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CHAPTER |

INTRODUCTION

This research aims to extend the current state of the art in intelliganbfeanvironment design

by implementing the learning by teaching paradigm using teachable softwate &jadents,

who are domain-novices, teach an agent and learn about the domain in this process. Our work
draws from psychological theories of constructivism (Piaget 1953), learninge{383,

1938), transfer (Haskell 2001; Bransford, Brown, and Cocking 2000), and motivation (Brophy
1998; Csikszentmihalyi 1990; Lepper et al. 1993). In addition, this work is informed by previous
research on learning environments for education that was conducted in the Learning Tgchnolog
Center, Peabody School of Education, and the Department of Electrical Engineeringrand Co
puter Science at Vanderbilt University (Biswas, Katzlberger et al. 200gviieeg et al. 2002;
Leelawong et al. 2003; Bransford, Brown, and Cocking 2000; Crews et al. 1997; Owens et al.
1995; Cognition and Technology Group at Vanderbilt 1997; Bransford 1990). However, the fo-
cus of this research is on evaluating the influences of learning by teaching age¢uatkeotiss

learning and problem solving in middle-school mathematics. Our teachable agents dornot inc
porate inductive mechanisms to learn; rather, they are computer-based sotsatregeequire
explicit instruction to perform well on a given task. Our goal is to design agenisigrave the
student’s learning, and give them a deeper understanding of the domain while makingnthe lear
ing task interesting. To study the effectiveness of our approach, we have conductedestperim

to analyze its effects and influence on students. Specifically, we contrastparte and moti-

vation of students who learn for themselves with students who learn by teaching agents.



We implemented our system in the domain of mathematics, as there is publi¢ intenes
proving mathematical education in the US. The report "Trends in Mathematics amckeScie
Study" (Mullis et al. 1999) documents that the United States is trailing a number lofjdele
nations in student performance in science and mathematics. There is also evidemgtetts
experience of many teachers that students, who come to college with A and B availages
answer the same question in different forms on an exam because they cannot heinsfer t
knowledge to new situations (Haskell 2001). As a result, there is continued effort la},feder
state, and local agencies to improve education. A primary thrust in recent tinbeehde use
technology to build learning environments that promote deeper understanding and better reten-
tion of learnt knowledge. The collective goal of education is to make knowledge applizdble a
useful in different problem-solving situations later in life (by improvnagsfer of learning

However, our educational system does not currently live up to its promise (Haskell 2001).

Learning by teaching is an educational technique that has its roots in research otopeer t
ing with human tutors, and carries the promise of promoting deeper understanding of concepts in
the knowledge domain than traditional learning techniques. Learning benefits of nigaecate
perienced tutors who taught tutees were observed in preliminary studies, inforkahmebr
some full studies (Cohen 1986; Palincsar and Brown 1991; Chan and Chou 1997; Gaustard 1993;
Michie, Paterson, and Hayes-Michie 1989; Nichols 1994). The learning by teaching paradigm
can be linked to learning gains demonstrated in self-explanation studies (e.g., Chi 12Ri8e bec
explaining to a tutoring systérte.g., Aleven and Koedinger 2002) and explaining to a tutee are

inherently similar tasks that involve metacognitive processes like iefleetowever, learning

! Current research on tutoring systems operaticembelf-explanation as students explaining toaring system
(Weerasinghe and Mitrovic 2002). See section abelfitexplanation for more details (page 35).



by teaching may have additional advantages, especially in fostering socatioteand moti-

vation. We discuss learning by teaching in more detail in the next chapter (s&5page

In contrast to classic approaches, where tutors already have experience in time Werage
interested in novice tutors who teach computer-based agents. In this researchoweetiespl
new instructional approach: Domain novice® ¢Bade middle-school students) teach social
agents to solve distance-rate-time problems by using and creating graphs. Wigjlthdbithey

learn about the domain.

If our system is successful, we expect to see differences in motivationnégand transfer
between students who teach agents to learn, and students who learn but do not teach. Before dis-
cussing this in more detail, we establish why we investigated learning bynigadth software

agents as tutees, and introduce our vision of the teaching process.

We let students teach software agents and not humans, because tutoring requingsutrei
communication skills (Cohen 1986), which our novice tutors may not have. This can lead to in-
correctly taught knowledge, and require continuous learning and relearning, which does not harm
agents, but this process may be frustrating and harmful to human tutees. To avoid harming hu-
man tutees, we let novice tutors teach software agents. Teaching otherfy/tygucates a
shared representation of the knowledge that organizes the materials so thiag dasy 40 un-
derstand. This may be hard to achieve between novice human tutors and tutees. However, if we
use a computer-based teachable agent, we can select representationassthattgenerally

work well in advance.

Additionally, each tutor-tutee interaction is confounded by the behavior of the tutee. Even
well trained humans acting as tutees could introduce substantial variability iexperimental

setting. By substituting the tutee with a software agent with well-definedatkastics, we can



remove this variability. We also avoid status problems in peer tutoring, which mayuted®

feel inferior, and cause friction between tutor and tutee (Gaustard 1993).

L earning by Teaching and its | mplementation

We review the concept of learning by teaching. A teacher planning to teach in a new ddimain w
generally firstprepareto teach, theteach,andreflectduring and after the teaching process.

When preparing, he or she will scout resources, choose, access, and organize themaateria
meaningful way, and learn during this process. Only then, a teacher can start t&dulongh-

out the teaching process, the teacher explains knowledge, then interacts with ,sanderts

flects on questions, comments, and exam results. Unexpected or wrong solutions banutees ¢

cause reflection on one's own knowledge or the teaching process.

Related research mainly focused on teacher-student interactions (teachiefjeatidg) as
causes for the tutor’s learning. We additionally include differences in prepafatiouting and
organizing), because we think that students preparing to teach take a differentrafpsbady-
ing resources than students who prepare for an exam, especially if they are domam novic
However, our system does not enforce a strict sequence and students most likely seolut or r
resources only if the need arises during the teaching process (e.g., the agent askgyta be
something). We do not yet utilize the additional strategies of learning byngréadts and quiz-

zes, although those tasks could enhance learning by teaching further.

Because learning by teaching requires an environment where knowledge can be taught, re-
trieved, and verified, we have implemented a powerful and effective model-learningnhemsnt
based on previous research (Figure 1), which we augment with teachable agents.ifms env

ment draws from the psychological learning theory of constructivism (e.g., REB@tand uses



anchored instruction (Cognition and Technology Group at Vanderbilt 1993; Crews et al. 1997 &
Bransford, 1997). We integrated and extended ideas from two separate intelligengleavi-
ronment projects into one system: Adventure Player (Crews et al. 1997), and Smart Tools
(Owens et al. 1995). Adventure Player used a simulation environment that allowed students t
verify their solutions, while the Smart Tools project allowed students to congpuesentations

that helped them to solve problems. In this work we introduce the idea that these reyasenta
could taught to teachable agents. Last, in conjunction with the teachable agent paradigm
superimposed a learning cycle structure similar to the STAR Legacyngamell (Schwartz,

Lin et al. 1999), which organizes students' learning and problem solving tasks in a sequence tha
helps them understand and organize their domain knowledge easily. We have developed a modu-
lar software framework that allows us to study arbitrary variations and st this baseline

environment, one of which is learning by teaching software agents.
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Figure 1. Teachable Agents: Applying Learning TlygarModern Education

As we will see in our discussion of educational theory in chapter I, the centrai gesig
ciple of our baseline learning environment is that it situates students in aaealigext through
anchored instruction, which has been shown to enhance learning and transfer of learning
(Cognition and Technology Group at Vanderbilt 1993; Crews et al. 1997; Crews 1995; Bransford
1990; Leelawong et al. 2002). We also give learners considerable freedom to explore, without
correcting mistakes too soon, which teaches students how to monitor their own learniag, proce

without relying too much on external help.

Expected Results

One of the primary contributions of this work is the development of an agent architecture t

facilitate the design and implementation of learning by teaching systemsdioae a teaching



framework, assessments, and domain resources to facilitate the learning.pMeEesplore the
learning by teaching agents paradigm within this framework, because we thintkitiesit s
teachers behave differently than students who do not teach. This changed behavior influences

how students learn and produces differences in learning and motivation.

We think students learn better, because students look differently at materialshesere-
pare for teaching or grade and review answers of their tutees, than when they leaactzed pr
for themselves and review their own answers. Additionally, teachable agemtyastigage stu-

dents in explaining knowledge to them and force students to reflect on what they have taught.

It is also possible that learning by teaching influences motivation. The inberadth social
agents, especially the act of helping an agent by teaching it, may make stusldratide about
their task. Learning may become the means to accomplish the goal of teaching ahhagent
we try to identify the motivational influences of learning by teaching on studentd Baghese
expectations, we explore the following questions by comparing students who teacltaggirsts

students who do not teach:

Do students demonstrate better learning ability, and do they learn more when they teac
computer agent as opposed to students who use a learning environment but do not teach an

agent?
Can students transfer learnt knowledge to new domains better when teaching agents?
Does teaching our agents motivate students during their teaching and learning tasks?
Is learning by teaching a viable approach for novice students?

For the remainder of this work we will isolate the effects of learning by tegblyi contrast-

ing students who learn from a teacher agent and teach a tutee agent with studergawitworie



a teacher agent and study for themselves. Both of these conditions are embedded inrgir learni
environment, which is a fully featured mathematics learning environment withesiomutapa-

bilities and an interactive graph representation that can be used to solve rategroblem

Thesis Organization

In chapter Il of this thesis, we will discuss cognitive theories that influencetktign of our

learning environment. We explore educational theories that explain how people lea. We d
scribe Social Learning and Situated Learning that led to the development of Anchared Inst

tion, which forms the basis for our system design. Then we make an excursion through the theory
of constructivism, which describes how we learn. We explore the possibility thatkaawl-

edge may stay inértor become associated with a narrow context, effectively making it irretriev-
able in many real problem-solving situations. Later in chapter I, we descmiséetraf learning,
metacognition, and motivation, which are primary factors that support deep learrmngaer-

standing and transfer.

Chapter Ill relates the theories of the previous chapter to traditional and cormeniter-
based learning environments. First, we introduce pedagogies and strategies eéimpjog¥ious
learning environments that employ cognitive tutors, discovery learning, actimegdearning
by teaching, and other miscellaneous approaches. Then we survey existing sysiesnathesi
their implementations: Intelligent tutoring systems, microworlds, and atieedearning envi-

ronments. A discussion of agent-based approaches concludes the chapter.

! Inert knowledge (Whitehead 1929) is learnt knowkethat a person cannot apply, for example, irffardit prac-
tical context, because he or she does not assdicveaita the current context.



Chapter IV presents our ideas for an agent-based approach of a new learning environment
design. We will start by describing the pedagogical architecture of our syghech combines
anchored instruction with a STAR-Legacy-based approach to develop the curriculuromunits f
teaching rate problems in mathematics. Then we will introduce the design ofreaftadules
by describing their functionality and implementation. The primary functional compaarents
simulations, smart tools, and the agent architecture that includes the teagkablena the men-

tor agent.

In chapter V, we introduce our hypotheses, experimental design, and the analysis procedures
We also describe our sample, procedures, and measures, which are roughly split intammotiva

learning, transfer measures, and a survey.

Chapter VI presents our results, starting with the discussion of our knowledgsuést re
Following this, we summarize our results of the transfer test and motivatioasiiras, and fi-

nally present our conclusions and directions for future work in chapter VII.



CHAPTER I

EDUCATIONAL PERSPECTIVES

Most present day instructional practices in classrooms tend to produce sugdedriciglg among
students (Weigel 2002). Hence, Weigel suggests moving away from techniques tlwdé gam
face learning towards techniques that emphasize deep learning in classroonmesviso He
cites Entwistle, who stated that we engage in surface learning if "ledreat a course as unre-
lated bits of knowledge, memorize facts, carry out procedures routinely, seedlitte or mean-
ing in carried out tasks, study without reflection on purpose or strategy and feel undueepress
and stress." On the contrary, deep learning involves "relating ideas to previous knamedge
experience, looking for patterns and underlying principles, checking evidence and retating
conclusions, examining logic and arguments cautiously and critically, being efnarderstand-
ing that develops while learning and being actively interested in content” (Ratevistl in

Weigel 2002). Deep learning should help students learn skills and knowledge for lifeWeig
2002). Unfortunately, the current focus on improving standardized test scores trainsstudent
be expert test takers, who memorize facts and procedures but find it hard to apply #edm in r

world problem solving situations.

An essential foundation for designing a successful learning system that proneptésadie-
ing must be based on how students learn, a topic, which we explore in this chapter. We also dis-
cuss cognitive and educational findings, in the areas of constructivist learninfgriramsiva-
tion and metacognition, which provide the core for a growing number of modern instructional

approaches to support effective teaching and learning.
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In the sections that follow, we review the educational theory of learning. Two strameds of
search are very relevant to designing learning environments: learning witbiriad)(sontext,
and the constructivist learning theory. After that, we discuss the concept ofriramstd de-
scribes the circumstances under which people can apply knowledge learnt in one context to ne
situations. Transfer also serves as an advanced metric for learning. Anotheammigstte that
has been shown to improve learning is the adoption of relevant metacognitive sttatddietp
students set goals, plan, organize, self-asses, and seek help during learning and pkobtem s
Last, motivation may help learners to enjoy their problem solving tasks and impraouedear

gains through positive learning experiences.

From Thinking to L earning

Thinking is a continuous active flow of words and pictures in our mind that we can direct, but
cannot stop unless we fall asleep. Our mind seamlessly integrates input fromsasrsigh our
thoughts to form a mental stream of consciousness which expresses our belietsgnabéat

how the world works (Dewey 1933). To some of these beliefs we will pay attention and find
them prominent or important enough to remember for later. Thus, we learn. Some of tisese fac
simply fall into place and can be remembered without specific &ffonile others require con-
tinued repetition and application before we can apply them effectively. Other mesay find
ourselves deliberating about our process of thinking and learning, or simply observe ourselves
through reflection. In this manner, we engage in metacognition, which is a skill nhizelpaus

to improve our learning.

! Advertising tries to exploit this kind of passikarning, but not all learning is passive.
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Amazingly, learning results cause not only electro-chemical, but also séiutttanges in
our brain. Through technologies like positron emission tomography (PET) and functional mag-
netic resonance imaging (fMRI), research has found how learning changes the ghysitae
of the brain. Simply by absorbing knowledge we physically change the strength of our synapse
and change neuronal pathways. Thus, "One of the simplest rules is that practicesleaa-
ing; in the brain, there is a similar relationship between the amount of expenencermplex

environment and the amount of structural change" (Bransford, Brown, and Cocking 2000).

Knowing this, we could simply increase the amount of practice by introducing drill and
practice exercises to aid learning. Still, experience has shown that oteenspsomote deeper
learning and better transfer (Weigel 2002; Haskell 2001), as we discuss in exarapédged in
chapter lll. Students will perform relatively well in the short run but maydatransfer (apply)
knowledge in new situations. A number of theories summarized in this chapter look ateneans t

achieve better learning, the ability to apply what is learnt, and to achieverigddarning.

Social L earning and Development

If we go beyond physical changes in the brain, and theories of classical conditioningnand rei
forcement (Pavlov, Thorndike, and Skinner), we will find ideas on how people lesoniah
learning or observational learningBandura 1977). Implications of social learning are especially

interesting to us, as social agents play an important role in our learning environment.

In everyday life, we continuously learn new knowledge, for example, through the agtivitie
of conversation, play, discovery, and problem solving. This implies that we often learn iala soc

context. Even when we acquire knowledge on our own, we may reshape it later to fit ageially
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cepted norms (Tripathi 1979). The simplest form of social learning is learning throwagliasbs

tion of behaviors.

Observational learning requires attention, retention, motivation, and potential refmoduct
of the behavior (Bandura 1977). In his classic experiment, Bandura showed movies to children
that showed an adult being rewarded or punished for punching a doll. The children learned the
behavior and repeated it more frequently when the adult was rewarded. In our contexty childre
working with social agents may learn from the agent’s behaviors by observation, vehingdw
to consider in designing our environment. The findings of observational learning soon led re-
searchers to analyze learning in social contexts like interactions amahgdadfriends in in-
formal settings, and collaboration among colleagues at work, which gave rise teddéaaning,

which we have directly applied in our learning environment.

Situated L earning

Learning and cognition develops in a social context. Vygotsky linked social interadiotnev
development of cognition (Vygotsky 1978). His work on social constructivism gave rise-to sit
ated learning and other theories (Brown, Collins, and Duguid 1989; Lave and Wenger 1990),
which puts learning into the context of an activity by focusing on learning within a faoned-
work. It contrasts with traditional lecture-based learning, which involves knowlkdgs toften

abstract and taught out of context in school.

Lave and Wenger stated that situated learning relies on the principles that (l§dgewl
needs to be presented in an authentic context, for example, settings and applicatvoms dhat

normally involve that knowledge, and (2) learning requires social interaction and catiiabor

13



(Lave and Wenger 1990; Kearsley 2002). Situated learning is closely related to dmcbinue-

tion (Cognition and Technology Group at Vanderbilt 1993), which has guided our system design.

Anchored I nstruction

Anchored instruction situates learning in the context of meaningful problem solvusgrias
realistic environment. The environment is calledahehoring contexbr macrocontext

(Cognition and Technology Group at Vanderbilt 1993; Crews et al. 1997). Anchored instruction
distinguishes macrocontexts from microcontexts. The latter are tradionalproblems found

in textbooks for mathematics instruction. Each macrocontext defines an elabobd¢enpset-

ting from which teachers and students can derive many sub-problems. The macrodomtext al
elaborate exploration, and students may revisit it from many perspectives oval aeaks.

Thus, anchoring contexts support effective problem solving in multiple domains, and help one
learn about specific concepts and principles in context. This allows students to thativelff

about particular domains, and it avoids the probleinert knowledg (Bransford 1990).

Kearsley (2002) summarizes the principles of anchored instruction: (1) Learnirgpahd t
ing activities should be designed aroundaanhor,which should be a case study or problem
situation; (2) Curriculum materials should allow exploration by the learner. Vdethiseap-
proach directly in our learning environment. Anchored instruction provides one of the théoretica
foundations of our research. A second direction of research, which complements situaited cog
tion and anchored instruction, is constructivist learning theory. This is described ixtlseaie

tion.

' We will discuss inert knowledge a few sectionsfan more detail.
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Constructivism

Tell me and | forget.
Show me and | remember.

Involve me and | understand. - Chinese proverb.

In this section, we focus on constructivist theories of how we learn. We begin the disdyssi
addressing the constructive nature of memory. This leads to the theory of constnyetivieh,

among other issues, addresses the question of how people integrate new knowledge irto their e
isting knowledge structures. We decided to focus on constructivism because it is Himgmpe

theory among others that explains how students learn and then recall what they hade lear

People can memorize information that is meaningful and related to previous ex@erienc
much easier than meaningless unrelated information. People merge new knowladgeatvit
they already know (Tripathi 1979). This means that our memory does not simply resalbéac
can modify or even introduce new information. Thus, our memory is constructive. Tripathi dem-
onstrated in experiments where Indian schoolchildren were asked to memorize ol $alkat
recalled stories had additions, omissions, and modifications. Many of the modificediugs t
posed the stories into a modern world. This constructive nature of memory is the bamsus for ¢

structivism, which builds the foundation for many innovative approaches to teaching.

The first documented roots of constructivism date back to Democritus, Plato, and Giambat
tista Vico who commented in 1710, "One only knows something if one can explain it." Immanuel
Kant elaborated on this idea and hypothesized that "humans are not passive recipients of knowl
edge but integrate it by constructing their own representation” (Kant 1781). In tlastbens

constructivist paradigm says that every person constructs knowledge from recgeraead out-
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side influences to form his or her ownerpretationof what they know. For students, this not

only includes material presented by teachers in classrooms but also discusthiqreeve, par-

ents, observations of the surrounding world, and information gained from other sources. From all
this information, learners build their own knowledge compilation, which includes comncect a
incorrect information. This is based on the constructivist theory of Bruner (Bruner 1966), who

was heavily influenced by Piaget's Genetic Epistemology (Piaget 1953).

Piaget studied the cognitive development of children and theorized about it. He studied
spontaneous learning of children and found that children integrate new knowledge with what
they already know. An observation that contradicts current knowledge alesggsilibriumor
in other words an imbalance between what one already knows and what is hewly encountered.
Students try to correcequilibrate this disequilibrium byaccommodationAccommodation
means that existing knowledge structures change to fit the new information wibinénatcoc-
tions. Students can incorporate new events into preexisting cognitive structasssnbjation
Existing knowledge schemes are called preconceptions and stem from the factiaaher
walks into the classroom &sbula rasa but rather with their own powerful ideas of how the
world works. If a student's previously constructed incorrect understanding is not o/ ldrey
may retain misconceptions, and fail to understand new concepts (Bransford, Brown, and Cocking

2000).

Piaget conjectures that the processes of equilibration may cause condlidtand new
knowledge do not match, and successful learning requires effective ways to resolgersuc
flicts. Sometimes people keep contradictory knowledge in different "compartroétitgir
mind that are activated by the context in which knowledge is applied, but often one has to be

abandoned in favor of the other. Other times, learners are not aware of conflict an&moerge
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edge inappropriately. An example, which illustrates assimilation, is that gme t&il children
whose misconception is that the earth is flat that the earth is round. Children naghdatathe
knowledge in their own way by constructing a new picture in their mind with a pancake shaped

flat and round earth (Vosniadou and Brewer 1989).

The constructive nature of learning has powerful implications for the design ohtpami
vironments, especially when computers keep track of what a learner knostidteat modél
We cannot assume that knowledge presented to the student is learnt in the way @ndasl jnt
but that the student constructs an approximation of the taught material with omisdtinsn s,
and changes. Newly presented material may change existing knowledge srotleaeners.
This creates challenges in designing a learning environment that avoids, catdleesrects
misconceptions of learners whenever they evolve. We discuss pedagogies that wepedi¢ve

alleviate these problems in the next chapter.

Inert Knowledge and Knowledge Contexts

Knowledge learned by a student may be associated with a specific context andrsiayother
problem settings. Whitehead identifieegert knowledgeand concluded that under certain circum-
stances a problem that should have been solvable by a subject could not be solved in a different
context (Whitehead 1929). Inert knowledge implies that a student is unable to transfexdgsowl

to a new domain (lackingansfer of learning). Others have observed that experts have highly
conditionalized knowledge, which includes for every fact a specification of corextsch it

is useful (Glaser 1992). Thus, experts can readily apply knowledge correctly intuavoss,

! Student models are used in intelligent tutoringtesys, which we will discuss in the next chapter.
2 This concept is described in a later section isf¢hapter.
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while novices, who have a very small set of contexts where they can successfyliyeipl
knowledge, may use incorrect procedures, or fail to solve problems at all. Studentsyshudgyi
test may revert to their preconceptions outside of the classroom, because theyaasiieot t

their learning like experts (Bransford, Brown, and Cocking 2000).

An example for contextualization, preconceptions, and conflict resolution that leadstto i
knowledge is beliefs about motion and inertia (Papert 1980). When pushing a table in a room we
need force to keep the table moving (Aristotle’s view). This experience cordrddidiewto-
nian laws that a moving body only needs force acting on it to start and stop moving. Thus, a stu-
dent facing such a contradiction will resolve it by creating a context whereohiewtlaws ap-
ply, like, for example, "in space" or "a car skidding on an icy road" (Bransford 1979; Binsfor
Brown, and Cocking 2000). This in itself is not incorrect, but it also may lead to the behef of t
student that Newtonian laws do not apply in general. In the worst case, students maieassoc
knowledge with contexts that are meaningless in real life, like "physics in $cndphysics

book - chapter 5."

Traditional classroom teaching may create inert or poorly conditionalized knaykzalt)
properly designed learning environments should avoid this by establishing relevants;ontext
which aid students in learning to apply and then generalize learnt knowledge. Modenoooiass
teaching approaches can alleviate this problem by overlapping problem contexts Isetiree
jects, like, working on the same problem in a mathematics and a science clasfo(Bra
Brown, and Cocking 2000). However, this practice is often not implemented, as it requires coor-
dination of efforts between teachers. We use the previously introduced teacheyy sifan-
chored instruction to reduce the likelihood of creating inert knowledge, by introducirggiceali

macrocontexts in which students perform their problem-solving tasks.
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Constructivism has inspired a whole battery of modern, applied instructional issategh
as learning by doing, active learning, and inquiry based learning, which we discuss irt the nex
chapter. Before that, we briefly discuss repair theory, a proposed cognitive model ofhow s

dents handle contradictions and incomplete knowledge during learning and problem solving.

Repair Theory

Students often form misconceptions (incorrect knowledge) while learning, and leanringn-
ments should employ strategies to correct these misconceptions. A systgpatich proposed
for dealing with misconceptions is VanLehn’s Repair Theory (Brown and VanLehn 1980). This
theory calls misconceptiomsind-bug$ (Brown and Burton 1978) that need to be identified and
corrected to improve a student's understanding of the domain. When learning procedural skills
like performing subtraction or reading graphs, students tend to make systeroasicTdrese er-
rors may appear individually or in a variety of combinations. Typically, these bugstsstable,

and students tend to move between different patterns (bug migration) by applyingntitpeer
strategies at different times (VanLehn 1990). An observing agent could thetyekstatt such

bug patterns, and use this information to generate feedback in a way that aids learfoitig- U
nately, not all misconceptions are systematic. Cohen has identified that stagemtske incon-
sistent mistakes, which he called slips (Cohen 1990). Remediation after slips rhayeffec-

tive, but tedious, if the student already knows the correct procedure, but inadvertently made a

mistake.

Recently, Elby has criticized misconception repair as an oversimplificateosephrates

constructivist research into two camps: (1) Misconception constructivists, who stodehts

! This expression is similar to the term 'bug’ imgrammers-jargon, referring to faults in computergpams.
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entering into learning tasks having bugs, alternate conceptions and misconceptionsaas we
seen in the previous paragraph; and (2) Fine-grained constructivists, who believeddvasst

have loosely connected, context activated minigeneralizations and knowledge &|@timnt

2000). For example, a student working with a speed vs. time graph that shows a horizontal line
with a hump might interpret this as a car driving over a hill. The student's intéqretithe

graph is literally what you see is what you get.

Although basic repair theory did not live up to its promise, and is often criticized, we could
imagine that learning systems or computer agents that are able to idestibhog@ptions can
provide useful feedback to learners to help them reflect on their misconceptionserA bgsed
on bug identification and correction alone may only be partially successful in adgressning
problems. The main problem with mind-bugs is that one has to generate an exhaustive bug li-
brary. However, if we know a small set of common misconceptions that students often have in a
domain, we can easily program an agent to react appropriately, and still providetbehefi
learning process in conjunction with other pedagogical approaches. Using this approach, an env
ronment could point out counterexamples based on misconceptions, or initiate dialoguasl that le
the student to insights that his or her knowledge is incorrect. In a learning by tedtciatgs
an agent may ask questions upon detecting such misconceptions, which leads a studet to refle
on their understanding, and develop new insights. According to constructivist theories, this
causes a cognitive disequilibrium, which forms the basis for students to correetthieeous

understanding of concepts and procedures.

Next, we discuss auxiliary concepts that are desired outcomes of learningneiciaity aid

learning. First, we start with discussing the concepptamisfer of learningwhich is highly de-
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sired, but elusive in education. Additionally, it is a measure of learning quality. fudlokat,

we discuss metacognition and motivation.

Transfer

Transfer is the ability to generalize from the familiar to the lesdiafior example, it is the

ability to use problem-solving knowledge learnt in the context or domain of one task in another
context or different task (Bransford, Brown, and Cocking 2000; Haskell 2001). Most authors in
current learning research call transfer a true (but elusive) measurenaiddaecause it corre-

lates to the potential utility of learnt knowledge in life, as we elaborate pdeagraphs later.

The importance of achieving transfer is enormous, because society expects thataur e
tional system prepares students for life long learning and problem solving, and not juseégroduc
good grades in school. Despite reasonable efforts, most of the knowledge learnt in aghaol st
school, and research efforts to improve transfer have not been very successfulkgdtilldas

trates this calling it the paradox of transfer:

"In essence, we would like students to be able to apply what they have learnt; yet, despite
governments pouring increasing amounts of money into improving education, we are unable

to achieve transfer in schools." (Haskell 2001)

Psychological texts distinguish, at a basic lenegative transferwhich hinders solving a
future task, angositive transferwhich improves later problem solving (Sternberg 1995). Nega-
tive transfer can occur when a person, through previous experience, uses a speaic SohtHi
egy not suitable for the current problem. Positive transfer may be initiated throaighias by

either willfully introducing them in an instructional setting, or letting leesaetively search for
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analogies. Sometimes the student assumes incorrect analogies, becausexhia edntd the
situation is embedded appears to be the same. This isttallsgarencylf a student has to an-
swer whether algae and fish use or produce oxygen, she might conclude, knowing that fish

breathe oxygen that algae use oxygen too, because both live in water.

Learning research focuses only on the presence or absence of positive transférdétaske
fines a taxonomy of transfer in six levels: (1) nonspecific transfer, (2) ajp@hceansfer, which
describes the ability to apply what one has learned, (3) context transfer, or tgeabpiply
knowledge in a different outside context (e.g., school vs. home), (4) near transfer tostiosel
lar situations, (5) far transfer to dissimilar situations through analogiasbning, and (6) dis-
placement or creative transfer, which relates to discovering new insigisise{H2001). The dif-
ferentiation and ordering among some entities in this taxonomy is not obvious; hence,-many re
searchers describe their findings in simpler terms of only near and far tr#&wsdeher theory of
transfer (Salomon and Perkins 1988) distinguishes low-road transfer and high-roaul. transf
Low-road transfer occurs when stimulus conditions in the transfer context dee sna prior
context of learning to trigger semi-automatic responses. High-road treegferes abstraction

from the context of learning and a deliberate search for connections.

Transfer is today’s benchmark for educational innovation, because traditional schemlssys
often achieve only nonspecific and application transfer. For example, it is unclehemdta-
dents can apply their learnt knowledge in their daily lives or at work through contextrant
fer. An important challenge in learning research is to promote far transferiggidgsappropri-

ate learning situations and environments.

Transfer is a true measure of learning as it correlates to the utilitgafreet’s knowledge.

Simple drill and practice may achieve high scores on multiple-choice tests andgdesl ig
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school, but this does not guarantee that students are able to use this knowledge in problem solv-
ing situations. Hence, many teaching strategies will look equally effi¢idreyi are only evalu-

ated based on facts that have been presented in the classroom. However, if we eVieheaite dif
approaches of teaching against transfer, for example, between sets of conteptsusgects or
school years, results will be more distinguishing (Bransford, Brown, and Cocking 20003- Bran
ford also states that to achieve transfer we need three things: (1) a sufiitigrthreshold of

learning, (2) learning with understanding, and (3) knowledge taught in a variety of contexts

Systematically observing and measuring transfer is a difficult taslerDeth criticizes most
studies on transfer for being flawed in one way or another. When subjects are told or can deduce
that previous material may be useful then they are informed, but far transfeeashatrsub-
jects are confronted with a new situation that is not linked in any artificialovidngtlearning
situation (Detterman 1993). Detterman illustrates this on the example of Jupdisents
(Judd 1908), where children have been specifically instructed to use their knowledge about re-
fraction to throw darts on targets under water. In addition, every experimentaj setates an
artificial context that makes it hard to show context transfer. Yet, desteriinue, most stud-
ies measure transfer within the context of an experiment with a trangféytabserving differ-

ences in performance of solving this task. We follow this practice in evaluatingsearak.

M etacognition and M etacognitive Regulation

Metacognition, the art of thinking about thinking, reached widespread popularity through Flav-
ell’'s work (Flavell 1979; Flavell, Miller, and Miller 1993). A metacognitive approadhstruc-
tion can help students in taking control of their own learning by defining learning goals, and in

letting them monitor their own progress in achieving these goals (Bransford, Brownpeiad C
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ing 2000). The common assumption is that learning metacognitive skills (metadgdraips

students improve in several subjects, not only one (e.g., White, Shimoda, and Frederiksen 1999).

Metacognition distinguishes the sub-categories of metamemory, metacomjmelaers
metacommunication (Wilson and Keil 2001). Metamemory includes knowledge about utilizing
mnemonic strategies to improve memorization of items. Metacomprehensioeesiea intui-
tion of how well one knows what one should know. It also allows the student to decide what to
study next and which actions will lead to more success. Metacommunication is Ittee reffiect
upon one's own communication and to assess whether one has understood communicated infor-

mation.

Zimmerman and Schunk (2001) distinguish metacognitive knowledge from metacognitive
regulation. Metacognitive regulation (also self-regulation) stategdésts are self-regulated to
the degree that they are metacognitively, motivationally, and behaviorallg getiticipants in
their own learning process" (Zimmerman and Schunk 2001). The key research questions ad-

dressed by self-regulation theories are:
« What motivates students to be self-regulating during learning tasks?
e Through what process or procedure do students become self-reactive or self-aware?
* How do self-regulated students attain their academic goals?
* How does the social and physical environment affect student's self-reguéaitedde
« How does a learner acquire the capacity to self-regulate when learning?

Computer-aided instruction systems can adopt strategies to teach meteeaills, like
metacomprehension, reflection, and self-regulation. If students learn thésgiasrahey will

not only improve scholastic performance in the subject currently taught, but also lzerable t
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flect better on their own knowledge in other subjects, and therefore show transfeaajgnet
tive skills. White et al. has created a system based on this strategy (Wihited8, and
Frederiksen 1999), that we discuss in detail the section "Learning by Doing, Actiméngea

Inquiry Learning and Related Pedagogies" in the next chapter.

M otivation

Educational literature notes links between learning, motivation, and attitude. Mdtstatlents
tend to spend more time on learning and pay more attention to the presented materigkdvotiva
students learn more and learn better (Brophy 1998; Haskell 2001; Lepper et al. 1993; Stipek

1988).

We believe that learning by teaching agents increases a student's motivétshoas
similarities to approaches discussed later in this section: Students whaootésaoin tare in a po-
sition of power and control, which includes their responsibility for the tutee's sudces®red
instruction, which situates the student in a realistic context, stimulatesiemof students. Ad-
ditionally, the student is co-operating with our social agent, which adds an interpenstinat
tion component. Our learning environment provides tools for exploratory learning (a mulat

which stimulate cognitive curiosity.

Cognitive theories about motivation distinguish extrinsic motivation and intrinsiganot
tion. Intrinsic motivators make us do things because we enjoy doing them, for examplg; we ma
like astronomy because we have a telescope and enjoy stargazing. Although a leaitong e
ment only can foster intrinsic motivation, extrinsic motivation is omnipresentdhaastic en-
vironment and may interfere. Extrinsic motivators come in the form of rewards antdmpenis

from the world around us. We thrive to get a good grade in school to obtain rewards from family
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members (Sternberg 1995). Remarkably, there is an inverse relationship betviesin arid
extrinsic motivation. If a person, who is highly motivated intrinsically on a taskivescaddi-

tional extrinsic motivators then their intrinsic motivation may diminish (g 1995).

Intrinsic Motivation

Malone and Lepper studied this kind of motivation in children, and found that some tasks are
motivating by themselves, because the urge to solve them comes only from the problem and not
from outside, as it would when studying to pass an exam (Lepper and Malone 1987; Malone and
Lepper 1987). For example, many children spend several hours each day playing ingrinsicall
motivating computer games, time that is essentially lost, or may even disglazagion. If we

could prepare educational materials to make learning more intrinsicallgdiegiave could im-

prove learning environments. This may even include combining games and education. Thus,
Malone and Lepper formulated their taxonomy of intrinsic motivation to analyzeddbsdr

make learning fun. They distinguish two groups of factors, individual and interpersona-motiv
tion. We start by discussing individual motivators, which are challenge, curiosityolcamnt

fantasy, while competition, cooperation, and recognition are interpersonal motivators.

It seems to be commonly agreed upon that an optimal level of challenge that may vary be-
tween individuals, results in the highest motivation. Attractive tasks give timetem explicit,
fixed goal, while more open-ended learning environments, like Logo, may let the user choose
emergent goals (Csikszentmihalyi 1978). Bandura and Schunk also stated that preeamal (
goals are always superior to distal (far) goals (Bandura and Schunk 1981). Anotherdiactor
tributing to challenge is uncertain outcome, which seems to be optimal when theinibibil-

ity for succeeding in a task is 0.5 (McClelland et al. 1953). Thus, to create a motigatimgg
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environment, we need randomized tasks of variable difficulty that allow a sudeest0&b, and
give multiple levels of explicit goals. Performance feedback should desirablydueit, clear,
constructive, and encouraging. To enhance self-esteem a system should make perigoaianc

personally meaningful and relevant (Malone and Lepper 1987).

A second component of individual motivation is sensory and cognitive curiosity (Malone
and Lepper 1987). Sensory curiosity is stimulated by physical and psychological ngdns (|
sound, zoom, highlight, and so forth) to increase attention, while cognitive curiosityalset la
completeness, consistency and parsimony to evoke interest. Cognitive curiogisfiedday
exploration of undiscovered terrain or facts and seems to be a very powerful motivtador tha

curs in many best selling games.

According to Malone and Lepper, power and control are the most cited explanations for the
attractiveness of computer-games (Lepper and Malone 1987; Lepper et al. 1993; Malone and
Lepper 1987). The perceived level of control makes a player feel competent and empovgered. It
important that outcomes are contingent to the user’s responses. Zuckerman et amfbe ex
showed that explicit choices by students enhance intrinsic motivation (ZuckernhatO&Ba.

Usually, the illusion of choice is motivating enough to be noticeable (Langer 1975). Rinally
student’s actions should have powerful effects. Large and spectacular effectsrdnertaltera-
tions in the environment (graphics and sound) will lead to subsequent motivation (Lawler 1982;

Papert 1980).

Fantasy plays a major role in being motivated, for example, when reading a book. It may
help to satisfy unconscious emotional needs and lets us master situations that\aiabtd

us in reality. A user would identify with another character if there were pectsimilarity, ad-
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miration, and salience of that character’s perspective. Lepper and Malone sddlgasstudents

should be able to name actors in the environment.

Interpersonal motivations are competition, cooperation, and recognition. These fietors a
prevalent in multi-user Internet games. Competition may work for or against indimdtisa-
tion (e.qg., self-esteem), and it may have negative influences on social relaso@&toperation
can be used to master difficult situations. Recognition can be shown through the process of pub-
lic performance, the product (e.g., painting of an artist), or the result (e.g., high; asot-

cate).

Flow

A different kind of motivation is that learning is often associated with the st#te ofind that

finds balance between challenge and skill, and people find themsefl@s (€sikszentmihalyi
1990, 1978). Althougflow is a somehow elusive concept, we include it at this point to make the
conceptually related measure Experiences that Energize (ETE) (Brophy 1998, 2@03)rbet
derstandable. We describe ETE later in this section and revisit them in our dis@fsstperi-

mental measures.

Csikszentmihalyi has found that people are generally unhappy when they are doing nothing
and generally happy when they are doing things. Sometimes, individuals reached alstate of
mind that made them very productive in the task that they perform. Csikszentmihatyilcis
flow. Persons in flow feel completely involved in, and focused on their task because afitheir ¢
riosity or training. They feel great inner clarity, know that the activityabie, do not notice
time passing, and feel intrinsically motivated. Flow is a highly activatéel stéhe mind that

puts the person performing a task in control. People in flow devote 100 percent of their attention
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to the task they are performing. Putting a learner in flow some of the time would teyaabig
preciable goal for learning environments. Unfortunately, there is no known way of indweing fl

artificially as it has to come from within.

However, flow may be useful as evaluation metric of a system. Brophy has developed a
measure of intellectual flow that he has called Experiences that End&@ize (Brophy 1998,
2003). Subjects repeatedly report their energy level associated with an dctivityey are cur-
rently involved in or have just completed, with a single seven point Likert question (seE3Fage
for a detailed discussion of this measure). The answers provide a rating opseHdentellec-

tual enjoyment that relates to the idea of flow.

Summary

This chapter discussed theories that build the basis for understanding of how peopletlearn tha
influenced the design of our system in many ways. A peculiarity of the learningpretiest

learners integrate new knowledge with knowledge they already possess to camsiraetn
understanding of the world. When asked to reproduce what they have learnt, learners show that
the have transposed learnt stories into the modern world (Tripathi 1979), or that they have
merged what they knew with what they learnt anew. This is the core idea behind cetstruct

which describes how people accommodate new knowledge and handle contradictions to arrive at
something they feel comfortable. In recent work, these ideas of constructivisnicseave an
increasing influence on newly developed educational methodologies and computer aided instru

tion systems.

One issue illustrated in this chapter was that students may associate weatscitih

knowledge, or that knowledge simply stays inert (Whitehead 1929). Thus, learning raghires r
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contexts. We presented work that suggests that situating learning inagabslem-solving
macrocontexts helps learning. An applied strategy to implement this theory inssishao!
chored instruction, which helps transfer and learning. Transfer of learning is thetalgener-
alize learnt knowledge and apply it in new situations. Therefore, transfer isgdsd dench-
mark for assessing how good a learning strategy or system is in helping |éauaqgpsy/ their

knowledge in real-world situations.

Students often categorize school as boring, thus, increased motivation might helpito stim
late interest and could indirectly improve learning. Lepper and Malone’s Taxonomyirgitnt
Motivation for Learning (Malone and Lepper 1987) helped us to identify criteria that sske |
ing by teaching agents motivating. In addition, metacognition and metacognitiveicegdé
scribe the ability of students to control their learning through reflection ancegelition. This
plays a role in out context, because agents make students reflect on what theyp theghagent,

and we are interested how this affects students.
This lets us arrive at the following conclusions:

« Foster transfer and deep learning by providing rich environments that are anchored in re-
alistic macrocontexts already in the learning stage.

* Recognize that students merge new knowledge with what they already know.

« Intrinsically motivate students through learning by teaching. Students are iniarpokit
power and control with the responsibility to teach, and realistic fantasy cortexitate
cognitive curiosity. Additionally, co-operation with a social agent adds interpérsora

tivation component.
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This concludes the theoretical framework for learning for our system design. Irxthe ne
chapter, we will discuss related work in computer aided instruction and pedagogies/that

been derived from practical research.
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CHAPTER llI

COMPUTER AIDED INSTRUCTION

This chapter surveys past work in computer-based learning, and instructional sygeem#

adopt the terncomputer aided instructiom its all encompassing meaning, but we do not intend

to limit this term to intelligent computer aided instruction systems, which leasused as syno-

nym for intelligent tutoring systems (Wenger 1987). We describe a number of reptiese
strategies and systems and relate them to the theories that were desdhbqaevious section.

This chapter is not an exhaustive overview of systems that have been developed in the domain,
but it focuses more on mainstream research and technologies that may contribuggmiogdes
learning system based on the principles of constructivism, transfer, metamggseti-

regulation, and motivation.

The first section of this chapter discusses specific learning strategtdsgave been em-
ployed in classrooms and in computer-aided instruction. Among others we discuss: learning
being taught (e.g., Anderson 1995; Wenger 1987), and approaches influenced by constructivism
such as active learning, learning by doing, and guided discovery methods. Researchateat is m
recent integrates peer tutoring and self-explanation with traditionahsysite general, the trend
goes towards hybrid systems that employ multiple strategies at once. In tipafagraphs, we

focus on learning by teaching.

The second section of this chapter introduces designs and implementations of repesenta
systems that implement these strategies in intelligent computer aitredtios systems. Intelli-

gent tutoring systems traditionally use the tutoring approach, but also implemielet @mge of
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strategies. Constructivists initially devised the not very successful idee@worlds (Papert
1980) that supported pure discovery learning. Later mutual interactive and intetigemd
environments combined multimedia, anchored instruction, situated cognition, and other ap-

proaches with coaching into various levels of guided discovery.

The last section of this chapter gives a brief overview of how computer agents may hel
achieving educational goals. Of special interest are design, social, and eduaapents of the

agents.

Pedagogies and | nstructional Strategies

This section gives an overview of various teaching and learning strategies fromadretical
perspective that the scientific community has developed and incorporated into congadaer-a
instruction systems. The topics covered include cognitive tutoring, discovery leacting
learning, inquiry-based learning, peer and reciprocal tutoring, learning by teactdrigaming

of metacognitive strategies. All these strategies have been shown to berudegigning learn-

ing environments and have enhanced the effectiveness of teaching tools. We also discuss the
strengths and weaknesses of each approach. It should also be made clear that thesesapproac
are not mutually exclusive, and students could engage in activities that incorpoltgikem
strategies within a learning session. For this reason, we defer the discussewxtichlpmple-

mentations and system designs of these strategies to the next section.

The Cognitive Tutoring Approach

Original cognitive tutors adopted the principle of drill and practice to educate thie dse

mains, such as algebra or geometry. The most cited and well-known tutor designscanbas
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Anderson’s ACT* theory (Anderson 1983), which fuelled the development of cognitive tutors
and a number of intelligent tutoring systems that are discussed later. Thpiisation of this

theory was a tutor that taught students to program in LISP. Later, this systexdapéed to im-
plement a geometry tutor (Anderson 1995). These systems have now evolved to a generic
mathematics tutoring system that is sold by Carnegie Learning® (Careagiaig 2004). After
learners study a paper curriculum in mathematics class, students practicéuborihg system.

As a general principle, these systems implement production rules that follotwdbats’ prob-

lem solving trace step by step. The system does not intervene as long as the styisdemiasta
reasonable solution path. Once a student’s solution deviates from a pre-defined patterthe sys
intervenes immediately, flags the incorrect answer, and provides feedbacladsatke student

in the right direction. This may prevent the student from making further wrong méwveter-

son further explains that students also can request help prior to answering. Thagesness

should be short and to the point. However, some students tend to overuse help, and the system
has to moderate requests (Anderson 1995). Nevertheless, students cannot go on until they have

solved a problem without help at least once.

The advantage of this approach is that it keeps the student’s activities focused oretite co
problem solving trace, which makes the problem solving process efficient. By olmeeuadi
practice, the student may quickly pick up the correct problem solving procedures. Anderson
states that keeping students on track reduces their chances of developing misconéelations
tionally, he notes that students’ attitudes are quite positive in classrooms usiitiyedagtoring

systems, and that cognitive tutors encourage peer help in how to use the systems.

! This is the original cognitive tutoring stratedyday there are numerous improved variants ofapjgoach that
let students make some mistakes or use altermategies to provide feedback.
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Critics of this approach point out that it prevents students from exploration, and fram lear
ing how to recover from incorrect solution paths, or to identify wrong solutions, and leaves very
little room for creativity, exploration and inventiveness (e.g., Self 1990; Rickke|28G0). More
recent work (Aleven and Koedinger 2002) extends cognitive tutors with metacognaieg)iets,

as we see next.

Self-Explanation

Self-explanation is the process of spontaneously explaining to oneself availabietiosal ma-
terial in terms of the underlying domain knowledge (Chi et al. 1989). Researchersoopérat
self-explanation by letting students explain the reasons for choosing an action, bokhsaelu-
tion path of a problem after providing a correct answer (e.g., Weerasinghe and Mit@®jc 20
Thus, the term self-explanation is also used if the explanation is enforced by, oogverar-

ing system.

Aleven and Koedinger combined cognitive tutoring with self-explanations (Aleven and
Koedinger 2002). Students were required to justify their answers with correatatiqhs; oth-
erwise, the cognitive tutor did not let them move on. They found that students who explained
their steps to the cognitive tutor performed better than students who did not explainotbieimpr

solving steps.

A learning by teaching system uses similar mechanisms as self-expiabatause students
elaborate their understanding during teaching. We discuss these similaritiesection about
learning by teaching. This concludes our discussion of tutoring strategies, and feeuwsilbn

strategies that involve the learner more actively in the learning process.
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Learning by Doing, Active Learning, Inquiry Learning and Related Pedagogies

This section discusses teaching strategies that have been devised to suppdasrennclin-
struction. The same ideas can also be applied to designing learning environments. Tdfe roots

these pedagogies date back to the educational theories of John Dewey (1859-1952).

Two pedagogical approaches that comply with the principles of constructivisnaimede
by doing and active learning. These strategies are based upon the idea that peoplst learn be
doing things, not by being passive recipients of knowledge (Lander et al. 1995; Modell and Mi-
chael 1993). Some studies have found that higher order thinking skills are not acquired through
didactic approaches, but rather through learner’s active involvement with inforr{atithins,
Brown, and Newman 1989). Discussion, reading, writing, evaluation, analysis, synthesis, and

teaching are tools of the trade to support active learning.

From this general principle, research derived three closely related pedhgppioaches:
project-based learning (Katz and Chard 2000), problem-based learning (Boud 1985; Boud and
Feletti 1991; Torp and Sage 2002), and inquiry-based learning (Dewey 1938). Project-based
learning focuses on developing a product or creation, and may be combined with any other strat-
egy. Problem-based learning is that content is introduced in the context of compieariéa
problems (the problem comes first). The approach stems from medical instructse@lch and

appears to be conceptually similar to the idea of macrocontexts/anchors in Anchiouetions

Inquiry-based learning approaches are derived from the educational theories of Joiin Dewe
(Dewey 1933, 1938). In a generic inquiry-based learning environment, students work in groups

and cycle through five tasks: ask, investigate, create, discuss, and (efiegbare with the

! The phases of this strategy are similar to Flgxaaptive Instructional Design and the STAR Legkayrning
shell cycles. We discuss both of them later in thigpter.
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STAR Legacy cycle in Figure 4 on page 61). First, students ask meaningful quesieratga
hypothesis) to create genuine curiosity about real life experiences. Thistgymosides the
motivation for students to gather information, research resources, and conduct expefiime
learner can then recast the question that she has asked or redefine the investidatidy. okf+t
ter enough information is gathered, the learners begin to integrate their knowledgaté new
thoughts and ideas. Then, inquiry learners share their ideas with others and engags-in disc
sions. The students conclude the cycle with a reflection phase where they evalsalatibn

has been found, or new questions arise, and the cycle is repeated.

One computer-based learning environment that implements inquiry-based learningecbmbi
with meta-learning (learning of metacognitive skills) is the SCIWISEept¢White, Shimoda,
and Frederiksen 1999). The system includes a number of task adviser agents, such as Ingrid In-
ventor and Harry Hypothesizer, who help the student in specific situations witlgisteateice,
for example, the agents suggest how to create hypotheses, plans, and ideas. Whibesteal
that this makes students learn cognitive processes, which facilitates imguimyng, collabora-
tive work, and peer tutoring. These task advisers help the students to develop metacognitive

skills while solving problems. The authors state this as follows:

"Our claim is that an agent’'s meta-level expertise can be internalizéddants and then
consciously invoked if, through a process of reflected abstraction (Piaget, 1976), itrhas bee
identified, explicitly labeled, and interacted with as a functional unit. By intemmgexper-

tise as a system of such functional units in the form of advisors, they becomebéetessi
reflected abstraction and conscious control, enabling students to 'put on differenhtats’ a
'invoke different voices’ when needed as they solve problems or engage in inquiry learning."

(p. 176, White, Shimoda, and Frederiksen 1999)
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A major risk in implementing the pedagogies, which we have discussed in this section, is
that engagement of students can be mistaken for learning (Schwartz, Brophy et al.tti999). S
dents may be enthusiastic about the task and work hard, yet assessments of theindinden$ta
domain knowledge may produce disappointing results (Barron et al. 1998). In addition, imple-
mentation of these approaches in regular instruction requires more time thaon@abbitture
based instruction. Nevertheless, active learning and learning by doing influenced tbp-deve
ment of discovery learning. Problem based learning and inquiry learning influencedxitdyFl

Adaptive Instructional Design Theory. We discuss both pedagogies in the next sobssecti

Discovery Learning

According to Schank and Edelson, pure discovery learning (Bruner 1961) works as follows: Peo-
ple reason about situations they encounter by referring to similar situations ¥eegnicaun-

tered earlier, and if people see a new situation and all their expectationg,afeemao learning

takes place. However, if their expectations are violated learners wiltastarestion their ex-
periences and begin to integrate new knowledge into their existing knowledge sf(8tthiank

and Edelson 1989). A pure discovery system will allow a student to learn actively by solving

problems. Learners typically choose strategies freely without interventspeoific help.

The main weakness of the pure discovery process is that it may be quite time consuming t
accomplish learning. In some cases where students have full autonomy, but venhgte-c
hension of the domain, learning may not occur because students cannot interpret the situations
they see (Brown and Campione 1996). The student may use trial-and-error to accomplish the
learning task or solve problems, and explore the environment in an inefficient way.rBesneti

students may feel unmotivated and lose interest in the learning task, because theyakanot m
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progress (e.g., Malone and Lepper 1987). Other researchers demonstrated that purg discover

does not work very well (e.g., Klahr and Nigam 2004; Mayer 2004).

To alleviate these shortcomings researchers developed guided discovery and gxpositor
methods. To provide guidance, a teacher or system provides hints, direction, feedback, and
coaching. Expository methods provide the correct solution before learners starttiveryis
process. Mayer concludes that students in a pure discovery condition performed the worst, and
learners in a guided discovery condition performed the best on tests of immedrdterretie-
layed retention, and transfer in solving new problems, although guided discovery requires the
most learning time (Mayer 2004). He also states, "Students need enough freedom tochgeome
nitively active in the process of sense making, and students need enough guidance so that their

cognitive activity results in the construction of useful knowledge."

A discovery learning system conforms to the principles of constructivism betaillsg/s
students to construct their own understanding of the domain, to learn how to develop solution
strategies, to derive and improve hypotheses, to learn from their own mistakes, andavithdeal
incomplete knowledge. Implementations of pure discovery systems are Micro(Rajokst
1980). An example of a guided discovery system is the Adventure Player learning enmtronme

(Crews 1995). We introduce both systems in the section "Existing System Dépages'49).

Flexibly Adaptive Instructional Design Theory

Flexibly Adaptive Instructional Design (FAID) has been introduced to help fostprutheker-
standing while simultaneously promoting the skills for problem solving, collaboration and
communication through the use of problem based learning followed by more open ended project

based learning (Schwartz, Brophy et al. 1999; Schwartz, Lin et al. 1999). According to FAID,
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instruction should integrate (1) learner-centered environments, which integratedgeyskills,

and attitudes of students, (2) knowledge-centered environments, which are organized around big
ideas that support learning, (3) assessment-centered environments, which help tstudeals

a representation of their knowledge that makes their thinking visible to them anéalbbgrs

and thus revisable, and (4) community-centered environments that support collaboration among
students. FAID combines a problem-based/anchored instruction approach with a modified in-
quiry learning cycle (initial challenge, generate ideas, multiple pergpgctesearch and revise,

test your mettle, and go public - see Figure 4 on page 61). This pedagogical design wdsrappli
the STAR Legacy learning shell, which we will discuss on page 60. FAID and STAR\ are

pedagogical foundations for our system design.

Peer Tutoring, Cross-age Tutoring, and Reciprocal Tutoring

Peer tutoring implies that tutor and tutee are of the same age, while in crostagg the tutor
comes from an advanced class and is older. Publications suggest that peers undehstdhdrea
better because they are cognitively closer. Allen and Feldman found that third arglaibdrs

were more accurate than experienced teachers in determining from nonverbal hehether
age-mates understood lessons (Allen 1976). Peer tutors may also have advantagasimgexpl
materials due to their cognitive similarity (Cohen 1986). A related strateggiprocal tutoring
(Palincsar and Brown 1991) when students alternatively take on the role of tutor and tutee. Due
to the close relationship of peer tutoring and learning by teaching, we defer discaggiitiye

benefits of tutors to the next section.

Peer and cross-age tutoring are not easy to adapt, as simply assigning tutoeandyute

lead to problems. Tutoring requires training and communication skills. Cohen suggsesest a
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a potential tutor's comprehension before assigning them to tutoring tasks (Cohen 198@). Lippit
states that especially in cross-age tutoring also lower performing stedertte effective tutors

(Lippitt 1976). In addition, peer tutoring can give rise to status problems by making adkes f
inferior, and cause friction between tutor and tutee (Gaustard 1993). As we have discussed i
chapter one, computer-based systems can avoid these dangers by removing one or the other hu-
man factor by substituting a system or an agent. In the following paragraphs, we disepise-

sentative computer aided instruction system based on reciprocal tutoring.

Scott and Reif have implemented a reciprocal tutoring system to teach Newtorsans phy
(Reif and Scott 1999; Scott 1991). A computer and a student take turns in coaching each other.
They have demonstrated that their system performs almost as well as indivichaal tutors.

The system is implemented in Authorware™ the following paragraphs, we give an overview

of this system.

As first step, the computer coaches the student. The system detects any dreossudent's
implementations, and helps them to diagnose the reasons for their incorrect ansereteeT
computer guides students to the correct solution. Each tutorial conducted by the comphter coac
has one problem that can be solved by applying several aspects of Newton'’s law that student
select from a menu. Coaching the student commences in three tasks: (1) The studientaleci
use a concept from a list, which the computer assesses and only draws in a didgramoni€ept
is applied correctly, otherwise the computer coaches the student with hints andeathacke
(2) To let the computer generate equations based on Newton’s laws, the student Hasto clic
appropriate parts of the system’s diagram; and (3) The computer asks about\piediztiion-

ships in the diagrams.

! Authorware™ is a visual authoring tool that allosveation of interactive (e.g., educational) conteith little pro-
gramming skills. It is similar to another produehich is called HyperCard™.
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In the reciprocal step, the student coaches the computer. The student chooses actions to per-
form, and assesses the implementations generated by the computer, which maystaddes:mi
(1) The computer randomizes the solution path, and the student has to select the proper steps in
the right order; and (2) The computer implements this solution path step by step, and the student
has to approve every step. Should the student approve a wrong step, the system asks the student

to check more carefully and gives hints.

We believe that this system combines reciprocal tutoring with traditionaltc@gtitoring
by implementing learning and correcting false moves of the student. However, our goal for
learning by teaching system is to give the student more freedom to explore. \Wplgttohis

by moving towards a guided discovery approach in the design of our learning environment.

Learning by Teaching

One only knows something if one can explain it. Giambattista Vico, 1710

The idea of learning by teaching is closely related to studies in peer tutoring,vasiprovided

some results that illustrate benefits for peer tutors. Cohen found that preparachttfaeili-

tates long-term retention, as well as aiding in the formation of a more compvehamgiinte-

grated understanding" (Cohen 1986). Gaustard observed: "Strikingly, student tutors oftén benef
as much or more than their tutees" (Gaustard 1993). In addition, learning by teachingpseems
provide motivational and cognitive benefits for the tutor. In preparing to teach, studenteconsi

the larger context of the knowledge, spontaneously discover flaws, question the purpose or men-
tion alternatives significantly more often than students preparing for a testharahallenge of
teaching others appears to create the sense of responsibility that is higlagtingpto individu-

als of all ages" (Biswas, Schwartz et al. 2001).
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Learning benefits of tutors have been observed in the following publications (Cohen 1986;
Michie, Paterson, and Hayes-Michie 1989; Palincsar and Brown 1991; Gaustard 1993; Nichols
1994; Chan and Chou 1997; Obajashi, Shimoda, and Yoshikawa 2000). In the following para-

graphs, we discuss systems that combine learning by teaching with computeeaidiz)!

One of the first approaches implementing learning by teaching a computer is tis¢upijot
of Michie et al. (Michie, Paterson, and Hayes-Michie 1989). The knowledge domain abosiste
basic algebra concepts (solving of linear equations). Students taught a computer bggexvidi
ample solutions to problems. From these examples the system learned one gerterabhué
equations by using a machine learning algorithm (ID3 decision tree induction algdpitinman
1986). The student used the commands: (1) show to provide an example to the system, (2) look
to display the induced rule, (3) test to try to solve a problem, and (4) ask to go through the in-
duced rule step by step to debug the rule. Their hypothesis was that having taught the machine, a
pupil must have mastered the given skill and that this use of a rule-induction algoritbig-has
nificantly better advantages for the learner than learning through drill anccpradichie et al.
compared three conditions: drill and practice, and two versions of their learning lingesys-
tem with 30 subjects. The researchers concluded: "Although, motivational gains weipe not
served, students in the experimental condition showed enough learning gain to warrant a full

scale study."

Palpetu et al. conducted experiments to determine whether explaining conceptssthagher
advantages over plain studying. The idea was that dialogues with others would expose possibl
argumentative flaws through previously unconsidered justifications. The group proposed a sy
tem where the student teaches the computer in a fact-based science domajpu(Raider, and

McCalla 1991). In this system, users want to perfect their own domain knowledge, while the
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computer starts @abula rasa This system does not need an expert or domain model (see page
50), but only makes inferences from what it has learnt. Input from students improves the domai
knowledge base and the learners evaluate the system’s inferred responsegartigersscon-
cluded their system performed best in situations when the student "almost knows" tire doma
With their approach dialogue history provided information to keep the dialogue active, focused
and pedagogical. The authors raised the question if a learning by teaching systeharstede

dent model, and if it is would be helpful to have a domain model to guide the student towards

unexplored areas.

Chan and Chou tried to answer the question whether the computer should teach the student
or vice versa. They explored various combinations of reciprocal tutoring (PalindsBravn
1991) where human and virtual agents worked together in dyads and triads, in various combina-
tions as tutor, tutee or companion to solve recursion problems in LISP (Chan and Chou 1997). In
this approach, agents (including humans) took turns in filling the role of tutor or tuteeaaite
problem. Unfortunately, we do not know that a full study followed the preliminary expealment
trials with only five subjects per condition. The results suggested that distrifeagiprocal tutor-
ing (virtual tutor + real tutor + real learner on different computers), outpertocergralized re-
ciprocal tutoring (virtual tutor + real learner) and intelligent tutoring @airtutor + real learner,
not switching roles). Students in the "learning by tutorimghdition (virtual tutor + real tutor +
virtual learner) performed worse than in other conditions. The authors had expected the low pe
formance of learning by (observing) tutoring group, because those students esseyially
watched, and occasionally enhanced the virtual tutor’'s answer to the virtual tuteeeH®ite

dents preferred this condition to other activities that involved more work. The viewrahbpar

! The authors use alternatively learning by teachimgjlearning by tutoring to explain their abbrévia LBT.
Later, they restrict this term to the meaning afteng by observing tutoring between virtual tuaod virtual student
with the option of enhancing the tutor’s instruago
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by tutoring adopted in this paper does not conform to our view of learning by teaching, which

requires the student to take on a more active role in the teaching and learning processes

Nichols pointed out that learning by teaching systems need to focus on defining a mutual
communication language to limit the content of the dialogue to the essentiahfdesdiomain
(Nichols 1994; Nichols 1994). His system DENISE startetlasla rasa(empty knowledge
model) and built &earnt modelfrom the dialogue interactions with the student in the domain of
gualitative economics. Each resulting learnt model contained 65 percent terms not atbeal by
tutors. The models had many unrelated and general terms (irrelevant knowleddegliwe oe
civil war) that often could not be found in the economics literature. Nichols found that students
created long causal chains of little value with general terms. He also pointedtdaatning by
teaching systems were less reliant on a domain model than intelligent tuystems. We be-
lieve that the weakest point in this design was that students lack an intuitive waiew and
modify the learnt model efficiently. For example, students could not look at a visieder{a-

tion of the entire learnt model.

The newest learning by teaching prototype to date was developed by Japanese guaduate st
dents at Kyoto University (Obajashi, Shimoda, and Yoshikawa 2000). The system enhances a
web-based computer aided instruction system with personalized agents thathdagdel of
virtual students. Students first studied materials on their own by reading thecbasgie In their
web-browser. Then, the learner has to solve given exercises, which allowed timeteysiedify
the behavior of the learner’s virtual student. In the next step, the learner taughiudieagient
by typing text, which was then evaluated by the agent. The paper did not describe how this
evaluation took place, only that the agent was able to recognize if the student copiedezhd past

text from the lecture materials. After teaching, the learner asked thalattident agent ques-
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tions, and corrected its answers. In the fourth step, virtual students of differenhtesinn a

virtual classroom, where they present their knowledge and a virtual teacher provideditie
correct answers, while the human tutor observed the dialogue. Additionally, this pysteded

an online, anonymous question and discussion room, where the learners could communicate
about the material. The virtual students’ questions came from a question databdspehdéd

on the human students’ answers to exercises during teaching. The virtual studedteaame
swers to these questions. The system was evaluated against a control group, whitlostyudi
from text pages (n = 20 for each group) and the authors claim that their learningloygtsss-

tem deepened understanding, that learners could easier monitor their own understanding and

gained diversity of understanding by observing other learners’ thought processes.

Remarkably, most learning by teaching approaches use machine learningesttatégarn
knowledge from the tutor. However, there is currently no evidence that it is necasanefi-
cial to use a learning algorithm to maximize the learning bertéfggidentsOne flaw in current
systems that use machine-learning algorithms is that they createcastéenal representations
that are not comprehensible or viewable by the user, and eventually are hard to modify. More-
over, students have difficulty to understand why or how a computer has learnt certain concepts

from what was taught.

We think that learning by teaching benefits from letting students teach the coimpater-
structing shared representations that are visible to the tutor and the agent dehimgtand
testing. These shared representations replace (to various degrees) hidden stdeleniTimus,
learners can trace incorrect responses of the computer or agent transpaiiyhis process
view their own progress. Students can develop a feeling for what is correct bymgftectheir

taught representations without requiring refined troubleshooting or debugging skasyfplex
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internal knowledge representations. In addition, this strategy conforms to a constrapt

proach, because students effectively build their own knowledge structures, and then study how
well their taught agent can solve problems or answer questions with these sruictbes

agent makes errors, students have to reflect on these errors, and find out how to teagértheir
better. In reality, students seem to be learning from their own mistakes, and frizmdiback

they get about these mistakes.

In addition to peer tutoring and the systems mentioned here, we see similantesrbet
learning by teaching and self-explanation approaches. As we have discussed beta3g)pag
current research operationalizes self-explanation as explaining to ae®turidr (e.g., Miller,
Lehman, and Koedinger 1999). A learning by teaching system that lets students expi&inssol
to an agent involves inherent self-explanation and reflection, because students haveda foc
their agent's errors, and figure out why these errors occurred, and how to correcothexant

ple, Chi states:

"Thus, since the construction of self-explanations, directed by oneself without anyoguida
from another, is an effective means of learning, then it seems that the construeiptaof
nations, elicited by others, may have the same beneficial effect and may accounfoin pa

the effectiveness of tutoring.” (Chi 1997)

Other Pedagogical Approaches

Kafai has introduced learning through design and learning by programming. In hertresiearc
has verified the assumption that "making something is a powerful way of learniigi ({95,
p. 286). Kafai led a project where children had the task to design games in Logo to teach other

children about elementary school mathematical concepts, like fractions. Childramftiade-
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sign sheets where they could jot down ideas of how to structure their game to teachchidther
and then implement it. These design sheets were collected and evaluated asliess&afai
concluded that making games for learning combined the creative tasks of designingiagd pla
and this helped students to develop their individual styles, and build a learning culture in the
classroom. However, only a few students succeeded in integrating fractions ingatheipro-

ject, but learners developed good understanding of complex programming concepts. &imilar t
Nichols’ system and discovery learning, this strategy provided too much freedomacaveetiall
students to deviate from the path of learning target concepts. Otherwise, this lajayp@ears to

be very similar to the concepts of active learning and learning by doing.

Mengelle and Frasson introduced the learning by disturbing strategy. In theigamteiu-
toring system the authors used actors, who play different pedagogical rolesi(&trak 1997;
Mengelle 1996). One of them is a troublemaker agent, who is unreliable in its cooperation and
may mislead the learner in an attempt to improve the learner’s self-confitféaceill discuss
actors in more depth in the section on Agents (page 64), where this system iddréuisita dif-
ferent perspective. The paper did not present evidence for or against learning byndistsiibi
has evaluated a whole system where this strategy played a minor part. We heleditias
strategy here as an idea that could be evaluated in the future as part of a leaeachiby sys-

tem, as it has similarities to a teachable agent that learns unreliably.

Summary

In this section, we discussed various learning strategies that were developpkihoeant learn-
ing theories or aid students in conjunction with computer aided instruction. As a basgystra

we discussed discovery learning, which lets the student explore a domain without gubdance
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might be time consuming, inefficient and sometimes unmotivating for students adigpeicen
they do not make progress in learning and understanding. We can supplement this discovery ap-
proach by adding scaffolding, feedback, and coaching to create guided discovery learning envi-

ronments.

The constructivist philosophy of learning is supported by learning by doing and active learn-
ing, which help students to gain hands-on experience in selected topics. These pedadogies f
their application in anchored instruction, project-based learning, problem-baseddeani in-

quiry-based learning.

A different approach is learning by teaching, which in essence also adopts a cerstructi
approach in which students have to explore, study, and understand the domain to be able to teach
it to others. We can summarize that learning by teaching systems (1) Havetiomivend cog-
nitive benefits for the tutor (Biswas, Schwartz et al. 2001; Gaustard 1993); (2) Reqiied
communication language to prevent students from wasting time by teaching ntédevevledge
(Nichols 1994; Nichols 1994); and (3) Potentially improve on learning gains seen in stuties wi

self-explanation.

Existing System Designs

In this section, we discuss existing formal and informal designs of intelligiening systems,
cognitive tutors, microworlds and intelligent learning environments, each supporfergrmakif
theories, or pedagogies that we have discussed previously. We start with the theonyland i
mentations of intelligent tutoring systems, and continue by introducing microworlds) ofifeer
a more constructivist perspective on computer-aided learning. Last, we willddioest prede-

cessors of our work.
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Intelligent Tutoring Systems

Intelligent tutoring systems (ITS) use atrtificial intelligenceéhteques to provide one on one tu-

toring (Wenger 1987). A number of ITS systems implement the cognitive tutorirgpgtrat
(Koedinger 2001; Anderson 1995). Wenger describes intelligent tutoring systems asligeowle
communication systems that have intelligent mechanisms to adapt their tesauthiiegdback to

the learner's needs (Wenger 1987). Most intelligent tutoring systems use acsttdecture,
containing four modules: (1) the expert module containing the domain knowledge, (2) the student
module, which accumulates information about the student’s knowledge, misconceptions and be-
havior, (3) the curriculum module, which includes the pedagogical expertise, and (4)rthe inte

face module (Figure 2).
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Student Model
Information
Student Knowledge
Behavior Interpretation
Misconceptions
Errors
Diagnostics

Expert/Domain Model
Facts

Concepts

Solution Procedures
Solution Evaluation
Examples

Problem Generation

Interface Module
Functionality
Dialogues
Representations
Communication
Desiderata
Clarity
Usability
Explicitness

Curriculum/Pedagogy M odel
Didactic Process
Teaching & Assessment
Sequencing
Interventions (e.g., guid-
ance, explanation, remedia;
tion)
Control
Initiative (e.g., coaching)
Monitoring

Figure 2. Intelligent Tutoring System Architecta@apted from (Wenger 1987)

Theexpert modulédomain model) is a dynamic representation of the knowledge domain. It
contains domain knowledge, such as facts, concepts, processes, productions, and procedures re-
quired to solve problems. The model allows evaluation of the student’s solutions, and can pro-
vide examples of correct problem solutions. Theiculum moduldpedagogy model) sequences
the curriculum by comparing the expert and the student model, has testing procedunds that i
cate the extent of the student’s knowledge, contains strategies that focus on hatv bhesga
and controls feedback. If the system is sensitive to misconceptions, this module centains
diation procedures. Thaterface modulg@rovides a uniform view of the environment to the user.

It allows the user to interact with the system (as the curriculum moduleipes3dy accessing

the tutorial discourse, problems, examples, scores, progress summariesntapraseand re-
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sources (e.g., examples, diagrams, lectures). The probably best investigatedahiotellegent
tutoring systems is th@udent modelhich we discuss in more depth in the following para-

graphs.

The student model captures the knowledge status of the learner at any point in the teaching
process. Simple student models only keep track of topics that the student has mastered, and
which topics have not yet been covered (Knowledge Spaces, Doignon and Falmagne 1999). More
advanced student models record misconceptions, build bug libraries, and implementing
VanLehn'’s repair theory (VanLehn 1990; Brown and VanLehn 1980), or record which teaching
strategies work best for a specific student. Unlike other modules, the student mizefittica

information that is specific to individual learners.

Sison states in his student model survey that every student modeling system is obviously
limited to observable responses of the student to a stimulus in a domain (Sison 1998). He calls
this student behavior, which can be plain input, an action, a result, or intermediate sorlatch w
Each of these options entails a different behavioral complexity and, thus, requeemtiff
strategies to extract useful modeling information. Sison categorizessyby how many atomic
behaviors they need to gain some information about the student. He states that syskeass, s
Anderson’s tutors (Anderson 1995) build one extreme of the spectrum, as they verify each "key
stroke" of the user and, thus, use single behaviors to build the user model. Other modelers derive
higher-level structures through rule or decision tree induction by using multiple behavior

put (Sison 1998).

Self (1990) states that the philosophy behind intelligent tutoring systems is onlynamhce
with "knowledge communication” (Wenger 1987) and that the goal of teaching is to "transmi

particular subject matter to the student” (Ohlsson 1986). Self states thatuhrsegiects the
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general constructivist educational philosophy, and that for effective learning, knevelaaigot
be communicated or transmitted, but has to be actively constructed by students tleemselve
However, the research community developing intelligent tutoring systems provecetistent

to the adaptation of ideas from educational psychology for a long time (Self 1990).

Combining the architecture of an intelligent tutoring system with construcpisoaches
may be problematic. The process of accommodation may change what a student already knows
and make it incorrect when new knowledge is learnt after a learning systemihed kem ad-
dition, misconceptions of students may not be easily identified in an assessmenankoleex
students may answer that the world is round, but think of a flat and round pancake shaped world
(Vosniadou and Brewer 1989). Additionally, for building an accurate student model, it is essen-
tial to know the intention of the student. However, when interacting with computer syttems
dents, especially young students, like to use generate and test for finding solutiobsri€his
conclusive interaction data in noise and often makes it impossible to build a meanurdgat st
model. To help students learn critically monitoring their solution and recognizing isteoms
cies, constructivist approaches allow learners to descend incorrect solution pedhimngl tu-
toring systems, especially those that used the cognitive tutoring strategydiofinot pay atten-

tion to this issue, and did not support learning of reflective skills.

A representative system of one extreme position (drill and practice) ingeteltutoring
systems in the mathematics domain is Assessment and LEarning in Knowledge @h&KS)
(Doignon and Falmagne 2003). It is based on the theory of knowledge spaces (Doignon and Fal-
magne 1999; Doignon and Falmagne 1985), which models knowledge as units to be learnt. Basic
units must be learnt before advanced units; hence, each unit is a precondition to another unit. Stu-

dents can choose to study any unit for which they have learnt all precondition-knowledge.
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Knowledge is taught through examples and drill-exercises that are accesssul @ages. When
learners solve a mathematics problem five times (with different numbersgtitprALEKS con-
siders it learnt, remembers this in the student model, and opens new choices for theAdtudent
the beginning of the curriculum, learners have to solve placement exercisesdimatraetvhich
units they know. Then, students select a module with satisfied prerequisites, reatrticions,
and solve the related exercise. In this system, the student model is the setobiethgisolved
correctly for five times, which is a subset of the knowledge space. Repeatimtgreserial is

the choice of the student, as the system is not sensitive to misconceptions, bugs orhaher hig
level inferable constructs. The system is available online with a full matkhwdum that

matches standardized tests. To my knowledge, the knowledge space theory was netlemaluat

studies with subjects, but mathematically proven to be correct.

Computer Based Microworlds

In 1980, Papert introduced a new vision for teaching children in a constructivist way through

pure discovery learning, and published it in the influential Bdotdstorms(Papert 1980). This

vision sees students working in computer environments, called microworlds that alowothe

explore a concept in many aspects without having to worry about the full complexity eéthe r

world. Papert defines a microworld as a self-contained world in which certainocmseste rele-

vant and others are not. Each microworld has its own set of assumptions and constraints, and stu-
dents use their natural habits of exploring, playing, and creating to accomplishrinegléasks

in the microworld. In this sense, every microworld is an abstraction of the real whibth, fio-

cuses on relevant aspects of the problem-solving task, and students learn thiedlstoadt

edge through discovery.
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Pure microworlds are single domain, pre-defined simulations of real-world phendratna t
require students to acquire skills that they do not possess. Learners often stragtileg their
own goals when tasks are too open-ended, and when they lack self-regulation and other metacog-
nitive strategies. Papert implemented his idea in the programming langlladd_ogo to let
students acquire "powerful ideas" about the geometry domain (Papert 1980). In thisama;row
students manipulated the movement of a graphical cursor (the turtle) with proggamstiuc-

tions to create geometrical shapes.

As an implementation of pure discovery learning, microworlds share the shortcomihgs of
discovery approach, and may fail to teach target knowledge if the learning comiatxtvisil en-
gineered, and if gaming aspects overpower educational goals (e.g., Miller, Lehmaongdnd K
inger 1999). Evidence against pure discovery learning and microworlds is documented in many
articles (e.g., Pea and Kurland 1984; Klahr and Nigam 2004; Mayer 2004). However, if the idea
of a microworld is incorporated into a larger learning environment, and is combinedeuith fe
back to implement guided discovery learning, we can draw from its constructivisitdenef
Mayer (2004) summarizes the literature as follows: "Children seem to ld&enwken they are

active and when a teacher helps guide their activity in productive directions."

Miller at al. recently explored learning effects when giving students @liffgjoals in their
electronic field hockey microworld (Miller, Lehman, and Koedinger 1999). This micrdwaas$
intended to help students develop a qualitative understanding of electrical chargegsStude
could place several fixed and one moveable charge on the computer screen and stati@nsimul

to shoot a "puck”-charge into a goal. The work assigned 30 college students to three conditions:
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no-[hockey]godl (experiment with the environment without obstacles and net to prepare solving
a problem with obstacles and net), a specific-path (six prepared levels pki®tiegeto hit the

puck into the net), or a standard-goal (six prepared levels no trajectories). The ngjfaadke

and specific-path conditions showed the highest learning gains in this experimenithidie a
concluded that it had to be made clear to the learners what learning outcomes weteslexpe

from them, and how they should use the microworld. Thus, the authors conclude that, "goal-
based problem solving will transfer to pedagogically relevant materialyexden the goal-
dependent relationships coincide with pedagogically relevant relationships.” iomdti¢ gam-

ing aspects of the microworld often distracted students without letting themgleaitative rela-
tionships of charges. Augmented microworlds with guided discovery have sinsl&oitigerac-

tive learning environments, which we discuss next.

Interactive and Intelligent Learning Environments

Interactive learning environments (ILE) are built around constructivist prisogblearning. The
student has freedom to explore the environment, and learn from mistakes. Wilson defraes int

active learning environments as:

"... environments that allow for the electronically integrated display and useolcafrdrva-

riety of media formats and information types, including motion video and film, still photo-
graphs, text, graphics, animation, sound, numbers and data. The resulting interactive exper
ence for the user is a multidimensional, multisensory interweave of selfedireading,

viewing, listening, and interacting, through activities such as exploring, searotfangu-

lating, writing, linking, creating, juxtaposing, and editing." (p. 186, Wilson 1992)

! The authors used the label no-goal for this caomlibut the students received the instructiorsrépare for a
situation with obstacles and net. The assumptidimaisthe authors use goal to refer to the fielckley goal (net) and
not the task's goal.
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Obviously, we can distinguish different levels of interactivity. Schwier andrdiseck cre-
ated a three level hierarchical taxonomy: reactive interactivity (porse to a given stimuli,
tutoring), proactive interactivity (user generation of unique constructions) and nmiéuacttiv-
ity through use of atrtificial intelligence (Schwier and Misanchuk 1993). Simplengtsystems
and basic cognitive tutors fall into the class of reactive systems. Due to our foctifcal -
telligence based systems, we henceforth discuss mutual interactivessystemtual interactive
system adapts to the learner, advises, assists and modifies the environment e ¢gdnming,

and shows intelligence and adaptive behavior.

It appears that some authors adopted the term intelligent learning environneehtEakor
mutual interactive learning environments, but at this time, no formal definition ofedligiert
learning environment seems to exist. All systems that we have reviewed, vassifyadhem-
selves as intelligent learning environment, use artificial intelligéace, Forbus and Whalley
1994; Nichols 1994). Other authors may also use the term to simply distinguish thenssyste
from intelligent tutoring systems. Various authors state: "An intelliggarhing environment
(ILE) is primarily one, which understands the individual student well enough to be ablerto dete
mine individualized actions.” (Self 1991), and "We use the term intelligent leamiirgreament
to denote an intelligent artificial environment, which does not necessarilyeepltamman

teacher." (Gust et al. 1999)

Research at Vanderbilt University’s Learning Technology Center (Crea¥s1¥97) has
embraced the following view of interactive learning environments. These syaffemsafe-
guards to help students back on track if they are stuck, and present multiple repoeseoitati
concept to the student. Thus, they help the learner to develop a deeper understanding of concep-

tual relationships in the domain. Such environments also draw from situated cognition and an-
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chored instruction, by putting learning into a realistic, complicated macroconétxirovides a

rich problem-solving environment. The student is often asked to solve new problems by using
available resources, while the system itself observes the student, and offevh&rlt is

needed. The environment typically does not correct the learner by providing a corrémh solut
but may coach the learner through various levels of hints. Artificial intelligicdéates these

goals, if necessary.

In the following paragraphs, we describe two intelligent learning environmentssthtese
strategies: Smart Tools and Anchored Interactive Learning Environments. Botimemstits use
Adventures of Jasper Woodbury episodes (Cognition and Technology Group at Vanderbilt 1997)

as anchoring contexts and are direct predecessors to the system that is introthisedoirk.

Smart Tools (Owens et al. 1995) combine anchored instruction with macrocontexts and mi-
croworlds in the domain of teaching functional relationships, like, distancerageStudents
create graphs and tables (their own Smart Tools) to explore and solve problemstiViéisk ac
in the environment have the purpose of leading students to generalize from specific ptoblem
concepts of the domain. The system provides a simulation in which the student can explore dif-
ferent settings, a table to write down experimental results and a timeegigfiaaph to plot re-
sults. The system works in two modes: the exploration mode in which students can perform ex
periments and collect data, and the challenge mode in which students solve a set of pooblems

verify their graphs and tables.

Crews et al. developed Adventure Player, an Anchored Interactive Learning Environment
(Crews et al. 1997). This environment situates the student in the Rescue at Boone’s ktkeadow
venture, where Jasper finds a wounded eagle in a remote meadow and the learner hasato devise

rescue plan to get the eagle back to a veterinarian as fast as possible. Thenignawides
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limited resources, like vehicles with payload limits, speed limits, footpathspaml Students
need to consider different candidate solutions to solve the problem optimally. Crevesl dee

following principles for such a learning environment in his work:

* Implement the principles of generative and active learning.

¢ Provide anchored learning

* Facilitate and allow guided discovery learning

« Explicate domain knowledge through multiple representations (e.g., tables and

graphs)

Info  SmartToals

STUREg
o 5

Rescue at Boone's Meadow

GPlannerTool £ Timeline Tool

‘File_Simulation Plan G0min 120min  180min _ 240min 30
put Gascan intn B fly Ultralite to Meadow
put Box into Ultralite
put Ernily inta Ultralite drive Truck o Hilda
fy Ultralite to Meadow fly Ultralite to Hilda
! put Latry into Truck
drive Truck to Hilda drive Truck to FlyingField

put Box into Meadow

put Gascan into Meadow
refuel Ultralite from Gascan
put Eagle into Box

: put Box into Ultralite

§ | Iy Ultralite to Hilda

put Box into Hilda Help

put Eagle into Hilda

2 | drive Truckto FlyingField

- Do:[fly Uttralite to Meadow

-~ Timeline | Delete | Simulate |

Figure 3. Reengineered Version of Rescue at Bodvieadow with Planner and Timeline

Crew’s Adventure Player asked students to create an optimal rescue plan in a planning
notebook, which contained a list of plan steps, like "fly Ultralite from City to Meadelar!
steps could execute concurrently. As students developed their plan, they optimized it\y obse
ing how their plan steps worked in the simulation. After the student chose a planning action, the

learning environment checked the validity of the planning action and responded appropriately. If
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an action was invalid in the real world due to physical limitations, like loading thaerasrcraft

on a truck and driving it to the destination, the system disallowed it and provided an instant ex-
planation. Students could also derive plans that failed, for example, because the @mtarte

of fuel, and see the results in their simulation. Students learned which planning aaions ha

which consequences and solved many distance rate time problems on the path of finding an op-
timal solution. Additionally, the system implemented the principle of minimal-+eipe stu-

dents just enough help to solve the problem (Reusser 1993). Hence, the system included a coach-
ing component that gave feedback on five different levels with increasing spgcifie results

showed that students using the full system solved the challenge significantlgftearthan stu-

dents using a core system without the simulation environment for exploratory learning

STAR Legacy Learning Shell

Schwartz et al. implemented the Flexibly Adaptive Instructional Desigrpéspe38) as Soft-
ware Technology for Assessment and Reflection (STAR) Legacy learnithgoshelp curricu-
lum designers organize learning activities into pedagogically sound inquirg-Hleaseing cycles
(Schwartz, Brophy et al. 1999; Schwartz, Lin et al. 1999). The system, which wagyiimtiall
plemented in HyperCard*is a foundation for the cycle design of our learning by teaching
agents environment. The student solved progressively more complex challengestibyg sew-
eral times through the phases of a cycle. The design philosophy behind STAR Leganing le
cycles conforms to constructivism, situated learning, anchored instruction, and iequmiyngj.

A brief outline of the system states that ...

"Research has shown that effective instruction often begins with an engagieggbalt

scenario that introduces the lesson and invites student inquiry. The combination of a chal-

! HyperCard™ is a multimedia audiovisual contenharing system similar to Authorware™.
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lenge, interactive activities, and multiple opportunities for sharing, assessme revision

is called a STAR Legacy module." (IRIS 1999)

THOUGHTS

STAR LecAcy
MODULE

PERSPECTIVES
& RESOURCES

Figure 4. STAR Legacy learning shell cycle struet(lRIS 1999).

In each challenge, learners progressed through a cycle (see Figure 4) witlowiadol
steps: (1) Review a new challenge; (2) Generate ideas and thoughts; (3) Adtpds perspec-
tives, resources and solve the problem; (4) Assess their own learnt knowledge; ante(&) Wr
summary, and compare with others (see Figure 4). Generating ideas captured th's giede
conceptions, making successive viewpoints of expert perspectives and resourceteveme r
and interesting, because in the following step it led students to recognize, "Oh! thiiak’t
about this (... or like that)" (Bransford 1990). Figure 4 shows a double arrow between the steps
of perspectives and assessment, which indicates that learners could revisedirsitanding
after getting feedback following formative assessment. The term Legptyes the notion that
students preserve their reports and notes they made during the learning and problem-solving
phase for future students to use as exemplars. In the next chapter, we introduce how we have

adapted this strategy to learning by teaching.
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Related Teachable Agents Research

Betty’s Brain is based on constructivist and inquiry based learning (Davis et al. 2808ybang

et al. 2002; Leelawong et al. 2003; Leelawong et al. 2001). Students teach an intelligamesoft
agent, Betty, by constructing concept maps about science topics. To do this, students add con-
cepts to an initially blank concept map (they fill Betty’'s empty brain), and corireecbhcepts

with causal relationships that express increase or decrease relationshgenbmncepts (Figure

5). Later, students can ask questions or quiz their agent. The agent uses the concept imap to der
answers using qualitative reasoning mechanisms (Leelawong et al. 2001). &ettyéss lead
students to identify mistakes in their concept map, and this helps them reflect awthein-
derstanding. Thereafter, students can access and review learning magersdsyhat they

know, and improve their concept maps.
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Figure 5. Teachable Agent Betty’'s Brain models ersgstem domain

Research on Betty's brain established the role of formative feedback through gogstioni
and quizzing (ask a set of questions; plain correctness feedback) the agent imte¢cercieept
map domain (Leelawong et al. 2002; Leelawong et al. 2003). Questioning the agent imiplies tha
students can ask the agent questions like the one illustrated in Figure 5, and the agestignsw
animating its reasoning on the concept map. Students quiz by asking the agent a whole set of e
pert prepared questions, and receive the agent’s answers plus correctness femulthek f
teacher. Results indicated that providing students with opportunities to quiz theidegeatsed
the amount of irrelevant information and increased the proportion of causal information in st
dents’ maps; whereas having opportunities to query their agent increased the inttecim@ss
of concepts in students’ maps. These results held despite observations of students during the
study, which indicated that students who quizzed might have been overly focused on "getting the

quiz questions correct"” rather than on understanding the domain (Leelawong et al. 2003).
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Agents

At the beginning of this work, we mentioned that learning is, in some aspects, a saaaspro
defined by social interaction in schools and in the community. It was determined thagy helpi
somebody to understand material may be rewarding for the tutor (Biswas, Schwar2061).

This motivates the use of agents to promote deeper understanding. The fundamental question for
deriving the software architecture for teachable agents is how to define and wkpéctt from

an agent embedded in our system.

An agent, in everyday sense, is one who is authorized to act for or in the place of another to
accomplish a goal (Merriam-Webster 2005). Our computer agents were designed &cac
complish the goal of improving learning through means that we have discussed in the previous
sections. Remarkably, this does not require our agents to learn presented knowledgea-using m
chine-learning techniques like a human. Rather our agent's goal is to fatietstadent's learn-
ing process by participating in exploratory tasks, helping the student to formalizeolwledge
using a systematic human-agent shared representation, and helping the studeanhreéie

problem solving by applying the derived representation to problem solving tasks.

Etzioni and Weld (Etztioni and Weld 1995), and Franklin and Graesser (Franklin and
Graesser 1996) enumerated traits of agents. While discussing them, we appty thetedrn-
ing by teaching agents context. Teachable agents should have the ability teedgkemtisehe
actions of the user in the learning environmentastdipon them. Our agents should exhibit
autonomyby directing their actions towards the goal of helping the user gain deep understanding
of domain material. To a limited degree our agents needlf@borate for example, a teacher-

agent may need to correct the answers of the teachable agent. Teachable eg¢olsane
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from the user anteactby expressing behavior consistent with their learnt knowledge, to make
misconceptions in the user’s knowledge evident. To which degfexential capabilityof teach-
able agents has benefits for the learning of its user may be subject of futarelre®eair agents
need to béemporally continuouand preserve their state (knowledge) over the duration of their
use for each student. Another important trait of teachable agents igdtrszinality To demon-
strate characteristics of a good student, they must believably learn, askghgliguestions, and
be motivating for a learneinteractivity between agents helps coordinate learning and lets the
teacher agent point the student to the right mateN&bility (that agents can move transpar-

ently to different hosts or systems) is not required for the scope of our currenthiesea

Frasson et al. see intelligent tutoring systems evolving towards implementitigle
strategies with agents that model human behavior in learning situations (Fiiaalsd9@6).
They call these cognitive agerastors who are reactive, adaptive, and instructable. In their sys-
tem design, the authors include a tutor, supervising a learning session, a troublemakex who i
colearner agent that solves problems often incorrectly, and this may improveiee $eself-
confidence, and an atrtificial learner that aids the dialogue and synchronizes the danmmean's!
activities with different agents. Having a troublemaker in the environment maimaner ef-
fects as a teachable agent that learns or reproduces knowledge unreliablys(@vgs iproblems
90% of the time correctly). Assigning different roles to different agentsaadsess a number of
issues that facilitate learning. For example, an agent that is being tangbt kaow whether
knowledge is correct or not, however, a teacher agent can believably correct theansé¢her

agent. Unfortunately, Frasson does not report any data or evaluations on subjects fetethis sy

Once computer agents learn with human students, the question arises how competence of

these agents influences collaborative learning. Hietala and Niemirepo lookdusnsstie and
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divided subjects into four groups of low achieving and high achieving crossed with introverted
and extroverted students (Hietala and Niemirepo 1998). The study found that introverted high-
achieving students liked strong companion agents. However, these subjects tried teesolve t
problems by themselves first before asking the agent. Lower achieving studesriegref col-
laborate with weak agents and generally asked for a suggestion, before tryivg thhagrob-

lem by themselves. The implications from this study are that due to the variabtes diferent
personality types of learners, we would have to give different students diffeesrts.dgowever,

this would introduce confounding variation in our experiments and the cost of implementation

would rise. Therefore, a medium strong agent is the best compromise.

Another dimension is the embodiment of the agent. Embodiment is typically achieved
through gestures, hand and body movements, animation, and synthetic speech. A study by John-
son and Rickel reported statistically significant increases in learning pddagogical agents
were animated (Johnson and Rickel 2000). A multi-modal effect with visual and auditory quali
ties and additional practical and theoretical advice could yield further improvemedearning.

The study suggested that the benefits of animated pedagogical agents inithettsecomplex-
ity of the problems. Visual animation is currently a hot topic in research, and itgbapekar

to vary with applications in different domains. Our research group is working on animating
teachable agent Betty in the Betty's Brain learning environment. Becausatianiims not part of

this design, we will not discuss any further papers on this topic here.

Summary

In the last two chapters, we explored cognitive science literature on learninmjteomided in-

structional systems and agent technology that helped us to define a framework feltigannt
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learning environment. Our research specifically focuses on the distinguishimg$eaf learning
by teaching agents, even though most of the justifications in the previous chapters dpply to t

whole learning environment that we introduce in the next chapter.

The psychological knowledge of how people learn helps to define the base effectiveness of
our system. Constructivist learning (Piaget 1954) is a complex process oftintegeav knowl-
edge with preconceptions while providing means for correcting misconceptions. This snvolve
placing the student in a feedback loop that involves learning new concepts, practicingaheir
by solving problems, reflecting on the solutions generated, and using the feedback frasn the sy
tem to improve one's learning and understanding of the relevant concepts. We accomjmysh this
adapting strategies applied in the STAR Legacy Learning Shell, which org&niz@ledge in

inquiry-based learning cycles (Schwartz, Brophy et al. 1999; Schwartz, Lin et al. 1999).

As we have established, situating or anchoring a learning task in a meaningful context
(Bransford 1990; Cognition and Technology Group at Vanderbilt 1993; Crews et al. 1997) will
enhance the likelihood that transfer of knowledge occurs so that students can apply it in new
situations. Thus, we introduce the problem-solving domain as elaborate macrocorxt (as
quired by anchored instruction), from which we draw specific problems and proximal goals of
increasing difficulty. Additionally, this may motivate the learner by demamnsgréask value.

While discovery learning may accomplish this in the end, if the student stays exbtivat may

be able to accelerate this process by engaging the student in learning by teaching.

Research in computer-aided instruction developed in two parallel mainstreaomsrgithe
exploratory approach (e.g., Papert 1980) and tutoring approach (e.g., Anderson 1995; Wenger
1987) separately for many years. Only in the last decade, researchers staxfgdre synergis-

tic approaches. The tutoring approach mainly focused on devising intelligent tutotemsys
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which followed a strict modular architecture that taught knowledge to the studesdréesug-

gests that teaching correct procedures and knowledge, while flagging the stodetakes, is a

good way to teach. Many papers in the area of intelligent tutoring systems dasevibemodel

the student and derive misconceptions and remediation from the students’ actions. However, one
of the shortcomings of the tutoring approach is that it often neglects the neasstitiyglents to

learn from their own mistakes, and monitor their progress using metacognitigetive) skills.

This shortcoming is addressed in exploratory approaches.

The early developments of the exploratory camp were a number of microworld-based sys
tems (Papert 1980), which were pre-defined simulations of real-world phenomenbothed al
the learner to explore freely, observe the consequences of making mistakes, amdrtetivase
interactions. In these environments, learners sometimes struggled to sewvthgwoals, unless
they already had a good understanding of the domain of study, and possessed strong self-
regulation characteristics. However, the biggest disadvantage was that thalggtissoften en-
joyed the gaming aspects of microworlds and learned to use a microworld effetheglstill

failed to learn parts of the target domain knowledge.

Recent developments in mutual interactive and intelligent learning environmetritsvedm
anchored instruction, and situated cognition with coaching to provide guided discovery learning
(Crews et al. 1997) and emphasized the role of representations in teaching mesh@matns
et al. 1995). Students solved problems, while using smart tools that assisted themimgacquir
knowledge and discovering misconceptions. In the mathematical domain, creatingantapre
tion, like a graph, helps the learner to acquire knowledge consistent with the constrialetayi

while a simulation aids the student in establishing the ground-truth for attempteéonsolut
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Observations in peer tutoring showed that tutors also learn when they teach their tutee
(Cohen 1986; Gaustard 1993; Biswas, Schwartz et al. 2001). Thus, letting the students learn for
themselves in the process of teaching an agent may improve the effectivenessmhg envi-
ronment even further. This may help if agents point out the contradictions in the knowledge
structures that the students formulate while teaching or it may introduce nglatsrikiat the
learner has never had before. Interaction with agents can also provide motivation thrazigh a s
context and the desire to help one's agent, especially in young learners. As ting tea&hin-
volves dealing with other’s mistakes it is possible that this aids the abilitgriage own mis-
takes. A primary causal mechanism for this might be the acquisition of metasageitiective
skills, which are believed by many authors to transfer readily between domains skentbes we
hope that the findings that we discussed here help us to successfully design and evaluate a

framework for an intelligent learning environment that can serve as a model iempdeion.
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CHAPTER IV

SYSTEM DESIGN

This chapter describes the design and implementation of our learning by teachisgeagent
ronment. We follow the design principles for such environments that were establishisd/ay B

et al. (Biswas et al. 2005), which are outlined below.

« Build on well-known teaching interactions to organize student activities.

« Agents are taught through visible representations.

« Keep the start-up costs of teaching agents low.

« Ensure the agents have independent performances that provide feedback on how well they

have been taught.

To build on well known teaching interactions, we used an anchored interactive learning en-
vironment design similar to the one in Adventure Player (Crews 1995; Crews et al. 1997). Ad-
venture Player is an interactive learning environment linked to the Adventures of\lasjae
bury series (Bransford 1990; Cognition and Technology Group at Vanderbilt 1997, 1993). A sec-
ond component that we used to structure teaching interactions are learning cyelesdha
adapted to the learning by teaching paradigm from STAR Legacy (Schwartz, Bt@bhiS99).

The anchoring context situated the students’ problem solving in a realistic comtextample,
students were told that they were interns at a company. In this context, studeskedie a

solve many distance-rate-time problems quickly and correctly. This providesiotmotivation
(challenge, control, fantasy, and cooperation) to gain deep understanding of the domaah materi

in the context of problem solving activities. The need to be fast and accurate alstanctra
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dents to develop their own Smart Tdq®wens et al. 1995) to solve problems. To adapt STAR
Legacy’s inquiry cycles to learning by teaching, we merge phases two and ttireeydle

(Figure 4) into the teach phase, which lets students access resources andyesgi¢ot

teacher agent, and learn for themselves, before they teach their computer-batdebdgwing

this, students receive feedback through formative assessment in the quiz phase, amdréiey c
turn to the teach phase to revise their understanding. Then they proceed to the test phase to co

clude a cycle and receive summative feedback after taking a test.

Students teach agents by creating a visible, shared representation of theinodutey $in
our case a graph), and teach the remaining declarative and procedural knowledge of how to use
these representations through dialogue choices and demonstration. In our domain of distance-
rate-time problems, the representation structure for problem solving is a grapgfofid)en each
of our learning cycles students learn how to use, create, and modify graphs and tea¢hehis t
teachable agent, Billy. Because students also have to teach the agent procedwesaow t
graphs (e.g., read it), but performing actions by demonstration alone was not sufficierarh-
biguous learning, we used a mixture of student-agent dialogues along with demonsifations
problem solving steps for this purpose. For example, the agent wants to solve a sypddd pr
and asks, "How do we start?" Then the student selects an action from a set of dialogse opti
that the agent offers, and Billy implements the student’s choice, or asks for a datr@men
how to proceed. This reduces the start-up costs of teaching our agents, as studentsrzan demo

strate solutions and choose actions among dialogue options.

We provide formative feedback of how well our agent has been taught by letting the students

quiz the agent. A student selects from a set of predefined problems. Billy solveketieds

In our context, Smart Tools are graphs and tables.
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guestion and provides an answer if he was taught by the student beforehand. Otherwise, the agent
says that it does not know a solution, and needs to be taught how to solve the problem. If Billy

can provide a solution, the student can request an explanation (demonstration and verbal explana-
tion), and then choose between teaching the agent better and asking the teacher fecthe corr

solution. We discuss this in the next section in more detail.

In the following section, we give an overview of the cycle architecture. Some desigs i
are dictated by our experimental design, which splits students into two groups:éhenexpal
(learning by teaching) condition and the alternate condition. Because Billy is niot itatige
alternate condition, some shared resources and the cycle do not mention teaching anthgent. |
chapter, we focus on the learning by teaching system and only occasionally mentionentpér

design issues, which are discussed in the following chapter.

The Cycle Architecture

The system organizes the student’s learning by teaching in cycles. We havd #uaptea
from the STAR Legacy learning shell (Schwartz, Brophy et al. 1999; Schwartz, dlinl899)
to the learning by teaching paradigm (for a discussion of STAR Legacy see pafjeed@nrn-
ing cycles are organized in sequence of increasing difficulty and presentititeeadh an or-

ganized way.

We have replaced the individual phases of the STAR Legacy approach with a gerweral intr

duction, a problem introduction, and the three phases of teaching, quizzing, and testing. For the
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sake of our experimental design and our anchored instruction apphreadabel the last three
phases Make Smart Tool, Try Smart Tool, and (solve problems for) Real Custonteesi(ofs
Teach Billy, Quiz Billy, and Test Billy) to hide the fact that there are t@attnent groups (see

Figure 6). In the following sections, we describe each step of a cycle in more detail

Cycle

i

S
Pl
i ]

L~

CLICK to START

!
-

120 knots Plane \

Sl [
Real Customers ) SmartTool

Try Smart Tool

Figure 6. Teachable Agent Learning Cycle

General Introduction (Anchoring Context)

Before a student uses the system for the first time, we introduce the anchamagosicethe

general introduction. This situates the student in a realistic fictional pratdbmmg context that
stimulates the student's fantasy for motivational purposes. In our case, the andrigargic-
volves a small airplane and jet transportation company, JetEx. The company is ownedidy the t

Jasper Woodbury the CEO, Emily the pilot, and Larry the engineer. They have hiredrte@ lear

! We situate the learning task in a realistic cont€Re student teaches the teachable agent (an mte jet trans-
portation service) to make smart tools that heipmate flying durations for real customers. See dabér more
information on anchored instruction.

2 Due to our experimental design, the teachabletagjéip is not introduced in shared lectures. Laberthe com-
puter, learners of the experimental group will fong that, they work together with Billy.
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as summer intern to interact with customers. The characters are linked to ti¢ufetvef Jas-
per Woodbury (Cognition and Technology Group at Vanderbilt 1997), which allowed us to reuse
introductory movies with professional actors to introduce the anchoring context. Thisistor

ates our students in a realistic macrocontext, from which we draw all our mattam@blems.

This anchoring context is initially presented as a twenty-minute long moviegaradi-
pants simultaneously in class. This movie flashes back to the childhood of Jaspern@imily a
Larry and shows how the friends won a contest at a local traveling agency by corgtonait
tools for distance-rate-time problems. This has obviously contributed to their @uceerss in
running their company. At that point, the story switches back to the current time, whan the st
dents are told that they have been hired as summer interns by just that company. Stugtents ar
formed that they will learn from the company’s mathematics expert, Ms. Matheeis the
teacher agent in our environment, how to develop smart tools. These smart tools willghen hel
students to provide quick answers to questions of customers that want to rent aircaalf$@orir
tation between different cities. Later, when students work with the learning enemgrthrey
can review a summary of this introduction as pages in a web-browser by clicking asttioefi

in the cycle ("Click to Start" in Figure 6).

In the learning by teaching condition, we introduce students additionally to our teachable
agent Billy, who says that he has trouble understanding graphs. Billy elabordiesthat he
would appreciate the student’s help to learn more about the domain, so that he can syccessfull
solve problems for the customers. Students in the alternate condition meet a d¥fitgrewho

writes a report about Jasper’'s company without being involved in solving mathemabiesns.o
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Problem Description

At the beginning of each cycle, students read a web page that introduces data, problems, and
goals (Figure 7). This page includes pictures of airplanes, a view of the cockpit,amdaiec

data about the planes. The problem statement contains essential and unessernaladdta s

how materials were presented in the Adventures of Jasper Woodbury video resourcgm(Cogni
and Technology Group at Vanderbilt 1997). This prepares students for another complexity of
real-world problem solving, which is the extraction of essential information feafistic prob-

lem contexts Traditional word problems in mathematics books (microcontexts) do not develop
this skill. Additionally, this wealth of information may fuel the student's naturasity and

fantasy about airplanes, which could influence their motivation (Malone and Lepper 1987).

! Our current system only fosters this skill durthg problem introduction, but future versions mapiiove on this.
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Figure 7. Problem Description of Cycle 3

Teach Phase

As we discussed earlier, the teaching task involves an initial phase where theé tstacteer pre-
pares for teaching by learning, reviewing, and organizing material in a mannieéctrabe
taught before engaging in the actual teaching task itself. Teachers scout, otwesse,and then
organize material in a meaningful way, and learn by reading, planning and reflbefiorg
teaching. We do not expect that novice tutors will differentiate these stepfriaéhne tasks of
preparing to teach and teaching will occur together during the teach phase. Studeswschay

between asking the teacher agent and teaching at their disposition.

In the teach phase, students use three components of the system: (1) the simulation, (2) the
smart tool (an interactive graph), and (3) the agent interface (Figure 8). Tlatgimprovides
feedback if a distance-rate-time problem has been solved correctly, but studantusa it to
find problem solutions directly without using the graph or calculating. Students leaadbyng

the agent how to use or create a smart tool in each cycle. In this process, studenisicatm
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with the teachable agent in dialogues to tell it what to do next, and ask the teaohabagée
domain knowledge if they are stuck. Details about the design and implementation ofdbeedial

and smart tool components are provided later.

Info SmarToals

|U:52 and 120.0 miles. The plane arrived too early. Speed: How Tast will you go?

138 miles/hour
@’I Distance: How far is it to the destination?
120 miles
| T oo | Time: How long do you need to get there?
) TR _ fominues |

Click or drop ather button

ontop to change values Simulate

File Line Paoint Axes Selact

CHOOSE_ACTION

550 Y [miles] G172, Piger, Uliralite, Gormplex

1 / Talk to Ms. Mathie J Talkto Intern Billy I Resource Index ]
500

il ] - | arm not sure whatto do nextto find the 138 |
450 7 milesihour speed. | think we can use the

% 7 simulation, the graph, orwe just selecta
400 5 line and see what happens. VWhat do you

- 5 think?
360 b

| / S |
300~ / | Zebl
250-] & Stop Speaking

I i =
00+ // £

1 P |
150~ // . |

il Go to Cycle
1004/ O

4 / __|Billy, we selecta line ..

50+ /)
il __|Billy, we will use the simulation
—_— Jeiminutes]l | illy, we will use the graph
50 10 150 200 250 300 3s0 | | Bl Iwillteach you something ..
Delete | AddPoint| AddLine|  Find | Finav |  Gancel| Dane | | | —|Bilb. lwillaskyou something ..
| _|#sk hathie
__|Billy, we are done
200 miles
| | _lsoback R

Figure 8. User Interface in the Teach Phase: Stioulétop), Graph (left bottom), and Agent Intedac

In the teach phase the student has two primary goals: (1) To use, create, or modify a give
graph in order to "teach the agent” (student and agent share this representati@))T aridgch
Billy directly in a dialogue by telling him what to do step by step. In each cycle, upaoingnte
the teach phase, the teachable agent initiates the dialogue by repeating pansaijlem de-
scriptior!, and then offers a few choices of how to proceed to the student. To start, the student
has three primary choices to teach the agent: (1) use the simulation, (2) usphihiedrar (3)
start talking to the teacher or teachable agent. However, these choices dependsératit ta

like a main menu, offer major paths in solving the problem. Two additional choices offeclto te

! In the control condition, the teacher agent vépeat the problem, because Billy plays a differefat.
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or ask the agent. Through these dialogues, the agent offers options of how to proceed to the stu-
dent, which are explicit and proximal goals (Bandura & Schunk, 1981; Csikszentmihalyi, 1978).
Still the student is in control and can explore freely by solving the problem on his own (twin sim
lations, draw the graph), or asking the teacher for more information if the choices grovide
dialogue with the agent seem unattractive. Thus, students can choose the amounttadrnterac

with the agent, and the amount of guidance from the agents.

Some students will attempt to solve the problem on their own before teaching and work on
basic domain knowledge with the teacher agent; others will follow closely the ofbtadribe
teachable agent provides. The teachable agent often refers the student to thageathe ex-
plore appropriate topics. We think that this choice avoids problems with strong and weak agent

as they have been described by Hietala (Hietala and Niemirepo 1998).

In the mathematics domain, the student has to teach procedural and declarative knowledge t
the teachable agent. First, students learn knowledge by explanations and demonfstnatitires
teacher and try it out in the learning environment. Then, the learner starts talkiiyg. to B
some dialogues, our teachable agent asks the user to demonstrate a procedure (likeduoav to
graph), while in others he asks for declarative knowledge. The learner teachestidedtaowl-
edge by choosing an answer tavlaat-isquestion of the agent in the dialogue interface (see ex-

amples that follow), and procedural knowledge by a combination of dialogue and demonstration.

The overall communication can be looked upon as a mechanism by which the student ex-
plains to Billy how to solve individual steps of a problem. A similar apprasadfiexplanation
has been used in cognitive tutors (Aleven and Koedinger 2002) and has produced significant im-

provement in learning.
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Teaching the Teachable Agent — Two Examples

In this section, we illustrate how the student teaches an agent on two examples.xhtthreae
paragraphs, we discuss how students teach the agent the procedure to read a graph. Then, we de-

scribe how learners teach declarative knowledge to the agent.

The main learning goal in cycle one is to understand how to read a graph. For this, the stu-
dent first requests instruction from the teacher agent, and tries to understand,ith@lstudent
selects, "Billy, | will teach you something..." in the agent dialogue. This witidbréo a new dia-
logue with a choice of several procedural and declarative topics. For our examplagrtbe le
chooses, "Teach Billy how to read the graph when miles are given." Then, the agent asks, "W
should | do to find how long a trip of, let’s say ... 350 miles takes?" The agent interfasdlaffer
following four choices to the student: (1) Billy, press "Find X" in the graph tool; (B), Biless

"Find Y" in the graph tool; (3) | will teach you later; and (4) Ask the teacher.

Now, the tutor has to teach the agent by suggesting the first step. If the studesd thac
agent correctly, she will select choice number one. The agent will reply, "OKstlert with
finding X..." and the agent presses the "Find X" button in the graph tool. This shows two blue
reader lines in the tool, which the user can manipulate by individually dragging thethevit
mouse. When find X is used, only the horizontal reader line displays a number that changes when
it is dragged with the mouse (more details on this when we discuss the graph tool). lyhen, Bi
asks, "Now what do we do with 350 miles? Please show me until you get the result." The agent
interface displays four new choices: (1) Billy look, | have the result; (2) |eatih you later, let

me try out myself for now; (3) Sorry, wrong thing. Let’s start over ...; and (4) Ask tbledea
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Figure 9. Teaching the Agent to Find Minutes wheteMare given.

At this time, the student has to finish reading the graph by first moving the horizewkat re
line to 350 miles, and then intersecting both reader lines on the velocity line in the ggapé (F
9). To display the result, the user has to press the "Done" button in the graph tool. Then, she tells
the agent, "Billy look, | have the result." If the tutor forgets to press "Done", thegehe\will
ask, "I cannot see any result. Did you click the 'Done’ button in the graph tool?" Finally, the
agent will note, "So that is the result... 152 minutes. | will try to remember thas.'t®hcludes
teaching Billy how to read a graph for finding time when distance is given. Using ast adi@n-

tical procedure, the student can teach the agent how to find distance when time is given.

Teaching declarative knowledge is less involved. For example, to teach the agesnt what
ordered pair is, the student has to answer the following question correctly, "How dtn | wr
down a point? My mathematics book says. P = (20, 30) is an ordered pair. | suppose an ordered
pair is ordered." The agent interface displays the following choices: (1) P Hifgt X and sec-
ond X coordinate, or 20 minutes, 30 miles; (2) P = (y, x) first Y and second X coordinate, or 30

miles, 20 minutes; (3) P = (x, y) first X and second Y coordinate, or 20 minutes, 30 miles; (4)
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Ask Billy, "How can you use a point?"; and (5) Ask Ms. Mathie about points. The student has to
select one of the first three choices to teach the agent. Choices to teach thisatsnkey-

color red. After teaching, using choice four will provide the agent’s answer, whichntegore-

tation of what the student has taught. Choices that cause the agent to react usediwe kkie.

If taught right, the agent answers the following, "l always use the first numbarartiered pair

on the x axis and the second on the y axis. This is the same order as the alphabet. XYs before
That is easy to remember." The student can verify taught knowledge, other than vierbadly

quiz phase.

Quiz Phase

After the student decides that she has taught Billy enough, she will quiz the agecktbishe
knowledge in the quiz phase. Again, this section will not illustrate the internal werkirige
environment, but the interaction of the user with the learning system. We discustetieachfs

in the user interface for the alternate condition to the section on experimergal desi

The quiz-phase corresponds to the formative assessment step of the STAR laggauwy le
shell (Schwartz, Brophy et al. 1999; Schwartz, Lin et al. 1999). Leelawong et al. hawaeexte
adapted, and validated the quiz as formative assessment tool (Leelawong et al. 280@&nigee
et al. 2003). In this system, the quiz questions are relevant distance-rate-tieenpréstudents
are permitted to work on the quiz problems as long as they like, and this gives them the opportu-
nity to reflect on their knowledge, and gain better understanding of domain concepts. Feedback
from the quiz phase (teachable agent and teacher agent) helps students to coresdt tfiein-

derstanding or their misunderstanding of domain knowledge.
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The student enters the quiz phase by clicking on the next step in the cycle. Then, the agent
dialog interface is replaced by the quiz interface, which provides up to 15 expert gptepare
problems (Figure 10). This interface has three tab-panels that allow the studeratsid jhe
agent to solve a problem, (2) to request an explanation of the agent how it has solved the prob-
lem, and make suggestions on how Billy may improve, and (3) to ask the teacher for the correc
solution. The simulation (not shown in the figures) and the graph tool are still avail&ide t

learner, and can be used to verify the agent’s answers at any time.

File Line Point Axes Select

£ HD: 3
% [miles; C172, Piper, Ultralite, Camplex

840 ] [ ] v ' plexd Select a Problem: ————
A00— How long will it take? vViv|v
450__ Are we there yet? [ |
4EIEI—_ Expert Questions v v iE| @zl =
350 Froblem ‘ [ [
200— Haow far can the 138 milesthaour plane

g gowhen itflies 40 minutes and then 90
250 minutes?
200+
1580+
100+ I used the graph and found that the 138

50__ milesthaur plane flies 300 miles in
| hath trips. = that right?
# [minutes]
0 I R R e

0 a0 100 140 200 250 300 350

Celete | Add Paoint| Add Line Find X | Find Y Cancel | Done
| | | | | | | ‘_JEIiIIy, your are riahtl __|Billy, your are wrong! | Shaw me! ‘

40 minutes | 207 miles | Stop Speaking ‘ G0 to Cyele ‘ Get new problems‘

Figure 10. Quiz Phase: The Student selects a Pnodotel the Agent solves it

The learner starts quizzing the agent by choosing a problem category, and clicking n a que
tion to ask the agent to provide a solution. The quiz grid (Figure 10, top right) gives a quick
overview of how Billy has performed on quiz questions. If the student has not asked the agent to
solve a particular problem that grid position is marked by a question mark icon. Ifdigdsa

guestion and the student asked the teacher to check the answer, the grid displays dravepesti
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answered correctly. If Billy answered a question correctly, that positionriethhy a green
checkmark. If Billy has answered wrong, the interface displays a red X. Bebaus®rectness
of a question may change if the student modifies the graph, a red/greed square mati@aa ques

that needs to be revisited.

If the learner chooses a problem, the problem text is displayed in the upper text box of the
quiz interface, and shortly after that, the agent provides the solution in the text boxheelow
problem (Figure 10). Billy derives an answer, if he has been taught the procedure to solve the
problem, or asks the student to teach him what he still does not know. The agent uses the graph
that the student has created, but does not demonstrate how he has derived the solution unless the

student specifically asks for it.

The correctness of an agent’s answer depends on (1) the correctness of the repnesenta
which the student has created during the teaching phase, and (2) that the agent waetaught t
correct procedure to solve the problem. If the student did not teach a topic, the agehttwill as
be taught. If the representation is wrong, the agent complains if it cannot use a prtwddtre
has been taught (e.qg., if the line is too short). Billy provides a solution as long as what he has
learnt is applicable (for example, if a line has an incorrect slope). In theckases the student

has to rely on the answers of the teacher to find an error.
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—% [miles: C172, Piper, Ultralite, Complex
850 B [ ] e rlexd Select a Problem:
500+ How long will it take? v | V|V
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140+ result.
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100 Tell Bilhy:
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50— an _INothing was wrong. You were right.
0 7 ¥ [minutes] _JYou were wrong. Let's ask Ms. Mathie.
T T [ T T [T I T T T _liwill teach vau again ..
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Delete | Add Point| Add Line|  Find3 | Findy | Cancel| Done |
| READ: Press DOME or cancel to clear the read-lines.

0 minutes | 207 rniles | Stop Speaking ‘ Go to Cycle ‘ Get new problems‘

Figure 11. Quiz Phase: The Teachable Agent denaiastand explains its Solution

Once Billy generates an answer, the student can indicate whether his angyois r
wrong. If the student is unsure, he or she might ask Billy to show how he has derived the answer.
For this, the quiz interface switches to the suggestion mode (Figure 11). Heredém san ask
for an explanation, request a judgment from the teacher, or quickly go back to the teach phase

again to revise Billy's knowledge.

The key feature is when the agent gives feedback by demonstrating his solution in words,
and animation in the graph. Figure 11 shows how the agent describes the problem solution. Billy
says, "l used Find Y. then | adjusted the reader lines to 90. | let the reader linestimiers line
to find 207." At the same time, the agent animates dragging the reader lines aptihnéogghow
how it obtained the solution. On problems with two legs, the agent repeats the descrigtion a s
ond time and shows how he has added the results. If the student has taught the agent wrong, Billy

makes the same mistakes that he was taught. For example, he might read the lyeawhoimgt
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direction. To correct any combination of mistakes the student has to teach the readidgrproc

to Billy again.

To obtain a check mark, the student has to ask the teacher for her review of the problem by

selecting the ask teacher tab. This leads to the teacher feedback integiace(E). Initially the

teacher only reports if the agent found the correct solution, and if the number and/or unit of the

solution are correct. After reading this, the student can request a full solutiorh&deacher,

which describes in words how to obtain the result.

ND: 3 ND: 3
Select a Problem: Select a Problem: ——
How long will it take ? v | V| v How long will it take? v |V | vV
Are we there yet? | AN | Are we there yet? | AN |
Expert Questions v B3 3B E Expert Questions v v | BB =
Problem Sugaestto Billy Ask Teacher ‘ Problem Sugaest to Billy Ask Teacher ‘

Billy found the correct solution.

The number is right. The unit is carrect.

Go to_évcle

Canyou give me the solution? ‘

Stop Speaking ‘ Goto Cycle ‘ Get new problems‘

The solution is: 299 miles.

Ta salve this you have to find miles on
the Y-axis. So press Find ¥ . Then
adjustthe reader-line to 40, After
intersecting both reader-lines an the
138 milesthour line, press 'Daone'to
display the result. Repeat it for 90 and
add the results.

Canyou give me the solution? ‘

Stop Speaking ‘ Goto Cycle ‘ Get new problems‘

Figure 12. Quiz Phase: The Teacher Agent corréfty &nd gives the Solution (right)

Test Phase

When students think Billy learnt enough and is ready to solve all problems of this cyceide

him to take the test. The simulation is replaced by a more advanced version that shoaygs the m

of the USA, and that allows simulations of flights between cities (Figure 13)leRrs are
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drawn from this context, but are still very similar to those that the students soledquiz

phase.

As special task, students are told that they have to grade Billy's answeraclarte they
need to create a test for Billy. Although we provide the questions, students have to swive-all
lems on their own before they can grade the teachable agent. Right after thatihblésagent
solves the problems using the graph and succeeds or fails, depending on the correctness of the
representation and taught knowledge. Students grade the agent by comparing their oed prepar

answers with those of the agent and telling the agent if it is correct or wrong.

Ifn SmarTools

\ Jo:58
AT How fast will you go?

138 milesthour |

What are origin and destination?
Raleigh 4|  nNashwile 3]

How long do you need to get there?
BO minLtes ]

North Click or drop other button
Atlantic ontop to change values. M]

Figure 13. Test Phase: The New Simulation

In the advanced simulation, the student sees a map of the Southeastern US with egjor citi
around Nashville (Figure 13). The learner can read distances in miles from the mépaand f
planes on designated routes between the circled cities. To run a successfubsinth&astudent
has to enter the speed of the airplane in the simulation control panel, select an origilestid a
nation city, and provide a correct flight duration. Like in previous steps of the cyclemthie-si

tion will give feedback to the student if it succeeds.
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Test

You have to find answers for Billy's test. Salve the prohlems and
provide the answers 5o thatyou can grade Billy later, Once you have
pressed 'Done'the answer is final.

Could you help me? We cannat fly straight
from Little Rock to Springfield hecause ofa
severe thunderstorm. So, we have decided
that we are going the fly from Little Rock to
Jeffersan City first, and then fram Jefferson
City to Springfield. How lang will this take™?

Hotes: | 119 min + B9 min

- Answer:l 185 minutes Dane

Figure 14. Test Phase: The Student "Creates" teebyeFinding Answers

When students enter the test phase, they "create" a test for Billy, by findingrans\given
problems. The system tells them, "Find answers for Billy's test. Solve the pobled provide
the answers so that you can grade Billy later. Once you have pressed done the amakeér is f
Then, the system displays the first problem in the text box beside the image aftdmesu
(Figure 14). Students can use a calculator, which is provided by the system, and can write dow
notes or intermediate results in the notes box. Then students provide the answer and click the
"Done" button to proceed to the next problem. This repeats until the student has solved all of the

prepared problems.

87



Review

| Could you help me? We cannot fly straight | =
from Little Rock to Springfield because of a
sewvere thunderstorm. Sa, we have decided
thatwe are going the fly from Little Rock to
Jefferson City first, and then fram Jeffersan
City to Springfield. How long will this take?

The trip from Little Rock to Jefferson City |
and then to Springfield takes 189 minutes if
the plane flies 138 milesthaur,

Your Answer: 185 minutes

Right J Wirong! J

Figure 15. Test Phase: The Student Reviews andeGtheé Agent

Creating the test is followed by the test review (Figure 15), where the studemnts¢he
agent's answers and grades them. The agent solves each problem, and displaysntsTéaut
learner’s previous answer is available just below the agent’s answer. Tyygleaktudent only
needs to click the right or wrong button depending on if his answer matches the agent'®answe
not. However, better learning occurs if students will try to find out why there isnaatais be-
tween the agent’s answer and their own, and use the graph and the simulation to check what hap-

pened.
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__ Teacher s /hour

i | stopping

4 | Yoursolution of the problern is wrong. led. This
e 4 The correct solution is: 378 miles. far 1 more
"o Billy solved the problem correctly. ation. How
' 7 Thank

Ok
Thisg trip will be 380 miles lang ifwe fly 138 '

| | milesihour.

Your Answer: 1549 miles
Right! Wrong!

Figure 16. Test Phase: The Teacher Provides the@dolution

Immediately after pressing the grading button, an alert panel (Figure 16) sigmagacher
agent’s correct solution to the student. There are arguments for and against sstrgtéay:
Students revise their answer, but cannot get final feedback for it, or students mayntise
their answer because the teacher gives the correct solution too soon. A more prudertt approac

would be to delay the teacher's feedback more, so that students get additional tileetto re
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Summary

right |wrong

Your answers: 1 .
Billy/'s answers: 3} .

O <=2 30 of with the ovele <2<< ‘

Go to Cycle

30 on with the next cycle and solve
an advanced challenge.

Figure 17. Test Phase: The Student gets Summagizehiack

The end of the test phase provides summative feedback (Figure 17). It tells how many an-
swers the student has solved correctly and incorrectly, and compares this to how mwany ans

the agent could solve. Finally, the student proceeds to the next cycle to solve anotiregehall

Software Architecture Overview

The software architecture overlaps with the user interface design, but adijitseparates
interactive representations into two componestsart toolsOwens et al. 1995) and simula-
tion. It also adds an agent communication structure to the system, which is transp&eent to t
user. Therefore, the system design has five modules (Figure 18): cycle tuchifstodules
package), smart tools, simulation, teachable agents, and agent communicatior. rAddules
and even some of their components (e.g., each smart tool) provide information about their state

through the agent communication channel upon request. The package Testing contains automated

! This separation exists mainly for historical reesas the simulation has been designed as thedirsof the sys-
tem. It would be possible to implement the simolatas smart tool without any visible changes toutber.
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pretest, posttest, and Likert-test managers, and the package Utilities ptouldder persis-

tence, logging, and text-to-speech control.

Modules

Utilities

D
boh/c?
O /)/b'e
e , show & hide GUI Gy,

AN show & hide GUI

Simulation SmartTools TeachableAgent Testing

1
( «uses»
«call» ,

1 !
| !

0 7 '
|
|
|
|
|
|
|
|
|
|
|
|
|

AgentScripting[andCommunication]

Figure 18. UML Structure: Package Architecturehaf Learning Environment

| nter active Representations

In this section, we will discuss representations (smatrt tools), like the grapGéevarally, we
distinguish between simulations and representations, like graphs and tables. Stedentes-
resentations to teach, solve problems, and learn, while simulations provide feedbaadleédr cor

ing representations.

Representations, like the graph tool, conceptualize the approach of Smart ToolsdVye et
1997; Owens et al. 1995), which integrate the constructivist approach in a multi-regiresaht

framework to help students develop a deeper understanding of variables and functiooasyelati
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in our case, between distance, rate and time. Smart Tools help learners to buildipedszl
resentations to help them solve complex problems effectively and efficientlgaVéeadapted
this approach to the learning by teaching paradigm and reengineered enhanced versisas of the

tools, to add them to our environment.

Simulation

One of the most important components of an exploratory environment is the feedback mecha-
nism, which helps students to verify their knowledge. One of these feedback mechanisms in our
learning environment is the simulation, which establishes the ground-truth, and thigaeips |

ers decide whether they have solved a problem correctly. Our simulation can model miwhole

croworld, but we shield the user from its full complexity by providing scaffolded usefaces.

Simulations, like microworlds, use the idea of abstracting relevant facts afdfe¢ domain
so that the user can learn without distraction. However, in contrast to microworldaffeéds
the complexity of the simulation by moving from a simple two city setting in tlod {gaase
(Figure 8), to a more realistic map of the South East US in the test phase (Biguree sim-
plicity of the initial simulation prevents students from playing with it too much astingatheir
time. In previous observations, we found that students initially like to use the simutesiolve
problems by trial and error until they understand that this approach does not work. Simulations

that are more complex appear to increase the time that students spend on triak dacties.

Generally, we exploit three uses of the simulation in our learning environment, waich ar
verification of solutions, generation of data points, and illustration of covariation @fineh dis-

tancé (Thompson 1994, 1994). Initially, students only use the simulation to verify data points by

! Students should learn that if time changes distahanges proportionally.
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entering desired speed, distance, and time. This essentially over-specifiasbtben, because

we do not want that students use the simulation to solve problems, or encourage trial and error
The students will receive feedback when the simulation ends by, "the plane arrivedytbo ear
"the predicted time is too short," or "simulation successful." In some cyclesntstindee to cre-

ate graphs by using the simulation to generate distance-time points for acspefil. Students

can do this by specifying a speed, the maximum distance and a long time. Then studéms star
simulation and stop it after any time they like to get one data point each trial, iwayotan

transfer to their graph. We also visualize the covariation of distance and tintgeesprbars

below the simulation, which shows students that when time varies distance vairiiféeaéat

rate.

Additionally, our simulation can support planning and scheduling of parallel trips with sev-
eral vehicles. This was necessary to solve the Rescue at Boon’s Meadow adveguiteo(C
and Technology Group at Vanderbilt 1997). However, we found that the latter is not essential in
investigating learning by teaching, so this functionality is not used in the cumemhbpby

teaching environment.

Simulation User Interfaces

The simulation supports various user interfaces to accomplish different goalsstifguikh the
simulation control interface, which lets the user specify how to run the simulatidapaimi

spector, and the actual simulation, which provides animation and results.

In its full complexity, the simulation can model a microworld with a control interthat al-
lows the student to enter a plan, like in Jasper Woodbury’'s adventure Rescue at Boone’s

Meadow (Crews et al., 1997). In this adventure, students try to derive an optimal reschatplan t
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requires vehicles to carry drivers, and transportation of extra fuel containadesdave pay-
load limits, fuel consumption and can drive concurrently (Figure 3 in chapter Ill). keaare
simulate various plans until they fail or succeed and eventually watch the fuehditaénitem
inspector while planes fly. This functionality exists because the simulatidmekageengineered
from Adventure Player, which is described in the section Interactive and Imelligarning En-
vironments (page 56). All this planning functionality is hidden from users in our curramhfpa

by teaching application.

The simulation control interface (e.g., Figure 13, right side) provides various &basdor
the simulation planning language, which is used to specify internally or extdmoallg simula-
tion executes. In the simplest case, it translates the three values of spaadedéstd time into
the internally used plan step "fly plane to Destination at 138," and rescales theedisttwveen
cities to match the problem, like it is done for the simulation of the teach phase. st {heakee,
the user specifies mileage by selecting origin and destination city from a pogrup other-

wise, the translation is similar.

To verify or use data, users can drag and drop values from their graph to the simulation con-
trol interface or from the simulation to their graph, table, quiz and test interfalternatively,
learners can enter values directly by clicking and editing the numbers on the buttonstefthe

face.
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Plane

You see an airplane. :I
The Plane weights 1630 pounds.
The Plane is 15 feet long.

The maximum speed is 812.0 miles per hour.
The desired speed is 138.0 miles per hour.

The current speed is 138.0 miles per hour.
Thetank holds 100 gallons of fuel,

The tank is filled with 95 gallons of fuel.

This Plane needs 10 gallons of fuel per hour.
Thewehicle can carry up to 410 pounds of weight.
Thewehicle is carrying 180 pounds of weight.

Larryis here.

[«

Back ‘ Help ‘

Figure 19. Simulation: Item Inspector Inspectingp@plane with its Pilot during a Flight

The simulation inspector allows finding data about any thing and its contents in the envi-
ronment. A double-click will show the interface at any time displaying basic tetltdta of
items. Size, weight, fuel consumption, fuel content, payload, and other parameterglayedlis
live. If user visible plans are needed and a planner interface is present, draggirapaiydr

items on each other creates most plan steps.

Simulation Framework

After discussing the user interfaces of the simulation, we now discuss thelifrearmeawork of
the software package. The simulation is roughly split into actor objects, whichzasaiadl ani-
mate, and the executing components that run the simulation. We first introduce thé@mula

engine and then follow with the actor classes.
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Figure 20. UML Structure: Simulation creates Enmirent that executes PlanSteps to change Actors

The central object in running a simulation is Haeironment* (Figure 20), which is responsi-
ble for timing and execution of plans. The simulation is initialized by a subclassubdtion,
which knows how to create the initial state of Hheironment. Thus, it either loads the state from
a file or createsctors programmatically. Then, a simulation execut&am, which is a vector
of PlanSteps that originates from one of the interfaces, which we have discussed earlienait his
is passed to thenvironment and the simulation starts. Upon user request, the simulation can be
paused, resumed, or reset to its initial state. The simulation runs in disceestaps, which is

usually preset by the simulation designer. In our case, we use one-minute stefgaderés s

! In describing class diagrams, | use words stawtiitlg a capital letter to refer to the classeshim diagram. For ex-
ample, Simulation refers to the class in the diagnahile simulation refers to the product or paekag
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solve problems approximately between 30 minutes and 4 hours. The timing is passagpabstart

the Environment and is constant for each application.

Eachplanstep is specified by a starting time, an action, and an optional duration. If duration
is given, therlanStep throws errors to its user interface if the execution does not finish on time. It
is up to thesimulation object that owns the user interface to display an appropriate message to the
user. Theenvironment only initiatesPlanSteps, distributes timing events to actors, displays the
background image, and handles erratsors animate themselves, as we will see nexelah-

Step’s action is applied globally to ttenvironment, which requires actors to be named distinc-

tively.

Main::View

T

Actor

T

Actor2D

Item /7 K Movable

/ N

ItemFuelContainer ItemContainer Location Path Vehicle Person

4{>

Figure 21. UML Structure: Actor Class Hierarchy Y¢locity, Fuel-Rate and Payload Simulations

Next, we discuss the actor class hierarchy (Figure 21). The top-level ohjeet #1d stems
from our graphical user interface library (Netscape IFC). Our own top-objeabisand imple-

ments the public method oneStep, which is called for each time-stepyithement while the
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simulation runsActor mainly handles nesting of objects, which can contain each athe@eD
implements basic drawing functions and transformations. A simulation desighplaegLoca-

tions into the Environment and connect them wAtths. If the Environment has a scale, thhs
calculate their distances automatically, but if a designer desires shet taens manually, too.
Movables can followPaths automatically with their desired speed. Faah has a speed limit,
Moveables slow down automaticallyehicles add payload and fuel consumption management to
Moveables and need &erson inside to drive or fly. Initially allActors are placed imocations and

are assembled by an executing plan. This concludes the discussion of the simulationcand we f

Cus on representations next.

Smart Tools

Our primary goal is to help students learn rate problems. Standard curricula in soitlolids

often use different representations simultaneously to teach this topic, eads witim iadvan-

tages and disadvantages. Students generally learn to use graphs, functions, and tgdiles. T
sufficient expertise in solving problems, students need to go beyond basic understandisey of the
representations, and learn their weaknesses and advantages in different probtensisadys

tions. For example, a student will find that graphs are quick in providing results, batiged li

in granularity. For this reason, we have integrated interchangeable representeéd our envi-

ronment.

Because the word "representation” is probably uninteresting to students, we usehthe ca
phrasesmart tool(Owens et al. 1995). Thus, we imply that using the right tool in the right way
helps solving problems quickly. The introductory movie and our anchoring context, which we

have adapted from Jasper’s Adventure, Working Smart, does just this by implying peatsJas
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success in building his company results from his mathematical knowledge aboubsisart

Thus, we also motivate students by illustrating the potential utility of knowledge.

We have built our curriculum around graphs to help students gain a visual understanding of
slope as rate, before being confronted with the advanced functional representationy = k * x + d.
A visual representation also has the advantage that our agents can ask questionsrabeanit, a
observe the student while modifying it. The primary Smart Tool that students worik \thik
environment is the interactive graph tool, which is augmented by a table tool and daralcula

Currently, we do not have a representational tool, which can interactively manipulctiers.

User Interface

To allow exploration, inquiry, reflection, and active learning, our representatiomstai stu-
dent to make mistakes and create incorrect representations. This way, stadentsrigflect and
critically review their results. For example, when users create a graphgnaplrtool, they can
draw lines that are not straight and consist of multiple segments with difééopet (Figure 22).
In a learning by teaching situation, the teachable agent has to be able to read sumbrizdithg,

if he has been taught reading graphs right.
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Figure 22. A Student Reads a Total Time from a-Gipph

In addition to the visible features of our graph tool, the user interface design alsconeeds t
make actions of the user unambiguously interpretable by agents. Thus, it provides duttrols t
make the intention of students explicit when using a tool, that go beyond what is necessary t
create the result. We illustrate this on the example of reading a grapmalyigbur user inter-
face only provided the function "Read Graph" to display horizontal and vertical readanline
the form of a crosshair. Students could move both reader lines simultaneously by dregging t
mouse, which made the intersection point of the reader lines, follow the mouse pointer. We
found that this interface design, although very efficient for the user, is at a toovabbflab-
straction for agents to learn if the user has understood the right procedure. The ademdtcoul
tell if the student read the result value on the X-axis, or on the Y-axis, and which vadte the
dent used to find the result. Hence, in our new interface design the user has to use a iedre deta

procedure.
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To read the graph a learner must follow a four-step procedure that allows an obsanming ag
to deduce the correctness of the reading procedure: (1) Decide to find an X or Y value: (2) Pos
tion a reading line on the given value; (3) Position the second reading line correctly)) &d (
tain the result. Now, the agent can analyze each action independently and learntiy corire-
correctly as needed. For example, students can make the mistake to use the given alue on t

wrong axis, and the agent can learn it.

In addition to providing a didactic approach to reading a graph, our tool allows many opera-
tions that change it. The user can label and specify minima and maxima of axes, addtand del
points, add, delete, extend and label lines to create smart tools in different Agdigi®nally,
operations like translating, rotating, and extending lines provide options to teach cdileepts

overtake problems.

An issue similar to the one discussed in the previous paragraphs arose when we dhallenge
students to create graphs, and the lines they created were initially too shoritsSoftea ex-
tended their lines by adding new lines to the end of an existing line. This createdljntema
distinct line objects that appeared as single line in the user interface. Agdiagdwo modify our
user interface. To teach an agent, students must express their intention iof) ersatple line by
extending it to the left or to the right. From this, we derive the principlau@atinterface ac-
tions of the learner must be unambiguously interpretable by teachable .afeistallows agents

to know the intention of their tutors and learn appropriately and believably.
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Smart Tools Framework

The smart tools framework uses two design patterns: a model view controllecH@raart
Tool, and a plug-in pattern that allows the Smart Tool controller to instantiat@ribitols, or

even multiple instances of a single tool. Figure 23 shows the static structure adandi

View
AgentCommunicationinterface
CalculatorTool ? -
[ SmartTool q RulerView
-instaptiates
-is GUI 1
GraphTool TableTool
1
RulerTool
1 1
1 -is GUI 1 -displays
. 1
GraphView -displays | GraphModel

>
1 1

SmartToolController

1

* T -stores J}
AgentCommunicationInterface

GraphModelltem

3 \

PointFloat Line * 1 MultiSegmentLine

I @

Figure 23. UML Structure: Th&ontroller instantiatesSmartTools; Graph andTable share araphModel

At system start-up, the Smart Tool controller registers known classes ofttiodsapplica-
tion’s main menu, and makes them accessible to the user. Additionakypdh®oolController

connects to thegentCommunicationinterface, to enable agents to instantigteartTools with spe-
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cific names at any time. Therefore, agents can pop up new graph tools or tables andrload thei

content from a file to provide examples to the learner.

Each Smart Tool must implement a controller class that inherits from thactstse class
SmartTool, which provides methods that can display each tool in windows. This class also pro-
vides a naming and look up system for tools that is attached vAgdit€ommunicationinterface

to theAgentCommunicationChannel (Figure 27).

When students teach our teachable agent Billy, we instantiate a graph tool naiged "Bi
Graph™, which is manipulated by the agent through this interface. Thus, incoming agent co
munication calls are forwarded froBaaphTool to GraphView to GraphModel and eventually re-
solved through method calls in the objadite, or MultiSegmentLine. An example of an agent re-
guest that travels the whole wayBslysGraph.slopeOfSelectedLine(); a request that is resolved at
higher level inGraphView is: BillysGraph.crosshairsOnLine(). Thus, requests of agents are always
resolved at the appropriate level of our class hierarchy, without letting ageintstdessddress-

ing multiple targets.
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TableTool2
File Table
Title: King Air King Air |
Units: miles ] minutes J
1: 48 miles | 13 minutes |
P 101 miles | 27 minutes |
T 3 1349 miles | 37 minutes |
4 158 miles | 42 minutes |
|1 A [hourd * 150 [mileshour] & 218 miles I B8 s J
=l =55 miles 6: 225 miles | B0 minutes |
Enter a calculation like: (5+773/4)75 i 48 mies | 93minutes |
and hit enter to get the result. i 450 miles ] 120 minutes ]

Figure 24. Calculator Tool and actual Table Toaaled by a Student during our Experiment

Simple Smart Tools, like thealculatorTool, only load a generic interface, and have no model
and view. Model free tools, like thrailerTool, have a view but no model and thus no persistent
state. Advanced tools, like graphs and tables, have a persistent model and provide fitmeperat

to load and save the tool.

Teachable Agent Architecture

The agent architecture has three components: the graphical user interféets thatuser choose
an agent and respond to it, and two underlying packages that build the software framework,
which are the teachable agent and agent communication packages (Figure 18).Stéet oy

discussing the interaction of the user with the teachable agent system.

User Interaction

Each agent has a dialogue interface to communicate with the user (Figure 25) sSthdesé
which agent they want to talk to by pressing a button on the top of the interface at anyr{ime du

ing teaching. When the dialogue advances, the agent displays what it has to saypargetext
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and speaks the text using a text to speech engine. Displayed text can include thepe gexph-
ics (Figure 26). Text to speech technology prevents disadvantaging poor readers, andei$ provi
auditory qualities of multi-modal effects that Johnson suggested as benefitezrhing

(Johnson and Rickel 2000). The interface also includes a still picture of the agent, aamaviga

button to open the cycle, and a button to open the calculator tool (Figure 25).

Dialogue States

When displaying a specific dialogue state the agent provides multiple-choiceranswdvance
the dialogue, or teach the agent (Figure 25, bottom). If the user provides answers, tivdlagent
react or learn, depending on the task or question in the current dialogue state. Additidhyally, B
may learn through demonstration, if the user performs a requested demonstration. lasether c
he may perform an action, like modifying the graph, querying a representation, or siamally br
the dialogue to a new state (Figure 26). Agent dialogues can be characterized-dsi\exe fi-

nite state machines with rule-based transitions.
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CHOOSE_ACTION TC3_SLOPE

Talk to his. Mathie J Talk to Intern Billy Resource Index Talk to Ms. Mathie Talk to Intern Billy J Fesource Index I

160 -
100
P

: 0 1 2 3 4
Stop Speaking B0 divided by 2 is 30. Sa the slope is 20.

60 represents inches, and 2 represents
- | seconds; therefare you need to include the
[t different units inyour calculations, 60

inches I 2 seconds = 6072 % inchesf

lam naot sure what to do next ta find the 138
S | rilesthour speed. | think we can use the
simulation, the graph, orwe just selecta
line and see what happens. What do you
think?

..

RER - |
< TulllEE
Ly

Goto Cycle _J seconds= 30inches i seconds = 30 ]|
_JEliIIy, we selectaline .. _JHEIW can | find the slope of a line?
_JEIiIIy, we will use the simulation ... _JCan yal show it to me an a araph?
_JEIiIIy, we will use the graph ... _JWhat is the slope ofthe example graph?
_JEEiIIy, | will teach wou something .. _JAre there any tricks to calculate slope?
_|Billy, 1 will askyou something ... _|can | see taster and slower in a graph?
_JASk M athie. _JDD | have to he careful about units?
__|Billy, we are done ... _|can 1 switch the axes?
—JGD hack. redisplay —JGD T o redisplay

Figure 25. Agent Interfaces: The Student chooses Wwhdo next (left), Ms. Mathie instructs Slopigl(t).

When the system starts, each agent loads its own dialogue structure, which islicelele
finite state machine. The current state is what the agent says and caireeflrto specific user
changeable features of representations. When invoked, a state executes arethignqyeam (a
script, described in a later section) that generates the agent’s words, actlonstalls sensing-
rules in the environment (Figure 26). The state also displays answer choices fod¢né, s
which can run scripts when they are selected. Thus, the agent establishes alairdéaivs

meaningful interpretation of user actions.

Sensing Rules (Agent Triggers)

Sensing rules (instancesAfentTrigger in Figure 27) are the core mechanism to direct interaction
with the user, other than through direct dialogue choices. These rules listen to thé&reasmobk

the system and can be activated or retracted by agents at any time whenienti@aits or the
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learner makes a new dialogue choice. The rules react to events that origindterangwhe en-
vironment and may be, for example, mouse clicks of the user, a simulation that finisiess-suc
fully, or an unsuccessful attempt to read the graph. Thus, the system has a dynahaogilyg
rule-base, which contains only rules relevant to the current dialogue context. Adiitianal
agent can specify a rule’s default lifetime (permanent, until next changgafrstimes activa-
tion), if it does not intend to retract it later. Sensing-rules carry a payload) shacscript that
can act on behalf of the agent, for example, it can let the agent say something, megliégen-

tation, or change the agent’s state by branching to a new dialogue.

Using scripts, each state can make intelligent transitions following diatbmuees of the
user. This means that a single choice of the student may branch to different dialaliffexsat
times depending on the state of the environment. Each intelligent transition care execupt
that can do virtually anything. In some cases, this means that the agent makes at@ouate
the user’s choice without leaving the current state, in other cases the agergsvambpresenta-
tion, says something, and branches to a new dialogue a few seconds later. Sometiment one ag
will directly influence the state of another agent; for example, the teacgdae may ask the
teacher agent about a specific topic. However, the specifics of these inteyact entirely up to
the dialogue designer, who may want to limit the branching factor of the dialogue esensi

ways.
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Figure 26. Interaction Schematic: Agents Sensefadh the Evironment

To recapitulate we will explain the agent’s interactions by tracing FRfurd a new dialog
state is activated (orange box, yellow box top half), an agent uses a script toteisiplayhe
graphical user interface (right top), speaks the text, and provides multiple-ahewers. After
that, it installs sensing rules in the environment that can act on its behalf @ussg arrow). If
the user chooses an answer (yellow box bottom half), or triggers a sensing rukntrexagutes
an appropriate script, which makes the agent learn, act (agent acts arromygitotréo a new

state (orange box).

Teachable Agents Learn Believably

Agents have to learn, to be believable students. However, learning in our case does not mean in-
ferring from actions of the user, but asking questions that promote deep understanding and initi
ate reflection. During the dialogue, the student may select to teach the aghis.pairit, we

distinguish procedural and declarative knowledge. To teach declarative knowledgertbe le
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simply has to answer a multiple-choice question and the agent will remembernrdot aom-

correct answer.

If the user teaches procedural knowledge, the agent will learn through a sequencenef demo
strated and/or user suggested actions, which the agent executes. An agenniedrrstep pro-
cedure, like reading a graph or finding slope (Figure 28), by letting the student deraat)strat
and then verifying the outcome. For an example of the process from the perspective af the use
see page 79 (Teaching the Teachable Agent — Two Examples). A detailed descriptemailf

processes follows in the section Agent Knowledge Structures.

Another mechanism to let the agent behave believable is the ability to explain pescedur
through animation and in words. Especially in the quiz-phase, the student has to judge the cor-
rectness of the agent’s answers, but initially the agent only provides the sofuticin. Should
students decide that this solution is incorrect, they may ask the agent to explainsheniution
was derived. Then, the agent will replay an animation script, and explain in words dsat it

done to solve the problem.

Agent Framework

After discussing the user interaction in the previous section, we will now focus oretite ag
framework, which implements this functionality. The framework is illustratdelgure 27 as

UML static structure diagram.
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Dialogue 1 1

PN DialogueController
-displays
1 /V
* TeachController 1
AgentScriptinterpreterOwner
DialogueNode
-ACl calls 1 AgentCommunicationinterface
1
1
-run scripts 3 1 -ACl calls 1
1 -run scrﬁ'i'(n P -registers
AgentCommunication::AgentScriptinterpreter AgentCommunication::AgentCommunicationChannel

-run script 1 1 -registers

AgentCommunicationinterface

1 AgentCommunicationinterface

AgentTrigger SmartTools::SmartTool BillysBrain
JAN )
fires * 1
1 * .
AgentResponseController DeclarativeKnowledge Knowledge

Tégustenerlnterface 1 T

Utilities::LogWriter KnowledgeScripts

SmartTools::GraphTool

Figure 27. UML Structure: Agent Architecture

Each agent is an instance of a class inheriting fi@mgueController. For example, in the
teach phase this class is theachController. This class is mainly responsible for displaying the
agent’s dialogue user interface and implementing the peculiarities of eaeh phasbstract
base clasbialogueController loads, when its subclass is instantiated, the ageiatisg from a file,
and displays the initiadialogueNode. The dialogue node tells the controller what the agent says

and which answers to display, and then the user is back in control.
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If the user selects an answer, th&togueController notifies the currenbialogueNode, which
sends the corresponding answer’s script to\teatScriptinterpreter that is owned by theia-
logueController. Now this script initiates a sequence of agent actions, which is funneled through
the DialogueController to theAgentCommunicationChannel, where actions are distributed to their tar-
gets. This way, theialogueController can veto any action oftzsialogueNode, if this is desired. The
controller handles specific commands to advance the dialog right away, while oitres awd-
ify or query smart tools, store or retrieve knowledge from the agent’'s memilyg@fain), or

modify the state of other agents.

Agent sensing rule\gentTriggers) are optionally instantiated when a dialogue node is dis-
played, and handed over to thgentResponseController, which listens to the system'’s log file
(Logwriter) via theLogListenerinterface. Any object in the system can write a line (a plain string) to
the log file if it undergoes an essential change in its state, for this it usdE anethod inog-

Writer. Every time this happens, the agent response controller matches its triggess thgs
new incoming event, and fires them if appropriate. When fired, a trigger exeswgespt as the

agent, which has instantiated it. This lets the agent respond to events.

Agent Knowledge Structures

Teachable agents learn from three agent commands: teach, ask, and act. When taught new
knowledge, it first has to be stored in the agent’s memory using the neatyx®@sain.teach("read

the graph”, index, askScript, actScript, isCorrect). Then,BillysBrain.ask("read the graph") provides a
verbal explanation of what the agent would do, Bi@Brain.act("read the graph") will perform

the skill, for example, in a quiz or test situation. Knowledge scripts receive gtararby query-

ing the environment or relying on shared variables with quiz scripts and test stagsident
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asks the agent about something that it has not been taught, the agents responds, "I do not know

how to read the graph. Can you teach me?"

As mentioned before, we distinguish declarative and procedural knowledge. First| we wil
describe the more complex procedural knowledgewledge in Figure 27). Procedural knowl-
edge consists of multiple steps performed in sequence to solve a problem (Figure 28jeWe s
this sequence as a vector of stepm\ledgeScripts). Hence, each knowledge object has an array
of one or more knowledge scripts that when executed in sequence produce an explanation (ask)
or demonstration (act) by the teachable agent. For example, a four step proceduegjusies
four teach statements with different indices. Declarative knowledge has moipictanly a sin-

gle, one-step script, and its ask script uses plain text.

Dialogue Procedural Knowledge: Find Slope
— e:ﬁ)':)g'{')'}’:’ﬁzgd ' What the student has taught ' What Billy says if asked ... ' What Billy acts ... ' What Billy explains ... '
Teach Billy t . | choose any two points: | will read the line —20- Pv=act(rdar’ . I will find P and Q. [animated]
C::(,Cse I;O),’né J [Take any two points you |lke] at 30 minutes and 90 minutes, to get two (F;))(( :;% Z’; ch;((rr%%rrg% P = (30 minutes , 141 miles ).
points. Q= (90, Qy) and P=(30,Py) Q=(90 mlnutes 424 miles ).

Teach Bllly how to Subtract the x-coordinates of ! find ;un ! ltakedthegfoo;d;r;ale ot;the Qx-P run =90 mlnules 30 minutes =
find run point 2 from point 1 on a line second point and substract it from the xx fun = Qx-Fx 60 minutes.

coordinate of the first point: run = Qx - P;

Teach Bllly how to
find rise ] [ <not taught> ] ] [ <not taught> ] [

Teach Bllly how to ] [Billy, calculate slope = rise / [

run Third, | calculate slope = rise / run ] [ slope = rise / run ] C do not know how to find rise. Can

calculate slope you teach me?

Act Result
I do not know how to find
rise. Can you teach me?

Figure 28. Four Step Procedural Knowledge to firel$lope of a Line

When an agent acts on procedural knowledge, it executes its vector of knowledgerscripts i

ascending order of indices, while skipping untaught steps silently. While the agefit [@et-
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pares an explanation script that explains each step of finding a solution in words aricbanima
(Figure 28, rightmost column), if the student requests it later. Each of these aieps oorrect

or incorrect and can be retaught individually by a student. Because a dialog designehknows t
sequence of a skill's steps beforehand, an agent always applies skills in theacdeecegard-

less of how they are taught. This relieves the student of worrying about ordering protitéchs

in our case are quite simple to deal with. If Billy encounters a variable that he dée@swohe

asks the student to teach him how to find it. Then the student goes back to the teach phase and

selects a dialogue that teaches the agent how to derive this variable.

Agent Scripting and Communication

The scripting language supports the agent dialogue with intelligent transiidise@sing-rules,
knowledge scripts, quiz scripts, and test scripts. If an agent needs informationpite/id

make a request that is resolved through the agent communication channel, as we h&eel descri
in the section Agent Framework. When an agent or a representation is createsteitsrby

name with the communication channel. Thus, its functionality becomes available toasther

nected agents.
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AgentScriptinterpreter
o——
1 1
3 -run scripts VariableContext

1 -ACl calls

-call other instance <interface» 1 y

AgentScriptinterpreterOwner |
1

1 Quantity

1 -ACl calls
1
AgentCommunicationChannel -registers 4

1 Unit

1 -registers
! T

«interface» ComplexUnit
AgentCommunicationinterface

Figure 29. UML Structure: AgentCommunication

The scripting language itself is a left recursive parser specified véthava compiler com-
piler (JavaCC) that executes the commands while parsing. JavaCC uses argranmput that
is similar to the Bachus Naur Form (BNF). The interpreter is encapsulatedAgeh&Script-
Interpreter object, which is instantiated by agents and other sub-systeme @dyjugach inter-
preter has an optionally independent variable context, and supports a full set of ma#themati
and logical constructs in addition to basic flow control with statements like if, tisenyeturn,
and so forth. An agent action is defined in object-oriented syagaxt.function(parameters)
(Figure 30 and Figure 31). The language interpreter also supports arbitrary @cittatoela-

tions with unit calculation support, like x = 20 [mi/h]; y = x * 2 [h], which results in y = 40.[mi]
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if (BillysGraph.crosshairinline()=talse)

{
printi"The blue reading lines do not intersect on any line. I will show you ..."7);
BillysGraph.chooselineByMum 0] ;
BillysGraph. animatelragCrosshair (BEillysGraph. ¥Tox (150 ,150,-1);
BillysGraph.sleep(2000);
print(“3ee. Both blue lines cross each other on top of a line. Try again.');
end():

}

Figure 30. Partial Agent Script: Teacher CheckbéfStudent has used the Graph’s Reader Lines &lgrre

Each script interpreter has an owner, which is generally an agent (usuallyass ulfoia-
logueController). When a script executes, it generates a sequence of agent actions thatthe inter
preter forwards to its owner, which can veto them or forward them #yéhecommunication-

Channel. Through attachedgentCommunicationinterfaces the agent command gets resolved and
eventually returns a value. In case of errors, an exception is thrown back to the methwi that i

ated the script.

question("Caloulate the slope of the Eing Air in miles/minute.™);
currentQuestionSolution = 4.71 [wilesfminute]:
correctiolutionicurrentfuestioniolution) ;

tutoriays| <lengthy explanation of the tutor> )

BEillysGraph.chooseline | "King &ir™) ;

currentuestiondgent=EillysBrain.act("find slaope™);

print(”I used the graph and found that the solution is ",currentuestiondgent):;
agentiolution(currentuestionkgent) ;

Figure 31. Quiz Script: Full Script for the Quiz €xtion to Find the Slope of the King Air Plane.

Figure 30 and Figure 31 show two examples of agent scripts. The first is a papiahst
the teacher uses to verify if a student has understood how to read a line in the graphoii$ie acti
verify that, after the student says that she is done, the reader lines of the graphtiotea line.
If this is not the case, the teacher agent will tutor and demonstrate the carcedupe, which

the student has to learn and then teach to the teachable agent.
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In Figure 31, we see an example of a quiz question. The script displays the problem, and
prepares the correct solution and the tutor’'s explanation. The latter is store@uixdoetroller
until the student requests explanations. Then the agent attempts to select #ielatke"King
Air" in the graph. If this does not succeed, Billy asks the student to label or séhecirathe
graph. Otherwise, the agent acts by finding the slope of the selected line in the plgpie; a
pares simultaneously an explain script, which again is stored in the quiz contnolégef use.
Finally, the agent prints (and says) the solution. Most questions use randomized valwes and d
rive a solution by calculation if the problem allows it. Test questions use idengchhmisms,

but the system displays them in a different interface.

Dialogues and Curriculum

Our curriculum to teach graphs and related material has three cycles. In@actheyagent

needs help with a different class of problems. Each agent has one script per digldidtvgue.
Additionally, there are two problem scripts one for the quiz phase, and one for the testphase. |
cycle one, the learner helps the agent to select the 100 mph line from four given ones, in cycl
two the task is to create a graph for a given speed, and in cycle three understandingislope a
speed is desired. In the following paragraphs, we illustrate the curriculum feroogvery

briefly because we discussed most other issues already.

In cycle one, the problem is to help the agent to select the 100 miles per hour line among
four given ones (Figure 8). The agent offers the student the following main choiceBo@Ee&
line; (2) Use the simulation; (3) Use the graph; (4) Teach Billy; (5) Ask;Bitg (6) Ask Ms.
Mathie. Each choice branches into a set of dialogues in which the agent discusdes swys

ing the task, or requests procedural or declarative knowledge.
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In this process, the student teaches the agent the procedure of how to read a graph, and de-
clarative knowledge about axes, ordered pairs, lines and other basic concepts. In the guiz phas
the agent provides answers to prepared questions that the dialogue has addressed before and
gives feedback as we have discussed earlier. Depending on whether the learnectealstisel
right or wrong line, and has taught the agent correctly, the agent succeeds wsfaileg each

problem. Then, students proceed to the test phase to conclude the cycle.

Problem
Review 1

Problem
Review 2

Choose
Action

Use Use Select Teach Ask Ask
Simulation Graph Line Billy Billy Ms. Mathie

4

Figure 32. Standard Dialogue Structure on the ExamipCycle 1

Dialogues for all cycles share a common structure to make it easier for sttaleavigate
the dialog tree (Figure 32). In the first two dialog steps, the agent reviews thenpradly
briefly again and sketches potential goals. Then, Billy asks the student what to dodext, a
fers about three choices to attack the problem. In addition, the student has access togso dia
that allow her to choose among all possibilities to teach or ask Billy. The last ¢Asic Ms.
Mathie) will hide Billy and transfer the student to the teacher agent. Beyond dhes®top-
level items, the student finds opportunities to discuss topics with the agent. Someediddbg
the student teach the agent, in others, the student can ask the agent to modify the graph or apply

taught knowledge.
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Summary

In this chapter, we saw how we built a constructivist learning environment that uses=anc
instruction, smart tools, and a cycle design with increasingly difficult cigale and how we

could integrate it with learning by teaching agents. Before students used éme, systestab-

lished the anchoring context, by situating students in a macrocontext. This placed&mnésshs
interns in a jet service and small plane transportation company, which needed a tigghema
skilled helper in providing customer services. This macrocontext was motivatedriiyoalolc-

tory movie taken from the adventures of Jasper Woodbury (Cognition and Technology Group at
Vanderbilt 1997), which flashed back into the youth of the owners, and implied that the success
of this company resulted from the mathematical skills of its owners. To solvethbkiems,

students needed to separate essential from inessential data, like in thelceal wor

Then, we introduced how our system fosters the activities of a novice teacher whaiearns
teaches at the same time, and how our system helps students reflect on theg teatknowl-
edge by observing the agent’s results in quiz and a test phase. Learners taugtarnthdesfara-
tive and procedural knowledge by selecting answers in multimodal dialogues and demgnstra
actions in representations, like the graph tool. During teaching, our teachable agatstana
modify representations according to instructions of the student, which influencesrdwness

of that representation.

We illustrated the role of our representations, especially the simulation amaphetapl.
The student gets essential correctness feedback from the simulation, which awadiagso-
lutions by requiring the student to over specify its parameters. The simulation cafufpwe

scaffold its complexity with different user interfaces from simple twatioa settings to full-
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scale rescue missions that require simultaneously moving vehicles, planning, oraeveptipl
mization to succeed. Learning is supported by plugging various smart tools in the environment
that aid learners in achieving their goals, while not preventing the user from makiages.
Additionally, smart tools must make user actions unambiguously transparent tosagatis

they can learn and act appropriately.

Agents learn and reproduce knowledge through a teach-ask-act strategy to helpriie user
flect on taught knowledge. Initially students teach an agent through demonstration apleé-mult
choice dialogs, then they can ask the agent for a verbal interpretation of their kinioreletdge,
and finally the agent applies its knowledge in quiz phase and test phase by actingsélegag
problem, provides its solution, and additionally generates an explanation in words andbanimati
which a learner can request to identify mistakes in the agent’s knowledge. Aggaatent their
procedural knowledge internally as a vector of individual steps (knowledge scriptd), thvi

student can teach and reteach individually.

Agents act and communicate through the agent and scripting and communication framework,
which includes a language interpreter and a communication channel that resobresaudire-
guests for information among its registered peers. Representations pariitiihped communica-
tion framework as reactive agents, who provide essential state informationlaadatdter
agent’s changes. Our agents do not distinguish between ask and tell, like KQML (Hinou,La
and Mayfield 1997). If an agent requests information from another agent through the communi-
cation channel, it simply performs a function call and receives a return vaklskfoom the re-
ceiving agent, which can be a value or a string. All our communications are synchronous, be-

cause this simplifies the software architecture and avoids many engineebites. This con-
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cludes the chapter about the design of our system, and we continue by describing theexperime

tal design of our research.
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CHAPTER V

EXPERIMENTAL DESIGN

This chapter describes the design of the experiments that we employed to studyvdugomot

and learning of students using our learning by teaching system. We outline the pripzahehy

ses for the study, and then introduce the measures for deriving student performance aad motiv
tion. A detailed description of treatment differences of the alternate condipoesisnted, and
contrasted with the system used for the experimental condition. Then we presepetiraex

tal setup of the study, which included students from two sixth grade middle school classroom

This study compared the learning and motivational measures between two groups (Figure
33): the first group, our experimental condition)Xs the learning by teaching group, which
engaged in all activities that we have described in the previous chapter. Studentdteratea
condition (%) used the same baseline environment, but were taught by the teacher agent, and did
not get an opportunity to teach. Therefore, learners in both groups used the same learning envi-
ronment, with the same representations and the same anchoring context, but one group taught a

teachable agent, while the other learnt from a pedagogical agent.

Hypotheses

Our study focused on two sets of hypotheses: knowledge hypotheses and motivation hypotheses

(see Table 1). As a first step, we wanted to show that all students using our sgster8écond,
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we wanted to illustrate treatment differences between the two conditions in Kgevgain,

transfer, motivation, learning strategy, and experiences that energize.

We hypothesized that students in both groups would learn effectively using theirivespect
learning environments. This should be illustrated by an increase in mean scores froedgaowl
pretest to posttest for all students (regardless of group). The pre- and posetedtse only re-
peated measure in our experiments. Our null hypothesis for knowledge gaind)stated that
the change in mean scores from pretest to posttest will not be statistgrafigant, and our al-
ternate hypothesis {dan) stated that mean scores from knowledge pretest to posttest should

increase significantly for both groups (Table 1, Figure 34).

To study the effects of the teachable agent system (Figure 1, green box), watidirthree
hypotheses. Our first hypothesis was that teaching social agents lets seatenbetter than
students who do not teach. Specifically, we thought that the teaching interactions woul@ produc
significant differences between the students’ post-test scores in the two. groupsour knowl-
edge gain difference null hypothesis«Gdro) was that students in both groups learn the same
amount of knowledge on the average, while our alternate hypothgsis-fivas that students in
our experimental condition outperform students of our alternate group in the postiéstl(Ta

Figure 35).

Second, we believe that students in the experimental group are better in applyilegtheir
knowledge in a transfer tasiHr, different transfer between conditions). Specifically, we meas-
ured if students in the experimental condition would perform better in the trankfeMasiem-
onstrated this by comparing the mean scores in the transfer test between theditianso The

null hypothesis (kb) for the transfer test states that students in both groups are equally successful

! For the design of this measure, see section "Nesarsfer Task" on page 142.
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in the transfer test and our alternate hypothesiyi@that students in the learning by teaching

condition outperform the control group (Table 1, Figure 36).

Table 1. Table of Hypotheses (O notation refefSignire 33,0 is the mean of a measure)

Knowledge Hypotheses

Hkcan Alternate Hypothesis: The students in both the control and experimental
condition gain knowledge over time by using our system.
Knowledge Pretest Mean > Knowledge Posttest M@amr 0.,)
Hkeamno | Null Hypothesis: Knowledge Pretest Mean = Knowledge Posttest Mean
(O = 0,) for both groups.
Hkpier Alternate Hypothesis: Students who learn by teaching do better than stu-
dents in the control condition.
Knowledge Posttest Experimental Mean > Knowledge Posttest Alternate
Mean Oax1> Oax2)
Hkoirro | Null Hypothesis: Knowledge Posttest Experimental Mean = Knowledge
Posttest Alternate Mea®§x1= Oax2)
Hr Alternate Hypothesis: Students who learn by teaching show different trans-
fer than baseline students.

Transfer Test Experimental Mean > Transfer Test Alternate Mean
(Osx1> Osx2)

Ho Null Hypothesis: Transfer Test Experimental Mean = Transfer Test-Alt
nate Mean®sx1 = Osx2)

Motivation Hypothesis

Hwm Alternate Hypothesis: Students who learn by teaching have different
MSLQ scores than baseline students.
MSLQ Posttest Experimental Mean > MSLQ Posttest Alternate Mean

(Osx1> Osxo)

Hwmo Null Hypothesis: MSLQ Posttest Experimental Mean = MSLQ Posttest
Alternate Mean©sx1 = Osx>)

Hete Alternate Hypothesis: Students who learn by teaching have different ETE

scores than baseline students.

ETE Experimental Mean > ETE Alternate Me@ny; > Ozx?)

Heteo Null Hypothesis: ETE Experimental Mean = ETE Alternate Mean.
(O3x1 = O3x2)

Third, we hypothesized that the act of teaching social agents would result imndiéera

self-reported motivation (i, motivation difference between groups). We characterize motiva-
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tion as composite score of intrinsic and extrinsic goal orientation towards naditteerperceived
enjoyment and value of the subject, and other such factors that are measured by thedVotivate
Strategies for Learning Questionnaire MSLQ (Pintrich et al. 1993, 1993). Our nwtinati
hypothesis (Ido) was that there would be no difference in motivation scores between the two
groups, while our alternate hypothesigji$tated that students in our experimental condition

would report higher scores (Table 1, Figure 37).

In addition, we expected to find differences in the measure Experiences Thaz&nergi
(Brophy 1998) between treatment groups. Our null hypothesigdHvas: there are no differ-
ence in average total score between groups, and our alternate hypothgsg)dgithat the learn-

ing by teaching group reports a higher average total sore.

Detailed Experimental Design

We conducted a fully randomized experiment with two conditions. As we stated befooe, we f
cused on differences between students who teach a peer agent and students who do not teach.
Both conditions use our baseline environmenhich is an anchored, exploratory environment

that supports active learning and discovery. Students of both conditions learn from a teacher
agent. We selected two classrooms of a middle school non-randomly, and used attratific
scheme so that each class contributed 50 percent of its students to each conditictidqsee se
Population, Sample and Randomization for more details). Figure 33 gives an overview of the se
guence of measures in the notation of Cook and Campbell (Cook, Campbell, and Cook 1979). In

this notation, O stands for observation and X stands for treatment.

! Simulation, representations (graph), and teachenta
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0, O, X, O, O O
0, O, X, O, O; O

Figure 33. Full Experimental Design in the NotatarCook and Campbell (Cook, Campbell, and Cook3}97

We refer to the learning by teaching group as the experimental conditiprafd the group
that was taught by a mentor agent)(Xs the alternate condition (Figure 33). For these two con-
ditions, we computed scores for the following variables: domain knowledg®{QOMotivated
Strategies for Learning ¢O0s), and transfer (§). Measures during the treatmeng(@ot shown
in Figure 33) were Experiences That Energize and miscellaneous usags thatnee could
extract from user action traces in log-files. A small set of survey quesgtieceded the MSLQ
(Os). In the following paragraphs, we describe how we have used the computed measures in in-

dividual analyses.
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Ol x1,2 C)4

Figure 34. Repeated Measure (Within Subjects) Desiginalyze Knowledge Gain

0, X, O,

Figure 35. Between Subjects Design to Analyze HwenTreatment Influences Knowledge, (©a Covariate)

Our data analyses dealt with subsets of collected data. Specifically, weegihdbmain
knowledge (@, Oy) in two different ways. The knowledge gain hypothesis required a pretest-
posttest design that compared individual knowledge gain over the duration of our experment re
gardless of treatment group. Thus, we compared pretest scores with posttesvghaevithin
subjects design (Figure 34). To analyze how our treatments influenced student Jeeenisgd
the same raw data in a posttest only comparison between treatment groups. le tthe qas-
test data was a covariate for the posttest data (Figure 35). The experim&@gtaf@leour trans-
fer analysis was a posttest only, between subjects design (Figure 36). We lookeaat how

treatment influenced the scores of the transfer test.
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X1 Oe
Xy O

Figure 36. Between Subjects Design to Analyze hH@nTtreatment Influences Transfer

Our motivation analysis also was a between subjects designs. In the case of QeWaSL
compared the posttest results between groups and used the pretests as covguig&s {FOur
analysis of Experiences that Energize followed a similar design with thexception that the
covariate data were the averages of the four pre-treatment questions (TablgfhéndiR B).
This accounted for individual differences, for example that some people might havedepatt

they were energized by activities like copying grammar lessons from the board.

O, X; Os
O, X; Os

Figure 37. Between Subjects Design to Analyze HmwTreatment Influences Motivation {@ a Covariate)

The controlled variables in this study were the working-environment, computer usage, the
exploratory, anchored learning environment, the presence and speech of agents, andesxternal
sources. Additionally, we decided to control for exposure to instructional materbiseaop-
portunity to learn them. Because our system design was cycle-based, we gave stunddat
complete all cycles, before advancing to the posttests. Because we could only coetpbf
sure or time but not both, this decision prevented us from controlling for time. The dependent

variable was learning by teaching the teachable agent.
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Because we had a heterogeneous set of laptop models, technology savvy students were ex-
cited about using the latest, fastest, or smallest computer in our set. Besggrsag@sne com-
puter over the duration of the whole study would have evidently influenced motivation, we con-
trolled this variable by rotating students to a different computer in each sessi@mtiia for
influences through the working-environment, we used a single room that the middle school pro-

vided during the whole experiment for all groups.

We could only partially control for the confounding effect of resentful demoralization. |
tially we discouraged students to talk to each other about the environment to avoid rileas lear
from the alternate condition would become discouraged because they could not teach Billy.
However, it would be too idealistic to think that all students complied with our request- Ther
fore, we only relied on the rich compensatory treatment that included the simulgireserda-

tions, the teacher agent, and a non-teachable Billy-agent.

Because our experiment spanned multiple days for each group, we assessed maturation i
our survey. However, because we used a fully randomized design, the most likely camge for a

observed differences in maturation would be a result of the treatment.

Method of Analysis

We expected that our collected data would be the normally distributed in most casefmréhe
we used the parametric normal linear mo@eNM) on all tests, unless tests showed that the

data were not normal. This model includes analysis of variance (ANOVA), and arudlgst

Y In literature, this model is also called geneirsédr model (GLM), normal linear model, or linearmal model
(LNM). The different names originated probably tteenpts to avoid confusion with the generatllinear model
(GLZ or GLM). The GLZ is a further generalizatiohtbe LNM. It removes the assumption of normalépd can be
parameterized with different distributions. Howewdgspite its similar name it shall not be confuaét the model
we use.
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variance (ANCOVA). We used the software package SPSS™ version 11.5 to performythe anal

Ses.

The normal linear model makes the following assumptions: (1) The response vamdide ca
expressed as a linear combination of functions of the covariates, plus a randomrarr@)ter
The residuals are distributed normally; (3) The error variances of resideasranal fomosce-
dasticity, homogeneity of variangeét) Fixed independent variables are measured without error;

and (5) There are no influential outliers.

We verified that our data did not violate normality by plotting histograms performing
the Shapiro-Wilk normality tests. The Kolmogorov-Smirnov test was not used becauese of t
problems it has with small sample sizes. Instead, we rely on the Shapiro-Wdkesltich is
more reliable in comparison studies with other goodness of fit tests (NIST/SEG®IA n. d.).
Still, it is possible that the Shapiro-Wilk test fails on normal data if outtiave to be included.
However, the normal linear model is especially robust against assumption violasiample
sizes are almost equal, like in our case. If we had sufficient reason to believerthality was
violated, or that our data did not follow the normal distribution we performed non-parametric

Mann-Whitney tests.

In addition, we tested the null hypothesis that the error variance of the dependent variable
was equal across groups with Levene’s tests, and the null hypothesis that the obsenateovar
matrices of the dependent variables were equal across groups with Box’s M hestsapplica-

ble. Results of these tests are discussed in the next chapter.
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Activities of Studentsin the Alternate Condition

The only difference between our experimental and alternate condition was thatidrégstn the
alternate condition did not teach an agent. Unfortunately, this resulted in otherlsamgkg to
the cycle structure. In this section, we summarize treatment differdrateseare described in
Chapter IV by paying special attention to the experimental design. We concludectiun svith

a high-level overview of our experimental design in Table 2.

At the beginning of the study, we introduced students to the system and our agent Billy in a
classroom lecture that all participants attended at the same time. Whenssstialidat using the
learning system, the system introduced the teachable agent, Billy, as eneo\dzo had low
self-confidence in mathematics in the experimental condition, and Billy as amwrigng a
paper about the company, who would not participate in learning and problem solving tasks in the

control condition.

The differences in the activities of the two groups were most pronounced in the teach phase
(Make Smart Tool in Figure 6). In the experimental group, Billy reviewed the probykir
the alternate condition, students started by reviewing the problem with the tegaftanatead.

However, the dialogues and answer options were the same for both groups.

To control for the presence of the teachable agent, learners of the alternate grd@bsooul
talk to Billy, but all of the dialogues just involved small talk and had no learning content. The
remainder of the teacher’s dialogue was identical in both conditions. Overall, stndietsl-
ternate condition were likely to spend less time in the teach phase than the exjaé¢coredi-
tion. This was because students in the experimental condition had to spend time in teathing t

agent using the dialog mechanisms provided by the system.
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In the alternate condition, Billy was not involved in the quiz phase. Instead, students gener-
ated the answers to the problems on their own. Like in the experimental condition, the student
could ask the teacher to check their answers, and to provide correct solutions. The feedback fr
the teacher was identical in both conditions, but the user interface to accesstiiatioh was
different (Figure 38). To obtain feedback from the teacher, the student had to entepa soluti
the problem. Ms. Mathie, the teacher, checked the answer (i.e., the students had to click on the
check answer button), and then told the students whether their solution was right or wrong. If the
student asked her to provide a solution path (by clicking on the give solution button), Ms. Mathie
then explained how she solved the problem. This process of obtaining feedback was identical to
the process of getting feedback from the teacher agent in the experimentaboqialfiire 12).
Students in the control condition did not interact with the teachable agent. Thereforeythe us
interface for the control condition did not have two tab panels (Figure 10, Figure 11) to commu-
nicate with Billy. Overall, the students in the experimental condition had to go through ma
more steps, in first teaching Billy, then getting him to answer quiz questions, and teenngps
the feedback that the teacher Ms. Mathie provided. This resulted in the experimmmahay-
ing to spend much more time in going through the same amount of material. Often ther inter
tions with the teacher and Billy were quite repetitive. This could be a reason whgt nat diee
the differences in knowledge test scores that we had expected between theesnakand al-

ternate group.
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ND: 10
Select a Problem:

How long will it take?

1E]
[=le
[=le

Are we there yet?
Expert Questions EJ EJ EJ E] E]
Problem [

Howe long will a trip of 350 miles take
with @ 138 milesthour plane?

Answer: 122 minutes

check answer give solution J

The solution is: 152 minutes.

To solve this you have to find minutes on the X-axis. So press
Find %' Then adjustthe reader-line to 350. Ater intersecting

hoth reader-lines on the 138 milesthour line, press 'Done'tn

display the result.

Stop Speaking Goto Cycle Get new problems

Figure 38. Quiz Phase: User Interface of the AliterExperimental Condition

Since we decided to randomize quiz-questions after the first time only on requestdntst
(get new problems button in Figure 38), learners in both conditions had the same kind of oppor-
tunities to solve quiz problems by trial and efr&andomizing quiz questions only on demand
avoids that questions flip-flop between right and wrong each time they are asked. Stodlents
retry the same question with the same numbers again, and would not be confused that a question
suddenly reverted to unsolved again because the new random numbers were out of range of their
line on the graph. In the alternate condition, learners could enter an intentionallyahansre
swer, let the teacher check it, and provide a correct solution, which they memorizeddothrs
same question later. In the experimental condition, students could skip checking theagent’

swer by just stating that Billy’'s answer was correct, then asking the tdachecorrect answer.

L A future version of the system should be modifiedvoid this better.
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Then they could return to the teach phase and use another dialogue option relating to this ques-

tion to teach the agent differently and return to the quiz.

Table 2. Table of Differences between Experimeatal Alternate Condition

Experimental Condition Alternate Condition
General | Classroom lecture. Classroom lecture.
Introduc- | No differences between groups. | No differences between groups.
tion
Problem | Billy is a co-learner with low self- | Billy is an intern who is writing a
Introduc- | confidence in mathematics. paper about the company and does
tion not participate in learning and probt

lem solving tasks
Teach Billy reviews the problem introduc- The teacher reviews the problem ir
Phase tion. troduction instead of Billy.
Student and Billy interact through| Student and Billy can engage in 2-3
dialogues; Billy is taught and ques-small-talk dialogues without domait

- N

tioned. or learning content.
Students learn from the teacher | Students learn from the teacher
agent. agent.

Quiz Three tab interface: One tab interface:

Phase (1) The student displays the prob4 The student displays the problem,
lem & Billy’s solution; provides an answer, requests the
(2) The student makes suggestiongeacher to check, and requests the
to Billy; and teacher’s solution (Figure 38). All in

(3) The student requests the teachene user interface.
to check, requests teacher’s solu-

tion.

Test (1) Students solve a test to grade| (1) Students solve a test;

Phase Billy later;
(2) Students review own and (2) Students review their answers;
Billy's answers; and and

(3) Students compare the number ¢8) Students view the number of
their and Billy’'s correct answers. | their own correct answers

The test phase helped differentiate between the two groups in a more substaniial reay
capitulate, students in the test phase first solved a set of problems, and then rdagevsetLt

tions to obtain summative feedback. In the alternate condition, students took an exam.dexcept f
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this arrangement, the user interface, problems, and interaction with the systethevsame for
both conditions. During the review, the agent’s solution was replaced by the teachgios sol
which was displayed in an alert panel in the experimental condition (Figure 16), ancitré st
clicked "OK" instead of "Right" and "Wrong" to advance to the next question. In the summary

the lower two feedback boxes relating to the agent’s right and wrong answergnveved.

Population, Sample and Randomization

Our study was conducted in two 6th grade mathematics classrooms in a public school in the
southeastern United States. The two classrooms were picked non-randomly, as welyad to re
voluntary participation of the classroom teachers. We invited all 49 students fronotblass-

rooms to participate in our experiment. Class P contributed 25 students and class Q !l student

The demographics of students in the county of our school were White 41.1%, African
American 46.1%, Hispanic 9.2%, Asian 3.4%, but our sample in the particular school apparently
had fewer than average African Americans. The students in this school were heynggland
selected based on test scores and a lottery system. To address integratiors ptioblsechool

makes a strong attempt to maintain a 33% minority student ratio in the school.

We used two strata to assign our students to experimental and control condition, to control
for a teacher or classroom effect. We ensured that each class was equaldyidteiderr two

treatment conditions.

Three students of class Q decided not to participate. Additionally, one student decided to

drop out during the treatment. This reduced our final count of participants to 45 students. The
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experimental condition had 23 participants (12 from class P and 11 from class Q) and-our alte

nate condition had 22 students (13 from class P and 9 from class Q).

M easur es

To verify our hypotheses, we selected a set of motivational and learning measuties fifstr
set of hypotheses, we used the Motivated Strategies for Learning QuestionnaixpamnehEes
That Energize (ETES), and to measure changes in learning and transfer we useddentasts

that we created particularly for this study. We describe all measures ollthvrig sections.

Motivated Strategies for Learning Questionnaire

We used a subset of the Motivated Strategies for Learning Questionnaire, M8itH{Rt al.
1993, 1993) that we modified for the purposes of our study to measure the motivation and the
learning strategies employed by the participating students. This questionasiaglnvinistered
along with the knowledge pretestf{@®igure 33) and the knowledge posttesf)(@he MSLQ

scale is a seven point Likert self-report scale, which was created and normed onetfg0stoll
dents from 37 classrooms, spanning 14 subject domains and five disciplines. Correlation with

final grades was reported as significant, albeit moderate.

Table 3 lists all the variables used in the MSLQ with their internal consistelnalyility co-
efficients (Cronbach’s alphas) in parentheses. Due to time constraints, we dearfevevari-
ables, which we thought were more relevant to course-based instruction. Table 3 alex-give
ample questions for each variable. The full test is included in Appendix A. We usedeaththire
tivational valuecomponents of this scale, which are intrinsic and extrinsic goal orientation and

task valuedq = 0.68, 0.62, 0.90Expectancy componeritsat we measured are self-efficacy (for
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learning and performance), and control beliefs-(0.93, 0.68). We did not measure test anxiety,
as it was unrelated to our stddfor measuringognitive and metacognitive strategies se-
lected critical thinking, and metacognitive self-regulatior=(0.80, 0.79). We skipped rehearsal,
elaboration, and organization because those strategies were not relevant toimgr éseairon-
ment, and we did not expect to see an effect during our study.rEsmurce management
strategieswe used effort regulation, peer learning, and help see&irgX69, 0.76, 0.52). We

did not measure the variable time and study environment as it is a fixed factor irtiogr set

Table 3. Motivated Strategies for Learning Questaire Example Questions

Controal It is my own fault if | do not learn the ideas irathematics class.
Belief . - - -
I If | try hard enough, | will understand the ideaghis mathematics class.
| often find myself questioning things | hear oaddn mathematics class in
Critical order to decide if | believe them.
Thinking | like to play around with ideas of my own that aetated to what | am

learning in mathematics class.

Extrinsic Goal | | want to do well in mathematics class becausgiihportant to show my

M ativation ability to my family, friends, teachers, and others
Effort Even when the mathematics book is dull and unisterg, | manage to keep
Regulation reading until | finish the assignment.
Help When | do not understand the ideas in mathematsscl ask someone to
Seeking help me.
Intrinsic :
Goal Motiva- In mathematics class, | prefer to learn about thihgt really challenge me
: so | can learn new ideas.
tion
When studying for my mathematics class, | oftertdrgxplain the ideas to
Peer someone else.
Learning I try to work with someone else to complete thegmsrents in mathematics
class whenever possible.
S_elf | am certain | can master the skills being taughhathematics class.
Efficacy
Self When | study for mathematics class, | set goalsrfgself in order to get the
Regulation most out of the time | spend studying.
Task | think that | will be able to use what | learntiis mathematics class in lifg
Value or other classes.

! In retrospective, we have observed some test-grixi¢he test phase of the cycles, which we ditamicipate.

136



We adapted this questionnaire from its original form, which geedsefor referring to the
subject of instruction. We reworded all the questions to refeathematics class the pretest
andcomputer taskn the posttest. The questions were also reworded to fit the vocabulary and un-
derstanding of sixth grade students. Since the pretest was intended as a cavanadeed the
effect of motivation in mathematics class that existed before the expérintele the posttest
focused on the effects of the treatment. In the introduction to the MSLQ posttest, wasizegbh
that our computer environment would not replace regular mathematics instructionlastie c
room. Rather, it should be looked upon as a tool to further one's learning after classro@m instru

tion. We presented this test on the computer to simplify data gathering and evaluation.

A pretest - posttest measure like the MSLQ does not usually provide insights irttodtra s
activities during an experiment. To capture students’ thoughts and feelings duringlthee
used a tool calleBxperiences that Energizeriginally developed and used by Brophy (Brophy

1998, 2003), to give us insight into the motivational state of learners while they used our syste

Experiences that Energize

Experiences that Energize (ETE) (Brophy 1998, 2003). This measure determinesonadivat
ing an activity and is comparable to intellectthadv (Csikszentmihalyi 1990). Subjects repeat-
edly reported their current energy level on a single seven point Likert-styléoguebtle they
were involved in learning activities (Figure 40). For example, a teacher maynta class ses-
sion several times and asks students to write down their ETE score. When plottguh ad gva
erage ETE scores against time, peaks show those interventions that eneigjizéeifits during

instruction. High responses imply heightened intellectual flow, which impliesased motiva-
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and disinterest.

Table 4. Experiences That Energize Measured whildeits Use the System.

tion, attention, and enjoyment of the reported experience, while low responses imply boredom

Problem Read You are starting or resuming to make your Smart Tool.
Please rate your energy level.

Quiz Entered | You are going to try your Smart Tool. Please rate your en-
ergy level.

Quiz Finished| You have just finished trying your Smart Tool. Please rate

(QD) your energy level.

Test Graded | You have just finished solving real problems. Please rate

(TD) your energy level.

Test Re- You have just finished reviewing your problems. Please

viewed (TR) | rate your energy level.

Test Sum- You have just finished looking at the summary. Please rate

mary Seen | your energy level. After this, you can go on in the cycle jand

(TS) read your next problem introduction.

We were faced with the alignment problem when trying to use this measure inciineffe
way. In classroom instruction, all students are simultaneously exposed to thexpanenee,
which makes it easy to detect peaks in the graph of the average of this measurtinversus
However, students work at their own pace and in their own way in a learning environment, so
finding collective peaks in time does not work. For our research, we identified iimgnteshsi-
tion points and asked students at each of these points to rate their energy level) (Tl
allowed us to collect cumulative data at well-defined points, so we could graph thel aclere

currence of these transition points against the average ETE score.

A disadvantage of Experiences that Energize is that they may disrupt flowtlEEBscur

during an activity may interrupt a student’s thinking and can be annoying. Hence, wdycareful
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chose to use ETEs only when the student transitioned between activities, espbealthey
transitioned between phases of a cycle. At these times, ETE questions weyedisptae stu-
dent using the interface shown in Figure 40. The instructions that students received t&6TEpor

values can be found in Appendix B.

Knowledge Test

We evaluated student learning of declarative and procedural knowledge with a multiple-
choice test that we used for pretest and posttest (see Appendix C). This test tevetgricu-
lum material presented in the learning cycles, and required good understanding of doncepts
achieve a high score. Some items could be looked upon as near transfer problems. The-test mea
ured the ability of the students to use graphs (read points, add points, and solve problems using
the graph), answer standard mathematics word problems, and understand the relationship be-
tween slope and speed of a line. An example question is illustrated in Figure 39. Pr@blems b
tween pretest and posttest were varied slightly (changed numbers or slopes) theapoathiem

of memorization of answers.
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wihich line iz a faster speed L1 or L27?
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Answer:
1
1 | L1
1
2 | L2 |
El | Itis not possihle to know from the graph
|
1 | The lines do nottell anything about speed ‘
5 | | have to learn that, | do not know an answer.,

Figure 39. Knowledge Pretest Example: Which Lina faster Speed?

The questions were designed to decrease student guessing. Questions about graphs show all
four quadrants of a graph to illustrate problems in pretest and posttest (se€Sg)gurale our
graph tool in the learning environment used the first quadrant only. This required students to
think beyond the first quadrant problem solving skills that they had acquired during the main
study. To avoid that students can guess correct solutions, we designed the answetecti@ces
guestions to cover up to eight possible answers. For example, a question about reading a point on

a graph provided eight answer choices that exhausted all possibilities.

The pretest contained 11 and the posttest had 16 questions (see Appendix C). The posttest
added five questions to the pretest. The extra questions were not used in the Ishatdywia of
results for knowledge gain. However, the extra questions could be included in an analysis to

compare treatment groups with the pretest as covariate. All questions wke lgyaawarding
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one point for a correct answer and zero points for any incorrect answer. In situatiomswarher
thought students could receive partial credit, we did give a score of 0.5. Two questions that re
lated to material in the fourth cycle, which was not covered in the experiment due tmtim

straints were removed from the tésw/e did not weigh questions for difficulty and importance.

Online Testing Interfaces

As discussed, our agents communicated with their student-teachers using a-chuigeedia-

log interface. This framework (Figure 27, top six objects) was modified to enabie pnditests
and posttests. The MSLQ questions and ETEs shared a common interface (Figure 4@)ewhile
knowledge test used a vertical layout that allowed us to display longer answes ¢R@oee

39).

EXAMPE3

You are finishing an imporant exam where you're confident you are getting every
answer right.

T IR

H B E 5 BN

Figure 40. Electronic Likert Testing Interface MELQ, ETE (this picture), and Knowledge Tests

The online testing interface performed automatic scoring of tests. Each exaligite an-

swer was associated with a variable and a score. The last question of a test thetifiialog

! The pretest had originally 13 questions.
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controller through the agent communication interface to score the dialog. Then, ealte vari

was summed, and written to the log-file, from where it could be copied onto a spreadsheet.

Near Transfer Task

After students finished all the posttests, we conducted a transfer test, wikerdstreated a

flow-rate graph by running a real experiment in another domain. This was introducecktas an e
cycle in the learning environment. This cycle provided a blank graph tool (without units or num-
bers on axes), and the students did not have the simulation tool to generate data points from
which the graph could be constructed. Instead, the students had to conduct a real experiment, col-
lect relevant data, and then plot it to determine the rate line. We told students thathiabdle

agent, Billy, would not be available for this part of the study. Instead, the mentor agent, Ms

Mathie described the problem to students of both groups.

The problem described a situation where the company’s engineer, Larry, had to repair a br
ken engine, which would require a new fuel injection nozzle. Students had to conduct experi-
ments to find the flow rate of fuel through a chosen nozzle and plot this information on a graph.
Students were provided a notepad, a stopwatch, a 100 ml measuring cylinder, and a water nozzle,

simulating the flow of the fuel-injection nozzle (see Figure 41) to collect data.

The notepad included a blank three-column table without units. Students were told to record
values on the notepad. They received instructions on how to use the stopwatch, and how to read a
water level on the measurements cylinder. No further instructions were givemtStwdeked
individually at their own pace to collect the data and make entries into their table tNeélgdin-
ished this task, they returned to their computers to draw the graph and used it to compute the

flow rate. The students were instructed to write their answer into their notebooks.
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Figure 41. Photo of Equipment Supplied to Studantse Transfer Test (without Stopwatch)

We graded the transfer test and generated a composite score calculated mgsthenmi
scores for the three separate tasks: the quality of the produced table, theudkels gt on
their graphs, and the quality of the resulting line. Each of these tasks wascestsseveral
item scores that awarded one, half, or zero points for a correct, partially correcorrect an-
swer. Table 5 gives an overview of our grading scheme. Half points were rarefiedweacept
for a few borderline cases, for example, when students used the graph unit on the righhaxis

wrong spot of the graph label, without compromising the functionality of the graph.
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Table 5. Near Transfer Task Grading Scheme

Table Graph Labels Line Quality
Table Label 1 | Graph Label 1| Line (see text) 4
X-Axis Label 1 | Graph Unit 1 (0,0) part of line 1
Y-Axis Label 1 | X-Axis Label 1| Y-intercept= 0 1
X-Axis Unit 1| Y-Axis Label 1
Y-Axis Unit 1 | X-Axis Unit 1
Data points (see text) 5 | Y-Axis Unit 1

Min. X (0 or 1) 1

Min. Y (O or 1) 1

Max. seconds 1

Max. ml 1

Students got a maximum of 10 points for generating a correct table. The table deaklayra
the following criteria: presence or absence of a table label, and labels and unésdoy meas-
urements. Additionally, students received 5 points for measuring five or more data pants, or

point for each non-duplicate data entry in their table.

The second part of the transfer score was the labeling of the graph on the computer graph
tool. Students could get a maximum score of 10 points for a correctly labeled graph. Medawa
one point for each correct axis label, axis unit, and minimum (value of O or 1) for eacheaxis. B
cause the maximum for each axis depends on the collected data, we have allowed vedees bet

60 and 120 as correct solution for each axis.

The third task assessed the line quality, and students were awarded a maximum of 6 points
for a correct line. Students received one point if the line included the origin of the graph, and a
second point if the line had a reasonable (extrapolated) y-intercept within fivatmitgl the
origin. Participants received 4 points, if their graph was a straight line, anddlveds created
from the data they had recorded. 3 points were awarded for a straight line that dicheadditat

collected. Students received only 2 points if their graph was not a single stragglfitially,
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they got at least 1 point for any marginal attempt to draw a line. Students who dremtadyriz
vertical, interrupted, or no lines received zero points. The maximum score a student caald obt

for the transfer task was 26 points.

Survey

Before students solved the posttest problems, we surveyed their experiences dstumythe
The survey had 14 questions (see Table 6), and assessed maturation, interactionstafith the s
self-reported perception of how much they learnt, and whether they had fun. They were also

asked to rate their experiences with specific components and agents in the system

Table 6. Survey Questions

1 During the experiment, how many times did you stodyerials about graphs or ra\lte
" | problems when you were not using our computers?

> During the experiment, how many times did you ablepopersons about graphs or
" | rate problems outside the experiment, and theyekeypu figure things out?

How much help from the research staff did yoeidh® complete the cycles?

How often did the research staff solve a matiblgm for you?

How did you like the voices and speech in tlaerimg software?

Did you like Ms. Mathie?

Was Ms. Mathie helpful in figuring things out?

Did you like Billy?

Wl N | ok~ W

Did you like the simulation?

10. | Did you like the graph-tool?

11. | How much have you learned while using our sy3te

12. | Rate the overall difficulty of the problems @adks:

13. | How much fun was learning with this software?

14. | Was Billy a good student?
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Questions asking for how many times something occurred coded 1 for never, 2 through 6 for
1, 2, 3, 4, and 5 times, and 7 for more often. Other questions used a standard seven point Likert

ranking, like the MSLQ.

User Action Traces

We analyzed the student's action traces that our system recorded in a logefdeHf stu-
dent. An especially interesting and informative measure was the number of ntiodié cdu-
dents made in the graph tool, especially how often students added points, changed lines, and read
the graph (successfully or not). The system also traced how often a student succtsldedior
running the simulation, and recorded quiz and test scores. The learning environment also saved
the full state of the graph after each modification, which allowed us to replay hadeatstre-
ated a graph as a movie, or analyze a student’s graph at specific times durinmptimee.
This feature was useful in obtaining the students' graphs of the near transtexttestion and
counting of these measures was done automatically with UNIX tools (egrep, var)sb&very

action or score was tagged uniquely.

Procedures

Before the experiment, we obtained the permissions from the Internal Review Bdardlar-
bilt University and the local Metropolitan School District to conduct the experamemivo &
grade mathematics classrooms. With help of the teachers, we integrated omnenpato
regular classroom instruction. After parents and students signed the consent fpant€ipate
willingly in our experiment, an initial introductory lecture discussed the axati and pre-

sented the anchoring context. We explained to the students our reasons for conducting this re-
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search study, and gave students a broad overview of what they may learn during the study. We
also made clear to the students that they would be assigned to one of two types of ystems
explained to students that to the extent possible they should avoid talking about the details of
their system or their own work with other students, because otherwise, it may doertgsults

of our study. At the end of session one, we gave a short demonstration of the learning environ-
ment (without the teachable agent) and showed students the introductory movie "Working
Smart," one of the twelve Adventures of Jasper Woodbury (Cognition and Technology Group at

Vanderbilt 1997).

After the introduction, the students were split into groups of 11 students or less, and we as-
signed times when they could work on the systafte pulled students from regular classroom
activities to participate in our experiment. Each student used the system fessems of 45
minutes each. The first session was used for the pretgst®jOand the last two sessions for
the posttests (9 Os and Q). Subjects worked individually on separate laptops, and were
strongly urged not to look at each other’s work. All participants had enough time to cortiplete a

cycles before advancing to the posttests.

When students finished all cycles they were asked to take the posttests and féretaisins
in the next scheduled session. After finishing the experiment, students in the@ltensition

had the opportunity to use the teachable agent system.

! The experiment itself was limited to groups oflésan 11 students at a time, because we hadtadimiimber of
laptops.
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Summary

In this chapter, we introduced the experimental design for this research. To showrhow leya
teaching influenced students, we split students into two groups, one that learned by ssaching
agent and another that learned on their own. Students in both groups learned from the teacher
agent, Ms. Mathie, who presented domain knowledge in interactive dialogues that wecalide

for both conditions. To focus our findings only on the effects of learning by teaching, we care-
fully designed the system to keep all feedback from and interactions with tha slyatevere

unrelated to our treatment equal between groups.

To assess motivation among our students we used modified versions of the Motivated
Strategies for Learning Questionnaire (Pintrich et al. 1993, 1993) using a preteestmzsign.
Modifications were made to reduce the reading level of the questionnaire and accdwntrfor t
tended motivating tasks of our study (mathematics class, computer task). In addkien to t
measure, we used Experiences that Energize (Brophy 1998, 2003) to attempt to captuie the mot

vational state of students when they were using the system.

To assess knowledge gains, we designed a multiple-choice pretest, posttest, atdiasnea
fer test. The knowledge test included traditional word problems, some of which weteagie
plications of the graphs that students created before; others required additiopalatians to
derive the answer. The near transfer test involved creating a graph from reatenents gen-
erated by an experiment that students conducted to find the flow rate of a nozzle. Stedents m
ured time and milliliter values with a stopwatch and a measurement cylindededtchem on

paper, and created a graph in the computer environment. At the end of the study, we conducted a
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small survey, which gave us direct feedback on what students thought about components of our

environment.
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CHAPTER VI

RESULTS

This chapter discusses the results of our experimental studies with the teacjeaits system.

In the previous chapter, we presented the detailed design of our experiments. Wel¢lkpecte
learning by teaching would have a positive influence on learning and motivation of students. To
study this, we used four measures: the knowledge test, the near transfer task,vlted/oti
Strategies for Learning Questionnaire, and Experiences That Energize. Whassgemeasures

to validate our hypotheses, which are summarized in Table 1 in the previous chapter. We were
interested to find if all students learnddin), and if learning, motivation, and transfer{dir,

Hwm, Hete, and H) differ between treatment groups.

All hypotheses were tested using the parametric normal linear model (dsbtbalgeneral
linear model) as it is implemented in SPSS™ version 11.5. We used this model to perform the
analysis of variance (ANOVA) and the analysis of covariance (ANCOVA). Htiststal as-
sumptions made for the knowledge test are discussed in this chapter. The tests orfahéhéata

remaining analyses are discussed in Appendix E.

Knowledge Test Results

In this section, we discuss learning of procedural and declarative knowledge thaasugade
with our knowledge tests. To explore our hypothesis that all students learned by usingeour sys

(Hkean) we evaluated knowledge gain from pretest to posttest using a repeated withitssubjec
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measuré To show a treatment effect, we looked at knowledge gain difference between condi-
tions (Hoire). Because the time that students spent using our system and the amount of forma-
tive feedback during the quiz could influence knowledge test results, we begin our discussion
with these topics in the next subsections. The time on task is especially relevansedbe ex-
periment controlled for the opportunity to learn (students should complete all cyntef)eee-

fore it became harder to control for time.

Time on Task

This section discusses issues of the time that students spent on our systewe Forgt at the
time to complete all tasks. Second, we look for time differences that can be edttdbat par-
ticular group or class. We also asked the teachers to rate problem solving speedidéeis

to verify that our treatment groups were equivalent in this respect.

Time to Complete all Cycles

The time that students spent on each cycle, i.e., the time from when they enterethtpbdea

to the time they finished reviewing the summary in the test phase, was recorded fitea |

(Figure 42). It is interesting to note that the experimental group took on average 38 moinute
complete the curriculuns(= 87), while the alternate group took 319 minutes 84). In other

words, it took on average 68 minutes more for the experimental group to complete the tthsks of a
three cycles. The difference in time between groups for cycle one is 30 minutgs)ddno 50
minutes, and for cycle three there is no difference between the conditions. The stuttents i

alternate condition who finished early were given the opportunity to work on previous cycles.

! For the repeated measure analysis, we have stleciethe subset of 11 equivalent questions batvpeetest and
posttest.
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This was done in an attempt to balance the time between the groups, but only one student ac-
cepted this offer, and this student also worked on the system only for a very short timd. We di
not ask students for the reason as to why they did not want to go back, but one likely cause was

that students did not want to miss out on material being covered in their regular niahhema

class.

Time to Complete Cycles

Minutes (95% CI)

Cycle 1 Cycle 2 Cycle 3 Total/3

B Experimental Condition O Alternate Condition

Figure 42. Time to Complete each Cycle and Avefgige per Cyclé

The task of teaching the agent, Billy, in the experimental condition probably wasgestbig
reason for the time difference. The dialogues for teaching Billy were quite invélioe exam-
ple, teaching Billy in cycle one required 20 exchanges between the student and Biflyni-he
bers for cycles two and three were 27 and 17, respectivelgddition, it turned out that the quiz
interface for the experimental group was harder to use, therefore, students woudmeneai

time in the quiz phase. The time data clearly indicates that our teachableragpneguired

1 We have divided total time (sum of cycle 1 to @)three to show the results in a single figure.
2 The alternate condition had five dummy dialoguéh Billy per cycle, which did not balance the timiéference.
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more time to complete each of the cycles. The decrease in the average tims sjoelat per
cycle can be patrtially explained by the fact that students became morarfavithi the interfaces

and tools, and they became more proficient in managing the dialogue structure.

Class Differences

It is interesting to note that most of the time disparity between conditions imsthesvih cycles
was caused by students from one class (Figure 43). In the last cycle, the diffeletreased. A
likely cause for the reduction in time difference (regression towards the foeaggle 3 was
students realizing they had only a few sessions left to finish their study. QOwerassume that
the causes for the time disparity can be attributed to the differences in the eewitatimme

management skills of the students, and the teaching styles employed in the tes class

Overall, looking at the time differences in Figure 43, but especially those fer@Jagve a
good indication of the time penalty attributed to the learning by teaching task. Guatedtex-

tra time required for teaching is in the range of 20-25 minutes per cycle.
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Class Comparison

170

Minutes

Cycde 1 Cycle 2 Cycle 3

---¢—- Bxp. Condition Class Q ----m---- Alt. Condiition Class Q

—4— B. Condition Class P --x-- Alt. Condition Class P

Figure 43. Time to Complete each Cycle dependslasstbom

Group Equivalence - Teacher Rated Problem Solving Speed

To ensure that the observed time difference did not stem from non-equivalent group agsignme
(which is unlikely in the case of a fully random assignment), we asked the matiseteathers

to estimate their students’ problem-solving speed that they had observed duringmedioéar
matics class on a scale of 1-20. The averages of these ratings for both conditiorerywese
(11.17 vs. 11.14), and confirmed the equivalence of experimental and alternate condition in re-

spect to problem solving speed.
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Correlation of Knowledge Scores versus Time

Because students of our experimental group took more time to complete the cyclesiréhe na
guestion is whether the additional time spent on the system resulted in additionagléate

analyzed if there was a positive relationship between the time and knowledge scores

24 x x x

) ..

Q Condition

a 3 X X

Q

'§) O ALT

'% 2 o X EXP

§ 1 Total Population
100 200 300 400 500 600

Total Time (Minutes)

Figure 44. Scatter-plot of Knowledge Score versinseT

We plotted the posttest scores versus total time (Figure 44). The regresssioivsea
slight negative relationship: In other words, the longer students took on task, the lonsrdteei
in the test phase. The result shows a very low negative Pearson Correlation in. Taldecon-
firms that the additional time spent on the system did not result in better learimengnore
likely interpretation of the time on task result is that weaker students took meretsolve the

problems.
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Table 7. Pearson Correlation of Knowledge Scorsusefime

Knowledge
Posttest

Total Time
(Minutes)

Knowledge Posttest

Pearson Correlation

-,302(%)

Sig. (2-tailed)

,044

N

45

45

Total Time (Minutes)

Pearson Correlation

-,302(%)

1

Sig. (2-tailed)

,044

N

45

45

* Correlation is significant at the 0.05 level (2-tailed).

Quiz Behavior

Student performance during the quiz phase is an indicator of how well students have teatticipa
in the experiment. We looked at two variables that describe student’s quiz behavior: atimber

correct answers generated, and frequency of asking questions in each cycle.

Although, students could game the system and could get their answers right in both condi-
tions by trial and error or using teacher answehe failure to answer multiple questions in this
phase suggests low participation of students and could likely affect knowledgmtest $Ve
analyzed the records, and found that almost all students succeeded in obtaining cheak marks f
all the questions. One student showed poor participation in all three cycles, but his knowledge
test scores were average. Two other students struggled only in one cycle. Thus, the@humbe
correctly answered quiz questions did not provide evidence for any group or treatment differ
ences. Hence, we further looked at how often students requested quiz questions, which told us

how much they practiced.

! Randomizing problems on failure avoids trial anwe but it creates a moving target problem dut@arning by
teaching. Therefore, we decided to randomize onlyeguest by the student. The experimental comddauld try
different dialogue choices to teach the agent tim&y got the corresponding quiz question right alernate con-
dition could use the teacher’s answer and type ilowever, students knew that they could not ciretite test
phase.
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Quiz Questions Requested

20

10

N Questions Requested

Cycle 1 Cycle 2 Cycle 3

—x=—Experimental —O— Alternate

Figure 45. Quiz Questions Requested by Studergach Cycle

We looked at how often students requested questions in the quiz phase of each cycle. There
were 11 to 13 questions in each quiz. Figure 45 shows how often students requested a question,
not how often they solved it (correctly or incorrectly). Students in the alternat¢icone
guested more questions in cycle three. The means for experimental and alternatenceack
as follows: Cycle one, 31.8 € 13.7) and 36.0s(= 14.5), cycle two, 28.2(= 12.1) and 28.5(
= 14.3), and cycle three, 28.35% 13.5) and 43.64(= 27.5). The spike in cycle three stems
mostly from class P’s alternate condition (compare with Figure 43) and coingttiebevextra
time that these students spent on the system. This subgroup displayed on average 52 quiz ques-
tions that is about 20 requests above average. We do not think that this difference indicates a
treatment effect, because it occurs in only one cycle and stems from only ormoaashere-
fore, we think that students probably preferred continuing with the experiment rathgotha

back to their regular math class.
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Combining these findings with the time results allowed us to exclude time anghedtiae
as major confounding factors for test results. Therefore, the additional astantiedialogues
that the experimental group needed to teach the agent explains most of the traeceditfbe-

tween the groups.

Knowledge Test Analysis

We included all subjects in this evaluation, and only used the 11 questions in our analysis, that
were common to knowledge pretest and posttest. Students could score a maximum of 11 points
in each test. We evaluated the repeated measure knowledge gaiR XFbr all subjects regard-

less of treatment, and the differences between treatment conditiginsXHsing a normal linear

model. The descriptive statistics are summarized in Table 8.

Table 8. Descriptive Statistics of Knowledge Presesl Posttest

Condition Mean Std. Deviation N
(o) EXP (X1) 4,783 1.7309 23
ALT (X2) 4.932 1.5142 22
Total 4.856 1.6118 45
Oy EXP (X1) 5.913 1.9751 23
ALT (X2) 6.614 1.5192 22
Total 6.256 1.7826 45

To verify the assumptions of the normal linear model, we performed two tests: @stthe t
for normality of the input data, and (2) the test for equal variance between groupg, Mefirs
plotted histograms for the knowledge pretest and posttest, and then we overlaid a n@emal cur
on the histograms (see Figure 46 and Figure 47). In both figures, we saw a deviation from nor-

mality in the center of the distribution. However, the Shapiro-Wilk test (Table 9yroeafthat
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our data was normal. The Kolmogorov-Smirnov test was included for reference only (we did not

have a large enough sample size to use this test).

Histogram

14

>

§ Std. Dev = 1.61
:’.)_ Mean = 4.9

I N =45.00

20 30 40 50 60 70 80
KNIRAW

Figure 46. Histogram of the Knowledge Pretesf) (O

Histogram

16

>

§ Std. Dev = 1.78
ag)_ Mean = 6.3

I N =45.00
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KN2RAW

Figure 47. Histogram of the Knowledge Posttes) (O

159



Table 9. Normality Tests for dfdpirr

Kolmogorov-Smirnov Shapiro-Wilk
Statistic Df Sig. Statistic df Sig.
Knowledge
Pretest Oy 191 45 .000 .957 45 .092
Knowledge
Posttest Oy 132 45 .047 .966 45 .200

The results of the Levene Test for equal variance of the dependent variable produced the re-
sults shown in Table 10. The results were not significant; therefore, the assumptanstatis-

tical model were not compromised.

Table 10. Levene’s Test of Equality of Error Vadas

F dfl df2 Sig.
Knowledge
Pretest Oy .735 1 43 .396
Knowledge
Posttest Oy 1.313 1 43 .258

Tests of within subjects effects on the repeated measure knowledge, @ (Figure 33 in
Chapter V) showed significant learning for all participants with F(1,44) = 16.491 and P < 0.001,
with a power of 0.978 for predictionsa@t 0.05. Thus, we rejected our null hypothesis

Hkncaino. This suggests that our systems helped students of all conditions learn domamd.materi

Tests of between subject effects, @ the experimental group vs,Of the alternate group)
did not produce a significant difference between the means for our two conditions F(1,44) = 1.31
and P = 0.257. Thus, we failed to reject our null hypothesisg#d in Table 1, of Chapter V).

Therefore, this experiment did not conclusively demonstrate that learning byhtebeltped
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students to do better on the knowledge test. As a next step, we looked at differencasibetwee

dividual questions on the knowledge test.

Individual Extraordinary Questions of the Posttest

To study the issue of how much students learnt in a little more depth, we looked at three
guestions of the posttest, which produced scores with very large differences baevgeups.
The results were not analyzed for statistical significance. The number eftqoretest and post-

test answers is shown in Table 11.

Table 11. Number of Correct Answers by Group onkhewledge Tests

A|lB|D H L{M|N|]O|JU|V | wW|[XxX]|] Y]z
PreEXP(Xy) |21 |15 | 7 6 |10]21 10| - | - | - | - | 13
PreALT (Xz) |21 |15 | 11 1509 188 - | - [ - |- |1

Post EXP(X1) | 19 | 12
Post ALT (X2) |20 |17 | 6

11
13

15114122 | 9 15 | 15 | 10 | 12 17 18
15116 | 20 | 15 | 12 | 15 3 6 18 18

N w o oo

® [© |w |n |x

When looking at individual questions of the knowledge posttest, three of the 16 posttest
guestions showed a strong bias towards one of the groups (O, W, and X in Table 11). For the
other questions, the scores were about the same for both groups. We asked students (KN_O in
Appendix C), "If we make a distance-time graph for a car driving at 70 miles/houin&he &
graph shows the car’s ... [time, distance, speed, accelerdti®njdents in the alternate condi-

tion provided six more correct answers to the question than the experimental conditenmceDis

! In cycle two, students in both conditions answethedquiz question, "A constant speed in a graph ja straight
line, a curve, depends on the question]". Additign&illy could be taught, "A straight line withébends and
edges is a single speed."
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and time (stated in the question) were the most prevalent among the wrong answeld. Mt c

find any reasons for this outcome.

The experimental condition was more successful in solving the other two questions. We
asked (KN_X in Appendix C), "What are coordinates?", with the following options: (1) Some
numbers to find a location; (2) The fewest numbers needed to find a location; (3) exactly t
numbers to find a location: X and Y-coordirfatehe experimental group outscored the alternate
group 10 to 3. Although both groups answered this question as part of the quiz, the activity of
teaching it to Billy has probably led to better understanding of the concept of coordinates i

graphs.

So, why did the experimental condition learn this concept better? Students in the emperim
tal condition requested the question related to this concept on average 3.74 times, compared to
3.05 in the other condition. Statistically this difference is not significant. Tobhdga explana-
tion of the correct solution and instructional material were the same for both condvtaeoms
dialogues mentioned coordinates, but did not focus on the concept that coordinates are the fewest
numbers to that define a point in a two dimensional graph. The remaining differencectsvthe a
ity of teaching the agent through the dialogue. We think that the most likely reasos fiif-thi
ference is the insight stated by Billy after being taught correctly: "Soistihxdny we write down
points with two numbers." It is likely that the strategy of the teachable agemitorce what the

student taught by appearing to have an insight led to better understanding of the concept.

! Additionally, learners in the experimental cormtitihad the option to teach the agent the followlimge answers:
(1) Coordinates are points in the graph that gileration. If taught, Billy would say on the quizéisked, "A point
in the graph is a coordinate.” (2) A coordinatepheb find a location on a line. Billy would say toordinate helps
to find a line." (3) Coordinates are the fewest hams needed to find a location. Billy would saypt@dinates are
the fewest numbers that | need to tell someonitbd location. So, that is why we write down psinith two num-
bers.”
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total total total
miles miles miles

Figure 48. lllustrated Multiple Choices for a PesttQuestion

The experimental condition also performed better on the question (KN_W in Appendix C),
"A car drives at 45 miles/hour to another city 50 miles away. It then turns around and drk/es ba
without stopping. Which graph shows this best (see Figure 48)?" The score of this question wa
12 to 6 in favor of the experimental group. Therefore, these students may have gained a deeper

understanding of the covariation of time and distance.

For the remaining questions, the difference was only 1-2 points in favor of one or the other
condition. Almost all students learned how to read a point from the graph (question A; see Tabl
11), identify axes (N), and distinguish lines that represented faster and sloads 6pe These
guestions showed a ceiling effect. Slightly fewer learners succeededinmg\arpoint into the
graph (B). Seventy percent of the students were able to identify the line grapiptéseméed a
car that stopped for refueling correctly (V). The teacher agent taught thisQwgiall, neither

group did very well in calculations of slope.

Transfer Test Results

Our primary hypothesis was that students in the experimental condition would developra deepe
understanding of the domain, and do better on transfer test problems that were described in the

previous chapter. Both groups used the transfer enhancing methods of learning by exploration
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and discovery (e.g., Miller, Lehman, and Koedinger 1999), situated cognition, and anchored in-

struction (Cognition and Technology Group at Vanderbilt 1993).

In the transfer test, we removed outliers and replaced missing values. We removetd one ou
lier from the whole experiment, who was exceptionally fast in solving all testisused the
same choice for all answers in the knowledge and motivation tests. One student ofrihe expe
mental condition was absent, so we excluded this student from the analysis. Afteisani#h a
box-plot, we excluded extreme values (two from the experimental condition, one froltethe a
nate condition) from our data. These extremes occurred because some of the studkethtsifake
measurement ddteor they did not record any data for unknown reasons (instructions on how to
obtain the data were made explicit). As a result, we had 19 scores from the exjae momdi-
tion and 21 from the alternate condition in our final analysis. We did not analyze flovesalts
(in ml/min) because almost all students produced their answer from their tableghgé value
for one minute, interpolated, guessed, etc.) instead of reading it from their grapswasicot

the way to obtain the ansvéghat we had in mind when we designed the test.

We employed a normal linear model to test between subject effects of theatwgédrtiscore
(without covariates). A Shapiro-Wilk test (Table 21) indicated a deviation from fityrfioa the
experimental group’s total score, but the histogram (Figure 57) did show a nornilailiticstr
with the outliers included. We did not think this warranted dropping the normal linear model,
which is robust against deviations from normality. To be sure we cross validatesiult® wth
a non-parametric Mann-Whitney U Test. Other data that helped to assert gieastatiodel’s

assumptions are included in Appendix E.

! A few students found it more convenient to intéap®or extrapolate measures often beyond the rahgessible
values (e.g. 100 ml) instead of performing the mess Faked values that could be identified as digchot count
in the table task, and led to wrong lines in thepgrtask, which led to low-score outliers.

2 Only in about four cases, the value could haveectrom the graph. In other cases, reading the gaafihminute
did not yield the result that students gave as answ
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We found the difference between total transfer test scores of the groups to heasigaif
the 0.05 level: F(1,39) = 4.507, P = 0.04 and power = 0.543-#.05. Thus, we rejected our
null hypothesis kp, and concluded that learning by teaching agents did result in better transfer
skills, which indirectly implies that this helped students gain a deeper understahdarg

cepts. The non-parametric Mann-Whiney test confirmed the results (P = 0.04).

Transfer Test Scores

for}

Average Total Score (95% CI
N w IN o o ~

i

o

Table Score Graph Labeling Graph Line Score Transfer Total / 3
B Experimental O Control

Figure 49. Transfer Test Scores by TFask

Figure 49 splits the transfer test scores by sub-task for each group. The sub-tagi3 we
creating a table, (2) labeling the graph, and (3) drawing a line. We could see adviamttges
experimental condition in all three tasks. Students in the experimental conditiomysztf
slightly better in labeling the tables (not shown; included in the Table score), wiasi¢hsk in-

volving transfer from graphs to tables.

! Using time as covariate for transfer did not cleatig result. The P-value remained at 0.04.
2 We divided total score (sum of all three tasksjHrge to show the results in a single figure.
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Table 12. Descriptive Statistics of the Transfeskia

Transfer Task Condition Mean Std. Deviation N
Table EXP (X1) 7.053 .9703 19
ALT (X2) 6.405 1.5939 21
Total 6.713 1.3582 40
Graph Labels EXP (X1) 6.711 1.7185 19
ALT (X2) 5.476 2.3742 21
Total 6.063 2.1549 40
Graph Line EXP (X1) 4.421 1.3464 19
ALT (X2) 3.762 1.8949 21
Total 4.075 1.6701 40
Total EXP (X1) 18.184 2.8490 19
ALT (X2) 15.643 4.4557 21
Total 16.850 3.9471 40

The descriptive statistics for the transfer test sub-tasks are suradhiarizable 12. We ob-
served the most pronounced effect for the experimental condition in labeling thderttass
graphs. This effect most likely resulted from repeatedly teaching the hgeatitieas in cycle
two and cycle three, and this may have made the importance of this task clear. To pravide sol
tions with correct units the agent required units on the graph’s axes to be correshol¥sghat
learning by teaching works well in helping students gain a good understanding of domain con-

cepts, and at the same time fosters good learning behaviors among students.

Motivation Test Results

In this section, we present the analyses of the Motivated Strategies fomge@uestionnaire
(MSLQ) and Experiences That Energize (ETE). Details of these measnepngsented in the

previous chapter.
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Motivated Strategies for Learning Questionnaire (MSLQ)

To see if learning by teaching agents influenced motivation and learning stsatégtudents,
we compared the Motivated Strategies for Learning Questionnaire resuleshdtve two ex-
perimental conditions. For the analysis, we used the normal linear model with M&1eQ sc
from the pretest as covariates(Retween conditions, with covariate,@ee Figure 33 in chapter

V).

We removed a single influential outlier from the data. The student scored the highest pr
score and the lowest posttest score by selecting the same answer-choiceadurtegte A box-
plot also identified this data point as outlier. Inclusion of this measurement would hayesex
our analysis, as it is not robust against measurement errors in the pretest. Moodifieations

were made.
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Motivated Strategies for Learning Questionnaire Posttest

100

Average Score (95% Cl)

HS IG PL

B Experimental O Alternate

Figure 50. Motivated Strategies for Learning Quesiaire Posttest Comparison of Conditfons

Figure 50 describes the MSLQ posttest results in a bar chart that shows 95% coinfidence
tervals. Significant results are starred. The following abbreviations foiM&ltiables were
used in the chart: control belief (CB), critical thinking (CT*), extrinsic goafivation (EG), ef-
fort regulation (ER), help seeking (HS), intrinsic goal motivation (IG), peamifen(PL), self-
efficacy (SE*), self-regulation (SR¥), task value (TV*), and total score (SuRdi) example

guestions, see Table 3, Chapter V.

The total score for the MSLQ posttest was significant in favor of our experinteantang
by teaching condition. We have analyzed this variabar{®igure 33) with a normal linear
model with the MSLQ pretest ¢in Figure 33) as covariate. Our experimental condition scored
on average of 249.3 points £ 42.2) and our alternate condition 231~(40.2). Tests of be-
tween subjects effects were significant at F(1,43) = 7.75 and P = 0.008 with an observed power

of 0.78 ato = 0.05.

! We have divided total score (sum of all variablesihe number of variables to show the results single figure.
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When analyzing individual variables with the same method and their pretest coustaspart
covariates we obtained significant individual results from an increased pértasiesalugwith
F(1,43) = 7.45 and P = 0.009 with an observed power of 0d&&.05, increased perceived
self-regulationF(1,43) = 6.49 and P = 0.015 with observed power of x7=a.05. Addition-
ally, self-efficacywas significantly increased with F(1,43) = 4.416 and P = 0.042 with an ob-
served power of 0.537 at= 0.05, and perceivettitical thinkingimproved with F(1,43) = 4.354

and P = 0.043 with an observed power of 0.58 at0.05.

Interestingly, working with a social agent seemed to impose an opposite trend ompeer le
ing, as we can see in Figure 50 (PL). Although, in our experiment this effect is \@hastnot
significant, its trend should be observed in future experiments. Future work could explore if

more advanced "peer-like" agent can reduce the desire of learners to work with hurean pee

In an informal pretest to posttest comparison of the motivation means, MSLQ testfetior
slightly over time. However, we did not make a statistical comparison betweest [aned post-
test, due to slight differences in the measures. We observed this drop in motivatiorsaiso |
eral preceding studies on the teachable agent Betty’'s Brain, when pretest asl padtexactly
the same questions. Probably this reflects high expectations and interest wdénéssivhen

they begin the experiment, but they are only partially met.

Experiences That Energize (ETE)

To trace students' motivation when using our system, we asked them to rate thgilemetsg
with ETEs. Students gave their ratings before teaching, before quizzing, aflengy@D), af-
ter taking the test (TD), after reviewing the test (TR), and after sdertgst summary (TS) on a

seven-point scale (see Table 4 in chapter V). We repeated this for each cyckepaed gne re-
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sult in Figure 51. Because students repeatedly entered the teach phase and the quieg@tiase of

cycle, sometimes on multiple days, we did not analyze these two ETE results.

From the remaining data, we removed one outlier from the experimental group, andireplace
some missing values. The outlier scored exceptionally low (40 below average of 61~with3
and 15 below the next subject in the group) and was identified by a box-plot. We had missing
values in one of the three cycles. Therefore, we replaced them by the average of tiweothe
values of the same variable of the same subject. This form of replacement grasezventual
bias of a subject in answering the questions, because many students preferred one or the othe
end of the seven point Likert range. This became evident by looking at the four introductory
guestions, which were formulated to produce extreme high or low answers (see Appendix B)
Most missing values occurred in the third cycle: seven in the experimental conbitsanint the
alternate condition. Of the remaining four replacements, three occurred in thentesary of
cycle one in the experimental condition, and one in the test summary of cycle two térihatal

condition.

First, we looked for general differences in the sum of all ETEs (QD+TD+TRbdi%/een
conditions. The scores were the average over all cycles. The experimentabodmatitia mean
score of 63.04 = 11.6), while the alternate condition had a mean of 54-318.7). We used a
normal linear model with the sum of the four initially given norming ETEs as codfaair
analysis showed significant differences between conditions with F(1,42) = 7.326 and P = 0.01

with a power of 0.75 at = 0.05.

! The covariate was the sum of the ETE norming gumestWhen looking at the ETE results, it becaneaagnt that
students had different views about what is enangiaind what is not. The norming questions weregdesi to pro-
duce a pattern of maximum, minimum, maximum, mimmiikert score. However, some students found capgin
grammar lesson from the board moderately energinindid not use the most negative score at alk Bias of in-
dividual students was captured and removed bydharate.
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Figure 51. ETE Time Series for cycle 1, 2 and aii8ard Error Mean Bars)

In Figure 51, we see a time series of experiences that energize (ETEd) tbweeaycles of
our experiment. From the graph, we see that students in the experimental conditiaroashtin
ranked themselves higher than students in the alternate condition. Scores duringacscte t
individually significant between groupsa@t= 0.05, although we do not provide a detailed analy-

Sis.

In all three cycles, ETE scores fell during the test review (TR), which shdvatstudents
reacted adversely to mostly negative feedback for incorrect answers frazathertagent. Re-
markably, in the first two cycles scores improved after receiving summagdbdck and before
entering a new cycle (TS). We believe that this reflects the reliefttidergs felt when they

were done with the test combined with anticipation for the next cycle. Cycle numbeagiae w
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relatively easy task, cycle number two presented moderate challenging tagkriappfor the

grade level, and cycle number three was a very hard task fyade students.

Our ETE scores show that students felt more energized during the task of leareaghby t
ing in the quiz phase and test phase. We think that this can be attributed to Billy takiaddslam
being unintelligent or failing questions, which diverts the student’s attention franowine per-

formance.

Survey Results

We asked survey questions to get a general understanding of how much students likeidgnteract
with our system, and to assess potential interferences with our study. Figure 52h&hmsslts

of our survey with individually significant questions stafrathen performing a comparison by

group.

! Changes were not hypothesized. Significance gpstas provided upon request. One in 20 of the t®suhy be
significant by chance.
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Survey Questions

Average Likert Score (95% Cl)

B Experimental O Control

Figure 52. Survey Results

We determined study maturation by asking students how often they have looked at or asked
peers about materials related to our study outside of our study. Interestingly, we fauhd tha
alternate condition used outside resources more often than the experimental conditicimig;r
we can claim that the better knowledge and transfer results for the experigneapacannot be
attributed to maturation. An explanation for this result might be that students itetimaia
condition felt more compelled to succeed in tests for themselves, while studentamhayle
teaching do not feel as bad if their teachable agents fail to answer questionssddnshiould be

addressed in further research.

When we asked students how they liked the voice in the system, we saw relatively low
scores. We think the reason for this is that students reacted to problems in navhgaiigly the
dialogues, which let agent-speakers often repeat the same text. During th@exipeatudents

were amused by the English accent of one speaker and expressed good understandability of the

voices.
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When we asked students how they liked specific agents and components of the system
(Mathie, Billy, the simulation, and the graph), students in our experimental conditiosteatigi
reported higher scores than students in our alternate condition. It was interestatgdiiats in
our experimental group liked the teacher agent, Ms. Mathie, better (F(1,43) = 6.11, P = 0.018,
power = 0.67) and found her to be more helpful (F(1,43) = 4.28, P = 0.045, power = 0.53) even
though her dialogues were identical for both conditions. Additionally, students of the ldarning
teaching condition reported an on average higher score when asked how they liked th@simulati

and graph tool than the alternate condition.

When asked about how much students thought that they had learnt, both groups responded
with high ratings that were almost equal. The difficulty of the system wed aaerage by both
groups, but students in the learning by teaching condition reported that they had more fun. Stu-
dents in the experimental condition rated significantly higher when asked how much fhadhey
(F(1,43) =4.9, P =0.032, power = 0.58). The question about how much students thought that
Billy had learnt lacks a matching situation in the control condition (Billy could not)leand

cannot be analyzed for comparison.

Finally, we tried to assess interferences with our experiment. We found, thattstwedee
helped on average three times during the experiment, and the staff provided on average one sol
tion of a problem during this time. However, because these interferences affehtgtobips

equally we do not expect them to have influenced our results.

Summary

Table 13 presents a summary of our overall results. The summary compares studens pe

ance, and motivation between two conditions. In the experimental condition, students learned
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from the mentor agent, and had the goal to teach what they learned to the teachabteRBithent s
could perform well on tasks that he had to perform in the company where he was employed as an
intern. The problems that the teachable agent had to solve for the company were presented a
quiz and test questions in the learning environment. In the alternate condition, studeets lear

from the mentor agent to improve their own performance on the same tasks that thedatgent ha
perform for the company. The learning environment in the alternate condition did not have Billy

as a teachable agent. In the following paragraphs, we summarize the resultswdfyour s
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Table 13. Executive Summary of Study Results

Time

We concluded that our teachable agent comdigquired more time to complete all the ma
terial and teach the agent. We estimated thattbergnental group spent up to 20% more
time to complete each cycle.

H KGAIN

We concluded that our system helped students B@rmain material in both conditions.

HKDIFF

We did not find a significant difference betweba tneans for our two conditions on the
knowledge test. Thus, we did not to reject our hyflothesis and concluded that learning py
teaching did not lead to improved learning for éfternate condition.

Hr

Learning by teaching agents improved transfer.

Transfer
Task
Details

1%

We observed the most pronounced difference in pedoce between the two groups in th
task of labeling their transfer test graphs. Tfisat most likely could be attributed to the
repeated teaching the agent this topic in cycleamn cycle three, which could have made
the importance of this task clear.

Hu

The total score of the MSLQ posttest was significga favor of our experimental learning by
teaching condition. Learning by teaching a soaigrd was beneficial for motivating stu-
dents.

MSLQ
Details

Increased perceivadsk valugwith P=0.009, increased perceivalf-regulationP=0.015,
self-efficacywas significantly increased with P=0.42 and pesgcritical thinking im-
proved P=0.43

HETE

Our analysis showed significant differences betwasnditions with P=0.01. Our ETEs
showed that students of the experimental grougbgter than students of the other group,
for example, more energized, during the task ahieg by teaching in quiz phase and test
phase.

We attributed this to Billy taking the blame foiliiag questions in the test phase. This tool
some pressure of the students, who were not disgedrbecause of their own performanc

1%

Survey

When we asked students how they liked spaefmponents of the system, students in our
experimental condition consistently reported higheores than our alternate condition.
Students in our experimental condition liked thecteer agent, Ms. Mathie, better and found
her more helpful, even though the dialogues weegatidal in both conditions.
Students of the learning by teaching condition haereeived simulation and graph tool bet
ter than the alternate condition.

Students in the learning by teaching condition reggbthat they had more fun working with
the system.

Our comparison of pretest versus posttest scores for the knowledge test detdratisted t

dentsin both conditionshowed significant learning gains. Howevecpaparison of our treat-

ment groupshowed no significant learning differences. It turns out that the way the irgasacti

between the students and the two systems were structured, students teaching aner sg&mts

spent more time in each cycle than the students in the alternate condition. This couldye ma

attributed to teaching and correcting tasks that required extra time. Studerdshadjate and

answer many dialogues to teach the agents correctly. We would have liked the stuidhenés

perimental group to reflect more on the material they were teaching and gainuetgrstand-
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ing of domain material, but it is not clear that this was fully achieved. There waarkednm-
provement in the posttest results between groups; however, we did see signifieaecks on

the near transfer task.

To study transfer, we made both groups solve a near transfer task. Students in thedgarning
teaching condition demonstrated significantly better performance over studdrgsaltetnate
condition. This implies that like the other studies we have conducted (Biswas et al. 2685; Le
wong et al. 2002; Leelawong et al. 2003) the task of teaching others helps the students develop a
better long-term understanding of the primary domain concepts. For example, studenexin our
perimental condition performed better in the general skill of labeling the graprskilhisas
fostered by teaching the teachable agent how to label the graph, and by the fact thihetong
ing had consequences on the agent’s perform&tgdents in the experimental condition real-
ized that an incompletely labeled or incorrectly labeled graph was ambiguouBlyfothBrefore,

he could not use the graph correctly, if he could use it at all.

When we looked at motivational differences between the two treatment conditions, we found
that students in our experimental condition were significantly better motivdtedadtors where
the experimental condition showed higher motivation were task value, self-requsmif-
efficacy, and critical thinking. However, their urge to work with peers on the ledgitegaching
task showed an opposite trend. This could indicate that the teachable agent was axeepted a
substitute for a peer by students. Students probably perceived increased task valegl@gcaus
experienced the fantasy context of helping the agent, Billy, with mathengztrasnlg and prob-
lem solving. Increased self-efficacy suggested that students felt npaieleaf dealing with
their own problems. The effects on self-regulation and critical thinking occurredopralog to

many reflective tasks one had to undertake during teaching.
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The pattern that students in our experimental condition had higher motivation wadedplica
in measures taken during the use of the learning system (ETES), and in the surveycthat w
ducted at the end of the study. We found that students in our experimental condition felt signifi
cantly more energized during the quiz phase and the test phase. In addition, our survey found that
students in our experimental condition generally liked the components of our systenabdtte
reported that they had more fun than the students in the other condition. This also confirmed

positive motivational influences of learning by teaching.

Our interpretation is that an agent that demonstrated independent performance omevaluat
and testing tasks seems to have taken some pressure of our students. Studentsdeltethats
did not directly reflect their own performance. On the other hand, the feedback seems to have
helped them in longer-term learning, as we can envision by their improved performance on the
transfer task. Thus, working with a shared representation, where the other agent skae

responsibilities (e.g., test taking) seems to have positive effects on motivaditeaening.
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CHAPTER VII

CONCLUSIONS

The overall goal in this thesis was to develop an intelligent learning environmead tipa¢d an
explanatory and constructivist learning approach, and helped students learn and improve their
problem solving activities in the mathematical domain on distance-rate-tohkeprs. The

learning environment implemented for this thesis combines the STAR-Legaestycture
(Schwartz, Lin et al. 1999), variants of Smart Tools (Owens et al. 1995), and Adventure Playe
(Crews et al. 1997) into a single learning environment that implements a learnesgbyng

approach. Smart Tools provided the interactive representations that usersocngatielém solv-

ing based on their knowledge or understanding of domain concepts. Adventure Player provided a
problem-solving environment with planning and simulation tools for developing and verifying
solutions to complex problems. Adventure Player was linked to the Rescue at Boones Meadow
episode of the Adventures of Jasper Woodbury series that adopted an anchored instruction ap-
proach for teaching and learning (Cognition and Technology Group at Vanderbilt 1997). The
outer cycle structure into which all of the above tools were embedded was adapted from the
STAR-Legacy system to provide a structured sequence of increasingly tificblems. Each

cycle in our learning environment draws problems from a global anchoring context, esganiz
learning activities, and arranges formative and summative feedback duringdesviei ex-

tended this environment with software agents that could be taught, to pursue the goal to improve
motivation and the ability to transfer beyond the set of problems that students \gbtgdau

solve.
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Our implementation combined three loosely connected frameworks: a simulati@a fram
work, a Smart Tool (representation) framework, and social agents based on an agambika
These frameworks are linked externally by our learning cycle structure, andhilytéy the
agent communication infrastructure, which allows agents to manipulate the envit@ande
transfer information to each other. This helps the agents to demonstrate, obseryvantear
comment on the actions of the student-teacher who is really the learner. To impltenbat
nisms by which the student could teach a responsive teachable agent, we added an imternal co
munication system that let all agents observe changes that learners madminrtdrenent, and
engaged students in relevant dialogues that were linked to the state of the envirowntleat a
previous actions. Our agents were designed to learn declarative knowledge about theatamai
procedures on how to draw and read graphs. Once taught, agents could explain their solutions to
the student when asked, and this helped the students to reflect on their incorrect solugions to d

termine how to teach the agents better.

We used this environment to study the effects of learning by teaching social agemts on d
main novice middle-school students by paying specific attention to motivation, leamdng, a
transfer. Although we could not establish that our treatment resulted in improved paderam
solving word problems, we found significant influences on transfer and highly signéitecis
on motivation. Students that learned by teaching our agents experienced higher tasklfalue, s
efficacy, self-regulation, and critical thinking, when we asked them to evahetexperiences
with the Motivated Strategies for Learning Questionnaire. These motivatiarefitbavere con-

firmed by the way students rated themselves with Experiences That Enandiby, @ur survey.

Overall, the results of our study confirmed that teaching and interacting with agpeids

influenced middle school students positively. Students seemed to experience ttzatiams
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with the teachable agent as genuine social interactions; this was borne out afeideeithtask
value ratings that we observed in the experimental condition. Increased salfyeffeems to
indicate that students felt more capable of dealing with their mathemabbétmis if they were
asked to teach, than if they were asked to learn from the teacher agent. Improreglitaibn
and critical thinking were a direct consequence of the reflection initiated byatigng tasks.
This confirmed that learning by teaching is a powerful tool for providing motivatingimggen-
vironments that kept the students interest in their learning and problem-solving tasiansfer
test showed that learning by teaching also has advantages in helping students apedyrikdi
knowledge in different tasks. This reflects most prominently in knowledge thatingadyd

taught to the agent.

Although the benefits of learning by teaching were illustrated by this study, our dppreac
creased the time that students had to spend on learning the same material than thegedaunl
a more traditional setting (i.e., by being taught). This additional time makegpinsaah more
costly and only worthwhile for teaching topics that students traditionally find hagdrto. [This
way, teachers and students could benefit from the motivation that the systemegesr@iatg its
users. In addition, students could use an online version of the system that allows them to solve

homework outside of class.

Future work on this system’s design should focus on improving the dialogue interaction with
students. Like game environments, students might use buttons or menus to teach the dgent or as
it queries without the tedious task of navigating a dialogue structure. However, tagystrfa
providing a uniform structure worked well after students became used to it. Inftitdise sys-
tems should make better use of the functionality that is provided by the dialogue systesn, by

ating more dialogues that the teachable agent initiates directly upon obsetning atthe stu-

181



dent. Such dialogues are harder to design, but might enhance the user’'s experiencepfshe ag
dramatically. Alternatively, an agent could be taught procedural tasks not only thraloguds
and demonstration, but also by graphical representations, such as, flow-charts. Aeprasain-

tation of internal knowledge structures could help, too.

Another interesting topic is that students who learn by teaching often focus on the perform
ance of their agent, and less on their own. Therefore, learning by teaching systeihes stuts
dents also use the knowledge that is taught to the agent. Our system tried to balamee-and |
leave using knowledge for problem solving and teaching it, but there may be better appgmaches
help improve learning gains. It is also possible that sequencing effects exigaemddg fol-
lowed by learning has different characteristics than learning followed Kyirtgaan agent. In
addition, letting students create tests and quiz questions for the agent may @perthésh an-

other boost.

In this sense, we hope that learning by teaching agents will become a useful addition to
standard classroom instruction. The demonstrated benefits in transfer of leachmgtavation
make the approach a worthy target for implementation, commercialization, andiferrizs

search.
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APPENDIX A

MOTIVATED STRATEGIES FOR LEARNING QUESTIONNAIRE

In the following appendix, we document our modified versions of the Motivated Strategies for

Learning Questionnaire (MSLQ). The MSLQ was introduced by Pintrich et al.iCRietral.

1993, 1993). All questions were answered online with an interface like in Figure 40.

Table 14. Modified Motivated Strategies for LeagniQuestionnaire (MSLQ) Pretest

These questions will help us both find out how you feel about learning math
ics. On the following pages is a series of statements about how you learn m
matics. Mark your answers by telling how much you are like each statement
will take about 20 minuteselect 1 to go on.

cmat-
athe-
It

Here is an example to help you get started. A statement B&aganathematics.
Think about that statement, and select a number from 1 to 7 that is closest t
much you like mathematics.

If you don’t like mathematics at all, select choice 1. If you like mathematats &
select 7. If you like math most of the time, choose 6 or 5. If you like mathem
some of the time choose 4. If you do not like math most of the time, choose
2.

Now, try it out below.

0 how

|
atics
3 or

There are no "right" or "wrong" answers. The only correct answers are thbse
are true for you. Whenever possible, let the things that have happened to ya
you make a choice. Choose an answer because that is what you actually dg
not because it is what yahould do or should fedl.

Select 1 to go on.

» tha
u help
or feel,

MSLQ1

In mathematics class, | prefer to learn about things that reallgrgaline so |
can learn new ideas.

MSLQ2

If | study well, then | will be able to learn the ideas in mathematiss.cla

MSLQ4

| think that | will be able to use what | learn in this mathematics cldge or
other classes. | believe that | will get an excellent grade in this maibsroass.

MSLQ5

| believe that | will get an excellent grade in this mathematsscl

MSLQ6

| am certain that | can understand the most difficult ideas presented eadinegs
in this mathematics class.

MSLQ7

Getting a good grade in mathematics class is the most important thing fayht

now.
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MSLQO

It is my own fault if | do not learn the ideas in mathematics class.

MSLQ10

It is important for me to learn the ideas in mathematics.

MSLQ11

The most important thing for me right now is improving all of my grades, so
main concern in mathematics class is getting a good grade.

MSLQ12

| am confident that | can learn the basic ideas in mathematics class.

MSLQ13

If | can, | want to get better grades in mathematics class than most of the ot
students.

MSLQ15

| am confident that | can understand the most complex ideas presented by n
mathematics teacher.

MSLQ16

In mathematics class, | prefer to study things | am curious about, even if the
difficult to learn.

MSLQ17

| am very interested in mathematics.

MSLQ18

If | try hard enough, | will understand the ideas in this mathematics class.

MSLQ20

| am confident that | can do an excellent job on the assignments and tests i
mathematics class.

MSLQ21

| expect to do well in mathematics class.

MSLQ22

The most important thing for me in mathematics class is trying to understan
ideas as good as possible.

MSLQ23

| think what | study in mathematics class is useful for me to learn.

MSLQ24

When | have a choice about assignments and projects in mathematics class
choose assignments and projects that | can learn from, even if that means it
be more difficult to get a good grade.

my

ner

y are

d the

will

MSLQ25

If | do not understand the ideas in mathematics class, it is because | did not
hard enough.

try

MSLQ26

| like mathematics.

MSLQ27

Understanding the ideas in mathematics class is very important to me.

MSLQ29

| am certain | can master the skills being taught in mathematics class.

MSLQ30

| want to do well in mathematics class because it is important to show my al
to my family, friends, teachers, and others.

ility

MSLQ31

When | consider the difficulty of this mathematics class, my mathemadiciseie
and my skills, I think | will do well in mathematics class.

MSLQ33

During mathematics class, | often miss important information because | dm
ing of other things.

'hin

MSLQ34

When studying for my mathematics class, | often try to explain the ideas to 3
one else.

ome-

MSLQ36

When reading for my mathematics class, | make up questions to help focus
reading.

my

MSLQ37

| often feel so lazy or bored when | study for mathematics class that I quit be
finish what | planned to do.

fore |

MSLQ38

| often find myself questioning things | hear or read in mathematics class in
to decide if | believe them.

brder

MSLQ40

Even if I have trouble learning the ideas in mathematics class, | try to do the
on my own, without help from anyone.

work

MSLQ41

When | become confused about something | am reading for mathematics clg
go back and try to figure it out.

1SS, |

MSLQ44

If the ideas in my mathematics book seem difficult to understand, | change t

he
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way | read my mathematics book.

MSLQ45

| try to work with someone else to complete the assignments in mathemaitscs
whenever possible.

5 clas

MSLQ47

When a theory or conclusion is presented in mathematics class or in the ma
matics book, | try to decide if there is good supporting evidence.

the-

MSLQ48

| work hard to do well in mathematics class, even if | do not like what we are
ing.

do-

MSLQ50

When | study for my mathematics class, | like to discuss the ideas with somg
else to make sure | understand.

cone

MSLQ51

| think of the ideas in mathematics class as a starting point for developing m
ideas about mathematics.

y own

MSLQ54

Before | read a new section in my mathematics book, | often skim it to see h
is organized.

ow it

MSLQ55

| ask myself questions to make sure | understand what | have been studying
mathematics class.

n

MSLQ56

If I need to, | change the way | study in order to get a better grade on tests and as-

signments in mathematics class.

MSLQ57

| often find that | have been reading for mathematics class, but | do not knoy
what the reading was all about.

vV

MSLQ58

When | do not understand something in my mathematics class, | ask my teacher to

help me.

MSLQG60

When work in mathematics class is difficult, | give up or only study the easy
parts.

MSLQ61

When | am studying for mathematics class, I try to think through a topic and
cide what | am supposed to learn from it rather than just reading about it.

de-

MSLQ66

| like to play around with ideas of my own that are related to what | am learn
mathematics class.

ngin

MSLQ68

When | do not understand the ideas in mathematics class, | ask someone tg
me.

help

MSLQ71

Whenever | read or hear facts or conclusions in mathematics class, | think about if

or why they are true.

MSLQ74

Even when the mathematics book is dull and uninteresting, | manage to kee
reading until | finish the assignment.

p

MSLQ75

| try to find other students in mathematics class whom | can ask for help if | 1
it.

need

MSLQ76

When studying for mathematics class, | try to find out what ideas | do not un
stand well.

der-

MSLQ78

When | study for mathematics class, | set goals for myself in order to get the
out of the time | spend studying.

mos

MSLQ79

If I get confused while taking notes in mathematics class, | make sure | sort
afterwards.

t out

END

Congratulations. You are done with questions about your learning style. We|

will

evaluate the questions and give the result to you at the end of the experime

nt.
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Table 15. Modified Motivated Strategies for LeagniQuestionnaire (MSLQ) Posttest

On the following pages are a series of statements abouatathr ear ning soft-
ware. You have answered similar questions about mathematics class beforg
have started using our systdmagine that you would use this lear ning soft-
war e during mathematics class while lear ning graphs with your teacher.

: you

There are no "right" or "wrong" answers. The only correct answers are thbse
are true for you. Whenever possible, let the things that have happened to ya
ing the experiment help you make a choice.

» tha
u dur-

MSLQ1

With this learning software, | prefer to learn about things that rdalieage me
so | can learn new ideas.

MSLQ2

If | use this learning software right, then | will be able to learn ideas.

MSLQ4

| think that | will be able to use what | have learned with this learning seftwa
life or other classes.

MSLQ5

| believe that | will perform excellent with this learning software

MSLQ6

| am certain that | can understand the most difficult ideas presented leathis
ing software.

MSLQ7

Performing well with this learning software will help me make a goadegin
mathematics class.

MSLQO

It is my own fault if | do not learn ideas from this learning software.

MSLQ10

It is important for me to learn ideas from this learning software.

MSLQ11

The most important thing for me right now is improving all of my grades, and
learning software will help me in mathematics class.

| this

MSLQ12

| am confident that | can learn the basic ideas in this learning software.

MSLQ13

If | can, | want to do better with this learning software than most of the other
dents.

Stu-

MSLQ15

| am confident that | can understand the most complex ideas of Ms. Mathie.

MSLQ16

In this learning software, | prefer to try things | am curious about, even if the
difficult to learn.

y are

MSLQ17

| am very interested in what | have learned from this learning software.

MSLQ18

If I try hard enough, | will understand the ideas in this learning software.

MSLQ20

| am confident that | can do an excellent job on the quizzes and tests in this
ing software.

learn-

MSLQ21

| expect to learn well with this learning software.

MSLQ22

The most important thing for me in using this learning software is trying to u
stand the ideas as completely as possible.

nder-

MSLQ23

| think what | study with this learning software is useful for me to learn.

MSLQ24

When | have a choice about tasks in this learning software, | choose tasks t
can learn from, even if | do not get a grade for it.

nat |

MSLQ25

If I do not understand the ideas in this learning software, it is because | did 1
hard enough.

ot try

MSLQ26

| like learning mathematics with this learning software.

MSLQ27

Understanding the ideas in this learning software is very important to me.

MSLQ29

| am certain | can master the skills being taught in this learning software.
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Ise |
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e
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re, |

) the

d

MSLQ30 | I want to do well with this learning software because it is important to show
ability to my family, friends, teachers, and others.

MSLQ31 | When | consider the difficulty of this learning software, and my skills, | think
will do well in solving problems.

MSLQ33 | During using this learning software, | often miss important information becat
am thinking of other things.

MSLQ34 | When learning with this learning software, | often would like to discuss the ic
with someone else.

MSLQ36 | When learning with this learning software, | make up questions to help me u
stand.

MSLQ37 | | often feel so lazy or bored when I learn from this learning software that | qu
before | finish what | planned to do.

MSLQ38 | | often find myself questioning things | hear or read while using this learning
ware in order to decide if | believe them.

MSLQA40 | Even if | have trouble learning ideas from this learning software, | try to do t
work on my own, without help from anyone.

MSLQ41 | When | become confused about something | am reading in this learning soft
| go back and try to figure it out.

MSLQA44 | If the ideas in this learning software seem difficult to understand, | change th
way | read them.

MSLQA45 | | try to work with someone else to complete the assignments in the learning
whenever possible.

MSLQ47 | When a result or solution is presented in this learning software, | try to decid
there is good supporting evidence.

MSLQA48 | | work hard to do well with this learning software, even if | do not like what |
doing.

MSLQ50 | When | use this learning software, | would like to set aside time to discuss tf
ideas with someone else to make sure | understand them.

MSLQ51 | I think of the ideas in this learning software as a starting point for developing
own ideas about mathematics.

MSLQ54 | With this learning software, if | read new resources, | often skim them to see
they are organized.

MSLQ55 | | ask myself questions to make sure | understand what | have been studying
using this learning software.

MSLQ56 | If I need to, | change the way | work in order to solve problems and assignm
with this learning software.

MSLQ57 | | often find that | have been looking at resources or listening to the teacher v
using this learning software, but | do not know what it was all about.

MSLQ58 | When | do not understand something while working with this learning softwa
ask the teacher or research staff to help me.

MSLQ60 | When working with this learning software seems difficult, | give up or only dc
easy parts.

MSLQ61 | When | am working on this learning software, | try to think through a topic ar
decide what | am supposed to learn from it rather than just reading about it.

MSLQG66 | | like to play around with ideas of my own that are related to what | am learn

ng

from this learning software.
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MSLQ68

When | do not understand the ideas in this learning software, | ask someong
help me.

2 o

MSLQ71

Whenever | read or hear facts or conclusions while using this learning softw
think about if or why they are true.

are, |

MSLQ74

Even when the some tasks in this learning software are dull and uninterestir
manage to keep going until | finish the assignment.

g, |

MSLQ75

| would like to find other students working with this learning software whom
can ask for help if | need it.

MSLQ76

When working with this learning software, I try to find out what ideas | do no
understand well.

t

MSLQ78

When working with this learning software, | set goals for myself in order to get

the most out of the time | spend using the system.

MSLQ79

If I get confused with this learning software, | make sure | sort it out aftéswar|

END

Thank you for answering all questions for us, we appreciate your help. Now

please ask the research staff for what you can do next.
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APPENDIX B

EXPERIENCES THAT ENERGIZE

This appendix lists all Experiences that Energize (ETE) used during thenegperiable 16
lists the introduction to ETEs with four norming questions. The ETEs used in our evaluation

have been discussed on page 137.

Table 16. Experiences that Energize

Introduc- | Have you ever noticed that some things energize you, and other
tion things seem to drain your thinking energy?

For example, some people say they have a great deal of energy| when
they think they are about to discover something new. But, their gn-
ergy drops way down, when they have to do something that is boring,
or they have no idea what to do.
Introduc- | Next there are four example situations that | would like you to read.
tion If you think the situation would energize you and make you ready to
think more, circle a rating on the high side. If you think the situatjon
would drain your energy and make you not want to think any moye,
circle a rating on the low side. If you think the situation is some-
where in between give it a middle score.

Example 1| You are about to figure out the answer to a problem that no one else
had been able to solve.

Example 2| You are copying a grammar lesson from the board.

Example 3| You are finishing an important exam where you’re confident you are
getting every answer right.

Example 4| You are writing a paper that you do not think is very good.

End When you use the system, every now and then a window will pap up
and ask you similar questions. Please rate your energy similar to how
you did it here. Thank you.
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APPENDIX C

KNOWLEDGE TESTS

Table 17. Knowledge Pretest

On the following pages you will answerath-questions

No teacher will see your answers or results.

There are no grades for these questions.

These questions are only for our information so that we can tell if you have le
something when using our system.

You will possibly not be able to answer more than one third of the questions.

arned

There

is nothing wrong with that, because you will learn most answers to these questions

later, when you use the program.
Do not be scared to say: "l have to learn that." if you do not know the solution

If you do not understand any instruction, raise your hand now. Otherwise star
guestions ...

[ your

KN14

In a graph the x-axis is always ... (if it is not marked differently)
* Horizontal (from left to right)
» Vertical (from top to bottom)
* | have to learn that, | do not know an answer.

KN1

Read the point from the graph.
107

Pairit
+

0§ 6 -4 2

« (24)

- (42

.- (2-4)
* ('214)
* (4!'2)
. (42)
- (2-4)
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.« (-4-2)

KN2 Which point is;u(6, -4)
’ A
e & +
G4 49 +
2
EE A BT
-2
et -4 +e
IR +p
E:
-10
KN15 If a car drives 180 kilometers in 3 hours what is its speed?
* 60 kilometers/hour
» 183 kilometers/hour
* 540 kilometers/hour
* 60 hours/kilometer
» 183 hours/kilometer
* 540 hours/kilometer
* | have to learn that, | do not know an answer.

KN12 You have a stopwatch. Cars are passing by at exactly 55 miles/hour. You use the
stopwatch to find how long the cars take for different distances. Then, you plat dis-
tance-time points in a graph. What would the graph look like?

» All points are scattered over the graph.

» All points are on the same spot.

* When the points are connected they lie on a straight line
* When the points are connected they lie on a curve.

* | have to learn that, | do not know an answer.

KN13 If we make a distance-time graph of a car driving at 55 miles/hour, the slope of a

line in a graph shows the car’s ...

* Speed

» Distance

* Time

» Acceleration

» Steepness

* | have to learn that, | do not know an answer.
KN3 Which line is a faster speed L1 or L2?
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10 miles

g
/ 11
B_ it
e
4 7 -
1/
h
0 8 6 4 - 2 4 B 8 10
///_
P
i / .
YA
-0
e L1
e L2

* Itis not possible to know from the graph.
* The lines do not tell anything about speed.
* | have to learn that, | do not know an answer.

KN4 Find the slope of the line in the graph.

109

miles

2 4 6 & 10

-10

e -2 $/mile

e 1/2 $/mile

e 2 %/mile

o -1/2 $/mile

e -2 miles/$

e 1/2 miles/$

e 2 miles/$

e -1/2 miles/$
KN7 What is the slope of the equation (function): y=7 -5 * x

0

e -7

e 7

e 5

e 5

» The equation (function) does not show the slope.
* | have to learn that, | do not know an answer.

KN8 P and Q are two points on a line. How do you calculate the slope of a line? There
are multiple right answers. Choose the one that you know best.

* slope=x/y
* slope=y/x
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* slope = run/rise = right/up

» slope = rise/run = up/right

* slope = (Qx - Px) / (Qy - Py)

* slope = (Qy - Py) / (Qx - Px)

* | have to learn that, | do not know an answer.

KN10 Mike makes a trip to his aunt in Atlanta. He reads that the trip is 250 miles from his
(removed) | odometer when he has arrived. He has been driving for 5 hours, but made a 45 min-
utes stop for lunch. In between, he drove at various speeds between 45 and 70
miles/hour depending on speed limits. Can you calculate the average speed?

* 45 miles/hour

* 50 miles/hour

* 55 miles/hour

* 60 miles/hour

* 65 miles/hour

* 70 miles/hour

» To calculate average speed | need exact speed information.

* | have to learn that, | do not know an answer.

KN9 How can you calculate average speed (AS) of a trip? There are multiple right jan-
(removed) | swers. Choose the one that you know best.

e« AS = TotalTime / TotalDistance

e AS = TotalDistance / TotalTime

» AS = (ArrivalTime - StartTime) / (ArrivalDistance - StartDista)
» AS = (ArrivalDistance - StartDistance) / (ArrivalTime - StariB)
e | have to learn that, | do not know an answer.

KN11 Convert the speed 72 kilometers / hour to a slope in the unit meters / second| A
kilometer has 1000 meters and an hour has 3600 seconds. The resultis ...

e 72/3600=2/100 = 1/50 meters/second

e 3600/72=100/2 =50 meters/second

e 72*1000 /3600 = 20 meters/second

3600/ (72 *1000) =1/ 20 meters/second

e 3600/ 1000 = 3.6 meters/second

e 3.6/1000 =0.0036 meters/second

* | have to learn that, | do not know an answer.

END Congratulations. You are done with the math questions. Please do not feel bad if
you could not answer a lot.

! Cycle 4 was removed, so the pretest questionsnglm cycle four were removed.
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Table 18. Knowledge Posttest

11 If you have finished all three cycles early and would like to review a previoues cycl
please raise your hand and let somebody from the research staff know. You can also
redo any "Real Customers" if you wish.

12 On the following pages you will answer math questions.
No teacher will see your answers or results.

These questions are only for our information so that we can tell if you have learned
something when using our system.

Please give every question a fair try.

KN_Z | If you draw the ordered pair P = ( -4, -8) into the graph, itis ...
103 iles L2

81

B
44 L1
2

08 B 4 - 2 4 B 8§ 10

8
-10-
e On the faster line L1.
¢ On the slower line L1.
e On the faster line L2.
¢ On the slower line L2.
* On the origin.
* Not on any line.

KN_N | In a graph the Y-axis is always ... (if it is not marked differently)
» Horizontal (from left to right)
» Vertical (from top to bottom)

(extra) | away. They fly 138 miles/hour. How many minutes from now will | have to pick hi
up? Use the graph tool from cycle one:

KN_U | My son is leaving Atlanta in the Cessna 172 heading to Nashville. That is 225 mi:Fs
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&50— Y Imiles] -
. Vs
500 /!
450
400 ;
. Vd
350 v
300 ,/
. J
250 /
200 7
150— i
100 4

50

E!-ISI a0 ) ’-ElliJ I 1.1)0 I 2|DEI I 2“50 I E‘SE:FQ%?&
¢ 575 minutes
e 225 minutes
e 172 minutes
¢ 138 minutes

¢ 100 minutes

KN_Y | The following graph shows two lines. Which line is a faster speed?
109 miles
a4 2l{.nI_Z
54 /! L1
1/
A/
008 & /-' 2 46 a':'u
s
A
,f/ 8
-10-
KN_D | Find the slope of the line in the graph.
1074
miles
108 & 2778 &

o -2 3%/mile
e 1/2 $/mile
e 2 %/mile
e -1/2 $/mile

e -2 miles/$
e 1/2 miles/$
e 2 miles/$
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e -1/2 miles/$

KN_H | P and Q are two points on a line. How do you calculate the slope of a line? Therg are
multiple right answers. Choose the one that you know best. Qx is the x-coordinate of Q
and Py is the y-coordinate of point P, and so on.

107
ol
5]
" Q
5 P
ATE E AL IR I T
24
]
=B
-84
-10°
e slope=x/y=3/2
e slope=y/x=2/3
e slope = run/rise = right/up = 3/2
e slope =rise/run = up/right = 2/3
e slope = (Px-Qx)/ (Py-Qy) =(3-6)/(2-4) =-3/-2 = 3/2
e slope = (Py-Qy)/ (Px-Qx) =(2-4)/(3-6) =-2/-3=2/3
e slope = (Qx - Px) / (Qy - Py) = (6-3)/(2-1) = 3/2
e slope = (Qy - Py) / (Qx - Px) = (2-1)/(6-3) = 2/3

KN_L | You have a stopwatch. Cars are passing by at exactly 55 miles/hour. You use the stop-
watch to find how long the cars take for different distances. Then, you plot distance-
time points in a graph. What would the graph look like?

0 . 0 "
2 3
]_. h
4
1. All points are scattered over the graph.
2. All points are on the same spot.
3. When the points are connected they lie on a straight line
4. When the points are connected they lie on a curve.
KN_A | Read the point from the graph.
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[=1

08 6 -4 2 246 8 10

Pairt
+

[ R e L RS- -1
A V]

[=]

© (24

aph

c (4,2
e (2,-4)
e (-2,4)
e (4,-2)
e (4,2
o (-2,-4)
e (-4,-2)
KN_O | If we make a distance-time graph of a car driving at 70 miles/hour, the line in a gn
shows the car’s ...
e Distance
e« Time
e Acceleration
e Speed
* Steepness
KN_M | If a car takes 3 hours for 180 kilometers what is its speed?
e 60 kilometers/hour
e 183 kilometers/hour
e 540 kilometers/hour
e 60 hours/kilometer
e 183 hours/kilometer
e 540 hours/kilometer
KN_G | What is the slope of the function: y=-5*x+7
« 0
o -7
- 7
e -5
« 5
e The function does not show the slope.
* | have to learn that, | do not know an answer.
KN_B | Which point is ( -4, 6)
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KN_K | Convert the speed 72 kilometers / hour to a slope in the unit meters / second. A kilome-
ter has 1000 meters and an hour has 3600 seconds. The result is ...

e 72/3600=2/100 = 1/50 meters/second

* 3600/72=100/2 =50 meters/second

e 72 *1000 /3600 = 20 meters/second

e 3600/ (72 *1000) =1/ 20 meters/second

* 3600/ 1000 = 3.6 meters/second

* 3.6/1000 = 0.0036 meters/second
KN_X | What are coordinates?
(extra) » Some numbers to find a location.

* The fewest numbers needed to find a location.

« Exactly two numbers: x and y.
KN_W | A car drives at 45 miles/hour to another city 50 miles away. It then turns around and
(extra) | drives back without stopping. Which graph shows this best?

jAm j = j Y
1 2 3

1. The distance increases and goes back to zero.

2. The time increases and then goes back to zero.

3. ltis a straight line. We cannot see if a car turns around in a graph.
KN_V | A car drives at 45 miles/hour to another city 50 miles away. Half way it makep atst
(extra) | a gas-station for 10 minutes. Which graph shows this best?
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total total total
miles miles miles

END

Thank you. You are done with the math questions. Please do not feel bad if you
not answer all of them.

could
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APPENDIX D

TRANSFER TEST WORKSHEET

Date:

Nozzle:

Nickname:

Flow Rate

Notes:
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APPENDIX E

NORMAL LINEAR MODEL ADDENDA

Knowledge Test (Analysis of \jcan)

Table 19. Box’s Test of Equality of Covariance Nizg for Knowledge Tests

Box's M 488
F 154
dfl 3
df2 357043.82
Sig. 927

! Tests the null hypothesis that the observed camaei matrices of the dependent variables are equass groups.
Design: Intercept+GROUP Within Subjects Design: EM
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Dependent Variable

: KNIRAW

Observed

Predicted

Std. Residual

Model: Intercept + GROUP

Figure 53. Residual Plot Knowledge Pretest

Dependent Variable: KN2RAW
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Model: Intercept + GROUP

Figure 54. Residual Plot Knowledge Posttest
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Knowledge Test (Analysis of ddpirr)

Histogram

>

§ Std. Dev = 1.98
% Mean =5.9

T N = 23.00

30 40 50 60 70 80 90 100 110
KN2RAW

Figure 55. Histogram of the Knowledge PostteshefExperimental Condition

Histogram

Std. Dev = 1.52
Mean = 6.6
N =22.00

Frequency

KN2RAW

Figure 56. Histogram of the Knowledge PostteshefAlternate Condition
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Table 20. Normality Tests fordlcan

Kolmogorov-Smirnov Shapiro-Wilk
Condition Statistic df Sig. Statistic df Sig.
KN1RAW | EXP .196 23 .022 .949 23 .278
ALT .185 22 .048 .966 22 611
KN2RAW | EXP .139 23 .200 .935 23 .140
ALT 161 22 141 .894 22 .023
Transfer Test
Histogram
8
>
§ Std. Dev = 2.85
;’-)— Mean = 18.2
= N=19.00

120 140

18.0

Transfer Total unweighted

22.0

24.0

Figure 57. Histogram of the Transfer Test of theé&imental Condition
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Histogram

Std. Dev = 4.46
Mean = 15.6
N =21.00

Frequency

25 50 75 100 125 150 17.5 200 225

Transfer Total unweighted

Figure 58. Histogram of the Transfer Test of theeAlate Condition

Table 21. Normality Tests for the Transfer Test lysia

Kolmogorov-Smirnov Shapiro-Wilk

Condition Statistic df Sig. Statistic df Sig.
Transfer Table | EXP 311 19 .000 .859 19 .010

ALT .265 21 .000 777 21 .000
Transfer Graph | EXP 146 19 .200 .954 19 466
Labels ALT 118 21 .200 957 21 459
Transfer Graph | EXP 195 19 .055 873 19 .016
Line ALT 180 21 074 885 21 018
Transfer Total | EXP 128 19 .200 .952 19 419

ALT .166 21 .136 .903 21 .039
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Table 22. Box’s Test of Equality of Covariance Nizs for Transfer Test

Box's M 7.213
F 2.267
dfl 3
df2 399135.67

7
Sig. 079

Table 23. Levene’s Test of Equality of Error Vatdes for Transfer Test

F dfl df2 Sig.
Transfer Graph Labels 1.967 1 38 .169
Transfer Total 1.957 1 38 .170

! Tests the null hypothesis that the observed covariance matrices of the dependeas\agabl
eqgual across groups. Design: Intercept+GROUP Within Subjects Design: TIME

2 Tests the null hypothesis that the error variance of the dependent variable is @gsal acr
groups. Design: Intercept+GROUP
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Dependent Variable: Transfer Graph Labels
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Model: Intercept + GROUP

Figure 59. Residual Plot for Transfer Test (Grapbéls)

Dependent Variable: Transfer Total
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H o og @
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Figure 60. Residual Plot for Transfer Test

MSLQ
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Histogram

For GROUP= EXP

y
= Std. Dev = 42.28
% Mean = 249.3
T N =22.00
180.0 220.0 260.0 300.0 340.0

200.0 240.0 280.0 320.0

Motivation Posttest

Figure 61. Histogram of the MSLQ of the Experimé@andition

Histogram

For GROUP=ALT

>

% Std. Dev = 40.20
qg). Mean = 231.7

T N =22.00

160.0 180.0 200.0 220.0 240.0 260.0 280.0 300.0
Motivation Posttest

Figure 62. Histogram of the MSLQ of the Alternaten@ition
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Table 24. Normality Tests for the MSLQ Analysis

Kolmogorov-Smirnov Shapiro-Wilk
Condition Statistic df Sig. Statistic df Sig.
Motivation Pre- | EXP .135 22 .200 .950 22 317
test ALT 094 22 200 975 22 818
Motivation EXP 191 22 .035 .938 22 178
Posttest ALT 086 22 200 974 22 791

Table 25. Levene’s Test of Equality of Error Vadag

F dfl df2 Sig.
013 1 42 910

Dependent Variable: Motivation Posttest
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Figure 63. Residual Plot Motivation Posttet

! Tests the null hypothesis that the error variance of the dependent variable is emsal acr
groups. Dependent Variable: Motivation Posttest; Design: Intercept+MSLQOQYER
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