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CHAPTER I 

 

INTRODUCTION 

 

I.1 Challenges Facing White Matter and Myelin Imaging 

 White matter, a type of brain tissue located below the cortical surface in most 

vertebrate cerebra, consists primarily of neuronal axons wrapped in layers of lipid 

membrane known as myelin sheaths. These sheaths impede ionic interactions between the 

axonal cytosol and the extracellular environment, inducing an increase in signal 

conduction velocity between the non-myelinated nodes of Ranvier distributed along the 

axon’s length. Several clinically-relevant diseases are characterized by or coincide with a 

loss of myelin in white matter or other brain tissues, the most well-known of which being 

multiple sclerosis (1). Other diseases, such as schizophrenia, correlate instead with a 

destructive change in myelin structure or function rather than a degradation of 

myelinating cells themselves (2, 3). Due to the prevalence and severity of these diseases, 

inexpensive, non-invasive techniques for evaluating the extent of myelin degeneration—

or more subtle changes to myelin structure—would be invaluable to the medical 

community. 

 Unfortunately, as elaborated below, the most common clinical imaging protocols 

are only capable of identifying macroscopic regions of demyelination such as multiple 

sclerotic lesions. Efforts to delve into more informative, quantitative measures of myelin 

structure have spurred the development of a multitude of complex magnetic resonance 

imaging (MRI) pulse sequences, many of which target myelin content through the unique 

MR transverse relaxation time (T2) of water protons trapped between a myelin sheath’s 
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lipid bilayers (4-12). These pulse sequences often require clinically unfeasible (i.e., hours 

for whole-brain coverage) scan times and provide results which are biased by non-

negligible confounding factors. One recently developed protocol, the multi-component 

driven equilibrium single pulse observation of T1 and T2 (mcDESPOT), uses clinically 

established, fast pulse sequences to purportedly provide accurate measures of quantitative 

white matter parameters (12), including water residence times which may inform on 

myelin thickness (13, 14). An independent analysis of the method is needed before 

further optimization or clinical application can be realized; the following work uses the 

Cramer-Rao lower bound, a statistical metric computed directly from the mcDESPOT 

signal equation, to evaluate the intrinsic precision of parameter estimates garnered using 

this protocol.  

 

I.1.1 Foundations of Conventional Myelin Imaging Techniques 

 Multiple sclerotic lesions (i.e., sites of extensive myelin degeneration) have been 

known for many years to be hyperintense on T2-weighted scans, and T2-weighted MRI is 

listed among the disease’s gold standards of diagnosis (15-17). These scans typically 

utilize some variant of the spin-echo pulse sequence, including the ―fast‖ spin-echo 

sequence (18-19), and are capable of whole-brain coverage in clinically tractable times. 

As a price for their elegance and ease of clinical implementation, though, T2-weighted 

images are not quantitative in any relevant sense and cannot provide sub-voxel 

information about myelin levels. Instead, they are primarily useful for determining the 

size and number of lesions in patients. In order to obtain deeper understanding of a 

patient’s myelin distribution and structure, one must consider the mechanisms behind 
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contrast generation more carefully and tailor pulse sequences to optimally identify those 

mechanisms. 

 Regions of low myelination are thought to appear bright on T2-weighted images 

due to the short, relatively unique T2 of water trapped between myelin membrane layers 

(20-25). Researchers have used this feature of myelinated tissue to quantify the fraction 

of myelin-associated water protons in an imaging voxel (4-12, 24, 25). One common 

protocol for identifying the ―myelin water fraction‖ (MWF) follows. First, a variant of 

the spin-echo pulse sequence acquires multiple signal echoes between equally-spaced 

180° radiofrequency (RF) refocusing pulses. After fitting the signal vs. echo time (TE) 

curve to a spectrum of exponential decay curves and applying constraints such as 

minimum spectral curvature or energy (24), the MWF is calculated as the fraction of 

signal contributed by fast-decaying (10 ms < T2 < 50 ms, usually) exponentials (24, 25). 

While the multiple spin-echo MWF has been used with much success in a research 

environment, it is complicated by a need for robust RF refocusing and a limitation to two-

dimensional imaging, implying impractical whole-brain scan times when each slice can 

take nearly half an hour to acquire. Furthermore, due to the nature of the multiple spin-

echo signal equation, intercompartmental water exchange (i.e., the transfer of protons or 

magnetization between myelin water and intra-/extracellular water) will bias any 

estimates of tissue parameters such as the MWF, but cannot be explicitly accounted for in 

fitting algorithms (13). 

Ironically, a second method of quantifying myelin content is founded on a very 

similar phenomenon to the source of bias in the MWF: magnetization transfer. The ratio 

of bound protons in a voxel (i.e., broad resonance, quickly dephasing macromolecular 
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protons) to the number of free protons (i.e., water protons), ideally a rough measure of 

myelination due to myelin’s high lipid content, can be calculated using quantitative 

magnetization transfer (qMT) imaging (26-31). Unfortunately, the qMT-based pool size 

ratio is not specific to myelin-associated macromolecules and has been shown to correlate 

poorly with other aspects of myelin microstructure, such as myelin thickness (13). 

 

I.2 Generalized Differential Equations for Two Relaxing Signal Compartments 

I.2.1 Modeling Free Precession and Relaxation 

 The myelin water fraction, or the percent of signal contribution from exponentials 

with short time constants, can be defined through a general model of two well-mixed 

signal components decaying toward equilibrium with different relaxation rates. Examine 

the single-compartment Bloch equations describing relaxation and precession in the 

laboratory frame in the absence of a B1 field (32): 
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where the magnetization vector 
T

x y zM M M   M  (with the symbol 
T
 being the 

matrix transpose) is relaxing with a transverse relaxation rate R2 = 1/T2 and a longitudinal 

relaxation rate R1 = 1/T1 toward an equilibrium state  00 0
T

M
0

M . The 

magnetization vector is simultaneously precessing about an external magnetic field (i.e., 

the z-axis) at an angular velocity defined by the Larmor equation: 
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zB   .  (2) 

In this equation, Bz is the summed strength of the main and gradient magnetic fields, and 

γ is the gyromagnetic ratio of a proton, equal to 267.522 million radians per second per 

tesla (33). Shifting to a frame of reference which rotates in the x-y plane at the Larmor 

frequency corresponding to the main magnet strength results in the coupled differential 

equations 
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where the relative (clockwise) frequency Δω is equal to 0( )B   , such that Δω is 

greater than zero when precession relative to γB0 occurs more quickly in the clockwise 

direction and is less than zero when precession lags behind the rotating reference frame. 

Readers should note that the main magnetic field B0 has been assumed to lie in the 

positive z direction. 

 

I.2.2 Extension to Two Exchanging Compartments 

 In the simplest case of two-component relaxation, the signal at any time t is a 

weighted sum of the signals of the individual components. For example, 

 S S F F( ) ( ) + ( )M t f M t f M t , (4) 

where S and F represent the slow- and fast-relaxing compartments, respectively, and f is a 

fraction of the voxel volume occupied by each well-mixed compartment. Some authors (9, 
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34, others) elect to use separate values for equilibrium magnetization (M0) in each 

compartment rather than multiply the signal in each compartment by its respective 

volume fraction; it can be plainly seen that these approaches are equivalent.  

In order to remain open to the possibility of exchange between the slow- and fast-

decaying compartments, which has been concluded to be non-negligible in some 

myelinated tissues (13, 14), Eq. 3 must be rewritten to include cross-compartment terms 

(35): 
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As was the case with decay rates R1 and R2, exchange rates kFS (fast-to-slow) and kSF 

(slow-to-fast) can be equivalently expressed as their inverses, the ―mean residence times‖ 

τ of a proton in a given water pool before migrating to the other water pool. The ―prime‖ 

notation used to differentiate between the laboratory and rotating frame has been dropped 

in Eq. 5. Two further assumptions are usually made (12, 36-38) to reduce the 

dimensionality of these equations. First, the assumption that only two water pools exist in 
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the imaging volume, i.e. fF + fS = 1. The second assumption is that the 

intercompartmental exchange within the volume has reached a state of equilibrium. A 

mass balance assuming first-order rate kinetics reveals that the outflow rate-compartment 

size product (i.e., kV, with V the compartment volume) must be equal in each 

compartment. Dividing by the total volume results in the equation kFSfF = kSFfS, relating 

the two exchange rates. 

 

 

Figure 1. Two-compartment relaxation model. The ten relevant parameters of a two-

compartment model are listed, along with identities for decay/exchange rates. Included 

parameters are transverse decay rates R2, longitudinal decay rates R1, exchange rates k, 

volume fractions f, equilibrium magnetization M0, and off-resonance Δω. Common 

assumptions include fF + fS = 1 (only two compartments) and fFkFS = fSkSF (equilibrium), 

reducing the number of independent parameters to eight. 

 

Figure 1 summarizes the exchanging two-compartment model in a diagram format. 

It shows the four relaxation rates, two exchange rates, two signal fractions, and the total 

equilibrium magnetization and off-resonance term. After considering the two 

assumptions stated above, two of the ten listed parameters (namely, fS and kSF) can be 

rewritten in terms of other parameters, effectively reducing the dimensionality of any 

inverse problems applied to this model.  
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I.2.3 Expression in Matrix Form 

In order to simplify upcoming calculations, a matrix form of Eq. 5 has been 

adopted: 

 
d

dt
 
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AM C , (6) 
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and as mentioned above, R1 = 1/T1, R2 = 1/T2, and the subscripts F and S represent the 

fast- and slow-decaying compartments respectively. 
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I.3 Multi-Component Driven Equilibrium Single Pulse Observation of T1 and T2 

In order to address some of the issues surrounding myelin imaging, Deoni, et al 

developed a protocol which is purportedly able to achieve accurate, precise estimates for 

the eight independent parameters of the exchanging two-pool model (12, 38) and has 

since been successfully applied in infant brain (37) and cervical spinal cord (36). The 

multi-component driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) 

not only attempts to provide a direct estimate of water exchange between myelin and 

intra-/extracellular water, but is also a fast, versatile, easily translatable protocol due to its 

simple pulse sequences: the common balanced steady-state free precession (bSSFP) and 

spoiled gradient echo (SPGR) sequences. 

Early mcDESPOT literature proposed acquiring SPGR and SSFP images at 

variable flip angles, then fitting the ensemble of data to a seven-parameter model of the 

two-pool system (12). The model was reduced from eight to seven independent 

parameters by assuming no B0 inhomogeneity (Δω assumed to be on-resonance). The 

fitting algorithm in these early publications utilized non-Newtonian iterative methods and 

a least-squares cost function. A more recent variation of the mcDESPOT protocol 

included the off-resonance term in the fitting by acquiring twice as many SSFP images—

one set using the standard 180° RF phase increment from repetition to repetition (also 

called ―alternating‖ RF pulses) and the other a 0° RF phase increment. Acquiring SSFP 

images using both excitation phase schemes has been shown to provide high quality 

frequency maps in tissue when other factors are held fixed (39, 40). Recent versions of 

mcDESPOT have additionally used an inversion-prepared gradient echo image to 

measure and accommodate for B1 inhomogeneity by using a more accurate flip angle in 
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the regression model (38, 41). The parametric fitting algorithm has evolved over time 

also, but has yet to deviate from the least-squares criterion. An overview of the two pulse 

sequences utilized by mcDESPOT, bSSFP and SPGR, including matrix forms of their 

signal equations, follows. 

 

I.3.1 Balanced Steady-State Free Precession (bSSFP) 

 Balanced steady-state free precession is most commonly identified as a gradient-

recalled echo sequence, meaning the magnetic field gradients are used to dephase and 

refocus spins in the imaging volume. (This is in contrast to a spin-echo sequence, which 

uses 180° RF pulses to refocus macroscopic B0 inhomogeneity-induced spin dephasing.) 

In order to refocus spins, the zeroth moment (i.e., area under the curve) of the read-out 

gradient at every echo time must be equal to zero. Furthermore, in a ―balanced‖ MRI 

pulse sequence, the zeroth moment of the gradients at the end of every repetition time 

(TR) is also equal to zero. Ideally, this allows for every RF pulse to affect all spins in the 

imaging volume identically. As this ideal scenario is difficult to achieve due to field 

inhomogeneities, short repetition times are used to minimize dephasing (42); the 

minimum TR defined by gradient and RF strength limitations is usually chosen. bSSFP 

pulse sequences are available on many clinical scanners and can be used for fast, 3D, or 

multi-slice imaging, and due to their nature as balanced sequences, generally have high 

signal-to-noise ratios (SNR) (40, 43, 44). 

When deriving the signal equation for bSSFP, it is sufficient to find a steady-state 

solution for M(t = nTR
−
), nℤ, ignoring T2

*
 relaxation between the acquired echo and 

the RF pulses. This relaxation will affect all mcDESPOT bSSFP images equally if a 
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constant TR (with TE = TR/2) is used, and can thus be integrated into an effective M0. In 

order to find a steady-state solution to Eq. 6 under repeated RF excitation, it must first be 

solved for the interval 0 < t < TR
−
. Assuming the matrix A is invertible and the matrices 

A and C are not changing over the interval, 

 
1
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( )
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which has the well-known solution 
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 (8) 

where I is the 6x6 identity matrix and the exponential terms are the matrix exponential 

function. Before invoking the steady state, define an excitation rotation matrix R with flip 

angle α such that 
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It should be noted that the definition in Eq. 9 assumes an instantaneous RF pulse aligned 

with the positive x-axis. However, invoking this simplification does not eliminate the 

possibility of alternating-phase RF excitation. Adding π/TR to the ―off-resonance‖ factor 

Δω is equivalent to shifting the rotating frame by 180° every repetition, effectively 

causing pulses along the positive x-axis to ―alternate‖ with respect to the common 

rotating frame. Now, by definition, 
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 ( ) ( ) ( )TR TR M R M , (10) 

and in the steady state, where M(TR
+
) = M(0

+
), Eq. 10 can be substituted into Eq. 8 

(evaluated at t = TR
−
) to provide 
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which is the signal equation for two-compartment bSSFP in the following work. 

 

I.3.2 Spoiled Gradient-Recalled Echo (SPGR) 

 Spoiled gradient echo sequences are among the simplest MRI pulse sequences, 

and are often used to create T1- and T2
*
-weighted images. Like bSSFP sequences, they 

use gradients to refocus spins into an echo, but are then subjected to magnetic fields 

which eliminate all net transverse magnetization prior to the next RF excitation pulse. 

These ―spoilers‖ can be realized by either a gradient pulse (45-48), a radiofrequency 

excitation phase increment (49, 50), or a combination of the two which nulls transverse 

magnetization in the steady state. Regardless of spoiling scheme, an ideal SPGR pulse 

sequence will remove all dependence of steady-state signal on transverse relaxation rate. 

(Once again, T2
*
 decay between the last excitation pulse and the acquisition can be 

absorbed into an effective value for M0.) Under these conditions, the 6x6 matrices M, A, 

and C in Eq. 6 reduce to 
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Furthermore, the refocused gradient-echo signal equation (Eq. 11) can be reduced to 
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because 
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RSPGR(α) reduces to the 2x2 identity matrix scaled by cos(α), and the steady-state 

longitudinal magnetization is measured via excitation with a final αx pulse. Although 

noise in MR magnitude images has been shown to follow the Rice distribution (51), it is 

assumed by this work that the steady-state signal magnitude ,S ,F ,S,F xx y yM M iM iM    

in each sequence is measured with additive Gaussian noise. This approximation is nearly 

correct as long as the signal remains above approximately twice the noise floor (52), a 

very loose constraint for quantitative MR using simple gradient-echo sequences.  

 

I.4 The Cramer-Rao Lower Bound 

Consider a model  ,g x  , where Nx  is an independent parameter vector 

(e.g., RF pulse flip angles) and M  is a vector of model parameters (e.g., two-pool 

parameters in Fig 1). Assume we have a random estimate ̂  of model parameters based 
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on noisy observations, Ny . This estimate of model parameters abides by a 

probability distribution described by a covariance matrix, 
θ̂

Σ , bounded by the Cramer-

Rao lower bound (CRLB) (53): 

 1
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ˆE[ ] E[ˆ]
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where  is the Fisher information matrix (FIM),  E   is the expectation operator, 

  implies that    is a nonnegative-definite matrix, and the derivative of one 

vector with respect to another follows the convention   i jij
a b   a b . The positive 

square roots of the diagonal elements of this covariance matrix are then lower bounds of 

the standard deviation of the estimated model parameters 

 
1E[ ] E[ ]ˆ ˆ

j

T

jj




  
 
  
 

 

 
, (15) 

which can inform on how practically identifiable each model parameter is under specific 

experimental conditions. It should be noted that maximum likelihood estimators such as 

minimized sum-squared-error in the presence of normally distributed noise have been 

proven (54) to achieve the CRLB if such a bound is attainable; however, nonlinearity in 

the signal within a statistically relevant range of the true intrinsic parameters θ can 

increase the actual estimate variance substantially over the CRLB. Nevertheless, in the 

experimental portion of the following work, the statistic is presented as a definite 

variance rather than a lower bound. 

 The central element of Eq. 15, the FIM, is a matrix populated by expected 

curvature values of the parameter vector θ’s M-dimensional log-likelihood hypersurface. 
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The fact that an estimate’s maximal precision is defined by the shape of its probability 

manifold may be somewhat intuitive: if the estimate’s ―probability peaks‖ are sharp, the 

probability maximum will be better defined and thus less susceptible to noise. 

Calculation of the FIM is straightforward: when observed data yi, i = 1 to N, are normally 

distributed about  ,ig x   with variance 2

i , the FIM can be calculated as  

 
2

1

1
 

N
i i

jk

i i j k

g g

  

 




 
 
  


 , (16) 

or, in matrix form as 

 1  T  J J  (17) 

where   /ij i jg  J  (the Jacobian matrix) and Σ is the diagonal covariance matrix of the 

added noise.  

 The CRLB also includes the estimator gradient matrix ˆE[ ] / θ θ , which 

incorporates the gradient of the estimator bias. For unbiased estimators, ˆE[ ]  θ θ , so 

ˆE[ ] /  θ θ Ι , the identity matrix, and does not contribute to the CRLB. For biased 

estimators, however, this term does not reduce to identity and can be computed 

numerically by repeated parameter estimation with varied model parameter values. An 

informal derivation of the CRLB follows. 

 

I.4.1 Informal Derivation of the Cramer-Rao Bound 

The score vector v of an estimate, which is the relative rate of change of the signal 

likelihood function f with respect to model parameters, is defined as 

 
 

 
 

,1
log ,

,
j

j j

f
f

f
v

 

 






y
y

y





. (18) 
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When f is multivariate Gaussian, v can be reduced to 

 
    

2
1

y g gN
i i i

j

i i j

v
 

 





 
, (19) 

or, in matrix form as a column vector, 

 1T v J r , (20) 

where J is the Jacobian matrix as traditionally defined for the true signal g(θ), Σ is the 

diagonal covariance matrix of the added noise, and r is a column vector of noise values. 

Note that since the expectation of additive noise is zero, the expectation of the score 

vector is a zero vector. The covariance matrix of the score vector v, also known as Fisher 

information, is then calculated as follows: 

 

    1 1

1 1 1 1

1

cov E E E E

E

,

T T T T

T T T

T

 

   



             





  

J rr J 0

J rr J J J

J J

v vv v v  

   



 (21) 

where the symbol  E   represents the expectation operation over the likelihood function f 

with respect to y. Furthermore, the covariance of v with the estimate vector θ̂ can be 

calculated as: 

 

 
 

 

 

1
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                  

 
  

 
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y

y y

    
 

 


 (22) 

Because the estimate ̂  is not directly dependent on underlying parameters θ, the order 

of differentiation and integration can be reversed, leaving 

    
ˆE[ ]ˆ ˆcov ,   ,  df

 
 
 

θ
θ v θ y θ y

θ θ
. (23) 
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Substituting Eq. 23 into the multivariate Cauchy-Schwarz inequality results in a formal 

statement of the Cramer-Rao bound: 

 

       1

1
1

cov cov , cov cov ,

E

ˆ ˆ ˆ
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T

T

T








 
    
J

v

J

v v  

 


 

 (24) 

Note that Eq. 24 states that the distribution of an estimate is inversely proportional to the 

model’s squared sensitivity to the estimated parameter, which is a generalization of the 

well-known propagation of error theorem to a possibly biased set of estimates given 

multiple random points of data. In a further, potentially more significant parallel to the 

propagation of error theorem, the uncertainty in parameter estimates defined by the 

CRLB scales inversely with SNR. 

 

I.4.2 Decreasing Variance by Constraining Parameters 

 Due to the fact that the FIM is purely a function of the true signal and noise 

variance, information content is unaffected by the choice of estimator. Thus, information 

is conserved even when the contrast of the estimate is enhanced; the multiplication by 

E[ ]ˆ    causes biased estimates which enjoy greater contrast than their unbiased 

counterparts to receive a proportional penalty to random deviation. Only by constraining 

covarying parameters to a priori values and eliminating their respective elements from 

the FIM before inverting—or by decreasing the problem dimensionality in any similar 

manner—can estimate precision truly be improved. However, this improvement comes at 

the cost of accuracy: bias is introduced into estimates when model parameters are 

constrained to guesses. 
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Stated mathematically, the conditional covariance matrix of the parameters 

remaining unconstrained is the Schur complement of the covariance matrix block 

pertaining to the constrained parameters (55): 

    free free
free free f

1

con,c c,f

free free

s

ˆ ˆ]E ][ E[
  ov ˆc

T

 
  
  

 
    

 
, (25) 

where  
1 cons c,f1

f ,c free

c ˆov T



 

     
 

J J
 

 
 

 and 
cons

free

ˆ
ˆ

ˆ

 
  
  





, and the subscripts ―free‖ and 

―cons‖ refer to the freely fitted and constrained parameters. Readers should note that Eq. 

25 implies the reduction in parametric uncertainty due to constraint is proportional to the 

free parameters’ squared covariance with constrained parameters (Σf,c). 
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CHAPTER II 

 

EXPERIMENTAL METHODS 

 

II.1 Unconstrained mcDESPOT Cramer-Rao Bounds 

For various model tissues (Table 1, parameter sets 1-5) the CRLB of fitted 

parameters were calculated using Eq. 15 and for two previously published mcDESPOT 

methods. The first mcDESPOT method (12) was comprised of 7 SPGR acquisitions with 

varied RF flip angle (αSPGR = 2°, 4°, … , 14°; TRSPGR = 6.5 ms; BWSPGR = 20 kHz) and 9 

bSSFP acquisitions with varied RF flip angle (αSSFP = 6°, 14°, … , 70°; TRSSFP = 5 ms; 

BWSSFP = 60 kHz). The second, more recently reported mcDESPOT method (38), 

included the same SPGR acquisitions but 18 SSFP acquisitions using the same 9 flip 

angles each repeated with and without a 180° RF phase increment per TR period 

 

Table 1. Tissue parameter sets. Set 5 represents a scenario in which the T1/T2 ratios of 

each compartment are equal. Sets 6-8 were used with a range of fF values and varying one 

other parameter within the range provided. Sets 9-11 demonstrate by example different 

tissue models that result in effectively identical mcDESPOT signals. 

 

Parameter Set T1,S (ms) T1,F (ms) T2,S (ms) T2,F (ms) fF (%) τF (ms) 

1 800 450 100 20 20 100 

2 800 450 100 20 20 400 

3 1500 450 100 20 20 100 

4 1500 450 100 20 20 400 

5 2250 450 100 20 20 100 

6 800 450 75 - 150 20 5-45 100 

7 800 450 100 15 - 30 5-45 100 

8 800 450 100 20 5-45 20 - ≫T2 

9 970 415 80.0 12 15 90 

10 965 527 83.7 16.6 23 150 

11 965 579 86.9 19.3 28 200 
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(∆ø = 180° or 0°). This second method allows fitting of an off-resonance term, Δω, as an 

8
th

 independent model parameter, although the present work used the on-resonance 

condition for all cases. In order to compare these two methods assuming equal total 

acquisition time, the original method was calculated using 18 SSFP acquisitions by 

simply repeating each SSFP measurement one time. 

 As noted above, the estimator gradient matrix terms in Eq. 15 were ignored for 

the unconstrained fitting analysis. The FIM was computed using Eq. 17, which includes 

the Jacobian and noise covariance matrices. The Jacobian matrix was calculated as 

defined above,   /ij i jg  J , where the derivative of the signal equation, Eq. 12 for 

SPGR and Eq. 11 for SSFP, was evaluated at the 25 different RF flip angles (xi; 7 for 

SPGR and 18 for SSFP) and with respect to 7 (or 8) different model parameters (θj). Each 

derivative was estimated from a forward-difference calculation of the signal with respect 

to a step size in the model parameter by a factor of 1  10
-4

. The noise covariance matrix 

was computed assuming Gaussian noise with standard deviations SPGR = 1  10
-3

 (a.u.) 

and SSFP SPGR3   due to the greater receiver BW for the SSFP acquisitions. The noise 

was defined as uncorrelated between acquisitions, so the covariance matrix was diagonal. 

At these values of noise variance, the maximum image signal-to-noise ratio (SNR), 

defined as the maximum image intensity divided by the standard deviation of the added 

noise, was approximately 100 for all tissue models.  

 As an informative measure, the condition number of each Jacobian matrix was 

calculated as the ratio of its highest singular value to its lowest. This value was a rough 

estimate of the ratio of relative error in estimated parameters to the relative error in signal 

(56). Specifically, an infinite condition number corresponds to a rank-deficient Jacobian 
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and unsolvable estimation problem, while a large condition number can indicate that 

certain parameters may be unidentifiable at feasible SNRs.  

 

II.2 Constrained mcDESPOT Cramer-Rao Bounds 

The CRLB of fitted parameters were also calculated while constraining both 

transverse relaxation rates (R2,S, R2,F) and the water exchange rate (kFS). For the best case 

scenario, when R2,S, R2,F and kFS were constrained to their correct model values, the 

estimator gradient matrix remained an identity matrix, and the Jacobian was reduced by 

removing the columns associated with the three constrained parameters. Fisher 

information matrices and CRLB were then calculated as usual using Eq. 17 and 15 and 

assuming parameter set 1 in Table 1. For the more general, biased, scenario, when a 

priori constraints were not correct, the estimator gradient matrix was determined 

numerically as follows. Noiseless mcDESPOT signals were generated using various 

 

 

Table 2. Time constant constraints 

Parameter Set T2,S (ms) T2,F (ms) τF (ms) 

A 150 20 100 

B 100 30 100 

C 100 20 67 

D 125 35 200 

 

 

tissue models (Table 1, parameter sets 6-8) and these signals were fitted with the signal 

equations (Eq. 12 and 11) using a minimum χ
2
 criteria (57) and while constraining R2,S, 

R2,F and kFS to one of three sets of values (A-C, Table 2). Each fit was repeated with 
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varied initial conditions in order to ensure that the global minimum χ
2
 value was found, 

which thus provided the expected value of fitted parameters, E[ˆ] . This process was 

repeated while individually perturbing each model parameter by a factor 1  10
-4

 and then 

the estimator gradient matrix, E[ /ˆ]   , was formed from the series of forward-

difference derivative approximations. The noise covariance matrix was generated as 

above and, finally, the CRLB was calculated using Eq. 15.  

 

II.3 Validation of the Cramer-Rao Bound 

Monte Carlo simulations were used to validate both the unbiased and biased 

CRLB calculations using model tissue 1 (Table 1) and constraint set D (Table 2). 

Equations 11 and 12 were used to generate mock mcDESPOT data to which random 

Gaussian noise was added. For the unconstrained case, with 7 or 8 free model parameters 

and relatively large CRLB, a very high SNR was used to allow robust and efficient 

fitting; SPGR  = 1  10
-7

 (a.u.) and 3SSFP SPGR  . Due to the constrained scenario’s 

lower CRLB, a correspondingly smaller SNR was used to ensure that variance in 

parameter estimates was dominated by propagated noise and not inaccuracies in the 

fitting algorithm; SPGR  = 1  10
-3

 (a.u.) and 3SSFP SPGR  . For both cases then, the 

noisy data were fitted with Eq. 11 and 12 to a minimum χ
2
 criterion using standard non-

linear regression tools (lsqnonlin function in MATLAB) and varied initial conditions. 

Each signal was fitted 100 times using initial guesses that were randomly distributed 

about the known solution with standard deviation equal to 10 times the predicted CRLB. 

If the best 20 of these 100 fits converged to solutions with <0.01% parameter variability, 

then the solution was considered the global minimum. This threshold was chosen to be 
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significantly less than the variability in parameter solutions predicted by the CRLB. If 

this stop criterion was not achieved, the algorithm was repeated with 100 new seed 

vectors. After satisfactorily fitting 10000 signals with independently generated additive 

noise, the variances of all fitted parameters were calculated and compared to the CRLB.  
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CHAPTER III 

 

RESULTS 

 

The Monte Carlo simulations provided parameter variances that agreed well with 

the calculated Cramer-Rao lower bounds. The panels in Fig 2 consist of histograms 

displaying the results of both unbiased and biased fast-signal fraction estimates from the 

Monte Carlo simulations, while the superimposed curves represent predicted distributions 

based on the calculated CRLB. Similar results were found for all model parameters—

CRLB and Monte Carlo derived variances differed by no more than 8% for any 

parameter. 

 
Figure 2. Monte Carlo simulation results and their theoretical Cramer-Rao bounds. 

The histograms represent bins created from 10,000 trials, while the overlaid curves 

follow a Gaussian distribution with mean fF and variance equal to the CRLB. Top: 

unbiased 7-parameter fitting using parameter set 1 in Table 1 at SNR~10
6
; bottom: biased 

4-parameter fitting using intrinsic parameters from set 1 in Table 1 and constraints from 

set D in Table 2 at SNR~10
2
. 
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Figure 3. Unconstrained Cramer-Rao bounds as coefficients of variation. Three 

methods are presented using five sets of intrinsic parameter values (1-5 in Table 1). This 

study was performed at σSPGR = 1 x 10
-3

 (a.u.), which corresponds to a clinically-feasible 

SNR for gradient echo sequences, and it should be noted that coefficients of variation 

scale with image SNR. The dotted lines on each plot are a reference goal (   10%c  ) for 

quantitative precision. 

 

When examining unconstrained estimators of all model parameters, the Cramer-

Rao bounds were very high at feasible signal-to-noise ratios. Figure 3 shows the results 

of the unbiased CRLB calculations presented as coefficients of variation (   /c   ) at 

σSPGR = 1  10
-3 

(a.u.). The CRLB vary significantly between model tissues, but in all 

cases   10%c   for all parameters except total proton density, M0. (In many cases, a 

practical goal for estimate precision is   10%c  .) These large CRLB for mcDESPOT 
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agree with the condition number ~10
5
 found for the model’s Jacobian matrix for a variety 

of typical tissue parameters, indicating a very large propagation of error from image 

signal intensities to estimated model parameters. Interestingly, evaluating the forward 

model using both alternating and non-alternating RF phase cycling schemes improved 

estimate precision by up to an order of magnitude. While this was not a sufficient 

improvement to guarantee identifiable estimates at practical SNR, it is worth noting that 

even with the addition of an 8
th

 free parameter, Δω, the precision of other parameter 

estimates improved. Neglecting this parameter while still acquiring at both phase cycling 

 
Figure 4. Constrained Cramer-Rao bounds as coefficients of variation. Parameter 

values are listed as sets 1-5 in Table 1, and accurate constraints are assumed. This study 

was performed at σSPGR = 1 x 10
-3

 (a.u.), which corresponds to a clinically-feasible SNR 

for gradient echo sequences, and it should be noted that coefficients of variation scale 

with image SNR. The dotted lines on each plot are a reference goal (   10%c  ) for 

quantitative precision. 
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schemes gives an additional, sometimes significant improvement to estimate precision, 

but forfeits the inhomogeneity-correcting accuracy gains detailed by Deoni (38). 

 The scenario in which exchange and transverse relaxation rates are constrained 

provided much improved precision; Fig 4 shows an improvement in up to three orders of 

magnitude, regardless of bSSFP acquisition scheme. Again, this coincides well with an  

 
Figure 5. Biased estimates of fast-decaying signal fraction and their uncertainties. 
Top-left: fitting a signal created by parameters in set 1 from Table 1 using the constraint 

sets A-C in Table 2; top-right: fitting a signal created by parameters in the range of set 6 

from Table 1 using the constraint set A in Table 2; bottom-left: parameter set 7 and 

constraint set A; bottom-right: parameter set 8 and constraint set A. In all scenarios, 

CRLB are calculated using σSPGR = 1 x 10
-3

 (a.u.). 
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observed reduction in the condition number of the Jacobian to ~100 when columns with 

the signal derivative with respect to R2,S, R2,F and kFS were removed. The price paid for 

the improved estimate precision is an increased estimate bias. Figure 5 demonstrates the 

relationship between short-lived signal fraction estimates (
Ff̂ ) and corresponding true 

model values ( Ff ) for two different tissue models and a variety of a priori R2,S, R2,F and 

kFS constraints. The error bars represent estimate standard deviations based on the CRLB 

at σSPGR = 1  10
-3 

(a.u.). In general, although the estimates showed a substantial bias 

(more than 100% of the intrinsic value in some cases), there is a monotonic, nearly linear 

relationship between the estimates and the true model values.  
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CHAPTER IV 

 

DISCUSSION & CONCLUSIONS 

 

Numerical computations demonstrate that mcDESPOT, as previously described, 

cannot provide parameter estimates of a two-pool system with usable precision. A less 

rigorous but perhaps more intuitive demonstration of this can be seen in Fig 6, which 

shows mcDESPOT signals from 3 different model tissues (Table 1, parameter sets 9-11) 

and the differences between these signals compared with added noise at the σSPGR = 1  

10
-3

 (a.u.) level. In this example, fF varied between 15% and 28% across the three tissues,  

 

 

 
 

Figure 6. mcDESPOT signal differences relative to appropriate noise levels. Top: a 

reference mcDESPOT signal containing two bSSFP curves (using both alternating and 

non-alternating RF excitation phase every repetition) and one SPGR curve. Bottom: 

differences between the reference signal above and signals with very distinct parameter 

values. For example, fF values vary between 15% and 28%. Nevertheless, the uncertainty 

due to noise is still very large compared to the hardly distinguishable signal differences, 

so one would expect difficulty in differentiating the signals. 
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but their resulting mcDESPOT signal differences are approximately 3 orders of 

magnitude smaller than the standard deviation of the added noise. Clearly, with this level 

of noise, any of these three signals could be equally-well fitted with any of the three 

parameters sets.  

 These findings of impractically high parameter variance from mcDESPOT, 

however, are incongruent with previous in vivo studies, which show maps of 

mcDESPOT-derived MWF (i.e., fF in a white matter model) that exhibit relatively low 

variance (36, 37). It thus appears that the model presented here does not accurately reflect 

the in vivo scenario. Two possible sources for this difference are: 1) the estimator used 

for the in vivo studies, and/or 2) the model used to characterize the tissue. In the first case, 

it is possible that the solution vectors,  ̂ , found in the in vivo studies were not at the 

global χ
2
 minimum. This would not be surprising given the large dimensionality (7 or 8 

free parameters) of the problem and typically modest SNR expected in vivo. In this case, 

the estimator gradient matrix would not be an identity matrix and its norm would be less 

than one, resulting in a decrease in the CRLB in accordance with Eq. 15. Figure 7 

demonstrates the effects of the mcDESPOT model’s local minima on classical 

optimization methods. When each initial seed parameter is varied by 50% of the true 

value, classical least-squares optimizations of signal fraction trend toward certain 

likelihood ―trenches‖, such as a one-pool approximation. In order to address this 

difficulty, Deoni, et al proposed sophisticated algorithms (12, 38) to solve the least-

squares problem, which in-turn may have inadvertently imparted constraints on the 

solutions. 
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Figure 7. Effect of mcDESPOT dimensionality on fitting difficulty. Each panel 

represents a different set of additive noise, while each point represents a different 

optimization seed vector. Note that certain local minima are stable across various noise 

values (such as those near fF = 0 or 1) while others are sensitive to the noise (such as 

those near 0.9 or 0.6). 

 

 

The second case is that the two-pool model, upon which mcDESPOT and the 

CRLB calculation herein are based, does not satisfactorily describe white matter in vivo. 

In this case, the sensitivity in vivo of the signal to an apparent signal fraction or T2 value 

may be greater than the sensitivity would be for a perfect two-pool system. For example, 

magnetization transfer effects, which are not presently incorporated into the mcDESPOT 

model, are known to affect both bSSFP (58, 59) and SPGR (60) signals. The relatively 

large macromolecular pool that is thought to exchange magnetization with myelin water 

(61) will reduce the apparent T2s in a DESPOT2 (bSSFP) measurement (62) and may 

result in significantly reduced variance in the estimates of the apparent fast-relaxing 

signal in a two-pool model. This effect would suggest that the mcDESPOT measure of 
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MWF is to some degree a measure of macromolecular proton fraction, much like a qMT 

measurement provides. Such a scenario would explain the observed correspondence 

between mcDESPOT measures of MWF and tissue myelination and the apparently high 

measures of MWF found in gray matter using mcDESPOT (36). At this point, neither the 

estimator nor the model (nor some combination) can be definitively identified as the 

source of differences between in vivo studies and the CRLB. 

 Beyond the unconstrained mcDESPOT methods used to date, the results here 

show that constraining some model parameters—for example, both T2s and the 

intercompartmental exchange rate—to a priori values allows for much improved 

precision of the remaining parameter estimates. This particular constraint scenario is 

presented as an example and is not necessarily the best strategy. Although not shown, a 

variety of other strategies were investigated and it is worth noting that no combination of 

constraints was found that provided simultaneous low variance estimates of both kFS and 

fF. Thus, in the context of white matter imaging, we conclude that there is no viable 

mcDESPOT strategy to estimate MWF independently from the effects of inter-

compartmental water exchange, or vice versa. Of course, the same is true for a 

conventional multiple spin echo measurement of transverse relaxation. 

 In terms of the practicality of estimating an apparent MWF using the constrained 

mcDESPOT approach evaluated here, accuracy will depend on how well the constrained 

parameter values can be chosen. The top-left panel in Fig 5 indicates that, when 

comparing otherwise similar tissues, this constrained mcDESPOT will report on changes 

or differences in MWF accurately, despite erroneous a priori constraints. More 

specifically, these results suggest that constrained mcDESPOT, measured with peak 
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image SNR ≈ 100, can identify a difference of as little as 5% intrinsic signal fraction 

within 95% confidence. Conversely, the other panels of Fig 5 show how differences in 

water exchange rate and R2 values will alter the apparent MWF. It may be reasonable to 

expect R2,F to be relatively invariant across tissues and subjects, at least in the absence of 

a condition of myelin edema; however, there is good reason to believe that water 

exchange rates, kFS, will depend on myelin thickness and axon diameter (13, 14), and the 

intra-/extra-axonal water relaxation rate, R2,S, is likely to vary greatly with inflammation. 

Thus, the utility of constrained mcDESPOT will depend very much on the application, 

and any interpretation of changes or differences in measured MWFs should consider the 

potential co-factors. 

 The observation that the parameter estimate precision can be improved 

substantially by repeating the bSSFP scan with and without 180° RF phase alteration 

(although the improvement did not occur under the constrained mcDESPOT scenario) 

reveals a novel mechanism for further optimizing mcDESPOT or other quantitative 

studies using bSSFP. Investigation of the parameter covariance matrix (Eq. 14) shows 

that 180° changes in the RF phase increment alter the sign of some parameter covariances 

(off-diagonal terms in 
θ̂

Σ ), which results in a net reduction in covariance between 

parameters when signals acquired with both 0° and 180° increments are fitted 

concurrently. It is conceivable that other RF phase increments offer the effect of further 

diagonalizing 
θ̂

Σ  and, in turn, improving parameter estimate precision.  

In summary, the work detailed here has demonstrated—via analytical statistics 

validated by Monte Carlo simulation and condition number analysis—the inability of 

mcDESPOT signals to precisely estimate parameters of a two-pool model with exchange. 
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Previous demonstrations of low variance parameter estimates from in vivo studies of 

white matter may be due to the effective constraints being imparted on the parameter 

estimates in standard mcDESPOT analysis, or may be due to an insufficiency of the two-

pool model to describe white matter for these measurements. Regardless of the source of 

discrepancy, further study is required before mcDESPOT data can be unambiguously 

interpreted. 
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