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PREFACE 

 
In this dissertation, I describe a set of methods for quantifying cellular heterogeneity and characterizing 

cell subpopulations in cancer and the microenvironment. Together, these methods establish a workflow for 

identifying biologically and clinically relevant cell subpopulations, quantifying the extent of cellular heterogeneity 

in biological samples, and quantitatively describing the features that are specifically enriched on cell populations. 

The work described here that has been submitted to or published in peer reviewed scientific journals is inserted 

into the body of the dissertation in the same form in which it was submitted for publication (Chapters 2-4). Many 

talented colleagues and collaborators played a major role in the development and success of this work. My 

collaboration with Dr. Melissa Skala’s lab at Vanderbilt University, in which I worked closely with former graduate 

student Amy Shah, merits special mention here. The results of this collaboration are described in Appendix A. 

Chapter 1 introduces the central goals and hypotheses of this dissertation. The biological and clinical 

significance of cellular heterogeneity in cancer is briefly introduced, followed by a short introduction to flow and 

mass cytometry and single-cell data analysis tools. These tools are further discussed in the context of the 

modular workflow explained in Chapter 2, as the foundation for the cellular heterogeneity measure described in 

Chapter 3, and as a method for analyzing single-cell imaging data (Appendix A). Novel methodological 

approaches for standardizing and automating single-cell data analysis are introduced. These methods are 

developed throughout the following chapters of the thesis and further discussed in Chapter 5. Specific topics 

relevant to each chapter are included in that chapter’s preface.  

Chapter 2, entitled “Methods for discovery and characterization of cell subsets in high dimensional mass 

cytometry data,” describes a novel modular workflow that incorporates multiple computational tools, including 

biaxial gating, t-distributed stochastic neighbor embedding (tSNE), and spanning-tree progression analysis of 

density-normalized events (SPADE) analysis into a workflow that facilitates discovery of both abundant and rare 

cell populations in single-cell data. The phenotypic signatures of the identified cell populations are visualized in 

a clustered heatmap. This workflow is presented and demonstrated through a use case in which AML blast, non-

blast, and normal human bone marrow cell subpopulations were identified and characterized after multi-

dimensional mass cytometry analysis. This work provides a scalable and automated analysis pipeline that can 
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be applied to multi-dimensional, single-cell datasets arising from experimental platforms including mass 

cytometry and multiplexed flow cytometry.  

Chapter 3, entitled “High-Dimensional Analysis of Acute Myeloid Leukemia Reveals Phenotypic Changes 

in Persistent Cells during Induction Therapy,” describes a method for quantifying longitudinal, phenotypic 

heterogeneity of acute myeloid leukemia cell subpopulations over the course of treatment. The 27 antibodies 

measured on AML patient samples by mass cytometry were used for dimensionality reduction analysis (tSNE), 

and the cells were displayed in the resulting two-dimensional phenotypic space. The distances between AML 

and normal cell populations in this reduced-dimensional coordinate space were used as quantitative 

representations of immunophenotype difference. Persistent (i.e. therapy resistant) cells were found to be more 

phenotypically distinct from normal hematopoietic stem cells (HSCs) compared to non-persistent AML or normal 

cell subpopulations. This work provides a conceptual framework that can be expanded and developed into 

additional tools for quantifying cellular heterogeneity from single-cell data in disease and normal biological 

contexts.  

Chapter 4, entitled “Characterizing cell subsets in heterogeneous tissues using marker enrichment 

modeling,” describes a novel method termed Marker Enrichment Modeling (MEM) that automatically creates cell 

population labels that quantify population-specific feature enrichment. The concept and equation behind MEM 

analysis is introduced and demonstrated through several use cases, including analysis of normal human blood, 

bone marrow, and tonsil samples; murine myeloid cells; human glioblastoma samples; and human melanoma 

samples. A measure of population similarity is then proposed that calculates the pairwise difference between 

cell population MEM labels, enabling direct comparison of cell populations from different experiments, 

institutions, and platforms. MEM is therefore presented as a first step towards fully automated machine learning 

cell identity, a concept elaborated upon in Chapter 5. 

Chapter 5 discusses the findings and approaches described in Chapters 2-4 and elaborates on future 

directions of this work, specifically in terms of machine learning cell identity using MEM labels and adapting these 

analysis tools for clinical applications.  

Appendix A describes the application of tSNE analysis for visualizing the results of in vivo autofluorescence 

imaging. NAD(P)H and FAD, two cellular metabolites that are commonly dysregulated in cancer, were imaged 
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by optical metabolic imaging in squamous cell carcinoma tumors were implanted into mice and subsequently 

treated with common chemotherapeutic compounds. The optical metabolic imaging parameters were used in a 

tSNE analysis to visualize the individual cells in multi-parametric space. The analysis revealed that tumors 

treated with cetuximab or cisplatin displayed a greater degree of metabolic heterogeneity than the control group. 

This work therefore demonstrated that single-cell tools such as tSNE can be applied for data analysis in various 

experimental platforms. 
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CHAPTER 1 

 
 

INTRODUCTION 

Biological and clinical significance of cellular heterogeneity in cancer 

Tumors are composed of heterogeneous populations of cancer cells that undergo rounds of clonal 

selection and expansion in the presence of microenvironmental influences (Hanahan and Weinberg 2011). 

Mutations and genomic instability, combined with evolutionary pressure from surrounding stromal and immune 

cells, gives rise to multiple cancer cell populations with distinct phenotypes and functions. Genetic changes to 

oncogenes or tumor suppressor genes, considered “driver” mutations, enhance the cell’s proliferative potential 

and ability to avoid both internal and external death signals. Cancer cells can resist or adapt to chemotherapy 

by acquiring novel driver mutations or losing expression of drug-targeted proteins. Therapies targeted against 

specific mutations in cancers therefore frequently fail to cure the patient because the cells ultimately evade the 

therapy through clonal selection. 

Intratumoral heterogeneity is thus highly relevant to prognostic and therapeutic decisions in cancer. 

Clonal heterogeneity has been found to correlate with prognosis and therapy response in many types of cancer. 

For example, high clonal heterogeneity was found to correlate with increased risk of progression in esophageal 

cancer patients (Maley, Galipeau et al. 2006). The presence of subclonal driver mutations was also predictive of 

rapid progression in chronic lymphocytic leukemia (Landau, Carter et al. 2013). This correlation between high 

degrees of cellular heterogeneity and poor outcome has been noted across cancer types, including but not 

limited to head and neck squamous cell carcinoma (Mroz, Tward et al. 2013), endometrial cancer (Supernat, 

Lapinska-Szumczyk et al. 2014), and acute myeloid leukemia (Baer, Stewart et al. 2001, Patel, Gonen et al. 

2012).  

 The immune system, known to be composed of highly heterogeneous and plastic cell populations, also 

plays a major role in cancer promotion, therapy response, and patient outcomes. For example, a heterogeneous 

subset of myeloid cells termed myeloid derived suppressor cells (MDSCs) is expanded in many types of cancer. 

This immature cell subset secretes factors to promote a malignant microenvironment and alter the immune 
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response to cancer (Berraondo, Minute et al. 2016). Tumor infiltrating lymphocytes (TILs) have also been shown 

to be a highly heterogeneous subset of immune cells (Hadrup, Donia et al. 2013). As a mechanism of immune 

evasion, cancer cells can suppress the anti-cancer activity of TILs, and as a result immunotherapy fail (Smyth, 

Ngiow et al. 2016). Measuring heterogeneity of tumor-associated immune cells is therefore crucial to 

understanding the immune response to cancer and continuing to develop and improve immunotherapy for 

cancer. 

Single-cell versus aggregate analyses of human tissue 

Traditional analyses of cancer average the genetic, phenotypic, and functional features of all the cells in 

a tumor. Previous efforts to quantify tumor heterogeneity have focused on deep sequencing analysis and the 

inference of cell subsets based on varying allele frequencies (Zare, Wang et al. 2014). However, protein levels 

do not always correlate with transcript levels due to post-translational modification and regulatory degradation, 

making it beneficial to measure protein expression level and activation in order to gain a complete understanding 

of cellular phenotype and function (Vogel and Marcotte 2012). Going forward, a quantitative, single-cell approach 

to characterizing intratumoral heterogeneity will aid in the development of novel therapeutic strategies that 

address the high rates of therapy resistance and relapse that is likely caused by the presence of multiple cell 

subpopulations in a given patient’s cancer.  

In recent years, several new platforms have been developed for measuring features at the single-cell 

level. Mass cytometry (CyTOF) allows for more than 30 features to be measured simultaneously at the single-

cell level (Dalerba, Dylla et al. 2007, Prince, Sivanandan et al. 2007) (Figure 1-1A). Phospho-flow cytometry and 

multi-parametric immunophenotyping approaches have been successfully employed in the field of cancer, for 

example, to identify minimal residual disease in AML (Amir el, Davis et al. 2013), to find signaling node activation 

states in AML that predict response (Irish, Hovland et al. 2004), and to identify a negatively prognostic cell subset 

characterized by its altered signaling in follicular lymphoma (Irish, Myklebust et al. 2010) (Figure 1-1B). Other 

experimental platforms are also being developed for single-cell assays. Single-cell RNA sequencing is now being 

used for applications such as measuring cell-level genetic changes in glioblastoma cells (Patel, Tirosh et al. 

2014). Multiplexed imaging mass cytometry can now be used to assess protein changes at the single-cell level 
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in tissues while retaining information about tissue structure and cell localization (Giesen, Wang et al. 2014). As 

these tools become increasingly high-throughput, novel computational data analysis tools will be needed to parse 

the large datasets. 

Single-cell data analysis 

Flow cytometry experiments yield data in the form of flow cytometry standard (FCS) files, in which per-

cell feature expression is recorded in an n cells by m parameters matrix. The standard method for analyzing this 

data is biaxial gating, a method in which the analyst manually groups populations of cells based on their co-

expression of pairs of measured markers. However, the widespread use of multi-dimensional flow cytometry has 

driven the development of computational tools and algorithms to facilitate cell subset discovery in high-

dimensional datasets where pairwise biaxial analysis would be impractical or insufficient for identifying 

phenotypically distinct cell populations. Clustering tools like spanning-tree progression analysis of density-

normalized events (SPADE) are frequently used for analysis of high-dimensional flow cytometry data, for 

instance, to cluster and visualize immune cells along a hematopoietic development trajectory (Bendall, Simonds 

et al. 2011, Qiu, Simonds et al. 2011, Bendall, Davis et al. 2014). Dimensionality reduction tools have also been 

adapted for use with flow cytometry data, such as t-distributed stochastic neighbor embedding (tSNE). The tSNE 

algorithm has been used to identify subsets of immune cells and leukemic cells (Amir el, Davis et al. 2013), 

identify and characterize understudied populations of murine myeloid cells (Becher, Schlitzer et al. 2014), and 

characterize the diversity of tissue-specific T cells (Wong, Ong et al. 2016), among other applications. Both 

SPADE and tSNE are discussed in further detail in Chapter 2. Many other computational tools have been 

developed for use with single cells data, including  variance maximization (Newell, Sigal et al. 2012), mixture 

modeling (Pyne, Hu et al. 2009, Mosmann, Naim et al. 2014, Naim, Datta et al. 2014), spectral clustering (Zare, 

Shooshtari et al. 2010), and density-based automated gating (Qian, Wei et al. 2010) (Figure 1-1C).  

Once identified, populations of cells are typically compared univariately by quantifying differences in 

median expression levels of measured proteins or other cellular features. Statistical methods are sometimes 

applied for comparing flow cytometry distributions, including variations on area under the curve (AUC) analysis 

(Kim, Donnenberg et al. 2016), K-S statistic-based methods (Cox, Reeder et al. 1988), and z-score calculations. 
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However, many of these types of tools make assumptions about distribution shape; for example, z-score 

assumes a normal distribution, and flow cytometry parameters are rarely normally distributed. Distribution 

differences also do not necessarily reflect population-specific enrichment of the measured feature. These 

methods also fail to capture both intra-population and inter-population variance in a single value.  

While useful for population identification and univariate comparisons of distributions, the available 

analysis tools do not provide a quantification of marker enrichment, quantify cellular heterogeneity based on 

phenotypic differences, or provide adequate means by which populations can be registered and identified 

between samples in an unsupervised manner. 

Addressing the need for novel analysis methods 

This work describes novel workflows and tools to quantify cellular heterogeneity and determine population-

specific feature enrichment, while laying the groundwork for further work in machine learning applications to 

automate cell population discovery and characterization. Chapter 2 establishes a workflow for identifying both 

rare and abundant cell populations in multi-dimensional flow cytometry datasets. This modular workflow uses 

biaxial gating for quality control gating, viSNE for dimensionality reduction and major cell population gating, 

followed by SPADE analysis for automated clustering. The results are visualized as a hierarchically clustered 

heatmap to give a comprehensive, qualitative view of population-level phenotypic signatures.  In Chapter 3, a 

method is described for quantifying cellular heterogeneity based on multi-dimensional phenotypic distances 

within the tSNE reduced-dimension coordinate space. Using this method, the phenotypic differences that can be 

visualized and qualitatively interpreted using the workflow described in Chapter 1 can additionally be quantified, 

statistically analyzed, and correlated with clinical parameters. Finally, Chapter 4 describes a method for 

quantifying population-specific feature enrichment in the context of the sample, a set of samples, or compared 

to other specific cell subsets.  These tools and workflows for quantifying cellular heterogeneity are applied in the 

analysis of normal human immune cells, AML, and other types of cancer in Chapters 2-4. Together, the work 

presented here provides novel methods for quantifying cellular heterogeneity in normal human tissue 

development, cancer, and other diseases.  
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Figure 1-1. High dimensional phospho-flow and mass cytometry allows for identification and characterization of 
distinct cell subpopulations. A) Primary human tissue samples can be analyzed by high dimensional flow cytometry to 
measure clinically relevant markers and phosphorylation events. Stars represent different categories of markers that can 
be measured. B) Negative prognostic cell subsets in follicular lymphoma were deficient in signaling through BCR. The 
patient with a better outcome had a smaller proportion of LNP cells (left) compared to the patient with a worse outcome 
(right) (Irish, Myklebust et al. 2010). C) Biaxial gating, viSNE, and SPADE are three tools that can be used to identify 
populations of cells. Surface markers on three cell lines were measured by CyTOF. SPADE and viSNE were used for 
dimensionality reduction and subsequent gating. Raij and Ramos = Burkitt’s lymphoma cell lines, Kasumi = AML cell line. 
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CHAPTER 2 
 
 
 

METHODS FOR DISCOVERY AND CHARACTERIZATION OF CELL SUBSETS IN HIGH DIMENSIONAL 
MASS CYTOMETRY DATA 

 
 
Authors: Kirsten E. Diggins, P. Brent Ferrell, Jr., and Jonathan M. Irish 
 
This work is presented as it appears in manuscript form in Methods 2015 (Diggins, Ferrell et al. 2015). 
http://www.sciencedirect.com/science/article/pii/S1046202315001991 
 
License 3983250409779, issued November 6, 2016. 
 

Preface 

The high dimensional data resulting from single-cell experimental technologies cannot be sufficiently 

interpreted using traditional gating strategies alone. I therefore sought to develop a computational data analysis 

workflow that would retain the benefits of biaxial gating and expert guided analysis while also automatically 

grouping phenotypically distinct cell subsets in high dimensional space. To achieve this goal, I combined manual 

gating, dimensionality reduction with viSNE, cluster analysis using SPADE, and clustered heatmaps in order to 

identify and visualize the phenotypic signatures of cell subpopulations from normal human bone marrow and 

AML patient blood. Workflows like the one presented here are essential to expedite and standardize clinical and 

basic biology studies that aims to identify and track relevant cell subpopulations between conditions, over time, 

and between patients. The work presented here describes the first step in my overall goal of standardizing the 

methods by which populations of cells are identified and then quantitatively labeled. 

Abstract 

The flood of high-dimensional data resulting from mass cytometry experiments that measure more than 40 

features of individual cells has stimulated creation of new single cell computational biology tools.  These tools 

draw on advances in the field of machine learning to capture multi-parametric relationships and reveal cells that 

are easily overlooked in traditional analysis.  Here, we introduce a workflow for high dimensional mass cytometry 

data that emphasizes unsupervised approaches and visualizes data in both single cell and population level 

views.  This workflow includes three central components that are common across mass cytometry analysis 

http://www.sciencedirect.com/science/article/pii/S1046202315001991
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approaches: 1) distinguishing initial populations, 2) revealing cell subsets, and 3) characterizing subset features.  

In the implementation described here, viSNE, SPADE, and heatmaps were used sequentially to comprehensively 

characterize and compare healthy and malignant human tissue samples.  The use of multiple methods helps 

provide a comprehensive view of results, and the largely unsupervised workflow facilitates automation and helps 

researchers avoid missing cell populations with unusual or unexpected phenotypes.  Together, these methods 

develop a framework for future machine learning of cell identity.   

Introduction 

High dimensional single cell biology 

Single cell biology is transforming our understanding of the biological mechanisms driving human diseases and 

healthy tissue development (Irish and Doxie 2014).  Mass cytometry is a recently developed technology that 

enables simultaneous detection of more than 40 features on individual cells (Bandura, Baranov et al. 2009, 

Ornatsky, Bandura et al. 2010).  High dimensional mass cytometry measurements are single cell, quantitative, 

and well-suited to unsupervised computational analysis.  New analysis tools have been created to take 

advantage of the massive amounts of data that result from high content single cell techniques like mass 

cytometry.  Variations of many of these tools have been developed and applied for gene expression analysis, a 

field facing similar problems with data dimensionality. These tools draw on advances in machine learning and 

statistics that are not yet widely applied in biological studies.  Many of these tools are complementary and 

address different aspects of data analysis, and it can be challenging for biologists to know when and how to use 

these tools to get the most out of their data. Advances have also been made in automating and standardizing 

the flow cytometry data analysis workflow (Pyne, Hu et al. 2009, Aghaeepour, Finak et al. 2013, Finak, Frelinger 

et al. 2014).  Here, we present a modular workflow focused on high dimensional single cell analysis that 

combines multiple tools to provide a comprehensive view of both cells and populations.  Rather than making the 

workflow fully automated, the goal here was to combine the complementary benefits of expert analysis and 

machine learning.  This approach maintains single cell views, provides automatic population assignment for each 

cell, and facilitates statistical comparison of the key cellular features that characterized each population.  This 

semi-supervised workflow facilitates comparison of populations discovered by different computational 
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approaches, in different clinical samples, or using different biological features (e.g. RNA expression, cell surface 

protein expression, and cell signaling).   

An advantage of traditional analysis in flow cytometry is the reliance on identification of known, prominent 

populations with strong supporting biology in the literature.  Given the typical panel size for fluorescent 

experiments, this type of supervised analysis is fast and usually adequate. Unfortunately, expert manual gating 

has been shown to be particularly prone to inter-operator variability (Maecker, Rinfret et al. 2005) and a tendency 

to overlook cell populations (Krutzik, Clutter et al. 2005, Amir el, Davis et al. 2013, Irish 2014).  Recent efforts 

have developed new tools for high dimensional cytometry data that bring in elements of machine learning and 

statistical analysis, including clustering (Sugar and Sealfon 2010, Bendall, Simonds et al. 2011, Qiu, Simonds et 

al. 2011, Bruggner, Bodenmiller et al. 2014), dimensionality reduction (Amir el, Davis et al. 2013), variance 

maximization (Newell, Sigal et al. 2012), mixture modeling (Pyne, Hu et al. 2009, Mosmann, Naim et al. 2014, 

Naim, Datta et al. 2014, Chen, Hasan et al. 2015), spectral clustering (Zare, Shooshtari et al. 2010), neural 

networks (Tong, Ball et al. 2015), and density-based automated gating (Qian, Wei et al. 2010).  Here, we highlight 

use of these tools in a sequential single cell bioinformatics workflow (Table 2-1).  In particular, different tools 

address aspects of data visualization, dimensionality reduction, population discovery, and feature comparison.  

It can be valuable to apply multiple tools in order to view data in different ways and fully extract biological meaning 

at the single cell level (Figure 2-1) and the population level (Figure 2- 2 and Figure 2-3).  After identifying cell 

subsets with the aid of computational tools, measured features, such as protein expression in the examples here, 

can be compared between and within the subsets.  Traditional statistics used include medians, variance, and 

fold changes.  Other statistical methods such as histogram statistics and probability binning have also been used 

to compare distributions in flow cytometry data (Bagwell, Hudson et al. 1979, Overton 1988, Roederer, Moore et 

al. 2001). 
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Table 2-1 – A modular machine learning workflow for semi-supervised high-dimensional single cell data analysis 

Analysis step Traditional  Additional methods§ Method here 

Data collection 
1) Panel design Human expert - - 

2) Data collection Human expert - - 

Data processing 

3) Cell event parsing Instrument software 
Bead normalization and 
event parsing (Finck, 
Simonds et al. 2013) 

- 

4) Scale transformation Human expert 
Logicle (Moore and Parks 
2012) 

- 

Distinguishing initial 
populations 

5) Live single cell 
gating Biaxial gating + 

human expert 

No event restriction, 
AutoGate (Meehan, Walther 
et al. 2014) 

viSNE + human expert 
(Figure 1)† 6) Focal population 

gating 

Revealing  
cell subsets 

7) Select features Human expert 
Statistical threshold (Irish, 
Hovland et al. 2004) 

Human expert† 

8) Reduce dimensions 
or transform data 

N/A 

Heat plots (Irish, Myklebust 
et al. 2010), SPADE (Qiu, 
Simonds et al. 2011), t-SNE 
(Geoffrey Hinton 2002), 
viSNE (Amir el, Davis et al. 
2013), ISOMAP 
(Tenenbaum, de Silva et al. 
2000), LLE (Roweis and Saul 
2000), PCA in R/flowCore 
(Hahne, LeMeur et al. 2009) 

SPADE†,  
viSNE 

9) Identify clusters of 
cells 

Human expert 

SPADE, k-medians, 
R/flowCore, flowSOM (Van 
Gassen, Callebaut et al. 
2015), Misty Mountain (Sugar 
and Sealfon 2010), JCM 
(Pyne, Lee et al. 2014), 
ACCSENSE (Shekhar, 
Brodin et al. 2014),  DensVM 
(Becher, Schlitzer et al. 
2014), AutoGate, Citrus 

(Bruggner, Bodenmiller et al. 
2014) 

SPADE (Figure 2)†, viSNE 
+ human expert (Figure 1) 

10) Cluster refinement Human expert Citrus, DensVM, R/flowCore - 

Characterizing cell 
subsets 

11) Feature 
comparison 

Select biaxial single 
cell views 

viSNE, SPADE, Heatmaps 
(Irish, Hovland et al. 2004, 
Kotecha, Krutzik et al. 2010), 
Histogram overlays (Irish, 
Hovland et al. 2004, Kotecha, 
Krutzik et al. 2010), Violin or 
box and whiskers plots 
(Hahne, LeMeur et al. 2009),  
Wanderlust (Bendall, Davis 
et al. 2014), Gemstone  

Heatmaps (Figure 3A)†, 
viSNE (Figure 1C), SPADE 
(Figure 2C) 

12) Model populations N/A 
Median (Irish, Hovland et al. 
2004), JCM, PCA 

- 

13) Learn cell identity Human expert - 
Human expert† 
(Figure 1B, Figure 2B, and 
Figure 3B) 

14) Statistical testing Prism, Excel R/flowCore - 

§Methods with broad application (e.g. R/flowCore) are listed minimally at select steps based on particular strengths or 
published applications. 
†Denotes the primary approach used at each step in the sequential analysis workflow shown here.   
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Overview of the analysis workflow 

The workflow presented here was applied to a CyTOF dataset from the analysis of healthy human bone marrow 

and a diagnostic sample of blood from a patient with acute myeloid leukemia (AML).  The annotated FCS files 

and a step-by-step guide are available online from Cytobank (www.cytobank.org/irishlab) (Kotecha, Krutzik et 

al. 2010) and FlowRepository (http://flowrepository.org/experiments/640) (Spidlen, Breuer et al. 2012). This 

workflow was developed for use with high-dimensional mass cytometry data. However, it can also be applied to 

fluorescent flow cytometry data.  The main steps presented consist of event restriction, population discovery, 

and population characterization.  Each of these aspects of data analysis can be achieved with a variety of 

techniques (Table 2-1), and some tools address multiple steps.  By sequentially combining three different 

techniques, this workflow draws on the strengths of specific tools, keeps biologists in touch with single cell views, 

and enables analysis of data from different studies and single cell platforms.   

In the case of the example dataset here, the overall biological goal was to identify and compare three 

populations of cells: leukemia cells (AML blasts) and non-malignant cells (non-blasts) in the blood of a leukemia 

patient, and bone marrow cells from a healthy donor.  In the analysis workflow, cell events were first manually 

gated based on event length and DNA content to include intact, single cells (Figure 2-1) (Bendall, Simonds et al. 

2011).  Next, visualization of stochastic neighbor embedding (viSNE) was used to identify and gate major subsets 

(Figure 2-1).  Gated cells from healthy bone marrow and AML were then analyzed by spanning-tree progression 

analysis of density-normalized events (SPADE) to discover and compare cell subsets (Figure 2-2).  Finally, the 

cell subsets identified by SPADE were further characterized using complete linkage hierarchical clustering and 

a heatmap in R (Figure 2-3).  The details of mass cytometry data collection and processing prior to initial cell 

selection (gating) are not covered in detail here.  These early steps include experiment design, collection of data 

at the instrument (and instrument setup), any normalization, and transformation of the data to an appropriate 

scale (Table 2-1).   

 

http://www.cytobank.org/irishlab
http://flowrepository.org/experiments/640
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Fig. 2-1. Distinguishing initial populations with viSNE analysis of per-cell protein expression and expert gating. 
Plots show the use of viSNE to obtain a comprehensive single cell view and to initially distinguish cancerous and non-
malignant cells in the blood of an AML patient.  A) Expert analysis of mass cytometry data identified intact single cells 
using event length and intercalator uptake.  Subsequent viSNE analysis arranged cells along unitless t-SNE axes 
according to per-cell expression of 27 proteins. Expression of CD45 protein is shown for each cell on a heat scale.  viSNE 
automatically arranged leukemia cells in one area of the map and facilitated selection of AML blast and non-blast cells by 
expert gating. Populations identified by viSNE and expert gating were subsequently analyzed by SPADE (Fig. 2-2). B) 
Human interpretation of population identities based on viSNE analysis is shown.  C) Plots show expression of the 27 
proteins, nucleic acid intercalator (NA), and density measured per cell. 
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Figure 2-2. Revealing cell subsets with SPADE analysis of population hierarchy, cell abundance, and median 
protein expression. Plots show the use of SPADE to reveal clusters of cell subsets in cell populations identified by 
expert analysis and viSNE (Fig. 1).  A) SPADE analysis identified distinct population clusters in each sample.  Cell 
abundance is represented by size and color of each circle representing a population of cells.  Phenotypically distinct cell 
subsets fell into different regions of the SPADE tree.  B) Human interpretation of population identities based on SPADE 
analysis is shown.  C) Plots show expression of the 27 proteins, nucleic acid interalator (NA), and density measured per 
cell.  

 

The initial event restriction step that begins the workflow focuses the analysis on populations of cells.  The goal 

at this step is to remove events that do not contribute useful information while making minimal changes to the 

data and not over-focusing.  Event restriction is traditionally performed using biaxial gating (Table 2-1), but given 
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the high dimensionality of mass cytometry data, use of viSNE (Figure 2-1) can simplify the process of 

distinguishing initial populations and avoid overlooking cells with unusual or unanticipated phenotypes.  The 

second step, cell subset identification, is also traditionally performed by expert gating (Table 2-1).  However, 

clustering tools such as SPADE (Qiu, Simonds et al. 2011) (Figure 2-2), Misty Mountain (Sugar and Sealfon 

2010), and Citrus (Bruggner, Bodenmiller et al. 2014), among others, can be used to automatically assign cells 

to groups or clusters in high dimensional data.  In the workflow here, the goal is to find all the phenotypic clusters 

of cells in healthy bone marrow, AML blasts, and non-blast cells from AML blood (Figure 2-2).  As the final step, 

characterization of discovered cell subsets takes place downstream of manual gating or automated discovery 

tool implementation, and generally consists of feature expression comparison with heatmaps, violin plots, and 

histogram overlays for visualization, as well as data modeling and other statistical analysis.  This workflow 

emphasizes integration of automated, unsupervised approaches with minimal human gating and processing.  

This type of semi-supervised cell population discovery and characterization can decrease human bias and 

variability and identify phenotypically unusual or rare cell subpopulations.  

Advantages of machine learning tools: dimensionality reduction, clustering, and modeling 

Not all tools perform the same analysis functions.  Three functions that are useful for high-content single cell 

analysis include dimensionality reduction, clustering of cells into populations, and modeling. SPADE and viSNE 

both include dimensionality reduction steps that project multi-dimensional data into a lower dimensional space 

for visualization and further interpretation.  These algorithms aim to preserve key high-dimensional phenotypic 

relationships between cells when visualizing and comparing them in 2D space.  Depending on the structure of 

the data, other dimensionality reduction tools might be used (Table 2-1).  Locally linear embedding (LLE) and 

isometric mapping (ISOMAP) are designed for the types of continuous phenotypic distributions seen in 

developmental progressions.  ISOMAP accounts for geodesic distance in addition to local linear distances 

between high dimensional data points in order to reduce the dimensions of continuous and non-linear data 

(Tenenbaum, de Silva et al. 2000, Becher, Schlitzer et al. 2014).  A similar principle is applied with LLE, where 

locally linear embedding of similar data points in high dimensional space is preserved while allowing for a non-

linear global embedding of the data during projection into low dimensional space (Roweis and Saul 2000). In 

contrast, multidimensional scaling (MDS) and principal component analysis (PCA) preserve linear, multi-
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dimensional variance.  One of the advantages of PCA and other techniques, such as joint clustering and 

modeling (Pyne, Lee et al. 2014), is the creation of a model that can be applied to newly analyzed samples.   In 

addition to the unsupervised tools discussed here, population analysis techniques that include some supervision 

can be particularly useful for mapping features across known developmental progressions (Inokuma, Maino et 

al. 2013, Bendall, Davis et al. 2014).   

Notably, dimensionality reduction alone does not assign cells to groups.  Here, dimensionality reduction with 

viSNE is used to aid expert interpretation of cluster identity.  In this example, cells are projected onto a biaxial 

plot space by viSNE and then gated.  Thus, viSNE is being used to see the phenotypic relationships of the cells 

according to all 27 protein features.  This can help researchers visualize high dimensional data without losing 

rare populations that are best observed in single cell views.  Following t-SNE or viSNE analysis, a human expert 

can look for cell clusters or major populations, as is the case here (Figure 2-1), or a computational tool can 

identify cell clusters (Table 2-1), as with t-SNE + DensVM analysis (Becher, Schlitzer et al. 2014).  As the 

workflow becomes increasingly unsupervised, it is especially important to include a single cell view early in the 

analysis so that expert can perform quality checks and get a sense of the overall biological results. 

Data collection, processing, and initial population identification 

Data collection  

In mass cytometry, as with fluorescent flow cytometry, single cell suspensions are stained with metal-conjugated 

antibodies specific to molecules of interest.  At the mass cytometer, cells are aerosolized and streamed single-

file into argon plasma where they are atomized and ionized. The resulting ion cloud passes through a quadrupole 

to exclude low mass ions and enrich for reporter ions whose abundance is proportional to cellular features.  

These reporter ions are quantified by time of flight mass spectrometry (Ornatsky, Baranov et al. 2006) and 

recorded in an IMD format file.  These data are typically parsed into single cell events and converted to a flow 

cytometry standard (FCS) file for analysis (Spidlen, Moore et al. 2010).  Many software programs can handle 

FCS files, including Cytobank (www.cytobank.org), FlowJo (www.FlowJo.com), R/Bioconductor, MATLAB, 

Cytoscape, and GenePattern (http://genepattern.broadinstitute.org/) (Spidlen, Barsky et al. 2013).  Text files 

containing the expression matrix (where rows are cells and features are columns, and there is a median intensity 

http://www.cytobank.org/
http://genepattern.broadinstitute.org/
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value for each cell) can also be extracted directly from the IMD file from the cytometer or from the FCS file for 

manual analysis outside of flow cytometry analysis software.  In Cytobank, export of text files with intensity values 

is available from the FCS file details page.  An expression matrix can also be extracted from the FCS file in R 

and MATLAB using FCS file parsing functions.  In R, the package “flowCore” can be used to extract the intensity 

values from the FCS file using the exprs() function (Ellis B).  In MATLAB, the tool “FCS data reader” includes the 

function fca_readfcs() to extract the intensity values of FCS files (Balkay).  

Here, the healthy human bone marrow sample analyzed was obtained as a de-identified sample left over from 

diagnostic analysis of non-cancerous tissue in the Vanderbilt Immunopathology core.  Acute myeloid leukemia 

peripheral blood samples were collected from consented patients.  In all cases, samples are collected in 

accordance with the Declaration of Helsinki following protocols approved by Vanderbilt University Medical Center 

(VUMC) Institutional Review Board.  The patient blood sample evaluated here was collected at the time of 

diagnosis following initial evaluation and prior to any treatment. 

Data processing and scale transformation 

In order to prepare data for dimensionality reduction and analysis, initial processing steps aim to ensure the 

quality of cell events and perform appropriate scale transformations. Quality control varies by user and is 

especially important when conducting studies across time or using data from different instruments.  Data 

normalization using internal bead controls can be applied as part of this data processing (Finck, Simonds et al. 

2013).  In this case, the two samples were collected sequentially on the same instrument and no signal 

normalization was required.  Efforts are underway to facilitate comparison of data among groups and centers 

and to report elements of panel design, instrument settings, data processing, and normalization. MIFlowCyt is a 

data standard set by International Society for Advancement of Cytometry (ISAC) that specifies the minimum 

amount of information that must be included in an FCS file to ensure reproducibility and transparency (Lee, 

Spidlen et al. 2008). ISAC has also established a file format for classification results from flow cytometry data 

(CLR) (Spidlen, Bray et al. 2015) that handles cell classification from manual or automated identification and 

compliments the Gating-ML file format that was developed for sharing biaxial gate classifications (Spidlen, Leif 

et al. 2008). Additionally, there have been efforts to standardize and compare computational flow cytometry data 

analysis tools. The FlowCAP project compares automated tools for cytometry data analysis using standardized 
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datasets (Aghaeepour, Finak et al. 2013).  EuroFlow is a consortium of research groups that optimize flow 

cytometry protocols and analysis methods and set standards for the field of immunology and hematological 

studies (Kalina, Flores-Montero et al. 2012).  Reporting of optimized antibody panels has also been standardized 

in the form of Optimized Multicolor Immunofluorescence Panels (OMIPs) (Mahnke, Chattopadhyay et al. 2010). 

Cytobank (www.cytobank.org) and FlowRepository (www.flowrepository.org) provide online access to annotated 

cytometry data files, including mass cytometry datasets (Kotecha, Krutzik et al. 2010, Spidlen, Breuer et al. 

2012).   

Because cytometry data are log-normal, a log or log-like scale is typically used to visualize and interpret the 

data.  Commonly used scales include inverse hyperbolic sine (arcsinh), logarithmic, and logicle (also referred to 

as “bi-exponential”) scales (Herzenberg, Tung et al. 2006). Logicle or log-like scales more accurately represent 

the spread of data around 0 than logarithmic scales, given that modern cytometers can produce negative and 

zero values that cannot be transformed using logarithmic scales. The implementation of the arcsinh scale here 

was first used for fluorescent flow cytometry (Irish, Myklebust et al. 2010) and is now standard for mass 

cytometry.  Typically, a cofactor is included as part of the arcsinh scale transformation as a way of setting a 

channel specific minimum significance threshold.  The cofactor is set to an intensity value below which 

differences are not significant.  For mass cytometry, cofactors typically range from 3 to 15 and depend on 

background and signal to noise with the detection channel and antibody-metal conjugate.  In fluorescent flow 

cytometry, cofactors generally range from 25 to 2000 and are especially useful in correcting for channel specific 

differences in spreading of negative events that depend on fluorophore selection, compensation, and instrument 

setup. For fluorescent flow cytometry data, appropriate compensation must also be applied prior to analysis in 

order to correct for any spillover between channels. Algorithms have been developed for fluorescent cytometry 

to automatically determine scale transformations (Parks, Roederer et al. 2004, Moore and Parks 2012).  Applying 

an appropriate scale transformation prior to computational analysis is critical because it impacts quantification of 

distance between cells in the same way that it affects visualization of distance in biaxial plots.   

Initial population identification and quality assessment 

Beginning data analysis with a single cell view reveals the quality of the data and allows experts to spot rare cell 

subsets or artifacts that can be obscured in aggregate analysis.  It is valuable to review the single cell data to 

http://www.cytobank.org/
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verify computational analysis results, and it is vital in publications to provide representative single cell views of 

findings.  Here, intact single cells were gated by human analysis of event length and iridium intercalator uptake 

(Figure 2-1).  This initial gating might be accomplished various ways, such as use of cisplatin exclusion to identify 

live cells (Fienberg, Simonds et al. 2012).  Event length is generally higher for the mass cytometry equivalent of 

‘cell doublets’ that can occur when the signal from two cells is not well separated in time.  Intercalator uptake 

helps mark all cells and is proportional to nucleic acid content (Ornatsky, Baranov et al. 2006, Bendall, Simonds 

et al. 2011).  A biaxial view of each channel was then used to evaluate data quality prior to computational 

analysis.  If no intercalator positive events are seen in this view, it suggests that there were no cells in the sample 

or there was an error in DNA intercalator staining.  Once intact, single cells have been identified (Figure 2-1A), 

a quick check using traditional biaxial plots or histograms can be used to ensure there is no clear overstaining.  

Severe overstaining results in errors while collecting data on the cytometer because event length is too great 

and individual cell events cannot be distinguished.  Additionally, checks could be included at this step for 

contaminant signals.  Atomic mass contaminants, such as barium and lead, can be found in water, buffers or 

glassware.  Collecting data for the corresponding channels (137 and 138 for Ba, 208 and 209 for Pb) can be 

used to track these contaminants.  In summary, intact single cells are first gated by a human expert.  This step 

may be automated, but it represents an opportunity for quality assessment and initial familiarization with the data 

prior to computational analysis. 

Unsupervised machine learning tools 

viSNE 

viSNE is a cytometry analysis tool that employs t-stochastic neighbor embedding (t-SNE) in mapping individual 

cells in a two or three-dimensional map that is based on their high dimensional relationships (van der Maaten 

and Hinton 2008, Amir el, Davis et al. 2013).  viSNE can be used to provide a human readable two-dimensional 

(2D) view of cells that are arranged in a way that approximates high-dimensional phenotypic similarity.  viSNE 

is implemented in MATLAB and Cytobank (Kotecha, Krutzik et al. 2010), and the Cytobank implementation of 

viSNE is shown here (Figure 2-1).  viSNE can be run using a single population of cells or multiple populations 

drawn from one or more files.  However, cell features selected for analysis must have been measured on all cell 
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populations in a comparable way and features must be measured on comparable scales.  It is sometimes helpful 

to subsample cell events from populations to speed the analysis or test robustness.  Sampling can be ‘equal’ 

with respect to the starting populations, in order to ensure that each cell population is represented on the viSNE 

map by the same number of cells, or ‘proportional’, so that each population is represented by a number of cells 

proportional to its abundance.  When data are thought to contain rare cell subsets, subsampling should be 

avoided to preserve rare cells.  Initial gating can be used to focus the analysis on a population of interest and 

increase its relative abundance. Here, equal numbers of cells were selected from the AML PBMC and healthy 

marrow files for the viSNE analysis. 

The cell features selected for viSNE mapping affect the structure of the viSNE map.  Markers that vary highly 

between cell subsets will polarize subsets, placing them farther apart in tightly grouped islands.  Markers with 

low variance on subsets will cause those cells to be placed closer together on the map.  Thus, including markers 

that are not expressed on any cells can result in compression of islands on the map and loss of subset 

polarization.  Features that might contribute to clustering can be selected in an unsupervised manner based on 

variance.  For example, features that vary more in disease than in healthy controls might be particularly useful 

in stratifying cells associated with distinct molecular subgroups (Irish, Hovland et al. 2004).  Here, all 27 markers 

in the panel were included in viSNE mapping because all were expressed and variable on the cells in the 

samples. The displayed viSNE map shows cells from the AML patient file only (Figure 2-1).  The resulting viSNE 

map showed a broad distribution of heterogeneous CD45lo AML cells and several distinct islands of non-blast 

cells (Figure 2-1B). Relative protein expression as heat intensity can be viewed for each marker in the panel and 

are shown here for the 27 markers on the panel (Figure 2-1C).  The two main populations of AML blast and non-

blast cells were then manually gated from the viSNE map and exported as separate FCS files for further 

comparison to healthy bone marrow cells using SPADE and heatmaps. All healthy marrow cells were exported 

from the viSNE analysis as no additional gating was required to identify major populations. Depending on the 

sample and biological question, it may be useful to gate initial major populations from several or all files in this 

step of the analysis. 

The MATLAB implementation of viSNE can be accessed through the freely downloadable cyt tool 

(http://www.c2b2.columbia.edu/danapeerlab/html/cyt.html). Cyt employs a user interface that allows for selection 

http://www.c2b2.columbia.edu/danapeerlab/html/cyt.html
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of features for mapping, selection of files or gates to be mapped, an interface for visualizing parameter intensity 

on a heat scale, and a tool within the interface for manually gating populations resulting viSNE map. 

SPADE 

SPADE is an algorithm that includes dimensionality reduction, clustering of cells into populations (also referred 

to as ‘nodes’), and visualization using a 2D minimum spanning tree.  Data must be appropriately scaled and 

intact cell events gated prior to SPADE analysis as described above.  Here, this is done prior to viSNE gating.  

SPADE has been implemented in Cytobank, R, Cytoscape (http://www.cytoscape.org/), and MATLAB. In R, the 

package “spade” includes functions to implement individual steps of SPADE and to execute a comprehensive 

SPADE analysis (Linderman M). CytoSPADE is a plugin available for use in Cytoscape that provides a user 

interface with the R implementation (http://www.cytospade.org ). The  MATLAB implementation of SPADE 

requires the SPADE V2.0 MATLAB tool that is freely downloadable 

(http://pengqiu.gatech.edu/software/SPADE/index.html). Here, the Cytobank implementation of SPADE was 

used to compare populations identified in viSNE guided gating.  User-defined parameters for SPADE analysis 

include downsampling, feature selection, and a target number of nodes.  Target downsampling, which can be 

indicated as either a percentage of cells or an absolute number, specifies how much weight to give clusters of 

varying density. A lower downsampling percentage increases the likelihood that sparse regions of density will 

be given their own clusters rather than being grouped into clusters with regions of higher density.  When a sample 

is thought to contain rare subsets of cells, entering a lower downsampling value can help distinguish these cells 

as a separate population (Bendall, Simonds et al. 2011, Qiu, Simonds et al. 2011).  Feature selection in SPADE 

can also be based on selecting highly variable or biologically relevant markers, as described above for viSNE. 

The number of nodes indicates the target number of clusters (i.e. cell subsets) that the algorithm should produce, 

and 200 nodes is a good default for standard mass cytometry datasets containing ~105 to 107 total intact single 

cells.  Including more nodes in the analysis helps to assign rare subsets to their own clusters.  These clusters 

can be easily combined in a process called “bubbling”, in which a human expert manually refines the cluster 

identity.  A table of basic statistics, such as median intensity of each feature, is generated for each population of 

cells identified by SPADE and can be downloaded as a text file.  Cell subsets identified by SPADE can 

http://www.cytoscape.org/
http://www.cytospade.org/
http://pengqiu.gatech.edu/software/SPADE/index.html


30 
 

additionally be exported as individual FCS files for further analysis, as in the heatmap analysis shown here 

(Figure 2-3). 

In the example here, three populations were analyzed.  The two populations of AML blast and non-blast cells 

identified by viSNE (Figure 2-1) were compared with the population of healthy bone marrow cells stained with 

the same mass cytometry antibody panel.  Here, a concatenated file containing all three populations was also 

included to allow visualization of all cells simultaneously on one tree (Figure 2-2C). SPADE can initialize with a 

fixed or random seed and is random in the Cytobank implementation. The same random seed can be set from 

run to run in the MATLAB implementation. However, when new files are added to the analysis, a different tree 

can still stem from the same seed, which necessitates re-running the analysis to include any additional files. For 

this analysis, the downsampling percentage was set to 1%, the target number of nodes was 100, and the features 

used for clustering were all 27 measured markers in the panel.  The resulting SPADE trees are shown in Figure 

2-2.  

Including SPADE in this analysis workflow has several advantages. First, SPADE produces a visualization of 

population abundances by altering the sizes of each node depending on how many cells it encompasses. For 

example, it can be seen in the SPADE tree that the non-blast AML cells fall almost exclusively into one node, 

reflecting their relative homogeneity and the lack of normal immune cell populations in the AML patient’s blood 

(Figure 2-2). Clustering with SPADE also assigns each cell to a discrete group, which minimizes analysis 

variability and prevents loss of cells that are outside of gated regions in manual biaxial gating. In a standard 

SPADE analysis, the algorithm is asked to “over cluster”, producing hundreds of relatively small clusters rather 

than grouping cells into fewer, larger groups. This over clustering gives high resolution to improve rare subset 

identification and allows for a thorough annotation and characterization of all potentially discrete biological 

populations in the heatmap analysis. 
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Figure 2-3. Characterizing cell subsets with a heatmap analysis of median protein expression and hierarchical 
clustering of proteins and populations. 

A heatmap shows characterization of cell populations identified by SPADE (columns) according to median expression of 
27 proteins (rows).  For each sample analyzed in Fig. 2, cell populations identified by SPADE that contained at least 1% 
of total cells were included.  Cell populations and proteins were arranged according to complete linkage hierarchical 
clustering.  Heat intensity reflects the median expression of each protein for each cell population.  B) Each population 
contained cells from only the indicated source (healthy marrow, non-malignant cells in AML patient blood, and AML 
blasts).  Human interpretation of population identities based on clustered heatmap analysis is shown. 

Characterizing and visualizing populations 

Population heatmaps 

With some algorithms it is not straightforward to compare the results of an analysis of one set of samples with 

the results from another set of samples.  For example, with SPADE it is not straightforward to map a new sample 

onto an existing minimum spanning tree defined using different samples.  Instead, a new SPADE analysis is 

generally run that includes both the new and old samples.  In contrast, a heatmap can be used to compare 

populations identified in different analysis runs of SPADE or populations identified by different clustering 

techniques.  Heatmaps also provide a compact view that facilitates comparing many populations according to a 

large variety of measured features.  In heatmaps, different types of biological and clinical information can also 

be used to group populations or assessed for association with resulting groups (Irish, Hovland et al. 2004, Irish, 

Myklebust et al. 2010).  While population heatmaps provide an intuitive, high-level view of the results, they can 

obscure variation within subsets (Kotecha, Krutzik et al. 2010).  To address this, statistics other than median 
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expression can be shown in the heatmap, such as variance or the 95th percentile of expression (Kotecha, Flores 

et al. 2008, Irish and Doxie 2014).  

For the last step in the workflow here, tables of statistics for the hundreds of cell subsets identified in the three 

starting populations (Figure 2-2) were exported from SPADE as text files listing median expression of each 

feature for each cell subset.  Cell subsets were excluded from further analysis if they contained less than 1% of 

the cells in the starting population. This arbitrary threshold was set in order to exclude sparse clusters where low 

cell number could potentially increase the error of reported medians. Here, the 1% threshold resulted in exclusion 

of approximately 5% of the total cell events from heatmap characterization.  The table of statistics was then 

imported into R using the “read.table” function from the R.utils package (Bengtsson 2015) and visualized as a 

hierarchically clustered heatmap using the “heatmap.2” function in the gplots package (Figure 2-3A) (Gregory R. 

Warnes 2015). Output of a hierarchical dendrogram as part of the heatmap can be specified as one of the input 

parameters of the heatmap.2 function. The R package “stats” also offers a function called “heatmap” that 

performs the same function as heatmap.2 with slight differences in visualization options. After the clustered 

heatmap was generated, expert analysis was used to assign biological classifications to each group of 

populations in the hierarchical clustering, and included the same populations seen in viSNE (Figure 2-1B) and 

SPADE (Figure 2-2B): dendritic cells (DCs), monocytes, natural killer cells (NKs), CD8+ T cells, CD4+ T cells, B 

cells, immature myeloid cells (Imm. myel.), four subsets of AML blast cells (AML1 through AML4), and erythroid 

blast cells (Ery. bl.) (Figure 2-3B).  

Use of a clustered heatmap in the workflow allows for simultaneous visualization of several markers for the same 

clusters (population of cells) from multiple files.  Furthermore, nodes are hierarchically clustered, and this 

clustering can be pruned at various levels by the user to further group the nodes into biological populations. It is 

also important to note that the distance between nodes has quantitative meaning in the clustered heatmap 

dendrogram, as opposed to the distances on the SPADE tree that are for visualization purposes and not 

quantitative. Heatmap analysis therefore compliments the SPADE visualization by facilitating simultaneous 

visualization of nodes from multiple files and by quantifying phenotypic distances between the nodes. 
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Other packages and flowCore 

There are many R packages designed for statistical and visual analysis of flow cytometry data, including flowCore 

(Ellis B), flowViz (Ellis B), flowStats (Lo K 2009), and flowClust (Lo K 2009), among others. These packages 

include functions for producing heat maps, histograms, bar plots, biaxial density plots, and are part of efforts to 

automate and standardize computational analysis of cytometry data (Pyne, Hu et al. 2009, Aghaeepour, Finak 

et al. 2013).  Apart from the R packages designed for flow cytometry data analysis, other analysis and 

visualization packages can be applied to single cell data.  For example, box and whisker plots or violin plots can 

be produced to show median, range, and the distribution of the feature in each subset.   

Other Considerations for automated flow cytometry data analysis 

Algorithm Selection 

Three major considerations when choosing tools or algorithms for flow cytometry data analysis include 1) linear 

vs. non-linear measurement, 2) supervised or unsupervised approaches, and 3) need for modeling. The first 

consideration is whether a linear or non-linear method of dimensionality reduction is best for the data.  Phenotypic 

relationships between cells may follow a ‘creode’, or necessary path, that is non-linear with respect to protein 

expression (i.e. co-expression or co-variance of molecules is not linearly correlated with important progressions 

in cellular identity or trajectories in data space) (Irish 2014).  In this case, nonlinear dimensionality reduction tools 

may better preserve the high dimensional phenotypic relationships between cells compared to tools that assume 

a linear relationship between variables. The second consideration is whether an unsupervised or supervised 

method is needed.  In an exploratory analysis where novel populations are anticipated, unsupervised approaches 

will minimizes the risk of overlooking the populations. Lastly, a consideration is whether or not the goal of analysis 

is to build a model.  Mixture modeling tools can be implemented for analysis of flow cytometry data that will 

produce a model as output for downstream analysis. Additional issues to consider include 1) selection of 

features, which is generally initiated by hypotheses and pragmatic concerns and then narrowed to include those 

features with biologically meaningful variation (Irish, Hovland et al. 2004), and 2) aspects of statistical power, 

including sample size, cluster density, and false discovery rate (FDR).  It is vital to calculate FDR or a related 

statistic, such as the f-measure, in cases where a truth is known (Aghaeepour, Finak et al. 2013).   
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Scalability of Workflow 

Biomedical studies that employ flow and mass cytometry often accrue large numbers of samples over long 

periods of time. This and similar workflows can be adapted to accommodate data from these large studies. In 

order to account for experimental or instrument variability, normalization is necessary in these cases in order for 

compare samples run at different times or from different instruments. Bead normalization has been optimized for 

use with mass cytometry to control for machine variability between runs (Abdelrahman, Dai et al. 2009, 

Abdelrahman, Ornatsky et al. 2010, Finck, Simonds et al. 2013). Polystyrene beads embedded with heavy metal 

isotopes are run with every sample as a standard that can be used to correct MI values for each event based on 

technical variability. When samples accrue over a long period of time, a key consideration is that new results 

may not be easily mapped back to the original viSNE map or SPADE tree without re-analysis.  This is one 

advantage of heatmaps, which compare samples according to a simple ‘model’ of the data, such as median 

expression of selected features.   

This workflow as presented includes manual intervention that could be prohibitive when analyzing many data 

files simultaneously. While all steps of this analysis could generally be batched and automated, human review 

of single cell data is advantageous at workflow breakpoints to verify computational results and spot artifacts.  

Cytobank and other flow cytometry data analysis software allow for rapid, simultaneous viewing and pre-

processing of multiple files, including scale transformation and gating.  viSNE analysis can currently be run on 

up to 800,000 cells in Cytobank, and this limit is pragmatic, not theoretical.  Many files can be run simultaneously 

by subsampling cells equally or proportionally from each file prior to the viSNE run. SPADE can also be run on 

many files simultaneously, and data files with cluster information can be quickly downloaded in a compressed 

folder. 

Import of text files into R and selection of nodes based on the number of cells they contain can be automated 

and batched for highly scalable and rapid heatmap analysis. However, a potential limitation of large-scale 

analyses is the visualization of all nodes simultaneously on the heatmap. It may be useful in these cases to 

segment the SPADE tree into major populations by “bubbling” and then building separate heatmaps from each 

bubble rather than for the whole tree. Depending on the expected prevalence of rare cells in the dataset, the 
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user can request fewer nodes in the SPADE run in order to decrease the final number of clusters to be analyzed 

and visualized on the heatmap. 

Conclusions 

Data analysis in cytometry remains largely manual, supervised, and focused on large changes in magnitude of 

expression.  As new tools are developed to assist in gating, reduce dimensionality, and automate analysis, it is 

important to show biologists the value of these tools and to integrate them into workflows that can become 

routine.  The workflow presented here blends supervised and unsupervised analysis tools so that biologists can 

visualize results at the single cell level while still getting an accurate view of the big picture. Combining tools also 

allows the analyst to visualize data in multiple ways, which can be useful to extract the most meaning from a 

data set.   Existing tools allow for identification of populations based on single cell expression profiles and 

characterization of these subsets using standard statistics, including expression magnitude, marker variance, 

and subset abundance.  Going forward, tools that quantify cellular heterogeneity, identify critical population 

features, and assign biological identity to machine-identified subsets will be particularly useful in filling out the 

toolkit.   
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Preface 

Increased heterogeneity within tumors has been found to correlate with poor therapy response and poor 

outcome across a variety of cancers. However, these studies primarily focused on genomic alterations in 

aggregate tumor samples, and genetic mutations or other alterations do not always linearly correlate with altered 

protein expression levels. It would therefore be useful to develop metrics of cellular heterogeneity based on 

single-cell proteomic data, such as that generated from flow cytometry analysis.  In order to address this need, 

I worked closely with Dr. Brent Ferrell, then a medical fellow in Jonathan Irish’s lab at Vanderbilt University, on 

a project tracking phenotypic heterogeneity in acute myeloid leukemia (AML) blast cells over the course of 

induction therapy in multiple AML patients. Dr. Ferrell aimed to determine whether changes in phenotypic 

heterogeneity correlated with patient therapy response, and I chose to collaborate with him on this project 

because it provided an ideal use case for the development and application of a single-cell level metric of sample 

heterogeneity. Together, we developed the conceptual framework for quantifying cellular heterogeneity based 

on distances between cell populations in reduced-dimensional phenotypic space. I developed a workflow for this 

analysis using viSNE in Cytobank (www.cytobank.org) as the first step and, for the second step, an R script that 

calculated the Euclidean distances between pre-defined population centers on viSNE maps. Dr. Ferrell and I 

applied this workflow and R script to the data presented here, and we ultimately found that an increased 

phenotypic distance between blast cells and normal hematopoietic stem cells correlated with poor patient 

outcome.  

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0153207
http://www.cytobank.org/
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Abstract  

The plasticity of AML drives poor clinical outcomes and confounds its longitudinal detection.  However, the 

immediate impact of treatment on the leukemic and non-leukemic cells of the bone marrow and blood remains 

relatively understudied.  Here, we conducted a pilot study of high dimensional longitudinal monitoring of 

immunophenotype in AML.  To characterize changes in cell phenotype before, during, and immediately after 

induction treatment, we developed a 27-antibody panel for mass cytometry focused on surface diagnostic 

markers and applied it to 46 samples of blood or bone marrow tissue collected over time from 5 AML 

patients.  Central goals were to determine whether changes in AML phenotype would be captured effectively by 

cytomic tools and to implement methods for describing the evolving phenotypes of AML cell subsets.  Mass 

cytometry data were analyzed using established computational techniques. Within this pilot study, longitudinal 

immune monitoring with mass cytometry revealed fundamental changes in leukemia phenotypes that occurred 

over time during and after induction in the refractory disease setting.  Persisting AML blasts became more 

phenotypically distinct from stem and progenitor cells due to expression of novel marker patterns that differed 

from pre-treatment AML cells and from all cell types observed in healthy bone marrow.  This pilot study of single 

cell immune monitoring in AML represents a powerful tool for precision characterization and targeting of resistant 

disease. 

Introduction 

Acute myeloid leukemia is one of the deadliest adult cancers. The five-year overall survival is 21.3% for all ages 

and 4.6% for individuals 65 and older (2013).  Current standard of care therapy has remained relatively 

unchanged over the last 30 years despite efforts to improve these poor outcomes (Stein and Tallman 2012).  

AML genetic heterogeneity has been well characterized as contributing to poor outcomes (Valk, Verhaak et al. 

2004, Patel, Gönen et al. 2012, Walter, Shen et al. 2012), and longitudinal genetic analyses have suggested 

multiple models of clonal evolution to explain disease aggressiveness (Ding, Ley et al. 2012, Klco, Spencer et al. 

2014).  While it is clear that cell subsets within a pretreatment leukemia cell population have differential responses 

to therapy, it is not known to what extent genetic and non-genetic cellular features confer these differential 

responses.  A single-cell understanding of AML therapy response over time during early treatment will 



38 
 

characterize how different treatments reprogram AML cell phenotypes and impact clonal dynamics.  Immediate 

post-treatment changes may have lasting impacts on long term outcomes, and a better understanding of how 

AML cells change following treatment may highlight key targets of opportunity for new treatments.  Mass 

cytometry and unsupervised tools from machine learning provide a new opportunity to comprehensively characterize 

cellular heterogeneity and improve our understanding of how different treatments impact AML cell biology.  In 

particular, it would be useful to characterize AML cells that remain immediately following treatment and determine 

whether they are distinct in a way that might be therapeutically targeted. 

Immunophenotype characterization by flow cytometry has become part of standard of care in AML for diagnosis 

and disease monitoring, and standard antibody panels have been published for traditional fluorescence flow 

cytometry used in clinical pathology (Stetler-Stevenson, Davis et al. 2007, van Dongen, Lhermitte et al. 2012).  

A key strength of flow cytometry is the ability to measure several independent properties on each cell and to use 

complex combinations of these quantitative measurements to classify or isolate cells of interest (Krutzik, Irish et 

al. 2004, Irish, Kotecha et al. 2006).  Surface antigens, such as CD34 and CD123, have been extensively studied 

individually or in small combinations, but reported associations with clinical outcome are numerous and often 

conflicting (Mason, Juneja et al. 2006).  Additionally, leukemia stem cells (LSCs) and stem-ness properties likely 

play a significant role in therapy resistance and leukemia persistence in AML (Eppert, Takenaka et al. 2011). 

Furthermore, the markers that characterize an AML at diagnosis may shift during treatment and be changed 

dramatically in the case of minimal residual disease (MRD) or relapse (Baer, Stewart et al. 2001). Small antibody 

panels focused on positive identification of AML cells are susceptible to overlooking AML clones that undergo 

antigenic changes.   

In contrast, measurement of 30 or more features by mass cytometry (Bendall, Simonds et al. 2011) can 

comprehensively characterize normal myeloid cell populations and, in combination with unsupervised machine 

learning tools, robustly characterizes all non-AML cells and distinguishes them from AML blasts (Becher, 

Schlitzer et al. 2014).  Mass cytometry thus gives the potential for improved ability to define subsets throughout 

therapy.  Because high-dimensional mass cytometry generates significantly more data than a traditional flow 

cytometry experiment, it therefore creates the need for new data processing and visualization tools. Computational 

tools, especially unsupervised algorithms, organize and display high dimensional data in a way not possible with 
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traditional, supervised gating techniques (Qiu, Simonds et al. 2011, Amir el, Davis et al. 2013, Bruggner, Bodenmiller 

et al. 2014, Shekhar, Brodin et al. 2014). One such algorithm, viSNE, has been shown to be robust in its ability to 

distinguish both healthy and leukemia subsets, showing great promise for research and clinical analysis and 

visualization of cytometry data (Amir el, Davis et al. 2013, McCarthy 2013).  viSNE creates a phenotypic map of 

cells from an individual sample, or collection of samples, enabling visualization of phenotypic relationship between 

individual cells (Amir el, Davis et al. 2013). Furthermore, we have validated and published methods to use this tool 

to analyze both healthy and leukemia samples (Diggins, Ferrell et al. 2015).  Given viSNE’s particular strength in 

visualization of high dimensional single cell data, it is well-suited to identify subtle or large changes in marker 

expression across several samples. Additionally, cells with unexpected phenotypes are routinely overlooked in 

manual analysis and viSNE captures many of these overlooked cells (Amir el, Davis et al. 2013, Irish 2014).   

We present a comprehensive single cell view of AML that tracks changes in the bone marrow and blood over 

time before, during, and after treatment and relates differences in cellular phenotype between patients over time 

and between cells from AML patients and healthy donors. From each patient, up to 12 samples of blood and 

marrow were obtained before, during, and after induction chemotherapy (n = 46 total samples; 14 marrow and 

32 blood from 5 individual patients).  This analysis represents a pilot of in-depth longitudinal monitoring of AML 

during induction therapy with mass cytometry. Additionally, machine learning analysis tools and mass cytometry 

were used to create a phenotypic stem-ness index for AML and applied to evaluate longitudinally collected 

patient samples.    

Materials & Methods 

Patients and Consent 

Patients with suspected AML were consented for protocol sample collection.  Healthy bone marrow was obtained 

from leftover sample from diagnostic analysis of non-cancerous tissue in the Vanderbilt Immunopathology core.  

All specimens were obtained in accordance with the Declaration of Helsinki following protocols approved by 

Vanderbilt University Medical Center (VUMC) Institutional Review Board (IRB).  For each patient participating in 

the collection protocol, signed, written consent was obtained via a written consent form that was also approved 

by the VUMC IRB. Eligibility criteria included >=18 years of age with suspected acute myeloid leukemia 
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undergoing clinical evaluation at VUMC. Patients diagnosed with AML, excluding acute promyelocytic leukemia, 

who were treated with intensive induction chemotherapy, were eligible for complete collection protocol, 

regardless of induction regimen (individual regimens noted in Table 3-1).  Basic clinical characteristics for each 

patient are listed in Table 3-1. One normal bone marrow was obtained from Vanderbilt Hematopathology Lab.  

Table 3-1 – Patient characteristics and clinical outcomes 

ID Age Sex Alive§ 
Survival 
(months) 

BM 
Blast 

WBC 
PB 

Blast 
Cytogenetics FLT3 NPM1 Induction 1 Induction 2 Relapse 

F00
1 

23 F + 14.5 97.5 
432

* 
95 

46,XX,t(9;11)(p22;q23
)[20] 

Neg Neg CR N/A N/A 

F00
2 

77 M  9 26 3.2 23 

42~47,X,-
Y,add(2)(p11.2), 

-
5,add(6)(p12),add(7)(

q22), 
add(12)(p13),del(12)(p

12), 
-15,-18,-19,-
20,+1~5mar 

Neg Neg CR N/A 3 

F00
3 

61 M  4.5 88.5 15.7 94 
46,XY,del(11)(q21q23

)[2]/46,XY[20] 
Neg Neg 

Residual 
Leukemia 

Residual 
Leukemia 

N/A 

F00
4 

49 F + 15 45 5.7 28 46, XX[20] Neg Neg 
Residual 
Leukemia 

CR N/A 

F00
7 

59 F + 14 52 1.8 0 
47,XX,+22[3]/46,XX[1

7] 
Neg Neg CR N/A N/A 

§ ‘+’ indicates patient was alive at time of last follow-up. 
* Patient F001 underwent leukapheresis prior to treatment and sample collection. 

 
 

After patients were consented, bone marrow and peripheral blood samples were obtained per protocol. 

Peripheral blood samples were collected at time of diagnosis or initial evaluation, every 2-3 days during the first 

two weeks of induction, day 14 (mid-induction) and at time of hematologic recovery, if applicable (Figure 3-1A). 

Bone marrow (BM) was collected at all clinically indicated time points, including diagnosis, mid-induction (day 

14), and hematologic recovery, if applicable.  

Sample Processing and Preservation  

Once obtained, samples underwent immediate density gradient separation of mononuclear cells using BD 

Vacutainer® CPT™ Cell Preparation Tube with Sodium Heparin (BD Biosciences, Franklin Lakes, NJ). The 

separated mononuclear cells were then pelleted with low speed centrifugation (200 x g) and aliquoted into 
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multiple cryotubes in an 88% fetal bovine serum (FBS) + 12% DMSO solution. Samples were stored at -80 C for 

24-72 hours prior to long-term storage in liquid nitrogen.  

Mass Cytometry 

Aliquots of cryopreserved samples were thawed into 10ml of warm media (90% RPMI 1640 (Mediatech, Inc., 

Manassas, VA) + 10% fetal bovine serum (Gibco® standard FBS, life technologies, Grand Island, NY)), pelleted 

by centrifugation at 200 x g, washed with warm media and pelleted again at 200 x g before resuspension in flow 

cytometry tubes with warm media (Falcon 2052, BD-Biosciences, San Jose, CA) and allowed to rest for 30 

minutes in a 5% CO2 incubator at 37 °C.  Each rested sample was then pelleted at 200xg, washed with phosphate 

buffered saline (HyClone®, HyClone Laboratories, Logan, UT), pelleted and resuspended in cell staining media 

(CSM=PBS + 1% bovine serum albumin (BSA)) (Fisher Scientific, Fair Lawn, NJ).  Cells were stained with a 

mass cytometry antibody panel of 27 antibodies (DVS Sciences, Sunnyvale, CA) designed based on inclusion 

of both consensus standard of care immunophenotyping panels for AML, as well as antibodies that allowed 

identification of non-AML PBMC (Table 3-2) (Stetler-Stevenson, Davis et al. 2007).  A master mix of these 

antibodies was added to each sample to give a final staining volume of 50µL and incubated at room temperature 

for 30 minutes.  Cells were then washed twice, first with CSM and then with PBS and then permeabilized in -20 

°C 100% methanol for 20 minutes.  Following permeabilization, cells were washed, stained with 250 nM Iridium 

intercalator (ORNATSKY, LOU ET AL. 2008) (Fluidigm, San Francisco, CA) for 16 hours at 4 °C, washed twice 

in PBS, and then re-suspended in 500 µL ddH2O for CyTOF analysis.  Samples were analyzed using a CyTOF 

1.0 at the Vanderbilt Flow Cytometry Shared Resource.  
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Table 3-2 –  
AML mass cytometry panel 

Target (Clone) Type Mass 

CD235a (HIR2) β 141 

CD19 (HIB19) γ 142 

CD117 (104D2) α 143 

CD11b (ICRF44) α 144 

CD4 (RPAT4) β 145 

CD64 (10.1) β 146 

CD7 (CD7-6B7) α 147 

CD34 (581) α 148 

CD61 (VI-PL2) β 150 

CD123 (6H6) γ 151 

CD13 (WM15) α 152 

CD62L (DREG-56) γ 153 

CD45 (HI30) α 154 

CD183 (G025H7) γ 156 

CD33 (WM53)  α 158 

CD11c (Bu15) γ 159 

CD14 (M5E2) α 160 

CD15 (W6D3) α 164 

CD16 (3G8) α 165 

CD24 (ML5) γ 166 

CD38 (HIT2) α 167 

CD25 (2A3) β 169 

CD3 (UCHT1) γ 170 

CD185 (51505) α 171 

HLA-DR (L243) α 174 

CD184 (12G5) γ 175 

CD56 (CMSSB) α 176 

Iridium § 191 

Marker type key: 
α – Consensus AML  
β – Secondary AML  
γ – Other  
§ - Mass cytometry  

 

Table 3-2. Table of antibodies for mass cytometry. Antibodies used for mass cytometry staining are listed in this table. 
Clone of the antibody along with designation of type and mass number are listed for each antibody. Antibody “type” in this 
table is based on markers recommendations for AML phenotyping by the Bethesda International Consensus Conference 
(Wood, Arroz et al. 2007). 

Data Analysis  

Mass cytometry data (.fcs) files were evaluated using R (version 2.5.2, The R Foundation for Statistical 

Computing), viSNE in MATLAB (version R2013b, The Mathworks, Inc.), and Cytobank software (Cytobank Inc.) 

(KOTECHA, KRUTZIK ET AL. 2010, AMIR EL, DAVIS ET AL. 2013). Files from each patient were mapped using 

the viSNE MATLAB graphical user interface, cyt, available at 

http://www.c2b2.columbia.edu/danapeerlab/html/cyt.html. Files used for viSNE co-analysis had the same 

number of cells randomly sampled from each file, unless very few cells were collected for a particular time point, 

in which case all cells were used in viSNE analysis.  

http://www.c2b2.columbia.edu/danapeerlab/html/cyt.html
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Measuring Hematopoietic Stem Cell Distance within viSNE 

Within a given viSNE map, the hematopoietic stem cell distance (HSCD) for a given cell was calculated as the 

standard Euclidean distance formula (√(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2) where 𝑥1, 𝑦1 was the coordinate location of a 

cell on the viSNE map’s t-SNE axes and 𝑥2, 𝑦2 was the center of the healthy HSC population on the same viSNE 

map. In particular, CD34+ CD38lo/- hematopoietic stem cells were used as a common reference point for 

comparing non-leukemia subsets and phenotypically diverse AML samples. The center of the healthy HSC 

population was determined by averaging the x and y coordinates of the HSCs in the viSNE map.  A population’s 

HSC distance was calculated as the mean HSC distance of all cells in that group.   For comparison of healthy 

and leukemia inter-sample heterogeneity, mass cytometry .fcs files of healthy PBMC (Nicholas, Greenplate et 

al. 2015) and bone marrow (Amir el, Davis et al. 2013) were used from published sources and remapped in 

separate viSNE analyses. Distances of common cell populations were measured from designated cells 

populations, HSC in the case of marrow samples and CD4+ T cells in the case of PBMC.  Distances of these 

populations found in each sample were measured from reference population as described above and median 

and interquartile range (IQR) values were calculated to give a measure of inter-sample heterogeneity within 

healthy and AML samples.  

Results  

Machine Learning and Mass Cytometry Separated AML Blast Cells from Non-Malignant Cells 

AML blast cells were identified in viSNE using a combination of marker expression and localization on the 2–

dimensional viSNE map.  In each sample, a discrete group of cells was identified in the viSNE map characterized 

by a phenotype consistent with myeloid blasts (Figure 3-1B). Measured blast percentages were consistent with 

those reported for clinical pathology evaluation (data shown for F001 and F003 in Figure 3-5). Furthermore, other 

discrete islands within the map represented known populations of non-malignant mononuclear cells if present 

(Figure 3-1B and 3-1C). These islands were high for CD45 expression. Each island was characterized by 

analysis of each marker measured in that population and was assigned a cell identity (Figure 3-1B).  
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viSNE Distance from Stem Cells Provides a Common Measure of Phenotypic Similarity to Stem Cells 

In a viSNE map, proximity corresponds to phenotypic similarity according to the 27 measured proteins selected 

when creating the viSNE axes.  To investigate the phenotypic similarity of non-leukemia mononuclear cells to 

stem cells, healthy bone marrow mononuclear cells and gated blast cells from four diagnostic AML bone marrow 

samples were mapped with viSNE (Figure 3-2A).  Populations identified within a healthy sample included 

hematopoietic stem cells (HSCs), early progenitors (EPs), dendritic cells, maturing myeloid cells, monocytes, 

natural killer (NK) cells, CD4+ and CD4- T cells and B cells. Phenotypic distance from HSCs was then used to 

characterize healthy and AML population.  Healthy NK cells and T cells were the most phenotypically distinct 

from HSC with distances of 46.6 (NK), 54.1 (CD4+ T cells), and 60.4 (CD4- T cells).  CD34+ CD38+ bone marrow 

cells comprised the majority of the EP population.  EPs occupied the largest area of phenotypic space relative 

to the number of cells in the population, indicating that EPs were the most heterogeneous cell population 

observed.  The mean distance of EPs from HSCs was 12.4, indicating that, on average, EPs were the healthy 

cell type most closely related to the HSCs, as expected. EPs were phenotypically similar to healthy stem cells 

when considering 27 protein features (Figure 3-2B).  This calculated HSC distance was used to quantify the 

phenotypic distance of each patient’s AML blasts from known cell populations within healthy marrow.   
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Figure 3-1. Overview of mass cytometry phenotyping in early AML therapy  

(A) A timeline of AML induction shows blood and bone marrow collection scheme for this study. (B) viSNE analysis of all 
live cells from the diagnosis marrow of one AML patient F004 is shown.  Cells were arranged on the viSNE map along 
unitless x and y viSNE axes according to 27-dimensional phenotype (Table 3-2) so that phenotypically similar cells were 
placed near each other.  Cellular abundance is indicated with a shaded contour plot where outliers start at 10% and each 
2% contour is shaded a lighter color from purple to yellow.  (C)  On the same viSNE axes as in (B), diagnostic bone 
marrow cells from patient F004 were graphed and shaded according to identity determined by immunophenotype.  AML 
blast cells were shaded red and non-blast cells were shaded grey.  (D) On the same viSNE axes as in (B), diagnostic 
bone marrow cells from patient F004 were graphed and shaded according to expression of CD45 on a rainbow heatmap 
(log-like arcsinh15 scale). 
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Figure 3-2. Phenotypic distance from hematopoietic stem cells distinguishes healthy cell populations and AML 
blasts from different individuals.  (A) A 27-dimensional viSNE analysis compares an equivalent number of live cells 
from normal bone marrow and from each of four AML patient bone marrow samples obtained at diagnosis prior to 
treatment. (B) 27-dimensional phenotypic distance of normal bone marrow mononuclear populations from healthy 
hematopoietic stem cells (HSCs) was measured in the viSNE analysis from (A) and is shown in blue.  (C) As in (B), the 
HSC distance for the blast populations from four AML patients was measured and is shown in blue.   

Diagnostic AML Blasts from Four Patients Differed in Phenotypic Distance from HSCs 

Within the viSNE map, HSC distance was measured for AML blasts from four patients’ diagnostic samples 

(Figure 3-2C).  AML blasts localized to one general area of the viSNE map; however, while samples from F003, 

F004, F007 were associated closely, AML blasts from patient F002 were phenotypically distinct and well 

separated from other AMLs (Figure 3-2A).  In contrast with healthy early progenitor cells, AML blasts were more 

homogeneous in phenotype, as AML blasts occupied a smaller phenotypic area of the map than EPs (Figure 3-

2A).  This was despite the fact that AML blast populations contained approximately 5.4 times as many cells as 

the EP population in this analysis.   

AML blasts from patients F003 and F004 were phenotypically similar to healthy HSCs and had very low distance 

values near 10.  This result contrasted with that from AML patients F002 and F007, whose diagnostic blasts 

were farther from healthy stem cells and had distance values near 30 (Figure 3-2), highlighting the patient-to-

patient diversity that can be detected with even a small cohort of patients.  By comparing distance to HSC and 
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other populations on the viSNE map, each patient’s AML blasts were characterized as phenotypically more 

similar to HSCs (F003, F004) or more distant from HSCs (F002 and F007) (Figure 3-2B).   

To assess donor variation for this type of comparison for other cell subsets, distances on viSNE axes were 

compared for 5 sets of test and reference populations from this manuscript and others and reported as the 

interquartile range (IQR) and median across individuals.  Little heterogeneity in viSNE distances was observed 

when comparing CD4+ T cells from healthy PBMC to B cells from healthy PBMC (IQR: 1.3, median: 38.1, N = 

7).  Similarly, relatively little heterogeneity was seen in comparisons of healthy BM B cells to healthy BM HSCs 

(IQR: 4.5, median: 10.1, N = 3), non-leukemia CD4+ T cells from AML BM to healthy BM HSCs (IQR: 2.7, median: 

9.5, N = 3), and non-leukemia CD4+ T cells from AML BM to healthy BM HSCs (IQR: 2.4, median: 7.3, N = 3).  

All of these low interquartile ranges contrasted with the significantly greater heterogeneity seen when comparing 

AML blasts compared to healthy BM HSCs here (IQR: 18.6, median: 17.7, N = 4, Figure 3-2).  Thus, the 

heterogeneity in viSNE distance was specific to the leukemic blasts and not observed in comparisons including 

non-leukemia cells from the same sample, healthy blood, or healthy bone marrow. 

 

Mapping Early Treatment Samples in viSNE Allowed Accurate Assessment of Blast Clearance  

In order to assess whether this technique properly characterized blast clearance, samples over time from 

individual patients were mapped in patient-specific viSNE analyses.  A leukemic blast area or island was 

identified in the viSNE map and treatment response was observed as the regression or persistence of cells within 

this area over time. In patients who achieved remission (based on clinical pathology assessment), >95% of cells 

in the recovery samples were outside of the leukemic blast area (Figure 3-3, Figure 3-4, Figure 3-5).   
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Figure 3-3 – Comprehensive analysis of AML therapy response kinetics.  viSNE analysis characterizes changes in 
leukemia cell phenotype over time for cells from all treatment times for three individuals. All cells from all clinical 
timepoints were analyzed using viSNE according to the 27 markers measured (Table 3-2).  An AML blast area was 
identified as in Figure 3-1.  Color indicates clinical time point and source, either bone marrow or blood.  Patients F002 and 
F007 had very low blast percentages in the peripheral blood at diagnosis.   

 

Abundance and phenotype of AML cells changed significantly in the blood during the first days of treatment, with 

significant variability among patients (Figures 3-3 & 3-4). Absolute numbers of all cell types, malignant and non-

malignant, declined predictably in the blood of all patients by Day 14.  Lymphocytes, predominantly T cells, were 

the most abundant cell population in all patients at Day 14, when leukocyte counts in marrow and blood are 
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typically at their nadir.  Leukemic blasts in the blood and marrow formed distinct islands in viSNE and these 

islands could be followed over time for each patient (“Leukemic Blast Area”, Figures 3-3 & 3-4).  Cells were 

observed largely to regress from this area in blood by day 14 in all patients (>90%).  The patient with the highest 

Day 14 blast population (F003) also had the highest percentage of blasts seen in the bone marrow (see below).  

Overall, the mass cytometry results were comparable to those obtained by clinical pathology analysis (Figure 3-

5).   

Mid-induction (Day 14) bone marrow aspirate was obtained from patients when sufficient sample was available 

(patient F002 had inaspirable marrow at day 14, though a core biopsy revealed no residual AML).  Bone marrow 

from patients F003 and F004 was significantly involved with AML post-induction, and both patients required 

reinduction.  Patient F003 never achieved remission despite two inductions and the initial Day 14 marrow was 

highly involved by AML (90% blasts by microscopy, 81% by clinical flow cytometry).  This clinical finding was 

corroborated by mass cytometry and viSNE analysis, as both patients had cells mapped within the leukemic 

blast area at Day 14 (Figures 3-3 & 3-4). For patient F004, residual cells occupied a tight area on the map and 

were phenotypically distinct from the majority of the AML cells in the diagnostic sample, both in the marrow and 

the blood (Figure 3-3).  This residual population of AML cells did not persist in the second mid-induction biopsy 

(Day 14-2) or at recovery biopsy (after second induction), when the (Amir el, Davis et al. 2013)(Amir el, Davis et 

al. 2013)(Amir el, Davis et al. 2013)(Amir el, Davis et al. 2013)(Amir el, Davis et al. 2013)(Amir el, Davis et al. 

2013)(Amir el, Davis et al. 2013)(Amir el, Davis et al. 2013)patient was found to be in remission.  Thus, a 

population of leukemia cells from F003 and F004 persisted after the initial treatment and a change in overall 

AML cell phenotype was observed in this persistent population in both cases.  
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Figure 3-4. Computational analysis of samples throughout induction allows visualization of both remission and 
persistent AML.  27-dimensional viSNE analysis of all live cells from all sample collection time points for two AML 
patients is shown (left).  Clinical response is indicated for each patient on the left. Leukemic blast areas were determined 
by location of cells at diagnosis and analysis of marker expression, as in Figure 3-1. At right, cells taken from the time 
point shown (red) were compared to all cells (grey). Differences in the location of cells within the viSNE map resulted from 
changes in protein expression.  
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Figure 3-5. Analysis of immunophenotypic change throughout induction - F001 and F003.  At top, mass cytometry 
quantification of blast percentage for each sample from two patients is shown. Below, clinical cytometry and microscopy 
data of each blood (clinical samples collected at different time on same day) and bone marrow (clinical and research 
samples collected at same time) sample throughout induction is shown. The patient whose samples are displayed on the 
left (F001) achieved remission (defined as <5% marrow blasts at recovery). On the right, a refractory patient’s samples 
are shown, in whom a very high blast percent were seen at day 14.  

 

 

Mass Cytometry Identified Phenotypically Distinct Persisting AML Blasts That Were Rare Pre-
Treatment 

In post-treatment bone marrow from patient F003, discrete populations of persisting cells made up the majority 

of the sample (80%). In order to perform a more direct comparison of pre- and post-treatment AML blasts, these 

blast populations were gated from Day 0 and Day 14 bone marrow and remapped in viSNE. They were then 

visualized in order to demonstrate subpopulations based on cellular abundance (Figure 3-6A).  Thirteen AML 

cell populations were identified based on phenotype and abundance in pre-treatment and post-treatment 

samples.  Of these AML cell populations from patient F003, 6 populations were abundant pre-treatment and 7 

totally distinct populations were abundant post-treatment (Figure 3-6A).  
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Figure 3-6. Rare subsets at diagnosis become prominent after treatment in a patient with refractory AML.  (A) 
Blasts from Day 0 and Day 14 were gated out from prior viSNE maps for patient F003 (shown in Figure 3-4) and 
remapped in viSNE together.  Gates were drawn around subpopulations and based on relative cell abundance, as in 
Figure 3-1B. (B) Percent of total blasts for each gate at both time points.  (C) A heat map of median marker expression for 
each gate at both time points is shown.  
 

Overall, the AML phenotype shifted markedly post-treatment.  Over 85% of cells post-treatment were groups into 

7 phenotypic regions as mentioned above. By contrast, fewer than 10% of the cells fell into these regions pre-

treatment (Figure 3-6B).  The subpopulations observed post-treatment ranged in abundance from 2.3% to 20% 

of the AML cells.  At diagnosis, in the pre-treatment sample, these populations constituted as little as 0.6% to 

1.8% of total blasts (Figure 3-6B).   

Increased Expression of CD34, CD38 and CD184 Characterized Post-Treatment Persistent AML 
While Subpopulations Displayed Significant Heterogeneity  

Individual marker changes contributing to overall shift were then characterized. Several markers of leukemia 

stem cells were identified as contributing to the overall shift in phenotype in samples from patient F003 (Figure 

3-6C and Figure 3-9).  Median marker expression within the 13 identified subsets was calculated and visualized 

as a heat map (Figure 3-6C).  Prominent changes seen in the pre- to post-treatment samples include both overall 

increases and decreases in specific markers.  Among these markers were CD34, CD38, and CXCR4/CD184, 

which respectively increased by 0.7, 0.9, and 0.6 fold on the log-like asinh15 scale.  Expression of CD117 and 

CD123, markers associated with LSC ability, decreased in the post-treatment sample. In non-leukemic cells, 
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expression of CD34, CD38, and major cell type identity markers (e.g. HLA-DR, CD4, CD19) did not significantly 

change over time on non-AML cells (all <0.2 fold, Figures 3-7 and 3-8).   

 

Figure 3-7 - Changes in individual markers over time during treatment on AML blasts from patient F003.  Biaxial 
plots summarize six clinical timepoints (rows) for 24 markers (sets) for the AML blast cells from patient F003, gated as 
shown in Figure 3-4.  The indicated marker is plotted on the x-axis using the same arcsinh15 scale as in other figures (e.g. 
Figure 3-1B).  Plot labels are omitted to save space.  The y-axis is mass cytometry event length, which is used here to 
spread the events out in the y-axis to create a compressed band plot view that allows rare subsets to be observed (see 
e.g. CD235a) that would be obscured in a traditional 1D histogram view. 
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Figure 3-9 - Changes in individual markers over time during treatment on non-leukemia cells from patient F003.  
As in Figure S2, biaxial plots summarize six clinical timepoints (rows) for 24 markers (sets) for the non-leukemia cells from 
patient F003, gated as everything not in the leukemia blast gate shown in Figure 3-4.  The indicated marker is plotted on 
the x-axis using the same arcsinh15 scale as in other figures (e.g. Figure 3-1B).  Plot labels are omitted to save space.  
The y-axis is mass cytometry event length, which is used here to spread the events out in the y-axis to create a 
compressed band plot view that allows rare subsets to be observed (see e.g. CD16) that would be obscured in a 
traditional 1D histogram view. 

 

Analyses limited to overall changes in the entire population of persistent cells belie the underlying heterogeneity 

seen in individual subpopulations of cells, where changes are quite diverse. Though CD117/c-kit expression 

showed a large decrease from initial sample to post-induction sample, the heat map and biaxial plots 

demonstrate that expression of this marker is heterogeneous and remains high in one subpopulation (population 

7 in Figure 3-6C and Figure 3-9).  Subpopulation 7 is also notable for increased expression of CD33 and 

CD184/CXCR4, which are both quite low in all of the prominent pre-treatment populations (Figure 3-9). Based 

on this, it is apparent that a heterogeneous group of subpopulations constitute AML before and after treatment.  
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Thus, the overall shift in AML phenotype was driven by the differential abundance of phenotypically distinct 

subpopulations that were rare pre-treatment (Figure 3-6A-C). 

 

 

Figure 3-9. Single cell analysis of immunophenotype in AML subpopulations before and after therapy response.  
Biaxial density plots show the markers with the highest standard deviation across subsets compared with CD34 on individual 
cells in live bone marrow AML blasts from patient F003.  Columns show AML blast populations identified (Figure 3-6) from 
Day 0 or Day 14, whichever was more abundant.  Red boxes highlight key changes in protein expression discussed in the 
text.  Standard deviation (SD) of each row’s marker across all populations is indicated to the right of the plots.  Stem index 
(Figure 3-2) of each population is indicated above each column.  CD34 and the top 11 most variable markers were graphed.  
CD4 was included as an example of a low expression marker that did not change.   
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Marker Expression Varied Among Subpopulations 

To quantify variability within subpopulations, we calculated the standard deviation of each marker among all 13 

subpopulations identified in pre- and post-treatment samples. The most variable markers among the 

subpopulations are shown in Figure 3-9, with the exception of CD4, which was a negative, non-variable marker 

on these leukemia subpopulations. HLA-DR displayed the most variability (SD=1.0), followed closely by CD61 

(SD=0.91) and CD62L (SD=0.86). Expression of these markers ranged from high expression to little or no 

expression across the 13 populations, with variability seen in both pretreatment and post-treatment samples. 

Interestingly, population 8 was identified as having little or no expression of most markers that identified leukemic 

blasts, though this population was seen in both pre-and post-treatment samples and its constituent cells were 

identified in the initial gating schemes (Ir+, single cells).  

Persisting AML Cells Become Less Phenotypically Stem-Like 

In order to understand how individual marker changes affected overall phenotypic diversity and identity with 

respect to known, healthy populations, pretreatment (Day 0) and post-treatment populations (Day 14) blast cells 

were mapped in viSNE with the normal healthy marrow population. Based upon the resultant viSNE map, 

phenotypic shifts were quantified and AML blasts were shown to be less phenotypically similar to healthy HSCs 

following treatment (Figure 3-10B).  For this analysis, predominant bone marrow blast populations at diagnosis 

(AML subsets 1 - 6) were mapped with normal marrow and major persisting populations from day 14 (subsets 7 

- 13) (Figure 3-10A&B).  Post-treatment, the mean change in HSC distance was +10.0, indicating a phenotypic 

shift away from HSCs (Figure 3-10B). Taken together, these data indicate that the overall trend is for AML blasts 

to gain a novel phenotype that is distinct from those of healthy stem and progenitor cells in the bone marrow.   
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Figure 3-10. Blast populations become increasingly phenotypically different from both differentiated cells and non-
malignant hematopoietic stem cells. 27-dimensional viSNE analysis compared normal bone marrow cells, AML blasts 
from Day 0 from patient F003 (subpopulations 1-6 only), and AML blasts from Day 14 from patient F003 (subpopulation 7-
13 only). (A) Normal bone marrow mononuclear cells are shown (left). A cartoon outline of the major healthy subpopulations 
was identified and HSC distance measured (right).  (B) Pre-treatment (day 0) and post-treatment (day 14) samples are 
compared same map as in (A) and HSC distance of each subpopulation is shown. 

 

Discussion 

This work characterizes changes in AML blasts and healthy cells over time following induction chemotherapy 

according to 27 protein features, including the vast majority of diagnostic markers for this disease.  A key benefit 

of this approach is that it reveals whether AML cells are cleared, phenotypically altered, or left unchanged after 

treatment.  This approach directly measures the impact of treatment on the cellular milieu of the patient’s marrow 

and blood.  By identifying persistent AML cells post therapy, mass cytometry and computational analysis 

provided a clear picture of AML subpopulation dynamics in the early therapy response and revealed the 

unexpected finding that AML “persister” cells can become significantly less phenotypically stem-like immediately 

following treatment. These results provide a foundational reference for understanding the reservoir of AML cells 
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that evade treatment and provide a proof of concept for high dimensional single cell characterization of clinically 

relevant cell-surface molecules in AML.   

While this study assessed samples from 5 patients, there are 46 samples in total that have been analyzed.  

Regardless, this pilot study assessed the feasibility of greatly expanded longitudinal monitoring of AML to capture 

differentiation and cell subset dynamics. AML displays significant phenotypic plasticity in the clinical setting 

(Baer, Stewart et al. 2001). However, this phenotypic heterogeneity is not well represented in focused fluorescent 

cytometry panels measuring between six and eight features.  Here we do not intend to duplicate work done by 

large clinical flow consortia, such as EuroFlow, rather we intend to demonstrate the utility and feasibility of this 

approach (van Dongen, Lhermitte et al. 2012, van Dongen, Orfao et al. 2012). Larger studies of high-dimensional 

immune cell monitoring in AML are now needed to further validate this approach and to begin to understand 

treatment specific changes. This study demonstrates potential drawbacks of small fluorescence cytometry 

panels used to distinguish the leukemia blasts at during therapy – namely that changes in certain markers may 

be missed by small panels.  The results of this study also indicate that immunophenotype in AML is highly plastic 

and can fundamentally shift in a matter of days in response to treatment to adopt a pattern that is both abnormal 

and not HSC-like.  Furthermore, while this study was not designed to determine whether or not chemotherapy is 

altering cell phenotypic expression or selecting for persistent cells, the kinetics of early marker change in the 

peripheral blood indicate that phenotypic plasticity is possible.   

This focused pilot study indicates that mass cytometry is feasible for clinical immune monitoring of treatment 

impact in blood cancers, such as AML.  Furthermore, these findings are immediately translatable to longitudinal 

studies of other hematologic malignancies, chronic viral infections, and autoimmune disorders.  Early phenotypic 

changes may also be evaluated in the peripheral blood blasts, when present, and could give key insight to early 

treatment success. It has been shown that early blasts decline in peripheral blood can predict complete remission 

rates in AML (Gianfaldoni, Mannelli et al. 2006, Elliott, Litzow et al. 2007, Arellano, Pakkala et al. 2012). With 

added information of high-dimensional directionality and phenotypic distance changes, peripheral blood changes 

can be better characterized early and could become even more informative.  However, because peripheral blasts 

can have a slightly different immunophenotype than bone marrow blasts (as in F001), changes in blasts post-

therapy are likely best evaluated within the same compartment.  Visualization of high-dimensional relationships 
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within viSNE allow for assessment of changes over time as well as noting any differences between different 

compartments (e.g., marrow vs. blood).  The approach presented here also provides a new clinical tool for 

tracking and dissecting cellular identities and functional responses in clinical studies and translational research.  

For example, the markers identified here can now be used to sort persister-like cells from pre-treatment AML 

and determine whether these cells are genetically related to the persister cells.  Recently published data reveals 

the decoupling of immunophenotype and signaling in AML samples at diagnosis and shows that the presence of 

“primitive” signaling profiles found in healthy HSCs likely more prognostic than phenotype (Levine, Simonds et 

al. 2015).  Applying this finding to our data, we would predict that refractory AML adopts a more “primitive” 

signaling pattern post-treatment, regardless of phenotypic changes. In this way, application of signaling 

measurements to longitudinal monitoring in AML has great potential to reveal signaling and phenotypic markers 

of resistance that could improve disease targeting.   

This study describes a novel phenotypic stem-ness index based on the high dimensional immunophenotype of 

normal and leukemia samples.  It is possible that the majority of post-treatment cells are leukemia stem cells 

and their phenotypic changes reveal a level of plasticity in stem cell phenotype that cannot to be assessed 

outside of real world treatment situations.  Importantly, some of this plasticity has been seen in vitro as well 

(Eppert, Takenaka et al. 2011, Sarry, Murphy et al. 2011).  It is possible that regardless of their “stem-ness”, as 

defined either by phenotype or function, these therapy resistant cells are the cells that warrant further 

investigation and therapeutic focus in the context of AML, as it is their persistence post-treatment that results in 

the ultimate death of patients.  We have shown that subsets present in a refractory AML display increased 

expression of CD34, CD38, and CD184 while viSNE analysis shows that these cells “move away” from healthy 

stem cells and the bulk of the original disease. These cells went in a new direction immunophenotypically, 

maintaining many AML cell characteristics while also adopting new features. Furthermore, this could indicate 

some subtle maturation, however abnormal, within the blast population induced by the treatment.  It would not 

be completely unexpected for LSCs to switch immunophenotype, as though LSCs were first described as Lin- 

CD34+ CD38lo/, it is well-established that cells with leukemia initiating ability and stem-ness properties exist 

outside of this original definition (Taussig, Miraki-Moud et al. 2008, Taussig, Vargaftig et al. 2010, Goardon, 

Marchi et al. 2011, Sarry, Murphy et al. 2011).  This may be especially true in cases of refractory AML. 
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Additionally, the expression of CD184 has been linked to worse outcomes in AML and therapeutic targeting of 

this molecule has been reported (Spoo, Lubbert et al. 2007, Nervi, Ramirez et al. 2009). 

This refractory AML presented here demonstrated a large burden of persistent leukemia cells after therapy. 

These persister cells are common in AML, as evidence by MRD in patients who achieve a remission or as overt 

refractory disease.  At no point did we see AML “collapse” into a phenotypically more similar (less 

heterogeneous) population or adopt a uniform stem or progenitor cell phenotype that could imply a bottleneck 

selection event.  The response to treatment was typically an increase in diversity of phenotypes and movement 

away from traditional stem cell phenotypes.  It may be that there is an inducible mechanism of phenotypic shift 

in AML cells caused by chemotherapy.  This mechanism could depend on non-cell autonomous changes and 

inter-clonal interaction, as has recently been described in cancer cells (Marusyk, Tabassum et al. 2014). This 

would contrast with the classic “selecting for a subclone” model and aligns with some recent observations based 

on gene sequencing, which highlight genetic and functional heterogeneity within AML at diagnosis and relapse 

(Ding, Ley et al. 2012, Klco, Spencer et al. 2014). Further clarification of the functional differences in 

immunophenotypically distinct subsets of AML, particularly of intracellular signaling networks, is needed to 

identify novel therapeutic targets in this disease.  
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Preface 

Methods such as those introduced in Chapter 1 and Chapter 2 are useful for discovering phenotypically 

distinct cell subpopulations in high-dimensional, single-cell data. However, I found the characterization of 

computationally discovered subsets to be largely qualitative and subjective. There was no automated method 

for quantitatively comparing the populations that had been discovered using biaxial gating or different 

computational tools. To address this need, I developed an equation that combines magnitude and variance 

information to determine context-specific feature enrichment on a cell subset compared to a reference cell 

subset. This equation is the core of the method termed Marker Enrichment Modeling (MEM) that takes previously 

identified cell population data as input and reports a label for each subset relative to a specified reference cell 

population. Using multiple flow cytometry datasets from the analysis of human and murine tissues, I illustrated 

the ability of MEM to quantify proteins on cell subsets discovered across analysis methods, platforms, and 

tissues. The MEM equation and concept is a key component to the long-term goal of developing fully automated 

analysis workflows that can identify populations of cells from high dimensional data and subsequently 

characterize and label those cells without the need for expert interpretation. 

Abstract 

 While advances in single cell biology have enabled measurement of 35 or more features on millions of 

single cells, learning cell identity still relies on human experts.  Marker Enrichment Modeling (MEM) addresses 

the need to objectively describe cell subsets by quantifying feature enrichment and reporting a text label that can 

be used by machines and humans to learn cell type (cytotype). In datasets including healthy human blood, bone 

marrow, and tonsil, murine tissues, and human tumors, MEM identified key proteins used by experts to 
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distinguish rare and novel cell subsets.  MEM-generated labels accurately characterized phospho-protein 

signaling responses in subgroups of leukemia patients.  Algorithmic comparison of MEM label correctly identified 

80 cell populations from 7 studies of 3 human tissues measured using different instrumentation and distinguished 

tumor-infiltrating immune cell subsets and malignant cell populations in human glioma.  MEM labels thus provide 

a quantitative language to objectively communicate characteristics of new and established cell types observed 

in complex tissue microenvironments. 

Introduction 

 Quantitative cytometry workflows have developed diverse approaches to grouping cells into 

populations(Lo K 2009, Qiu, Simonds et al. 2011, Shekhar, Brodin et al. 2013, Bruggner, Bodenmiller et al. 2014, 

Mosmann, Naim et al. 2014) and visualizing results in graphs that arrange populations based on phenotype(Irish, 

Hovland et al. 2004, Bendall, Simonds et al. 2011, Bendall, Davis et al. 2014, Levine, Simonds et al. 2015, 

Spitzer, Gherardini et al. 2015). Significant features of populations are typically assumed to be those which were 

expressed at the highest median level on each population. These strategies work well when feature variability is 

low and cells match established types, but computational analysis of single cell data is now routinely revealing 

novel cells with non-canonical phenotypes(Becher, Schlitzer et al. 2014, Irish 2014, Patel, Tirosh et al. 2014, 

Greenplate, Johnson et al. 2016).  This is especially the case for diseases where abnormal expression profiles 

and signaling responses distinguish clinically significant cell subsets(Irish, Hovland et al. 2004, Irish, Myklebust 

et al. 2010, Levine, Simonds et al. 2015, Ferrell, Diggins et al. 2016, Greenplate, Johnson et al. 2016).  Existing 

statistical approaches, such as a z-score, can be used to characterize a population’s deviation from a mean, but 

may be limited to a normal distribution or may not account for both intra- and inter-population variability in a 

single metric.  

 We have developed Marker Enrichment Modeling (MEM) to quantify context-specific marker enrichment 

on populations. MEM was developed to address the idea that the most experimentally and biologically relevant 

cellular features are those that are more homogenously expressed on the majority of cells in a given population 

than on other cells in the sample or experimental framework. Additionally, features that are specifically lacking 

on a population (i.e. negatively enriched) are as important to that population’s identity as are those specifically 
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expressed at high levels (i.e. positively enriched). Given these considerations, the MEM equation was derived 

to produce a signed value for each population feature that quantifies positive and negative, population-specific, 

contextual feature enrichment. For a given subset of cells within a sample, MEM compares both feature 

magnitude and feature variability for the subset with those of a reference cell population, such as stem cells or 

other cells in the samples.  MEM quantifies the extent to which proteins or other measured features are enriched 

on a chosen cell subset compared to a selected reference population.  For each measured feature, a MEM score 

is calculated (Eq. 1). 

MEM score = ,    (MAGPOP-MAGREF) <0  MEM = -MEM        (Eq. 1)    

 In Eq. 1, POP denotes the population of interest, REF denotes the reference population to which POP 

will be compared, MAG is the magnitude of a feature (here, median protein expression detected by mass or 

fluorescence flow cytometry), and IQR indicates the interquartile range.  The ratio in IQR values is used to 

capture how homogeneously the chosen cells in POP expressed a given protein relative to REF. The reference 

population REF is chosen based on the biological comparison of interest (Figure 4-1).  Examples of REF include 

all other cells from a sample not in POP Figure 4-2, and Figure 4-13), previously-defined populations, such as 

other cells from the sample (Figure 4-6 and Figure 4-9), comparisons to cells from other individuals (Figure 4-

15), and “gold standard” populations like stem cells (Figure 4-13, Figure 4-14).  Unsupervised reference selection 

(i.e. using all non-population cells from the same sample or set of samples as POP) is advantageous when 

labeling and characterizing cell systems or microenvironments in the original biological context. Comparison to 

a common reference facilitates comparing changes in phenotype or sample quality over time, quantifying 

differences between individuals, and matching a label from a new population of cells to established reference 

populations of diseased or healthy cells.   
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Figure 4-1. Examples of MEM reference population selection to capture different contexts. Alternative reference 
populations (REF) can be used to capture how features of the test population (POP) are enriched in different contexts. 
Reference comparisons include a) all non-population cells in the sample or experiment (default), b) a population from 
another sample in the same study, c) a population from the same sample, d) multiple subsets of non-population cells from 
the same sample, e) a standard control population, and f) pairwise comparison between all populations in a sample. 

 

MEM arranges the scores calculated for each protein into a quantitative label for each POP.  For example, 

the MEM label for CD4+ T cells from healthy human tonsils identified by expert gating of mass cytometry 

data(Polikowsky, Wogsland et al. 2015) and compared to all other immune cells in the sample as REF was 

▲CD4+10 CD3+9 CD5+5 CD27+5 ▼MHCII-10 CD19-9 CD20-7 CD40-7 CD22-7 Igκ-5 Igλ-4 IgD-2 SHP1-2 CD16-2 CD33-

2 IgM-2 (Table 4-1).  In this MEM label, the exponent quantifies protein enrichment in tonsillar CD4+ T cells relative 

to the other the tonsillar leukocytes, primarily B cells.  This MEM label indicates that tonsillar CD4+ T cells are 

distinguished both by expression of canonical T cell proteins (CD3+9 CD5+5) and by a lack of expression (negative 

enrichment) of antigen presenting cell (APC) and B cell proteins (MHCII-10 CD19-9 CD20-7).  MEM scores are 

robust across tissue types and experiments; CD4+ T cells were consistent in MEM labels for the same tissue 

across healthy donors and correctly captured differences in phenotype between tissues (Table 4-1).  For 

example, tonsillar CD4+ T cells displayed significantly greater CD27 enrichment than blood CD4+ T cells (p<0.02; 

tonsillar CD4+ T cells: CD27▲5.3 ± 0.58, N=3; blood CD4+ T cells: CD27▲3.4 ± 0.98, N=7; see Table 4-1).  
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Highly enriched proteins were more important to accurate population identification than proteins with high median 

expression (Figure 4-2c; Figure 4-4; Figure 4-5).   

MEM label reporting provides a new way to objectively and quantitatively communicate cell type 

in studies of complex, dynamic tissue microenvironments, such as stem cell niches, immune 

responses, and human tumors. 
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Table 4-1 – Healthy human CD4+ T cells from various mass cytometry studies were labeled consistently by 
MEM  

Tissue Study Panel focus # MEM label for CD4+ T cells vs. other live cells 

Bone 
marrow 

Bendall  
et 

al.(Bendall, 
Simonds et 
al. 2011) 

Hematopoiesis 4 

▲CD4+10 CD3+6 

▼MHCII-3 CD8-2 CD45RA-2 CD11b-2 

Amir  
et al.(Amir 
el, Davis et 
al. 2013) 

Canonical 
immune 

5 

▲CD4+10 CD3+4 

▼CD45RA-2 

Ferrell  
et al. 

(Ferrell, 
Diggins et 
al. 2016) 

AML &  
myeloid cells 

2 

▲CD3+10 CD7+7 CD4+6 CD62L+4 

▼CD11b−6 CD11c−6 MHCII−6 CD64−5 CD61−4 CD13−3 

CD38−3 CD123−2 CD33−2 CD14−2 

Healthy 
human 
PBMCs 

Leelatian  
et 

al.(Leelatia
n, Diggins 
et al. 2015) 

Canonical 
immune 

7 

▲CD4+10 CD3+7 

▼CD8a-3 CD16-3 CD11b-2 CD69-2 MHCII-2 

Greenplate 
AR§ 

T cells 

1.3 
▲CD4+10 CD3+9 CCR7+5 CD27+5 CD28+3 CD64+2 

 

1.7 
▲CD4+10 CD3+9 CD45RO+3 CD27+3 CD64+2 CD28+2 

▼CD45RA-4 

1.1 
▲CD4+10 CD3+8 CD27+4 CCR7+3 CD64+2 

▼CD45RA-2 

1.8 
▲CD4+10 CD3+9 CD45RO+4 CD27+3 CD43+2 

▼CD45RA-5 

1.6 
▲CD4+10 CD3+7 CD27+2 

▼CD45RA-4 

1.4 
▲CD3+10 CD4+9 CD27+4 CCR7+3 CD28+2 

▼CD45RA-3 

1.2 

▲CD4+10 CD3+10 CD43+4 CD27+3 CCR7+2 CD28+2 

CD45RO+2 

▼MHCII-4 CD38-2 CD45RA-2 

Healthy 
human 
tonsil 

Polikowsky  
et 

al.(Polikow
sky, 

Wogsland 
et al. 2015) 

B cells 

3.1 

▲CD4+10 CD3+9 CD5+5 CD27+5 

▼MHCII-10 CD19-9 CD20-7 CD40-7 CD22-7 Igκ-5 Igλ-4 IgD-2 

SHP1-2 CD16-2 CD33-2 IgM-2 

3.4 

▲CD4+9 CD3+9 CD5+5 CD27+5 

▼MHCII-10 CD19-10 CD20-9 CD22-7 CD40-7 Igλ-3 Igκ-3 IgG-

2 CD33-2 CD16-2 SHP1-2 

3.5 

▲CD4+10 CD3+10 CD27+6 CD5+4 

▼MHCII-7 Igλ-5 CD20-5 CD19-5 CD22-5 CD40-4 IgD-3 IgM-3 
CD16-2 Igκ-2 CD79B-2 SHP1-2 

# Sample numbers match study numbers in Figure 4-11. 
§Unpublished data from AR Greenplate, prepared as in Leelatian et al.(Leelatian, Diggins et al. 2015) 
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Results 

 Four cytometry studies, Dataset A from Leelatian et al.(Leelatian, Diggins et al. 2015), Dataset B from 

Bendall et al.(Bendall, Simonds et al. 2011), Dataset C from Becher et al.(Becher, Schlitzer et al. 2014), and 

Dataset D containing unpublished human glioma data(Leelatian, Doxie et al. 2016) were used to evaluate MEM 

and identify biological features of expert and machine identified cell subsets.  These datasets had been 

previously analyzed by experts and by computational tools including viSNE(Amir el, Davis et al. 2013) and 

SPADE(Qiu, Simonds et al. 2011), which are respectively used in mass cytometry for dimensionality reduction 

and cell clustering(Diggins, Ferrell et al. 2015).   

Dataset A was mass cytometry data quantifying expression of 25 proteins on healthy human peripheral 

blood mononuclear cells (PBMC)(Leelatian, Diggins et al. 2015).  This dataset was chosen for two reasons: 1) 

the 7 cell subsets present are well-established and phenotypically distinct populations that served as a gold 

standard of biological ‘truth’ and 2) the cells in each of the 7 subsets had been characterized for 25 proteins that 

displayed varying homogeneous and heterogeneous expression patterns across the subsets.  Populations were 

expert gated following viSNE reduction to a two-dimensional view and each population was compared to the 

other cells in the sample as reference (Figure 4-2).  MEM returned automatic labels that matched prior expert 

analysis(Leelatian, Diggins et al. 2015) and correctly assigned high positive enrichment values to canonical 

protein features of each subset (Figure 4-2b), including CD4 on CD4+ T cells (▲CD4+6 CD3+5 ▼CD8a-4 CD16-

3), IgM on IgM+ B cells (▲MHC II+8 IgM+6 CD19+5 ▼CD4-6 CD3-5), CD11c and MHC II on monocytes 

(▲CD11c+8 CD33+7 CD14+6 CD61+6 MHC II+4 CD44+3 ▼CD3-5 CD4-4), and CD16 on NK cells (▲CD16+9 

CD56+2 CD11c+2 ▼CD4-7 CD3-4 CD44-3).  Proteins that were not significantly enriched in any of the 7 subsets 

of mature human blood mononuclear cells were correctly assigned near-zero MEM scores (e.g. CD34 and 

CD117 proteins normally expressed on hematopoietic stem cells, Figure 4-2b).  Similarly, proteins with little 

variability across cell subsets were assigned low, near-zero MEM scores, even for the proteins with the highest 

median expression values (e.g. CD45 on all subsets or CD45RA on non-T cell subsets Figure 4-2b).   
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Figure 4-2: Marker enrichment modeling (MEM) automatically labels human blood cell populations in Dataset A. a) 
Cells from normal human blood were previously grouped into 7 canonical populations using viSNE analysis and expert 
review of 25D mass cytometry data(Leelatian, Diggins et al. 2015).  b)  MEM labels were computationally generated for 
each canonical cell subset using the other six populations as reference.  The population labeled by immunologists as “CD4+ 
T cells” was labeled by MEM as ▲CD4+6 CD3+5 ▼CD8a-4 CD16-3 and comprised 48.72% of PBMC in this sample.  In 
contrast, the MEM label ▲CD16+9 CD56+2 CD11c+2▼CD4-7 CD3-4 CD44-3 was generated for the population gated as “NK 
cells”.  Heatmaps show protein enrichment values used to calculate MEM labels and median protein expression values for 
each protein on each cell subset.  Variability in protein expression across the 7 canonical cell populations is shown below 
to highlight proteins that were expressed homogeneously (low variability, e.g. CD45) and those that were expressed 
heterogeneously (high variability, e.g. CD8a, CD4). c) Graphs show decreasing f-measure (clustering accuracy) as markers 
were excluded from k-means cluster analysis based on high to low absolute MEM or median values, compared to random 
exclusion. 

 

Proteins enriched in a cell subset but rarely expressed on cells in the reference population were assigned 

positive MEM scores (e.g. CD19 on B cells, CD16 on NK cells, Figure 4-2b).  Negative enrichment scores 

occurred when proteins were commonly expressed in the reference population but consistently lacking on a 

specific cell subset.  For example, CD3 was expressed in a majority of the cells (CD4+ and CD8+ T cells 
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comprised 48.72% and 16.83% of the sample, respectively), thus B cells, NK cells, and monocytes were all 

assigned negative MEM scores for CD3 (Figure 4-2b).  Similarly, CD44 was assigned a negative MEM score for 

NK cells because all other cells in human blood expressed more CD44 per-cell (Figure 4-2b).  Thus, negative 

MEM scores highlighted a specific lack of expression, or negative enrichment, of a protein on a cell subset 

relative to the rest of the cells within the sample.  

In flow cytometry, differences in protein expression between two cell populations are routinely 

approximated by comparing median signal intensity.  This standard comparison of median signal intensity is 

equal to the “magnitude difference” portion of the MEM calculation (MAGDIFF = MAGPOP – MAGREF).  To compare 

MEM to this standard, MAGDIFF and MEM values were calculated for each of the 7 major immune cell populations 

shown in Figure 4-2 and their corresponding reference populations (Table 4-2).   
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Table 4-2. MEM equation components for PBMC subsets in Fig. 4-2 
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MAGPOP 4.3 2.3 3.2 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 2.4 3.1 0.5 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 

MAGREF 4.0 2.6 2.6 0.1 0.0 0.0 0.8 0.1 0.0 0.4 0.0 0.0 0.2 0.1 0.0 0.8 0.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 

IQRPOP 0.7 1.7 0.9 0.5 0.5 0.5 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.9 0.6 0.8 0.5 0.5 0.5 0.5 0.6 0.5 0.5 0.5 

IQRREF 0.8 1.1 1.6 2.3 0.5 0.5 4.8 2.2 0.7 1.2 0.5 0.8 3.7 1.8 0.6 1.2 1.4 0.5 0.7 0.5 0.5 0.5 0.5 0.5 

MEM 0.6 0.1 1.9 -5.0 0.0 0.0 -7.4 -4.7 0.7 -2.5 0.0 0.7 -8.8 4.2 4.1 -1.0 -2.7 0.0 -0.8 0.0 0.0 0.0 0.0 0.0 

MAGDIFF-S 0.5 -0.6 1.3 -0.2 0 0 -0.5 -0.2 0 -0.7 0 0 -0.4 4.8 6.4 -0.4 -0.6 0 -0.2 0 0.2 0 0 0 

MAGDIFF 0.3 -0.3 0.6 -0.1 0.0 0.0 -0.3 -0.1 0.0 -0.4 0.0 0.0 -0.2 2.3 3.0 -0.2 -0.3 0.0 -0.1 0.0 0.1 0.0 0.0 0.0 

IQRDIFF -0.1 0.7 -0.7 -1.8 0.0 0.0 -4.1 -1.7 -0.2 -0.7 0.0 -0.3 -3.2 -0.8 0.0 -0.4 -0.9 0.0 -0.2 0.0 0.1 0.0 0.0 0.0 

C
D

8
 T

 c
e
lls

 

MAGPOP 4.1 2.7 2.6 0.0 0.0 0.0 5.1 0.0 0.0 0.2 0.0 0.0 0.0 2.2 0.1 0.2 1.7 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

MAGREF 4.2 2.4 3.1 0.0 0.0 0.0 0.4 0.0 0.0 0.1 0.0 0.0 0.0 1.7 2.6 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

IQRPOP 0.7 1.0 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.8 0.5 0.6 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

IQRREF 0.7 1.4 1.3 0.9 0.5 0.5 0.9 0.7 0.5 0.6 0.5 0.5 0.6 2.5 3.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

MEM -0.2 0.9 -1.3 1.0 0.0 0.0 7.3 0.5 0.0 0.3 0.0 0.0 0.3 3.5 -10.0 -1.7 1.7 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

MAGDIFF-S -0.2 0.5 -0.9 0 0 0 10 0 0 0.2 0 0 0 1.1 -5.3 -1 3.5 0 0 0.1 0 0 0 0 

MAGDIFF -0.1 0.3 -0.5 0.0 0.0 0.0 4.7 0.0 0.0 0.1 0.0 0.0 0.0 0.5 -2.5 -0.5 1.7 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

IQRDIFF -0.1 -0.4 -0.5 -0.4 0.0 0.0 -0.4 -0.2 0.0 -0.1 0.0 0.0 -0.1 -1.7 -2.5 -0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

MAGPOP 3.9 3.0 3.4 2.7 0.0 0.0 0.1 3.1 0.9 0.0 0.1 0.3 1.3 0.0 0.7 0.7 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 

D
C

s
 

MAGREF 4.1 2.5 3.0 0.0 0.0 0.0 0.6 0.0 0.0 0.1 0.0 0.0 0.0 1.9 2.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

IQRPOP 1.1 1.6 1.0 2.0 0.5 0.5 0.5 3.9 1.7 0.5 0.5 1.5 3.9 0.5 1.4 1.2 0.5 2.3 0.5 0.5 0.5 0.5 0.5 0.5 

IQRREF 0.7 1.3 1.3 0.5 0.5 0.5 1.5 0.5 0.5 0.7 0.5 0.5 0.5 2.4 3.1 1.0 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

MEM 0.2 0.5 0.8 2.6 0.0 0.0 -3.2 3.0 0.2 -0.5 0.1 -0.5 0.5 -7.6 -3.4 -0.1 -0.4 0.7 0.0 0.0 0.0 0.0 0.0 0.0 

MAGDIFF-S -0.4 1.1 0.7 5.6 0 0 -1 6.6 1.8 -0.1 0.1 0.6 2.6 -3.9 -2.8 0.2 0 2.6 0 0 0 0 0 0 

MAGDIFF -0.2 0.5 0.4 2.7 0.0 0.0 -0.5 3.1 0.9 -0.1 0.1 0.3 1.3 -1.9 -1.3 0.1 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 

IQRDIFF 0.4 0.3 -0.2 1.5 0.0 0.0 -1.0 3.4 1.2 -0.2 0.0 1.0 3.4 -1.9 -1.7 0.2 -0.1 1.8 0.0 0.0 0.0 0.0 0.0 0.0 

MAGPOP 4.4 3.5 3.1 3.1 0.0 2.5 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 

Ig
M

- 
B

 c
e
lls

 

MAGREF 4.1 2.5 3.0 0.0 0.0 0.0 0.6 0.0 0.0 0.1 0.0 0.0 0.0 1.9 2.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

IQRPOP 0.8 1.4 1.0 1.3 0.5 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.5 

IQRREF 0.7 1.3 1.3 0.5 0.5 0.5 1.5 0.5 0.5 0.6 0.5 0.5 0.5 2.4 3.0 1.0 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

MEM 0.2 1.3 0.5 3.3 0.0 3.0 -3.3 0.0 0.1 -0.5 0.0 0.0 -0.1 -7.6 -9.4 0.1 -0.4 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

MAGDIFF-S 0.4 2.1 0.2 6.5 0 5.2 -1.1 0 0.1 -0.2 0 0 0 -3.9 -4.2 0.2 0 0 0 0.3 0 0 0 0 

MAGDIFF 0.2 1.0 0.1 3.1 0.0 2.5 -0.5 0.0 0.1 -0.1 0.0 0.0 0.0 -1.9 -2.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 

IQRDIFF 0.0 0.0 -0.3 0.8 0.0 0.2 -1.0 0.0 0.0 -0.1 0.0 0.0 0.0 -1.9 -2.5 0.0 -0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

MAGPOP 4.3 2.6 2.7 3.7 3.0 2.5 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

Ig
M

+
 B

 c
e
lls

 

MAGREF 4.1 2.5 3.0 0.0 0.0 0.0 0.6 0.0 0.0 0.1 0.0 0.0 0.0 2.0 2.3 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

IQRPOP 0.7 1.2 0.9 1.4 2.6 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

IQRREF 0.7 1.4 1.3 0.5 0.5 0.5 1.6 0.5 0.5 0.7 0.5 0.5 0.6 2.4 3.0 0.9 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

MEM 0.4 0.5 -1.0 4.0 2.9 3.0 -3.6 0.0 0.1 -0.6 0.0 0.0 -0.3 -7.5 -9.6 0.2 -0.6 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

MAGDIFF-S 0.4 0.3 -0.7 7.7 6.3 5.2 -1.2 0 0.2 -0.2 0 0 0 -4 -4.8 0.5 0 0 0 0.2 0 0 0 0 

MAGDIFF 0.2 0.2 -0.3 3.7 3.0 2.5 -0.6 0.0 0.1 -0.1 0.0 0.0 0.0 -1.9 -2.3 0.3 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

IQRDIFF -0.1 -0.2 -0.4 0.9 2.1 0.2 -1.1 0.0 0.0 -0.2 0.0 0.0 -0.1 -1.9 -2.5 0.1 -0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

MAGPOP 4.1 2.3 4.2 2.1 0.0 0.0 0.2 3.6 3.5 2.7 2.9 2.9 0.1 0.0 1.1 1.3 0.2 0.4 0.1 0.0 0.0 0.1 0.0 0.0 

M
o
n
o
c
y
te

s
 

MAGREF 4.2 2.5 2.9 0.0 0.0 0.0 0.6 0.0 0.0 0.1 0.0 0.0 0.0 2.0 2.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

IQRPOP 0.7 1.1 0.7 1.5 0.5 0.5 0.5 0.8 0.6 0.7 0.7 1.2 0.5 0.5 0.9 0.8 0.6 0.8 0.5 0.5 0.5 0.5 0.5 0.5 

IQRREF 0.7 1.4 1.2 0.5 0.5 0.5 1.7 0.5 0.5 0.5 0.5 0.5 0.6 2.2 3.1 0.9 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

MEM -0.2 -0.5 2.6 1.9 0.0 0.0 -3.5 4.3 4.5 3.1 3.5 3.1 0.2 -7.2 -5.0 1.1 0.3 0.0 0.1 0.0 0.0 0.1 0.0 0.0 

MAGDIFF-S -0.2 -0.3 2.6 4.4 0 0 -0.9 7.5 7.4 5.5 6 6.1 0 -4.2 -2.7 1.5 0.4 0.7 0.1 0 0 0.1 0 0 

MAGDIFF -0.1 -0.2 1.3 2.1 0.0 0.0 -0.5 3.6 3.5 2.6 2.9 2.9 0.0 -2.0 -1.3 0.8 0.2 0.4 0.1 0.0 0.0 0.1 0.0 0.0 

IQRDIFF 0.0 -0.2 -0.5 1.0 0.0 0.0 -1.1 0.3 0.1 0.2 0.2 0.7 -0.1 -1.7 -2.2 -0.1 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 

MAGPOP 3.8 2.6 1.6 0.0 0.0 0.0 0.5 0.8 0.0 0.6 0.0 0.0 4.3 0.0 0.0 1.1 0.1 0.0 0.8 0.0 0.0 0.0 0.0 0.0 

N
K

 c
e
lls

 

MAGREF 4.2 2.4 3.2 0.0 0.0 0.0 0.5 0.0 0.0 0.1 0.0 0.0 0.0 2.1 2.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

IQRPOP 0.7 0.9 0.9 0.5 0.5 0.5 2.4 1.6 0.5 0.9 0.5 0.5 0.8 0.5 0.5 1.3 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 

IQRREF 0.7 1.5 1.0 1.0 0.5 0.5 1.3 0.5 0.5 0.5 0.5 0.5 0.5 1.6 2.8 0.9 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

MEM -0.6 1.0 -2.3 1.2 0.0 0.0 0.6 0.1 0.0 0.1 0.0 0.0 5.2 -5.6 -9.6 0.3 0.5 0.0 0.4 0.0 0.0 0.0 0.0 0.0 

MAGDIFF-S -0.9 0.2 -3.3 0 0 0 0 1.6 0 1 0 0 9.1 -4.3 -5.3 1.1 0 0 1.7 0 0 0 0 0 

MAGDIFF -0.4 0.1 -1.6 0.0 0.0 0.0 0.0 0.8 0.0 0.5 0.0 0.0 4.3 -2.1 -2.5 0.5 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 

IQRDIFF 0.0 -0.6 -0.1 -0.5 0.0 0.0 1.1 1.1 0.0 0.4 0.0 0.0 0.3 -1.1 -2.3 0.4 -0.2 0.0 0.5 0.0 0.0 0.0 0.0 0.0 
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The MEM scores and magnitude difference values were most divergent for features that were negatively 

enriched on specific cell populations (Figure 4-3, Table 4-2). For example, the MEM score of CD8 on CD4+ T 

cells (CD4+ T cells: CD8-7) was lower than the difference in median CD8 expression between CD4+ T cells and 

the rest of the cells in the sample (CD4+ T cells: MAGDIFF CD8 = -0.3). MEM therefore emphasized the negative 

enrichment (i.e. lack of expression) of CD8 on these cells. Similarly, the MEM score for CD4 on most other 

populations (e.g. CD8- T cells: CD4-10) was lower than that population’s median difference (e.g. CD8+ T cells 

MAGDIFF CD4 = -2.0).  Thus, MEM correctly emphasizes the negative enrichment of CD4 on cells other than 

CD4+ T cells and APCs (Table 4-2). Incorporating information about feature variability therefore allows MEM to 

capture negative enrichment that is not reflected in magnitude difference alone (Figure 4-3 and Table 4-2). 

 
 
Figure 4-3. MEM captures negative feature enrichment that is not apparent in the difference between population 
medians. For 7 major normal human PBMC cell populations and 25 proteins, heatmaps show a) MEM scores; b) median 
expression levels (MAGpop); c) the difference between median expression value of the population and the median 
expression of the other immune cells (MAGdiff) (top) and the difference between the MEM score and the MAGdiff value to 
highlight differences between these two methods of population comparison (bottom); and d) the same comparisons made 
in c) using scaled MAGdiff values to -10 to +10 scale (linearly; x/max(MAGdiff)*10). Scaling is meant to allow for a more 
direct comparison to the MEM scores. 

 

To test the hypothesis that the features with the highest MEM scores would be important for 

computational cluster formation, the 25 proteins measured in Dataset A (Figure 4-2b) were sorted in six ways: 
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1) high to low MEM score, 2) high to low median value, 3) high to low MAGDIFF, 4) high to low z-score, 5) high to 

low K-S statistic, and 6) randomly (Table 4-3). Z-score and K-S statistic values are shown in Table 4-4. The 

proteins were then sequentially, cumulatively excluded from use in k-means clustering and F-measure was used 

to measure clustering accuracy (Fig. 4-2c and Figure 4-4). The order in which markers were excluded is shown 

in Table 4-3. Random exclusion was performed 15 times and the average result is shown (Fig. 4-2c). Clustering 

accuracy was most impacted by excluding proteins based on MEM score.  F-measure dropped to 0.75 after 

removing the proteins with the top 6 MEM scores, whereas this drop in f-measure was only seen after removing 

the 14 highest markers based on MAGDIFF, the 13 highest markers based on z-score, and the 12 highest markers 

based on K-S statistic values (Figure 4-4). Removing markers based on median value was not significantly 

different from removing markers randomly until after the 15 markers with the highest median signal intensity 

were excluded (Figure 4-4).   The same analysis was also performed with viSNE in place of k-means clustering 

to visualize the loss of population resolution when markers were excluded based on MEM or median scores (Fig. 

4-5c). In this case, loss of accuracy as markers were excluded by MEM values was reflected in the viSNE map 

as a loss of well-separated population islands comprised of one cell type. These results indicated that MEM 

enrichment scores captured the markers that were important to cell identity better than traditional comparisons 

based solely on median protein expression.  
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Table 4-3. K-S and z-score values for immune cell populations in Fig. 1 
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CD4+ T 1.8 1.2 3.3 9.7 4.1 3.8 2.7 2.2 1.8 2.0 2.0 0.1 2.3 3.8 2.5 3.7 1.3 3.4 3.2 1.7 3.6 6.7 1.2 3.7 3.6 

CD8+ T 1.0 1.2 1.3 6.2 10.0 6.5 3.5 1.1 1.0 1.4 1.0 0.7 1.5 2.3 1.2 8.3 0.1 1.9 2.8 3.3 2.1 4.1 0.8 2.0 0.3 

DC 0.8 0.7 4.5 4.0 3.1 1.5 0.3 3.1 5.8 2.6 1.8 0.2 4.7 4.8 2.8 1.8 0.6 3.4 1.8 0.9 2.1 6.7 0.9 7.8 0.8 

IgM- B 9.3 3.6 1.7 5.9 4.8 7.6 3.4 0.7 0.4 4.3 1.6 0.4 2.2 1.0 0.9 3.0 0.6 1.7 0.9 0.7 0.5 6.6 1.5 7.9 1.1 

IgM+ B 9.8 3.6 2.9 6.4 5.4 8.4 3.5 0.8 0.9 1.3 1.5 0.5 2.6 1.7 1.2 3.1 0.4 1.9 2.1 1.4 0.7 6.8 9.4 8.5 0.9 

Mono 0.9 0.5 9.8 4.9 3.0 2.5 1.2 9.2 5.6 1.0 0.8 1.5 9.9 9.4 9.7 2.7 1.4 1.7 6.6 4.2 2.5 7.3 0.6 8.2 1.8 

NK 1.8 1.4 3.6 6.6 1.9 2.0 1.6 1.1 0.9 1.5 3.2 0.6 1.3 4.7 1.1 1.0 1.8 9.8 7.3 2.7 2.8 7.7 2.0 3.2 6.1 

z
-s

c
o
re

 

CD4+ T -0.6 -0.3 -0.9 4.6 -0.7 -1.0 -0.6 -0.6 -0.5 -0.8 0.6 0.0 -0.7 -1.0 -0.7 -1.0 -0.3 -0.9 0.7 -0.4 1.6 1.9 -0.4 -0.9 -0.9 

CD8+ T -0.3 0.3 -0.1 -1.5 5.6 1.4 0.7 -0.4 -0.3 0.4 -0.2 -0.2 -0.5 -0.7 -0.5 4.2 0.0 -0.4 -0.4 -1.0 -0.5 0.9 -0.3 -0.5 0.1 

DC -0.1 -0.2 -0.9 -0.6 -0.8 -0.2 0.1 0.7 4.4 0.6 -0.4 0.0 1.1 1.9 0.2 -0.5 0.1 1.0 0.4 0.3 -0.5 -1.7 0.2 2.3 0.0 

IgM- B 4.4 1.2 -0.5 -1.6 -1.0 3.1 1.2 -0.2 0.0 1.2 0.4 0.1 0.0 -0.3 -0.3 -0.7 -0.1 -0.6 0.2 0.3 0.0 -1.6 -0.3 2.6 -0.3 

IgM+ B 7.6 1.4 -0.7 -1.7 -1.1 3.9 1.2 -0.3 0.1 0.5 0.5 0.2 0.0 -0.5 -0.4 -0.8 -0.1 -0.6 -0.3 0.4 -0.2 -1.7 9.9 3.8 -0.2 

Mono -0.3 0.1 5.1 -0.3 -0.8 -0.7 0.3 6.2 1.9 0.0 -0.2 0.5 8.7 5.1 10.0 0.1 0.4 -0.4 1.8 1.1 -0.6 -1.9 -0.3 2.3 0.0 

NK -0.4 -0.1 0.5 -1.9 -0.2 -0.6 -0.4 -0.4 -0.3 0.3 -1.0 -0.1 -0.5 0.8 -0.2 -0.2 0.5 7.4 -2.8 0.9 -0.7 -2.2 -0.5 -0.8 2.5 

Each population (POP) was compared to all non-population cells (REF). K-S statistic was calculated as a comparison 
between POP and REF distributions for each protein. Z-score was calculated as the number of standard deviations the POP 
mean was from the REF mean.  K-S and z-score were signed and scaled to -10 to +10 as for MEM values. 

 

Table 4-4. Order of marker exclusion for clustering and f-
measure (high to low) 

MEM MAG MAGDIFF z-score K-S  

CD4 CD8a CD8a CD8 CD14 

CD16 CD45 CD16 CD33 IgM 

CD3 CD16 CD11c CD16 CD33 

CD8a CD44 HLA-DR CD11b CD19 

CD11c CD11c CD33 CD19 CD16 

HLA-DR HLA-DR CD4 CD14 CD61 

CD33 CD33 CD61 CD4 CD8 

CD61 CD4 CD14 CD11c CD11b 

CD14 CD61 CD19 IgM CD11c 

CD19 CD45RA CD11b CD61 CD4 

CD11b CD14 IgM HLADR CD123 

CD69 CD11b CD3 CD20 CD69 

CD44 CD19 CD20 CD69 CD20 

CD20 IgM CD69 CD3 HLADR 

IgM CD3 CD44 CD44 CD44 

CD38 CD20 CD56 CD56 CD56 

CD45RA CD69 CD38 CD123 CD3 

CD56 CD38 CD123 CD45RA CD25 

CD45 CD56 CD45 CD38 CD117 

CD34 CD123 CD45RA CD25 CD34 

CD10 CD34 CD34 CD117 CD45RA 

CD117 CD25 CD25 CD34 CD38 
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CD123 CD10 CD10 CD45 CD45 

CD25 CD117 CD15 CD15 CD15 

CD15 CD15 CD117 CD10 CD10 

 

 
 
 
 
Figure 4-4. MEM highly scores markers that are important to clustering accuracy. Markers were sequentially and 
cumulatively excluded from k-means cluster analysis of Dataset A, from high to low, sorted based on 5 different statistics 
or scores (marker order shown in Table 4-3): MEM, median, median difference (MAGDIFF), z-score, and Kolmogorov-
Smirnov (K-S) statistic. Clustering accuracy was quantified as the f-measure where true cluster identity was assumed to 
be the clusters formed by clustering on all 25 markers in the dataset. The moving average of the f-measure is shown. 
Error bars represent the standard error. The vertical red line indicates the number of excluded features at which the f-
measure reached 0.75. 
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Figure 4-5. MEM highly scores markers that are important to viSNE mapping a) viSNE map for healthy human blood, 
built using 25 surface protein markers. Populations were identified by expert analysis and color coded. b). Top to bottom, 
left to right: viSNE maps generated as markers were iteratively, cumulatively excluded based on their MEM scores (high 
to low absolute value). Heat intensity for each cell indicates CD8 expression. c) Top to bottom, left to right: viSNE maps 
generated as markers were iteratively, cumulatively excluded based on their median scores (high to low absolute value). 
Heat intensity for each cell indicates CD8 expression. 

 

 Dataset B was mass cytometry data quantifying expression of 31 proteins on healthy human bone 

marrow(Bendall, Simonds et al. 2011). The diverse cell types identified in this dataset included mature cells, 

such as CD4+ T cells recirculating from blood, and cells developing along a continuum originating from 

hematopoietic stem cells (HSCs), such as myeloid and lymphoid cells.  Computational and expert analysis by 

the authors had previously identified 23 populations of cells(Bendall, Simonds et al. 2011) that were analyzed 

here by MEM (Figure 4-6a).  MEM effectively quantified enrichment of proteins marking stem and progenitor 

cells as well as mature cells.  For example, the cell subset labeled by Bendall et al. as HSCs was highly enriched 

for CD34 (CD34+6) and negatively enriched for CD45 (CD45-5), consistent with the authors’ original 

interpretation and longstanding biological observations(Civin, Strauss et al. 1984, Doulatov, Notta et al. 2012).  

As cells matured, MEM enrichment scores for HLA-DR, CD19, and CD3, three proteins functionally involved in 

shaping cell identity, increased on respective subsets of APCs, B cells, and T cells (Figure 4-6). Notably, MEM 

scores for CD45 expression in Dataset B varied across subsets and correlated with differentiation and maturation 

(Figure 4-6).  This result in bone marrow contrasted with the results in Dataset A, where MEM scores for CD45 

were uniformly near zero because the mature blood cell subsets all expressed high levels of CD45 (Figure 4-2).  
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Figure 4-6: MEM labels report enriched protein expression in human bone marrow cells in Dataset B.  a) Cells 
from normal human bone marrow were previously grouped into 23 nucleated cell populations using spanning-tree 
progression analysis of density normalized events (SPADE) and expert review of 31D mass cytometry data(Bendall, 
Simonds et al. 2011).  MEM labels are shown for 8 cell subsets that ranged in frequency from 0.002% to 10.57% of total 
cells. All non-population cells were used as reference for MEM.  Previously determined expert labels are included in 
parenthesis for comparison to automatically generated MEM labels.  Additional MEM analysis of this dataset is available 
for all 28 identified populations (Figure 4-14) and using stem cells as a common comparison point (Figure 4-5).  b) 
Pairwise analysis of the same dataset compared just bone marrow T cells (red) and B cells (blue).  The percentage of 
each population in the comparison is indicated in the lower right of the MEM label. 

 

 To assess how MEM scores captured intra-population variability, closely related populations from human 

bone marrow were grouped and new MEM labels calculated in a pairwise comparison of CD19+ B cells and CD3+ 

T cells (Dataset B, Fig. 4-6b). As expected, CD3+ T cells had a lower MEM score for CD8 than the subset of 
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CD3+ CD8+ T cells (CD8+3 vs. CD8+8, respectively) because CD8- CD4+ T cells were part of the parental CD3+ 

T cell population.  Likewise, IgM enrichment was lower in all CD19+ B cells than in the IgM+ subset of CD19+ B 

cells (IgM+3 vs. IgM+6).  As a general rule, MEM scores will approach median values as feature variability within 

populations decreases (Figure 4-7).  Thus, MEM captures feature enrichment and heterogeneity better than 

median in diverse populations, as in Fig. 4-2c. 

 
 
 
Figure 4-7. MEM scores largely reflect median expression values for relatively homogenous populations. 
Heatmaps show median intensity of protein expression (left) and protein enrichment by MEM (right) for measured proteins 
in 28 populations characterized as relatively homogeneous for established cell types by expert analysis (rows).  Each 
population was compared to the other 27 subsets for the MEM analysis.  MEM scores approach median expression 
values in homogeneous populations because the contribution of variance approaches zero. 
 

 

 Dataset C was mass cytometry data quantifying expression of 38 proteins on murine cells from eight 

tissues(Becher, Schlitzer et al. 2014).  This dataset was chosen to evaluate MEM population comparisons across 

tissues in a non-human model and to test the hypothesis that MEM would objectively identify the most enriched 

features of novel cell subsets.  Dataset C was analyzed three different ways by MEM: 1) comprehensive MEM 

phenotyping highlighted the major features of each population, as in Becher et al. (Figure 4-8); 2) subset-focused 

MEM phenotyping identified the distinguishing features of novel cell subsets identified by Becher et al., such as 

innate lymphoid cell (ILC) population 28 (Figure 4-9 and Figure 4-10); 3) tissue-specific MEM phenotyping 

provided a new way of highlighting how neutrophil phenotype varied across tissues.  While comprehensive 
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phenotyping provided an overview of the major differences between cell subsets (Figure 4-8), subset-focused 

phenotyping better captured the features experts had identified as uniquely enriched on novel cell populations 

(Figure 4-9).  For example, cluster 28 was a novel population identified by Becher et al. as CD11bint NK 

cells(Becher, Schlitzer et al. 2014).  The MEM label for cluster 28 within ILCs was ▲CD11b+5 CD62L+3 ▼CD4-

7 CD103-4 Terr119-3 (Figure 4-9b and Figure 4-10).  This MEM label captured the key feature of this novel 

innate lymphoid cell subset (CD11bint) and highlighted additional features that can be used to match this subset 

to cells identified by others (i.e., to cytotype the population).   

 

 
 
 
 
Figure 4-8. MEM quantifies feature enrichment on 28 automatically identified murine myeloid cell subsets. MEM 
labels are shown for each of 28 murine myeloid populations automatically identified by Becher, et al(Becher, Schlitzer et 
al. 2014). Each population was compared to the remaining 27 populations as reference for the MEM calculation. 

 

 To compare tissue specific phenotypes, MEM was next used in a novel analysis characterizing 

neutrophils from each of the 8 tissues (Figure 4-9c). CD54 (ICAM-1), was highly enriched on lung neutrophils 

(CD54+8) as opposed to on neutrophils from other tissues, such as bone marrow (CD54-3). CD54 plays a 
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crucial role in neutrophil recruitment to the lungs(Basit, Reutershan et al. 2006). MEM also revealed that 

CD62L, a molecule that is shed from neutrophils that have recently left the bone marrow, was most enriched 

on bone marrow neutrophils(Furze and Rankin 2008). Other markers, including CD24, HLA-DR, and CD48, 

also displayed tissue-specific enrichment on neutrophils.  Therefore, changing the context of the MEM 

comparison and using alternative reference populations can reveal enrichment of biologically relevant features 

that is not apparent with standard approaches, such as median analysis. MEM comparisons can also capture 

the environment in which a subset is normally found, and this was observed to provide additional information 

about the tissue context that might be especially helpful in translational applications of MEM in disease 

settings.  These results indicate that MEM labels complement unbiased population discovery and effectively 

characterize cyto incognito(Irish 2014) by providing unbiased descriptions that correctly capture key features of 

novel cell types. 
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Figure 4-9. MEM labels characterize subset specific and tissue specific phenotypes of murine innate lymphoid 
cells and neutrophils in Dataset C.  a) Previous computational analysis automatically grouped murine cells into 28 
populations using t-SNE and DensVM analysis of 38 proteins measured by mass cytometry(Becher, Schlitzer et al. 2014).  
b)  Density of each of 6 computationally defined populations of ILCs is overlaid in color on a greyscale contour plot of cell 
density for all ILCs (red region from a).  MEM labels characterized the enriched features of each computationally identified 
population, such as ILC subset 28, which was distinguished as CD11b+5. c) MEM labels were generated for all neutrophil 
subsets according to tissue site (labeled in blue).  Density of each neutrophil population is overlaid in color on a contour t-
SNE plot of all neutrophils (blue region in a).  The percentage of each population in the comparison is indicated in the 
lower left of the MEM label. Additional MEM analysis of this dataset is available for all 28 identified populations (Figure 4-
8).   
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Figure 4-10. Focused MEM analysis quantifies feature enrichment within phenotypically similar groups of cells a-
f) Focused MEM analysis on murine myeloid cell subsets. A MEM label for one population within each group is shown as 
an example. Groups were defined as the 6 major murine subgroups identified by t-SNE and DensVM by Becher et 
al.(Becher, Schlitzer et al. 2014). 
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An important aspect of MEM is generation of machine-readable quantitative labels that can be used to 

register population identities across samples and studies.  A MEM label for a newly discovered population can 

be compared quantitatively against a reference set of established MEM labels or a MEM label reported in a 

paper.  To illustrate this idea, pairwise similarity of MEM scores was calculated for 80 populations of cells from 

7 different studies including healthy CD4+ T cell and B cell (Figure 4-11).  Cells had highly similar MEM scores 

within each major cell type, regardless of platform (mass vs fluorescence flow cytometry), study, or tissue source.  

For example, T cells run on mass cytometry from different blood donors were 97% ± 1.3 similar to each other, 

85% ± 1.9 similar to T cells from blood run on fluorescence flow cytometry, and 87% ± 2.1 similar to T cells from 

tonsil run on mass cytometry (Figure 4-11).  However, these cells were 66.9% ± 13 similar to any B cell 

population. This indicates that MEM scores provide a way to communicate cell identity and to quantify similarities 

of cell types from the text label alone.   

Dataset D included 52 populations of tumor infiltrating APCs, tumor infiltrating T cells, and non-immune 

malignant tumor cells identified in human glioma tumors(Leelatian, Doxie et al. 2016).  To obtain these 

populations, each tumor was analyzed by viSNE and cell subsets were expert gated solely on t-SNE cluster 

density (Figure 4-12).  To determine whether MEM could distinguish immune cell subsets from other tumor cell 

types with limited information, MEM scores were calculated using only 9 markers (S100B, TUJ1, GFAP, Nestin, 

MET, PDGFRα,EGFR, HLA-DR, and CD44) that were expected to be expressed on cancer cells (Figure 4-13a).  

The 52 populations were grouped into 13 major groups of cell types based on MEM enrichment of the 9 analyzed 

proteins and these groups interpreted as either tumor infiltrating APCs (Figure 4-13b, blue), tumor infiltrating T 

cells (Figure 4-13b, green), or non-immune tumor cells (Figure 4-13b, red).  To confirm cell identity, four protein 

features that had been excluded from MEM analysis were assessed (Figure 4-13c, CD45, CD3, CD45RO, and 

CD64). CD45 and CD3 were used to confirm T cell identity and CD45 and CD64 were used to confirm APC 

identity. MEM correctly identified both immune cell subsets from all tumor types without using key immune 

lineage markers and without using healthy populations (e.g. APCs from blood or tonsil) to guide the clustering.  

Thus, MEM labels distinguished populations of cells based on non-traditional features and in a disease context.  
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Figure 4-11. Classification based solely on MEM label groups samples of T cells and B cells measured in diverse 
studies using different cytometry platforms. A) MEM label values were compared for each of 80 populations (CD4+ T 
cells and B cells) from 3 human tissues representing 6 mass cytometry studies and 1 fluorescence flow cytometry study.  
The similarity score for two populations was 100% when MEM label exponents were identical for all of the shared 
proteins.  Populations are shown clustered according to MEM label percent similarity.  Tissue type, source study, and 
individual sample IDs are indicated to the right. Published study references: Study references: 1) Nicholas KJ, et al., 
Cytometry A 2016(Nicholas, Greenplate et al. 2016); 2) Polikowsky et al., J Immunol. 2015(Polikowsky, Wogsland et al. 
2015); 3) Ferrell et al., PLOS One 2016(Ferrell, Diggins et al. 2016); 4) Amir et al., Nature Biotech 2013(Amir el, Davis et 
al. 2013); 5) Bendall et al., Science 2011(Bendall, Simonds et al. 2011); 6) unpublished data courtesy of Greenplate AR, 
Irish lab;  7) Leelatian et al., Methods Mol Bio 2015(Leelatian, Diggins et al. 2015).  *indicates samples stimulated by 
bacterial superantigen Staphlococcus enterotoxin B(Nicholas, Greenplate et al. 2016). B) Representative MEM labels for 
CD4+ T cells (top) and B cells (bottom) from SEB-stimulated normal human blood run on mass cytometry (1.4, top), 
normal human bone marrow run on mass cytometry (5), normal human tonsil run on mass cytometry (2.5), SEB-
stimulated normal human blood run on fluorescence flow cytometry (1.4, bottom), and a second analysis of normal human 
blood run on mass cytometry (6.1).  
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Figure 4-12. Unsupervised clustering and gating of 52 populations of malignant and immune cells in glioma. Live 
nucleated immune and malignant cells were gated from glioma tumors as described in Leelatian and Doxie et al., 
Cytometry B 2016(Leelatian, Doxie et al. 2016).  Patient-specific t-SNE axes were created in separate viSNE analyses of 
each tumor (e.g. t-SNE1-G-08 for glioma tumor G-08).  Shown here is density of cells on t-SNE1 vs. t-SNE2 from each 
tumor-specific viSNE analysis.  Expert analysis of density was then used to identify 52 cell clusters from the 4 glioma 
tumors.  These 52 populations were subsequently grouped by MEM in Fig. 4-13a using 9 proteins expressed on 
malignant cells. 
 

 

Figure 4-13. MEM correctly grouped immune and cancer cell populations from glioma tumors using nine proteins 
expressed on cancer cells. (A) A heatmap of MEM enrichment scores is shown for 52 populations of cells identified in 
tumors from 4 glioblastoma patients (G-08, G-10, G-11, G22) in an unsupervised manner using viSNE.  MEM scores were 
then calculated based only on the nine measured proteins expected to be expressed on cancer cells (S100B, TJF1, 
GFAP, Nestin, MET, PGFRα, HLA-DR, and CD44).  (B) Each population was annotated for a cell type based on review of 
the MEM label and classified as tumor infiltrating APCs (blue), tumor infiltrating T cells (green), or non-immune tumor cells 
(red).  (C) A heatmap of median intensity values is shown for the 13 measured proteins from each of the 52 tumor cell 
populations.  Expression of CD45, CD3, and CD64 was used to assess the respective identity of leukocytes, T cells, and 
antigen presenting cells. 
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Figure 4-14. Using stem cells as reference population reveals high enrichment of maturation and differentiation 
markers on bone marrow cell subsets. Clustered heatmap of MEM scores from analysis using HSCs as the reference 
population for the bone marrow cell subsets identified by Bendall et al.(Bendall, Simonds et al. 2011)  Comparison to stem 
cells as a common reference point provided intuitive MEM scores. 
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Figure 4-15. MEM labels reveal potentiated signaling in acute myeloid leukemia blasts from patients with poor 
chemotherapy responses. a) Previous analysis(Irish, Hovland et al. 2004) used median analysis of 2-color fluorescence 
cytometry and 3 staining panels to measure 6 phospho-protein responses to 6 stimulation conditions in leukemia blasts 
from 30 patients.  The new heatmap here shows clustering of MEM scores for each patient compared to the other AML 
patients.  Clustering on MEM enrichment scores identified the same four groups of patients as in the original analysis of 
median signaling response. b) The four patient cluster groups were defined based on basal and potential signaling and 
termed signaling-cluster non-potentiated (SC-NP), potentiated basal (SC-PB), potentiated-1 (SC-P1), or potentiated-2 
(SC-P2), and SC-P2.  SC-P2 was identified as enriched for high risk clinical features. Clinical features for each patient are 
shown(Irish, Hovland et al. 2004).c) Individual patient MEM scores are shown for 6 representative patients of the 30 AML 
patients. 
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Discussion 

MEM provides a straightforward language for labeling cell types based on enriched features.  Given 

widespread adoption and reporting, MEM labels could be used to identify and communicate cytotype across 

studies and platforms in a manner analogous to the way cluster of differentiation (CD) naming was used to 

communicate newly identified antigen targets of antibodies(1984).  While it is useful in some cases to identify 

tissue-specific features of cell subsets, a more intuitive application of MEM compares populations against a 

common reference.  As an example, HSCs were used as a common reference for all other cell subsets (Figure 

4-11 and Figure 4-14).   

This technique of using HSCs as a common reference was used to compare cell population similarity 

across experimental platforms, scientific groups, and tissue of origin. CD4+ T cells were chosen due to the 

similarity in phenotype we might expect across tonsil, blood, and bone marrow, and it was striking that mass and 

fluorescence cytometry produced highly similar MEM labels (Table 4-1 and Figure 4-11). In contrast, SEB 

stimulated and unstimulated B cells measured by fluorescence cytometry had lower similarity scores (Figure 4-

11).  This arose because only 4 shared proteins were enriched on B cells measured by fluorescence cytometry, 

so the similarity scores were very sensitive to small changes in any one protein.  This observation highlights the 

value of measuring more markers, especially in the setting of unusual or unexpected cell phenotypes.  The more 

markers measured, the more chances for cells to be similar or different, and the more robust the MEM 

comparison. However, only 9 non-immune markers were needed to distinguish immune cells from cancer cells 

without including healthy immune cell markers to guide clustering (Figure 4-13).  Going forward, MEM can be 

used to guide feature selection for both computational and experimental analysis. 

Metrics like area under ROC curve (AUC), z-score, and K-S statistic quantify features of distributions that 

MEM does not capture, including difference or overlap, deviation, skew, and shape.  AUC, for example, 

characterizes degree of non-overlap between two distributions and has recently been shown to be superior to 

K-S testing for characterizing “percent positive” in flow cytometry data(Kim, Donnenberg et al. 2016).  Both K-S 

and AUC capture whether peaks are different.  In some cases, difference metrics may be useful for highlighting 

features that are not enriched but which have different distribution shapes in the POP and REF.  For example, 

bimodal vs. unimodal spreads with similar median and IQR values will score highly for K-S or AUC but have 
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near-zero MEM scores.  This matches expert interpretation as we would say that neither population is enriched 

for the feature even though the distributions have differing shapes.  MEM is set up as a scaled enrichment score 

so that it will be less sensitive to instrument variation and platform differences (as in Figure 4-11).  MEM is also 

able to quantify and weight negative enrichment, an important aspect of population identity that is not always 

captured by other comparative metrics, such as z-score.   

Other potential uses for MEM include clinical assessment of enriched features of patient response groups 

for the purpose of hypothesis generation and therapy development.  For example, in an AML phospho-flow 

dataset(Irish, Hovland et al. 2004), MEM revealed potentiated STAT1 phosphorylation following IFNγ in AML 

cells from one patient group (Figure 4-15).  IFNγ signaling via STAT1 activates expression of MHC and B7 family 

members including PD-L1, and potentiated signaling through this pathway might identify AML patients that could 

benefit from checkpoint inhibitor therapy(Loke and Allison 2003).  MEM can also be used to monitor changes in 

tissues over time during treatment.  Deviation from a stable MEM score for peripheral blood cell subsets would 

be expected in the case emerging malignant cells(Greenplate, Johnson et al. 2016), and lack of change towards 

a healthy set of MEM scores for blood or bone marrow cell subsets might indicate a lack of response to 

chemotherapy for a leukemia patient. Going forward, MEM is expected to assist in machine learning applications 

by providing quantitative text descriptions of cytotype that can be algorithmically parsed and used to classify 

newly identified cell subpopulations.   

Methods 

Data generation and acquisition 

The tonsil and normal human bone marrow data sets (Table 4-1, indicated by *, and Figure 4-11) were 

generated by CyTOF analysis as described by Leelatian, et al(Leelatian, Diggins et al. 2015).  

The normal human bone marrow data set from Bendall, et al(Bendall, Simonds et al. 2011) (Figure 4-6) 

was shared and downloaded from Cytobank as FCS files that included the cell population IDs defined by Bendall, 

et al(Bendall, Simonds et al. 2011). 
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The murine myeloid CyTOF dataset from Becher, et al(Becher, Schlitzer et al. 2014) (Figure 4-9) was 

shared and downloaded from Cytobank as FCS files that contained gated cell events and cluster IDs as 

designated by automated analysis in Becher et al, 2014(Becher, Schlitzer et al. 2014).  

The phospho-flow AML data set(Irish, Hovland et al. 2004) (Figure 4-15) was shared on Cytobank and 

downloaded as FCS files. 

The CyTOF datasets from analysis of human GBM, melanoma, and normal blood samples (Figure 4-13) 

was shared on Cytobank and downloaded as text files after viSNE analysis and gating. Data was previously 

analyzed and described in Leelatian et al, 2016(Leelatian, Doxie et al. 2016). 

CyTOF data pre-processing and analysis 

Data analysis was performed using the online analysis platform Cytobank(Kotecha, Krutzik et al. 2010) 

and the statistical programming environment R. Raw median intensity (MI) values were transformed to a 

hyperbolic arcsine scale. A cofactor of 15 was used for the PBMC dataset, and 5 was used for the normal human 

bone marrow data set and for the murine myeloid data set.  Single, intact cells were gated based on cell length 

(30-60) and nucleic acid intercalator (iridium). Major PBMC subsets were gated based on CD45 expression 

(leukocytes) and on canonical lineage marker expression to identify major blood cell subsets.  

FCS files were exported from Cytobank as FCS or tab-delimited text files that were parsed for expression 

intensity information in R(Team 2013). The R package flowCore was used to parse FCS files(Hahne, LeMeur et 

al. 2009). MEM was calculated using the arcsinh transformed MI values, as described above. Heatmaps were 

generated using the heatmap.2 function in the gplots package(Gregory R. Warnes 2015). 

Fluorescence Phospho-Flow AML Data Analysis 

 Data were downloaded from Cytobank as FCS files and processed in R as described above. MFI values 

were transformed to a log normal scale. For each AML patient, a median value and an IQR value was calculated 

for each marker in the unstimulated condition and for the stimulated conditions. The unstimulated median values 

were subtracted from the stimulated median values, and likewise for the IQR values. MEM was then calculated 

by comparing each patient’s subtracted median and IQR values to those of the other patients. This enabled a 

comparison of fold change signaling values rather than raw values. 
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Marker Enrichment Modeling (MEM) 

MEM equation 

The MEM equation is implemented as an R package. Currently, MEM uses medians as the magnitude value; 

however, depending on the data type, mean may be a more appropriate magnitude statistic and mean could be 

substituted for median in the equation. Similarly, other statistics, such as variance, might be substituted for IQR.  

The MEM equation was developed with the intention of capturing and quantifying population-specific feature 

enrichment in a simple equation that avoids over-fitting or unnecessary computation. The primary goal of this 

equation is to scale magnitude differences depending on distribution spread. While other distribution features 

such as skew or shape could be informative, incorporating only two pieces of information – magnitude and 

spread – into the equation captured enough information to be useful in quantifying both positive and negative 

population-specific feature enrichment. 

MEM output and score scaling 

The MEM R script outputs a heatmap of MEM values with a natural language summary of feature 

enrichment as the population (row) names. The + or - value provided along with the marker name is converted 

to a -10 to +10 scale and rounded to the nearest integer. As implemented here, the maximum of the scale was 

set using the highest absolute value MEM score observed across all markers and populations.  All values in the 

matrix are divided by this maximum value and multiplied by 10 to achieve the -10 to +10 scaling. After scaling, 

the original sign value is reapplied to each MEM score. Scaling the output this way is intended to generate MEM 

values and labels that are intuitive to human readers and to facilitate comparison of feature enrichment across 

experiments, samples, batches, time points, and data types.   

IQR Threshold 

Because MEM uses a ratio of IQR values, near zero values in the denominator, IQRPOP, will greatly 

increase MEM scores.  For each measurement type, it is important to identify a minimum significant IQR value 

so that small IQR values below the platform’s ability to distinguish signal from noise do not inappropriately 

increase MEM scores. To automatically determine a minimum threshold for IQRPOP, the algorithm here calculated 
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the average of the IQR values that were associated with the lowest quartile of population and reference medians.  

For the mass and fluorescence cytometry datasets used, the automatically calculated IQR threshold was on 

average 0.5 ± X and so the IQR threshold for all studies here was set to 0.5.   The default IQR threshold in the 

algorithm is also set to 0.5.  To have the IQR threshold re-calculated, investigators should specify the “auto” 

option for the IQR.thresh argument in the MEM function.  It is recommended that investigators applying MEM to 

datasets from different instruments or who are testing MEM for the first time determine whether a change in the 

IQR threshold is needed. 

Reference population selection 

MEM score are contextual in that a population’s MEM score depends on the reference population(s) to which it 

is compared. Selection of a reference population should be made deliberately depending on the biological 

question being addressed. When populations in a MEM analysis arise from different experimental sources, it 

may be necessary in some cases to normalize measurements prior to MEM analysis to avoid artifacts from 

experimental variation. 

PBMC processing and mass cytometry  

 Peripheral blood mononuclear cells (PBMC) were isolated and cryopreserved as in Greenplate, et 

al(Greenplate, Johnson et al. 2016). PBMC were stained with metal conjugated antibodies and prepared for the 

mass cytometry as previously described(Greenplate, Johnson et al. 2016).  The following antibodies were used 

in the staining panel: CD19-142, CCR5-144, CD4-145, CD64-146, CD20-147, CCR4-149, CD43-150, CD14-

151, TCRγδ-152, CD45RA-153, CD45-154, CXCR3-156, CD33-158, CCR7-159, CD28-169, CD29-162, 

CD45RO-164, CD16-165, CD44-166, CD27-167, CD8-168, CD25-169, CD3-170, CD57-172, PD-L1-175, and 

CD56-176 (Fluidigm Sciences). In addition, the following purified antibodies from Biolegend were labeled using 

MaxPar DN3 kits (Fludigm Sciences), stored at 4°C in antibody stabilization buffer (Candor Bioscience GmbH) 

and used in the same panel: ICOS-141, TIM-143, CD38-148, CD32-161, HLA-DR-163, CXCR5-171, and PD-1-

174.  

Cell subpopulation MEM Score Similarity Calculations 

Comparison of CD4+ T cells to B cells 
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In order to assess the robustness of MEM across tissue sample types, donors, experimental runs, and flow 

cytometry platforms (fluorescence and mass cytometry), MEM scores were calculated for cell subsets from 7 

different experiments that included 3 healthy human bone marrow samples(Bendall, Simonds et al. 2011, Amir 

el, Davis et al. 2013, Ferrell, Diggins et al. 2016), 9 healthy human PBMC samples(Leelatian, Diggins et al. 2015, 

Nicholas, Greenplate et al. 2016), and 6 healthy human tonsil samples(Polikowsky, Wogsland et al. 2015). MEM 

scores were calculated for each population using as the reference population a combination of hematopoietic 

stem cells gated as CD34+ CD38lo/- from two studies of healthy human bone marrow(Bendall, Simonds et al. 

2011, Ferrell, Diggins et al. 2016).  Population similarity was calculated using root mean squared distance 

(RMSD) calculated on all population MEM scores in a pairwise fashion. MEM scores were calculated using all 

markers in common between each dataset and the HSC reference (Table 4-5).   

Table 4-5. Full antibody panels for immune cell datasets in Fig. 4 

Dataset Panel 

Nicholas KJ et 
al.(Nicholas, Greenplate et 

al. 2016) 
HLADR, CD8, CD25, CD38, CD4, CD3, CD62L, CD69 

Nicholas KJ et 
al.(Nicholas, Greenplate et 

al. 2016) 
HLADR, CD19, CD27, CD38, CD86, CD20 

Greenplate AR§ 

ICOS, CD19, TIM3, CCR5, CD4, CD64, CD20, CD38, CCR4, CD43, CD14, 
TCRγδ, CD45RA, CD45, CXCR3, CD33, CCR7, CD28, CD32, CD69, HLADR, 
CD45RO, CD16, CD44, CD27, CD8, CD2, CD3, CXCR5, CD57, PD1, PDL1, 
CD56 

Ferrell et al.(Ferrell, 
Diggins et al. 2016) 

CD235a, CD19, CD117, CD11b, CD4, CD64, CD7 , CD34, CD61, CD123, 
CD13, CD62L, CD45, CD183, CD33, CD11c, CD14, CD15, CD16, CD24, 
CD38, CD25, CD3, CD185, HLA-DR, CD184, CD56 

Leelatian et al.(Leelatian, 
Diggins et al. 2015) 

CD19, CD117, CD11b, CD4, CD8a, CD20, CD34, CD61, CD123, CD45RA, 
CD45, CD10, CD33, CD11c, CD14, CD69, CD15, CD16, CD44, CD38, CD25, 
CD3, IgM, HLADR, CD56 

Bendall et al.(Bendall, 
Simonds et al. 2011) 

CD45, CD45RA, CD235ab, CD19, CD11b, CD4, CD8, CD34, CD161, CD20, 
CD41, CD11c, CD123, IgM, CD10, CD33, CD14, CD38, CD15, CD16, CD44, 
CD7, CD13, CD56, CD61, CD117, CD47, HLADR, CD90, CXCR4, CD3 

Polikowsky et 
al.(Polikowsky, Wogsland 

et al. 2015) 

CD19, CD5, IgG, CD4, IgD, CD20, CD16, Igλ, CD45, CD27, CD86, CD33, 
CD22, Igκ, CD79B, CD40, CD44, CD38, CD8, CD3, IgM, HLADR, SHP1, CD56 

Amir et al.(Amir el, Davis 
et al. 2013) 

CD45, CD3, CD45RA, CD19, CD11b, CD4, CD8, CD34, CD20, Ki67, CD33, 
CD123, IκBα, CD38, CD90 

HSC REF:  
Amir et al.(Amir el, Davis 

et al. 2013)  
& Ferrell et al.(Ferrell, 
Diggins et al. 2016) 

CD45, CD45RA, CD235ab, CD19, CD11b, CD4, CD8, CD34, CD161, CD20, 
CD41, CD11c, CD123, IgM, CD10, CD33, CD14, CD38, CD15, CD16, CD44, 
CD7, CD13, CD56, CD61, CD117, CD47, HLADR, CD90, CXCR4 
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Note: MEM comparisons were made using all markers in common between each dataset and the HSCs (combined from 
Amir et al. and Ferrell et al. datasets). Pairwise RMSD comparisons of MEM scores were made using all markers in 
common between the pairs of datasets.  §Unpublished data from AR Greenplate, prepared as in Leelatian et al.(Leelatian, 
Diggins et al. 2015) 

 

RMSD was calculated here as the square root of the average in squared distance between all MEM values in 

common for each pair of populations (Table 4-4) and then converted into percent maximum possible RMSD.  

Given the -10 to 10 MEM scale, an RMSD of 20 was the maximum possible difference and corresponded to 0% 

similarity, whereas an RMSD of 0 between MEM labels indicated 100% similarity.  This approach emphasized 

differences in marker expression when comparing populations.  Calculated statistics for CD4+ T cell comparisons 

included average MEM value +/- standard deviation and p-value calculated using an unpaired Student’s t-test. 

Human Glioma and Normal Immune Cell MEM Analysis 

Glioblastoma data (G-08, G-10, G-11, and G-22) were collected following a published protocol(Leelatian, Doxie 

et al. 2016). Cells were stained with isotope-tagged antibodies to detect surface and intracellular targets following 

established protocols(Leelatian, Diggins et al. 2015, Leelatian, Doxie et al. 2016). MEM analysis of glioblastoma 

patient samples were performed with 9 markers (S100B, TUJ1, GFAP, Nestin, MET, PDGFRα, EGFR, HLA-DR, 

and CD44), using arcsinh transformation of original median intensity values with a cofactor of 5. Each cell subset 

was the POP, and the remaining cell subsets were the REF in the analysis. 

Z-score and K-S statistic calculations 

Z-score was calculated between POP and REF as (MEANpop-MEANref)/STDEVref for each marker. 

The K-S statistic was calculated comparing the distribution for each marker on POP and REF using the function 

ks.test() in R. 

F-measure Analysis 

PBMC populations were defined by expert human gating on canonical markers. For f-measure analysis 

(Figure 4-2c and Figure 4-5a), the 25 measured markers from the CyTOF analysis of healthy PBMC were sorted 

based on absolute MEM scores, median values, median difference (shown in Figure 4-5a), or randomly across 

all PBMC populations and the 25 measured proteins. The 5x25 matrix was converted into an ordered vector 

(length 25X5) and then sorted by absolute value. The first occurrence of each marker in the list was kept and 
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subsequent occurrences of that marker in the list (i.e. that marker’s scores on other populations) were discarded. 

The order of markers excluded by MEM, median, median difference, z-score, and K-S statistic are shown in 

Table 4-3.  Markers were then sequentially, cumulatively excluded from k-means clustering of cells from high to 

low absolute for each statistic or score. F-measure was calculated as:  

Sensitivity = True Positives/ (True Positives + False Negatives) 

Specificity = True Negatives/ (True Negatives + False Positives) 

F-measure = 2*(sensitivity*specificity)/ (sensitivity + specificity)  

An F-measure was calculated for each round of clustering, where truth was the cell cluster ID resulting 

from clustering on all 25 markers. The moving average of f-measure with an interval of 3 was calculated in 

Microsoft Excel. The f-measures for random marker exclusion are the average at each point of 15 different 

rounds of random marker exclusion from clustering.  
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CHAPTER 5  
 
 
 

CONCLUSION AND FUTURE DIRECTIONS 
 
 

A single-cell level understanding of cancer cells and the microenvironment is essential for identifying, 

quantitatively describing, and tracking biologically and clinically relevant populations of cells. Advances in 

computational analysis tools and workflows enable single-cell level characterization of tissues in order to better 

understand human health and disease.   

This dissertation presents and demonstrates a modular analysis workflow that combines supervised and 

unsupervised computational analysis for automated population discovery and a comprehensive view of immune 

and AML cell phenotypes. The initial biaxial gating and dimensionality reduction allows the analyst to assess 

data quality and provides a complete overview of the data. However, grouping cells into subpopulations in the 

last steps of the workflow is completely automated, thereby providing a robust and repeatable analysis approach 

that can be scaled across large datasets and studies. Going forward, it will be beneficial to develop standardized, 

modular workflows that leverage the utilities of multiple computational tools in order to extract as much 

meaningful data as possible from these types of multi-dimensional data.  

The tools that have been developed for population identification, such as dimensionality reduction, can 

also also be used as the basis for novel quantitative analyses, as demonstrated in Chapter 3. This study 

highlighted the utility of mass cytometry and computational analysis tools for tracking changes in AML blast cell 

populations over time and after treatment. The use of viSNE analysis was shown to be an efficient means of 

tracking AML cell populations after treatment in order to determine which cells persisted after therapy. This 

analysis method revealed that these persister cells became less phenotypically stem-like following treatment. 

This finding was unexpected given that cancer stem cells have been shown to be responsible for relapse in AML 

and would therefore be expected to express surface proteins similarly to normal stem cells.    

Chapter 4 presents MEM, an automated method for quantifying feature enrichment, and demonstrates 

how this tool is able to identify proteins that are important to cell population identity in multiple datasets from 

analysis of immune cells and cancers. Markers known to be positively and negatively enriched on specific 

populations of human and murine immune cells from multiple tissue types were highlighted by MEM analysis. 
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MEM labels also were successfully used to group CD4+ T cells and B cells from different tissues, experiments, 

and platforms. The possibility of using MEM labels to group similar populations of cells holds great potential for 

future applications in machine learning approaches to register cells between studies, particularly in cases where 

biologically or clinically relevant populations of cells have been identified on multiple platforms where direct 

comparison of the data is not possible due to highly divergent ranges and scales. MEM also successfully 

distinguished populations of human immune cells from glioma cells even when common immune cell markers 

were left out of the analysis.  

Going forward, these methods can be adapted and applied for automated cell population discovery, 

tracking, and quantitative comparison. The modular nature of the computational analysis workflow presented 

here lends itself to adaptations for various experimental and clinical applications. For example, alternative 

dimensionality reduction methods like ISOMAP or LLE, described in Chapter 2, could be substituted for viSNE 

analysis for data expected to have show continuous, progressive phenotypes in contrast to the discrete 

populations found in samples like human blood. Alternative clustering or automated gating methods could also 

be substituted for SPADE. This overall workflow, which broadly entails quality control, comprehensive data 

visualization for major group identification, and automated subpopulation identification, can also be extrapolated 

to other data types, such gene expression and imaging data. Another key potential area of advancement for this 

workflow is increased automation for each step. Highly automated workflows will expedite analysis of large 

datasets and produce more robust and repeatable results. 

The method outlined in Chapter 3 for quantifying cellular phenotypic distance in a reduced-dimensional 

space establishes the conceptual framework for quantifying sample-level cellular heterogeneity. The concept 

presented here highlights the need for multi-variate, quantitative metrics of phenotypic heterogeneity. Tools like 

viSNE and SPADE provide informative qualitative representations of the data. However, quantitative approaches 

are needed to comprehensively compare sample-level heterogeneity and correlate this heterogeneity with 

clinical outcomes and biological mechanisms. When quantified, cellular heterogeneity has the potential to serve 

as a biomarker of disease prognosis, therapy response, and other clinical parameters. 

Advancements in cancer therapy rely on the development of novel methods for quantifying the features 

specific to clinically relevant populations of cells, for tracking those populations of cells over the course of therapy 
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and recovery, and comparing populations of cells from different patients, studies, and tissue sources. MEM 

analysis provides scaled enrichment scores in the form of labels that are comparable between platforms and 

robust against instrument variation. These labels can be used as quantitative descriptors for cell populations and 

compared across studies to automatically determine population identities. Going forward, a database could be 

created to store the MEM labels derived from established cell types against which newly identified populations 

can be compared. A machine learning algorithm could also be developed to improve cell classification as 

additional MEM labels were added to the database. Given a population of cells and set of measured features, 

the tool would calculate a MEM score for that population using either a user-defined population or a standardized 

cell population as reference. The resulting MEM scores could then be compared to the MEM labels of previously 

defined cell populations in the database, and probability or similarity scores would be returned estimating the 

most likely biological identity of the new population of cells. 

The methods described in this dissertation also have significant potential for clinical applications. As high 

dimensional analysis of clinical samples becomes routine, workflows such as that described in Chapter 2 will be 

needed to rapidly and automatically group cells into subpopulations and provide an interpretable visual output 

for clinical assessment. These types of tools may also be useful for identifying cellular features that correspond 

to clinical parameters, as demonstrated by the use of viSNE in Chapter 3 of this dissertation for quantifying a 

shift in AML blast phenotype that is seen in patients with negative outcomes. Tools that quantify cellular 

heterogeneity and feature enrichment therefore have the potential to provide novel biomarkers for disease 

prognosis. MEM analysis may also be useful for identifying features specifically enriched on clinically relevant 

populations of cells, specifically those resistant to therapy, and point to potential therapeutic targets against the 

resistant cell populations. 

As technological advancements lead to increasingly large datasets, novel computational tool 

development will be needed to extract meaningful and useful information from these data in order to continue 

improving disease treatment and gain a more complete understanding of human biology. 
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APPENDIX A 
 
 
 

USE OF VISNE ANALYSIS TO COMPARE METABOLISM OF CELL POPULATIONS 

Preface 

While the majority of my dissertation research focused on the analysis and interpretation of flow cytometry 

data, many other single-cell experimental platforms are available that provide valuable single-cell level 

information about biological samples. The ability to apply computational analysis tools and workflows to data 

generated across platforms will ultimately enable a more direct comparison of cells discovered using different 

methods. As a use case, I collaborated with Dr. Amy Shah, then a graduate student in Melissa Skala’s lab at 

Vanderbilt University, to apply computational analysis tools that were originally developed for flow cytometry data 

to single-cell imaging data. My goal was to use these tools to gain a comprehensive understanding of single-cell 

metabolic phenotypes of cells from a mouse model of head and neck cancer. To accomplish this, I linearly scaled 

the imaging parameters to a common 0-100 scale and then applied viSNE analysis to the scaled data in 

Cytobank (www.cytobank.org) to visualize the cells in a two-dimensional map according to their metabolic 

parameter similarities. My analysis ultimately confirmed that there was a greater degree of metabolic 

heterogeneity in the samples treated with chemotherapeutic drugs. Adapting tools like viSNE for use across 

experimental platforms will enable more efficient tracking of cell subsets identified from different tissues, studies, 

and platforms, thereby expanding  

The work presented here was originally published in Neoplasia 2015 (open access) (Shah, Diggins et al. 2015). 

http://www.neoplasia.com/article/S1476-5586(15)00143-8/abstract  

Introduction 

Cellular metabolism is altered in cancer cells, resulting in an abnormal ratio of cellular metabolites that 

can be experimentally measured. Two metabolic cofactors frequently used to determine the metabolic state of 

the cell, NAD(P)H and FAD, autofluorescence at measurable wavelengths and can therefore be imaged using 

high resolution autofluorescence imaging. The ratio of NAD(P)H and FAD fluorescence intensity, referred to as 

the optical redox ratio, is an established measure of cellular metabolism. In order to assess how two common 

http://www.cytobank.org/
http://www.neoplasia.com/article/S1476-5586(15)00143-8/abstract
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cancer drugs, cetuximab and cisplatin, affected cancer cell metabolism in a mouse model of head and neck 

squamous cell carcinoma, mice with FaDu tumors were treated with the compounds and the tumors were 

subsequently imaged to quantify the per-cell optical redox ratio. To visualize the heterogeneity in cellular 

metabolism, viSNE analysis was used to organize cells in a reduced-dimensional space according to imaging 

parameters. From these analyses, a greater degree of cellular metabolic heterogeneity was found in tumors 

treated with cetuximab and cisplatin compared to an untreated control.  

Methods 

Imaging analysis of mouse tumor was performed as described in Shah, et al (Shah, Diggins et al. 2015). 

The seven optical metabolic imaging parameters that were measured included NAD(P)H α1, NAD(P)H τ1, 

NAD(P)H τ2, FAD α2, FAD τ1, and FAD τ2. In order to compare the parameters, they were each transformed to a 

common scale from 0 to 100, with the highest value for each parameter being 100. The data were converted 

from Excel matrices to FCS files that could be uploaded to and analyzed using Cytobank (www.cytobank.org) 

for viSNE analysis. All seven of the scale-transformed parameters were used in the viSNE analysis. 

Results 

viSNE analysis of all seven measured optical metabolic imaging parameters revealed a population of 

cells from the cetuximab and treatment groups that was distinct from the cells of the control group (Figure A-1A). 

Visualization of heat intensity of the imaging parameters on the viSNE ap indicated that NAD(P)H τ1 and FAD τ1 

contributed the most variation to the mapping of the cells (Figure A-1B and C). The increased cellular 

heterogeneity seen in the treatment group by viSNE analysis was also seen in analysis of individual imaging 

parameters (Shah, Diggins et al. 2015).  

 

http://www.cytobank.org/
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Figure A-1. Single-cell analysis using the dimensionality-reduction technique viSNE reduced seven optical 
metabolic imaging parameters to two dimensions for visualization of heterogeneity across individual cells. To 
account for different scales between parameters, common linear transformation was applied within each parameter 
across all treatment groups so the transformed values ranged from 0 to 100. A) viSNE analysis shows a distinct 
population of cells for the control group. The cetuximab and cisplatin treatment groups overlap with the control group and 
also comprise a separate population of cells (B,C). Heat intensity indicates short fluorescence lifetime components (τ1) for 

(B) NAD(P)H and (C) FAD. 

Conclusions 

viSNE analysis was successfully applied to single-cell fluorescence imaging data to reveal the metabolic 

cellular heterogeneity that arose from cisplatin and cetuximab treatment of mice with FaDu tumors. 

Dimensionality reduction tools like viSNE can be used with single-cell data from non-flow cytometry platforms to 

inform on cellular heterogeneity and to identify distinct populations of cells. 
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