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CHAPTER I 

DENSITY FUNCTIONAL THEORY AS A PROBE OF MATTER 

 

1.1. Introduction and background 

 Modern computational theory of the physics of atoms and electrons began with 

the Schrödinger equation as formulated in 1925-1926 by Erwin Schrödinger.
1
 This 

eigenvalue formulation encapsulates all information about a quantum mechanical system 

into a wave function. Observable properties are the expectation values of Hermitian 

operators with respect to that wave function. The basic form of the time-independent 

Schrödinger equation is 

𝐻̂𝜓(𝒓) = 𝐸𝜓(𝒓) 
     (1.1) 

where 𝐻̂ is the Hamiltonian operator for the system, 𝜓 is the wave function, E is the 

energy of the system, and r is a spatial coordinate vector. For a single particle in a fixed 

background potential V(r), this Hamiltonian takes the form 

[−
ℏ2

2𝑚
𝛻2 + 𝑉(𝒓)]𝜓(𝒓) = 𝐸𝜓(𝒓)  

   (1.2) 

This equation can be solved to obtain the energy levels and wave function of a single 

electron bound to a proton, i.e. a hydrogen atom. However, when additional electrons are 

added to the system, the resulting many-body system quickly becomes analytically 

unsolvable, as the potential each particle sees becomes 

𝑉(𝑟) =  ∑ ∑
𝑍𝑖𝑍𝑗

|𝒓𝑖 − 𝒓𝒋|

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

 

   (1.3) 

where i and j iterate over all particle-particle pairs, comprising electron-nucleus, nucleus-
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nucleus, and electron-electron interactions, approximating all nuclei as point charges. The 

many-body problem can be greatly simplified by applying the Born-Oppenheimer 

approximation, which treats the locations of atomic nuclei as fixed and reduces their 

contribution to that of a static background potential. This allows the problem to be 

rewritten as 

   (1.4) 

where ∑ 𝑣(𝑟𝑖
𝑁
𝑖 ) is a background potential produced by the fixed nuclei to which the 

electrons respond, and U(ri,rj) is the Coulomb interaction potential between any two 

electrons, given by 

𝑈(𝑟𝑖, 𝑟𝑗) =  
1

4𝜋𝜀0

𝑒2

|𝒓𝑖 − 𝒓𝒋|
 

     (1.5) 

This system is far simpler than the full many-body time-independent Schrödinger 

equation, but is still intractable without further approximations and insights. One of the 

more successful modern methods for finding useful approximate solutions of the full 

many-body Schrödinger equation is density functional theory. 

 Since the foundational work of Walter Kohn, Pierre Hohenberg, Lu Sham, and 

others, density functional theory (DFT) has become a well-developed and powerful tool 

in the theoretical study of condensed matter. DFT circumvents the intense difficulty of 

solving the many-body Schrödinger equation by use of the Hohenberg-Kohn (HK) 

theorem, which proves that the many-body wave function uniquely determines the 

ground-state electron density, and vice versa.
2
 Thus it is not necessary to explicitly solve 

the many-body Schrödinger equation to obtain the information inherent in the full 
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ground-state wave function: any method that produces the ground-state density is 

equivalent to solving the full Schrödinger equation for the wave function and implies all 

the same information.  

 Finding the electron density distribution constituting the ground state of the 

system can then be approached by exploiting its nature as an energy minimum in the 

configuration space of the system. If a given wave function is the ground state wave 

function for the Hamiltonian of the system, any other wave function produces a higher 

energy. By the HK theorem, the same is true of the ground state electron density 

distribution. However, the fundamental difficulty of solving a many-body problem of 

interacting particles remains. 

 To reformulate the problem in a more tractable form, the informational 

completeness and uniqueness of the ground-state density is exploited by the Kohn-Sham 

equations, which define a fictitious non-interacting system that results in the same density 

distribution as the true many-body system of interacting particles.
3
 The equations have 

the form: 

 
(1.6) 

 
(1.7) 

where φi is the non-interacting wave function for a single particle, v(r) is the background 

potential from the nuclei, vH(r) is the Coloumb interaction between the particle and the 

electron density due to the other electrons, and vxc(r) is the exchange-correlation (XC) 

potential arising from the Fermionic nature of the electrons, comprising both exchange 
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and correlation effects. This formulation is not itself an approximation, but rather an 

exact reformulation of the problem. 

Solving this much more tractable non-interacting system is equivalent to solving 

the full interacting system. The cost paid for converting the interacting system into an 

equivalent non-interacting one lies in the exchange-correlation (XC) potential term, 

which cannot be determined exactly except in the case of some very simple systems that 

do not require DFT at all. Thus DFT is formally an exact theory, but approximations of 

the XC potential are necessary for its practical implementation. Two common classes of 

approximations for the XC energy are the local density approximations (LDA) and 

generalized gradient approximations (GGA). For basic LDA, the XC energy is given by 

𝐸𝑥𝑐
𝐿𝐷𝐴 = ∫𝑑𝒓𝜌(𝑟)𝜀𝑥𝑐(𝜌) 

(1.8) 

where 𝜀𝑥𝑐(𝜌) is the single-particle exchange-correlation energy for uniform electron gas 

of density 𝜌, from which the local density approximation derives its name. The exchange 

portion of this can be determined analytically, but the correlation requires further 

approximations, resulting in a large variety of existing functionals. GGA functionals 

additionally depend on the local gradient of the density, and provide more 

computationally expensive but potentially more accurate results.
4,5

 Starting from these 

concepts, a large number of more complicated or hybridized functionals have been 

developed to produce more accurate calculations for specialized systems or features of 

interest. One such functional is the Perdew, Burke and Ernzerhof (PBE) functional, a type 

of GGA approximation that improves upon the local spin density (LSD) approximation, 

which is itself an extension of LDA that accounts for spin.
6,7

 A yet further derivation is 

the PBE0 functional, which hybridizes the PBE exchange-correlation functional to 
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become 

 

𝐸𝑥𝑐
𝑃𝐵𝐸0 = 𝐸𝑐

𝑃𝐵𝐸 + (1 − 𝛼)𝐸𝑥
𝑃𝐵𝐸 +  𝛼𝐸𝑥

𝐻𝐹  
(1.9) 

where 𝐸𝑐
𝑃𝐵𝐸 is the PBE correlation functional, 𝐸𝑥

𝑃𝐵𝐸 is the PBE exchange functional, 𝐸𝑥
𝐻𝐹 

is the Hartree-Fock exchange, and α is commonly set to 0.25.
8–10

 This hybrid functional 

replaces a fraction α of the PBE exchange with the Hartree-Fock exchange while leaving 

the PBE correlation term intact. 

 

1.2. Energy levels and optical spectra 

 As the ground-state density implies all the information of the ground-state wave 

function, the electronic ground-state energy levels can be determined. Because excited 

states are inherently not part of this solution, this does not allow accurate calculation of 

transition energies and optical spectra. However, a time-dependent generalization of the 

Hohenberg-Kohn theorem known as the Runge-Gross theorem shows that the time-

dependent density uniquely determines the time-dependent wave function.
11

 This 

extension of the HK theorem to time-dependent, non-ground-state systems is the basis of 

time-dependent density functional theory (TDDFT), which allows the calculation of 

excited states, and hence, transition energies and optical spectra. 

 One noted and long-standing limitation of DFT in determining energy levels is its 

tendency to underestimate the band gap of bulk semiconductors. This has led to the use, 

where needed, of more complex or hybridized exchange-correlation functionals that are 

better-suited for specific systems. 
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1.3. Total energies   

 DFT can be used to determine the characteristics and structure of atomic defects 

in crystalline materials, such as vacancies, interstitials, antisite defects, and impurities. 

Knowledge of the properties of these defects allows a study of the cause of various 

phenomena in bulk materials, such as the defects and mechanisms responsible for 

observed traps in semiconductor band gaps. A typical value for α is 0.25. 

 As DFT can calculate the electronic ground-state total energy of a reasonably 

arbitrary arrangement of atoms, the energy barriers associated with specific changes in 

atomic configuration can also be examined, such as the migration of an interstitial or 

vacancy point defect in a bulk crystal to an adjacent crystal lattice site. By providing a 

series of intermediate atomic arrangements that smoothly transform between the initial 

and final configurations and evaluating the total ground-state energy of each, a profile of 

the change in total energy through the given process is obtained. By examining nearby 

migration processes and iteratively minimizing the energy barrier, the path with the 

lowest barrier between the initial and final states may be found. 

 

1.4. Nudged Elastic Band Method 

 One commonly used implementation for obtaining a good representation of the 

lowest-energy reaction path and energy barrier profile is Nudged Elastic Band (NEB).
12,13

 

An illustrative schematic of this approach is shown in Figure 1.1. From an initial ordered 

list of atomic configurations (referred to as images) that represent the migration path to 

be explored, DFT is used to calculate for each image the electronic ground-state energy 

and electron density distribution. The electron density distribution then allows the force 

exerted on each atom to be calculated. In addition to the force due to the electron density, 
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a virtual “elastic band” is added between equivalent atoms in adjacent images, applying 

another force proportional to and opposing their separation. To achieve the desired goal if 

finding the minimum energy path, only the component of the electronic forces 

perpendicular to the current reaction path and the virtual elastic band forces parallel to 

that path are applied. This makes numerical calculation of tangents to the reaction path a 

crucial part of the method’s implementation. Combining the forces due to the electron 

density and the virtual elastic bands, the atomic positions in each intermediate image are 

relaxed by moving the nuclei in the direction of and proportional to the total force. This is 

the “nudging” referred to in the name of the method. Because of the chain of elastic 

bands that exists for each atom as it transitions from the initial to the final state, the atoms 

in the intermediate images are prevented from simply relaxing to the low-energy initial 

and final states, and instead tend towards fairly even spacing along the low-energy path 

through the saddle point.  
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Figure 1.1: Schematic of the Nudged Elastic Band method for finding minimum energy 

paths and saddle points in the configuration space of a system. A series of configuration 

states (or “images”) intermediate to a given initial and final state are created (top), and 

total energies and forces are calculated for each. A fictitious spring force is also added to 

keep the images spaced out along the reaction path. The images are then allowed to relax 

slightly under these total forces and descend the local energy landscape, and the process 

is repeated until convergence is reached (bottom). The minimum energy paths discovered 

this way represent the strongest probabilistic component of the associated hypothetical 

change in the atomic configuration of the system, and set the minimum activation barrier. 
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 One refinement to this method is the Climbing Nudged Elastic Band (cNEB), 

where the highest-energy image is not subject to the elastic band forces from its adjacent 

images and the component of the electronic force along the reaction path is reversed and 

applied, causing the image to climb to the saddle point along the path.
12

 When fully 

relaxed, this image represents the transition state. This method works best when the 

climbing image is close to the transition state, making it preferable to perform a regular 

NEB calculation first and apply cNEB to the result to refine the transition state. The 

transition state can be further verified by calculating the vibrational modes of the system, 

of which there should be only one that indicates instability in movement across the saddle 

point. Other classes of methods in computational chemistry for locating transition states 

and energies from DFT calculations are the synchronous transit, string, and dimer 

methods. 

 The energetics of defect reactions, such as the mutual annihilation of a vacancy 

and interstitial, two isolated vacancies joining into a divacancy, etc., can be analyzed in a 

fashion similar to point defect migration. The differences in total energy and charge 

distribution between the initial and final states, as well as the energetics of the 

intermediate states on the lowest-barrier path, can be found as long as the transition can 

be broken into a chain of sufficiently small shifts in atomic positions. More than one such 

chain of images may be necessary in transitions that incorporate a metastable state, for 

instance. 

 The ground-state structure of chemicals and structures adsorbed onto surfaces is 

important for surface reaction physics. The ability of DFT to be implemented in 

algorithms that iteratively relax atomic configurations to a stable low-energy state applies 
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equally well to adsorbates on a surface as it does to defects in bulk crystals. 

 The binding energy of an atom or molecule to another atomic system can be 

calculated by comparing the total energies of the joined set of atoms to the sum of the 

total energies of each part in isolation. The difference is the binding energy. This value is 

needed to determine the stability and reaction kinetics of molecules and structures.  
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CHAPTER II 

ROOM-TEMPERATURE DIFFUSIVE PHENOMENA IN SEMICONDUCTORS – 

THE CASE FOR AlGaN 

 

2.1 Observed degradation in GaN/AlGaN HEMTs 

Diffusion in solids is a ubiquitous phenomenon driven by gradients of thermodynamic 

variables such as concentration, chemical potential, temperature, pressure, electrostatic 

potential (for charged species), etc. For electrons, the term diffusion is usually reserved 

for transport driven by concentration gradients, whereas transport driven by an 

electrostatic potential gradient is called drift. For atomic transport, interstitial atoms in 

crystals are often very fast diffusers even at room temperature (RT). Diffusion of 

substitutional impurities and host atoms (self-diffusion), on the other hand, is typically 

mediated by native point defects such as vacancies and interstitials. The diffusion 

coefficient depends exponentially on the activation energy, which is the sum of the 

formation and migration energies of the pertinent defect. In metals, vacancy formation 

and migration energies are typically small and self-diffusion phenomena are common at 

RT. In particular, electromigration, where self-diffusion is driven by electrical currents, is 

known to occur in metals, causing plastic deformation and voiding.
14,15

 Metals are also 

known to undergo diffusive creep, also known as Nabarro-Herring creep, caused by self-

diffusion driven by external stress. In bulk semiconductors, however, self-diffusion and 

substitutional-impurity diffusion are known to occur only at high temperatures.
16–19

 In 

particular, in silicon, the migration energies of native defects in the bulk are small, but 

their formation energies are very large (>3 eV), resulting in prohibitively large activation 

energies. However, electromigration is possible on semiconductor surfaces, where 
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vacancies are naturally present.
20

 In bulk compound semiconductors, vacancy formation 

energies are often small when the Fermi energy is near a band edge.
21–24

 However, 

migration energies are large because vacancy migration entails an atomic hop to a 

second-neighbor site. 

 

Recent RT observations of plastic deformation in n-type AlGaN/GaN high-electron-

mobility transistors (HEMTs) have been attributed to diffusive phenomena.
25–30

 The 

primary evidence of physical degradation is TEM observation of the formation of 

grooves and pits in the surface of the AlGaN/GaN crystal under the drain-side edge of the 

gate, with the pits growing and merging to form deep groves, and eventually, cracks. 

Figure 2., adapted from Park et al., depicts an example device cross-section of an instance 

 

Figure 2.1: High resolution electron microscope (HREM) image of a groove and crack 

formed by degradation of the AlGaN layer under the drain-side gate edge. Adapted from 

Park et. al.
28
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of severe degration.
28

 The deformation occurs in the absence of currents, ruling out 

electromigration via an “electron wind” effect, which can occur in metals.
14,15

 Device 

simulations and experimental data also rule out self-heating and hot electron effects.
25

 

However, several classes of possible mechanisms have also been proposed and partially 

explored. In these AlGaN/GaN HEMT structures there exists an inherent strain in the 

AlGaN epilayer due to lattice mismatch, with additional strain induced by the electric 

field because of the inverse piezoelectric effect that results from the lack of 

crystallographic inversion symmetry in wurtzite GaN and AlGaN, as depicted in Figure 

2.2, adapted from Joh and del Alamo.
29,31

 Since degradation is also observed to be 

activated by an electric field above a critical value, this supports the possibility of a 

strain-based activation triggered through the additional piezoelectric strain. Relief of this 

net strain through the formation of crystal dislocations has been suggested as the primary 

driver of the observed deformation.
25

 While dislocation formation does relieve strain, it 

has also been suggested that this cannot entirely account for the observed deformation 

progression from shallow grooves to deepening pits and cracking. Another possible 

mechanisms is carrier trapping leading to a current collapse that has been observed in 

GaN HEMTs, with traps occurring either inside the AlGaN layer or on the device surface, 

as shown in Figure 2.2, adapted from Joh and del Alamo.
31

 By comparing device 

characteristics at different temperatures, both trapping processes that are and are not 

thermally activated have been determined to be present. As the critical voltage for 

degradation is reached, the number of traps increases and their spectrum broadens, and 

are cited as being consistent with trap formation through the inverse piezoelectric effect. 

In addition to the dislocation and trap formation mechanisms, there may also be thermally 
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activated diffusive processes in the presence of electric field mediating the observed 

deformation.
25,26,28,30

 This is supported by the apparent positive correlation with 

temperature, which the dislocation formation mechanism does not predict. At higher 

ambient temperatures, degradation is faster and more extensive, though there is no 

significant self-heating. However, the mechanism or mechanisms that enable RT self-

diffusion has not been positively identified. Degradation is observed to coincide with a 

region of very high electric field under the bias conditions that produce degradation. This 

applies both when bias conditions are such that a high field is under both gate edges or 

just one. 

 

 

 
Figure 2.1: Diagram of planar piezoelectric stress due to high electric field under the 

drain-side gate edge. Adapted from Joh and del Alamo.
31
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In this chapter we report the results of first-principles density-functional calculations 

that allow us to identify the enablers of self-diffusion at RT in GaN/AlGaN structures and 

show that they are likely to occur in other semiconductors, especially oxides. We 

calculate formation and migration energies of vacancies under strain and electric fields. 

When the GaN substrate is n-type and the Fermi energy is near its conduction band edge, 

the formation energies of cation vacancies in unstrained AlGaN are near zero but their 

migration energies are too large, >1.5 eV, for appreciable diffusion at RT (typically the 

sum of formation and migration energies, i.e., the diffusion activation energy, must be ~1 

eV or lower for diffusive processes to be appreciable at RT). We further find that 

application of strain, even at substantial levels, has little effect on either formation or 

migration energies. However, the pertinent cation vacancies are triply negative, whereby 

application of an electric field lowers the barrier for migration anti-parallel to the field by 

 

Figure 2.2: Diagram of trapping with drain-source voltage held at zero. G is the gate, S is 

source, and D is the drain. Gate current IG and drain current ID are labeled. Trap 

formation is indicated by the white lines and arrows. Adapted from Joh and del Alamo.
31
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a significant amount. At the observed critical values of the field, the net activation energy 

is reduced to approximately 1 eV, so thermally-activated atomic migration becomes 

appreciable at RT, driven by the electric field. These results provide a mechanism for 

plastic deformation mediated by vacancies, much like Nabarro-Herring creep and 

dislocation climb, but with an electric field being the main driver (vacancy drift). In 

addition to this process, the presence of unusually high local strain can also lead to 

dislocation glide and further formation of dislocations via strain relaxation, compounding 

the role of vacancy migration processes.
25,26,32,33

 This anisotropic defect migration is 

expected to occur in any crystalline material in the presence of a high external electric 

field whenever low-formation-energy native point defects exist in a high-charge state, 

provided that the activation energies in the absence of external field are approximately 

1.5 eV or less. To support a high external field, a large band gap is required. Oxygen 

vacancies in several oxides fit these criteria, including ZnO, TiO2 and HfO2.
34–36

 Many 

transition-metal oxides, especially those doped with cations of lower oxidation state, have 

large O vacancy concentrations as processed, bypassing the requirement of low vacancy 

formation energies. One such example is Y-doped ZrO2, in which a fraction of Zr
+4

 are 

replaced by Y
+3

.
37
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Figure 2.3: AlGaN supercell. Vacancies are formed by removing an atom of the complete 

supercell, such as the Ga and Al atoms circled.  
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2.2 Nudged elastic band method, strain and vacancies 

We used density functional theory with the gradient-corrected local density 

approximation (GGA) as implemented in the VASP code.
5
 Ultrasoft pseudopotentials 

were used to replace core electrons, wherein the core electrons are replaced with a 

pseudopotential that approximates their contribution to effects on ground-state electron 

density distribution.
38

 Far fewer high-energy plane waves are required in the basis set to 

achieve convergence, and both memory and computational requirements are greatly 

decreased. Approximating the core electrons with a static potential in this manner is valid 

for low-energy configurations, as structural and chemical properties are overwhelmingly 

determined by valence electron behavior only. The plane wave basis energy cutoff was 

set at 300 eV. A single k-point at 2π/a(1/4,1/4,1/4) was employed for Brillouin zone 

integrations. We used supercells of 128 atoms in a wurtzite structure with periodic 

boundary conditions. Several configurations were used for the distribution of Al atoms in 

AlGaN; the results do not vary significantly. The difference in results between GaN and 

AlGaN comes primarily from the change in lattice constant. Atomic positions were 

relaxed until the configuration energy difference was less than 10
−4

 eV. Migration 

barriers were calculated using the nudged elastic band (NEB) method.
12,13

  

For GaN, the relaxed lattice constant is a = 3.207 Å with c/a = 1.63. For AlGaN the 

relevant Al/Ga fraction is Al0.3Ga0.7N, with a relaxed lattice constant of a = 3.138 Å and 

c/a = 1.63.
26

 The strongest source of strain on the thin AlGaN layer is lattice mismatch 

with the GaN substrate. The AlGaN layer are below the critical thickness for strain 

relaxation by misfit dislocations, and the planar strain from being forced to match the 

lattice constant of the bulk GaN substrate should be approximately constant throughout 

the layer. As such, lattice mismatch of the AlGaN epilayer on the GaN substrate is 
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reflected by expanding the AlGaN lattice constant to match that of GaN, resulting in a 

2.2% planar expansion.
39,40

. By solving the corresponding special case of plane stress 

Hooke's law with experimentally determined elastic modulus and Poisson ratio this 2.2% 

expansion in the interface plane produces a 1.5% compression in the perpendicular 

direction; the AlGaN parameters under this strain are a' = 3.207 Å, c'/a' = 1.571. This 

approximate strain is expected to hold throughout the AlGaN epilayer since no relaxation 

through misfit dislocation formation is expected for thin (critical thickness ~50 nm) 

AlGaN layers.
39,40

 The bulk GaN substrate is not similarly subject to lattice mismatch 

strain.  

Two-dimensional numerical device simulations, using the Synopsys DESSIS 

simulator, were performed to obtain the electric field profile in representative HEMTs. 

The source and the drain voltages in these simulations were 0 V, with the gate at −40 V. 

The AlGaN barrier is 30 nm thick.  

As shown previously in, the electric field in the AlGaN epilayer under the observed 

degradation conditions is approximately 10 MV/cm, which induces a ~3.5 GPa planar 

stress in both GaN and AlGaN through an inverse piezoelectric effect.
29,41,42

 By Hooke’s 

law, the corresponding strain is an approximately 1% axial compression and 0.25% 

planar expansion of both AlGaN and GaN lattices. For GaN the corresponding 

parameters for piezoelectric strain are a' = 3.215 Å with c'/a' = 1.61, and in AlGaN the 

parameters for the combination of lattice mismatch and piezoelectric strain are a' = 3.215 

Å with c'/a' = 1.551.  

Vacancy formation energies were calculated for several charge states of vacancies in 

GaN and AlGaN. This can be calculated by comparing the total system energies with or 
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without a vacancy present, and accounting for the displaced atom and electron by 

chemical potentials. Under this formulation, particles are exchanged with a theoretical 

bath of particles with a certain potential cost for each species. The electron bath is at the 

Fermi energy, and atoms have their chemical potential defined by exchange with a 

theoretical bulk crystal. Exchanging electrons with the Fermi energy means that the 

formation energy of charged vacancies depends directly on the Fermi level location. 

Atomic configurations used to calculate formation energies of cation vacancies are shown 

in Figure 2.3 with the relevant atom being removed and the cell subsequently relaxed 

fully. For the purpose of formation energy calculation it is not possible to construct finite 

supercells that represent Al and Ga vacancies and maintain identical Al/Ga ratios. Either 

the vacancy supercells differ in Al/Ga ratio, or their corresponding defect-free supercells 

differ. As a result, although Al and Ga vacancies in AlGaN are statistically identical, 

calculation of their formation energies using finite supercells is not. However, in the 

conditions of interest with Fermi energy near the conduction band edge, as is the case in 

the n-type material produced by the Ga-rich growing conditions relevant to these GaN 

HEMT devices, such calculated formation energies were found to be the same. This 

exercise corresponds to checking the sensitivity of the results to the precise Al/Ga ratio in 

the material. 

The charge state of the vacancy can strongly influence the local electronic interactions 

and hence the defect structure and barrier energies, and must be included in the DFT 

calculation. Upon adding a charge to the supercell and relaxing the atomic structure, the 

final electron density can be examined and compared to the bulk defect-free crystal to 
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find where the extra charge reside in the crystal, and whether it is well-localized or 

distributed across the bulk. 

 

  

 

Figure 2.4: Vacancy formation energies in GaN and AlGaN as a function of Fermi 

level; slope indicates charge state. The expected Fermi level in the material and the 

associated formation energies are indicated by dotted lines, as are the conduction band 

edges in GaN and AlGaN. Due to differing stoichiometry and local environment, the 

calculated AlGaN cation vacancy formation energies differ at Fermi energies below 1 

eV, though they are identical elsewhere 
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2.3 Results – E-field activated charged vacancy migration 

Vacancy formation energies 

Calculated vacancy formation energies in Al0.3Ga0.7N and GaN under Ga-rich 

conditions are shown in Figure 2.4; these are consistent with previous work in GaN.
22–

24,43,44
 In n-type material, such as is the case for the Ga-rich growing conditions relevant 

to these GaN HEMT devices, we find that the triply-negative cation vacancy has the 

lowest formation energy, being effectively zero when the Fermi energy is at the GaN 

conduction band edge. Such a small formation energy suggests that cation vacancies 

especially should be plentiful in the bulk as-grown, though the vacancy concentration is 

unlikely to achieve its equilibrium value under typical growth conditions. The band gap 

of Al0.3Ga0.7N is larger than that of GaN by about 0.8 eV, causing the formation energy of 

triply-negative cation vacancies to drop below zero when the Fermi energy is near the 

conduction-band edge.
45

 Compensation by defects may, however, keep the Fermi energy 

from rising too close to the conduction band edge. Because the cation vacancy formation 

energies are near zero, the cation vacancy defect activation energies are approximately 

equal to the cation vacancy migration barrier energies. The calculated formation energy 

for N vacancies in GaN is approximately 0.5 eV higher than the Ga cation vacancy, and 

the formation energy of N vacancies in AlGaN is similar.  
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Figure 2.5: (a) The migration path of a Ga atom from a crystal site to a nearest vacancy 

site is indicated by the solid line. The dashed lines show the missing bonds prior to the 

migration. (b) Isosurface of the negative (red) and positive (blue) difference in charge 

density between the perfect crystal and a triply negatively charged cation vacancy. Atoms 

are not shown, but bonds are kept for reference. 
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Migration barriers 

The calculated migration barrier for single Ga vacancies in unstrained GaN is 1.9 eV, 

and the N vacancy barrier is similarly 2 eV, in agreement with previous calculations.
22,23

 

In AlGaN the migration barrier for N vacancies is higher at ~2.2 eV. However, the 

migration barriers in AlGaN for Ga and Al vacancies are lower than their GaN 

counterparts at 1.8 eV and 1.6 eV, respectively. Figure 2.5(a) shows the path followed by 

a Ga atom in AlGaN during vacancy migration; this path is similar to those of other 

vacancies. Although cation vacancies are intrinsically identical, either an Al or Ga atom 

may move to produce vacancy migration, so they are distinguished as Al and Ga vacancy 

migration barriers. We have investigated migration paths parallel and perpendicular to the 

substrate; while planar stresses introduce further anisotropy to the crystal structure, we 

found the migration barriers to be isotropic, in agreement with previous work.
23

  

After adding lattice mismatch strain to the AlGaN calculations, the resulting vacancy 

migration barriers are lowered for Ga and Al vacancies by 0.2 eV, becoming 1.6 and 1.4 

eV, respectively. However, the migration barrier for N vacancies in AlGaN remains 

unaffected at 2.2 eV. We suggest that this occurs because Ga/Al atoms are relatively 

large, and are more sensitive to changes in the space around the migration path, while N 

atoms are smaller and less affected.  

Adding piezoelectric strain to the lattice mismatch strain for the calculations for Ga 

and Al vacancies in AlGaN shows an additional barrier lowering of 0.1 eV, bringing their 

migration barriers to 1.5 and 1.3 eV, respectively. As before, N vacancy barriers are 

unaffected and remain at 2.2 eV. Ga and N vacancy migration barriers in GaN are also 

unaffected, remaining at 1.9 eV and 2 eV, respectively.  



32 

 

These migration barriers in both GaN and AlGaN are still too high to allow significant 

RT defect migration. However, the externally applied electric field acts on the triply 

negatively charged vacancy defects in n-type GaN and AlGaN and creates a potential 

bias for motion in the direction anti-parallel to the field, resulting in a significantly lower 

migration barrier in that direction. The local charge distribution associated with the triply 

negatively charged cation vacancy in shown in Figure 2.5(b). This charge distribution is 

obtained as the difference between total charge distributions of the perfect crystal and the 

charged vacancy. The charge is observed to be very well-localized to the site of the 

vacancy defect, supporting the presence of a Coulomb force acting on the localized 

charge resulting from the high local electric field. For localized charged point defects, we 

assume an approximately linear shift in charge distribution as the with respect to the 

atomic migration progress, and the resulting migration barrier lowering is given by 

 𝐸 𝑖  =  𝐸 𝑑 

      (2.1) 

where E is the electric field strength along the direction of atomic migration, q is 

thecharge state of the defect, and d is the distance from the initial site to the point of 

highestenergy. Equation (1) assumes that any shift in charge distribution approximately 

corresponds to a simple translation, which produces an associated Coulomb potential 

difference. This is reasonable for the vacancy migrations in question because the field is 

approximately uniform over one migration step and the local charge density distribution 

relative to the vacancy site remains the same. As all the low-energy migration paths for 

single vacancies were found to consist of a single second-neighbor atom migrating to the 

vacancy site, the vacancy motion was represented as the reverse of the atom migration. 

Since the strength and sign of this barrier-lowering effect depend on the direction of 
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migration with respect to the external electric field, axial anisotropy is introduced to the 

vacancy diffusion. 

 

 

 

Figure 2.6, courtesy of T. Roy, shows a simulated electric field profile where the 

drain-source bias is zero and a gate bias of 40V produces a strong field.
46

 A closer view 

of the region of interest with arrows showing the orientation of the field lines is given in 

Figure 2.7.
46

 The peak electric field is E = 11 MV/cm, in agreement with previous 

calculations and observation.
41

 The strong correlation between the location of the peak 

field and the location of physical degradation and mass transport strongly suggests that 

 

Figure 2.6: 2D device simulation of electric field profile of an AlGaN/GaN HEMT with 

the drain-source bias held at zero and a drain-gate bias of 40 V. Image courtesy of T. 

Roy. 
46
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electric field is a driving mechanism in the underlying degradation. Following Equation 

1, with an external electric field of 11 MV/cm as exists in the peak under the gate, a 

vacancy charge of -3, and separation between adjacent (next-nearest neighbor) sites of ~3 

Å, the energy reduction from a single hop anti-parallel to the field is 1 eV.
41

 The barrier 

reduction is approximately` half of this, or 0.5 eV, as the peak of the minimum energy 

path would occur roughly halfway through the migration. This is a crude estimate 

however, and more exact results are made by applying Equation 1to every calculated 

point on the migration path, producing a lower peak energy that occurs earlier in the 

migration process. Doing this, the migration barriers of Ga and N vacancies in GaN after 

piezoelectric stress and electric field, noting that there is no mismatch strain in the GaN 

substrate, become 1.3 eV and 1.4 eV, respectively. The barrier for N vacancies in AlGaN 

after mismatch, piezoelectric, and electric field effects is 1.5 eV, too high for significant 

RT diffusion. However, the migration energies of Ga and Al vacancies in AlGaN under 

the combination of lattice mismatch, piezoelectric effect, and electric-field-induced 

barrier lowering become 1.0 and 0.9 eV, respectively. These values are sufficiently low 

to enable thermal migration of cation vacancies in AlGaN at RT. Figure 2.8 shows the 

migration barrier for an Al vacancy in AlGaN, which is qualitatively similar to the 

barriers for the other vacancies.  
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Figure 2.7: (a) 2D simulated electric-field profile in an AlGaN HEMT with 40 V drain-

gate bias. The region near the drain-side gate edge is shown, with the gate depicted by the 

purple line. The top layer is AlGaN and the lower layer is bulk GaN. A typical early-

degradation pit is superimposed in light blue. Arrows indicate E-field direction. (b) 

Close-up of the superimposed pit.  
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Figure 2.8: Migration barrier of Al vacancy in AlGaN with cumulative barrier reductions 

due to mismatch strain, electric-field induced piezoelectric strain, and direct coulomb 

potential barrier lowering due to the electric field acting on the triply negatively charged 

vacancy.  
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Diffusivity 

 

The change in migration barrier is linear with respect to the electric field strength, 

while diffusion rates increase exponentially as barriers decrease. Thus, vacancies are 

mobile only in regions of sufficient electric field strength. The diffusivity is of the form 

 =  0𝑒
 𝐸     

    (2.2) 

where k is the Boltzmann constant, T is the absolute temperature, and EA is the activation 

energy for diffusion. Because of this, a reduction in activation energy from ~1.5 eV to 1 

eV or lower represents a large increase in the expected diffusion rates. In addition, this 

mechanism for energy barrier lowering explains the temperature dependence, as higher 

thermal energies will produce even greater rates of diffusion. It also contributes to the 

understanding of the mass transport processes at work in this case, in accordance with 

earlier suggestions of diffusive mass transport.
30

 With EA = 0.9 eV, the exponent at RT is 

calculated to be −35.6. For comparison, in Devine et al. significant diffusion of oxygen 

vacancies has been reported with EA = 4.7 eV at 1320 °C, which yields a nearly identical 

exponent of −34.2.
47

 We conclude that significant vacancy diffusion is possible in 

AlGaN, with the important difference that migration is limited to the region of high 

electric field and is driven by a gradient in electric potential rather than chemical 

potential. The vacancies would concentrate near the edge of the high field region due to 

their biased migration, producing some locally trapped charge in the AlGaN layer. As 

seen in Figure 2.7, the size of the region where electric field is near 10 MV/cm is of order 

10 nm, which agrees with the observed deformation.
26,30
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2.4 Implications for HEMTs and oxides 

We conclude that triply-negative Al and Ga vacancies are mobile at RT in AlGaN in 

the presence of a high electric field. This thermally-activated diffusion of triply-charged 

vacancies through the bulk crystal lattice is similar to Nabarro-Herring creep, but with an 

electric field being the driver instead of inhomogeneous stress, producing a net migration 

of vacancies in the direction anti-parallel to the field.
16,17

 The mobile Al and Ga 

vacancies can also induce dislocation climb, a mechanism whereby an edge or screw 

dislocation propagates by mobile vacancies merging into the dislocation, causing the 

defect edge to recede in what is known as negative climb.
32

 The inverse process, when 

the edge emits vacancies and extends further through the lattice, is positive climb. 

Dislocation glide occurs in the presence of a local shear strain in the lattice cause the 

dislocation to travel through the lattice perpendicular to the edge.
32,33

Because there is a 

local strain due to lattice mismatch and the inverse piezoelectric effect, dislocation glide, 

dislocation generation, and possibly crack formation are also likely to be facilitated. The 

role of vacancy migration processes is therefore compounded, with plastic deformation 

being the inevitable outcome, as observed. However, the detailed nature of the processes 

that produce the observed deformation and ultimately device failure cannot be further 

elucidated at this time.  

The RT plastic deformation reported by Joh and del Alamo et al. was attributed to 

diffusive processes, likely to be caused by a critical strain produced by lattice mismatch 

and a critical electric field.
25,26,28–30

 Our theoretical results and analysis demonstrates that 

the origin of diffusive processes at RT is a combination of near-zero formation energies 

of triply-charged cation vacancies and a concomitant lowering of their migration energy 

by the electric field. An observable effect occurs when the activation energy is smaller 
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than ~1 eV, which makes diffusion observable at RT. As noted in the introduction, ZnO, 

TiO2, HfO2 and Y-doped ZrO2 are candidate oxides for exhibiting this effect.
34–37

 Similar 

RT diffusive processes should be significant for other materials with large band gaps (to 

support a high electric field), which also contain highly charged vacancies with activation 

energies of approximately 1.5 eV or less.  
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CHAPTER III 

ROOM-TEMPERATURE REACTIONS  

FOR SELF-CLEANING MOLECULAR NANOSENSORS 

 

3.1 Demand for molecular sensors 

Demand for new molecular sensing techniques has come from a variety of pressing 

problems, such as detecting and disposing of explosive compounds and hazardous 

materials. Various molecular detection methods have gained prominence, including 

nanostructures that exhibit a change in fluorescence,
48–51

 electronic resistance,
52,53

 or 

other optoelectronic characteristics
54–57

 when a target molecules is adsorbed. Typically, a 

refreshing step is required to return the sensor to its original state. The sensor can be 

refreshed by thermal desorption at elevated temperature, exposure to UV light, or 

application of chemicals.
50,53,55

 Some sensor types cannot be refreshed at all and require 

chemical recycling to produce a new sensor.
49

 Difficulty in refreshing these sensors limits 

their practical application. 

DTRA grant HDTRA1-10-0047 motivated my research to shift from defect migration 

in bulk crystals to small molecule catalysis. This grant project aimed to produce basic 

research supporting the design of high-sensitivity autocatalytic self-cleaning chemical 

sensors without the use of reagents or active power. The proposed mechanism for this 

sensor relies on creating nanostructured surfaces that will autocatalytically react with 

adsorbed target molecules. The adsorption of these molecules creates a spectral shift in 

the surface plasmon resonance (SPR) of the substrate that can be detected optically, but 

this shift in the spectral peak of the extinction profile is typically nanometers or less, 

limiting sensitivity. To enhance this peak shift the autocatalytic nanostructure is placed 



41 

 

on a VO2 substrate. Bulk VO2 undergoes a semiconductor-to-metal transition at around 

68° C, but this critical temperature can be reduced by either by doping bulk VO2 or by 

selecting the size of VO2 nanoparticles. By designing for a critical temperature near the 

operating temperature, the transition can be triggered by the adsorption and catalytic 

reactions of the adsorbed target molecules as they release enthalpic heat into the 

substrate. The electronic phase transition in the underlying VO2 boosts the SPR shift in 

the surface nanostructure into the tens of nanometers range, making the sensor more 

sensitive and accurate. The main remaining factor in this scheme is a mechanism for 

enhancing selectivity. The proposal is to accomplish this by developing molecular 

recognition elements that will specifically bind to and facilitate the catalysis of target 

analytes while diminishing the access of non-target molecules to the catalytic sites. 

Recognition element strategies to be explored for this application will include peptide 

chains that are shown to have selective binding to various key targets such as DNT and 

TNT, and porphyrin cages. My component of this project has focused on identifying and 

characterizing catalysts and reactions that release heat from target molecules. 

In this chapter we describe an approach to this alternative strategy for molecular 

sensing using a nanostructured substrate as a catalyst for a reaction between the target 

molecule and atmospheric oxygen. The energy released by the reaction is then absorbed 

by the substrate to produce detectable thermally-driven effects, such as the insulator-

metal phase transition in VO2, which can then be detected optically.
58

 In particular, we 

report first-principles calculations for detection of 2,4-dinitrotoluene (DNT) molecules 

using Fe-porphyrin molecules as the active catalyst. The reaction begins as an O2 

molecule is adsorbed at the Fe site. Next, a hydrogen atom from the methyl group of 
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DNT is transferred to the bound O2, followed by OH returning to DNT, releasing 1.9 eV 

per reaction. The residual bound oxygen atom can easily be removed by a second DNT 

molecule so that the process is self-cleaning with a further energy gain of 0.4 eV. All 

activation barriers are smaller than 1 eV (23 kcal mol
-1

), which makes the process 

operable at RT. We estimate that the energy gain from DNT reactions can increase the 

temperature of a VO2 nanoisland by 2°C, which can effectively trigger a phase transition 

of the VO2 nanoisland near its critical temperature. 

2,4,-dinitrotoluene (DNT) was chosen for initial study as a target reactant both 

because of its chemical similarity to the common explosive compound 2,4,6-

trinitrotoluene (TNT), and because it is a precursor to other major industrial chemicals 

such as toluene diisocyanate (TDI), which is used in producing polyurethane plastics. 

DNT and TNT, comparatively depicted in Figure 3.1, are known to have very similar 

chemical properties, which might be expected as the only difference between them is that 

DNT has two NO2 groups attached to the central six-carbon ring while TNT has three. 

However, DNT is useful as a proxy for TNT because it is easier and safer to work with in 

experiment. Besides TNT and its precursor DNT, toluene compounds in general are 

broadly used in industry and present challenges for production, management, and 

disposal.
59–61

 In addition, various environment cleanup methods rely on oxidizing these 

compounds.
62–69
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Figure 3.1: Comparison of DNT (left) and TNT (right). C atoms are brown, N atoms 

blue, O atoms red, and H atoms pink.  
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Figure 3.2: Diagrams of (a) Fe-porphyrin and (b) 2,4-dinitrotoluene (DNT) molecules. 
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As part of the focus on using autocatalysis in a detection scheme for explosives and 

other chemicals, a candidate catalyst must be selected for study. As these reactions will 

be occurring in normal atmosphere near room temperature, catalyzing reactions with 

atmospheric oxygen would be especially convenient. One possible candidate to meet 

these criteria is Fe-porphyrin, shown in comparison to DNT in Figure 3.2. Fe-porphyrin 

is one of various metalloporphyrins, a class of molecules that have proven valuable for 

catalyzing reactions in small organic molecules
70–73

 and for non-catalytic molecular 

sensing.
74,75

 Fe-porphyrin is well-known in biology as the center of the heme cofactor in 

hemoglobin. Though hemoglobin primarily binds and releases molecular oxygen for 

transport in blood, other heme proteins, such as heme peroxidases,
76,77

 cytochrome-c 

oxidase,
78–80

 and cytochrome P450 enzymes,
81–86

 use Fe-porphyrin for catalyzing 

reactions that involve breaking O-O bonds. This ability to break O-O bonds makes Fe-

porphyrin a prime candidate for catalyzing the oxidation of toluene compounds.  

In order for the catalytic reaction to be userful for room-temperature detection by 

depositing energy into a substrate, it must be both catalytically activated at room 

temperature and sufficiently exothermic to make the released energy detectable. A 

catalyzed energy barrier of 1 eV or lower is required if there is to be a significant chance 

of the reaction occurring at room temperature. Similarly, the more exothermic the 

reaction is, the lower the reaction rate density on the substrate that is required for 

detection. 
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3.2 Tools for theoretical investigation 

We used density functional theory as implemented in the VASP code with a plane-

wave basis to perform binding energy and reaction pathway calculations.
5
 Calculations 

were performed using the generalized gradient approximation (GGA) with the Perdew, 

Burke and Ernzerhof (PBE) functional for exchange and correlation.
6,7

 The method of 

projector augmented wave (PAW) potentials
87

 was used with a cutoff of 400 eV. Spin 

polarization was included in all calculations. All calculations were performed using a free 

Fe-porphyrin molecule, simulating a configuration where the porphyrin molecule is 

bonded to the substrate by peripheral ligands. The molecules were placed in a rectangular 

supercell with dimensions of 27×26×25 Å, large enough to isolate the reaction from 

being distorted by neighboring molecules that result from the periodic boundary 

conditions. A single k-point at the Γ point was used for Brillouin zone integrations. 

Reaction paths were calculated with the Climbing Nudged Elastic Band method.
12

 

Transition states were positively identified by calculating the associated molecular 

vibration modes, checking that there was only one significant imaginary vibrational 

mode, and further verifying that the mode corresponds to the expected shift in atomic 

configuration. All stationary states were converged until all atomic forces were less than 

0.01 eV/Å.  
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3.3 RT reaction activation of a two-step self-cleaning process 

DNT and TNT are known to be acceptably stable at room temperature in the presence 

of oxygen. To validate this known experimental result and establish a reference point for 

comparison with catalyzed reactions, we begin by performing calculations in the absence 

of the Fe-porphyrin catalyst. One oxygen reaction mechanism of interest consists of 

breaking an O2 molecule and inserting one of the O atoms into the NH3 group. The initial 

and final states of this reaction are depicted in Figure 3.3. Not depicted are the initial O2 

and remaining O reactant molecules. 

 By a NEB calculation, the barrier for this reaction is found to be far too high to 

occur at room temperature, chiefly due to the high binding energy of the O2 molecule. 

The necessity of leaving one unbound O atom in the final state negates any energy 

released by this reaction, resulting in a 1.2 eV cost in transitioning from the initial to the 

final state. A catalyst is required for any such reaction to be feasible at RT. 

 

 

Figure 3.3: Initial (left) and final (right) states of the partial oxidation of the DNT methyl 

group by oxygen. 
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Adding the Fe-porphyrin catalyst introduces new influences on the target DNT and 

O2 molecules that need to be assessed before considering the effect of the catalyst on the 

proposed partial oxidation reaction. By comparing total-energy differences between the 

Fe-porphyrin and either an adsorbed DNT or O2 molecule allows the binding energies to 

be estimated at 1 eV and 2.6 eV for DNT and O2 molecules, respectively. The various 

binding configurations in question are shown in Figure 3.4. When both molecules are 

adsorbed simultaneously, they must share the influence of the Fe center, causing binding 

energies to drop to 0.4 eV and 2.1 eV for DNT and O2. The relatively strong binding of 

the O2 by the Fe center contributes to a weakening of the O-O bond, which contributes to 

lowering the reaction barrier. In addition, the O2 is strongly bound at room temperature, 

while the DNT molecules will occasionally attach and detach from the Fe center due to 

their relatively low binding energy. Note that the relaxed configuration calculated brings 

the desired reaction centers into close proximity. 
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Figure 3.4: Top: profile of O2 bound to the Fe center of Fe-porphyrin. Center: 

configuration of the adsorbed DNT on Fe-porphyrin. Bottom: simultaneous adsorption of 

O2 and DNT. 
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Two oxidation reactions are required to complete a full cycle returning the Fe-

porphyrin catalyst to its original state. The first DNT oxidation reaction is the same as the 

“somersault” mechanism for the hydroxylation of hydrocarbons by cytochrome P450, 

which contains Fe-porphyrin, in biological processes
82

 and proceeds as shown 

schematically in Figure 3.5. Progressing from structure 1 to structure 2, an O2 molecule 

from the ambient atmosphere binds to the Fe site with a calculated binding energy of 0.68 

eV in the open shell singlet ground state, weakening the O-O bond and lengthening it 

from 1.2 to 1.3 Å, consistent with other published results.
75,88,89

 DNT also adsorbs 

nearby. We found that, when a DNT molecule approaches the O2-Fe-porphyrin system, it 

is energetically favorable for the DNT methyl group to face towards the Fe center 

(structure 2, Figure 3.5). 

The reaction proceeds to structure 3 as a hydrogen atom from the DNT methyl group 

transfers to the terminal oxygen of the O2 molecule, a process similar to the 

dehydrogenation of alkanes by alumina.
90

 The resulting OOH structure is metastable with 

an even further elongated O-O bond of 1.4 Å (structure 3, Figure 3.5). In the final step of 

the reaction, the O-O bond breaks at the transition state length of 1.6 Å as the new OH 

group transfers back to the DNT methyl group (structure 4 in Figure 3.5).  
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Figure 3.5: Calculated energies of the first reaction with corresponding diagrams of the 

configuration changes. Dangling bonds indicate the plane of the Fe-porphyrin and R 

represents the rest of the DNT molecule. The transition state structures are shown in 

Figure 3.7 
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Figure 3.6: Calculated energies of the second reaction with corresponding diagrams of 

the configuration changes. Dangling bonds indicate the plane of the Fe-porphyrin and R 

represents the rest of the DNT molecule. Dashed lines indicate a bond that is forming. 

The transition state structures are shown in Figure 3.7. 
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The 1 eV (23 kcal mol
-1

) barrier for this reaction indicates that it can occur at RT. The 

oxidized DNT product has a 0.4 eV calculated binding energy to the Fe-porphyrin, 

resulting in a total net release of 1.9 eV after the product desorbs from the Fe-porphyrin. 

The completion of the first reaction leaves an atomic oxygen bound to the Fe with a 

binding energy of 3.8 eV and a Fe-O bond length of 1.6 Å. Thus, it does not desorb by 

itself, poisoning the catalytic center. To remove the oxygen and restore the catalyst, a 

self-cleaning reaction similar to the first reaction, depicted in Figure 3.6, can occur. A 

new DNT molecule approaches the Fe-O site, once more with the methyl group facing 

the Fe-O site (structure 5, Figure 3.6). The ensuing reaction is the same as the “oxygen 

rebound” reaction originally proposed for the hydroxylation of hydrocarbons.
82,91,92

 As in 

the first reaction, a hydrogen atom is transferred from the methyl group to the bound 

oxygen atom (structure 6, Figure 3.6). In the next step, the DNT carbon atom with the 

dangling bond grabs the OH group (structure 7, Figure 3.6) and resets the molecule to its 

initial condition (structure 8, Figure 3.6). This step is barrierless. The whole reaction has 

a barrier of 0.8 eV and a net release of 0.4 eV. We also investigated a reaction pathway 

for the OH transfer step based on the same somersault mechanism as the initial reaction 

but found that the barrier is over 2 eV, rendering the reaction pathway infeasible at RT. 

Similarly, accomplishing the initial reaction by the rebound mechanism instead of the 

somersault mechanism was found to have an energy barrier of over 1.5 eV, making that 

pathway infeasible at RT. The transition states associated with the RT-feasible activation 

barriers in the initial and self-cleaning reactions are depicted in Figure 3.7.  
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Figure 3.7: Transition state configurations. Dashed lines indicate a bond that is forming. 

Relevant bond lengths are shown in Å 
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The rate determining step in the two-reaction process is the H-transfer step in the first 

reaction. Therefore, we investigated other choices of metalloporphyrin with a different 

central metal atom to look for evidence of possible further barrier lowering. The binding 

energies of O2 and atomic oxygen on Mn-, Fe-, and Co-porphyrin are shown in Figure 

3.8. As the O2 binding energy is fairly constant for these metalloporphyrins, we would 

not expect a large difference in H-transfer reaction barrier for the first reaction. Although 

the reaction barrier of the second may vary due to the varying binding energy of atomic 

oxygen on these metalloporphyrins, it is not the rate-limiting step in the case of Fe-

porphyrin. 

 

 

The following calculation shows how many reactions would be required in a 

prototype system to cause a significant temperature increase. For a substrate 

nanostructure with a given volume V, density ρ and specific heat c, the energy E required 

to cause a ΔT = 2 K rise in temperature is given by 

 

Figure 3.8: Calculated binding energies of O2 and O on Mn-porphyrin, Fe-porphyrin, and 

Co-porphyrin. 
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𝐸 =       𝜌  𝑉   
    (3.1) 

A possible substrate for the Fe-porphyrin molecule is VO2, which undergoes a phase 

transition at 68°C that can be detected optically and can be adjusted to occur at lower 

temperatures by methods such as doping.
58,93–95

 For a VO2 island with a surface area of 

100 nm
2
 and thickness of 20 nm corresponding to ρ = 4.6 g/cm

3
, V = 2×10

6
 nm

3
 and 

specific heat value
96

 for VO2 of c = 0.66 J g
-1

 K
-1

, we estimate that with 2 eV released per 

reaction, a density of one reaction for every 2.5 nm
2
 of substrate surface area is sufficient 

to increase the temperature by 2 K. For a functional sensor, the VO2 islands would have 

to be on an insulating substrate and their temperature would need to be controlled to 

within 1 degree. Air containing target molecules might also need to pass through a 

heating stage. 

As described so far, the detection of DNT molecules proceeds “on the fly”, without 

the DNT molecule adsorbing on the sensor. One can envision adding other molecules on 

the substrate that might bind the DNT molecule in proximity with the Fe-porphyrin to 

enhance the sensitivity of the detector and possibly introduce selectivity. Such molecules 

include peptides with specific binding for DNT.
97

  

In summary, we have described first-principles calculations of a reaction wherein Fe-

porphyrin enables 2,4-dinitrotoluene (DNT) to react with atmospheric oxygen. The 

catalyst self-cleans at room temperature by enabling the reaction of another DNT 

molecule with the remaining atomic oxygen. The heat released by these reactions can in 

principle be exploited for molecular sensing by joining the catalyst to a substrate with 

temperature-sensitive optoelectronic properties. Because the reactions are confined to the 

methyl group, analogous reactions are likely to exist for other toluene compounds.   
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CHAPTER IV 

HYDROGEN DYNAMICS  

AND METALLIC PHASE STABILIZATION IN VO2 

 

4.1 VO2 phase transition properties and device applications 

VO2 is a material of special interest in condensed matter physics due in large part to 

its unusual electronic phase transition at approximately 68 °C accompanied by a 

structural phase transition from monoclinic to rutile.
98–101

 The unique interplay between 

thermal, optical, and electronic phenomena in VO2 makes it a promising material for 

various applications including optoelectronic switching, solar energy transmittance 

modulation, nanoscale temperature sensing, and battery cathodes.
102–106

  

Various studies have been published investigating the crystallographic and electronic 

transitions in bulk VO2, thin VO2 layers on substrates, and in VO2 nanoparticles and 

nanostructures.
58,94,100,107,108

 There is significant evidence that doping, strain and defects 

can all influence the phase transition temperature.
95,109,110

 Several dopants such as 

tungsten and chromium have been used for this purpose, and it has been shown that the 

dopants affect both electronic and structural properties.
93,110–113

 Recent experimental 

studies supported by total-energy calculations report that heavy hydrogen doping of VO2 

stabilizes the metallic phase at room temperature.
114–116

 Engineering of the properties of 

VO2 can be improved through a more detailed mechanical understanding of the influence 

of atomic hydrogen on the VO2 crystal lattice structure, its dynamics under thermal 

forcing, and the dissociation and recombination of molecular hydrogen at VO2 surfaces.  

In this chapter we report density functional calculation results that show that the low-

temperature metallic phase observed in H-doped VO2 is due to lattice distortion produced 
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by interstitial hydrogen atoms binding to oxygen in the lattice, and that the lattice 

distortion itself is sufficient to produce this metallic phase in undoped VO2. We also 

demonstrate the dynamics of hydrogen at the VO2 surface and in the bulk. Through DFT 

calculations and first-principles molecular dynamics simulations we find that hydrogen 

diffuses anisotropically at room temperature along oxygen “channels” in the VO2 lattice. 

A surface orientation such as (100) that exposes these channels should more effectively 

absorb hydrogen than surface orientations where the channels run parallel to the surface. 

We show that the dissociation of hydrogen molecules at a VO2 surface into interstitial 

dopant atoms is energetically favored. We find a 1.6 eV activation barrier for a H2 

molecule dissociation reaction on a (100) surface resulting in atomic hydrogen 

interstitials and a 1.8 eV activation barrier for the reverse process, suggesting that 

activation requires elevated temperatures. 

 

4.2 Choice of tools for modeling and calculation 

We used density functional theory as implemented in the VASP code with a plane-

wave basis to perform binding energy and reaction pathway calculations.
5
 Calculations 

were performed using the generalized gradient approximation with the Hubbard U 

correction for on-site Coulomb interaction (GGA+U) with U = 4 eV and J = 0.68 eV for 

Hund’s exchange interaction.
117–119

 The Perdew, Burke and Ernzerhof (PBE) functional 

was used for exchange and correlation.
6,7

 The method of projector augmented wave 

(PAW) potentials was used with a cutoff of 400 eV.
87

 Bulk VO2 was represented by a 12-

atom supercell (excluding hydrogen), and surface calculations were performed on a 

freestanding tiled slab produced by a 144-atom supercell (excluding hydrogen) with 

dimensions of approximately 9.1×10.8×30 Å, leaving a sufficient buffer between slab 
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layers to isolate them. A 3×3×1 array of k-points including the Γ point was used for 

Brillouin zone integrations for the surface calculations, and a 7×7×7 array was used for 

bulk calculations. Reaction paths were calculated with the Climbing Nudged Elastic Band 

method.
12

 All stationary states were converged until all atomic forces were less than 0.05 

eV/Å. Hydrogen behavior in VO2 at finite temperature was simulated with ab-initio 

molecular dynamics as implemented in VASP. In this case a rutile phase VO2 supercell 

of 96 atoms (excluding hydrogen) with dimensions 9.3×9.3×11.2 Å was set to 1000 K as 

regulated through velocity scaling.  

 

4.3 Phase stabilization and diffusive hydrogen transport 

Figure 4.1 depicts the deformation of the monoclinic VO2 lattice doped with one H 

for every four V atoms, as compared with the metallic rutile phase of VO2. The V-V 

separation in monoclinic VO2 normally alternates between short and long pair 

separations, but the hydrogen doping shifts this towards the uniform separation 

characteristic of the rutile phase, eliminating approximately one third of the difference in 

short and long V-V separation lengths. This represents a significant portion of a 

crystallographic transition from the monoclinic to the rutile phase being caused and 

stabilized by the influence of the hydrogen atoms bonded to the oxygen. Because all 

chains of V-V separations still exhibit pairing, this distorted monoclinic structure is 

distinct from the M2 phase observed in some cases of strained or doped VO2 that has 

been suggested as a possible intermediate between the monoclinic and rutile 

phases.
110,120–124
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Figure 4.2 shows the density of states in monoclinic VO2 and hydrogen-doped VO2 at 

energies near the Fermi energy in the material. The calculated band gap for bulk 

monoclinic VO2 agrees well with the experimental value of approximately 0.6 eV, 

especially in light of the well-known tendency of DFT models to underestimate bulk 

semiconductor band gaps.
125–127

 By comparison the hydrogen-doped VO2 has no band 

gap at all, and is fully metallic. A rutile structure with an equal doping level of one H for 

every four V atoms is also metallic,  in agreement with prior calculations.
114

 

To demonstrate that this band gap filling is caused by the lattice deformation resulting 

from the hydrogen atoms bonded to the oxygen, and not due to any additional carriers or 

defect states they might create, a structure was created that is identical to the hydrogen-

doped VO2 but with the hydrogen atoms removed, leaving all other atoms fixed in place. 

Figure 4.3 shows the density of states for this material near its Fermi energy compared 

 

Figure 4.1: Structural deformation of monoclinic VO2 due to hydrogen doping 

compared to monoclinic and rutile VO2. 
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with the original doped VO2, and they are qualitatively and quantitatively equivalent. The 

bulk VO2 is made metallic purely under the influence of the distorted lattice and atomic 

arrangement as compared to relaxed monoclinic VO2.  

 

 

 

  

 

Figure 4.2: Doping the monoclinic (M1) phase of VO2 with one H for every four V 

atoms fills the band gap and produces a metallic state, similar to the rutile (R) phase. 

Removing the hydrogen from doped M1 VO2 while fixing the other atoms still 

produces a metallic state through deformation alone. 
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Figure 4.3: Comparison of the density of states near the Fermi energy for H-doped 

monoclinic VO2 and for the same fixed structure with all H atoms removed. 

Removing the hydrogen from doped M1 VO2 while fixing the other atoms still 

produces a metallic state through deformation alone. 
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The dynamics of the interstitial hydrogen atoms in VO2 under thermal forcing were 

investigated through a first-principles molecular dynamics simulation. The simulation 

was performed at 1000 K, and the rutile structure was used for the simulation. The 

hydrogen atoms are observed to transition between neighboring oxygen atoms with a 

distinct preference for travel along the [001] direction of the rutile phase (corresponding 

to the [100] direction of the monoclinic phase), as depicted in Figure 4.4. This figure 

shows the oxygen channels along which the hydrogen atoms preferentially travel. The 

preferred binding orientation of the hydrogen to the oxygen makes movements into and 

out of the figure far easier both kinetically and energetically than switching to the 

opposite site of the currently bound oxygen. This anisotropy suggests that surfaces that 

expose the ends of these oxygen channels will more easily absorb and transport atomic 

hydrogen into the bulk material. Similarly, the same surface should allow easier 

elimination of the hydrogen atoms to reverse the doping process. 

  

 

Figure 4.4: A hydrogen interstitial bound to an oxygen in VO2. Diffusion occurs 

primarily within the channel going into the figure. 



64 

 

Direct DFT calculations of the energy barriers required for atomic hydrogen to hop 

from oxygen to oxygen both within and along the channel were performed using the 

nudged elastic band method. The activation barriers for both atomic migration processes 

were found to be approximately 0.4 eV. This is easily activated at room temperature, 

suggesting that interstitial hydrogen is free to reach a fairly homogenous density 

distribution within bulk VO2 without high temperature annealing. The calculated binding 

energy of interstitial atomic hydrogen in VO2 as compared to molecular hydrogen in 

vacuum is 0.1 eV per hydrogen, suggesting that hydrogen concentrations at dynamic 

equilibrium will favor doping more highly than removal from the bulk. 

 

4.4 Implications for tuning of VO2 properties and controlled hydrogen doping 

Atomic hydrogen is shown to be mobile at room temperature in VO2, but hydrogen 

primarily occurs naturally as H2. A direct mechanism for supplying atomic hydrogen to 

the VO2 surface through hydrogen dissociation at terminal oxygen ligands was 

investigated. A nudged elastic band calculation was performed of a hydrogen molecule 

approaching a VO2 (100) surface between two exposed oxygen atoms and then splitting 

to bind each to their nearest oxygen, as depicted in Figure 4.5. This process was 

calculated to have a barrier of 1.6 eV, consisting of an energetic cost of approximately 

0.7 eV for the close approach of the H2 to the surface and an additional 0.9 eV for the 

dissociation of the molecule. This barrier is too high for feasible activation without 

elevated temperatures, and does not provide a competitive alternative to reported doping 

methods involving aqueous solutions and catalytic spillover.
114,115

 Despite the activation 

barrier, hydrogen dissociation on a VO2 surface in this manner is found to be 

energetically favored, resulting in a binding energy of approximately 0.1 eV per 
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hydrogen as compared to molecular hydrogen in vaccum. This agrees well with the 

calculated binding energy of atomic hydrogen in bulk VO2, suggesting that there is little 

difference in the atomic hydrogen dynamics near the surface and in the bulk. The rather 

large dissocation barrier and lack of a binding energy for an H2 molecule on the VO2 

surface suggests that the surface reaction is the rate-determining step for the hydrogen 

doping process unless an alternative means of supplying atomic hydrogen to the VO2 

surface is utilized. Similarly, the reversible reaction, i.e. recombination of hydrogen to 

remove the impurities from the bulk, determines the reaction kinetics for the hydrogen 

elimination process. This reverse process carries an activation barrier of 1.8 eV and a net 

energy cost of 0.2 eV, suggesting a requirement of elevated temperatures,  in agreement 

with experimental reports of successfully reversing VO2 hydrogenation by baking at 

temperatures in excess of 250 °C.
114

 

In conclusion, the anisotropic diffusion of hydrogen in VO2 suggests that certain 

surface orientations will absorb atomic hydrogen into the bulk more readily than others. 

These dopant atoms can diffusive readily at room temperature, with a preference for the 

[100] crystal direction along the oxygen “channels”. The interstitial atomic hydrogen 

bound to oxygen atoms in VO2 then drives the lattice slightly towards the rutile 

configuration, and a metallic state is achieved even without completing a crystallographic 

phase transition. These results suggest hydrogen doping as another method for tuning the 

critical temperature at which bulk VO2 becomes metallic. At the high concentrations 

studied in this chapter the metallic state is present in the ground. More moderate doping 

is likely to lower this transition temperature. The evidence supporting the ability of a VO2 

surface to dissociate and absorb molecular hydrogen at moderately elevated temperature 
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may help to optimize the hydrogen assisted phase transition of VO2 in a more 

controllable manner by engineering the nanocrystal surface orientation. 

 

 

 

 

 

Figure 4.5: A hydrogen molecule begins separated from the VO2 (100) surface, then 

approaches the surface and splits towards adjacent oxygens with a 1.6 eV activation 

barrier, incorporating two atomic hydrogens into the VO2 with a 0.2 eV net energy 

release. Initial and final hydrogen states are shown. 
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in GaN HEMTs”, BAPS.2010.MAR.D25.5 in APS March Meeting 2010, Portland, 

Oregon (2010). 

 

B.2 Talks done as an undergraduate 

C. R. Tolle, K. H. Warnick, John W. James, “Exploration and Development of a new 

Automated Nonlinear Differential Equation-Based System Identification”, IEEE Eastern 

Idaho Section meeting (2007). Substituting for Dr. Charles. R. Tolle. 
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T. E. Doyle, D. A. Robinson, S. B. Jones, and K. H. Warnick, “Modeling the Dielectric 

Properties of Granular Media to Determine Water Content”, Water Initiative Spring 

Runoff Conference, Utah State University (2006). Presentation made by T. E. Doyle. 

 

B.3 Posters done as part of this thesis 

K. H. Warnick, B. Wang, D. E. Cliffel, D. W. Wright, R. F. Haglund, and S. T. 

Pantelides, "Catalytic reactions of DNT/TNT molecules on porphyrin complexes," W05-

019 in 2011 Chemical and Biological Defense Science and Technology (CBD S&T) 

Conference, Las Vegas, Nevada (2011). 

 

B.4 Posters done as an undergraduate 

K. H. Warnick et. al., “Exploration of Phase Space Reconstruction of Nonlinear 

Differential Equations using Perona’s Method”, Society for Industrial and Applied 

Mathematics conference on Applications of Dynamical Systems (2006). 

 

K. H. Warnick et. al., “Reconstructing Systems of Nonlinear Differential Equations from 

Time Series”, Four Corners Section Fall Meeting of the APS (2006).   

 

K. H. Warnick et. al., “The Galerkin Spectral Method for Modeling Temperature 

Variations in an Insonified Gas Bubble”, Student Showcase, Utah State University 

(2007). 

 

K. H. Warnick et. al., “Multipole-based Computer Models of Cellular Acoustic Properties 

for Ultrasonic Diagnosis”, Student Showcase, Utah State University (2006). 
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