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  Chapter I

INTRODUCTION 

Background 

Cancer targeted therapy 

 Cancer is the second leading cause of death in the United States. While 

outcomes to cancer treatment have improved incrementally by tailoring standard of care 

therapy to the cancer site of origin and histology, targeted cancer therapy has shifted the 

paradigm of cancer treatment (Haber et al., 2011). In the past few decades it has been 

recognized that, despite most cancers having an accumulation of genetic and epigenetic 

alterations, a subset of cancers have proven to be heavily reliant on, or ‘addicted to’ 

(Weinstein et al., 2008), oncogenic signaling for growth and survival. Therefore, 

oncogene addiction creates a therapeutic window to rationally target cancers based on 

driving molecular alterations. The earliest data supporting oncogene addiction came 

from conditional oncogene expression in mice, where oncogene expression was 

sufficient to drive tumor growth and necessary for tumor cell survival (Chin et al., 1999; 

Felsher and Bishop, 1999). Induction of apoptosis in cell lines by targeted inhibition also 

demonstrates oncogene addiction in vitro (Tracy, 2004). Most importantly, targeting 

driver oncogenes clinically has improved patient outcomes. The earliest examples 

include two phase III clinical trials for HER2-positive breast cancers, where trastuzumab 

(a monoclonal antibody targeting HER2) administration improved disease-free survival in 

patients with previous adjuvant chemotherapy (Piccart-Gebhart et al., 2005) and 

increased clinical benefit for first-line chemotherapy (Slamon et al., 2001).  Subsequently, 

oncogene addiction has been demonstrated in other cancer types, including EGFR- and 
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ALK driven lung cancer (Janku et al., 2010), B-Raf V600E-driven melanoma (Chapman 

et al., 2011), BCR-ABL driven chronic myeloid leukemia (Druker et al., 2001), and others 

(Weinstein et al., 2008).  

While oncogene addiction is a helpful concept to understand targeted cancer 

treatment, it remains ill-defined at a mechanistic level. In one proposed model, the 

inhibition of the driver oncogene may lead to an imbalance of signaling pathways 

governing apoptosis and survival leading to “oncogenic shock” and tumor cell death 

(Sharma et al., 2007). Alternatively, activation of the driver oncogene may induce 

“oncogene amnesia,” where oncogenic signaling overrides inbuilt tumor-intrinsic and 

microenvironmental controls to allow tumor growth. Upon oncogene inactivation, 

therefore, the tumor cells and the microenvironment regain their respective functions to 

prevent DNA damage and microenvironmental conditions conducive to tumor growth 

(Felsher et al., 2008).  

Regardless of its origins, targeting oncogene addiction is effective clinically. 

Patient response to therapy is refined as a thirty percent reduction in unidimensional 

tumor size, as defined by the RECIST criteria (Eisenhauer et al., 2009). Thus effective 

targeted therapies induce response rates (RR) greater than that of standard of care 

based on the tumor site of origin. When patients fail to respond to targeted therapeutics, 

by definition they have de novo resistance, or pre-existing resistance not selected by 

drug treatment (Jänne et al., 2009). One source of de novo resistance is heterogeneity 

in mutational status of genes associated with oncogene addiction. Yet patients with the 

same genetic mutations still display a range of responses (Fig. 1). Understanding 

patient-to-patient differences, or intertumor heterogeneity, may uncover mechanisms to 

make therapy more effective by overcoming de novo resistance. The primary vexation of 
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targeted therapy is the transience of clinical responses: effective responses are 

undermined by the inevitable onset of drug resistance. This phenomenon of tumor 

response followed by disease progression is defined clinically as acquired resistance 

(Jackman et al., 2010). Variation within a tumor, or intratumor heterogeneity, underlies 

the eventual acquisition of drug resistance. Accounting for intratumor heterogeneity has 

the potential to increase the durability of targeted therapy by extending the time-to-

rebound (TTR), or the time interval for a tumor to regrow to its initial cell number. 

EGFR biology 

The epidermal growth factor receptor (EGFR) is a 170-kDa transmembrane 

receptor tyrosine kinase (RTK) of the ErbB superfamily. In the absence of stimulation, 

EGFR resides in a monomeric autoinhibited state. Binding of its cognate ligands – 

including epidermal growth factor (EGF), transforming growth factor-α (TGF-α), 

heregulin and others – induces conformational changes in the extracellular domain to 

that allow it to dimerize with itself or other ErbB family members (Burgess et al., 2003). 

The dimer pair is the functional unit of ErbB receptor signaling (Citri and Yarden, 2006), 

where receptors phosphorlylate intracellular tyrosine residues of the paired RTK. These 

phosphorylation events serve as binding sites for Src Homolgy 2 (SH2) domains of 

adaptor proteins that subsequently activate downstream intracellular signaling cascades, 

primarily through the PI3K-Akt, Ras-Raf-Mek-Erk mitogen activated protein kinase 

(MAPK), and signal transducer and activator or transcription (STAT) pathways (Fig. 1). 

These pathways ultimately govern gene transcriptional programs that govern cellular 

behavior. In the case of cancer, some of the implicated cellular behaviors are 

proliferation, induction of angiogenesis, motility, differentiation, and survival (da Cunha 

Santos et al., 2011).  
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Figure 1 Aberrant EGFR signaling in cancer. Adapted with permission from (da Cunha Santos 
et al., 2011). Ligand stimulation activates EGFR on the cell membrane and signal transduction 
propagates through key intracellular signaling cascades, including PI3K-Akt, Stat, and Ras-Raf-
Mek-Erk. These activated pathways initiate downstream transcriptional programs that promote 
cancer-related phenotypes, as listed at the bottom of the figure.  
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In contrast to a linear view of signaling, the EGFR pathway has several features 

that make it robust a robust system. These include both component redundancy and a 

conserved core network architecture with diverse outputs and inputs (Citri and Yarden, 

2006). Several cellular control mechanisms modify EGFR signaling. For example, both 

positive and negative feedback loops regulate the amplitude and duration of molecular 

signals (Citri and Yarden, 2006). Autocrine and paracrine loops provide positive 

feedback, where pathway activation increases expression of EGFR cognate ligands 

(Singh and Harris, 2005). Alternatively, activation of EGFR signaling triggers negative 

feedback loops that amplifies expression of inhibitory proteins (Nicholson et al., 2005). 

Other competing cellular processes regulate EGFR signaling, including endocytosis and 

proteasomal degradation (Avraham and Yarden, 2011). Thus EGFR signaling is a robust, 

tightly regulated system across multiple time scales.  

EGFR-addicted lung cancer 

This work focuses mainly on EGFR-driven lung cancer as a model for targeted 

therapy because it aims to quantify heterogeneity and many of the molecular 

mechanisms underlying heterogeneous response to targeted therapy have been 

elucidated. Despite efforts to optimize treatment regimens for lung cancer, most patients 

present with metastatic cancer, with a one-year survival rate of less than ten percent 

(Sharma et al., 2007).  However, a subset of patients (~10%) have tumors with 

mutations in the activation loop of EGFR that disrupts autoinhibitory interactions (Okabe 

et al., 2007). These gene mutations, primarily either exon-19 deletions (45%) or an 

L858R missense (40-45%) mutation (Sharma et al., 2007), encode a constitutively active 

EGFR-mutant receptor. Additionally, these mutations in EGFR increase its affinity for 

erlotinib and gefitinib (Pao and Chmielecki, 2010), both small molecule tyrosine kinase 
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inhibitors that specifically target EGFR by competitively binding to the ATP-pocket of 

EGFR. Gefitinib and erlotinib exploit this therapeutic window and induce favorable 

clinical responses (Lynch et al., 2004; Paez, 2004; Pao et al., 2004). Erlotinib therapy 

induces responses in roughly 70% patients with EGFR-addicted tumors (Chmielecki et 

al., 2011). It is FDA-approved for monotherapy as a second-line treatment in non-small 

cell lung cancer (NSCLC) (Linardou et al., 2009) as well as maintenance therapy 

(Gridelli et al., 2007). Erlotinib is administered at the maximally tolerated dose of 150 

mg/day, corresponding to a mean plasma steady-state concentration of roughly 3 µM 

(Hidalgo et al., 2001). In this work, therefore, erlotinib is administered in vitro at 3 µM, 

roughly 100-fold higher than reported IC50 values of EGFR-addicted cell lines (Chin et 

al., 2008). 

As in all targeted cancer therapies, patients responsive to erlotinib or gefitinib 

exhibit disease progression after about one year of continuous treatment as tumors 

become resistant (Chong and Jänne, 2013). While variable response to drug may derive 

from multiple sources, as described throughout the rest of the introduction, genetic 

variation is most evident in patients. Resected tumors that relapse under continuous 

therapy contain a set of genetic alterations, most notably (in ~50% of cases) a second-

site threonine-to-methionine gatekeeper mutation (T790M) in the tyrosine kinase domain 

of EGFR that prevents drug binding (Sharma et al., 2007).   

Intertumor heterogeneity 

Patients harboring tumors with similar mutational backgrounds display a wide 

range of responsiveness to targeted therapy. Effective targeted therapies induce clinical 

responses in the majority in patients. In the case of EGFR targeted therapy, RR varies 

between 55-91%, depending on the study (Pao and Chmielecki, 2010). Waterfall plots 
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show extensive patient-to-patient variation in reduction of tumor size, even within 

responsive tumors (Fig. 2). Understanding the molecular factors that underlie intertumor 

heterogeneity may optimize responsiveness to novel therapeutic strategies. Cell lines 

represent an attractive model system because of widespread availability and potential 

for in-depth molecular characterization, though a sufficient amount of cell lines would be 

needed to better represent the genetic heterogeneity seen clinically (Sharma et al., 

2010a). A notable example of comparing differences between grouped samples is the 

Cancer Cell Line Encyclopedia (CCLE), which collected genotypic and phenotypic cell 

line measurements across a variety of cancer types to enable predictions of drug 

sensitivity (Barretina et al., 2012). Alternatively, systematically varying genetic 

components within a cell line may reveal molecular signaling events that modulate drug 

sensitivity. For instance, an siRNA screen of a mutant-EGFR cell line identified 

targetable molecular alterations underlying de novo resistance (Bivona et al., 2011). In 

another gain-of-function genetic screening study in a melanoma model of oncogene 

addiction, assessing drug sensitivity while selectively inducing individual gene 

expression revealed a novel resistance pathway to targeted therapy (Johannessen et al., 

2013). Having divided oncogenic reliance to two or more pathways is thus a method for 

cancer cells to attain de novo resistance. 

Other more in-depth molecular studies clarify how complex signaling network 

wiring reduces drug effectiveness. Many canonical signaling pathways share common 

components and interact with each other (Mendoza et al., 2011). Furthermore, targeted 

drug treatment may itself initiate bypass signaling in a parallel pathway by relieving 

negative feedback of other signaling pathways (Chandarlapaty, 2012). Targeting an RTK 

may raise activation of a parallel pathway above baseline levels(Fan et al., 2011). This 

holds for targeting downstream components, as in the case with breast cancer, where   
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Figure 2 Erlotinib waterfall plots. Adapted with permission from (Rosell et al., 2012). (a) 
Waterfall plots represent the best-observed percent change in unidimensional tumor size during 
erlotinib treatment.  Each vertical line describes the change in tumor size for an individual patient 
response.  Colors represent which sensitizing EGFR mutation was detected in each patient. 
Dashed lines represent clinical cutoffs defining responsiveness according to the RECIST criteria 
(Eisenhauer et al., 2009). By definition, lines extending below the bottom dashed line respond to 
treatment. If above the top line, the patient exhibited disease progression while on treatment. If 
between the lines, the treatment elicited no response. (b) Same as a, but with standard of care 
chemotherapy.  
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inhibiting PI3K induces transcriptional upregulation of HER3 (Chakrabarty et al., 2012). 

Alternatively, positive feedback loops can sustain network activation in the absence of 

input signaling (Tyson et al., 2003). Therefore the complex feedback mechanisms that 

retain network robustness can provide a way for cancer cells to quickly adapt to 

perturbation and confer de novo resistance.   

Intratumor heterogeneity 

Despite the promise of targeted cancer therapy, patients inevitably progress after 

roughly a year of treatment and tumors rebound after an initial response. While 

microenvironmental interactions influence tumor cell drug sensitivity (Hanahan and 

Coussens, 2012), phenotypic heterogeneity between cancer cells, or intratumor 

heterogeneity, has received growing attention based on the role it plays in undermining 

targeted therapy (Almendro et al., 2013). Intratumor cancer heterogeneity has been 

recognized for decades, as exemplified by the seminal work of Fidler (Fidler and Kripke, 

1977) and Heppner (Dexter et al., 1978). Single-cell technologies have shown that 

variability within a cancer cell population is widespread at the level of genetics (Navin et 

al., 2011), cell signaling (Bendall et al., 2011), and cell behavior (Gascoigne and Taylor, 

2008). A challenge is to relate disparate and extensive heterogeneity to actual treatment 

outcomes. Genetics is widely considered the foremost culprit to therapeutic failure, 

because it is evident in resected clinical samples. But it may be that the fixed genetic 

changes arise due to early contributions by other types of heterogeneity, since different 

types of variation are inherited on different time scales (Rando and Verstrepen, 2007). 

Different sources of intratumor heterogeneity include clonal, non-genetic, and stochastic.  
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Clonal heterogeneity 

The concept of clonal evolution was originally articulated by Nowell in 1976 

(Nowell, 1976), where a tumor is a composite of phenotypically variable clones arising 

due to the expansion of a genetically unstable cell population (McGranahan et al., 2012). 

Within this framework, a tumor adapts to therapy as a function of “the frequency of 

mutations being produced and on the environmental pressures [such as drug selection]” 

(Nowell, 1976). More recent works have highlighted the importance of genomic instability 

(Loeb, 2011). Indeed, sequencing multiple regions of a clear-cell carcinoma displayed 

branched clonal evolution, leading to heterogeneity of signaling events governing cell 

growth (Gerlinger et al., 2012). In acute myeloid leukemia, whole-genome sequencing 

revealed that the major clone driving relapse to chemotherapy had acquired relapse-

specific mutations (Ding et al., 2012). In the case of targeted therapy, genetically 

analyzing tumor tissue from patients showing disease progression has established 

common mechanisms underlying acquired resistance (Doebele et al., 2012; Sequist et 

al., 2011). Alternatively, relevant resistance mechanisms may be discovered by 

generating acquired resistance by culturing cell lines with increasing doses of drugs 

(Ohashi et al., 2012; Turke et al., 2010). Discovery of genetic mechanisms of acquired 

resistance has guided the development of drugs that specifically target mutated proteins 

underlying mechanisms of acquired resistance (Zhou et al., 2009). Additionally, real-time 

histological and genetic observations can guide clinical therapy based on the evolution 

of clonal composition (Sequist et al., 2011).  

Clearly clonal genetic composition has an integral role in treatment response 

outcomes. Yet there are several challenges to considering only the resistant clone that 

emerges after about a year of therapy. Increasing evidence suggests that intratumor 
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heterogeneity is likely shaped by both genetic and non-genetic factors (Fig. 3). For 

example, multiple clones with different mechanisms of resistance may coexist within an 

oncogene-addicted cell population (Suda et al., 2010). Even without treatment selection, 

single-cell derived clones from a lung cancer cell line have variable cellular signaling 

states and sensitivity to chemotherapy (Singh et al., 2010). Cancer cells have 

remarkable ability to adapt to therapies designed to overcome acquired resistance. For 

example, cancer cells chronically treated with an inhibitor specifically designed to target 

EGFR T790M still eventually develop resistance (Ercan et al., 2012). Also, phenotypic 

clonal heterogeneity may derive from copy-number variations (Anaka et al., 2013) or 

non-genetic means (Kreso et al., 2013) as well. Another complicating factor is that 

measurements of clonal composition are almost always a static measurement after 

resistance is there already. Thus, the complex process of clonal selection is informed by 

clonal behavior that is inferred and not directly measured. 

Non-genetic heterogeneity 

Non-genetic heterogeneity has also been implicated in intratumor heterogeneity. 

A prominent example is epigenetic maintenance of minor cell subpopulations with 

reduced drug sensitivity. For example, isolated leukemia cells with high expression of 

MDR can repopulate the full MDR expression distribution; additionally they have 

decreased sensitivity to chemotherapy (Pisco et al., 2013). Sharma et al. showed that 

sensitive cell lines maintain a minor fraction of cells that undergo epigenetic 

modifications to enable them to continue cycling in drug after transitioning through a cell 

cycle arrest of roughly nine days. Interestingly, these drug-tolerant cells were positive for 

CD133, a marker of stem cells (Sharma et al., 2010b). While cancer stem cells are 

thought to underlie relapse to chemotherapy in some contexts   
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Figure 3 Genetic and epigenetic clonal dynamics during therapy. Reproduced with 
permission (Kreso et al., 2013). A tumor comprised of multiple genetically-distinct clones. Top, A 
multi-clonal tumor. Even genetically identical cells contain clones with unique proliferation rate. 
Middle, Upon chemotherapy, the majority of cells die (grey), while the remaining colored cells 
reside in a dormant state. Bottom, Upon removal of drug treatment, the tumor cells dormant 
during chemotherapy repopulate the tumor population with a unique clonal profile. 
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(Merlos-Suárez et al., 2011), their contribution to targeted therapy acquired resistance 

remains unclear. In melanoma, phenotype switching itself appears targetable, as co-

treatment with methotrexate induces cells to transition out of a drug-tolerant 

transcriptional program to make more cells susceptible to targeted inhibition (Sáez-Ayala 

et al., 2013). Similar observations of phenotypic switching as a survival strategy are 

evident in bacteria (Balaban et al., 2004). One possible explanation of maintenance of 

multiple distinct phenotypes is that these represent local minima in the epigenetic 

landscape (Brock et al., 2009). Clinically, anti-EGFR therapy in non-small cell lung 

cancer induces a transition to small cell lung cancer phenotype in ~14% of cases 

(Sequist et al., 2011), though the mechanism of this transition remains unknown. 

Additionally, roughly five percent of acquired resistance cases in EGFR-addicted cancer 

display histology reminiscent of epithelial-to-mesenchymal transition (Sequist et al., 

2011). 

Cellular heterogeneity 

Another kind of heterogeneity is cellular heterogeneity, which describes 

phenotypic variability between seemingly identical cells arising from stochastic biological 

processes (Altschuler and Wu, 2010). Cellular heterogeneity originates from gene 

expression noise or from altered signaling states due to random variation within a 

genetically homogeneous cell population (Slack et al., 2008). Because of these small 

stochastic cell-to-cell differences, critical decision-making processes such as response 

to stress (Snijder et al., 2009), differentiation (Park et al., 2012), or cell cycle progression 

(Yao et al., 2008), may exhibit multiple outcomes at the single-cell level, not represented 

by the average behavior of the cell population. Live-cell imaging studies reveal that 

cancer cell populations respond to drug treatment with multiple individual cell fates, 
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including cell death, cell division, and entry into quiescence. Cancer cells treated with 

chemotherapy display cell fate heterogeneity explained by competing cell cycle and cell 

death signaling pathways (Gascoigne and Taylor, 2008). Sibling pairs of HeLa cells 

treated with the TRAIL ligand, which induces extrinsic apoptosis, are more correlated in 

their response relative to the rest of the population, though this correlation decays over 

time (Spencer et al., 2009). The heritability of apoptotic response may derive in part from 

the robustness of the network governing the cellular behavior (Citri and Yarden, 2006). 

Inheritance of drug response similarity between siblings may underlie variable clinical 

responses, although its relevance has been questioned because the similarity decays 

over time (Marusyk and Polyak, 2013).   

Challenges of measuring heterogeneity 

As described above, intratumor heterogeneity is widespread and affects the 

response of a cell population. Thus an initially favorable response is undermined as 

therapy selects for high fitness cells within a variable population.  A major challenge of 

relating cell-to-cell heterogeneity to treatment outcomes is the difficulty of knowing which 

biological differences are functionally important (Altschuler and Wu, 2010). Meeting this 

challenge requires assays capable of identifying relevant cell subpopulations and 

uncovering their phenotype in relation to the overall population.  

Several experimental limitations obscure detection of cells responsible for tumor 

progression. First, most biological measurements are averaged, as in Western blotting 

or genetic sequencing. Averaging a biological measurement across a cell population 

masks the distribution of the data. It could be that the dominant majority of cells masks 

the signal from the relevant small subset of cells altogether. Or, the population may be 

represented by two separable subpopulations and the average may thus describe an 
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intermediate state that actually represents none of the cells present (Altschuler and Wu, 

2010). Additionally, even if the cell population is described by a unimodal distribution, 

cells selected from the tails of that distribution, while statistically insignificantly different, 

have biologically significant functional differences (Chang et al., 2008). Finally, 

heterogeneous single-cell fates may follow a skewed distribution that is not appropriately 

described by a mean. For example, the time for single cells to pass the G1/S transition 

when deprived of growth factor signaling is described by an exponentially-modified 

Gaussian distribution (Tyson et al., 2012). Therefore a full representation of the data, 

rather than simply reporting the population average behavior, best describes the 

heterogeneous response of cells to perturbation. 

An additional consideration is that many assays infer cell fate responses based 

on indirect measurements. This is particularly true in targeted therapy, where measuring 

concentration-dependent growth inhibition assesses drug sensitivity. This methodology 

is well-suited to high throughput applications, e.g., the Cancer Cell Line Encyclopedia 

(Barretina et al., 2012). But the interpretations may overextend the data. First, these 

assays rely on metabolic readouts as an indirect measure of the number of cells present; 

thus drug effects on proliferation may be convoluted with metabolic response. Also, the 

half-maximal concentration of growth inhibition (GI50) is often referred to as fifty-percent 

cell killing. However, relative to an exponentially growing control, it is possible that the 

GI50 effect is driven solely by quiescence and contains no cell death at all (Tyson et al., 

2012). Directly observing cells using live-cell imaging shows that perturbations may 

induce a complex mixture of cell fates (Gascoigne and Taylor, 2008). Relating these 

single-cell behaviors to changes in population size helps to quantify the functional 

contribution of cell fate to a complex dynamic system (Tyson et al., 2012). Yet it remains 
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unclear how well this approach holds for long-term effects such as cancer cell rebound 

to therapy. 

Systems biology to study targeted therapy 

Tumor biology crosses many scales, including: genetics, gene expression, 

intracellular signaling, single-cell behavior, clonal lineages, microenvironmental 

interactions, and patient response (Fig. 4). At each scale, tumors display variability in 

respond to drug treatment. This variability underlies resistance and disease progression. 

Major effort continues to be invested in elucidating the spectrum of heterogeneous 

biological mechanisms underlying drug response. Less developed is a framework to 

quantitatively understand the functional contribution of heterogeneity, especially across 

scales. Systems biology is an approach that studies complex biological phenomena as a 

result of the interactions of its constituent parts. While reductionist approaches have 

proven remarkably successful in defining mechanisms of sensitivity and resistance to 

targeted therapy, systems biology may help to explain the impact of heterogeneity in 

undermining therapeutic response to anti-cancer therapy. 

A major tool of systems biology is mathematical modeling. A model is a 

simplifying abstraction to understand complex phenomena. All biologists use models to 

formulate hypotheses and interpret data. Mathematical modeling is simply a way of 

translating understanding from qualitative to quantitative (Kohl et al., 2010). Thus 

modeling is particularly useful for phenomena with sufficient complexity to exceed 

intuition.  In the case of cancer, heterogeneity is widespread and it is imperative to 

determine which differences are functionally relevant. By assigning biological traits 

quantitative values, mathematical modeling may help to decipher which biological 

parameters are most important.   
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Figure 4 Multiscale biology. Reproduced with permission (Anderson and Quaranta, 2008). 
Biological systems cross spatial scales from genes to molecules. Systems biology approaches 
attempt to bridge scales in order to understand complex biological phenomena. DNA encodes 
molecules that govern cellular signals ultimately guiding cell behavior. Cells, in turn, interact at 
the level of tissues, and subsequently organisms. The cell is an excellent candidate for scale of 
investigation to link molecular reductionist approaches with organism-level behavior. 
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Beginning from theory to find interesting biology not apparent from empirical data 

is one strategy. For example, beginning with a set of rules governing cell growth based 

on microenvironment, Anderson et al. used mathematical modeling to predict that harsh 

microenvironmental conditions counterintuitively select for invasive tumor morphologies 

(Anderson et al., 2006). These model simulations then give experimentally testable 

predictions that can refine the model. Another successful example of predicted biological 

behavior is the decision of single cells to pass the restriction point, a cell cycle check 

point in late G1 phase, and divide. Math models predicted for cells to respond to growth 

stimuli with all-or-nothing bistable behavior; and the authors showed this experimentally 

for the first time (Yao et al., 2008).  

Another modeling use is to assume knowledge of the underlying biology and 

determine the parameter space that fits the data. For example, Michor et al showed that 

a model of cellular response to chemotherapy governed by response rates of a 

differentiation hierarchy can explain the response and regrowth of clinical chronic 

myeloid leukemia data (Michor et al., 2005). Additionally, based on published mutation 

rate data, the model makes estimations of the number of initially present genetically 

resistant cells. It should be noted that the model fits represent inferences based on 

assumptions built into the model. So they should be viewed as a way to assess 

explanatory plausibility (Kohl et al., 2010) rather than empirical causation. Experimental 

data or literature-based knowledge can improve confidence in the model. Otherwise 

experimental data can constrain models to rule out alternative biological explanations. 

For example, Almendro et al. used modeling to conclude there was evidence of 

phenotype switching by ruling out clonal expansion (Almendro et al., 2014a).  
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Alternatively, data-driven models can be used to understand the meaning of 

novel biological measurements. In one case, Tyson et al. used an experimental-

modeling approach to bridge single-cell and cell population responses (Tyson et al., 

2012). With this framework, the contribution of single-cell behavior could be 

quantitatively linked to the change in population size. In another example of data-driven 

modeling, Lee et al. defined a sequential drug combination scheme that induces 

increased apoptosis in triple-negative breast cancer (Lee et al., 2012). Then, using a 

systems modeling approach on high-throughput molecular data, they found that the 

extrinsic apoptosis pathway is critical in rewiring the signaling state of cells to alter the 

DNA damage response. These approaches gave novel biological insights that relied 

upon rich cellular and molecular datasets to build and populate the model. 

These examples, demonstrate how modeling can be combined with experimental 

data to generate and test hypotheses. Modeling can help to both interpret new biology 

and make new predictions based on existing knowledge. In each of these cases, 

modeling was used to integrate multiple interacting components to understand complex 

system behavior and bridge biological scales, from molecules to patients. Therefore 

intratumor heterogeneity, which bridges scales and contains multiple interacting 

components, is ideally suited to investigation by systems biology. 

Purpose of this study 

Cancer heterogeneity adversely affects patient outcomes to targeted therapy. 

Several studies have comprehensively described heterogeneity in cancer cell lines 

(Gascoigne and Taylor, 2008) and in patient tumors longitudinally monitored both in 

mice (Kreso et al., 2013) and in humans (Sequist et al., 2011). The origins of this 

phenotypic variability derive from sources that operate over broadly different timescales 
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(Rando and Verstrepen, 2007). However, few studies have sought to measure multiple 

sources of heterogeneity simultaneously. Additionally, these studies qualitatively 

interpret the contribution of heterogeneity retrospectively. Ideally, quantifying 

heterogeneity should give insight into how a cancer cell population will respond to 

perturbations. The fundamental purpose of this study is to define a quantitative link 

between heterogeneity and outcomes for cancer cell populations. Therefore we use a 

combined experimental and computational systems biology approach, suitable for 

understanding complex systems with emergent behavior arising from interacting 

components. As a model system we use live-cell imaging of EGFR-mutant lung cancer 

cells. These cell lines are favorable because they display all of the types of 

heterogeneity enumerated throughout the introduction. Furthermore, they maintain 

genetic and functional features similar to patient tumors. Live-cell imaging is amenable 

to the quantitative, data-rich experiments needed for systems biology approaches 

(Pepperkok and Ellenberg, 2006).  
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  Chapter II

QUANTIFYING HETEROGENOUS POPULATION RESPONSE TO PERTURBATIONS 

USING CLONAL FRACTIONAL PROLIFERATION 

Introduction 

Proliferation is a fundamental property of living cells whose function, at it simplest 

level of consideration, is to produce a population-level increase in cell number. 

Measuring proliferation, or lack thereof, is essential to studying a wide swath of normal 

and pathological biological processes, including tissue homeostasis, cell differentiation, 

degenerative diseases and cancer progression. Such measurements are best performed 

in vitro, with assays that evaluate the proliferative response of a cell population to a 

perturbagen in a culture vessel. Historically, each data point in these in vitro assays is 

the average of the proliferative response of thousands of cells in a perturbagen-treated 

well, at single or few time points, in comparison to untreated control. However, 

fundamentally, the proliferative response of a cell population is the composite of the 

behavior of individual cells, which is often heterogeneous in terms of cell fates 

(Gascoigne and Taylor, 2008; Tyson et al., 2012). Furthermore, proliferation is a 

dynamic process that, by its very nature, would be best quantified as a rate (e.g., 

population doublings per unit of time), not as fold change with respect to control. Thus, 

current assays provide little information on two aspects of cell proliferation, 

heterogeneity and dynamics, which are key to consider when evaluating clonal evolution 

or fitness in the context of cancer progression or treatment. 

We have previously shown that analyzing proliferative dynamics at the single-cell 

level provides a more complete characterization of the population-level proliferation as 
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shaped by the multiple, heterogeneous single-cell behaviors induced by perturbagens 

(Tyson et al., 2012). Increasing evidence indicates that both are influenced by variability 

amongst clonal lineages, i.e., tumor cells sharing a recent common ancestor (Huang, 

2009). For example, proliferating human colorectal cancers may be comprised of clones 

with unique fitness properties, with no apparent genetic basis, in the presence or 

absence of chemotherapy (Kreso et al., 2013). Similarly, patient-derived metastatic 

melanoma clonal cell lines recapitulate in vivo tumor clonal heterogeneity (Anaka et al., 

2013) since, cultured in vitro, they vary in both chemotherapy sensitivity and colony-

formation potential. Thus, to properly evaluate population-level responses to 

perturbations, it is essential to examine the behavior of clones comprising that cancer 

cell population. 

Further, it is likely that, even within clonal lineages, single-cell differences at the 

signaling level underlie the overall proliferation behavior of the clone. For example, 

single breast epithelial cells undergo multiple fates to form acinar structures that are 

driven by different transcriptional profiles (Wang et al., 2011). In the absence of 

microenvironmental differences, sensitivity to chemotherapy varies between breast 

cancer clones, but each clone is comprised of multiple signaling states (Singh et al., 

2010). Nonetheless, methods to relate cell fate heterogeneity to the clonal structure of a 

population have not been developed. Such methods would be of great utility to 

understand the impact of cell fate propensity to clonal fitness. 

We have previously shown (Tyson et al., 2012) that the average proliferation rate 

of a cell population in response to perturbations can be quantitatively deconvolved into 

the rates at which single cells enter specific fates (quiescence, apoptosis, changed 

division rate). With this technique, named Fractional Proliferation method (FPM), we 
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demonstrated that the effects of a perturbation on cell population size depend on the 

underlying perturbation-induced single cell fates, validated by high frequency single-cell 

tracking measurements (~10 min). We further showed that analyzing proliferative 

dynamics at the single-cell level provides a more complete characterization of the 

population-level proliferation as shaped by the multiple, heterogeneous single-cell 

behaviors induced by perturbagens. In this present work, we sought to relate population-

averaged response and single cell fates to clonal lineages that constitute a cancer cell 

population. To this end we developed a methodology termed clonal Fractional 

Proliferation (cFP). We show that cFP assays capture both the single-cell fate 

heterogeneity within a clone, and clone-to-clone variability of proliferation in response to 

perturbations in established cancer cell lines. Furthermore, we relate clonal variability to 

cell morphology. 

Results 

High-throughput measurements of clonal behavior 

The clonal Fractional Proliferation (cFP) assay is based upon high-throughput 

imaging methods designed to track cell numbers of many clonally-derived colonies over 

time (Fig. 5a). Proliferation of a colony is measured by direct, repeat counting at regular 

intervals of cell nuclei labeled with a live-cell fluorescent reporter (H2B-mRFP) (Tyson et 

al., 2012). Nuclear labeling greatly simplifies segmentation and enables efficient and 

accurate image processing. To scale up the throughput of biological samples, we chose 

to use the CellaVista High-End imager (Synentech) because of its even fluorescence 

illumination and an LED-based excitation source that minimizes phototoxic effects.  
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Figure 5 Schematic of clonal Fractional Proliferation experimental workflow. (a) cFP is a 
high-throughput, fluorescence-based assay designed to measure clonal proliferation variability 
within a cell population. Cells are seeded at single-cell density into microtiter imaging plates. 
Single-cells proliferate for 6 days in full growth media to expand into single-cell derived colonies. 
Once colonies reach an optimal size, cells are imaged and then the experimental perturbation is 
immediately added. Subsequently, each well is imaged daily until the end of the experiment. (b) 
Spatially and temporally registered images facilitate tracking of individual colonies. Time-ordered 
stacks of image montages allow sequential measurements of colony cell numbers during drug 
treatment. (c) Fluorescent images of cell nuclei for single-cell derived colonies. Sequential images 
show that single-cells form colonies when cultured in full growth media (Untreated).  Tracking 
colonies after addition of cycloheximide (CHX) or DMSO (control), individual colonies shows 
drug-induced changes in cell number over time.  
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In setting up the cFP assay, we aimed to balance several prerequisites. We 

reasoned that if the cell population response to a perturbation is clonally variable, then it 

is imperative to quantify as many clones as feasible per experiment in order to obtain a 

statistically meaningful representation of the range and frequency (diversity) of clonal 

response. Additionally, individual colonies must contain a sufficiently high number of 

cells prior to treatment in order to minimize error in calculating rates due to small cell 

number counts. However, to ensure that colonies are in fact clonally derived, the cell 

population must be sparsely plated and the assay terminated prior to colony confluence. 

On balance, we found that using a 96-well plate format (Fig. 5a), and plating ~40 

cells/well are optimal initial conditions to obtain single-cell derived colonies (Fig. 5b). The 

colonies are allowed to grow for six days in complete growth media, and subsequently 

subjected to a continuous experimental perturbation, during which the entire well is 

imaged daily for ten days (Fig. 5a). Plating efficiency is sufficiently high so that 

information on ~200 colonies per experimental condition can be obtained from 3-8 

replicate wells. 

In order to facilitate tracking of colonies throughout the duration of the 

perturbation, unordered image acquisition is spatially registered and temporally 

organized (Fig. 5c). To this end, we use the freely available ImageJ software 

(http://imagej.nih.gov/ij/, version 1.48i). First, the subset of all images belonging to a 

single well at a single time point is considered. Then, images are spatially ordered based 

on acquisition time and converted to a stitched image montage of the entire well. This 

step is repeated for all time points and all the montages are ordered by acquisition time, 

resulting in an image stack of wells over the course of the experimental treatment (Fig. 

5c). 
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To facilitate quantifying proliferation response of individual clones, we developed 

an image processing routine using ImageJ to count the total number of cell nuclei at 

each time point from registered image stacks. Fluorescence intensity masks were 

generated for each colony by applying a user-defined threshold to the pixel intensity 

histogram computed from all images unique to that colony. These masks show that the 

fluorescence from cell nuclei is sufficiently high above background to detect cells. 

However, colonies remain under-segmented, compared to manual counting. To correct 

for this, the watershed segmentation algorithm was implemented to distinguish nearby 

nuclei. Then the “analyze particles” command scans the image stack for elements with 

optimized morphological parameters and returns the number of identified cell nuclei and 

the corresponding images  

This technique was used to serially identify cell nuclei throughout a 

representative experiment (Fig. 6a). To quantify how well the automated image 

segmentation represented the actual cell number at each time point, we manually 

counted the total cell nuclei per colony at 219 total time points.  The manual counts are 

highly correlated (adjusted R2 = 0.99) with the automated cell counts (Fig. 6b) showing 

that automated cell counting is a faithful representation of cell number while easing the 

burdensome task of manually counting cells. Additionally, the residual errors of the linear 

model fit do not show evidence of bias (Fig. 6c) and the standard deviation of the 

residuals is over fifty times smaller than the smallest cell number of any colony. 

Having validated the ability to quantify colony size by cFP, we set out to measure 

the clonal variability within a population in response to the drug cycloheximide, an 

inhibitor of protein translation well known to severely stunt cell proliferation. We tracked 

PC9 colonies for six days untreated, followed by three days in the presence or absence  
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Figure 6 Validation of cFP image processing. (a) Top row: Images of a representative colony 
throughout cycloheximide treatment (CHX) at the indicated days. Middle row: Binary mask 
generated in ImageJ using the same intensity threshold at all time points. Bottom row: (b) 
Automated counting of cell nuclei appropriately quantifies colony cell number. Manual cell counts 
from colony images at various time points (n = 219) are used as a reference to validate the 
automatically measured colony cell numbers. The superimposed line represents the linear model 
fit for the data, with the corresponding adjusted R-squared value (adj. R2) (c) Q-Q plot of the 
residuals of the linear model fit in used in b. There is insufficient bias to conclude that automated 
image analysis is inappropriate for colonies of certain size.  
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of 500 ng/ml cycloheximide. Serial images of individual colonies demonstrate that the 

size of colonies rapidly diverges after drug addition, and that cFP captures these 

proliferation differences (two representative, diverging colonies are shown in Fig. 5b).  

DIP rates summarize dynamics clonal behavior  

Data from large numbers of processed colonies indicate that control-treated 

colonies exhibit exponential growth, evidenced by an averaged log-linear plot of 

population doublings (Fig. 7a, dashed line). In the presence of cycloheximide, the mean 

proliferation of PC9 colonies is greatly reduced relative to control (Fig. 7a, solid line). A 

potential problem with these data is the progressive increase in the standard deviation 

(Fig. 7a, error bars) of colony size measurement. To investigate this more in depth, we 

examined the distribution of individual colony responses. Consistent with the increasing 

standard deviation in colony size (Fig. 7a), the interquartile range of colony sizes 

increases over time (Fig. 7b, boxplots). This suggests that the increasing measured error 

may be due to divergent colony responses. Indeed, individual colonies respond to 

cycloheximide uniquely (representative colony dynamics are quantified by colored lines 

in Fig. 7b and visualized in Fig. 7c). Notably, though colony dynamics appear complex, 

after three days of treatment they appear to gain a steady rate of growth. Thus we 

reasoned that the steady rate of proliferation for each colony would accurately simplify 

the dynamic colony response data. Therefore we normalized the colony response data 

to the colony size at 3 days (Fig. 7d), obtained linear model fits to determine the 

proliferation rate for each colony, and plotted the estimated colony dynamics based on 

proliferation rate alone (Fig. 7e). The estimated behavior of colonies (Fig. 7e, gray and 

colored lines) diverged over time and the range of colony responses (Fig. 7e boxplots) 

closely matched the range of actual colony responses  
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Figure 7 Population response is governed by divergent drug-induced proliferation (DIP) 
rates unique to each clone. (a) At the cell population level, cycloheximide treatment (solid line) 
induces reduced proliferation relative to DMSO control (dashed line). Colony doublings 
represents the log2-transformed cell number per colony normalized to the initial size of that colony. 
Lines connect the mean of colony doublings for each unique condition and time point. Error bars 
represent the standard deviation of cycloheximide-treated colony doublings at each time point. (b) 
Increasing error in average colony size associates with divergent changes in individual colony 
size. Boxplots show the interquartile range of cycloheximide-treated colony doublings at each 
time point. Colored lines display the doublings of three representative colonies. (c) Images of the 
representative colonies in b. Matched colors show the correspondence of colonies in b and c. (d) 
Colony dynamics, same as in b, except the data are normalized instead to the colony size after 3 
days. Lines and boxplots are the same as in b. (e) Linear model fits of colony dynamics simplify 
the colony doublings data.  The linear model fit of each colony response from 3 days on is shown 
as a gray line. The estimated linear model fits of the representative colonies are shown as 
colored lines, as previously described. Boxplots represent the interquartile range of the expected 
values for colony doublings at each time point. 
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(Fig. 3d boxplots and colored lines). Thus, unique rates of colony proliferation underlie 

increasing variability in colony-to-colony size over time. The steady rate of proliferation 

for each colony suitably represents its dynamics and therefore we refer to it as the drug-

induced proliferation (DIP) rate. 

To validate the linear model assumption we looked at the R-squared values for 

the linear model fits (used in Fig. 3e) of pooled cycloheximide- or control treated colonies. 

Ninety-five percent of colonies displayed an R2 value > 0.6 (Fig. 8a), generally 

considered an acceptable cut-off. DIP rate linearity is a powerful simplification because it 

is a unique property of a colony that gives a stable estimation of colony response that 

can predict long-term colony behavior. Indeed, the variance of colony size at 10 days 

correlates with and can be explained by the DIP rate variation (Fig. 8b).  

Utilizing DIP rates to cross biological scales 

The transformation of colony cell counts to DIP rates has the additional 

advantage of simplifying the relationship between colony response and whole-population 

response. The DIP rate can be considered as a direct measure of clonal fitness in the 

presence of a perturbation, i.e., how well a clone is able to cope with that perturbation 

and to what extent it can continue to proliferate. The DIP rate clonal profile of a 

population gives a sense of how the average response, and the heterogeneity between 

clones, evolves over time. Therefore, we represent the clonal proliferation response to a 

drug as waterfall plots, where each vertical line is the proliferation rate of a given colony. 

Both DMSO- and cycloheximide treated colony proliferation rates varied continuously 

(Fig. 9a). The mean clonal proliferation rate for cycloheximide (0.09 doublings per day) 

was much lower relative to the mean clonal proliferation rate of control (0.79 doublings 

per day). Furthermore, all cycloheximide-treated colonies had lower proliferation rates  
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Figure 8 DIP rate correlations. (a) Colony proliferation is suitably represented by linear fits. 
Histogram of R-squared values from the linear model fits of all DMSO- and cycloheximide treated 
colonies (n=194 total). (b) DIP rates correlate with the relative colony size after 10 d 
cycloheximide treatment.  
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than DMSO-treated colonies (Fig. 9a). Waterfall plots also represent the range of colony 

proliferation rates in drug (-0.13 to 0.24 doublings per day) relative to control (0.44 to 

1.15 doublings per day). Thus, in addition to reducing the mean clonal proliferation rate, 

it also collapses the range of values by over a factor of six.  

Similar to FPM, cFP can also relate clonal response to the single-cell behavior 

that underlies it. We sought to characterize cell fates of control-treated colonies because 

their DIP rates displayed a larger range of values than cycloheximide. To facilitate 

single-cell detection of cell cycle position, we utilized the fluorescent geminin-mAg fusion 

marker (Sakaue-Sawano et al., 2008a), which is stably expressed after a cell has 

passed the G1/S transition and maintained until the cell undergoes mitosis (detectable in 

S/G2/M phase). In a replicate experiment, colony variation in proliferation rate was 

maintained. We then examined both cell number (pseudocolored red) and cell cycle 

position (pseudocolored green) in representative colonies with proliferation rates above 

or below the mean (Fig. 9b, the image outlines correspond to arrows in Fig. 9a). The 

faster colony had a DIP rate of 0.92 doublings per day, while the slower colony had a 

DIP rate of 0.51 doublings per day. Both colonies exhibited linear proliferation over three 

days of treatment with DMSO, both with R2 values of 0.99. Using the same image 

processing methodology used to quantify all cell nuclei, we then measured the number 

of geminin-mAg positive cells at each timepoint relative to the total colony cell number. 

In both colonies, ~50% of cells are in S/G2/M phase at the beginning of the experiment 

(Fig. 9c). In the faster colony the percentage of geminin-mAG positive cells is maintained 

throughout the experiment, while it drops over time in the slower colony. This lower 

fraction of geminin-mAg cells may be due to an either a lengthened G1 phase or an 

increasing rate of transition for dividing cells to enter quiescence. Thus, examining 

single-cell behavior within individual cFP clones can generate hypotheses to understand  
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Figure 9 Relating DIP rates to both single-cell and population responses. (a) Waterfall plots 
of PC9 cells treated with cycloheximide (CHX) or control (DMSO). Individual vertical lines 
represent the DIP rate of single colonies obtained during the subconfluent linear phase of 
proliferation (0-3 d for DMSO; 3-10 d for CHX). Arrows represent colonies shown in b. (b) 
Colonies with unique proliferation rates in the absence of cycloheximide at the indicated time 
points. All cells are fluorescently labeled with both Histone H2B-RFP (red pseudocolor) and 
geminin-mAg (green pseudocolor). Green cell nuclei indicate cells that have passed the G1/S 
transition; red cell nuclei mark cells that have not. Scale bars are 100 microns. (c) Quantitation of 
colony doublings for the color-matched colonies shown in a and b at the indicated time points. (d) 
Quantitation of the percentage of cells positive for geminin-mAg at the indicated time points.  
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the fundamental cellular behaviors that underlie interclonal proliferation differences. 

These hypotheses can then be validated for analyses more suitable to high-time 

resolution, single-cell tracking, such as FPM (Tyson et al., 2012). 

Having established a method to rank a particular clonal DIP rate in relation to all 

clones, we sought to further characterize individual clonal responses. While cFP is ideal 

for measuring clonal behavior en masse, it is limited in characterizing individual clones 

because of experimental difficulty in matching clones across experiments. Therefore we 

reasoned that culturing single-cell derived sublines would recapitulate the clonal 

proliferation rates observed in cFP. Indeed, we isolated two PC9 clones with proliferation 

rates, measured in the absence of drug treatment, that were significantly different from 

each other (Fig. 10a–b; p=1.4e-3), yet similar to that of the colonies depicted in Figure 

9b.  To investigate the molecular differences associating with these unique clonal 

responses we quantified the protein levels of EGFR in the two PC9 clones using 

CellAnimation (Georgescu et al., 2012). For each clone, the individual fluorescence 

levels of single cells matched a skew normal distribution (Fig. 10c; KS-test=0.93 and 

0.08 for clone1 and clone2 respectively; insufficient evidence to reject a skew-normal 

distribution). Clone1 had a higher EGFR expression level than clone2 (p<1e-16). We 

further used CellAnimation to examine single-cell speeds and determined that the 

average single-cell speed in the absence of drugs was faster for clone1 than for clone2 

(p<1e-16; Fig 10d). Thus, single-cell derived clonal cell lines can expand the cFP 

workflow to provide in depth analysis for individual clonal behavior. 

Since PC9 cells are hypersensitive to EGFR inhibition (Faber et al., 2011), and 

EGFR varies between clones, we measured clonal PC9 response to erlotinib. We find  
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Figure 10 Cultured single-cell derived sublines enable comprehensive clonal analysis. (a), 
Representative serial images of cell nuclei from clone1 and clone2 at the indicated times cultured 
in the absence of drugs. Error bars=200 µm. (b) Calculated untreated clonal proliferation rates 
based on serial hourly cell number measurements from a three day experiment (triplicate wells, 
n=3 experiment). (c), Histograms of single-cell EGFR intensity derived from a representative 
immunofluorescence experiment. Images were segmented and quantified using CellAnimation 
(Georgescu et al., 2012). Colored lines represent the best fit to a skew normal distribution. (d), 
Single-cell speed measurements of control-treated cells quantified by CellAnimation (Georgescu 
et al., 2012). *** indicates p-value<0.001.  



 38 

that several representative clones display negative, variable individual DIP rates to 

erlotinib (Fig. 11a). Interestingly, these clones also have morphological differences.  

Are clonal differences actually relevant in a population that has not been 

artificially manipulated by either fluorescence labeling or culturing all cells at single-cell 

density conditions? To test this, we looked at unlabeled PC9 cells treated with erlotinib 

by brightfield live-cell imaging. Consistent with clonal variation, nearby cells within the 

same microtiter well respond similarly, in both morphology and cell fate. For example, 

some groups of cells respond to erlotinib by increasing their cell size and displaying 

morphological traits evidencing either increased cell-cell contacts or cytoplasmic 

protrusions (Fig. 11b, dashed circle). These cells display relatively higher cell survival 

and the morphological features may give clues to molecular pathway activation 

underlying cell survival. Other cells treated with erlotinib do not increase in cell size or 

undergo morphological adaptations, but rather display membrane ruffling and 

subsequent cell death (Fig. 11b, outside dashed circle). Thus we conclude that clonal 

variation appears to underlie population responses in the absence of sparse clonal 

seeding conditions. 

Methods 

Cell culture and reagents. PC9 cells were obtained as a gift from William Pao 

(Vanderbilt University School of Medicine). PC9 cells were fluorescently labeled as 

previously described(Tyson et al., 2012). Cells were cultured in RPMI 1640 (obtained 

from ATCC) supplemented with 10% fetal bovine serum and kept at CO2- and 

temperature-controlled humidified incubators. Cells were confirmed negative for 

mycoplasma before used. Cycloheximide was obtained from Sigma and used at a final 
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concentration of 500 ng/ml. Erlotinib was obtained from LC laboratories and stored as 

single-use aliquots. Both erlotinib and cycloheximide were stored at -20C. 

Immunocytochemistry. Immunofluorescence detection of EGFR utilized an EGFR 

antibody obtained from Cell Signaling Technologies and Alexa Fluor 647-conjugated 

secondary antibody from Life Technologies. Cells were grown in a BD 96-well imaging 

plate and at the appropriate time fixed using 4% paraformaldehyde-PBS for ten minutes, 

washed in PBS, and stored in PBS at 4C. Cells were permeabilized with a blocking 

buffer containing 0.3% Triton-X and 5% normal goat serum. Primary antibody (1:100, 

Calbiochem) incubation went overnight at 4C. Cells were washed three times with PBS, 

and then secondary antibody (1:1,000) was added for 1 hour in blocking buffer. Cells 

were counterstained with Hoechst 33342 (Invitrogen, 1:10,000 in PBS, 15 min) and 

imaged. Single-cell quantitation of EGFR intensity was performed using CellAnimation 

(Georgescu et al., 2012). 

clonal Fractional Proliferation (cFP) assay. As described in the legend to Figure 5. 

Briefly, subconfluent cells are split and seeded at optimized single-cell density into 

Benton Dickson 96-well imaging plates. For PC9, the ideal conditions are 40 cells 

seeded per well in a final volume of 100 mL growth media. Imaging plates are 

subsequently stored in tissue culture incubators for six days to allow single cells to 

expand into single-cell derived colonies. After this period, all wells imaged and then the 

experimental perturbation is immediately added. Subsequently, each well is imaged daily 

until the end of the experiment. 

Image registration and processing. To prepare raw images for analysis, images 

were sequentially organized into spatially- and temporally registered image montages 

(Fig. 5c) using the freely-available ImageJ software (http://imagej.nih.gov/ij/). 
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Subsequent image processing scripts were applied on a per-colony basis. Raw and 

processed images were both stored for reference. 

Generation of discrete sublines. PC9 cells were isolated as single cells and 

expanded until frozen stocks could be obtained. Sublines were kept under ten passages 

to ensure consistency across experiments. 

Statistical analysis. All statistical analysis was performed using the R statistical 

software (R-project.org). Linear model fits utilized the lm function and incorporated the 

datapoints indicated in the text. Adjusted R2 values were calculated from the lm function. 

Pearson correlation coefficients were calculated using cor.test. And skew normal 

distribution fits for the immunofluorescence data were generated using the selm function 

contained within the SN package (http://azzalini.stat.unipd.it/SN, version 1.0). 

Discussion 

We present clonal Fractional Proliferation (cFP), a high-throughput imaging 

methodology to relate the heterogeneous drug response of a cell population to its clonal 

structure (Fig. 12). The cFP assay reports response to perturbation as a distribution of 

clonal proliferation responses. The average population response can also be obtained 

from cFP data as the sum of all clonal responses. cFP feasibility relies upon reliable 

image processing routines and the novel observation that the colony proliferation rate 

becomes stable (linear) a few days after exposure to perturbation, obviating the need to  
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Figure 11 Morphological variation and DIP rate amongst clones. (a), Colonies display 
characteristic cell morphologies prior to treatment. Shown are several brightfield images of PC9 
colonies acquired immediately before drug treatment with 3 µM erlotinib. Scale bars represent 50 
microns. Numbers in the upper left corner indicate the calculated erlotinib DIP rate for each 
colony calculated during 10 d treatment. (b), Unsorted, high density PC9 cells display clonal 
response by morphology and by cell fate. Timecourse erlotinib response images of unlabeled 
PC9 parental cells. Cells within the dashed circle increase cell-cell contacts and size and survive 
until the end of the experiment. Cells outside the dashed circle undergo apoptosis.  
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Figure 12 Schematic of entire cFP approach. Figure described in descending order. A clonally 
heterogeneous cell population is seeded at single cell density as in Figure 5. Individual cells are 
grown into clonally-derived colonies in full growth media. After the colonies have a sufficiently 
high cell number drug treatment is initiated and changes in cell sizes are quantified. Drug-induced 
proliferation rates are estimated for each colony by a linear model best fit. Clonal DIP rates can 
then be related to either the population-level response by waterfall plots or to the derivative 
cellular behavior within that colony by single-cell analysis.  
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directly track individual cell fates. Clonal behaviors can be further examined in larger cell 

numbers by using expanded clonal cell lines. We envision that cFP will be broadly 

applicable to study how perturbations induce changes in the clonal fitness structure of a 

cell population, especially in biological processes that display single-cell heterogeneity, 

such as cancer progression and differentiation. 

Cell proliferation is a commonly reported metric to quantify the functional effects 

of genetic or chemical perturbations. It is most commonly measured by an indirect 

estimation of cell number relative to control at the population level. These assays are 

attractive due to their high sample throughput (Barretina et al., 2012), but can lead to 

misinterpretation of drug effects because they report relative, rather than direct, 

proliferation. For example, it is common to infer “fifty percent cell killing” if the number of 

cells remaining is half of control after 72 h. But measuring cell populations over time can 

reveal that reduction relatively fewer cells can involve minimal apoptosis (Tyson et al., 

2012). Therefore population metrics, naïve to cell fates, can provide an incomplete 

picture of perturbation effects on proliferation. cFP, in contrast, measures drug effects 

directly for clonal populations constituting a cell population (Fig. 7c).   

It is well established that variability of biological traits is widespread at the single-

cell level(Altschuler and Wu, 2010). In depth investigation of single-cell behavior in 

response to perturbations is an active field of investigation and molecular mechanisms of 

cellular heterogeneity are progressively being described (Gascoigne and Taylor, 2008; 

Spencer et al., 2013). However, the functional consequences of single-cell heterogeneity 

on the whole population becomes apparent when some kind of organizing structure is 

discovered. This is crucial to gaining a fundamental understanding of the biological 

system, as in bacterial resistance, organ development, or tumor evolution (Johnston and 
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Desplan, 2010). Previously, in FPM (Tyson et al., 2012), we developed a computational 

framework to link comprehensive single-cell tracking data with population dynamics for 

limited samples. cFP parallelizes FPM across hundreds of clones within a sample to 

uncover perturbation-induced changes to the entire clonal profile. Thus cFP, by relatively 

few measurements, reveals the governing clonal structure that underlies extensive 

single-cell fate heterogeneity (Fig. 9a).  

The key feature that enables cFP to quickly summarize the clonal fitness profile 

of a cell population is the DIP rate. While a clonal response may involve multiple cell 

fates, it achieves a steady rate of proliferation after a few days (Fig. 7d), which can be 

summarized as its slope (Fig. 7e), or DIP rate. Thus DIP rates provide sufficient 

information to infer the predominance of single-cell fates: If DIP rate is negative, then 

death must prevail; if positive, then division prevails. Since DIP rates are linear, entry of 

cells into quiescence plays by necessity a minor role, as quiescence functions primarily 

to shape non-linear proliferation responses (Tyson et al., 2012).  

What does it mean that clones proliferate at different rates in the presence of a 

perturbation? The cell lines that we test are “programmed” to continuously proliferate; 

therefore the rate of proliferation can be taken as a direct measure of fitness of a 

particular clone to a particular microenvironment. DIP rate is expressed as a continuous 

variable, in contrast to the colony formation assay, which reports the relative percentage 

of single cells capable of adhering and forming a colony (Franken et al., 2006). Because 

DIP rates are stable, they can be used to explain a majority of the varying long-term 

outcomes between clones (Fig. 8b). This may relate to, for example, the general ability 

of cancer cells to adapt to harsh environments through selection (Nowell, 1976), and 

should be the focus of further work. 
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Measurement of DIP rates relies upon accurate quantitation of clonal proliferation. 

By sparsely plating a cell line at single-cell density, cFP separates a population into its 

clonal constituents (Fig. 5a). Automated image processing of fluorescent cell nuclei 

yields accurate cell counts (Fig. 6a). Other methods of cell counting are equally 

amenable, provided that they closely match manually validated data (Fig. 6b–c). cFP 

was designed to measure clonal proliferation originating from single cells (Fig. 5b). 

Future work should test if it matters if colonies originate from multiple cells. Furthermore, 

addition of microenvironmental factors may aid in more closely mimicking cell growth in 

vivo.  

Because all colonies are measured, the waterfall plots can be taken as a 

representation of the global clonal fitness of a cell population in a particular 

microenvironment (Fig. 9a). In this manuscript, we used cycloheximide as a proof-of-

concept example. Cycloheximide treatment induced clonal DIP rates that were 

continuously distributed, were reduced relative to control, and had a decreased the 

range of values (Fig. 9a). These need not be the case. In fact, we envision that the 

clonal profile of a cell population would be most interesting for cases where the crucial 

clonal proliferation is substantially different from the bulk population. For example, it may 

be that rare clonal cells with positive DIP rate that drive drug resistance. Or potentially 

slow dividing cells necessary to maintain tumor proliferation (Roesch et al., 2010). 

Alternatively, cFP captures a range of cell morphologies (Fig 11); this may be interesting 

to relate drug response to morphology, since epithelial-to-mesenchymal transition has 

been implicated as a mechanism of drug resistance(Chong and Jänne, 2013). The 

establishment of expanded clonal populations should enable more in depth clonal 

analyses (Fig. 10). 
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In summary, our approach represents a way to capture clonal fitness variability 

within a cell population (Fig. 12). DIP rates act as a bridge to connect heterogeneous cell 

fates within a cell population to the dynamic population response by assigning them into 

clonal lineages that proliferate at different rates.  
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  Chapter III

CLONAL DRUG-INDUCED PROLIFERATION RATES REVEAL STRUCTURE TO 

THERAPY-INDUCED CELL FATE HETEROGENEITY  

Introduction 

Targeting specific mutated gene products in cancer has fast become the most 

promising approach to defeat this incurable disease (Haber et al., 2011). However, even 

in patients carefully selected for well-defined targetable genetic mutations, as in lung 

cancer and melanoma, depth and duration of response is variable and relapse inevitable. 

This variability is a major obstacle to better, more permanent outcomes. Causes of 

variability are multiple and still ill defined, but increasing evidence implicates intratumor 

heterogeneity (Almendro et al., 2013; Bedard et al., 2013). Recognized for decades 

(Dexter et al., 1978; Fidler and Kripke, 1977), tumor heterogeneity has been 

unequivocally demonstrated by several molecular approaches (Gerlinger et al., 2012). 

Lately, its impact on anticancer drug treatment is being studied roughly along two lines. 

The first considers response to treatment in terms of clonal variation (Greaves 

and Maley, 2012), long known to adversely affect cancer therapy due to selection of 

clones with advantageous mutations (Nowell, 1976). Historically, genetics alone (Nowell, 

1976) was considered as a source for variation of clonal fitness (intended as the 

variation allowing a population to accommodate environmental change, including drug-

treated tumors). Recent in vivo studies (Kreso et al., 2013) elegantly show that non-

genetic sources may additionally contribute to clonal fitness in response to 

chemotherapy. Data-driven modeling of cell population dynamics also shows promise for 

understanding the effect of clonal genetic and non-genetic fitness variation on treatment 
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outcomes (Anderson et al., 2006; Michor et al., 2005). A limitation of these studies is that 

clonal fitness in the presence of drug is inferred, rather than directly measured with a 

quantitative metric. 

A second line of investigation focuses on the heterogeneity of cell-to-cell fates in 

response to drugs (Niepel et al., 2009), postulated to contribute to treatment failure. 

Molecular and functional single-cell analyses have revealed many sources of drug-

induced cell fate heterogeneity in a cell population, including epigenetic (Fan et al., 

2011; Kreso et al., 2013; Sharma et al., 2010b), stochastic (Altschuler and Wu, 2010; 

Gascoigne and Taylor, 2008) and non-genetic (Pisco et al., 2013; Spencer and Sorger, 

2011). However, these studies did not consider alternative cell fates in the context of the 

clonal structure of a cell population. 

Clearly, clonal fitness and cell fate heterogeneity during drug treatment are likely 

intertwined, yet a framework integrating the two has yet to be attempted. We reasoned 

that a synthesis of clonal fitness variation with cell fate heterogeneity might provide a 

platform to realistically model global cell population dynamics in the presence of drug, 

and predict treatment time-course and outcomes. Such predictive power would advance 

tumor heterogeneity studies closer to preclinical and clinical applications. We attempt to 

integrate clonal fitness variation with cell fate heterogeneity using a well-established 

experimental model for targeted therapy—human lung cancer cultured cell lines 

harboring the clinically relevant exon19 epidermal growth factor receptor (EGFR) 

deletion. These cells are oncogene-addicted (Weinstein et al., 2008) to mutated EGFR, 

and sensitive to inhibition of proliferation by EGFR-targeted drugs such as erlotinib. In 

these cells, both clonal resistance (Chmielecki et al., 2011) and cell fate heterogeneity 

(Sharma et al., 2010b; Tyson et al., 2012)  in response to drug have been shown. 
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Results 

Clonal Drug Induced Proliferation (DIP) rates encapsulate cell fate heterogeneity. 

We readily obtained evidence that the response of PC9 cells to erlotinib is a 

composite of heterogeneous cell fates. Erlotinib potently inhibited PC9 proliferation 

(IC50=44nM, Fig. 13a), abrogated EGFR phosphorylation and downstream signaling 

(Fig. 1b), and induced markers of apoptosis (cleaved PARP1, Fig. 13b). Yet, 17% of 

cells continued to divide on day 3 in erlotinib, and 28% on day 10 (Fig. 13c, d), 

suggesting the coincidence of differential cell fates (cell death, quiescence and division).  

To quantify this erlotinib response in terms of rates of division (intermitotic time), 

death and quiescence, we expressed geminin degron (mAG-gem) (Sakaue-Sawano et 

al., 2008b), a live-cell reporter of cell cycle progression, in PC9 cells and tracked single 

cells over 6 days in the presence of drug (Quaranta et al., 2009). In PC9 cells treated 

with erlotinib, single-cell tracking at high time resolution (~120 observations per day) 

over 6 days revealed that 16% of cells died, 52% continued to divide with elongated cell 

cycle time, and 33% had not committed to any fate by end of experiment (eoe) (Fig. 

14a–b). From these data, we derived a Fractional Proliferation Method (FPM) graph 

(Tyson et al., 2012) that estimates the contribution of individual cell fates as fractions of 

the size and overall proliferation rate of the population (Fig. 14c). The proliferation rate 

(which integrates rates of division and death) reaches a steady state after an initial 

period of nonlinear growth (~72 hours, vertical dashed gray line in Figure 14c). The 

dividing cell fraction remains detectable throughout the experiment (over ~150 h) 

suggesting the possibility that these cells represent a separate subpopulation that is 

insensitive or resistant to erlotinib.   
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Figure 13 PC9 cells respond to erlotinib with multiple cell fates.  (a) PC9 cell proliferation is 
inhibited at very low concentrations of erlotinib (IC50 = 44 nM). (b) Phosphorylation of epidermal 
growth factor receptor (EGFR), AKT and ERK detected by immunoblotting PC9 lysates is 
inhibited by 3 µM erlotinib, indicating drug activity. Cleaved PARP presence indicates apoptosis 
activation. (c) Erlotinib decreased the abundance of Ki-67 nuclear antigen-expressing cells at 3d 
indicating decreased proliferation (d), Quantitation of %Ki-67-positive cells in c.  
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Figure 14 Erlotinib-treated PC9 cells captured at high time resolution exhibit 
heterogeneous cell fates. (a) Single-cell tracking of erlotinib-treated PC9 cells (Tyson et al., 
2012) demonstrates multiple cell fates: Cells born in the presence of drug within the first 50 hours 
(x-axis) undergo division (blue circles), death (red X) or neither by the end of experiment (eoe) 
(grey squares). (b) Cells that divide in erlotinib display extended cell cycle time due to extended 
G1 phase. Individual stacked vertical lines represent the measured cell cycle length of single cell 
tracks of all dividing cells from A. G1 phase is defined as the time from cell division to the 
detectable expression of geminin degron. S/G2/M is defined as the remainder of the cell cycle 
until the subsequent cell division. (c) A Fractional Proliferation Graph (Tyson et al., 2012) 
depicting the dynamic PC9 cell response to erlotinib. Nonlinearity of erlotinib-treated PC9 cell 
population doublings (circles) is predicted (green line) by the single-cell behavior shown in a and 
deconvolved into dividing (blue) and non-dividing (red) fractions. Rates of division (d), death (a) 
and entry into quiescence (q) are estimated from the single-cell behavior. Dotted line depicts 
division rate of vehicle-treated cells. (d), The pie chart depicts the percent of concordant (both die, 
light blue; both divide, light red) and discordant (one sibling dies and the other divides again, 
green) cell fates in sibling pairs with observable cell fates before eoe (n = 81), tracked in the 
same experiment as a.   
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This heterogeneity of fates in response to drug is consistent with earlier studies 

(Gascoigne and Taylor, 2008; Tyson et al., 2012) but had not been previously placed in 

the context of clonal lineages. To begin relating cell fate heterogeneity to clonal lineages, 

we compared the fate of cell sibling pairs originating from a single mitotic event occurring 

after drug addition. From the tracked cells in Figure 14a, there were 81 informative 

sibling pairs, i.e., for which the fate (death or division) of both siblings was observed 

within the time frame of the experiment. The sibling pairs that exhibited concordant cell 

fates (both either died or divided, Fig. 14d) was 89%, supporting the conventional view 

of inheritance within a clonal lineage. However, 11% of sibling pairs had discordant fates 

(Fig. 14d), supporting a stochastic source of cell fate decision (Altschuler and Wu, 2010; 

Gascoigne and Taylor, 2008; Spencer et al., 2009). To reconcile both inherited and 

stochastic fates with the dynamics of a drug-treated population, the logical next step was 

to examine cell fate heterogeneity directly within the context of clonal lineages. 

In previous work (Tyson et al., 2012), we linked perturbation-induced 

heterogeneous cell fates to the proliferation dynamics of an entire cell population with 

the FP method. To enable bookkeeping of heterogeneous cell fates within PC9 clonal 

lineages we utilize the novel clonal Fractional Proliferation (cFP) assay in which 

hundreds to thousands of single-cell-derived colonies (clonal lineages) are tracked in a 

cell population over extended time periods (~10 days; Fig. 1c). We observed a mixture 

of cell fates (death, division, quiescence) within clonal colonies of treated PC9 (Fig. 15a), 

indicating that cells that continue to divide in drug do not reside in separate 

subpopulations insensitive to erlotinib. Rather, it appears that the multiple cell fates 

detected at the population level (Fig. 13, Fig. 14a) in fact occur within a clonal lineage. 

This mixture of cell fates within each colony results in clones with distinct rates of  
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Figure 15 Clonal response of PC9 cells to erlotinib. (a) Multiple cell fates in a single PC9 
clone from a cFP microtiter well, tracked in the presence of erlotinib and imaged after 4 and 5 
days of treatment. Circled green nuclei are cells that have past the G1/S transition(Sakaue-
Sawano et al., 2008a) (d4) and subsequently divide (d5). Arrows represent interphase cells (d4) 
that undergo nuclear shrinkage and dysmorphism (d5) characteristic of cell death(Tyson et al., 
2012). Scale bars = 100 µm. (b) Growth variability among erlotinib-treated clones in the cFP 
assay. Three clones were imaged on indicated days, showing distinct representative growth 
outcomes, as indicated. Scale bars = 100 µm. (c) Quantification of PC9 clonal dynamics in the 
cFP assay. The proliferation rate of each clone (286 total) is calculated from the slope of the line 
fit to data ≥ 72h (dashed line); average DMSO-treated proliferation rate is represented by the 
solid black line. The representative clones from b are depicted by color-matched lines. Boxplots 
represent the range of clone sizes at each time point. erl=erlotinib.   
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 proliferation, e.g., they expand or regress depending on whether division or death 

prevails as a fate (Fig. 15b).  

In vehicle control (DMSO), proliferation of all colonies was exponential, exhibiting 

a characteristic linear behavior in log2 plots (Fig. 15c, solid black line). In contrast, colony 

proliferation in erlotinib was nonlinear over the 10-day period, both for individual colonies 

(Fig. 15c, colored traces) and on average (box plots in Fig. 15c). However, proliferation 

becomes linear after approximately 72h (Fig. 15c) indicating that a steady state rate is 

reached, similar to the results in the FPM graph of Figure 14c. 

We then investigated whether the post-72h proliferation rate could be a useful 

erlotinib response metric at the level of clonal lineages. In the pre-72h phase, most 

colonies (87%) exhibit a positive rate, as best visualized in waterfall plots (Fig. 16a). In 

contrast, in the post-72h phase the majority of colonies (85%) have negative rate (Fig. 

16a). In individual colonies, pre- and post-72h rates were poorly correlated (R=0.25), as 

depicted by color-coded rank reordering (Fig. 16a). The calculated pre-72h colony rates 

are poorly correlated with the total change in colony cell number at the end of the 10-day 

experiment (Fig. 16b). In contrast, the steady state post-72h rate, defined by the slope of 

the line best fitting the data between days 3 and 10, is highly correlated with the 10-day 

outcome (Fig. 16b), indicating that it is an effective metric of long-term cell colony (and 

population) response to erlotinib.  

Therefore, after an initial period (~72 hours, vertical dashed line in Fig. 15c), 

each clone reaches a steady state proliferation rate that is suitable to represent long-

term clonal drug response. To our knowledge, this is a novel observation enabled by the 

cFP assay, which tracks cell populations over an extended time frame. This Drug-

Induced Proliferation (DIP) rate at steady state can be considered a stable trait of a  
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Figure 16 DIP rates effectively capture long-term colony response. (a) No colonies have 
negative proliferation rates in the absence of drug (DMSO). Erlotinib induces some negative 
proliferation rates during 0–3 d but most (>85%) of colony proliferation rates calculated over days 
3–10 are negative. Color-coded ranks of colony proliferation rates from 0–3 d were redistributed 
across the graph when the colonies were reordered based on 3–10 d proliferation rates. (b) 
Overall change in colony cell number (10 d fold change) correlates with 3–10 d colony 
proliferation rate but not 0–3 d rates. The proliferation rates obtained from 3–10 d colony cell 
counts in erlotinib are henceforth referred to as drug-induced proliferation (DIP) rates.  
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clonal lineage, and therefore can be taken as a measure of clonal fitness in the presence 

of that drug concentration. Furthermore, since the underlying mixture of cell fates 

determines the clonal proliferation rate, as shown above (Fig. 15), the DIP rate 

effectively synthesizes clonal fitness with intra-clonal cell-to-cell heterogeneity of cell 

fates (Fig. 14d).  

Positive DIP rate clones are part of a normally distributed continuum 

In erlotinib-treated PC9 cells, DIP rates varied from clone to clone over a broad 

range (-0.038 to +0.013 doublings/hour), with approximately 15% exhibiting a positive 

proliferation rate (Fig. 17a). To determine whether this DIP rate variability is a general 

phenomenon, we tested other human lung cancer cell lines harboring mutant EGFR. In 

every cell line, we observed clonal DIP rate variation (Fig. 17a). Note the proliferation 

rate of a clone prior to treatment did not correlate with its DIP rate in erlotinib (Fig. 17b, 

p=0.13). Overall, the global profile of clonal DIP rates is a continuum, but since the 

distribution in every case crosses the zero DIP rate line (Fig. 17a, red lines), clones with 

qualitatively divergent behavior can be observed: some drug-treated clones continue to 

exponentially increase in size (expanding) while others decrease (regressing). The 

percent of clones with positive DIP rates varied from cell line to cell line (~2–15%). It 

should be noted that the positive DIP rates (Fig. 17a) were in every case much less than 

the proliferation rates of DMSO-treated cells (Fig. 17a, left panels) or erlotinib-resistant 

EGFRT790M PC9-BR1 cells(Chmielecki et al., 2011) (Fig. 17a, bottom panels), indicating 

again that they do not represent drug-insensitive clones.   

Plotting these data as histograms revealed that clonal DIP rates within a cell line 

are distributed normally (Fig. 17c). Since a normal distribution is continuous, it reinforces 

the notion that expanding clonal lineages are not a distinct subpopulation from   
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Figure 17 DIP rates of EGFR-addicted lung cancer cell lines exist along a continuum. (a) 
Waterfall plots of clonal DIP rates (from cFP assays) in cell lines with EGFR-activating mutations 
treated with erlotinib (+erl) or control (+DMSO). In DMSO-treated cell lines and in the erlotinib-
resistant PC9-BR1(Chmielecki et al., 2011) cell line all clonal DIP rates (left panel) are positive. In 
sensitive, treated cell lines, a small, variable percentage of clones continue expanding in the 
presence of drug, i.e., exhibiting positive DIP rate. (b) Lack of correlation between individual PC9 
clonal proliferation rates measured before (UnTx) and after (DIP rates) erlotinib treatment 
(R=0.17, p=0.12). (c) PC9 clonal DIP rates are binned, plotted as a histogram, and colorized 
according to positive (red; “expanding”) or negative (blue; “regressing”). Clonal DIP rates are 
normally distributed (Kolmogorov-Smirnov test p = 0.35; insufficient evidence to reject the null 
hypothesis of a normal distribution). The probability density function of the normal distribution fit 
to the data (gray curve) overlays the data. Dashed lines represent the two fit parameters that 
define the distribution, µ (vertical, indicates position) and σ (horizontal, indicates magnitude).   
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regressing clones; rather, they represent the extreme of a continuum. Note that though 

the data is suitably fit by a normal distribution, it is likely that different perturbations may 

induce a variety of distributions. 

Clones with a positive DIP rate are definitely sensitive to drug because they 

proliferate at a much-reduced rate compared to control or drug-resistant PC9-BR1 (Fig. 

17a). However, since both negative and positive DIP rates are a part of a Gaussian 

distribution, the positive DIP rate clones are not a separate subpopulation. Furthermore, 

unlike antibiotic resistant bacterial persisters (Balaban et al., 2004), they cannot be 

identified in advance based on their untreated proliferation rate, since there is no 

correlation between a colony proliferation rate prior to drug addition and its DIP rate (Fig. 

17b). 

Based on their continued proliferation in erlotinib, positive DIP rate clones may 

contribute to relapse, warranting more in-depth analyses. To this end, we isolated single-

cell derived “sublines” from PC9 parental in order to further investigate the nature of 

clones with positive DIP rate. 

PC9 isogenic sublines recapitulate the parental PC9 clonal DIP rate distribution 

Ninety-five discrete isogenic single-cell derived clonal sublines from the PC9 

parental line (PC9-DS sublines) were prepared independently of cFP, in the absence of 

any drug selection. DIP rates in the presence of erlotinib were then measured. As in the 

cFP clones, the post-72h drug response (Fig. 18a) observed in the DS sublines is linear 

over 3–7 days, and predicts long-term outcome (Fig. 18b), consistent with the DIP rate 

metric. The DIP rate distribution of the DS sublines is indistinguishable from that of 

parental clones assessed by cFP (Fig. 19a). These data support the validity of DS   
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Figure 18 Drug-induced subline dynamics match colony behavior. A panel of seven PC9 
discrete sublines, DS1-DS7, was imaged during a continuous 6-day erlotinib treatment. (a) Three 
representative subline growth response curves indicate the proliferation rate during erlotinib 
treatment linearizes after 72 hours and assumes a characteristic DIP rate (linear model fit to 
estimate DIP rate is overlaid in solid colored lines). (b) When treated with erlotinib, DIP rates, but 
not pre-72h proliferation rates (in erlotinib), correlate with the 10-day fold change (cell number at 
day 10 relative to the cell number of cells at day 0) in PC9 sublines. Data shown are from 
independent erlotinib-treated wells (n=3, in triplicate). Error bars represent 95% confidence 
intervals. DIP rates of PC9 sublines do not correlate with the proliferation rate measured during 
the first 72 hours of either erlotinib or DMSO.  
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Figure 19 Discrete sublines act as a surrogate experimental tool for colonies. (a) DIP rate 
histograms of colonies (red) and sublines (blue) are superimposed. Arrows indicate mean DIP 
rates of sublines sampled from the distribution. Lines indicate best fits of Gaussian distributions to 
the data. The KS-test had insufficient evidence to reject the null hypothesis that the distributions 
were significantly different (p = 0.35). (b) Measured DIP rates are stable within each subline. 
Boxplots indicate mean and interquartile range (n = 3 experiments, in triplicate). (c) DS8 and DS9 
were kept in culture in the absence of drugs and tested for DIP rate at several intervals. The left-
most data points represent the data used to generate the PC9 Subline DIP rate distribution (n=1). 
Other data points represent the average DIP rate of triplicate wells. (d) Erlotinib treatment 
timecourse for DS8 and DS9. DS8 and DS9 represent the two PC9 sublines with the highest and 
lowest DIP rates, respectively. Representative serial image montages of cell nuclei are shown 
during a six-day erlotinib treatment. Scale bars = 200 µm  
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sublines as a surrogate for cFP clones, with the advantage that they can be repeatedly 

subjected to a battery of tests. 

An important question to address is whether a DIP rate is an intrinsic property of 

a subline. A panel of nine representative DS sublines (Fig. 19b) was cultured in the 

absence of any drug selection over ~25 generations. From these cultures, DIP rates in 

the presence of erlotinib were measured at regular intervals, and found to remain 

constant (representative data in Fig. 19c). Thus, a DIP rate is a stable trait realized in the 

presence of drug but inherited over multiple generations in its absence. 

The heritability of DIP rates indicate that positive DIP-rate clones may undermine 

the outcome of targeted therapy, prompting further investigations. Traditionally, the 

ability to proliferate in the presence of drug has been associated primarily with 

genetically acquired resistance resistance (Takezawa et al., 2012). To test this 

possibility, we subjected positive DIP-rate sublines to SNaPshot analysis (Su et al., 

2011b), which detects drug-resistance mutations. Five out of five positive DIP rate DS 

sublines maintained EGFR exon 19 deletions and lacked each of 38 common clinically 

relevant resistance mutations (Table 1). Another traditional measure of drug insensitivity 

is the IC50. Each of the DS sublines had IC50s in the same low nanomolar range, 

similar to the drug-sensitive PC9 parental (Fig. 20). 

It is not unexpected that DS sublines, whether DIP-rate negative or positive, 

cannot be distinguished by traditional measures of drug resistant/insensitive cells, since 

they are embedded in a normal DIP rate distribution that suggests an underlying 

stochastic process. Indeed, in the parental PC9, alternative cell fates in response to 

erlotinib appeared to be stochastically assigned (Fig. 14d). To determine the relationship 

between multiple cell fates and DIP rates in the DS sublines, we examined   
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Figure 20 PC9 DS sublines remain sensitive to erlotinib as assessed by IC50 values. PC9 
sublines were plated at 4,000 cells per well and allowed to adhere overnight before treatment with 
erlotinib at various concentrations (in triplicate, n=3 experiments). The cell number for each well 
was obtained by directly counting cell nuclei using automated image processing software. The 
data are expressed as log2(cell number) normalized to vehicle control at 72 hours. Data points 
represent the average value of all wells at a given concentration. Error bars represent the 
standard error of all samples for each unique erlotinib (erl) concentration. Curve fits and IC50 
values were obtained by using R statistical software. The red lines indicate the concentration of 
the calculated IC50 value (vertical red line) and the relative change in cell number at that value 
(horizontal red line).  
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Table 1 Mutational analysis of positive DIP rate PC9 clonal sublines.The NSCLC SNaPshot 
platform (Su et al., 2011a) was used to assess the mutational status of PC9 parental, PC9-BR1, 
DS9 (negative DIP rate) and five other PC9 clonal sublines with positive DIP rate. All of the 
samples retained the activating EGFR exon 19 deletion mutation, while only PC9-BR1 contained 
EGFR T790M. No additional mutations were detected in any of the samples.  



 64 

the erlotinib response at high time resolution (every 10 min over 6-days) in two positive 

and two negative DIP rate sublines. 

In agreement with their negative DIP rates, DS1 and DS3 are enriched for dying 

cells, but quiescent and dividing cells are still observed out to 150h (Fig. 21a). By 

contrast, essentially no dying cells are observed in sublines with positive DIP rate. 

However, FP analysis (Tyson et al., 2012) indicates that DS4 and DS7 DIP rates, 

although similar, are rooted in different combinations of cell fates: DS4 has more cells 

that enter quiescence and fewer cells with a reduced division rate; vice versa, DS7 has 

fewer quiescent cells and more with a reduced division rate (Fig. 21b–c). Thus, the DIP 

rates of DS sublines, including positive ones, are determined by a composite of multiple 

cell fates. By contrast, cells with acquired resistance mutations in drug (PC9-BR1 

(Chmielecki et al., 2011)) and control- treated cells exhibit uniform fate survival and 

division (Fig. 21b–c). 

This raised the question: If a distribution of clones explains the single-cell fate 

heterogeneity of the parental population, then will discrete sublines, also having cell fate 

heterogeneity, also display clonal variance of DIP rates? To test this, we performed cFP 

on three select DS sublines (Fig. 22). Each of the distributions is suitably fit with a 

normal distribution. We find that the mean of clonal DIP rate distribution matches with 

the previously measured subline data (Fig. 19b). The DIP rate variance of DS8 and DS9 

closely matches that of the parental, whereas DS6 displayed a narrower variance. 

Nevertheless, DIP rate variance is clearly evident, even in low-passage clonal cell 

populations.   

Together, these results define unique features of positive DIP rate clones: 1) they 

are detectable in a cell line population at relatively high frequency (~2–15%; Fig. 17a);   



 65 

 

Figure 21 Clonal PC9 DS sublines act as a surrogate for cFP clones.  (a) Waterfall plots of 
clonal DIP rates from cFP assay (left) or a collection of 95 PC9 clonal DS sublines (right), with the 
position of six representative sublines (used in c) indicated. (b, c) Single-cell fates fate tracking of 
DMSO-treated PC9 parental cells, four DS sublines continuously treated with erlotinib, and 
erlotinib treated PC9-BR1 (with a second-site T790M EGFR mutation), a previously-derived 
model (Chmielecki et al., 2011) of acquired resistance. (b) Summary of cell fates for cell 
populations tracked in c. (c) Single-cell tracking indicates different mixtures of cell fates can result 
in similar DIP rates. Single cells born during the first 50 h of erlotinib exposure (x-axis) exhibit 
variable cell fates: Blue circle = division; red X = death; grey square = neither, end of experiment 
(eoe).   
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2) they enter multiple fates in response to drug (Fig. 20c); 3) they continue to proliferate 

in the presence of erlotinib at a reduced, drug-induced proliferation rate that is stable 

after 72 hours (Fig. 18a); 4) they maintain IC50s in the nanomolar range similar to 

parental (Fig. 20); 5) they harbor no known acquired resistance mutations (1); 6) due to 

DIP rate variance, they arise even with clonal populations (Fig. 22). 

Methods 

Cell culture. All cells were cultured in RPMI 1640 (ATCC) growth media 

supplemented with 10% fetal bovine serum. Cells were maintained in a humidified cell 

culture incubator kept at 37C with 5% CO2. PC9, PC9-BR1, 11-18, HCC827, and H1975 

cells were kindly provided by William Pao (Vanderbilt University Medical Center). 

HCC4006 and PC9 (MGH) cells were kindly provided by Jeff Engelman (Massachusetts 

General Hospital). Cells were checked regularly for mycoplasma contamination and no 

mycoplasma positive cell lines were used in this study.  

Antibodies and inhibitors. Erlotinib (LC labs) was solubilized in dimethyl sulfoxide 

(DMSO, 10mM) and stored at -20C in single-usage aliquots and used at 3 µM unless 

otherwise noted. Negative controls for erlotinib received an equal volume DMSO 

treatment. Primary antibodies for EGFR, pAkt, Akt, pErk, Erk, and cleaved PARP were 

obtained from Cell Signaling Technologies; p-EGFR (Y1068) obtained from Abcam and 

Ki-67 obtained from Calbiochem. Secondary HRP-conjugated antibodies were obtained 

from GE Healthcare. Alexa Fluor fluorescence- conjugated secondary antibodies 

(Invitrogen) were used for immunofluorescence detection.  

Western blotting. Cells were grown to 70% confluence in 100mm tissue culture 

dishes. Then the individual plates were treated with erlotinib or vehicle, replaced every 3   
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Figure 22 Clonal DIP rate distributions of discrete sublines. Clonal DIP rate distributions of 
three PC9 DS sublines in the presence (blue) or absence (green) of 3µM erlotinib (left). Red 
curves represent the normal distribution best fit to the data.  
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days for longer timepoints. To collect cell lysates, the plates were washed once with 10 

mL ice-cold PBS and pelleted by centrifugation at (15,000g) in a 4C centrifuge. Cell 

pellets were resuspended in 100 µL lysis buffer (0.2 M Tris-HCl, 1 M NaCl, sodium 

deoxycholate, 100 mM NaF, 100 mM NaVO4, Tergitol, Sigma protease inhibitor (cat# 

P8340) for 10 minutes. Cell lysates were cleared by centrifugation. Lysates were snap 

frozen and stored at -80°C until analysis. Protein content was determined using a Pierce 

protein assay. Lysates were thawed on ice and combined with sample buffer (NuPage) 

and dithiothreitol (DTT). 25 µg of lysates were separated using 4–12% Bis-Tris gels 

(Novex) and MOPS running buffer (Invitrogen). The proteins were then transferred at 80 

mV for 2 hrs (4C) to a PVDF membrane through using 20% MeOH and NuPage transfer 

buffer (Invitrogen).  Membranes blocked for 1 hour using Tris-buffered saline containing 

0.1% Tween-20 (TBST) and 5% (w/v) milk. Primary antibodies added at recommended 

dilution and incubated overnight at 4°C with gentle rocking. The membranes were then 

washed 5X with TBST and horseradish peroxidase-conjugated secondary antibodies 

were added in 1% milk-TBST. Secondary antibodies were detected using enhanced 

chemilluminescence (PerkinElmer) and exposure to autoradiography film. Exposed and 

processed film was scanned using a Umax Powerlook 1000 scanner. 

IC50 assay. Cells were seeded at 4,000 cells per well and allowed to adhere 

overnight. Then erlotinib was added to the cells at various concentrations in triplicate. 

After 72 hours, cells were fixed in 4% paraformaldehyde-PBS for 15 minutes, then 

stained with Hoechst 33342 (Invitrogen, 1:10,000 in PBS) for 15 minutes. The cells were 

imaged using the Synentec CellaVista imager (10X objective, 3X3 montage) and the 

total cell number per well was quantified using automatic segmentation software. 

Percent control was calculated as the average cell number of three wells per condition 

(n=3 experiments per cell line) normalized to the cell number of DMSO treated cells. The 
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fold change represents the normalized log2-difference in final cell number, relative to 

untreated, induced by the drug. For each subline, the pooled data from three separate 

experiments were used to compute the IC50 value. The IC50 value were fit using the ‘nls’ 

function in R (http://r-project.org) using a 4-parameter logistic model formula (Sebaugh, 

2011). 

Immunofluorescence. Cells were grown in a BD 96-well imaging plate and at the 

appropriate time fixed using 4% paraformaldehyde- PBS for ten minutes, washed in PBS, 

and stored in PBS at 4C. Cells were permeabilized with a blocking buffer containing 

0.3% Triton-X and 5% normal goat serum. Primary Ki-67 antibody (1:100, Calbiochem) 

incubation went overnight at 4C. Cells were washed three times with PBS, and then 

secondary antibody (1:1,000) was added for 1 hour in blocking buffer. Cells were 

counterstained with Hoechst 33342 (Invitrogen, 1:10,000 in PBS, 15 min) and imaged 

using the Synentec Cellavista high-end imager using a 10X objective and 3X3 montage. 

The percentage of Ki-67 positive cells was quantified as the number of cells exceeding a 

fixed intensity threshold normalized to the total number of cells quantified by Hoechst 

33342 (4 replicates per condition). Samples from all experiments (n=3) were labeled and 

imaged at the same time to reduce technical variability. 

Live-cell imaging of PC9 sublines. For single cell tracking and dynamic cell 

population measurements, cells were labeled, imaged, and analyzed as previously 

described (Tyson et al., 2012). Rate determination was made using the R programming 

software (R-project.org) by fitting linear models to normalized data sub-sampled every 

hour. 

Clonal Fractional Proliferation (cFP) Assay. Cells were seeded in full growth 

media at single-cell density (50-200 cells per well, depending on cell line growth 
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characteristics) and allowed expand (~1 week) until the cells per colony was sufficiently 

high enough to ensure stable typical colony growth characteristics for over a ten day 

response. Colony sizes were limited so that most colonies would grow independently. 

When colonies reached the appropriate size, 3 µM erlotinib was added immediately 

before the day zero data point and replaced every 3 days. Subsequent data were 

obtained by fluorescence imaging using the CellaVista imager (SynenTec) with a 10x 

objective across whole wells of a 96-well plate. Between timepoints, cells were 

maintained in cell culture incubators. After 10-days of experimentation, fluorescence 

images were converted into image stacks such that serial time points were spatially 

registered to facilitate single-colony tracking. Data quantitation was performed as 

previously described (Tyson et al., 2012).  

High-throughput derivation of PC9 sublines. In order to isolate drug-naïve clonal 

sublines in a high throughput manner, we sorted single fluorescently labeled PC9 cells 

by flow cytometry into wells of multiple 96-well plates. These single-cell derived sublines 

were expanded in culture for 21 days, and then split into two cultures: one culture for 

DIP rate measurement and one frozen down. 

Discussion 

Overall, our results show that a synthesis of cell fate heterogeneity with clonal 

fitness variation can advance our understanding of targeted therapy dynamics at the cell 

population level. Essential to our approach is the Drug-Induced Proliferation (DIP) rate, a 

novel metric that encapsulates multiple cell fates into a steady rate of clonal proliferation. 

In a nutshell, the DIP rate is a metric of long-term clonal fitness in a population. The 

temporal quality of the DIP rate is essential to predictive power because, by tracking 

speed of proliferation of a clone, it can project forward in time its functional contribution 
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to the overall population dynamics. In contrast, previous metrics of cell fate 

heterogeneity are at the single-cell level without consideration of proliferation rate and/or 

relationship to clonal expansion, or at a single (or few) time point that imposes severe 

constraints on predictive ability. More broadly, a time component is also largely absent 

from current industry-wide standard assays for anticancer drug screening. The DIP rate 

removes these limitations and provides predictive power. Since the cFP assay can be 

deployed in a high-throughput fashion and requires only a few thousand cells to perform, 

it is suitable to both preclinical applications, such as single or combination drug 

screening with cell lines, and clinically relevant samples from primary tumor specimens 

or patient-derived xenografts.  

That clonal DIP rates vary along a normal distribution in an oncogene-addicted 

cell line is a surprising finding (Fig. 17c), because clonal lineages from cell lines 

harboring oncogene-activating mutations have previously been classified as either 

sensitive or resistant to a targeted drug. In contrast, our findings suggest a graded clonal 

response along a continuum, even within cell populations with minimal genetic 

background differences (as in the PC9-DS sublines that were strictly derived from single 

cells and maintained at low passage number). Thus, it appears that profiling clonal 

response by means of DIP rates provides a more realistic assessment of oncogene 

addiction, revealing a previously unsuspected structure of clonal response heterogeneity. 

Furthermore, the clonal DIP rate normal distribution structure immediately identifies 

which clones which may be responsible for the inevitable rebound to treatment. These 

expanding clones can be studied as sublines, which may reveal the molecular 

underpinnings of their phenotype. 
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Individual single-cell fates are present within clones at different proportions, 

giving rise to steady DIP rates (Fig. 21c). Our data suggest that the propensity to a 

particular mixture of cell fates is partly inherited, partly stochastic within a clonal lineage. 

The finding that that inheritance of cell fate can be distributed amongst clonal lineages 

intrinsic to the population expands upon previous studies that demonstrate heritability of 

heterogeneous cell fate (Spencer et al., 2009) in the entire population. Accounting for 

cell fate heterogeneity by single-cell tracking is a laborious task (Tyson et al., 2012), thus 

substantially limiting both sample throughput and discovery of an underlying structure 

that may explain the total distribution of cell fates. In contrast, measuring clonal DIP 

rates effectively accounts for the functional contribution of multiple cell fates without 

having to measure them directly. This allows for conclusions to be drawn from much 

smaller datasets. Therefore measuring proliferation rates, rather than single cells, greatly 

enhances the biological sample throughput to allow highly parallelized proliferation 

assays. 

Expanding clones emerge at the right tail of the normal distribution (Fig. 17c). 

Thus, though treated oncogene-addicted cell populations may display massive apoptosis 

initially, our results suggest that DIP rate variance ensures the existence of positive DIP 

rate clones at some initial frequency. Future studies are warranted to establish 

mechanisms that may control the proliferation rate of this trait in cancer vs. normal cell 

populations or cell lines. Clonal selection is already a well-established means of tumor 

progression and drug resistance, yet it typically refers to a rare, random genetic mutation 

conferring higher fitness that is apparent under heavy and prolonged selective pressure. 

In contrast, we see a relative high frequency of clones with positive DIP rate (Fig. 17c) 

prior to any drug selection. Further studies should determine the capacity of these 

clones in contributing to relapse to therapy. 
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Even though single-cell derived clones that proliferate at a positive DIP rate 

appear to be intrinsic to a cell line (inasmuch as the right tail of the DIP rate distribution 

extends into positive values) their contribution to evading targeted therapy has remained 

obscured in traditional assays because they rely on either averaged or static 

measurements. Instead of a functional heterogeneity continuum, conventional assays 

have emphasized discrete clonal subpopulations, generally rare ones, that are 

altogether unresponsive to the targeted drug, and that behave as either resistant or 

persister cells. Our experimental data indicate that expanding clones, intrinsic to the cell 

line, are unequivocally distinct from clones exhibiting genetically acquired resistance 

(Bozic et al., 2013) because of unchanged erlotinib IC50 sensitivity (Fig. 20), lack of 

known acquired-resistance mutations (1), and reduced proliferation in erlotinib (Fig. 17). 

Non-genetic mechanisms in rare clonal subpopulations may also explain rebound to 

cancer drugs. In one case, Sharma et al. showed that a discrete persister subpopulation 

of non-cycling PC9 cells survives under continuous drug selection via a chromatin-

mediated state (Sharma et al., 2010b). The relationship, if any, between positive DIP 

rate clones and previously described resistant or persister clones remains to be 

established. It is however tempting to speculate that positive DIP rate clones may 

represent a reservoir for cells that eventually acquire genetic (or non-genetic) resistance, 

as in the assimilation phenomenon (Waddington, 1953). 

The DIP rate normal distributions of parental cell lines can be recapitulated, but 

not discretized, by clonal sublines. That is, a clonal subline itself responds to drug with a 

normal distribution of DIP rates (Fig. 22). The mean of this distribution differs from 

parental, but the variance is roughly maintained. This finding suggests that variance is 

not constrained by the mutation rate required to diversify a phenotypic trait and thus may 

not require a genetic basis. Thus, we speculate that it may have its origins in stochastic 
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processes, as is the case for other phenotypic traits that exhibit a normal distribution in a 

population. Along these lines, Kreso et al. found no detectable genetic differences that 

correlated with differential behavior or treatment response among colorectal cancer 

clones serially co-passaged as tumor xenografts (Kreso et al., 2013). In that report, 

clonal lineages were presumably phenotypically discrete, possibly due to discrete 

epigenetic events (Kreso et al., 2013; Marusyk and Polyak, 2013). In contrast, we 

observed that clonal DIP rate variation is continuous and normally distributed, strongly 

indicating it arises from stochasticity in biological processes. This finding is reminiscent 

of biological noise-based survival strategies in unicellular organisms, such as bet-

hedging strategies in bacteria (Fraser and Kaern, 2009). Nevertheless our results, 

consistent with Kreso et al. (Kreso et al., 2013), suggest that functional clonal profiles of 

relatively homogeneous cancer cell populations are more complex than random genetic 

diversification alone.  

In summary, DIP rates effectively act as a bridge to join heterogeneous cell fates 

in response to perturbation to the underlying clonal structure of a cell population. A main 

motivating question behind improving cancer therapeutics is: why do some cells respond 

to therapy while others don’t? In light of widespread biological heterogeneity (Altschuler 

and Wu, 2010),  finding mechanistic explanations of cellular behavior at the single-cell 

level is complex and can quickly become unwieldy. In contrast to understanding the 

mechanistic basis of single-cell behavior, dynamic measurements of clonal proliferation 

integrate these multiple single-cell fates and cast them as an ordered distribution of rates. 

Interestingly, positive DIP rate clones appear to be an intrinsic component of a mainly 

negative distribution. The mechanisms that govern clonal DIP rate remain to be 

determined. Nevertheless positive DIP rate clones appear unique from previously 

described genetic and epigenetic mechanisms of cell survival during therapy. Thus these 
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clones may provide a new therapeutic window to eliminate more tumor cells before the 

population develops resistance thus prolonging treatment durability.  
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  Chapter IV

INTEGRATING CLONAL FITNESS HETEROGENEITY PREDICTS THERAPY 

RESPONSE DYNAMICS 

Introduction 

Intratumor cancer heterogeneity has been recognized for decades, as 

exemplified by the seminal work of Fidler (Fidler and Kripke, 1977) and Heppner (Dexter 

et al., 1978). A resurgence of interest in heterogeneity is driven by its essential role in 

causing short-lived remissions observed with the latest targeted therapies (Bozic et al., 

2013). Both genetic and non-genetic mechanisms contribute to intratumor heterogeneity 

(Marusyk et al., 2012). Recent studies have elegantly shown that a tumor is a composite 

of clones (Ding et al., 2012; Gerlinger et al., 2012; McGranahan et al., 2012; Welch et 

al., 2012) with common origin but genetically diversified by mutations and genomic 

instability, which may become substrates for selection towards increased fitness against 

microenvironmental stresses such as therapy (Bozic et al., 2013; Dexter et al., 1978; 

Fidler and Kripke, 1977; Nowell, 1976). 

While intratumor heterogeneity underlies poor clinical outcomes, it remains 

difficult to quantitatively infer its functional role in therapy failure, especially in a 

predictive manner. Mathematical modeling can provide a theoretical framework to link 

intratumor heterogeneity to outcomes (Michor et al., 2004). A classic example is drug-

induced clonal selection: treatment applies a selective pressure on a mixture of cells 

defined as sensitive and resistant. Over time the population initially shrinks due to 

depletion of treatment-sensitive cells. However, continuous treatment selects for the 

emergence of a rare resistant clone that is either pre-existing or stochastically arises and 
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the population eventually regrows despite continued therapy. By translating biological 

assumptions of cellular behavior into steady rates of change from a set of initial 

conditions, models can simulate the changes in complex processes such as cancer 

treatment response and disease progression (Mumenthaler et al., 2011). These models, 

in turn, can be examined to quantify the relative contribution biological features have on 

driving the phenotype of interest.  

One example of a tool for modeling evolving population dynamics is an ordinary 

differential equation (ODE) compartment model. ODE compartment models are well 

established in fields such as disease epidemics (Webb et al., 2005) and pharmacology 

(Sheiner et al., 1979). For this type of model, a population is defined as the sum of 

multiple subpopulations denoted as compartments. The dynamics of each compartment 

are defined by steady rates of entry or exit from that compartment, which depend on the 

current size of the compartment from which individuals are exiting. Thus, given 

knowledge of the initial composition of a population and the rates that individuals 

transition to and from subpopulations, a compartment model can predict the population 

dynamics over time. In the case of cancer, clinical data match model expectations, 

especially in the case of targeted therapy. The assumption is that the onset of resistance 

can be explained by either selection of rare resistant clones or transition into a 

treatment-resistant compartment (Bozic et al., 2013). In the model, this transition may be 

defined by estimated rates of DNA mutation or differentiation. 

The power of these models is illustrated when interfacing model outputs with 

clinical data to infer the cellular dynamics that underlie tumor rebound in patients. A 

notable example of modeling clinical data with an ODE compartment model is the 

response of patients with chronic myeloid leukemia to targeted therapy (Michor et al., 
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2005). The authors show that a combined differentiation-genetic resistance model is 

sufficient to explain the clinical phenomena of biphasic reduction in cell number and the 

onset of resistance. By constraining the model output with clinical data, then estimations 

can be made for experimentally challenging measurements, such as the pretreatment 

number of resistant cells present.  Thus, the output (clinical outcome) is known, but the 

parameters that drive the model are allowed to float to fit the response data. Because 

this approach begins with clinical data and builds a model that can accommodate that 

can fit that data, this strategy can be considered a top-down modeling approach. The 

biologically-informed model can then be used to explore the phenotypic space that the 

model occupies to inform novel therapeutic regimes with optimized outcomes. For 

example, models predict that the fitness disadvantage of resistant cells in the absence of 

drug treatment can be exploited by pulsing drug administration at optimal intervals 

(Chmielecki et al., 2011). Additionally, modeling approaches can predict the impact of 

treatment combinations on reducing the likelihood of genetic resistance (Bozic et al., 

2013). 

One limitation of modeling from a top-down perspective is that it must assume 

knowledge of the underlying structure of the population. While models may provide 

insight into the relevance of biological parameters, it is possible that the model can fit the 

data phenomenologically while omitting the relevant disease biology entirely. In the 

examples above, the model structure is constructed with the help of literature-based 

knowledge to fit the clinical data. If the model prediction can fit the data, then it is 

plausible that the model explains the data (Kohl et al., 2010). In contrast to top-down 

approaches that work backward to construct the model and fit the model parameters to 

match output data, model assumptions can be defined explicitly by data-driven bottom-
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up modeling. This can help to constrain the model to better reflect the actual biology and 

further enable potential detection of novel biology.  

Experiments define the biology precisely, models account for their contribution in 

a complex system. Thus math modeling and experimentation can therefore be used 

iteratively to simplify complex biological systems to their most relevant constituent traits 

(Anderson and Quaranta, 2008). Experimental measurements are especially important 

in cancer targeted therapy models because, as described throughout Chapter 1, there 

are many sources of heterogeneity that can account for treatment failure. Therefore 

assuming that tumor rebound is driven by only one source of heterogeneity may be a 

major biological oversight. Furthermore, compartment models assume that the 

population can be subdivided into uniquely defined subpopulations with certain 

behaviors. In reality, drug response may be a continuous variable (Brock et al., 2009) 

unsuitable for compartment models. Experiments are thus a powerful tool to directly test 

the biological assumptions that the model relies upon. 

We have demonstrated this previously with single-cell behavior and population 

dynamics (Tyson et al., 2012). There are several advantages that can be exploited once 

the model is constructed and thoroughly validated: 1) With output measurements, a 

model can then estimate the input data; 2) With input measurements, the model can 

extrapolate population dynamics; 3) Varying input parameters can give predictions of 

which parameters are most critical in modulating the population outcome; 4) Fixing 

output parameters can show the range of model inputs that can generate a particular 

population behavior. Thus examining model predictions can then quickly test a 

combinatorial matrix of conditions and highlight potentially high-impact biological 

hypotheses to be tested experimentally. 
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Chapter 2 described novel experimental methods for quantifying heterogeneous 

cellular response to perturbation within a cell population; Chapter 3 characterized the 

clonally heterogeneous response of EGFR-mutant cell lines to erlotinib; this chapter 

focuses on predicting the impact of heterogeneous cellular and clonal drug responses to 

the overall population outcome using bottom-up, experimentation-driven modeling. 

Beginning with assumptions based on the biology defined in Chapters 2 & 3, we 

construct a model, the Heterogeneous Growth (HG) model, which relates clonal growth 

to population rebound under continuous therapy. We then test both the model 

assumptions and the model predictions experimentally. Then we subsequently use the 

model to find that, counterintuitively, that ideal drug combinations should focus on 

reducing positive DIP rate clones by constraining the proliferation heterogeneity.  

Results 

The variance of a clonal DIP rate distribution drives time-to-rebound (TTR) 

In Chapter 3 we described that clonal response to erlotinib is suitably described 

by a normal distribution of drug-induced proliferation (DIP) rates. A normal distribution is 

entirely defined by two numerical parameters, mean (µ) and variance (σ2), enabling 

translation of the erlotinib-induced heterogeneity of cell fates, encapsulated within clonal 

DIP rates, into population dynamics by mathematical modeling. All measured cell lines 

can be suitably represented with a normal distribution (Fig. 23). Since traditional 

exponential growth models generally only consider the mean (µ), we derived a 

Heterogeneous Growth (HG) model of exponential growth that incorporates both mean 

and variance of DIP rate distributions (Methods).  
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Figure 23 QQ-plots validate assumption of normality. QQ plots were generated using the R 
(http://r-project.org) function qqnorm on the colony DIP rates. These plots show the DIP rate 
versus the normal quantiles of the sample. Data was sufficiently close to normal in most cases, 
with deviation from normality on the left (low DIP rates, i.e. rapidly dying colonies). This validates 
the assumptions of normality when integrating to develop the HG model.  
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We plotted the HG model prediction of erlotinib response over a 20-day time 

course (Fig. 24a–b) using parameter values (µ, σ2) from the clonal DIP rate distribution 

of parental PC9. Initially, the size of the population declines in the HG model simulation, 

as expected from the fact that the majority of the clones exhibit negative DIP rate and 

the µ of the DIP rate distribution is negative. However, it is important to recognize that 

even during this initial phase the small fraction of expanding clones are proliferating, 

though with minimal impact on the overall size of the population. Due to exponential 

expansion, the contribution of this minority of clones to the population dynamics 

increases over time and overtakes the regressing fraction at the inflection point (~5 days, 

Fig. 24b). After this minimum (depth of response = -0.60 doublings) the population size 

begins to increase steadily, reaching initial size at 10.3 days (Fig. 24b). We refer to the 

time required for the population to regain its initial size in continuous drug treatment as 

‘time-to-rebound’ (TTR). Note that the same model, with variance excluded, gives rise to 

a very different prediction in which there is no rebound (red line in Fig. 24b). 

 An intriguing insight from the HG model is that TTR is disproportionately affected 

by the σ parameter relative to the µ  parameter, as indicated by the analytical solution 

(𝑡 = −2 !
!!

).  More precisely, decreasing the µ results in a deeper initial response but 

only incremental gains in TTR (Fig. 25). In contrast, small decrements in σ substantially 

lengthen TTR (Fig. 25).  

To assess the general value of these findings, we then used the HG model to 

predict responses across a panel of mutant EGFR-addicted cell lines. Each cell line has 

a characteristic clonal DIP rate distribution and the HG model predicted both a 

characteristic depth of response and TTR for each of the cell lines, as a function of its 

DIP rate distribution parameters (Fig. 26, Table 2). The predicted time course highlights  
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Figure 24 HG model integrates of clonal DIP rates to predict rebound. Incorporation of clonal 
DIP rate variance into a model of exponential growth predicts time-to-rebound (TTR). (a) 
Histogram of erlotinib-treated PC9 clonal DIP rates. Red curve represents a normal distribution 
best-fit line. There is insufficient evidence to reject the normal distribution fit (K-S test, p=0.35). 
Gray dashed line represents the divide between positive and negative DIP rate clones. (b) The 
heterogeneous growth (HG) model replaces the single proliferation rate parameter of the basic 
exponential growth model with the Gaussian probability density function that describes the full 
DIP rate distribution with the µ and σ parameters. The black line shows the HG model output of 

continuous erlotinib treatment (y   =   y!e
!!!!

!  !!  
! ). This model predicts the depth of response 

(ymin  =
!!!

!!!!"#  (!)
) and time-to-rebound (𝑡 = −2 !

!!
) as a function of the data. Red line shows the 

output of an exponential model (y = y!e!!) of erlotinib response that incorporates only the mean 
DIP rate of PC9 (variance excluded).  
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Figure 25 Analysis of HG model parameters. Varying the µ parameter value (top) affects depth 
of response but TTR is modestly influenced, whereas varying the s parameter value (bottom) 
dramatically affects TTR. Color scale: blue = 0.5σ, white = 1σ, red = 2σ. Black line represents the 
prediction using the parameter values obtained experimentally from parental PC9 cells.  
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Figure 26 Clonal DIP rates and HG model predictions for EGFR-addicted cell lines. 
Incorporation of clonal DIP rate variance into a model of exponential growth predicts time-to-
rebound (TTR) in erlotinib-treated EGFR mutant cell lines. Wide variation of clonal DIP rate 
distributions across cell lines in the presence (blue) or absence (green) of 3µM erlotinib. Note that 
in all instances cFP data were fit by a Gaussian distribution (left). Population-level dynamics 
specific for each erlotinib-treated cell line are predicted by incorporating the Gaussian parameter 
values of each DIP rate distribution into the HG model (right). Horizontal arrows = depth of 
response; vertical arrows = TTR.   
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Table 2 DIP rate distribution parameter values and prediction of relapse. The p-value for 
the Kolmogorov-Smirnov test is shown, where the normal distribution is the null 
hypothesis; p-value < 0.05 indicates sufficient evidence that data are not sampled from a 
normal distribution. The D statistic in the KS-test is the largest observed difference 
between the model's cumulative density function and the data's cumulative density. n 
represents the number of colonies used in the DIP rate distribution. µ and σ represent 
the mean and standard deviation, respectively, of the DIP rate distribution. TTR 
represents the time-to-rebound, as predicted by the HG model. NA, not applicable 
because the cell population never decreases in size.  
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the importance of the DIP rate distribution shape for each cell line. For example, the 

HCC4006 distribution shifted leftward only half as far as 11-18 (HCC4006 µ=-6.5e-3 

doublings/h; 11-18 µ=-1.23e-2 doublings/h), yet results in double the TTR (HCC4006 

TTR 30 days; 11-18 TTR 16 days) due to a narrower variance.  

We experimentally tested the HG model predictions of erlotinib-treated PC9 

parental cells by live-cell imaging 14 separate wells of high-density PC9 cells cultured in 

erlotinib over 20 days. In each culture well there was an initial decrease in the population 

followed by a slow, steady rebound, as predicted by the HG model (Fig. 27a). For 

comparison, an alternative model assuming the presence of rare drug-resistant cells in 

the PC9 parental population predicted “V-shaped” growth curves and did not agree with 

the rebound experimental data (Fig. 27b). In contrast, the HG model predictions, 

incorporating parameter values from the parental population DIP rate distribution, closely 

tracked curvilinear growth of the majority of the wells, validating the expectation. 

Furthermore, the observation of rebound corresponded to the exponential outgrowth of 

positive DIP rate clones (Fig. 27c). 

These data and model simulations established the relevance of the clonal DIP 

rate normal distribution and the power of HG model to predict outcomes of erlotinib 

therapy in terms of depth of response and TTR. Furthermore, the HG model indicated 

that the variance is predominantly responsible for the TTR duration. That is, a smaller 

variance would lead to a desirably longer TTR.  

Clonal DIP rate variance compression by combination therapy lengthens TTR 

To interrogate the molecular underpinnings of clonal DIP rate variation within a 

cell population, we utilized a set of PC9 DS sublines spanning the continuum of clonal  
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Figure 27 PC9 Rebound validation. (a) The experimental population-level dynamics of erlotinib-
treated PC9 cells (gray lines; n=14) were accurately predicted (green line) by the HG model 
incorporating µ and σ parameter values from PC9 experimental clonal DIP rate distribution. PC9 
cells were seeded at high density in 14 microtiter wells, continuously treated with erlotinib over 20 
days, and imaged daily. The well-to-well variability is likely due to uneven clonal sampling. (b) A 
rare mutant (RM) model assuming a population of cells with a single proliferation rate in the 
presence of erlotinib (the µ parameter value of PC9 cells) and a rare subpopulation of acquired-
resistance cells (the µ parameter value of PC9-BR1 cells (Chmielecki et al., 2011)) at indicated 
ratios cannot explain the experimental data (same as in a). (c) Rebound to erlotinib is 
accompanied by expanding clones. Shown is the imaging timecourse of the well displaying the 
fastest rebound to erlotinib (gray lines in a). 
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DIP rates derived from cFP. DIP rates act as a continuous variable that can be directly 

linked to molecular changes across the DS subline panel.  Thus, we selected 10 DS 

sublines that cover the extremes and middle portion of the DIP rate continuum (Fig. 19b), 

treated them for 5d with erlotinib and then applied microwestern array (MWA) analysis 

(Ciaccio et al., 2010) (Fig. 28). In total, the MWA covered 48 analytes for each subline 

(Table 3). To assess significance, we considered analytes significant if they had R2>0.6.  

By this criterion, seven analytes correlated with DIP rate by linear regression (Fig. 29a 

and Table 3). These correlations were validated and extended by traditional Western 

blots (Fig. 29b). Within the scope of this work, we focused on the EGFR, apoptosis and 

stress response pathways. In particular we attempted to find analytes that were either 

correlated or anticorrelated with DIP rate that could be chemically modulated to test their 

contribution to DIP rate.  

To better accommodate the drug combination data, we reasoned that different 

perturbations may not exert their influence evenly amongst clones and a normal 

distribution may not be the optimal fit for the data. Therefore we chose to fit the 

combination data with a skew-normal fit, which is simply a generalization of the normal 

distribution with an additional parameter, α, in addition to µ and σ.  In the case where α 

is equal to zero, the skew normal distribution yields the original normal distribution 

(Azzalini, 2005). The HG model, with an assumed skew-normal distribution of DIP rates, 

still gives numerical predictions of the depth of response and TTR, although these 

solutions cannot be solved analytically (Methods). Indeed, a strength of the HG model is 

that it can accommodate a wide variety of distributions. In the EGFR pathway the levels 

of phospho- and total EGFR, MEK and ERK did not vary sufficiently across the sublines 

to draw meaningful conclusions regarding their contribution to DIP rates, in spite of the 

prominent role of the RAS/MAPK pathway in mediating mutant EGFR cellular effects.   
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Figure 28 Molecular correlates of clonal DIP rate variation. Representative raw image data of 
microwestern array. Cell lysates of DS1–9 and parental PC9 were obtained from cells after 5 
days of erlotinib treatment. Samples were used at concentrations above 5 µg/µl probed using 48 
separate antibodies by microwestern array.  
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Figure 29 Molecular correlates of clonal DIP rate variation. (a) Cell lysates of DS1–9 and 
parental PC9 were obtained after 5 days of continuous erlotinib treatment. Samples were probed 
using 48 unique antibodies by microwestern array (Ciaccio et al., 2010). For each analyte, log2 
intensity values were scaled to the standard deviation across all cell lines and median-centered to 
0. Correlation between molecular signals and mean DIP rates was considered significant if a 
linear model fit the data (R2>0.6). Each linear fit is shown with a blue line. (b) Western blot 
validation of analytes for PC9 DS sublines. Mean DIP rates, indicated in the parental (par) PC9 
clonal DIP rate distribution, were treated with erlotinib for 5 days and examined for (phospho-) 
protein levels by western blotting.  
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Table 3 List of molecular analytes used in microwestern array. Shown are the different 
antibodies used in microwestern (Ciaccio et al., 2010) analysis of the DS sublines. For phospho-
proteins, the specific phosphorylation sites detected are listed. Signaling analytes were designed 
to test multiple categorized signaling pathways that influence cell fate in response to drugs. Each 
analyte was tested for individual linear correlation with DIP rate across a panel of ten samples (9 
sublines and PC9 parental, see Fig. 19b).  Analytes with linear model fits R2 > 0.6 are shown, 
otherwise not significant (ns).   
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In the apoptosis pathway, an expected finding was that higher levels of cleaved 

PARP associated with lower DIP rates (and vice versa). Somewhat unexpectedly, higher 

levels of pro-apoptotic Bim (Fig. 29a, R2=0.65) were found in sublines with higher DIP 

rates. However, in these sublines the anti-apoptotic protein Bcl-2 was concomitantly 

increased, likely negating the effects of Bim (Fig. 29b). We reasoned that chemically 

disrupting this interaction would increase apoptosis. In agreement, addition of ABT-737 

(a BH3 mimetic that inhibits the pro-survival activity of Bcl-2) to erlotinib-treated PC9 

cells, measured by cFP, shifted the mean of the clonal DIP rate distribution to the left, 

presumably by increasing the rate of cell death (Fig. 30a). The left-shift (-5.8e-3 to -1.2e-

2 doublings/hour) of the mean substantially improves the depth of response predicted by 

the HG model (Fig. 30b). However, by HG mode predictions it produces only a modest 

benefit on TTR (20 days to 27 days), the more critical element of anticancer drug 

efficacy. 

In the stress response pathway, the levels of phospho heat-shock protein 27 

(pHsp27) is relatively diminished in positive DIP rate DS sublines. Hsp27 function is 

modulated by phosphorylation (Rogalla et al., 1999); however, no direct chemical 

modulators have been made. Thus, we modulated its phosphorylation by inhibiting a 

prominent upstream kinase (p38), for which both activators and inhibitors are available 

(Kuma et al., 2005). We reasoned that if high Hsp27 activity were associated with low 

DIP rate, then inhibiting p38 would shift the DIP rate distribution mean positively. To 

inhibit p38, we utilize a specific p38 inhibitor, SB-203580. In contrast to our expectation 

of shifting the mean, the primary effect of inhibiting p38 was to dramatically increased 

the DIP rate variance (Fig. 30a; 5.7e-3 to 9.2e-3). By HG model predictions, this would 

substantially shorten TTR (Fig. 30b; 20 days to 11 days). If p38 inhibition shortens the 

predicted TTR by increasing the DIP rate variance, we next tested if p38 activation  
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Figure 30 Manipulating clonal DIP rate distribution with combination treatment. (a) clonal 
DIP rate distributions of erlotinib-treated PC9 cells co-treated with ABT-737 (2.5 µM, top), 
SB203580 (1 µM, middle), or anisomycin (1µM, bottom). The data are overlaid with estimates of 
distributions fit to data from erlotinib alone (black curve) or in combination with indicated drug 
(colorized curve). To better account for the contribution of positive DIP rate colonies, skew-normal 
distributions were assumed for all model fits. (b) HG model predictions of population-level drug-
response dynamics based on the experimental data fits in a.  
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would shrink the variance. Strikingly, through a combination of narrowing the variance 

(Fig. 30a; 5.7e-3 to 5.2e-3) and increasing the negative skew (4.1e-1 to -9e-1), the p38 

activator anisomycin greatly reduces the proportion of positive DIP rate clones. This 

results in the highly desirable effect of lengthening TTR (Fig. 30b; 20 days to 87 days) in 

parental PC9 treated in combination with erlotinib. These results show that constraining 

intra-cell line clonal variance is an attractive means to delay rebound. 

Methods 

Heterogeneous Growth (HG) model. The Heterogeneous Growth (HG) model is 

comprised of two parts. In the case of clonal DIP rates induced by a single perturbation, 

the model uses the assumption of a normal distribution. In the case where multiple 

perturbations are used simultaneously, the model assumes a skew-normal distribution of 

clonal DIP rates.  

The derivation of the HG model is as follows: The basic exponential growth 

equation is 

y = y!e!! 

where y0 is the initial size of the population, 𝛼 is the growth rate of the population and t is 

time.  In the single-agent HG model, we assume that rather than a single growth rate (𝛼), 

the population consists of a range of growth rates described by the DIP rate Gaussian. 

𝑓 𝑥 𝜇,𝜎 =
1

2𝜎 2  𝜋
𝑒
! !!! !

!  !!  
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We replaced αwith the Gaussian distribution function and integrated (Riemann-Stieltjes 

(Hildebrandt, 1938)) over the basic exponential growth equation to obtain the following 

equation: 

y   =   y!e!!!!
!  !!  /! (Figure Legends Fig. 24a) 

where µ and σ are the mean and standard deviation of the normal distribution. This is 

equivalent to the moment-generating function of normality. When the ratio y/y0 is 1, the 

population has rebounded to its initial level, and growth will continue above the original 

population size. 

𝑦
𝑦!
= 𝑒!"!!!!!/! = 1    (4) 

log !
!!

= 𝜇𝑡 + !!!!

!
= log 1 = 0  (5) 

𝜇𝑡 + !!!!

!
= 0 (6) 

Application of the quadratic formula leads to the trivial root of 0, and 

𝑡   =   !!  !
!!

   (7) 

When the ratio y/y0 is 1, the population has returned to its initial level, and growth 

will continue above the original population size. Application of the quadratic formula 

leads to the trivial root of 0, and 𝑡 = !!!
!!

. We define t as the time to rebound. 

In the case of multi-agent therapy, the HG model substitutes a skew-normal 

distribution(Azzalini, 2005), rather than a normal distribution, into the exponential growth 

equation. While the TTR and depth of response are not evaluated analytically, they can 
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be computed numerically using R. To compute TTR, the uniroot function is used. To find 

the minimum value, or depth of response, the optimize function is applied.  

Statistical analysis. All statistical analysis was performed using the R statistical 

software (R-project.org). Statistical estimations for the skew normal distribution 

parameters were performed using the selm function contained within the SN package 

(http://azzalini.stat.unipd.it/SN, version 1.0). Other statistical model fits were performed 

as described previously (Tyson et al., 2012). 

Fitting rebound data. The green line in Figure 26a, is the predicted curve using a 

modified HG model curve. The HG model parameters were taken directly from cFP data 

estimates of the mean growth rate (µ = -0.147 doublings/day) and standard deviation (σ 

= 0.142 doublings/day). The modification was integrating the HG model using a 

truncated normal using a cutoff in growth rate of 0.165 doublings/day, which was the 

maximum observed growth rate of the PC9 cells. The mathematical integration was 

done using R (http://r-project.org) 

Experimental validation of relapse. PC9 parental cells were plated at 4,000 cells 

per well in full growth media and allowed to adhere overnight. Then 3µM erlotinib was 

added (with media changes every 3 days) and whole wells of a 96-well plate were 

imaged daily using the same imaging conditions as in the cFP. The freely available 

ImageJ (http://imagej.nih.gov/ij/) software was used to quantify cell number for all 

measurements. 

Discussion 

Here we present the Heterogeneous Growth (HG) model, a mathematical 

framework to translate measurements of clonal DIP rates to predict the dynamics of 
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population rebound following prolonged continuous therapy. This approach enabled the 

novel conclusion that clonal DIP rate variance is sufficient to drive rebound to targeted 

therapy. Furthermore, describing distributions in terms of all the relevant parameters 

enables predictive classification of different cell populations. Applying multiplexed 

genetic (Su et al., 2011a) and proteomic (Ciaccio et al., 2010) approaches enables 

discovery of molecular factors determining the clonal DIP rate distribution. Thus 

combining cFP with the HG model is a powerful approach to measure and manipulate 

the clonal DIP rate distribution to find therapeutic strategies that provide optimal TTR. 

Previous studies of clonal dynamics in drug-treated populations infer the 

functional behavior of clones retrospectively. Models of acquired resistance mutations 

can explain patient tumor response time-course data (Bozic et al., 2013; Leder et al., 

2014; Michor et al., 2005), and can be used to predict therapy improvement by dual 

drugging (Bozic et al., 2013; Kanagasabai et al., 2010). While demonstrating the 

potential of modeling to improve targeted therapy, these models do not quantify 

underlying cell behavior that results in rebound but rather infer it from the relative 

proportions of mutant cell types a posteriori.  These models are based on clinical data 

outcomes and therefore testing model simulations experimentally is challenging. 

Likewise, elegant descriptions of functional impact of clonal heterogeneity in vivo 

(Almendro et al., 2014b; Kreso et al., 2013; Tran et al., 2011) are provocative, yet 

difficult to fully interpret without direct measures of clonal drug response. Here, we join 

the strength of these approaches using a systems biology approach of combined 

modeling and experimentation. The HG model predicts population dynamics based on 

experimental measures that integrate cell fate heterogeneity and clonal structure (Fig. 

24). Due to the simplicity of the cFP assay, such measurements are easily accessible 
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and may eventually be taken on tumor specimens and allow for predictions of TTR 

before treatment.  

An unsuspected outcome of the HG model is that the clonal DIP rate variance 

itself is an attractive drug target, since collapsing it disproportionally affects TTR 

lengthening (Fig. 25). Simply put, positive DIP rate clones drive rebound and clonal DIP 

rate variance is sufficient to drive rebound. Finding the molecular factors responsible for 

DIP rate variance may therefore be advisable. Indeed, by studying panels of PC9 clonal 

sublines spanning the full distribution and using their mean DIP rate as a continuous 

variable, we found molecules that correlate with DIP rate. We focused in on p38, which 

appears to modify the variance. A p38 inhibitor, SB203580, broadens the DIP rate 

variance while decreasing the mean. Thus, while appearing to be an effective 

combination on average, our results suggest that increased DIP rate variance would 

result in a faster rebound. In contrast, a p38 activator, anisomycin, reduces the fraction 

of positive DIP rate clones by compressing the variance and adding a negative skew to 

the data. This in turn lengthens the TTR. Stress response signals have been shown both 

to be pro-survival in response to irradiation (Kanagasabai et al., 2010), or pro-death in 

response to oncogene deprivation (Tran et al., 2011). In our case, they appear to modify 

the variance of DIP rate distribution in the presence of a targeted drug. This observation 

will have to be substantiated by in-depth mechanistic studies, given the large number of 

p38 substrates. Nevertheless, this is a proof-of-principle that provides a feasible 

approach to improving erlotinib treatment outcomes. Thus, while the source of clonal 

DIP rate variation in cancer cell populations remains to be determined at a mechanistic 

level, using DIP rate variation as a continuous variable, as we do here, should facilitate 

identification of its molecular underpinnings. 
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Our findings effectively cast tumor heterogeneity in a new light: While remaining 

a formidable foe, it can be harnessed by quantitative tools and used to predict depth and 

duration (dynamics) of drug effects with a model based on simple in vitro measurements. 

For now, our report is by necessity limited to in vitro cell lines, but its conclusions 

transform intratumor heterogeneity into a tractable problem. A key challenge is to apply 

the clonal DIP rate metric and the cFP assay to preclinical or clinical tumor material, to 

enable predictions of clinical time course and provide a rationale for a priori choice of 

treatment. The utility of combining modeling approaches with clinical data has been 

shown (Bozic et al., 2013; Leder et al., 2014; Michor et al., 2005). Finally, our data 

unequivocally show that ablating the positive DIP rate clones, by reducing variance or 

negatively skewing the distribution, is the best strategy to lengthen TTR. Novel drug 

screening strategies based on clonal DIP rate variance containment can be readily 

envisioned.  
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  Chapter V

CONCLUSION 

Discussion 

Overall, our work presents a framework to quantify cancer heterogeneity and 

relate it to the overall change in size of a cell population in a predictive fashion (Fig. 31). 

While cancer heterogeneity is widely recognized, it remains a clinically-relevant problem, 

divided into two categories: intertumor heterogeneity, or differences between patients; 

and intratumor heterogeneity, which describes variability within a tumor that is 

responsible for either primary resistance to therapy (Pao and Chmielecki, 2010) or the 

eventual rebound. Intertumor heterogeneity aims to define population subsets that will 

respond to certain therapies. Whereas efforts in intratumor heterogeneity are divided 

across two fronts: the first is to find new molecular susceptibilities to amplify the initial 

tumor responses; the second is to try to find ways to resensitize resistant cell 

populations after the onset of resistance. While molecular mechanisms underlying 

cancer rebound are increasingly discovered (Sequist et al., 2011), data regarding the 

dynamics of treatment failure are only available retrospectively. This leaves a glaring 

hole in the research literature: can the dynamics of tumor rebound to treatment be 

predicted and improved prospectively? The overall goal of this work was use a systems 

biology approach (Kohl et al., 2010) in order to link quantitative measurements of drug 

response heterogeneity to population dynamics. To address this question, we developed 

quantitative imaging tools to measure dynamic cellular response to perturbations 

(Chapter 2), examined how drug responses cross biological scales (Chapter 3), and then 

subsequently developed a mathematical model to enable data-driven predictions of 

cancer rebound (Chapter 4).  
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Figure 31 Conceptual Schematic. Top, Previous understanding of cell-to-cell heterogeneity. A 
cell population responds to perturbations with multiple cell fates that, when combined, form a 
population-level proliferation rate. New insights from this manuscript are shown on the left. Cell-
to-cell heterogeneity in response to targeted therapy is encapsulated in DIP rates within single-
cell lineages. Positively proliferating lineages within a cell lineage are a result of DIP rates being 
distributed normally. The HG model predicts relapse by integrating the contribution of lineage-
specific heterogeneity across a population. The HG model predicts that reducing the DIP rate 
variance will prolong rebound during continuous treatment.  
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To understand the dynamics of an intrinsically heterogeneous response to 

perturbations, we devised the clonal Fractional Proliferation (cFP) assay. Previously, 

relating cell heterogeneity to population dynamics has been problematic because cell-to-

cell heterogeneity is so widespread (Gascoigne and Taylor, 2008). Our previous work, 

FPM, (Tyson et al., 2012) described a framework to relate single-cell measurements to 

changes in population size over time. However, FPM is limited in throughput and best 

applied retrospectively to accommodate comprehensive single-cell datasets. The DIP 

rate is the key simplifying device that enables cFP to relate single-cell and clonal fitness 

to population response. In FPM hundreds of single-cells were tracked to estimate the 

rates of transition into different cell fates. Now, in cFP, those single-cell fates are 

encapsulated into steady rates of proliferation. Thus, sparse temporal measurements of 

population size are sufficient to integrate the functional contribution of multiple cell fates 

into a single, dynamic metric of fitness (DIP rate) for clonal response.  

The vast reduction in information content required enables the analysis to be 

proportionally scaled up in terms of sample throughput. Therefore, cFP reports the clonal 

structure of a population over time in multiple conditions (Fig. 9a). Previously, single-cell 

measurements were either unrelated to population size changes or limited to short-term 

effects. Alternatively, other assays designed to quantify heterogeneity, such as the 

colony formation assay (Franken et al., 2006), report as an all-or-none value, the 

number of clones to adhere, survive perturbation, and grow to a certain size. By contrast, 

cFP reveals the clonal fitness structure that underlies long-term population dynamics by 

integrating single-cell fates into a continuous distribution of clonal fitness.  

Then, by cFP, we measured the clonal fitness profile of EGFR-addicted cells to 

erlotinib, an EGFR small molecule inhibitor. EGFR-addicted cell lines are a good model 
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system because they recapitulate many relevant features of heterogeneity observed 

clinically. In response to erlotinib, all measured cell lines display a clonal DIP rate profile 

described by a normal distribution with a negative mean (Fig. 26). In each case, a small 

number of clones, without drug selection, display a positive DIP rate. Thus, the biological 

variation, intrinsic to the cell population, is sufficient to ensure the existence of minor 

clonal populations that grow in the presence of drug, despite a primarily apoptotic 

response within the cell line.  

This finding is intriguing, because clonal variation, in the context of tumor 

evolution, usually refers to clonal outgrowth of single cells with a completely unique drug 

response (Nowell, 1976). For example, random mutations that occlude drug binding, 

thus effectively reversing drug sensitivity in a binary manner. However, in each of the 

positive DIP rate clones that we isolate, they remain sensitive to the drug, evidenced by 

nanomolar IC50 values (Fig. 20), and comprise a continuous, unimodal distribution of 

phenotype (Fig. 24a). Thus the clones we describe are likely not due to the accumulation 

of random genetic mutations. Furthermore, single-cell isolated clones also yield normal 

distributions of DIP rates with variance similar to that of the parental population (Fig. 22). 

The diversification of clonal DIP rates far exceeds the error rate in DNA repair. More 

likely, we speculate that the clonal variance of a cell population is the extrapolation of 

cellular heterogeneity (Altschuler and Wu, 2010) to its full range of phenotypic effects. 

Supporting this view, clones with a stable DIP rate display a wide range of single-cell 

fates in response to perturbation (Fig. 21b–c). While DIP rate variance appears intrinsic, 

the mean of clonal populations remains stable over many cell generations (Fig. 19c). 

This is in contrast to previous reports (Sharma et al., 2010b), where response drug 

sensitivity cannot be cloned out and is mediated by an all-or-nothing reversible transition 

from a unique, stem-like state.   
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In an attempt to translate these dynamic measurements of clonal behavior into 

predictions of cell population response, we devised the heterogeneous growth (HG) 

model. The HG model is a mathematical model that combines the DIP rate distribution 

into the basic exponential growth equation and integrates across the full range of rates. 

Thus the HG model takes experimentally-derived measurements of clonal fitness and 

predicts the resultant population dynamics (Fig. 24b). In each EGFR-addicted cell line 

examined (Fig. 26), the population undergoes an expected initial decrease in population 

size, and owing to the reduction of the bulk population and the exponential expansion of 

positive DIP rate clones, steadily increases the population size. This leads to the 

unexpected finding that DIP rate variance alone is sufficient to drive rebound (Fig. 24b). 

In addition, the HG model gives predictions of the maximal reduction in population size 

(depth of response) and the time until the population regrows to its initial size (TTR). 

Previously, the only other model used to predict rebound based on experimental 

measurements operates under the assumption that rebound is driven by a rare subset of 

cells, selected by drug treatment, that proliferate similar to the untreated condition 

(Chmielecki et al., 2011; Michor et al., 2005). Our experimental validation of rebound is 

consistent with the HG model (Fig. 27b), but does not match the model assuming rare 

mutations (Fig. 27c).  

By expanding single cells into discrete sublines (DS), we obtained an 

experimental system suitable for examining the molecular underpinning of DIP rate (Fig. 

19a). We conducted, in a panel of ten erlotinib-treated sublines, a molecular screen of 

analytes involved in several signaling pathways (Fig. 29a–b). As a confirmation of the 

validity of the screen, we discovered anti-apoptotic proteins, previously implicated in 

protecting cells from apoptosis (Fan et al., 2011). In addition, our screen uncovered 

phospho-Hsp27, involved in the stress response pathway (Kanagasabai et al., 2010; 
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Rogalla et al., 1999). We sought to shift the mean clonal DIP rate by modulating Hsp27 

indirectly by an upstream activator, p38, since direct chemical modulators of Hsp27 are 

not available. In contrast to shifting the mean, p38 inhibition broadened the DIP rate 

variance (Fig. 30a).  

This result is intriguing because DIP rate variance has a disproportionately strong 

effect on TTR relative to the DIP rate mean (Fig. 25). Indeed, p38 activation had the 

reverse effect: combining erlotinib with anisomycin greatly reduced the number of 

positive DIP rate clones and drastically increased the TTR (Fig. 30). Large-scale 

unbiased screening efforts of gene knock-out (Bivona et al., 2011) or knock-in 

(Johannessen et al., 2013) have uncovered molecular pathways that modify mean drug 

effects. As an alternative, our data suggests that discovery efforts characterizing the full 

clonal DIP rate profile may uncover chemicals that and reduce the number of positive 

DIP rate clones and be more fruitful at identifying compounds that achieve optimal TTR.   

Single-cell responses to perturbation are widespread and interpreting their 

effects is problematic. As a result, the primary means to estimate their effects is 

restricted to biology that groups cell fates into distinct biological groups. For example, 

most models of treatment of drug-sensitive cells assume that all cells that do not die 

have acquired an additional genetic (Chong and Jänne, 2013) or epigenetic (Sharma et 

al., 2010b) event that makes them resistant to therapy. As both our data and previous 

publications demonstrate, biological variation is enormous and this framework is likely 

not universally applicable. In contrast, the DIP rate metric accommodates cellular 

heterogeneity by placing it into the context of clonal DIP rates, a dynamic metric of 

fitness that can in turn be translated into predictions of rebound by the HG model. The 

molecular mechanistic origins of single-cell fate variability are an active area on interest. 
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However, the sheer amount of information that can be collected from a heterogeneous 

population at the single cell level, e.g., proteomic (Bendall et al., 2011), genomic 

(Macaulay and Voet, 2014), etc., is staggering. We show an alternative way to 

comprehensively account for widespread cell heterogeneity.  Instead of going down in 

scale to measure molecular differences at the single-cell level (Gascoigne and Taylor, 

2008), we exploit dynamic measurements of clonal behavior as a proxy for prohibitively 

large single-cell datasets. Thus, while accepting single-cell behavior as 

phenomenological, we utilize clonal DIP rates to bridge the scales from complex single-

cell behaviors to the clinically-relevant predictions of population rebound. 

The overall goal of this work was to use systems biology to understand the 

contribution of intratumor heterogeneity. The cFP assay and the HG model together 

translate single-cell heterogeneity into clinically-relevant predictions of rebound. This 

finding was enabled by joining modeling and experimentation as a model system. cFP 

effectively bridged biological scales, quantitatively linking single-cell, clonal, and 

population level responses. Applying cFP to EGFR-addicted cells treated with erlotinib 

revealed that the clonal profile can be represented as a normal distribution. The HG 

model subsequently interpreted the effects of positive DIP rate clones. Furthermore, the 

model highlighted the parameters that are most beneficial to modulate. These insights in 

turn guided experimental screens that uncovered drug combinations that optimally 

lengthened the TTR. Thus, incorporating measurements of clonal heterogeneity into 

further drug screens could identify therapeutics leading to better outcomes. In summary, 

these results demonstrate that while intratumor heterogeneity is formidable, addressing 

it quantitatively can uncover novel strategies to constrain its influence in undermining 

therapy. 
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Future directions 

The cFP assay was designed using an in vitro setting to enable single-cell 

measurements. Several factors may enable the conclusions to more closely mimic in 

vivo growth conditions. For example, growing cells on a layer of extracellular matrix 

proteins could provide more realistic microenvironmental conditions. Alternatively, cFP 

could be performed in a 3D culture system that still retains fluorescence imaging 

capacity. Other studies have quantified DNA barcoding to measure the relative clonal 

abundance during tumorigenesis and drug treatment in patient-derived xenografts 

(Kreso et al., 2013). It would be interesting to expand cFP as a model system by using 

DNA barcoding to directly relate direct in vitro measurements of clonal population size to 

indirect measurements of relative clonal abundance in vivo.  

 cFP relies on fluorescence imaging of cell nuclei to quantify cell nuclei. In cFP 

we showed that a secondary fluorescence marker, geminin-mAg (Sakaue-Sawano et al., 

2008a), could be added as a binary readout of cell cycle position (Fig. 9c). The extra 

fluorescence channel could be chosen to be more specific to the biological system of 

interest. For example, a differentiation marker could be added in the case of stem cells 

or a readout of signaling activity associated with the phenotype of interest could be 

added (Spencer et al., 2009). 

Examining the clonal profile of EGFR-addicted cells in response to erlotinib 

revealed that DIP rates are normally distributed (Fig. 26). Culturing these clones as 

discrete sublines revealed that the mean clonal DIP rate is conserved across 

experiments (Fig. 19c), thus they display phenotypic stability over the time scales we 

examined. However, the rapid repopulation of the DIP rate variance within clonal 

populations (Fig. 22) suggests that DIP rate is not determined solely by genetic 
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mutations. Still, we acknowledge that the underlying factors governing DIP rate mean 

remain unknown. Furthermore, while p38 signaling appears to modify the width of the 

DIP rate distribution (Fig. 30a), the molecular mechanisms involved in this process are 

largely unknown. Based on the timescale of change, DIP rate mean and variance may 

be due to epigenetic factors (Rando and Verstrepen, 2007). Others have speculated that 

the range of phenotypes within a cell population is governed by greater mRNA entropy 

that could be restricted by the chromatin state of cells (MacArthur and Lemischka, 2013). 

It would be interesting to see if p38 activity modifies the overall profile of epigenetic 

events within a cell population (Taiwo et al., 2012), and if so, which modifications are 

most critical. Alternatively, independent of epigenetic analysis, the role of p38 in driving 

the DIP rate variance could be modified through RNA interference, overexpression, or 

conditional expression. Other inhibitors or activators of p38 (Kuma et al., 2005), with 

different mechanisms of actions, may further uncover the role of p38 signaling in 

modifying clonal DIP rate variance. 

Positive growth in the presence of drug treatment is most commonly associated 

with the acquisition of genetic resistance mutations. This is well established to the high 

frequency of conserved mutations occurring upon failure to targeted therapy (Sequist et 

al., 2011). But how do positive DIP rate clones relate to genetic resistance mutations? It 

could be that positive DIP rate clones act as a reservoir of cells that eventually become 

resistant during prolonged therapy. Culturing sublines during continuous erlotinib 

treatment could test this directly. Regarding genetic resistance mutations, recent work 

has focused on targeting mutant proteins for the express purpose of overcoming 

acquired resistance (Zhou et al., 2009). However, it is increasingly clear that cancer cells 

develop resistance to inhibitors that were designed specifically to overcome resistance. 

Some have lamented this therapeutic strategy as a “whack-a-mole” approach to treating 
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cancer (Gillies et al., 2012). Further studies are warranted to examine if clonal DIP rate 

variance also underlies the failure of these next-generation therapeutics.  

The HG model suggests that compounds that can reduce the σ parameter of the 

DIP rate distribution would be highly effective at prolonging rebound (Fig. 25). High 

throughput screens currently focus on finding chemical or or genetic combinations that 

modulate the initial number of cells killed by therapy (Bivona et al., 2011; Johannessen 

et al., 2013), likely affecting the µ parameter. Creating parallel high-throughput screens 

to modify the variance may provide an attractive alternative to discover therapeutic 

strategies that delay rebound. Several strategies may enable such an approach. First, 

cFP relies on minimal user input to ensure accurate colony segmentation. Currently cFP 

relies on sparse plating to separate clones. Separating clones by culturing them in 384- 

or 1536 well plates may remove concerns about colony separation. If user input is 

removed entirely, this could allow the sample throughput and data analysis to be scaled 

up to generate DIP rate distributions for many compounds.  

Utilizing the panel of DS sublines could also help to identify rebound. The 

microwestern array analysis was designed to screen for molecular differences between 

compounds with differing µ agnostic of σ (Fig. 29). However, sublines may have different 

σ as well. For example, DS6 has a narrower clonal DIP rate variance than DS9 (Fig. 22). 

Designing the screen using sublines with similar µ but variable σ may help to identify the 

molecular components underlying DIP rate variance.  

Alternatively, a direct protein readout may enable the discovery of combinations 

to decrease variance.  If a single protein could be predictive of DIP rate, then the clonal 

DIP rate distribution could be measured as a proxy by flow cytometry. Then high 
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throughput screens, using a single sample, could measure the effect of a treatment on 

the protein concentration variance (Dar et al., 2014). In addition to the subline screening 

technique described above, multiplex mass cytometry assays (Bendall et al., 2011) 

could identify analytes with changing variance matching that of the DIP rate distributions 

from drug combination experiments (Fig. 30).   
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