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CHAPTER I 

 

INTRODUCTION 

 

1. Introduction 

 The evolution of the lower limb prosthesis over the recent decades has progressed from purely 

mechanical systems to systems that include microprocessor control.  When evaluating the basic function 

of standard mechanical knee prosthesis, Figure 1-1, their function is to provide constant mechanical 

damping in order to extract energy from the system and limit the flextion of the knee joint in the back swing 

to prevent a collision of the knee joint at full extension.  These devices allow for restricted mobility of 

amputees and provide an abnormal gait pattern.  

 

           

Figure 1-1. Standard lower limb prostheses including mechanical damping knee with locking and solid ankle 

cushioned heel (SACH) foot. 

 

The current generation of lower limb prosthesis, Figure 1-2, incorporate microprocessors to control either 

electromagnetic breaks or magnetic rheological fluid for the modulation of the damping in the knee 
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throughout the gait cycle.  The incorporation of spring elements in the ankle, Figure 1-3, provides some 

power return in the gait cycle, but is incapable of producing power.  The devices do provide users with 

increased mobility; however they still do not replace the power generation capabilities of the missing limb. 

 

         

Figure 1-2.  The Ossur Rheo knee (left) and the Otto Bock C-Leg (right) represent the cutting edge of 

microprocesser controlled damping prosthetic knees. 

 

 

 

Figure 1-3.  The Ottobock Trias Foot represents the a typical spring-action ankle. 

 

Despite these significant technological advances in transfemoral prostheses, commercially available 

prostheses remain limited to energetically passive devices as seen.  That is, the joints of the prosthesis 

can either store or dissipate energy, but cannot provide net power over a gait cycle. The inability to deliver 

joint power significantly impairs the ability of lower limb prostheses to restore many locomotive functions, 
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including walking up stairs and slopes, running, and jumping, all of which require significant net positive 

power at the knee joint, ankle joint, or both (Winter and Sienko 1988, Nadeau et al. 2003, Riener et al. 1999, 

Prilutsky et al. 1996, DeVita et al. 1996, Nagano et al. 1998, Jacobs et al. 1996).  Further, although less 

obvious, even biomechanically normal walking requires positive power output at the knee joint and 

significant net positive power output at the ankle joint (Winter, 1991).  Transfemoral amputees walking with 

passive prostheses have been shown to expend up to 60% more metabolic energy relative to healthy 

subjects during level walking (Waters et al. 1976) and exert as much as three times the affected-side hip 

power and torque (Winter 1991), presumably due to the absence of powered joints.   

A prosthesis with the capacity to deliver power at the knee and ankle joints would presumably address 

these deficiencies, and would additionally enable the restoration of biomechanically normal locomotion.  

Such a prosthesis, however, would require 1) power generation capabilities comparable to an actual limb 

and 2) a control framework for generating required joint torques for locomotion while ensuring stable and 

coordinated interaction with the user and the environment.  

 

2. Literature Survey 

Though the author is not aware of any prior work on the development of a powered knee and ankle 

prosthesis, prior work does exist on the development of powered knee transfemoral prostheses and 

powered ankle transtibial prostheses. Regarding the former, Flowers (1973), Donath (1974), Flowers and 

Mann (1977), Grimes et al. (1977), Grimes (1979), Stein (1983), and Stein and Flowers (1988) developed a 

tethered electrohydraulic transfemoral prosthesis that consisted of a hydraulically actuated knee joint 

tethered to a hydraulic power source and off-board electronics and computation, Figure 1-5.  They 



 

 
4 

subsequently developed an “echo control” scheme for gait control, as described by Grimes et al. (1977), in 

which a modified knee trajectory from the sound leg is played back on the contralateral side.  It should be 

noted that Flowers (1973) prosthesis was specifically designed for an able-bodied subject and could not be 

used as-is by an amputee.  The device was attached to the able-bodied person with their knee in extreme 

flexion, which made walking with the device difficult due the unnatural configuration of the leg.   

 

 

Figure 1-5. Flowers et al. (circa 1970’s) developed a hydraulically actuated knee prosthesis that pioneered 

the use of active joints.  

 

In addition to this prior work directed by Flowers, other groups have also investigated powered knee joints 

for transfemoral prostheses. Specifically, Popovic and Schwirtlich (1988) report the development of a 

battery-powered active knee joint actuated by DC motors, Figure 1-6, together with a finite state knee 

controller that utilizes a robust position tracking control algorithm for gait control (Popovic et. al., 1995). With 

regard to powered ankle joints, Klute et al. (1998, 2000) describe the design of an active ankle joint using 

pneumatic McKibben actuators, although gait control algorithms were not described. Au et al. (2005) 

assessed the feasibility of an EMG based position control approach for a transtibial prosthesis.  Finally, 
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though no published literature exists, Ossur, a major prosthetics company based in Iceland, has announced 

the development of both a powered knee and a self-adjusting ankle.  The latter, called the “Proprio Foot” 

(Figure 1-7), is not a true powered ankle, since it does not contribute power to gait, but rather is used to 

quasistatically adjust the angle of the ankle to better accommodate sitting and slopes.  The powered knee, 

called the “Power Knee” (Figure 1-8), utilizes an echo control approach similar to the one described by 

Grimes et al. (1977). 

 

 

 

 

Figure 1-6. Electromagnetically actuated powered knee developed by Popovic with the use of a battery 

pack. 

 

  

Figure 1-7. Ossur “Proprio” foot used for actively positions the foot for increased functionality. 
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Figure 1-8. Victhom/Ossur “Power Knee” uses electromagnetic actuation and limited battery life. 

 

3. Motivation and Contribution 

Unlike any prior work, this thesis describes a prosthesis design that consists of both a powered knee 

and ankle, and describes a method of control that enables natural, stable interaction between the user and 

the powered prosthesis.  The control approach is implemented on the prosthesis prototype fit to a user, 

and experimentally shown to provide powered level walking representative of normal gait. 

 One of the most significant challenges in the development of a powered lower limb prosthesis is 

providing self-powered actuation capabilities comparable to biological systems.  State-of-the-art power 

supply and actuation technology such as battery/DC motor combinations suffer from low energy density of 

the power source (i.e., heavy batteries for a given amount of energy), low actuator force/torque density, and 

low actuator power density (i.e., heavy motor/gearhead packages for a given amount of force or torque and 

power output), all relative to the human musculoskeletal system.  Recent advances in power supply and 

actuation for self-powered robots, such as the liquid-fueled approaches described by Goldfarb et al. 2003, 

Shields et al. 2006, Fite et al. 2006, and Fite and Goldfarb 2006, offer the potential of significantly improved 

energetic characteristics relative to battery/DC motor combinations, and thus bring the potential of a 
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powered lower limb prosthesis to the near horizon.  Specifically, the aforementioned publications describe 

pneumatic-type actuators, which are powered by the reaction products of a catalytically decomposed liquid 

monopropellant.  The proposed approach has been experimentally shown to provide an energetic figure of 

merit an order of magnitude greater than state-of-the-art batteries and motors (Shields et al. 2006, Fite and 

Goldfarb 2006).  Rather than construct a self-powered version directly, the authors have developed a 

power-tethered version of the prosthesis, which enables laboratory-based controller development and 

prosthesis testing.  The self-powered version should be nearly identical to the power-tethered version, but 

will include an on-board propellant cartridge and catalyst pack in place of the pneumatic tether.  This thesis 

describes the design of the power-tethered pneumatically actuated prosthesis prototype. 

 

4. Organization of the Document 

The thesis is organized into five chapters. Chapter I presents the introduction and motivation of the 

overall powered transfemoral prosthesis concept.  The thesis format is to present two manuscripts based 

on the work and add additional technical detail in the subsequent chapter.  Chapter II is a conference paper 

that has been accepted by the 2006 ASME International Mechanical Engineering Congress and Exposition 

as a technical paper. The paper presents the detailed design of a transfemoral prosthesis including the 

optimization of the kinematic configuration, the overall prosthesis design, model verification with ProE 

Mechanica Finite Element Analysis (FEA) software, the design of a three-axis socket load cell and the 

design of an able-bodied adaptor that serves as a laboratory test bed.  Chapter III is an addendum to 

Manuscript I and adds technical details regarding the design, optimization, and socket load cell calibration.   

Chapter IV is submitted as a full paper to the International Journal of Robotics Research for 
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consideration in a special issue on “Machines for Human Assistance and Augmentation”.  Discussed in 

this manuscript is the current prosthesis prototype design, methods for converting the prototype to a 

self-powered version, development of an impedance based control approach and finally presents 

experimental results for validation of the hardware and control approach.  Chapter V is an addendum to 

Manuscript and adds technical notes regarding the analog electronic circuitry, torque control, and a design 

summary. 
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1. Abstract 

This paper describes the design of an above-knee prosthesis with actively powered knee and ankle 

joints, both of which are actuated via pneumatic actuators. The prosthesis serves as a laboratory test-bed to 

validate the design and develop of control interfaces for future self-contained versions (i.e., with onboard 

hot-gas power and computing), and therefore includes a tether for both pneumatic power and control. The 

prototype prosthesis provides the full range of motion for both the knee and ankle joints while providing 

100% of the knee torque required for fast cadence walking and stair climbing and 76% and 100%, 

respectively, of the ankle torque required for fast cadence walking and for stair climbing, based on the 

torques required by a healthy 75 kg subject. The device includes sensors to measure knee and ankle torque 

and position, in addition to a load cell that measures the interaction force and (sagittal and frontal planes) 

moments between the user and device. 

 

2. Introduction 

Despite significant technological advances over the past decade (such as the introduction of 

microcomputer-modulated damping during swing), commercial transfemoral prostheses remain limited to 

energetically passive devices.  That is, the joints of the prostheses can either store or dissipate energy, but 

cannot provide any net power over a gait cycle.  Today’s lower limb transfemoral prosthesis is typically a 

“locking” knee for stance phase, a passive (sometimes microprocessor modulated) damper at the knee 

during swing phase, some form of damping at the ankle for heel strike, and often some form of compliant 

energy storage at the ankle/foot for toe-off.  The inability to deliver joint power significantly impairs the 

ability of these prostheses to restore many locomotive functions, including walking up stairs and slopes, 
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running, and jumping, all of which require significant net positive power at the knee joint, ankle joint, or both 

as seen in Fig. 2-1 (Winter and Sienko 1988, Nadeau et al. 2003, Riener et al. 1999, Prilutsky et al. 1996, 

DeVita et al. 1996, Nagano et al. 1998, Jacobs et al. 1996).  Additionally, even during level walking, 

transfemoral amputees exhibit asymmetric gait kinematics, expend up to 60% more metabolic energy 

relative to healthy subjects Walters et al. (1976), and exert as much as three times the affected-side hip 

power and torque relative to healthy subjects Winter (1991), which results in significantly increased socket 

interface forces.  These limitations have a direct impact on the quality of life of many active transfemoral 

amputees, and most likely speed the onset of degenerative musculoskeletal conditions. 

 

 
Figure 2-1. Joint power during one cycle for 75 kg normal subjects.  Red represents power generated, 

blue is power dissipated. Winter (1988), Winter and Sienko (1988), Nadeau et al. (2003) 

 

The earliest body of research on actively powered knee joints for transfemoral prostheses was the 

work by Flowers et al., which took place during the 1970’s and 1980’s by Flowers (1973), Donath (1974), 

Grimes et al. (1977), Grimes (1979), Stein (1983), Stein and Flowers (1987).  Specifically, Flowers and 
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Mann (1977) developed a tethered electrohydraulic transfemoral prosthesis that consisted of a hydraulically 

actuated knee joint tethered to a hydraulic power source and off-board electronics and computation through 

a tether.  The prosthesis did not contain an active ankle joint, but rather incorporated a solid-ankle, 

cushioned-heel (SACH) foot.  The SACH foot effectively absorbed energy at heel strike, although provided 

relatively little energy storage and return during toe-off.  In addition to the body of work directed by Flowers 

(1973) and Flowers and Mann (1977), other groups have also investigated actively powered knee joints for 

transfemoral prostheses.  Specifically, Popovic and Schwirtlich (1988) report the development of an active 

knee joint battery-powered DC motor actuated transfemoral prosthesis.  Finally, though no published 

research exists, it should be noted that Ossur, a prosthetics company based in Iceland, has in development 

an actively powered knee prosthesis for transfemoral amputees.  With regard to active ankle joints, Klute 

et al. (1998, 2000) conducted studies on the use of McKibben actuators in an active ankle joint for transtibial 

prostheses.   

One of the significant challenges in developing a powered lower limb prosthesis is providing on-board 

power and actuation that is comparable to that of biological systems.  Relative to biological systems, 

state-of-the-art power supply and actuation technology is hindered by the combination of low energy 

density of the power source (i.e., heavy batteries for a given amount of energy), low  actuator force/torque 

density, and low actuator power density (i.e., heavy motor/gearhead packages for a given amount of force 

or torque and power output).  Recent advances in power supply and actuation for self-powered robots, 

such as the liquid-fueled approach developed by the investigators Goldfarb et al. (2003), Shields and 

Goldfarb (2005), Shields et al. (2004) and Fite et al.(2004), offer the potential of significantly improved 

energetic characteristics, relative to batteries and motors.  This paper describes the design of a prototype 
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transfemoral prosthesis that is intended to be powered by the liquid-fueled approach developed by the 

investigators.  In its initial form, however, the prosthesis will be power-tethered, such that interface and 

control algorithms can be developed and tested in a laboratory setting.  Once such interface and control is 

developed, the device will be converted for use with on-board power and computation.  The remainder of 

this paper describes the design of the power-tethered prototype. 

 

3. Kinematic Configuration 

The kinematic configuration of the actuators was selected via a design optimization to minimize the 

volume of the actuators, subject to the constraints that they provide the requisite range of motion of the joint 

and provide a torque/angle phase space that accommodates a 75 kg user during fast walking and stair 

climbing.  The data defining the requisite phase space for fast walking and stair climbing were obtained 

from Winter (1991) and Nadeau et al. (2003), respectively.  Minimum range of motion was determined to 

be 110° of flexion for the knee and 45° of planterflexion and 20° of dorsiflexion for the ankle. 

x

θ

L
1

L2

 
Figure 2-2. Slider-crank configuration with parameters L1, L2, x, and θ.  

 

A typical slider-crank configuration is shown in Fig. 2-2.  The relationship between the actuator (linear) 

displacement and crank angle is given by the law of cosines: 
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where L1 and L2 are the two fixed-length segments of the slider-crank, θ is the angle between those 

segments, and x (which represents the actuator length) can vary between a fully contracted state, xmin, and 

a fully extended state, xmax.  The relationship between slider force and crank torque can be obtained by 

assuming no internal losses (i.e., method of virtual work) as follows: 
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For the pneumatic actuator, the force F is given by the product of actuator diameter and operating 

pressure, which in this case is 2 MPa (300 psig).  Based on these relationships, a multi-tiered exhaustive 

search minimization was conducted to find a minimum volume actuator that could provide the requisite 

range of motion and torque/angle phase space as follows: 

For a given actuator diameter and stroke length (which determine xmin and xmax), combinations of L1 and L2 

were determined, based on equation (1), that provide the requisite range of motion.  Note that the actuator 

diameter influence is not intuitive, but does affect the cylinder length as a function of stroke.  For these 

combinations, the peak torque was computed, based on maximizing equation (2) as a function of θ.  The 

optimal solution was the one that provided the requisite peak torque and secondly minimized the angle 

between the mechanism peak torque and the angle at which it occurs during gait, and, if necessary, 

additionally minimized the length L1. 
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The joint specifications and ranges considered for L1 and L2 are given in Table 2-1, the actuator sizes 

considered are given in Table 2-2, and finally the optimized solution is given in Table 2-3.  Note that the 

ankle actuator can supply only 76% of the torque required for fast walking by a 75 kg user.  Though 

solutions did exist for the full ankle torque, these solutions placed the geometry envelope of the prototype 

outside of the typical human anthropomorphic envelope.  As such, it was decided to trade the peak torque 

capability of the ankle in order to limit the size of the ankle actuator and the L1 dimension in order to stay 

within the volumetric envelope of the anthropomorphic norm and reduce overall weight of the device.  

Experimental trials with the device will determine whether or not this was a worthwhile design trade-off.  

The torque/angle phase space of the resulting knee and ankle actuator configurations are shown 

graphically in Figs. 2-3 and 2-4, along with the data for a 75 kg normal human for slow and fast cadence and 

stair climbing Winter (1988), Winter and Sienko (1988), Nadeau et al. (2003). 

 

Table 2-1. Parameters used for optimization of actuator size and configuration.  

Parameter Values for Knee 

Actuator 

Values for Ankle Actuator 

Peak Kinematic Torque Required 86 Nm 130 Nm 

Angle at Peak Kinematic Torque 25° 10° 

Minimum Range of Motion 110° 65° 

Range of L1 0.001 – 3.16 cm 0.001 – 3.16 cm 

Range of L2 0.001 – 30 cm 0.001 – 30 cm 
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Table 2-2. Actuator parameters considered in optimization. 

Actuator Diameters 7/8”, 17/16”, 1.25”, 1.5”, 1.75”, 2” 

Actuator Stroke Length 0.25” – 6”  

Maximum Operating Pressure 2 MPa (300 psig) 

 

 

 

 

Table 2-3. Results of parameter optimization of actuator size and configuration.  

Parameter Values for Knee 

Actuator 

Values for Ankle Actuator 

L1 4.3 cm 5.1 cm 

L2 28.8 cm 26.3 cm 

Range of Actuator Motion 125° 87° 

Actuator Diameter 1.5” 1.5” 

Actuator Stroke 3” 2.75” 

Peak Actuator Torque 102 Nm 119 Nm 

Supplied Actuator Torque at Angle of Peak 

Kinematic Torque 

86 Nm 100 Nm 

 

 

Figure 2-3. Knee joint angle versus torque during one power cycle for typical 75 kg normal subject and 

theoretical active knee joint prosthetic operating at 2 MPa (300 psig). 
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Figure 2-4. Ankle joint angle versus torque during one power cycle for typical 75 kg normal subject 

Winter and theoretical active ankle joint prosthetic operating at 2 MPa (300 psig). 

 

4. Prosthesis Design 

Figures 2-6 and 2-7 show a labeled solid model and a photograph, respectively, of the assembled 

prosthesis prototype.  The device incorporates double-acting pneumatic actuators (Bimba model 17-3-DP 

for the knee joint, model 17-2.75-DP for the ankle).  Operating at 300 psig, the actuators are capable of 

producing 510 lbf of outward axial force, and 465 lbf on the return.  It should be noted that heavier users 

could be accommodated by increasing the operating pressure (e.g., up to 500 psig, which would 

accommodate joint torques required for a 125 kg user).  Flow to the cylinders is controlled by custom 

four-way servovalves, shown in Fig. 2-5.  The sensor package for the prosthesis includes joint torque and 

position sensors along with a custom 3-axis socket load cell, described in detail in Section 5, which 

measures the axial force, sagittal plane moment, and frontal plane moment at the interface between the 

prosthesis and socket.  The torque at each joint is measured via uniaxial load cells (Honeywell Sensotec 

model 11) located in line with the actuator piston rods.  The ankle and knee joints each contain integrated 

joint motion sensors (ETI Systems model SP12S precision potentiometer).  A potentiometer was chosen 
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as a joint angle sensor rather than an optical encoder to provide high-resolution absolute position 

measurement in a small package size.  The potentiometers lie inside a pair of Teflon/porous bronze 

composite dry bearings (Garlock model DU) within each joint, as shown in the cross section of Fig. 2-8.   

Figure 2-9 shows the range of motion of the knee and ankle joints, while Fig. 2-10 shows the geometric 

envelope of the active knee and ankle prosthesis relative to the human leg.    

 

 

Figure 2-5. Rotary 4-way servovalve for use in prosthesis. 
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Figure 2-6. Major components of power-tethered prototype. 

 

 

 

Figure 2-7. Actual tethered transfemoral prosthesis prototype. 
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Figure 2-8. Section view of ankle joint, showing integrated potentiometer (i.e., joint angle sensor). 

 

       

Figure 2-9. Range of motion of active knee and ankle prosthesis simulator.  LEFT: Knee and ankle joints 

at zero angular displacement; MIDDLE: Knee fully flexed (110°) and ankle fully plantarflexed (45°); RIGHT: 

Knee fully extended (0°) and ankle fully dorsiflexed (20°). 
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Figure 2-10. Sagittal and frontal geometry of the active knee and ankle prosthesis relative to an 

anthropomorphic norm. 

 

The structural components of the prosthesis were designed to withstand a 2224 N (500 lbf) load and 

maximum actuator joint torques using ProE Mechanica finite element analysis (FEA) software to verify safe 

stress conditions.  The results of these analyses, depicted in Figs. 2-11 through 2-14, indicate that 7075-T6 

aluminum, which has a minimum yield strength in excess of 500 MPa, provides a factor of safety between 

1.7 and 3.7 for the design conditions.  

 

 

Figure 2-11. ProE Mechanica finite element analysis of ankle joint housing actuator attachment point 

subjected to 2224 N (500 lbf) vertical force.  Maximum von mises stress is 297 Mpa. 
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Figure 2-12. ProE Mechanica finite element analysis of knee joint housing actuator attachment point 

subjected to 2224 N (500 lbf) downward vertical force and 1000 N downward vertical force on load cell 

attachment point.  Maximum von mises stress is 155 Mpa. 

 

 

 

 

 

Figure 2-13. ProE Mechanica finite element analysis of tibial tube subjected to 2224 N compressive force 

and actuator attachment clamps subjected to 2224 N (500 lbf) downward vertical force.  Maximum von 

mises stress is 291 Mpa. 
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Figure 2-14. ProE Mechanica finite element analysis tibia coupling and rotor subjected to 1000 N 

compressive force at the free end of the rotor.  Maximum von mises stress is 132 Mpa. 

 

The active prosthesis was designed to fit a broad range of different sized persons, ranging from two 

standard deviations below the female norm in length, up to two standard deviations above the male norm in 

length based on data from Gorden et al. (1988).  The tibial length is varied by changing the single structural 

(tibia) tube and the clamping supports for the actuators allow for adjustment to achieve the recommended 

spacing as dictated by the kinematic configuration optimization.  The foot is a low profile prosthetic foot 

(Otto Bock Lo Rider), with typical sizes available.   Additionally, the ankle joint and the 3-axis socket load 

cell incorporate standard pyramid connectors for coupling the prosthesis to the feet and socket, thus 

enabling a high degree of adjustment in the knee and ankle alignment, as is standard in transfemoral 

prostheses.  Based on actual prosthesis weight and combined with the use of an Otto Bock Lo Rider foot 

0.37 kg (0.8 lb), the total weight of the transfemoral prosthesis with pyramid connectors is 2.65 kg (5.8 lb), 

which is within the normal and acceptable range for transfemoral prostheses and less then a comparable 

normal limb segment Clauser et al. (1969). 
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5. Load Cell Design 

As previously mentioned, the interaction forces and moments between the prosthesis and user must 

be measured for purposes of prosthesis control and user intent recognition.  Such a measurement is most 

logically made proximal to the knee joint.  Based on the data for fast walking and stair climbing, the range 

of measurement for the load cell was determined to be 1000 N of axial force (i.e., along the socket) and 100 

N-m of sagittal and frontal plane moments.  Relative to commercially available multi-axis load cells (e.g., 

ATI and JR3), this combination of force and moment is disproportionately weighted toward the moment 

measurement.  Specifically, commercial multi-axis load cells that met the force requirement had a moment 

range that was an order of magnitude smaller than the moment requirement.  Similarly, commercial 

multi-axis load cells that met the moment requirement had force ratings an order of magnitude larger than 

that required, and additionally were much larger than could be realistically implemented in a prosthetic leg.  

As such, a custom load cell was designed and fabricated.  Initially, an effort was made to utilize three 

commercial uniaxial load cells (Honeywell Sensotec model 11) mounted in a triangle formation to 

independently measure forces and moments, as depicted in Fig. 2-15.  The large moment requirement 

relative to the force range, and the fact that the package diameter was restricted by the diameter of a leg, 

required the use of 2225 N (500 lbf) uniaxial load cells, such that the total force capacity would be 6675 N 

(1500 lbf).  Since the primary measurement range of interest is an order of magnitude less than this, the 

sensitivity of this load cell would be unacceptable.  As such, a custom three-axis socket load cell was 

designed. 
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Figure 2-15. Triangle mounted uniaxial commercial load cells not used in final design to due reduced 

sensitivity to axial force. 

 

 

 
Figure 2-16. Idealized versus actual beam patterns. 

 

 

 

Figure 2-17. Regions of compression (C) and tension (T) in a sectional view of the single cross for an 

applied force, F, and moment, M. Subscripts denote loading responsible for the compression and tension. 
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Figure 2-18. Regions of compression (C) and tension (T) in a sectional view of the double cross for an 

applied force, F, and moment, M. Subscripts denote loading responsible for the compression and tension. 

 

The basis of the socket load cell design is a crossed beam, as depicted in Fig. 2-16.  The initial design 

utilized a single crossed beam, which measures the force and moments via the relative regions of tension 

and compression as indicated in Fig. 2-17.  Based on assumptions of linearly elastic, isotropic and 

homogeneous behavior, the strain due to the axial force can be derived to be: 
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Where F is the axial force, M is the applied moment, L is the length of the beam, E is the modulus of 

elasticity, b is the beam width, h is the beam thickness, R is the length of beam clamped in the center, and I 

is the area moment of inertia given by: 
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The objective of the design with a single cross is to develop strains of similar magnitudes (e.g., 

approximately 1000 microstrain for metal foil gages) for a desired applied force and moment.  For the 

range of forces and moments of interest in this application (1000 N and 100 N-m, respectively), and for the 

allowable geometric envelope of the load cell, no satisfactory solution could be obtained (i.e., sensitivity to 

applied moments was significantly greater than sensitivity to applied forces). 

Rather than use a single cross configuration, which fundamentally utilizes bending to measure both the 

applied force and moment, a double cross design was developed in order to effectively change the 

fundamental mechanism by which the moment was measured.  Specifically, by utilizing a pair of crosses as 



 

 
30 

shown in Fig. 2-18, the moment is counteracted by a force couple, which loads the beams in tension and 

compression, while (like the single cross configuration) the force is counteracted by loading the beams in 

bending.  By introducing fundamentally different mechanisms of loading between the force and moment 

measurement, the relative geometry of the cross could be manipulated to generate similar strain sensitivity.  

 

Figure 2-19. Double cross in assembled and exploded view showing the configuration of the two 

approximated crosses. 

 

The double cross design, which is shown in Fig. 2-19, consists of two single crosses separated by a 

distance and rigidly held together by a housing on the outside and load transmitter in the center.  This 

introduces a levering action, via the load transmitter, between the crosses when a moment is applied.  For 

a given applied moment, the strain in the beams can be calculated as: 
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A b h                                       (12)     

Where εm is the strain resulting from the applied moment, M, t is the separation between the plates, b is the 

width of the beam, h is the thickness of the plates, and E is the modulus.  As the distance increases 

between the two plates, the forces in each of the supporting beams decreases.  The distance between the 

plates is used to bring the resulting force and moment strains on the same order and within the measurable 

range of a strain gage.  The double cross still utilizes beam bending to measure the force the same manner 

as that used for the single cross design, however, the force is now distributed via four beams, instead of two 

(i.e., strain given by equation (3), although a factor of two less for a given force).   

Based on appropriate versions of equations (3) and (10), the double load cell was optimized using a 

recursive MATLAB program code to optimize for the smallest overall device size.  The optimization 

constraints were to have the sum of strains be less than 1500 microstrain, have the strains, εf and εm, be on 

the same order, and search for the minimum load cell volume that meets the criteria.  The results of the 

optimization for the load cell design are listed in Table 2-4.  The resulting strains were then verified via a 

ProE Mechanica finite element analysis, the results of which are shown in Figs. 2-20 and 2-21.  
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Table 2-4. Results of parameter optimization of 3-axis load cell dimensions. 

Parameter Symbol Value 

Length of Beam L 20 mm 

Width of Beam b 16 mm 

Height of Beam h 2 mm 

Plate Separation t 23 mm 

Modulus of Plate Material E 193 Gpa (301 stainless steel) 

Predicted strain from Force εf 610 µε 

Predicted strain from 

Moment 

εm 870 µε 

 

 

 

 

 

Figure 2-20. ProE Mechanica analysis of 3-axis socket load cell subjected to 1000 N compressive axial 

force.  Peak microstrain in the area location of the stain gages is 400 µε. 

 

 

 
Figure 2-21. ProE Mechanica analysis of 3-axis socket load cell subjected to 100 Nm moment in the frontal 

plane.  Peak microstrain in the location of the stain gages is 700 µε. 
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The device was fabricated using the actual cross design as depicted in Fig. 2-16.  Strain gages 

(Vishay Micromeasurements EA-06-125AC-350) were applied in a pattern depicted by Fig. 18.  The final 

assembled and wired device, which can be seen in Fig. 6, weighs 360 g.  The calibration of the load cell 

was two-fold.  First, reference loads were placed directly on top of the load cell.  In the second, depicted in 

Fig. 2-22, reference masses were hung from an arm inline with cross beams at varying distances from the 

load cell to impart a moment onto the load cell with varying forces, and forces onto the load cell with varying 

moments.  The voltage readings from each of the three bridges were taken for all calibration points.  A 

least squares method was used to calculate coefficients of a transformation matrix between the vector of 

applied forces and moments and the vector of measured voltage output from the three bridges based on a 

fifth-order polynomial fit using MATLAB.  The results of the calibration are shown in Figs. 2-23, 2-24 and 

2-25.  In these figures, the 45° line represents the zero-error solution where applied load is equal to the 

calculated load.  The relatively small error that exists in the calibration is due to (mechanical) cross talk 

between the applied forces and moments. 

 

 

Figure 2-22. Calibration setup of 3-axis socket load cell in moment calibration configuration. 
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Figure 2-23. Applied versus calculated force, where line represents ideal solution where applied is equal 

to calculated. 

 

 

Figure 2-24. Applied versus calculated sagittal moment, where line represents ideal solution where 

applied is equal to calculated. 
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Figure 2-25. Applied versus calculated frontal moment, where line represents ideal solution where applied 

is equal to calculated. 

 

6. Able-Body Testing Adaptor 

Development and testing of the prosthesis controller will be facilitated by the use of an able-boded 

testing adaptor, which will enable extensive in-house testing and validation of the prosthesis prior to any 

transfemoral amputee participant involvement.  The testing adaptor will enable a healthy subject to wear 

and walk with the prosthesis prototype.  Gait trials with the testing adaptor will be used to thoroughly 

evaluate the performance, safety, and functionality of the fully controlled prosthesis prior to any transfemoral 

participant involvement.  Design of the able-bodied testing adaptor is shown in Fig. 2-26.  As shown in the 

figure, the adaptor consists of a commercial adjustable locking knee immobilizer (KneeRANGER-Universal 

Hinged Knee Brace) with an adaptor bracket that transfers load from the subject to the prosthesis.  Figure 

2-27 shows for comparison both a transfemoral amputee with the prosthesis and a healthy subject with 

adaptor/prosthesis.  Since the prosthesis remains lateral to the immobilized leg of the healthy subject, the 
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adaptor will enable replication of transfemoral amputee gait without (geometric) interference from the 

immobilized leg. 

 

          

Figure 2-26. Design of the able-bodied testing adaptor, which will enable development, testing, and 

evaluation of the proposed prosthesis and controllers prior transfemoral amputee participant testing. 

 

 

 

Figure 2-27. Depiction of one stride cycle for transfemoral amputee (above) and healthy subject wearing 

able-bodied (below). 

 

7. Conclusion 

This paper described the design of a tethered pneumatically actuated transfemoral prosthesis.  The 

design requirements were outlined from biomechanical data of unaffected persons and the design was 

optimized to provide a lightweight device and the structural integrity validated with finite element analysis 

software.  A sensor set to provide full controllability of the prosthesis was integrated into the design.  
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Among the sensor set is a custom designed three-axis load cell, which measures the forces and moments 

between the prosthesis and socket.  This prosthesis will serve as a laboratory test bed to validate the 

device performance and develop control algorithms using the able-bodied adaptor.  Pending the 

development of suitable user interface and control approaches, a self-contained version of the prosthesis 

with on-board power and computing will be developed. 
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CHAPTER III 

 

ADDENDUM TO MANUSCRIPT I 

 

1. Prosthesis Design 

Appendix A comprises of parts list for the prosthesis, socket load cell and able-bodied adaptor.  The 

focal point of the design of a powered prosthesis is the kinematic configuration of the actuators.  The 

actuators in this design is what provides the paradigm shift from previous prosthesis designs and the 

actuators must be able to provide the necessary torques at the knee and ankle in order to provide the 

increased functionality promised.  The basic design crux of the kinematic configuration of the actuators is 

to provide the greatest amount of torque capability in the smallest volumetric envelope.  In order to find a 

solution two approaches were explored; analytical and numerical.  The analytical solution did not lead to a 

finite solution due to complications in the nonlinear geometry.  Instead, a numerical approach was chosen 

and used in the final design of the leg.  The numerical method used is described in Chapter 2.3 and the 

Matlab M-file code is presented in Appendix B.   

 

2. Socket Load Cell 

The calibration graphs presented in Chapter 2.5 for the socket load cell were obtained using a fifth order 

linear least squares fit to the raw data.  Using the standard definition for least squares: 
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Using the calibration data in the linear least squares equation the following matrix results: 
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                     (4) 

 As demonstrated in the calibration results presented in Chapter 2.5, the resulting matrix, Equation (4), 

provides good correlation over the calibrated range of torques and forces.  Outside of this range the load 

cells accuracy decreases dramatically.  Future work with this load cell, requires calibration over the entire 

range of operation in order to provide accurate results. 
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1. Abstract 

 The paper describes the design and control of a transfemoral prosthesis with powered knee and ankle 

joints.  The initial prototype is a pneumatically-actuated powered-tethered device, which is intended to 

serve as a laboratory test bed for a subsequent self-powered version.  After the design of the prosthesis is 

described, a gait controller is proposed based on the use of passive impedance functions that coordinates 

the motion of the prosthesis and user during level walking. The control approach is implemented on the 

prosthesis prototype, and experimental results are shown that demonstrate the effectiveness of the active 

prosthesis and control approach in restoring fully powered level walking to the user.    

 

2. Introduction 

2.1 Motivation 

 Despite significant technological advances over the past decade, such as the introduction of 

microcomputer-modulated damping during swing, commercial transfemoral prostheses remain limited to 

energetically passive devices.  That is, the joints of the prostheses can either store or dissipate energy, but 

cannot provide net power over a gait cycle. The inability to deliver joint power significantly impairs the ability 

of these prostheses to restore many locomotive functions, including walking up stairs and slopes, running, 

and jumping, all of which require significant net positive power at the knee joint, ankle joint, or both (Winter 

and Sienko 1988, Nadeau et al. 2003, Riener et al. 1999, Prilutsky et al. 1996, DeVita et al. 1996, Nagano et 

al. 1998, Jacobs et al. 1996).  Further, although less obvious, even biomechanically normal walking 

requires positive power output at the knee joint and significant net positive power output at the ankle joint 

(Winter, 1991).  Transfemoral amputees walking with passive prostheses have been shown to expend up 
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to 60% more metabolic energy relative to healthy subjects during level walking (Waters et al. 1976) and 

exert as much as three times the affected-side hip power and torque (Winter 1991), presumably due to the 

absence of powered joints.  A prosthesis with the capacity to deliver power at the knee and ankle joints 

would presumably address these deficiencies, and would additionally enable the restoration of 

biomechanically normal locomotion.  Such a prosthesis, however, would require 1) power generation 

capabilities comparable to an actual limb and 2) a control framework for generating required joint torques 

for locomotion while ensuring stable and coordinated interaction with the user and the environment.  This 

paper describes the authors’ progress to date in pursuing both of these goals.  Specifically, section 2 

presents the current prosthesis prototype design and discusses the means by which the authors intend to 

convert this to a self-powered version; section 3 describes the control approach, and section 4 presents 

experimental results that validate the hardware and control approach. 

  

2.2 Background 

 Though the authors are not aware of any prior work on the development of a powered knee and ankle 

prosthesis, prior work does exist on the development of powered knee transfemoral prostheses and 

powered ankle transtibial prostheses. Regarding the former, Flowers (1973), Donath (1974), Flowers and 

Mann (1977), Grimes et al. (1977), Grimes (1979), Stein (1983), and Stein and Flowers (1988) developed a 

tethered electrohydraulic transfemoral prosthesis that consisted of a hydraulically actuated knee joint 

tethered to a hydraulic power source and off-board electronics and computation. They subsequently 

developed an “echo control” scheme for gait control, as described by Grimes et al. (1977), in which a 

modified knee trajectory from the sound leg is played back on the contralateral side.  In addition to this prior 
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work directed by Flowers, other groups have also investigated powered knee joints for transfemoral 

prostheses. Specifically, Popovic and Schwirtlich (1988) report the development of a battery-powered 

active knee joint actuated by DC motors, together with a finite state knee controller that utilizes a robust 

position tracking control algorithm for gait control (Popovic et. al., 1995). With regard to powered ankle 

joints, Klute et al. (1998, 2000) describe the design of an active ankle joint using pneumatic McKibben 

actuators, although gait control algorithms were not described. Au et al. (2005) assessed the feasibility of 

an EMG based position control approach for a transtibial prosthesis.  Finally, though no published literature 

exists, Ossur, a major prosthetics company based in Iceland, has announced the development of both a 

powered knee and a self-adjusting ankle.  The latter, called the “Proprio Foot,” is not a true powered ankle, 

since it does not contribute power to gait, but rather is used to quasistatically adjust the angle of the ankle to 

better accommodate sitting and slopes.  The powered knee, called the “Power Knee,” utilizes an echo 

control approach similar to the one described by Grimes et al. (1977). 

 Unlike any prior work, this paper describes a prosthesis design that consists of both a powered knee 

and ankle, and describes a method of control that enables natural, stable interaction between the user and 

the powered prosthesis.  The control approach is implemented on the prosthesis prototype fit to a user, 

and experimentally shown to provide powered level walking representative of normal gait. 

 

3. Prosthesis Design 

 One of the most significant challenges in the development of a powered lower limb prosthesis is 

providing self-powered actuation capabilities comparable to biological systems.  State-of-the-art power 

supply and actuation technology such as battery/DC motor combinations suffer from low energy density of 
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the power source (i.e., heavy batteries for a given amount of energy), low actuator force/torque density, and 

low actuator power density (i.e., heavy motor/gearhead packages for a given amount of force or torque and 

power output), all relative to the human musculoskeletal system.  Recent advances in power supply and 

actuation for self-powered robots, such as the liquid-fueled approaches described by Goldfarb et al. 2003, 

Shields et al. 2006, Fite et al. 2006, and Fite and Goldfarb 2006, offer the potential of significantly improved 

energetic characteristics relative to battery/DC motor combinations, and thus bring the potential of a 

powered lower limb prosthesis to the near horizon.  Specifically, the aforementioned publications describe 

pneumatic-type actuators, which are powered by the reaction products of a catalytically decomposed liquid 

monopropellant.  The proposed approach has been experimentally shown to provide an energetic figure of 

merit an order of magnitude greater than state-of-the-art batteries and motors (Shields et al. 2006, Fite and 

Goldfarb 2006).  Rather than construct a self-powered version directly, the authors have developed a 

power-tethered version of the prosthesis, which enables laboratory-based controller development and 

prosthesis testing.  The self-powered version should be nearly identical to the power-tethered version, but 

will include an on-board propellant cartridge and catalyst pack in place of the pneumatic tether.  This 

section describes the design of the power-tethered pneumatically actuated prosthesis prototype. 

 

3.1 Design Specifications 

 The active joint torque specifications were based on the torque/angle phase space required for a 75 kg 

user for fast walking and stair climbing, as derived from body-mass-normalized data from Winter (1991) and 

Nadeau et al. (2003), respectively.  Minimum range of motion was determined to be 110° of flexion for the 

knee, and 45° of planterflexion and 20° of dorsiflexion for the ankle.  Based on these desired specifications, 
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the joint actuators and their respective kinematic configurations were selected via a design optimization to 

minimize the actuator volume that would achieve the desired phase space.  The torque/angle phase space 

for both joints for slow walking, fast walking, and stair climbing (for a 75 kg user), along with the active 

torque envelope of the prosthesis, are shown in Fig. 1.  The optimization resulted in the use of 3.8 cm (1.5 

in) diameter cylinders for both knee and ankle joints to accommodate up to a 75 kg user.  Note that heavier 

users could easily be accommodated by slightly increasing the cylinder diameters (e.g., a 4.4 cm, or 1.75 in, 

cylinder diameter would accommodate up to a 102 kg user).   

 

 

Figure 4-1. Comparison of maximum torque capability of active joints to the torque requirement during 

various gaits for a 75 kg normal user, based on an operating pressure of 2 MPa (300 psig). 
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Figure 4-2. The power-tethered prototype.  

 

Figure 2 shows the resulting prosthesis prototype in a labeled photograph. Based on the previously 

mentioned design optimization, the prosthesis incorporates a 7.6 cm (3 in) stroke, 3.8 cm (1.5 in) bore 

double-acting pneumatic cylinder (Bimba model 17-3-DP), while the ankle joint incorporates a 7 cm (2.75 in) 

stroke, 3.8 cm (1.5 in) bore double-acting cylinder (Bimba model 17-2.75-DP).  Operating at 2 MPa (300 

psig), the actuators are capable of producing 2270 N (510 lbf) of outward axial force, and 2070 N (465 lbf) 

on the return.  Each actuator is controlled via a four-way servovalve (Enfield Technologies LS-V05).  

Sensors on the prosthesis include cylinder force sensors (which indirectly provide joint torque 

measurement), joint angle sensors, and a custom 3-axis socket load cell that measures the axial force, 

sagittal plane moment, and frontal plane moment at the interface between the prosthesis and socket.  The 

cylinder force sensors are uniaxial load cells (Honeywell Sensotec model 11) located in line with the 
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actuator piston rods.  The ankle and knee joint angles are measured via integrated joint motion sensors 

(ETI Systems model SP12S precision potentiometer), which are located inside the hollow axle and 

composite plain bearings (Garlock model DU) in each joint.  The custom 3-axis load cell, for measurement 

of the interaction forces and moments between the user and prosthesis, is described subsequently.    

 The structural components of the prosthesis were designed to withstand a 2224 N (500 lbf) load and 

maximum actuator joint torques.   Safe stress conditions were verified using ProE Mechanica finite 

element analysis (FEA) software.  The results of these analyses indicate that 7075-T6 aluminum, which 

has a minimum yield strength in excess of 500 MPa, provides a factor of safety between 1.7 and 3.7 for the 

design conditions.  

 The powered prosthesis was designed to fit a broad range of different sized persons, ranging from two 

standard deviations below the female norm in length, up to two standard deviations above the male norm in 

length based on data from Gorden et al. (1989).  The tibial length is varied by changing the single structural 

(tibia) tube and the clamping supports for the actuators allow for adjustment to achieve the recommended 

spacing as dictated by the kinematic configuration optimization.  The foot is a low profile prosthetic foot 

(Otto Bock Lo Rider), with typical sizes available.   Additionally, the ankle joint and the 3-axis socket load 

cell incorporate standard pyramid connectors for coupling the prosthesis to the feet and socket, thus 

enabling a high degree of adjustment in the knee and ankle alignment, as is standard in transfemoral 

prostheses.  Combined with the Otto Bock Lo Rider foot, which weighs 0.37 kg (0.8 lbf), the total weight of 

the tethered transfemoral prosthesis with pyramid connectors is 2.65 kg (5.8 lbf), which is within the normal 

and acceptable range for transfemoral prostheses and less than a comparable normal limb segment 

(Clauser et al., 1969).  An untethered version is expected to add an additional 0.9 kg (2 lbf) of weight, 
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which maintains the prosthesis within an acceptable weight range.   

 

4. Load Cell Design 

 For purposes of prosthesis control and user intent recognition, the prosthesis incorporates a load cell 

between the prosthesis and user, which measures the interaction forces and moments.  Based on the data 

presented in Winter (1991) and Nadeau (2003), the required range of measurement for the load cell was 

determined to be 1000 N of axial force (i.e., along the socket) and 100 N-m of sagittal and frontal plane 

moments.  Relative to commercially available multi-axis load cells (e.g., ATI and JR3), this combination of 

force and moment is disproportionately weighted toward the moment measurement, and thus would require 

load cells that are much larger than could be realistically implemented in a prosthetic leg.  As such, a 

custom load cell was designed and fabricated.  The basis of the load cell design is a crossed beam spring 

element, as shown in Fig. 3.  The design objective was thus to provide similar strain sensitivities for the 

axial load and moments (e.g., approximately 1000 microstrain for metal foil gages) for the desired applied 

force and moment ranges.  In order to achieve similar magnitudes, a double cross configuration was 

developed (as shown in Fig. 4) in order to effectively separate, via a pair of connected crosses, the 

fundamental mechanisms by which the moment and axial forces are measured.  The moment is 

counteracted by a force couple transmitted by a connecting rod, which loads the beams in tension and 

compression, while the force is counteracted by loading the beams in bending.  The different mechanisms 

of loading allow the relative geometry of the pair to be manipulated to generate similar strain sensitivity to 

the desired force and moments.  Based on appropriate analytical descriptions of strain, the double load cell 

was optimized for the smallest overall device size.  The resulting strains were then verified via a ProE 
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Mechanica finite element analysis.  

 The resulting design, which is shown in Fig. 5, consists of two single crosses separated by a distance 

and rigidly held together by a housing on the outside and load transmitter in the center.  The device was 

fabricated from a combination of stainless steel and aluminum using the actual cross design as depicted in 

Fig. 3, and has a total mass of 360 g.  The load cell was calibrated utilizing a least squares method to 

obtain the transformation matrix between the vector of applied forces and moments and the vector of strain 

gage outputs, based on a fifth-order polynomial.  Coupling between load cell axes produces a maximum 

error of 2.2% of full scale output (FSO) in the axial force measurement, a maximum error of 6.7% FSO in the 

sagittal moment measurement, and a maximum error of 5.5% FSO in the frontal moment measurement.   

 

 
Figure 4-3. Ideal versus actual beam patterns of the socket load cell. 
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Figure 4-4. Regions of compression (C) and tension (T) in a sectional view of the double cross for an 

applied force, F, and moment, M for the socket load cell. Subscripts denote loading responsible for the 

compression and tension. 

 

 

Figure 4-5. Assembled and exploded views of the socket load cell. 

 

5. Gait Control Strategy 

 The previously described prosthesis is a fully powered two degree-of-freedom robot, capable of 

significant joint torque and power, which is rigidly attached to a user.  As such, the prosthesis necessitates 

a reliable control framework for generating required joint torques while ensuring stable and coordinated 
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interaction with the user and the environment.  

 The overarching approach in all prior work has been to generate a desired joint position trajectory, 

which by its nature, utilizes the prosthesis as a position source. Such an approach poses several problems 

for the control of a powered transfemoral prosthesis. First, the desired position trajectories are typically 

computed based on measurement of the sound side leg trajectory, which 1) restricts the approach to only 

unilateral amputees, 2) presents the problem of instrumenting the sound side leg, and 3) generally 

produces an even number of steps, which can present a problem when the user desires an odd number of 

steps.  A subtler yet significant issue with position-based control is that suitable motion tracking requires a 

high output impedance, which forces the amputee to react to the limb rather than interact with it. Specifically, 

in order for the prosthesis to dictate the joint trajectory, it must assume a high output impedance (i.e., must 

be stiff), thus precluding any dynamic interaction with the user and the environment. 

 Unlike prior works, the approach proposed herein utilizes an impedance-based approach to generate 

joint torques.  Such an approach enables the user to interact with the prosthesis by leveraging its dynamics 

in a manner similar to normal gait (Mochon and McMahon, 1980), and also generates stable and 

predictable behavior. The essence of the approach is to characterize the knee and ankle behavior with a 

series of finite states consisting of passive spring and damper behaviors, wherein energy is delivered to the 

user by switching between appropriate equilibrium positions (of the virtual springs) in each finite state.  In 

this manner, the prosthesis is guaranteed to be passive within each gait mode, and thus generates power 

simply by switching between modes.  Since the user initiates mode switching, the result is a predictable 

controller that, barring input from the user, will always default to passive behavior. 
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5.1 Impedance Characterization of Gait 

 Based loosely on the notion of impedance control proposed by Hogan (1985), the torque required at 

each joint during a single stride (i.e., a single period of gait) can be piecewise represented by a series of 

passive impedance functions. A regression analysis of gait data from Winter (1991) indicates that joint 

torques can be sufficiently characterized by functions of joint angle and velocity by the simple impedance 

model  

 

θθθθθτ &bkk ee +−+−=
3

21 )()(                           (1) 

 

Specifically, the joint torques within each gait mode can be described by the combination of linear and cubic 

stiffness terms, together with a linear damping term, where k1 and k2 characterize the linear and cubic 

stiffnesses, eθ  is the equilibrium angle, b is the linear damping coefficient, and the angle, θ, and torque, τ, 

are defined as in Fig. 6.  If the coefficients b, k1, and k2 are constrained to be positive, then the joint will 

exponentially converge to a stable equilibrium at eθθ =  and 0=θ&  within each gait mode. That is, in any 

given mode, the behavior is passive, and will come to rest at a local equilibrium, thus providing a reliable 

and predictable behavior for the human user.   
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Figure 4-6. Joint angle and torque convention used.  Positive torque defined in the direction of 

increasing angle. 

 

 

5.2 Gait Modes 

As previously discussed, the decomposition of joint behavior into passive segments requires dividing 

the gait cycle into modes or “finite states,” as dictated by their functions and the character of the piecewise 

segments of the impedance functions previously described.  Though the number of modes required is not 

unique, the switching rules between modes must be well defined and measurable, and the number of 

modes should be sufficient to provide an accurate representation of normal joint function.  One can 

reasonably assert that the swing and stance phase of gait constitute a minimal set of modes for the 

proposed approach. Based on least squares regression fitting of gait data (i.e., from Winter, 1991) to 

equation (1), the authors determined that such fits were improved significantly by further dividing swing and 

stance into two sub-modes, as shown in Fig. 7, with switching rules as shown in Fig. 8.   
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Figure 4-7. Subdivision of normal gait into four functional modes. 

 

 

Figure 4-8. A finite state model of normal gait. Each box represents a state and the transition condition 

between states are specified. 

 

Mode 1 begins with heel strike upon which the knee immediately begins to flex so as to provide impact 

absorption and begin loading, while the ankle simultaneously plantarflexes to reach foot flat. Both knee and 

ankle joints have relatively high stiffness during this mode to prevent buckling and allow for appropriate 

stance knee flexion, since Mode 1 comprises most of the weight bearing functionality.  Mode 2 is the 

push-off phase and begins as the ankle dorsiflexes beyond a given angle (i.e., user’s center of mass lies 
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forward of stance foot). The knee stiffness decreases in this mode to allow knee flexion while the ankle 

provides a plantarflexive torque for push off.  Mode 3 begins as the foot leaves the ground as indicated by 

the ankle torque load cell and lasts until the knee reaches maximum flexion.  Mode 4 is active during the 

extension of the knee joint (i.e., as the lower leg swings forward) which begins as the knee velocity 

becomes negative and ends at heel strike (as determined by the 3-axis load cell).  In both the swing modes, 

the ankle torque is small and is represented in the controller as a (relatively) weak spring regulated to a 

neutral position.  The knee is primarily treated as a damper in both swing modes (Mode 3 and 4).   

The proposed approach to “impedance modeling” of joint torques was preliminarily validated by 

utilizing the gait data of a healthy 75 kg subject, as derived from body-mass-normalized data from Winter 

(1991).  Incorporating the four gait modes previously described, along with the motion and torque data for 

each joint provided by Winter (1991), a constrained least squares optimization was conducted to generate a 

set of parameters for equation (1) in each mode.  The resulting parameter set is listed for each mode in 

Table 1, and the resulting fit to joint torques is shown graphically in Fig. 9.  The fit shown in Fig. 9 clearly 

indicates that normal joint function can be represented by the use of piecewise passive functions as 

proposed.  
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Figure 4-9. Piecewise fitting of knee and ankle torques during normal speed level walk (averaged 

population data from Winter, 1991 scaled for a 75 kg adult) to a nonlinear spring-damper impedance model. 

The number shown in each mode represents the mean ratio of the stiffness forces to damping forces 

predicted by the fit. The vertical lines represent the segmentation of a gait stride into four distinct modes. 

 

 

Table 4-1. Impedance parameters for prototypical gait (gait data from Winter, 1991). 

 Knee Impedance Ankle Impedance 

Mode 
1k  

(N.m/deg))  

2k  

(N.m/deg
3
)  

b  

(N.m.s)  
eθ  

(deg) 

1k  

(N.m/deg))  

2k  

(N.m/deg
3
)  

b  

(N.m.s)  
eθ  

(deg) 

1 3.78 73e-3 25e-3 12 1.35 25e-3 0.118 -5 

2 0 9e-6 30e-3 37 4.50 0 5e-3 -18 

3 0 9e-3 16e-3 52 0.04 0 3e-3 23 

4 0.093 2e-6 13e-3 44 0.134 0 2e-3 2 

 

6. Experimental Results 

 The impedance based gait control strategy was implemented on the tethered prosthesis prototype on a 
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healthy subject using an able-bodied testing adaptor as shown in Fig. 10.  The adaptor consists of a 

commercial adjustable locking knee immobilizer (KneeRANGER-Universal Hinged Knee Brace) with an 

adaptor bracket that transfers load from the subject to the prosthesis.  Since the prosthesis remains lateral 

to the immobilized leg of the healthy subject, the adaptor simulates transfemoral amputee gait without 

geometric interference from the immobilized leg. While the adapter allows for preliminary testing of the gait 

control algorithm, the setup does involve certain drawbacks in simulating prosthetic gait, some of which 

include 1) compliance of the soft tissue interface between the device and user (more so than exhibited by a 

limb/socket interface), 2) “parasitic” inertia of the intact lower limb (i.e., in addition to the inertia of the 

prosthesis), and 3) asymmetry in the frontal and axial planes which results in a larger than normal planar 

moments (i.e., as seen in Fig 10). Despite these, the adaptor provides a reasonable facsimile of amputee 

gait, and enables testing of the device and proposed impedance-based control approach.  

 

 

Figure 4-10. Able-bodied testing adaptor for enabling development, testing, and evaluation of the 

prosthesis and controllers prior transfemoral amputee participation. 

  

The prosthesis was tethered to a 2 MPa (300 psig) pressure source (i.e., compressed nitrogen) and to a 

controller implemented via a desktop PC with the real-time interface provided by MATLAB Real Time 

Workshop. Gait trials were performed on a treadmill, which provided a controlled walking speed and 
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enabled enhanced safety monitoring, including a safety suspension harness and the use of handrails.  

Unlike the parameter tuning shown in Table 1 and Fig. 9, the gait data for the prosthesis and user did not 

exist a priori.  As such, the parameters shown in Table 1 were used as a starting point, and the parameters 

were tuned to the user via a combination of joint sensor data, video recordings and user feedback.  For 

example, if the user felt that a joint was not generating necessary torques during support or push off, the 

stiffness would be increased or the stiffness set point altered. With this iterative process, the impedance 

functions were tuned, finally resulting in the set indicated in Table 2.  Based on this parameter set, the 

(measured) prosthesis joint angles and torques during level treadmill walking at 0.675 m/s (1.5 mph) are 

shown in Figures 11 and 12.   

 

Table 4-2. Impedance parameters derived by experimental tuning. 

Mode Knee Impedance Ankle Impedance 

 
1k  

(N.m/deg))  

2k  

(N.m/deg
3
)  

b  

(N.m.s)  
eθ  

(deg) 

1k  

(N.m/deg))  

2k  

(N.m/deg
3
)  

b  

(N.m.s)  
eθ  

(deg) 

1 7.5 0 0 14 4.5 0 0 -8 

2 1.0 0.006 0 16 4.5 0 0 -25 

3 0 0 0.005 0 0.5 0 0 0 

4 0.08 0 0.08 30 0.75 0 0 -3 
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Figure 4-11. Measured joint angles (degrees) for six consecutive gait cycles for a treadmill walk (1.5mph).  

 
Figure 4-12. Measured joint torques ( N.m ) for six consecutive gait cycles for a treadmill walk.  

 

In comparing the knee and ankle angles and torques of Figs. 11 and 12 to the prototypical data from Winter 

(1991) (shown in Figs. 7 and 9), one can observe that the powered prosthesis and controller provide 

behavior quite similar to normal gait, except in the knee behavior during the first 20% of the stride (i.e., just 

after heel strike).  The difference in behavior during this period is most likely a result of the significant 

compliance between the adaptor and user.  Specifically, the role of the knee during this period is to flex 

slightly upon impact, which absorbs energy and cushions the impact of heel strike.  As such, the knee acts 

effectively as a stiff spring, first absorbing the energy of impact and shortly after returning this energy to the 
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user.  When used with the adaptor, this knee stiffness acts in series with the (much lower) stiffness of the 

user/adaptor interface, and thus the cushioning role of knee flexion during heel strike is dominated by the 

compliance in the user/adaptor interface.  This behavior is evident by watching the relative motion between 

the top of the brace and the subject’s hip during heel strike.  The authors assume that once the axial 

compliance between the user and prosthesis is reduced significantly (as would be the case with an 

amputee subject), the knee joint will exhibit the flexion and subsequent extension evidenced in the 

prototypical gait kinematics of Fig. 7.   

 The knee and ankle joint powers, which were computed directly from the torque and differentiated 

angle data, are shown in Fig. 13, and indicate that the prosthesis is supplying a significant amount of power 

to the user.  Note that the measured power compares favorably to that measured for healthy subjects (see 

Winter, 1991), and thus indicates an enhanced level of functionality relative to existing passive prostheses.    

 

Figure 4-13. Averaged measured joint powers (W) for six consecutive gait cycles for a treadmill walk.  

 

7. Conclusion 

 This paper described the design and control of a tethered pneumatically actuated transfemoral 
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prosthesis.  The prosthesis design was optimized to provide the requisite joint torque/angle requirements 

with a minimum volume actuator configuration.  The control approach segments the gait cycle into four 

modes and utilizes a passive impedance characterization of each mode to generate the required torques for 

the knee and ankle joints during walking.  The approach was validated against normal gait data and 

through experimental testing with an able-bodied adaptor.  Test results showed the prosthesis was able to 

produce a near-normal gait pattern, deliver required joint torques, and supply a significant amount of power 

to the user.   
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CHAPTER V 

 

ADDENDUM TO MANUSCRIPT II 

 

1. Experimental Testing Setup 

In order to validate the integrity of the leg and control systems, a two-fold laboratory setup was 

implemented.   First, to test the structural integrity of the prosthesis and to tune the torque controller a fixed 

mount was employed as in Figure 5-1. 

 

 

 Figure 5-1.  Picture of fixed mount setup. 

 

The second part of the testing was completed using the able-bodied adaptor before actual subject 
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testing on amputees.  In order to provide a controlled environment for assessment and tuning of the device, 

a treadmill was employed along with safety devices (i.e. support harness and handrails).  The overall setup 

is presented in Figure 5-2. 

 

 

Figure 5-2.  Picture of treadmill testing setup. 

 

2. Electronics boards 

2.1 On-board Analog Circuit Board 

The transfemoral prosthesis was designed to house a small onboard analog electronics board 

measuring (0.78” x 5.20”) within the shank tubing.  The purpose of the board is to provide a central bus for 

power and ground, signal routing, buffering and amplification for all onboard sensors.  All signals and 

power are routed to and from the board through a 50 ft. round jacket flat cable tether (3M model 3759/26) 

with wire layout in Appendix C-1.  The central bus functionality distributes +15 and –15 volts and ground to 

the board.  On the board two voltage regulating diodes are used to supply +10 and +5V to the sensors.  To 

mitigate noise issues in small signal output from load cells the board amplifies the signals from the ankle 



 

 
69 

and knee torque load cells and for each of the three axes of the socket load cell.  Finally, the board buffers 

the output of the knee and ankle potentiometers.  The complete schematic and accompanying layout and 

trace diagrams for the onboard analog circuit are presented in Appendix C-2.  The final board was 

designed with ExpressPCB software and manufactured by ExpressPCB. 

 

2.2 Off-board Analog Circuit Board 

The functionality of the off-board circuit board is two-fold. The first use is to route the signals between 

the prosthesis via the tether to the computer.  For the prosthesis it provides filtering for the ankle and knee 

torque sensors, analog differentiation of the position signals, and a servo amplifier.  The servo amplifier is 

design to proportionally output ±1 amp from an input signal ranging from ±10V.  The second function of the 

board is to route signals from a sound leg sensor package consisting of foot switches, potentiometers and a 

gyroscope.  The schematics and layout for the off board circuit are presented in Appendix C-3. 

 

3. Control and Tuning 

The control of the prosthesis involves controlling the position and torques at the knee and ankle joints 

and involves two nested loops.  The inner loop is a PID torque controller and the outer loop outputs a 

desired torque generated by the impedance based control approach outlined in Chapter IV and further 

explained in Bohara (2006).  The approach was implemented using Matlab Simulink and Real-Time 

Workshop and the models for the knee and ankle joint control can be found in Appendix D. 

Once the control loops were implemented the gains appropriate gains were determined experimentally 

by starting with the torque control gains.  With the prosthesis in a fixed mount setup and with the motion of 
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the prosthesis constrained physically by a person, the torque controller was tuned with sine wave torque 

input with maximum amplitude of 30 Nm and frequency of 1.0 Hz.  The resulting gains of the tuning are 

presented in Table 5-1 and the tracking data in Figures 5-3 and 5-4.  As an additional test of the torque 

tracking capabilities of the device the stiffness tracking of knee and ankle joints is presented in Figures 5-5 

and 5-6.  The data was obtained experimental using the impedance based controller by Bohara (2006) by 

a user walking with the able bodied adaptor.  As demonstrated in the plots and degree of alignment is 

present between the actual and desired stiffnesses, proving the capability of the device to generate the 

desired torques.  It should be noted in Figure 5-5 that the ankle is capable of producing the 100 Nm of 

torque dictated by biomechanical data. 

 

Table 5-1. PID control gains for force control loop. 

Mode Ankle Joint Knee Joint 

Proportional 0.01 0.01 

Integral 0 0 

Derivative 0 0 
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Figure 5-3. Knee actuator torque tracking to 1.0 Hz sine wave with a 30 Nm amplitude.  The dotted line 

represents the desired and the solid line is the actual. 

 
Figure 5-4. Ankle actuator torque tracking to 1.0 Hz sine wave with a 30 Nm amplitude. The dotted line 

represents the desired and the solid line is the actual. 

 
Figure 5-5. Knee stiffness during walking experiments desired knee stiffness of 2 Nm/deg and actual is 2.2 

Nm/deg. 
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Figure 5-6. Ankle stiffness in walking experiments desired ankle stiffness of 4.5 Nm/deg and actual is 4.3 

Nm/deg. 

 

 

4. Design Review 

This thesis represents the first approach at a powered knee and ankle transfemoral prosthesis.  The 

initial qualitative assessment of the leg in conjugation with the data presented in this thesis is that the 

prosthesis is capable of performing the required tasks of a powered lower limb prosthesis.   Throughout 

the initial assessment of the prototype notes were made regarding functionalities of the leg and are 

presented in Table 5-2. 

 

Table 5-2. Design Improvement Summary 

Functionality/ 

Component 

Comment Recommendation 
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Functionality/ 

Component 

Comment Recommendation 

Servovalves Several attempts were made to upgrade 

the current commercial servovalves used 

on the device to custom spool and sleeve 

valves as depicted in Manuscript I.  

However limitations in encoder resolution, 

gearhead backlash, and torque limitations 

in iterative devices lead to successful 

implementation. 

Implement custom spool and 

sleeve servovalves on the 

device to improve response 

and mass flow through 

servovalves.  A successful 

implementation of valves 

requires using a spool and 

sleeve combination with a 

large flow coefficient and 

motor capable of driving it and 

a zeroing mechanism that is 

reliable and repeatable. 

Dry Bearings 

 

The knee joint shaft is slightly undersized 

and allows for a wobble in the joint in the 

sagittal plane and maybe a possible source 

of instability in knee joint actuation. 

Ensure components machined 

to bearing manufacturers 

specifications. 

Shank 

 

The prototype design was modeled after 

traditional prosthesis fitting methods were 

the shank section is cut to size a specific 

user.  However, for prototype design this 

may lead to excess time in manufacturing 

custom legs for each test subject and add 

time delays and expense to overall project. 

Design a shank section that 

allows for adjustability once 

assembled. 

Hard Stops of 

Joints 

The design of the joints requires hard stops 

to restrict the motion of the joint to the 

desired range.  The hard stops were 

designed to be hard rubber, but under the 

severe loading and pressure even the 

hardest rubber of duromter Shore 90A. 

Decrease spacing of rubber 

hard stops from 1/8” and 

replace with thin rubber 

sheeting capable of the 

resisting the loads. 

Able-Bodied 

Adaptor  

The adaptors functionality could be 

enhanced if it was stiffened all 3 moment 

planes and in axial load direction to better 

mimic true prosthesis user interaction. 

Develop a more secure and 

stable platform to attach 

prosthesis to able-bodied 

subject. 
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Functionality/ 

Component 

Comment Recommendation 

3-Axis Socket 

Load Cell 

The socket load cell design as-is is prone 

slippage due to axial torques. 

Physical mating and 

asymmetry of pieces of the 

cross, load transmitter and 

pyramid adaptor could assist 

and resisting the load. 
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APPENDIX A 

 

PARTS LISTS  

 

Table A-1. Prosthesis Prototype Components 

Part 

No. 

Name Description File Name 

1 Leg Assembly Main Leg Assembly file LEG-V2.asm 

2 Shank Main support for leg. TUBE_LEG.prt 

3 

Joint Tube 

Connector 

Connects joint to tube. 

JOINT_TUBE_CONNECTER.prt 

4 

Joint Angle Bracket Cantilever joint 

support. JOINT_ANGLE_BRACKET.prt 

5 

Joint Axle and Pot 

Housing 

Integrated pot housing 

in joint axle. JOINT_AXLE_POT_HOUSING.prt 

6 

Garlock Dry 

Bearings 

Garlock BB2017DU 

Bearing GARLOCK_BEARING_BB2017DU.prt 

7 

Snap Ring ¾” Snap ring, holds 

outer joint race on to 

joint axle. SNAP_RING_3_4.prt 

8 

Potentiometers ETI Systems – SP12S 

– 10K HONEYWELL_POT_.prt 

9 

Ankle Joint Outer 

Race 

N/a CANTILEVER_KNEE_OUTER_RACE.

prt 

10 

Knee Joint Mount Connector between 

knee outer race and 

socket load cell. 

CANTILEVER_KNEE_JOINT_MOUNT.

prt 

11 

Joint Race End Cap End cap attaches to 

outer joint race and 

attachment point for 

potentiometer. 

CANTILEVER_JOINT_RACE_ENDCA

P.prt 

12 

Rubber Bumper 95 Shore A rubber to 

provide mechanical 

stop for joint rotation. BUMPER.prt 
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Part 

No. 

Name Description File Name 

13 

Ankle Joint Outer 

Race 

N/a CANTILEVER_ANKJOINT_OUT_RAC

E.prt 

14 

Female Pyramid 

Slider 

Standard Female slider 

connector integrated 

into ankle joint FEMALE_PRYIMADSLIDER.prt 

15 

Ankle Clamp Attaches ankle cylinder 

to shank ANKLE__CLAMP.prt 

16 

Knee Clamp Attaches knee cylinder 

to shank KNEE_CLAMP2PRT.prt 

17 

Clamp Pin Pivot pin between 

cylinder and clamp CLAMP__PIN.prt 

18 

Clevis Pin Pivot pin between 

cylinder and clevis CLEVIS_PIN.prt 

19 

Ankle Cylinder Bimba 1.5” Cylinder 

part: 17-2.75-DP 15_275_PISTONCYLINDAR.prt 

20 

Knee Cylinder Bimba 1.5” Cylinder 

part: 17-3-DP 15_3_PISTONCYLINDAR.prt 

21 

Load Cell Honeywell Sensotec 

Model 31 ELPS-T3.prt 

22 

Clevis Ankle Clevis – Bimba 

Part no: D-166-3 ROD_CLEVIS_25.prt 

23 Clevis Knee Clevis - Custom ROD_CLEVIS_25_LONG.prt 

24 

Lo Rider Foot w/ 

cosmesis covering 

Otto Bock Lo Rider 

Foot sizes (25, 28) FLEX_FOOT_AXIA_.prt 

 

 

Table A-2. Socket Load Cell Components 

Part No. Name Description File Name 

1 Socket Load Cell  Assembly file MALCROSS_CIRLC.asm 

1 Cross Pattern Disc N/a MALCROSS_CIR 

2 Load Transmitter N/a MC_ROD 

3 Housing N/a MALCROSS_HOUSE 

4 Base N/a MALCROSS_CIRCLE_MOUNT.prt 

5 Spacer N/a MC_TOPMOUNT.prt 

6 Pyramid Connector Standard pyramid 

connector milled to 

specs. 

PYRAMID_DISK_.prt 
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Part No. Name Description File Name 

7 Strain Gages 

Part no. 

EA-06-125AC-350 

Vishay 

Micromeasurements 

Linear Pattern Gage 

n/a 

 

 

Table A-3. Able-Bodied Adaptor Components 

Part No. Name Description File Name 

1 Knee Immobilizer Part No. 

WM-94001 

KneeRanger – Universal 

Hinged Knee Brace, 

Large 

n/a 

2 Female Pyramid Connector Standard 4-hole bolt 

pattern connector 

n/a 

3 Angle Mount Custom-made to fit, no 

drawings. 

n/a 
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APPENDIX B 

 

OPTIMIZATION CODES  

 

6. Kinematic Configuration 

 

6.1 Ankle Kinematic Configuration Optimization 

 

% Frank Sup 

% Vanderbilt University  

%Find Ankle Dimensions 

% m-file to find min actuator volume for Bimba pneumatic actuators 

 

%Declare Variables 

N=100; 

l1_v=linspace(.001,.10,N); %m 

%L_v=linspace(.05,.2,N); %m 

theta_v=linspace(25,115,N); %degrees 

%D_v=linspace(.01,.05,N); %m 

D_v=[7/8,17/16,1.25,1.5,1.75,2 % 

          ;3.56,3.84,4.72,4.38,5.75,5.62].*.0254; %Enter inches converts to meters 

str_v=linspace(.25,12,48).*.0254; %enter inches, converts to m 

clevis_v=[1.49,1.49,1.49,1.49,1.49,1.49]*.0254; %with Load Cell .59 enter inches, converts to m 

Ps=300*4.45*39.3^2; %pascals 

Td=130; %Nm 

deltathetad_v=linspace(65,75,N).*pi./180; %radians 

l2_max=.3; %m 

Vmin = (D_v(2,6)+.001)*D_v(1,6)^2*pi*.25; %m^3 

l1_final=100; %m 

l2_final=0; %m 

L_final=D_v(2,6); %m 

str_final=str_v(12); %m 

D_final=D_v(1,6); %m 

T_final=1000; %Nm 

theta1_final=0; %radians 
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theta2_final=0; %radians 

deltatheta_final=0; %radians 

theta_hat_final=0; %radians 

thetadiffd=pi; %radians 

thetashift=10*pi/180; %radians 

Tmax=0; %Nm 

 

for hh=1:N, 

    deltathetad=deltathetad_v(hh); 

for ii=1:N, 

    l1=l1_v(ii); 

    for jj=1:6, 

        L=D_v(2,jj); 

        clevis=clevis_v(jj); 

            for kk=1:48, 

                str=str_v(kk); 

                for ll=1:N, 

                    theta=theta_v(kk)*pi/180; 

                    L1=L+str+clevis; 

                    L2=L+2*str+clevis; 

         

                    %Calculate l2 for desired range of motion 

                    l21=sqrt(l1^2+L1^2-2*l1*L1*cos(pi-asin(l1*sin(theta)/L1)-theta)); 

                    

l22=sqrt(l1^2+L2^2-2*l1*L2*cos(pi-asin(l1*sin(theta+deltathetad)/L2)-(theta+deltathetad))); 

         

                    %Check if l21 and l22 are within desired tolerance 

                    if abs(l22-l21)>(l1_v(1)/10) 

                        break 

                    end 

         

                    %Average l2 calcuations 

                    l2=(l21+l22)/2; 

             

                    %Break if calculated l2 is greater then tolerances 

                    if l2>l2_max, 

                        break 

                    end 

         

                    %Calculate values for theta1 and theta2 

                    theta1=acos((l1^2+l2^2-(L1)^2)/(2*l1*l2)); 
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                    theta2=acos((l1^2+l2^2-(L2)^2)/(2*l1*l2)); 

         

                    %Remove any imaginary results 

                    if imag(theta1)~=0 | imag(theta2)~=0 

                        break 

                    end 

             

                    %Calculate delta theta 

                    deltatheta=theta2-theta1; 

             

                    %Confirm Delta theta has acceptable range of motion 

                    if deltatheta<70*pi/180, 

                        break 

                    end 

         

                    % combination provides desired range of motion, now find if 

                    % combination provides desired torque within range of motion 

                    theta_hat=acos(.5*((l1/l2)+(l2/l1)-sqrt(((l1/l2)+(l2/l1))^2-4))); 

                    if (theta_hat < theta1)|(theta_hat > theta2), 

                        break 

                    end 

             

                    % maximum torque occurs within range of motion 

                         

                     

                        D=D_v(1,jj); 

                        A=D^2*pi*.25; 

                 

                        %Find torque at required shift for max torque 

                        

T=Ps*A*(l1*l2*sin(theta1+thetashift)/sqrt(l1^2+l2^2-2*l1*l2*cos(theta1+thetashift))); 

 

                        %Volume Calculation 

                        V=L1*A; 

                 

                        %Shift from theta1 to theta_hat to match actual knee data 

                        %for shift. 

                        thetadiff=abs(theta1-theta_hat+thetashift); 

                 

                        %If Volume is less then Vmin and has desired or greater 

                        %torque store values. 
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                        if V <= Vmin & T >= Td & l1 <= l1_final, 

                            thetadiffd=thetadiff; 

                            Vmin=V; 

                            l1_final=l1; 

                            l2_final=l2; 

                            L_final=L; 

                            str_final=str; 

                            D_final=D; 

                            T_final=T; 

                            theta1_final=theta1; 

                            theta2_final=theta2; 

                            deltatheta_final=deltatheta; 

                            theta_hat_final=theta_hat; 

                            

Tmax=Ps*A*(l1*l2*sin(theta_hat_final)/sqrt(l1^2+l2^2-2*l1*l2*cos(theta_hat_final))); 

                        end 

                   end %ll=1:N 

            end %kk=1:12 

       end %jj=1:12 

end %ii=1:N 

end %hh=1:N 

          

%Print out results. 

Vmin 

l1_final 

l2_final 

L_final=L_final/.0254 

str_final=str_final/.0254 

D_final=D_final/.0254 

T_final 

Tmax 

theta1_final=theta1_final*180/pi 

theta2_final=theta2_final*180/pi 

deltatheta_final=deltatheta_final*180/pi 

theta_hat_final=theta_hat_final*180/pi 

thetadiffd=thetadiffd*180/pi 

 

6.2 Knee Kinematic Configuration Optimization 

 

% Frank Sup 

% Vanderbilt University 



 

 
82 

% Find Knee Dimensions 

% m-file to find min actuator volume for Bimba pneumatic actuators 

 

N=100; 

l1_v=linspace(.04,.10,N); %m 

%L_v=linspace(.05,.2,N); %m 

theta_v=linspace(10,70,N); %degrees 

%D_v=linspace(.01,.05,N); %m 

D_v=[7/8,17/16,1.25,1.5,1.75,2 % 

          ;3.56,3.84,4.72,4.38,5.75,5.62].*.0254; %Enter inches converts to meters 

str_v=linspace(.25,12,48).*.0254; %enter inches, converts to m 

clevis_v=[2.3,2.3,2.3,2.3,2.3,2.3]*.0254; %enter inches 1.31=clevis, .59=LoadCell, converts to m 

Ps=300*4.45*39.3^2; %pascals 

Td=86; %Nm 

deltathetad_v=linspace(110*pi/180,140*pi/180,N); %radians 

l2_max=.3; %m 

Vmin = 1; %m^3 

l1_final=100; %m 

l2_final=100; %m 

L_final=D_v(2,6); %m 

str_final=str_v(12); %m 

D_final=D_v(1,6); %m 

T_final=1000; %Nm 

theta1_final=0; %radians 

theta2_final=0; %radians 

deltatheta_final=0; %radians 

theta_hat_final=0; %radians 

thetadiffd=pi; %radians 

thetashift=35*pi/180; %radians actual at 25 + 10 for bumpers 

Tmax=0; %Nm 

z=1; 

 

for hh=1:N; 

    deltathetad=deltathetad_v(hh); 

for ii=1:N, 

    l1=l1_v(ii); 

    for jj=1:6, 

        L=D_v(2,jj); 

        D=D_v(1,jj); 

        clevis=clevis_v(jj); 

            for kk=1:48, 
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                str=str_v(kk); 

                for ll=1:N, 

                    theta=theta_v(kk)*pi/180; 

                    L1=L+str+clevis; 

                    L2=L+2*str+clevis; 

                     

                    %Calculate l2 for desired range of motion 

                    l21=sqrt(l1^2+L1^2-2*l1*L1*cos(pi-asin(l1*sin(theta)/L1)-theta)); 

                    

l22=sqrt(l1^2+L2^2-2*l1*L2*cos(pi-asin(l1*sin(theta+deltathetad)/L2)-(theta+deltathetad))); 

         

                    %Check if l21 and l22 are within desired tolerance 

                    if abs(l22-l21)>(l1_v(1)/40) 

                        break 

                    end 

         

                    %Average l2 calcuations 

                    l2=(l21+l22)/2; 

             

                    %Break if calculated l2 is greater then tolerances 

                    if l2>l2_max, 

                        break 

                    end 

         

                    %Calculate values for theta1 and theta2 

                    theta1=acos((l1^2+l2^2-(L1)^2)/(2*l1*l2)); 

                    theta2=acos((l1^2+l2^2-(L2)^2)/(2*l1*l2)); 

         

                    %Remove any imaginary results 

                    if imag(theta1)~=0 | imag(theta2)~=0 

                        break 

                    end 

             

                    %Calculate delta theta 

                    deltatheta=theta2-theta1; 

             

                    %Confirm Delta theta has acceptable range of motion 

                    if deltatheta<(115*pi/180), 

                        break 

                    end 
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                    % combination provides desired range of motion, now find if 

                    % combination provides desired torque within range of motion 

                    theta_hat=acos(.5*((l1/l2)+(l2/l1)-sqrt(((l1/l2)+(l2/l1))^2-4))); 

                    if (theta_hat < theta1)|(theta_hat > theta2), 

                        break 

                    end 

             

                    % maximum torque occurs within range of motion 

                        

                        A=D^2*pi*.25; 

                 

                        %Find torque at required shift for max torque 

                        T=Ps*A*(l1*l2*sin(theta2-thetashift)/sqrt(l1^2+l2^2-2*l1*l2*cos(theta2-thetashift))); 

 

                        %Volume Calculation 

                        V=L1*A; 

                 

                        %Shift from theta1 to theta_hat to match actual knee data 

                        %for shift. 

                        thetadiff=abs(theta2-theta_hat-25*pi/180); 

                 

                        %If Volume is less then Vmin and has desired or greater 

                        %torque store values. 

                        if V <= Vmin & T >= Td, 

                            S_v(1,z)=l1; 

                            S_v(2,z)=l2; 

                            S_v(3,z)=T; 

                            thetadiffd=thetadiff; 

                            Vmin=V; 

                            l1_final=l1; 

                            l2_final=l2; 

                            L_final=L; 

                            str_final=str; 

                            D_final=D; 

                            T_final=T; 

                            theta1_final=theta1; 

                            theta2_final=theta2; 

                            deltatheta_final=deltatheta; 

                            theta_hat_final=theta_hat; 

                            

Tmax=Ps*A*(l1_final*l2_final*sin(theta_hat_final)/sqrt(l1_final^2+l2_final^2-2*l1_final*l2_final*cos(theta_h
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at_final))); 

                        z=z+1; 

                        end 

                   end %ll=1:N 

            end %kk=1:12 

       end %jj=1:12 

end %ii=1:N 

end %hh=1:N; 

          

%Print out results. 

Vmin 

l1_final 

l2_final 

L_final=L_final/.0254 

str_final=str_final/.0254 

D_final=D_final/.0254 

T_final 

Tmax 

theta1_final=theta1_final*180/pi 

theta2_final=theta2_final*180/pi 

deltatheta_final=deltatheta_final*180/pi 

theta_hat_final=theta_hat_final*180/pi 

thetadiffd=thetadiffd*180/pi 

 

7. Socket Load Cell Volume Minimization 

 

% Frank Sup 

% Vanderbilt University 

% Minimize Socket Load Cell Volume 

 

%Declare Variables 

J = 20; %Interval 

M = 100; %Nm Max Moment 

F = 1000; %N Max Force 

E_v = [193e9 70e9]; %Modulus Pa 

b_v = linspace(.01,.02,J); %beam width %m 

h_v = linspace(.0025,.005,J); %beam thickness %m 

t_v = linspace(.01,.022,J); %beam seperation %m 

L_v = linspace(.02,.022,J); %beam Length %m 

k = 1; 
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%Determine configurations that meet meet strain criteria and ratio of bending strain to axial %force strain. 

for N = 1:2, 

    E = E_v(N); 

    for O = 1:J, 

        b = b_v(O); 

        for P = 1:J, 

            h = h_v(P); 

            for Q = 1:J, 

                t = t_v(Q); 

                for R = 1:J, 

                    L = L_v(R); 

 

em = M/(t*b*h*E); %microstrain 

ef = 3*F*L/(8*E*b*h^2); %microstrain 

ratio = ef/em; 

 

if abs(ratio-1)<.4 && em+ef < 1500e-6, %in microstrain 

sol(k,1) = b; %beam width 

sol(k,2) = h; %beam height 

sol(k,3) = t; %beam seperation 

sol(k,4) = E; %Modulus 

sol(k,5) = em; %strain from Moment 

sol(k,6) = ef; %strain from Force 

sol(k,7) = L; %beam Lentgh 

sol(k,8) = ratio; %ef/em 

k = k+1; 

end 

            end 

        end 

    end 

    end 

end 

%Review Solution Combinations that minimize volume and return the top 5 smallest %configurations. 

 

tester=1000; 

test = ones(5,8); 

for N=1:size(sol(:,6)), 

    if sol(N,1)*sol(N,3)*sol(N,7)<tester, 

    %if abs(sol(N,5)+sol(N,6)-1000e-6) < abs(test(1,6)+test(1,5)-1000e-6), 

        test(5,:) = test(4,:); 
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        test(4,:) = test(3,:); 

        test(3,:) = test(2,:); 

        test(2,:) = test(1,:); 

        test(1,:) = sol(N,:); 

        tester= sol(N,1)*sol(N,3)*sol(N,7); 

         

    end 

end 
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APPENDIX C 

 

SCHEMATICS OF ANALOG CIRCUITS 

 

8. On-board Analog Circuit 

 

Figure C-1. Schematic of circuit used for onboard sensor power and amplifying. 
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a)     b)     c)  

Figure C-2. Board Layout (a), top trace (b) and bottom trace (c) of the circuit used for onboard signal 

routing and amplification overall dimensions 0.78” x 5.20”.  Printed via ExpressPCB software and service. 
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9. Off board Analog Circuit 

Note: The off board analog circuit has been divided into the following three functional schematics in Figures 

C-3 to C-5 and the all three combined into a common board layout in Figure C-6. 

 

Figure C-3. Schematic of circuit used for off board servo amplifier encoder signal routing. 

 



 

 
91 

 

Figure C-4. Schematic of circuit used for off board load cell sensor signal filtering and routing. 
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Figure C-5. Schematic of circuit used for off board position sensor signal routing and differentiation. 



 

 
93 

 

Figure C-6. Board Layout of circuit used for offboard signal processing and for computer input for 

National Instruments Card PCI-6031E for analog signal routing and Measurement Computing 

PCI-QUAD04 for encoder signal routing.
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APPENDIX D 

 

MATLAB SIMULINK BLOCKS 

 

10. Torque Control 

Knee Torque to Force Conversion

1

Desired Force

145*pi/180

offset
f(u)

Torqe to Force
-K-

Deg to Rad

2

Desired Knee Torque

1

Knee Angle

 

Figure D-1. Knee Torque to Force Conversion subblock for torque control diagram for Matlab Simulink. 

 

Ankle Torque to Force Conversion

1

Desired Force

60*pi/180

offset1
f(u)

Torqe to Force2
-K-

Deg to Rad2

2

Desired Ankle Torque

1

Ankle Angle

 

Figure D-2. Ankle Torque to Force Conversion subblock for torque control diagram for Matlab Simulink. 

1

Output

RampUp

RampDown

Product

1

Input

 

Figure D-3. Ramp up/down subblock for torque control diagram for Matlab Simulink. 
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Derivative Gain

Integral  Gain

Proportional Gain N/deg

PID Force Control Block

2

PID Contribution

1

Position Command

Sign

Product2

Product1

Product

Position

Saturation

0

Invert1

1

s

Integrator

1

Amp gain

volts / amp2
Add

3

PID Gains

2

Force

1

Force_d

e

e

e

e

e

<D>

Proportional

Proportional

<P>

Integral

Integral
<I>

Deriv ativ e

Deriv ativ e

 

Figure D-4. PID Force Control subblock for torque control diagram for Matlab Simulink. 
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Figure D-5. Torque control diagram for Matlab Simulink. 
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11. Variable Values 

%This file contains the constants for Leg Controller variables 

  

%General Simulink Variables 

sim_time = 60;     %Length of Simulation 

sampling_rate = 1000; 

sample_time = 1/sampling_rate; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%Signal Conditioning for Prosthetic Leg 

  

%Socket Load Cell Conversion Matrix; 

SocketLoadMatrix = 

[128.95,-7.0311,1.7243;107.86,28.621,-12.117;64.195,-58.103,25.948;-167.16,50

.542,-18.793;60.458,-14.455,4.3797;-102.93,14.625,-1.6182;-56.624,2.5802,-2.7

663;-49.5,9.5874,-0.67743;-8.3461,6.6598,-0.1948;2.0407,2.2391,-0.31808;-12.7

13,0.3288,6.7424;-17.675,-0.23942,-0.74621;4.7048,-0.34847,1.0689;1.797,0.102

45,0.11055;-0.3911,0.023332,-0.044451;]; 

  

%Prosthetics related conversion 

prosthetic_ankle_angle_offset = 6.3030; %6.202 

prosthetic_knee_angle_offset = 7.810; 

zero_axial_load = 0.01; 

zero_frontal_moment = 2.524; 

zero_sagittal_moment = 2.305; 

KneeTorqueZero = -182; 

AnkleTorqueZero = -145; 

 

%Force to Torque conversion 

%Knee 

L1k = .0434; 

L2k = 10.875*.0254; 

L = 11*.0254; 

m = 2.72; 
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%Ankle 

L1a = 2*.0254; 

L2a = 10.875*0.0254; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%Gait Detection related variables 

%Gyroscope zero voltage 

gyro_zero_vel_volt = 2.35; 

%Gyro related constants 

gyro_pos_threshold = 1; %If gyro pos is greater than 1deg the heel is off 

  

%1. Footswitch threshold 

sound_front_threshold = 7;%5; 

sound_heel_threshold = 7; 

pros_front_threshold = 7;%5; 

pros_heel_threshold = 7; 

  

%Axial Load Threshold to distinguish between stance and swing 

axial_load_threshold = 1000; 

 


