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CHAPTER I  

 

INTRODUCTION 

This research aims to extend the current state of the art in intelligent learning environment design 

by implementing the learning by teaching paradigm using teachable software agents. Students, 

who are domain-novices, teach an agent and learn about the domain in this process. Our work 

draws from psychological theories of constructivism (Piaget 1953), learning (Dewey 1933, 

1938), transfer (Haskell 2001; Bransford, Brown, and Cocking 2000), and motivation (Brophy 

1998; Csikszentmihalyi 1990; Lepper et al. 1993). In addition, this work is informed by previous 

research on learning environments for education that was conducted in the Learning Technology 

Center, Peabody School of Education, and the Department of Electrical Engineering and Com-

puter Science at Vanderbilt University (Biswas, Katzlberger et al. 2001; Leelawong et al. 2002; 

Leelawong et al. 2003; Bransford, Brown, and Cocking 2000; Crews et al. 1997; Owens et al. 

1995; Cognition and Technology Group at Vanderbilt 1997; Bransford 1990). However, the fo-

cus of this research is on evaluating the influences of learning by teaching agents on student’s 

learning and problem solving in middle-school mathematics. Our teachable agents do not incor-

porate inductive mechanisms to learn; rather, they are computer-based social agents that require 

explicit instruction to perform well on a given task. Our goal is to design agents that improve the 

student’s learning, and give them a deeper understanding of the domain while making the learn-

ing task interesting. To study the effectiveness of our approach, we have conducted experiments 

to analyze its effects and influence on students. Specifically, we contrast performance and moti-

vation of students who learn for themselves with students who learn by teaching agents. 
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We implemented our system in the domain of mathematics, as there is public interest in im-

proving mathematical education in the US. The report "Trends in Mathematics and Science 

Study" (Mullis et al. 1999) documents that the United States is trailing a number of developed 

nations in student performance in science and mathematics. There is also evidence through the 

experience of many teachers that students, who come to college with A and B averages, fail to 

answer the same question in different forms on an exam because they cannot transfer their 

knowledge to new situations (Haskell 2001). As a result, there is continued effort by federal, 

state, and local agencies to improve education. A primary thrust in recent times has been to use 

technology to build learning environments that promote deeper understanding and better reten-

tion of learnt knowledge. The collective goal of education is to make knowledge applicable and 

useful in different problem-solving situations later in life (by improving transfer of learning). 

However, our educational system does not currently live up to its promise (Haskell 2001). 

Learning by teaching is an educational technique that has its roots in research on peer tutor-

ing with human tutors, and carries the promise of promoting deeper understanding of concepts in 

the knowledge domain than traditional learning techniques. Learning benefits of moderately ex-

perienced tutors who taught tutees were observed in preliminary studies, informal work, and 

some full studies (Cohen 1986; Palincsar and Brown 1991; Chan and Chou 1997; Gaustard 1993; 

Michie, Paterson, and Hayes-Michie 1989; Nichols 1994). The learning by teaching paradigm 

can be linked to learning gains demonstrated in self-explanation studies (e.g., Chi 1997)  because 

explaining to a tutoring system1 (e.g., Aleven and Koedinger 2002) and explaining to a tutee are 

inherently similar tasks that involve metacognitive processes like reflection. However, learning 

                                                 
1 Current research on tutoring systems operationalizes self-explanation as students explaining to a tutoring system 
(Weerasinghe and Mitrovic 2002). See section about self-explanation for more details (page 35). 
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by teaching may have additional advantages, especially in fostering social interaction and moti-

vation. We discuss learning by teaching in more detail in the next chapter (see page 35). 

In contrast to classic approaches, where tutors already have experience in the domain, we are 

interested in novice tutors who teach computer-based agents. In this research, we explore this 

new instructional approach: Domain novices (6th grade middle-school students) teach social 

agents to solve distance-rate-time problems by using and creating graphs. While doing that, they 

learn about the domain. 

If our system is successful, we expect to see differences in motivation, learning, and transfer 

between students who teach agents to learn, and students who learn but do not teach. Before dis-

cussing this in more detail, we establish why we investigated learning by teaching with software 

agents as tutees, and introduce our vision of the teaching process. 

We let students teach software agents and not humans, because tutoring requires training and 

communication skills (Cohen 1986), which our novice tutors may not have. This can lead to in-

correctly taught knowledge, and require continuous learning and relearning, which does not harm 

agents, but this process may be frustrating and harmful to human tutees. To avoid harming hu-

man tutees, we let novice tutors teach software agents. Teaching others typically requires a 

shared representation of the knowledge that organizes the materials so that they are easy to un-

derstand. This may be hard to achieve between novice human tutors and tutees. However, if we 

use a computer-based teachable agent, we can select representational structures that generally 

work well in advance.  

Additionally, each tutor-tutee interaction is confounded by the behavior of the tutee. Even 

well trained humans acting as tutees could introduce substantial variability into an experimental 

setting. By substituting the tutee with a software agent with well-defined characteristics, we can 
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remove this variability. We also avoid status problems in peer tutoring, which may make tutees 

feel inferior, and cause friction between tutor and tutee (Gaustard 1993). 

Learning by Teaching and its Implementation 

We review the concept of learning by teaching. A teacher planning to teach in a new domain will 

generally first prepare to teach, then teach, and reflect during and after the teaching process. 

When preparing, he or she will scout resources, choose, access, and organize the material in a 

meaningful way, and learn during this process. Only then, a teacher can start teaching. Through-

out the teaching process, the teacher explains knowledge, then interacts with students, and re-

flects on questions, comments, and exam results. Unexpected or wrong solutions by tutees can 

cause reflection on one's own knowledge or the teaching process. 

Related research mainly focused on teacher-student interactions (teaching and reflecting) as 

causes for the tutor’s learning. We additionally include differences in preparation (scouting and 

organizing), because we think that students preparing to teach take a different approach to study-

ing resources than students who prepare for an exam, especially if they are domain novices. 

However, our system does not enforce a strict sequence and students most likely scout or read 

resources only if the need arises during the teaching process (e.g., the agent asks to be taught 

something). We do not yet utilize the additional strategies of learning by creating tests and quiz-

zes, although those tasks could enhance learning by teaching further. 

Because learning by teaching requires an environment where knowledge can be taught, re-

trieved, and verified, we have implemented a powerful and effective model-learning environment 

based on previous research (Figure 1), which we augment with teachable agents. This environ-

ment draws from the psychological learning theory of constructivism (e.g., Piaget 1953) and uses 
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anchored instruction (Cognition and Technology Group at Vanderbilt 1993; Crews et al. 1997 & 

Bransford, 1997). We integrated and extended ideas from two separate intelligent learning envi-

ronment projects into one system: Adventure Player (Crews et al. 1997), and Smart Tools 

(Owens et al. 1995). Adventure Player used a simulation environment that allowed students to 

verify their solutions, while the Smart Tools project allowed students to construct representations 

that helped them to solve problems. In this work we introduce the idea that these representations 

could taught to teachable agents. Last, in conjunction with the teachable agent paradigm, we 

superimposed a learning cycle structure similar to the STAR Legacy learning shell (Schwartz, 

Lin et al. 1999), which organizes students' learning and problem solving tasks in a sequence that 

helps them understand and organize their domain knowledge easily. We have developed a modu-

lar software framework that allows us to study arbitrary variations and extensions of this baseline 

environment, one of which is learning by teaching software agents. 
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Figure 1. Teachable Agents: Applying Learning Theory in Modern Education 

As we will see in our discussion of educational theory in chapter II, the central design prin-

ciple of our baseline learning environment is that it situates students in a realistic context through 

anchored instruction, which has been shown to enhance learning and transfer of learning 

(Cognition and Technology Group at Vanderbilt 1993; Crews et al. 1997; Crews 1995; Bransford 

1990; Leelawong et al. 2002). We also give learners considerable freedom to explore, without 

correcting mistakes too soon, which teaches students how to monitor their own learning process, 

without relying too much on external help.  

Expected Results 

One of the primary contributions of this work is the development of an agent architecture to 

facilitate the design and implementation of learning by teaching systems that include a teaching 
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framework, assessments, and domain resources to facilitate the learning process. We explore the 

learning by teaching agents paradigm within this framework, because we think that student 

teachers behave differently than students who do not teach. This changed behavior influences 

how students learn and produces differences in learning and motivation.  

We think students learn better, because students look differently at materials when they pre-

pare for teaching or grade and review answers of their tutees, than when they learn and practice 

for themselves and review their own answers. Additionally, teachable agents actively engage stu-

dents in explaining knowledge to them and force students to reflect on what they have taught. 

It is also possible that learning by teaching influences motivation. The interaction with social 

agents, especially the act of helping an agent by teaching it, may make students feel better about 

their task. Learning may become the means to accomplish the goal of teaching an agent. Thus, 

we try to identify the motivational influences of learning by teaching on students. Based on these 

expectations, we explore the following questions by comparing students who teach agents against 

students who do not teach: 

Do students demonstrate better learning ability, and do they learn more when they teach a 

computer agent as opposed to students who use a learning environment but do not teach an 

agent? 

Can students transfer learnt knowledge to new domains better when teaching agents?  

Does teaching our agents motivate students during their teaching and learning tasks?  

Is learning by teaching a viable approach for novice students?  

For the remainder of this work we will isolate the effects of learning by teaching by contrast-

ing students who learn from a teacher agent and teach a tutee agent with students who learn from 
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a teacher agent and study for themselves. Both of these conditions are embedded in our learning 

environment, which is a fully featured mathematics learning environment with simulation capa-

bilities and an interactive graph representation that can be used to solve rate problems. 

Thesis Organization 

In chapter II of this thesis, we will discuss cognitive theories that influenced the design of our 

learning environment. We explore educational theories that explain how people learn. We de-

scribe Social Learning and Situated Learning that led to the development of Anchored Instruc-

tion, which forms the basis for our system design. Then we make an excursion through the theory 

of constructivism, which describes how we learn. We explore the possibility that learnt knowl-

edge may stay inert1, or become associated with a narrow context, effectively making it irretriev-

able in many real problem-solving situations. Later in chapter II, we describe transfer of learning, 

metacognition, and motivation, which are primary factors that support deep learning with under-

standing and transfer. 

Chapter III relates the theories of the previous chapter to traditional and current computer-

based learning environments. First, we introduce pedagogies and strategies employed by previous 

learning environments that employ cognitive tutors, discovery learning, active learning, learning 

by teaching, and other miscellaneous approaches. Then we survey existing system designs and 

their implementations: Intelligent tutoring systems, microworlds, and interactive learning envi-

ronments. A discussion of agent-based approaches concludes the chapter. 

                                                 
1 Inert knowledge (Whitehead 1929) is learnt knowledge that a person cannot apply, for example, in a different prac-
tical context, because he or she does not associate it with the current context.  
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Chapter IV presents our ideas for an agent-based approach of a new learning environment 

design. We will start by describing the pedagogical architecture of our system, which combines 

anchored instruction with a STAR-Legacy-based approach to develop the curriculum units for 

teaching rate problems in mathematics. Then we will introduce the design of software modules 

by describing their functionality and implementation. The primary functional components are 

simulations, smart tools, and the agent architecture that includes the teachable agent and the men-

tor agent. 

In chapter V, we introduce our hypotheses, experimental design, and the analysis procedures. 

We also describe our sample, procedures, and measures, which are roughly split into motivation, 

learning, transfer measures, and a survey.  

Chapter VI presents our results, starting with the discussion of our knowledge test results. 

Following this, we summarize our results of the transfer test and motivational measures, and fi-

nally present our conclusions and directions for future work in chapter VII. 
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CHAPTER II 

 

 EDUCATIONAL PERSPECTIVES 

Most present day instructional practices in classrooms tend to produce superficial learning among 

students (Weigel 2002). Hence, Weigel suggests moving away from techniques that promote sur-

face learning towards techniques that emphasize deep learning in classroom environments. He 

cites Entwistle, who stated that we engage in surface learning if "learners treat a course as unre-

lated bits of knowledge, memorize facts, carry out procedures routinely, see little value or mean-

ing in carried out tasks, study without reflection on purpose or strategy and feel undue pressure 

and stress." On the contrary, deep learning involves "relating ideas to previous knowledge and 

experience, looking for patterns and underlying principles, checking evidence and relating it to 

conclusions, examining logic and arguments cautiously and critically, being aware of understand-

ing that develops while learning and being actively interested in content" (Entwistle cited in 

Weigel 2002). Deep learning should help students learn skills and knowledge for life (Weigel 

2002). Unfortunately, the current focus on improving standardized test scores trains students to 

be expert test takers, who memorize facts and procedures but find it hard to apply them in real-

world problem solving situations. 

An essential foundation for designing a successful learning system that promotes deep learn-

ing must be based on how students learn, a topic, which we explore in this chapter. We also dis-

cuss cognitive and educational findings, in the areas of constructivist learning, transfer, motiva-

tion and metacognition, which provide the core for a growing number of modern instructional 

approaches to support effective teaching and learning.  
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In the sections that follow, we review the educational theory of learning. Two strands of re-

search are very relevant to designing learning environments: learning within a (social) context, 

and the constructivist learning theory. After that, we discuss the concept of transfer, which de-

scribes the circumstances under which people can apply knowledge learnt in one context to new 

situations. Transfer also serves as an advanced metric for learning. Another important issue that 

has been shown to improve learning is the adoption of relevant metacognitive strategies that help 

students set goals, plan, organize, self-asses, and seek help during learning and problem solving. 

Last, motivation may help learners to enjoy their problem solving tasks and improve learning 

gains through positive learning experiences. 

From Thinking to Learning 

Thinking is a continuous active flow of words and pictures in our mind that we can direct, but 

cannot stop unless we fall asleep. Our mind seamlessly integrates input from our senses with our 

thoughts to form a mental stream of consciousness which expresses our beliefs (not facts) about 

how the world works (Dewey 1933). To some of these beliefs we will pay attention and find 

them prominent or important enough to remember for later. Thus, we learn. Some of these facts 

simply fall into place and can be remembered without specific effort1, while others require con-

tinued repetition and application before we can apply them effectively. Other times, we may find 

ourselves deliberating about our process of thinking and learning, or simply observe ourselves 

through reflection. In this manner, we engage in metacognition, which is a skill that can help us 

to improve our learning. 

                                                 
1 Advertising tries to exploit this kind of passive learning, but not all learning is passive. 
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Amazingly, learning results cause not only electro-chemical, but also structural changes in 

our brain. Through technologies like positron emission tomography (PET) and functional mag-

netic resonance imaging (fMRI), research has found how learning changes the physical structure 

of the brain. Simply by absorbing knowledge we physically change the strength of our synapses 

and change neuronal pathways. Thus, "One of the simplest rules is that practice increases learn-

ing; in the brain, there is a similar relationship between the amount of experience in a complex 

environment and the amount of structural change" (Bransford, Brown, and Cocking 2000).  

 Knowing this, we could simply increase the amount of practice by introducing drill and 

practice exercises to aid learning. Still, experience has shown that other systems promote deeper 

learning and better transfer (Weigel 2002; Haskell 2001), as we discuss in examples presented in 

chapter III. Students will perform relatively well in the short run but may fail to transfer (apply) 

knowledge in new situations. A number of theories summarized in this chapter look at means to 

achieve better learning, the ability to apply what is learnt, and to achieve life-long learning.  

Social Learning and Development 

If we go beyond physical changes in the brain, and theories of classical conditioning and rein-

forcement (Pavlov, Thorndike, and Skinner), we will find ideas on how people learn in social 

learning or observational learning (Bandura 1977). Implications of social learning are especially 

interesting to us, as social agents play an important role in our learning environment.  

In everyday life, we continuously learn new knowledge, for example, through the activities 

of conversation, play, discovery, and problem solving. This implies that we often learn in a social 

context. Even when we acquire knowledge on our own, we may reshape it later to fit socially ac-
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cepted norms (Tripathi 1979). The simplest form of social learning is learning through observa-

tion of behaviors. 

Observational learning requires attention, retention, motivation, and potential reproduction 

of the behavior (Bandura 1977). In his classic experiment, Bandura showed movies to children 

that showed an adult being rewarded or punished for punching a doll. The children learned the 

behavior and repeated it more frequently when the adult was rewarded. In our context, children 

working with social agents may learn from the agent’s behaviors by observation, which we had 

to consider in designing our environment. The findings of observational learning soon led re-

searchers to analyze learning in social contexts like interactions among family and friends in in-

formal settings, and collaboration among colleagues at work, which gave rise to situated learning, 

which we have directly applied in our learning environment. 

Situated Learning 

Learning and cognition develops in a social context. Vygotsky linked social interaction with the 

development of cognition (Vygotsky 1978). His work on social constructivism gave rise to situ-

ated learning and other theories (Brown, Collins, and Duguid 1989; Lave and Wenger 1990), 

which puts learning into the context of an activity by focusing on learning within a social frame-

work. It contrasts with traditional lecture-based learning, which involves knowledge that is often 

abstract and taught out of context in school.  

Lave and Wenger stated that situated learning relies on the principles that (1) knowledge 

needs to be presented in an authentic context, for example, settings and applications that would 

normally involve that knowledge, and (2) learning requires social interaction and collaboration 
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(Lave and Wenger 1990; Kearsley 2002). Situated learning is closely related to anchored instruc-

tion (Cognition and Technology Group at Vanderbilt 1993), which has guided our system design.  

Anchored Instruction 

Anchored instruction situates learning in the context of meaningful problem solving tasks in a 

realistic environment. The environment is called the anchoring context or macrocontext 

(Cognition and Technology Group at Vanderbilt 1993; Crews et al. 1997). Anchored instruction 

distinguishes macrocontexts from microcontexts. The latter are traditional word problems found 

in textbooks for mathematics instruction. Each macrocontext defines an elaborate problem set-

ting from which teachers and students can derive many sub-problems. The macrocontext allows 

elaborate exploration, and students may revisit it from many perspectives over several weeks. 

Thus, anchoring contexts support effective problem solving in multiple domains, and help one 

learn about specific concepts and principles in context. This allows students to think effectively 

about particular domains, and it avoids the problem of inert knowledge1 (Bransford 1990). 

Kearsley (2002) summarizes the principles of anchored instruction: (1) Learning and teach-

ing activities should be designed around an anchor, which should be a case study or problem 

situation; (2) Curriculum materials should allow exploration by the learner. We used this ap-

proach directly in our learning environment. Anchored instruction provides one of the theoretical 

foundations of our research. A second direction of research, which complements situated cogni-

tion and anchored instruction, is constructivist learning theory. This is described in the next sec-

tion. 

                                                 
1 We will discuss inert knowledge a few sections later in more detail. 
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Constructivism 

Tell me and I forget. 

Show me and I remember. 

Involve me and I understand. - Chinese proverb. 

In this section, we focus on constructivist theories of how we learn. We begin the discussion by 

addressing the constructive nature of memory. This leads to the theory of constructivism, which, 

among other issues, addresses the question of how people integrate new knowledge into their ex-

isting knowledge structures. We decided to focus on constructivism because it is a compelling 

theory among others that explains how students learn and then recall what they have learned. 

People can memorize information that is meaningful and related to previous experience 

much easier than meaningless unrelated information. People merge new knowledge with what 

they already know (Tripathi 1979). This means that our memory does not simply recall facts, but 

can modify or even introduce new information. Thus, our memory is constructive. Tripathi dem-

onstrated in experiments where Indian schoolchildren were asked to memorize old folk tales that 

recalled stories had additions, omissions, and modifications. Many of the modifications trans-

posed the stories into a modern world. This constructive nature of memory is the basis for con-

structivism, which builds the foundation for many innovative approaches to teaching. 

The first documented roots of constructivism date back to Democritus, Plato, and Giambat-

tista Vico who commented in 1710, "One only knows something if one can explain it." Immanuel 

Kant elaborated on this idea and hypothesized that "humans are not passive recipients of knowl-

edge but integrate it by constructing their own representation" (Kant 1781). In this sense, the 

constructivist paradigm says that every person constructs knowledge from experiences and out-
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side influences to form his or her own interpretation of what they know. For students, this not 

only includes material presented by teachers in classrooms but also discussions with peers, par-

ents, observations of the surrounding world, and information gained from other sources. From all 

this information, learners build their own knowledge compilation, which includes correct and 

incorrect information. This is based on the constructivist theory of Bruner (Bruner 1966), who 

was heavily influenced by Piaget’s Genetic Epistemology (Piaget 1953). 

 Piaget studied the cognitive development of children and theorized about it. He studied 

spontaneous learning of children and found that children integrate new knowledge with what 

they already know. An observation that contradicts current knowledge creates disequilibrium or 

in other words an imbalance between what one already knows and what is newly encountered. 

Students try to correct (equilibrate) this disequilibrium by accommodation. Accommodation 

means that existing knowledge structures change to fit the new information without contradic-

tions. Students can incorporate new events into preexisting cognitive structures by assimilation. 

Existing knowledge schemes are called preconceptions and stem from the fact that no learner 

walks into the classroom as tabula rasa, but rather with their own powerful ideas of how the 

world works. If a student's previously constructed incorrect understanding is not challenged, they 

may retain misconceptions, and fail to understand new concepts (Bransford, Brown, and Cocking 

2000).  

Piaget conjectures that the processes of equilibration may cause conflicts if old and new 

knowledge do not match, and successful learning requires effective ways to resolve such con-

flicts. Sometimes people keep contradictory knowledge in different "compartments" of their 

mind that are activated by the context in which knowledge is applied, but often one has to be 

abandoned in favor of the other. Other times, learners are not aware of conflict and merge knowl-
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edge inappropriately. An example, which illustrates assimilation, is that one might tell children 

whose misconception is that the earth is flat that the earth is round. Children might integrate the 

knowledge in their own way by constructing a new picture in their mind with a pancake shaped 

flat and round earth (Vosniadou and Brewer 1989). 

The constructive nature of learning has powerful implications for the design of learning en-

vironments, especially when computers keep track of what a learner knows in a student model1. 

We cannot assume that knowledge presented to the student is learnt in the way it was intended, 

but that the student constructs an approximation of the taught material with omissions, additions, 

and changes. Newly presented material may change existing knowledge structures of learners. 

This creates challenges in designing a learning environment that avoids, catches, and corrects 

misconceptions of learners whenever they evolve. We discuss pedagogies that were developed to 

alleviate these problems in the next chapter. 

Inert Knowledge and Knowledge Contexts 

Knowledge learned by a student may be associated with a specific context and stay inert in other 

problem settings. Whitehead identified inert knowledge and concluded that under certain circum-

stances a problem that should have been solvable by a subject could not be solved in a different 

context (Whitehead 1929). Inert knowledge implies that a student is unable to transfer knowledge 

to a new domain (lacking transfer of learning2). Others have observed that experts have highly 

conditionalized knowledge, which includes for every fact a specification of contexts in which it 

is useful (Glaser 1992). Thus, experts can readily apply knowledge correctly in new situations, 

                                                 
1 Student models are used in intelligent tutoring systems, which we will discuss in the next chapter. 
2 This concept is described in a later section of this chapter. 
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while novices, who have a very small set of contexts where they can successfully apply their 

knowledge, may use incorrect procedures, or fail to solve problems at all. Students studying for a 

test may revert to their preconceptions outside of the classroom, because they cannot transfer 

their learning like experts (Bransford, Brown, and Cocking 2000). 

An example for contextualization, preconceptions, and conflict resolution that leads to inert 

knowledge is beliefs about motion and inertia (Papert 1980). When pushing a table in a room we 

need force to keep the table moving (Aristotle’s view). This experience contradicts the Newto-

nian laws that a moving body only needs force acting on it to start and stop moving. Thus, a stu-

dent facing such a contradiction will resolve it by creating a context where Newtonian laws ap-

ply, like, for example, "in space" or "a car skidding on an icy road" (Bransford 1979; Bransford, 

Brown, and Cocking 2000). This in itself is not incorrect, but it also may lead to the belief of the 

student that Newtonian laws do not apply in general. In the worst case, students may associate 

knowledge with contexts that are meaningless in real life, like "physics in school" or "physics 

book - chapter 5."  

Traditional classroom teaching may create inert or poorly conditionalized knowledge, and 

properly designed learning environments should avoid this by establishing relevant contexts, 

which aid students in learning to apply and then generalize learnt knowledge. Modern classroom 

teaching approaches can alleviate this problem by overlapping problem contexts between sub-

jects, like, working on the same problem in a mathematics and a science class (Bransford, 

Brown, and Cocking 2000). However, this practice is often not implemented, as it requires coor-

dination of efforts between teachers. We use the previously introduced teaching strategy of an-

chored instruction to reduce the likelihood of creating inert knowledge, by introducing realistic 

macrocontexts in which students perform their problem-solving tasks. 
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Constructivism has inspired a whole battery of modern, applied instructional strategies, such 

as learning by doing, active learning, and inquiry based learning, which we discuss in the next 

chapter. Before that, we briefly discuss repair theory, a proposed cognitive model of how stu-

dents handle contradictions and incomplete knowledge during learning and problem solving. 

Repair Theory 

Students often form misconceptions (incorrect knowledge) while learning, and learning environ-

ments should employ strategies to correct these misconceptions. A systematic approach proposed 

for dealing with misconceptions is VanLehn’s Repair Theory (Brown and VanLehn 1980). This 

theory calls misconceptions mind-bugs1 (Brown and Burton 1978) that need to be identified and 

corrected to improve a student's understanding of the domain. When learning procedural skills, 

like performing subtraction or reading graphs, students tend to make systematic errors. These er-

rors may appear individually or in a variety of combinations. Typically, these bugs are not stable, 

and students tend to move between different patterns (bug migration) by applying different repair 

strategies at different times (VanLehn 1990). An observing agent could theoretically detect such 

bug patterns, and use this information to generate feedback in a way that aids learning. Unfortu-

nately, not all misconceptions are systematic. Cohen has identified that students can make incon-

sistent mistakes, which he called slips (Cohen 1990). Remediation after slips may not be effec-

tive, but tedious, if the student already knows the correct procedure, but inadvertently made a 

mistake. 

Recently, Elby has criticized misconception repair as an oversimplification. He separates 

constructivist research into two camps: (1) Misconception constructivists, who model students 

                                                 
1 This expression is similar to the term ’bug’ in programmers-jargon, referring to faults in computer programs. 
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entering into learning tasks having bugs, alternate conceptions and misconceptions, as we have 

seen in the previous paragraph; and (2) Fine-grained constructivists, who believe that students 

have loosely connected, context activated minigeneralizations and knowledge elements (Elby 

2000). For example, a student working with a speed vs. time graph that shows a horizontal line 

with a hump might interpret this as a car driving over a hill. The student's interpretation of the 

graph is literally what you see is what you get.  

Although basic repair theory did not live up to its promise, and is often criticized, we could 

imagine that learning systems or computer agents that are able to identify misconceptions can 

provide useful feedback to learners to help them reflect on their misconceptions. A system based 

on bug identification and correction alone may only be partially successful in addressing learning 

problems. The main problem with mind-bugs is that one has to generate an exhaustive bug li-

brary. However, if we know a small set of common misconceptions that students often have in a 

domain, we can easily program an agent to react appropriately, and still provide benefit to the 

learning process in conjunction with other pedagogical approaches. Using this approach, an envi-

ronment could point out counterexamples based on misconceptions, or initiate dialogues that lead 

the student to insights that his or her knowledge is incorrect. In a learning by teaching situation 

an agent may ask questions upon detecting such misconceptions, which leads a student to reflect 

on their understanding, and develop new insights. According to constructivist theories, this 

causes a cognitive disequilibrium, which forms the basis for students to correct their erroneous 

understanding of concepts and procedures.  

Next, we discuss auxiliary concepts that are desired outcomes of learning, or intrinsically aid 

learning. First, we start with discussing the concept of transfer of learning, which is highly de-
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sired, but elusive in education. Additionally, it is a measure of learning quality. Following that, 

we discuss metacognition and motivation. 

Transfer 

Transfer is the ability to generalize from the familiar to the less familiar, for example, it is the 

ability to use problem-solving knowledge learnt in the context or domain of one task in another 

context or different task (Bransford, Brown, and Cocking 2000; Haskell 2001). Most authors in 

current learning research call transfer a true (but elusive) measure of learning because it corre-

lates to the potential utility of learnt knowledge in life, as we elaborate a few paragraphs later.  

The importance of achieving transfer is enormous, because society expects that our educa-

tional system prepares students for life long learning and problem solving, and not just produces 

good grades in school. Despite reasonable efforts, most of the knowledge learnt in school stays in 

school, and research efforts to improve transfer have not been very successful yet. Haskell illus-

trates this calling it the paradox of transfer: 

"In essence, we would like students to be able to apply what they have learnt; yet, despite 

governments pouring increasing amounts of money into improving education, we are unable 

to achieve transfer in schools." (Haskell 2001) 

Psychological texts distinguish, at a basic level, negative transfer, which hinders solving a 

future task, and positive transfer, which improves later problem solving (Sternberg 1995). Nega-

tive transfer can occur when a person, through previous experience, uses a specific solution strat-

egy not suitable for the current problem. Positive transfer may be initiated through analogies by 

either willfully introducing them in an instructional setting, or letting learners actively search for 
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analogies. Sometimes the student assumes incorrect analogies, because the context in which the 

situation is embedded appears to be the same. This is called transparency. If a student has to an-

swer whether algae and fish use or produce oxygen, she might conclude, knowing that fish 

breathe oxygen that algae use oxygen too, because both live in water. 

Learning research focuses only on the presence or absence of positive transfer. Haskell de-

fines a taxonomy of transfer in six levels: (1) nonspecific transfer, (2) application transfer, which 

describes the ability to apply what one has learned, (3) context transfer, or the ability to apply 

knowledge in a different outside context (e.g., school vs. home), (4) near transfer to closely simi-

lar situations, (5) far transfer to dissimilar situations through analogical reasoning, and (6) dis-

placement or creative transfer, which relates to discovering new insights (Haskell 2001). The dif-

ferentiation and ordering among some entities in this taxonomy is not obvious; hence, many re-

searchers describe their findings in simpler terms of only near and far transfer. Another theory of 

transfer (Salomon and Perkins 1988) distinguishes low-road transfer and high-road transfer. 

Low-road transfer occurs when stimulus conditions in the transfer context are similar to a prior 

context of learning to trigger semi-automatic responses. High-road transfer requires abstraction 

from the context of learning and a deliberate search for connections. 

Transfer is today’s benchmark for educational innovation, because traditional school systems 

often achieve only nonspecific and application transfer. For example, it is unclear whether stu-

dents can apply their learnt knowledge in their daily lives or at work through context or far trans-

fer. An important challenge in learning research is to promote far transfer by designing appropri-

ate learning situations and environments.  

Transfer is a true measure of learning as it correlates to the utility of a learner’s knowledge. 

Simple drill and practice may achieve high scores on multiple-choice tests and good grades in 
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school, but this does not guarantee that students are able to use this knowledge in problem solv-

ing situations. Hence, many teaching strategies will look equally efficient if they are only evalu-

ated based on facts that have been presented in the classroom. However, if we evaluate different 

approaches of teaching against transfer, for example, between sets of concepts, school subjects or 

school years, results will be more distinguishing (Bransford, Brown, and Cocking 2000).  Brans-

ford also states that to achieve transfer we need three things: (1) a sufficient initial threshold of 

learning, (2) learning with understanding, and (3) knowledge taught in a variety of contexts. 

Systematically observing and measuring transfer is a difficult task. Detterman criticizes most 

studies on transfer for being flawed in one way or another. When subjects are told or can deduce 

that previous material may be useful then they are informed, but far transfer assumes that sub-

jects are confronted with a new situation that is not linked in any artificial way to the learning 

situation (Detterman 1993). Detterman illustrates this on the example of Judd’s experiments 

(Judd 1908), where children have been specifically instructed to use their knowledge about re-

fraction to throw darts on targets under water. In addition, every experimental setting creates an 

artificial context that makes it hard to show context transfer. Yet, despite this critique, most stud-

ies measure transfer within the context of an experiment with a transfer task by observing differ-

ences in performance of solving this task. We follow this practice in evaluating our research. 

Metacognition and Metacognitive Regulation 

Metacognition, the art of thinking about thinking, reached widespread popularity through Flav-

ell’s work (Flavell 1979; Flavell, Miller, and Miller 1993). A metacognitive approach to instruc-

tion can help students in taking control of their own learning by defining learning goals, and in 

letting them monitor their own progress in achieving these goals (Bransford, Brown, and Cock-
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ing 2000). The common assumption is that learning metacognitive skills (meta-learning) helps 

students improve in several subjects, not only one (e.g., White, Shimoda, and Frederiksen 1999). 

Metacognition distinguishes the sub-categories of metamemory, metacomprehension and 

metacommunication (Wilson and Keil 2001). Metamemory includes knowledge about utilizing 

mnemonic strategies to improve memorization of items. Metacomprehension describes the intui-

tion of how well one knows what one should know. It also allows the student to decide what to 

study next and which actions will lead to more success. Metacommunication is the skill to reflect 

upon one's own communication and to assess whether one has understood communicated infor-

mation.  

Zimmerman and Schunk (2001) distinguish metacognitive knowledge from metacognitive 

regulation. Metacognitive regulation (also self-regulation) states: "Students are self-regulated to 

the degree that they are metacognitively, motivationally, and behaviorally active participants in 

their own learning process" (Zimmerman and Schunk 2001). The key research questions ad-

dressed by self-regulation theories are: 

• What motivates students to be self-regulating during learning tasks? 

• Through what process or procedure do students become self-reactive or self-aware? 

• How do self-regulated students attain their academic goals? 

• How does the social and physical environment affect student's self-regulated learning? 

• How does a learner acquire the capacity to self-regulate when learning? 

Computer-aided instruction systems can adopt strategies to teach metacognitive skills, like 

metacomprehension, reflection, and self-regulation. If students learn these strategies, they will 

not only improve scholastic performance in the subject currently taught, but also be able to re-
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flect better on their own knowledge in other subjects, and therefore show transfer of metacogni-

tive skills. White et al. has created a system based on this strategy (White, Shimoda, and 

Frederiksen 1999), that we discuss in detail the section "Learning by Doing, Active Learning, 

Inquiry Learning and Related Pedagogies" in the next chapter. 

Motivation 

Educational literature notes links between learning, motivation, and attitude. Motivated students 

tend to spend more time on learning and pay more attention to the presented material. Motivated 

students learn more and learn better (Brophy 1998; Haskell 2001; Lepper et al. 1993; Stipek 

1988).  

We believe that learning by teaching agents increases a student's motivation as it shows 

similarities to approaches discussed later in this section: Students who teach to learn are in a po-

sition of power and control, which includes their responsibility for the tutee's success. Anchored 

instruction, which situates the student in a realistic context, stimulates fantasies of students. Ad-

ditionally, the student is co-operating with our social agent, which adds an interpersonal motiva-

tion component. Our learning environment provides tools for exploratory learning (a simulation) 

which stimulate cognitive curiosity. 

Cognitive theories about motivation distinguish extrinsic motivation and intrinsic motiva-

tion. Intrinsic motivators make us do things because we enjoy doing them, for example, we may 

like astronomy because we have a telescope and enjoy stargazing. Although a learning environ-

ment only can foster intrinsic motivation, extrinsic motivation is omnipresent in a scholastic en-

vironment and may interfere. Extrinsic motivators come in the form of rewards and punishments 

from the world around us. We thrive to get a good grade in school to obtain rewards from family 
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members (Sternberg 1995). Remarkably, there is an inverse relationship between intrinsic and 

extrinsic motivation. If a person, who is highly motivated intrinsically on a task, receives addi-

tional extrinsic motivators then their intrinsic motivation may diminish (Sternberg 1995).   

Intrinsic Motivation 

Malone and Lepper studied this kind of motivation in children, and found that some tasks are 

motivating by themselves, because the urge to solve them comes only from the problem and not 

from outside, as it would when studying to pass an exam (Lepper and Malone 1987; Malone and 

Lepper 1987). For example, many children spend several hours each day playing intrinsically 

motivating computer games, time that is essentially lost, or may even displace education. If we 

could prepare educational materials to make learning more intrinsically rewarding, we could im-

prove learning environments. This may even include combining games and education. Thus, 

Malone and Lepper formulated their taxonomy of intrinsic motivation to analyze factors that 

make learning fun. They distinguish two groups of factors, individual and interpersonal motiva-

tion. We start by discussing individual motivators, which are challenge, curiosity, control, and 

fantasy, while competition, cooperation, and recognition are interpersonal motivators. 

It seems to be commonly agreed upon that an optimal level of challenge that may vary be-

tween individuals, results in the highest motivation. Attractive tasks give the learner an explicit, 

fixed goal, while more open-ended learning environments, like Logo, may let the user choose 

emergent goals (Csikszentmihalyi 1978). Bandura and Schunk also stated that proximal (near) 

goals are always superior to distal (far) goals (Bandura and Schunk 1981). Another factor con-

tributing to challenge is uncertain outcome, which seems to be optimal when the initial probabil-

ity for succeeding in a task is 0.5 (McClelland et al. 1953). Thus, to create a motivating learning 



   27  

environment, we need randomized tasks of variable difficulty that allow a success rate of 0.5, and 

give multiple levels of explicit goals. Performance feedback should desirably be frequent, clear, 

constructive, and encouraging. To enhance self-esteem a system should make performance goals 

personally meaningful and relevant (Malone and Lepper 1987).  

A second component of individual motivation is sensory and cognitive curiosity (Malone 

and Lepper 1987). Sensory curiosity is stimulated by physical and psychological means (light, 

sound, zoom, highlight, and so forth) to increase attention, while cognitive curiosity uses lack of 

completeness, consistency and parsimony to evoke interest. Cognitive curiosity is satisfied by 

exploration of undiscovered terrain or facts and seems to be a very powerful motivator that oc-

curs in many best selling games. 

According to Malone and Lepper, power and control are the most cited explanations for the 

attractiveness of computer-games (Lepper and Malone 1987; Lepper et al. 1993; Malone and 

Lepper 1987). The perceived level of control makes a player feel competent and empowered. It is 

important that outcomes are contingent to the user’s responses. Zuckerman et al., for example, 

showed that explicit choices by students enhance intrinsic motivation (Zuckerman et al. 1978). 

Usually, the illusion of choice is motivating enough to be noticeable (Langer 1975). Finally, the 

student’s actions should have powerful effects. Large and spectacular effects due to minor altera-

tions in the environment (graphics and sound) will lead to subsequent motivation (Lawler 1982; 

Papert 1980). 

Fantasy plays a major role in being motivated, for example, when reading a book. It may 

help to satisfy unconscious emotional needs and lets us master situations that are not available to 

us in reality. A user would identify with another character if there were perceived similarity, ad-
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miration, and salience of that character’s perspective. Lepper and Malone suggested that students 

should be able to name actors in the environment.  

Interpersonal motivations are competition, cooperation, and recognition. These factors are 

prevalent in multi-user Internet games. Competition may work for or against individual motiva-

tion (e.g., self-esteem), and it may have negative influences on social relationships. Cooperation 

can be used to master difficult situations. Recognition can be shown through the process of pub-

lic performance, the product (e.g., painting of an artist), or the result (e.g., high-scores, certifi-

cate). 

Flow 

A different kind of motivation is that learning is often associated with the state of the mind that 

finds balance between challenge and skill, and people find themselves in flow (Csikszentmihalyi 

1990, 1978). Although flow is a somehow elusive concept, we include it at this point to make the 

conceptually related measure Experiences that Energize (ETE) (Brophy 1998, 2003) better un-

derstandable. We describe ETE later in this section and revisit them in our discussion of experi-

mental measures. 

Csikszentmihalyi has found that people are generally unhappy when they are doing nothing 

and generally happy when they are doing things. Sometimes, individuals reached a state of the 

mind that made them very productive in the task that they perform. Csikszentmihalyi called this 

flow. Persons in flow feel completely involved in, and focused on their task because of their cu-

riosity or training. They feel great inner clarity, know that the activity is doable, do not notice 

time passing, and feel intrinsically motivated. Flow is a highly activated state of the mind that 

puts the person performing a task in control. People in flow devote 100 percent of their attention 
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to the task they are performing. Putting a learner in flow some of the time would be a highly ap-

preciable goal for learning environments. Unfortunately, there is no known way of inducing flow 

artificially as it has to come from within. 

However, flow may be useful as evaluation metric of a system. Brophy has developed a 

measure of intellectual flow that he has called Experiences that Energize (ETE) (Brophy 1998, 

2003). Subjects repeatedly report their energy level associated with an activity that they are cur-

rently involved in or have just completed, with a single seven point Likert question (see page 137 

for a detailed discussion of this measure). The answers provide a rating of self-reported intellec-

tual enjoyment that relates to the idea of flow. 

Summary 

This chapter discussed theories that build the basis for understanding of how people learn that 

influenced the design of our system in many ways. A peculiarity of the learning process is that 

learners integrate new knowledge with knowledge they already possess to construct their own 

understanding of the world. When asked to reproduce what they have learnt, learners show that 

the have transposed learnt stories into the modern world (Tripathi 1979), or that they have 

merged what they knew with what they learnt anew. This is the core idea behind constructivism, 

which describes how people accommodate new knowledge and handle contradictions to arrive at 

something they feel comfortable. In recent work, these ideas of constructivism seem to have an 

increasing influence on newly developed educational methodologies and computer aided instruc-

tion systems.  

One issue illustrated in this chapter was that students may associate weak contexts with 

knowledge, or that knowledge simply stays inert (Whitehead 1929). Thus, learning requires rich 



   30  

contexts. We presented work that suggests that situating learning in realistic problem-solving 

macrocontexts helps learning. An applied strategy to implement this theory in schools is an-

chored instruction, which helps transfer and learning. Transfer of learning is the ability to gener-

alize learnt knowledge and apply it in new situations. Therefore, transfer is also a good bench-

mark for assessing how good a learning strategy or system is in helping learners to apply their 

knowledge in real-world situations.  

Students often categorize school as boring, thus, increased motivation might help to stimu-

late interest and could indirectly improve learning. Lepper and Malone’s Taxonomy of Intrinsic 

Motivation for Learning (Malone and Lepper 1987) helped us to identify criteria that make learn-

ing by teaching agents motivating. In addition, metacognition and metacognitive regulation de-

scribe the ability of students to control their learning through reflection and self-regulation. This 

plays a role in out context, because agents make students reflect on what they taught to the agent, 

and we are interested how this affects students. 

This lets us arrive at the following conclusions: 

• Foster transfer and deep learning by providing rich environments that are anchored in re-

alistic macrocontexts already in the learning stage. 

• Recognize that students merge new knowledge with what they already know. 

• Intrinsically motivate students through learning by teaching. Students are in a position of 

power and control with the responsibility to teach, and realistic fantasy contexts stimulate 

cognitive curiosity. Additionally, co-operation with a social agent adds interpersonal mo-

tivation component. 
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This concludes the theoretical framework for learning for our system design. In the next 

chapter, we will discuss related work in computer aided instruction and pedagogies that have 

been derived from practical research. 
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CHAPTER III 

 

 COMPUTER AIDED INSTRUCTION 

This chapter surveys past work in computer-based learning, and instructional systems. We will 

adopt the term computer aided instruction in its all encompassing meaning, but we do not intend 

to limit this term to intelligent computer aided instruction systems, which has been used as syno-

nym for intelligent tutoring systems (Wenger 1987). We describe a number of representative 

strategies and systems and relate them to the theories that were described in the previous section. 

This chapter is not an exhaustive overview of systems that have been developed in the domain, 

but it focuses more on mainstream research and technologies that may contribute to designing a 

learning system based on the principles of constructivism, transfer, metacognition, self-

regulation, and motivation. 

The first section of this chapter discusses specific learning strategies that have been em-

ployed in classrooms and in computer-aided instruction. Among others we discuss: learning by 

being taught (e.g., Anderson 1995; Wenger 1987), and approaches influenced by constructivism 

such as active learning, learning by doing, and guided discovery methods. Research that is more 

recent integrates peer tutoring and self-explanation with traditional systems. In general, the trend 

goes towards hybrid systems that employ multiple strategies at once. In the final paragraphs, we 

focus on learning by teaching.  

The second section of this chapter introduces designs and implementations of representative 

systems that implement these strategies in intelligent computer aided instruction systems. Intelli-

gent tutoring systems traditionally use the tutoring approach, but also implement a wide range of 
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strategies. Constructivists initially devised the not very successful idea of microworlds (Papert 

1980) that supported pure discovery learning. Later mutual interactive and intelligent learning 

environments combined multimedia, anchored instruction, situated cognition, and other ap-

proaches with coaching into various levels of guided discovery. 

The last section of this chapter gives a brief overview of how computer agents may help in 

achieving educational goals. Of special interest are design, social, and educational aspects of the 

agents. 

Pedagogies and Instructional Strategies 

This section gives an overview of various teaching and learning strategies from the theoretical 

perspective that the scientific community has developed and incorporated into computer-aided 

instruction systems. The topics covered include cognitive tutoring, discovery learning, active 

learning, inquiry-based learning, peer and reciprocal tutoring, learning by teaching, and learning 

of metacognitive strategies. All these strategies have been shown to be useful in designing learn-

ing environments and have enhanced the effectiveness of teaching tools. We also discuss the 

strengths and weaknesses of each approach. It should also be made clear that these approaches 

are not mutually exclusive, and students could engage in activities that incorporate multiple 

strategies within a learning session. For this reason, we defer the discussion of practical imple-

mentations and system designs of these strategies to the next section. 

The Cognitive Tutoring Approach 

Original cognitive tutors adopted the principle of drill and practice to educate the user in do-

mains, such as algebra or geometry. The most cited and well-known tutor designs are based on 
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Anderson’s ACT* theory (Anderson 1983), which fuelled the development of cognitive tutors 

and a number of intelligent tutoring systems that are discussed later. The first application of this 

theory was a tutor that taught students to program in LISP. Later, this system was adapted to im-

plement a geometry tutor (Anderson 1995). These systems have now evolved to a generic 

mathematics tutoring system that is sold by Carnegie Learning® (CarnegieLearning 2004). After 

learners study a paper curriculum in mathematics class, students practice on the tutoring system. 

As a general principle, these systems implement production rules that follow the students’ prob-

lem solving trace step by step. The system does not intervene as long as the student stays on a 

reasonable solution path. Once a student’s solution deviates from a pre-defined path, the system 

intervenes immediately, flags the incorrect answer, and provides feedback that leads the student 

in the right direction. This may prevent the student from making further wrong moves1. Ander-

son further explains that students also can request help prior to answering. These messages 

should be short and to the point. However, some students tend to overuse help, and the system 

has to moderate requests (Anderson 1995). Nevertheless, students cannot go on until they have 

solved a problem without help at least once. 

The advantage of this approach is that it keeps the student’s activities focused on the correct 

problem solving trace, which makes the problem solving process efficient. By observation and 

practice, the student may quickly pick up the correct problem solving procedures. Anderson 

states that keeping students on track reduces their chances of developing misconceptions. Addi-

tionally, he notes that students’ attitudes are quite positive in classrooms using cognitive tutoring 

systems, and that cognitive tutors encourage peer help in how to use the systems. 

                                                 
1 This is the original cognitive tutoring strategy. Today there are numerous improved variants of this approach that 
let students make some mistakes or use alternate strategies to provide feedback.  
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Critics of this approach point out that it prevents students from exploration, and from learn-

ing how to recover from incorrect solution paths, or to identify wrong solutions, and leaves very 

little room for creativity, exploration and inventiveness (e.g., Self 1990; Rickel et al. 2000). More 

recent work (Aleven and Koedinger 2002) extends cognitive tutors with metacognitive strategies, 

as we see next. 

Self-Explanation 

Self-explanation is the process of spontaneously explaining to oneself available instructional ma-

terial in terms of the underlying domain knowledge (Chi et al. 1989). Researchers operationalize 

self-explanation by letting students explain the reasons for choosing an action, or the whole solu-

tion path of a problem after providing a correct answer (e.g., Weerasinghe and Mitrovic 2002). 

Thus, the term self-explanation is also used if the explanation is enforced by, or given to a tutor-

ing system.  

Aleven and Koedinger combined cognitive tutoring with self-explanations (Aleven and 

Koedinger 2002). Students were required to justify their answers with correct explanations; oth-

erwise, the cognitive tutor did not let them move on. They found that students who explained 

their steps to the cognitive tutor performed better than students who did not explain their problem 

solving steps. 

A learning by teaching system uses similar mechanisms as self-explanation, because students 

elaborate their understanding during teaching. We discuss these similarities in the section about 

learning by teaching. This concludes our discussion of tutoring strategies, and we will focus on 

strategies that involve the learner more actively in the learning process.  
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Learning by Doing, Active Learning, Inquiry Learning and Related Pedagogies  

This section discusses teaching strategies that have been devised to supplement classroom in-

struction. The same ideas can also be applied to designing learning environments. The roots of 

these pedagogies date back to the educational theories of John Dewey (1859-1952). 

Two pedagogical approaches that comply with the principles of constructivism are learning 

by doing and active learning. These strategies are based upon the idea that people learn best by 

doing things, not by being passive recipients of knowledge (Lander et al. 1995; Modell and Mi-

chael 1993). Some studies have found that higher order thinking skills are not acquired through 

didactic approaches, but rather through learner’s active involvement with information (Collins, 

Brown, and Newman 1989). Discussion, reading, writing, evaluation, analysis, synthesis, and 

teaching are tools of the trade to support active learning. 

From this general principle, research derived three closely related pedagogical approaches: 

project-based learning (Katz and Chard 2000), problem-based learning (Boud 1985; Boud and 

Feletti 1991; Torp and Sage 2002), and inquiry-based learning (Dewey 1938). Project-based 

learning focuses on developing a product or creation, and may be combined with any other strat-

egy. Problem-based learning is that content is introduced in the context of complex real-world 

problems (the problem comes first). The approach stems from medical instructional research and 

appears to be conceptually similar to the idea of macrocontexts/anchors in Anchored Instruction.  

Inquiry-based learning approaches are derived from the educational theories of John Dewey 

(Dewey 1933, 1938). In a generic inquiry-based learning environment, students work in groups 

and cycle through five tasks: ask, investigate, create, discuss, and reflect1 (compare with the 

                                                 
1 The phases of this strategy are similar to Flexibly Adaptive Instructional Design and the STAR Legacy learning 
shell cycles. We discuss both of them later in this chapter. 
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STAR Legacy cycle in Figure 4 on page 61). First, students ask meaningful questions (generate a 

hypothesis) to create genuine curiosity about real life experiences. This curiosity provides the 

motivation for students to gather information, research resources, and conduct experiments. The 

learner can then recast the question that she has asked or redefine the investigation on the fly. Af-

ter enough information is gathered, the learners begin to integrate their knowledge to create new 

thoughts and ideas. Then, inquiry learners share their ideas with others and engage in discus-

sions. The students conclude the cycle with a reflection phase where they evaluate if a solution 

has been found, or new questions arise, and the cycle is repeated.  

One computer-based learning environment that implements inquiry-based learning combined 

with meta-learning (learning of metacognitive skills) is the SCIWISE project (White, Shimoda, 

and Frederiksen 1999). The system includes a number of task adviser agents, such as Ingrid In-

ventor and Harry Hypothesizer, who help the student in specific situations with strategic advice, 

for example, the agents suggest how to create hypotheses, plans, and ideas. White et al. believe 

that this makes students learn cognitive processes, which facilitates inquiry learning, collabora-

tive work, and peer tutoring. These task advisers help the students to develop metacognitive 

skills while solving problems. The authors state this as follows: 

"Our claim is that an agent’s meta-level expertise can be internalized by students and then 

consciously invoked if, through a process of reflected abstraction (Piaget, 1976), it has been 

identified, explicitly labeled, and interacted with as a functional unit. By internalizing exper-

tise as a system of such functional units in the form of advisors, they become accessible to 

reflected abstraction and conscious control, enabling students to ’put on different hats’ and 

’invoke different voices’ when needed as they solve problems or engage in inquiry learning." 

(p. 176, White, Shimoda, and Frederiksen 1999) 
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A major risk in implementing the pedagogies, which we have discussed in this section, is 

that engagement of students can be mistaken for learning (Schwartz, Brophy et al. 1999). Stu-

dents may be enthusiastic about the task and work hard, yet assessments of their understanding of 

domain knowledge may produce disappointing results (Barron et al. 1998). In addition, imple-

mentation of these approaches in regular instruction requires more time than traditional lecture 

based instruction. Nevertheless, active learning and learning by doing influenced the develop-

ment of discovery learning. Problem based learning and inquiry learning influenced the Flexibly 

Adaptive Instructional Design Theory. We discuss both pedagogies in the next sub-sections. 

Discovery Learning 

According to Schank and Edelson, pure discovery learning (Bruner 1961) works as follows: Peo-

ple reason about situations they encounter by referring to similar situations they have encoun-

tered earlier, and if people see a new situation and all their expectations are met, then no learning 

takes place. However, if their expectations are violated learners will start to question their ex-

periences and begin to integrate new knowledge into their existing knowledge structures (Schank 

and Edelson 1989). A pure discovery system will allow a student to learn actively by solving 

problems. Learners typically choose strategies freely without intervention or specific help.  

The main weakness of the pure discovery process is that it may be quite time consuming to 

accomplish learning. In some cases where students have full autonomy, but very little compre-

hension of the domain, learning may not occur because students cannot interpret the situations 

they see (Brown and Campione 1996). The student may use trial-and-error to accomplish the 

learning task or solve problems, and explore the environment in an inefficient way. Sometimes, 

students may feel unmotivated and lose interest in the learning task, because they do not make 
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progress (e.g., Malone and Lepper 1987). Other researchers demonstrated that  pure discovery 

does not work very well (e.g., Klahr and Nigam 2004; Mayer 2004). 

To alleviate these shortcomings researchers developed guided discovery and expository 

methods. To provide guidance, a teacher or system provides hints, direction, feedback, and 

coaching. Expository methods provide the correct solution before learners start the discovery 

process. Mayer concludes that students in a pure discovery condition performed the worst, and 

learners in a guided discovery condition performed the best on tests of immediate retention, de-

layed retention, and transfer in solving new problems, although guided discovery requires the 

most learning time (Mayer 2004). He also states, "Students need enough freedom to become cog-

nitively active in the process of sense making, and students need enough guidance so that their 

cognitive activity results in the construction of useful knowledge." 

A discovery learning system conforms to the principles of constructivism because it allows 

students to construct their own understanding of the domain, to learn how to develop solution 

strategies, to derive and improve hypotheses, to learn from their own mistakes, and to deal with 

incomplete knowledge. Implementations of pure discovery systems are Microworlds (Papert 

1980). An example of a guided discovery system is the Adventure Player learning environment 

(Crews 1995). We introduce both systems in the section "Existing System Designs" (page 49). 

Flexibly Adaptive Instructional Design Theory 

Flexibly Adaptive Instructional Design (FAID) has been introduced to help foster deep under-

standing while simultaneously promoting the skills for problem solving, collaboration  and 

communication through the use of problem based learning followed by more open ended project 

based learning (Schwartz, Brophy et al. 1999; Schwartz, Lin et al. 1999). According to FAID, 
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instruction should integrate (1) learner-centered environments, which integrate knowledge, skills, 

and attitudes of students, (2) knowledge-centered environments, which are organized around big 

ideas that support learning, (3) assessment-centered environments, which help students to create 

a representation of their knowledge that makes their thinking visible to them and their teachers 

and thus revisable, and (4) community-centered environments that support collaboration among 

students. FAID combines a problem-based/anchored instruction approach with a modified in-

quiry learning cycle (initial challenge, generate ideas, multiple perspectives, research and revise, 

test your mettle, and go public - see Figure 4 on page 61). This pedagogical design was applied in 

the STAR Legacy learning shell, which we will discuss on page 60. FAID and STAR Legacy are 

pedagogical foundations for our system design.  

Peer Tutoring, Cross-age Tutoring, and Reciprocal Tutoring 

Peer tutoring implies that tutor and tutee are of the same age, while in cross age tutoring the tutor 

comes from an advanced class and is older. Publications suggest that peers understand each other 

better because they are cognitively closer. Allen and Feldman found that third and sixth graders 

were more accurate than experienced teachers in determining from nonverbal behavior whether 

age-mates understood lessons (Allen 1976). Peer tutors may also have advantages in explaining 

materials due to their cognitive similarity (Cohen 1986). A related strategy is reciprocal tutoring 

(Palincsar and Brown 1991) when students alternatively take on the role of tutor and tutee. Due 

to the close relationship of peer tutoring and learning by teaching, we defer discussing cognitive 

benefits of tutors to the next section. 

Peer and cross-age tutoring are not easy to adapt, as simply assigning tutor and tutee may 

lead to problems. Tutoring requires training and communication skills. Cohen suggests to assess 
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a potential tutor’s comprehension before assigning them to tutoring tasks (Cohen 1986). Lippitt 

states that especially in cross-age tutoring also lower performing students can be effective tutors 

(Lippitt 1976). In addition, peer tutoring can give rise to status problems by making tutees feel 

inferior, and cause friction between tutor and tutee (Gaustard 1993). As we have discussed in 

chapter one, computer-based systems can avoid these dangers by removing one or the other hu-

man factor by substituting a system or an agent. In the following paragraphs, we discuss a repre-

sentative computer aided instruction system based on reciprocal tutoring.  

Scott and Reif have implemented a reciprocal tutoring system to teach Newtonian physics 

(Reif and Scott 1999; Scott 1991). A computer and a student take turns in coaching each other. 

They have demonstrated that their system performs almost as well as individual human tutors. 

The system is implemented in Authorware™1. In the following paragraphs, we give an overview 

of this system. 

As first step, the computer coaches the student. The system detects any errors in the student's 

implementations, and helps them to diagnose the reasons for their incorrect answers. Then the 

computer guides students to the correct solution. Each tutorial conducted by the computer coach 

has one problem that can be solved by applying several aspects of Newton’s law that students can 

select from a menu. Coaching the student commences in three tasks: (1) The student decides to 

use a concept from a list, which the computer assesses and only draws in a diagram if the concept 

is applied correctly, otherwise the computer coaches the student with hints and other feedback; 

(2) To let the computer generate equations based on Newton’s laws, the student has to click on 

appropriate parts of the system’s diagram; and (3) The computer asks about qualitative relation-

ships in the diagrams.  

                                                 
1 Authorware™ is a visual authoring tool that allows creation of interactive (e.g., educational) content with little pro-
gramming skills. It is similar to another product, which is called HyperCard™. 
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In the reciprocal step, the student coaches the computer. The student chooses actions to per-

form, and assesses the implementations generated by the computer, which may make mistakes: 

(1) The computer randomizes the solution path, and the student has to select the proper steps in 

the right order; and (2) The computer implements this solution path step by step, and the student 

has to approve every step. Should the student approve a wrong step, the system asks the student 

to check more carefully and gives hints. 

We believe that this system combines reciprocal tutoring with traditional cognitive tutoring 

by implementing learning and correcting false moves of the student. However, our goal for a 

learning by teaching system is to give the student more freedom to explore. We accomplish this 

by moving towards a guided discovery approach in the design of our learning environment. 

Learning by Teaching 

One only knows something if one can explain it. Giambattista Vico, 1710 

The idea of learning by teaching is closely related to studies in peer tutoring, which has provided 

some results that illustrate benefits for peer tutors. Cohen found that preparing to teach "facili-

tates long-term retention, as well as aiding in the formation of a more comprehensive and inte-

grated understanding" (Cohen 1986). Gaustard observed: "Strikingly, student tutors often benefit 

as much or more than their tutees" (Gaustard 1993). In addition, learning by teaching seems to 

provide motivational and cognitive benefits for the tutor. In preparing to teach, students consider 

the larger context of the knowledge, spontaneously discover flaws, question the purpose or men-

tion alternatives significantly more often than students preparing for a test, and "the challenge of 

teaching others appears to create the sense of responsibility that is highly motivating to individu-

als of all ages" (Biswas, Schwartz et al. 2001). 
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Learning benefits of tutors have been observed in the following publications (Cohen 1986; 

Michie, Paterson, and Hayes-Michie 1989; Palincsar and Brown 1991; Gaustard 1993; Nichols 

1994; Chan and Chou 1997; Obajashi, Shimoda, and Yoshikawa 2000). In the following para-

graphs, we discuss systems that combine learning by teaching with computer-aided learning. 

One of the first approaches implementing learning by teaching a computer is the pilot study 

of Michie et al. (Michie, Paterson, and Hayes-Michie 1989). The knowledge domain consisted of 

basic algebra concepts (solving of linear equations). Students taught a computer by providing ex-

ample solutions to problems. From these examples the system  learned one general rule to solve 

equations by using a machine learning algorithm (ID3 decision tree induction algorithm, Quinlan 

1986). The student used the commands: (1) show to provide an example to the system, (2) look 

to display the induced rule, (3) test to try to solve a problem, and (4) ask to go through the in-

duced rule step by step to debug the rule. Their hypothesis was that having taught the machine, a 

pupil must have mastered the given skill and that this use of a rule-induction algorithm has sig-

nificantly better advantages for the learner than learning through drill and practice. Michie et al. 

compared three conditions: drill and practice, and two versions of their learning by teaching sys-

tem with 30 subjects. The researchers concluded: "Although, motivational gains were not ob-

served, students in the experimental condition showed enough learning gain to warrant a full-

scale study." 

Palpetu et al. conducted experiments to determine whether explaining concepts to others has 

advantages over plain studying. The idea was that dialogues with others would expose possible 

argumentative flaws through previously unconsidered justifications. The group proposed a sys-

tem where the student teaches the computer in a fact-based science domain (Palthepu, Greer, and 

McCalla 1991). In this system, users want to perfect their own domain knowledge, while the 
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computer starts as tabula rasa. This system does not need an expert or domain model (see page 

50), but only makes inferences from what it has learnt. Input from students improves the domain 

knowledge base and the learners evaluate the system’s inferred responses. The researchers con-

cluded their system performed best in situations when the student "almost knows" the domain. 

With their approach dialogue history provided information to keep the dialogue active, focused 

and pedagogical. The authors raised the question if a learning by teaching system needed a stu-

dent model, and if it is would be helpful to have a domain model to guide the student towards 

unexplored areas. 

Chan and Chou tried to answer the question whether the computer should teach the student 

or vice versa. They explored various combinations of reciprocal tutoring (Palincsar and Brown 

1991) where human and virtual agents worked together in dyads and triads, in various combina-

tions as tutor, tutee or companion to solve recursion problems in LISP (Chan and Chou 1997). In 

this approach, agents (including humans) took turns in filling the role of tutor or tutee after each 

problem. Unfortunately, we do not know that a full study followed the preliminary experimental 

trials with only five subjects per condition. The results suggested that distributed reciprocal tutor-

ing (virtual tutor + real tutor + real learner on different computers), outperformed centralized re-

ciprocal tutoring (virtual tutor + real learner) and intelligent tutoring (virtual tutor + real learner, 

not switching roles). Students in the "learning by tutoring"1 condition (virtual tutor + real tutor + 

virtual learner) performed worse than in other conditions. The authors had expected the low per-

formance of learning by (observing) tutoring group, because those students essentially only 

watched, and occasionally enhanced the virtual tutor’s answer to the virtual tutee. However, stu-

dents preferred this condition to other activities that involved more work. The view of learning 

                                                 
1 The authors use alternatively learning by teaching and learning by tutoring to explain their abbreviation LBT. 
Later, they restrict this term to the meaning of learning by observing tutoring between virtual tutor and virtual student 
with the option of enhancing the tutor’s instructions. 
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by tutoring adopted in this paper does not conform to our view of learning by teaching, which 

requires the student to take on a more active role in the teaching and learning processes.  

Nichols pointed out that learning by teaching systems need to focus on defining a mutual 

communication language to limit the content of the dialogue to the essential facts in the domain 

(Nichols 1994; Nichols 1994). His system DENISE started as tabula rasa (empty knowledge 

model) and built a learnt model from the dialogue interactions with the student in the domain of 

qualitative economics. Each resulting learnt model contained 65 percent terms not used by other 

tutors. The models had many unrelated and general terms (irrelevant knowledge like religion or 

civil war) that often could not be found in the economics literature. Nichols found that students 

created long causal chains of little value with general terms. He also pointed out that learning by 

teaching systems were less reliant on a domain model than intelligent tutoring systems. We be-

lieve that the weakest point in this design was that students lack an intuitive way to review and 

modify the learnt model efficiently. For example, students could not look at a visual representa-

tion of the entire learnt model.  

The newest learning by teaching prototype to date was developed by Japanese graduate stu-

dents at Kyoto University (Obajashi, Shimoda, and Yoshikawa 2000). The system enhances a 

web-based computer aided instruction system with personalized agents that played the role of 

virtual students. Students first studied materials on their own by reading the basic lecture in their 

web-browser. Then, the learner has to solve given exercises, which allowed the system to modify 

the behavior of the learner’s virtual student. In the next step, the learner taught the virtual agent 

by typing text, which was then evaluated by the agent. The paper did not describe how this 

evaluation took place, only that the agent was able to recognize if the student copied and pasted 

text from the lecture materials. After teaching, the learner asked the virtual student agent ques-
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tions, and corrected its answers. In the fourth step, virtual students of different tutors meet in a 

virtual classroom, where they present their knowledge and a virtual teacher provided them with 

correct answers, while the human tutor observed the dialogue. Additionally, this system provided 

an online, anonymous question and discussion room, where the learners could communicate 

about the material. The virtual students’ questions came from a question database that depended 

on the human students’ answers to exercises during teaching. The virtual student learned the an-

swers to these questions. The system was evaluated against a control group, which studied only 

from text pages (n = 20 for each group) and the authors claim that their learning by teaching sys-

tem deepened understanding, that learners could easier monitor their own understanding and 

gained diversity of understanding by observing other learners’ thought processes.  

Remarkably, most learning by teaching approaches use machine learning strategies to learn 

knowledge from the tutor. However, there is currently no evidence that it is necessary or benefi-

cial to use a learning algorithm to maximize the learning benefits of students. One flaw in current 

systems that use machine-learning algorithms is that they create esoteric internal representations 

that are not comprehensible or viewable by the user, and eventually are hard to modify. More-

over, students have difficulty to understand why or how a computer has learnt certain concepts 

from what was taught.  

We think that learning by teaching benefits from letting students teach the computer by con-

structing shared representations that are visible to the tutor and the agent during teaching and 

testing. These shared representations replace (to various degrees) hidden student models. Thus, 

learners can trace incorrect responses of the computer or agent transparently, and in this process 

view their own progress. Students can develop a feeling for what is correct by reflecting on their 

taught representations without requiring refined troubleshooting or debugging skills for complex 
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internal knowledge representations. In addition, this strategy conforms to a constructivist ap-

proach, because students effectively build their own knowledge structures, and then study how 

well their taught agent can solve problems or answer questions with these structures. If their 

agent makes errors, students have to reflect on these errors, and find out how to teach their agent 

better. In reality, students seem to be learning from their own mistakes, and from the feedback 

they get about these mistakes.   

In addition to peer tutoring and the systems mentioned here, we see similarities between 

learning by teaching and self-explanation approaches. As we have discussed before (page 35), 

current research operationalizes self-explanation as explaining to a cognitive tutor (e.g., Miller, 

Lehman, and Koedinger 1999). A learning by teaching system that lets students explain solutions 

to an agent involves inherent self-explanation and reflection, because students have to focus on 

their agent's errors, and figure out why these errors occurred, and how to correct them. For exam-

ple, Chi states:  

"Thus, since the construction of self-explanations, directed by oneself without any guidance 

from another, is an effective means of learning, then it seems that the construction of expla-

nations, elicited by others, may have the same beneficial effect and may account in part for 

the effectiveness of tutoring." (Chi 1997)  

Other Pedagogical Approaches 

Kafai has introduced learning through design and learning by programming. In her research, she 

has verified the assumption that "making something is a powerful way of learning" (Kafai 1995, 

p. 286). Kafai led a project where children had the task to design games in Logo to teach other 

children about elementary school mathematical concepts, like fractions. Children had to fill de-
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sign sheets where they could jot down ideas of how to structure their game to teach another child 

and then implement it. These design sheets were collected and evaluated as case studies. Kafai 

concluded that making games for learning combined the creative tasks of designing and playing, 

and this helped students to develop their individual styles, and build a learning culture in the 

classroom. However, only a few students succeeded in integrating fractions into their game pro-

ject, but learners developed good understanding of complex programming concepts. Similar to 

Nichols’ system and discovery learning, this strategy provided too much freedom and allowed 

students to deviate from the path of learning target concepts. Otherwise, this approach appears to 

be very similar to the concepts of active learning and learning by doing.  

Mengelle and Frasson introduced the learning by disturbing strategy. In their intelligent tu-

toring system the authors used actors, who play different pedagogical roles (Aïmeur et al. 1997; 

Mengelle 1996). One of them is a troublemaker agent, who is unreliable in its cooperation and 

may mislead the learner in an attempt to improve the learner’s self-confidence. We will discuss 

actors in more depth in the section on Agents (page 64), where this system is revisited from a dif-

ferent perspective. The paper did not present evidence for or against learning by disturbing as it 

has evaluated a whole system where this strategy played a minor part. We have included this 

strategy here as an idea that could be evaluated in the future as part of a learning by teaching sys-

tem, as it has similarities to a teachable agent that learns unreliably. 

Summary 

In this section, we discussed various learning strategies that were developed to implement learn-

ing theories or aid students in conjunction with computer aided instruction. As a basic strategy, 

we discussed discovery learning, which lets the student explore a domain without guidance, but 
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might be time consuming, inefficient and sometimes unmotivating for students, especially when 

they do not make progress in learning and understanding. We can supplement this discovery ap-

proach by adding scaffolding, feedback, and coaching to create guided discovery learning envi-

ronments.  

The constructivist philosophy of learning is supported by learning by doing and active learn-

ing, which help students to gain hands-on experience in selected topics. These pedagogies find 

their application in anchored instruction, project-based learning, problem-based learning, and in-

quiry-based learning.  

A different approach is learning by teaching, which in essence also adopts a constructivist 

approach in which students have to explore, study, and understand the domain to be able to teach 

it to others. We can summarize that learning by teaching systems (1) Have motivational and cog-

nitive benefits for the tutor (Biswas, Schwartz et al. 2001; Gaustard 1993); (2) Require a limited 

communication language to prevent students from wasting time by teaching irrelevant knowledge 

(Nichols 1994; Nichols 1994); and (3) Potentially improve on learning gains seen in studies with 

self-explanation. 

Existing System Designs 

In this section, we discuss existing formal and informal designs of intelligent tutoring systems, 

cognitive tutors, microworlds and intelligent learning environments, each supporting different 

theories, or pedagogies that we have discussed previously. We start with the theory and imple-

mentations of intelligent tutoring systems, and continue by introducing microworlds, which offer 

a more constructivist perspective on computer-aided learning. Last, we will discuss direct prede-

cessors of our work. 
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Intelligent Tutoring Systems 

Intelligent tutoring systems (ITS) use artificial intelligence techniques to provide one on one tu-

toring (Wenger 1987). A number of ITS systems implement the cognitive tutoring strategy 

(Koedinger 2001; Anderson 1995). Wenger describes intelligent tutoring systems as knowledge 

communication systems that have intelligent mechanisms to adapt their teaching and feedback to 

the learner’s needs (Wenger 1987). Most intelligent tutoring systems use a standard architecture, 

containing four modules: (1) the expert module containing the domain knowledge, (2) the student 

module, which accumulates information about the student’s knowledge, misconceptions and be-

havior, (3) the curriculum module, which includes the pedagogical expertise, and (4) the inter-

face module (Figure 2). 
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Figure 2. Intelligent Tutoring System Architecture adapted from (Wenger 1987) 

The expert module (domain model) is a dynamic representation of the knowledge domain. It 

contains domain knowledge, such as facts, concepts, processes, productions, and procedures re-

quired to solve problems. The model allows evaluation of the student’s solutions, and can pro-

vide examples of correct problem solutions. The curriculum module (pedagogy model) sequences 

the curriculum by comparing the expert and the student model, has testing procedures that indi-

cate the extent of the student’s knowledge, contains strategies that focus on how to teach best, 

and controls feedback. If the system is sensitive to misconceptions, this module contains reme-

diation procedures. The interface module provides a uniform view of the environment to the user. 

It allows the user to interact with the system (as the curriculum module prescribes) by accessing 

the tutorial discourse, problems, examples, scores, progress summaries, representations, and re-
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sources (e.g., examples, diagrams, lectures). The probably best investigated module of intelligent 

tutoring systems is the student model, which we discuss in more depth in the following para-

graphs. 

The student model captures the knowledge status of the learner at any point in the teaching 

process. Simple student models only keep track of topics that the student has mastered, and 

which topics have not yet been covered (Knowledge Spaces, Doignon and Falmagne 1999). More 

advanced student models record misconceptions, build bug libraries, and implementing 

VanLehn’s repair theory (VanLehn 1990; Brown and VanLehn 1980), or record which teaching 

strategies work best for a specific student. Unlike other modules, the student model deals with 

information that is specific to individual learners.  

Sison states in his student model survey that every student modeling system is obviously 

limited to observable responses of the student to a stimulus in a domain (Sison 1998). He calls 

this student behavior, which can be plain input, an action, a result, or intermediate scratch work. 

Each of these options entails a different behavioral complexity and, thus, requires different 

strategies to extract useful modeling information. Sison categorizes systems by how many atomic 

behaviors they need to gain some information about the student. He states that systems, such as 

Anderson’s tutors (Anderson 1995) build one extreme of the spectrum, as they verify each "key-

stroke" of the user and, thus, use single behaviors to build the user model. Other modelers derive 

higher-level structures through rule or decision tree induction by using multiple behaviors as in-

put (Sison 1998). 

Self (1990) states that the philosophy behind intelligent tutoring systems is only concerned 

with "knowledge communication" (Wenger 1987) and that the goal of teaching is to "transmit a 

particular subject matter to the student" (Ohlsson 1986). Self states that this view neglects the 
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general constructivist educational philosophy, and that for effective learning, knowledge cannot 

be communicated or transmitted, but has to be actively constructed by students themselves. 

However, the research community developing intelligent tutoring systems proved to be resistant 

to the adaptation of ideas from educational psychology for a long time (Self 1990).  

Combining the architecture of an intelligent tutoring system with constructivist approaches 

may be problematic. The process of accommodation may change what a student already knows 

and make it incorrect when new knowledge is learnt after a learning system has verified it. In ad-

dition, misconceptions of students may not be easily identified in an assessment. For example, 

students may answer that the world is round, but think of a flat and round pancake shaped world 

(Vosniadou and Brewer 1989). Additionally, for building an accurate student model, it is essen-

tial to know the intention of the student. However, when interacting with computer systems stu-

dents, especially young students, like to use generate and test for finding solutions. This buries 

conclusive interaction data in noise and often makes it impossible to build a meaningful student 

model. To help students learn critically monitoring their solution and recognizing inconsisten-

cies, constructivist approaches allow learners to descend incorrect solution paths. Traditional tu-

toring systems, especially those that used the cognitive tutoring strategy, often did not pay atten-

tion to this issue, and did not support learning of reflective skills. 

A representative system of one extreme position (drill and practice) in intelligent tutoring 

systems in the mathematics domain is Assessment and LEarning in Knowledge Spaces (ALEKS) 

(Doignon and Falmagne 2003). It is based on the theory of knowledge spaces (Doignon and Fal-

magne 1999; Doignon and Falmagne 1985), which models knowledge as units to be learnt. Basic 

units must be learnt before advanced units; hence, each unit is a precondition to another unit. Stu-

dents can choose to study any unit for which they have learnt all precondition-knowledge. 
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Knowledge is taught through examples and drill-exercises that are accessed as web pages. When 

learners solve a mathematics problem five times (with different numbers) correctly, ALEKS con-

siders it learnt, remembers this in the student model, and opens new choices for the student. At 

the beginning of the curriculum, learners have to solve placement exercises that determine which 

units they know. Then, students select a module with satisfied prerequisites, read the instructions, 

and solve the related exercise. In this system, the student model is the set of all problems solved 

correctly for five times, which is a subset of the knowledge space. Repeating learnt material is 

the choice of the student, as the system is not sensitive to misconceptions, bugs or other higher-

level inferable constructs. The system is available online with a full math curriculum that 

matches standardized tests. To my knowledge, the knowledge space theory was not evaluated in 

studies with subjects, but mathematically proven to be correct. 

Computer Based Microworlds 

In 1980, Papert introduced a new vision for teaching children in a constructivist way through 

pure discovery learning, and published it in the influential book Mindstorms (Papert 1980). This 

vision sees students working in computer environments, called microworlds that allow them to 

explore a concept in many aspects without having to worry about the full complexity of the real 

world. Papert defines a microworld as a self-contained world in which certain questions are rele-

vant and others are not. Each microworld has its own set of assumptions and constraints, and stu-

dents use their natural habits of exploring, playing, and creating to accomplish the learning tasks 

in the microworld. In this sense, every microworld is an abstraction of the real world, which fo-

cuses on relevant aspects of the problem-solving task, and students learn this abstracted knowl-

edge through discovery. 
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Pure microworlds are single domain, pre-defined simulations of real-world phenomena that 

require students to acquire skills that they do not possess. Learners often struggle in setting their 

own goals when tasks are too open-ended, and when they lack self-regulation and other metacog-

nitive strategies. Papert implemented his idea in the programming language called Logo to let 

students acquire "powerful ideas" about the geometry domain (Papert 1980). In this microworld, 

students manipulated the movement of a graphical cursor (the turtle) with programming instruc-

tions to create geometrical shapes.  

As an implementation of pure discovery learning, microworlds share the shortcomings of the 

discovery approach, and may fail to teach target knowledge if the learning context is not well en-

gineered, and if gaming aspects overpower educational goals (e.g., Miller, Lehman, and Koed-

inger 1999). Evidence against pure discovery learning and microworlds is documented in many 

articles (e.g., Pea and Kurland 1984; Klahr and Nigam 2004; Mayer 2004). However, if the idea 

of a microworld is incorporated into a larger learning environment, and is combined with feed-

back to implement guided discovery learning, we can draw from its constructivist benefits. 

Mayer (2004) summarizes the literature as follows: "Children seem to learn better when they are 

active and when a teacher helps guide their activity in productive directions." 

Miller at al. recently explored learning effects when giving students different goals in their 

electronic field hockey microworld (Miller, Lehman, and Koedinger 1999). This microworld was 

intended to help students develop a qualitative understanding of electrical charges. Students 

could place several fixed and one moveable charge on the computer screen and start a simulation 

to shoot a "puck"-charge into a goal. The work assigned 30 college students to three conditions: 
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no-[hockey]goal1 (experiment with the environment without obstacles and net to prepare solving 

a problem with obstacles and net), a specific-path (six prepared levels plus trajectories to hit the 

puck into the net), or a standard-goal (six prepared levels no trajectories). The no-[hockey]goal 

and specific-path conditions showed the highest learning gains in this experiment. The authors 

concluded that it had to be made clear to the learners what learning outcomes were expected 

from them, and how they should use the microworld. Thus, the authors conclude that, "goal-

based problem solving will transfer to pedagogically relevant material exactly when the goal-

dependent relationships coincide with pedagogically relevant relationships." In addition, the gam-

ing aspects of the microworld often distracted students without letting them learn qualitative rela-

tionships of charges. Augmented microworlds with guided discovery have similarities to interac-

tive learning environments, which we discuss next. 

Interactive and Intelligent Learning Environments  

Interactive learning environments (ILE) are built around constructivist principles of learning. The 

student has freedom to explore the environment, and learn from mistakes. Wilson defines inter-

active learning environments as: 

"... environments that allow for the electronically integrated display and user control of a va-

riety of media formats and information types, including motion video and film, still photo-

graphs, text, graphics, animation, sound, numbers and data. The resulting interactive experi-

ence for the user is a multidimensional, multisensory interweave of self-directed reading, 

viewing, listening, and interacting, through activities such as exploring, searching, manipu-

lating, writing, linking, creating, juxtaposing, and editing." (p. 186, Wilson 1992) 

                                                 
1 The authors used the label no-goal for this condition, but the students received the instructions to prepare for a 
situation with obstacles and net. The assumption is that the authors use goal to refer to the field hockey goal (net) and 
not the task's goal. 
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Obviously, we can distinguish different levels of interactivity. Schwier and Misanchuck cre-

ated a three level hierarchical taxonomy: reactive interactivity (in response to a given stimuli, 

tutoring), proactive interactivity (user generation of unique constructions) and mutual interactiv-

ity through use of artificial intelligence (Schwier and Misanchuk 1993). Simple tutoring systems 

and basic cognitive tutors fall into the class of reactive systems. Due to our focus on artificial in-

telligence based systems, we henceforth discuss mutual interactive systems. A mutual interactive 

system adapts to the learner, advises, assists and modifies the environment to optimize learning, 

and shows intelligence and adaptive behavior.  

It appears that some authors adopted the term intelligent learning environment (also ILE) for 

mutual interactive learning environments, but at this time, no formal definition of an intelligent 

learning environment seems to exist. All systems that we have reviewed, which classify them-

selves as intelligent learning environment, use artificial intelligence (e.g., Forbus and Whalley 

1994; Nichols 1994). Other authors may also use the term to simply distinguish their systems 

from intelligent tutoring systems. Various authors state: "An intelligent learning environment 

(ILE) is primarily one, which understands the individual student well enough to be able to deter-

mine individualized actions." (Self 1991), and "We use the term intelligent learning environment 

to denote an intelligent artificial environment, which does not necessarily replace a human 

teacher." (Gust et al. 1999) 

Research at Vanderbilt University’s Learning Technology Center (Crews et al. 1997) has 

embraced the following view of interactive learning environments. These systems offer safe-

guards to help students back on track if they are stuck, and present multiple representations of a 

concept to the student. Thus, they help the learner to develop a deeper understanding of concep-

tual relationships in the domain. Such environments also draw from situated cognition and an-
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chored instruction, by putting learning into a realistic, complicated macrocontext that provides a 

rich problem-solving environment. The student is often asked to solve new problems by using 

available resources, while the system itself observes the student, and offers help when it is 

needed. The environment typically does not correct the learner by providing a correct solution, 

but may coach the learner through various levels of hints. Artificial intelligence facilitates these 

goals, if necessary.  

In the following paragraphs, we describe two intelligent learning environments that use these 

strategies: Smart Tools and Anchored Interactive Learning Environments. Both environments use 

Adventures of Jasper Woodbury episodes (Cognition and Technology Group at Vanderbilt 1997) 

as anchoring contexts and are direct predecessors to the system that is introduced in this work.   

Smart Tools (Owens et al. 1995) combine anchored instruction with macrocontexts and mi-

croworlds in the domain of teaching functional relationships, like, distance-rate-time. Students 

create graphs and tables (their own Smart Tools) to explore and solve problems. Task activities 

in the environment have the purpose of leading students to generalize from specific problems to 

concepts of the domain. The system provides a simulation in which the student can explore dif-

ferent settings, a table to write down experimental results and a time-distance graph to plot re-

sults. The system works in two modes: the exploration mode in which students can perform ex-

periments and collect data, and the challenge mode in which students solve a set of problems to 

verify their graphs and tables. 

Crews et al. developed Adventure Player, an Anchored Interactive Learning Environment 

(Crews et al. 1997). This environment situates the student in the Rescue at Boone’s Meadow ad-

venture, where Jasper finds a wounded eagle in a remote meadow and the learner has to devise a 

rescue plan to get the eagle back to a veterinarian as fast as possible. The microworld provides 
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limited resources, like vehicles with payload limits, speed limits, footpaths, and so on. Students 

need to consider different candidate solutions to solve the problem optimally. Crews derived the 

following principles for such a learning environment in his work:  

• Implement the principles of generative and active learning. 

• Provide anchored learning 

• Facilitate and allow guided discovery learning 

• Explicate domain knowledge through multiple representations (e.g., tables and 

graphs) 

 

Figure 3. Reengineered Version of Rescue at Boone’s Meadow with Planner and Timeline 

Crew’s Adventure Player asked students to create an optimal rescue plan in a planning-

notebook, which contained a list of plan steps, like "fly Ultralite from City to Meadow." Plan 

steps could execute concurrently. As students developed their plan, they optimized it by observ-

ing how their plan steps worked in the simulation. After the student chose a planning action, the 

learning environment checked the validity of the planning action and responded appropriately. If 
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an action was invalid in the real world due to physical limitations, like loading the rescue aircraft 

on a truck and driving it to the destination, the system disallowed it and provided an instant ex-

planation. Students could also derive plans that failed, for example, because the airplane ran out 

of fuel, and see the results in their simulation. Students learned which planning actions had 

which consequences and solved many distance rate time problems on the path of finding an op-

timal solution. Additionally, the system implemented the principle of minimal help – give stu-

dents just enough help to solve the problem (Reusser 1993). Hence, the system included a coach-

ing component that gave feedback on five different levels with increasing specificity. The results 

showed that students using the full system solved the challenge significantly more often than stu-

dents using a core system without the simulation environment for exploratory learning. 

STAR Legacy Learning Shell 

Schwartz et al. implemented the Flexibly Adaptive Instructional Design (see page 38) as Soft-

ware Technology for Assessment and Reflection (STAR) Legacy learning shell to help curricu-

lum designers organize learning activities into pedagogically sound inquiry-based learning cycles 

(Schwartz, Brophy et al. 1999; Schwartz, Lin et al. 1999). The system, which was initially im-

plemented in HyperCard™1, is a foundation for the cycle design of our learning by teaching 

agents environment. The student solved progressively more complex challenges by iterating sev-

eral times through the phases of a cycle. The design philosophy behind STAR Legacy’s learning 

cycles conforms to constructivism, situated learning, anchored instruction, and inquiry learning. 

A brief outline of the system states that … 

"Research has shown that effective instruction often begins with an engaging challenge or 

scenario that introduces the lesson and invites student inquiry. The combination of a chal-
                                                 
1 HyperCard™ is a multimedia audiovisual content authoring system similar to Authorware™. 
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lenge, interactive activities, and multiple opportunities for sharing, assessment, and revision 

is called a STAR Legacy module." (IRIS 1999) 

 

Figure 4. STAR Legacy learning shell cycle structure (IRIS 1999). 

In each challenge, learners progressed through a cycle (see Figure 4) with the following 

steps: (1) Review a new challenge; (2) Generate ideas and thoughts; (3) Access multiple perspec-

tives, resources and solve the problem; (4) Assess their own learnt knowledge; and (5) Write a 

summary, and compare with others (see Figure 4). Generating ideas captured the student’s pre-

conceptions, making successive viewpoints of expert perspectives and resources more relevant 

and interesting, because in the following step it led students to recognize, "Oh! I didn’t think 

about this (… or like that)" (Bransford 1990). Figure 4 shows a double arrow between the steps 

of perspectives and assessment, which indicates that learners could revise their understanding 

after getting feedback following formative assessment. The term Legacy captures the notion that 

students preserve their reports and notes they made during the learning and problem-solving 

phase for future students to use as exemplars. In the next chapter, we introduce how we have 

adapted this strategy to learning by teaching. 
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Related Teachable Agents Research 

Betty’s Brain  is based on constructivist and inquiry based learning (Davis et al. 2003; Leelawong 

et al. 2002; Leelawong et al. 2003; Leelawong et al. 2001). Students teach an intelligent software 

agent, Betty, by constructing concept maps about science topics. To do this, students add con-

cepts to an initially blank concept map (they fill Betty’s empty brain), and connect the concepts 

with causal relationships that express increase or decrease relationships between concepts (Figure 

5). Later, students can ask questions or quiz their agent. The agent uses the concept map to derive 

answers using qualitative reasoning mechanisms (Leelawong et al. 2001). Betty’s answers lead 

students to identify mistakes in their concept map, and this helps them reflect on their own un-

derstanding. Thereafter, students can access and review learning materials, revise what they 

know, and improve their concept maps. 
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Figure 5. Teachable Agent Betty’s Brain models an ecosystem domain 

Research on Betty’s brain established the role of formative feedback through questioning 

and quizzing (ask a set of questions; plain correctness feedback) the agent in the science/concept 

map domain (Leelawong et al. 2002; Leelawong et al. 2003). Questioning the agent implies that 

students can ask the agent questions like the one illustrated in Figure 5, and the agent answers by 

animating its reasoning on the concept map. Students quiz by asking the agent a whole set of ex-

pert prepared questions, and receive the agent’s answers plus correctness feedback from the 

teacher. Results indicated that providing students with opportunities to quiz their agent decreased 

the amount of irrelevant information and increased the proportion of causal information in stu-

dents’ maps; whereas having opportunities to query their agent increased the interconnectedness 

of concepts in students’ maps. These results held despite observations of students during the 

study, which indicated that students who quizzed might have been overly focused on "getting the 

quiz questions correct" rather than on understanding the domain (Leelawong et al. 2003). 
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Agents 

At the beginning of this work, we mentioned that learning is, in some aspects, a social process, 

defined by social interaction in schools and in the community. It was determined that helping 

somebody to understand material may be rewarding for the tutor (Biswas, Schwartz et al. 2001). 

This motivates the use of agents to promote deeper understanding. The fundamental question for 

deriving the software architecture for teachable agents is how to define and what to expect from 

an agent embedded in our system.  

An agent, in everyday sense, is one who is authorized to act for or in the place of another to 

accomplish a goal (Merriam-Webster 2005). Our computer agents were designed to act to ac-

complish the goal of improving learning through means that we have discussed in the previous 

sections. Remarkably, this does not require our agents to learn presented knowledge using ma-

chine-learning techniques like a human. Rather our agent's goal is to facilitate the student's learn-

ing process by participating in exploratory tasks, helping the student to formalize his knowledge 

using a systematic human-agent shared representation, and helping the student reflect on her 

problem solving by applying the derived representation to problem solving tasks. 

Etzioni and Weld (Etztioni and Weld 1995), and Franklin and Graesser (Franklin and 

Graesser 1996) enumerated traits of agents. While discussing them, we apply them to our learn-

ing by teaching agents context. Teachable agents should have the ability to selectively sense the 

actions of the user in the learning environment and act upon them. Our agents should exhibit 

autonomy by directing their actions towards the goal of helping the user gain deep understanding 

of domain material. To a limited degree our agents need to collaborate, for example, a teacher-

agent may need to correct the answers of the teachable agent. Teachable agents need to learn 
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from the user and react by expressing behavior consistent with their learnt knowledge, to make 

misconceptions in the user’s knowledge evident. To which degree inferential capability of teach-

able agents has benefits for the learning of its user may be subject of future research. Our agents 

need to be temporally continuous and preserve their state (knowledge) over the duration of their 

use for each student. Another important trait of teachable agents is their personality. To demon-

strate characteristics of a good student, they must believably learn, ask challenging questions, and 

be motivating for a learner. Interactivity between agents helps coordinate learning and lets the 

teacher agent point the student to the right materials. Mobility (that agents can move transpar-

ently to different hosts or systems) is not required for the scope of our current research. 

Frasson et al. see intelligent tutoring systems evolving towards implementing multiple 

strategies with agents that model human behavior in learning situations (Frasson et al. 1996). 

They call these cognitive agents actors, who are reactive, adaptive, and instructable. In their sys-

tem design, the authors include a tutor, supervising a learning session, a troublemaker who is a 

colearner agent that solves problems often incorrectly, and this may improve the learner’s self-

confidence, and an artificial learner that aids the dialogue and synchronizes the human learner’s 

activities with different agents. Having a troublemaker in the environment may have similar ef-

fects as a teachable agent that learns or reproduces knowledge unreliably (e.g., it solves problems 

90% of the time correctly). Assigning different roles to different agents may address a number of 

issues that facilitate learning. For example, an agent that is being taught cannot know whether 

knowledge is correct or not, however, a teacher agent can believably correct the user or another 

agent. Unfortunately, Frasson does not report any data or evaluations on subjects for this system. 

Once computer agents learn with human students, the question arises how competence of 

these agents influences collaborative learning. Hietala and Niemirepo looked into this issue and 
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divided subjects into four groups of low achieving and high achieving crossed with introverted 

and extroverted students (Hietala and Niemirepo 1998). The study found that introverted high-

achieving students liked strong companion agents. However, these subjects tried to solve the 

problems by themselves first before asking the agent. Lower achieving students preferred to col-

laborate with weak agents and generally asked for a suggestion, before trying to solve the prob-

lem by themselves. The implications from this study are that due to the variation across different 

personality types of learners, we would have to give different students different agents. However, 

this would introduce confounding variation in our experiments and the cost of implementation 

would rise. Therefore, a medium strong agent is the best compromise. 

Another dimension is the embodiment of the agent. Embodiment is typically achieved 

through gestures, hand and body movements, animation, and synthetic speech. A study by John-

son and Rickel reported statistically significant increases in learning when pedagogical agents 

were animated (Johnson and Rickel 2000). A multi-modal effect with visual and auditory quali-

ties and additional practical and theoretical advice could yield further improvements in learning. 

The study suggested that the benefits of animated pedagogical agents increase with the complex-

ity of the problems. Visual animation is currently a hot topic in research, and its benefits appear 

to vary with applications in different domains. Our research group is working on animating 

teachable agent Betty in the Betty’s Brain learning environment. Because animation is not part of 

this design, we will not discuss any further papers on this topic here.  

Summary 

In the last two chapters, we explored cognitive science literature on learning, computer aided in-

structional systems and agent technology that helped us to define a framework for an intelligent 



   67  

learning environment. Our research specifically focuses on the distinguishing features of learning 

by teaching agents, even though most of the justifications in the previous chapters apply to the 

whole learning environment that we introduce in the next chapter. 

The psychological knowledge of how people learn helps to define the base effectiveness of 

our system. Constructivist learning (Piaget 1954) is a complex process of integrating new knowl-

edge with preconceptions while providing means for correcting misconceptions. This involves 

placing the student in a feedback loop that involves learning new concepts, practicing their use 

by solving problems, reflecting on the solutions generated, and using the feedback from the sys-

tem to improve one's learning and understanding of the relevant concepts. We accomplish this by 

adapting strategies applied in the STAR Legacy Learning Shell, which organizes knowledge in 

inquiry-based learning cycles (Schwartz, Brophy et al. 1999; Schwartz, Lin et al. 1999). 

As we have established, situating or anchoring a learning task in a meaningful context 

(Bransford 1990; Cognition and Technology Group at Vanderbilt 1993; Crews et al. 1997) will 

enhance the likelihood that transfer of knowledge occurs so that students can apply it in new 

situations. Thus, we introduce the problem-solving domain as elaborate macrocontext (as re-

quired by anchored instruction), from which we draw specific problems and proximal goals of 

increasing difficulty. Additionally, this may motivate the learner by demonstrating task value. 

While discovery learning may accomplish this in the end, if the student stays motivated, we may 

be able to accelerate this process by engaging the student in learning by teaching.  

Research in computer-aided instruction developed in two parallel mainstreams following the 

exploratory approach (e.g., Papert 1980) and tutoring approach (e.g., Anderson 1995; Wenger 

1987) separately for many years. Only in the last decade, researchers started to explore synergis-

tic approaches. The tutoring approach mainly focused on devising intelligent tutoring systems, 
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which followed a strict modular architecture that taught knowledge to the student. Research sug-

gests that teaching correct procedures and knowledge, while flagging the student’s mistakes, is a 

good way to teach. Many papers in the area of intelligent tutoring systems describe how to model 

the student and derive misconceptions and remediation from the students’ actions. However, one 

of the shortcomings of the tutoring approach is that it often neglects the necessity for students to 

learn from their own mistakes, and monitor their progress using metacognitive (reflective) skills. 

This shortcoming is addressed in exploratory approaches. 

The early developments of the exploratory camp were a number of microworld-based sys-

tems (Papert 1980), which were pre-defined simulations of real-world phenomena that allowed 

the learner to explore freely, observe the consequences of making mistakes, and learn from these 

interactions. In these environments, learners sometimes struggled to set their own goals, unless 

they already had a good understanding of the domain of study, and possessed strong self-

regulation characteristics. However, the biggest disadvantage was that though students often en-

joyed the gaming aspects of microworlds and learned to use a microworld effectively, they still 

failed to learn parts of the target domain knowledge. 

Recent developments in mutual interactive and intelligent learning environments combined 

anchored instruction, and situated cognition with coaching to provide guided discovery learning 

(Crews et al. 1997) and emphasized the role of representations in teaching mathematics (Owens 

et al. 1995). Students solved problems, while using smart tools that assisted them in acquiring 

knowledge and discovering misconceptions. In the mathematical domain, creating a representa-

tion, like a graph, helps the learner to acquire knowledge consistent with the constructivist idea, 

while a simulation aids the student in establishing the ground-truth for attempted solutions. 
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Observations in peer tutoring showed that tutors also learn when they teach their tutee 

(Cohen 1986; Gaustard 1993; Biswas, Schwartz et al. 2001). Thus, letting the students learn for 

themselves in the process of teaching an agent may improve the effectiveness of a learning envi-

ronment even further. This may help if agents point out the contradictions in the knowledge 

structures that the students formulate while teaching or it may introduce new insights that the 

learner has never had before. Interaction with agents can also provide motivation through a social 

context and the desire to help one's agent, especially in young learners. As the teaching task in-

volves dealing with other’s mistakes it is possible that this aids the ability to manage own mis-

takes. A primary causal mechanism for this might be the acquisition of metacognitive, reflective 

skills, which are believed by many authors to transfer readily between domains. In this sense, we 

hope that the findings that we discussed here help us to successfully design and evaluate a 

framework for an intelligent learning environment that can serve as a model implementation. 
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CHAPTER IV 

 

SYSTEM DESIGN 

This chapter describes the design and implementation of our learning by teaching agents envi-

ronment. We follow the design principles for such environments that were established by Biswas 

et al. (Biswas et al. 2005), which are outlined below. 

• Build on well-known teaching interactions to organize student activities. 

• Agents are taught through visible representations. 

• Keep the start-up costs of teaching agents low. 

• Ensure the agents have independent performances that provide feedback on how well they 

have been taught. 

To build on well known teaching interactions, we used an anchored interactive learning en-

vironment design similar to the one in Adventure Player (Crews 1995; Crews et al. 1997). Ad-

venture Player is an interactive learning environment linked to the Adventures of Jasper Wood-

bury series (Bransford 1990; Cognition and Technology Group at Vanderbilt 1997, 1993). A sec-

ond component that we used to structure teaching interactions are learning cycles that were 

adapted to the learning by teaching paradigm from STAR Legacy (Schwartz, Brophy et al. 1999). 

The anchoring context situated the students’ problem solving in a realistic context, for example, 

students were told that they were interns at a company. In this context, students are asked to 

solve many distance-rate-time problems quickly and correctly. This provides intrinsic motivation 

(challenge, control, fantasy, and cooperation) to gain deep understanding of the domain material 

in the context of problem solving activities. The need to be fast and accurate also motivates stu-
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dents to develop their own Smart Tools1 (Owens et al. 1995) to solve problems. To adapt STAR 

Legacy’s inquiry cycles to learning by teaching, we merge phases two and three of the cycle 

(Figure 4) into the teach phase, which lets students access resources and perspectives of the 

teacher agent, and learn for themselves, before they teach their computer-based agent. Following 

this, students receive feedback through formative assessment in the quiz phase, and they can re-

turn to the teach phase to revise their understanding. Then they proceed to the test phase to con-

clude a cycle and receive summative feedback after taking a test. 

Students teach agents by creating a visible, shared representation of their understanding (in 

our case a graph), and teach the remaining declarative and procedural knowledge of how to use 

these representations through dialogue choices and demonstration. In our domain of distance-

rate-time problems, the representation structure for problem solving is a graph. Therefore, in each 

of our learning cycles students learn how to use, create, and modify graphs and teach this to the 

teachable agent, Billy. Because students also have to teach the agent procedures how to use 

graphs (e.g., read it), but performing actions by demonstration alone was not sufficient for unam-

biguous learning, we used a mixture of student-agent dialogues along with demonstrations of 

problem solving steps for this purpose. For example, the agent wants to solve a specific problem 

and asks, "How do we start?" Then the student selects an action from a set of dialogue options 

that the agent offers, and Billy implements the student’s choice, or asks for a demonstration on 

how to proceed. This reduces the start-up costs of teaching our agents, as students can demon-

strate solutions and choose actions among dialogue options. 

We provide formative feedback of how well our agent has been taught by letting the students 

quiz the agent. A student selects from a set of predefined problems. Billy solves the selected 

                                                 
1 In our context, Smart Tools are graphs and tables. 
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question and provides an answer if he was taught by the student beforehand. Otherwise, the agent 

says that it does not know a solution, and needs to be taught how to solve the problem. If Billy 

can provide a solution, the student can request an explanation (demonstration and verbal explana-

tion), and then choose between teaching the agent better and asking the teacher for the correct 

solution. We discuss this in the next section in more detail. 

In the following section, we give an overview of the cycle architecture. Some design issues 

are dictated by our experimental design, which splits students into two groups: the experimental 

(learning by teaching) condition and the alternate condition. Because Billy is not taught in the 

alternate condition, some shared resources and the cycle do not mention teaching an agent. In this 

chapter, we focus on the learning by teaching system and only occasionally mention experimental 

design issues, which are discussed in the following chapter. 

The Cycle Architecture 

The system organizes the student’s learning by teaching in cycles. We have adapted this idea 

from the STAR Legacy learning shell (Schwartz, Brophy et al. 1999; Schwartz, Lin et al. 1999) 

to the learning by teaching paradigm (for a discussion of STAR Legacy see page 60). The learn-

ing cycles are organized in sequence of increasing difficulty and present the activities in an or-

ganized way. 

We have replaced the individual phases of the STAR Legacy approach with a general intro-

duction, a problem introduction, and the three phases of teaching, quizzing, and testing. For the 
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sake of our experimental design and our anchored instruction approach1, we label the last three 

phases Make Smart Tool, Try Smart Tool, and (solve problems for) Real Customers (instead of 

Teach Billy, Quiz Billy, and Test Billy) to hide the fact that there are two treatment groups (see 

Figure 6). In the following sections, we describe each step of a cycle in more detail. 

 

Figure 6. Teachable Agent Learning Cycle  

General Introduction (Anchoring Context) 

Before a student uses the system for the first time, we introduce the anchoring scenario in the 

general introduction. This situates the student in a realistic fictional problem-solving context that 

stimulates the student's fantasy for motivational purposes. In our case, the anchoring context in-

volves a small airplane and jet transportation company, JetEx. The company is owned by the trio 

Jasper Woodbury the CEO, Emily the pilot, and Larry the engineer. They have hired the learner2 

                                                 
1 We situate the learning task in a realistic context: The student teaches the teachable agent (an intern at a jet trans-
portation service) to make smart tools that help compute flying durations for real customers. See page 14 for more 
information on anchored instruction. 
2 Due to our experimental design, the teachable agent Billy is not introduced in shared lectures. Later on the com-
puter, learners of the experimental group will find out that, they work together with Billy.  
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as summer intern to interact with customers. The characters are linked to the Adventures of Jas-

per Woodbury (Cognition and Technology Group at Vanderbilt 1997), which allowed us to reuse 

introductory movies with professional actors to introduce the anchoring context. This story situ-

ates our students in a realistic macrocontext, from which we draw all our mathematical problems. 

This anchoring context is initially presented as a twenty-minute long movie to all partici-

pants simultaneously in class. This movie flashes back to the childhood of Jasper, Emily and 

Larry and shows how the friends won a contest at a local traveling agency by constructing smart 

tools for distance-rate-time problems. This has obviously contributed to their current success in 

running their company. At that point, the story switches back to the current time, when the stu-

dents are told that they have been hired as summer interns by just that company. Students are in-

formed that they will learn from the company’s mathematics expert, Ms. Mathie, who is the 

teacher agent in our environment, how to develop smart tools. These smart tools will then help 

students to provide quick answers to questions of customers that want to rent aircraft on transpor-

tation between different cities. Later, when students work with the learning environment, they 

can review a summary of this introduction as pages in a web-browser by clicking on the first icon 

in the cycle ("Click to Start" in Figure 6).  

In the learning by teaching condition, we introduce students additionally to our teachable 

agent Billy, who says that he has trouble understanding graphs. Billy elaborates further that he 

would appreciate the student’s help to learn more about the domain, so that he can successfully 

solve problems for the customers. Students in the alternate condition meet a different Billy, who 

writes a report about Jasper’s company without being involved in solving mathematics problems. 
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Problem Description 

At the beginning of each cycle, students read a web page that introduces data, problems, and 

goals (Figure 7). This page includes pictures of airplanes, a view of the cockpit, and technical 

data about the planes. The problem statement contains essential and unessential data similar to 

how materials were presented in the Adventures of Jasper Woodbury video resources (Cognition 

and Technology Group at Vanderbilt 1997). This prepares students for another complexity of 

real-world problem solving, which is the extraction of essential information from realistic prob-

lem contexts1. Traditional word problems in mathematics books (microcontexts) do not develop 

this skill. Additionally, this wealth of information may fuel the student's natural curiosity and 

fantasy about airplanes, which could influence their motivation (Malone and Lepper 1987). 

                                                 
1 Our current system only fosters this skill during the problem introduction, but future versions may improve on this. 
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Figure 7. Problem Description of Cycle 3 

Teach Phase 

As we discussed earlier, the teaching task involves an initial phase where the student teacher pre-

pares for teaching by learning, reviewing, and organizing material in a manner that it can be 

taught before engaging in the actual teaching task itself. Teachers scout, choose, access, and then 

organize material in a meaningful way, and learn by reading, planning and reflecting, before 

teaching. We do not expect that novice tutors will differentiate these steps, therefore the tasks of 

preparing to teach and teaching will occur together during the teach phase. Students may switch 

between asking the teacher agent and teaching at their disposition.  

In the teach phase, students use three components of the system: (1) the simulation, (2) the 

smart tool (an interactive graph), and (3) the agent interface (Figure 8). The simulation provides 

feedback if a distance-rate-time problem has been solved correctly, but students cannot use it to 

find problem solutions directly without using the graph or calculating. Students learn by teaching 

the agent how to use or create a smart tool in each cycle. In this process, students communicate 
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with the teachable agent in dialogues to tell it what to do next, and ask the teacher agent about 

domain knowledge if they are stuck. Details about the design and implementation of the dialogue 

and smart tool components are provided later. 

 

Figure 8. User Interface in the Teach Phase: Simulation (top), Graph (left bottom), and Agent Interface  

 In the teach phase the student has two primary goals: (1) To use, create, or modify a given 

graph in order to "teach the agent" (student and agent share this representation); and (2) To teach 

Billy directly in a dialogue by telling him what to do step by step. In each cycle, upon entering 

the teach phase, the teachable agent initiates the dialogue by repeating parts of the problem de-

scription1, and then offers a few choices of how to proceed to the student. To start, the student 

has three primary choices to teach the agent: (1) use the simulation, (2) use the graph tool, or (3) 

start talking to the teacher or teachable agent. However, these choices depend on the task and, 

like a main menu, offer major paths in solving the problem. Two additional choices offer to teach 

                                                 
1 In the control condition, the teacher agent will repeat the problem, because Billy plays a different role. 
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or ask the agent. Through these dialogues, the agent offers options of how to proceed to the stu-

dent, which are explicit and proximal goals (Bandura & Schunk, 1981; Csikszentmihalyi, 1978). 

Still the student is in control and can explore freely by solving the problem on his own (run simu-

lations, draw the graph), or asking the teacher for more information if the choices provided in the 

dialogue with the agent seem unattractive. Thus, students can choose the amount of interaction 

with the agent, and the amount of guidance from the agents.  

Some students will attempt to solve the problem on their own before teaching and work on 

basic domain knowledge with the teacher agent; others will follow closely the options that the 

teachable agent provides. The teachable agent often refers the student to the teacher agent to ex-

plore appropriate topics. We think that this choice avoids problems with strong and weak agents, 

as they have been described by Hietala (Hietala and Niemirepo 1998). 

In the mathematics domain, the student has to teach procedural and declarative knowledge to 

the teachable agent. First, students learn knowledge by explanations and demonstrations from the 

teacher and try it out in the learning environment. Then, the learner starts talking to Billy. In 

some dialogues, our teachable agent asks the user to demonstrate a procedure (like how to read a 

graph), while in others he asks for declarative knowledge. The learner teaches declarative knowl-

edge by choosing an answer to a what-is question of the agent in the dialogue interface (see ex-

amples that follow), and procedural knowledge by a combination of dialogue and demonstration.  

The overall communication can be looked upon as a mechanism by which the student ex-

plains to Billy how to solve individual steps of a problem. A similar approach, self-explanation, 

has been used in cognitive tutors (Aleven and Koedinger 2002) and has produced significant im-

provement in learning.  
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Teaching the Teachable Agent – Two Examples 

In this section, we illustrate how the student teaches an agent on two examples. In the next three 

paragraphs, we discuss how students teach the agent the procedure to read a graph. Then, we de-

scribe how learners teach declarative knowledge to the agent.  

The main learning goal in cycle one is to understand how to read a graph. For this, the stu-

dent first requests instruction from the teacher agent, and tries to understand it. Then, the student 

selects, "Billy, I will teach you something..." in the agent dialogue. This will branch to a new dia-

logue with a choice of several procedural and declarative topics. For our example, the learner 

chooses, "Teach Billy how to read the graph when miles are given." Then, the agent asks, "What 

should I do to find how long a trip of, let’s say ... 350 miles takes?" The agent interface offers the 

following four choices to the student: (1) Billy, press "Find X" in the graph tool; (2) Billy, press 

"Find Y" in the graph tool; (3) I will teach you later; and (4) Ask the teacher. 

Now, the tutor has to teach the agent by suggesting the first step. If the student teaches the 

agent correctly, she will select choice number one. The agent will reply, "OK, let’s start with 

finding X..." and the agent presses the "Find X" button in the graph tool. This shows two blue 

reader lines in the tool, which the user can manipulate by individually dragging them with the 

mouse. When find X is used, only the horizontal reader line displays a number that changes when 

it is dragged with the mouse (more details on this when we discuss the graph tool). Then, Billy 

asks, "Now what do we do with 350 miles? Please show me until you get the result." The agent 

interface displays four new choices: (1) Billy look, I have the result; (2) I will teach you later, let 

me try out myself for now; (3) Sorry, wrong thing. Let’s start over …; and (4) Ask the teacher. 
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Figure 9. Teaching the Agent to Find Minutes when Miles are given. 

At this time, the student has to finish reading the graph by first moving the horizontal reader 

line to 350 miles, and then intersecting both reader lines on the velocity line in the graph (Figure 

9). To display the result, the user has to press the "Done" button in the graph tool. Then, she tells 

the agent, "Billy look, I have the result." If the tutor forgets to press "Done", then the agent will 

ask, "I cannot see any result. Did you click the ’Done’ button in the graph tool?" Finally, the 

agent will note, "So that is the result... 152 minutes. I will try to remember that." This concludes 

teaching Billy how to read a graph for finding time when distance is given. Using an almost iden-

tical procedure, the student can teach the agent how to find distance when time is given. 

Teaching declarative knowledge is less involved. For example, to teach the agent what an 

ordered pair is, the student has to answer the following question correctly, "How can I write 

down a point? My mathematics book says. P = (20, 30) is an ordered pair. I suppose an ordered 

pair is ordered." The agent interface displays the following choices: (1) P = (y, x) first Y and sec-

ond X coordinate, or 20 minutes, 30 miles; (2) P = (y, x) first Y and second X coordinate, or 30 

miles, 20 minutes; (3) P = (x, y) first X and second Y coordinate, or 20 minutes, 30 miles; (4) 
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Ask Billy, "How can you use a point?"; and (5) Ask Ms. Mathie about points. The student has to 

select one of the first three choices to teach the agent. Choices to teach the agent use the key-

color red. After teaching, using choice four will provide the agent’s answer, which is an interpre-

tation of what the student has taught. Choices that cause the agent to react use the key-color blue. 

If taught right, the agent answers the following, "I always use the first number of an ordered pair 

on the x axis and the second on the y axis. This is the same order as the alphabet. X is before Y. 

That is easy to remember." The student can verify taught knowledge, other than verbally, in the 

quiz phase. 

Quiz Phase 

After the student decides that she has taught Billy enough, she will quiz the agent to check his 

knowledge in the quiz phase. Again, this section will not illustrate the internal workings of the 

environment, but the interaction of the user with the learning system. We discuss the differences 

in the user interface for the alternate condition to the section on experimental design.  

The quiz-phase corresponds to the formative assessment step of the STAR Legacy learning 

shell (Schwartz, Brophy et al. 1999; Schwartz, Lin et al. 1999). Leelawong et al. have extended, 

adapted, and validated the quiz as formative assessment tool (Leelawong et al. 2002; Leelawong 

et al. 2003). In this system, the quiz questions are relevant distance-rate-time problems. Students 

are permitted to work on the quiz problems as long as they like, and this gives them the opportu-

nity to reflect on their knowledge, and gain better understanding of domain concepts. Feedback 

from the quiz phase (teachable agent and teacher agent) helps students to correct their lack of un-

derstanding or their misunderstanding of domain knowledge. 
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The student enters the quiz phase by clicking on the next step in the cycle. Then, the agent 

dialog interface is replaced by the quiz interface, which provides up to 15 expert prepared text 

problems (Figure 10). This interface has three tab-panels that allow the student (1) to ask the 

agent to solve a problem, (2) to request an explanation of the agent how it has solved the prob-

lem, and make suggestions on how Billy may improve, and (3) to ask the teacher for the correct 

solution. The simulation (not shown in the figures) and the graph tool are still available to the 

learner, and can be used to verify the agent’s answers at any time. 

 

Figure 10. Quiz Phase: The Student selects a Problem and the Agent solves it 

The learner starts quizzing the agent by choosing a problem category, and clicking on a ques-

tion to ask the agent to provide a solution. The quiz grid (Figure 10, top right) gives a quick 

overview of how Billy has performed on quiz questions. If the student has not asked the agent to 

solve a particular problem that grid position is marked by a question mark icon. If Billy solved a 

question and the student asked the teacher to check the answer, the grid displays if a question was 
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answered correctly. If Billy answered a question correctly, that position is marked by a green 

checkmark. If Billy has answered wrong, the interface displays a red X. Because the correctness 

of a question may change if the student modifies the graph, a red/greed square marks a question 

that needs to be revisited. 

If the learner chooses a problem, the problem text is displayed in the upper text box of the 

quiz interface, and shortly after that, the agent provides the solution in the text box below the 

problem (Figure 10). Billy derives an answer, if he has been taught the procedure to solve the 

problem, or asks the student to teach him what he still does not know. The agent uses the graph 

that the student has created, but does not demonstrate how he has derived the solution unless the 

student specifically asks for it. 

The correctness of an agent’s answer depends on (1) the correctness of the representation, 

which the student has created during the teaching phase, and (2) that the agent was taught the 

correct procedure to solve the problem. If the student did not teach a topic, the agent will ask to 

be taught. If the representation is wrong, the agent complains if it cannot use a procedure that it 

has been taught (e.g., if the line is too short). Billy provides a solution as long as what he has 

learnt is applicable (for example, if a line has an incorrect slope). In the latter case, the student 

has to rely on the answers of the teacher to find an error. 
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Figure 11. Quiz Phase: The Teachable Agent demonstrates and explains its Solution 

Once Billy generates an answer, the student can indicate whether his answer is right or 

wrong. If the student is unsure, he or she might ask Billy to show how he has derived the answer. 

For this, the quiz interface switches to the suggestion mode (Figure 11). Here, the student can ask 

for an explanation, request a judgment from the teacher, or quickly go back to the teach phase 

again to revise Billy’s knowledge. 

The key feature is when the agent gives feedback by demonstrating his solution in words, 

and animation in the graph. Figure 11 shows how the agent describes the problem solution. Billy 

says, "I used Find Y. then I adjusted the reader lines to 90. I let the reader lines intersect on a line 

to find 207." At the same time, the agent animates dragging the reader lines in the graph to show 

how it obtained the solution. On problems with two legs, the agent repeats the description a sec-

ond time and shows how he has added the results. If the student has taught the agent wrong, Billy 

makes the same mistakes that he was taught. For example, he might read the graph in the wrong 



   85  

direction. To correct any combination of mistakes the student has to teach the reading procedure 

to Billy again. 

To obtain a check mark, the student has to ask the teacher for her review of the problem by 

selecting the ask teacher tab. This leads to the teacher feedback interface (Figure 12). Initially the 

teacher only reports if the agent found the correct solution, and if the number and/or unit of the 

solution are correct. After reading this, the student can request a full solution from the teacher, 

which describes in words how to obtain the result.  

 

Figure 12. Quiz Phase: The Teacher Agent corrects (left) and gives the Solution (right) 

Test Phase 

When students think Billy learnt enough and is ready to solve all problems of this cycle they send 

him to take the test. The simulation is replaced by a more advanced version that shows the map 

of the USA, and that allows simulations of flights between cities (Figure 13). Problems are 
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drawn from this context, but are still very similar to those that the students solved in the quiz 

phase. 

As special task, students are told that they have to grade Billy’s answers. As teachers, they 

need to create a test for Billy. Although we provide the questions, students have to solve all prob-

lems on their own before they can grade the teachable agent. Right after that, the teachable agent 

solves the problems using the graph and succeeds or fails, depending on the correctness of the 

representation and taught knowledge. Students grade the agent by comparing their own prepared 

answers with those of the agent and telling the agent if it is correct or wrong. 

 

Figure 13. Test Phase: The New Simulation 

In the advanced simulation, the student sees a map of the Southeastern US with major cities 

around Nashville (Figure 13). The learner can read distances in miles from the map, and fly air-

planes on designated routes between the circled cities. To run a successful simulation, the student 

has to enter the speed of the airplane in the simulation control panel, select an origin and a desti-

nation city, and provide a correct flight duration. Like in previous steps of the cycle, the simula-

tion will give feedback to the student if it succeeds.  
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Figure 14. Test Phase: The Student "Creates" the Test by Finding Answers 

When students enter the test phase, they "create" a test for Billy, by finding answers to given 

problems. The system tells them, "Find answers for Billy’s test. Solve the problems and provide 

the answers so that you can grade Billy later. Once you have pressed done the answer is final." 

Then, the system displays the first problem in the text box beside the image of the customer 

(Figure 14). Students can use a calculator, which is provided by the system, and can write down 

notes or intermediate results in the notes box. Then students provide the answer and click the 

"Done" button to proceed to the next problem. This repeats until the student has solved all of the 

prepared problems.  
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Figure 15. Test Phase: The Student Reviews and Grades the Agent 

Creating the test is followed by the test review (Figure 15), where the student reviews the 

agent's answers and grades them. The agent solves each problem, and displays its solution. The 

learner’s previous answer is available just below the agent’s answer. Typically, the student only 

needs to click the right or wrong button depending on if his answer matches the agent's answer or 

not. However, better learning occurs if students will try to find out why there is a mismatch be-

tween the agent’s answer and their own, and use the graph and the simulation to check what hap-

pened. 
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Figure 16. Test Phase: The Teacher Provides the Correct Solution 

Immediately after pressing the grading button, an alert panel (Figure 16) displays the teacher 

agent’s correct solution to the student. There are arguments for and against using this strategy: 

Students revise their answer, but cannot get final feedback for it, or students may not try to revise 

their answer because the teacher gives the correct solution too soon. A more prudent approach 

would be to delay the teacher's feedback more, so that students get additional time to reflect. 
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Figure 17. Test Phase: The Student gets Summative Feedback 

The end of the test phase provides summative feedback (Figure 17). It tells how many an-

swers the student has solved correctly and incorrectly, and compares this to how many answers 

the agent could solve. Finally, the student proceeds to the next cycle to solve another challenge. 

Software Architecture Overview 

The software architecture overlaps with the user interface design, but additionally separates 

interactive representations into two components:  smart tools (Owens et al. 1995) and simula-

tion1. It also adds an agent communication structure to the system, which is transparent to the 

user. Therefore, the system design has five modules (Figure 18): cycle architecture (Modules 

package), smart tools, simulation, teachable agents, and agent communication. All five modules 

and even some of their components (e.g., each smart tool) provide information about their state 

through the agent communication channel upon request. The package Testing contains automated 

                                                 
1 This separation exists mainly for historical reasons, as the simulation has been designed as the first part of the sys-
tem. It would be possible to implement the simulation as smart tool without any visible changes to the user. 
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pretest, posttest, and Likert-test managers, and the package Utilities provides tools for persis-

tence, logging, and text-to-speech control. 

 

Figure 18. UML Structure: Package Architecture of the Learning Environment 

Interactive Representations 

In this section, we will discuss representations (smart tools), like the graph tool. Generally, we 

distinguish between simulations and representations, like graphs and tables. Students create rep-

resentations to teach, solve problems, and learn, while simulations provide feedback for correct-

ing representations.  

Representations, like the graph tool, conceptualize the approach of Smart Tools (Vye et al. 

1997; Owens et al. 1995), which integrate the constructivist approach in a multi-representational 

framework to help students develop a deeper understanding of variables and functional relations, 
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in our case, between distance, rate and time. Smart Tools help learners to build personalized rep-

resentations to help them solve complex problems effectively and efficiently. We have adapted 

this approach to the learning by teaching paradigm and reengineered enhanced versions of these 

tools, to add them to our environment. 

Simulation 

One of the most important components of an exploratory environment is the feedback mecha-

nism, which helps students to verify their knowledge. One of these feedback mechanisms in our 

learning environment is the simulation, which establishes the ground-truth, and this helps learn-

ers decide whether they have solved a problem correctly. Our simulation can model a whole mi-

croworld, but we shield the user from its full complexity by providing scaffolded user interfaces. 

Simulations, like microworlds, use the idea of abstracting relevant facts of the target domain 

so that the user can learn without distraction. However, in contrast to microworlds we scaffold 

the complexity of the simulation by moving from a simple two city setting in the teach phase 

(Figure 8), to a more realistic map of the South East US in the test phase (Figure 13). The sim-

plicity of the initial simulation prevents students from playing with it too much and wasting their 

time. In previous observations, we found that students initially like to use the simulation to solve 

problems by trial and error until they understand that this approach does not work. Simulations 

that are more complex appear to increase the time that students spend on trial and error tactics. 

Generally, we exploit three uses of the simulation in our learning environment, which are 

verification of solutions, generation of data points, and illustration of covariation of time and dis-

tance1 (Thompson 1994, 1994). Initially, students only use the simulation to verify data points by 

                                                 
1 Students should learn that if time changes distance changes proportionally. 
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entering desired speed, distance, and time. This essentially over-specifies the problem, because 

we do not want that students use the simulation to solve problems, or encourage trial and error. 

The students will receive feedback when the simulation ends by, "the plane arrived too early," 

"the predicted time is too short," or "simulation successful." In some cycles, students have to cre-

ate graphs by using the simulation to generate distance-time points for a specific speed. Students 

can do this by specifying a speed, the maximum distance and a long time. Then students start the 

simulation and stop it after any time they like to get one data point each trial, which they can 

transfer to their graph. We also visualize the covariation of distance and time as progress bars 

below the simulation, which shows students that when time varies distance varies at a different 

rate. 

Additionally, our simulation can support planning and scheduling of parallel trips with sev-

eral vehicles. This was necessary to solve the Rescue at Boon’s Meadow adventure (Cognition 

and Technology Group at Vanderbilt 1997). However, we found that the latter is not essential in 

investigating learning by teaching, so this functionality is not used in the current learning by 

teaching environment. 

Simulation User Interfaces 

The simulation supports various user interfaces to accomplish different goals. We distinguish the 

simulation control interface, which lets the user specify how to run the simulation, an item in-

spector, and the actual simulation, which provides animation and results.  

In its full complexity, the simulation can model a microworld with a control interface that al-

lows the student to enter a plan, like in Jasper Woodbury’s adventure Rescue at Boone’s 

Meadow (Crews et al., 1997). In this adventure, students try to derive an optimal rescue plan that 
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requires vehicles to carry drivers, and transportation of extra fuel containers; vehicles have pay-

load limits, fuel consumption and can drive concurrently (Figure 3 in chapter III). Learners can 

simulate various plans until they fail or succeed and eventually watch the fuel drain in the item 

inspector while planes fly. This functionality exists because the simulation has been reengineered 

from Adventure Player, which is described in the section Interactive and Intelligent Learning En-

vironments (page 56). All this planning functionality is hidden from users in our current learning 

by teaching application. 

The simulation control interface (e.g., Figure 13, right side) provides various abstractions for 

the simulation planning language, which is used to specify internally or externally how a simula-

tion executes. In the simplest case, it translates the three values of speed, distance, and time into 

the internally used plan step "fly plane to Destination at 138," and rescales the distance between 

cities to match the problem, like it is done for the simulation of the teach phase. In the test phase, 

the user specifies mileage by selecting origin and destination city from a pop-up menu; other-

wise, the translation is similar. 

To verify or use data, users can drag and drop values from their graph to the simulation con-

trol interface or from the simulation to their graph, table, quiz and test interfaces. Alternatively, 

learners can enter values directly by clicking and editing the numbers on the buttons of the inter-

face. 
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Figure 19. Simulation: Item Inspector Inspecting an Airplane with its Pilot during a Flight 

The simulation inspector allows finding data about any thing and its contents in the envi-

ronment. A double-click will show the interface at any time displaying basic technical data of 

items. Size, weight, fuel consumption, fuel content, payload, and other parameters are displayed 

live. If user visible plans are needed and a planner interface is present, dragging and dropping 

items on each other creates most plan steps. 

Simulation Framework 

After discussing the user interfaces of the simulation, we now discuss the internal framework of 

the software package. The simulation is roughly split into actor objects, which visualize and ani-

mate, and the executing components that run the simulation. We first introduce the simulation 

engine and then follow with the actor classes. 
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Figure 20. UML Structure: Simulation creates Environment that executes PlanSteps to change Actors 

The central object in running a simulation is the Environment1 (Figure 20), which is responsi-

ble for timing and execution of plans. The simulation is initialized by a subclass of Simulation, 

which knows how to create the initial state of the Environment. Thus, it either loads the state from 

a file or creates Actors programmatically. Then, a simulation executes a Plan, which is a vector 

of PlanSteps that originates from one of the interfaces, which we have discussed earlier. This Plan 

is passed to the Environment and the simulation starts. Upon user request, the simulation can be 

paused, resumed, or reset to its initial state. The simulation runs in discrete time steps, which is 

usually preset by the simulation designer. In our case, we use one-minute steps to let students 

                                                 
1 In describing class diagrams, I use words starting with a capital letter to refer to the classes in the diagram. For ex-
ample, Simulation refers to the class in the diagram, while simulation refers to the product or package. 
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solve problems approximately between 30 minutes and 4 hours. The timing is passed at startup to 

the Environment and is constant for each application. 

Each PlanStep is specified by a starting time, an action, and an optional duration. If duration 

is given, the PlanStep throws errors to its user interface if the execution does not finish on time. It 

is up to the Simulation object that owns the user interface to display an appropriate message to the 

user. The Environment only initiates PlanSteps, distributes timing events to actors, displays the 

background image, and handles errors. Actors animate themselves, as we will see next. A Plan-

Step’s action is applied globally to the Environment, which requires actors to be named distinc-

tively.  

 

Figure 21. UML Structure: Actor Class Hierarchy for Velocity, Fuel-Rate and Payload Simulations 

Next, we discuss the actor class hierarchy (Figure 21). The top-level object is View and stems 

from our graphical user interface library (Netscape IFC). Our own top-object is Actor and imple-

ments the public method oneStep, which is called for each time-step by the Environment while the 
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simulation runs. Actor mainly handles nesting of objects, which can contain each other. Actor2D 

implements basic drawing functions and transformations. A simulation designer will place Loca-

tions into the Environment and connect them with Paths. If the Environment has a scale, the Paths 

calculate their distances automatically, but if a designer desires she can set them manually, too. 

Movables can follow Paths automatically with their desired speed. If a Path has a speed limit, 

Moveables slow down automatically. Vehicles add payload and fuel consumption management to 

Moveables and need a Person inside to drive or fly. Initially all Actors are placed in Locations and 

are assembled by an executing plan. This concludes the discussion of the simulation and we fo-

cus on representations next. 

Smart Tools 

Our primary goal is to help students learn rate problems. Standard curricula in middle schools 

often use different representations simultaneously to teach this topic, each with its own advan-

tages and disadvantages. Students generally learn to use graphs, functions, and tables. To gain 

sufficient expertise in solving problems, students need to go beyond basic understanding of these 

representations, and learn their weaknesses and advantages in different problem solving situa-

tions. For example, a student will find that graphs are quick in providing results, but are limited 

in granularity. For this reason, we have integrated interchangeable representations into our envi-

ronment.  

Because the word "representation" is probably uninteresting to students, we use the catch-

phrase smart tool (Owens et al. 1995). Thus, we imply that using the right tool in the right way 

helps solving problems quickly. The introductory movie and our anchoring context, which we 

have adapted from Jasper’s Adventure, Working Smart, does just this by implying that Jasper’s 
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success in building his company results from his mathematical knowledge about smart tools. 

Thus, we also motivate students by illustrating the potential utility of knowledge.  

We have built our curriculum around graphs to help students gain a visual understanding of 

slope as rate, before being confronted with the advanced functional representation y = k * x + d. 

A visual representation also has the advantage that our agents can ask questions about it, and can 

observe the student while modifying it. The primary Smart Tool that students work with in this 

environment is the interactive graph tool, which is augmented by a table tool and a calculator. 

Currently, we do not have a representational tool, which can interactively manipulate functions.  

User Interface 

To allow exploration, inquiry, reflection, and active learning, our representations allow the stu-

dent to make mistakes and create incorrect representations. This way, students learn to reflect and 

critically review their results. For example, when users create a graph in our graph tool, they can 

draw lines that are not straight and consist of multiple segments with different slopes (Figure 22). 

In a learning by teaching situation, the teachable agent has to be able to read such a line correctly, 

if he has been taught reading graphs right. 
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Figure 22. A Student Reads a Total Time from a Trip-Graph 

In addition to the visible features of our graph tool, the user interface design also needs to 

make actions of the user unambiguously interpretable by agents. Thus, it provides controls that 

make the intention of students explicit when using a tool, that go beyond what is necessary to 

create the result. We illustrate this on the example of reading a graph: Originally, our user inter-

face only provided the function "Read Graph" to display horizontal and vertical reader lines in 

the form of a crosshair. Students could move both reader lines simultaneously by dragging the 

mouse, which made the intersection point of the reader lines, follow the mouse pointer. We 

found that this interface design, although very efficient for the user, is at a too high level of ab-

straction for agents to learn if the user has understood the right procedure. The agent could not 

tell if the student read the result value on the X-axis, or on the Y-axis, and which value the stu-

dent used to find the result. Hence, in our new interface design the user has to use a more detailed 

procedure. 
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To read the graph a learner must follow a four-step procedure that allows an observing agent 

to deduce the correctness of the reading procedure: (1) Decide to find an X or Y value; (2) Posi-

tion a reading line on the given value; (3) Position the second reading line correctly; and (4) Ob-

tain the result. Now, the agent can analyze each action independently and learn it correctly or in-

correctly as needed. For example, students can make the mistake to use the given value on the 

wrong axis, and the agent can learn it.  

In addition to providing a didactic approach to reading a graph, our tool allows many opera-

tions that change it. The user can label and specify minima and maxima of axes, add and delete 

points, add, delete, extend and label lines to create smart tools in different cycles. Additionally, 

operations like translating, rotating, and extending lines provide options to teach concepts, like 

overtake problems. 

An issue similar to the one discussed in the previous paragraphs arose when we challenged 

students to create graphs, and the lines they created were initially too short. Students often ex-

tended their lines by adding new lines to the end of an existing line. This created internally two 

distinct line objects that appeared as single line in the user interface. Again, we had to modify our 

user interface. To teach an agent, students must express their intention of creating a single line by 

extending it to the left or to the right. From this, we derive the principle that user interface ac-

tions of the learner must be unambiguously interpretable by teachable agents. This allows agents 

to know the intention of their tutors and learn appropriately and believably.  
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Smart Tools Framework 

The smart tools framework uses two design patterns: a model view controller for each Smart 

Tool, and a plug-in pattern that allows the Smart Tool controller to instantiate arbitrary tools, or 

even multiple instances of a single tool. Figure 23 shows the static structure UML diagram.  

 

 

Figure 23. UML Structure: The Controller instantiates SmartTools; Graph and Table share a GraphModel 

At system start-up, the Smart Tool controller registers known classes of tools in the applica-

tion’s main menu, and makes them accessible to the user. Additionally, the SmartToolController 

connects to the AgentCommunicationInterface, to enable agents to instantiate SmartTools with spe-
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cific names at any time. Therefore, agents can pop up new graph tools or tables and load their 

content from a file to provide examples to the learner. 

Each Smart Tool must implement a controller class that inherits from the abstract base class 

SmartTool, which provides methods that can display each tool in windows. This class also pro-

vides a naming and look up system for tools that is attached via the AgentCommunicationInterface 

to the AgentCommunicationChannel (Figure 27).  

When students teach our teachable agent Billy, we instantiate a graph tool named "Billys-

Graph’", which is manipulated by the agent through this interface. Thus, incoming agent com-

munication calls are forwarded from GraphTool to GraphView to GraphModel and eventually re-

solved through method calls in the objects Line, or MultiSegmentLine. An example of an agent re-

quest that travels the whole way is: BillysGraph.slopeOfSelectedLine(); a request that is resolved at 

higher level in GraphView is: BillysGraph.crosshairsOnLine(). Thus, requests of agents are always 

resolved at the appropriate level of our class hierarchy, without letting agents deal with address-

ing multiple targets. 
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Figure 24. Calculator Tool and actual Table Tool Created by a Student during our Experiment 

Simple Smart Tools, like the CalculatorTool, only load a generic interface, and have no model 

and view. Model free tools, like the RulerTool, have a view but no model and thus no persistent 

state. Advanced tools, like graphs and tables, have a persistent model and provide file operations 

to load and save the tool. 

Teachable Agent Architecture 

The agent architecture has three components: the graphical user interface that lets the user choose 

an agent and respond to it, and two underlying packages that build the software framework, 

which are the teachable agent and agent communication packages (Figure 18). We will start by 

discussing the interaction of the user with the teachable agent system.  

User Interaction 

Each agent has a dialogue interface to communicate with the user (Figure 25). Students choose 

which agent they want to talk to by pressing a button on the top of the interface at any time dur-

ing teaching. When the dialogue advances, the agent displays what it has to say in a text panel, 
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and speaks the text using a text to speech engine. Displayed text can include hypertext and graph-

ics (Figure 26). Text to speech technology prevents disadvantaging poor readers, and it provides 

auditory qualities of multi-modal effects that Johnson suggested as beneficial for learning 

(Johnson and Rickel 2000). The interface also includes a still picture of the agent, a navigation 

button to open the cycle, and a button to open the calculator tool (Figure 25). 

Dialogue States 

When displaying a specific dialogue state the agent provides multiple-choice answers to advance 

the dialogue, or teach the agent (Figure 25, bottom). If the user provides answers, the agent will 

react or learn, depending on the task or question in the current dialogue state. Additionally, Billy 

may learn through demonstration, if the user performs a requested demonstration. In other cases, 

he may perform an action, like modifying the graph, querying a representation, or simply branch 

the dialogue to a new state (Figure 26). Agent dialogues can be characterized as event-driven fi-

nite state machines with rule-based transitions. 
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Figure 25. Agent Interfaces: The Student chooses what to do next (left), Ms. Mathie instructs Slope (right). 

When the system starts, each agent loads its own dialogue structure, which is modeled like a 

finite state machine. The current state is what the agent says and can refer directly to specific user 

changeable features of representations. When invoked, a state executes an interpreted program (a 

script, described in a later section) that generates the agent’s words, actions and installs sensing-

rules in the environment (Figure 26). The state also displays answer choices for the student, 

which can run scripts when they are selected. Thus, the agent establishes a context that allows 

meaningful interpretation of user actions. 

Sensing Rules (Agent Triggers) 

Sensing rules (instances of AgentTrigger in Figure 27) are the core mechanism to direct interaction 

with the user, other than through direct dialogue choices. These rules listen to the event stream of 

the system and can be activated or retracted by agents at any time when a transition occurs or the 
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learner makes a new dialogue choice. The rules react to events that originate anywhere in the en-

vironment and may be, for example, mouse clicks of the user, a simulation that finishes success-

fully, or an unsuccessful attempt to read the graph. Thus, the system has a dynamically changing 

rule-base, which contains only rules relevant to the current dialogue context. Additionally, an 

agent can specify a rule’s default lifetime (permanent, until next change of state, n-times activa-

tion), if it does not intend to retract it later. Sensing-rules carry a payload, which is a script that 

can act on behalf of the agent, for example, it can let the agent say something, modify a represen-

tation, or change the agent’s state by branching to a new dialogue. 

Using scripts, each state can make intelligent transitions following dialogue choices of the 

user. This means that a single choice of the student may branch to different dialogues at different 

times depending on the state of the environment. Each intelligent transition can execute a script 

that can do virtually anything. In some cases, this means that the agent makes a comment about 

the user’s choice without leaving the current state, in other cases the agent modifies a representa-

tion, says something, and branches to a new dialogue a few seconds later. Sometimes, one agent 

will directly influence the state of another agent; for example, the teachable agent may ask the 

teacher agent about a specific topic. However, the specifics of these interactions are entirely up to 

the dialogue designer, who may want to limit the branching factor of the dialogue in sensible 

ways. 



  108  

Agent CommunicationAgent

Agent acts

Dialogue State
with

script

Dialogue States

User answers
with

scripts

Activate new State

Agent Dialogue GUI

Display Dialogue and
Answers

S
cript

Interpreter User chooses answer

Agent senses Representations

Billy’s Brain: Learnt Model

Agent CommunicationAgent

Agent acts

Dialogue State
with

script

Dialogue States

User answers
with

scripts

Activate new State

Agent Dialogue GUIAgent Dialogue GUI

Display Dialogue and
Answers

S
cript

Interpreter User chooses answerUser chooses answer

Agent senses RepresentationsRepresentations

Billy’s Brain: Learnt Model

 

Figure 26. Interaction Schematic: Agents Sense and Act in the Evironment 

To recapitulate we will explain the agent’s interactions by tracing Figure 26: If a new dialog 

state is activated (orange box, yellow box top half), an agent uses a script to display text in the 

graphical user interface (right top), speaks the text, and provides multiple-choice answers. After 

that, it installs sensing rules in the environment that can act on its behalf (agent senses arrow). If 

the user chooses an answer (yellow box bottom half), or triggers a sensing rule the agent executes 

an appropriate script, which makes the agent learn, act (agent acts arrow), or transition to a new 

state (orange box). 

Teachable Agents Learn Believably 

Agents have to learn, to be believable students. However, learning in our case does not mean in-

ferring from actions of the user, but asking questions that promote deep understanding and initi-

ate reflection. During the dialogue, the student may select to teach the agent. At this point, we 

distinguish procedural and declarative knowledge. To teach declarative knowledge the learner 
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simply has to answer a multiple-choice question and the agent will remember the correct or in-

correct answer. 

If the user teaches procedural knowledge, the agent will learn through a sequence of demon-

strated and/or user suggested actions, which the agent executes. An agent learns a multi-step pro-

cedure, like reading a graph or finding slope (Figure 28), by letting the student demonstrate it, 

and then verifying the outcome. For an example of the process from the perspective of the user, 

see page 79 (Teaching the Teachable Agent – Two Examples). A detailed description of internal 

processes follows in the section Agent Knowledge Structures. 

Another mechanism to let the agent behave believable is the ability to explain procedures 

through animation and in words. Especially in the quiz-phase, the student has to judge the cor-

rectness of the agent’s answers, but initially the agent only provides the correct solution. Should 

students decide that this solution is incorrect, they may ask the agent to explain how this solution 

was derived. Then, the agent will replay an animation script, and explain in words what it has 

done to solve the problem. 

Agent Framework 

After discussing the user interaction in the previous section, we will now focus on the agent 

framework, which implements this functionality. The framework is illustrated in Figure 27 as 

UML static structure diagram.  
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Figure 27. UML Structure: Agent Architecture 

Each agent is an instance of a class inheriting from DialogueController. For example, in the 

teach phase this class is the TeachController. This class is mainly responsible for displaying the 

agent’s dialogue user interface and implementing the peculiarities of each phase. The abstract 

base class DialogueController loads, when its subclass is instantiated, the agent’s Dialog from a file, 

and displays the initial DialogueNode. The dialogue node tells the controller what the agent says 

and which answers to display, and then the user is back in control.  
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If the user selects an answer, the DialogueController notifies the current DialogueNode, which 

sends the corresponding answer’s script to the AgentScriptInterpreter that is owned by the Dia-

logueController. Now this script initiates a sequence of agent actions, which is funneled through 

the DialogueController to the AgentCommunicationChannel, where actions are distributed to their tar-

gets. This way, the DialogueController can veto any action of a DialogueNode, if this is desired. The 

controller handles specific commands to advance the dialog right away, while other actions mod-

ify or query smart tools, store or retrieve knowledge from the agent’s memory (BillysBrain), or 

modify the state of other agents.  

Agent sensing rules (AgentTriggers) are optionally instantiated when a dialogue node is dis-

played, and handed over to the AgentResponseController, which listens to the system’s log file 

(LogWriter) via the LogListenerInterface. Any object in the system can write a line (a plain string) to 

the log file if it undergoes an essential change in its state, for this it uses a static method in Log-

Writer. Every time this happens, the agent response controller matches its triggers against this 

new incoming event, and fires them if appropriate. When fired, a trigger executes its script as the 

agent, which has instantiated it. This lets the agent respond to events. 

Agent Knowledge Structures 

Teachable agents learn from three agent commands: teach, ask, and act. When taught new 

knowledge, it first has to be stored in the agent’s memory using the method BillysBrain.teach("read 

the graph", index, askScript, actScript, isCorrect). Then, BillysBrain.ask("read the graph") provides a 

verbal explanation of what the agent would do, and BillysBrain.act("read the graph") will perform 

the skill, for example, in a quiz or test situation. Knowledge scripts receive parameters by query-

ing the environment or relying on shared variables with quiz scripts and test scripts. If a student 
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asks the agent about something that it has not been taught, the agents responds, "I do not know 

how to read the graph. Can you teach me?" 

As mentioned before, we distinguish declarative and procedural knowledge. First, we will 

describe the more complex procedural knowledge (Knowledge in Figure 27). Procedural knowl-

edge consists of multiple steps performed in sequence to solve a problem (Figure 28). We store 

this sequence as a vector of steps (KnowledgeScripts). Hence, each knowledge object has an array 

of one or more knowledge scripts that when executed in sequence produce an explanation (ask) 

or demonstration (act) by the teachable agent. For example, a four step procedural skill requires 

four teach statements with different indices. Declarative knowledge has no act script, only a sin-

gle, one-step script, and its ask script uses plain text. 

 

Figure 28. Four Step Procedural Knowledge to find the Slope of a Line 

When an agent acts on procedural knowledge, it executes its vector of knowledge scripts in 

ascending order of indices, while skipping untaught steps silently. While the agent acts, it pre-
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pares an explanation script that explains each step of finding a solution in words and animation 

(Figure 28, rightmost column), if the student requests it later. Each of these steps may be correct 

or incorrect and can be retaught individually by a student. Because a dialog designer knows the 

sequence of a skill’s steps beforehand, an agent always applies skills in the correct order, regard-

less of how they are taught. This relieves the student of worrying about ordering problems, which 

in our case are quite simple to deal with. If Billy encounters a variable that he does not know, he 

asks the student to teach him how to find it. Then the student goes back to the teach phase and 

selects a dialogue that teaches the agent how to derive this variable.  

Agent Scripting and Communication 

The scripting language supports the agent dialogue with intelligent transitions and sensing-rules, 

knowledge scripts, quiz scripts, and test scripts. If an agent needs information, its script will 

make a request that is resolved through the agent communication channel, as we have described 

in the section Agent Framework. When an agent or a representation is created, it registers by 

name with the communication channel. Thus, its functionality becomes available to other con-

nected agents. 
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Figure 29. UML Structure: AgentCommunication 

The scripting language itself is a left recursive parser specified with the Java compiler com-

piler (JavaCC) that executes the commands while parsing. JavaCC uses a grammar as input that 

is similar to the Bachus Naur Form (BNF). The interpreter is encapsulated in the AgentScript-

Interpreter object, which is instantiated by agents and other sub-systems (Figure 29). Each inter-

preter has an optionally independent variable context, and supports a full set of  mathematical 

and logical constructs in addition to basic flow control with statements like if, then, else, return, 

and so forth. An agent action is defined in object-oriented syntax: Agent.function(parameters) 

(Figure 30 and Figure 31). The language interpreter also supports arbitrary arithmetic calcula-

tions with unit calculation support, like x = 20 [mi/h]; y = x * 2 [h], which results in y = 40 [mi].  
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Figure 30. Partial Agent Script: Teacher Checks if the Student has used the Graph’s Reader Lines Correctly. 

Each script interpreter has an owner, which is generally an agent (usually a subclass of Dia-

logueController). When a script executes, it generates a sequence of agent actions that the inter-

preter forwards to its owner, which can veto them or forward them to the AgentCommunication-

Channel. Through attached AgentCommunicationInterfaces the agent command gets resolved and 

eventually returns a value. In case of errors, an exception is thrown back to the method that initi-

ated the script. 

 

Figure 31. Quiz Script: Full Script for the Quiz Question to Find the Slope of the King Air Plane. 

Figure 30 and Figure 31 show two examples of agent scripts. The first is a partial script that 

the teacher uses to verify if a student has understood how to read a line in the graph. The actions 

verify that, after the student says that she is done, the reader lines of the graph intersect on a line. 

If this is not the case, the teacher agent will tutor and demonstrate the correct procedure, which 

the student has to learn and then teach to the teachable agent.  
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In Figure 31, we see an example of a quiz question. The script displays the problem, and 

prepares the correct solution and the tutor’s explanation. The latter is stored in the QuizController 

until the student requests explanations. Then the agent attempts to select the line labeled "King 

Air" in the graph. If this does not succeed, Billy asks the student to label or select a line in the 

graph. Otherwise, the agent acts by finding the slope of the selected line in the graph, and pre-

pares simultaneously an explain script, which again is stored in the quiz controller for later use. 

Finally, the agent prints (and says) the solution. Most questions use randomized values and de-

rive a solution by calculation if the problem allows it. Test questions use identical mechanisms, 

but the system displays them in a different interface. 

Dialogues and Curriculum 

Our curriculum to teach graphs and related material has three cycles. In each cycle, the agent 

needs help with a different class of problems. Each agent has one script per cycle for its dialogue. 

Additionally, there are two problem scripts one for the quiz phase, and one for the test phase. In 

cycle one, the learner helps the agent to select the 100 mph line from four given ones, in cycle 

two the task is to create a graph for a given speed, and in cycle three understanding slope and 

speed is desired. In the following paragraphs, we illustrate the curriculum for cycle one very 

briefly because we discussed most other issues already. 

In cycle one, the problem is to help the agent to select the 100 miles per hour line among 

four given ones (Figure 8). The agent offers the student the following main choices: (1) Choose a 

line; (2) Use the simulation; (3) Use the graph; (4) Teach Billy; (5) Ask Billy; and (6) Ask Ms. 

Mathie. Each choice branches into a set of dialogues in which the agent discusses ways for solv-

ing the task, or requests procedural or declarative knowledge.  
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In this process, the student teaches the agent the procedure of how to read a graph, and de-

clarative knowledge about axes, ordered pairs, lines and other basic concepts. In the quiz phase, 

the agent provides answers to prepared questions that the dialogue has addressed before and 

gives feedback as we have discussed earlier. Depending on whether the learner has selected the 

right or wrong line, and has taught the agent correctly, the agent succeeds or fails in solving each 

problem. Then, students proceed to the test phase to conclude the cycle. 

 

Figure 32. Standard Dialogue Structure on the Example of Cycle 1 

Dialogues for all cycles share a common structure to make it easier for students to navigate 

the dialog tree (Figure 32). In the first two dialog steps, the agent reviews the problem very 

briefly again and sketches potential goals. Then, Billy asks the student what to do next, and of-

fers about three choices to attack the problem. In addition, the student has access to two dialogs 

that allow her to choose among all possibilities to teach or ask Billy. The last choice (Ask Ms. 

Mathie) will hide Billy and transfer the student to the teacher agent. Beyond each of these top-

level items, the student finds opportunities to discuss topics with the agent. Some dialogues let 

the student teach the agent, in others, the student can ask the agent to modify the graph or apply 

taught knowledge.  
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Summary 

In this chapter, we saw how we built a constructivist learning environment that uses anchored 

instruction, smart tools, and a cycle design with increasingly difficult challenges, and how we 

could integrate it with learning by teaching agents. Before students used the system, we estab-

lished the anchoring context, by situating students in a macrocontext. This placed the students as 

interns in a jet service and small plane transportation company, which needed a mathematical 

skilled helper in providing customer services. This macrocontext was motivated by an introduc-

tory movie taken from the adventures of Jasper Woodbury (Cognition and Technology Group at 

Vanderbilt 1997), which flashed back into the youth of the owners, and implied that the success 

of this company resulted from the mathematical skills of its owners. To solve their problems, 

students needed to separate essential from inessential data, like in the real world.  

Then, we introduced how our system fosters the activities of a novice teacher who learns and 

teaches at the same time, and how our system helps students reflect on their teaching and knowl-

edge by observing the agent’s results in quiz and a test phase. Learners taught the system declara-

tive and procedural knowledge by selecting answers in multimodal dialogues and demonstrating 

actions in representations, like the graph tool. During teaching, our teachable agent may also 

modify representations according to instructions of the student, which influences the correctness 

of that representation.  

We illustrated the role of our representations, especially the simulation and the graph tool. 

The student gets essential correctness feedback from the simulation, which avoids providing so-

lutions by requiring the student to over specify its parameters. The simulation can powerfully 

scaffold its complexity with different user interfaces from simple two location settings to full-
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scale rescue missions that require simultaneously moving vehicles, planning, or even plan opti-

mization to succeed. Learning is supported by plugging various smart tools in the environment 

that aid learners in achieving their goals, while not preventing the user from making mistakes. 

Additionally, smart tools must make user actions unambiguously transparent to agents so that 

they can learn and act appropriately.  

Agents learn and reproduce knowledge through a teach-ask-act strategy to help the user re-

flect on taught knowledge. Initially students teach an agent through demonstration and multiple-

choice dialogs, then they can ask the agent for a verbal interpretation of their current knowledge, 

and finally the agent applies its knowledge in quiz phase and test phase by acting. Acting solves a 

problem, provides its solution, and additionally generates an explanation in words and animation, 

which a learner can request to identify mistakes in the agent’s knowledge. Agents represent their 

procedural knowledge internally as a vector of individual steps (knowledge scripts), which the 

student can teach and reteach individually. 

Agents act and communicate through the agent and scripting and communication framework, 

which includes a language interpreter and a communication channel that resolves actions and re-

quests for information among its registered peers. Representations participate in this communica-

tion framework as reactive agents, who provide essential state information and reflect other 

agent’s changes. Our agents do not distinguish between ask and tell, like KQML (Finin, Labrou, 

and Mayfield 1997). If an agent requests information from another agent through the communi-

cation channel, it simply performs a function call and receives a return value for ask from the re-

ceiving agent, which can be a value or a string. All our communications are synchronous, be-

cause this simplifies the software architecture and avoids many engineering problems. This con-
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cludes the chapter about the design of our system, and we continue by describing the experimen-

tal design of our research. 
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CHAPTER V 

 

EXPERIMENTAL DESIGN 

This chapter describes the design of the experiments that we employed to study the motivation 

and learning of students using our learning by teaching system. We outline the primary hypothe-

ses for the study, and then introduce the measures for deriving student performance and motiva-

tion. A detailed description of treatment differences of the alternate condition is presented, and 

contrasted with the system used for the experimental condition. Then we present the experimen-

tal setup of the study, which included students from two sixth grade middle school classrooms. 

 This study compared the learning and motivational measures between two groups (Figure 

33): the first group, our experimental condition (X1), is the learning by teaching group, which 

engaged in all activities that we have described in the previous chapter. Students in our alternate 

condition (X2) used the same baseline environment, but were taught by the teacher agent, and did 

not get an opportunity to teach. Therefore, learners in both groups used the same learning envi-

ronment, with the same representations and the same anchoring context, but one group taught a 

teachable agent, while the other learnt from a pedagogical agent. 

Hypotheses 

Our study focused on two sets of hypotheses: knowledge hypotheses and motivation hypotheses 

(see Table 1). As a first step, we wanted to show that all students using our system learn. Second, 
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we wanted to illustrate treatment differences between the two conditions in knowledge gain, 

transfer, motivation, learning strategy, and experiences that energize. 

We hypothesized that students in both groups would learn effectively using their respective 

learning environments. This should be illustrated by an increase in mean scores from knowledge 

pretest to posttest for all students (regardless of group). The pre- and post-tests were the only re-

peated measure in our experiments. Our null hypothesis for knowledge gain (HKGAIN0) stated that 

the change in mean scores from pretest to posttest will not be statistically significant, and our al-

ternate hypothesis (HKGAIN) stated that mean scores from knowledge pretest to posttest should 

increase significantly for both groups (Table 1, Figure 34). 

To study the effects of the teachable agent system (Figure 1, green box), we formulated three 

hypotheses. Our first hypothesis was that teaching social agents lets students learn better than 

students who do not teach. Specifically, we thought that the teaching interactions would produce 

significant differences between the students’ post-test scores in the two groups. Thus, our knowl-

edge gain difference null hypothesis (HKDIFF0) was that students in both groups learn the same 

amount of knowledge on the average, while our alternate hypothesis (HKDIFF) was that students in 

our experimental condition outperform students of our alternate group in the post-test (Table 1, 

Figure 35). 

Second, we believe that students in the experimental group are better in applying their learnt 

knowledge in a transfer task1 (HT, different transfer between conditions). Specifically, we meas-

ured if students in the experimental condition would perform better in the transfer task. We dem-

onstrated this by comparing the mean scores in the transfer test between the two conditions. The 

null hypothesis (HT0) for the transfer test states that students in both groups are equally successful 

                                                 
1 For the design of this measure, see section "Near Transfer Task" on page 142. 
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in the transfer test and our alternate hypothesis (HT) is that students in the learning by teaching 

condition outperform the control group (Table 1, Figure 36). 

Table 1. Table of Hypotheses (O notation refers to Figure 33; Ō  is the mean of a measure) 

Knowledge Hypotheses 
HKGAIN 

 
Alternate Hypothesis: The students in both the control and experimental 
condition gain knowledge over time by using our system. 
Knowledge Pretest Mean > Knowledge Posttest Mean (

Ō
1 > 

Ō
4) 

HKGAIN0 Null Hypothesis: Knowledge Pretest Mean = Knowledge Posttest Mean 
(

Ō
1 = 

Ō
4) for both groups. 

HKDIFF Alternate Hypothesis: Students who learn by teaching do better than stu-
dents in the control condition. 
Knowledge Posttest Experimental Mean > Knowledge Posttest Alternate 
Mean (

Ō
4X1 > 

Ō
4X2) 

HKDIFF0 Null Hypothesis: Knowledge Posttest Experimental Mean = Knowledge 
Posttest Alternate Mean (

Ō
4X1 = 

Ō
4X2) 

HT Alternate Hypothesis: Students who learn by teaching show different trans-
fer than baseline students.  
Transfer Test Experimental Mean > Transfer Test Alternate Mean  
(

Ō
6X1 > 

Ō
6X2) 

HT0 Null Hypothesis: Transfer Test Experimental Mean = Transfer Test Alter-
nate Mean (

Ō
6X1 = 

Ō
6X2) 

Motivation Hypothesis 
HM Alternate Hypothesis: Students who learn by teaching have different 

MSLQ scores than baseline students. 
MSLQ Posttest Experimental Mean > MSLQ Posttest Alternate Mean 
(

Ō
5X1 > 

Ō
5X2) 

HM0 Null Hypothesis: MSLQ Posttest Experimental Mean = MSLQ Posttest 
Alternate Mean (

Ō
5X1 = 

Ō
5X2) 

HETE Alternate Hypothesis: Students who learn by teaching have different ETE 
scores than baseline students. 
ETE Experimental Mean > ETE Alternate Mean (

Ō
3X1 > 

Ō
3X2) 

HETE0 Null Hypothesis: ETE Experimental Mean = ETE Alternate Mean. 
(

Ō
3X1 = 

Ō
3X2) 

 

Third, we hypothesized that the act of teaching social agents would result in differences in 

self-reported motivation (HM, motivation difference between groups). We characterize motiva-
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tion as composite score of intrinsic and extrinsic goal orientation towards mathematics, perceived 

enjoyment and value of the subject, and other such factors that are measured by the Motivated 

Strategies for Learning Questionnaire MSLQ (Pintrich et al. 1993, 1993). Our motivation null 

hypothesis (HM0) was that there would be no difference in motivation scores between the two 

groups, while our alternate hypothesis (HM) stated that students in our experimental condition 

would report higher scores (Table 1, Figure 37).    

In addition, we expected to find differences in the measure Experiences That Energize 

(Brophy 1998) between treatment groups. Our null hypothesis (HETE0) was: there are no differ-

ence in average total score between groups, and our alternate hypothesis (HETE0) is that the learn-

ing by teaching group reports a higher average total sore.  

Detailed Experimental Design 

We conducted a fully randomized experiment with two conditions. As we stated before, we fo-

cused on differences between students who teach a peer agent and students who do not teach. 

Both conditions use our baseline environment1, which is an anchored, exploratory environment 

that supports active learning and discovery. Students of both conditions learn from a teacher 

agent. We selected two classrooms of a middle school non-randomly, and used a stratification 

scheme so that each class contributed 50 percent of its students to each condition (see section 

Population, Sample and Randomization for more details). Figure 33 gives an overview of the se-

quence of measures in the notation of Cook and Campbell (Cook, Campbell, and Cook 1979). In 

this notation, O stands for observation and X stands for treatment.  

                                                 
1 Simulation, representations (graph), and teacher agent. 
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Figure 33. Full Experimental Design in the Notation of Cook and Campbell (Cook, Campbell, and Cook 1979) 

We refer to the learning by teaching group as the experimental condition (X1), and the group 

that was taught by a mentor agent (X2) as the alternate condition (Figure 33). For these two con-

ditions, we computed scores for the following variables: domain knowledge (O1, O4), Motivated 

Strategies for Learning (O2, O5), and transfer (O6). Measures during the treatment (O3; not shown 

in Figure 33) were Experiences That Energize and miscellaneous usage metrics that we could 

extract from user action traces in log-files. A small set of survey questions preceded the MSLQ 

(O5). In the following paragraphs, we describe how we have used the computed measures in in-

dividual analyses. 
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O4O1 X1,2 O4O1 X1,2
 

Figure 34. Repeated Measure (Within Subjects) Design to analyze Knowledge Gain 
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O1

O1
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Figure 35. Between Subjects Design to Analyze how the Treatment Influences Knowledge (O1 is a Covariate)  

Our data analyses dealt with subsets of collected data. Specifically, we analyzed domain 

knowledge (O1, O4) in two different ways. The knowledge gain hypothesis required a pretest-

posttest design that compared individual knowledge gain over the duration of our experiment re-

gardless of treatment group. Thus, we compared pretest scores with posttest scores with a within 

subjects design (Figure 34). To analyze how our treatments influenced student learning, we used 

the same raw data in a posttest only comparison between treatment groups. In this case, the pre-

test data was a covariate for the posttest data (Figure 35). The experimental design for our trans-

fer analysis was a posttest only, between subjects design (Figure 36). We looked at how our 

treatment influenced the scores of the transfer test. 
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Figure 36. Between Subjects Design to Analyze how the Treatment Influences Transfer 

Our motivation analysis also was a between subjects designs. In the case of the MSLQ, we 

compared the posttest results between groups and used the pretests as covariates (Figure 37). Our 

analysis of Experiences that Energize followed a similar design with the only exception that the 

covariate data were the averages of the four pre-treatment questions (Table 16 in Appendix B). 

This accounted for individual differences, for example that some people might have reported that 

they were energized by activities like copying grammar lessons from the board.   

O5

O5

X2O2

X1O2

O5

O5

X2O2

X1O2

 

Figure 37. Between Subjects Design to Analyze how the Treatment Influences Motivation (O2 is a Covariate) 

The controlled variables in this study were the working-environment, computer usage, the 

exploratory, anchored learning environment, the presence and speech of agents, and external re-

sources. Additionally, we decided to control for exposure to instructional materials and the op-

portunity to learn them. Because our system design was cycle-based, we gave students time to 

complete all cycles, before advancing to the posttests. Because we could only control for expo-

sure or time but not both, this decision prevented us from controlling for time. The dependent 

variable was learning by teaching the teachable agent.  
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Because we had a heterogeneous set of laptop models, technology savvy students were ex-

cited about using the latest, fastest, or smallest computer in our set. Because assigning one com-

puter over the duration of the whole study would have evidently influenced motivation, we con-

trolled this variable by rotating students to a different computer in each session. To control for 

influences through the working-environment, we used a single room that the middle school pro-

vided during the whole experiment for all groups.  

We could only partially control for the confounding effect of resentful demoralization. Ini-

tially we discouraged students to talk to each other about the environment to avoid that learners 

from the alternate condition would become discouraged because they could not teach Billy. 

However, it would be too idealistic to think that all students complied with our request. There-

fore, we only relied on the rich compensatory treatment that included the simulation, representa-

tions, the teacher agent, and a non-teachable Billy-agent.  

Because our experiment spanned multiple days for each group, we assessed maturation in 

our survey. However, because we used a fully randomized design, the most likely cause for any 

observed differences in maturation would be a result of the treatment. 

Method of Analysis 

We expected that our collected data would be the normally distributed in most cases. Therefore, 

we used the parametric normal linear model1 (LNM) on all tests, unless tests showed that the 

data were not normal. This model includes analysis of variance (ANOVA), and analysis of co-

                                                 
1 In literature, this model is also called general linear model (GLM), normal linear model, or linear normal model 
(LNM). The different names originated probably in attempts to avoid confusion with the generalized linear model 
(GLZ or GLM). The GLZ is a further generalization of the LNM. It removes the assumption of normality, and can be 
parameterized with different distributions. However, despite its similar name it shall not be confused with the model 
we use. 
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variance (ANCOVA). We used the software package SPSS™ version 11.5 to perform the analy-

ses. 

The normal linear model makes the following assumptions: (1) The response variable can be 

expressed as a linear combination of functions of the covariates, plus a random error term; (2) 

The residuals are distributed normally; (3) The error variances of residuals are normal (homosce-

dasticity, homogeneity of variances); (4) Fixed independent variables are measured without error; 

and (5) There are no influential outliers.  

We verified that our data did not violate normality by plotting histograms, and performing 

the Shapiro-Wilk normality tests. The Kolmogorov-Smirnov test was not used because of the 

problems it has with small sample sizes. Instead, we rely on the Shapiro-Wilkes test, which is 

more reliable in comparison studies with other goodness of fit tests (NIST/SEMATECH n. d.). 

Still, it is possible that the Shapiro-Wilk test fails on normal data if outliers have to be included. 

However, the normal linear model is especially robust against assumption violations if sample 

sizes are almost equal, like in our case. If we had sufficient reason to believe that normality was 

violated, or that our data did not follow the normal distribution we performed non-parametric 

Mann-Whitney tests. 

In addition, we tested the null hypothesis that the error variance of the dependent variable 

was equal across groups with Levene’s tests, and the null hypothesis that the observed covariance 

matrices of the dependent variables were equal across groups with Box’s M tests, where applica-

ble. Results of these tests are discussed in the next chapter. 
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Activities of Students in the Alternate Condition 

The only difference between our experimental and alternate condition was that the students in the 

alternate condition did not teach an agent. Unfortunately, this resulted in other small changes to 

the cycle structure. In this section, we summarize treatment differences that were described in 

Chapter IV by paying special attention to the experimental design. We conclude this section with 

a high-level overview of our experimental design in Table 2. 

At the beginning of the study, we introduced students to the system and our agent Billy in a 

classroom lecture that all participants attended at the same time. When students started using the 

learning system, the system introduced the teachable agent, Billy, as a co-learner who had low 

self-confidence in mathematics in the experimental condition, and Billy as an intern writing a 

paper about the company, who would not participate in learning and problem solving tasks in the 

control condition. 

The differences in the activities of the two groups were most pronounced in the teach phase 

(Make Smart Tool in Figure 6). In the experimental group, Billy reviewed the problem first. In 

the alternate condition, students started by reviewing the problem with the teacher agent instead. 

However, the dialogues and answer options were the same for both groups.  

To control for the presence of the teachable agent, learners of the alternate group could also 

talk to Billy, but all of the dialogues just involved small talk and had no learning content. The 

remainder of the teacher’s dialogue was identical in both conditions. Overall, students in the al-

ternate condition were likely to spend less time in the teach phase than the experimental condi-

tion. This was because students in the experimental condition had to spend time in teaching their 

agent using the dialog mechanisms provided by the system. 
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In the alternate condition, Billy was not involved in the quiz phase. Instead, students gener-

ated the answers to the problems on their own. Like in the experimental condition, the student 

could ask the teacher to check their answers, and to provide correct solutions. The feedback from 

the teacher was identical in both conditions, but the user interface to access this information was 

different (Figure 38). To obtain feedback from the teacher, the student had to enter a solution to 

the problem. Ms. Mathie, the teacher, checked the answer (i.e., the students had to click on the 

check answer button), and then told the students whether their solution was right or wrong. If the 

student asked her to provide a solution path (by clicking on the give solution button), Ms. Mathie 

then explained how she solved the problem. This process of obtaining feedback was identical to 

the process of getting feedback from the teacher agent in the experimental condition (Figure 12). 

Students in the control condition did not interact with the teachable agent. Therefore, the user 

interface for the control condition did not have two tab panels (Figure 10, Figure 11) to commu-

nicate with Billy. Overall, the students in the experimental condition had to go through many 

more steps, in first teaching Billy, then getting him to answer quiz questions, and then observing 

the feedback that the teacher Ms. Mathie provided. This resulted in the experimental group hav-

ing to spend much more time in going through the same amount of material. Often their interac-

tions with the teacher and Billy were quite repetitive. This could be a reason why we did not see 

the differences in knowledge test scores that we had expected between the experimental and al-

ternate group. 
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Figure 38. Quiz Phase: User Interface of the Alternate Experimental Condition 

Since we decided to randomize quiz-questions after the first time only on request by students 

(get new problems button in Figure 38), learners in both conditions had the same kind of oppor-

tunities to solve quiz problems by trial and error1. Randomizing quiz questions only on demand 

avoids that questions flip-flop between right and wrong each time they are asked. Students could 

retry the same question with the same numbers again, and would not be confused that a question 

suddenly reverted to unsolved again because the new random numbers were out of range of their 

line on the graph. In the alternate condition, learners could enter an intentionally incorrect an-

swer, let the teacher check it, and provide a correct solution, which they memorized to answer the 

same question later. In the experimental condition, students could skip checking the agent’s an-

swer by just stating that Billy’s answer was correct, then asking the teacher for a correct answer. 

                                                 
1 A future version of the system should be modified to avoid this better. 
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Then they could return to the teach phase and use another dialogue option relating to this ques-

tion to teach the agent differently and return to the quiz. 

Table 2. Table of Differences between Experimental and Alternate Condition 

 Experimental Condition Alternate Condition 
General 
Introduc-
tion 

Classroom lecture.  
No differences between groups. 

Classroom lecture.  
No differences between groups. 

Problem 
Introduc-
tion 

Billy is a co-learner with low self-
confidence in mathematics. 

Billy is an intern who is writing a 
paper about the company and does 
not participate in learning and prob-
lem solving tasks 

Teach 
Phase 

Billy reviews the problem introduc-
tion. 
Student and Billy interact through 
dialogues; Billy is taught and ques-
tioned. 
Students learn from the teacher 
agent. 

The teacher reviews the problem in-
troduction instead of Billy. 
Student and Billy can engage in 2-3 
small-talk dialogues without domain 
or learning content. 
Students learn from the teacher 
agent. 

Quiz 
Phase 

Three tab interface:  
(1) The student displays the prob-
lem & Billy’s solution;  
(2) The student makes suggestions 
to Billy; and 
(3) The student requests the teacher 
to check, requests teacher’s solu-
tion. 

One tab interface:  
The student displays the problem, 
provides an answer, requests the 
teacher to check, and requests the 
teacher’s solution (Figure 38). All in 
one user interface. 

Test 
Phase 

(1) Students solve a test to grade 
Billy later; 
(2) Students review own and 
Billy’s answers; and 
(3) Students compare the number of 
their and Billy’s correct answers. 

(1) Students solve a test; 
 
(2) Students review their answers; 
and 
(3) Students view the number of 
their own correct answers 

 

The test phase helped differentiate between the two groups in a more substantial way. To re-

capitulate, students in the test phase first solved a set of problems, and then reviewed their solu-

tions to obtain summative feedback. In the alternate condition, students took an exam. Except for 
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this arrangement, the user interface, problems, and interaction with the system were the same for 

both conditions. During the review, the agent’s solution was replaced by the teacher’s solution, 

which was displayed in an alert panel in the experimental condition (Figure 16), and the student 

clicked "OK" instead of "Right" and "Wrong" to advance to the next question. In the summary, 

the lower two feedback boxes relating to the agent’s right and wrong answers were removed. 

Population, Sample and Randomization  

Our study was conducted in two 6th grade mathematics classrooms in a public school in the 

southeastern United States. The two classrooms were picked non-randomly, as we had to rely on 

voluntary participation of the classroom teachers. We invited all 49 students from the two class-

rooms to participate in our experiment. Class P contributed 25 students and class Q 24 students. 

The demographics of students in the county of our school were White 41.1%, African 

American 46.1%, Hispanic 9.2%, Asian 3.4%, but our sample in the particular school apparently 

had fewer than average African Americans. The students in this school were high achieving, and 

selected based on test scores and a lottery system. To address integration problems, the school 

makes a strong attempt to maintain a 33% minority student ratio in the school. 

We used two strata to assign our students to experimental and control condition, to control 

for a teacher or classroom effect. We ensured that each class was equally divided into our two 

treatment conditions. 

Three students of class Q decided not to participate. Additionally, one student decided to 

drop out during the treatment. This reduced our final count of participants to 45 students. The 
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experimental condition had 23 participants (12 from class P and 11 from class Q) and our alter-

nate condition had 22 students (13 from class P and 9 from class Q). 

Measures  

To verify our hypotheses, we selected a set of motivational and learning measures. For the first 

set of hypotheses, we used the Motivated Strategies for Learning Questionnaire and Experiences 

That Energize (ETEs), and to measure changes in learning and transfer we used knowledge tests 

that we created particularly for this study. We describe all measures in the following sections. 

Motivated Strategies for Learning Questionnaire 

We used a subset of the Motivated Strategies for Learning Questionnaire, MSLQ, (Pintrich et al. 

1993, 1993) that we modified for the purposes of our study to measure the motivation and the 

learning strategies employed by the participating students. This questionnaire was administered 

along with the knowledge pretest (O2; Figure 33) and the knowledge posttest (O5). The MSLQ 

scale is a seven point Likert self-report scale, which was created and normed on 400 college stu-

dents from 37 classrooms, spanning 14 subject domains and five disciplines. Correlation with 

final grades was reported as significant, albeit moderate. 

Table 3 lists all the variables used in the MSLQ with their internal consistency reliability co-

efficients (Cronbach’s alphas) in parentheses. Due to time constraints, we removed a few vari-

ables, which we thought were more relevant to course-based instruction. Table 3 also gives ex-

ample questions for each variable. The full test is included in Appendix A. We used all three mo-

tivational value components of this scale, which are intrinsic and extrinsic goal orientation and 

task value (α = 0.68, 0.62, 0.90). Expectancy components that we measured are self-efficacy (for 
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learning and performance), and control beliefs (α = 0.93, 0.68). We did not measure test anxiety, 

as it was unrelated to our study1. For measuring cognitive and metacognitive strategies we se-

lected critical thinking, and metacognitive self-regulation (α = 0.80, 0.79). We skipped rehearsal, 

elaboration, and organization because those strategies were not relevant to our learning environ-

ment, and we did not expect to see an effect during our study. From resource management 

strategies we used effort regulation, peer learning, and help seeking (α = 0.69, 0.76, 0.52). We 

did not measure the variable time and study environment as it is a fixed factor in our setting. 

Table 3. Motivated Strategies for Learning Questionnaire Example Questions 

It is my own fault if I do not learn the ideas in mathematics class. Control  
Belief 

If I try hard enough, I will understand the ideas in this mathematics class. 
I often find myself questioning things I hear or read in mathematics class in 
order to decide if I believe them. Critical 

Thinking I like to play around with ideas of my own that are related to what I am 
learning in mathematics class. 

Extrinsic Goal 
Motivation 

I want to do well in mathematics class because it is important to show my 
ability to my family, friends, teachers, and others. 

Effort 
Regulation 

Even when the mathematics book is dull and uninteresting, I manage to keep 
reading until I finish the assignment. 

Help  
Seeking 

When I do not understand the ideas in mathematics class, I ask someone to 
help me. 

Intrinsic 
Goal Motiva-

tion 

In mathematics class, I prefer to learn about things that really challenge me 
so I can learn new ideas. 

When studying for my mathematics class, I often try to explain the ideas to 
someone else. Peer 

Learning I try to work with someone else to complete the assignments in mathematics 
class whenever possible. 

Self 
Efficacy 

I am certain I can master the skills being taught in mathematics class. 

Self  
Regulation 

When I study for mathematics class, I set goals for myself in order to get the 
most out of the time I spend studying. 

Task 
Value 

I think that I will be able to use what I learn in this mathematics class in life 
or other classes. 

 

                                                 
1 In retrospective, we have observed some test-anxiety in the test phase of the cycles, which we did not anticipate. 
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We adapted this questionnaire from its original form, which used course for referring to the 

subject of instruction. We reworded all the questions to refer to mathematics class in the pretest 

and computer task in the posttest. The questions were also reworded to fit the vocabulary and un-

derstanding of sixth grade students. Since the pretest was intended as a covariate, it removed the 

effect of motivation in mathematics class that existed before the experiment, while the posttest 

focused on the effects of the treatment. In the introduction to the MSLQ posttest, we emphasized 

that our computer environment would not replace regular mathematics instruction in the class-

room. Rather, it should be looked upon as a tool to further one's learning after classroom instruc-

tion. We presented this test on the computer to simplify data gathering and evaluation. 

A pretest - posttest measure like the MSLQ does not usually provide insights into the student 

activities during an experiment. To capture students’ thoughts and feelings during the study we 

used a tool called Experiences that Energize, originally developed and used by Brophy (Brophy 

1998, 2003), to give us insight into the motivational state of learners while they used our system. 

Experiences that Energize 

Experiences that Energize (ETE) (Brophy 1998, 2003). This measure determines motivation dur-

ing an activity and is comparable to intellectual flow (Csikszentmihalyi 1990). Subjects repeat-

edly reported their current energy level on a single seven point Likert-style question while they 

were involved in learning activities (Figure 40). For example, a teacher may interrupt a class ses-

sion several times and asks students to write down their ETE score. When plotted as graph of av-

erage ETE scores against time, peaks show those interventions that energize the students during 

instruction. High responses imply heightened intellectual flow, which implies increased motiva-
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tion, attention, and enjoyment of the reported experience, while low responses imply boredom 

and disinterest. 

Table 4. Experiences That Energize Measured while Students Use the System. 

Problem Read You are starting or resuming to make your Smart Tool. 
Please rate your energy level. 

Quiz Entered You are going to try your Smart Tool. Please rate your en-
ergy level. 

Quiz Finished 
(QD) 

You have just finished trying your Smart Tool. Please rate 
your energy level. 

Test Graded 
(TD) 

You have just finished solving real problems. Please rate 
your energy level. 

Test Re-
viewed (TR) 

You have just finished reviewing your problems. Please 
rate your energy level. 

Test Sum-
mary Seen 
(TS) 

You have just finished looking at the summary. Please rate 
your energy level. After this, you can go on in the cycle and 
read your next problem introduction. 

 

We were faced with the alignment problem when trying to use this measure in an effective 

way. In classroom instruction, all students are simultaneously exposed to the same experience, 

which makes it easy to detect peaks in the graph of the average of this measure versus time. 

However, students work at their own pace and in their own way in a learning environment, so 

finding collective peaks in time does not work. For our research, we identified interesting transi-

tion points and asked students at each of these points to rate their energy level (Table 4). This 

allowed us to collect cumulative data at well-defined points, so we could graph the ordered oc-

currence of these transition points against the average ETE score. 

A disadvantage of Experiences that Energize is that they may disrupt flow. ETEs that occur 

during an activity may interrupt a student’s thinking and can be annoying. Hence, we carefully 
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chose to use ETEs only when the student transitioned between activities, especially when they 

transitioned between phases of a cycle. At these times, ETE questions were displayed to the stu-

dent using the interface shown in Figure 40. The instructions that students received to report ETE 

values can be found in Appendix B.  

Knowledge Test 

We evaluated student learning of declarative and procedural knowledge with a multiple-

choice test that we used for pretest and posttest (see Appendix C). This test covered the curricu-

lum material presented in the learning cycles, and required good understanding of concepts to 

achieve a high score. Some items could be looked upon as near transfer problems. The test meas-

ured the ability of the students to use graphs (read points, add points, and solve problems using 

the graph), answer standard mathematics word problems, and understand the relationship be-

tween slope and speed of a line. An example question is illustrated in Figure 39. Problems be-

tween pretest and posttest were varied slightly (changed numbers or slopes) to avoid the problem 

of memorization of answers. 
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Figure 39. Knowledge Pretest Example: Which Line is a faster Speed? 

The questions were designed to decrease student guessing. Questions about graphs show all 

four quadrants of a graph to illustrate problems in pretest and posttest (see Figure 39), while our 

graph tool in the learning environment used the first quadrant only. This required students to 

think beyond the first quadrant problem solving skills that they had acquired during the main 

study. To avoid that students can guess correct solutions, we designed the answer-choices to the 

questions to cover up to eight possible answers. For example, a question about reading a point on 

a graph provided eight answer choices that exhausted all possibilities.  

The pretest contained 11 and the posttest had 16 questions (see Appendix C). The posttest 

added five questions to the pretest. The extra questions were not used in the statistical analysis of 

results for knowledge gain. However, the extra questions could be included in an analysis to 

compare treatment groups with the pretest as covariate. All questions were graded by awarding 
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one point for a correct answer and zero points for any incorrect answer. In situations where we 

thought students could receive partial credit, we did give a score of 0.5. Two questions that re-

lated to material in the fourth cycle, which was not covered in the experiment due to time con-

straints were removed from the tests1. We did not weigh questions for difficulty and importance. 

Online Testing Interfaces 

As discussed, our agents communicated with their student-teachers using a multiple-choice dia-

log interface. This framework (Figure 27, top six objects) was modified to enable online pretests 

and posttests. The MSLQ questions and ETEs shared a common interface (Figure 40), while the 

knowledge test used a vertical layout that allowed us to display longer answer choices (Figure 

39).  

 

Figure 40. Electronic Likert Testing Interface for MSLQ, ETE (this picture), and Knowledge Tests 

The online testing interface performed automatic scoring of tests. Each multiple-choice an-

swer was associated with a variable and a score. The last question of a test notified the dialog 

                                                 
1 The pretest had originally 13 questions. 
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controller through the agent communication interface to score the dialog. Then, each variable 

was summed, and written to the log-file, from where it could be copied onto a spreadsheet.  

Near Transfer Task 

After students finished all the posttests, we conducted a transfer test, where students created a 

flow-rate graph by running a real experiment in another domain. This was introduced as an extra 

cycle in the learning environment. This cycle provided a blank graph tool (without units or num-

bers on axes), and the students did not have the simulation tool to generate data points from 

which the graph could be constructed. Instead, the students had to conduct a real experiment, col-

lect relevant data, and then plot it to determine the rate line. We told students that the teachable 

agent, Billy, would not be available for this part of the study. Instead, the mentor agent, Ms. 

Mathie described the problem to students of both groups.  

The problem described a situation where the company’s engineer, Larry, had to repair a bro-

ken engine, which would require a new fuel injection nozzle. Students had to conduct experi-

ments to find the flow rate of fuel through a chosen nozzle and plot this information on a graph. 

Students were provided a notepad, a stopwatch, a 100 ml measuring cylinder, and a water nozzle, 

simulating the flow of the fuel-injection nozzle (see Figure 41) to collect data. 

The notepad included a blank three-column table without units. Students were told to record 

values on the notepad. They received instructions on how to use the stopwatch, and how to read a 

water level on the measurements cylinder. No further instructions were given. Students worked 

individually at their own pace to collect the data and make entries into their table. When they fin-

ished this task, they returned to their computers to draw the graph and used it to compute the 

flow rate. The students were instructed to write their answer into their notebooks. 
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Figure 41. Photo of Equipment Supplied to Students in the Transfer Test (without Stopwatch) 

We graded the transfer test and generated a composite score calculated by summing the 

scores for the three separate tasks: the quality of the produced table, the labels students put on 

their graphs, and the quality of the resulting line. Each of these tasks was assessed with several 

item scores that awarded one, half, or zero points for a correct, partially correct, or incorrect an-

swer. Table 5 gives an overview of our grading scheme. Half points were rarely awarded except 

for a few borderline cases, for example, when students used the graph unit on the right axis in the 

wrong spot of the graph label, without compromising the functionality of the graph.  
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Table 5. Near Transfer Task Grading Scheme 

Table  Graph Labels  Line Quality  

Table Label 1 Graph Label 1 Line (see text) 4 

X-Axis Label 1 Graph Unit 1 (0,0) part of line 1 

Y-Axis Label 1 X-Axis Label 1 Y-intercept ≈  0  1 

X-Axis Unit  1 Y-Axis Label 1   

Y-Axis Unit 1 X-Axis Unit 1   

Data points (see text) 5 Y-Axis Unit 1   

  Min. X (0 or 1) 1   

  Min. Y (0 or 1) 1   

  Max. seconds 1   

  Max. ml 1   

 

Students got a maximum of 10 points for generating a correct table. The table was graded by 

the following criteria: presence or absence of a table label, and labels and units for x and y meas-

urements. Additionally, students received 5 points for measuring five or more data points, or one 

point for each non-duplicate data entry in their table. 

The second part of the transfer score was the labeling of the graph on the computer graph 

tool. Students could get a maximum score of 10 points for a correctly labeled graph. We awarded 

one point for each correct axis label, axis unit, and minimum (value of 0 or 1) for each axis. Be-

cause the maximum for each axis depends on the collected data, we have allowed values between 

60 and 120 as correct solution for each axis.  

The third task assessed the line quality, and students were awarded a maximum of 6 points 

for a correct line. Students received one point if the line included the origin of the graph, and a 

second point if the line had a reasonable (extrapolated) y-intercept within five units around the 

origin. Participants received 4 points, if their graph was a straight line, and the line was created 

from the data they had recorded. 3 points were awarded for a straight line that did not fit the data 

collected. Students received only 2 points if their graph was not a single straight line. Finally, 
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they got at least 1 point for any marginal attempt to draw a line. Students who drew horizontal, 

vertical, interrupted, or no lines received zero points. The maximum score a student could obtain 

for the transfer task was 26 points.  

Survey 

Before students solved the posttest problems, we surveyed their experiences during the study. 

The survey had 14 questions (see Table 6), and assessed maturation, interactions with the staff, 

self-reported perception of how much they learnt, and whether they had fun. They were also 

asked to rate their experiences with specific components and agents in the system.  

Table 6. Survey Questions 

1. 
During the experiment, how many times did you study materials about graphs or rate 
problems when you were not using our computers? 

2. 
During the experiment, how many times did you ask other persons about graphs or 
rate problems outside the experiment, and they helped you figure things out? 

3. How much help from the research staff did you need to complete the cycles? 

4. How often did the research staff solve a math problem for you? 

5. How did you like the voices and speech in the learning software? 

6. Did you like Ms. Mathie? 

7. Was Ms. Mathie helpful in figuring things out? 

8. Did you like Billy? 

9. Did you like the simulation? 

10. Did you like the graph-tool? 

11. How much have you learned while using our system? 

12. Rate the overall difficulty of the problems and tasks: 

13. How much fun was learning with this software? 

14. Was Billy a good student? 
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Questions asking for how many times something occurred coded 1 for never, 2 through 6 for 

1, 2, 3, 4, and 5 times, and 7 for more often. Other questions used a standard seven point Likert 

ranking, like the MSLQ.  

User Action Traces 

We analyzed the student's action traces that our system recorded in a log-file for each stu-

dent. An especially interesting and informative measure was the number of modifications stu-

dents made in the graph tool, especially how often students added points, changed lines, and read 

the graph (successfully or not). The system also traced how often a student succeeded or failed in 

running the simulation, and recorded quiz and test scores. The learning environment also saved 

the full state of the graph after each modification, which allowed us to replay how a student cre-

ated a graph as a movie, or analyze a student’s graph at specific times during the experiment. 

This feature was useful in obtaining the students' graphs of the near transfer test. Extraction and 

counting of these measures was done automatically with UNIX tools (egrep, wc), because every 

action or score was tagged uniquely.  

Procedures 

Before the experiment, we obtained the permissions from the Internal Review Board at Vander-

bilt University and the local Metropolitan School District to conduct the experiments in two 6th 

grade mathematics classrooms. With help of the teachers, we integrated our experiment into 

regular classroom instruction. After parents and students signed the consent forms to participate 

willingly in our experiment, an initial introductory lecture discussed the experiment and pre-

sented the anchoring context. We explained to the students our reasons for conducting this re-
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search study, and gave students a broad overview of what they may learn during the study. We 

also made clear to the students that they would be assigned to one of two types of systems. We 

explained to students that to the extent possible they should avoid talking about the details of 

their system or their own work with other students, because otherwise, it may corrupt the results 

of our study. At the end of session one, we gave a short demonstration of the learning environ-

ment (without the teachable agent) and showed students the introductory movie "Working 

Smart," one of the twelve Adventures of Jasper Woodbury (Cognition and Technology Group at 

Vanderbilt 1997).  

After the introduction, the students were split into groups of 11 students or less, and we as-

signed times when they could work on the system1. We pulled students from regular classroom 

activities to participate in our experiment. Each student used the system for ten sessions of 45 

minutes each. The first session was used for the pretests (O1, O2), and the last two sessions for 

the posttests (O4, O5, and O6). Subjects worked individually on separate laptops, and were 

strongly urged not to look at each other’s work. All participants had enough time to complete all 

cycles before advancing to the posttests. 

When students finished all cycles they were asked to take the posttests and the transfer task 

in the next scheduled session. After finishing the experiment, students in the alternate condition 

had the opportunity to use the teachable agent system. 

                                                 
1 The experiment itself was limited to groups of less than 11 students at a time, because we had a limited number of 
laptops. 
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Summary 

In this chapter, we introduced the experimental design for this research. To show how learning by 

teaching influenced students, we split students into two groups, one that learned by teaching an 

agent and another that learned on their own. Students in both groups learned from the teacher 

agent, Ms. Mathie, who presented domain knowledge in interactive dialogues that were identical 

for both conditions. To focus our findings only on the effects of learning by teaching, we care-

fully designed the system to keep all feedback from and interactions with the system that were 

unrelated to our treatment equal between groups.  

To assess motivation among our students we used modified versions of the Motivated 

Strategies for Learning Questionnaire (Pintrich et al. 1993, 1993) using a pretest-posttest design. 

Modifications were made to reduce the reading level of the questionnaire and account for the in-

tended motivating tasks of our study (mathematics class, computer task). In addition to this 

measure, we used Experiences that Energize (Brophy 1998, 2003) to attempt to capture the moti-

vational state of students when they were using the system. 

To assess knowledge gains, we designed a multiple-choice pretest, posttest, and a near trans-

fer test. The knowledge test included traditional word problems, some of which were direct ap-

plications of the graphs that students created before; others required additional manipulations to 

derive the answer. The near transfer test involved creating a graph from real measurements gen-

erated by an experiment that students conducted to find the flow rate of a nozzle. Students meas-

ured time and milliliter values with a stopwatch and a measurement cylinder, recorded them on 

paper, and created a graph in the computer environment. At the end of the study, we conducted a 
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small survey, which gave us direct feedback on what students thought about components of our 

environment.  
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CHAPTER VI 

 

RESULTS 

This chapter discusses the results of our experimental studies with the teachable agents system. 

In the previous chapter, we presented the detailed design of our experiments. We expected that 

learning by teaching would have a positive influence on learning and motivation of students. To 

study this, we used four measures: the knowledge test, the near transfer task, the Motivated 

Strategies for Learning Questionnaire, and Experiences That Energize. We used these measures 

to validate our hypotheses, which are summarized in Table 1 in the previous chapter. We were 

interested to find if all students learn (HKGAIN), and if learning, motivation, and transfer (HKNDIFF, 

HM, HETE, and HT) differ between treatment groups.   

All hypotheses were tested using the parametric normal linear model (also called the general 

linear model) as it is implemented in SPSS™ version 11.5. We used this model to perform the 

analysis of variance (ANOVA) and the analysis of covariance (ANCOVA). The statistical as-

sumptions made for the knowledge test are discussed in this chapter. The tests on the data for the 

remaining analyses are discussed in Appendix E.  

Knowledge Test Results 

In this section, we discuss learning of procedural and declarative knowledge that we measured 

with our knowledge tests. To explore our hypothesis that all students learned by using our system 

(HKGAIN) we evaluated knowledge gain from pretest to posttest using a repeated within subjects 
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measure1. To show a treatment effect, we looked at knowledge gain difference between condi-

tions (HKDIFF). Because the time that students spent using our system and the amount of forma-

tive feedback during the quiz could influence knowledge test results, we begin our discussion 

with these topics in the next subsections. The time on task is especially relevant, because the ex-

periment controlled for the opportunity to learn (students should complete all cycles), and there-

fore it became harder to control for time.  

Time on Task 

This section discusses issues of the time that students spent on our system: First, we look at the 

time to complete all tasks. Second, we look for time differences that can be attributed to a par-

ticular group or class. We also asked the teachers to rate problem solving speed of their students 

to verify that our treatment groups were equivalent in this respect. 

Time to Complete all Cycles 

The time that students spent on each cycle, i.e., the time from when they entered the teach phase 

to the time they finished reviewing the summary in the test phase, was recorded in a log file 

(Figure 42). It is interesting to note that the experimental group took on average 387 minutes to 

complete the curriculum (σ  = 87), while the alternate group took 319 minutes (σ  = 84). In other 

words, it took on average 68 minutes more for the experimental group to complete the tasks of all 

three cycles. The difference in time between groups for cycle one is 30 minutes, for cycle two 50 

minutes, and for cycle three there is no difference between the conditions. The students in the 

alternate condition who finished early were given the opportunity to work on previous cycles. 

                                                 
1 For the repeated measure analysis, we have selected only the subset of 11 equivalent questions between pretest and 
posttest.  
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This was done in an attempt to balance the time between the groups, but only one student ac-

cepted this offer, and this student also worked on the system only for a very short time. We did 

not ask students for the reason as to why they did not want to go back, but one likely cause was 

that students did not want to miss out on material being covered in their regular mathematics 

class.  

Time to Complete Cycles

0
20

40
60
80

100

120
140
160

180
200

Cycle 1 Cycle 2 Cycle 3 Total/3

M
in

u
te

s 
(9

5%
 C

I)

Experimental Condition Alternate Condition

 

Figure 42. Time to Complete each Cycle and Average Time per Cycle1 

The task of teaching the agent, Billy, in the experimental condition probably was the biggest 

reason for the time difference. The dialogues for teaching Billy were quite involved. For exam-

ple, teaching Billy in cycle one required 20 exchanges between the student and Billy. The num-

bers for cycles two and three were 27 and 17, respectively2. In addition, it turned out that the quiz 

interface for the experimental group was harder to use, therefore, students would require more 

time in the quiz phase. The time data clearly indicates that our teachable agent group required 

                                                 
1 We have divided total time (sum of cycle 1 to 3) by three to show the results in a single figure. 
2 The alternate condition had five dummy dialogues with Billy per cycle, which did not balance the time difference. 
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more time to complete each of the cycles. The decrease in the average time students spent per 

cycle can be partially explained by the fact that students became more familiar with the interfaces 

and tools, and they became more proficient in managing the dialogue structure.  

Class Differences  

It is interesting to note that most of the time disparity between conditions in the first two cycles 

was caused by students from one class (Figure 43). In the last cycle, the differences decreased. A 

likely cause for the reduction in time difference (regression towards the mean) for cycle 3 was 

students realizing they had only a few sessions left to finish their study. Overall, we assume that 

the causes for the time disparity can be attributed to the differences in the environment, time 

management skills of the students, and the teaching styles employed in the two classes.  

Overall, looking at the time differences in Figure 43, but especially those for class Q, give a 

good indication of the time penalty attributed to the learning by teaching task. Our estimated ex-

tra time required for teaching is in the range of 20-25 minutes per cycle. 
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Class Comparison
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Figure 43. Time to Complete each Cycle depends on Classroom 

Group Equivalence - Teacher Rated Problem Solving Speed   

To ensure that the observed time difference did not stem from non-equivalent group assignment 

(which is unlikely in the case of a fully random assignment), we asked the mathematics teachers 

to estimate their students’ problem-solving speed that they had observed during regular mathe-

matics class on a scale of 1-20. The averages of these ratings for both conditions were very close 

(11.17 vs. 11.14), and confirmed the equivalence of experimental and alternate condition in re-

spect to problem solving speed. 
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Correlation of Knowledge Scores versus Time 

Because students of our experimental group took more time to complete the cycles, the natural 

question is whether the additional time spent on the system resulted in additional learning. We 

analyzed if there was a positive relationship between the time and knowledge scores. 
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Figure 44. Scatter-plot of Knowledge Score versus Time 

We plotted the posttest scores versus total time (Figure 44). The regression line shows a 

slight negative relationship: In other words, the longer students took on task, the lower their score 

in the test phase. The result shows a very low negative Pearson Correlation in Table 7. This con-

firms that the additional time spent on the system did not result in better learning. The more 

likely interpretation of the time on task result is that weaker students took more time to solve the 

problems. 
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Table 7. Pearson Correlation of Knowledge Score versus Time 

     
Knowledge 

Posttest 
Total Time  
(Minutes) 

Pearson Correlation 1 -,302(*) 

Sig. (2-tailed) . ,044 Knowledge Posttest 

N 45 45 

Pearson Correlation -,302(*) 1 

Sig. (2-tailed) ,044 . Total Time (Minutes) 

N 45 45 

*  Correlation is significant at the 0.05 level (2-tailed). 

 

Quiz Behavior 

Student performance during the quiz phase is an indicator of how well students have participated 

in the experiment. We looked at two variables that describe student’s quiz behavior: number of 

correct answers generated, and frequency of asking questions in each cycle. 

Although, students could game the system and could get their answers right in both condi-

tions by trial and error or using teacher answers1, the failure to answer multiple questions in this 

phase suggests low participation of students and could likely affect knowledge test scores. We 

analyzed the records, and found that almost all students succeeded in obtaining check marks for 

all the questions. One student showed poor participation in all three cycles, but his knowledge 

test scores were average. Two other students struggled only in one cycle. Thus, the number of 

correctly answered quiz questions did not provide evidence for any group or treatment differ-

ences. Hence, we further looked at how often students requested quiz questions, which told us 

how much they practiced. 

                                                 
1 Randomizing problems on failure avoids trial and error, but it creates a moving target problem during learning by 
teaching. Therefore, we decided to randomize only on request by the student. The experimental condition could try 
different dialogue choices to teach the agent until they got the corresponding quiz question right. The alternate con-
dition could use the teacher’s answer and type it in. However, students knew that they could not cheat in the test 
phase. 
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Quiz Questions Requested
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Figure 45. Quiz Questions Requested by Students in each Cycle 

We looked at how often students requested questions in the quiz phase of each cycle. There 

were 11 to 13 questions in each quiz. Figure 45 shows how often students requested a question, 

not how often they solved it (correctly or incorrectly). Students in the alternate condition re-

quested more questions in cycle three. The means for experimental and alternate condition were 

as follows: Cycle one, 31.8 (σ  = 13.7) and 36.0 (σ  = 14.5), cycle two, 28.2 (σ  = 12.1) and 28.5 (σ  

= 14.3), and cycle three, 28.35 (σ  = 13.5) and 43.64 (σ  = 27.5). The spike in cycle three stems 

mostly from class P’s alternate condition (compare with Figure 43) and coincides with the extra 

time that these students spent on the system. This subgroup displayed on average 52 quiz ques-

tions that is about 20 requests above average. We do not think that this difference indicates a 

treatment effect, because it occurs in only one cycle and stems from only one classroom. There-

fore, we think that students probably preferred continuing with the experiment rather than go 

back to their regular math class. 
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Combining these findings with the time results allowed us to exclude time and extra practice 

as major confounding factors for test results. Therefore, the additional activities and dialogues 

that the experimental group needed to teach the agent explains most of the time differences be-

tween the groups.  

Knowledge Test Analysis 

We included all subjects in this evaluation, and only used the 11 questions in our analysis, that 

were common to knowledge pretest and posttest. Students could score a maximum of 11 points 

in each test. We evaluated the repeated measure knowledge gain (HKGAIN) for all subjects regard-

less of treatment, and the differences between treatment conditions (HKDIFF) using a normal linear 

model. The descriptive statistics are summarized in Table 8. 

Table 8. Descriptive Statistics of Knowledge Pretest and Posttest 

  Condition Mean Std. Deviation N 
EXP (X1) 4.783 1.7309 23 
ALT (X2) 4.932 1.5142 22 

O1 

Total 4.856 1.6118 45 
EXP (X1) 5.913 1.9751 23 
ALT (X2) 6.614 1.5192 22 

O4 

Total 6.256 1.7826 45 

 

To verify the assumptions of the normal linear model, we performed two tests: (1) the test 

for normality of the input data, and (2) the test for equal variance between groups. At first, we 

plotted histograms for the knowledge pretest and posttest, and then we overlaid a normal curve 

on the histograms (see Figure 46 and Figure 47). In both figures, we saw a deviation from nor-

mality in the center of the distribution. However, the Shapiro-Wilk test (Table 9) confirmed that 
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our data was normal. The Kolmogorov-Smirnov test was included for reference only (we did not 

have a large enough sample size to use this test).  
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Figure 46. Histogram of the Knowledge Pretest (O1) 
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Figure 47. Histogram of the Knowledge Posttest (O4) 
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Table 9. Normality Tests for HKNDIFF 

  Kolmogorov-Smirnov Shapiro-Wilk 

  Statistic Df Sig. Statistic df Sig. 
Knowledge 
Pretest O1 

.191 45 .000 .957 45 .092 

Knowledge 
Posttest O4 

.132 45 .047 .966 45 .200 

 

The results of the Levene Test for equal variance of the dependent variable produced the re-

sults shown in Table 10. The results were not significant; therefore, the assumptions of our statis-

tical model were not compromised. 

 

Table 10. Levene’s Test of Equality of Error Variances 

  F df1 df2 Sig. 
Knowledge 
Pretest O1 

.735 1 43 .396 

Knowledge 
Posttest O4 

1.313 1 43 .258 

 

Tests of within subjects effects on the repeated measure knowledge, O1 vs. O4 (Figure 33 in 

Chapter V) showed significant learning for all participants with F(1,44) = 16.491 and P < 0.001, 

with a power of 0.978 for predictions at α  = 0.05. Thus, we rejected our null hypothesis 

HKNGAIN0. This suggests that our systems helped students of all conditions learn domain material.  

Tests of between subject effects (O4 of the experimental group vs. O4 of the alternate group) 

did not produce a significant difference between the means for our two conditions F(1,44) = 1.31 

and P = 0.257. Thus, we failed to reject our null hypothesis (HKDIFF0 in Table 1, of Chapter V). 

Therefore, this experiment did not conclusively demonstrate that learning by teaching helped 
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students to do better on the knowledge test. As a next step, we looked at differences between in-

dividual questions on the knowledge test. 

Individual Extraordinary Questions of the Posttest 

To study the issue of how much students learnt in a little more depth, we looked at three 

questions of the posttest, which produced scores with very large differences between the groups. 

The results were not analyzed for statistical significance. The number of correct pretest and post-

test answers is shown in Table 11. 

Table 11. Number of Correct Answers by Group on the Knowledge Tests 

 A B D G H K L M N O U V W X Y Z 

Pre EXP (X1) 21 15 7 0 4 5 6 10 21 10 - - - - 13 - 

Pre ALT (X2) 21 15 11 0 3 3 15 9 18 8 - - - - 11 - 

Post EXP (X1) 19 12 7 3 11 9 15 14 22 9 15 15 10 12 17 18 

Post ALT (X2) 20 17 6 2 13 8 15 16 20 15 12 15 3 6 18 18 

 

When looking at individual questions of the knowledge posttest, three of the 16 posttest 

questions showed a strong bias towards one of the groups (O, W, and X in Table 11). For the 

other questions, the scores were about the same for both groups. We asked students (KN_O in 

Appendix C), "If we make a distance-time graph for a car driving at 70 miles/hour. The line in a 

graph shows the car’s ... [time, distance, speed, acceleration]."1 Students in the alternate condi-

tion provided six more correct answers to the question than the experimental condition. Distance 

                                                 
1 In cycle two, students in both conditions answered the quiz question, "A constant speed in a graph is ... [a straight 
line, a curve, depends on the question]". Additionally, Billy could be taught, "A straight line without bends and 
edges is a single speed." 
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and time (stated in the question) were the most prevalent among the wrong answers. We cold not 

find any reasons for this outcome. 

The experimental condition was more successful in solving the other two questions. We 

asked (KN_X in Appendix C), "What are coordinates?", with the following options: (1) Some 

numbers to find a location; (2) The fewest numbers needed to find a location; (3) exactly two 

numbers to find a location: X and Y-coordinate1. The experimental group outscored the alternate 

group 10 to 3. Although both groups answered this question as part of the quiz, the activity of 

teaching it to Billy has probably led to better understanding of the concept of coordinates in 

graphs.  

So, why did the experimental condition learn this concept better? Students in the experimen-

tal condition requested the question related to this concept on average 3.74 times, compared to 

3.05 in the other condition. Statistically this difference is not significant. The teacher’s explana-

tion of the correct solution and instructional material were the same for both conditions. Many 

dialogues mentioned coordinates, but did not focus on the concept that coordinates are the fewest 

numbers to that define a point in a two dimensional graph. The remaining difference is the activ-

ity of teaching the agent through the dialogue. We think that the most likely reason for this dif-

ference is the insight stated by Billy after being taught correctly: "So, that is why we write down 

points with two numbers." It is likely that the strategy of the teachable agent to reinforce what the 

student taught by appearing to have an insight led to better understanding of the concept.  

                                                 
1 Additionally, learners in the experimental condition had the option to teach the agent the following three answers: 
(1) Coordinates are points in the graph that give a location. If taught, Billy would say on the quiz/if asked, "A point 
in the graph is a coordinate." (2) A coordinate helps to find a location on a line. Billy would say, "A coordinate helps 
to find a line." (3) Coordinates are the fewest numbers needed to find a location. Billy would say, "Coordinates are 
the fewest numbers that I need to tell someone to find a location. So, that is why we write down points with two num-
bers." 
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Figure 48. Illustrated Multiple Choices for a Posttest Question 

The experimental condition also performed better on the question (KN_W in Appendix C), 

"A car drives at 45 miles/hour to another city 50 miles away. It then turns around and drives back 

without stopping. Which graph shows this best (see Figure 48)?" The score of this question was 

12 to 6 in favor of the experimental group. Therefore, these students may have gained a deeper 

understanding of the covariation of time and distance.  

For the remaining questions, the difference was only 1-2 points in favor of one or the other 

condition. Almost all students learned how to read a point from the graph (question A; see Table 

11), identify axes (N), and distinguish lines that represented faster and slower speeds (Y). These 

questions showed a ceiling effect. Slightly fewer learners succeeded in writing a point into the 

graph (B). Seventy percent of the students were able to identify the line graph that represented a 

car that stopped for refueling correctly (V). The teacher agent taught this topic. Overall, neither 

group did very well in calculations of slope. 

Transfer Test Results 

Our primary hypothesis was that students in the experimental condition would develop a deeper 

understanding of the domain, and do better on transfer test problems that were described in the 

previous chapter. Both groups used the transfer enhancing methods of learning by exploration 
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and discovery (e.g., Miller, Lehman, and Koedinger 1999), situated cognition, and anchored in-

struction (Cognition and Technology Group at Vanderbilt 1993). 

In the transfer test, we removed outliers and replaced missing values. We removed one out-

lier from the whole experiment, who was exceptionally fast in solving all tests, and used the 

same choice for all answers in the knowledge and motivation tests. One student of the experi-

mental condition was absent, so we excluded this student from the analysis. After analysis with a 

box-plot, we excluded extreme values (two from the experimental condition, one from the alter-

nate condition) from our data. These extremes occurred because some of the students faked their 

measurement data1, or they did not record any data for unknown reasons (instructions on how to 

obtain the data were made explicit). As a result, we had 19 scores from the experimental condi-

tion and 21 from the alternate condition in our final analysis. We did not analyze flow-rate results 

(in ml/min) because almost all students produced their answer from their tables (took the value 

for one minute, interpolated, guessed, etc.) instead of reading it from their graphs, which was not 

the way to obtain the answer2 that we had in mind when we designed the test.  

We employed a normal linear model to test between subject effects of the total transfer score 

(without covariates). A Shapiro-Wilk test (Table 21) indicated a deviation from normality for the 

experimental group’s total score, but the histogram (Figure 57) did show a normal distribution 

with the outliers included. We did not think this warranted dropping the normal linear model, 

which is robust against deviations from normality. To be sure we cross validated the results with 

a non-parametric Mann-Whitney U Test. Other data that helped to assert the statistical model’s 

assumptions are included in Appendix E.  

                                                 
1 A few students found it more convenient to interpolate or extrapolate measures often beyond the range of possible 
values (e.g. 100 ml) instead of performing the measures. Faked values that could be identified as such did not count 
in the table task, and led to wrong lines in the graph task, which led to low-score outliers.   
2 Only in about four cases, the value could have come from the graph. In other cases, reading the graph at 1 minute 
did not yield the result that students gave as answer.  
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We found the difference between total transfer test scores of the groups to be significant at 

the 0.05 level: F(1,39) = 4.507, P = 0.04 and power = 0.543 at α  = 0.05. Thus, we rejected our 

null hypothesis HT0, and concluded that learning by teaching agents did result in better transfer 

skills, which indirectly implies that this helped students gain a deeper understanding of con-

cepts1. The non-parametric Mann-Whiney test confirmed the results (P = 0.04). 

Transfer Test Scores
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Figure 49. Transfer Test Scores by Task2 

Figure 49 splits the transfer test scores by sub-task for each group. The sub-tasks were (1) 

creating a table, (2) labeling the graph, and (3) drawing a line. We could see advantages for the 

experimental condition in all three tasks. Students in the experimental condition performed 

slightly better in labeling the tables (not shown; included in the Table score), which is a task in-

volving transfer from graphs to tables.  

                                                 
1 Using time as covariate for transfer did not change the result. The P-value remained at 0.04. 
2 We divided total score (sum of all three tasks) by three to show the results in a single figure. 
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Table 12. Descriptive Statistics of the Transfer Task 

Transfer Task Condition Mean Std. Deviation N 
EXP (X1) 7.053 .9703 19 
ALT (X2) 6.405 1.5939 21 

Table 

Total 6.713 1.3582 40 
EXP (X1) 6.711 1.7185 19 
ALT (X2) 5.476 2.3742 21 

Graph Labels 

Total 6.063 2.1549 40 
EXP (X1) 4.421 1.3464 19 
ALT (X2) 3.762 1.8949 21 

Graph Line 

Total 4.075 1.6701 40 
EXP (X1) 18.184 2.8490 19 
ALT (X2) 15.643 4.4557 21 

Total 

Total 16.850 3.9471 40 

 

The descriptive statistics for the transfer test sub-tasks are summarized in Table 12. We ob-

served the most pronounced effect for the experimental condition in labeling their transfer test 

graphs. This effect most likely resulted from repeatedly teaching the agent these ideas in cycle 

two and cycle three, and this may have made the importance of this task clear. To provide solu-

tions with correct units the agent required units on the graph’s axes to be correct. This shows that 

learning by teaching works well in helping students gain a good understanding of domain con-

cepts, and at the same time fosters good learning behaviors among students. 

Motivation Test Results 

In this section, we present the analyses of the Motivated Strategies for Learning Questionnaire 

(MSLQ) and Experiences That Energize (ETE). Details of these measures were presented in the 

previous chapter. 
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Motivated Strategies for Learning Questionnaire (MSLQ) 

To see if learning by teaching agents influenced motivation and learning strategies of students, 

we compared the Motivated Strategies for Learning Questionnaire results between the two ex-

perimental conditions. For the analysis, we used the normal linear model with MSLQ scores 

from the pretest as covariate (O5 between conditions, with covariate O2, see Figure 33 in chapter 

V).  

We removed a single influential outlier from the data. The student scored the highest pretest 

score and the lowest posttest score by selecting the same answer-choice during each test. A box-

plot also identified this data point as outlier. Inclusion of this measurement would have corrupted 

our analysis, as it is not robust against measurement errors in the pretest. No other modifications 

were made. 
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Figure 50. Motivated Strategies for Learning Questionnaire Posttest Comparison of Conditions1 

Figure 50 describes the MSLQ posttest results in a bar chart that shows 95% confidence in-

tervals. Significant results are starred. The following abbreviations for MSLQ variables were 

used in the chart: control belief (CB), critical thinking (CT*), extrinsic goal motivation (EG), ef-

fort regulation (ER), help seeking (HS), intrinsic goal motivation (IG), peer learning (PL), self-

efficacy (SE*), self-regulation (SR*), task value (TV*), and total score (Sum*). For example 

questions, see Table 3, Chapter V. 

The total score for the MSLQ posttest was significant in favor of our experimental learning 

by teaching condition. We have analyzed this variable (O5 in Figure 33) with a normal linear 

model with the MSLQ pretest (O2 in Figure 33) as covariate. Our experimental condition scored 

on average of 249.3 points (σ  = 42.2) and our alternate condition 231.7 (σ  = 40.2). Tests of be-

tween subjects effects were significant at F(1,43) = 7.75 and P = 0.008 with an observed power 

of 0.78 at α = 0.05. 

                                                 
1 We have divided total score (sum of all variables) by the number of variables to show the results in a single figure. 
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When analyzing individual variables with the same method and their pretest counterparts as 

covariates we obtained significant individual results from an increased perceived task value, with 

F(1,43) = 7.45 and P = 0.009 with an observed power of 0.76 at α = 0.05, increased perceived 

self-regulation F(1,43) = 6.49 and P = 0.015 with observed power of 0.7 at α = 0.05. Addition-

ally, self-efficacy was significantly increased with F(1,43) = 4.416 and P = 0.042 with an ob-

served power of 0.537 at α = 0.05, and perceived critical thinking improved with F(1,43) = 4.354 

and P = 0.043 with an observed power of 0.53 at α = 0.05. 

Interestingly, working with a social agent seemed to impose an opposite trend on peer learn-

ing, as we can see in Figure 50 (PL). Although, in our experiment this effect is very small and not 

significant, its trend should be observed in future experiments. Future work could explore if a 

more advanced "peer-like" agent can reduce the desire of learners to work with human peers. 

In an informal pretest to posttest comparison of the motivation means, MSLQ test scores fell 

slightly over time. However, we did not make a statistical comparison between pretest and post-

test, due to slight differences in the measures. We observed this drop in motivation also in sev-

eral preceding studies on the teachable agent Betty’s Brain, when pretest and posttest had exactly 

the same questions. Probably this reflects high expectations and interest of the students when 

they begin the experiment, but they are only partially met. 

Experiences That Energize (ETE) 

To trace students' motivation when using our system, we asked them to rate their energy levels 

with ETEs. Students gave their ratings before teaching, before quizzing, after quizzing (QD), af-

ter taking the test (TD), after reviewing the test (TR), and after seeing the test summary (TS) on a 

seven-point scale (see Table 4 in chapter V). We repeated this for each cycle and graphed the re-
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sult in Figure 51. Because students repeatedly entered the teach phase and the quiz phase of each 

cycle, sometimes on multiple days, we did not analyze these two ETE results.  

From the remaining data, we removed one outlier from the experimental group, and replaced 

some missing values. The outlier scored exceptionally low (40 below average of 61 with σ  = 14.3 

and 15 below the next subject in the group) and was identified by a box-plot. We had missing 

values in one of the three cycles. Therefore, we replaced them by the average of the other two 

values of the same variable of the same subject. This form of replacement preserves an eventual 

bias of a subject in answering the questions, because many students preferred one or the other 

end of the seven point Likert range. This became evident by looking at the four introductory 

questions, which were formulated to produce extreme high or low answers (see Appendix B). 

Most missing values occurred in the third cycle: seven in the experimental condition, three in the 

alternate condition. Of the remaining four replacements, three occurred in the test summary of 

cycle one in the experimental condition, and one in the test summary of cycle two of the alternate 

condition. 

First, we looked for general differences in the sum of all ETEs (QD+TD+TR+TS) between 

conditions. The scores were the average over all cycles. The experimental condition had a mean 

score of 63.0 (σ  = 11.6), while the alternate condition had a mean of 54.3 (σ  = 18.7). We used a 

normal linear model with the sum of the four initially given norming ETEs as covariate1. Our 

analysis showed significant differences between conditions with F(1,42) = 7.326 and P = 0.01 

with a power of 0.75 at α = 0.05. 

                                                 
1 The covariate was the sum of the ETE norming questions. When looking at the ETE results, it became apparent that 
students had different views about what is energizing and what is not. The norming questions were designed to pro-
duce a pattern of maximum, minimum, maximum, minimum Likert score. However, some students found copying a 
grammar lesson from the board moderately energizing, or did not use the most negative score at all. This bias of in-
dividual students was captured and removed by the covariate. 
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Figure 51. ETE Time Series for cycle 1, 2 and 3 (Standard Error Mean Bars)  

In Figure 51, we see a time series of experiences that energize (ETEs) over all three cycles of 

our experiment. From the graph, we see that students in the experimental condition continuously 

ranked themselves higher than students in the alternate condition. Scores during cycle two are 

individually significant between groups at α = 0.05, although we do not provide a detailed analy-

sis. 

In all three cycles, ETE scores fell during the test review (TR), which showed that students 

reacted adversely to mostly negative feedback for incorrect answers from the teacher agent. Re-

markably, in the first two cycles scores improved after receiving summative feedback and before 

entering a new cycle (TS). We believe that this reflects the relief that students felt when they 

were done with the test combined with anticipation for the next cycle. Cycle number one was a 
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relatively easy task, cycle number two presented moderate challenging task appropriate for the 

grade level, and cycle number three was a very hard task for 6th grade students.  

Our ETE scores show that students felt more energized during the task of learning by teach-

ing in the quiz phase and test phase. We think that this can be attributed to Billy taking blame for 

being unintelligent or failing questions, which diverts the student’s attention from their own per-

formance. 

Survey Results 

We asked survey questions to get a general understanding of how much students liked interacting 

with our system, and to assess potential interferences with our study. Figure 52 shows the results 

of our survey with individually significant questions starred1 when performing a comparison by 

group. 

                                                 
1 Changes were not hypothesized. Significance testing was provided upon request. One in 20 of the results may be 
significant by chance. 
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Figure 52. Survey Results  

We determined study maturation by asking students how often they have looked at or asked 

peers about materials related to our study outside of our study. Interestingly, we found that the 

alternate condition used outside resources more often than the experimental condition. From this, 

we can claim that the better knowledge and transfer results for the experimental group cannot be 

attributed to maturation. An explanation for this result might be that students in the alternate 

condition felt more compelled to succeed in tests for themselves, while students who learn by 

teaching do not feel as bad if their teachable agents fail to answer questions. This issue should be 

addressed in further research. 

When we asked students how they liked the voice in the system, we saw relatively low 

scores. We think the reason for this is that students reacted to problems in navigating through the 

dialogues, which let agent-speakers often repeat the same text. During the experiment, students 

were amused by the English accent of one speaker and expressed good understandability of the 

voices. 
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When we asked students how they liked specific agents and components of the system 

(Mathie, Billy, the simulation, and the graph), students in our experimental condition consistently 

reported higher scores than students in our alternate condition. It was interesting that students in 

our experimental group liked the teacher agent, Ms. Mathie, better (F(1,43) = 6.11, P = 0.018, 

power = 0.67) and found her to be more helpful (F(1,43) = 4.28, P = 0.045, power = 0.53) even 

though her dialogues were identical for both conditions. Additionally, students of the learning by 

teaching condition reported an on average higher score when asked how they liked the simulation 

and graph tool than the alternate condition.  

When asked about how much students thought that they had learnt, both groups responded 

with high ratings that were almost equal. The difficulty of the system was rated average by both 

groups, but students in the learning by teaching condition reported that they had more fun. Stu-

dents in the experimental condition rated significantly higher when asked how much fun they had 

(F(1,43) = 4.9, P = 0.032, power = 0.58). The question about how much students thought that 

Billy had learnt lacks a matching situation in the control condition (Billy could not learn), and 

cannot be analyzed for comparison. 

Finally, we tried to assess interferences with our experiment. We found, that students were 

helped on average three times during the experiment, and the staff provided on average one solu-

tion of a problem during this time. However, because these interferences affected both groups 

equally we do not expect them to have influenced our results.  

Summary 

Table 13 presents a summary of our overall results. The summary compares students’ perform-

ance, and motivation between two conditions. In the experimental condition, students learned 
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from the mentor agent, and had the goal to teach what they learned to the teachable agent so Billy 

could perform well on tasks that he had to perform in the company where he was employed as an 

intern. The problems that the teachable agent had to solve for the company were presented as 

quiz and test questions in the learning environment. In the alternate condition, students learned 

from the mentor agent to improve their own performance on the same tasks that the agent had to 

perform for the company. The learning environment in the alternate condition did not have Billy 

as a teachable agent. In the following paragraphs, we summarize the results of our study. 
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Table 13. Executive Summary of Study Results 

Time We concluded that our teachable agent condition required more time to complete all the ma-
terial and teach the agent. We estimated that the experimental group spent up to 20% more 
time to complete each cycle. 

HKGAIN We concluded that our system helped students learn domain material in both conditions. 

HKDIFF We did not find a significant difference between the means for our two conditions on the 
knowledge test. Thus, we did not to reject our null hypothesis and concluded that learning by 
teaching did not lead to improved learning for the alternate condition. 

HT Learning by teaching agents improved transfer. 

Transfer 
Task  
Details 

We observed the most pronounced difference in performance between the two groups in the 
task of labeling their transfer test graphs. This effect most likely could be attributed to the 
repeated teaching the agent this topic in cycle two and cycle three, which could have made 
the importance of this task clear.  

HM The total score of the MSLQ posttest was significant in favor of our experimental learning by 
teaching condition. Learning by teaching a social agent was beneficial for motivating stu-
dents. 

MSLQ 
Details 

Increased perceived task value, with P=0.009, increased perceived self-regulation P=0.015, 
self-efficacy was significantly increased with P=0.42 and perceived critical thinking im-
proved P=0.43 

HETE Our analysis showed significant differences between conditions with P=0.01. Our ETEs 
showed that students of the experimental group felt better than students of the other group, 
for example, more energized, during the task of learning by teaching in quiz phase and test 
phase. 
We attributed this to Billy taking the blame for failing questions in the test phase. This took 
some pressure of the students, who were not discouraged because of their own performance. 

Survey When we asked students how they liked specific components of the system, students in our 
experimental condition consistently reported higher scores than our alternate condition.  
Students in our experimental condition liked the teacher agent, Ms. Mathie, better and found 
her more helpful, even though the dialogues were identical in both conditions.  
Students of the learning by teaching condition have perceived simulation and graph tool bet-
ter than the alternate condition.  
Students in the learning by teaching condition reported that they had more fun working with 
the system. 

 

Our comparison of pretest versus posttest scores for the knowledge test determined that stu-

dents in both conditions showed significant learning gains. However, a comparison of our treat-

ment groups showed no significant learning differences. It turns out that the way the interactions 

between the students and the two systems were structured, students teaching our software agents 

spent more time in each cycle than the students in the alternate condition. This could be mainly 

attributed to teaching and correcting tasks that required extra time. Students had to navigate and 

answer many dialogues to teach the agents correctly. We would have liked the students in the ex-

perimental group to reflect more on the material they were teaching and gain deeper understand-
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ing of domain material, but it is not clear that this was fully achieved. There was no marked im-

provement in the posttest results between groups; however, we did see significant differences on 

the near transfer task. 

To study transfer, we made both groups solve a near transfer task. Students in the learning by 

teaching condition demonstrated significantly better performance over students in the alternate 

condition. This implies that like the other studies we have conducted (Biswas et al. 2005; Leela-

wong et al. 2002; Leelawong et al. 2003) the task of teaching others helps the students develop a 

better long-term understanding of the primary domain concepts. For example, students in our ex-

perimental condition performed better in the general skill of labeling the graph. This skill was 

fostered by teaching the teachable agent how to label the graph, and by the fact that wrong label-

ing had consequences on the agent’s performance. Students in the experimental condition real-

ized that an incompletely labeled or incorrectly labeled graph was ambiguous for Billy; therefore, 

he could not use the graph correctly, if he could use it at all. 

When we looked at motivational differences between the two treatment conditions, we found 

that students in our experimental condition were significantly better motivated. The factors where 

the experimental condition showed higher motivation were task value, self-regulation, self-

efficacy, and critical thinking. However, their urge to work with peers on the learning by teaching 

task showed an opposite trend. This could indicate that the teachable agent was accepted as a 

substitute for a peer by students. Students probably perceived increased task value because they 

experienced the fantasy context of helping the agent, Billy, with mathematics learning and prob-

lem solving. Increased self-efficacy suggested that students felt more capable of dealing with 

their own problems. The effects on self-regulation and critical thinking occurred probably due to 

many reflective tasks one had to undertake during teaching. 
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The pattern that students in our experimental condition had higher motivation was replicated 

in measures taken during the use of the learning system (ETEs), and in the survey that we con-

ducted at the end of the study. We found that students in our experimental condition felt signifi-

cantly more energized during the quiz phase and the test phase. In addition, our survey found that 

students in our experimental condition generally liked the components of our system better, and 

reported that they had more fun than the students in the other condition. This also confirmed 

positive motivational influences of learning by teaching. 

Our interpretation is that an agent that demonstrated independent performance on evaluation 

and testing tasks seems to have taken some pressure of our students. Students felt that test results 

did not directly reflect their own performance. On the other hand, the feedback seems to have 

helped them in longer-term learning, as we can envision by their improved performance on the 

transfer task. Thus, working with a shared representation, where the other agent takes on some 

responsibilities (e.g., test taking) seems to have positive effects on motivation and learning. 
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CHAPTER VII 

 

CONCLUSIONS 

The overall goal in this thesis was to develop an intelligent learning environment that adopted an 

explanatory and constructivist learning approach, and helped students learn and improve their 

problem solving activities in the mathematical domain on distance-rate-time problems. The 

learning environment implemented for this thesis combines the STAR-Legacy cycle structure 

(Schwartz, Lin et al. 1999), variants of Smart Tools (Owens et al. 1995), and Adventure Player 

(Crews et al. 1997) into a single learning environment that implements a learning by teaching 

approach. Smart Tools provided the interactive representations that users create for problem solv-

ing based on their knowledge or understanding of domain concepts. Adventure Player provided a 

problem-solving environment with planning and simulation tools for developing and verifying 

solutions to complex problems. Adventure Player was linked to the Rescue at Boones Meadow 

episode of the Adventures of Jasper Woodbury series that adopted an anchored instruction ap-

proach for teaching and learning (Cognition and Technology Group at Vanderbilt 1997). The 

outer cycle structure into which all of the above tools were embedded was adapted from the 

STAR-Legacy system to provide a structured sequence of increasingly difficult problems. Each 

cycle in our learning environment draws problems from a global anchoring context, organizes 

learning activities, and arranges formative and summative feedback during learning. We ex-

tended this environment with software agents that could be taught, to pursue the goal to improve 

motivation and the ability to transfer beyond the set of problems that students were taught to 

solve.  
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Our implementation combined three loosely connected frameworks: a simulation frame-

work, a Smart Tool (representation) framework, and social agents based on an agent framework. 

These frameworks are linked externally by our learning cycle structure, and internally by the 

agent communication infrastructure, which allows agents to manipulate the environment and 

transfer information to each other. This helps the agents to demonstrate, observe, learn, and 

comment on the actions of the student-teacher who is really the learner. To implement mecha-

nisms by which the student could teach a responsive teachable agent, we added an internal com-

munication system that let all agents observe changes that learners made in the environment, and 

engaged students in relevant dialogues that were linked to the state of the environment and the 

previous actions. Our agents were designed to learn declarative knowledge about the domain, and 

procedures on how to draw and read graphs. Once taught, agents could explain their solutions to 

the student when asked, and this helped the students to reflect on their incorrect solutions to de-

termine how to teach the agents better.  

We used this environment to study the effects of learning by teaching social agents on do-

main novice middle-school students by paying specific attention to motivation, learning, and 

transfer. Although we could not establish that our treatment resulted in improved performance on 

solving word problems, we found significant influences on transfer and highly significant effects 

on motivation. Students that learned by teaching our agents experienced higher task value, self-

efficacy, self-regulation, and critical thinking, when we asked them to evaluate their experiences 

with the Motivated Strategies for Learning Questionnaire. These motivational benefits were con-

firmed by the way students rated themselves with Experiences That Energize, and by our survey. 

Overall, the results of our study confirmed that teaching and interacting with social agents 

influenced middle school students positively. Students seemed to experience their interactions 
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with the teachable agent as genuine social interactions; this was borne out of the increased task 

value ratings that we observed in the experimental condition. Increased self-efficacy seems to 

indicate that students felt more capable of dealing with their mathematical problems if they were 

asked to teach, than if they were asked to learn from the teacher agent. Improved self-regulation 

and critical thinking were a direct consequence of the reflection initiated by the teaching tasks. 

This confirmed that learning by teaching is a powerful tool for providing motivating learning en-

vironments that kept the students interest in their learning and problem-solving task. The transfer 

test showed that learning by teaching also has advantages in helping students apply their learned 

knowledge in different tasks. This reflects most prominently in knowledge that was directly 

taught to the agent.  

Although the benefits of learning by teaching were illustrated by this study, our approach in-

creased the time that students had to spend on learning the same material than they would need in 

a more traditional setting (i.e., by being taught). This additional time makes this approach more 

costly and only worthwhile for teaching topics that students traditionally find hard to learn. This 

way, teachers and students could benefit from the motivation that the system generates among its 

users. In addition, students could use an online version of the system that allows them to solve 

homework outside of class.  

Future work on this system’s design should focus on improving the dialogue interaction with 

students. Like game environments, students might use buttons or menus to teach the agent or ask 

it queries without the tedious task of navigating a dialogue structure. However, our strategy of 

providing a uniform structure worked well after students became used to it. Initially, future sys-

tems should make better use of the functionality that is provided by the dialogue system, by cre-

ating more dialogues that the teachable agent initiates directly upon observing actions of the stu-
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dent. Such dialogues are harder to design, but might enhance the user’s experience of the agents 

dramatically. Alternatively, an agent could be taught procedural tasks not only through dialogues 

and demonstration, but also by graphical representations, such as, flow-charts. A visual represen-

tation of internal knowledge structures could help, too. 

Another interesting topic is that students who learn by teaching often focus on the perform-

ance of their agent, and less on their own. Therefore, learning by teaching systems must let stu-

dents also use the knowledge that is taught to the agent. Our system tried to balance and inter-

leave using knowledge for problem solving and teaching it, but there may be better approaches to 

help improve learning gains. It is also possible that sequencing effects exist, and teaching fol-

lowed by learning has different characteristics than learning followed by teaching an agent. In 

addition, letting students create tests and quiz questions for the agent may give this approach an-

other boost. 

 In this sense, we hope that learning by teaching agents will become a useful addition to 

standard classroom instruction. The demonstrated benefits in transfer of learning and motivation 

make the approach a worthy target for implementation, commercialization, and for future re-

search.   
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APPENDIX A 

 

MOTIVATED STRATEGIES FOR LEARNING QUESTIONNAIRE 

In the following appendix, we document our modified versions of the Motivated Strategies for 

Learning Questionnaire (MSLQ). The MSLQ was introduced by Pintrich et al. (Pintrich et al. 

1993, 1993). All questions were answered online with an interface like in Figure 40. 

Table 14. Modified Motivated Strategies for Learning Questionnaire (MSLQ) Pretest 

I1 These questions will help us both find out how you feel about learning mathemat-
ics. On the following pages is a series of statements about how you learn mathe-
matics. Mark your answers by telling how much you are like each statement. It 
will take about 20 minutes. Select 1 to go on. 

I2 Here is an example to help you get started. A statement says I like mathematics. 
Think about that statement, and select a number from 1 to 7 that is closest to how 
much you like mathematics. 
If you don’t like mathematics at all, select choice 1. If you like mathematics a lot 
select 7. If you like math most of the time, choose 6 or 5. If you like mathematics 
some of the time choose 4. If you do not like math most of the time, choose 3 or 
2.  
Now, try it out below. 

I3 There are no "right" or "wrong" answers. The only correct answers are those that 
are true for you. Whenever possible, let the things that have happened to you help 
you make a choice. Choose an answer because that is what you actually do or feel, 
not because it is what you should do or should feel. 
Select 1 to go on. 

MSLQ1 In mathematics class, I prefer to learn about things that really challenge me so I 
can learn new ideas. 

MSLQ2 If I study well, then I will be able to learn the ideas in mathematics class. 
MSLQ4 I think that I will be able to use what I learn in this mathematics class in life or 

other classes. I believe that I will get an excellent grade in this mathematics class. 
MSLQ5 I believe that I will get an excellent grade in this mathematics class. 
MSLQ6 I am certain that I can understand the most difficult ideas presented in the readings 

in this mathematics class. 
MSLQ7 Getting a good grade in mathematics class is the most important thing for me right 

now. 
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MSLQ9 It is my own fault if I do not learn the ideas in mathematics class. 
MSLQ10 It is important for me to learn the ideas in mathematics. 
MSLQ11 The most important thing for me right now is improving all of my grades, so my 

main concern in mathematics class is getting a good grade. 
MSLQ12 I am confident that I can learn the basic ideas in mathematics class. 
MSLQ13 If I can, I want to get better grades in mathematics class than most of the other 

students. 
MSLQ15 I am confident that I can understand the most complex ideas presented by my 

mathematics teacher. 
MSLQ16 In mathematics class, I prefer to study things I am curious about, even if they are 

difficult to learn. 
MSLQ17 I am very interested in mathematics. 
MSLQ18 If I try hard enough, I will understand the ideas in this mathematics class. 
MSLQ20 I am confident that I can do an excellent job on the assignments and tests in 

mathematics class. 
MSLQ21 I expect to do well in mathematics class. 
MSLQ22 The most important thing for me in mathematics class is trying to understand the 

ideas as good as possible. 
MSLQ23 I think what I study in mathematics class is useful for me to learn. 
MSLQ24 When I have a choice about assignments and projects in mathematics class, I 

choose assignments and projects that I can learn from, even if that means it will 
be more difficult to get a good grade. 

MSLQ25 If I do not understand the ideas in mathematics class, it is because I did not try 
hard enough. 

MSLQ26 I like mathematics. 
MSLQ27 Understanding the ideas in mathematics class is very important to me. 
MSLQ29 I am certain I can master the skills being taught in mathematics class. 
MSLQ30 I want to do well in mathematics class because it is important to show my ability 

to my family, friends, teachers, and others. 
MSLQ31 When I consider the difficulty of this mathematics class, my mathematics teacher, 

and my skills, I think I will do well in mathematics class. 
MSLQ33 During mathematics class, I often miss important information because I am think-

ing of other things. 
MSLQ34 When studying for my mathematics class, I often try to explain the ideas to some-

one else. 
MSLQ36 When reading for my mathematics class, I make up questions to help focus my 

reading. 
MSLQ37 I often feel so lazy or bored when I study for mathematics class that I quit before I 

finish what I planned to do. 
MSLQ38 I often find myself questioning things I hear or read in mathematics class in order 

to decide if I believe them. 
MSLQ40 Even if I have trouble learning the ideas in mathematics class, I try to do the work 

on my own, without help from anyone. 
MSLQ41 When I become confused about something I am reading for mathematics class, I 

go back and try to figure it out. 
MSLQ44 If the ideas in my mathematics book seem difficult to understand, I change the 
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way I read my mathematics book. 
MSLQ45 I try to work with someone else to complete the assignments in mathematics class 

whenever possible. 
MSLQ47 When a theory or conclusion is presented in mathematics class or in the mathe-

matics book, I try to decide if there is good supporting evidence. 
MSLQ48 I work hard to do well in mathematics class, even if I do not like what we are do-

ing. 
MSLQ50 When I study for my mathematics class, I like to discuss the ideas with someone 

else to make sure I understand. 
MSLQ51 I think of the ideas in mathematics class as a starting point for developing my own 

ideas about mathematics. 
MSLQ54 Before I read a new section in my mathematics book, I often skim it to see how it 

is organized. 
MSLQ55 I ask myself questions to make sure I understand what I have been studying in 

mathematics class. 
MSLQ56 If I need to, I change the way I study in order to get a better grade on tests and as-

signments in mathematics class. 
MSLQ57 I often find that I have been reading for mathematics class, but I do not know 

what the reading was all about. 
MSLQ58 When I do not understand something in my mathematics class, I ask my teacher to 

help me. 
MSLQ60 When work in mathematics class is difficult, I give up or only study the easy 

parts. 
MSLQ61 When I am studying for mathematics class, I try to think through a topic and de-

cide what I am supposed to learn from it rather than just reading about it. 
MSLQ66 I like to play around with ideas of my own that are related to what I am learning in 

mathematics class. 
MSLQ68 When I do not understand the ideas in mathematics class, I ask someone to help 

me. 
MSLQ71 Whenever I read or hear facts or conclusions in mathematics class, I think about if 

or why they are true. 
MSLQ74 Even when the mathematics book is dull and uninteresting, I manage to keep 

reading until I finish the assignment. 
MSLQ75 I try to find other students in mathematics class whom I can ask for help if I need 

it. 
MSLQ76 When studying for mathematics class, I try to find out what ideas I do not under-

stand well. 
MSLQ78 When I study for mathematics class, I set goals for myself in order to get the most 

out of the time I spend studying. 
MSLQ79 If I get confused while taking notes in mathematics class, I make sure I sort it out 

afterwards. 
END Congratulations. You are done with questions about your learning style. We will 

evaluate the questions and give the result to you at the end of the experiment. 
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Table 15. Modified Motivated Strategies for Learning Questionnaire (MSLQ) Posttest 

I1 On the following pages are a series of statements about our math learning soft-
ware. You have answered similar questions about mathematics class before you 
have started using our system. Imagine that you would use this learning soft-
ware during mathematics class while learning graphs with your teacher. 

I2 There are no "right" or "wrong" answers. The only correct answers are those that 
are true for you. Whenever possible, let the things that have happened to you dur-
ing the experiment help you make a choice. 

MSLQ1 With this learning software, I prefer to learn about things that really challenge me 
so I can learn new ideas. 

MSLQ2 If I use this learning software right, then I will be able to learn ideas. 
MSLQ4 I think that I will be able to use what I have learned with this learning software in 

life or other classes. 
MSLQ5 I believe that I will perform excellent with this learning software. 
MSLQ6 I am certain that I can understand the most difficult ideas presented by this learn-

ing software. 
MSLQ7 Performing well with this learning software will help me make a good grade in 

mathematics class. 
MSLQ9 It is my own fault if I do not learn ideas from this learning software. 
MSLQ10 It is important for me to learn ideas from this learning software. 
MSLQ11 The most important thing for me right now is improving all of my grades, and this 

learning software will help me in mathematics class. 
MSLQ12 I am confident that I can learn the basic ideas in this learning software. 
MSLQ13 If I can, I want to do better with this learning software than most of the other stu-

dents. 
MSLQ15 I am confident that I can understand the most complex ideas of Ms. Mathie. 
MSLQ16 In this learning software, I prefer to try things I am curious about, even if they are 

difficult to learn. 
MSLQ17 I am very interested in what I have learned from this learning software. 
MSLQ18 If I try hard enough, I will understand the ideas in this learning software. 
MSLQ20 I am confident that I can do an excellent job on the quizzes and tests in this learn-

ing software. 
MSLQ21 I expect to learn well with this learning software. 
MSLQ22 The most important thing for me in using this learning software is trying to under-

stand the ideas as completely as possible. 
MSLQ23 I think what I study with this learning software is useful for me to learn. 
MSLQ24 When I have a choice about tasks in this learning software, I choose tasks that I 

can learn from, even if I do not get a grade for it. 
MSLQ25 If I do not understand the ideas in this learning software, it is because I did not try 

hard enough. 
MSLQ26 I like learning mathematics with this learning software. 
MSLQ27 Understanding the ideas in this learning software is very important to me. 
MSLQ29 I am certain I can master the skills being taught in this learning software. 
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MSLQ30 I want to do well with this learning software because it is important to show my 
ability to my family, friends, teachers, and others. 

MSLQ31 When I consider the difficulty of this learning software, and my skills, I think I 
will do well in solving problems. 

MSLQ33 During using this learning software, I often miss important information because I 
am thinking of other things. 

MSLQ34 When learning with this learning software, I often would like to discuss the ideas 
with someone else. 

MSLQ36 When learning with this learning software, I make up questions to help me under-
stand. 

MSLQ37 I often feel so lazy or bored when I learn from this learning software that I quit 
before I finish what I planned to do. 

MSLQ38 I often find myself questioning things I hear or read while using this learning soft-
ware in order to decide if I believe them. 

MSLQ40 Even if I have trouble learning ideas from this learning software, I try to do the 
work on my own, without help from anyone. 

MSLQ41 When I become confused about something I am reading in this learning software, 
I go back and try to figure it out. 

MSLQ44 If the ideas in this learning software seem difficult to understand, I change the 
way I read them. 

MSLQ45 I try to work with someone else to complete the assignments in the learning task 
whenever possible. 

MSLQ47 When a result or solution is presented in this learning software, I try to decide if 
there is good supporting evidence. 

MSLQ48 I work hard to do well with this learning software, even if I do not like what I am 
doing. 

MSLQ50 When I use this learning software, I would like to set aside time to discuss the 
ideas with someone else to make sure I understand them. 

MSLQ51 I think of the ideas in this learning software as a starting point for developing my 
own ideas about mathematics. 

MSLQ54 With this learning software, if I read new resources, I often skim them to see how 
they are organized. 

MSLQ55 I ask myself questions to make sure I understand what I have been studying while 
using this learning software. 

MSLQ56 If I need to, I change the way I work in order to solve problems and assignments 
with this learning software. 

MSLQ57 I often find that I have been looking at resources or listening to the teacher while 
using this learning software, but I do not know what it was all about. 

MSLQ58 When I do not understand something while working with this learning software, I 
ask the teacher or research staff to help me. 

MSLQ60 When working with this learning software seems difficult, I give up or only do the 
easy parts. 

MSLQ61 When I am working on this learning software, I try to think through a topic and 
decide what I am supposed to learn from it rather than just reading about it. 

MSLQ66 I like to play around with ideas of my own that are related to what I am learning 
from this learning software. 
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MSLQ68 When I do not understand the ideas in this learning software, I ask someone to 
help me. 

MSLQ71 Whenever I read or hear facts or conclusions while using this learning software, I 
think about if or why they are true. 

MSLQ74 Even when the some tasks in this learning software are dull and uninteresting, I 
manage to keep going until I finish the assignment. 

MSLQ75 I would like to find other students working with this learning software whom I 
can ask for help if I need it. 

MSLQ76 When working with this learning software, I try to find out what ideas I do not 
understand well. 

MSLQ78 When working with this learning software, I set goals for myself in order to get 
the most out of the time I spend using the system. 

MSLQ79 If I get confused with this learning software, I make sure I sort it out afterwards. 
END Thank you for answering all questions for us, we appreciate your help. Now, 

please ask the research staff for what you can do next. 
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APPENDIX B 

 

EXPERIENCES THAT ENERGIZE 

This appendix lists all Experiences that Energize (ETE) used during the experiment. Table 16 

lists the introduction to ETEs with four norming questions. The ETEs used in our evaluation 

have been discussed on page 137. 

Table 16. Experiences that Energize 

Introduc-
tion 

Have you ever noticed that some things energize you, and other 
things seem to drain your thinking energy?  
For example, some people say they have a great deal of energy, when 
they think they are about to discover something new. But, their en-
ergy drops way down, when they have to do something that is boring, 
or they have no idea what to do. 

Introduc-
tion 

Next there are four example situations that I would like you to read. 
If you think the situation would energize you and make you ready to 
think more, circle a rating on the high side. If you think the situation 
would drain your energy and make you not want to think any more, 
circle a rating on the low side. If you think the situation is some-
where in between give it a middle score. 

Example 1 You are about to figure out the answer to a problem that no one else 
had been able to solve. 

Example 2 You are copying a grammar lesson from the board. 

Example 3 You are finishing an important exam where you’re confident you are 
getting every answer right. 

Example 4 You are writing a paper that you do not think is very good. 

End When you use the system, every now and then a window will pop up 
and ask you similar questions. Please rate your energy similar to how 
you did it here. Thank you. 
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APPENDIX C 

 

KNOWLEDGE TESTS 

Table 17. Knowledge Pretest 

I1 On the following pages you will answer math-questions 
No teacher will see your answers or results. 
There are no grades for these questions. 
These questions are only for our information so that we can tell if you have learned 
something when using our system. 
You will possibly not be able to answer more than one third of the questions. There 
is nothing wrong with that, because you will learn most answers to these questions 
later, when you use the program. 
Do not be scared to say: "I have to learn that." if you do not know the solution. 

I2 If you do not understand any instruction, raise your hand now. Otherwise start your 
questions ... 

KN14 In a graph the x-axis is always ... (if it is not marked differently) 
• Horizontal (from left to right)  
• Vertical (from top to bottom)  
• I have to learn that, I do not know an answer. 

KN1 
 

Read the point from the graph. 

 
• (2,4)  
• (4,2)  
• (2,-4)  
• (-2,4)  
• (4,-2)  
• (-4,2)  
• (-2,-4)  
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• (-4,-2) 
KN2 
 

Which point is (6, -4) 

 
KN15 
 

If a car drives 180 kilometers in 3 hours what is its speed? 
• 60 kilometers/hour  
• 183 kilometers/hour  
• 540 kilometers/hour  
• 60 hours/kilometer  
• 183 hours/kilometer  
• 540 hours/kilometer  
• I have to learn that, I do not know an answer. 

KN12 
 

You have a stopwatch. Cars are passing by at exactly 55 miles/hour. You use the 
stopwatch to find how long the cars take for different distances. Then, you plot dis-
tance-time points in a graph. What would the graph look like? 

• All points are scattered over the graph.  
• All points are on the same spot.  
• When the points are connected they lie on a straight line  
• When the points are connected they lie on a curve.  
• I have to learn that, I do not know an answer. 

KN13 
 

If we make a distance-time graph of a car driving at 55 miles/hour, the slope of a 
line in a graph shows the car’s ... 

• Speed  
• Distance  
• Time  
• Acceleration  
• Steepness  
• I have to learn that, I do not know an answer. 

KN3 
 

Which line is a faster speed L1 or L2? 
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• L1  
• L2  
• It is not possible to know from the graph.  
• The lines do not tell anything about speed.  
• I have to learn that, I do not know an answer. 

KN4 
 

Find the slope of the line in the graph. 

 
• -2 $/mile  
• 1/2 $/mile  
• 2 $/mile  
• -1/2 $/mile  
• -2 miles/$  
• 1/2 miles/$  
• 2 miles/$  
• -1/2 miles/$ 

KN7 
 

What is the slope of the equation (function): y = 7 - 5 * x 
• 0  
• -7  
• 7  
• -5  
• 5  
• The equation (function) does not show the slope.  
• I have to learn that, I do not know an answer. 

KN8 
 

P and Q are two points on a line. How do you calculate the slope of a line? There 
are multiple right answers. Choose the one that you know best. 

• slope = x / y  
• slope = y / x  
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• slope = run/rise = right/up  
• slope = rise/run = up/right  
• slope = (Qx - Px) / (Qy - Py)  
• slope = (Qy - Py) / (Qx - Px)  
• I have to learn that, I do not know an answer. 

KN10 
(removed)1 

Mike makes a trip to his aunt in Atlanta. He reads that the trip is 250 miles from his 
odometer when he has arrived. He has been driving for 5 hours, but made a 45 min-
utes stop for lunch. In between, he drove at various speeds between 45 and 70 
miles/hour depending on speed limits. Can you calculate the average speed? 

• 45 miles/hour  
• 50 miles/hour  
• 55 miles/hour  
• 60 miles/hour  
• 65 miles/hour  
• 70 miles/hour  
• To calculate average speed I need exact speed information.  
• I have to learn that, I do not know an answer. 

KN9 
(removed) 

How can you calculate average speed (AS) of a trip? There are multiple right an-
swers. Choose the one that you know best.  

• AS = TotalTime / TotalDistance  
• AS = TotalDistance / TotalTime  
• AS = (ArrivalTime - StartTime) / (ArrivalDistance - StartDistance)  
• AS = (ArrivalDistance - StartDistance) / (ArrivalTime - StartTime)  
• I have to learn that, I do not know an answer. 

KN11 
 

Convert the speed 72 kilometers / hour to a slope in the unit meters / second. A 
kilometer has 1000 meters and an hour has 3600 seconds. The result is ...  

• 72 / 3600 = 2 / 100 = 1/50 meters/second  
• 3600 / 72 = 100 / 2 = 50 meters/second  
• 72 * 1000 / 3600 = 20 meters/second  
• 3600 / (72 * 1000) = 1 / 20 meters/second  
• 3600 / 1000 = 3.6 meters/second  
• 3.6 / 1000 = 0.0036 meters/second  
• I have to learn that, I do not know an answer.  

END Congratulations. You are done with the math questions. Please do not feel bad if 
you could not answer a lot. 

 

                                                 
1 Cycle 4 was removed, so the pretest questions relating to cycle four were removed. 
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Table 18. Knowledge Posttest 

I1 If you have finished all three cycles early and would like to review a previous cycle 
please raise your hand and let somebody from the research staff know. You can also 
redo any "Real Customers" if you wish. 

I2 On the following pages you will answer math questions.  

No teacher will see your answers or results.  

These questions are only for our information so that we can tell if you have learned 
something when using our system. 

Please give every question a fair try. 

KN_Z 
 

If you draw the ordered pair P = ( -4, -8) into the graph, it is ... 

 
• On the faster line L1.  
• On the slower line L1.  
• On the faster line L2.  
• On the slower line L2.  
• On the origin.  
• Not on any line. 

KN_N 
 

In a graph the Y-axis is always ... (if it is not marked differently) 
• Horizontal (from left to right)  
• Vertical (from top to bottom) 

KN_U 
(extra) 

My son is leaving Atlanta in the Cessna 172 heading to Nashville. That is 225 miles 
away. They fly 138 miles/hour. How many minutes from now will I have to pick him 
up? Use the graph tool from cycle one: 
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• 575 minutes  
• 225 minutes  
• 172 minutes  
• 138 minutes  
• 100 minutes 

KN_Y 
 

The following graph shows two lines. Which line is a faster speed? 

 
KN_D 
 

Find the slope of the line in the graph. 

 
• -2 $/mile  
• 1/2 $/mile  
• 2 $/mile  
• -1/2 $/mile  
• -2 miles/$  
• 1/2 miles/$  
• 2 miles/$  
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• -1/2 miles/$ 
KN_H 
 

P and Q are two points on a line. How do you calculate the slope of a line? There are 
multiple right answers. Choose the one that you know best. Qx is the x-coordinate of Q 
and Py is the y-coordinate of point P, and so on. 

 
• slope = x / y = 3/2  
• slope = y / x = 2/3  
• slope = run/rise = right/up = 3/2  
• slope = rise/run = up/right = 2/3  
• slope = (Px - Qx) / (Py - Qy) = (3-6)/(2-4) = -3/-2 = 3/2  
• slope = (Py - Qy) / (Px - Qx) = (2-4)/(3-6) = -2/-3 = 2/3  
• slope = (Qx - Px) / (Qy - Py) = (6-3)/(2-1) = 3/2  
• slope = (Qy - Py) / (Qx - Px) = (2-1)/(6-3) = 2/3 

KN_L 
 

You have a stopwatch. Cars are passing by at exactly 55 miles/hour. You use the stop-
watch to find how long the cars take for different distances. Then, you plot distance-
time points in a graph. What would the graph look like? 

 
1. All points are scattered over the graph.  
2. All points are on the same spot.  
3. When the points are connected they lie on a straight line  
4. When the points are connected they lie on a curve. 

KN_A 
 

Read the point from the graph. 
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• (2,4)  
• (4,2)  
• (2,-4)  
• (-2,4)  
• (4,-2)  
• (-4,2)  
• (-2,-4)  
• (-4,-2) 

KN_O 
 

If we make a distance-time graph of a car driving at 70 miles/hour, the line in a graph 
shows the car’s ... 

• Distance  
• Time  
• Acceleration  
• Speed  
• Steepness 

KN_M 
 

If a car takes 3 hours for 180 kilometers what is its speed? 
• 60 kilometers/hour  
• 183 kilometers/hour  
• 540 kilometers/hour  
• 60 hours/kilometer  
• 183 hours/kilometer  
• 540 hours/kilometer 

KN_G 
 

What is the slope of the function: y = - 5 * x + 7 
• 0  
• -7  
• 7  
• -5  
• 5  
• The function does not show the slope.  
• I have to learn that, I do not know an answer. 

KN_B 
 

Which point is ( -4, 6) 
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KN_K 
 

Convert the speed 72 kilometers / hour to a slope in the unit meters / second. A kilome-
ter has 1000 meters and an hour has 3600 seconds. The result is ... 

• 72 / 3600 = 2 / 100 = 1/50 meters/second  
• 3600 / 72 = 100 / 2 = 50 meters/second  
• 72 * 1000 / 3600 = 20 meters/second  
• 3600 / (72 * 1000) = 1 / 20 meters/second  
• 3600 / 1000 = 3.6 meters/second  
• 3.6 / 1000 = 0.0036 meters/second 

KN_X 
(extra) 

What are coordinates? 
• Some numbers to find a location.  
• The fewest numbers needed to find a location.  
• Exactly two numbers: x and y. 

KN_W 
(extra) 

A car drives at 45 miles/hour to another city 50 miles away. It then turns around and 
drives back without stopping. Which graph shows this best? 

 
1. The distance increases and goes back to zero.  
2. The time increases and then goes back to zero.  
3. It is a straight line. We cannot see if a car turns around in a graph. 

KN_V 
(extra) 

A car drives at 45 miles/hour to another city 50 miles away. Half way it makes a stop at 
a gas-station for 10 minutes. Which graph shows this best? 
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END Thank you. You are done with the math questions. Please do not feel bad if you could 

not answer all of them. 
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APPENDIX D 

 

TRANSFER TEST WORKSHEET 

 
Date:     
Nozzle:     
Nickname:     
   
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
   
Flow Rate     
   
Notes:     
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APPENDIX E 

 

NORMAL LINEAR MODEL ADDENDA 

Knowledge Test (Analysis of HKNGAIN) 

Table 19. Box’s Test of Equality of Covariance Matrices1 for Knowledge Tests 

Box’s M .488 
F .154 
df1 3 
df2 357043.82 
Sig. .927 

 

                                                 
1 Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal across groups. 
Design: Intercept+GROUP Within Subjects Design: TIME 
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Observed

Predicted

Std.  Residual

Dependent Variable: KN1RAW

Model: Intercept + GROUP
 

Figure 53. Residual Plot Knowledge Pretest 

Observed

Predicted

Std.  Residual

Dependent Variable: KN2RAW

Model: Intercept + GROUP
 

Figure 54. Residual Plot Knowledge Posttest 
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Knowledge Test (Analysis of HKNDIFF) 
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Figure 55. Histogram of the Knowledge Posttest of the Experimental Condition 
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Figure 56. Histogram of the Knowledge Posttest of the Alternate Condition 
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Table 20. Normality Tests for HKNGAIN 

Kolmogorov-Smirnov Shapiro-Wilk 

 Condition Statistic df Sig. Statistic df Sig. 
EXP .196 23 .022 .949 23 .278 KN1RAW 

ALT .185 22 .048 .966 22 .611 
EXP .139 23 .200 .935 23 .140 KN2RAW 

ALT .161 22 .141 .894 22 .023 
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Figure 57. Histogram of the Transfer Test of the Experimental Condition 
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Transfer Total unweighted
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Figure 58. Histogram of the Transfer Test of the Alternate Condition 

Table 21. Normality Tests for the Transfer Test Analysis 

Kolmogorov-Smirnov Shapiro-Wilk 

 Condition Statistic df Sig. Statistic df Sig. 
EXP .311 19 .000 .859 19 .010 Transfer Table  

ALT .265 21 .000 .777 21 .000 
EXP .146 19 .200 .954 19 .466 Transfer Graph 

Labels  ALT .118 21 .200 .957 21 .459 
EXP .195 19 .055 .873 19 .016 Transfer Graph 

Line  ALT .180 21 .074 .885 21 .018 
EXP .128 19 .200 .952 19 .419 Transfer Total  

ALT .166 21 .136 .903 21 .039 
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Table 22. Box’s Test of Equality of Covariance Matrices1 for Transfer Test 

Box’s M 7.213 
F 2.267 
df1 3 
df2 399135.67

7 
Sig. .079 

 

Table 23. Levene’s Test of Equality of Error Variances2 for Transfer Test 

  F df1 df2 Sig. 
Transfer Graph Labels 1.967 1 38 .169 
Transfer Total 1.957 1 38 .170 

                                                 
1 Tests the null hypothesis that the observed covariance matrices of the dependent variables are 
equal across groups. Design: Intercept+GROUP  Within Subjects Design: TIME 

2 Tests the null hypothesis that the error variance of the dependent variable is equal across 
groups. Design: Intercept+GROUP 
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Observed

Predicted

Std.  Residual

Dependent Variable: Transfer Graph Labels

Model: Intercept + GROUP
 

Figure 59. Residual Plot for Transfer Test (Graph Labels) 
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Figure 60. Residual Plot for Transfer Test 

MSLQ 
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Figure 61. Histogram of the MSLQ of the Experimental Condition 
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Figure 62. Histogram of the MSLQ of the Alternate Condition 
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Table 24. Normality Tests for the MSLQ Analysis 

Kolmogorov-Smirnov Shapiro-Wilk 

 Condition Statistic df Sig. Statistic df Sig. 
EXP .135 22 .200 .950 22 .317 Motivation Pre-

test ALT .094 22 .200 .975 22 .818 
EXP .191 22 .035 .938 22 .178 Motivation 

Posttest ALT .086 22 .200 .974 22 .791 
 

Table 25. Levene’s Test of Equality of Error Variances1 

F df1 df2 Sig. 
.013 1 42 .910 

 

Observed

Predicted

Std.  Residual

Dependent Variable: Motivation Posttest

Model: Intercept + MSLQ1 + GROUP
 

Figure 63. Residual Plot Motivation Posttet 

 

                                                 
1 Tests the null hypothesis that the error variance of the dependent variable is equal across 
groups. Dependent Variable: Motivation Posttest; Design: Intercept+MSLQ1+GROUP 
 



  210  

BIBLIOGRAPHY 

Aïmeur, Esma, H. Dufort, D. Leibu, and C. Frasson. 1997. Some Justifications for the Learning by Disturbing Strat-
egy. Paper read at AI-ED 97, World Conference on Artificial Intelligence and Education, at Kobe, Japan. 

Aleven, Vincent A. W. M. M., and Kenneth R. Koedinger. 2002. An Effective Metacognitive Strategy: Learning by 
Doing and Explaining with a Computer-Based Cognitive Tutor. Cognitive Science 26:147–179. 

Allen, Vernon L., Ed., ed. 1976. Children as Teachers: Theory and Research on Tutoring. New York: Academic 
Press. 

Anderson, John R. 1983. The Architecture of Cognition. Cambridge, MA: Harvard University Press. 

———. 1995. Cognitive Tutors: Lessons Learned. The Journal of the Learning Sciences 4 (2):167-207. 

Bandura, A. 1977. Social Learning Theory. Englewood Cliffs, NJ: Prentice Hall. 

Bandura, A., and D. H. Schunk. 1981. Cultivating Competence, Self-Efficiacy, and Intrinsic Interest through Proxi-
mal Self-Instruction. Journal of Personality and Social Psychology (41):586-598. 

Barron, B. J., D. Schwartz, Nancy Vye, A. Moore, L. Zech, J. Bransford, and Cognition and Technology Group at 
Vanderbilt. 1998. Doing with Understanding: Lessons from Research on Problem- and Project-Based 
Learning. Journal of the Learning Sciences 7:271-311. 

Biswas, Gautam, Thomas Katzlberger, John Bransford, and Daniel Schwartz. 2001. Extending Intelligent Learning 
Environments with Teachable Agents to Enhance Learning. In Artificial Intelligence in Education, edited 
by J. D. Moore, C. L. Redfield and W. L. Johnson. San Antonio, TX: IOS Press, Amsterdam, Netherlands. 
Available from http://citeseer.ist.psu.edu/biswas01extending.html. 

Biswas, Gautam, D Schwartz, J. Bransford, and TAG-V. 2001. Technology Support for Complex Problem Solving: 
From SAD Environments to AI. In Smart Machines in Education, edited by Forbus and Feltovich. Menlo 
Park, CA: AAAI Press. 

Biswas, Gautam, Daniel Schwartz, Krittaya Leelawong, Nacy J. Vye, and TAG-V. 2005. Learning by Teaching a 
New Agent Paradigm for Educational Software. Applied Artificial Intelligence 19:363-392. 

Boud, D., ed. 1985. Problem-Based Learning for the Professions. Sydney: HERDSA. 

Boud, D., and G. Feletti, eds. 1991. The Challenge of Problem-Based Learning. New York: St Martin's Press. 

Bransford, John D. 1979. Human Cognition: Learning, Understanding, and Remembering. Belmont, CA: 
Wadsworth. 

———. 1990. Anchored Instruction: Why We Need It and How Technology Can Help. In Cognition, education and 
multimedia, edited by D. Nix and R. Sprio. Hillsdale, NJ: Lawrence Erlbaum Associates. 

———. 2004. Star Legacy Audiovisual Quicktime Presentation. Vanderbilt University 1990 [cited October 8 2004]. 
Available from http://iris.peabody.vanderbilt.edu/bransford.htm. 

Bransford, John D., L. Ann Brown, and R. Rodney Cocking. 2000. How People Learn. Expanded ed. Washington, 
D.C.: National Academy Press. 



  211  

Brophy, Jere. 1998. Motivating Students to Learn. Boston: Mc Graw Hill. 

Brophy, Sean P. 1998. Learning Scientific Principles through Problem Solving in Computer Supported and Labora-
tory Environments. Ph. D. Thesis, Education, Vanderbilt University, Nashville. 

———. 2003. Experiences that Energize. Personal Communication with the Author. 

Brown, A.L., and J.C. Campione. 1996. Psychological Theory and the Design of Innovative Learning Environments: 
On Procedures, Principles, and Systems. In Innovations in learning: New environments for education, ed-
ited by L. Schauble and R. Glaser. Mahwah, NJ: Erlbaum. 

Brown, J. S., and R. Burton. 1978. Diagnostic Models for Procedural Bugs in Basic Mathematical Skills. Cognitive 
Science 2:155-192. 

Brown, J. S., A. Collins, and S. Duguid. 1989. Situated Cognition and the Culture of Learning. Educational Re-
searcher 18 (1):32-42. 

Brown, J. S., and K. VanLehn. 1980. Repair Theory: A Generative Theory of Bugs in Procedural Skills. Cognitive 
Science (4):379-426. 

Bruner, J. 1966. Toward a Theory of Instruction. Cambridge, MA: Harvard University Press. 

Bruner, J. S. 1961. The act of discovery. Harvard Educational Review 31:21-32. 

CarnegieLearning. 2004. Corporate Websiete 2004 [cited November 18, 2004]. Available from 
http://www.carnegielearning.com. 

Chan, Tak Wai, and Chih Yueh Chou. 1997. Exploring the Design of Computer Supports for Reciprocal Tutoring. 
International Journal of Artificial Intelligence in Education 8:1-29. 

Chi, M. T. H. 1997. Self-Explaining: The Dual Processes of Generating Inferences and Repairing Mental Models. In 
Advances in Instructional Psycology, edited by R. Glaser. Mahwah, NJ: Lawrence Erlbaum Associates. 

Chi, M. T. H., M. Bassok, M. W. Lewis, P. Reimann, and R. Glaser. 1989. Self-Explanations: How Students Study 
and Use Examples in Learning to Solve Problems. Cognitive Science 13 (2):145–182. 

Cognition and Technology Group at Vanderbilt. 1993. Anchored Instruction and Situated Cognition Revisited. Edu-
cational Technology 33 (3):52-70. 

———. 1997. The Jasper Project: Lessons in Curriculum, Instruction, Assessment, and Professional Development. 
Mahwah, New Jersey: Lawrence Erlbaum Associates. 

Cohen, A. 1990. Language Learning. New York: Harper Collins. 

Cohen, Jiska. 1986. Theoretical Considerations of Peer Tutoring. Psychology in the Schools 23 (2):175-186. 

Collins, A., J. S. Brown, and S. E. Newman. 1989. Cognitive Apprenticeship: Teaching the Craft of Reading, Writ-
ing and Mathematics. In Knowing, Learning, and Instruction: Essays in Honor of Robert Glasser, edited by 
L. B. Resnick. Hillsdale, NJ: Erlbaum. 

Cook, Thomas D., Donald T. Campbell, and Thomas H. Cook. 1979. Quasi-Experimentation: Design and Analysis 
Issues for Field Settings. Chicago: Rand McNally. 

Crews, Thaddeus R. 1995. Adventureplayer: A Microworld Anchored in a Macrocontext. PhD, Computer Science, 
Vanderbilt University, Nashville, TN. 



  212  

Crews, Thaddeus R., Gautam Biswas, Susan Goldman, and John Bransford. 1997. Anchored Interactive Learning 
Environments. International Journal of AI in Education 8. 

Csikszentmihalyi, Mihalyi. 1978. Intrinsic Rewards and Emergent Motivation. In The Hidden Costs of Reward, ed-
ited by M. R. Lepper and D. Greene. Hillsdale, NJ: Lawrence Erlbaum Associates. 

———. 1990. Flow. New York: Harper & Row. 

Davis, Joan M., Krittaya Leelawong, Kadira Belynne, Robert Bodenheimer, Gautam Biswas, Nancy Vye, and John 
Bransford. 2003. Intelligent User Interface Design for Teachable Agent Systems. Paper read at International 
Conference on Intelligent User Interfaces, January 12-15, at Miami, Florida. 

Detterman, D. K. 1993. The Case for the Prosecution: Transfer as an Epiphenomenon. In Transfer on Trial: Intelli-
gence, Cognition, and Instruction, edited by D. K. Detterman and R. J. Sternberg. Norwood, NJ: Ablex. 

Dewey, John. 1933. How We Think. Boston: D.C. Heath. 

———. 1938. Logic: The Theory of Inquiry. New York: Holt: Rinehart and Winston. 

Doignon, J.-P., and J.-C. Falmagne. 1999. Knowledge Spaces: Springer-Verlag. 

Doignon, Jean-Paul, and Jean-Claude Falmagne. 1985. Spaces for the Assessment of Knowledge. International 
Journal of Man-Machine Studies (23):175-196. 

———. 2004. Assessment and LEarning in Knowledge Spaces (ALEKS) 2003 [cited October 28, 2004]. Available 
from http://www.aleks.com/about/Science_Behind_ALEKS.pdf. 

Elby, Andrew. 2000. What Students’ Learning of Representations Tells us about Constructivism. Journal of Mathe-
matical Behavior 19 (4):481-502. 

Etztioni, O., and D. S. Weld. 1995. Intelligent Agents on the Internet: Fact, Fiction, and Forecast. IEEE Expert 10 
(4):44-49. 

Finin, Tim, Yannis Labrou, and James Mayfield. 1997. KQML as an agent communication language. In Software 
Agents, edited by J. Bradshaw. Cambridge: MIT Press. 

Flavell, J. H. 1979. Metacognition and Cognitive Monitoring: A new Area of Cognitive-Developmental Inquiry. 
American Psychologist 34:906-911. 

Flavell, J. H., P. H. Miller, and S. A. Miller. 1993. Cognitive Development. Englewood Cliffs, NJ: Prentice Hall. 

Forbus, Kenneth D., and Peter B. Whalley. 1994. Using Qualitative Physics to Build Articulate Software for Ther-
modynamics Education. 

Franklin, S., and A. Graesser. 1996. Is It an Agent or Just a Program? A Taxonomy for Autonomous Agents. Paper 
read at Third International Workshop on Agent Theories, Architectures, and Languages, at New York. 

Frasson, Claude, Thierry Mengelle, Esma Aïmeur, and Guy Gouardères. 1996. An Actor-based Architecture for In-
telligent Tutoring Systems. In ITS’96 Conference, Lecture Notes in Computer Science. Montréal: Springer 
Verlag. 

Gaustard, Joan. 1993. Peer and Cross-Age Tutoring. ERIC Digest 79. 

Glaser, R. 1992. Expert Knowledge and Processes of Thinking. In Thinking Skills in Sciences and Mathematics, 
edited by D. F. Halpern. NJ: Lawrence Erlbaum Associates. 



  213  

Gust, Helmar, Christoph Peylo, Claus Rollinger, and Wilfried Teiken. 2005. The Virtual Campus Prolog Learning 
Environment. AIED'99 Poster 1999 [cited September 12, 2005]. Available from 
http://citeseer.ist.psu.edu/239290.html. 

Haskell, Robert E. 2001. Transfer of Learning. London, UK: Academic Press. 

Hietala, Pentti, and Timo Niemirepo. 1998. The Competence of Learning Companion Agents. International Journal 
of Artificial Intelligence in Education 9:178-192. 

IRIS. 2004. Star Legacy Modules. Vanderbilt University 1999 [cited October 8, 2004]. Available from 
http://iris.peabody.vanderbilt.edu/slm.html. 

Johnson, W. Lewis, and Jeff W. Rickel. 2000. Animated Pedagogical Agents: Face-to-Face Interaction in Interactive 
Learning Environments. International Journal of Artificial Intelligence in Education 11:47-78. 

Judd, C. H. 1908. The Relation of Special Training and General Intelligence. Educational Review (36):42-48. 

Kafai, Y. B. 1995. Minds in Play: Computer Game Design as a Context for Children's Learning. Hillsdale, NJ: 
Lawrence Erlbaum Associates. 

Kant, Immanuel. 1781. Critique of Pure Reason. 

Katz, L.G., and S.C. Chard. 2000. Engaging Children's Minds: The Project Approach. 2nd ed: Ablex. 

Kearsley, Greg. 2004. Explorations in Learning & Instruction: The Theory Into Practice Database (WWW Version 
2.2) 2002 [cited September 23, 2004]. Available from http://tip.psychology.org. 

Klahr, David, and Milena Nigam. 2004. The Equivalence of Learning Paths in Early Science Instruction: Effects of 
Direct Instruction and Discovery Learning. Psychological Science 15 (10):661-667. 

Koedinger, Kenneth R. 2001. Cognitive tutors as modeling tool and instructional model. In Smart Machines in Edu-
cation, edited by Feltovich. Menlo Park, CA: AAAI Press. 

Lander, D., A. Walta, M. McCorriston, and G. Birchall. 1995. A Practical Way of Structuring Teaching for Learn-
ing. Higher Education Research and Development 14:47-59. 

Langer, E. J. 1975. The Illusion of Control. Journal of Personality and Social Psychology (32):311-328. 

Lave, J., and E. Wenger. 1990. Situated Learning: Legitimate Peripheral Participation. Cambridge, UK: Cambridge 
University Press. 

Lawler, R. W. 1982. Designing Computer Microworlds. Byte (7):138-160. 

Leelawong, Krittaya, Joan Davis, Nancy Vye, Gautam Biswas, Dan Schwartz, Kadira Belynne, Thomas Klatzberger, 
and John Bransford. 2002. The Effects of Feedback in Supporting Learning by Teaching in a Teachable 
Agent Environment. Paper read at Fifth International Conference of the Learning Sciences, October 23-26, 
at Seattle, Washington. 

Leelawong, Krittaya, Karun Viswanath, Joan Davis, Gautam Biswas, Nancy J. Vye, Kadira Belynne, and John. B. 
Bransford. 2003. Teachable Agents: Learning by Teaching Environments for Science Domains. Paper read 
at The Fifteenth Annual Conference on Innovative Applications of Artificial Intelligence, August 12-14, 
2003, at Acapulco, Mexico. 

Leelawong, Krittaya, Yingbin Wang, Gautam Biswas, Nancy Vye, and John Bransford. 2001. Qualitative Reasoning 
Techniques to Support Learning by Teaching: The Teachable Agents Project. Paper read at Fifteenth Inter-
national Workshop on Qualitative Reasoning, at San Antonio, Texas. 



  214  

Lepper, Mark R., and T. W. Malone. 1987. Intrinsic Motivation and Instructional Effectiveness in Computer-Based 
Education. In Aptitude, learning, and instruction: Conative and affective process analyses, edited by R. E. 
Snow and M. J. Farr. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Lepper, Mark R., Maria Woolverton, Donna L. Mumme, and Jean-Luc Gurtner. 1993. Motivational Techniques of 
Expert Human Tutors: Lessons for the Design of Computer Based Tutors. In Computers as Cognitive Tools, 
edited by S. P. Lajoie and S. J. Derry. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Lippitt, Peggy. 1976. Learning Through Cross-Age Helping: Why and How. In Children as teachers: Theory and 
research on tutoring, edited by V. L. Allen. New York: Academic Press. 

Malone, T. W., and Mark R. Lepper. 1987. Making Learning Fun: A Taxonomy of Intrinsic Motivation for Learn-
ing. In Aptitude, learning, and instruction: Conative and affective process analyses, edited by R. E. Snow 
and M. J. Farr. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Mayer, Richard E. 2004. Should There Be a Three-Strikes Rule Against Pure Discovery Learning? American Psy-
chologist 59 (1):14-19. 

McClelland, D. C., J. W. Atkinson, R. W. Clark, and E. L. Lowell. 1953. The Achievement Motive. New York: Ap-
pleton. 

Mengelle, T., Frasson, C. 1996. A Multi-Agent Architecture for an ITS with Multiple Strategies. Paper read at CAL-
ISCE. 

Merriam-Webster. 2005. Websters Dictionary. Online Edition ed. 

Michie, Donald, Andrew Paterson, and Jean Hayes-Michie. 1989. Learning by Teaching. Paper read at 2nd Scandi-
navian Conference on Artificial Intelligence '89, at Tampere, Finland. 

Miller, Craig S., Jill Fain Lehman, and Kenneth R. Koedinger. 1999. Goals and Learning in Microworlds. Cognitive 
Science 23 (3):305-336. 

Modell, H.I., and J.A. Michael, eds. 1993. Promoting Active Learning in the Life Science Classroom. New York: 
New York Academy of Sciences. 

Mullis, Ina V. S., Michael O. Martin, Eugenio J. Gonzalez, Kelvin D. Gregory, Robert A. Garden, Kathleen M. 
O’Connor, Steven J. Chrostowski, and Teresa A. Smith. 1999. Trends in Mathematics and Science Study: 
International Mathematics Report: International Study Center, Lynch School of Education, Boston College. 

Nichols, David. 2005. Issues in Designing Learning by Teaching Systems 1994 [cited September 3, 2005]. Available 
from http://citeseer.ist.psu.edu/148715.html. 

Nichols, David Martin. 1994. Intelligent Student Systems: An Application of Viewpoints to Intelligent Learning En-
vironments. Ph. D., Computing Department, Lancaster University, Lancaster, UK. 

NIST/SEMATECH. 2004. e-Handbook of Statistical Methods. Carroll Croarkin and Paul Tobias n. d. [cited Decem-
ber 2, 2004]. Available from http://www.itl.nist.gov/div898/handbook/. 

Obajashi, Fumiaki, Hiroshi Shimoda, and Hidekazu Yoshikawa. 2000. Construction and Evaluation of a CAI System 
Based on 'Learning by Teaching' to Virtual Student. Information Processing Society Japan Journal 41 
(12):21. 

Ohlsson, S. 1986. Some principles of intelligent tutoring. Instructional Science 14:293-326. 



  215  

Owens, Stephen, G. Biswas, M. Nathan, L. Zech, J. Bransford, and S. Goldman. 1995. Smart Tools, A Multi-
Representational Approach to Teaching Functional Relationships. Paper read at International Conference 
on Artificial Intelligence in Education, at Washington D.C. 

Palincsar, A. S., and A. L. Brown. 1991. Reciprocal Teaching of Comprehension-Fostering and Monitoring Activi-
ties. Cognition and Instruction 1:117-175. 

Palthepu, Srinivas, Jim E. Greer, and Gordon I. McCalla. 1991. Learning by Teaching. Paper read at The Interna-
tional Conference on Learning Sciences, at Illinois, USA. 

Papert, Seymour. 1980. Mindstorms. New York: Basic Books, Inc. 

Pea, R. R., and D. M. Kurland. 1984. On the Cognitive Effects of Learning Computer Programming. New Ideas in 
Psychology 2 (2):137–168. 

Piaget, Jean. 1953. How Children form Mathematical Concepts. Scientific American 189 (5):74-81. 

———. 1954. The Construction of Reality in the Child. New York: Basic Books. 

Pintrich, Paul A., David A. F. Smith, Theresa Garcia, and Wilbert J. McKeachie. 1993. A Manual for the Use of the 
Motivated Strategies for Learning Questionnaire. 

———. 1993. Reliability and Predictive Validity of the Motivated Strategies for Learning Questionnaire (MSLQ). 
Educational and Psychological Measurement 53 (3):801-813. 

Quinlan, J.R. 1986. Induction of decision trees. Machine Leanring 1 (1):81-106. 

Reif, Frederick, and Lisa A. Scott. 1999. Teaching Scientific Thinking Skills: Students and Computers Coaching 
Each Other. American Journal of Physics 67 (9):819-831. 

Reusser, Kurt. 1993. Tutoring Systems and Pedagogical Theory: Representational Tools for Understanding, Planning 
and Reflection in Problem Solving. In Computers as Cognitive Tools, edited by S. P. Lajoie and S. J. Derry. 
Hillsdale, NJ: Lawrence Erlbaum Associates. 

Rickel, Jeff, Rajaram Ganeshan, Charles Rich, Candace L. Snider, and Neal Lesh. 2000. Task-Oriented Tutorial Dia-
logue: Issues and Agents. Cambridge: Mitsubishi Electric Research Laboratories. 

Salomon, Gavriel, and D. Perkins. 1988. Teaching for transfer. Educational Leadership:22-32. 

Schank, Roger C., and Daniel J. Edelson. 1989. Discovery Systems, Artificial Intelligence and Education. Paper read 
at Proceedings of the 4th International Conference on AI and Education. 

Schwartz, D., S. Brophy, X. Lin, and J. Bransford. 1999. Software for Managing Complex Learning: Examples from 
an Educational Psychology Course. Educational Technology, Research and Development 47 (2):39-59. 

Schwartz, D., X. Lin, S. Brophy, and J. Bransford. 1999. Toward the Development of Flexibly Adaptive Instruc-
tional Designs. In Instructional-Design Theories and Models: New Paradigms of Instructional Theory, ed-
ited by C. Reigeluth. Mahwah, NJ: Erlbaum. 

Schwier, R., and E. Misanchuk. 1993. Interactive Multimedia Instruction. New Jersey: Educational Technology Pub-
lications. 

Scott, Lisa A. 1991. Design and Assessment of an Interactive Physics Tutoring Environment. Ph. D. Thesis, School 
of Education, University of Pittsburgh, Pittsburgh. 



  216  

Self, John. 1990. Theoretical Foundations for Intelligent Tutoring Systems. Journal of Artificial Intelligence in Edu-
cation 1 (4):3-14. 

———. 1991. Formal Approaches to Student Modelling. Lancaster: Lancaster University. 

Sison. 1998. Student Modelling and Machine Learning. International Journal of Artificial Intelligence in Education 
9:128-158. 

Sternberg, Robert J. 1995. In Search of the Human Mind. Fort Worth, TX: Hardcourt Brace & Company. 

Stipek, Deborah J. 1988. Motivation to Learn. Englewood Cliffs, NJ: Prentice Hall. 

Thompson, P. W. 1994. The Development of the Concept of Speed and its Relationship to Concepts of Rate. In The 
Development of Multiplicative Reasoning in the Learning of Mathematics, edited by G. Harel and J. Con-
frey. Buffalo: NY: SUNY Press. 

———. 1994. Students, Functions, and the Undergraduate Mathematics Curriculum. In Research in Collegiate 
Mathematics Education, edited by E. Dubinsky, A. H. Schoenfeld and J. J. Kaput: American Mathematical 
Society, Providence, RI. 

Torp, Linda, and Sara Sage. 2002. Problems as Possibilities: Problem-Based Learning for K-16 Education. 2nd ed: 
Association for Supervision and Curriculum Development. 

Tripathi, A. N. 1979. Memory for Meaning and Grammatical Structure: An Experiment on Retention of the Story. 
Psychological Studies 24 (2):136-145. 

VanLehn, K. 1990. Mind Bugs. Cambridge, MA: MIT Press. 

Vosniadou, S., and W. F. Brewer. 1989. The Concept of the Earth's Shape: A Study of Conceptual Change in Child-
hood. Unpublished paper. 

Vye, Nacy J., D.L. Schwartz, J.D. Bransford, B.J. Barron, L.K. Zech, and Cognition and Technology Group at Van-
derbilt. 1997. SMART Environments That Support Monitoring, Reflection, and Revision. In Metacogntion 
in educational theory and practice, edited by D. Hacker, J. Dunlosky and A. Graessar. Mahwah, NJ: Erl-
baum. 

Vygotsky, Semyonovich L. 1978. Mind in Society. Cambridge, MA: Harvard University Press. 

Weerasinghe, A., and A. Mitrovic. 2002. Enhancing learning through self-explanation. Paper read at Proc. ICCE 
2002. 

Weigel, Van B. 2002. Deep Learning for a Digital Age: Technology's Untapped Potential to Enrich Higher Educa-
tion. San Francisco: Jossey-Bass. 

Wenger, Etienne. 1987. Artificial Intelligence and Tutoring Systems. 

White, Barbara Y., Todd Shimoda, and John R. Frederiksen. 1999. Enabling Students to Construct Theories of Col-
laborative Inquiry and Reflective Learning: Computer Support for Metacognitive Development. Interna-
tional Journal of Artificial Intelligence in Education 10 (2). 

Whitehead, A.N. 1929. The Aims of Education. New York: MacMillan. 

Wilson, K. 1992. Discussion on Two Multimedia R & D Projects: The Plaenque Project and the Interactive Video 
Project of the Museum Education Consortium. In Interactive Multimedia Learning Environments, edited by 
M. Giardina. Berlin: Springer-Verlag. 



  217  

Wilson, Robert A., and Frank Keil, eds. 2001. The MIT Encyclopedia of the Cognitive Sciences (MITECS). Cam-
bridge, MA: MIT Press. 

Zimmerman, Barry J., and Dale H. Schunk, eds. 2001. Self-regulated Learning and Academic Achievement : Theo-
retical Perspectives. Mahwah, N.J.: Lawrence Erlbaum Associates. 

Zuckerman, M., J. Porac, D. Lathin, R. Smith, and E. L. Deci. 1978. On the Importance of Self-Determination for 
Intrinsically Motivated Behavior. Personality and Social Psychology Bulletin (4):443-446. 

 


