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CHAPTER I 

 

INTRODUCTION 

 

Normal wound healing is a complex and highly coordinated process of cell-cell 

signaling, cell spreading, migration, proliferation, and cell-ECM interaction.  However, 

the main limitation in natural wound healing is that cells can mainly fill in the wound 

void from the wound margin.  We hypothesize that epithelial cells applied to the interior 

of a wound will attach to the exposed extracellular matrix of the wound, and may 

contribute to the healing process.  Our objective was to design and evaluate a therapeutic 

contact lens that could deliver epithelial cells to wounds.  We set out to develop a cell 

transfer contact lens that could keep cells in close proximity to the cornea and allow cell 

movement onto wounded regions.  Lens designs were chosen by the following criteria: 1) 

The lens material must allow for primary epithelial cell attachment and in vitro culture 

growth.  2) Lens application must result in the transfer of a portion of these cells to 

wound areas to aid in re-epithelialization of corneal injuries.  3) The lens must function as 

a bandage lens after cell transfer in order to protect both applied and endogenous cell 

populations on the corneal surface. 

We hypothesized that cell transfer from PDMS contact lenses to wound ECM was 

a function of both cell motility and adhesion.  In order to test this hypothesis, we 

developed in vitro assays for the assessment of cell transfer, and evaluated contact lens 

designs in increasingly complex model systems with an iterative design approach to 

enhance cell transfer.  In this design process we used surface patterns to induce migration 

and surface coatings to effect cell adhesion.  Surface patterns such as grooved channels 
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have been shown to direct cell movement (Evans, McFarland et al. 2005).  Utilizing this 

idea, post and hole topographies were fabricated on contact lens surfaces to encourage 

cell movement along these structures.  Cell attachment surface coatings such as 

fibronectin, collagen and matrigel were also used to test the effect of cell adhesion on the 

process of cell transfer.   

In order to enhance cell transfer through the modulation cell motility and 

adhesion, we explored some of the underlying biological mechanisms of these two inter-

related cellular behaviors.  Though there were many potential molecular targets to alter 

cellular adhesion and aaugment motility, we specifically explored the regulation of cell-

cell contacts, which have a profound impact on cell phenotype and migration.  Previous 

studies have shown that cell adhesion to different substrates can effect on cell-cell 

adhesion (Monier-Gavelle and Duband 1995; Weaver, Petersen et al. 1997) and cell–cell 

adhesion can also influence motility (Huttenlocher, Lakonishok et al. 1998).  When cells 

form cell–cell contacts, cells exhibit reduced migration rates, form fewer cell protrusions 

such as lamellae and filopodia, and cells decrease their microtubule and actin 

cytoskeleton dynamics (Waterman-Storer, Salmon et al. 2000).  All of these processes 

involved in migration are affected by cell-cell adhesion.  The mechanisms of crosstalk 

between cell adhesion and motility are not fully understood, however, since Rho and 

other small GTPase proteins are essential for both cell adhesion and cell migration 

(Bishop and Hall 2000), these are likely key proteins in the crosstalk pathways. 

Normal corneal epithelial cells are motile cells that move slowly as a sheet.  In 

contrast, fibroblasts move more quickly as individual cells.  When epithelial cells exist as 

individual cells at very low cell density, they are more motile and more closely resemble 
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fibroblast cells.  Individual epithelial cells do not exhibit cell junction proteins.  In this 

investigation we altered Bves, a protein we have shown is associated with tight junctions 

(TJ), in an effort to make epithelial cells become more like fibroblasts regardless of cell 

density.  This transition from an epithelial cell type to a fibroblastic cell type is called 

epithelial-mesenchymal transition (EMT), and has broad reaching implications for other 

fields such as metastasis in cancer biology.   

This dissertation is divided into six chapters.  This Chapter is an introduction to 

the work that states the objectives and summarizes the organization of the document. 

Chapter II contains the background and motivation for the research, including an 

overview of corneal physiology, normal corneal wound healing, epithelial-mesenchymal 

transition and cell junctions, and a literature review of re-epithelialization methods and 

using polydimethylsiloxane (PDMS) as a cell culture material.  Chapter III is the first 

manuscript published in Cell Transplantation, which decribes our in vitro cell transfer 

assay and the effect of post surface patterns on epithelial cell transfer entitled: “Seeding 

of corneal wounds by epithelial cell transfer from micropatterned PDMS contact lenses.”  

Chapter IV is a manuscript that explores the use of differrent surface geometries and 

surface coatings to enhance the transfer of primary cells entitled: “Cell transfer contact 

lenses deliver primary corneal epithelial cells to wounded organ cultured corneas.”  

Chapter V probes cell adhesion and motility characteristics of epithelial cells by 

disrupting cell junctions in the manuscript “Loss of proper Bves function promotes 

epithelial-mesenchymal transition (EMT) and enhanced cell motility in corneal epithelial 

cells.” All manuscripts include background, methods, results, discussion, and references.  

Chapter VI is the overall summary of the body of work, which consists of a general 
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discussion and directions for future work. Chapter VII includes the measures taken for 

the protection of research subjects and a statement of the societal implications of the 

research.  Appendix A describes the role of the student on the manuscripts.  Appendix B 

is supplemental information on surface modifications of Polydimethylsiloxane, which 

was not written in a finalized manuscript form.  Appendix C is the manuscript: “Method 

to produce precise and reproducible epithelial wounds for in vitro studies of corneal 

wound healing.” 
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CHAPTER II 

 

BACKGROUND 

 

Physiology of the cornea 

The cornea is the transparent central portion of the eye surface that serves as a 

barrier defense for the inner eye, and as a critical refractive element in normal vision 

(Kaufman 1998).  The cornea is made up of three main layers, the epithelium, the stroma, 

and the endothelium.  The innermost layer is called the endothelium, which is a 

monolayer of cells responsible for the water and nutrient balance of the cornea.  

Endothelium maintain corneal clarity by pumping water out of the corneal stroma (Lim 

and Ussing 1982; Fischbarg, Hernandez et al. 1985; Wiederholt, Jentsch et al. 1985).  

Endothelial cells cannot replicate, so if too many of these cells die the cornea losses its 

way to regulate water balance.  When this happens the cornea becomes edematous, which 

reduces corneal clarity and causes vision impairment (Kaufman 1998). 

The middle layer of the cornea, the stroma, provides mechanical strength.  The 

stroma constitutes 90% of the total corneal tissue and most of the cornea’s 0.5 mm 

thickness (Kaufman 1998).  Stromal clarity is dependent on the endothelium keeping the 

stroma in a dehydrated state.  Mechanical support is provided by strong intertwined 

collagen fibrils maintained by fibroblast-like cells called keratocytes.   

The outermost layer, the epithelium, is the corneal layer that is most responsible 

for sustaining protective and optical functions.  Because the epithelium is directly 

exposed to the ambient environment, it is the first line of defense from injury and disease.  

This external layer is hardy and has a high healing capacity.  In addition, because much 
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of the eye’s focusing power comes from the refraction of light at the corneal surface, a 

smooth superficial epithelial layer with evenly distributed tear film is required for visual 

acuity. 

The human corneal epithelium is comprised of 5-7 cell layers, with a total 

thickness of 50 microns.  Morphologically these layers can be split up into 3 types of 

epithelium: basal cells, wing cells, and superficial cells.  The cells types have distinct cell 

sizes and shapes, as well as exhibit different organelles and cell-cell junctions.  

Basal cells are the only cell type of the cornea capable of cell division and are 

responsible for adhesion to, and maintenance of, the basal membrane.  These 

mitogenically active columnar cells are roughly 20 microns thick and 10 microns in 

diameter.  Basal cells exhibit many more cytoplasmic organelles than the other epithelial 

cell types, and notably many more glycogen granuoles to provide energy during cellular 

stress.  These cells express zonula adherens and gap junctions with other basal cells, and 

adhere to an underlying basement membrane by connections called hemidesmosomes, 

which are normal long-term adhesion structures between intermediate filaments and 

basement membrane.  Cells of the basal layer secrete materials such as laminin to form 

the basal lamina, which helps to separate and organize the epithelium on top of the 

stroma and maintain mitogenic capacity (Vracko and Benditt 1972). 

Suprabasal cells, called wing cells, reside in the 2-3 middle layers of the corneal 

epithelium.  Wing cells are transitional cells, which demonstrate an intermediate 

morphology between basal cells and superficial cells.  Wing cells are filled with 

intermediate filaments, which help them to maintain their shape, and exhibit both 

desmosomes and gap junctions.   
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The Superficial cell layer is the topmost cell layer on the corneal surface, and 

normally is 2 cell layers thick.  Superficial cells are thin, terminally differentiated cells 

bathed in tear film (Nichols, Dawson et al. 1983).  These cells are flattened, squamous 

epithelium that are approximately 50 microns in diameter, 5 microns thick centrally, and 

2 microns thick peripherally.  Superfical cells express junctional proteins that lead to a 

contiguous cell layer interconnected by tight junctions.  Tight junctions allow for 

effective barrier function and maintenance of a stable, smooth, external corneal surface 

for proper vision. 

 

Corneal Injury 

Corneal injuries are the most common of all eye injuries.  The Schepens Eye 

Research Institute recently reported that corneal injury and disease constitute over 60% of 

all reported eye related patient visits in the U.S. health care system.  The causes of 

corneal epithelial defects and disorders are numerous.  Symptoms normally include 

vision impairment (corneal opacity), or pain (stimulation of the many corneal nerves).  

Nearly 10% of all eye related hospital visits are due to abrasions and ~8% of these cases 

suffer from complications that lead to delayed wound healing or at least one episode of 

recurrent epithelial erosion (Weene 1985).   

In addition to the fact that abrasions are common, there are many other 

complications that can lead to delayed wound healing.   Bacterial or viral infections such 

as herpes simplex virus infection, which has an incidence of 1 in less than 1,000 

Americans (Liesegang, Melton et al. 1989), can cause severe persistent ulcerations.  

Autoimmune diseases such as Stevenson-Johnson Syndrome, and wound-healing 
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disorders such as diabetes, cause alterations in the cornea resulting in decreased 

sensitivity, recurrent epithelial erosions, and abnormal wound repair (Sanchez-Thorin 

1998; Rosenberg, Tervo et al. 2000).  According to the American Diabetes Association, 

18.2 million people are diabetic, and this population is rapidly growing.  It is expected 

that roughly one in ten diabetic patients during some point in their life will experience 

corneal wound healing problems, and those that are affected will be prone to recurrences 

(Ben Osman, Jeddi et al. 1995; Inoue, Kato et al. 2001). 

The most severe form of persistent corneal wounds is caused by limbal stem cell 

deficiency (LSCD).  However, LSCD is relatively rare in the United States.  Only a few 

thousand people suffer from diseases or injuries such as acid or base burns that cause 

LSCD.  Corneal deficiencies are much greater in developing nations where malnutrition 

and infectious diseases of the eye commonly cause delayed wound healing and lead to 

corneal blindness.  Despite the wide range in corneal wound severity, clearly there is a 

large patient population, which suffers from delayed wound healing that would benefit 

from enhanced re-epithelialization therapies. 

 

Normal Corneal Wound Healing 

Corneal wound healing is a complex, coordinated cellular process.  The paradigm 

of corneal wound healing is that it takes place in separate phases: the latent phase, the cell 

adhesion and migration phase, and the cell proliferation phase.  In the first phase of 

wound healing, existing basal epithelial cells remain inactive for the first 4-6 hours after 

wounding (Crosson, Klyce et al. 1986).  During this time, polymorphonuclear leukocytes 

(PMN) found in tears, remove dead cells at the wound margin (Pahlitzsch and Sinha 
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1985).  Viable cells around the wound margin retract and round up, and lose surface 

microvilli (Haik and Zimny 1977) and hemidesmosomes (Gipson 1992).  These cells then 

flatten to quickly cover the area around the wound margin, and start to form filopodia, 

which are spike-like projections also called microspikes, and lamellapodia, which appear 

as ruffled cell edges (Haik and Zimny 1977; Brewitt 1979).  This step marks the onset of 

the second phase of wound healing, cell migration, which is also referred to as the linear 

cell healing phase. 

During the cell migration phase, basal cells migrate from the wound edge into the 

central area of the wound region by the formation and contraction of actin filaments 

(Anderson 1977).  Actin filaments are concentrated in the leading edge of migrating cells, 

especially in filopodia and lamellipodia.  Migration is a cyclical process of actin synthesis 

to extend the cell cytoskeleton, focal adhesion formation to temporarily anchor the cell, 

then actin is contracted to draw the cell forward (Soong 1987; Soong, Dass et al. 1990).  

The focal adhesions in the trailing edge of the cell are then cleaved, and the adjoining 

actin is disassembled.  Once these migrating cells have filed the wound region to create a 

monolayer, cells begin to attach more firmly to the underlying basement membrane by 

synthesizing new hemidesmosomes.  Restoration of hemidesmosomes to normal levels 

after wounding can take weeks to months (Gipson, Spurr-Michaud et al. 1989). 

The next healing phase, epithelial cell proliferation, is a process of cell division to 

create new cells to restore the cornea’s normal 5-7 cell-layer thickness.  All self-

regenerating tissues, such as epithelium, are thought to be maintained by stem cells. In 

the cornea, it is believed that these stem cells are found only in the basal epithelial layer, 

and more specifically reside in the limbus, a region at the corneal-scleral junction.  These 
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limbal stem cells are required for corneal epithelialization.  Limbal stem cells have low, 

but unlimited, mitotic activity and are inactive most of the time (Cotsarelis, Cheng et al. 

1989; Pellegrini, Golisano et al. 1999).  However, stem cells become active after 

wounding, giving rise to new epithelium (Schwab and Isseroff 2000).  Limbal stem cells 

asymmetrically divide to generate a daughter stem cell and a transient amplifying cell 

(Schermer, Galvin et al. 1986; Cotsarelis, Cheng et al. 1989), and it is these transient 

amplifying cells that give rise to differentiated corneal epithelium.  The transient 

amplifying cell population is highly varied in replication potential and differentiation 

status.  It has been shown that cell replication potential can be correlated to a transient 

amplifying cell’s radial position in the basal layer (Nagasaki and Zhao 2003).  Cells 

capable of the highest number of divisions reside in the outer-most region, adjacent to the 

stem cells, whereas those with the lowest mitogenic potential are located at the center of 

the basal layer. 

Transient amplifying cells of the basal layer divide into more differentiated cells 

of the middle wing cell layer and superficial layer.  Newly formed daughter cells, post 

mitotic cells, push anteriorily and differentiate, exhibiting different morphology and 

protein expression.  Epithelial proliferation is so efficient in the cornea that every cell of 

the epithelium can be completely replaced in less than 7 days (Hanna, Bicknell et al. 

1961; Kourenkov, Mytiagina et al. 1999; Fagerholm 2000).   

 

Cell Adhesion Junctions 

Normal epithelial cells form uniform sheets, which are maintained by cell 

adhersion junctions. These multi-protein complexes are found at cell-cell boundaries and 
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regulate the interactions between adjacent cells. These adhesion molecules between cells 

provide structural integrity that is necessary for both development and maintenance of 

tissues (Gumbiner 1996).  Proper cell junction expression and function are crucial to 

normal physiology, and disorders involving cell junctions cause serious pathologies such 

as skin blistering diseases(Amagai, Klaus-Kovtun et al. 1991), and in the cornea, bullous 

keratopathy (Kenney and Chwa 1990). 

Epithelial cells are polarized, having apical and basolateral regions delineated by 

junctions on the lateral surface.  These cell junctions include tight junctions (TJ) 

(Gonzalez-Mariscal, Betanzos et al. 2003), adherens junctions (AJ) (Nagafuchi 2001) and 

desmosomes (Garrod, Chidgey et al. 1996).  These cell junctions are very different in 

terms of function, cell membrane location, and protein components. 

 

Tight Junctions 

Tight junctions are the most apically located of the three adhesion junctions, and 

are involved in establishing and maintaining cell polarity.  Tight junctions also create a 

barier by sealing the space between cells, which prevents the passage of molecules 

through a contiguous cell layer (Balda, Flores-Maldonado et al. 2000).  Transmembrane 

proteins such as occludin (Furuse, Hirase et al. 1993) and the claudins (Furuse, Fujita et 

al. 1998) make up tight junctions, with peripheral associated proteins ZO-1 (Stevenson, 

Siliciano et al. 1986), ZO-2 (Gumbiner, Lowenkopf et al. 1991) and ZO-3 (Haskins, Gu 

et al. 1998).   

Interestingly, blood vessel/epicardial substance (Bves), which was originally 

identified in epicardium (Reese, Zavaljevski et al. 1999), is also expressed in corneal 
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epithelial cells (Ripley, Chang et al. 2004), and is suspected of having a role at the tight 

junction.  Though the molecular structure of Bves is well characterized on the cellular 

level, little is known regarding its molecular role.  Bves is composed of approximately 357-

amino acids containing three hydrophobic regions with two glycosylation sites. Knight and 

others later verified Bves to be an integral 3-pass transmembrane protein that forms 

homodimers (Knight, Bader et al. 2003).  Bves localizes to the lateral membrane of various 

epithelium, and is highly conserved across species (DiAngelo, Vasavada et al. 2001; 

Wada, Reese et al. 2001; Ripley, Chang et al. 2004; Osler, Chang et al. 2005). Because of 

its subcellular localization and the fact that Bves transfection of non-adherent cell lines 

confers adhesive properties, Bves is considered an adhesion molecule.  However, Bves 

does not contain any motifs or domains found in known classes of adhesion molecules. 

Bves does share domains with two other related genes now considered to be part 

of the popeye domain-containing gene family (Osler, Smith et al. 2006). Brand and 

colleagues identified the three related genes with the domain in common, which they 

named popeye (Brand 2005).  Despite being a part of this newly identified family of 

genes, Bves remains the accepted name for the gene product of popdd.   

Based on antisense morpholino oligonucleotide (MO) knockdown, loss of Bves 

has been shown to lead to epithelial disorganization and a decrease of transepithelial 

electrical resistance (TER), a functional measurement of TJ.  Recently it has been shown 

that Bves localizes with components of tight junctions, ZO-1 and occludin in corneal 

epithelia (Osler, Chang et al. 2005).  Bves function appears to be coupled to tight junction 

localization.  Immunoprecipitation studies have shown that Bves interacts with ZO-1, 

which further indicates that Bves is a component of the TJ.  In summary, Bves is a 

transmembrane component of TJ and is necessary for epithelial sheet integrity. 
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Epithelial-Mesenchymal Transition 

In normal physiology, during embryonic development and in pathological 

conditions such as in epithelial-based cancers (carcinomas), epithelial cells adopt a 

mesenchymal phenotype with reduced intercellular interactions and increased migratory 

capacity (Arias 2001).  This is a process known as epithelial-mesenchymal transition 

(EMT).  During EMT, epithelial cells actively down-regulate cell-cell adhesion 

molecules and lose their polarity.  The opposite process, mesenchymal-epithelial 

transition (MET), has been observed in development as well.   Mesenchymal cells can 

also form epithelial tissues by forming cell-cell contacts.  In order to better characterize 

cellular transition, researchers have sought to identify molecular events that lead to EMT 

in disease progression.  It is now widely accepted that loss of E-cadherin function is a 

primary event in EMT, which demonstrates the importance of cell junctions in this 

process (Hirohashi 1998; Hanahan and Weinberg 2000).  Since E-cadherin is associated 

with adherens junctions, previously EMT studies have focused on the role of adherens 

junctions in cancer progression.  However, during recent studies in our lab we have found 

that the loss of functional Bves associated with tight junctions may initiate EMT for 

corneal epithelial cells.  This finding may be used to encourage cell migration for re-

epithelialization applications, as well as provide a framework for understanding the 

possible role of Bves as a tumor suppressor and its loss as a possible trigger for EMT. 

 

Novel methods to facilitate re-epithelialization of wounds 

There are a number of re-epithelialization strategies that have been pursued by 

both corneal and dermal researchers.  Though the epidermis and corneal epithelium are 
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similar in that they are both composed of epithelial layers maintained by stem cells, they 

differ in many ways and therefore re-epithelialization therapies must take these 

differences into account.  Skin is vascularized and highly keratinized, where as the cornea 

lacks blood vessels and is optically transparent.  In epidermal wound healing, scar 

formation and hypervascularization are more acceptable than in the cornea, where scars 

or blood vessel in-growth may hinder proper vision. 

In many forms of delayed wound healing it is thought epithelial cell migration is 

hindered, so various extracellular matrix (ECM) proteins such as collagen, fibrin, and 

fibronectin (Nakamura, Sato et al. 1997) have all been applied to the cornea to enhance 

epithelialization.  However these therapies have had mixed results.  Other groups have 

tried to use MMPs and aldose reductase inhibitors (Datiles, Kador et al. 1983; Ohashi, 

Matsuda et al. 1988) to modify the wound area’s ECM.  Epithelial growth factors and 

chemotactic agents have been used to try to encourage cell migration into epithelial void 

regions.  Other therapeutic agents such as aminocaprioc acid, lecithin, superdismutase, 

aprotinin (plasmin inhibitor), and hyaluranic acid have been used in attempt to augment 

corneal wound healing. 

 

Cell based therapies for the cornea 

Instead of delivering therapeutic molecules to the cornea, another approach to re-

epithelialize the cornea is to culture epithelial cells and apply them to wounds.  This 

technology in the past has been used to treat the most severe cases of delayed healing and 

persistent wounds that we associated with limbal stem cell deficiency.  Stem cell 

deficient corneas lack the ability to heal because the proliferative cell population is 
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compromised.  In order to treat total limbal stem cell deficiency, a limbal stem cell 

transplant method was developed to replenish corneas with cells capable of proliferation.  

Limbal stem cell deficient corneas are usually highly scarred and opaque.  These 

problems must be addressed before limbal transplant.  Keratectomy and conventional 

corneal transplant procedures may accompany limbal transplants to prepare the eye in 

stages, however, these procedures alone are unable to treat limbal stem cell deficiency 

independently (Tsubota, Satake et al. 1999).  A source of new limbal stem cells in the 

form of a transplant are needed to re-epithelialize the cornea by replenishing it’s supply 

of proliferative cells. 

Limbal transplants may differ depending on the source of donor cells, the amount 

of tissue used, and the method of delivery to the deficient eye.  A limbal autograft is a 

transplantation of stem cells into a patient’s deficient eye from their contra-lateral healthy 

eye.  A portion of the stem cell-sufficient limbus is harvested from the healthy eye, and is 

surgically placed in the affected eye.  Tseng and Kenyon conducted the first trial of 

autologous limbal transplants on patients in 1987.  They found that this technique could 

be effective in the treatment of patients with previously failed corneal transplants, 

demonstrating an initial success rate of 85% (Kenyon and Tseng 1989).  Many causes of 

corneal stem cell deficiency are bilateral, affecting both eyes.  In these cases, limbal 

allografts are used instead of autografts.  In an allograft, transplanted tissue comes from a 

donor.  The stem cell populated donor graft is then implanted into the deficient patient’s 

limbus.  These patients are then required to use immunosuppressive drugs such as 

cyclosporin.  The process of taking ocular tissue from the limbus can be dangerous for a 

living donor if too much tissue is removed, leaving them with too few stem cells (Schwab 
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and Isseroff 2000).  This risk to the donor eye has been minimized by ex vivo-expanding 

limbal stem cells on growth substrates using cell culture techniques. 

Michele DeLuca and his research team at the University of Genova have 

pioneered and popularized ex vivo expansion for limbal stem cell transplants.  They 

demonstrated that efficient expansion of corneal stem cells was possible, requiring fewer 

cells to be harvested from donor tissues.  They found that 1 mm2 sections harvested from 

the limbus were adequate to provide enough proliferative cells to re-epithelialize the 

cornea.  Originally, implanted epithelial cultures were placed directly into the eye using 

surgical gauze as a substrate, which was covered by a bandage contact to hold the gauze 

in place (Pellegrini, Traverso et al. 1997).  Tseng and Kim found that amniotic 

membrane, which had been used in the past half century in ocular surgeries, could be 

used as a cell carrying substrate for limbal transplants (Kim and Tseng 1995).  When 

limbal tissue is implanted, the membrane is sutured onto the eye’s surface.  The innate 

characteristics of the membrane have been reported to prevent vascularization of the new 

cornea and reduce immune response (Tseng, Prabhasawat et al. 1998).  This is thought to 

limit tissue rejection problems of limbal allograft transplants. However, patients still 

require the same regiment of immunosuppressive drugs.  The immunological and anti-

vascularization roles of amniotic membrane are still being investigated.  Research groups 

in Taiwan, Japan, Germany, Italy, and the U.S. have combined the use of ex vivo 

expansion of corneal epithelial cells with the amniotic membrane transplant procedure .  

Limbal stem cells are now cultured directly on amniotic membrane in vitro, which creates 

100-fold more cells to be implanted into a deficient eye (Quantock, Koizumi et al. 2002). 
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Limbal transplant methods have been shown to be effective treatment for corneal 

stem cell deficiency.  However, it is difficult to assess the overall success rate of each of 

these different types of cell transplantation surgeries because each patient’s case has a 

different clinical outlook with varying amounts of stem cell deficiency, conjunctival 

invasion, blindness, and past history of surgeries.  Because preparation before limbal 

stem cell transplantation is different for many cases involving keratectomy or 

conventional corneal transplants, there is further heterogeneity to trial groups.   

Despite the advances produced by limbal stem cell transplantation methods, the 

methodology still suffers from a few drawbacks.  The stem cell population that is most 

therapeutic to patients is difficult to isolate and purify from donor tissues because there is 

no identified stem cell surface marker.  A stem cell marker would allow clinicians to 

locate stem cells for harvest and a way to track them to ensure their delivery and 

preservation in treated corneas.  Researchers have been trying to develop ways to 

visualize limbal stem cells since the early 1990’s.  One of the first attempts to identify 

limbal stem cells was to analyze expression of keratins in corneal cells.  Differentiated 

corneal epithelial cells, such as transient amplifying cells, were found to express a 64K 

keratin, whereas corneal stem cells of the basal limbus layer express 50K/58K keratins.  

The 64K keratins were used as markers of differentiated epithelial cells visualized by 

labeled antibody AE5 (Schermer, Galvin et al. 1986).  BrdU has been used to label slow 

cycling cells of the limbus, which are likely to be stem cells (Grueterich, Scheffer et al. 

2002).  However, these methods for identifying limbal stem cells were poor because they 

identified many cells that were not stem cells or the staining needed to be done on fixed 

cells, so the method couldn’t be used to sort cells to be used therapeutically. 
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Recently, there have been great strides in this area, however, these is still no way 

to positively identify limbal stem cells (Shimazaki, Aiba et al. 2002).  Researchers have 

developed mouse lines that express GFP in corneal epithelium, so that the limbal stem 

cells and their progeny can be visualized (Nagasaki and Zhao 2003).  In addition many 

new stem cell marker candidates have been identified including δNp63 (Vascotto and 

Griffith 2006) and negative surface markers such as connexin 43 (Chen, Evans et al. 

2006). 

Other drawbacks to limbal stem cell therapy exist, including the practical 

limitations of cell administration methods and also subsequent cell rejection and 

inflammation issues.  Some practical issues of using collagen and amniotic membrane to 

support ex vivo expansion include handling problems.  These materials are delicate, and 

difficult to work with.  They require technical surgical skill to properly affix the corneal 

stroma surface and efficacy can be adversely impacted.  In addition, amniotic membrane 

and collagen sheet materials are not off-the-shelf products.  Amniotic membrane is a 

biomaterial that degrades with time and is prone to tearing, requiring special shipping 

considerations.  Amniotic membrane (AM) is used as a substrate for ex vivo expansion of 

limbal stem cells because it is a biologically inert degradable matrix.  AM is an avascular 

stromal matrix with a basement membrane composed of collagen type IV and laminin.  

These extracellular matrix materials make amniotic membrane an amenable material for 

cultivating stem cells.  Corneal stem cells grow well on the membrane in vitro.  The 

preparation process most commonly used by clinicians working with AM is modified 

from the methods originally proposed by Kim and Tseng (Kim and Tseng 1995).  

Amniotic membranes are harvested placentas from disease-free consenting mothers who 
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have delivered by caesarian section.  The membrane is then separated via blunt 

dissection, washed, cut up, and stored submerged in 50% DMEM/glycerol at -80ºC.  

Freeze dried amniotic membrane is now commercially available, which ships well, but is 

relatively expensive.  In order to make corneal cell therapy economically viable, cost 

should be minimized without reducing efficacy.  Nishida et al have developed a method 

to prepare full epithelial sheets for implantation without a substrate material.  Limbal 

explants were cultivated on a temperature-sensitive polymer growth surface.  After weeks 

of culture time, hardy epithelium composed of multiple cell layers were released from the 

polymer by a temperature change (Nishida, Yamato et al. 2004).  This type of approach 

would eliminate the need for carrier materials, however there are still surgical and 

technical issues that remain.  Limbal explant expansion to be confluent sheets is time 

consuming and, in some cases, may delay patient treatment.  In addition, many limbal 

transplant procedures require sutures, which can have complications.  Lastly, these 

methods are poorly suited to treat less severe cases of wound healing deficiency.  

Therefore, they have limited application.  In summary, the current limbal transplant 

procedures are cumbersome, expensive in cost and in time, and are limited to the 

treatment of complete limbal stem cell deficiency. 

 

Therapeutic contact lenses (TCL) 

Therapeutic contact lenses, also known as bandage contact lenses, are used to 

treat many ophthalmic conditions including corneal abrasions, erosions, persistent 

defects, chemical injuries, and postoperatively after vitrectomy, penetrating keratoplasty, 

epikeratoplasty, lamellar grafts, PRK, LASIK, and cataract extraction.  These contact 
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lenses differ from vision correction lenses in that their primary function is to protect the 

corneal epithelium, rather than correct refractive error.  The most serious complications 

of TCL wear are infections such as microbial keratitis and anoxia, which can result in 

neovascularization.  To combat infection, prophylactic antibiotics may be used for a short 

period. 

Contact lenses may be made of a wide range of materials, which include: 

thermoplastic polymers, elastic polymers, rigid gas permeable materials and hydrogels 

(Sariri and Sabbaghzadeh 2001).  The most common material for making contact lenses 

are polymethylmethacrylate (PMMA) and polyhydroxyethylmethacrylate (PHEMA).  

However, polydimethylsilxane (PDMS) is an elastic polymer with an oxygen 

permeability 1000x PMMA.  This is one of many important material considerations, 

which also include biocompatibility, protein absorption, chemical stability, optical 

clarity, water content and water interaction. 

 

Motivation behind an epithelial transfer lens 

Simplifying the etiologies causing delayed corneal healing, we could roughly 

divide the disorders into 2 different groups; those where cellular migration is hindered so 

that epithelial cells fail to spread over the wound area, and those where epithelial cells 

fail to proliferate. We propose to treat both of these groups by developing a therapeutic 

transfer device to deliver primary corneal epithelial cells directly within the persistent 

wound site.  As limbal transplant groups have shown in the past, replacing the stem cell 

population with cells from a donor can treat limbal stem cell deficiency (Pellegrini, 

Traverso et al. 1997; Tseng, Prabhasawat et al. 1998; Tsubota, Satake et al. 1999; 
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Nishida, Yamato et al. 2004).  Likewise, our therapeutic contact lenses are meant to 

deliver primary cells to re-supply stem cell deficient corneas as well as to completely re-

epithelialize the corneal surface.  However, in the cases of non-stem cell related corneal 

wound healing disorders, delivered primary cells may instead serve as a transient 

epithelial patch instead of a permanent source of proliferative cells.  Because these 

corneas have a stem cell reserve, their own cells will probably replace transferred cells 

after corneal remodeling.  In addition, non-stem cell related persistent wounds are likely 

to have extracellular matrix modification so that cells can’t attach or migrate into the 

interior wound area.  In order to prepare the wound site for epithelial attachment and 

enhance wound closure, past groups have used fibronectin drops (Nakamura, Sato et al. 

1997).  We plan to prepare the wound region by application of fibronectin as well, to 

prime the wound area to accept transferred cells from our contact lens. 

The main advantages of this therapeutic cell transfer contact lens device would be 

the ease of active re-epithelialization therapy administration for a number of corneal 

disorders and reduction in the time to superficial epithelial coverage.  This project builds 

from a strong background in the literature on limbal stem cell therapy, bandage contacts, 

and other novel treatments of wound healing disorders.  Our proposed cell transfer 

contact lens approach has numerous advantages over currently available therapies.  We 

are designing these therapeutic contact lenses to be simple, inexpensive to fabricate, and 

easy to apply.  By delivering individual, or small groups of, donor harvested corneal cells 

to the interior of corneal wounds, we will be able to provide a quick, flexible, and active 

re-epithelialization therapy to treat moderate and severe persistent corneal wounds. 
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Design criteria for epithelial cell delivery systems for use on the cornea include 

cornea basal cell growth on the carrier device in culture, cell transfer from the carrier to 

the wound region, and protection of applied cells from blink shear and tear film washing 

for long term retention. 

 

Polydimethylsiloxane (PDMS) as a cell growth surface 

Polydimethylsiloxane (PDMS) is a very useful polymer that has been used in 

many different fields including biomedical devices, gas exchangers, insultators, 

microfabrication and microfluidics.  Investigators have recently started to use PDMS as a 

cell culture material (van Kooten, Whitesides et al. 1998; Deutsch, Motlagh et al. 2000).  

PDMS is an interesting cell substrate in that it can be micropatterned using standard 

photolithographic technologies to create surfaces with surface microtextures that can 

influence cell behavior (Mata, Boehm et al. 2002; Matsuzaka, Walboomers et al. 2003). 

Cell attachment to untreated PDMS surfaces has been contested in the literature, 

however, several investigators have reported successful cell culture (Mata, Boehm et al. 

2002).  PDMS is made up of a chain of silicon that has two methyl groups.  These methyl 

groups makes the surface of PDMS highly hydrophobic, which means that it strongly 

repels water.  A measure of hydrophobicity, surface contact angle (SCA), can be 

measured by placing a bead of deionized water on PDMS.  Materials that are hydrophilic 

have low SCA and those that are hydrophobic have SCA of >70°.  Many researchers 

have measured PDMS to have a SCA of 108°.  Despite many advantages of PDMS’ 

material properties, its hydrophobic nature translates into poor wettability, which is a 

significant problem for cell attachment.  Previous studies suggest that cell adhesion is 

  
 

22



 
 

maximized on surfaces with moderate SCA from 60° to 80° (Lee, Park et al. 2003), 

which is an intermediate hydrophobic/hydrophilic property. 

In order to make PDMS more amenable to cell attachment, the surface needs to be 

modified either by hydrophilization of PDMS or by surface coating with adhesive 

proteins.  Several investigators have reported treating PDMS with oxygen plasma to 

reduce its hydrophobicity.  The chemical structure of PDMS is a chain of silicon 

interconnected by oxygen with two methyl groups attached to silicon.  Experimental 

evidence indicates that PDMS is made more hydrophilic when oxidized in plasma 

because oxygen in the form of hydrophilic silanol groups (Si-OH) replace hydrophobic 

methyl groups (Si-CH3) at the surface (Morra, Occhiello et al. 1990).  However, PDMS 

surfaces treated by oxygen plasma do not remain hydrophilic permanently.  Mobile, low-

molecular weight monomers are able to migrate from the bulk of the PDMS to the air-

surface interface causing hydrophobic recovery a few hours following plasma treatment. 

To retain the hydrophilic nature of plasma treated PDMS, several investigators have 

found that storage in water reduces the rate of hydrophobic recovery (Ng, Gitlin et al. 

2002; Lee, Park et al. 2003) 
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Abstract 

Persistent corneal wounds result from numerous eye disorders, and to date, 

available treatments often fail to accelerate re-epithelialization, the key initial step in 

wound healing.  To speed re-epithelialization, we explored a cell-transfer transplant 

method utilizing polydimethylsiloxane (PDMS) contact lenses to deliver epithelial cells 

derived from limbal explants directly within a corneal wound.  Human primary epithelial 

cells and an immortalized corneal epithelial cell line (HCE-SV40) grew well on PDMS 

contact lenses and their morphology and growth rates where similar to cells grown on 

tissue culture polystyrene.  To initially study cell transfer from PDMS, HCE-SV40 cells 

were seeded onto PDMS with or without micropatterned posts.  After a day in culture, 

HCE-SV40 cells attached to the unpatterned PDMS uniformally, whereas on 

micropatterned PDMS, they appeared to attach primarily between posts.  The cell-

covered PDMS contacts were then placed cell side down onto tissue culture plastic and 

after one, two, or three days, the PDMS contact was removed and the transferred cells 

were trypsinized and counted.  Micropatterned PDMS contact lenses with 100-micron-

diameter posts, and a post height of 40 microns, transferred four times as many cells as 

unpatterned PDMS.  Cell transfer to a wounded cornea was tested in a pig cornea organ-

culture model de-epithelialized by alkali treatment.  Post micropatterned PDMS contact 

lenses were seeded with labeled HCE-SV40 cells at a density 50,000 cells/cm2 and 

applied to the wounded pig corneas.  After 24, 48, or 96 hours of application, PDMS 

contact lenses were removed, corneas fixed with formaldehyde, and sectioned. After 24 

hours, epithelial cells transferred from post micropatterned contact lenses to provide 35% 

epithelial coverage of denuded pig corneas; after 96 hours, coverage was 65%.  We 
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conclude that cell transfer from epithelial-coated PDMS contact lenses micropatterned 

with posts provides a promising approach to re-epithelialize corneal surfaces. 

Key Words: cornea, wound healing, primary epithelial cells, transfer, contact lens 

 

Introduction 

Persistent corneal epithelial wounds pose a serious risk to patient vision and a 

dilemma to clinicians attempting to treat them.  Corneal defects result from a variety of 

causes, including viral and bacterial infections, chemical, thermal or UV burns, 

autoimmune disorders, diabetic ulcerations, epithelial abrasion, foreign body impact, and 

ophthalmic surgeries (Kenyon and Tseng 1989; Reim, Kottek et al. 1997; Sanchez-

Thorin 1998).  Due to the diverse causes and etiologies of persistent corneal wounds, 

there are currently many different treatments used to augment healing.  Some 

conservative treatments for persistent corneal wound conditions include anti-

inflammatory agents, antibiotics, and antiviral therapies to prevent infection and 

inflammatory damage.  Clinicians also routinely use lubrication, hypertonic ointments, 

mechanical debridement, cauterization or PTK.  Therapeutic soft contact lenses, collagen 

shields, patching or tarsorrhapy may be used to cover the eye, which increases lubrication 

and protects the cornea from external forces (Ali and Insler 1986; Le Sage, Verreault et 

al. 2001).  However, none of these therapies directly stimulate re-epithelialization of 

corneal epithelial defects nor prevent recurrent epithelial erosions.  As a result, 

ulcerations may persist for many weeks and can lead to corneal perforation (Larouche, 

Leclerc et al. 2000).  Aggressive treatments such as conjunctival flap, amniotic 
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membrane transplant, and corneal transplants procedures are considered when large area 

of the epithelium is affected or the underlying stromal layer is compromised. 

The goal of persistent corneal wound treatment is to promote coverage of the 

corneal stroma with healthy epithelial cells.  Currently there are a few treatments 

available that utilize epithelial cell transplants to treat corneal disorders, which include 

penetrating keratoplasty, limbal stem cell transplantation (Grueterich, Scheffer et al. 

1996; Pellegrini, Traverso et al. 1997; Meller, Dabul et al. 2002), and ex vivo expanded 

epithelial sheets (Nishida, Yamato et al. 2004).  Ex vivo cell preparation methods for 

these procedures require long culture periods exceeding 2 weeks to expand cells from 

1mm2 limbal explants (Nishida, Yamato et al. 2004).  In addition, these grafts or 

epithelial sheets must be sutured onto the eye.  Our proposed alternative approach 

transfers individual or small groups of epithelial cells from a therapeutic contact lens, 

instead of requiring a confluent sheet or sutures.  In this way we may decrease the lag 

time between cell harvest and cell transplant application and initiate earlier epithelial 

coverage, while simplifying the cell transplant application process.  Thus, we may be able 

to achieve quicker epithelial coverage with fewer harvested cells. 

 

Methods 

 

Lens fabrication 

Cell growth surfaces of two different styles (smooth without posts and 

micropatterned with posts) were fabricated using Sylgard 184, a polydimethylsiloxane 

(PDMS), obtained from Dow Corning (Midland, Michigan, U.S.A.).  PDMS was mixed 
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according to the manufacturer's instructions, in a 10:1 mixture of polymer to curative 

agent.  Air bubbles were removed by vacuum pump and PDMS was polymerized at 

37°C.  Unpatterned PDMS surfaces were fabricated using a 2 cm diameter cork bore to 

cut out circular regions of a thin layer of PDMS.  Similarly, micropatterned surfaces were 

cut out of a PDMS layer cured on a photolithography patterned silicon master, which 

created 40-micron tall, 100-micron diameter posts with 200-micron center-to-center post 

spacing. 

A multi-step procedure was used to mold curved contact lenses, which resemble 

commercially available bandage contact lenses.  Using a 2 cm concave drop slide (Cat # 

12-565A, Fisher Scientific, Pittsburgh, PA), a convex dome was made out of PDMS to 

serve as a mold for the concave side of the contact lens.  When this mold was fully 

polymerized and hardened, a contact lens was fabricated by pouring PDMS between the 

drop slide and the convex PDMS mold raised by a spacer.  The resulting contact lenses 

were 2 cm in diameter, less than 1 mm thick, transparent, sturdy, and elastic.  A thin layer 

(~0.5 mm) of micropatterned PDMS was added to the inside concave surface to produce 

the micropatterned cell-transfer contact lenses used for transfer to pig corneas.  Contact 

lenses were autoclaved for 25 minutes before seeding epithelial cells. 

 

Primary corneal culture expansion of limbal explants on PDMS 

Human corneas from two male donors, 46 and 51 years of age, were obtained 

from Vanderbilt University’s Eye Bank.  Limbal ribbons were cut from each cornea, and 

the ribbons were cut into approximately 1mm2 explant squares.  These explants were 

grown on 100mm diameter Petri dishes coated with a layer of PDMS.  Corneal explant 
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cultures were maintained with EpiLife medium with corneal growth factor supplement 

(Cascade Biologics, Portland, OR), and incubated at 37°C in 5% CO2. 

 

Corneal epithelial growth on PDMS contact lenses 

Human corneal epithelial cells (HCE-SV40 cells) immortalized with SV40 

adenovirus developed by Araki-Sasaki (Araki-Sasaki, Ohashi et al. 1995), were used to 

test the cell growth and transfer characteristics of corneal epithelium on PDMS.  This 

immortalized human corneal epithelial cell line has been shown to have similar 

characteristics to in vivo corneal epithelial cells (Araki-Sasaki, Ohashi et al. 1995).  HCE-

SV40 cells exhibit a cobblestone-like appearance in culture, express cornea specific 

proteins, and differentiate into stratified tissue when grown on extracellular matrix 

material such as collagen type I (Araki-Sasaki, Ohashi et al. 1995).  Cultures were 

initiated at a seeding density of 5,000 cells per cm2 on the contact lenses.  Defined 

keratinocyte-serum free medium with growth supplement (Kit # 10744019, 

Invitrogen/Gibco, Grand Island, NY), along with trypsin and defined trypsin inhibitor for 

use in serum free culture conditions, were used to maintain and passage cells.  Growth 

medium was changed twice weekly. 

 

Growth comparison study 

The growth of HCE-SV40 cells on PDMS was compared to growth on standard 

tissue culture plastic.  PDMS components were mixed and poured into each well of 

sterile 6-well tissue culture treated plates (Cat.# 353046, Falcon/Becton Dickinson, 

Franklin Lakes, NJ).  Each well received 1 ml of PDMS, which spread out and 
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polymerized into a thin layer (~2 mm thick) coating the bottom.  Plates without PDMS 

were used for growth comparison.  Forty-eight thousand cells (5,000 cells per cm2) were 

added to each of the wells.  At 2, 5 and 9 days after seeding, cells were trypsinized with a 

serum free trypsin/EDTA solution (Cat.# R-001-100, Cascade Biologics, Portland, OR), 

neutralized by defined trypsin inhibitor (Cat.# R-007-100, Cascade Biologics, Portland, 

OR) and counted with a cell counter (Coulter Counter model ZF, Coulter Corp., Miami, 

FL). 

 

Quantification of HCE migration 

Smooth unpatterned and micropatterned PDMS was seeded at 50,000 cells per 

cm2 (200,000 cells over approximately a 4 cm2 area).  To initiate cell transfer, the PDMS 

was flipped cell-side down onto a 12-well plate, with a thin layer of defined keratinocyte 

serum free medium coating the bottom surface.  After 1, 2, or 3 days, the PDMS was 

removed from the wells, and cells were trypsinized from both the PDMS and 12-well 

plastic surfaces and counted.  Digital images of the contact lenses and corresponding 

wells were taken prior to trypsinization and cell counts from these images were used as a 

check for the number of transferred cells obtained by trypsinization. 

 

Migration of HCE from a PDMS contact lens onto a pig cornea in vitro 

Enucleated pig eyes (SiouxPreme Packing Co., Sioux Center, Iowa) were 

dissected upon receipt to harvest corneas.  Corneas were de-epithelialized by application 

of a ~50 mm2 trimmed polyester foam biopsy pad (Cat.# 21150-088, VWR, West 

Chester, PA) soaked in 0.5 M NaOH for 15 minutes (Chuck, Behrens et al. 2001), 
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followed by washing in sterile PBS to remove injured cells.  In addition, some corneas 

were completely denuded by blunt dissection.  Sodium fluorescein staining as well as 

histological sectioning was used to confirm the removal of epithelial layers.  HCE-SV40 

cells to be used for transfer were labeled using 5 µM CellTracker Red CMTPX (Cat.# 

C-34552, Molecular Probes, Inc., Eugene, OR) applied for 30 minutes.  Micropatterned 

PDMS contact lenses were then seeded with these labeled cells at a density of 50,000 

cells/cm2.  The fluorescence of the cells on the PDMS contact lenses was verified before 

the start of the transfer experiment.  The contact lenses were then placed cell-side down 

on the pig cornea, and held in place by a transwell insert.  Control wounds received a 

contact lens without HCE cells. After 48 hours contact lenses were removed to take 

photographs of the cell-transfer treated and control corneas using a Nikon Eclipse 

TE2000U microscope (Nikon USA, Melville, NY) equipped with a Hamamatsu C7780 

CCD camera (Hamamatsu Corporation, Bridgewater, NJ) and a Nikon D100 digital 

camera (Nikon USA, Melville, NY).  After imaging, corneas were immediately fixed in 

10% formaldehyde for 30 minutes and stored in 70% ethanol before sectioning.  Corneas 

with transferred HCE-SV40 cells were bisected through the wound area, and embedded 

in paraffin on edge so that cross-sections could be taken.  Tissues were sectioned into 

7µm thick slices and deparaffinized.  Alternating slides were H&E stained to visualize 

cell bodies, nuclei and extracellular matrix.  

Histological cross-sections of transfer regions were evaluated by comparing 

denuded control corneas to corneas treated with micropatterned PDMS contact lenses 

carrying cultured cells.  Histological cross-sectional images of the whole corneal surface 

were acquired by a high-resolution microarray scanner (GenePix 4000B, Axon 
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Instruments, Union City, CA) and analyzed by the Image Pro software package (IPP 

version 5.0, Media Cybernetics, Silver Spring, MD). Transferred cells with fluorescent 

labels were visualized with high contrast to background by this fluorescent scanner. 

Analysis consisted of drawing a free-hand line-profile within Image Pro along the surface 

of cornea, adjacent to the stroma.  Pixel intensities of the superficial layer were then 

extracted for spreadsheet computations.  To quantify the epithelial cell coverage on a 

corneal surface, a minimum pixel threshold value for pixels to be counted as part of a cell 

was determined by sampling equivalent scans with patches of control cells.  Epithelial 

coverage was computed as a percent of the total number of pixels sampled that had 

intensity values above the minimum cell value.  Representative high magnification phase 

contrast micrographs were also taken of each corneal surface in cross-section to show 

cellular detail. 

 

Statistical analysis 

Cell growth and transfer data were analyzed using SigmaStat (SPSS Inc, Build 3).  

Analysis of variance (ANOVA) was used to examine trends between groups and over the 

time course of the experiments.  Because some groups had unequal N, the Holm-Sidak 

method was used to assess significance.  A value of p < 0.05 was accepted as significant. 

 

Results 

 

PDMS supports the growth of primary and immortalized corneal epithelial cells 

Primary corneal cells migrated from the limbal explants to form cell islands on 
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PDMS within a week.  These primary cells were then trypsinized from the PDMS surface 

and passaged onto another PDMS coated 100mm diameter Petri dish.  This first passage 

of corneal primary cells reached confluence approximately 3 days after passaging.  

EpiLife medium with corneal supplements appeared to favor epithelial growth because 

many of the primary cells observed had epithelial rather than fibroblastic morphology 

(Figure 1).  These results indicate that PDMS is a suitable biomaterial to support the 

growth of primary corneal epithelial cells. 

 

Corneal epithelial growth on PDMS contact lenses 

Human corneal epithelial cells (HCE-SV40 cells) also adhere to and populate the 

untreated surfaces of smooth and micropatterned polydimethylsiloxane (PDMS) contact 

lenses shown in Figure 2.  When grown on PDMS, immortalized HCE-SV40 cells exhibit 

similar morphology to normal corneal epithelial cells in culture, which has been 

described as cobblestone-like by Araki-Sasaki (Araki-Sasaki, Ohashi et al. 1995).  The 

cells attach to PDMS within two hours, a time comparable to attachment to tissue culture 

plastic. 

 

Growth comparison study 

HCE-SV40 cells grown on PDMS and standard tissue culture plastic exhibit 

similar growth characteristics (Figure 2).  Mean cell densities with accompanying 

standard deviations were obtained for PDMS for a sample size of 12 cultures.  A growth 

delay of approximately 1 day was observed after seeding at 5,000 cells/cm2.  By day 2, 

HCE-SV40 cells recovered and exceeded the seeding density.  Cell density had 
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quadrupled by day 5, and by day 9 the population was expanded by over 20-fold.  

Corneal cell densities grown on PDMS were equal to the densities of the cells grown on 

the tissue culture plastic control surface, with no statistical significance.  In both cases, 

seeding at 5,000 cells/cm2 produced a high density layer of ~100,000 cells/cm2 after 9 

days.  From these growth curves, the cell doubling time was estimated to be 

approximately one day for HCE-SV40 on both PDMS and on plastic.  This value is 

similar to the 24.4 hour doubling time reported by the originators of this cell line (Araki-

Sasaki, Ohashi et al. 1995). 

 

Quantification of HCE migration 

In cell transfer experiments from smooth unpatterned PDMS, an increasing 

number of HCE-SV40 cells were found to transfer to tissue culture plastic on each of the 

three successive days.  Approximately 20% of the original number of seeded epithelial 

cells transferred from the contacts after day1, 40% after 2 days, and 60% after 3 days 

(n=10).  This was considered to be a moderate transfer rate because many cells remained 

on the contacts and continued to proliferate.  In order to enhance epithelial surface-to-

surface transfer, a micropatterned PDMS disk design was tested (Figure 3).  The 100-

micron diameter post micropatterned PDMS disks were found to transfer a statistically 

significant, greater number of cells compared to smooth PDMS disks at each time point 

(n=3).  The transfer rate of micropatterned PDMS was approximately three times the rate 

of smooth unpatterned PDMS. 
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Migration of HCE-SV40 cells from a PDMS contact lens onto a pig cornea in vitro 

In the in vitro pig cornea wound model experiment, 0.5 M NaOH administered to 

the central cornea for 15-30 minutes damaged local regions of the corneal epithelium.  

After washing, cells in the central treated region sloughed off, and this region appeared to 

be more opaque.  The cornea also increased in total thickness due to stromal swelling.  In 

a phase contrast image of a corneal surface, a rectangular epithelial wound area is seen 

where the NaOH soaked biopsy pad was applied (Figure 4 A).  The wound edge is a 

sharp boundary between an intact epithelial layer and a region without epithelium.  After 

48 hours in our organ culture system, there is no indication of indigenous pig epithelial 

healing taking place in the NaOH treated region, and an irregular collagen surface is 

exposed.  Based on preliminary findings of enhanced transfer in vitro, PDMS 

micropatterned contact lenses with posts were chosen for cell transfer to pig corneas.  

Figure 4 B shows the wound region with attached CellTracker red-labeled HCE-SV40 

cells, which were delivered to the corneal surface by direct transfer from PDMS contact 

lenses after 48 hours.  The majority of the red fluorescence appears to have originated 

from within the rectangular NaOH treated region, demonstrating preferential epithelial 

attachment to the NaOH treated area. Transfer regions were inspected after histological 

sectioning. Paraffin embedded fixed tissue cross-sections were taken from denuded 

corneas that were treated with a micropatterned PDMS contact lens carrying cultured 

cells.  These sections were compared to sections taken from a wounded pig cornea 

covered with a contact lens without cells.  Image analysis of the corneal surfaces was 

performed using pixel intensities of the superficial layer to determine the epithelial 

coverage after contact lens transfer determined that ~35% of the corneal surface had been 
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covered after 2 days and ~65% was covered after 4 days.  The control de-epithelialized 

cornea was determined to have less than one percent remaining epithelium.  Phase 

contrast images of pig cornea after transfer are shown in Figure 5 (middle panels).  HCE-

SV40 cells appear to have transferred from the micropatterned contact lens with posts 

onto the native pig cornea collagen at both day 2 and day 4.  Transferred HCE-SV40 cells 

growing on the corneal surface appear have a healthier morphology, and comprise a more 

contiguous and better-organized epithelium at 4 days (Figure 5, middle right) than when 

observed at 2 days (Figure 5, middle left). The denuded corneal surface shows no 

remaining porcine epithelial cells on the exposed stromal collagen (Figure 5, far left).  

Normal pig cornea with healthy, well-organized cellular strata is shown for comparison 

(Figure 5, far right). 

 

Discussion 

Polydimethylsiloxane (PDMS) appears to be an excellent material for an 

epithelial cell transfer contact lens.  The material is nontoxic, has high oxygen 

permeability, contact lenses can be easily fabricated and autoclaved, and its surface 

properties promote cell attachment and growth in vitro.  PDMS proved to be an excellent 

primary cell growth surface for limbal explants, performing comparably to amniotic 

membrane (Grueterich, Scheffer et al. 1996).  In addition, the HCE-SV40 cell line grew 

well on PDMS, allowing for their use in preliminary transfer experiments. 

In order to initially test cell transfer from PDMS to an adjacent surface, the HCE-

SV40 cell line was chosen because of its availability, ease of use, and well characterized 

comparison with in vivo corneal cells.  In this way we were able to address some design 
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considerations without the added complexity of repeated eye procurement and limbal 

harvesting.  In this simplified system we were able to quantify cell transfer using both 

optical and Coulter counter based methods.  This method also allowed for a quick way to 

compare transfer efficiencies of the smooth and micropatterned contact lens designs.  

Successful cell transfer was seen in cell transfer experiments from both patterned and 

unpatterned PDMS onto tissue culture plastic (Figure 3).  However, we have found that 

micropatterned PDMS delivers approximately four times more viable cells to a recipient 

surface than smooth unpatterned PDMS.  We speculate that transfer of epithelial cells is 

dominated by single cell trans-surface migration via filopodia, rather than cell release 

into suspension, and subsequent attachment to the opposing surface.  Unpatterned 

contacts have a surface area contact advantage, in that their whole surface is in close 

proximity to the opposing transfer target surface, which could allow for filopodial 

attachment after extension.  However, we propose 3 possible mechanisms to explain the 

enhanced transfer by micropatterned posts: directed migration, cell loss due to contact 

application and removal, and culture medium exclusion. Posts may allow for filopodia-

mediated cell migration up the posts between the surfaces.  Alternatively, it may be the 

case that similar amounts of cells transfer, but fewer intial viable cells are reside on 

unpatterned contact at transfer onset due to some cells being crushed upon contact lens 

application. Posts on the patterned PDMS contact lenses, may prevent cell crushing.  

Upon unpatterned contact lens removal, fewer cells may remain on the transfer surface 

because transferred cells may still have some points of adhesion on contact lens due to its 

proximity to the recipient surface. These cells may be pulled off with the PDMS contacts 

instead of remaining on the target surface.  However, in the case of the micropatterned 
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posts, cells may reside on the plastic transfer surface between the regions where the 

PDMS posts are making physical contact.  Therefore, when micropatterned PDMS is 

peeled off, fewer cells may be lost.  A final explanation may be attributed to cell death 

triggered by nutrient limitations imposed by smooth contact lenses that are overcome by 

micropatterned PDMS with posts.  The posts may cause a slightly larger void space 

between the PDMS and recipient surface, allowing for faster nutrient diffusion from fresh 

culture medium.  Unpatterned contact lenses make a closer fit to the recipient surface, 

and may exclude fresh medium, which is confined to the rim region.  Cell culture 

medium nutrient limitations are more probable than oxygen deficiency, because PDMS 

has a high oxygen permeability coefficient (~781 cm3 (STP) cm/cm2 s cmHg) (Kuriana 

2003), allowing for good oxygen diffusion through the lens.  This oxygen barrier was 

also minimized by spin casting thin layers of PDMS. 

Micropatterned PDMS with posts were successful in transferring HCE-SV40 cells 

to denuded pig corneas (Figures 6), shown qualitatively by phase contrast micrographs in 

which cells appear to be attached and growing on the collagen of the corneal stroma at 

day 2, and become more confluent by day 4.  At this later time point, it appears that there 

is some epithelial cell layer organization.  Transfer to the pig cornea was evaluated 

quantitatively by utilizing a denuded cornea model used to quantify epithelial coverage 

rates, and the specificity of transfer was tested by the regional de-epithelialization by 

sodium hydroxide.  We conjecture that transferred HCE-SV40 cells preferentially attach 

to de-epithelialized regions with exposed stromal collagen, because collagen matrix is a 

better cell anchorage substrate than the surrounding confluent pig epithelial cells.  This is 

supported by rhodamine fluorescence imaging of Celltracker Red CMPTX labeled HCE-
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SV40 cells, which suggests that the superficial epithelium growing in the injured region 

originated from the epithelial-coated PDMS contact lens and that few transferred HCE-

SV40 cells reside outside this wound region (Figure 4).  We believe that this positive 

result is accurate because the labeling of HCE-SV40 cells with Celltracker Red CMPTX 

was specific, without any pig epithelium staining.  HCEC-SV40 cells were directly 

labeled and washed prior to corneal introduction, and the hydrophobic nature of PDMS 

restricts harboring of unsequestered Celltracker.  Celltracker Red CMPTX is only cell 

membrane permeable in its delivered form, which was only exposed to HCE-SV40 cells.  

After being internalized by a cell and cleaved by an intracellular esterase into its 

fluorescence emitting form, it is no longer membrane permeable (MolecularProbes 2003).  

If this form of the tracer was released during lysis of transferred cells on the corneal 

surface, pig epithelial cells would not be able to take up the activated Celltracker Red.  

According to the manufacturer’s literature, Celltracker Red stays resident in viable cells 

for 72 hours (MolecularProbes 2003), making it an adequate cell label for use in this pig 

cornea model of epithelial wounding.  Celltracker Green CMFDA also worked well in 

this application (data not shown).  However, its use was limited by the fact that sodium 

fluorescein, the most common dye indicator of corneal surface defects, has similar 

emission wavelengths, making the utilization of both incompatible. 

The findings of this study suggest that epithelial-coated PDMS contact lenses are 

a promising means to re-epithelialize the cornea.  In addition, using standard 

photolithography, silicon masters can be produced to allow for the micropatterning of 

PDMS contact lenses, which has been observed to increase epithelial transfer.  Our in 

vitro epithelial cell transfer experiment is a means of quick micropatterned contact lens 
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prototype evaluation to optimize design. Altering the dimensions or geometry of post 

structures may result in a design that better utilizes filopodia-mediated migration.  By 

changing post size and spacing, we may also optimize the surface area for both effective 

cell attachment in culture and transfer to the cornea.  PDMS is a versatile material, which 

can be easily modified (Aucoin, Griffith et al. 2002; Merrett, Griffith et al. 2003; Monge, 

Mas et al. 2003), which may provide for periods of cell retention and cell transfer. 
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Figures 

 

 

 
Figure 1.  Human limbal explant expansion on PDMS (left). The explant is shown in the 
bottom left corner, and the outer limit of cell migration is shown in the top right corner. 
HCE-SV40 cells cultured on an unpatterned PDMS contact lens without posts (middle) 
and on a micropatterned PDMS contact lens with 100-micron diameter posts (right).  
Scale bars are 100 microns. 
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Figure 2.  HCE-SV40 growth on PDMS is similar to growth 
on tissue culture polystyrene (mean ± s.d., n=10, Error bars 
are shown, but for early time points errors are too small to be 
discerned from the data points). The difference between 
groups is statistically insignificant. 
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Figure 3. Transfer comparison from unpatterned (mean±s.d., 
n=10) and micropatterned PDMS (mean±s.d ,n=3).  
Micropatterned PDMS speed the transfer rate by 3-fold, which 
was statistically significant (p < .05). 

  
 

45



 
 

 

 
Figure 4. Epithelial transfer to a corneal wound region.  Photographs of a whole 
cornea where the dotted box indicates the area of NAOH application. Phase contrast 
image of a NaOH treated regionally de-epithelialized pig cornea before application of 
a micropatterned PDMS cell-transfer contact lens (A).  Rhodamine fluorescence image 
showing Celltracker Red-labeled HCE-SV40 cells attached in the wounded area after 
48 hours of contact lens treatment (B). 
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Figure 5. Epithelial cell transfer progression.  Denuded cornea (far left), 2 day 
application (middle left), 4 day application (middle right), healthy cornea (far right). 
All images widths are 100 microns. 
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Abstract 

Corneal wounds naturally heal from the outside wound margin.  However we 

hypothesize that cells applied to the interior of wounds will augment healing.  In our 

previous work, we found that PDMS contact lenses could be used as carrier devices to 

transfer immortalized human corneal epithelial cells to extracellular matrix materials.  

However, in the process to apply primary epithelial cells to wounded corneas we found 

that some of our past designs suffered from two main problems: limited primary cell 

transfer and limited cell viability/retention after transfer.  In this work, we build on the 

previous findings that patterned carrier surfaces promote increased cell delivery, and 

explore the limitations of cell transfer in separate experiments.  In order to demonstrate 

the feasibility of using cell carriers to seed wounds and to estimate the number of cells 

needed to enhance healing, cells were transferred to in vitro wounds using cytodex 3 

beads.  We found that cell-covered cytodex 3 bead treated wounds healed in a dose 

dependent manner, and that these wounds healed significantly faster than untreated 

control wounds.  Using this in vitro model to investigate surface pattern topographies and 

coatings that enhance cell transfer, primary epithelial cells were seeded on cell carrier 

devices and transferred to matrigel well plates.  We found that post patterning and 

fibronectin coating were the most beneficial to the delivery of primary cells. Cell carrier 

designs were developed as contact lenses and Cell Tracker Red labeled primary epithelia 

were applied to wounded organ culture corneas.  However, during this process we found 

that some lenses partially removed healthy epithelium outside the wound region.  In order 

to evaluate healthy epithelial removal, PDMS contact lenses with various surface 

coatings were applied to healthy organ culture corneas for 24 hours.  After lens removal, 
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the remaining epithelium was stained and the coverage area was quantified.  We have 

demonstrated that PDMS contact lenses coated with fibronectin can be used to deliver 

primary epithelial cells to injured corneal surfaces. 

 

Introduction 

Corneal wound healing is a complex, and highly coordinated process of cell-cell 

signaling, cell spreading, migration, proliferation, and cell-ECM interaction.  The main 

limitation in natural wound healing is that cells can only fill in the wound void from the 

outside wound margin.  We hypothesize that by administering primary epithelial cells to 

the interior of a corneal wound that cells will attach to the wound region and augment the 

healing process. 

Building on two well-established technologies, therapeutic contact lenses and 

limbal stem cell transplantation, we set out to design and evaluate an epithelial cell 

transfer contact lens to seed persistent corneal wounds.  Our objective was to design and 

evaluate contact lens that could deliver epithelial cells to wounds.  We set out to develop 

a cell transfer contact lens that could keep cells in close proximity to the cornea and allow 

cell movement onto wounded regions.  Promising lens designs were chosen by the 

following criteria: the lens material must allow for primary epithelial cell attachment and 

in vitro culture growth.  Application of the cell-coated contact lens must result in the 

transfer of a portion of these cells to wound areas to aid in re-epithelialization of corneal 

injuries.  Lastly, the lens must then function as a bandage lens after cell transfer in order 

to protect both applied and endogenous cell populations on the corneal surface. 
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In limbal stem cell tranplant therapy, adult stem cells are harvested from the 

limbus of a donor cornea and transplanted onto patient’s stem-cell deficient cornea.  This 

therapy is variable, depending on the source of donor cells, the amount of tissue used, and 

the method of delivery to the deficient eye.  A limbal autograft is a transplantation of 

stem cells into a patient’s deficient eye from their contra-lateral healthy eye.  A portion of 

the stem cell-sufficient limbus is harvested from the healthy eye, and is surgically placed 

in the affected eye.  Tseng and Kenyon conducted the first trial of autologous limbal 

transplants on patients in 1987.  They found that this technique could be effective in the 

treatment of patients with previously failed corneal transplants, demonstrating an initial 

success rate of 85% (Kenyon and Tseng 1989).  In cases of bilateral corneal stem cell 

deficiency, limbal allografts are used instead of autografts.  In an allograft, transplanted 

tissue comes from a donor.  The stem cell populated donor graft is then implanted into 

the deficient patient’s limbus.  These patients are then required to use 

immunosuppressive drugs such as cyclosporin.  The process of taking ocular tissue from 

the limbus can be dangerous for a living donor if too much tissue is removed, leaving 

them with too few stem cells (Schwab and Isseroff 2000).  This risk to the donor eye has 

been minimized by ex vivo-expanding limbal stem cells on growth substrates using cell 

culture techniques. 

Michele DeLuca and his research team at the University of Genova have 

demonstrated that efficient in vitro expansion of corneal stem cells was possible, 

requiring fewer cells to be harvested from donor tissues.  They found that 1 mm2 sections 

harvested from the limbus were adequate to provide enough proliferative cells to re-

epithelialize the cornea.  Originally, implanted epithelial cultures were placed directly 
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into the eye using surgical gauze as a substrate, which was covered by a bandage contact 

to hold the gauze in place (Pellegrini, Traverso et al. 1997).  Tseng and Kim found that 

amniotic membrane, which had been used in the past half century in ocular surgeries, 

could be used as a cell carrying substrate for limbal transplants (Kim and Tseng 1995).  

Limbal stem cells are now cultured directly on amniotic membrane in vitro, which creates 

100-fold more cells to be implanted into a deficient eye (Quantock, Koizumi et al. 2002).  

However, Nishida et al have developed a method to prepare full epithelial sheets for 

implantation without a substrate material.  Limbal explants were cultivated on a 

temperature-sensitive polymer growth surface.  After weeks of culture time, hardy 

epithelium composed of multiple cell layers were released from the polymer by a 

temperature change (Nishida, Yamato et al. 2004).  Research groups in Taiwan, Japan, 

Germany, Italy, and the U.S. have demonstrated the efficacy of ex vivo expansion of 

corneal epithelial cells for transplant procedures to treat limbal stem cell deficiency .   

Therapeutic contact lenses, also known as bandage contact lenses, are used to 

treat many ophthalmic conditions including corneal abrasions, erosions, persistent 

defects, chemical injuries and postoperatively after vitrectomy, penetrating keratoplasty, 

epikeratoplasty, lamellar grafts, PRK, LASIK and cataract extraction.  These contact 

lenses differ from vision correction lenses in that their primary function is to protect the 

corneal epithelium, rather than correct refractive error.  They have been shown to help 

stabilize the corneal surface after trauma and allow for re-epithelialization.  The most 

serious complications of TCL wear include infections such as microbial keratitis and 

giant papillary conjunctivitis and anoxia, which can result in neovascularization.  To 
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prevent infection, antibiotics may be used for a short period, however, it is important to 

choose an antibiotic that will not adversely effect wound healing. 

In our previous work, we demonstrated that PDMS contact lenses could be used 

as carrier devices to grow and transfer immortalized human corneal epithelial cells to 

extracellular matrix materials (Pino, Haselton et al. 2005).  However, in the process to 

apply primary epithelial cells to wounded corneas we found that some of our past designs 

suffered from two main problems: limited initial cell transfer, and limited cell viability 

and retention after transfer.  In this work, we have set out to characterize these 

limitations, and evaluate primary cell transfer from therapeutic contact lenses to organ 

culture corneas. 

 

Materials and Methods 

 

Precision epithelial drill press 

The drill was assembled using a rotational motor, interchangeable drill bits and a 

micromanipulator.  Interchangeable teflon drill bits shaped like chisel points were cut 

using a scalpel while observing through a microscope, and smoothed by standard 

machining techniques.  The bits were slip-fit onto the motor shaft, and the motor was 

mounted on a Drummond micromanipulator (Marzhauser MM33, Catalogue #3-000-024) 

for fine control over the x, y, and z positioning. 
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Wounding cell culture monolayers 

An immortalized human cornea epithelial cell line (HCE-SV40 cells) developed 

by Araki-Sasaki (Araki-Sasaki, Ohashi et al. 1995), was seeded at 100 cells/cm2 on 21 

cm2 tissue culture dishes coated with Collagen I (B.D. Biosciences).  Cells were cultured 

in defined keratinocyte serum free media (Gibco/Invitrogen, Grand Island, NY) and 

maintained for over 3 days to insure confluence and recovery from trypsinization. 

To create wounds in these monolayers, autoclaved drill bits were affixed to the 

precision drill press in a sterile laminar flow hood.  The height adjustment screw of the 

micromanipulator was used to slowly lower the spinning drill bit down to the cell surface.  

Removed cells were washed away in sterile phosphate buffered saline (PBS).   

Culture media was changed every day after wounding.  Wounds were viewed 

using a Nikon Eclipse TE2000U inverted microscope (Nikon USA, Melville, NY), and 

images were recorded with a Hamamatsu C7780 CCD (Hamamatsu Corporation, 

Bridgewater, NJ) and Nikon D100 (Nikon USA, Melville, NY) camera every 24 hours. 

 

Preparation of HCEC on Cytodex3 beads 

One milliliter of cytodex 3 beads and one million cells were added to 100 milliters 

of medium in a small spinner flask.  For one day the spinner flask was automated to spin 

for 2 minutes intervals with 30 minutes between each spin cycle.  Thereafter, the flask 

was constantly mixed.  After 3 days of cell attachment, beads were pipetted from the 

spinner flask into wells that had monolayer wounds.  Well plates with cell-coated beads 

were not disturbed for 2 days to allow for cells on beads to attach to wound areas.  Daily 

medium changes and imaging of the wound areas resumed on day 3. 
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Analysis of cell transfer from Cytodex 3 beads to monolayer wounds 

All image analysis was done using the Image Pro software package (IPP version 

5.0, Media Cybernetics, Silver Spring, MD).  Images were calibrated using a stage 

micrometer.  Before analysis, each image was contrast enhanced by boosting the contrast 

to 75% and adjusting the overall brightness so that the background pixels had zero 

values.  Using Image Pro’s measurement tools, the automated free hand tool was used to 

identify the wound margin for cell culture monolayers after initial wounding.  Image Pro 

reported the area of the wound regions in square microns, which were converted into 

corresponding areas in square millimeters.  For cell-coated bead treated wounds, a wound 

area was determined by identifying the outermost wound margin in the same way as the 

control wounds, but then interior areas of cell transfer from beads were subtracted from 

this area.  All initial wound areas, control wound healing areas, and cell-coated Cytodex 

3 treated areas were entered into Excel (Microsoft Office) spreadsheets for statistical 

analysis.  In order to calculate average wound closure rate for each period, the wound 

diameter at the end of a time interval was subtracted from the initial wound diameter. 

 

Cell transfer to matrigel 

See Protocol in Pino et al in Cell Tansplantation (Pino, Haselton et al. 2005).  

Briefly, Immortalized HCE were seeded on PDMS disks with embedded Cytodex 3 beads 

at approximately 50,000 cells/cm2.  After 1 day of cell attachment, the PDMS disks were 

turned cell side down onto fresh matrigel-coated wells, and ~400 microliters of medium 

was added.  Every 24 hours thereafter, selected disks were removed, and wells were 
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washed prior to imaging of well plates and trypsinization to determine cell transfer.   

Transferred cell density was quantified using a Coulter-Beckman Multisizer 2 and then 

verified by cell counts from image analysis.  Other wells with cells on PDMS disks that 

were not ready to be counted received medium changes daily. 

For primary epithelial cell transfer experiments, cells from primary explants were 

harvested using trypsin and a cell scraper.  The total number of primary cells isolated 

determined cell seeding density.  Once again, cells were allowed 24 hours for attachment 

on PDMS disks in 24 well plates.  Then the disks were placed cell side down into a fresh 

12-well plate coated with matrigel.  Cell transfer was determined by imaging and 

trypsinized cell counts after 3 days. 

 

Epithelial retention assay for organ culture corneas treated with contact lenses 

Fresh tissue samples were obtained from euthanized animals that were used for 

other research at Vanderbilt University in accordance with IUCAC guidelines.  Rabbit, 

goat, or pig eyes were enucleated and transported in sterile PBS with 1% antibiotic.  

Corneas were isolated by cutting the sclera to form a corneal button.  A millimeter rim of 

the sclera was kept all around the corneal button, which was found to help maintain 

corneal clarity and integrity in organ culture. 

Corneas were washed in PBS and placed into 6 well plates for culture on 

agar/DMEM plugs.  Corneas to be treated had contact lenses applied, and then Defined 

Keratinocyte Serum-Free Medium was added to the wells until the medium level washed 

over the top of the contact lens. 
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Rose Bengal (100 mg/10mL) was applied to organ culture corneas to visualize 

regions with retained epithelial cells (Feenstra and Tseng 1992).  After 30 seconds, 

excess rhodamine was washed off with PBS, and the corneas were placed on clear domes 

for imaging.  Corneas were photographed with a Nikon D100 camera coupled to a Zeiss 

surgical microscope.  Regions with bound epithelium appeared bright red, and denuded 

regions appeared clear.  

 

Preparation of PDMS contact lenses and patterned disks 

Poly(dimethylsiloxane) (PDMS) obtained from Dow Corning (Sylgard 184, 

Midland, Michigan, U.S.A) was mixed according to the manufacturer's instructions, in a 

10:1 mixture of monomer to curative agent.  To make contact lenses, the mixture was 

poured into a concave mold with a radius of curvature of 8.8mm.  Air bubbles were 

removed from the PDMS by application of a vacuum pump for 10 minutes.  Then the top 

part of the mold, a ball bearing with a radius of curvature of 9 mm, was placed on top of 

the bottom mold.  After a few hours at 65°C, PDMS contact lenses were fully cured, and 

were released from the mold.  Contact lenses with Cytodex 3 embedded beads were 

fabricated by partially curing the PDMS and then adding Cytodex beads to the PDMS 

through a sifter.  Lastly, patterned disks were fabricated by pouring the monomer and 

curative agent mixture onto prefabricated polyurethane surfaces, and curing under the 

same conditions. 

PDMS contact lenses and disks were then sterilized by either soaking in 70% 

ethanol while under UV overnight, or by autoclave treatment at 135°C for 30 minutes.  
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Fibronectin surface coating at a concentration of 5 micrograms per milliliter was applied 

to sterile contacts so that the coating completely covered the PDMS surface. 

 

Results 

 

Cell transfer from Cytodex 3 beads 

When added to the culture plate wells with wounded epithelial monolayers, cell 

covered cytodex3 beads immediately settled to the bottom of the wells.  After 24 hours, 

cell migration from few beads to bottom culture surface was evident.  And at 48 hours, 

the majority of cell-coated beads exhibited cell transfer.  Medium was changed after 48 

hours to avoid bead movement before cell migration could occur.  Images of cell-covered 

bead treated wounds and control wounds were imaged at 36 hours and each day thereafter 

to access wound coverage by epithelial cells Figure 2.  .Steady cell migration from 

cytodex 3 beads was exhibited from day 3 to day 7, which enhanced coverage of the 

treated wound regions.  As shown in Figure 7, cell-covered bead treated wounds had 

significantly lower remaining wound areas each day after treatment compared to the 

untreated monolayer wounds. 

In addition to cell transfer from beads to wounded regions, cell-coated beads also 

adhered to contiguous healthy regions of the monolayer.  Though the cell-coated bead 

solution was well mixed when added to the culture plate, cell attachment to all areas of 

the culture plate was random and heterogenous.  Some areas of the plate exhibited more 

bead attachment than others, and therefore some wounds received cell transfer from a 

higher density of beads.  In order to determine if monolayer wound healing was cell-
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transfer dose dependent, the number of beads within each wound were counted, and 

classified as having high bead concentration (>10 beads/mm2) or low bead concentration 

(<10 beads/mm2), and uncovered wound areas were quantified using image analysis 

software.  We found that wounded regions treated with more than 10 beads per square 

millimeter healed significantly faster, as demonstrated by lower wound areas each day 

during bead treatment (Figure 8).  From the images obtained, we estimate that 

approximately 5,000-10,000 cells/cm2 were seeded when ~10 beads/mm2 were applied 

within the first 3 days of treatment.  Using this cell transfer density as a benchmark for 

enhancing the healing of wounds, we sought to design an easy to apply contact lens 

transfer device to transfer primary cells to corneal wounds. 

 

Cell transfer from Cytodex 3 beads embedded in PDMS 

In previous work with an immortalized human corneal epithelial cell line, we 

found that transferred cell densities in excess of 10,000 cells/cm2 could be obtained by 

seeding cells at a density of over 50,0000 cells/cm2.  When Cytodex 3 beads embedded in 

PDMS were seeded with 50,000 cells/cm2, cells adhered to both the Cytodex 3 beads as 

well as on the PDMS between beads.  When flipped onto matrigel, an increasing number 

of cells transferred from the PDMS disks onto the bottom matrigel surface on each 

consecutive day.  After one day, 7108 ± 1459 cells transferred, on the second day, 14802 

± 3849, and on the third day 45383 ± 16558 transferred to matrigel as shown in Figure 9.  

However, when this experiment was repeated with primary cells seeded at approximately 

50,000 cells/cm2, only 13,000 cells/cm2 transferred to matrigel by day three. 
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Primary cell transfer from patterned PDMS to matrigel 

Patterned cell substrates have been used to direct cell movement (Matsuzaka, 

Walboomers et al. 2003), and in our previous work, we showed that micropatterned posts 

improve epithelial cell transfer. Since these findings, we have fabricated many other 

types of surface pattern designs that we tested which are summarized in Figure 10: flat, 

posts, ridges, through-holes, and wells. 

In evaluating PDMS surface designs to augment primary cell delivery, we 

observed that surface features that stick up off of the culture surface, such as posts and 

ridges, are most beneficial to primary cell transfer to matrigel.   

 

Primary cell transfer from ECM-coated PDMS to various types of ECM 

When 25,000 cells/cm2 were added to autoclaved PDMS disks, and other disks 

coated with fibronectin and matrigel, primary cells attached to each material.  As 

expected, matrigel, a matrix material made up of collagen and laminin, allowed for 

slightly greater primary cell attachment than autoclaved PDMS.  However, we found that 

the differences in cell attachment were too small to be statistically significant.  Of 25,000 

cells/cm2 seeded, 23,896 ± 8647 cells/cm2 attached to autoclaved PDMS, 22,695 ± 5713 

cells/cm2 attached to fibronectin coated PDMS and 26,422 ± 9412 attached to matrigel. 

 

Primary cell transfer to organ culture corneas 

After 24 hours of application, primary cells transferred from contact lenses to 

wound regions of injured organ cultured corneas.  Cornea surfaces were imaged by both 

epi-fluorescence and confocal microscopy, where transferred epithelial cells were stained 
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with Cell Tracker red (red), and the wound region was stained with sodium fluorescein 

(green).  The confocal images in Figure 13 show that autoclaved PDMS contact lenses 

were able to deliver cells to corneal wounds. 

We noted that primary cells that were directly pipetted on the corneal surface and 

allowed to attach for 24 hours, appeared qualitatively similar to cells transferred from the 

cell transfer lens.  In a quantatative assessment of primary cell transfer from ECM coated 

contact lenses to damaged corneas, we found similar reults to our previous transfer to 

matrigel.  We found that fibronectin coated lenses delivered significantly more cells than 

did collagen or matrigel coated lenses Figure 14.   

We also observed that when an autoclaved PDMS cell transfer contact lens was 

removed, some healthy corneal epithelium from outside the wound region was also 

removed. This finding prompted us to investigate if surface protect normal healthy 

epithelium from being peeled off after lens removal. 

 

Healthy epithelial cell removal was minimized by fibronectin coating 

 In order to identify contact lens designs that might transfer cells to wound 

regions, but leave healthy epithelium in tact, we developed an assay to determine the 

extent of healthy epithelial removal after contact lens application.  Autoclaved PDMS, 

and PDMS with fibronectin and bovine serum albumin coatings on contact lenses, were 

tested by applying the contact lenses for 24 hours, and assessing the remaining 

epithelium.  We found that fibronectin coated lenses allowed for the greatest amount of 

epithelial retention (Figure 15).  Lenses coated with BSA removed the most epithelium 

when peeled off healthy corneas. 

  
 

61



 
 

 

Discussion 

In order to estimate cell transfer mediated by cell motility from a carrier to a 

wound, an in vitro model was used.  Cytodex 3 beads were used in this model system 

because they supported HCE cells growth, and allowed for cell transfer when they settled 

onto another cell growth surface.  In this model, we did not have to worry about the 

possible effect of apoxia encountered when using a contiguous large device, such as a 

contact lens for delivery.  In addition, media was changed liberally, so as to remove 

nutrient limitation as a confounding factor.  This model gave us some proof that cells 

applied to the interior of wounds would speed time to complete re-epithelialization.  

From this model we also estimate that 5-10 thousand cells/cm2 are required to be 

delivered in order to have a therapeutic effect.   

In this work, we have advanced a cell transfer technology, which had previously 

only been explored with an immortalized epithelial cell line.  In the process of moving to 

primary epithelial cells isolated from corneal explants from an SV40 adenovirus 

immortalized human corneal epithelial cell line, we knew that there would be many 

technical hurdles to overcome.  Using well-established cell isolation techniques, we were 

able to harvest mixed population of primary corneal epithelial cells for use in transfer 

experiments.  We did not attempt to purify the cultured cells to obtain a cell population 

that enriched in limbal stem cells.  Rather we used the mixed population of epithelial 

cells that consisted of a stem cell like population that Pelligrini et al. termed holoclones, 

and differentiated population called paraclones (Pellegrini, Ranno et al. 1999).  Based on 

morphology observations, both cell populations were able to attach and transfer from 
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PDMS.  However, in comparison to immortalized HCE, the mixed population of primary 

epithelial cells was less able to transfer from PDMS onto both matrigel and wounded 

corneas.  The amount of primary cell transfer was lower in both cell density and percent 

efficiency of transfer.  This result is unsurprising, since generally immortalized cell lines 

are hardier, more adhesive and more proliferative.  However, in order to optimize cell 

transfer for therapy, it would be ideal to improve the cell migration characteristics of the 

primary cell line.  This could be done by cell selection from the primary isolates.  In 

normal corneal wound healing, it is the basal cells, which migrate into wound areas from 

the margin.  These cells are characterized as being more stem cell like.  Therefore by 

removing cells that are terminally differentiated, we may enhance primary cell transfer.  

This, in addition, will enhance therapy since delivery of a pure stem cell population is 

more beneficial than delivering terminally differentiated cell, which die and slough off. 

Primary cells that were transferred to damaged corneas by PDMS contact lenses 

were protected by the fibronectin-coated contact lens after transfer.  When this contact 

lens was removed, transferred epithelium and endogenous healthy epithelium clearly 

remained shown by Rose Bengal staining.  This stain was used because it gave good 

contrast to the remaining epithelial cell regions, as opposed to diffuse staining of sodium 

fluorescein, which we previously used to identify regions lacking epithelium.  Many 

clinicians use Rose Bengal to stain for devitalized corneal epithelial cells in vivo.  

However, in organ culture, all healthy rabbit corneal epithelial cells stain positively with 

Rose Bengal, as demonstrated by Feenstra et al.  This is because in vivo, it is a healthy 

tearfilm interaction with healthy cells, which prevents Rose Bengal staining.  However, 
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when organ cultured there is no remaining tear film components to hinder the epithelial 

stain, and therefore all cells are labeled. 

After cell transfer to a damaged corneal surface, when shear was added to this 

unprotected cornea by repeated washings, some transferred cells were lost.  This is a 

major technical hurdle this technology faces before it could be implemented as a therapy.  

In vivo, shear exerted on the transferred cells may prevent strong cell adhesion to wound 

ECM, which in turn would prevent cell proliferation and re-epithelialization at the 

corneal surface. 
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Figures 

 
Figure 6.Monolayer wounds created with a 6mm drill bit heal more 
quickly when cells are administered from Cytodex 3 beads. Wound 
areas for bead treated wounds were not measured on days 1 and 2 to 
allow for cell transfer without disturbance, however at all measured 
time points, wound area differences are statistically significant (p 
<0.05). 
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Figure 7.  Monolayer wounds created with a 6mm drill bit heal more quickly when 
cells are administered from Cytodex 3 beads. Wound areas for bead treated 
wounds were not measured on days 1 and 2 to allow for cell transfer without 
disturbance, however at all measured time points, wound area differences are 
statistically significant (p <0.05). 
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Figure 8.  Monolayer wounds exhibit enhanced wound healing when treated with 
higher concentrations of cell-covered beads.  Each point shown in the graph is 
one wound treated with cells on beads with an associated number of beads in the 
wound region and a time to wound closure.  The dotted line shown is a linear 
regression trend line for the wound healing data. 
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Figure 9.  HCE cell transfer from cytodex3 beads embedded in PDMS to 
matrigel-coated well plates.  Original seeding density was approximately 50,000 
cells/cm2. 
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Figure 10.  A summary of patterned PDMS designs and primary cell 
transfer from PDMS surfaces with various topographies onto matrigel 
after three days. 
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Figure 11.  Primary cell transfer from coated contact lenses to tissue culture 
polystyrene (TCPS).  Fibronectin coated lenses facilitated the greatest amount of 
cell transfer. 
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Figure 12.  Primary cell transfer from autoclaved PDMS contact lenses to various 
types of ECM.  Autoclaved PDMS displayed the greatest amount of cell transfer to 
poly L-lysine tissue culture polystyrene (TCPS), however, of the ECM materials, 
matrigel surfaces were the best recipient surfaces. 
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Figure 13.  Confocal microscope images of organ cultured cornea wound 
regions treated with primary cells directly pipetted into place (A) and 
transferred by an autoclaved PDMS cell-transfer contact lens.  Primary cells 
were stained with Cell Tracker red and the ECM of the wound region was 
stained green with sodium fluorescein.  Scale bar is 100 microns. 
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Figure 14.  Primary cell transfer from ECM coated contact lenses to wounded organ culture 
corneas.  Organ culture results mirror in vitro transfer to ECM.  *Statistically significant (N 
= 3, p< 0.05). 
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Figure 15.  Remaining epithelium stained pink by rose bengal after contact lens 
treatment.  Corneas with no contact lens treatment showed no signs of epithelial 
loss (A).  However autoclaved PDMS contact lens treated corneas showed 
substantial epithelial removal (B) and fibronectin coated lenses minimized cell 
removal (C).  Remaining epithelial coverage is ~100% (A), ~50% (B), ~85% (C). 
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Abstract 

Normal epithelial cells form a continuous layer of polarized cells, which have 

cell-cell contacts and distinct apical and basolateral domains.  However during the 

process of Epithelial-Mesenchymal Transition (EMT), epithelial cells lose cell-cell 

contacts with an accompanying loss of polarity and the ability to form continuous sheets.  

These cells have mesenchymal properties such as increased motility, and the ability to 

proliferate and reside within matrix materials, which are invasive characteristics similar 

to cancer cells.  It is widely accepted that functional loss of the adherens junction protein 

E-cadherin, is a primary event in EMT, which demonstrates the importance of cell 

junctions in EMT.  We hypothesize that the loss of blood vessel/epicardial substance 

(Bves), a gene product that localizes to tight junctions and maintains epithelial sheet 

integrity, may also lead to EMT.  In order to study the role of Bves in EMT, an SV40 

immortalized human corneal epithelial cell line (parental HCE) was stably transfected to 

over-express chick-Bves (c-Bves), a fully functional form of Bves.  A second line of cells 

were transfected with a truncated, Bves mutant (t-Bves), which does not properly localize 

to tight junctions to create a dominant negative cell line (t-Bves HCE). Changes in 

epithelial morphology, cell migration, and proliferation within a 3-dimenstional matrix in 

c-Bves and t-Bves cells were characterized and compared to the parental (HCE) cells.  In 

these studies we have demonstrated epithelial cells undertake a mesenchymal phenotype 

when Bves trafficking to the cell membrane is disrupted by over-expressing t-Bves.  

These cells were not able to form a continuous monolayer. Furthermore, t-Bves HCE 

have acquired a fibroblast-like morphology with spindle like projections, along with 

greatly enhanced motility with a migration rate of nearly twice the parental HCE.  

  
 

78



 
 

Dominant negative Bves cells also exhibited ~40% enhanced proliferation within a 3-

dimensional nutrient matrix (soft agar).  Though the molecular mechanisms for these 

observations are not fully understood, our findings suggest that the loss of proper 

trafficking of Bves to the cell membrane induces cell changes similar to those used to 

characterize EMT, whereas over-expression of Bves maintains and enhances epithelial 

characteristics. 

 

Introduction 

A defining characteristic of epithelial cells is their ability to a form a continuous 

monolayer, or multiple layers, of polarized cells. The cells within a monolayer are more 

than just a grouping of adherent cells.  In addition, they typically exhibit uniform 

morphology with coordinated cellular proliferation and differentiation. Points of cell-cell 

adhesion within a monolayer provide both structural integrity and sites for cellular 

interaction so that groups of cells can function as a tissue.  However, epithelial cells can 

acquire mesenchymal cell properties marked by a loss of cell-cell contacts and cellular 

polarity, accompanied by increased motility and invasive potential through a process 

known as epithelial-mesenchymal transition (EMT).  Regulation of EMT is an important 

cellular function involved in both normal development and cancer (Bates and Mercurio 

2005). Understanding the molecular mechanisms regulating EMT will provide insight 

into physiologic and pathologic phenomena. 

EMT was originally described in embryonic development and defined by the 

formation of mesenchymal cells originating form primitive epithelia.  Given the proper 

cues, a number of different adult and embryonic epithelial cells have been found to lose 
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polarity and migrate as individuals when cultured within collagen growth matrix 

(Greenburg and Hay 1982; Greenburg and Hay 1986).  When treated with conditioned 

medium from fibroblasts, Madin-Darby canine kidney cells have been shown to acquire a 

migratory fibroblast-like phenotype (Stoker 1989).  The molecular basis of EMT is 

complex and involves a growing number of signaling pathways, which include: 

transforming growth factor beta (TGF-B), tyrosine kinase surface-receptor-asscociated 

pathways, transcriptional regulation, small GTPases, and cell-cell adhesions.  It is widely 

accepted that functional loss of the adherens junction protein E-cadherin, is a primary 

event in EMT, which demonstrates the importance of cell junctions in this process 

(Hirohashi 1998; Hanahan and Weinberg 2000). 

Blood vessel/epicardial substance (Bves) is a novel adhesion molecule that has 

been demonstrated to be an integral component of tight junctions (Osler, Chang et al. 

2005).  Bves expression was originally observed, and the protein was isolated from 

epithelial cells at the surface of the developing chick embryo heart (Reese and Bader 

1999; Reese, Zavaljevski et al. 1999).  During cardiac development, a subpopulation of 

pro-epicardial cells exhibit loss of cell-cell contact, which coincides with the loss of Bves 

expression at the cell surface.  It has also been shown that Bves confers cellular adhesion 

properties to non-adhesive L-cells when transfected to over-express Bves(Wada and 

others 2001). These findings led authors to classify Bves as an adhesion molecule and 

hypothesize that Bves is involved cell-cell contact and cellular migration during 

organogenesis.  Ripley et al verified the critical role of Bves in cell migrations and 

epithelial rearrangement during development in Xenopus laevis by injecting an antisense 

  
 

80



 
 

mopholino to knock down Bves expression in two-celled embryos. Morphologenesis was 

disrupted by deregulation of epithelial movements (Ripley, Osler et al. 2006). 

When various epithelial cell lines were stably transfected to over-express a full-

length chicken Bves (C-Bves), we observed increased levels of TJ proteins and increase 

transepithelial electrical resistance (TER), a functional measurement TJ formation. 

However, when using an anti-sense-morpholino knock down strategy to disrupt Bves 

expression, TJ formation was reduced as demonstrated by reduction in TER and TJ 

proteins. These findings indicate that Bves is important in regulating the barrier functions 

of epithelial TJs (Osler, Chang et al. 2005). 

During disruption of Bves expression by morpholino treatment, we also noted an 

increase in epithelial cell migration. When a normal epithelial monolayer is injured, 

wound closure occurs as a sheet of cells from the wound edge migrates to cover the 

injured area. This unified migration of the wound front is observed both in vivo and in 

vitro. However, when Bves expression is disrupted, we noted that more cells delaminated 

away from the healing wound margin, which led to faster wound coverage. In addition, 

these cells took on more fibroblast-like morphology (Ripley, Chang et al. 2004). This 

observation led to us to hypothesize that Bves also regulates EMT. 

The function of Bves in epithelial TJs is not fully understood, but Bves appears to 

play an important role in the formation and maintenance of TJ in epithelial cells.  

However, it is becoming increasingly evident that TJ in epithelial cells have other cellular 

functions beyond cellular adhesion.  TJs are also involved in regulating epithelial cellular 

differentiation.  The most obvious mechanism of how TJs regulate differentiation is 

based on the physical property of TJs.  TJs are composed of continuous adhesive strands 
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encircling the upper portions of cells within an epithelial sheet, which separate the cells 

into two distinct apical and basal portions.  The protein contents within the cell lipid layer 

are prevented from freely diffusing between these two portions by the encircling strands 

of TJ and cellular polarity is maintained.  However, if TJs become compromised, the 

apical and basal regions will not have the required separation leading to loss of cellular 

polarity, a hallmark of EMT. 

 

Methods 

 

Development of c-Bves and t-Bves HCE lines 

Immortalized human corneal epithelial cells (Araki-Sasaki, Ohashi et al. 1995) 

were stably transfected using lipofectamine and plasmid.  Plasmid with Chick Bves (c-

Bves) was used in order to create a Bves over-expressing cell line where the exogenous 

Bves is trafficked in the same way as endogenous Bves, which is dependent on the Bves-

Bves interaction of the cytoplasmic carboxyl terminus (Andree, Hillemann et al. 2000).  

These findings led us to hypothesize that the expression of a truncated Bves at the 

carboxyl terminus (t-Bves) will lead to hetero-oligomerization between endogenous Bves 

and t-Bves resulting in abnormal trafficking.  We used a truncated sequence plasmid 

construct to create a dominant negative cell line with disrupted Bves. 

 

Measurement of cell packing 

Cell lines were seeded at 5,000 cell/ cm2 on transwell inserts (Falcon), and 

maintained with Defined Keratinocyte Serum free Medium until confluence.  Cells were 
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then fixed with methanol and stained with DAPI.  Cells were imaged, and neighboring 

cell distances were measured from the center of one cell nucleus to the center of the 

neighboring cell nucleus.  These measurements were repeated for all cells within a field 

of view.  

 

Measurement of cell migration by time-lapse microscopy 

In separate studies of individual cell migration rates, well plates were seeded with 

various cell lines at low density (< 5,000 cells/cm2).  We allowed for three days after 

trypsinization to allow for recovery of membrane proteins before time-lapse studies.  

Individual cells were imaged hourly over 24 hours using a Hamamatsu C7780 CCD 

(Hamamatsu Corporation, Bridgewater, NJ) camera attached to a Nikon Eclipse 

TE2000U inverted microscope (Nikon USA, Melville, NY).  A stage incubator was used 

to supply CO2 and steady heat to maintain the temperature at 37° and Image Pro Plus 5 

(Media Cybernetics) controlled time-lapse image acquisition at one-hour intervals. 

 

Analysis of cell migration 

Using Image Pro Plus 5, individual cells in each field were identified using pixel 

intensity and object area histograms, and were selected for tracking.  Using the “Track 

objects” dialogue, cell movement tracking from one frame to the next was automated.  

For each cell, center-to-center movement measurements for the whole time-lapse 

sequence were exported into Excel for numerical analysis.  Since each image in the 

sequence was taken at an interval of one hour, the migration rate (microns/hour) for that 

time period was the distance moved.  Migration rate for each individual cell was 
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averaged for the time-lapse sequence, and the migration rate reported for each cell line 

was the average and standard deviation of the individual cell migration rates. 

 

Cell viability in soft agar 

In order to assess cell survival and proliferation in a three-dimensional nutrient 

matrix, each cell line was grown in soft agar.  Six well plates with soft agar were 

prepared with a bottom dense layer of agarose and a top cell growth agarose layer.  

Agarose of two different concentrations were prepared: 1% agarose (100mg agarose in 

10ml Defined Keratinocyte Serum Free Medium without growth supplement) for the base 

layer and 0.5% Agarose (50mg agarose in 10ml Defined Keratinocyte Serum Free 

Medium (DKSFM) without growth supplement) for the top cell growth layer.  Each 

solution of agarose was heated and well mixed before autoclaving.  Agarose solutions 

were sterilized in a steam autoclave at 121 ˚C for 10 minutes, then at a dry setting for 30 

minutes.  Both agarose mixtures were then cooled to 37˚C in water bath.  Epithelial 

growth supplement provided by Gibco in the DKSFM kit was added to each (20µl into 

10ml agarose).  First, 1 ml of 1% agarose was poured into the bottom of each six-well 

plate well.  The gel was then cooled for 5 minutes in a refrigerator at 4˚C.  The top cell 

growth layer of agarose was then prepared.  Cells were added to warm 0.5% agarose at a 

seeding density of 5,000 cells/cm² for each 9.62 cm² well.  The agarose growth layer (1 

ml in each well) was added on top of the gelled 1% agarose layer.  Both layers were then 

cooled at room temperature, until fully gelled.  Each well then received 1ml of DKSFM 

with supplement, and the soft agar plates were incubated at 37˚C, 5% CO2 and 95% 

humidity. 
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Cells were maintained for two full weeks, with media changes every 2-3 days.  

On day 14, cells were treated with 20 µg/ml fluorescein diacetate and 4 µg/ml ethidium 

bromide in Hank’s Buffered Saline, a live/dead viability stain, to assess the amount of 

viable cell colonies within the soft agar.  Images of low power fields (2x, 4x) were taken, 

and colonies were counted. 

 

Statistical Analysis 

SigmaStat for Windows version 3.0 was used for all statistical analysis.  Analysis 

of variances (ANOVA) was applied for c-Bves and t-Bves data versus the control 

parental HCE line.  Statistical significance was set at p<0.05. 

 
Results 

 

Subcellular localization of Bves in stably transfected cells: 

Bves trafficking to the cell membrane has been demonstrated to be dependent on 

the Bves-Bves interaction of the cytoplasmic carboxyl terminus (Andree, Hillemann et al. 

2000).  These findings led us to hypothesize that the expression of a truncated Bves at the 

carboxyl terminus (t-Bves) will lead to hetero-oligomerization between endogenous Bves 

and t-Bves resulting in abnormal trafficking of Bves to the cell surface.  

Immunohistochemical staining in cells stably expressing transfected Bves with Flag 

epitope (Figure 16) appears to support this hypothesis.  Bves antibody, B846, recognizes 

both the endogenouse and stably expressed c-Bves (wild type chick Bves with Flag 

epitope).  Immunofluorescence straining of c-Bves cells with B846 revealed prominent 

localization at the cell border at sites of cell-cell contact and none at a free cell edge 
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(Figure 16 G). When the Flag image (H) is merged with B846 image (Figure 16 I), there 

is corresponding overlap, which indicates that the stably transfected c-Bves is trafficked 

in the HCE cells in a similar manner as endogenous Bves, and the Flag epitope does not 

interfere with endogenous Bves trafficking. 

Bves antibody, B846, recognizes an intercellular epitope not present in truncated 

t-Bves, and therefore will only detect endogenous Bves in the t-Bves cells.  Endogenous 

Bves localization is mainly in a cytoplasmic pattern and rarely at the cell borders (Figure 

16D). Staining with Flag antibody also revealed mainly cytoplasmic localization of t-

Bves (Figure 16E). When merged, there is incomplete overlap between endogenous and 

t-Bves, and no Flag localization at cell borders (Figure 16F).  We also observe rare 

scattered regions where endogenous Bves is seen in linear pattern indicating the 

localization at the cell membrane borders. These regions do not correspond to Flag 

localization. These observations indicate that endogenous Bves is interacting with the 

transfected truncated form, and this interaction results in disrupted trafficking to the cell 

membrane.   

 

Altered monolayer formation in stably transfected t-Bves cells 

We previously demonstrated that both parental and c-Bves HCE cells form an 

organized monolayer, and Bves over-expression led to increased TJ formation as 

reflected in the doubling of TER in the C-Bves cells (Osler, Chang et al. 2005). Our 

present study confirmed these findings.  Parent and C-Bves cell readily establish cell-cell 

contact and form islands of epithelial cells. The C-Bves islands are typically larger and 

coalesce with each other forming a complete monolayer quicker than parental cells.  Both 
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parental and C-Bves cells form complete well-organized monolayers with uniform cell 

size and shape.  However, C-Bves cell layers appear to be more tightly packed, and 

individual cells appear to be even more regular.  There is also a doubling of TER in the 

C-Bves monolayers.  In contrast to the parental and C-Bves cells, t-Bves cells with 

disrupted endogenous Bves trafficking do not appear to have the ability to form a 

confluent epithelial cell layer. Instead, the t-Bves cells proliferated in disorganized 

clusters (Figure 16D, E & F). T-Bves appear to be unable to form cell-cell contacts as 

demonstrated by the lack of TER above baseline measurements. 

In addition to these results in a human corneal epithelial cell line, c-Bves also 

appears to alter the morphology of a cancer line, Lim 2405.  Figure 17 shows a phase 

contrast micrograph of the parental cancer line and the C-Bves transfected line, both at a 

moderate cell density.  The parental cancer line exhibits a mesenchymal phenotype, and 

is unable to form well-organized layers.  In contrast, the stably transfected C-Bves Lim 

2405 line appears to be more epithelial, and form a monolayer. 

 

Altered Cell Morphology 

Cells were stained for ZO1 on polycarbonate inserts after TER measurement. 

Both parental and C-Bves monolayers have complete cell-cell contact revealed by ZO1 

localization in a wire mesh pattern (Figure 18).  Immuno-fluorescence staining of the t-

Bves samples after TER assay reveals a lack of ZO1 at the cell membrane. Furthermore, 

there is no cell membrane localization of the other adhesion junction protein such 

claudins, e-cadhereins, or B-catenins at the cell membrane (results not shown). The 

results indicate that Bves is required for initiation of epithelial cell-cell contact formation 
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and modulation of the barrier function in an epithelial monolayer.  In addition to the 

increased TER, c-Bves cells exhibited increased cell density within its monolayer after 

cell layer confluence.  

We verified that cell number is increased in c-Bves HCE by measuring the 

internuclear distances, which is significantly shorter in c-Bves monolayer than in the 

parental line (Figure 18B). However, we only noted this increase in cell density after 1 

week of growth after reaching full confluence.  We found that this was the waiting period 

required in order for the monolayer TJ to fully develop. It appears that both the parental 

and c-Bves have similar cell density with reaching full confluence, but the C-Bves cell 

density further increases after reaching full confluence.  We quantified this difference by 

measuring 100 nuclei-nuclei spacings for each cell line grown on three different transwell 

membranes.  HCE cells expressing c-Bves had an average cell spacing of 10.5 microns 

with a standard deviation of 1.8 microns.  The parental HCE line had an average cell-cell 

spacing of 12.2 with a standard deviation of 2.2microns.  This measurement shows that 

cells over-expressing Bves are more densely packed at confluence (p <0.05).  These 

results are summarized in Figure 18. 

 

Altered Cytoskeleton 

Due to our variation on the changes in the cell shape, we hypothesized that the 

cytoskeletal structure in the stably transfected cells were altered. Subconfluent cultures 

were analyzed for both microfilament organization and intermediate filaments.  

Phalloidin staining of cells revealed the stress fibers in both C-Bves and parental cells 

(Figure 19). In contrast, t-Bves cells do not exhibit stress fibers.  
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For analysis on intermediated filaments, immunofluorescence staining for 

cytokeratin and vimentin were carried out (Figure 20). C-Bves and parental cells exhibit 

fluorescence for cytokeratin (Figure 20A and B) while vimentin fluorescence was 

minimal (Figure 20D and E). Conversely, t-Bves cells stained positively for vimentin 

(Figure 20F) but not for cytokeratin (Figure 20C). These findings indicate that 

cytoskeletal organization (microfilaments and intermediate filaments) differ and the t-

Bves cells expresses a mesenchymal marker, vimentin. 

 

Altered cell growth in soft agar assay 

The loss of Bves localization at the cell membrane appears to induce HCE cells to 

expression vimentin, a mesenchymal phenotype marker, while the parental and C-Bves 

both express cytokeratin, which is an indicator of epithelial phenotype. To further 

investigate changes of HCE phenotype with alteration in Bves, soft agar assays were 

carried which determines the ability of cell to proliferate (colony formation) within a 3-

dimensional matrix. Typically, cells with mesenchymal phenotype are more capable of 

colony formation within a 3-dimensional growth matrix. The t-Bves cells exhibit the 

greatest number of colonies after 2 weeks (Figure 21C). The C-Bves cells have the lowest 

number of colonies (Figure 21A), and the parental HCE cells were intermediate in the 

number of colonies (Figure 21B). These results indicate that loss of Bves leads to 

transformation of epithelial cells to mesencymal cells. 

The qualitative assessment of the soft agar images was verified using Image Pro 

Plus to count the cell colonies formed in 6 different wells for each cell line.  We found 

that the t-Bves line had an average colony density of 99.3 ±17.8 colonies/cm2, whereas 
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the parental line had a density of 72.5 ±12 colonies/cm2, and the c-Bves line was 

20.2±8.9 colonies/cm2 (Figure 21).  Statistical analysis of these results verify that t-Bves 

had improved proliferation in soft agar over the parental line, and in comparison, c-Bves 

had a decreased ability to survive (p<0.05). 

 

Altered cellular motility 

The results above strongly indicate that Bves regulates the transition between 

epithelial and mesenchymal phenotype. Another phenotypic difference between epithelial 

and mesenchymal cells is cellular motility. We have previously reported an increase in 

cellular migration in HCE cells treated with morpholinos to knock-down Bves expression 

using cell culture wounding assay (Ripley, Chang et al. 2004). The wounding assay 

measures migration of cells in the contexts of an organized monolayer.  Since, t-Bves 

cells do not form a monolayer, we measured the distances traveled during the random 

movements of individual cells.  Time-lapse light phase microscopy was carried out on 

groups of individual cells, and their movement was analyzed. 

Analysis of the time-lapse footage showed that t-Bves cells were more motile than 

either the parental or c-Bves cell lines.  Representative images in Figure 22 show that t-

Bves cells exhibit a spread morphology, with spindle-like filopodia used for movement, 

in contrast to parental and c-Bves cells which appear to be more rounded and lack 

projections.  Average individual cell migration for t-Bves was 2.8 ±0.7 microns/hr, 

parental HCE 1.5 ±0.6 microns/hr, and c-Bves 0.4 ± 0.2 microns/hr that is summarized in 

the bottom graph in Figure 23.  Statistical analysis showed that the cell migration rate of 
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t-Bves was significantly greater than the parental line, and c-Bves migration rate was 

significantly lower than parental HCE (p<0.05). 

 

Discussion 

In this report we have demonstrated that over-expression of truncated Bves, leads 

to a functional loss of Bves by disrupting endogenous Bves trafficking to the cell 

membrane.  The resulting cell phenotype exhibits the characteristics of a cell that has 

undergone epithelial-mesenchymal transition.  Dominant negative cells expressing t-Bves 

are not able to form a confluent monolayer due to a lack cell-cell contacts.  When grown 

to high density, these cells become disorganized, and do not like to come in contact with 

other cells.  When cells do come in contact, they pile up briefly, and then slough off.  In 

addition, they have undertaken fibroblast morphology exhibiting spindle-like projections 

much like filopodia.  These cells exhibit increased motility and have become invasive, 

acquiring the ability to proliferate within a 3-dimensional nutrient matrix (soft agar).  

Mesenchymal phenotypic change is also confirmed by the expression of the 

mesenchymal cell-specific intermediate filament network component vimentin, instead of 

the normal keratins expressed by corneal epithelial cells. 

In contrast, c-Bves stably transfected HCE have enhanced epithelial 

characteristics over the parental epithelial cell line.  Immuno-fluorescence shows that c-

Bves is properly trafficked to the cell membrane, which exhibits a wire-mesh pattern in 

cell monolayers at cell junctions.  This confers greater epithelial sheet integrity by both 

increased monolayer resistance and greater, more organized cell packing.  These cells 

exhibit epithelial morphology, and epithelial cell markers such as keratins.  In addition 
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cell motility is decreased and cell proliferation in an agar 3-d growth matrix is 

diminished.  We have shown that this phenomenon is not an artifact of this corneal 

epithelial cell line, as preliminary results in a cancer line, Lim2405, also exhibit an 

increase in epithelial phenotypic characteristics.  The parental Lim 2405 line is unable to 

form a well-organized monolayer, whereas the c-Bves over-expressing Lim 2405 line 

forms very regular, confluent sheets.   

The mechanisms for downstream molecular interaction of Bves are not fully 

understood, but these results appear to be in part due to Bves' role in modulating TJ 

formation.  Our findings suggest that the loss of proper trafficking of Bves to the cell 

membrane induces cell changes similar to those used to characterize EMT including an 

increase in cell motility, whereas over-expression of Bves enhances epithelial 

characteristics and decreases cell motility. 
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Figure 16  Immuno-fluorescence staining for Bves (green) and Flag (red) in parental HCE 
(A,B,C), t-Bves (D, E, F) and c-Bves (G,H,I).  Parental cells exhibit endogenous Bves staining 
at cell junctions (A).  However, cells expressing t-Bves exhibit disrupted localization of 
endogenous Bves (D) and have a decreased ability to establish and formation of a monolayer 
(F).  In C-Bves cells Bves is properly trafficked to the cell membrane (I).  The free edge of a C-
Bves epithelial sheet was shown to emphasize that Bves is expressed at cell junctions and is not 
localized at the free edges of cells. 
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Figure 17.  Phase contrast images of Lim 2405 cancer cells (A) and c-Bves Lim 
2405 cells.  C-Bves Lim 2405 cells form a contiguous monolayer with a regular 
epithelial phenotype, where as the parental cancer line exhibits a mesenchymal 
fibroblast-like phenotype, which does not form monolayers. In C and D, Bves is 
stained in green.  This staining shows that there is a low baseline level of Bves 
expression in the cancer line (C).  The over-expressing line expresses Bves that 
localizes to the cell membrane (D). 
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Figure 18.  Immuno-fluorescence staining of ZO-1 in c-Bves cells (A), parental HCE (B) 
and t-Bves cells (C). Cells over expressing Bves (A) exhibit increased cell density. 
Truncated Bves cellsScale bar is 10 microns..  c-Bves HCEs exhibit significantly closer 
cell packing at confluence than parental HCEs, with > 20% decrease in the measured 
internuclear distances. (p<0.05).  Mean + standard deviation (N=3).  * No internuclear 
spacing results were tabulated for this line because the cells clump together. 
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Figure 19  Immuno-fluorescence staining for actin using TRITC pahlloidin 
(red).  Parental (A,B), and c-Bves cells (C,D)show the presence of of actin 
stress fibers, whereas t-Bves (E, F) cells lack stress fibers, and exhibit little 
cytoskeletal organization. 
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Figure 20.  Immuno-fluorescence staining of c-Bves (A,D), HCE (B,E), and t-Bves 
(C,E) cells for cytokeratin (A,B,C) and vimentin (D,E,F). Cytokeratin is detected in 
c-Bves (A) and parental (HCE) cells (B), but not vimentin (D,E). Conversely, 
vimentin is detected in t-Bves cells (E), but not cytokeratin (C). These results 
indicate that t-Bves cells have untaken a mesenchymal phenotype. 
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Figure 21.  Low power fluorescence microscopy imaging colony formation by c-Bves 
(A), parental HCE (B), and t-Bves (C) cells after 2 weeks in soft agar (0.5%). Soft agar 
cultures were stained using a vital dye (cell-tracker red). Cells with disrupted Bves 
trafficking (C) have greatest capacity to proliferate within the soft agar, while cells over-
expressing Bves (A) proliferated least.  Scale bar is 500 microns.  Density of cell colonies 
growing in soft agar (0.5%) after 2 weeks  (N=6). There was a statistically significant 
increase in t-Bves HCE colony proliferation over parental HCE, and a statistically 
significant decrease in c-Bves cells (p<0.05). 

 

 

  
 

99



 
 

C
el

l M
ot

ilit
y 

(m
ic

ro
ns

/h
r)

0

1

2

3

4

c-Bves HCE Parental HCE t-Bves HCE  
Figure 22.  Time-lapse light microscopy for 20 hr on heated stage was preformed 3 days 
after seeding on plastic culture dishes. At low cell density, c-Bves cells (A) and parental 
HCE (B) appear are rounded, and ,t-Bves cells (C) appear small and fibroblast like with 
spindly processes. Scale bar is 20 microns.  Cell motility rates of HCE cell lines. The t-
Bves cell displayed the greatest motility and the c-Bves cells least.  For each cell (n=10 
for each cell line), the speed of locomotion was calculated by the average change in 
position of center of the cell in each video frame over 20 hrs. Mean ± standard deviation. 
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CHAPTER VI 

 

DISCUSSION AND FUTURE WORK 

 

The goal of any wound healing technology is to treat injured tissue so that it 

becomes contiguous, stable, and that it regains full function as soon as possible.  In 

essence, at the end of wound healing the tissue should be returned to the state it was in 

before it was injured.  In corneal wound healing, there are increased challenges such as 

scarring and loss of clarity.  Past approaches to restoring the ocular surface involved 

multiple surgery procedures.  In an effort to develop an easy to administer, non-surgical 

method to promote wound healing, we have developed a cell carrier approach to 

delivering corneal stem cells to severely damaged corneas. 

We have evaluated a cell culture model of corneal wound healing that showed an 

acceleration of wound closure times when exogenous cells were applied to the interior of 

wounds. We found that a relatively small amount of cells, 5,000-10,000 cells per square 

centimeter, seeded within wounds significantly decrease time of total wound closure. 

In working with various materials as cell carriers, Polydimethylsiloxane (PDMS) 

proved to have the most desirable traits for use as cell delivering contact lenses.  PDMS 

was amenable to surface modification by passive protein adsorption or alternatively by 

plasma treatment activation and covalent coupling of molecules to its surface.  In transfer 

experiments, autoclaved and surface coated PDMS allowed for both celll attachment and 

cell migration to both ECM and wounded corneas.  We found that fibronectin was the 

most promising surface coating for both cell transfer and for protecting healthy epithelial 

cells from removal.  We also found that post micropatterns increased transfer efficiency 
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to ECM such as matrigel.  However, in our organ culture model system, micropatterns 

were found to have a less pronounced effect.  PDMS contact lenses without surface 

features were able to transfer primary corneal epithelial cells to damaged corneal regions 

as shown in confocal images.  However, after culture in a perfusion chamber, fewer cells 

remained attached to the cornea.  This is indicative of poor attachment to corneal ECM, a 

major stumbling block to a re-epithelialization application. 

There are a number of future studies that may be conducted to further investigate 

the effect of individual corneal stem cell delivery to corneal wounds. In the original 

design of this study, we planned to take optimized cell transfer contact lenses and apply 

autologous primary cells to corneal wounds in vivo.  This would have allowed for us to 

evaluate how cells might transfer from a contact lens that has some degree of movement 

on the surface of the cornea.  We hypothesize that even with lens movement, at least 

some exogenously applied cells would make it to the wounded cornea, and according to 

preliminary data, even a small amount of well adhered cells on the interior of wounds can 

accelerate healing.  However due to time, and funding constraints, in vivo work was 

outside the scope of this dissertation. 

Future studies assessing transferred cell adhesion to wound ECM are needed in 

order to improve contact lens design for cell retention.  After cells can be transferred, 

retained and grown to confluent sheets in place on the cornea, then functional testing 

must be completed.  In order to assess the function of a cornea healed by individual cell 

transfer, barrier properties should be confirmed by diffusion studies and corneal clarity 

should be assessed by light transmission.  Histology and immuno-fluorescence staining 

should be used to confirm corneal epithelial layer stratification, and proper cell layer 
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phenotype through keratin type specific stains, and proper expression of cell junction 

proteins. 
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CHAPTER VII 

 

PROTECTION OF RESEARCH SUBJECTS AND SOCIETAL IMPLICATIONS 

 

Protection of Research Subjects 

No living animals were used in these studies.  As an alternative, an appropriate 

culture model was established.  Prior to euthanasia, animals were treated in accordance 

with the ARVO Resolution on the Use of Animals in Research and Vanderbilt 

institutional guidelines. Animals were housed in the Central Animal Facility in Medical 

Center North.  After euthanasia, and confirmed death by the attending veterinarian, 

ocular globes were harvested for corneal isolation. 

 

Societal Implications 

Corneal wound healing disorders are collectively a significant cause of blindness 

in the United States, and have an even greater impact worldwide.  Current methods for 

treating delayed or slow corneal healing fail to actively re-epithelialize the cornea, and 

therefore risk complications such as corneal perforation.  There is a growing population 

of patients who will be susceptible to deficient corneal healing that would benefit from 

new devices and methods to accelerate corneal wound healing. 
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APPENDIX A 

 

ROLE OF THE STUDENT IN THE MANUSCRIPT 

 

The first two manuscripts, and the fourth, is work conceived, experimentally 

undertaken and written primarily by Christopher Pino.  Min Chang conceived the third 

manuscript, and Christopher Pino primarily conducted experiments.  For all work, 

Elizabeth Dworska was involved in the upkeep of cell lines used.  Frederick Haselton 

provided experimental and technical advice, and served as the final editor for all 

manuscripts.  Dr Franz Baudenbacher provided lithography and microfabrication advice 

for the fourth manuscript.  Dr Prasad Shastri provided some materials and surface coating 

trouble- shooting.  Dr Tran provided clinical information and critical feedback for 

literature review of corneal wound healing. 
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APPENDIX B 

 

PDMS AS A CELL GROWTH SURFACE 

 

Cell attachment to untreated PDMS surfaces has been contested in the literature, 

however, several investigators have reported successful cell culture (Mata, Boehm et al. 

2002).  PDMS is made up of a chain of silicon that has two methyl groups.  These methyl 

groups make the surface of PDMS highly hydrophobic, which means that it strongly 

repels water.  A measure of hydrophobicity, surface contact angle (SCA), can be 

measured by placing a bead of deionized water on PDMS.  Materials that are hydrophilic 

have low SCA and those that are hydrophobic have SCA of >70°.  Many researchers 

have measured PDMS to have a SCA of 108°.  Despite many advantages of PDMS’ 

material properties, its hydrophobic nature translates into poor wettability, which is a 

significant problem for cell attachment.  Previous studies suggest that cell adhesion is 

maximized on surfaces with moderate SCA from 60° to 80° (Lee, Park et al. 2003), 

which is an intermediate hydrophobic/hydrophilic property. 

In order to make PDMS more amenable to cell attachment, the surface can be 

modified either by hydrophilization of PDMS or by surface coating with adhesive 

proteins.  Several investigators have reported treating with oxygen-based plasma to 

reduce hydrophobicity of PDMS.  The chemical structure of PDMS is a chain of silicon 

interconnected by oxygen with two methyl groups attached to silicon.  Experimental 

evidence indicates that PDMS is made more hydrophilic when oxidized in plasma 

because oxygen in the form of hydrophilic silanol groups (Si-OH) replace hydrophobic 
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methyl groups (Si-CH3) at the surface (Morra, Occhiello et al. 1990).  However, PDMS 

surfaces treated by oxygen plasma do not remain hydrophilic permanently.  Mobile, low-

molecular weight monomers are able to migrate from the bulk of the PDMS to the air-

surface interface causing hydrophobic recovery a few hours following plasma treatment. 

To retain the hydrophilic nature of plasma treated PDMS, several investigators have 

found that storage in water reduces the rate of hydrophobic recovery (Ng, Gitlin et al. 

2002; Lee, Park et al. 2003) 

In order to better characterize the Sylgard 184 (Dow Corning) and Silastic 

elastomer (Dow Corning) that were surface modified for use in transfer experiments, 

goniometry was used to evaluate each formulation of PDMS.  Goniometry is a standard 

method to measure surface contact angle, which is an indicator of a surface’s 

hydrophobiticy.  Drops of deionized water was placed on untreated Sylgard 184, plasma 

treated Sylgard 184 within an hour of treatment and plasma treated Sylgard 184 that was 

allowed to recover, and then sterilized by autoclave treatment for 30 minutes (Figure 23). 

Silastic MDX4-4210 Medical Grade Elastomer, also made by Dow Corning, is a 

two-part kit with a dimethyl siloxane monomer base and a curing agent.  This 

formulation is dimethylvinyl-terminated.  We tested medical grade Silastic because it has 

already been used in biomedical applications, and has known host inertness.  This makes 

it a good candidate for cell transfer contact lenses made for future use.  We treated it in 

the same way as Sylgard 184 previously, and found that Silastic is slightly more 

hydrophobic.  Plasma treatment was found to decrease surface hydrophobicity shown by 

lower SCA (Figure 24).  In Figure 25, we summarized SCA data for all PDMS types. 
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Figure 23. Drops of de-ionoized water on untreated (A), air plasma treated (B), 
and plasma recovered then autoclaved (C), Sylgard 184. 
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Figure 24. Drops of de-ionoized water on untreated (A), air plasma treated (B), 
and plasma recovered then autoclaved (C), Silastic. 
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Figure 25. Surface contact angle measurements of Sylgard and 
Silastic PDMS formulations. 
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Abstract 

In this report, we describe a precision drill apparatus for making circular wounds 

in cultured epithelial monolayers and cultured corneas.  Cultures of corneal epithelial 

cells were grown on standard tissue culture polystyrene coated with collagen, and 

maintained until confluence.  Using a micromanipulator as a drill press, spinning teflon 

chisel-like drill bits were then lowered through epithelial cell layers to create wounds.  

Wounds were imaged, and cultured until completely closed.  Maximum epithelial front 

migration speed and average wound closure rate were quantified by analysis of images 

obtained by time-lapse microscopy.  To test wounding reproducibility in three separate 

experimental trials, different sets of cultures were wounded with the same drill bit.  In 

these trials, wounds were an average of 8.66 mm2 ± 0.36 (N = 16), 8.86 mm2 ± 0.18 (N = 

16), and 8.85 mm2 ± 0.05 (N = 16).  These wounds took an average of 7 days to 

completely close with an average of 1.19 mm2 of closure per day.  Though fairly 

constant, wound closure rate was greatest within the first 24 hours, and lowest just before 

complete closure.  In wounding cultured corneas, both wound depth and wound area were 

controlled.  Superficial epithelial wounds, ~6 mm in diameter, healed completely in five 

days.  Partial thickness stromal wounds were created by micromanipulator positioning to 

a depth of 0.250 mm.  The resulting average depth of stroma removed was 0.27 mm ± 

0.05 (N=6), as determined by histology.  These corneas also exhibited full coverage of 

the wounds by superficial epithelium in five days.  Direct comparison of the same size 

wounds in monolayers and organ-culture cornea systems show that corneas heal 2-3 

times faster.  This epithelial drill is a promising new approach to make precise and 

reproducible wounds in both cultured monolayers and corneas. 
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Introduction 

Corneal injuries are common, as ocular trauma accounts for over one million 

patient visits each year in the U.S. (Nash and Margo 1998) or 3.15 in 1,000 of the general 

population (McGwin and Owsley 2005).  Many corneal abrasions are quick to heal, 

however wounds greater than 2 mm in diameter may persist, and can lead to ulcerations 

and corneal perforation (Reim, Kottek et al. 1997).  Both in vitro and in vivo approaches 

have been used to study corneal wounds greater than 2 mm including cell culture 

monolayers, organotypic cultures, organ cultures or in vivo wound healing assays.  The 

most common method for creating wounds for assays is by scratching (Gottrup, Agren et 

al. 2000).  Strip wounds are created by scraping a strip in a cell culture monolayer, cell 

layers on an organotypic raft, or corneal tissue with either a pipette tip (Cha, O'Brien et 

al. 1996) or razor blade (Burk 1973).  However, because the wounding tips or blades are 

at most hundreds of microns, the resulting strip wounds are narrow and close quickly, and 

therefore are not well suited to study large area abrasions.  In organ culture and in vivo 

corneas the epithelium is commonly cut with a circular trephine, and then the epithelium 

is removed.  This creates a large diameter wound in the cornea, which is a helpful model 

to study large abrasions. However, this method has no cell culture equivalent. 

Other methods to remove the epithelium of corneal tissue include irradiation 

(laser ablation), thermal (cryoprobe) and chemical techniques (application of caustic 

agent), which have been used in both in vitro and in vivo models.  However, these 

methods make poor models of abrasion wounds since they may alter the underlying 

extracellular matrix (ECM) of corneal stroma and basement membranes, which may 

further complicate the study.  In addition, ablation and chemical treatment models may 
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cause damage to epithelial cells outside of the intended wound area, and therefore the 

total affected region cannot be easily determined.  Because of the problems associated 

with the creation and measurement of wounds by these methods, the end result can be 

poor reproducibility. 

In a recent report, a spinning drill was used to create wounds in corneal 

epithelium in vitro, and examined using time-lapse imaging (Hardarson, Hanson et al. 

2004).  However, this method was used only on organ culture corneas and the method 

was not described in detail, nor were the wounds well characterized.  In this report we 

describe and characterize a simple method to create precise and reproducible wounds in 

cell culture monolayers and on organ culture corneal surfaces. 

 

Materials and Methods 

 

Epithelial drill apparatus 

The drill was assembled using a rotational motor, interchangeable drill bits and a 

micromanipulator.  We used a Mabuchi FF-130SH (Mabuchi Motor America Corp., 

Troy, MI) rotational shaft motor, powered by a 9V battery.  This small and inexpensive 

DC motor may be operated from 0-9V DC, with either a battery power supply or a 

suitable AC adaptor.  Our drill assembly featured a 40 ohm in-line resistor to decrease 

voltage across motor terminals from 9V to 3V @ ~40mA.  At this power the drill rotates 

at ~5,000 RPM, as measured by a rotary encoder and an oscilloscope.  Interchangeable 

blade drill bits shaped like chisel points were custom cut and smoothed by standard 

machining techniques.  The bits were slip fit onto the motor shaft, and the motor was 
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mounted on a Drummond micromanipulator (Marzhauser MM33, Catalogue #3-000-024) 

for fine control over the x, y and z positioning.   

 

Machining of interchangeable drill bits 

Teflon cylindrical stock was used to create bits.  Teflon ® was selected for its 

inertness and low coefficient of friction.  The bits were machined on a lathe.  First, the 

stock was turned down to approximately 4mm diameter for a length of 10mm. Then the 

end of the stock was faced and center-drilled using a drill bit that was just slightly smaller 

than the DC motor shaft (for this motor, < 2mm). The slight undersize allowed for a 

compression fit on the DC motor shaft. The depth of the center drill hole is not critical, 

but should be at least long enough to assure stable and repeatable mounting and centering 

on the DC motor shaft after repeated removals for cleaning. A hole depth of 4mm worked 

well. The 10mm long bit blank was mounted on the DC motor, which was used as a 

micro-lathe.  The DC motor was secured in a small tooling vice and placed under a 

microscope to monitor the machining.  The cylindrical profile of the micro-bit tip was 

thinned using light cutting passes until the desired epithelial diameter was reached.  In 

order to create a chisel point, the bit was fixed in place so that rotation on the shaft would 

not occur. The edges of the tip were cut away under the microscope using a surgical 

scalpel to form a sharp chisel-point (Figure 27).  In addition, to prevent wear of the bit 

and scratching of the plastic culture dishes, the tip was coated with a thin layer of 

polydimethylsiloxane (Sylgard 184, Dow Corning).  The PDMS was mixed in a 10:1 

ratio of monomer to curing agent, chilled to increase its viscosity, brushed onto the 

Teflon bits, and cured quickly in oven at 60-100°C. 
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Wounding cell culture monolayers 

An immortalized human cornea epithelial cell line (HCE-SV40 cells) developed 

by Araki-Sasaki (Araki-Sasaki, Ohashi et al. 1995), was seeded at 100 cells/cm2 on 21 

cm2 tissue culture dishes coated with Collagen I (B.D. Biosciences).  Cells were fed with 

defined keratinocyte serum free media (Gibco/Invitrogen, Grand Island, NY) and 

maintained for over 3 days, to insure confluence and recovery from trypsinization.  Once 

the dishes were ready for wounding, the drill bits were autoclaved and affixed to the 

motor shaft in a sterile laminar flow hood.  The height adjustment screw of the 

micromanipulator was used to slowly lower the spinning drill bit down to the cell surface.  

Removed cells were washed away in sterile phosphate buffered saline (PBS).  Culture 

media was changed every day after wounding.  Wounds were viewed using a Nikon 

Eclipse TE2000U inverted microscope (Nikon USA, Melville, NY), and images were 

recorded with a Hamamatsu C7780 CCD (Hamamatsu Corporation, Bridgewater, NJ) and 

Nikon D100 (Nikon USA, Melville, NY) cameras every 24 hours. 

 

Time-Lapse Microscopy 

For selected wounds, time-lapse microscopy was used to follow the wound-

healing progression for up to 48 hours.  During these measurements, a stage incubator 

was used to supply CO2 and steady heat to maintain the temperature at 37° and Image Pro 

Plus 5 (Media Cybernetics) controlled time-lapse image acquisition at one-hour intervals. 

  
 

116



 
 

In separate studies of individual cell migration rates, well plates were seeded with 

cells at low density (< 5,000 cells/cm2).  Three days after trypsinization, individual cells 

were imaged hourly by time-lapse microscopy for 24 hours. 

 

Wounding Organ Culture Corneas 

Fresh tissue samples were obtained from euthanized animals that were used for 

other research at Vanderbilt University in accordance with IUCAC guidelines.  Rabbit, 

goat or pig eyes were enucleated and transported in sterile PBS with 1% antibiotic.  In 

preliminary experiments it was noted that fresh, intact globes were the best candidates for 

precision wounding because they had higher intraocular pressure, which provided a less 

compliant and more stable wounding surface.  Care was taken not to rupture the globe 

during enucleation and corneas were wounded within an hour of enucleation.  Because 

movement during wounding causes varied, imprecise wound areas, globes were 

immobilized in test tube holders during wounding.  The spinning drill was positioned 

with a micromanipulator and lowered using the micromanipulator’s fine adjustment until 

just touching the corneal surface.  In order to create superficial wounds, an additional 50-

micron fine adjustment advancement was used to remove epithelium.  In studies of partial 

thickness stromal wounds, a portion of the underlying corneal stroma was removed by 

advancing the micromanipulator an addition travel of 250 microns. 

In globes with low intraocular pressure greater drill depth was required to insure 

epithelial removal from compliant corneas.  We estimate that an additional drill 

advancement of up to 500 microns was required to make ~250-micron partial thickness 

wounds in some cases.  After wounding, corneas were isolated by cutting the sclera to 
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form a corneal button.  A millimeter rim of the sclera was kept all around the cornea 

button.  This scleral ring is advantageous in organ culture as it slows swelling and helps 

to maintain corneal clarity and integrity.  Before imaging, the corneal surface was washed 

with PBS containing 1% antibiotic to remove cell debris, then sodium fluorescein in PBS 

(25 mg/ml) was applied to visualize wound regions.  After 30 seconds, excess fluorescein 

was washed off with PBS, and the corneas were placed on clear domes for imaging.  

Fluorescein was excited by using a bulb with a maximum emission peak in the near UV 

at 377nm, and fluorescence images were captured with a Nikon D100 camera coupled to 

a Zeiss surgical microscope.  No emission filter was used.  Corneas were washed in PBS 

following imaging and placed into 6 well plates for culture on agar plugs.  Dulbeco’s 

Minimum Essential Medium (DMEM), supplemented with 5% fetal bovine serum (FBS) 

was used to culture the corneas for up to a week.  Fluorescein images of the wound 

region were taken every 24 hours. 

 

Analysis of wound area, depth and healing rate 

All image analysis was done using the Image Pro software package (IPP version 

5.0, Media Cybernetics, Silver Spring, MD).  Images were calibrated using a stage 

micrometer.  Before analysis, each image was contrast enhanced by boosting the contrast 

to 75% and adjusting the overall brightness so that the background pixels had zero 

values.  Using Image Pro’s measurement tools, the automated free hand tool was used to 

identify the wound perimeter for both wounded cell culture monolayers and corneas.  

Image Pro reported the area of these regions in square microns, which were converted 

into corresponding areas in square millimeters.  All initial wound areas and subsequent 
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wound healing areas were entered into Excel (Microsoft Office) spreadsheets for 

statistical analysis.  In order to calculate average wound closure rate for each period, the 

wound diameter at the end of a time interval was subtracted from the initial wound 

diameter. 

To determine the maximum epithelial front migration for wound healing in 

monolayer cultures, individual cells of the leading wound edge were selected for 

tracking.  Migration speed was calculated by measuring cell center-to-center movement 

from one time-lapse point to the next, and the maximum movement was reported. 

Epithelial stromal wound depth was quantified by subtracting the stromal 

thickness at the wound margin from the stromal thickness in the center of the wound after 

tissue fixation and sectioning. 

 

Regression fit of in vitro wound healing area 

In order to estimate the change in wounds area over the duration of healing, data 

points were fit with a linear regression curve whose slope is the wound closure rate. 

 

Equation 1. Linear empirical curve fit of wound healing 

A(t) = Ao – (Closure Rate) x (time) 
 

It has been long established that epithelial wound closure is a process of 

coordinated cell movement, where cells on the wound margin spread and migrate into the 

wound void.  Therefore, our mathematical model was developed to predict in vitro 

wound closure based solely on healing by cell migration from the wound margin.  The 

assumption of the model is that the affect of cell division on wound healing is small in 
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comparison to the contribution from cell migration, and that cell migration will be driven 

by passive diffusion throughout wound healing. 

 

Equation 2: Empircal curve fit assuming uniform cell migration from the wound margin 
2

0 )]([)( tVRtA f−= π  
 

This empirical formula is based on the observation that the circular wounds are 

closing with a constant epithelial front speed, Vf, where R0 initial wound radius, and t is 

the time of elapsed wound healing in days.  Using the wound healing data, the epithelial 

front speed can be solved for, and can be compared between model systems and with 

individual cell migration rates. 

 

Results 

 

Cell culture wounds for longitudinal healing studies 

In three separate trials a ~3.3mm drill bit produced wounds of 8.66 mm2 ± 0.36 

(N = 16), 8.86 mm2 ± 0.18 (N = 16), and 8.85 mm2 ± 0.05 (N = 16) in epithelial 

monolayers grown on Petri dishes coated with collagen.  These wounds took an average 

of 7 days to completely close.  Wound closure rate was fairly constant around 1.2 mm2 

per day.  However, the greatest wound healing was observed in the first 24 hours (1.5 

mm2), with decreasing healing rate just before wound closure (day 6, <0.5 mm2).  

Maximum epithelial front velocity within the first 24 hours exceeded 0.3 mm/day.  

Average epithelial front velocity over the duration of wound healing was 0.2 mm/day. 
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Similar healing rate parameters were found for wounds produced with larger and 

smaller drill bits.  Bits of ~2.5mm in diameter produced wounds of 5.04 mm2 ± 0.6 

(N=16), and 4.99 mm2 ± 0.44 (N=16), and bits with diameters of ~6mm created wounds 

of 31.06 mm2 ± 3.10 (N = 9), 30.28 mm2 ± 1.40 (N = 9) and 28.32 mm2 ± 0.34 (N = 9).  

In the worst cases, standard deviations of wounds areas were around 10% of the average, 

and in the best cases, as low as 0.5%. 

 

Individual corneal epithelial cell migration 

Individual immortalized human corneal epithelial cells are active, locomotive 

cells, which are similar to primary epithelial cells in many respects (Araki-Sasaki, Ohashi 

et al. 1995).  According to the analysis of time-lapse images of cell migration, these cells 

had an average migration rate of 8 microns per hour (0.19 mm/day), and maximal speeds 

of over 25 microns per hour (0.60 mm/day).  These values are consistent with a 

previously published migration rate of 9 microns per hour for this cell line (Zhao, 

McCaig et al. 1997). 

 

Superficial corneal wounds 

Superficial wounds of 23.8 mm2 ± 0.8 (N=4) were produced using 5.5 mm bits on 

pig cornea.  Sodium fluorescein staining, as shown in Figure 31, was used to visualize 

wound areas for measurement.  These wounds healed completely after 5 days, with an 

average epithelial front velocity of 0.6 mm/day. 

Wounds of 6.16 mm2 ± 0.6 (N=16) were produced using the 2.5 mm drill bit on 

fresh rabbit corneas.  These wounds healed completely in 3 days, with an average 
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epithelial front velocity of 0.48 mm/day.  These findings are consistent with a previous 

report by Hardarson et al for organ cultured corneas with wounds of 2-3mm which healed 

in 2-4 days (Hardarson, Hanson et al. 2004).  Similar results were obtained for other 

types of organ culture corneas including goat and dog corneas (data not shown). 

 

Partial thickness stromal wounds 

Precise stromal wounds of 0.27 mm ± 0.05 (N=6) in depth were created in pig 

corneas by lowering the epithelial drill an additional 0.25 mm beyond superficial contact 

with the cornea.  Wound depths were quantified in histological sections by measuring the 

stromal thickness in the central wound region, and the stromal thickness at the wound 

margin (Black bars in Figure 32).  The average stromal thickness at the wound margin 

was 0.78 mm ± 0.08 (N=6). After partial thickness stromal wounding, the average 

stromal thickness in the center of the wound was 0.50 mm ± 0.06 (N=6).  Like the 

superficial wounds of 5.5mm, partial stromal wounds of the same area healed completely 

in 5 days.  There was no statistical difference in the epithelial coverage rate between 

superficial and stromal wounds. 

 

Discussion 

Using the equation to fit wound closure data, we solved for 

epithelial front migration speed Vf for different sized wounds in monolayers and organ 

culture cornea.  The calculated migration speed for monolayer wounds was 0.20 mm/ day 

which is very similar to the average random walk migration speed for individual cells of 

this cell line (0.19 mm/day).  The wound area equation appears to be a good regression fit 

2
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because it exhibits a second order curve shape that is consistent with the wound area data 

where wound area decreases the most rapidly early on during the healing process, and 

slows just before wound closure.  In addition, the predictive value of this model is high, 

when Vf is set to 0.19 mm/day and compared to the data from 3.3mm diameter wounds 

{ (mm2)}, the R2 value is over 0.98, which is better than the 

linear regression R2 of 0.96.  For organ-cultured corneas, the epithelial migration speed 

was 0.48mm/day, approximately two and a half times as fast as monolayer closure. 

2)](192.067.1[)( ttA −= π

Though in vitro and organ culture wound healing rates of corneal epithelium and 

corneal cell lines have been reported previously, this is the first report of using a 

precision drill apparatus for making similar sized wounds in different model systems.  

When we directly compare wound closure rates, we found that organ culture corneas heal 

more quickly than do monolayer cell culture wounds.  Our results of wound closure in 

organ cultured corneas match previously reported rates for wounds created mechanically 

with a drill where 2-3mm in diameter wounds took 2 days to heal (Hardarson, Hanson et 

al. 2004).  However, organ culture cornea wound healing rates are slower than reported in 

vivo healing rates, for example in rabbit eyes where 6 mm diameter wounds healed 

completely in less than 2 days (Watsky 1999).  Though monolayer healing and organ 

culture healing of the same size wounds may not exhibit the same healing rates, we have 

characterized the wounds, making it possible to extrapolate wound healing rate from one 

model system to the next.  From our results we estimate that organ culture healing of 

wounds greater than 2mm in diameter is twice as fast as monolayer healing, and 

according to published rates, healing in vivo is twice as fast as organ culture healing. 
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Our epithelial drill may also enable new experiments into partial thickness 

stromal injuries, which could include stromal remodeling and epithelial/stromal 

interactions.  However, as noted in the methods section, high intraocular pressure of the 

eye is important for partial thickness wounding because pressure insures that the cornea 

does not comply during wounding.  In these experiments we did not measure intraocular 

pressure before or during wounding, however we proceeded based on feel.  When the 

cornea complied we continued drill travel until there was resistance against the drill, 

marking the start of applied wound depth.  Future studies using this technique may opt 

for a way to control intraocular pressure, such as a canulated syringe, so that for each 

cornea the same range of travel of the drill can be used. 

We have demonstrated the reproducibility of using a drill mounted on a 

micromanipulator to create precise wound areas in both corneal wound healing and cell 

culture models.  This method may have future application in creating superficial and 

partial stromal circular wounds in vivo. 
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Figures 

 

 
Figure 26. The epithelial drill apparatus 
consists of an interchangeable drill bit and a 
motor positioned using a micromanipulator. 
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Figure 27.  5.5mm, 3mm and 0.5 mm 
Teflon drill bits. Scale bar 1mm. 
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Figure 28.  Healing progression of a 3mm 
diameter wound over 7 days. Initial 
wound is shown in the top left image, 
followed by day 1, day 2, day 3, day 4, 
day 5, day 6 and day 7 images.  Scale bar 
is 1mm. 
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Figure 29.  Three separate wound healing 
trials for wounds produced with a 3.3mm bit 
(8.8 mm2).  Average wound area is plotted as 
a function of time.  The dashed line is the 
best fit migration model. 
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Figure 30.  A superficial epithelial wound in 
a cultured rabbit cornea was created by 
epithelial drill with a 2mm drill bit (top). 
After 24 hours, an identical superficial 
wound heals partially (bottom). 
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Figure 31.  A superficial epithelial wound in 
a cultured pig cornea was created by 
epithelial drill with a 5.5mm drill bit (left). 
After 48 hours, the cornea heals partially 
(right). The scale bar is 2mm. 
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Figure 32. Partial thickness stromal wounds were created in pig cornea. The left wound 
margin (top); and right wound margin (bottom) show both removal of epithelium and a 
portion of the stroma in the wounded region. The black bars shown, denote 
measurements for stromal thickness. The striations seen are wrinkles introduced by 
fixation and embedding in paraffin. 
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