performed within the 

original bounds given in Table 5.5. The results are shown in Table 5.10. The 90th percentile 

value of the total injury probability is the objective that is being minimized. Again the standard 

deviations are constants and the target reliability of limit states is set to 97%. 

 

Table 5.10: Results for percentile formulation (original bounds) 

S.No. 
Tether 
Length 
(mm) 

Vent 
Size 

(Scaling) 

Twist 
Shaft 
Level 
(N) 

Knee 
Bolster 
Stiffness 
(Scaling)

Inflator 
Output 

(Scaling)

Pre-
tension 
Spool 
(mm) 

Pre-
tension 
Firing 
Time 
(ms) 

Column 
Stroke 
(mm) 

AirBag 
Size 

(Scaling) 

Star 
Rating

Function 
Count 

1 0.175 1.366 4212.8 1.459 1.378 0.0550 0.0069 57.34 1.157 5.275 681523 
2 0.300 1.366 4131.3 1.500 1.081 0.0550 0.0050 74.99 1.031 5.343 420968 
3 0.300 1.366 4655.2 1.412 1.262 0.0549 0.0075 75.00 1.141 5.293 453130 

 

Next, the above procedure is repeated for design bounds given in Table 5.7 and keeping the 

standard deviations constant.  The results are shown in Table 5.11. 

 

Table 5.11: Results for percentile formulation (design bounds) 

S.No. 
Tether 
Length 
(mm) 

Vent 
Size 

(Scaling) 

Twist 
Shaft 
Level 
(N) 

Knee 
Bolster 
Stiffness 
(Scaling)

Inflator 
Output 

(Scaling)

Pre-
tension 
Spool 
(mm) 

Pre-
tension 
Firing 
Time 
(ms) 

Column 
Stroke 
(mm) 

AirBag 
Size 

(Scaling) 

Star 
Rating

Function 
Count 

1 0.270 1.503 5300.9 1.350 1.260 0.0495 0.0055 67.50 1.100 5.141 342183 
2 0.270 2.552 2934.4 1.349 1.259 0.0489 0.0089 67.23 1.100 5.234 13721885

 

Discussion: The problem above is highly nonlinear and reliability assessment requires a large 

number of function evaluations. Problems were faced in the convergence of the optimizer for the 

robust design formulations. Also the design space seems to get very constrained with the 

inclusion of the second objective, leading to infeasible results.  
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5.6 Summary 

The efficient use of RBDO and robust design methodologies for the crash safety problem 

resulted in an increase in the star ratings from the base design. Due to the high nonlinearity and 

multimodal nature of the objective function several design solutions were obtained. It was found 

that the response surfaces were inaccurate near the upper or lower bounds of the limit state; 

hence design bounds were created. The resulting optimal design had a five star rating for more 

than 90% of the samples. 
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

Decoupling reliability analysis and optimization iterations helps to achieve computational 

efficiency in RBDO. In this thesis the following extensions for the PMA-based decoupled 

method are developed: 

1. Inclusion of standard deviations as design parameters in RBRD. 

2. Inclusion of simulation-based reliability assessment to replace FORM-based reliability 

assessment when highly nonlinear functions are involved. Simulation-based RBDO can 

meet the target reliability conditions more accurately for the nonlinear limit states, whereas 

the FORM-based methods need less computational effort. In this context the single loop 

methods need much less computational effort. 

3. Solutions of reliability–based robust design (RBRD) problems with the weighted sum and 

percentile formulations and extending the decoupled and single loop formulations for the 

same. 

 

6.2 Future Work 

Researchers are pursuing several directions to improve RBDO and robust design methods. 

(1) Inclusion of system-level reliability requirements in design optimization and robust design: 

Zou and Mahadevan’s (2004) decoupled method based on direct reliability analysis appears 

useful in this regard. In this method the Taylor series expansion is applied directly to the 

probability of failure function. The sensitivities are found using Monte Carlo simulation, similar 

to Eq. 3.2. This method is also capable of identifying the inactive limit states to improve the 

computational efficiency. This approach needs to be investigated for application to robust design. 

(2) Use of efficient meta-modeling techniques to reduce the computational requirements: These 

techniques are coupled with global sensitivity analysis methodologies to give the robust design 

solution. A considerable amount of work is being done to link these decompositions to the 

metamodels using basis functions (Chen et al, 2004).  
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(3) Inclusion of model uncertainty: With the increasing use of response surfaces in RBDO, it 

has become imperative to verify and validate these models. Assumptions and approximations 

made during the modeling stage may induce errors when predicting from these models. 

Therefore there is a need to develop computational methods to quantify physical, informational, 

and model uncertainties in complex engineering systems and incorporate them in design. The 

concepts being used to address these issues include Bayesian statistics and networks (Zhang and 

Mahadevan, 2003; Rebba, 2002), Markov Chain Monte Carlo methods, hypothesis testing etc. 

Many times extrapolations are made using these models; therefore there is a need to estimate the 

confidence in model predictions, and include this information in design decisions. 
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