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CHAPTER I 

 

INTRODUCTION 

 

Alzheimer Disease (AD) is the most common cause of dementia, affects over 5 

million individuals over the age of 65 in the United States (1), is the fifth-leading cause 

of death in the United States for individuals over the age of 65 (2), and is an increasingly 

serious public health issue.  AD is a progressive neurodegenerative disorder of the brain 

characterized by loss of memory and cognitive abilities, development of 

neuropsychiatric symptoms and behavioral changes, and loss of daily independent 

function.  With inadequate treatments and no cure, the nature of this disease puts a 

heavy burden on individuals, their families, caregivers, and society as a whole.  With 

our aging population, this burden will only increase as the number of affected 

individuals is expected to triple by 2050 (1).   

AD can be divided into two categories: early-onset and late-onset.  Individuals 

younger than 65 have the early-onset form but account for less than 5% of all AD cases 

(3).  Dominant mutations in three genes cause susceptibility to the majority of early-

onset familial AD: amyloid precursor protein [APP] (4) and presenilin 1 and 2 [PS1, PS2] 

genes (5-7).  However, these three genes combined only contribute to less than 2% of all 

cases of AD.  The much more common form, late-onset Alzheimer disease (LOAD), 

describes AD when it occurs in individuals older than or equal to 65 (8).  Unlike early-

onset where most of the genetic risk is identified and follows a simple Mendelian 

pattern, the majority of the genetic risk of LOAD is unexplained and has a much more 
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complex architecture.  My thesis work, therefore, is aimed to better understand the 

genetic architecture of LOAD and to identify at least one novel LOAD risk locus.  In this 

chapter, I provide an overview of LOAD, including the known pathophysiology, 

diagnoses, risk factors, and the search for genetic risk factors.  I will also present the 

background information about the Amish population and rationale for using the Amish 

as our study population. 

 

Pathophysiology and diagnosis of Alzheimer disease 

 

Although the pathophysiology of AD is yet to be completely explained, the 

initiation of AD is thought to be triggered by the generation of peptide oligomers 

(amyloid beta, also known as beta amyloid) from amyloid precursor protein (APP) in the 

brain.(9-11).  The accumulation of amyloid beta (Aβ), called plaques, occurs outside the 

neurons and is almost always accompanied by twisted strands of hyperphosphorylated 

tau protein, called tangles, inside the neurons.  However, there are rare cases of plaque-

only and tangle-only Alzheimer disease (12;13).  Recent advances in studying blood and 

cerebrospinal fluid biomarkers detecting the level of beta amyloid in the brain have 

potential to detect the pathophysiological process (14;15).  The plaques, as they interfere 

with synaptic communication, and the tangles, as they inhibit essential transportation 

inside the neurons, are hypothesized to cause the nerve cell damage and death in the 

brain, which is characteristic of Alzheimer patients.  The cell death is so extensive that 

the shrinking of the brain is visible via neuroimaging measures, another category of 

biomarkers.   
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The timing of the initiation of these deleterious events remains a mystery, but 

advances in biomarker technologies detecting the Aβ pathophysiology and the 

subsequent neurodegeneration are providing clues.  For LOAD, most symptoms and 

diagnoses of AD begin after the age of 65; however, changes in the brain due to AD 

might begin as early as 20 years before the onset of symptoms (16).  To reflect that 

knowledge, the National Institute on Aging (NIA) and the Alzheimer Association 

proposed new diagnostic criteria in 2011, but these have not yet been implemented in 

clinical practice.  These new criteria define three stages of Alzheimer disease: 1) 

preclinical Alzheimer disease, 2) MCI (mild cognitive impairment) due to Alzheimer 

disease, and 3) dementia due to Alzheimer disease.  Preclinical Alzheimer disease can be 

diagnosed only on the basis of biomarker detection since no symptoms have occurred at 

this stage.  When noticeable changes in cognition appear in addition to the biomarker 

evidence of AD pathophysiology, an individual would be diagnosed with ‘MCI due to 

Alzheimer disease.’  Not everyone with MCI goes on to develop dementia due to 

Alzheimer disease.  Therefore, biomarker testing could help to distinguish those who 

will go on to develop AD from those who will not progress.  The final stage, stage three, 

of AD occurs when a person exhibits the clinical symptoms to make a diagnosis of 

probable or possible AD, as is the current practice for diagnosing probable or possible 

AD.  At this stage biomarkers are merely for confirmation of the underlying 

pathophysiology.  Definite AD can only be defined with a post-mortem pathology 

report.  While there are three stages defined, clinicians and researchers also recognize 

that AD evolution is a continuum and that the boundaries between the stages can be 

blurred (16).  These new criteria will allow much earlier diagnoses, and therefore, much 

earlier introductions of interventions that could be much more effective.  More effort is 
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needed in the area of biomarker research to develop standards to implement these new 

diagnostic criteria in clinical practice. 

The previously established and currently used diagnostic criteria were 

developed by the National Institute of Neurological and Communicative Disorders and 

Stroke and the Alzheimer Disease and Related Disorders Association (NINCDS 

ADRDA) in 1984 (17).  These classical criteria rely on clinical symptoms as reported by 

patients and informants and as indicated by neuropsychological testing to assess eight 

areas of cognition that can be impaired in individuals with AD: orientation, memory, 

language skills, praxis, attention, visual perception, problem-solving skills, and social 

function/daily living (17).  These diagnoses are at least 80% accurate (>90% for 

individuals with dementia) (18); however, a definite diagnosis of AD can only be 

established with an autopsy.   

We have employed the NINCDS ADRDA criteria in the studies presented in 

Chapters III and IV (See Chapter III for more details).  Because we have no autopsy 

information we are not able to make any definite diagnoses of AD, only probable and 

possible AD.  Therefore one limitation of our study is that some of the seemingly 

cognitively normal patients and some of the MCI patients could go on to develop AD.  

To minimize those potential issues, individuals diagnosed with MCI are classified as 

‘unknown’ in our analyses, and we only seek individuals over the age of 65 for our 

study to lessen the chances of enrolling a control that might go on to develop AD.  We 

also follow up all individuals (typically after three years) with ‘unclear’ diagnoses, 

including MCI, to check for regression to AD status. 
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Epidemiology of and risk factors for Alzheimer disease 

 

All the data to date suggests that a complex combination of genetic and 

environmental components determine if someone will get LOAD (19).  Many risk factors 

are under debate, but the most commonly accepted are: age, lifestyle, cardiovascular 

disease (CVD) risk factors, race, education, head trauma, family history, and genetics (3).   

The single greatest risk factor for Alzheimer disease is age.  While some difficulty 

with memory is typical of the normal aging process, the symptoms of Alzheimer disease 

are much more severe—to the point where they dramatically interfere with everyday 

tasks.  The population prevalence of LOAD dramatically increases with the age of the 

individuals (1).  Each 5-year incremental increase in age doubles the percent of people 

with AD (20).  With no cure nor reliable treatment for Alzheimer disease, the increased 

life expectancy of our population will continue to increase the prevalence of Alzheimer 

disease.   

  A person’s lifestyle includes a variety of factors—physical and mental activity, 

diet, sleeping habits, and smoking—that can affect a person’s likelihood of developing 

Alzheimer disease.  Some of these lifestyle factors overlap factors modulating 

cardiovascular disease risk.  In fact, substantial research supports that there is a strong 

connection between a person’s heart health and brain health (21).  Diet-related factors 

such as high cholesterol, obesity, and type 2 diabetes have all been linked to AD risk in 

addition to CVD (21-24).  Conversely, adherence to a ‘Mediterranean diet’, which is rich 

in vegetables, fruits, legumes, grains, and unsaturated fatty acids, seems to protect 

against both AD and CVD (25).  This heart health–brain health link could at least 

partially explain the higher risk for LOAD for African Americans and Hispanics 
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compared to whites (26;27) since African Americans and Hispanics also have higher 

risks for CVD.  Sedentary lifestyle and smoking also place people at higher risk for 

developing AD and CVD (28-30).   

Mental activity, including years of education also impacts LOAD risk.  Fewer 

years of education increase a person’s likelihood of developing AD, even after adjusting 

for socioeconomic status (31).  The reason for this correlation is unknown, and it is 

unclear which is the cause and which is the effect.  Proposed explanations include the 

idea that educated individuals have more of a ‘cognitive reserve’, helping those 

individuals to withstand the attacks on their cognition (32;33).   

Moderate to severe head injuries also increase risk to Alzheimer disease by 2 to 4 

and a half fold (34;35).  The head injuries must result in unconsciousness or post-

traumatic amnesia lasting for at least 30 minutes for moderate head injury and more 

than 24 hours for severe head injury to confer these risks.  There has been some evidence 

for an interaction between moderate to severe head injury and APOE ε4 carrier status 

(34;36;37).  Mild head injuries do not seem to confer the same risks, but more research is 

needed in this area.   

The risk factors described above, if shared among family members, would at 

least partially explain why individuals with a family history of LOAD have a greater 

chance of developing AD.  However, family history increasing one’s risk for developing 

LOAD also suggests that genetic factors are involved.  A person who has a sibling with 

AD is 4-5 times more likely to also develop AD compared to the general population (38-

40).  The estimates of the heritability of AD using twin studies ranges from 58% to 80% 

(41;42).  The remainder of this chapter discusses the previous and more recent methods, 
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including the approaches taken in this thesis work, used to discover Alzheimer disease 

risk genes. 

 

The search for genetic risk factors for late-onset Alzheimer disease 

 

The first LOAD risk gene, APOE, was identified in 1993 via genetic linkage 

mapping in combination with gene function information (43-48).  The common APOE ε4 

allele increases susceptibility to both early- and late-onset AD, and the ε2 allele decreases 

risk (49-51).  Considering LOAD is a genetically complex disease, APOE has a strong 

effect with an odds ratio generally greater than 3 (alzgene.org), but at most explains 22% 

to 50% of the 80% genetic effect of LOAD (42;50;52).  

The remaining genetic component for LOAD risk remained unexplained for the 

next 16 years despite an abundance of effort, including linkage studies, candidate gene 

association studies, and genome-wide-association studies.  From the late 1990’s into the 

early 2000’s, many genome-wide linkage studies using microsatellite markers were 

attempted (53-63).  Regions on chromosomes 9, 10, and 12 seemed particularly 

promising, but no gene could be confirmed for those regions.  Additionally, associations 

between LOAD and candidate genes on every chromosome in the human genome were 

reported, but none could be consistently replicated (64). 

 With the initiation of the International HapMap project in 2002, common 

variations, in the form of single-nucleotide polymorphisms (SNPs), were characterized 

and catalogued in different populations for the entire genome.  The genotypes for the 

SNPs provide estimates of linkage disequilibrium (LD) across the genome (65-67).  This 

effort led to the emergence of the genome-wide association study (GWAS) design, in 
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which 250,000 to more than 1,000,000 SNPs are genotyped, to scan the genome for 

associations to disease.  The first GWAS for LOAD were published in 2007 (68;69), but 

the only significant locus identified was APOE.   Eight subsequent GWAS, two of which 

only focused on candidate genes (Grupe et al and Feulner et al), also failed to generate 

any novel LOAD genes that could be discovered and replicated at a genome-wide 

significance level (70-77).  All of the first ten GWAS discovery and replication datasets 

were under 2,000 cases and 2,000 controls.  Due to the heterogeneous nature of LOAD 

and the small effect sizes likely to be detected, in retrospect these studies were all 

underpowered to find anything but APOE which has a fairly large effect size.   From 

these studies we learned that much of the remaining genetic effects would require more 

powerful approaches to be discovered. 

 Then in 2009 both Harold et al and Lambert et al published the first consortia-

derived GWAS for LOAD.  With almost 6,000 total cases and more than 10,000 total 

controls, Harold et al identified and replicated SNPs near CLU and PICALM at genome-

wide significance (78).  Concurrently, Lambert et al replicated the CLU finding and 

achieved genome-wide significance for CR1 when they combined their discovery and 

replication datasets (79) with 6,000 total cases and more than 8,600 total controls.  

Lambert et al also found nominal significance for PICALM.  CLU was also replicated at 

genome-wide significance by Seshadri et al in 2010 (80).  Also at genome-wide 

significance, Seshadri et al replicated PICALM and identified BIN1 as a potential LOAD 

gene, which would later be confirmed.  In 2011, Naj et al published the replication of 

BIN1, CR1, CLU, and PICALM, and also identified and confirmed MS4A, CD2AP, 

EPHA1, and CD33 as novel LOAD loci (81).  In the same issue of Nature Genetics, 
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Hollingworth et al provided additional support for all of the same genes and also added 

ABCA7 as a tenth LOAD susceptibility locus (82).   

 Recently, SORL1 has also been gaining support as a LOAD gene.  After mixed 

results in previous candidate gene studies, recent studies using larger sample sizes have 

confirmed the association of SNPs in SORL1 with LOAD (83-86). 

 One of the most recent advances in genome technology has been next-generation 

sequencing, including whole genome sequencing.  Despite the many successes of 

GWAS, the heritability of most common diseases remains unexplained.  GWAS only 

query common variation by genotyping a subset of the known SNPs and relying on LD 

to capture other SNPs not directly genotyped.  Therefore, portions of the genome are 

inevitably underrepresented by GWAS because of they simply could not be included in 

the design of the SNP genotyping assay and because of differences in LD between 

different datasets.  Rare variants are ignored when designing GWAS, and although rare 

variants could be tagged by a GWAS, it would take a follow-up sequencing study to 

identify the rare variant as the causal variant.  The realization of the limitations of 

GWAS and the availability of this new technology has generated increased interest in 

rare variants (more about this in Chapter IV).  Taking this approach, Jonsson et al 

discovered a protective mutation in APP for LOAD (Jonsson et al 2012).  Before Jonsson 

et al’s report, mutations in APP were only known to be causative for early-onset AD.  

To date, there are twelve known LOAD genetic loci: APOE, CR1, CLU, PICALM, 

BIN1, MS4A, CD2AP, EPHA1, CD33, ABCA7, SORL1, and APP (Table 1.1).  However, 

these genes combined do not explain the entire genetic component of Alzheimer disease.  

Although earlier reports suggested that APOE might explain as much as 50% of the 80% 

heritability, So et al estimated that 18% of the total variance in AD risk, or 23% of the 
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~80% heritability of AD, can be explained by SNPs in APOE, CR1, CLU, and PICALM.  

CR1, CLU, and PICALM combined only contribute ~1% of the variance (52).  Naj et al 

estimated the population attributable fractions for CR1, BIN1, CD2AP, EPHA1, CLU, 

MS4A4, PICALM, ABCA7, and CD33 to individually range from 3% to 6% (81).  The 

population attributable fraction is the percentage of AD cases that could be prevented if 

the risk factor was removed.  This calculation is not the same as the percentage of total 

variance in AD, also known as locus-specific heritability, calculated by So et al (52).  

Therefore, as much as 75% of the heritability of LOAD could remain to be explained.   

 

Table 1.1 Late-onset Alzheimer disease genes. ‘Study’ indicates the first study to 
publish a significant association for the gene.  ‘SNP/allele’ and ‘OR’ are the SNPs or 
alleles and odds ratios that the indicated study initially published. 

 

Gene Study SNP/allele OR 

APOE Corder et al E4/E2 3.78 

CLU Harold et al rs11136000 0.86 

PICALM Harold et al rs3851179 0.86 

CR1 Lambert et al rs6656401 1.21 

BIN1 Seshadri et al rs744373 1.13 

MS4A Naj et al rs4938933 0.88 

CD2AP Naj et al rs9349407 1.14 

EPHA1 Naj et al rs11767557 0.85 

CD33 Naj et al rs3865444 0.88 

ABCA7 Hollingworth et al rs3764650 1.23 

SORL1 Rogaeva et al multiple SNPs 1.70-1.84 

APP Jonsson et al rs63750847 0.189 

 

 

While large-scale studies in the general population have produced most of the 

recent discoveries of LOAD genes, these approaches will not identify all of the genetic 

variations underlying LOAD.  Genetic heterogeneity, i.e. different genes in different 
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groups and individuals contributing to LOAD susceptibility, complicates additional 

gene discoveries and replication of discoveries, particularly in studies of the general 

population, which has been the standard practice.  The small attributable risk of each 

polymorphism to the overall genetic variance in the general population makes many 

studies underpowered (64).    

 

The utility of genetically isolated populations 

 

Using a more genetically homogeneous study population is one approach to 

overcome this problem.  Isolated populations are a valuable resource for genetic studies 

(87-89).  The isolated expansion of the population from a small number of founders 

restricts the introduction of new genetic variation(90), so it can be expected that these 

unique groups’ genomes would contain a more homogeneous set of disease risk genes.  

Many isolated populations have large families and often keep extensive genealogy 

records, making extended pedigree construction feasible.  Linkage analysis of large 

pedigrees has proven to be a valuable tool for genetic studies, particularly for AD since 

all four of the first verified AD genes (APP, PSEN1, and PSEN2 for early-onset and 

APOE for late-onset) were initially localized via linkage analysis.  The recent discovery 

of a mutation in APP conferring protection for LOAD was performed in an isolated 

Icelandic population (Jonsson et al 2012).  Studies of population isolates for AD have 

also been performed in an isolated Finnish population (63), in a Netherlands population 

(91), and in the relatively isolated Caribbean Hispanics (92).   
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The Amish 

 

The Amish communities of middle Ohio (Holmes County) and northern Indiana 

(Elkhart, LaGrange, and Adams counties) are a genetically isolated founder population, 

originating from two waves of immigration of Swiss Anabaptists, seeking freedom from 

religious persecution, into the U.S.  In the early 1700’s the first wave of immigration 

brought the Anabaptists to Pennsylvania.  In the early 1800’s some of these immigrants 

moved to Holmes County, OH, while a second wave of immigration from Europe 

established more Amish communities in other areas of Ohio and Indiana (including 

Adams County).  Later, Elkhart and LaGrange County Amish communities were started 

by some of the Amish from Pennsylvania and Ohio (including Holmes County) moving 

to these new locations (93-95).   

The Amish marry almost exclusively within the community and have large 

families, providing pedigrees with multiple affected individuals for analyses.  The 

Anabaptist Genealogy database (AGDB) (96;97) and the Swiss Anabaptist Genealogical 

Association (SAGA) keep thorough family history records, providing necessary and 

critical pedigree information. Because of their faith, the Amish lead a strict and 

traditional lifestyle and, therefore, have more homogeneous environmental exposures 

than the general population.   

Compared to the general population in which many genes are contributing to 

LOAD, the relatively homogeneous Amish population is likely to contain a smaller set of 

risk alleles, each with a theoretically increased population attributable risk, thereby 

increasing detection power.  The relatively recent expansion of the population from a 

small number of original founders plus isolation results in this reduced amount of 
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genetic variation (90). The risk alleles found in the Amish population, however, should 

be a subset of the risk alleles in the general population.  This approach has already 

proven valuable as the Amish communities of Pennsylvania have aided the discovery of 

genetic risk factors for complex diseases including the discovery of an APOC3 mutation, 

R19X, that is associated with a healthier lipid profile and less coronary artery 

calcification (98).  

A previous study in the Adams County Amish reported lower level of cognitive 

impairment in individuals ≥65 years old, even accounting for lower levels of former 

education(99-101).  The Adams County Amish have a lower frequency of the ε4 APOE 

risk allele compared to the general population, while the APOE-4 frequency in the 

Elkhart, LaGrange, and Holmes Counties is similar to the general population(102).  

Another study in the Pennsylvania Amish found the APOE-4 frequency to be similar to 

the APOE-4 frequency in the general population, although the Pennsylvania Amish also 

have a lower prevalence of dementia(103).  Therefore, not only is it expected that the 

Amish genome harbors fewer AD risk genes, the risk is likely to be found in other genes 

besides APOE. 

  This unique lower APOE-4 frequency in the Adams County Amish, along with 

other linkage data, mitochondria and Y-chromosome data, has suggested some degree 

of genetic heterogeneity between the Adams County and the Holmes, Elkhart, and 

LaGrange County Amish.  However, all four counties combined still represent a very 

closely related population.   
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Previous work 

 

We have a solid relationship established with the Amish communities of Indiana 

with the help of Dr. Gene Jackson, who has had a long-standing relationship of over 40 

years with them.  His pioneering efforts opened the door for our efforts examining 

dementia in the Indiana Amish.  He also provided the stimulus to expand our studies to 

the Amish communities in Ohio.  At the onset of this thesis work, about 26% of the Ohio 

and Indiana Amish population age 65 or older had already been contacted, and nearly 

90% of those contacted have agreed to participate in the study.  Over 900 DNA samples, 

more than 125 of which are from individuals diagnosed with AD, had been collected.   

 We first examined kinship coefficients in this dataset.  A kinship coefficient is the 

probability that two alleles at a randomly chosen locus, one from individual i and the 

other from individual j, are identical by decent (i.e. came from the same common 

ancestor).  The more related the individuals are, the more alleles they should share, and 

the higher the kinship coefficient will be between the two individuals.  Some examples 

of kinship coefficients expected for various relationships are in Table 1.2.   

 

Table 1.2.  Expected kinship coefficients for some familial relationships 

Relationship 
kinship 

coefficient 

Parent-Offspring 0.25 

Full Siblings 0.25 

Half Siblings 0.125 

First Cousins 0.0625 

Second Cousins 0.015625 
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We compared the average kinship coefficient between those diagnosed with 

Alzheimer disease in our study and those that were cognitively normal.  We did not 

include the individuals with other non-Alzheimer cognitive impairments in the 

calculation.  The kinship coefficients were based on known pedigree structure to 

estimate the expected genetic sharing, not actual genetic data.  The average kinship 

coefficient for all pairs of LOAD individuals was 0.0129 and 0.0116 for all pairs of 

cognitively normal individuals.  To test if this difference was statistically significant,  we 

performed the nonparametric two sample Wilcoxon rank-sum (Mann Whitney) test 

because the kinship coefficients were not normally distributed.  We saw that the 

difference between cases and controls was significant (p<1x10-5); however, we did not 

take into account any correlations among the pairs.  This significant difference suggests 

that there is a genetic component of Alzheimer disease in this Amish cohort.  This 

difference could also be due to a more common environmental exposure in the 

Alzheimer patients; however, because the Amish have more homogeneous 

environmental exposures than the general population, this explanation is less probable.  

The cases, on average, share more of their genomes, and that shared portion likely 

harbors risk to Alzheimer disease. 

Previous linkage scans in small subsets of the current dataset yielded multiple 

candidate chromosomal regions for LOAD, but none of the results were striking enough 

to warrant extensive follow-up in the regions (53;56) (Table 1.3).  These previous studies 

mostly involved microsatellite marker linkage screens with smaller sample sizes and 

average of marker densities of 11 cM (53) and 7 cM (56).  We also have had some 

changes in affection status since those previous publications.  Therefore it is possible for 

future studies to find other significant loci and to not replicate these results.  With the 
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advancement of genotyping technologies, doing a genome-wide SNP (single nucleotide 

polymorphism) screen followed by next-generation sequencing in these isolated 

populations is now a reasonable task.  This type of screen should be more 

comprehensive than the previous microsatellite screens, allowing for more precise locus 

identification which can then be followed up with sequence analysis.   

 

Table 1.3 Regions with LOD score >3 in previously published linkage scans in 
subsets of the current Amish dataset. 
 

Publication 
Total 

sample size 
Number 
with AD 

Chromosomal 
region LOD 

Ashley-Koch et al 2004 24 10 11p 3.1 (multipoint) 

Hahs et al 2006 115 40 4q31 3.01 (two-point)  

 

 

Summary 

 

In summary, LOAD is an incredibly complex neurodegenerative disorder 

affecting many elderly individuals and is only expected to increase in prevalence.  Some 

LOAD risk genes have been identified, but a large portion of the heritability remains to 

be explained.  The Amish communities of Ohio and Indiana provide a means to 

overcome some of the complexity and heterogeneity that hinders many genetic studies.  

The many advantages of this isolated population in combination with the advancements 

in genome technology have been employed for this thesis work and will hopefully help 

to shed light on the genetic architecture of LOAD.  
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CHAPTER II 
 

 
 

QUALITY CONTROL PROCEDURES FOR A GENOME-WIDE STUDY IN 
AN AMISH POPULATION 

 
 

 
Introduction 

 
 
 
 A genome-wide association study (GWAS) is one approach for studying a 

disease with complex etiology like Alzheimer disease.  Complex diseases do not show a 

Mendelian pattern of inheritance.  To attempt to predict the inheritance of complex 

diseases, the hypothesis that common variants explain common diseases emerged (104).  

GWAS is based on the common disease/common variants hypothesis (104) and involves 

genotyping 250,000 to more than one million single nucleotide polymorphisms (SNPs) 

across the genome.  The set of SNPs can also be used to conduct a genome-wide linkage 

scan if family data is available.  The broad coverage of the genome eliminates the need 

to select candidate genes prior to genotyping, and also provides a much denser coverage 

of the genome than previous genome-wide linkage scans.  We have taken this high-

throughput approach to study Alzheimer disease in an Amish population (as discussed 

in Chapters I and III).   

With high-throughput methods also come more potential for errors in the dataset 

because, by necessity, less attention is given to the individual variants.  It is impossible 

to evaluate the quality of each individual genotype, requiring evaluation by descriptive 

statistics of the SNPs and samples to determine outliers.  Combining this large volume 

of SNP genotypes with the large and complicated family structure of the Amish 
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produces an extra layer of complexity and the need for careful quality control 

procedures on both the SNP level and the sample level to produce an accurate dataset to 

analyze.   

 Because the focus of a GWAS is on common variation, SNPs with low minor 

allele frequencies (typically <5%) are removed from analysis.  Power to detect an 

association decreases with lower minor allele frequencies, and spurious associations can 

arise with low allele frequencies.  Unexpected allele and genotype frequencies can also 

indicate failed genotyping.  Therefore, checking SNPs for Hardy-Weinberg equilibrium 

is a common quality control procedure.  In doing so, observed genotype frequencies are 

compared to expected genotype frequencies.  Assumptions of Hardy-Weinberg 

equilibrium include random mating, a large population size, and no inbreeding.  

Because our dataset violates those assumptions, we did not check SNPs for Hardy-

Weinberg equilibrium in this study.  Per SNP genotyping performance can also be 

assessed by calculating genotyping efficiency, i.e. the percentage of samples for which a 

genotype could reliably be determined at each SNP.  The genotyping efficiency at which 

a SNP should be deemed ‘poor’ is debatable as there is always a trade-off between 

quality and quantity of data available to analyze.   

The same trade-off comes into play when determining which samples to 

eliminate from analysis.  Those with low genotyping efficiency (the percentage of called 

genotypes for each sample) need to be eliminated since the genotypes that are available 

for those individuals might not be reliable.  Besides genotyping errors, DNA handling 

and/or plating errors could occur prior to genotyping resulting in possible sample mix-

ups.  One way to detect a sample mix-up is to compare reported gender with the gender 
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determined by the heterozygosity rate for SNPs on the X chromosome since the 

heterozygosity rate should be very minimal in males and much higher in females.   

Another way to detect a sample mix-up is to examine the genetic ethnicity of 

each sample.  For the Amish, the race/ethnicity should be similar between individuals, 

so within project sample mix-ups would not be detected but other project samples could 

be detected if they were accidentally plated.  The program Structure provides a plot to 

visualize clustering of individuals compared to individuals with known racial/ethnic 

decsent, i.e. samples from the HapMap project (105).  Because the Amish population is a 

founder population of European descent, it is also of particular interest to see if and how 

they cluster with the HapMap CEU (Eurpean-descent) dataset.   

 Another important aspect of quality control when studying the Amish is to 

verify the accuracy of the pedigree relationships.  It is the genetic relationships that 

allow us to perform our studies and therefore the accuracy of which need to be 

maintained.  Aberrant connections in the pedigree would greatly impact linkage 

analysis, which directly relies on pedigree relationships as it tests for co-segregation of 

genetic loci and the trait of interest in the pedigrees.  Pedigree errors could also distort 

association results when family relationships are used to correct for the 

nonindependence of the genotypes.  As discussed in Chapter I, the pedigree information 

is provided by the Anabaptist Geneaology Database (AGDB) (96;97).  The accuracy of 

the pedigree and demographic information from AGDB is outstandingly reliable.  

However, in rare cases, reported family relationships might not coincide with actual 

genetic relationships, for instance in the case of an unreported adoption.  The large 

number of available SNPs allows us to compare the reported pedigree relationships with 

the genetic relationships from calculations of average identical-by-state (IBS) allele 
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sharing as a proxy for identical-by-descent (IBD) allele sharing.   Not only does checking 

expected IBS to actual IBS serve to verify pedigree relationships, but it can also detect 

sample swaps or duplicates that might have occurred while plating the DNA. 

  

Methods 

 

Genotyping 

Genotyping was performed on the Affymetrix Genome-Wide SNP Array 6.0, as 

described in Chapter III.  Initial quality control performed by the genotyping laboratory 

resulted in a dataset with 830 samples and 906,598 SNPs.  Two individuals are not in 

AGDB and another individual could not be connected into the same pedigree with the 

rest of the individuals.  These three individuals were removed before running any 

additional quality control measures since they would not be useful for analysis.  

Therefore, 827 individuals and 906,598 SNPs were evaluated using the quality control 

procedures described below. 

 

Sample and SNP genotyping efficiency 

PLATO (PLatform for the Analysis, Translation, and Organization of large-scale 

data) was used to calculate per-sample and per-SNP genotyping efficiencies.  We used a 

sample genotyping efficiency threshold of 95% and a SNP genotyping efficiency 

threshold of 98% to remove poor performing samples and SNPs from the dataset.  We 

chose a more liberal sample cut-off since we removed low efficiency samples before 

removing low efficiency SNPs.   
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Minor allele frequency 

 Minor allele frequencies were calculated, not taking pedigree relationships into 

account, using PLATO.  Minor allele frequencies were also calculated using the MQLS 

(Modified Quasi-Likelihood Score) test, which incorporates kinship coefficiencts when 

calculating allele frequencies to correct for the high degree of relatedness in the dataset.  

The correlation between the two sets of minor allele frequencies was 0.99.  We removed 

SNPs that had a minor allele frequency <5% calculated by either method. 

   

Gender 

PLATO was used to calculate the per-sample percentage of heterozygosity for 

SNPs on the X chromosome.  Distributions of the X chromosome heterozygosity 

percentages were compared between the reported males and the reported females to 

determine outliers. 

 

Mendelian errors 

PLATO was used to remove any genotypes that are impossible based on the 

genotypes at the same SNPs for a parent and a child. 

 

Race/Ethnicity  

 Homogeneity of the ethnicity of all individuals in the study was determined 

using Structure.  Structure is a clustering method that uses allele frequencies to 

probabilistically assign individuals to populations.  Genotypes from individuals of 

known ethnicity, such as those from HapMap, can be used to guide the clustering.  

PLATO was used to create a dataset of 1000 randomly chosen markers from our GWAS 
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dataset.  We only used the 124 most ‘unrelated’ Amish for this analysis.  Genotype data 

from the HapMap CEU (Eurpean-descent), YRI (African), CHB and JPT (Asians) 

datasets were used as references for the clustering.  The CHB and JPT populations 

cluster together, and were therefore coded as the same population.  In a second analysis 

we also ran Structure using all of the Amish individuals to assess population structure 

within the Amish.  Individuals from Adams County, IN, were coded as a separate 

population from the rest of our Amish dataset from Elkhart and LaGrange Counties, IN, 

and Holmes County, OH.  We did not include HapMap samples in this second analysis 

to see better distinction between the Amish communities. 

 

Pedigree errors 

 Graphical representation of relationship errors (GRR) was used to compare 

reported pedigree relationships with genotype-estimated pedigree relationships.  GRR 

calculates and plots the mean and variance of IBS allele sharing for each pair of 

individuals (106).  GRR categorizes all pairs of individuals with genotypes into full 

sibling pairs, half sibling pairs, parent-offspring pairs, ‘other’ relatives pairs, and 

‘unrelated’ pairs.  A set of 1000 SNPs was randomly selected using PLATO.  GRR was 

first run with the raw dataset, and then rerun after removing a duplicate sample and 

other samples that did not pass other previous quality control thresholds. 
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Results 

 

SNP quality control 

All SNPs with less than 98% genotyping efficiency were removed from analysis.  

This step eliminated 76,816 SNPs from the dataset. 

 

Minor allele frequency 

  Employing a 5% minor allele frequency cut-off removed 206,970 SNPs from the 

dataset.  An additional 7,849 SNPs were removed using a 5% MQLS-adjusted minor 

allele frequency cut-off.  Observing the manhattan and quantile-quantile plots 

displaying the MQLS-derived p-value results before and after the removal of the SNPs 

with low MQLS-adjusted minor allele frequencies suggests that removing the additional 

7,849 SNPs greatly reduced the number of likely false positive association results 

(Figures 2.1a,b and 2.2a,b). 

 

 

 

 

 

 

 

 

Figure 2.1a,b. Quantile-quantile plots of MQLS p-values before (a) and after (b) 
removing additional SNPs with MQLS-adjusted minor allele frequencies <0.05. 
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Figure 2.2a. Manhattan plot of the MQLS results before removing additional SNPs 
with MQLS-adjusted minor allele frequencies <5%.  This plot shows the MQLS result 
for each SNP plotted as –log10P value on the y axis.  Chromosomal locations are 
designated on the x axis.  206,970 SNPs with minor allele frequencies <5% based on raw 
counts were already removed.  The red line is at p=1x10-6.  The blue line is at p=1x10-4. 
 
 
 
 

 

Figure 2.2b. Manhattan plot of the MQLS results after removing additional SNPs with 
MQLS-adjusted minor allele frequencies <5%.  This plot shows the MQLS result for 
each SNP plotted as –log10P value on the y axis.  Chromosomal locations are designated 
on the x axis.  7,849 additional SNPs were removed from the group of SNPs shown in 
Figure 2.2a before generating this plot.  Red line is at p=1x10-6.  Blue line is at p=1x10-4. 
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Sample genotyping efficiencies 

 Using a 95% per-sample genotyping efficiency threshold, nine samples were 

removed from analysis.   

 

Gender 

Two individuals, 1 and 44, were clearly gender errors, most likely due to a 

sample mix-up or swap. Another explanation could be sex chromosome anomalies such 

as Kleinfelter syndrome (XXY males) or Turner syndrome (X0 females).  However these 

syndromes are rare and usually lead to infertility, which was not an issue for these 

individuals.  Individual 1 was labeled as a female but the percentage of SNPs on the X 

chromosome that were heterozygous was only 0.33%.  Individual 44 was listed as a male 

but had 23.92% heterozygous genotypes for SNPs on the X chromosome (see Table 2.1).  

The other individuals in red in Table 2.1 were not blatant errors, i.e. the females did not 

have heterozygosity rates low enough to be called male and the males did not have high 

enough heterozygosity rates to be called female, but were also removed from analysis 

since they were outliers.  The outliers were determined by observing a clear cut-off 

between ‘female’ samples 3 and 4 and ‘male’ samples 31 and 32.  We did not observe a 

correlation between the gender errors and genotyping efficiency or sample quality (as 

determined by DNA source, date of collection, and evidence of degradation).  The 

genotyping efficiency was at least 98% for all individuals with a gender error. 
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Table 2.1. Average percentage of heterozygosity for SNPs on the X chromosome for 
individuals whose reported and genetic sex are potentially discordant.  The table only 
displays the females with the lowest X chromosome SNP heterozygosity rates and the 
males with the highest X chromosome SNP heterozygosity rates.  Individuals in red 
were removed from the dataset.  Dummy ID’s are displayed to protect the identity of 
study participants. 
 

Individual Sex 

% X 
chromosome 
heterozygous   Individual Sex 

% X 
chromosome 
heterozygous 

1 Female 0.33   23 Male 0.4029 

2 Female 14.77   24 Male 0.4058 

3 Female 14.78   25 Male 0.4062 

4 Female 18.40   26 Male 0.4132 

5 Female 18.68   27 Male 0.4181 

6 Female 18.71   28 Male 0.4256 

7 Female 19.49   29 Male 0.4292 

8 Female 19.56   30 Male 0.4331 

9 Female 19.70   31 Male 0.4647 

10 Female 20.10   32 Male 1.752 

11 Female 20.16   33 Male 1.967 

12 Female 20.17   34 Male 2.446 

13 Female 20.27   35 Male 2.506 

14 Female 20.29   36 Male 2.522 

15 Female 20.58   37 Male 2.641 

16 Female 20.65   38 Male 2.914 

17 Female 20.77   39 Male 3.115 

18 Female 20.85   40 Male 3.481 

19 Female 20.94   41 Male 3.705 

20 Female 20.96   42 Male 3.84 

21 Female 20.99   43 Male 5.789 

22 Female 21.12   44 Male 23.92 
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Mendelian errors 

PLATO detected 10,023 Mendelian errors in the entire dataset.  The highest 

percentage of genotypes with Mendelian errors for any individual was 0.6%.  Because no 

sample had a substantially high percentage of Mendelian errors, the 10,023 genotypes 

were removed from the dataset, but no samples were removed.   

 

Race/Ethnicity  

An examination of the population structure produced the following conclusions: 

1) All samples in the dataset are Amish.  No samples from another race/ethnicity were 

accidentally included in the project (Figure 2.3a); 2) The Amish are most similar 

racially/ethnically to the HapMap CEU samples compared to other Hapmap samples 

tested (Figure 2.3a); 3) Although relatively quite homogeneous, there is a low level of 

population substructure within the Amish communities in our dataset, i.e. Adams 

County is somewhat distinct from Elkhart and LaGrange Counties, IN, and Holmes 

County, OH (Figure 2.3b).  No individuals were removed after examining 

race/ethnicity. 
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Figure 2.3a,b. Population structure of the Amish.  a) The 124 most unrelated Amish 
(red) were used to compare with the HapMap CEU (green), JPT and CHB (blue), and 
YRI (Yellow) populations.  b) Amish individuals from Adams County (red) compared to 
Elkhart, LaGrange, and Holmes Counties (green). 
 

 

Pedigree errors  

When using GRR to cluster by mean and standard deviation of IBS, no outliers 

were observed for half-sibling pairs, parent-offspring pairs, and unrelated pairs (Figure 

2.4b,c,e).  However the graphs for full sibling pairs and other relatives pairs both show 

outliers, including a relative pair with mean IBS=2.0 (Figure 2.4a,d).  The two samples 

with IBS=2.0 either belong to a pair of identical twins or one of the samples was 

duplicated.  We rejected the first scenario because the two individuals have different 

parents and are 11 years apart in age.  Examination of other outliers from the sibling 

pairs and other relatives pairs clusters revealed that one of the individuals was causing 

several other outliers.  Because we could determine which individual was the duplicate, 

we removed that sample and not both. 
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 After removing the duplicated sample as well as other samples that did not meet 

previous quality thresholds, a few outliers remained for the sibling pairs and other 

relatives pairs (Figure 2.5 a,b).  The mean IBS for all full siblings was 1.68.  Thresholds 

were determined empirically with the observed clustering to take into account the 

uniquely higher relatedness in this dataset.  We were most concerned about the sibling 

pairs that had an average IBS <1.5.  Individuals in more than one erroneous pair were 

determined to be the problematic individuals and were eliminated from the dataset.  

Individual 45, part of the sibling pair with a mean IBS of 1.42, was also part of the one 

outlier pair (mean IBS=1.69) in the other relatives group, which had an overall IBS mean 

of 1.55 (Tables 2.2 and 2.3).  The remaining sibling pairs with mean IBS <1.5 all 

contained individual 48, who was therefore removed.  We also decided to eliminate 

individual 52 since that individual was part of three sibling pairs that did not cluster 

tightly with the rest of the sibling pairs (Table 2.2). 
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Figure 2.4a-e. Output from Graphical Representation of Relationships using raw data.  
X axis is IBS mean, Y axis is IBS standard deviation.  Means and standard deviations are 
based on 1000 randomly chosen SNPs.  Each point represents one pair of individuals.  
Pair of individuals with mean IBS=2 is circled. 
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Figure 2.5a,b. Output from Graphical Representation of Relationships after removing 
duplicate sample and samples not meeting other quality control thresholds.  X axis is 
IBS mean, Y axis is IBS standard deviation.  Means and standard deviations are based on 
1000 randomly chosen SNPs.  Each point represents one pair of individuals. 
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Table 2.2. Lowest mean IBS for sibling pairs.  Mean IBS was calculated from 1000 
randomly chosen SNPs from the GWAS.  Different colors are used to distinguish unique 
ID’s for individuals who were removed from the dataset.  ‘Markers’ refers to the number 
of markers compared between Person1 and Person2.  Note that individual 45 
(highlighted in yellow) is also in Table 2.3. 
 

Person1 Person2 Markers IBS Mean Mean StDev Relationship 

45 46 999 1.42 0.62 SIB-SIB 

47 48 999 1.44 0.62 SIB-SIB 

49 48 999 1.44 0.64 SIB-SIB 

48 49 972 1.45 0.6 SIB-SIB 

50 51 1000 1.55 0.58 SIB-SIB 

52 53 998 1.55 0.58 SIB-SIB 

52 54 995 1.56 0.56 SIB-SIB 

55 55 994 1.57 0.56 SIB-SIB 

52 57 994 1.57 0.55 SIB-SIB 

58 59 998 1.6 0.54 SIB-SIB 

60 61 996 1.6 0.55 SIB-SIB 

62 63 976 1.6 0.55 SIB-SIB 

64 65 997 1.61 0.55 SIB-SIB 

66 67 984 1.61 0.55 SIB-SIB 

68 59 1000 1.61 0.54 SIB-SIB 

69 70 982 1.61 0.54 SIB-SIB 

71 72 996 1.61 0.54 SIB-SIB 

73 74 993 1.62 0.56 SIB-SIB 
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Table 2.3. Highest mean IBS for other relatives pairs.  Mean IBS was calculated from 
1000 randomly chosen SNPs from the GWAS.   Note that individual 45 (highlighted in 
yellow) is also in Table 2.2 and was removed from the dataset. 
 

Person1 Person2 Markers IBS Mean IBS StDev Relationship 

45 75 999 1.69 0.5 Related 

76 77 994 1.6 0.56 Related 

78 79 979 1.59 0.53 Related 

80 81 997 1.59 0.55 Related 

82 68 997 1.59 0.53 Related 

83 84 1000 1.59 0.56 Related 

85 86 991 1.59 0.56 Related 

87 88 997 1.59 0.58 Related 

89 90 975 1.59 0.55 Related 

91 58 995 1.58 0.53 Related 

92 93 994 1.58 0.55 Related 

94 93 989 1.58 0.55 Related 

95 96 992 1.58 0.54 Related 

97 98 996 1.58 0.57 Related 

99 100 995 1.58 0.56 Related 

101 102 999 1.58 0.57 Related 

103 93 983 1.58 0.57 Related 

104 105 998 1.58 0.58 Related 

106 101 998 1.58 0.57 Related 

107 93 999 1.58 0.58 Related 

106 103 983 1.57 0.58 Related 

108 109 984 1.57 0.56 Related 
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Result of all QC 

 After all quality control measures were taken, 291,635 SNPs were removed, 

leaving 614,963 SNPs for analysis (Table 2.4).  An additional 10,023 individual genotypes 

were removed due to Mendelian errors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Flowchart of SNP and sample quality control procedures. 
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Discussion 

 

Following careful quality control procedures is extremely important, especially 

when handling a dataset with genotypes generated with high-throughput methods 

where overall quality is generally good but many errors could go undetected because of 

the high-throughput nature.   A clean dataset will reduce the likelihood of spurious 

associations arising in the results and will increase the likelihood of detecting a true 

genetic association.  Not only is a clean dataset important for the immediate analyses, i.e. 

genome-wide linkage and association analyses, but also for future studies that are based 

on the initial analyses.  Ensuring the quality of the data at the beginning of the study 

provides for more efficient and effective future studies.  In this study we started with 

906,598 SNPs and 827 samples in the raw dataset.   

We performed quality control procedures typical of most GWAS including 

eliminating samples and SNPs with low genotyping efficiency, eliminating SNPs with 

low minor allele frequency, and samples that were gender errors.   Eliminating samples 

and SNPs with low genotyping efficiency removes poor performing and therefore 

potentially unreliable genotypes from analysis.  SNPs with low minor allele frequencies 

can also indicate poor genotyping performance and are not useful since power to detect 

association is diminished.  Unlike the usual case-control GWAS, we also incorporated 

kinships into our calculation of minor allele frequency to eliminate SNPs with a 

corrected minor allele frequency <0.05.  Because of the family structure of our dataset, 

we removed genotypes, but no individuals, that appeared to be Mendelian errors.  

Checking gender errors was particularly important for detecting any sample handling 

mix-ups, which would result in genotypes matched to the wrong individual, and 
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therefore potentially the wrong phenotype and pedigree placement.  A closer 

examination of the raw probe intensity data for SNPs the X chromosome could help 

explain some of the heterozygosity rates that were outliers.  For instance, it would be 

interesting to see if there are specific areas of the chromosome affecting the 

heterozygosity rates or if the heterozygous SNPs are randomly distributed along the X 

chromosome.  We also assessed the family structure to remove individuals whose allele 

sharing was not typical of the specified family relationship since improper specification 

of relatedness could dramatically change our linkage results.  This procedure not only 

identified pedigree errors but also identified a sample duplicate which would not have 

been detected by any other quality control procedures.  A closer examination of the 

allele sharing could reveal the correct pedigree placement for those individuals who 

were eliminated.  Continuing to ascertain and genotype more individuals, which fills in 

more pedigree information, could help with that process. 

As we expected, when comparing the Amish to other populations by clustering 

based on allele frequencies, the Amish are most similar to an outbred European-descent 

dataset compared to Yoruban, Japanese, and Chinese datasets.  Although clustered 

closest to the European descent dataset, the Amish formed a completely distinct cluster, 

which is a product of the isolation of this population and the increased relatedness even 

between the most unrelated individuals.  Even within the Amish we saw some 

population substructure between the Adams County community and Elkhart, 

LaGrange, and Holmes County communities, which is indicative of their history and 

cultural differences.  Some settlers of the Elkhart County and LaGrange County 

community originally came from Holmes County Ohio, resulting in more relationships 

between these communities compared to the Adams County community which 
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remained distinct (95).  The Adams County community has historically followed more 

Old Order ways and has been stricter with marriage choices.  Overall, though, all Amish 

communities are much more historically and culturally similar to each other than the 

general population. 

 In total, after performing all of our quality checks, we removed 291,635 SNPs and 

26 samples leaving 614,963 SNPs and 798 samples.  These quality control procedures 

have provided a reliable dataset for genome-wide linkage and association analyses that 

are presented in Chapter III, and a follow-up sequence study presented in Chapter IV. 
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CHAPTER III 

 

GENOME-WIDE LINKAGE AND ASSOCIATION STUDY FOR ALZHEIMER 
DISEASE IN AN AMISH POPULATION1 

 
 

Introduction 

 

Late-onset Alzheimer disease (LOAD) is a neurodegenerative disorder causing 

the majority of dementia cases in the elderly.  A complex combination of genetic and 

environmental components likely determines susceptibility to LOAD (19).  The APOE E4 

allele is a well-established genetic risk factor for LOAD.  Additional risk genes have 

been difficult to detect and replicate until recent successes using large consortia-derived 

genome-wide association study (GWAS) datasets, which have added CR1, CLU, 

PICALM, BIN1, EPHA1, MS4A, CD33, CD2AP, and ABCA7 to the list of confirmed 

LOAD susceptibility genes, each with modest effect (78-82). 

Despite these recent successes the majority of the genetic risk for LOAD remains 

unknown.  The remaining genetic risk may in part lie in additional loci with small effects 

at the population level, making most datasets underpowered.  The use of a genetically 

isolated founder population, such as the Amish, represents an alternative to the use of 

                                                      
1 Adapted from: Anna C. Cummings, Lan Jiang, Digna R. Velez Edwards, Jacob L. 

McCauley, Renee Laux, Lynne L. McFarland, Denise Fuzzell, Clare Knebusch, Laura 

Caywood, Lori Reinhart-Mercer, Laura Nations, John R. Gilbert, Ioanna Konidari, 

Michael Tramontana, Michael L. Cuccaro, William K. Scott, Margaret A. Pericak-Vance, 

Jonathan L. Haines.  Genome-Wide Association and Linkage Study in the Amish Detects 

a novel Candidate Late-Onset Alzheimer Disease Gene.  Annals of Human Genetics. 2012 

Sep; 76(5):342-51. 
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large population based consortia-derived datasets in the search for genetic risk factors.  

In the case of a founder population, the number of disease variants is hypothesized to be 

fewer, thereby decreasing heterogeneity and increasing power.  

We have taken this approach to discover at least one novel LOAD risk gene by 

studying the Amish communities of Holmes County, Ohio, and Adams, Elkhart and 

LaGrange Counties, Indiana (56;107).  These communities are collectively part of a 

genetically isolated founder population originating from two waves of immigration of 

Swiss Anabaptists into the U.S in the 1700’s and 1800’s.  The first wave of immigration 

brought the Anabaptists to Pennsylvania.  In the early 1800’s some of these immigrants 

moved to Holmes County, OH (94), while a second wave of immigration from Europe 

established more Amish communities in Ohio (including Wayne County but not Holmes 

County) and Indiana (including Adams County) (95).  Starting in 1841, the Elkhart and 

LaGrange Counties Amish community was founded by Amish families primarily from 

Somerset County, PA, and from Holmes and Wayne Counties, OH, who were seeking 

new farmland to settle(93).  The Amish marry within their faith, limiting the amount of 

genetic variation introduced to the population.  Not only are the Amish more genetically 

homogeneous, but because of their strict lifestyle, environmental exposures are also 

more homogeneous.  The Amish have large families and a well-preserved 

comprehensive family history that can be queried via the Anabaptist Genealogy 

Database (AGDB) (96;97), making the Amish a valuable resource for genetic studies. 

Our current study undertook a genome-wide approach, in a population isolate, 

using complementary linkage and association analyses to further elucidate the complex 

genetic architecture of LOAD.  We utilized linkage analysis to look for sharing of 

genomic regions among affected individuals, while also using association analysis to 
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look for differences in allele frequencies between affecteds and unaffecteds.  We 

previously performed a genome-wide linkage study using microsatellites genotyped in 

only a small subset of the individuals included in this study(56).  Here we use a much 

larger dataset with a much denser panel of markers using a genome-wide SNP chip.  

The results indicate that several novel regions likely harbor LOAD genes in the Amish, 

underscoring the genetic heterogeneity of this phenotype. 

 

Methods 

 

Subjects 

Methods for ascertainment were reviewed and approved by the individual 

Institutional Review Boards of the respective institutions.  Participants were identified 

from published community directories, referral from other community members or due 

to close relationship with other participants, as previously described (108).  Informed 

consent was obtained from participants recruited from the Amish communities in 

Elkhart, LaGrange, and surrounding Indiana counties, and Holmes and surrounding 

Ohio counties with which we have had established working relationships for over 10 

years. 

 

Clinical Data 

For individuals who agreed to participate, demographic, family, and 

environmental information was collected, informed consent was obtained, and both a 

functional assessment and the Modified-Mini-Mental State Exam (3MS) were 

administered (109;110).  Those scoring ≥ 87 on the 3MS were considered cognitively 



41 

 

normal and were considered unaffected in our study.  Those scoring <87 were 

reexamined with further tests from the CERAD neuropsychological battery (111).  

Depression was also evaluated using the geriatric depression scale (GDS).  Diagnoses for 

possible and probable AD were made according to the NINCDS-ADRDA criteria (17).  A 

yearly consensus case conference was held to confirm all diagnoses. 

 

Genotyping 

SNPs for APOE were genotyped for 823 individuals (127 with LOAD).  To 

identify the six APOE genotypes determined by the APOE *E2, *E3 and *E4 alleles, two 

single nucleotide polymorphisms (SNPs) were assayed using the TaqMan method 

[Applied Biosystems Inc. (ABI), Foster City, CA, USA].  SNP-specific primers and probes 

were designed by ABI (TaqMan genotyping assays) and assays were performed 

according to the manufacturer's instructions in 5 µl total volumes in 384-well plates.  The 

polymorphisms distinguish the *E2 allele from the *E3 and *E4 alleles at amino acid 

position 158 (NCBI rs7412) and the *E4 allele from the *E2 and *E3 alleles at amino acid 

position 112 (NCBI rs429358).   

Genome-wide genotyping was performed on 830 DNA samples using the 

Affymetrix 6.0 GeneChip ® Human Mapping 1 million array set (Affymetrix®, Inc Santa 

Clara, CA).  DNA for this project was allocated by the respective DNA banks at both the 

Hussman Institute of Human Genomics (HIHG) at the University of Miami and the 

Center for Human Genetics Research (CHGR) at Vanderbilt University.  Genomic DNA 

was quantitated via the ND-8000 spectrophotometer and DNA quality was evaluated 

via gel electrophoresis. The genomic DNA (250 ng/5ul) samples were processed 

according to standard Affymetrix procedures for processing of the Affymetrix 6.0 
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GeneChip assay. The arrays were then scanned using the GeneChip Scanner 3000 7G 

operated by the Affymetrix® GeneChip® Command Console® (AGCC) software.  The 

data were processed for genotype calling using the Affymetrix® Power Tools (APT) 

software using the birdseed calling algorithm version 2.0 (Affymetrix®, Inc Santa Clara, 

CA) (112).   

We applied a number of quality control (QC) procedures to both samples and 

SNPs to ensure the accuracy of our genotype data prior to linkage and association 

analyses.  Specific sample QC included: 1) Each individual DNA sample was examined 

via agarose to ensure that the sample was of high quality prior to inclusion on the array; 

2) CEPH samples were placed across multiple arrays to ensure reproducibility of results 

across the arrays; 3) Samples with call rates < 95% were re-examined individually to 

ensure quality of genotypes. 4) Ultimately if the sample call rate remained below 95% 

after further evaluation, attempts were made to rerun the array with a new DNA 

sample.  If the sample still failed, it was dropped.  Nine samples were dropped due to 

low genotyping efficiency.  Three samples were excluded because they did not connect 

into a pedigree with the rest of the samples, and therefore, relationships of those 

individuals could not be accounted for.  Sixteen samples with questionable gender based 

on X chromosome heterozygosity rates were eliminated.  Three samples appearing to be 

aberrantly connected in the pedigree based on the genotype data were also excluded.   

Specific SNP QC included: 1) Dropping 76,816 SNPs with call rates <98%.  2) 

Dropping 206,970 SNPs with minor allele frequencies (MAF) ≤0.05.  We additionally 

excluded 7,849 SNPs with a MAF less than 0.05 after adjusting for pedigree relationships 

using MQLS (see below).  Due to the relatedness in this dataset we did not check SNPs 

for Hardy-Weinberg equilibrium.  Following this extensive quality control, 798 samples 
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(109 with LOAD, Table 3.1) and 614,963 SNPs were analyzed.  Because APOE 

genotyping and QC were performed separately from genome-wide genotyping and QC, 

the sample sizes are different and the datasets are mostly, but not completely, 

overlapping.  All 798 samples belong to one 4998-member pedigree with many 

consanguineous loops.  The AGDB provided the pedigree information using an “all 

common paths” database query with all genotyped individuals (97). 

 

Table 3.1. Genome-wide dataset. Ages of exam and onset averages and standard 

deviations were calculated for the 798 samples—Late-onset AD (LOAD) samples, 

cognitively normal (unaffected) samples, and unclear or unknown samples—which 

passed QC for genome-wide genotyping. 

 Males Females Total Average Age 

of Exam 

(Standard 

Deviation) 

Average Age of 

Onset 

(Standard Deviation) 

LOAD Affected 43 66 109 83 (7.57) 79 (6.68) 

Cognitively Normal 192 258 450 78 (7.67) - 

Unclear or 

Unknown  

117 122 239 74 (15.52) - 

 

 

Statistical Analysis 

Association analysis 

We used the Modified Quasi-Likelihood Score (MQLS) test (software version 1.2) 

to correct for pedigree relationships (113).  MQLS is analogous to a chi-square test, the 

most common approach for case-control data analysis with a binary trait, but MQLS 

incorporates kinship coefficients to correct for correlated genotypes of all the pedigree 
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relationships.  This test allows all samples to be included without dividing the pedigree.  

The MQLS test cannot be applied to X chromosome data, which were, therefore, 

eliminated from analysis.  Because we previously found that Adams County has a lower 

APOE-4 allele frequency than the general population (114), we did a stratified 

association analysis for APOE analyzing Adams County separately from the combined 

Elkhart, LaGrange, and Holmes Counties.  Using the same stratification, we also re-

analyzed our most significant SNPs from the GWAS analysis.  To test the validity of the 

MQLS test in our pedigree, we performed simulation studies using this same pedigree 

structure to assess the type 1 error rate using MQLS for association.  Type 1 error rates 

were not inflated (unpublished data). 

 

Linkage analysis 

Because of the large size and substantial consanguinity of the pedigree, we used 

PedCut (115) to find an optimal set of sub-pedigrees including the maximal number of 

subjects of interest within a bit-size limit (24 in this study) conducive to linkage analysis.  

This procedure resulted in 34 sub-pedigrees for analysis with an average of 7 genotyped 

individuals (3 genotyped affected) per sub-pedigree.  Parametric heterogeneity two-

point LOD (HLOD) scores were computed assuming affecteds-only autosomal dominant 

and recessive models using Merlin (116).  Because the underlying genetic model is 

unknown, we tested both dominant and recessive models to maximize our ability to find 

a disease locus.  A disease allele frequency of 1% was used for both the dominant and 

recessive models.  For the dominant model penetrances of 0 for no disease allele and 

0.0001 for one or two copies of the disease allele, and under the recessive model 

penetrances of 0 for zero or one disease allele and 0.0001 for two disease alleles were 
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used.  SNPs on the X chromosome were analyzed using MINX (Merlin in X).  Regions 

showing evidence for linkage, i.e. containing at least one two-point HLOD ≥ 3.0, were 

followed up with parametric multipoint linkage analysis (also using Merlin).  For the 

multipoint analyses, SNPs were pruned for linkage disequilibrium (LD) in each region 

so that all pair-wise r2 values were < 0.16 between all SNPs (117).  The LD from the 

HapMap CEU samples (parents only) were used for pruning.  Because the HapMap 

CEU samples may not be an exact representation of LD in our Amish population, we 

also tested pruning using the data from this Amish dataset, but linkage results did not 

change using this approach (data not shown).  Because linkage analyses can be biased 

when breaking larger pedigrees into a series of smaller ones (118;119), we performed 

simulation studies assuming no linkage (e.g. null distribution) and using the same large 

pedigree structure and the same pedigree splitting method.  We determined empirical 

thresholds for significance in our linkage studies to maintain a nominal type I error rate.  

We found that after 1000 replications of multipoint linkage for regions the size of the 

average size in this study, only 2.5% of the multipoint linkage scans generated a 

maximum HLOD >3.0 (unpublished data). 

All computations were performed using either the Center for Human Genetics 

Research computational cluster or the Advanced Computing Center for Research and 

Education (ACCRE) cluster at Vanderbilt University. 

 

Evaluation of the MMSE and Word List Learning 

We examined a portion of the outcome of the CERAD neuropsychological 

battery of tests to determine if there were any specific correlations with significant 

genetic profiles in this Amish population.  In a subset of 69 LOAD affected individuals, 
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we examined scores for the mini-mental state exam (MMSE) and the Word List Learning 

with delayed recall and recognition procedures portion of the CERAD battery of tests.  

We chose to evaluate the Word List Learning portion of the battery because, of all the 

tests in the battery, word list recall was found to distinguish AD cases from controls 

(120), and Word List Learning scores have been shown to be very heritable (92).  The 

MMSE evaluates overall cognition by asking basic questions and requesting simple 

writing, drawing, and memory tasks.  We chose to also include MMSE scores in our 

analyses so that we could adjust for overall cognitive abilities when specifically 

examining Word List Learning measures.  The Word List Learning with delayed recall 

and recognition tests verbal episodic memory.  During the Word List Learning and 

delayed recall and recognition tests, subjects first are given three tries to remember a list 

of ten words (word list memory trials 1 through 3) that is shown to them.  After 

performing another non-verbal task, they are asked to recall the words again for a 

delayed recall score.  A ‘savings’ score is calculated by dividing the delayed recall score 

by the word list memory trial 3 score.  Then the same words interspersed with 10 

additional words are shown to test if the subjects can recognize if the words were 

(recognition-yes) or were not (recognition-no) in the original list.  Raw scores for the 

MMSE, the three word list memory trials, delayed recall, savings, recognition-yes, and 

recognition-no were converted to Z scores appropriate for age, gender, and years of 

education.   

We assigned each of the 69 individuals to one of three LOAD risk groups based 

on APOE genotype.  Individuals with the APOE 4/4 or 3/4 genotype were labeled high 

risk, individuals with the APOE 2/4 or 3/3 genotype were considered normal risk, and 

individuals with the APOE 2/3 genotype were assigned to the low risk group.  There 
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were no individuals with the APOE 2/2 genotype.  Because the Z scores were not 

normally distributed (Appendix C), we compared mean Z scores for each of the test 

results using the nonparametric Kruskal-Wallis test.  Tests that resulted in a p-value ≤ 

0.05 were further tested with the two-sample Wilcoxon rank-sum (Mann-Whitney) test 

to determine between which of the three APOE groups the difference in mean Z score 

was significantly different.  We performed an analysis of covariance (ANCOVA) to test 

each of the Word List Learning Z scores while adjusting for MMSE Z scores to 

determine if any of the differences between in Word List Learning Z scores were simply 

a result of overall cognitive decline.  Any results with p<0.05 were followed up with 

pairwise ANCOVA to adjust for MMSE Z scores while comparing each of the risk 

groups.  

We also evaluated the correlation between the per-family lod scores of our most 

significant region of linkage on chromosome 2 and the neuropsychological test results.  

The per-family lod scores are the lod scores generated by each sub-pedigree in the 

linkage analyses.  Both the dominant and recessive models generated high linkage peaks 

at 2p12, so we tested both the peak per-family lod scores under the dominant model and 

the peak per-family lod scores under the recessive model.  The nonparametric Spearman 

correlation was used to test for correlations between the dominant or recessive per-

family lod scores and each of the Z scores.  We repeated the correlations for the Word 

List Memory, recall, savings, and recognition scores while adjusting for MMSE as a 

covariate. 

All analyses were performed using STATA. 
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Results 

 

APOE   

We found that LOAD was significantly associated with APOE (MQLS P=9.0x10-

6) in our Amish population except for the Adams County, Indiana, community (MQLS 

P=0.55).The E4 frequency, adjusted for pedigree relationships, in LOAD individuals in 

Elkhart, LaGrange, and Holmes Counties was 0.18 for affected individuals compared to 

0.11 for unaffected individuals (Table 3.2).  This compares to an E4 allele frequency of 

0.38 in Caucasian AD individuals (0.14 for controls) (alzgene.org).  We also saw a 

progressively younger average age of onset with each additional copy of the E4 allele 

(Table 3.3), consistent with other populations.  We did not see evidence for linkage with 

APOE in our sub-pedigrees (dominant HLOD=0.50, recessive HLOD=0.29). 

 

Table 3.2. MQLS-corrected APOE allele frequencies.  APOE allele frequencies of Late-

onset AD (LOAD) affected individuals versus cognitively normal individuals 

(unaffecteds) were calculated using MQLS to correct for pedigree relationships.  

Frequencies were calculated in the Adams County individuals separately from Elkhart, 

LaGrange, and Holmes Counties. 

APOE allele frequencies 

Elkhart, LaGrange, and Holmes 
Counties 

  E2 E3 E4 

LOAD Affected 0.07 0.75 0.18 

Cognitively Normal 0.08 0.82 0.11 

Adams County 

LOAD Affected 0.00 0.94 0.06 

Cognitively Normal 0.04 0.88 0.08 
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Table 3.3. Age of onset and number of affected versus unaffected individuals by 

APOE genotype.  Average ages of onset and standard deviations by APOE genotype 

and number LOAD affected and unaffected by APOE genotype 

  

APOE Genotype 

4/4 ¾ 2/4 3/3 2/3 

Average Age of Onset (stdev) 71 (7.59) 76 (7.94) 74 (3.54) 80 (6.70) 84 (7.42) 

Number LOAD Affected 10 34 2 69 12 

Number Cognitively normal 6 90 6 308 35 

 

 

Genome-wide association   

In the GWAS, the most significant MQLS P-value (7.92x10-7), which did not 

surpass a Bonferroni-corrected genome-wide significance threshold of 8.13x10-8, was at 

rs12361953 on chromosome 11 in LUZP2 (leucine zipper protein 2) (Table 3.4, Figure 

3.1).  The pedigree-adjusted minor allele frequency was 0.26 for affected individuals 

versus 0.15 for unaffected individuals.  Fourteen additional SNPs had p-values <1.0x10-5 

(Table 3.4).  According to our simulation analyses, we have >80% power to detect a p-

value ≤ 0.005 under an additive model with an odds ratio of 2.0 (data not shown).  After 

stratifying, each of the fifteen most significant SNPs had a more significant p-value in 

the non-Adams County dataset.  Although some of the SNPs have very different minor 

allele frequencies in the two strata, the less significant p-values for the Adams County 

dataset can be explained mostly by the lack of power in that stratum (9 LOAD affected).  

All SNPs showed the same direction of effect in the two strata except for rs472926, 

rs12361953, and rs472926 (Appendix A).  These association results did not fall within a 

megabase of any of the other 9 previously verified LOAD genes (CR1, CLU, PICALM, 

BIN1, EPHA1, MS4A, CD33, CD2AP, and ABCA7).  However, four SNPs (rs10792820, 
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rs11234505, rs10501608, and rs7131120) in PICALM generated nominally significant p-

values (P<0.05).  Rs11234505 is only ~3.0 kb from rs561655, the most significant SNP 

published by Naj et al(81), and rs10501608 is only ~10.5 kb from rs541458 the most 

significant SNP published by Harold et al and Lambert et al(78;79).  We also have a 

nominally significant SNP, rs6591625, in the MS4A10 gene.  The SNP is ~0.5 Mb from 

rs4938933, the most significant SNP published by Naj et al(81).   
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Table 3.4.  Most significant genome-wide association results. The fifteen most 

significant genome-wide association results calculated using MQLS.  Minor allele 

frequencies (MAF) are MQLS-corrected for pedigree relationships.  A gene is only listed 

if the SNP falls within specified gene.  Megabase pair (Mpb) positions are based on 

NCBI Build 36.  

Chr SNP 
Position 
(Mbp) 

Minor 
Allele 

Affected 
MAF   

Unaffected 
MAF 

MQLS 
P-value Gene 

1 rs4145462 165.99 

T 

0.10 0.05 1.22x10-06 MPZL1 

2 rs41458646 23.09 

G 

0.27 0.17 8.44x10-06 - 

2 rs41476545 23.09 

G 

0.27 0.17 9.02x10-06 - 

2 rs6738181 204.84 

A 

0.35 0.19 4.97x10-06 - 

3 rs7638995 69.26 

A 

0.20 0.11 1.82x10-06 - 

7 rs679974 105.06 

C 

0.18 0.08 8.67x10-06 ATXN7L1 

7 rs11983798 105.07 

T 

0.17 0.08 1.49x10-06 ATXN7L1 

8 rs6468852 104.05 

G 

0.24 0.13 1.06x10-06 - 

9 rs9969729 107.67 

A 

0.14 0.08 1.94x10-06 - 

11 rs12361953 24.57 

C 

0.26 0.15 7.92x10-07 LUZP2 

11 rs472926 125.41 

C 

0.25 0.15 3.28x10-06 CDON 

11 rs4937314 127.69 

C 

0.27 0.17 7.00x10-06 - 

14 rs11848070 70.58 

C 

0.38 0.25 5.64x10-06 PCNX 

14 rs17767225 70.74 

T 

0.32 0.2 7.88x10-06 - 

20 rs6085820 6.93 

A 

0.17 0.09 9.31x10-06 - 
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Figure 3.1. MQLS Manhattan plot. Genome-wide association results were calculated 

using MQLS for 798 individuals (109 Late-onset Alzheimer disease affected).  The lowest 

P-value (7.92x10-7) was calculated on chromosome 11 at rs12361953 which is located in 

the Leucine zipper protein 2 (LUZP2) gene. 

 

Genome-wide linkage 

In the genome-wide analysis, forty five regions, among all chromosomes except 

17, 21, and X, had at least one two-point HLOD ≥ 3.0 (Appendix B).  Multipoint linkage 

analysis for these regions resulted in four regions, one each on chromosomes 2, 3, 9, and 

18 with a multipoint peak HLOD > 3 (Table 3.5, Figure 3.2).  The highest peak occurred 

on chromosome 2 with a recessive peak HLOD of 6.14 (90.91 Mbp) and a dominant peak 

HLOD of 6.05 (81.03 Mbp).  The most significant association results within the recessive 

and dominant ±1-LOD-unit support interval were rs1258411 (P=5.29x10-2) and 

rs2974151 (P=1.29x10-4), respectively.  Rs1258411 is not located in a gene, but rs2974151 

is located in an intron of CTNNA2 (catenin, alpha 2).  In addition to rs2974151, 10 other 

SNPs in this gene had P-values <0.05.  While this is less than 5% of the analyzed SNPs in 

CTNNA2, it still warrants attention. 

rs12361953 (chr11, LUZP2), 

p=7.92x10-7 
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The next highest multipoint result was on chromosome 3 with a dominant 

HLOD of 5.27 and a recessive HLOD of 3.53.  The peak for both models is at 168.43 Mbp, 

and the most significant association result in the ±1-LOD-unit support interval was at 

rs9812366 (P=4.00x10-2), which is intergenic.  The linkage peak on chromosome 9 

reached an HLOD of 4.44 (107.76 Mbp) under the dominant model and 3.77 (101.7 Mbp) 

under the recessive model.  This peak overlaps with the suggestive linkage peak found 

in the joint linkage analysis published by Hamshere et al(121), however this region has 

not been consistently replicated in other studies.  For both models the most significant 

association result in the ±1-LOD-unit support interval was at rs9969729 (P=1.94x10-6), 

which is intergenic.  On chromosome 18 the dominant and recessive results both peaked 

at 8.77 Mbp with HLOD=3.97 for the dominant model and HLOD=4.43 for the recessive 

model.  The most significant association result in this ±1-LOD-unit support interval was 

at rs632912 (P=8.80x10-4), which is intergenic.  None of these regions overlap the linkage 

peaks found in our previous genome-wide microsatellite linkage study, which used only 

a subset of the individuals in the current dataset (56).  As with our association results, 

these multipoint peaks did not encompass the previously known LOAD genes.   
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Table 3.5. Most significant multipoint linkage results. Parametric dominant (Dom) and recessive (Rec) multipoint maximum 

heterogeneity (HLOD) scores were calculated using Merlin.  Regions are determined by ±1-LOD-unit support intervals. 

Chr 

Dom  
Peak 

HLOD 

Dom 
peak 
alpha 

Position  
(Mbp) Region 

Lowest 
 MQLS p-value 

 in Region 

Rec  
Peak 

HLOD 

Rec 
peak 
alpha 

Position  
(Mbp) Region 

Lowest 
 MQLS p-value 

 in Region 

2 6.05 0.48 81.03 
79.46- 
82.95 

1.29E-4  
(rs2974151) 6.14 0.39 90.81 

87.97- 
97.46 

5.29E-2 
 (rs1258411) 

3 5.27 0.49 168.43 
168.06- 
168.60 

4.00E-2  
(rs9812366) 3.53 0.26 168.43 

168.06- 
168.60 

4.00E-2 
 (rs9812366) 

9 4.44 0.34 107.77 
102.94- 
110.80 

1.94E-6  
(rs9969729) 3.77 0.23 101.7 

98.86- 
109.79 

1.94E-6 
 (rs9969729) 

18 3.97 0.27 8.77 
8.12- 
9.59 

8.80E-4  
(rs632912) 4.43 0.21 8.77 

8.12- 
9.59 

8.80E-4 
 (rs632912) 
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Figure 3.2.  Strongest multipoint linkage peaks.  Parametric dominant (blue) and 

recessive (red) multipoint linkage peaks with HLOD scores >3 were calculated on 

chromosomes 2 (a), 3 (b), 9 (c), and 18 (d).  Red=recessive, Blue=dominant 

 

 

 

Evaluation of the MMSE and Word List Learning 

After observing the association with APOE and the high linkage peak on 

chromosome 2, we tested whether the standardized scores (Z scores) on the Word List 

Learning portion of the neuropsychological battery of tests differentiated between low, 

normal, and high risk groups according to APOE genotype and between individuals in 

subpedigrees showing linkage between LOAD and 2p12 versus the other subpedigrees. 

Comparing mean Z scores between the three LOAD risk groups assigned by 

APOE genotype, a decrease was seen in mean Z score for almost all Z score categories.  

The only exceptions were normal risk versus low risk for trial 2, and recognition yes 
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(high risk and normal risk were equal, mean for low risk was greater than high risk or 

normal risk) (Table 3.6). 

The most significant difference in mean Z scores between the three risk groups 

was for recognition-no (p=0.001).  Follow up analysis with the two-sample Wilcoxon 

rank sum test revealed that comparison of means between normal risk and high risk 

(p=0.001) was significant and between low risk and high risk groups (p=0.004) were 

significant (Table 3.7).  The high risk group was on average 8.61 standard deviations 

below the mean for their ability to recognize that a word was not previously shown to 

them, and the normal and low risk groups were on average 3.79 and 1.57 standard 

deviations below the mean, respectively (Table 3.6).  Nominally significant results were 

also seen for delayed recall (0.03) and savings (0.02) Z scores, which are directly related 

scores since savings is calculated using the delayed recall result and the Word List 

Memory Trial 3 result.  Applying the Wilcoxon rank sum test showed that differences of 

means for normal risk versus high risk and low risk versus high risk explain the 

nominally significant results (p=0.02 for both comparisons in both groups) (Table 3.7).  

After applying a strict Bonferroni correction and multiplying all p-values by 17 (the total 

number of tests conducted which are presented in Table 3.7), the only significant p-

values are for the overall ANCOVA of recognition-no Z scores and the pairwise 

ANCOVA between the normal risk group versus the high risk group. 

After adjusting for MMSE Z scores, the only nominal significant difference in 

mean Z scores for any of the Word List learning tasks was for recognition-no (p=0.02).  

The adjusted pairwise comparisons again showed that the differences in means was 

driven by the highest risk group since low risk versus high risk and normal versus high 
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risk were both significant, but not low risk versus normal risk (Table 3.8).  None of these 

results would withstand a Bonferroni correction to the p-values (multiplying by 10).  

However, we had very small samples sizes in these analyses. 
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Table 3.6. MMSE and Word list learning Z scores per LOAD risk group defined by APOE.  Affected individuals 

with the APOE 3/4 or 4/4 genotype were assigned to the high risk group, those with APOE 2/4 or 3/3 were assigned to the 

normal risk group, and those with the APOE 2/3 genotype were assigned to the low risk group.  MMSE=Mini-Mental State 

Exam.  Min=Minimum Z score.  Max=Maximum Z score.  

  High Risk (APOE 3/4 and 4/4) Normal Risk (APOE 2/4 and 3/3) Low Risk (APOE 2/3) 

  
# 

individuals Mean  Min Max 
# 

individuals Mean  Min Max 
# 

individuals Mean  Min Max 

MMSE Z 22 -7.15 -12.55 -0.73 39 -6.54 -12.55 -0.27 7 -5.66 -12.55 -1.18 

Word List Memory 
Trial 1 Z 22 -2.06 -3.00 0.13 40 -2.02 -3.00 0.13 7 -1.93 -3.00 -0.50 

Word List Memory 
Trial 2 Z 22 -2.30 -3.88 -0.94 40 -2.13 -4.42 -0.35 7 -2.20 -3.88 -1.53 

Word List Memory 
Trial 3 Z 22 -2.37 -4.00 -1.37 40 -2.28 -4.43 -0.32 7 -1.97 -2.95 -0.84 

Delayed Recall Z 22 -3.29 -3.53 -1.42 40 -2.85 -4.06 -0.37 7 -2.70 -3.53 -1.42 

Savings Z 22 -4.48 -5.18 0.60 40 -3.49 -5.18 1.75 7 -2.72 -5.18 -0.60 

Recognition-Yes Z 22 -2.33 -7.75 0.58 38 -2.33 -7.75 0.58 7 -2.87 -6.08 -0.25 

Recognition-No Z 22 -8.61 -29.67 0.33 38 -3.79 -33.00 0.33 7 -1.57 -3.00 0.33 
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Table 3.7. Kruskal Wallis test results with follow-up two-sample Wilcoxon rank sum test results.  Mean Z scores 

were compared between the three LOAD risk groups based on APOE genotype (low=APOE 2/3, normal=APOE 2/4 or 3/3, 

high=APOE 3/4 or 4/4) using the Kruskal-Wallis test.  Only significant results were followed up with the two-sample 

Wilcoxon rank sum test. 

  

Two-sample Wilcoxon rank sum test p-value 

  
Kruskal-Wallis p-

value low vs. normal normal vs. high low vs. high 

MMSE Z 0.65 - - - 

Word List Memory Trial 1 
Z 0.89 - - - 

Word List Memory Trial 2 
Z 0.71 - - - 

Word List Memory Trial 3 
Z 0.71 - - - 

Delayed Recall Z 0.03 0.52 0.02 0.02 

Savings Z 0.02 0.37 0.02 0.02 

Recognition-Yes Z 0.85 - - - 

Recognition-No Z 0.001 0.56 0.001 0.004 
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Table 3.8. Analysis of covariance test results with follow-up pairwise test results.  Mean Z scores were compared 

between the three LOAD risk groups, based on APOE genotype (low=APOE 2/3, normal=APOE 2/4 or 3/3, high=APOE 3/4 or 

4/4), adjusting for MMSE Z scores using the analysis of covariance test in STATA.  Only significant results were followed up 

with pairwise tests. 

pairwise ANCOVA p-value 

  ANCOVA p-value low vs. normal normal vs. high low vs. high 

Word List Memory Trial 1 Z 0.99 - - - 

Word List Memory Trial 2 Z 0.89 - - - 

Word List Memory Trial 3 Z 0.79 - - - 

Delayed Recall Z 0.08 -     

Savings Z 0.06 - - - 

Recognition Yes Z 0.74 - - - 

Recognition No Z 0.02 0.37 0.02 0.03 
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Significant (p≤0.05) correlations between Z scores and per-family lod scores were 

seen for Word List Memory trials 2 and 3, delayed recall, and savings.  The correlation 

coefficient for each of the significant correlations was positive but weak, ranging from 

0.25 to 0.31 (Table 3.9).  All other correlations were very weak and not significant (see 

Appendix D for scatter plots).  Using MMSE Z scores as a covariate to test for the 

correlation between the Word List memory, delayed recall, and recognition procedures 

produced almost identical results (Appendix E).  All in all, we do not see a strong 

correlation between our linkage result on 2p12 and these specific neuropsychological 

test results. 

 

Table 3.9 Spearman’s correlation between 2p12 lod scores and Z scores of MMSE and 

Word List learning.   Recessive LOD refers to the per-family lod scores at the peak of the 

2p12 linkage region calculated under a recessive model, and dominant LOD refers to 

per-family lod scores at the peak of the 2p12 linkage region calculated under a dominant 

model.  Spearman’s rho is the correlation coefficient. 

 

Recessive LOD Dominant LOD 

  Spearman's rho p-value Spearman's rho p-value 

MMSE Z -0.15 0.22 0.10 0.43 

Word List Memory Trial 1 Z -0.07 0.55 0.14 0.24 

Word List Memory Trial 2 Z 0.15 0.22 0.31 0.01 

Word List Memory Trial 3 Z 0.08 0.49 0.25 0.04 

Delayed Recall Z 0.15 0.21 0.27 0.02 

Savings Z 0.2 0.11 0.27 0.03 

Recognition-Yes Z 0.04 0.75 0.06 0.61 

Recognition-No Z 0.002 0.99 -0.02 0.87 
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Discussion 

 

APOE was clearly associated with dementia in our population; however, it did 

not explain the majority of affected individuals.  In the Adams County communities, 

there were only 8/74 individuals who carried at least one APOE-E4 allele.  In the 

remaining Amish communities, the APOE-E4 allele was more common, but still less 

common than in the general population.  In addition, the majority of affected 

individuals (81/127, 64% for all counties; 45/115, 39% for non-Adams counties) did not 

carry an APOE-E4 allele.  The specific deficit of the APOE-E4 allele in Adams County as 

well as differences in allele frequencies for some of the top GWAS SNPs indicates at 

least some level of locus heterogeneity underlying LOAD in the Amish population.   

Additional support for locus heterogeneity arises from the linkage results.  

Examination of the subpedigree-specific lod scores for the four significant loci indicates 

that 13 of the 34 subpedigrees generate no lod scores >0.50 for any of the loci, and 

14/21(67%) of the remaining subpedigrees generate lod scores >0.50 for only one of the 4 

loci.  In addition, the vast majority of the remaining SNPs across the genome generated 

HLOD scores with alpha values (proportion of linked pedigrees) <1.0.  Finally, the 

suggestion of locus heterogeneity is consistent with the societal differences across 

church districts, which can further restrict marriages even within the Amish.   

 Because of the relatedness of individuals in our dataset we could take advantage 

of both linkage and association approaches to identify potential LOAD loci.  In our 

examination, we found that our most significant association results did not fall under 

any of the four linkage peaks.  However, under the linkage peaks we did see some 

evidence of association.  Within our most significant region of linkage lies CTNNA2, 
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which also had suggestive evidence for association.  In addition to the result at 

rs2974151 (P=1.29x10-4), multiple SNPs in CTNNA2 had P-values < 0.05, decreasing the 

likelihood of a false positive association for this gene.  However, because of the 

relatedness in our dataset it was difficult to get an accurate measurement of LD structure 

to determine if the SNPs in this region were more highly correlated due to a founder 

effect. 

CTNNA2 encodes the catenin alpha 2 protein, which is a neuronal-specific 

catenin.  Catenins are cadherin-associated proteins and are thought to link cadherins to 

the cytoskeleton to regulate cell-cell adhesion.  Catenin alpha 2 can form complexes with 

other catenins such as beta-catenin, which interacts with presenilin.  Mutations in 

presenilin lead to destabilization of beta-catenin which potentiates neuronal apoptosis 

(122).  Catenin alpha 2 is also thought to regulate morphological plasticity of synapses 

and cerebellar and hippocampal lamination during development in mice (123).  It also 

functions in the control of startle modulation in mice (123).   

It was not completely unexpected to see some discordance between the linkage 

and association results, as was demonstrated in our APOE results where we saw 

evidence for association but not for linkage.  Because we needed to divide the pedigree 

to facilitate linkage analysis and because we used an affecteds-only analysis, only a 

subset of the individuals analyzed in association analysis were analyzed in linkage 

analysis.  The breaking of the pedigree likely reduces the observed genomic sharing 

between relatives as the tracking of the natural flow of alleles was somewhat disrupted, 

as we saw when we tested APOE for linkage.  Also, the very nature of association 

analysis versus linkage analysis will provide some different results.  Linkage analysis 

locates shared genomic regions between affected individuals in the same pedigree by 
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testing for co-segregation of a chromosomal segment from a common ancestor.  

Association using MQLS tests for differences in allele frequencies between affected and 

unaffected individuals while correcting for the pedigree relationships.  Association 

analysis is more powerful in detecting protective effects as well as smaller effects in the 

population compared to affecteds-only linkage analysis but is underpowered when 

sample sizes are small and genetic heterogeneity is present.  Conversely, linkage 

analysis is more suitable for finding large effects in a small number of related 

individuals and is more robust to allelic heterogeneity. 

Genetic locus heterogeneity in complex diseases is likely tied to phenotypic 

heterogeneity.  Word List Learning scores have also been shown to be very heritable  

(92) and well differentiate LOAD cases from controls (120).  Therefore, we tested 

whether APOE genotypes or linkage to 2p12 are correlated with MMSE scores or Word 

List Learning with delayed recall and recognition scores.  With just a couple of 

exceptions, mean performance on each of the tests decreased with higher risk for LOAD 

due to APOE genotype.  Therefore, one could make an argument that APOE specifically 

affects learning and memory.  However, after adjusting for overall cognitive impairment 

indicated by MMSE scores and applying a Bonferroni correction, the only significant 

difference was seen between the normal risk group and high risk group for recognition-

no.  A similar study was performed in the Cache County cohort where they tested the 

affect of APOE on neurocognitive measures including the MMSE and Word List 

Learning; however, only cognitively normal individuals were included in the analysis 

(124).  In their analysis the only significant effect observed of APOE on any 

neurocognitive test result was for delayed recall, but they only saw the effect in the 

group of individuals with greater than 12 years of education.  We also saw nominal 
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significance for delayed recall, but most of the individuals in our dataset have fewer 

than 12 years of education.  Other studies using different neuropsychlogical tests also 

found significant associations between APOE and episodic memory (125-128) showing 

that APOE not only affects AD status but also specific neurocognitive deficits such as 

episodic memory. 

The MMSE and the Word List Learning with delayed recall and recognition 

procedures are not sufficient to explain our linkage peak on 2p12.  In the future other 

test scores from the CERAD battery could be analyzed to test for a possible correlation 

between the lod scores at 2p12 and one or more of these other specific deficits.  Or, it is 

possible that none of the specific test results are correlated with lod scores and the 

genetic heterogeneity at this locus is not detected by heterogeneity in these test results.   

Our results confirmed the complex genetic architecture of LOAD even in this 

more homogeneous set of individuals.  Multiple loci appeared to be significantly 

contributing to LOAD risk in the Amish.  We replicated the affect of APOE, replicated 

the evidence for linkage on 9q22, and also found modest evidence for association of both 

PICALM and MS4A in this population.  Most importantly, this unique population 

allowed us to find additional candidate loci, particularly in the CTNNA2 region in which 

we saw strong evidence for both linkage and association.  The role of CTNNA2 in the 

brain also makes this gene a promising candidate.  The CTNNA2 region, in addition to 

other potential risk regions, need to be more closely examined to identify the underlying 

responsible variants and their functional consequences.  We, therefore, have performed 

a sequence analysis of CTNNA2 that is presented in Chapter IV. 
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CHAPTER IV 

 

SEQUENCE ANALYSIS OF A NOVEL ALZHEIMER DISEASE CANDIDATE 

GENE: CTNNA2 

 

Introduction 

 

 Up to 75% of the heritability of late-onset Alzheimer disease (LOAD) remains 

unexplained (52).  To explain at least part of this missing heritability, we have been 

studying the genetically isolated Amish populations of Ohio and Indiana.  Chapters II 

and III discuss our application of a genome-wide SNP association and linkage study, 

which led to the identification of the CTNNA2 (catenin alpha 2) gene, which encodes the 

CTNNA2 (catenin alpha 2) protein, as a strong candidate for LOAD.  CTNNA2 is located 

in our most strongly linked region (2p12) where the HLOD (heterogeneity lod) score 

reached 6.14 under a recessive model and 6.05 under a dominant model.  Several SNPs 

in the gene were also associated with LOAD with P<.05 (lowest P=1.29x10-4).  Within 

the seventh intron of CTNNA2 resides the small, one exon gene, LRRTM1 (leucine rich 

repeat neuronal transmembrane protein 1). 

Catenin proteins bind to cadherins and link the cadherins to the cytoskeleton, 

which regulates cell-to-cell adhesion.  The catenin alpha 2 protein is a catenin specific to 

neurons and also binds to and works in conjunction with other catenins, such as beta-

catenin.  Beta-catenin interacts with presenilin, and mutations in presenilin have been 

linked to early-onset AD (7) and lead to destabilization of beta-catenin, which 
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potentiates neuronal apoptosis (122).  It is possible that CTNNA2 plays a role in the 

amyloid beta pathway, which is central to Alzheimer disease (AD) pathophysiology.   

In mice, CTNNA2 plays important roles in brain development by regulating 

morphological plasticity of synapses and cerebellar and hippocampal lamination (123).  

The hippocampal and cerebellar regions of the brain are important for learning and 

memory and are the first areas to show physical changes in Alzheimer patients.  

Although these mouse studies focus on the developing brain, it is possible that the same 

gene also plays a role in the aging brain, as is suggested by gene expression studies in 

adult rhesus monkey brains that show high levels of expression of CTNNA2 in the 

dorsolateral prefrontal cortex and in the hippocampus (129). 

SNPs in a related gene, CTNNA3 (also known as VR22) were previously 

associated with Aβ levels (130) and AD status (131).  CTNNA3 was of particular interest 

because it is located in the region on chromosome 10 linked to Alzheimer disease 

(62;132-134), and, like beta-catenin, CTNNA3 binds to presenilin.  CTNNA3 contains 

LRRTM3 in its seventh intron, similar to the CTNNA2/LRRTM1 relationship. Some of 

the significant SNPs reported by Martin et al in their analysis of CTNNA3 were SNPs in 

the exon of LRRTM3 (131).  However, additional reports have had mixed results for this 

association between CTNNA3/LRRTM3 and AD (75;77;135-139), and it has not been 

associated in any of the large scale GWAS studies (78-82). 

Neither CTNNA2 nor LRRTM1 have previously been proposed as an AD 

candidate gene in the comprehensive listing of AD candidate genes in the AlzGene 

database (alzgene.org).  The evidence from our genome-wide linkage and association 

study, suggestive roles of other related proteins and genes (beta-catenin and CTNNA3) 
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in AD, and the known functional roles of CTNNA2 in the brain, prompted us to perform 

a sequence study of CTNNA2 and its nested gene LRRTM1.   

The true functional disease associated variant is rarely genotyped directly using 

GWAS data, but rather is hopefully tagged through linkage disequilibrium.  Therefore, 

followup with more genotyping and/or sequencing is necessary to fine map a putative 

region.  Also, the idea that rare variants could be playing a role in common diseases is 

becoming a topic of interest in the field of human genetics as next-generation sequencing 

has become more accessible in terms of cost and efficiency of protocols.  Historically, 

large pedigrees have been successful for finding rare disease variants, especially for 

Alzheimer disease (4-7).  To assess the validity of CTNNA2/LRRTM1’s involvement in 

LOAD risk, we have examined the exonic sequence and partial nonexonic sequence of 

this gene pair in 101 (47 LOAD) Amish individuals. 

 

Methods 

 

Study population 

 A subset of 100 individuals from the genome-wide dataset (presented in Chapter 

III) was selected for whole exome sequencing.  Ascertainment and clinical assessment 

details are presented in Chapter III.  To maximize the potential to find a novel LOAD 

genetic variant, the following prioritizations were used to select individuals for whole 

exome sequencing: 1) LOAD affected and unaffected individuals in the sub-pedigrees 

with LOD >1.5 at 2p12 in our previous genome-wide linkage analysis; 2) LOAD affected 

individuals with the APOE 2/3 or APOE 3/3 genotype and their unaffected siblings; 3) 

sibships with at least two LOAD individuals and two unaffected individuals; 4) LOAD 
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affected individuals and unaffected individuals with kinship coefficients ≥0.0625 

(kinship coefficient for first cousins) with any of the sibships in the previous category.  

We also included one additional LOAD individual and fifteen controls which were 

selected for an overlapping study of Parkinson disease in the Amish.  

 Because standard quality control measures for next-generation sequence data 

have not been well established, we determined thresholds based on what appeared to be 

outliers for each quality metric.  Fifteen individuals were eliminated after employing the 

following quality control thresholds for the whole exome sequences: 1) <53,000,000 total 

reads, 2) <52,000,000 uniquely mapped reads, 3) <45,000,000 on target reads, 4) >50% 

duplication rate, 5) <50% reads with at least 10X coverage, and 6) <65% capture 

efficiency in the whole exome sequence or in the exonic sequence of CTNNA2.  The final 

dataset used for analysis is shown in Tables 4.1 and 4.2. 

 

Table 4.1 Sequencing dataset characteristics including total number of individuals, 
APOE genotype, and mean and range of ages of exam and onset.  
 

  LOAD 
Cognitively 
normal Total 

Total 47 54 101 

Number Female (%) 27 (57%) 32 (59%) 59 (58%) 

Number Male (%) 20 (43%) 22 (41%) 42 (42%) 

APOE 4/4 0 0 0 

APOE 3/4 14 6 20 

APOE 2/4 0 2 2 

APOE 3/3 27 41 68 

APOE 2/3 6 5 11 

APOE 2/2 0 0 0 

Mean (range) age at exam 82 (64-97) 77 (62-91) 79 (62-97) 

Mean (range) age at onset 79 (58-93) - - 
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Table 4.2 Whole exome sequence quality of dataset used for analysis.  

  Mean Range 

Total Reads 102,260,136 57,920,032 – 204,943,436 

Reads Uniquely Map to HG19 100,178,092 57,415,402 – 202,542,103 

Percent Reads Uniquely Mapped to HG 19 98.01% 96.00% - 99.14% 

Reads on Target 75,108,125 46,338,263 – 167,691,437 

Capture Efficiency 74.86% 69.55% - 86.00% 

Duplication Rate 18.19% 4.00% - 46.89% 

Percent Reads Above 5x 78.80% 68.00% - 89.00% 

Percent Reads Above 10x 65.90% 54.00% - 77.00% 

Percent Reads Above 15x 57.27% 45.00% - 69.00% 

Percent Reads Above 20x 50.54% 37.00% - 63.00% 

Percent Reads Above 30x 40.04% 26.00% - 53.00% 

 

 

Sequencing 

 Paired-end sequences for CTNNA2/LRRTM1 were obtained via paired-end 

whole exome sequencing from two sequencing sites: The Genome Sciences Resource at 

the Vanderbilt University Medical Center and the sequencing core of the Center for 

Genome Technology at the Hussman Institute for Human Genomics at the University of 

Miami Miller School Of Medicine.  Exons from genomic DNA were captured with the 

Agilent SureSelect Human All Exon 50 Mb capture kit, which was designed to capture 

coding exons annotated by the GENCODE plus any additional exons annotated in the 

consensus CDS database.  Ten basepairs of flanking sequence for each targeted exon is 

included, and small non-coding RNAs from the miRBase (version 13) and Rfam were 

also included.  The DNA sample of interest is first sheared to create a library of whole 

genome DNA from which the targeted regions are enriched by capturing them with 120-

mer biotinylated cRNA baits.  The exome DNA library was then sequenced with read 

lengths of 75 basepairs on the Illumina HiSeq 2000.  
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Sequence processing 

Read mapping to hg19 was performed using BWA (Burrows-Wheeler Aligner) 

(140).  Duplicates were marked using Picard (http://picard.sourceforge.net), and 

recalibration, realignment, SNV (single nucleotide variant) calling, and SNV filtering to 

increase the validity of variants called were performed using GATK (The Genome 

Analysis Toolkit) (141).   

Single-sample variant calling and multiple-sample variant calling were both 

applied using GATK, and a second calling algorithm, GlfMultiples 

(http://genome.sph.umich.edu/wiki/GlfMultiples), was also applied to perform 

multiple-sample variant calling.   Both algorithms use a probabilistic framework and 

should produce very similar results.  For the single-sample call set of GATK-called 

variants, the following quality filters were applied, as suggested by one of GATK’s ‘Best 

Practices’: QualByDepth (QD) > 2, RMSMappingQuality (MQ) > 40, FisherStrand (FS) < 

60, Haplotype score < 13, MappingQualityRankSumTest (MQRanksum) > -12.5, 

ReadPosRankSum > -8.  Variants that do not pass these quality filters are likely due to 

sequencing or alignment errors leading to false positive variant calls.  QualbyDepth is 

the variant confidence divided by the unfiltered depth.  The RMSMappingQuality is the 

root mean square of the mapping quality.  FisherStrand is the Phred-scaled p-value 

using Fisher’s Exact Test to detect strand bias (the variation being seen on only the 

forward or only the reverse strand) in the reads.  A haplotype score assesses the 

likelihood of other variants within 10 basepairs of the variant of interest to detect 

possible alignment errors.  A higher score indicates regions of bad alignment which can 

lead to false positive SNV calls.  The MQRankSum is the u-based z-approximation from 

the Mann-Whitney Rank Sum Test for mapping qualities (reads with reference bases 
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versus those with alternate alleles).  ReadPosRankSum is the u-based z-approximation 

from the Mann-Whitney Rank Sum Test for the distance from the end of the reads for 

reads with the alternate allele.  If the alternate allele is only seen near the ends of reads it 

can indicate an error. 

For the multiple-sample GATK-called variants, SNVs with base quality or map 

quality ≤20 were removed.  Base and map qualities are given on a phred scale, so a 

quality of 20 equates to a 0.01 chance that the base call or the alignment is an error.  No 

quality filtering was performed for the GLFMultiples call set to provide an additional 

point of comparison between the call sets. 

Therefore, three different call sets (single-sample GATK, multi-sample GATK, 

and GLFMultiples) were available for increased confidence in the variants called.  

Annotation of all variants was obtained from SeattleSeq Annotation 131 

(http://snp.gs.washington.edu/SeattleSeqAnnotation131/). 

 

Analysis 

Genotypes from the single-sample variant call set were used for all allele 

frequency calculations since more stringent quality control was applied to that call set.  

Allele frequencies for all discovered exonic SNVs were compared between all cases and 

controls and between cases and controls in the subset of individuals who contributed to 

the linkage signal on chromosome 2.  We also tabulated all noncoding SNVs, including 

all intronic SNVs and any SNVs detected 150 Kb upstream and downstream of 

CTNNA2, and compared allele frequencies between affecteds and unaffected for all 

SNVs that were discovered in all three call sets.  Because of the complicated relatedness 
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of the dataset and because the purpose for this study is to screen for variants that will be 

followed up in the broader dataset, no statistical tests were performed. 

 

Genotyping 

Rs72822556 was genotyped using Sequenom’s iPLEX Gold assay on the 

MassARRAY platform (San Diego, CA) according to manufacturer’s instructions 

(www.sequenom.com) on 142 LOAD affected and 542 cognitively normal Amish 

individuals.  Genotypes for only three of the sequenced individuals could not be 

obtained.  One of the three individuals was LOAD affected and in a subpedigree with 

lod >1.5 at 2p12.  The other two were cognitively normal and not in a subpedigree with 

lod >1.5 at 2p12. 

 

Results 

 

Variation in the exons 

 A total of nine exonic SNVs were discovered in CTNNA2 and LRRTM1 (Table 

4.3).  Of the nine SNVs identified, rs17019360 in CTNNA2 was the only SNP genotyped 

in our genome-wide study (presented in Chapter III).  The genotypes from the genome-

wide study were 100% concordant with the genotypes determined from sequencing.  

Rs17019360 and rs61291641 were the only two SNVs detected in CTNNA2 and were both 

synonymous variations.  Two of the seven SNVs in LRRTM1 were synonymous 

variations and one (basepair position 80529418) was not listed in dbSNP build 134, 1000 

Genomes phase 1, nor the Exome Variant Server (NHLBI GO Exome Sequencing 

Project).  The other five LRRTM1 SNVs were missense variations.  The PolyPhen 
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predictions, which predict functional effects of SNPs on a gene, were benign for 

rs6733871 and rs76300062 and unknown for rs141752316 and the two other missense 

mutations, which previously have not been documented in dbSNP, 1000 Genomes, nor 

the Exome Variant Server.  Rs141752316 was not verified with either of the multiple-

sample variant calling algorithms; therefore, it could be a sequencing artifact or the 

multiple sample variant calling might not have been sensitive enough to call this 

singleton.  The fact that this variant is listed in the Exome Variant Server makes the latter 

explanation more plausible.   

Almost no allele frequency differences were observed between all LOAD affected 

individuals and cognitively normal individuals.  Four of the nine exonic variants were 

present in the individuals from the subpedigres showing linkage to 2p12 in the genome-

wide study, but very few of the individuals actually had the variation.  Rs17019360 was 

the most common variant with four of the ten LOAD individuals being heterozygous 

and one of the six cognitively normal individuals being heterozygous (Table 4.3). 
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Table 4.3 Summary of all detected SNVs in the exons of CTNNA2 and LRRTM1.  Basepair positions are HG19 positions.  
Function was obtained from SeattleSeq Annotation.  LOAD=late-onset Alzheimer disease individuals.  Het=heterozygous. 
Hom=homozygous for alternate allele. 
 

All detected exonic SNVs Entire dataset  
Individuals in sub-pedigrees 

with LOD >1.5 at 2p12 in 
genome-wide linkage study 

  47 LOAD, 54 Cognitively normal 10 LOAD, 6 Cognitively normal 

Chr2 bp 
position   rs ID 

  

Function 

# LOAD 
individuals with 

SNV 

# Cognitively 
normal with 

SNV 

# LOAD 
individuals 
with SNV 

# Cognitively 
normal with 

SNV 

Gene 
(allele 

frequency)  
(allele 

frequency)  
(allele 

frequency)  
(allele 

frequency)  

80101321 rs61291641 CTNNA2 
coding-

synonymous 
2 het, 1 hom  

(4.3%)  
2 het  
(1.9%)  

1 het  
(5.0%)  0 

80529418 N/A LRRTM1 
coding-

synonymous 
3 het  
(3.2%)  

3 het  
(2.8%)  

1 het  
(5.0%)  0 

80529655 
rs13874788

0 LRRTM1 
coding-

synonymous 
4 het  
(4.3%)  

6 het  
(5.6%)  0 0 

80529956 rs6733871 LRRTM1 missense  
11 het, 2 hom  

(16.0%)  
12 het, 3 hom  

(16.7%)  
2 het  
(10.0%)  

1 het  
(8.3%)  

80530062 rs76300062 LRRTM1 missense 
1 het  
(1.1%)  0 0 0 

80530625 
rs14175231

6 LRRTM1 missense 0 
1 het  
(0.9%)  0 0 

80530868 N/A LRRTM1 missense  
1 het  
(1.1%)  

1 het  
(0.9%)  0 0 

80530886 N/A LRRTM1 missense  0 
1 het  
(0.9%)  0 0 

80801346 rs17019360 CTNNA2 
coding-

synonymous 
17 het, 5 hom  

(28.7%)  
20 het, 5 hom  

(27.8%)  
4 het  
(20.0%)  

1 het  
(8.3%)  
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Extra-exonic variants 

 Outside the exons, including intronic regions and regions 150 Kb upstream and 

downstream CTNNA2, 1,811 SNVs were found in all three call sets.  Four SNV’s, none of 

which were genotyped in our previous genome-wide study, had at least a 30% 

difference in alternate allele frequency between the LOAD affected and unaffected 

individuals in the chromosome 2 peak subpedigree individuals (Table 4.4).  None of 

these variants were listed in the Exome Variant Server, most likely due to coverage 

threshold (8x) used in those projects.  The greatest difference was seen for rs72822556, an 

intronic SNV.  Of the ten LOAD affected individuals in the chromosome 2 peak 

subpedigrees, six individuals had the alternate allele, and five of the six individuals 

were homozygous for the alternate allele.  None of the six cognitively normal 

individuals in the chromosome 2 peak subpedigrees had the alternate allele.  After 

expanding the analysis to include all 47 LOAD and 54 cognitively normal individuals, 

four additional LOAD patients had the alternate allele, one of which was homozygous.  

Four of the cognitively normal individuals had the alternate allele.    Therefore, we saw a 

higher concentration of this variant in the subpedigrees that showed a strong linkage 

signal for this chromosome 2 region. 

 Rs6719427, an intronic SNV, had a 50% versus 17% allele frequency in the LOAD 

affected versus unaffected individuals respectively.  Expanding the analysis to all 

individuals, we saw a 43% versus 34.3% allele frequency in the LOAD patients versus 

unaffected individuals.  Rs7595284 (upstream of CTNNA2) and an SNV at basepair 

position 80270223 (intronic)  both had a 30% allele frequency difference between LOAD 

affected and unaffected individuals in the chromosome 2 peak subpedigrees.  These 



78 

 

differences decreased to 8% and 0.3%for position 80270223 and rs7595284 respectively 

when including all individuals in the calculations. 

 We chose to genotype rs72822556 to attempt to verify the sequencing-generated 

genotypes since it showed such substantial differences in allele frequency between cases 

and controls.  The genotyping did confirm that there is variation at this basepair position 

in our dataset.  Unfortunately, 30% of the sequencing-generated genotypes were 

discordant with the Sequenom-generated genotypes resulting in a much smaller gap 

between alternate allele frequencies of cases and controls.  In the 2p12 peak 

subpedigrees, no individuals homozygous for the alternate allele were observed.  

However, a genotype could not be obtained for one of the sequenced individuals who 

appeared to be homozygous for the alternate allele.  Six out of the 11 genotyped cases 

were heterozygous (27.3% alternate allele frequency), and 2 out of the 14 genotyped 

controls were heterozygous (14.3% alternate allele frequency).  In all 142 genotyped 

cases and 542 genotyped controls, the alternate allele frequencies were 20.8% and 17.7%, 

respectively (Table 4.4).  The average depth of coverage at rs72822556 was only 2, so it is 

not surprising that several of the genotypes could not be reproduced.  
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Table 4.4 Summary of selected non-exonic SNVs with at least a 30% difference in allele frequency between LOAD and 
cognitively normal individuals in the subpedigrees showing the most evidence for linkage at 2p12.  Basepair positions are 
HG19 positions.  Function was obtained from SeattleSeq Annotation.  LOAD=late-onset Alzheimer disease individuals. 
Het=heterozygous. Hom=homozygous for alternate allele.  SNV (rs72822556) with the largest difference in allele frequency 
between LOAD and cognitively normal individuals is bolded and was followed up with genotyping. 
 

Selected non-exonic SNVs Entire dataset  
Individuals in sub-pedigrees 

with LOD >1.5 at 2p12 in 
genome-wide linkage study 

  47 LOAD, 54 Cognitively normal 
10 LOAD, 6 Cognitively 

normal 

Chr2 bp 
position   rs ID 

  

Function 

# LOAD 
individuals 
with SNV 

# Cognitively 
normal with 

SNV 

# LOAD 
individuals 
with SNV 

# Cognitively 
normal with 

SNV 

Gene 
(allele 

frequency)  
(allele 

frequency)  
(allele 

frequency)  
(allele 

frequency)  

79603240 rs7595284 
5’ of 

CTNNA2 

unknown 
 

(intergenic) 
6 het, 13 hom  

(34.0%) 
7 het, 15 hom 
 (34.3%) 

1 het, 5 hom  
(55.0%) 

1 het, 1 hom  
(25.0%) 

79937921 rs72822556  CTNNA2 
unknown  
(intronic)  

5 het, 6 hom  
(18.1%)  

3 het, 1 hom  
(4.6%)  

1 het, 5 hom  
(55%)  0 

80270223 N/A CTNNA2 
unknown 
 (intronic) 

7 hom  
(14.9%) 

1 het, 3 hom  
(6.5%) 

3 hom  
(30.0%) 0 

80801052 rs6719427 CTNNA2 
unknown 
 (intronic) 

10 het, 15 hom  
(42.6%) 

9 het, 14 hom  
(34.3%) 

2 het, 4 hom  
(50.0%) 

1 hom  
(16.7%) 
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Table 4.5 Sequenom-generated genotype results of rs72822556. Basepair position is HG19.  LOAD=late-onset Alzheimer 
disease individuals. Het=heterozygous. Hom=homozygous for alternate allele. 
 

  
Entire genotyping dataset  

Individuals in sub-pedigrees with LOD 
>1.5 at 2p12 in genome-wide linkage 

study 

    
142 LOAD, 542 Cognitively 

normal 
11 LOAD, 7 Cognitively normal 

Chr2 bp 
position   rs ID 

# LOAD 
individuals 
with SNV 

# Cognitively 
normal with 

SNV 

# LOAD 
individuals with 

SNV 
# Cognitively 

normal with SNV 
(allele 

frequency)  
(allele 

frequency)  (allele frequency)  (allele frequency)  

79937921 rs72822556  6 het (27.3%) 2 het (14.3%) 
49 het, 5 hom 

(20.8%) 
162 het, 15 hom 

(17.7%) 
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Discussion 

 

 We have detected nine exonic variants and at least 1,811 possible extra-exonic 

variants at the CTNNA2/LRRTM1 locus.  We did not discover any novel rare variants in 

the coding sequence of CTNNA2.  We discovered five SNVs in LRRTM1 that previously 

have not been recorded in dbSNP or 1000 Genomes.  None of the exonic SNVs seems to 

explain the high linkage peak we see on 2p12 in our genome-wide linkage analysis.  

Expanding our analysis to extra-exonic SNVs we saw a substantial difference in allele 

frequencies between LOAD affected and cognitively normal individuals at rs72822556, 

particularly in the individuals who contributed the most to our strong linkage signal on 

2p12.   However, verification genotyping, while confirming the presense of the variation, 

did not reproduce 30% of the genotypes.  The discordance presumably is due to the 

extremely low coverage at this SNP, confirming the need for higher coverage to make 

reliable genotype calls.  The genotypes revealed a much smaller alternate allele 

frequency difference between cases and controls, negating the predicted importance of 

this SNV.  Therefore, SNVs in the small portion of noncoding sequence that was 

captured also does not seem to explain our linkage peak on 2p12. 

 This sequence analysis also demonstrates a difference between single sample and 

multiple sample variant calling, since we only saw the variant at basepair position 

80530886 with single sample variant calling.  Single-sample calling is more prone to false 

positive singleton variant calls, while multiple sample calling might be less sensitive to 

true singleton variants.  Because the single-sample variant calling went through more 

stringent quality filters we can be more confident in the validity of the variant.  
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However, without followup genotyping or Sanger sequencing we cannot make any 

decisive conclusions. 

 These results suggest that any role that variation in CTNNA2 and/or LRRTM1 

play in late-onset Alzheimer disease risk is due to variations other than SNVs in the 

coding sequence.  The poor coverage of noncoding regions did not allow for a thorough 

examination of those regions of CTNNA2.  Therefore, any further sequencing of this 

gene should include better coverage of the intronic and 5’ and 3’ regions surrounding 

CTNNA2.  Future studies should also explore other types of variation such as insertions 

and deletions in CTNNA2 and LRRTM1, which could be driving the linkage signal on 

2p12.  It is also very possible that the linkage peak at 2p12 is the result of other variants 

in other genes or intergenic regions, which should also be explored.  Detection of 

additional variants in this gene could lead to better understanding of the functional role 

of this gene in AD pathophysiology. 
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CHAPTER V 
 
 

CONCLUSION 

 

Summary 

 

Alzheimer disease is a neurodegenerative disease and is complex in many ways 

including its genetic etiology.  Much of the complexity is due to the heterogeneity which 

weakens most genetic studies of complex diseases.  Many genes contribute to Alzheimer 

disease risk, but the genes contributing to risk can vary from population to population 

and from person to person, and each gene often has a small effect.  In addition to 

multiple genes at play, there can be multiple variants within a gene contributing to 

Alzheimer disease risk.  Hence, the search for genes affecting Alzheimer disease risk has 

been long and difficult.  With a couple of exceptions, the current list of known 

Alzheimer disease genes was discovered by either linkage analysis or genome-wide 

association studies (GWAS).  Linkage studies were successful in large pedigrees with 

early-onset Alzheimer disease and also worked to localize APOE for late-onset 

Alzheimer disease (LOAD).  GWAS worked for common variants with population-level 

effects.  In this work we combined both of these approaches, linkage analysis in 

pedigrees and GWAS, with the added advantage of implementing these approaches in 

an isolated population, the Amish communities of Ohio and Indiana, to minimize 

heterogeneity.   

An important first step of any study is to ensure quality of the data before any 

analyses begin.  In Chapter II I presented the quality control procedures that were 
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implemented on 827 Amish individuals with genotypes for 906,598 SNPs (single 

nucleotide polymorphisms) from the Affymetrix Genome-wide SNP Array 6.0.  After 

removing individuals with low genotyping efficiency, individuals with suspected 

gender errors, a duplicate sample, and individuals misconnected into the pedigree, 798 

samples (109 with LOAD) remained for analysis.  Elimination of SNPs with low 

genotyping efficiency and low minor allele frequency, including minor allele frequency 

adjusted for pedigree relationships, left 614,963 high quality SNPs for analysis.   

Using the cleaned dataset we were able to perform genome-wide linkage and 

association analyses, which were presented in Chapter III.  In Chapter III we also 

specifically genotyped APOE for the E2, E3, and E4 alleles and analyzed the results 

using both association and linkage analyses.   We found that in Holmes, Elkhart, and 

LaGrange Counties, LOAD is significantly associated with APOE (p=9x10-6).  However, 

in Adams County, where the E4 allele is much more rare, LOAD is not associated with 

APOE (p=0.55).  Surprisingly, we saw no evidence for linkage between LOAD and 

APOE.  This result confirms the need for both linkage and association analyses when 

studying a complex phenotype in the Amish.   

Genome-wide analyses resulted in several novel LOAD loci, with the most 

notable on 2p12 which reached an HLOD of 6.14 under the recessive multipoint linkage 

model and an HLOD of 6.05 under the dominant multipoint linkage model.  Other loci 

reaching HLOD scores greater than 3 were detected on 3q26, 9q31, and 18p11.  

Converging linkage and association results, the most significantly associated SNP under 

the 2p12 peak was at rs2974151 (p=1.24x10-4).  This SNP is located in CTNNA2, which 

encodes catenin alpha 2, a neuronal-specific catenin known to play roles in the 

developing brain and possibly also in the aging brain.   
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Although locus heterogeneity is less of an issue in the Amish, the results from 

the genome-wide analyses demonstrated that heterogeneity was not completely 

avoided.  Each of the linkage peaks only had a subset of subpedigrees showing evidence 

for the linkage result, and association with APOE was not seen in Adams County.  

Despite the complexity, multiple novel loci were implicated by the analyses, but the 

most striking result was for CTNNA2, which led us to analyze the sequence of the gene 

to attempt to identify the causal variant. 

As discussed in Chapter IV, the sequence analysis of CTNNA2 and its nested 

gene, LRRTM1, in 47 LOAD and 54 cognitively normal indivduals identified nine (two 

in CTNNA2, seven in LRRTM1) exonic single nucleotide variants (SNVs).  The two 

CTNNA2 exonic SNVs and two of the seven LRRTM1 SNVs were previously recorded in 

dbSNP.  None of the exonic SNVs showed notable allele frequency differences in LOAD 

individuals and cognitively normal individuals.  Although the sequence of CTNNA2 and 

LRRTM1 were obtained via whole exome sequencing analysis, some noncoding 

sequence was also captured and was analyzed, which led to the identification of the 

intronic SNV rs72822556.  This SNP previously had not been genotyped in our genome-

wide study.  Followup genotyping of rs72822556 disproved many of the whole-exome-

generated genotypes and weakened the significance of this variant.  Better coverage of 

the noncoding regions of CTNNA2 is needed before involvement of CTNNA2 in LOAD 

risk can be ruled out.  These results attest to the the complexity of the genetic 

architecture of LOAD and the need for multiple approaches to uncover the missing 

heritability of LOAD. 
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Future Directions 

 

Coupled with the rapid development of genomic technologies, the recent 

expansion of our knowledge of Alzheimer disease genetics, including the work 

presented in this thesis, opens the door for future discoveries of Alzheimer disease 

genetics.  The work presented in this thesis contributes substantially to our 

understanding of the underlying locus heterogeneity in LOAD.  Multiple approaches 

will need to be taken to capture the various genetic effects contributing to Alzheimer 

disease risk.  Various study populations, genetic variations, and analysis techniques will 

need to be incorporated in future studies.     

 Additional genes in the 2p12 region should be explored using the existing whole 

exome sequence data to identify other variants that could be contributing to the 

significant linkage peak.  The genes and variants in the other regions of linkage from the 

genome wide study (Chapter III),   3q26, 9q31, and 18p11, should also be investigated 

with the exome data.  In addition, the rest of the exomes could also be screened for rare 

variants that might not have been well-tagged by the genome-wide SNP data.  Of 

course, the exome data excludes most of the noncoding regions of the genome, and it is 

likely that at least some of the genetic risk to LOAD lies in the noncoding regions.  In 

particular, the noncoding regions of CTNNA2 should be screened.  Whole genome 

sequencing is becoming more accessible and should be employed to study noncoding 

variation in the Amish genomes.  In addition to single-nucleotide variations, other 

genetic variations such as insertions and deletions need to be queried in both whole 

exome and whole genome sequence data, starting with CTNNA2 and in the entire 

genome.   Sequence data also provides opportunities to characterize the genomes of the 
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Amish individuals to better understand variation and patterns of linkage disequilibrium 

in the population.  For instance a comparison of the variation and linkage disequilibrium 

in the Adams County community verses the communities in other counties would be a 

worthwhile endeavor since we have already seen such a difference in our APOE results.   

This type of characterization could be expanded to other Amish communities and other 

related populations. 

Any variants found to be significantly associated with or linked to Alzheimer 

disease in our Amish dataset, or a subset of the Amish dataset, could be examined in 

other Amish populations, such as the Amish communities in Pennsylvania, to see how 

frequent the variant is and if the association with or linkage to Alzheimer disease is 

characteristic of other Amish communities.  Then the attempt to replicate the effect of 

the variant should be carried out in other populations, starting with populations of 

European descent and expanding to other populations to see how generalizable the 

effect of the variant is.  The replication studies should include other variants in the gene 

and even other genes in the same pathway since the same gene or pathway could be 

affecting multiple populations even if the same variant is not present. 

 Additional technological advances will also aid in the search for Alzheimer 

disease genes.  While we cannot get autopsy data from the Amish, advances in brain 

imaging technology could allow for more accurate diagnoses in the future to make 

genetic studies even more productive.  Imaging data can provide more confident 

Alzheimer disease diagnoses and identify controls and individuals with ‘unclear’ 

diagnoses who appear to be heading toward Alzheimer disease status.  For example, we 

could identify MCI (mild cognitive impairment) patients who have pathological 

evidence of Alzheimer disease and include them as cases in some of the analyses.  
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Imaging analysis can help create even more homogeneous case and control sets which 

could help tease out some of the genetic heterogeneity.  These advancements will be 

helpful for studying all populations, not just the Amish.  Replicating genetic effects 

between populations could be more productive with the better case and control 

definitions.  Imaging analysis can also lead to interesting longitudinal studies, in which 

younger control subjects are followed over time to compare the genetic profiles of those 

who progress to Alzheimer disease and those who do not. 

 More work is also needed in the area of analysis methods.  The complexity of the 

Amish family structure complicates analyses.  Our current methods could be limiting 

our ability to detect significant genetic variation contributing to Alzheimer disease.  The 

work presented in this thesis was limited to single-variant analyses.  Therefore, finding 

ways to include gene-gene and gene-environment interactions would strengthen future 

studies.  We also know that splitting the pedigree prior to linkage analysis could affect 

power and type 1 error.  Simulations of the pedigree structure to evaluate these possible 

affects can help direct future analyses, for instance, by optimizing parameters used.  

Better ways of splitting the pedigree could be explored, and ideally, better linkage 

programs to able to deal with bigger and more complicated pedigree structures would 

greatly enhance this research. 

The currently known list of Alzheimer disease risk genes plus other soon-to-be 

identified genes and other genetic variations will need to be functionally studied to 

understand the impact on gene expression and the downstream Alzheimer disease 

pathophysiology that could lead to possible therapeutic interventions to prevent or slow 

the progression of Alzheimer disease.  As geneticists we should strive for our work to go 

from computer to bench and from bench to bedside. 
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Appendix A. Most significant genome-wide association results, stratified. Most 

significant genome-wide association results (see Table 4) calculated for Adams county 

individuals separately from non-Adams County (Elkhart, Lagrange, and Holmes 

Counties) 

SNP 

Adams 
Minor 
Allele 

Adams 
Affected 

Adams 
Unaffected 

Adams 
MQLS 

non-
Adams 
Minor 
Allele 

non-
Adams 

Affected 

non-
Adams 

Unaffected 

non-
Adams 
MQLS 

MAF   MAF P-value MAF   MAF P-value 

rs4145462 T 0.17 0.01 1.06E-02 T 0.14 0.09 1.54E-03 

rs41458646 G 0.33 0.19 1.49E-01 G 0.33 0.22 2.92E-04 

rs41476545 G 0.33 0.19 1.49E-01 G 0.33 0.22 3.14E-04 

rs6738181 A 0.11 0.17 9.35E-01 A 0.40 0.23 4.61E-06 

rs7638995 A 0.06 0.05 8.15E-01 A 0.25 0.15 2.10E-05 

rs679974 C 0.28 0.08 2.90E-02 C 0.19 0.10 1.17E-03 

rs11983798 T 0.28 0.08 3.00E-02 T 0.19 0.10 2.13E-04 

rs6468852 G 0.11 0.05 8.75E-01 G 0.30 0.17 8.97E-06 

rs9969729 A 0.11 0.05 8.70E-01 A 0.21 0.13 7.74E-04 

rs12361953 C 0.11 0.13 9.15E-01 C 0.32 0.19 2.61E-05 

rs472926 C 0.06 0.14 8.92E-01 C 0.31 0.19 2.11E-05 

rs4937314 C 0.28 0.16 3.76E-02 C 0.34 0.24 1.91E-04 

rs11848070 C 0.39 0.16 3.44E-02 C 0.43 0.30 1.76E-04 

rs17767225 T 0.39 0.24 1.63E-01 T 0.36 0.24 1.19E-04 

rs6085820 A 0.06 0.01 4.67E-01 A 0.22 0.13 2.37E-04 
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Appendix B. Regions with at least one SNP with a two-point HLOD ≥ 3.  These 
regions were analyzed with multipoint linkage analysis. 

Region chr Mbp SNP 

2pt 

DOM 

2pt 

REC 

2pt 

Npall 

2pt 

Nppairs 

MQLS p-

value 

1 1 83.66 rs17466903 3.60 3.63 1.07 0.78 0.85 

                  

2 1 161.11 rs1986957 2.55 3.05 0.78 0.57 0.92 

                  

3 

1 237.33 rs16837761 2.68 3.03 1.04 0.80 0.37 

1 237.63 rs10925877 2.83 3.61 1.26 0.99 0.19 

1 237.90 rs7541783 2.76 3.03 1.74 1.38 0.42 

1 238.21 rs1415277 2.19 3.16 1.28 1.08 0.95 

1 238.24 rs2065914 4.10 2.36 1.41 0.99 0.95 

1 238.24 rs10926054 3.86 2.18 1.32 0.93 0.98 

1 238.24 rs12130657 4.09 2.36 1.41 0.99 0.94 

1 238.24 rs10926061 4.11 2.37 1.41 0.99 0.98 

1 238.24 rs16839333 4.11 2.37 1.41 0.99 0.96 

1 238.88 rs16840459 2.67 3.47 0.98 0.76 0.38 

                  

4 
2 52.53 rs4588226 1.51 3.01 0.08 0.08 0.38 

2 52.55 rs12713204 1.63 3.19 0.19 0.17 0.22 

                  

5 

2 62.38 rs7578484 2.25 3.81 0.84 0.67 0.09 

2 69.01 rs10197208 3.00 2.56 0.87 0.58 0.52 

2 69.83 rs10177224 3.68 2.78 1.39 1.03 0.25 

2 71.70 rs11897583 1.95 3.39 0.78 0.64 0.24 

2 73.71 rs4852939 3.02 1.25 1.21 0.89 0.17 

2 73.82 rs11894953 3.10 1.07 0.78 0.61 0.27 

2 74.16 rs12991192 3.19 3.77 1.04 0.76 0.01 

2 74.17 rs7593050 3.05 2.38 0.65 0.55 0.03 

2 80.66 rs216616 2.85 3.37 1.09 0.86 0.60 

2 85.80 rs6759087 3.79 3.26 0.93 0.63 0.18 

2 85.80 rs11126997 3.79 3.26 0.93 0.63 0.18 

2 86.15 rs6735014 1.99 3.06 0.87 0.74 0.13 

2 86.23 rs4569473 2.16 3.29 0.90 0.76 0.07 

2 89.88 rs13003799 2.32 3.59 0.99 0.81 0.66 

2 101.26 rs6713930 2.05 3.10 0.49 0.37 0.13 

2 101.29 rs17190412 2.43 3.52 0.83 0.65 0.35 

2 102.22 rs11692230 3.36 2.41 1.10 0.82 0.82 

                  

6 2 111.51 rs3789085 2.70 3.81 0.97 0.73 0.18 
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7 
2 124.90 rs17725619 2.74 3.42 1.14 0.89 0.35 

2 129.17 rs6431018 1.90 3.02 0.60 0.44 0.67 

                  

8 

2 174.29 rs12329372 2.51 3.73 0.80 0.62 0.79 

2 174.29 rs13022741 2.51 3.63 0.76 0.58 0.36 

2 174.30 rs6433434 2.58 3.13 0.65 0.42 0.67 

2 174.31 rs16823293 2.66 3.23 0.74 0.48 0.68 

2 178.24 rs13028757 2.98 3.39 1.31 0.97 0.65 

2 178.25 rs7586934 2.98 3.39 1.31 0.97 0.65 

2 178.25 rs7560737 2.98 3.39 1.31 0.97 0.65 

2 178.25 rs6433688 2.98 3.39 1.31 0.97 0.65 

2 180.80 rs16867269 1.97 3.12 1.28 0.96 0.84 

                  

9 

2 195.74 rs7423326 2.44 3.09 0.85 0.62 0.81 

2 195.75 rs6434742 2.47 3.13 0.85 0.61 0.79 

2 195.75 rs7593916 2.44 3.09 0.85 0.62 0.82 

2 195.75 rs7422772 2.44 3.09 0.85 0.62 0.81 

2 195.75 rs7424669 2.46 3.12 0.86 0.62 0.77 

2 195.75 rs6434746 2.44 3.09 0.85 0.62 0.81 

2 195.81 rs1858305 2.35 3.05 0.90 0.65 0.65 

                  

10 2 225.46 rs2304335 3.49 4.21 0.90 0.65 0.46 

                  

11 

3 1.77 rs4432626 2.37 3.36 0.96 0.72 0.69 

3 1.90 rs4685457 3.87 3.13 1.02 0.71 0.33 

3 1.91 rs1844171 3.60 2.87 0.96 0.66 0.41 

3 1.99 rs2171596 3.08 1.88 0.89 0.69 0.54 

3 2.00 rs10510224 4.50 3.13 0.98 0.70 0.63 

3 2.01 rs7611355 2.89 3.17 1.02 0.77 0.06 

3 2.01 rs6767479 2.90 3.18 1.02 0.77 0.05 

3 3.28 rs4685622 2.19 3.21 0.54 0.46 0.15 

3 3.63 rs1601875 1.47 3.01 0.71 0.57 0.25 

                  

12 3 57.68 rs6790054 2.59 3.06 1.03 0.81 0.67 

                  

13 

3 79.68 rs9820160 1.96 3.13 0.87 0.65 0.12 

3 80.17 rs4635670 2.38 3.33 0.77 0.58 0.00 

3 80.20 rs12636593 1.33 3.08 0.80 0.70 0.38 

3 80.83 rs1437042 2.82 3.20 1.01 0.76 0.09 

3 80.92 rs17018312 2.82 3.20 1.01 0.76 0.09 

3 81.02 rs13060424 2.79 3.17 1.01 0.75 0.08 
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3 85.59 rs13323436 2.12 3.04 0.91 0.66 0.25 

3 85.74 rs1449399 2.29 3.14 1.06 0.85 0.04 

3 85.77 rs11926266 2.80 3.72 1.27 1.00 0.03 

3 85.77 rs4507269 2.79 3.72 1.25 0.99 0.03 

                  

14 
3 173.13 rs4894786 3.39 2.62 0.83 0.58 0.18 

3 173.14 rs9862319 3.16 2.49 0.80 0.56 0.19 

                  

15 

4 139.99 rs17268257 3.17 3.51 1.31 0.91 0.01 

4 140.08 rs13125601 3.16 2.14 0.91 0.58 0.43 

4 140.08 rs11734771 3.16 2.14 0.91 0.58 0.43 

4 140.09 rs6844552 3.16 2.14 0.91 0.58 0.43 

4 140.09 rs4076773 3.16 2.14 0.91 0.58 0.43 

                  

16 

4 158.14 rs1443230 2.26 3.06 0.93 0.71 0.62 

4 158.18 rs7668059 2.51 3.33 1.03 0.78 0.61 

4 158.21 rs6812324 2.51 3.21 1.06 0.79 0.90 

                  

17 
5 25.81 rs1479675 3.49 2.11 1.03 0.77 0.01 

5 25.81 rs12517113 3.23 1.91 0.90 0.68 0.02 

                  

18 5 152.92 rs716517 2.11 3.20 0.83 0.68 0.75 

                  

19 
5 173.62 rs17077144 3.21 2.99 1.07 0.76 0.01 

5 173.62 rs1368273 3.20 2.99 1.06 0.75 0.01 

                  

20 

6 7.47 rs1408482 4.17 2.89 0.98 0.60 0.10 

6 7.48 rs11243192 3.67 1.60 0.72 0.41 0.12 

6 7.48 rs9328430 3.74 1.75 0.74 0.43 0.11 

6 7.48 rs1322219 3.78 1.77 0.75 0.43 0.09 

                  

21 6 80.77 rs466335 2.03 3.47 0.81 0.67 0.99 

                  

22 6 92.63 rs9294513 2.96 4.11 0.96 0.70 0.05 

                  

23 6 114.42 rs717389 2.28 3.20 0.97 0.74 0.06 

                  

24 6 151.32 rs6557106 3.20 1.56 0.96 0.69 0.99 

                  

25 7 4.34 rs4425656 3.35 1.38 0.85 0.59 0.03 
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26 

7 48.04 rs2686782 2.02 3.19 1.03 0.81 0.89 

7 48.05 rs1879830 2.06 3.28 1.04 0.82 0.67 

7 48.05 rs10233232 2.09 3.31 1.05 0.83 0.73 

7 48.06 rs2686792 2.05 3.27 1.05 0.83 0.76 

                  

27 7 104.13 rs10269217 1.71 3.36 0.70 0.59 0.03 

                  

28 

8 9.19 rs747751 2.56 3.71 0.88 0.68 0.76 

8 12.96 rs607499 3.21 2.85 1.05 0.80 0.74 

8 13.62 rs10094983 2.65 3.57 0.97 0.79 0.45 

8 15.90 rs17580109 3.00 3.19 0.82 0.58 0.85 

8 18.08 rs17126329 1.76 3.47 0.78 0.65 0.13 

                  

29 9 26.05 rs957252 1.91 4.03 1.25 1.02 0.35 

                  

30 
9 78.49 rs669296 3.08 2.20 0.72 0.51 0.06 

9 81.92 rs7850306 3.90 2.09 1.08 0.77 0.13 

                  

31 9 95.80 rs10993017 3.14 2.78 1.00 0.69 0.39 

                  

32 

9 100.80 rs10988521 2.57 3.73 0.92 0.69 0.14 

9 101.79 rs1852865 3.10 4.16 0.85 0.68 0.98 

9 101.79 rs10760710 3.10 4.18 0.85 0.68 0.98 

9 101.89 rs1529192 3.10 4.17 0.85 0.68 0.97 

9 101.92 rs7846794 3.03 3.08 0.74 0.57 0.97 

9 101.92 rs7861003 2.99 3.87 0.84 0.67 0.94 

9 101.97 rs2476441 2.86 3.89 0.83 0.67 0.88 

9 101.98 rs9886877 2.52 3.08 0.75 0.60 0.88 

9 102.02 rs1014652 2.75 3.59 0.81 0.66 0.86 

9 102.03 rs2787365 2.69 3.72 0.80 0.65 0.89 

9 102.04 rs2787397 2.51 3.42 0.78 0.64 1.00 

9 102.07 rs2806693 2.86 3.89 0.83 0.67 0.86 

9 102.07 rs2485745 2.86 3.89 0.83 0.67 0.86 

9 105.76 rs10512321 2.88 3.50 0.77 0.50 0.80 

9 108.58 rs4625092 1.97 3.22 0.64 0.50 0.45 

9 110.09 rs1570504 2.26 3.18 0.75 0.56 0.71 

9 111.67 rs10816902 3.12 3.53 0.66 0.50 0.22 

                  

33 

9 128.50 rs3861878 3.00 0.95 0.73 0.49 0.51 

9 128.51 rs2417033 3.26 1.22 1.04 0.74 0.07 

9 128.52 rs10760452 3.24 1.20 1.03 0.74 0.11 
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34 
10 29.81 rs913034 3.32 1.29 0.84 0.58 0.47 

10 29.81 rs7096453 3.41 1.42 0.85 0.59 0.49 

                  

35 10 127.91 rs10466250 2.34 3.32 0.94 0.72 0.38 

                  

36 
11 102.14 rs11225417 3.02 3.19 0.84 0.59 0.67 

11 104.55 rs1503389 2.88 3.29 0.62 0.40 0.61 

                  

37 12 126.65 rs12816855 3.05 1.48 0.62 0.45 0.81 

                  

38 13 90.18 rs1417853 3.19 1.77 0.56 0.41 0.29 

                  

39 
14 46.06 rs8017002 3.29 2.20 1.17 0.90 0.15 

14 47.32 rs2022567 2.38 3.25 0.99 0.78 0.15 

                  

40 15 85.07 rs4386109 2.65 3.28 1.01 0.74 0.44 

                  

41 16 86.67 rs11117362 2.39 3.28 0.85 0.65 0.94 

                  

42 

18 9.18 rs7506291 2.58 3.09 0.94 0.76 0.12 

18 11.37 rs1455237 2.07 3.02 1.03 0.80 0.60 

18 13.17 rs4797730 3.36 2.49 1.27 0.95 0.22 

                  

43 

18 59.85 rs1400569 3.42 3.10 1.18 0.88 0.10 

18 59.86 rs11872249 3.21 2.83 1.21 0.90 0.15 

18 59.87 rs213100 3.23 2.84 1.21 0.91 0.13 

18 59.87 rs213097 3.23 2.84 1.22 0.91 0.15 

18 59.87 rs213093 3.21 2.83 1.21 0.90 0.15 

18 59.87 rs213086 3.20 2.82 1.21 0.90 0.15 

                  

44 
19 15.57 rs8112423 3.20 2.18 0.68 0.53 0.67 

19 21.75 rs10414913 2.25 3.05 0.54 0.39 0.01 

                  

45 19 49.83 rs203717 2.07 3.31 0.73 0.58 0.90 

                  

46 20 8.54 rs6118268 3.13 1.32 0.87 0.65 0.80 
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Appendix C. Distributions of Z scores from the Mini-Mental State Exam (MMSE_Z)), 

Word List Memory trials 1-3, delayed recall, delayed recall, savings, recognition-yes, 

and recognition-no 
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Appendix D. Scatter plots of recessive (left) and dominant (right) per-family lod 

scores versus Z scores from the Mini-Mental State Exam (MMSE_Z)), Word List 

Memory trials 1-3, delayed recall, delayed recall, savings, recognition-yes, and 

recognition-no  
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Appendix E. Spearman’s correlation between 2p12 lod scores and Z scores of Word 

List learning with delayed recall and recognition procedure with MMSE Z scores as a 

covariate.  Recessive LOD refers to the per-family lod scores at the peak of the 2p12 

linkage region calculated under a recessive model, and dominant LOD refers to per-

family lod scores at the peak of the 2p12 linkage region calculated under a dominant 

model.  Spearman’s rho is the correlation coefficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recessive LOD Dominant LOD 

  

Spearman's 
rho p-value 

Spearman's 
rho p-value 

Word List Memory Trial 1 
Z -0.08 0.53 0.14 0.26 

Word List Memory Trial 2 
Z 0.14 0.26 0.31 0.01 

Word List Memory Trial 3 
Z 0.1 0.43 0.25 0.04 

Delayed Recall Z 0.14 0.24 0.28 0.02 

Savings Z 0.19 0.13 0.27 0.03 

Recognition Yes Z 0.05 0.67 0.06 0.62 

Recognition No Z -0.008 0.95 -0.02 0.86 
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