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CHAPTER 1 - INTRODUCTION 

 

1.1 Motivation 

Over 54,000 drinking water systems in the United States serve over 320 million residents 

through 2 million miles (3.2 million km) of water distribution pipes.  Many of these pipes were 

installed 50 to 100 years ago, with a design life of only 100 years.  As more and more pipes are 

reaching the end of their useful lives, utilities and consumers must address the problems 

associated with pipe breaks.  Pipe breaks not only cause disruption in water distribution service, 

they can wreak havoc on the surrounding environment and cause traffic delays and infrastructure 

damage.  Many have tried to evaluate the total economic impact of pipe breaks that includes 

societal costs such as increased travel time due to lane closures and detours and increased carbon 

emissions associated with pipeline replacement [1]–[3].   This research presents improved 

models and frameworks to assist utilities in developing maintenance and pipe replacement 

programs to mitigate and reduce the risk of pipeline failures.  The models presented limit the 

number of input parameters and are tested on utilities with varying size, uncertainty, and break 

rates.   

 

Several studies have been released by the Environmental Protection Agency (EPA) and 

American Water Works Association that attempt to quantify the long-term needs associated with 

maintaining water distribution networks.   Twenty-year financing needs estimates range from 

$280 billion [4]  to $1 trillion [5] to maintain and replace assets in water distribution networks.  

These high estimates are due to prolonged deferred maintenance of ageing infrastructure.  The 

current average annual pipeline replacement rate for utilities is just 1% of the total network [4].  
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Utility directors cite multiple pipeline breaks as a primary criterion for replacement [6].  

Operations and maintenance (O&M) programs need to be adjusted to thoughtfully increase 

replacement rates to minimize the long-term economic consequences of deferred maintenance.  

Comprehensive asset management programs are needed in order to assist utilities in creating 

maintenance, rehabilitation and replacement (MR&R) spending plans that minimize the long-

term costs to users to maintain a minimum level of service for water distribution networks.  The 

need for asset management for water and sewer utilities was highlighted with the issuance of 

Government Accounting Standards Board (GASB) Statement 34.  Issued in 2009, GASB 34 

requires utilities to calculate and report the costs of maintaining and improving assets over a 

twenty-year period. To make these calculations, utility managers are given the option of using 

either a historical cost based depreciation model, or a  comprehensive asset management 

program [7]. 

 

The Environmental Protection Agency (EPA) has outlined best practices for asset management. 

The five core framework should determine the current state of assets, level of service, critical 

assets, minimum life-cycle costs, and a long-term funding plan [8].  As part of asset management 

programs and in adherence to GASB 34 standards, much attention is paid to building and 

maintaining information systems with data describing the current state of assets.   Many utilities 

have digitized as-built maps of their water and sewer networks in order to create Geographic 

Information System (GIS) models of the network, in order to keep network maps up to date.  The 

network must be inventoried to account for network age and materials.  The inventory data can 

be stored in the GIS database.  Asset management teams must also maintain data describing 

segment inspections, and maintenance operations including the location, date, and actions taken.   
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The data available through asset management information systems can be utilized to develop 

decision support systems (DSS) for MR&R activities.  These DSS can assist in the planning 

and/or design of pipeline rehabilitation and replacement activities for water and/or sewer 

networks.   Though DSSs all differ in functionality, the most comprehensive decision support 

systems identify pipelines with the highest probabilities of failure, quantify the criticality of 

failure, and identify repair and rehabilitation strategies based on overall risk of pipe segments 

failing.   

 

Recent surveys of utilities by Matthews et al. [9] and St. Clair and Sinha [10] revealed that few 

large utilities, serving hundreds of thousands of consumers, incorporate failure prediction models 

as a part of their DSS’s.  Though many statistical models have been developed and are 

summarized in Chapter 2, utilities are simply not embracing the new technologies and methods.  

The following paragraphs examine possible causes for the low adoption rate of failure prediction 

models among utilities. 

 

First, utilities may not have the necessary data to develop a failure prediction model as specified 

by the literature.  The statistical models are based on the assumptions that pipes of the same age, 

diameter, and material degrade at the same rate.  The differences in failure times for homogenous 

pipe groups is due to outside random factors including pressure surges, loading above the pipe, 

acidity of the soil around the pipe, joint assembly, and many other “explanatory variables” or 

covariates in the stochastic models.  As noted by Wood and Lence [11] instead of trying to 

calculate covariate value, surrogates are used to account for the factors contributing to pipe 
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failure.  For example, classifying a pipe as under a roadway accounts for factors due to increased 

loads on the pipe compared to a pipe that is under a sidewalk.    

 

Many of the models reviewed in Chapter 2 include a significant number of these explanatory 

variables, requiring data that is not readily available for most utilities including direct condition 

assessment data, soil conditions around pipelines, pipe bedding depth and materials.  Even the 

most basic information regarding pipe segment material, installation year, and length can be 

missing from an asset management database.  Since most asset management database are only 10 

to 20 years old, data about pipes installed and possibly repaired prior to the inception of the 

database can often be uncertain.  Additionally, there are no standards for what information 

should be contained in an asset management database.  The need for database standards for 

pipeline asset management has only recently been addressed [12]. 

 

The problem of missing or unknown information has been documented by several researchers 

[13]–[16].  Most approaches rely on excluding assets with missing data from the training data 

set, making an educated assumption, or assigning a median value to the unknown parameter 

based on the known data.  None of these approaches take into account the potential model bias 

due to such assumptions.  Not accounting for this bias leads to uncertainty and lack of 

confidence in failure prediction performance. 

 

The lack of database and GIS model standards has also influenced how one of the most basic 

pipeline properties is stored.  The pipe length stored in asset management databases is often the 

length resulting from digitized as built maps.  This length does not represent the actual segment 
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length in the field.  Many models include pipe length as a covariate, yet the lack of standardized 

definition of pipe length can influence prediction results [17], [18].  The uncertainties associated 

with including pipe length in statistical models could negatively impact the transferability of the 

models.   

 

In addition to missing data, medium sized and small utilities face even more challenges when 

adopting failure prediction modeling.  Such utilities have sparse data with fewer than one 

hundred breaks per pipe material class.  To develop reliable failure prediction models a 

statistically significant sample size of recorded pipe failures is needed, which some estimate to 

be at minimum five years of data [19]. Utilities could be hesitant invest the time and money to 

determine if they can develop statistically significant failure models given sparse data.  

Furthermore, medium and small utilities bring in less revenue that could be allocated for 

maintenance studies including failure prediction modeling.  

 

Few case studies are available that address how to fully utilize failure prediction modeling in 

making asset management decisions. Without demonstrating how the failure predictions can be 

incorporated with risk analyses to make decisions, the benefit of using a failure prediction model 

over a Pareto analysis or multi-criteria decision based method for identifying pipes needing 

MR&R strategies in the presence of data uncertainties has not yet been demonstrated.   

 

Though many researchers have applied optimization tools including linear programming and 

genetic algorithms to develop MR&R strategies  [20]–[23], most have been tested on small 

networks or subsets of networks, with no investigation into the scalability of these models for 
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larger utilities.  None have been demonstrated using a model that accounts for substantial 

uncertainties. Utility decision makers are in need of case studies of easy to implement 

optimization routines that demonstrate how to incorporate failure likelihood and consequence 

analysis into MR&R planning. Additionally, most optimization/scheduling frameworks 

presented do not account for the spatial relationship of identified MR&R projects, which is 

crucial to decision makers planning inspection and rehabilitation activities in geographic subsets 

of the network.   

 

Optimization results presented in literature are a listing of pipes of various lengths scattered 

throughout the utility.  Many utilities do not have work crews that can be dedicated to replacing 

small amounts of pipe across the network.  For larger utilities, this work must be undergo a 

procurement process and be contracted out.  Economies of scale and constraints such as the ones 

listed dictate that most replacement projects consist of replacing at minimum a quarter of a mile 

(0.4 km) of linear feet of pipe.  Optimization methodologies need to be refined to consider this 

constraint. 

 

1.2 Research Goals 

Based on the needs and motivation presented, the proposed research will accomplish the 

following goals: 

 

1. Investigate the impact of uncertainty in failure prediction modeling 

2. Examine the suitability of a model transfer to assist the development of failure prediction 

models for medium and small utilities with sparse data 
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3. Demonstrate how to integrate failure model results into MR&R planning 

1.3 Research Objectives 

The following objectives must be met in order to pursue the research goals: 

 

Objective 1—Calibrate and validate a Weibull Hazard Rate Model (WHRM) that accounts for 

uncertainty in pipeline properties using binary variables and reduces the amount of explanatory 

variables needed by introducing a spatial failure clustering variable.   

 

Objective 2—Develop an Excel-based genetic algorithm optimization tool to determine which 

assets should undergo replacement during a short-term planning horizon.  This algorithm will 

minimize a risk-based penalty function calculated using survival model and criticality 

assessment results. This algorithm will also constrain projects to subsets of the network, that 

better reflect utility operations in replacement programs. 

 

Objective 3—Calibrate and validate WHRMS for medium and small utilities and recalibrate 

parameters using model transfer techniques that explore the contribution of information from 

large utilities.   

 

1.4 Organization of Dissertation 

The dissertation is organized in the following manner: 
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Chapter 2:  Background – This chapter first discusses pipe failure modes, repair actions, and 

replacement activities.  Next, a comprehensive review of statistical models for pipeline failure 

prediction is presented.  Limitations of the models and contributions are discussed. 

   

Chapter 3:  Utility Overview – The three utilities studied in this document are introduced.  This 

chapter includes background information, material composition, and performance statistics for 

each network. 

 

Chapter 4: Comparison of Pipeline Failure Prediction Models for Water Distribution 

Networks with Uncertain and Limited Data – This chapter examines the changes in prediction 

performance when adding parameters to account for uncertainties and the spatial distribution of 

breaks to the widely used WHRM.  Validation and prediction performance results from a case 

study of Utility A are presented. 

 

Chapter 5: Optimization of Maintenance and Replacement Activities for Water Distribution 

Pipes Using WHRM – This chapter provides the methodology for utilizing a validated WHRM 

to optimize maintenance and replacement activities for water distribution pipes based on failure 

risk and hydraulic reliability.  Results of criticality and hydraulic reliability analyses are 

presented.    An optimization routine is presented that prioritizes MR&R activities given budget 

constraints.  This methodology is demonstrated on Utility A. 

 

Chapter 6:  Investigating the Spatial Transferability of Pipeline Failure Prediction Models for 

Medium and Small Utilities – In this chapter, several model transfer techniques widely used in 
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other applications are employed to examine if information from larger, neighboring utilities can 

be used to improve prediction performance for medium and small utilities with limited data.  

WHRMs using the model form described in the previous chapter are developed for Utilities A, 

B, and C. The results of three model transfer techniques from Utility A to Utilities B and C are 

presented.  Recommendations for developing models to prioritize MR&R activities for medium 

and small utilities are presented. 

 

Chapter 7: Framework for Prioritizing Pipe Maintenance and Replacement Activities for 

Small Utilities -- This chapter presents a framework for using clustering algorithms to identify 

high failure rate zones in medium and small distribution networks.  Cluster analysis is utilized to 

examine potential root causes of failure and recommend MR&R activities.  A 

criticality/consequence based prioritization method is introduced and MR&R activities are 

identified for Utility B.   

 

Chapter 8:  Conclusions and Future Recommendations – This chapter presents the conclusions 

from the research, addresses limitations of the work, and provides recommendations for future 

work in the field of study.  
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CHAPTER 2 – BACKGROUND 

 

2.1 Introduction 

This chapter presents the necessary background information to gather an understanding of water 

pipeline failure and MR&R activities.  First, pipeline materials and failure modes are discussed.  

Typical pipeline repair operations are reviewed, and maintenance activities in the form of 

condition assessment technologies are introduced.   

 

A review of models developed for prioritization of MR&R activities is also included.  Though 

multiple model forms are discussed, the focus of the review is on statistical models, with specific 

attention paid to model training and validation.  Case studies of pipe replacement optimization 

methodologies are presented along with a review of utility practice.  The final section discusses 

limitations of the works presented and details how this work compliments the current body of 

knowledge. 

 

2.2 Pipe Materials and Failure Modes 

2.2.1 Ductile Pipe 

Gray cast iron pipe is the most popular pipe material in the United States, comprising over 50% 

of the total US water main network [24].  Some of the earliest cast iron pipe in the U.S. was 

installed in the 19th Century and remained popular until the 1970’s, when the popularity of 

ductile iron pipe grew.   The root cause of failure in ductile pipes is excessive forces acting upon 

the pipe in the forms of internal pressure, bending, soil movement, and thermal expansion due to 

differences between the temperature of the water pipes and the surrounding soil or the pipes and 
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joint mechanisms [25].  Table 2.1, adapted from [26] shows failure modes and mechanisms for 

ferrous and PVC pipes considered in this study.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The failure modes observed amongst ductile pipes are blowout holes, circumferential cracking, 

bell splitting, longitudinal cracking, bell shearing, and spiral cracking.  Blowout holes  

Table 2.1 Failure Modes and Mechanisms  

Failure Mode Failure Mechanism Material 

C
ra

ck
in

g
 

Circumferential Bending moments applied to the pipe and soil 

movement which produce tensile forces on pipe 
All 

Longitudinal Internal water pressure, crushing and 

compressive forces acting on pipe 
All 

Spiral Pressure surges and/or combination of bending 

forces and internal pressure 
All 

Mixed Combination of stresses All 

Ring 
Axial tension, bending, traffic load, settlement, 

uplift, production, fatigue, residual stresses, 

temperature, and frost 

PVC 

Axial Internal pressure, bending, traffic load, 

production, residual stresses, and frost 
PVC 

Irregular Environmental such as chemical, UV, and stress 

cracking 
PVC 

F
ra

ct
u

re
 

Circumferential Bending moments applied to the pipe and soil 

movement which produce tensile forces on pipe 
All 

Longitudinal Internal water pressure, crushing and 

compressive forces acting on pipe 
All 

Spiral Pressure surges and/or combination of bending 

forces and internal pressure 
All 

Mixed Combination of stresses All 

B
u

ck
li

n
g

 

Axial External pressure, axial compression, 

temperatures, fire, and interventions 
PVC 

Transverse/ring 
External pressure, axial compression, 

production, residual stresses, temperatures, fire, 

and interventions 

PVC 

Non-symmetric Longitudinal bending and brazier effect PVC 

Longitudinal Axial compression and thermal effects PVC 
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are caused by corrosion pitting which causes wall thinning.  Eventually, the pressurized water 

exceeds the strength of the thin pipe wall and a hole is formed.  Circumferential cracking, the 

most common failure mode for pipes less than 14 inches, is caused by bending forces or tensile 

forces due to soil movement [25].  Another very common failure mode for small diameter cast 

iron pipes is bell splitting.  Bell splitting is primarily found in pipes installed in the 1930’s and 

1940’s when leadite, a sulphur-based jount-sealing compound was utilized to create joint seals at 

bells..  The failures occur due to the difference between the coefficient of thermal expansion in 

the joint-sealing compound and the metal in the pipes.  In cold temperatures, the leadite expands 

differently than the cast iron pipe, causing splitting at the bell.   

 

Large diameter ductile pipes are subject to longitudinal cracking [25].   These failures 

characterized by cracks that propagate along the length of the pipe wall are caused by increases 

in a combination of internal forces due to water pressure and external forces due to loading 

conditions above the pipe such as traffic.  In some cases, longitudinal cracking can be seen on 

opposing sides of the pipe resulting in more expensive repairs [25].    

 

Medium diameter ductile pipes are also subject to an additional type of pipe cracking called 

spiral cracking, in which the pipe crack propagates as a coil around the pipe.  Again, this type of 

pipe failure is caused by bending and internal and external pipe forces [25].    

 

2.2.2 PVC Pipe 

The 1970’s saw a transition to the use of Polyvinyl chloride (PVC) pipe because it was cheaper 

to buy, transport, and install than ductile pipes [27].  Another benefit of PVC is that it does not 
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corrode like ferrous pipe.  The material composition of PVC make it more brittle than ductile 

pipes under certain conditions, but also more prone to bending and flexure.   A study of PVC 

pipe used for gas distribution showed that manufacturing flaws and installation practices 

contributed the most of PVC pipe failures [28].  With respect to installation practices, pipes left 

out in the sun too long prior to bedding are subject to chemical breakdown, degrading the 

structural integrity of the pipe.  Contractors must also be careful in bedding pipes to make sure 

that the pipe does not like on large, sharp rocks, which could eventually rupture the brittle pipe.  

An additional cause of pipe failure due to installation of PVC pipe is over insertion at the pipe 

joint, where the spigot joint is inserted too far into the bell, causing fracture [29].  

 

The elastic properties of PVC also make it susceptible to rupture due to cyclical pressure 

loadings in the pipe, also known as “water hammer” [30]. Though most PVC pipe was installed 

in the 1970’s, researchers are still working to improve hydraulic calculations to quantify the 

impact of pressure hammer for design purposes [31]. 

 

There are many different mechanisms for similar failure modes.  In order to truly capture pipe 

failure mechanisms, the long-term operational and environmental information regarding the 

specific pipe segment must be known.  Information gathered during pipe repair can assist in 

determining failure mechanisms. 

 

2.3  Pipe Repair 

Each utility has operating procedures for addressing water main breaks.  The following is a 

summary of the standards operating procedures for pipe replacement for Utility B in this study 
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[32].  At the instance of a break, a work order is placed for the repair work to be done.  This 

work order is tracked using a spreadsheet, database, or more advanced computerized 

maintenances management software (CMMS).  

 

After initializing the work order, the work crew is dispatched to repair the pipe.  The crew 

gathers information about the pipe including material, size, upstream valve location, and 

downstream valve location.  On occasion the appropriate valves are difficult to locate in the 

field.   Valve closure requires precision in order to avoid pressure surges and losses in other parts 

of the network. The information about the network is often distributed to crews via paper maps, 

or sometimes digitally with mobile GIS maps.  

 

Once information is gathered, the crew begins actions to repair the pipe.  First, failure site needs 

to be excavated in order to expose the pipe.  In some cases, this involves cutting into a major 

road, and diverting traffic.  After the pipe is exposed, the break type should be identified and an 

appropriate repair method selected. Pinhole failures and short longitudinal cracks can often be 

fixed with a repair clamp, while other failure modes require replacement of the pipe section.  

When replacing a pipe section, water must be turned off and customers affected should be 

notified.  Bypass pumping can be enabled when redundant lines are available to limit the 

customers affected by outages.   The damaged section of the pipe is removed and a new pipe 

segment is installed.  The line is sterilized and water is turned back on.  The pipe then undergoes 

pressure testing and the water is sampled for chlorine and bacteria.  Lastly, the trench is 

backfilled and pavement/surface restoration is performed. 
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The costs of pipe repair are dependent upon the location of the failure and the type of failure and 

material.  For example, a pipe break under a major road has greater economic impact than one 

that occurs under a grassy surface. Pavement repair can add significant direct costs, and diverting 

traffic adds to societal costs of failures.  A study of large utility main break repairs revealed that 

societal costs accounted for half of all costs of repair [2]. The authors state that for large diameter 

pipes, location and the amount of potential water losses are the driving factors of failure costs.   

 

2.4 Pipe Maintenance 

Maintenance activities can be performed to mitigate the risk of pipe failures.  Specifically, 

condition assessment can be performed to try to assess the current state of the pipe and predict 

the future condition.  A focus has been placed on non-destructive indirect condition assessment 

techniques, as they are less costly than alternative, destructive methods.  Common indirect 

condition assessments include smart ball acoustic technologies, electromagnetic, and ground 

penetrating radar [12]. Grigg [33], asserts that the limitations of condition assessment 

technologies are economical, not technological.  Due to the expense associated with these 

technologies, they are not used on the entire network and instead utilized on a site-specific basis.  

Additionally, more training and information is needed to help interpret condition assessment 

results to make meaningful asset management decisions, especially with respect to pipes that 

could result in catastrophic failure.  A chart used by consultants at CH2M HILL to screen 

candidate condition technologies is shown in Table 2.2.  Note that many other technologies exist, 

and this is just a summary of some of the most widely used. 
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Table 2.2:  Condition Assessment Technology Screening Tool (Courtesy: CH2M HILL) 
 

Tier 1 1 1 1 1 1 
Technology Pressure and Flow 

Monitoring 
Soil Survey and 

Corrosion Analysis 
Guided Wave Infrared thermal Ultrasonic Acoustic Emissions 

Pipe Service 
Condition 

In Service, Pipe Full In Service, Pipe Full In Service, Pipe Full In Service, Pipe Full In Service, Pipe Full In Service, Pipe Full 

Pipe Material Metal and Concrete Metal and Concrete All All Metal Concrete (PCCP) 
Variable 
Detected 

Service Pressure 
and Flow 
Condition 

Corrosion 
Potential 

Remaining 
Wall 

Thickness 

Leak Detection Remaining Wall 
Thickness 

Active Failure in 
Prestressing Wires 

Technical Maturity High Mid Mid Low Mid Mid 
Inspection Level Survey Level General Details General 

Details 
Survey Level Specific Details Survey Level 

Cost Range <$1/ft <$1/ft <$10/ft <$5/ft NA <$20/ft 
Pros Establishes 

Criticality of 
Pipeline and 
Current 
Performance 
Requirement 

Provide 
Detailed 
Knowledge of 
Risks from 
Corrosives Soils 
and Stray 
Currents 

Can Inspect 
Segments of Pipeline Rather Than Discrete Points 
 

Remote Sensing 
Method - No 
Access Needed 
or operational 
Disruption 

Gives Detailed 
information of 
Pipe Wall 
Thickness 

Can Locate 
Specific Wire 
Breaks 

Cons Temporary 
Flow 
Measurement 
Can Be 
Access 
Issues 

Not a Direct 
Inspection of 
Pipeline Conditon 
Establishes Risk 
Factors 
Only 

Access Pits 
Needed; Follow 
up Inspection 
May be Needed 
at Specific 
Defects 

Misinterpretation 
of Data - Voids 
or Leakage may 
be from Other 
Sources 

Specific Only to the 
Location Tested 

Long-Term 
Monitoring 
Strategy 

 

 

 



17 

 

With many condition assessment options available, researchers have developed decision support 

tools to evaluate the cost trade off and value of information provided by condition assessment 

technologies.  Osman et al. [34] demonstrated the use of a partially observable Markov decision 

process and genetic algorithms to optimize the type of condition assessment technology and 

inspection interval for water distribution pipes in a Canadian utility based on value of 

information analysis.  Kleiner [35] presented a decision support system for scheduling both 

inspection and renewal of large water distribution mains.  This markov transition based decision 

tool considers the cost of inspection, the cost of preventative maintenance and the cost of 

replacement.  This tool has only been demonstrated as proof of concept, and needs further 

refinement to be utilized by utilities. 

 

With the options to replace or inspect assets, and the varying value of information gained from 

condition assessment technologies, a resource allocation problem is presented.  Utilities need an 

assortment of models to prioritize MR&R activities, and decision support tools are needed to 

optimize assessment technology usage and replacement activities.  Models to predict pipe failure 

rates and condition state are needed to help solve this resource allocation problem. 

 

2.5 Water Pipeline Failure Prediction Models 

Historical records for water main repair work orders can be synthesized with GIS data to develop 

failure prediction or survival models for prioritizing pipe replacement and maintenance activities.  

The following sections summarize pipeline failure/condition prediction models by model form.  

The model forms considered are deterministic, statistical and machine learning. The review of 

statistical and machine learning models includes subsections devoted to model calibration and 
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model validation.  A section devoted to utility practice describes the models currently being 

utilized by large utilities. Limitations and recommendations derived from the literature review 

are discussed at the end of this section. 

 

2.5.1 Deterministic 

Comprehensive reviews of deterministic models have been provided by St. Clair and Sinha [10], 

and Rajani and Kleiner [36].  The models are either mechanistic, empirical based or both.  The 

long-term mechanical performance of the pipe is related to known parameters describing the 

pipe’s physical characteristics, operational characteristics, and the environment around the pipe.  

The amount of data and computational effort required for deterministic models limits their 

application.  Though they can provide a more accurate prediction of the long-term performance 

of a pipe, they are generally reserved for large-diameter pipes where more properties are known 

or can be gathered using direct condition assessment techniques [36]. Also, many of the physical 

models based on experimentation are site-specific and cannot be applied in other areas of the 

network [10].  The regional adoption of these models would not be appropriate.  Moreover, these 

models are not appropriate for utilities that lack basic data describing the physical and 

environmental characteristics surrounding water pipes 

 

2.5.2 Statistical 

A review of statistical models presented in literature over the past ten years was written by St. 

Clair and Sinha [10] . The authors summarize model form and data requirements, but did not 

explicitly outline model training and validation techniques.  The following section reviews many 

of the models reviewed by St. Clair and Sinha and includes more models which were not 
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included and potential published after the review.  This work differs from that of St. Clair and 

Sinha as the analysis of the models specifically considers how researchers evaluated and 

validated model performance. 

 

Model Description:  Le Gat and Eisenbeis [37] introduced a model for estimating the survival of 

pipelines using maintenance records.  The model used is a parametric Weibull Proportional 

Hazard Model (WPHM). The WPHM is able to account for left truncated and right censored 

data, which is typical of most maintenance records for utilities.  Failure times and explanatory 

variables are used to produce survival curves for pipe cohorts based on material.  The model is 

demonstrated on two utilities in France, which vary in size, number of recorded failures, and data 

available describing pipe characteristics and environment.   

 

Training and Validation:  For each utility, one year of data was reserved for validation 

comparisons, and the remaining data was used to train and parameterize the models.  Parameter 

significance was determined using p-tests.  Two methods were used to evaluate the model 

results.  The predicted failures and the observed failures for the validation data were presented.   

The alternative validation metric is a rank order chart.  To perform this validation routine, first 

the pipes are divided in quantiles with respect to number of predicted failures.  The total 

observed and predicted failures are summed for each quantile and compared graphically.  

 

For the larger utility, the model over predicts the total number of failures for all pipe materials.  

The percent difference from observed versus predicted failures ranges from 8% for the pipe 

cohort with the most observed failures to 46% to the pipe cohort with only 5 recorded failures.   

The model for the smaller utility with an older accident database significantly over predicts 
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failures up to 2 to 2.5 times the observed failures.  The authors argue that though the models over 

predict failures, the rank order quantile charts show that the models fairly accurately identify the 

highest risk pipe groups, and can be used for project prioritization. 

 

Model Description:  Park and Loganathan [38] introduce a threshold break rate equation for 

determining the economically optimal time to replace a pipeline with respect to the number of 

observed failures and the cost of repairs, replacement, interest, and inflation.  In a companion 

paper [39], the authors demonstrate how to optimize pipeline replacement by equating failure 

prediction models to the break rate threshold calculations.  The failure models considered are 

linear and exponential break rate models with a Weibull-based Rate of Occurrence of Failure 

(ROCOF) model.  ROCOF curves are commonly used for repairable systems and are based on 

counting functions that track the cumulative number of failures.  

 

The optimum time for replacement is solved by setting the failure models equal to the break rate 

threshold equations.  Examples are presented for three data sets using the Weibull-based ROCOF 

model.  A methodology is presented for determining optimal replacement without relying on 

maintenance record databases.   

 

Training and Validation:  In a similar paper, validation of the example problems are presented 

by comparing empirical data with fitted Weibull ROCOF curve [40].  The authors do not provide 

information on model training. 

 

Model Description:  Pelletier et al. [41] demonstrate a survival model for use with utilities with 

limited break histories, with respect to overall network age.  The time to first failure is fit to a 
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Weibull distribution, and the time between failures is modeled with an exponential distribution.  

The model is demonstrated on three utilities in Canada.  The model is used to forecast future 

failures and investigate the impact of increasing replacement rates on long-term network 

reliability.   

 

Training and Validation:  The observed failures were plotted with against a simulated failure 

curve, and the R-squared values were computed.  The R-squared value presented was low, less 

than 0.4, which the authors contribute to model simplicity, lacking explanatory variables for pipe 

failure, and the overall randomness of pipe ageing aging and failure.  The authors argue that the 

low R-squared value is not indicative of the utility of the model, which can reconstruct pipe 

histories and capture the pipeline ageing trend. 

 

Model Description: Vanrenterghem-Raven et al. [42] investigated the risk factors for pipe 

degradation in New York City using a Cox Proportional Hazard Model (CPHM) and a Weibull 

Hazard Rate Model.  The model includes discrete, continuous, and categorical variables. The 

importance of each parameter is first determined by training a CPHM with one parameter at a 

time.  Next, a CPHM is trained with the determined significant parameters.  The hazard ratio for 

each parameter is calculated to identify the importance and interdependencies of the parameters.   

 

A WPHM with parameters identified as significant from the test above is used to predict long 

term network performance and investigate the impact of new repair and replacement strategies.  

The percentage of breaks avoided is reported with respect to varying replacement rates.   
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Some of the data sources were uncertain, and some materials were assumed given installation 

year.  The impacts of the assumptions were not considered. 

 

Training and Validation:  The maintenance database spans 20 years.  17 years of data are used to 

train the WPHM, and the remaining 3 years are used to validate the model.  Two validation 

metrics are presented. First the observed breaks are compared to the predicted breaks, and an 

overestimate percentage is computed.  The lowest percent difference reported is 11 percent while 

the highest is over 120%.   

 

Model Description: Rogers and Grigg [15] introduce a failure modeling schema that differs 

based on the number of recorded pipe breaks.  A power law Non Homogenous Poisson Process 

(NHPP) is used to model future failures for pipes that have experienced three or more breaks.  A 

separate model is developed for each pipe.  An NHPP model will not converge with fewer than 

three recorded pipe breaks, as the scale parameter in the denominator of the function has a 

tendency to reduce to zero, so an alternative prioritization method is introduced.   

 

For pipes with fewer than three breaks, a multi criteria decision analysis (MCDA) model is used.  

The MCDA model uses a weighted scoring system to rank and prioritize pipes for replacement.  

Risk factors considered in the MCDA analysis include break rates, age, diameters, bedding type, 

and pressure.   

 

Two case studies of model implementation were presented for Colorado Springs, with a 

population of 400,000 and 1800 miles (2,900 km) of pipe and Laramie, CO, with a population of 
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30,000 and 19 miles (30 km) of pipe.  Data quality issues including missing installation dates, 

lack of soil and pressure data, and duplicate pipe identifiers were discussed.   

 

Few pipes had three or more recorded failures, less than 0.04% for Colorado Springs and 2% for 

Laramie, limiting the failure prediction models.  Additionally, only the pipes having experienced 

failures underwent multi-criteria decision analysis, which represents only 1% of Colorado 

Springs’ network and 8% of Laramie’s.  The utility of the model for prioritizing projects where 

failures have yet to occur was not demonstrated. 

 

Training and Validation:  Information is not provided regarding the reservation of data for 

validation purposes.  For pipes experiencing three or more failures and modeled using a NHPP, 

the R-squared statistic for each pipe is computed.  For Colorado Springs, R-squared values 

ranged from 0.68 to 0.89 with a mean of 0.75, and for Laramie R-squared values varied from 

0.66 to 0.94 with a mean of 0.78.   

 

The MCDA technique is subjective and can only be validated using expert opinion and historical 

records.  For the Laramie model, which lacked soil and pressure information, over 20% of the 

pipes undergoing MCDA received the same risk score.  Such groupings make it difficult for the 

decision maker to prioritize and rank pipes and projects. 

 

Model Description: Wood and Lence [11] introduce a model for use with small and medium 

utilities.  Data mining is used to subgroup the asset database with respect first to material and 

then to pipe installation year. Another set of subgroups were formed first with respect to material 

and then diameter.  For subgroups with two or more failures, time-linear and time-exponential 
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deterministic statistical models were developed to estimate the cumulative annual failures of the 

subgroup.   

 

This modeling procedure was investigated using data from Laity View, a geographical area 

which accounts for approximately 13% of Maple Ridge, British Columbia.  For most every 

subgroup, the time-linear model predicted failures more accurately than the time-exponential 

model, with the exception being cast iron pipes.  The authors also concluded that additional 

information describing the pipe environment such as soil conditions is beneficial but not 

necessary to develop a useful model. 

 

Training and Validation:  Twenty years of data was available for Maple Ridge.  The authors 

reserved the most recent five years of data for validation purposes.  The model was calibrated 

with the remaining fifteen years.  The percent difference for the observed versus predicted 

failures for the validation period was presented.  For the time-linear models, R-squared statistics 

were calculated.  R-squared values ranged from 0.63 to 0.94 with means around 0.8.   

 

Model Description: Alvisi and Franchini [43] compare the prediction performances of a  

Weibull-Exponential-Exponential (WEE) models and a Weibull Proportional Hazard Model 

(WPHM)  using data from a utility in Italy.  Ferrara, the utility observed, has less data available 

than the utilities used to introduce the original models.  The WEE model selected does not 

include explanatory variables.  Because of limited utility data, the only parameters considered for 

the WPHM are pipe length, age, and diameter.  Separate models are created by stratifying data 

by material and installation period.   Though both models produced acceptable results, researcher 

observed that the performance of the WEE model is influenced by stratification. Also noted, the 
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WEE model, lacking in explanatory variables, is less useful when planning rehabilitation 

activities over an extended horizon, as it does not account for possible changes in pipe 

properties, such as replacing smaller diameter pipe with larger diameter. Since the WPHM model 

includes covariates, the model can account for such changes. 

 

Training and Validation:  No information is provided as to if data was reserved for training or 

validation.  The validation technique used was a comparison of both the observed total number 

of breaks and total number of broken pipes to the mean predicted breaks and broken pipes.  

Models were judged as acceptable when the observed value fell within one standard deviation of 

the mean predicted value. 

 

Model Description:  Carrión et al. [44] present a survival model that is based on a modified 

semiparametric Cox proportional hazard function that is better suited for managing data that is 

left truncated and right censored.  A modified extended Nelson-Aalen estimator is used to 

formulate the hazard function.  The Nelson-Aalen estimator was originally introduced to handle 

right censored data, replacing a non-parametric maximum likelihood estimator.  The Nelson-

Aalen estimator was later extended to also manage left-truncated data.    

 

A case study of the survival function estimated using the extended Nelson-Aalen estimator was 

presented for a Spanish Mediterranean city with 330,000 residents.  The pipe records extend five 

years with over 1,400 failures documented.  Over 93% of the data is right censored.  The 

parameters required in the model are the calculated left truncation time, the failure or censor 

time, and censor status.  Non-parametric survival models are generates for all pipes, and then 

later stratified based on material, diameter, length, and traffic above the pipes.   To evaluate the 
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impact of parameters on survival, a semiparametric Cox Proportional Hazard model was 

implemented.  The authors concluded that for the data presented, longer pipes with larger 

diameters under sidewalks were least likely to fail. 

 

Training and Validation:  No information is provided as to if data was reserved for training or 

validation.   Parameter significance was determined using p-tests.  Also a several checks were 

conducted on the training parameters, including Cox-Snell residuals to assess if the parameters 

vary over time and deviance residuals to identify outlier data.  Comparisons of predicted 

compared to observed failures were not presented. 

 

Model Description:  Debón et al. [14] compare the results Cox proportional hazard model 

(CPHM), Weibull accelerated lifetime model and Generalized linear models (GLM) estimated 

for a medium-sized Spanish city.  Models were developed for pipes installed after 1940.  Models 

were not stratified by material cohort, as material is a parameter in the models.   

 

Comparisons are first made by analyzing the regressions coefficients for the three models.  The 

significance of the material parameter varies across all three models.  Parameter significant was 

determined using p-values.  Polyethylene pipes are only found significant in the GLM.  

 

Next, the true and false positive rates for the CPHM and GLM in order to compare the hazard 

rate predictions for the models.  ROC curves for both models are graphed using these values.  

The area under the ROC curves (AUC) were calculated to estimate the expected overall 

performance of the models.  The results of the analysis show that the GLM is the better model as 

it tends to generate more true positives than the CPHM, and has a larger AUC value.   
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Training and Validation:  No information is provided as to if data was reserved for training or 

validation.  The validation metrics presented are the ROC curves and AUCs described above. 

 

Model Description:  Kleiner and Rajani [45] introduce a Zero-Inflated Poisson (ZIP) process to 

model pipe failure, which accounts for the problems exhibited from using a non-homogenous 

Poisson process with typical utility data.  Because pipes do not experience breaks every year, and 

a small percentage of pipes actually fail, the counting process for break rates includes many 

zeros, which cannot be expressed by a non-homogenous Poisson process.  The zero inflated 

Poisson process results in an additional regression parameter used in the model.  The model also 

includes time-dependent covariates including rain deficit and freezing indices. 

 

The model was demonstrated using data from a utility in Western Canada.  Only 150mm 

diameter cast iron pipes installed between 1956 to 1960 were considered in the model.  The 

model was successful in predicting the total number of breaks and breaks per year, but was 

unsuccessful in predicting number of breaks per pipe.  The model still can be used to statistically 

rank pipes for rehabilitation and estimate the impact of explanatory variables on pipe failure.   

 

In a later paper, Kleiner and Rajani [46] compare the NHPP to three other models to predict 

failures in individual pipes.  Two data mining models are considered and two regression models.  

The first data mining model considered is an ordered lists model in which lists are created 

ranking pipes based on covariates such as number of previous observed failures,  pipe length, 

and accident scatter.  Weights are assigned to each covariate as described by the lists.  An 

aggregation function is used to find a composite score for each individual pipe.  The pipes are 
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then ranked by composite scoring and then compared to a list containing pipes with the highest 

number of breaks.  Next the best set of covariate weights are determined using a genetic 

algorithm in order to maximize the number of hits, or pipes contained in both the composite 

score ranking list and highest number of pipe breaks list.   

 

The next model considered is a Naive Bayesian Classification (NBC) Model that partitions data 

into classes and determines the probability of a pipeline being in a certain class given a set of 

covariates.  The likelihood ratios (LR) for the pipes is computed and the pipes are ranked by LR 

values.  The highest ranking pipes are compared to the list of pipes experiencing the most breaks, 

and a genetic algorithm is used to find a set of class limits that maximizes the number of pipes or 

hits contained in both lists.  

 

The third model considered is a logistic regression model which determines is a pipe is contained 

in the list of high failing pipes based on sets of independent covariates.  The set of covariate 

coefficients is determined by using the maximum log-likelihood method. 

 

Training and Validation:  The models were trained on 40 years of data and validated with the 

most recent 5 years of data.  Several validation metrics were presented.  First, the cumulative 

number of breaks observed and predicted for the training and validation periods were presented.  

Next, a pipe-dimension and time-dimension coefficients of determination were introduced and 

computed.  The coefficients are similar to R-squared statistics, but the observed versus predicted 

data is aggregated by pipe and year. A pipe-dimension coefficient of 0.43 was presented and a 

time-dimension coefficient of 0.61 was reported. 

 



29 

 

Model Description: Park et al. [47] investigate time-dependent parameters that influence pipeline 

failure, using a proportional hazards model.  Survival models were developed for 150 mm cast-

iron pipes in a study area in the U.S.  The pipe size was chosen because it represents a majority 

of pipes within the network.  The pipe inventory was divided into survival time groups (STGs) 

based on the number of previously observed pipe failures.  Survival models were estimated for 

each STG. 

 

To investigate the impacts of parameters on pipe failure rates, several studies were performed 

prior to estimating the final survival models.  First, the time-dependency of each covariate 

considered in the models was examined using a scoring process based on Schoenfeld residuals.   

 

Next, non-parametric baseline hazard functions were estimated for each STG.  When the log-log 

transformed values of the baseline survival function were linear, a Weibull parametric model was 

assumed.  LOESS regression models were fitted to STG baseline hazard models in which failure 

times did not fit a Weibull distribution.  The survival functions were estimated by multiplying 

the resultant baseline hazard functions with the exponential covariate functions.   

 

The estimated survival times for each STG shows a decrease in failure time as a pipe segment 

undergoes multiple failures.  This pattern is in line with the common bathtub shaped curve of 

infrastructure degradation, when at the tail end of an asset’s life, the failure probability with 

respect to time increases exponentially.  The authors ascertain that the model presented can be 

used by decision makers allocate funds for maintenance, repair and replacement by knowing the 



30 

 

conditions that increase failure probability, and knowing the break number at which a pipe enters 

the tail end of the bathtub curve, and future breaks occur more frequently.   

 

Training and Validation: No information is provided as to if data was reserved for training or 

validation.  In addition to the checks performed on the covariates considered in the models, 

deviance residuals were calculated to investigate the difference between the observed failures 

and the expected failure times.  Two of the six models had deviance residuals exceeding an 

acceptable level.   

 

Model Description:  Malm et al. [48] use Herz and Weibull based survival models to investigate 

replacement rates for water pipes in a large utility in Sweden.  The authors examine training 

survival models using pipe data for the entire age of the network, over 100 years, and training the 

models using replacement data, which only spans 14 years.  An equation is presented that relates 

the replacement rate for future decades to the survival function values at a specific time.  For the 

first scenario, residual pipe length, which is the percentage of the original pipe length for a 

certain decade that remains at a later time, was the input data for the models.  For the second 

scenario, where more specific replacement data is known, the replacement rate for the decades 

prior to 1990 is extrapolated from the data spanning from 1991-2005.  Survival curves are 

calculated using the extrapolated data. 

 

The survival functions based on Alternative 1 tend to result in higher replacement rates for both 

failure models.  The survival functions for Alternative 2, based on the extrapolated 15 year 

rehabilitation data, showed lower replacement rates.  Alternative 2 assumes pipe replacement is 

due to degrading condition and not due to city planning activities that occurred as the network 
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developed.  The survival curves fit Alternative 2 data better than Alternative 1 data based on R-

squared value, showing that survival curves fit data best when it is conditioned on condition 

based rehabilitation that does not account for city planning/development based rehabilitation 

decisions . 

       

Training and Validation: No information is provided as to if data was reserved for training or 

validation.  The validation metric used was computed the R-squared value for the survival curve 

plotted on a histogram chart of installation decade versus residual pipe length. 

 

Model Description:  Martins et al. [49] compare three stochastic models for predicting water 

pipeline failure.  The models considered are a single-variate Poisson process, a Weibull 

accelerated lifetime model (WALM) and a Linear extracted yule process (LEYP).  The 

prediction performance of each model was compared using data from a Portuguese water utility.  

The Poisson process model presented predicts the failure rate for all pipes within a categorical 

grouping based on material, diameter, and age.  The failure rate is the number of failures divided 

by the sum of the product of pipe length and observed failure time.  After predicting the length-

dependent failure rate, maximum likelihood estimation is used to compute the expected number 

of failures for individual pipes within a time period. 

 

The WALM is based on the WPHM presented by Le Gat and Eisenbeis [37], with some added 

improvements.  First, a variable is introduced that accounts for the time between the start of the 

observation window or asset management database, and the last recorded failure.  The survival 

function is altered to include this variable so that the time to failure follows the appropriate 

distribution.   
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The next improvement is considered is how to address time dependent variables such as pipe 

age.  Instead of using age as a covariate, which the author suggests will not impact the 

distribution of failure time when a pipe does not fail, segmenting the data into pipe age groups is 

investigated.  The results of implementing this method did not result in significantly better or 

worse prediction performance.   

 

The final improvement recommended is related to generated failure time distributions for 

subsequent failures.  A binary covariate is used to address if a pipe has failed in the past or not.  

This method replaces using the number of previous failures or log of number of previous failures 

as a continuous variable.  The author suggests that the recommended parameter will help insure 

that Monte Carlo simulations will not enter an infinite loop, as often the time to next failure 

decreases exponentially. 

 

The LEYP model was originally introduced by Le Gat [50] is based on a pure birth Yule process, 

but adapted to better process failure data.  The basic yule process assumes a Markov property, 

that there are at most one failure at a time, and the distribution of failures follows some 

geometric process.  The LEYP builds upon the Yule process and is a special case of a Non 

Homogeneous Birthing Process (NHBP).  The LEYP assumes the intensity function can vary 

with time, and the distribution of failures is a continuous extended Negative Binomial. Lastly, 

the intensity function can built on the Weibull power law, so that the function is based on pipe 

covariates.  The parameters of the LEYP are estimated using the maximum log-likelihood 
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method.  The authors simplify the likelihood function to prevent computational problems 

associated with functions exceeded machine precision for high values of failure time.   

 

The models were all tested using data from a Portuguese utility with over 360 km of pipe, 

primarily asbestos cement, high-density polyethylene (HDPE) and polyvinyl chloride (PVC).  

The material breakdown is worth noting considering HDPE and PVC pipes do not follow 

standard deterioration/corrosion processes like cast iron or ductile iron pipes.  The failure rate for 

these materials is based less on simple decomposition rate and more so on random processes that 

contribute to failure such as poor construction, increased loadings, poor material quality, and 

pressure surges.   

 

Using multiple comparisons described below, the WALM performed better than both the LEYP 

and the single-variate poisson process.  The authors presents how to use the predictions from the 

three models to examine replacement rate scenarios for the network that minimize long-term 

costs of ownership due to deferred maintenance. 

  

Training and Validation: Both temporal and random division methods of selecting training data 

were used.  For the temporal method, the most recent three years of data are reserved for model 

validation.  For the random division method, 50% of pipes are selected at random to be used for 

training, and the remaining 50% is used for validation.   

 

Several comparisons are performed to validate the model.  First, the rank order quantile method 

introduced by Le Gat and Eisenbeis [37] is used to compare observed and predicted failures for 

classes of pipe.  Using this validation metric, the WALM performed better than the poisson 
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process, while the LEYP over predicted failures in the highest risk quantile.   This over 

estimation was only observed when temporal division rather than random division was used to 

select training points.  Yet, the overall prediction accuracy of the WALM and LEYP are reduced 

when random division is used.  

 

Next, a mean absolute error term was computed which normalizes the difference between 

predicted and observed failures based on the number of pipes evaluate in the material group.  

The WALM had the least error of the three models presented. Using the random division 

method, the absolute error term for all models increased.  

 

In the related dissertation, ROC curves are also presented showing that the WALM out performs 

the other models.  Also, charts showing the mean expected failures for the test sample of pipes 

which was divided into groups based on number of observed failures are presented.  Using this 

validation metric, the LEYP performed better than the other models by predicting the most 

failures for pipes experiencing four or more failures.  The LEYP model along with the other two 

models over predicted failures for pipes not experiencing failures.  This was observed for both 

division methods for training data. 

 

Model Description:  Toumbou et al. [51] build upon the work of Pelletier et al. [41] and 

introduce a Weibull-Exponential-Exponential (WEE) pipeline failure model.  The time from first 

failure to second failure is modeled using a Weibull distribution.  The time from the second to 

third break is modeled using an exponential distribution, and the time to subsequent breaks is 

modeled using another exponential distribution.  Unlike Pelletier et al. [41], the model presented 

includes pipe diameter and length as parameters in the survival model.   
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The model is demonstrated on a small city with less than 115 miles (185 km) of pipe.  Three 

modeling scenarios are considered.  First, the model is calibrated with covariates describing pipe 

diameter and length.  Next, the model is calibrated without parameters.  Lastly, pipes are group 

by diameter size, and models are calibrated for each sub group.  

 

Analysis of the failure forecasts for all three models indicates that the inclusion of covariates has 

little impact on failure prediction for the duration of the training data.  With respect to long-term 

forecasts, the model without covariates predicts more failures than the models based on diameter 

grouping and the model with covariates.   

 

Training and Validation:  No information is provided as to if data was reserved for training or 

validation.  The validation metric presented is a chart showing the estimated failure curve and the 

observed cumulative number of annual failures.  An R-squared statistic is not provided. 

 

2.5.3 Spatial Models 

Only in the most recent years have researchers started to focus utilizing the spatial distribution 

and clustering of failures as decision tools to pipe MR&R prioritization.  These models are 

quicker and cheaper to implement, easy to interpret, and provide value for top level assessment 

of network risk.  The following summarizes spatial-based models with a focus on clustering 

methods. 
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Oliveria et al. [52] investigate the density of breaks in water distribution networks.  A spatial 

search algorithm is used to find subsets of the network where the break rate is higher.  This 

comparison is made by computing a likelihood ratio, with the null hypothesis being that the 

break rate is homogenous across the network.  A novel algorithm that relies on the kth nearest 

neighbor to define a rectangular search window, S, based on the point locations of breaks is used 

to detect potential areas where the break rate is elevated.  The null hypothesis requires the break 

rate for the entire network to be computed.  The underlying failure probability model is 

investigated, and null hypotheses are computed using a homogenous poisson process, a NHPP 

adjusted for age, and an NHPP adjusted for pipe diameter, since both age and diameter can 

influence break rate.  The alternative hypothesis was computed by calculating separate break 

rates for all pipes within the search window and pipes outside of the search window.  The new 

search algorithm for clustering was successful in identifying clusters of pipe failures.  A brief 

section is included in which explanations for the increased break rates are investigated.   

 

Oliveria et al.(b)[53] introduce an algorithm for determining clusters of pipeline failures within 

water distribution networks.  The model is an extension of the very common DBSCAN 

algorithm [54], which is a clustering algorithm that relies on an input of a minimum number of 

points to define a cluster.  Similar to the OPTICS [55] clustering algorithm, a second parameter 

describing the minimum distance between two failures is used to also define clusters.  Using 

these two parameters, core points within potential clusters are identified.  The OPTICS algorithm 

is improved in the method of selection of the next point to re-start the algorithm.  Instead of 

restarting the cluster search algorithm at a random point, the algorithm is re-started at the closest 
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point to the last analyzed point in order to reduce uncertainties and potential bias associated with 

the starting point of the cluster search.   

 

The cluster search algorithm summarized above was demonstrated on a sample network, and the 

impact of explanatory variables on clusters is investigated.  The statistics for pipe diameters and 

materials for clusters are compared.  Additionally, the break rate for the clusters is compared to a 

global break rate.  Finally, a variable called betweeness was computed for pipe clusters and 

groups based on explanatory variables.  A high betweeness score indicates that when a pipe is 

disturbed, extra loads will placed on other pipe segments in close proximity to the pipe.  The 

authors indicate that betweeness can be used to prioritize replacement.  Also to help with 

prioritization, the break rate for clusters can be fit to stochastic models to predict future break 

rates that follow the spatial and temporal pattern of breaks. Additionally, the authors suggest that 

multivariate analysis can be used to determine if spatial clustering or high break rate can be used 

as a surrogate for explanatory variables used in models. 

 

Bogárdi  et al. [56] assigns network level failure probabilities using a space-time homogenous 

Poisson process.  The ROCOF or break rate is calculated for the entire network.  Next a grid is 

overlaid on the network, and the Poisson intensity is calculated and reported as the number of 

failures per cell.  After verifying that the spatial distribution of breaks is homogenous, a space-

time NHPP probabilistic model is used to generate potential failure patterns.  First, using the 

computed ROCOF, a number of expected failures represented as points are uniformly distributed 

across the network.  Next, using the spatial Poisson process model and intensity function, a 

random radius between the failure point and its nearest neighbor is generated.  A failure location 
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is recorded when this radius crosses a pipe.  This process is repeated for all points in the network 

and is performed multiple times to generate possible failure patterns.  The simulations are then 

used to compute expected repair costs over a time horizon. 

 

The model was demonstrated on a subset of a German water network.  The pipe grouping was 

homogenous, with similar pipe material, age, and diameter.  As a result, adjustments for such 

explanatory variables were not made. Also, no justification is provided for the selection of the 

grid cell size.  Checks were made however to compare the frequency at double the grid cell size 

to verify homogeneity.   

 

In order to test for spatial homogeneity, several tests were performed.  First, the failures per cell 

versus the frequency distribution and calculated Poisson probabilities are graphically compared.  

Next the failure distance distribution versus the relative frequency of failures and the calculated 

probability of failures are compared.  Lastly the training set is segmented temporally, with three 

years of data being used for calibration and three for validation.  The failures per cell versus 

relative frequency are compared. 

 

Christodoulou et al. [57] expand on the DBSCAN algorithm to detect failure clusters by adding a 

parameter describing the time window before and after a break to account for the temporal 

variations associated with failure clustering.  A failure point is considered to be in a cluster if it is 

within a threshold distance of a core point and the failure occurred within the time window 

specified with respect to the failure time of the core point.   
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Spatial-temporal clusters are computed for the network of Limassol in Cyprus, Greece.  In a 

related work, the break rates for district metered areas in this utility were computed using a 

poisson model.  The break rates differed across district meter areas.  An extension of this work 

would be to calculate break rate for clusters, for use with rehabilitation planning. 

 

Shi et al. [58] investigate network level break rate and break rates within clusters for the water 

distribution network in Hong Kong.  First a grid was assigned to the network and the break rate 

for each cell was computed.  Moren’s I statistic is used to assess if the failure data is spatially 

clustered.  The failure rates were assigned to the centroid points of the cells, and the Moren’s I 

statistic for the break rate points was computed.   

 

After determining cluster, regression models were developed for pipe failures with respect to 

diameter and age.  Variation in failure rates due to pipe materials and temperature at time of 

failure was investigated. 

 

The data set used in this study considers 80,000 failures, and is significantly larger than the data 

sets in the other models reviewed.  The conclusions from the analysis show that both failures and 

failure rates calculated using the grid method are clustered.  Pipe age is correlated to higher 

break rates, and break rates decrease exponentially as pipe diameter increases.   

 

Information regarding the segmentation of data for calibration and validation purposes was not 

provided.  Statistical metrics were used to determine clustering.  R-squared values were used to 

address the goodness of fit of the regression models. 
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2.5.4 Machine Learning Models 

Machine based models that are not constrained to a pre-determined model form could be a viable 

alternative for developing valid predictive condition assessment models.  The machine learning 

based models developed for water pipes can be categorized as neural network based, fuzzy logic, 

polynomial regression, and Bayesian.  A brief discussion of these model types and examples are 

included. 

 

2.5.4.1 Neural Network 

Though several artificial neural network models have been presented over the past decade [59]–

[63] they can be difficult to implement on a broad scale.  Several of these models predict 

condition rating rather than break rate or failure time.  There is no standardized pipe condition 

rating model for water pipes; therefore, the models are difficult to compare and validate.  

Additionally, ANN models are criticized as being black-box and lack transparency in validation 

metrics.  Lastly, ANN models require numerous parameters, which as previously mentioned, are 

often not available. 

 

2.5.4.2 Fuzzy Logic 

Fuzzy logic models provide a method for incorporating data uncertainties and expert knowledge 

into models prediction the condition state or break rate of assets.  For uncertain pipe parameters, 

values are modeled as fuzzy membership functions.  Typically, the development of these models 

requires several interviews or workshops with utility personnel to gather estimates of pipe data 

and performance to develop fuzzy rules that relate the parameters to pipe condition.  Though 
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several other fuzzy logic models have been introduced [45], [64]–[68], the most extensive and 

best tested model was developed by St. Clair and Sinha [69].  The authors developed a pipe 

condition rating prediction model that considers 27 pipe attributes.  Laboratory experiments are 

used to validate the model results.  The overall results of the model are very promising, yet the 

processes involved to develop and test it are extensive.  This type of model might be best used to 

further classify pipes designated as having high failure likelihoods from statistical model results. 

 

2.5.4.3 Polynomial Regression 

Berardi et al. [13] introduce an Evolutionary Polynomial Regression (EPR) model for predicting 

the break rate of water distribution pipes.  The EPR model uses genetic algorithms to find a 

model form, and the least squares approximation method to determine model parameter 

coefficients.  The focus of the research is to develop statistically significant and parsimonious 

models that consider a limited amount of explanatory variables.  The parameters considered in 

this work include pipe age, diameter, length, previous failures, and the number of properties 

served by the pipe under investigation.   

 

The initial calibration results for the EPR model is a Pareto set of burst prediction models that 

can be used to evaluate the relationships between parsimony and model fit to the observed data.  

Model fit is evaluated using the Coefficient of Determination (CoD) metric that compares the 

predicted and observed data and also considers the sum of squared errors for the entire data set. 

As no information was provided as to a hold out sample for validation, it is assumed that the 

CoD was calculated for the entire data set. 
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Xu et al. [70] compare machine learning methods to estimate break rate prediction models using 

EPR and genetic algorithm based models.    The pipe characteristics considered include pipe age, 

length, and diameter.  The EPR and genetic algorithm models performed similarly, with 

reasonably good results for the training set, and poor results for the validation data set.  The CoD 

metric was used to evaluate model performance.  The CoD for the validation set for both the 

EPR and GA models was low, around 0.34.  The underestimation rate was also high.  The 

authors suggest that better leak detection efforts and maintenance activities in the region have 

improved system performance and decreased break rates in the most recent years. 

 

Wang et. al [16] investigate using advanced regression models to estimate annual brake rate for 

individual pipes.  The parameters considered include material, diameter, length, age, and break 

rate.  Though the regression models fit the training data well, with R-squared values ranging 

from 0.7 to 0.8, they did not perform well at predicting failures on individual assets for the 

validation data.  Misclassification rates for failed pipes ranged from 50% to 61%. 

 

2.5.4.4 Bayesian 

 

Watson et al. [71] introduced a Bayesian updating model to estimate the annual break rate for 

pipes.  Heuristic knowledge was used to estimate the Bayesian prior. Markov Chain Monte Carlo 

analysis was used to update the posterior distribution. The model is tested on only two pipes and 

compared to a base Poisson distribution for break rate.  The Bayesian model performed better 

than the base model. 
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Wang et al. [72] developed a Bayesian model for predicting the deterioration condition of pipes.  

This model includes an error term to account for uncertainties.  Though the parameters do not 

include length, they do require information that is difficult to obtain including pipe coatings and 

trench depth.  Overall, the model performs reasonably well.  Results were compared to 

observations for twenty pipes, and R-squared values averaged around 0.7. 

 

Expanding the use of Bayesian prediction models, Francis et al. [73] examined the use of 

Bayesian belief networks for predicting water main breaks.  Interestingly, the parameters 

included in the data set do not include pipeline material and installation characteristics.  The 

model performs poorly at predicting breaks.  This concept is intriguing, and the model could 

possibly be improved by including material and operational properties of pipelines. 

 

Li et al. [74] use Bayesian nonparametric learning methods to predict water pipe condition.  

Specifically, a hierarchical beta process (HBP) is used to predict pipe failures.  The researchers 

demonstrate how models can be formulated using sparse data.  The HBP model is compared to 

non-parametric Weibull and Cox survival models using data from a large utility and a suburban 

utility.  Though the HBP does perform better than nonparametric Weibull and Cox models, the 

performance for all of the models is poor.  The performance metric is an ROC curve of pipe 

length inspected versus failures detected.  The AUC value for these curves is less than 0.61, 

which means there is little difference in sensitivity and specificity.     

 

Scholten et al. [75] demonstrate how to use Bayesian methods to incorporate expert knowledge 

of systems with sparse data to improve service life modeling.  The researchers introduce an 
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expert elicitation methodology to estimate a prior distribution for a non-parametric Weibull-

based survival model.    The information from multiple experts is gathered to form an aggregated 

prior.  The results of this work are promising, and could lead to a solution for developing 

informed pipe rehabilitation strategies for utilities with sparse data.   

 

In subsequent work which examines creating rehabilitation strategies for small utilities with 

limited recorded pipe failures [76], the researchers note that the expert elicitation based 

aggregated prior methodology is significantly more complex than standard maximum likelihood  

estimation (MLE).  Alternatively, the prior distribution for the small utility is estimated using 

data from three larger utilities in the same country.  Parameter estimates for a Weibull-

Exponential survival model for the three utilities are obtained using MLE.  These estimates are 

combined to form a prior distribution. Markov Chain Monte Carlo (MCMC) sampling of the 

previously described prior, the conditional likelihood, and failure observations from the small 

utility is used to obtain the posterior distribution.  The updated model is used to develop a 

rehabilitation framework, yet validation metrics of pipe break prediction performance for the 

small utility are not included. 

 

2.7 Optimization of MR&R Activities 

Fares and Zayed [48] developed a fuzzy logic model to predict the risk of pipe failure, which 

considers consequence of failure.  The model results are used classify pipes according to the 

level of risk of failure.  The authors then urge decision makers to map the pipes and use GIS to 

segment the network into regions where repair actions will be performed.  Pipes with less failure 

consequences might be included in the replacement programs due to connectivity considerations 
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and opportunity.  This is the only model found in this review that makes references to the spatial 

relationship of pipe breaks, which is an important consideration in the planning process. 

 

Alvisi and Franchini [77] demonstrate the use of a multi-objective genetic algorithm to minimize 

water losses and breakage repair costs.  The failure model used a non-parametric WPHM.  No 

validation metrics are presented.  The authors integrate hydraulic modeling in the analysis to 

optimization routine.  A case study is presented on a small utility in northeast Italy.  The authors 

use post-processing to identify zones where the majority of leak detection or replacement 

activities should be performed. 

 

Kleiner and Rajini [78] present a Markov-transition based framework for prioritizing inspection 

and replacement activities of large water pipes.  The framework considers the total cost of a pipe 

including failures, inspection activities, and replacement.  A proof of concept application was 

presented, but the researchers state that more work is needed to make the tool widely useable for 

utilities. 

 

The genetic programing based optimization model developed by Xu et al. [79] uses a data 

mining prediction model to determine the optimal time to replace an asset with respect to 

minimizing the annual cost of pipe replacement activities and break repairs.  A case study is 

presented using a large subset of data from a very large utility and studies are performed 

examining the impact of discount factors and break rate prediction models on the optimization 

function.  Pareto front charts, run time, and pipes identified for replacement were not provided.  
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Dandy and Englehart  [23] also use a genetic algorithm technique to prioritize pipe replacement 

with respect to minimize the cost of breaks and costs of replacement.  A polynomial regression 

model is used to estimate failure potential.  The impacts of breaks are evaluated considering 

societal costs and hydraulic impact.  Repair costs multipliers based on failure location are used to 

estimate indirect failure costs.  With respect to hydraulic impact, velocity and pressure is 

calculated at each node after the GA model run.  This allows the decision maker to include 

upsizing of the pipe.  Pressure and velocity constraints are applied to the GA through the use of 

penalty costs.  The framework is demonstrated on a subset of a large utility, consisting of less 

than 500 pipes.  Analysis of the results includes an evaluation of the impact of changing pipe 

size.  The authors include information on run time and cost savings associated with replacement 

scenarios. 

 

Giustolisi and Berardi [80] demonstrate a sorting based multi-objective optimization algorithm to 

prioritize pipe replace.  In a previous work, [81], the authors demonstrate the use of a multi-

objective genetic algorithm (OPTIMOGA) to identify pipes for replacement and/or upsizing that 

minimize the financial impacts of pipe failures.  This study improves upon the OPTIMOGA 

model by demonstrating how to prioritize pipes post OPTIMOGA simulations.  The authors note 

issues with OPTIMOGA algorithm including the lack of reproducibility of results, i.e. multiple 

runs do not identify the same pipes for replacement.  This suggest that more optimal solutions 

can be found.   

 

Post-processing is used to further refine replacement selection and scheduling decisions.   Pipes 

are prioritized for replacement based on the number of times they appear in a solution on the 
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Pareto front.  This methodology was evaluated on a subset of a network consisting of less than 

2,000 pipes.  The authors provide model run-time for OPTIMOGA routines.  The post-

processing sorting prioritization resulted in more optimal solutions than the OPTIMOGA 

routines. 

 

2.8 Utility Practice 

Given the models presented, several utility surveys have been performed to investigate current 

practices and adoption of pipeline failure models.  Both surveys by Matthews et al. [9] and St. 

Clair and Sinha [10]  show that utilities are not taking advantage of the new statistical models for 

pipeline failure being introduced. While some utilities have adopted long-term economic forecast 

models, less than half of the utilities surveyed are using statistical models for short-term 

investment planning.  The failure prediction models utilized most utilized by utilities are Weibull 

based or LEYP. 

 

Though pipeline breaks are a commonly cited reason for pipe replacement, other common 

reasons are related to hydraulic concerns including low flow and the need to change pipe size 

[6].  Many of the utilities surveyed also use hydraulic models to evaluate network performance 

and plan for water line extensions and upgrades.  An all-encompassing decision support system 

for MR&R improvements would include at minimum hydraulic criticality analysis results from a 

hydraulic model.  Ideally, hydraulic upgrades could be coordinated with failure mitigation 

activities. 
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2.9 Discussion 

Though many models have been presented in literature, the utility adoption rate for the models is 

low.  The primary reasons for the poor adoption rates can be contributed to the amount of data 

needed, the data preparation required, the computational effort required, and the lack of 

perceived confidence in the models.  Clarity in model training and validation metrics is needed to 

convey confidence in model predictive performance and suitability for using in scheduling 

replacement or rehabilitation projects. 

 

With respect to model parameters, one of the most commonly used, yet difficult to define 

parameters is material length.  Used in the majority of the statistical and machine learning 

models, the definition of pipe length is vague.  Though seemingly trivial, this definition is 

actually quite important.  The assumption would be that pipe length reflects the joint to joint or 

valve to valve length of pipe currently in the ground.  The problem associated with this 

assumption is that GIS models were not developed considering the in-situ length of pipes.  Often, 

the pipe length is the result of digitization methods in which the cartographer lifts his/her pen or 

mouse and completes a line segment.  The problems associated with variable pipe length 

definitions have been reported by [17], [18], who propose extensive pre or post GIS processing 

to try to aggregate pipes to city block level.  These processing efforts are tedious and have not 

been studied in detail as to how they impact model performance and accuracy.   

 

Another one of the most significant and commonly used parameters is a parameter describing the 

evidence of previous breaks.  The problem associated with this parameter is rooted in the 

definition of pipe length.  For digitized pipes with varying pipe lengths, the parameter may not 
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be unbiased in its representation.  Longer pipes will be more likely to experience more failures.  

When databases can range with pipes lengths modeled from 1 to 2,000 feet, this parameter can 

be biased.  Though important, a more appropriate, non-biased parameter to consider is the spatial 

clustering of pipe breaks.     

 

Only recently have researchers applied spatial clustering techniques have been implemented to 

evaluated water distribution system performance.  For binning type clustering applications, 

determining the appropriate size of the bin can be problematic.  The problem with these models 

is that few incorporate statistical methods to predict future breaks.  The frameworks reviewed 

that do incorporate predictions with the spatial analysis do not consider training and validation of 

the statistical models.   

 

As an alternative, the clustering of breaks can be considered as a parameter in statistical models.  

Only one model framework reviewed considers clustering of breaks [46]. Though clustering was 

not determined to be a significant parameter, this could be due to the clustering algorithm 

utilized.  There is a need to examine alternative methods for spatially identifying areas of 

increased break rate and incorporating those observations into a condition assessment model. 

 

Regarding model form, utility directors and asset managers still want to have ownership and 

input on prioritization.  Some of the models presented would require significant training to 

understand the background of the model and computations required to train the model.  Such 

models would have to be calibrated by very specialized consultants.  Furthermore, the current 
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state of the literature does not show dramatic improvements in condition prediction using 

machine learning models.   

 

With respect to implementation, few case studies have been presented using data from medium 

and small utilities with fewer than 100 failures in material classes.  Researchers instead have 

made suggestions rooted in model transfer theory to train both statistical and machine learning 

based models by utilizing data from larger utilities with more extensive databases.  Only some of 

these suggested have been thoroughly tested using common validation metrics.  More research is 

needed to examine the suitability and effectiveness of these methods.    

 

Finally, though extensive work has been performed on the modeling side, the amount of research 

detailing how to incorporate models into decision making is scarce.  Only several optimization 

frameworks have been presented, and even fewer have been demonstrated on entire networks, 

which is extremely important when examining scalability of models.  The majority of these 

frameworks use genetic algorithms to minimize or maximize a penalty or benefit function. 

 

Genetic algorithms, (GA’s) are used to solve multi-objective, non-linear optimization problems 

by defining the problem using a fitness functions.  Solutions of the fitness or objective function 

yield a set of Pareto-optimal solutions.  Solutions that result in improvements of the fitness 

function are found by modifying a genetic representation, often called a chromosome, of the 

solution space.  Some chromosomes improve the objective function, and these chromosomes are 

allowed to reproduce or mutate in order to search for even better solutions.  This process is 
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repeated until a convergence criterion is met, which is often simply the number of simulations or 

chromosomes created, but could also be related to some improvement in the fitness function. 

 

Though GAs can be power decision making and design tools when considering multiple 

objective problems, they do have several documented limitations.  The major limitation, noted by 

Deb et al. [82] is related to the computational complexity of the algorithm.  The expense of the 

algorithm is directly related to the number of objectives and the number of decision variables.  

Increasing the number of decision variables can result in an exponential increase in the 

computation time for each iteration.  

 

The other common limitation associated with the GA is the problem of premature convergence.  

When a search space is narrowed rapidly by a chromosome that causes a marked improvement in 

the fitness function, this chromosome can reproduce rapidly, narrowing the decision space [83].  

This causes the GA to converge at a local minimum/maximum rather than the best solution or 

global minimum/maximum.    

 

These issues related to computational effort and premature convergence have not been fully 

explored in the literature.  With respect to computational effort, the largest case study presented 

in literature consisted of 2,000 pipe segments, while Utility A, considered in this paper, consists 

of over 20,000 segments.  An order of magnitude increase in the pipes results in an order of 

magnitude increase in the decision variables which has an exponential impact on the search 

space.  Increasing the search space increases model run time to reach convergence.   

 



52 

 

On the topic of convergence, the stopping criteria for the optimization routines presented in 

literature is subject to scrutiny, especially given the lack of replicability of results.  Though 

establishing a threshold number of simulations is a valid stopping criterion [84], better stopping 

methods exist, including stopping when a threshold change is no longer observed in the objective 

function value. Though potentially increasing the run time, such a stopping criterion could result 

in more optimal solutions. 

 

 Finally, lacking in the replacement prioritization models is a focus on how to utilize 

optimization results to develop capital projects.  To model real world decision making, an 

emphasis needs to be placed on the spatial relationship and connectivity of pipes identified for 

replacement.   This spatial relationship can incorporated into the optimization routine through 

spatial binning of the distribution network, decreasing the amount of effort required by the 

decision makers to spatially evaluate optimal pipe replacement strategies. 

 

2.10 Contribution to Literature 

The proposed research will contribute to the body of knowledge in several ways.  First, the 

pipeline replacement prioritization model presented in this paper will attempt to account for 

uncertainties in input parameters.  Of note is that pipe length will not be included as a model 

parameter.  The researchers argue that the parameter does not help describe physical pipe 

properties that might contribute to pipe failure, as digitization efforts result in pipe lengths that 

do not represent joint to joint lengths in the field. Additionally, this research investigates the 

contribution of incorporating the spatial distribution of breaks into statistical models.  The 
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researcher hypothesizes that the break rate distribution variable serves as a surrogate for a 

multitude of other model parameters, which could result in more parsimonious models.   

 

Secondly, an optimization routine that utilizes the WHRM results to prioritize pipe replacement 

and minimize the consequences of failure while considering the spatial dependency of pipe 

replacement projects is demonstrated.  This routine is used to investigate how the proposed 

model improvements impact decision making by comparing prediction results to a base model 

which includes the commonly used and available WHRM model parameters.   

 

Though many papers demonstrate the use of models for prioritizing pipe replacement and 

maintenance activities, few case studies are available showing researchers and practitioners how 

to incorporate these models into risk-based planning frameworks.  This paper presents a case 

study of utilizing the validated WHRM to minimize the consequences of failures with specific 

considerations to hydraulic reliability and the spatial relationship of pipe MR&R activities.  Top 

down and bottom-up approaches to asset management within the utility are described.  An 

investigation of using binning methods to prioritize pipe replacement in specific regions is 

performed.  Binning methods are commonly used in GIS environments as a pre-processing 

technique to display and visualize density for large data sets by replacing multiple observations 

with a single value in a bin [85].  The most common form of binning, the grid method, is utilized 

in this study.    Additional research is performed to address convergence and scalability of 

models for large data sets. 
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Another major contribution to the literature is the investigation of using WHRMs to prioritize 

pipe replacement for medium and small utilities, which has not been studied in detail. The 

suitability of model transfer techniques is also investigated.  The investigations are performed 

using data from one large and two medium sized utilities in the Southeast U.S. A model transfer 

technique widely used in transportation problems, yet never before applied to the transfer of 

WHRM parameters for pipe failure prediction is evaluated, along with the other model transfer 

techniques suggested in the literature. 

 

Finally, a risk-based framework for prioritizing MR&R activities for small and medium utilities 

is presented.  The methodology is rooted in cluster analysis using popular cluster algorithm, 

DBSCAN.  Hydraulic information and heuristic knowledge is also incorporated.  This 

framework is demonstrated in a case study with data from a medium utility in the Southeast US.  
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CHAPTER III – UTILITY INFORMATION 

3.1 Introduction 

Maintenance records and GIS models were collected from three neighboring utilities in middle 

TN.  Shown in FIGURE 3.1, Utility A is much larger than the other suburban utilities.  The work 

presented in the remainder of this dissertation is novel in that no case studies or example 

problems have been presented using a consortium of data from neighboring utilities of different 

sizes.  This regional focus reduces some potential variations in data such as environmental 

differences, material sourcing, and construction practices, allowing for a less biased comparison 

of model performance for the varying utilities. 

 

The following sections describe in detail the data provided by the three utilities.  First a brief 

history of the utility is provided.  The frequency of pipe materials and sizes are reported in 

Figure 3.2 and Figure 3.3.  Details regarding data storage, and the processing steps required to 

identify failures is described in section.    
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FIGURE 3.1:  REGIONAL UTILITY MAP 

 

 

FIGURE 3.2: MATERIALS BY LENGTH 
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FIGURE 3.3:  NETWORK MATERIAL COMPOSITION 

 

3.2 Utility A 

Utility A is a large utility providing water services to over 600,000 residents.  Originally 

established in the 1800’s, the city utility was annexed with the surrounding county utilities in the 

1960’s.  Thus, the utility inherited assets not originally owned and operated by the city.   

 

The utility is primarily composed of cast iron and ductile iron pipes.  The utility maintains a 

computerized maintenance management system (CMMS) software, which is used to track work 

orders, which interfaces with a Geographic Information Systems (GIS) model.  The CMMS 

tracks work orders with respect to GIS pipeline segment ID.  The work orders related to breaks 

were extracted from the CMMS database, and the failure times with respect to the start of the 

asset management database were computed. 
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Data quality concerns for Utility A are primarily related to unknown material and installation 

date.  Approximately 40% of the materials and installation dates are unknown.  Using expert 

knowledge of the network, missing materials and install dates were imputed, and binary 

categorical parameters were introduced to account for the assumed material and installation 

dates. This process is described in further detail in Chapter 4. 

 

3.3 Utility B 

Utility B is within a suburb of Utility A, and was founded in the 1960’s.  The utility’s age is 

represented in the material makeup of the network, which is primarily PVC and DI pipe.  Utility 

B maintains a spreadsheet of failures that includes details including failure time, pipe material, 

diameter, and the GPS location of breaks.  Independent from the maintenance database is a GIS 

model that describes pipe material, diameter, and installation date.  The material fields were well 

populated, but in some cases the installation date for pipes was estimated by utility personnel.  

For these cases, an assumption covariate was assigned.   

 

To identify failed pipe segments, buffers were placed around the GPS location of failure points.  

The buffers were intersected and joined to the closest pipe segment. In some cases, the pipe 

material listed in the failure record did not match any neighboring pipes in the GIS model.  It 

was assumed in these instances that the failure record accurately described the pipe material, and 

the material was updated in the GIS model. The assumptions were noted, but the assumed 

material parameter was not utilized for these instances.  The inclusion of the parameter could 

introduce potential bias into the model, as only pipes that failed would have a positive value for 

this parameter. 
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3.4 Utility C 

Utility C is also within the suburban area of Utility A, yet is much older than Utility B.  Within 

the past several decades, urban sprawl has resulted in large growth in the area.  The network now 

has a mix of very old cast iron pipe and much newer DI pipe.   

 

Similar to Utility B, work orders related to pipe breaks are stored in a spreadsheet, and a GIS 

model is available which describes pipe locations and attributes.  Using a process similar to 

Utility A, expert elicitation was used to fill in data gaps related to missing materials and 

installation dates, and categorical variables were used to account for these assumptions.   

 

Utility C has the most uncertainty with respect to failure locations and information describing 

pipe failures.  The failure records provided addresses or intersection locations, and many records 

did not describe the pipe material.  To identify failed pipes, the failure locations were geocoded 

and a shapefile of failure points was created.  Using the same process described for Utility B, a 

buffer was created around the failure points, and the closest pipe segment to the failure point was 

identified.   

 

3.5 Conclusions 

Though the utilities presented are geographically similar, they are still very different with respect 

to size, material composition, and data uncertainty.  Additional differences are evident in utility 

performance.  Table 3.2 shows failure statistics with respect to annual break rate.   
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Table 3.2:  Utility Break Rates 

Utility A B C 

Pipe Length (mi) 2,996 208 506 

Area (sq. mi) 526 34.7 30.1 

DI Break Rate (brks/1000ft/yr) 0.008 0.006 0.007 

CU Break Rate (brks/1000ft/yr) 0.021 -- 0.03 

Database Duration (yrs) 10.5 8.5 7.25 

 

These differences should be kept in consideration as model prediction performance comparisons 

are made.  This research highlights the importance of testing models on utilities of varying size 

and composition.     
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CHAPTER IV– COMPARISON OF WATER PIPELINE FAILURE PREDICTION 

MODELS FOR NETWORKS WITH UNCERTAIN AND LIMITED DATA 

 

4.1 Introduction  

Though over 50 stochastic and probabilistic models for pipeline failure prediction have been 

presented over the past twenty years, most utilities are not implementing these technologies for 

rehabilitation and replacement planning.  These models, reviewed by Rajani and Kleiner [36], 

[86], St. Clair and Sinha [10], and Yamijala et al. [87]  are powerful tools in capital improvement 

planning.  Recent surveys of large and very large utilities show that few are using failure 

prediction models, especially advanced models including artificial neural network and fuzzy 

logic, also known are “gray box” or “black box” models [9], [10].  The Environmental Protection 

Agency (EPA) suggests that the majority of the financial burden associated with water 

distribution needs in the next 20 years will come from medium and large sized utilities serving 

over 3,300 persons [4].   These utilities could be greatly assisted by reliable pipeline performance 

prediction models, which can help utilities analyze and reduce long term costs through proactive 

asset management while maintaining or improving current levels of service [10]. 

 

The lack of utilization of these models can be attributed to the data needs required and the 

complexity of the models.  In their review of failure prediction models and utility practices, St. 

Clair and Sinha [10] describe that most models presented in the past decade are too sophisticated 

to be put into practice by utilities and require extensive amounts of pipeline data.  This data can 

be extremely difficult to acquire for an entire network.  Even basic pipeline property data such as 

material and installation date are commonly missing from asset management databases, as noted 
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in literature[13]–[16].  The treatment of uncertain data in failure modeling could introduce bias 

in the model predictions.  This potential bias has yet to be investigated. 

 

Most recent models require more parameters than just physical pipeline properties. These 

parameters serve as surrogates for data that explains variations in break rates and failure modes 

for otherwise homogenous groups of pipe [11].  Utilities might not have data nor the resources to 

collect data that is required in many models presented.  The more computationally intensive, data 

mining models such as artificial neural networks and evolutionary polynomial regression models 

require quite a significant amount of additional parameters in order to collect enough explanatory 

variables to train and validate a model.   

 

Examining the break rate within clusters of failures could lead to a surrogate parameter for data 

such as soil conditions and traffic levels that are difficult to collect and have inherent uncertainty.   

By collapsing several parameters into one, the modeling effort is decreased, saving utilities time 

and resources. Additionally, by reducing the number of parameters, the chances of over-fitting a 

model are decreased, which is of concern for medium utilities with limited numbers of recorded 

failures.   

 

4.2 Objectives 

The goals of this paper are to investigate the impacts of uncertain data on model performance 

and to explore the suitability of using break rate as a surrogate for sparse data in the context of a 

survival model.  These goals are achieved by introducing two improvements to the Weibull 

Proportional Hazards Model (WPHM) and comparing those to a base model.  The base model is 
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typical of other WPHMs introduced, and includes pipe installation date and diameter as 

explanatory variables.  This model is stratified by pipe material.  The first improvement to the 

WPHM is to introduce two categorical binary variables to account for expert elicitation of pipe 

material and installation date.   

 

The second improvement builds upon the first and adds a localized distributed break rate as a 

covariate.  The break rate is obtained by developing a kriging model of break rate at failure areas 

in the network.  Kriging  models are commonly used in spatial statistics to interpolate values 

based on observations or training points using weighted spatial covariance values.  Within the 

past few decades, kriging models have been applied in several ways in the water/sewer/pipeline 

industry to solve estimate groundwater levels [88] to model contaminant concentration in 

groundwater [89] to predict the impact of earthquakes on water transmission pipeline breaks 

[90], and to estimate water flow through pipelines [91].  The distributed break rate covariate 

obtained from the kriging model is used to account for unknown parameters that cause increases 

in internal and external loadings resulting in elevated break rates.  This model is also compared 

to the base WPHM model.    

 

This chapter is organized in five sections: (1) a literature review of Weibull-based failure 

prediction models, and efforts investigating the spatial relationship of pipeline failure is 

presented; (2) Utility A is introduced, the parameters to be included in the models are described, 

and data quality concerns are addressed;  (3) the methodology section introduces a method for 

calculating and interpolating break rate to be used as a data surrogate, and also described the 
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methodology for estimating failures; (4) model calibration and prediction results are presented, 

and  comparisons of the models are made; and (5) the conclusions are discussed. 

 

4.3 Literature Review 

One of the first statistical models used to predict pipeline failures in water distribution networks 

was developed by Andreou [92], which applies a proportional hazard model developed by  Cox 

[93], to examine the influence of pipeline covariates on failure times.  

 

Le Gat and Eisenbeis [37] introduced a model that utilized limited duration maintenance records 

to forecast failures in pipes.  The model is a Weibull Proportional Hazard Rate Model (WPHM) 

that relates pipeline properties to the time to failure.  

 

The Weibull hazard rate model is written as: 

 

 ℎ(𝑡𝑜) = 𝜆𝑝(𝜆𝑡)𝑝−1 [4.1] 

 

Where 𝑡 is the failure time, 𝜆 is the Weibull intercept and 𝑝 is the Weibull scale parameter.  For 

a function with covariates, the Weibull  hazard model is 

 

 ℎ(𝑡, 𝜷, 𝒛) = 𝜆𝑝(𝜆𝑡)𝑝−1exp(𝒛′𝜷) [4.2] 

 

Where 𝒛′is a vector containing explanatory variables also known as covariates that influence 

pipeline survival and 𝜷 is vector of regression coefficients corresponding to the covariates. 
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The Weibull distribution can also be parameterized as an Accelerated Failure Time (AFT) 

model.  An AFT model can be used to evaluate the impact of covariates on pipeline survival, 

whereas the WPHM is used to determine the impact of covariates on the hazard rate.  A linear 

function describes the relationship between the covariates and log of the scale parameters and 

time [94]. 

 ln 𝑇 = 𝛼 + 𝒛′ 𝜷∗ + 𝜎𝑾 [4.3] 

 

Where 𝑇 is failure time,   𝛼 = −𝑙𝑛𝜆, 𝜎 = 1/𝑝 and is the scale parameter, and 𝜷∗ = −𝜎𝜷. 𝑾 is a 

vector of errors, each with an extreme value distribution.  𝑾 can be rewritten given a specific 

failure as 

 

 
𝑤(𝑡) =

ln 𝑡 − 𝒛′ 𝜷∗

𝜎
 

[4.4] 

 

Assuming an extreme value distribution for the survival function as recommended for censored 

data [95] the survival function can be rewritten in terms of 𝑤 as: 

 
𝑆(𝑤) = exp[−exp (𝑤)] 

[4.5] 

 

Substituting 𝑤(𝑡)into the survival function yields: 

 

 
𝑆(𝑡, 𝜷∗, 𝒛) = exp [−exp (

ln 𝑡 − 𝒛′ 𝜷∗

𝜎
)] = exp [−𝑡1/𝜎exp (

−𝒛′𝜷∗

𝜎
)] 

           

[4.6] 
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The WPHM model is valuable for ranking groups of pipe with respect to probability of failure.  

The model introduced by LeGat and Eisenbeis was the first to explore survival theory with short 

maintenance records, spanning less than 20 years and was also the first to account for left 

truncation and right censoring of failure records that is typical of failure data stored in relatively 

new digital asset management databases.  The model allows decision makers to analyze the 

impact of properties describing the pipeline and surrounding environment on the survival of a 

pipe.   

 

3.3.1 Weibull Based Failure Models 

Implementations, variations, and suggested improvements of Weibull based break prediction rate 

or failure prediction models have been documented in literature [14], [41]–[43], [47]–[49], [51]. 

The models vary in methodology for predicting successive failures on the same pipe segments, 

and the types and forms of model parameters.  The parameters required for stochastic models 

including the Weibull-based models referenced above are shown in FIGURE 4.1.  In addition to 

basic pipeline data, such as material and installation date, some models require parameters that 

serve as surrogates to account for variations in break rates and failure modes for otherwise 

homogenous groups of pipe.  For example the pipe bedding and backfill material is a surrogate 

for increased external loading by construction practices and structural resistance of a pipe that 

could elevate local break rates compared to the average network break rate.  
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FIGURE 4.1:  MODEL PARAMETERS 

 

While these models have been successful in prioritizing pipes for replacement, they have not 

been widely adopted by local utilities for the purposes of capital improvement planning. Many of 

these models are too sophisticated to calibrated by utilities in house [10], requiring the additional 

expensive of hiring consultants to develop and update the model(s).  Additionally, these models 

require parameters that are often not available and difficult to acquire.  Even basic pipeline 

property data can be missing from asset management databases. Researchers have noted 

problems with missing and unreliable pipeline parameters and have proposed methods for 

addressing data gap problems including assigning the average installation date by material and 

diameter [13], excluding pipes with property uncertainty from the model [14], or leaving the 
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missing attribute blank [15].  The potential bias due to uncertainties associated with educated 

assumptions of pipe material and age, which could be significant in networks with large data 

gaps.  The impact of these assumptions on model prediction performance has yet to be 

investigated. 

 

3.3.2 Spatial Models:  Clustering Analysis 

As an alternative to collecting missing pipeline data and vast amounts of surrogate data, spatial 

models are now being used to investigate clustering of accidents, to determine candidates for 

pipe replacement and evaluate parameters that influence clustering. Models for spatially 

correlated survival data have been successfully used to detect and analyze patterns in health and 

ecological related survival data [96]–[99]. Spatial models commonly used in other fields are now 

being applied to pipeline failure analysis. Clusters of pipeline failures are being detected by 

using distance and/or time based search algorithms or by finding areas of increases pipe break 

rate intensity.   

 

Oliveria et a. [53] introduce a new search window algorithm to estimate pipeline break within 

clusters of failures.  Hypothesis testing is used to compare the network level break rate to the 

break rate within clusters as defined by the search window area.  The authors investigate pipe 

break density using an expanded Ordered Points to Identify Clustering Structure (OPTICS) 

algorithm, which is based on the Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) cluster search algorithm, which uses a minimum number of points and minimum 

threshold distance to define clusters.  The impact of explanatory variables within clusters is 

investigated. Christodoulou, et al,[57] further expand the DBSCAN algorithm to consider the 
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time window before and after a break to account for temporal variations in spatial clustering of 

pipeline failures.  

 

Though these new search algorithms to identify spatial and temporal patterns of breaks are 

beneficial in detecting current high risk areas, they cannot be used to predict the future state of 

the network.  Additionally, clusters of failures in dense areas of the network may not be of as 

high of concentration of breaks in the less dense area, as utility directors cite multiple pipeline 

breaks as a primary criterion for replacement [6]. 

 

3.3.3 Spatial Models: Break Rate Analysis 

Instead of evaluating clusters, other researchers are examining areas of elevated break rate.   Shi 

et al. [58]  investigate variations of break rates within a network due to clustering of accidents by 

overlaying a grid on the network to calculate a relative break rate for the water distribution 

network in Hong Kong.  Bogárdi [56] investigates spatial homogeneity of pipe failures by 

computing break rate to be used as the intensity term in a Poisson distribution.  A grid is overlaid 

on the network, and the average number of failures per grid is calculated and used as the 

intensity value in a Poisson probability distribution describing pipeline failures.  The observed 

frequency of failures per cell is compared to the theoretical distribution of failures per cell.  

Using the intensity function, a space-time Poisson process is used to simulate potential failure 

patterns in a water distribution network.   

 

The grid method for calculating break rate can be problematic with respect to determining the 

appropriate cell size for the grid [100].  The method is somewhat arbitrary and can lead to 
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artificially increased break rate where there is little pipe within the cell.    Bogárdi’s model is one 

of the first to use the current break rate to estimate the future state of the network.  Though 

successful, this model does not take into account known parameters that influence break rate 

such as pipe size and installation period. 

 

3.3.4 Clustering in Statistical Models 

Oliveira, et al, [53] hypothesize that clusters could be used as inputs in multi-variate replacement 

planning models.  This hypothesis has yet to be tested fully.  Only Kleiner and Rajani [46] have 

incorporated clustering into stochastic models to predict the likelihood of individual pipe failure. 

Failure clusters were determined using the K-means search algorithm and a binary covariate for 

clustering was introduced.  Pipes within a cluster were assigned a value of one, and pipes outside 

of clusters were assigned values of zero.  Clustering was considered to be a statistically 

significant covariate when included with other pipeline attributes in a non-homogenous Poisson 

process model.   

 

The models used by Kleiner and Rajani also include a number of other explanatory variables 

such as rain and freezing indices.  These parameters are time dependent and difficult to process, 

requiring the database manager to distribute values from measurement locations and assign them 

to specific pipes.  In the case study presented of a Canadian utility, rain and freezing indices are 

not found to be statistically significant with respect to model calibration [46]. Clustering is 

determined using a k-means algorithm which does not take into account the density of the 

network where clustering is observed and as a result may not adequately describe areas of 

increased break rate.   
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The model improvement recommended in this paper is to include a localized break rate as a 

covariate in the WPHM, which is not calculated using arbitrary mesh sizes.  The following 

sections of the paper describe the utility data used to test the models, and the methods for adding 

the assumption and break rate covariates. 

 

4.4 Utility Data 

Data has been provided by Utility A, located in Southeast United States.  This Utility and the 

corresponding data are described in Chapter 3.  In inspecting the data for the utility, several 

problems arise.  First, the material for over 40% of pipe segments is unknown.  Corresponding 

with the unknown material, the installation date for over 47% of pipe segments is missing. A 

possible explanation for this high percentage of unknowns is that Utility A inherited several 

smaller utilities through annexation and county-city consolidation over 50 years ago.  The data 

for these inherited networks could have been lost.  

 

Though researchers have demonstrated ways of determining materials and installation periods, 

none have addressed the potential bias these uncertainties can have in model prediction 

performance.  Without addressing such bias, asset managers might lack confidence in the models 

to correctly predict failures to prioritize pipes for rehabilitation or replacement. 

 

The next data quality concern is related to the recorded pipe lengths in the GIS model for Utility 

A.  Due to segmentation of the network in the process of digitizing maps, the length of pipes in 

the GIS model for Utility A does not correspond to the in situ length of pipe in the field.  A 

method for correcting inaccurate pipe lengths due to segmentation has been described by [17].  
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Though pipe length is used as a covariate or explanatory variable in many statistical models, the 

uncertainty associated with attempting to correct the segment lengths makes it impractical to 

consider length in the model.   

 

4.5 Addressing Unknown Material and Installation Dates 

Data imputing methods, which assume complete randomness of missing data, allow for the 

missing data to be discarded before training, a learning algorithm capable of handling missing 

data to be specified, or missing variables to be estimated [101].  The most common method for 

imputing is assigning a median or mean value of the known values for the parameter [101].  

Discarding records with unknown pipe parameters similar to Røstum [102] and  [17] would 

result in a large data loss and is not recommended when the amount of missing data is large 

[101].  A learning algorithm is not applicable with the model form, so the remaining alternative 

is imputing.  Filling in data gaps in asset management through educated assumptions of pipe age 

and material based on the vicinity of known pipes and knowledge of development and pipe 

installation decades is a method that has been utilized by Rogers and Grigg [15].  Since the 

correlation between urbanization and pipe material is strong [41] imputing missing pipe 

materials and installation dates through expert elicitation based on known utility practices during 

urbanization periods is a viable process, yet it does introduce bias.  The method of accounting for 

this bias through a categorical parameter [101] was employed.   

 

The expert opinions of utility personnel with extensive network knowledge were used to estimate 

material. Within the GIS model, areas of unknown pipe were outlined.  Knowing the history of 

the network and development in the area, and being able to see the material of surrounding pipes, 
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utility personnel estimated pipe material in subdivisions.  Given the material, the age of the pipe 

was assumed based on known practices.  For example, the transition from cast-iron pipe to 

ductile iron pipe for Utility A occurred around the early to mid 1990’s.  Therefore, pipe segments 

estimated to be ductile iron pipe were assigned an installation date of 1992.   Also, pipe segments 

known to be ductile iron (DI), yet were only missing an installation date, were assigned an 

assumed installation date of 1992.   

 

In order to account for the bias associated with these assumptions, two assumption parameters 

are introduced to the model.  The parameters AssumedMaterial and AssumedDate are binary.  

Shown in Table 4.1, when the material for a pipe segment is assumed, the AssumedMaterial 

parameter value is true, and assigned a value of 1.  When the material is known, the parameter 

value is 0. 

 

Table 4.1: Example of Records with Assumption Covariates 

COMPKEY 

Install 

Date 
Material 

Updated 

Material 

Updated 

Install Date 

Assumed 

Material 

Assumed 

Date 

739973 1996 DI DI 1996 0 0 

811219 UNK UNKNOWN DI 1992 1 1 
 
 

Though the assumptions were not verified and in many cases could not be verified due to 

missing or damaged as-built construction documents, the impact of these assumptions was 

investigated.  Preliminary modeling efforts not reported in detail in this paper investigated 

modeling unknown materials as one large cohort of unknowns which resulted in extreme over 

predictions of failure.  The cohort of known materials modeled did not perform substantially 
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differently than the models presented later in this paper, with respect to comparisons of predicted 

and observed failures. 

 

4.6 Spatial Variation of Break Rates 

The spatial variation of breaks is analyzed by computing and comparing local break rates for 

subsets of the network.  This break rate parameter considers the number of breaks over the 

duration of the asset management database.  Though researchers have used grids to calculate 

break rate, the sometimes arbitrary selection of an appropriate cell size can be difficult (Shi et al,, 

2013).  Alternatively, a localized break rate can be calculated within Thiessen polygons 

calculated around failure points.   Thiessen polygons are commonly used in hydraulic analysis of 

water distribution networks to define service areas around GPS locations of meters and to 

distribute demand across nodes within the service areas.  A similar method can be used to 

distribute break rate across a failure region. 

 

The boundaries of a Thiessen polygon are the bisectors of the lines from a core point and the 

points surround it shown in FIGURE 4.2 The break rate as defined as the number of breaks per 

1,000 feet (305 m) of pipe per year is calculated for each Thiessen area and assigned to the 

failure point(s) within the Thiessen polygon.   
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FIGURE 4.2:  BREAK RATE DISTRIBUTION 

 

To distribute the break rate across the network, a stationary Kriging model is used to interpolate 

the expected break rate between failure points. Kriging models are used to approximate functions 

through interpolation and are defined by a mean function and covariance function.  The failure 

points are assumed to comprise a random field of Gaussian random variables. This random field 

is assumed to be stationary, meaning that patterns do not change over time.  A non-stationary 

model would not be appropriate due to the brevity of the failure database.   

 

The Kriging model inputs, in this case x-coordinate and y-coordinate of failures, are assumed to 

correspond to set of random functions indexed by observations, or in this case, calculated break 
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rates at failure locations.  The response function of the GP model is described by the following 

equation:. 

 

 

𝑍̂(𝑠𝑜) = ∑ 𝜆𝑖

𝑁

𝑖=1

𝑍(𝑠𝑖) 
[4.7] 

 

 

Where 𝜆𝑖 = an unknown weight for the measured value at the ith location. 

N = the number of measured values 

𝒁(𝒔𝒊) = the measured value at the ith location. 

 

It is assumed that the break rate is a spatially autocorrelated process with independent random 

errors described by a mean and error function below: 

 

 
𝑍𝑡(𝑠) = 𝜇(𝑠) + 𝜀𝑡(𝑠) 

[4.8] 

 

Where 𝜇(𝑠) is a unknown, deterministic mean value and 𝜀𝑡(𝑠) is a function that accounts for 

random measurement and model fitting errors.  For more information on the spatial Kriging 

model, refer to Appendix A. 

 

The output of the GP model allows for an estimated mean break rate and variance at every 

coordinate within the utility district.  Since the break rate varies spatially, and pipe segments 

extend across space, the average of the expected break rate and variance across each pipe 

segment is computed and assigned to the pipe segments.  The average estimated break rate is 
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included as a covariate in the WPHM.  Background information kriging model within ArcGIS 10 

and  results including raster images of the estimated break rate are included in Appendix A. 

 

 

FIGURE 4.3: METHODOLOGY FLOW CHART 
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4.7 Methodology 

The models for ductile iron (DI), lined cast iron (CL), and unlined cast iron (CU) pipe cohorts 

will take the form of the Weibull Hazard Rate Model described by Le Gat and Eisenbeis [37] as 

shown in Equation 4.6.  Shown in the Model Development section of the flow chart in Figure 

4.3, separate models will be calibrated for each material cohort of pipe.  Separate model forms 

will be used to model the first failures expected for the pipe segment, in which the Number of 

Known Previous Failures (NOKPF), a term introduced by LeGat and Eisenbeis [37] and used by 

Røstum [102] and Kleiner and Rajani [46], is zero.  Since repaired pipelines either perform 

“good as new”, “good as old” “worse than new” or “worse than old” [103] a separate model is 

needed to account for pipe behavior after repair.  Since few pipes have multiple recorded 

failures, in order to avoid over-fitting the models, a WPHM with no explanatory variables is used 

to predict future failures where NOKPF is greater than zero.  The parameters for the models will 

vary, as only significant parameters as determined by p-test statistics will be included in the 

models. These parameters could differ based on material.   

 

To test the models’ prediction accuracy, 20% of failure records and pipes are randomly selected 

to be used as a hold out sample for model validation.  This allows for a good representative 

sample to be used for testing, while retaining valuable data needed for model calibration, 

especially the failure records for subsequent failures on pipes.  The regression parameters are 

tested for significance, and coefficients of parameters are estimated using the remaining 80% of 

failure records and pipe inventory.  The Maximum Log Likelihood method is used to estimate 

the WPHM coefficients.   
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In considering the impact of new covariates on prediction performance, a base model is 

calibrated which considers the most commonly used Weibull model parameters that were 

available for the network as summarized in Figure 4.1.  The base model for each material cohort 

is then re-calibrated to consider the base model parameters and the AssumedMaterial and 

AssumedDate categorical assumption variables previously introduced.  The final model 

calibrations consider the base model parameters, the assumption covariates, and the distributed 

break rate parameter described in the previous section.   

 

Each model depicted in Figure 4.3 will be used to simulate failures using the Monte Carlo 

simulations.  Monte Carlo Simulations are widely used to evaluate deterministic functions that 

are dependent upon input variables that can be represented as distributions that account for 

parameter uncertainty [104].  The Monte Carlo Simulation technique generates random samples 

of each input using a pseudo-random number generator, to generate an output distribution of the 

deterministic function results.  This distribution can be used for assessing the predictive 

performance of the calibrated model.   

 

With respect to evaluating the comparative performance of the models presented, the survival 

model is solved for time, shown in Equation 4.9.  In context of Monte Carlo Sampling, time now 

serves as the deterministic function that is dependent upon the survival probability and 

regression parameter estimates.  

 

 
𝑡 = (ln (

1

𝑆
) exp (

𝛼 + 𝒛′𝜷∗

𝜎
))

𝜎

 
[4.9] 
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To execute the Monte Carlo Simulation, a uniform random number, u, is sampled between 0 and 

1 to represent the survival probability, 𝑆.  Using Equation 4.9, the corresponding failure time is 

computed.  The survival time is compared to an established time horizon.  A pipeline failure is 

indicated when the survival time is less than the established time horizon, which in this study is 

the duration of the asset management database, which is used to compare predicted failures to 

observed failures.  In simulating future failures, the time horizon will extend beyond the duration 

of the asset management database.  The distribution of survival times and as a result failures or 

non-failures can then be used to estimate the expected failures during the time interval and assign 

confidence intervals to these estimates. 

 

The routine described will be used to simulate the number of expected annual failures for the 

duration of the observation period for the asset management database for Utility A.  The routine 

will be repeated one thousand times to generate an appropriate number of points for 

consideration.   

 

The Monte Carlo Simulation to generate expected failures assumes that the failure times for pipe 

segments follow the Weibull distribution previously specified. Any underlying randomness not 

captured by the Weibull distribution will not be represented in the Monte Carlo Simulation. 

Monte Carlo Simulation analyses are also highly dependent upon the number of simulations, so 

care must be taken to insure the convergence of the simulation number [104].   

 

The results of the simulations vary, and a range of potential failure histories are produced.    For 

model comparison purposes, the averages of the simulation results are reported.  The decision 
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maker needs to keep in mind that the probability always exists that the expected failures could be 

higher or lower than the averages reported.  Rather than assuming that the Monte Carlo 

Simulations accurately predict exact facility failure times, the model is used to identify the pipes 

with the highest simulated risk of failure over a time horizon.   

 

As a surface level evaluation of prediction performance, the total average predicted failures for 

each model are compared to the observed failures.  To validate the models’ ability to identify 

high risk pipes, a validation metric that examines the failure predictions for quantiles is used. 

This validation metric introduced by Le Gat and Eisenbeis [37] also used by Røstum [102] 

Martins et al. [49] evaluates the prediction performance at the pipe or level.  Pipes are gathered 

into cohort quantiles based on predicted failures, which are correlated to the number of observed 

breaks.  The cumulative total of observed and predicted breaks for the cohorts are compared.  

 

4.8 Results 

Models were developed for the three materials that incorporated estimates for both material and 

installation date.  Table 4.2 and Table 4.3 show the calibration results for lined CL, CU, and DI 

pipes calibrated without the assumption parameters and with the assumption parameters. Table 

4.4 shows the results for model with assumption parameters and the estimated break rate 

covariate. 
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Table 4.2:  Base Model Parameters 

 Model Parameter 

CL CU DI 

NOKPF=0 NOKPF>0 NOKPF=0 NOKPF>0 NOKPF=0 NOKPF>0 

Intercept 4.65358 0.82463 4.42538 0.81347 -45.3759 0.66264 

Scale 1.02810 0.97515 0.97866 1.04012 0.91560 1.02660 

Parameters 

      Pipe Diameter 0.16934 -- 0.16981 -- 0.16615 -- 

Installation Date -- -- -- -- 0.02535 -- 

 

Table 4.3:  Model Parameters with Assumption Covariates 

 Model Parameter 

CL CU DI 

NOKPF=0 NOKPF>0 NOKPF=0 NOKPF>0 NOKPF=0 NOKPF>0 

Intercept 125.0983 0.82463 26.55634 0.813478 -103.45 0.662648 

Scale 1.023578 0.975154 0.970991 1.040124 0.913859 1.026608 

Parameters             

Pipe Diameter 0.177721 -- 0.138171 -- 0.129147 -- 

Installation Date -0.06152 -- -0.01154 -- 0.054973 -- 

Assumed                        

Installation Date -1.92709 -- -1.23252 -- -1.32742 -- 

Assumed 

Material 2.315415 -- 1.930053 -- -- -- 

 

 

Table 4.4: Model Parameters with Assumption and Break Rate Covariates 

 Model Parameter 

CL CU DI 

NOKPF=0 NOKPF>0 NOKPF=0 NOKPF>1 NOKPF=0 NOKPF>0 

Intercept 112.6289 0.82463 27.34865 0.813478 -94.1319 0.662648 

Scale 1.021532 0.975154 0.968981 1.040124 0.91303 1.026608 

Parameters             

Pipe Diameter 0.187801 -- 0.145772 -- 0.119572 -- 

Installation Date -0.05481 -- -0.01169 -- 0.050541 -- 

Assumed     

Installation Date 2.050982 -- -1.23687 -- -1.17224 -- 

Assumed  

Material -1.68658 -- 1.934948 -- -0.31484 -- 

Average    

Break Rate -0.00423 -- -0.00305 -- -0.00276 -- 
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Evaluating the impact of covariates on the survival function, for each material, the average break 

rate is significant given p-test results and influences the survival function in the same fashion.  

The negative value for pipe break rate indicates that pipes with higher break rates have greater 

failure probabilities. Also for each material, pipe diameter is a significant covariate and acts in 

the same way for all materials. The positive value indicates that pipes with larger diameters are 

less prone to fail, because as the pipe size increases, the failure time also increases.  The positive 

coefficient value for pipe diameter aligns with the convention that smaller pipes are more prone 

to fail, as they have thinner wall thickness, and are less resilient to external and internal forces 

and corrosion. 

 

For CL and CU, the assumed installation date parameter is negative, meaning that older pipes 

have decreased survival probabilities.  This is not the case for DI, but this could be attributed to 

the vast number of pipes with an assumed installation date of 1992, which is at the high end of 

the range of installation periods for DI.   

 

Additionally concerning DI, the intercept is negative for the first cohort model (NOKPF=0), 

indicating that the failure increases at a lower rate than the other pipe cohorts.  DI pipe is the 

newest material in the network, and now comprises approximately 40% of Utility A’s network.  

The failure rate for DI is less than the other pipe materials, and as a result has more right 

censored pipes.  Additionally, the last two years of failure records showed a marked decrease in 

failures for DI.  Since DI has only recently been installed, it is possible that a majority of the DI 

pipes installed have yet to reach wear out stages that occur at the end of a pipe’s useful life. It is 
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possible that the DI pipes are experiencing normal wear and the model is not capturing the end of 

life break rate, associated with the right hand side of the “bathtub curve” describing 

infrastructure failures..   

 

Using the model calibration results obtained above, Monte Carlo Simulation routines were used 

to simulate failures for the duration of the asset management database.  For each model, 1,000 

simulations were performed, and the average of the predicted failures rounded to the nearest 

integer are reported in Table 4.5.  

 

Table 4.5: Prediction Performance 

Material 

Observed 

Failures 

Predicted Failures 

Base Model 

Base Model 

And  

Assumption 

Covariates 

Base Model With 

Assumption and 

Break Rate 

Covariates 

CL 733 594 594 584 

CU 953 761 778 755 

DIP 668 553 555 554 

 

 

Model Comparison 

In order to evaluate the prediction capabilities of the models, the rank order validation metric is 

utilized.  Pipelines are sorted according by the average number of predicted breaks.  Quantiles 

for the set of predictions are determined.  Pipes are grouped by quantile and the sum of the 

predicted breaks for each quantile is compared to the sum of observed breaks for each group.  

Since the data is heavily censored, we expect to see a large jump between the 90% and 100% 
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quantiles, which represents the pipelines with the highest risk pipe segments.  An aggregate 

comparison is made in Figure 4.4, comparing predictions for all three pipe material cohorts. 

 

Though the models without assumption parameters perform well on a network level by 

satisfactorily predicting the number of observed failures, the models do not accurately predict 

failures for the highest risk cohorts.  Quantiles are more readily observed when adding the 

assumption variables, and a marked increase is shown in the model when the break rate covariate 

is added. 
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(a) Base Model   (b) Model with Assumption Covaraiates 

 

(c) Model with Assumption and Break Rate Covariates 

 

FIGURE 4.4:  VALIDATION RESULTS 

 

Conclusion 

This paper has addressed the problems of uncertain and limited data that attributes to the low 

adoption rate of pipeline failure prediction models.  It has solved these problems by introducing 

two improvements to the Weibull Hazard Rate Model (WPHM).  Upon application of these 
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improvements, it was found that utilities with uncertainties about basic pipeline properties can 

incorporate expert elicited assumptions of these properties to develop improved models based on 

comparisons of observed data and Monte Carlo Simulation results in which the models calibrated 

with 80% of the recorded data were used to simulate failures for all of the facilities within the 

network.  When these assumptions are acknowledged, in the form of categorical binary 

covariates, the ability to detect the highest risk pipes increases, as evidenced by the commonly 

utilized quantile rank validation routine.  This finding supports the idea that not accounting for 

pipeline property assumptions introduces bias into failure prediction models.   

 

It was also discovered that a marked increase in the prediction performance for the pipes with the 

highest likelihood of failure exhibited in the eighth through tenth deciles occurs when the 

spatially distributed break rate is added to the model that includes the categorical assumption 

variables.  This increase is realized when compared to both a base WPHM and the WPHM with 

the added assumption covariates.  The value of this contribution is that an acceptable failure 

prediction model was developed with a limited number of explanatory variables.  The number of 

explanatory variables required was reduced by examining break rate on a local level using 

Thiessen polygons to subset the network, and distributing the break rate spatially using a kriging 

model.  This single break rate covariate can be a surrogate for many other explanatory variables, 

which will limit the amount of data collection required for utilities to develop failure prediction 

models.  Additionally, by reducing the amount of explanatory variables required, the chance of 

over fitting a model decreases, which is beneficial to medium sized utilities with smaller 

numbers of recorded failures which can be used to train models. 
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The limitations of these model improvements are that they have not been tested on networks 

varying in uncertainty, size, and data availability. Future work is needed to investigate the impact 

of the assumption covariates on networks with lesser and greater pipeline property uncertainty 

than Utility A.  These limitations are investigated in Chapter 6, where the model is demonstrated 

on medium sized utilities. 

 

Additionally, the break rate covariate model should be compared to a model that does include a 

number of additional explanatory variables including bedding type, infrastructure above the pipe, 

cathodic protection of the pipe, soil type, and ground water levels.  Most of these parameters 

were not available for Utility A.  Finally, after more breaks have been observed, temporal 

validation metrics should be used to compare predicted breaks to observed breaks for specific 

time intervals. 

 

Though every effort should be made to maintain an accurate and reliable inventory database, the 

results of this study are encouraging for utilities wishing to develop risk-based capital 

improvement plans, but do not have exhaustive asset management databases and have 

uncertainties regarding network properties.  Failure predictions can be synthesized with 

criticality studies and hydraulic models to predict future level of service, and prioritize pipeline 

rehabilitation and replacement projects in order to minimize the long-term cost of network 

ownership.
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CHAPTER V – RISK-BASED OPTIMIZATION OF MR&R ACTIVITIES 

 

5.1 Introduction 

Compared to the amount of papers demonstrating failure prediction models for water pipes, there 

are few resources available describing how to utilize the predictions to prioritize pipe 

replacement and maintenance activities. For utilities to adopt strategic MR&R plans, there needs 

to be more real examples of risk-based asset management frameworks.  The following chapter 

demonstrates a risk-based prioritization routine for pipe MR&R activities using the survival 

models presented in the previous chapter.  A case study of this framework is presented using data 

from Utility A.   The first section of this chapter provides background information describing 

previous works to prioritize water pipe replacement. Section 5.3 describes the methodology for 

quantifying the consequence of pipe failures in terms operational, environmental, economic, and 

hydraulic impacts.   

 

The next sections focus on a genetic algorithm based approach to determining the MR&R actions 

and areas of the network to undertake such actions that minimize the short-term impacts of pipe 

failures, given budget constraints.  Geographic binning of the network is utilized to constrain 

replacement work to specific areas of the network, helping the asset manager develop 

replacement projects.     

 

The greedy-heuristic genetic algorithm is demonstrated using data from Utility A, which is much 

larger than utilities presented in case studies reviewed in Chapter 2.  With 250,000 assets, a pipe 

replacement GA model like those presented in literature would have a search space of 2250,000 
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which is a very large problem and cannot be solved in a reasonable amount of time using a 

standard PC.  In investigating the use of GA-based pipe replacement algorithms, a single year 

analysis required over 12 hours to run and converge.  

 

As an alternative to using an algorithm to make binary decisions on which individual assets to 

replace, a novel method is introduced that is used to decide which part of the network to perform 

work.  This reduces the search space by several orders of magnitude.  Cost of repair versus 

replacement ratio analysis is used to determine which areas of the network to do work in and 

how much to invest in those areas to mitigate the impacts of failure.   

 

5.2 Background  

In order to thoughtfully develop maintenance and rehabilitation strategies, utilities are adopting 

risk-based approaches to pipeline prioritization.  To assess the risk of infrastructure failure, the 

consequences associated with failure must be quantified, often using costing models.  The most 

robust of these models consider the not just the costs of replacement, but the operational and 

social costs of failure.    Many of these costs of failure tools are utilized in rehabilitation and 

design optimization studies and primarily consider the direct costs of replacement [3]. 

 

Other models attempt to quantify the societal costs of failures, or the indirect costs not paid by 

utilities.  These can include costs associated with traffic due to detours, energy loss, customer 

outage costs, and flood restoration.  The Grand Central model (GCM) [1] is a spreadsheet tool 

capable of analyzing both the direct and social costs of failures for smaller diameter pipes.  As a 

follow-up study, Gaewski and Blaha [2] updated the Excel-based tool to analyze the total costs 
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of large diameter pipes.  This tool considers both the direct and social costs of pipe failures.   In 

their assessment, the authors determine that the highest societal costs due to failures are 

associated with costs due to flood restoration and traffic disruptions which comprised over 80% 

of the social costs for the failures studied. Flooding and traffic costs are directly related to land 

use and urban density. 

 

 Piratla and Ariaratnam [3] simplify a societal costs model by adding a location multiplier to the 

direct costs of repair.  This multiplier is based on the locality of the break including industrial 

and environmentally sensitive areas, which accounts for the built environment around the buried 

infrastructure.   In assessing the total costs due to failure, the researchers also introduce an 

equation for calculating the costs of lost water, assuming an average break diameter and velocity.   

 

The loss of water due to breaks also results in increase energy costs due to increased pressure 

requirements as a result of water losses.   Though these costs are significant, accurate 

quantification of these costs depend on network topography and the spatial distribution of breaks 

[105]. Cabrera et al. [106] include a parameter developed by Colombo and Karney [105] in a 

simplified equation to calculate the energy losses due to leakage and breaks that is based on 

volume of water lost, the average pressure, and pumping efficiency.   

 

The decrease in pressure and/or supply associated with leaks and breaks can also cause Level of 

Service failures, such as minimum fire flow protection, which could have a negative financial 

impact on the utility.  Cabrera et al. [106] estimate a penalty for such costs and demonstrates that 

including these occasional costs can alter the optimum cost-effective time for pipe replacement.  
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In the PARMS-PRIORITY decision support system,  Moglia et al. [107] introduce a probabilistic 

approach for calculating costs due to service disruptions.  This approach considers the costs 

associated with commercial customers experiencing repeated interruptions will expect to be 

compensated for their losses. Dandy and Engelhardt [108] consider two forms of service loss:  

local interruption which accounts for service loss to customers and global interruption which 

takes into effect reduced pressure due to the break.  The local interruption factor is simplified 

and assumes an average number of customers per land usage.  The global interruption requires 

running simulations of valve closures for each pipe segment in the network and determining 

areas of critically low pressure and the associated customers.  The result is a Total Expected 

Number of Customers Impacted by pipe failure, which is used in a rehabilitation optimization 

routine. 

  

To fully quantify the impacts of failures, both the direct costs and the indirect costs paid by 

society need to be quantified.  Though very robust and user friendly models like the Grand 

Central model (GCM) and the companion to the GCM for large diameter pipes have been 

developed, more can be done to validate these model results with case studies of pipe failures.  

 

5.3 Consequence Analysis 

The consequence analysis attempts to assess the environmental, operational, economic, and 

hydraulic consequences of pipe failures.  The hydraulic consequence study was performed by an 

outside consultant.  This analysis was performed using a hydraulic model with pipe failure 

simulations.  The hydraulic consequence study considered the impact of pipe failures on 

customers with respect to supply and minimum pressures for fire flow protection.   The results of 
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the hydraulic consequence study are the most critical pipes in the network with respect to water 

losses and outages.  Failures along these lines are considered to be catastrophic because if they 

fail, there are no redundant pipe lines to help supply the demand.  These lines should drive some 

capital project decisions including the projects to add redundant lines.  Utility A is already 

developing capital projects to mitigate the impacts of failure along these lines by adding 

hydraulically redundant pipelines.  As a result, these pipelines were excluded from the 

optimization analysis to develop routine asset management programs.  Instead, a ranking of these 

pipes based on failure probability was provided to Utility A, to use in prioritizing capital projects 

for the catastrophic lines. 

 

For the remaining pipe segments, a consequence analysis was performed based on the work of 

[17] which is a weighted approach to assessing risk with respect to the environmental, economic, 

and operational impacts of failure.  Tables 5.1 to 5.3 demonstrate show the weighted matrices, 

data, and geoprocessing steps taken to perform the analysis.  Weights were determined with 

input from asset managers from Utility A.   
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Table 5.1:  Operational Impact Matrix 

 

Table 5.2: Economic Impact Matrix 
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Table 5.3:  Environmental Impact Matrix 

 

The total weighted consequence score is the sum of the weighted impact matrices.  This score 

was computed for all pipe segments.  Breaks in scores were assigned based on shape length to 

classify the pipes as high, medium, and low consequence.  These scores are utilized as 

multipliers to account for the social costs of failures in the pipe replacement optimization routine 

described in the next section.  It is important to note that the index weights can be modified to 

reflect the priorities and potential costs differences between operational, economic and 

environmental failure impacts.  The asset manager should review and validate these failure 

consequence results and make any changes as deemed necessary.  Specifically, one should 

compare case studies of previous pipe failures within the network and the associated societal 

costs to the results of the consequence analysis multiplier used in the optimization methodology. 
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5.4 Optimization Methodology 

The most commonly used optimization methodology presented in the literature is genetic 

algorithms.  These frameworks are discussed in Chapter 2.7.  The optimization methodology 

proposed improves upon previous optimization frameworks by investigating the spatial binning 

to constrain pipe replacement projects to subset(s) of the network.  The goal of the optimization 

routine is to help the decision maker develop pipe replacement projects that minimize the risk of 

pipe failures within a three year planning period by maximizing a costs ratio that compares the 

repair costs to replacement costs.  Risk is quantified using a penalty function that considers both 

the probability and consequences of failure expressed in monetary terms.  The methodology for 

the optimization routine is described below. 

 

5.4.1 Probability of Failure 

The probability of pipeline failure is calculated using the WPHM described in Chapter 4.  Since 

the equations presented in Chapter 4 are survival functions, the calculation of the cumulative 

probability of failure is: 

  

 
𝑃𝑓(𝑥) = 1 − 𝑆(𝑥)  

[5.1] 

 

Where 𝑃𝑓(𝑥) is the probability of pipe failure, 𝑆(𝑥) is the survival function and 𝑥 is time post the 

end of the asset management database duration defined in equation 5.2. 

 

 
𝑥 = 𝑥0 + 𝑡 

[5.2] 
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Where 𝑥0  is the duration of the asset management database used to calibrate survival model 

parameters, and 𝑡 is the time in years post update of the database in which the failure probability 

is to be calculated. 

 

5.4.2 Consequence of Failure 

The cost of failure 𝐶𝑓, shown in Equation 5.3 considers both the probability of failure as well as 

the consequence, in order to account for the social costs of pipe failures.  The criticality scores 

described in the previous section are used as multipliers to the base cost of a point repair.  

 

 
𝐶𝑓(𝑥) = (𝑃𝑓(𝑥)𝐶𝑃𝑅 × 𝐶𝐹) 

[5.3] 

 

 Where 𝐶𝑃𝑅 is the cost of a point repair at the present year provided in CF is a consequence 

factor multiplier.  Values for these variables are shown in Appendix B. 

 

5.4.3 Cost of Replacement 

The cost of pipe replacement is a function of pipe diameter and pipe length shown in Equation 

5.4.  A lookup table included in Appendix B shows the unit costs of pipe replacement given 

diameter per linear foot.  It is assumed that regardless of the original pipe material, the replaced 

pipe will be ductile iron. 

 

 
𝐶𝑅(𝑥) = (𝑅𝐶 × 𝐿) 

[5.4] 

 

Where RC is the replacement cost per unit length and L is the recorded shapelength of the asset. 
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5.4.4 Decision Variables 

The following subsections describe the decision variables for the optimization function. Two 

decision variables are considered in this algorithm.  First, the decision maker needs to decide 

where geographically to perform work.  This decision is based on a grid that bins the network.  

Next, one must decide how much to invest in a bin in order to maximize the total costs ratio for 

the entire region.  The following subsections describe the decision variables 𝑧(𝑥). 

 

5.4.4.1 Binning of Assets and Projects 

A binning method is used in order to subdivide the network into project.  Using the fishnet the 

feature in ArcGIS, a grid is overlaid on the network.   

 

The decision variable related to these binned zones is binary variable that controls whether 

replacement work is performed in a tract shown in Equation 5.5. 

 

 
𝑧𝑐(𝑥) = {

1 𝑖𝑓 𝑤𝑜𝑟𝑘 𝑖𝑠  𝑡𝑜 𝑏𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 𝑖𝑛 𝑧𝑜𝑛𝑒 𝑐 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑥
0 𝑖𝑓 𝑛𝑜 𝑤𝑜𝑟𝑘 𝑖𝑠 𝑡𝑜 𝑏𝑒 𝑑𝑜𝑛𝑒 𝑖𝑛 𝑧𝑜𝑛𝑒 𝑐 𝑖𝑛 𝑦𝑒𝑎𝑟𝑟 𝑥     

} 
[5.5] 

 

For each year within the planning horizon, the decision is made to perform or not perform work.  

The number of zones in which work can be done in a given year is constrained.  In addition, the 

structure of the algorithm is such that work can only be done in a zone once within the planning 

horizon. 
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5.4.2 Costs Ratio Function 

The costs ratio for an individual asset, 𝑘, is defined as the penalty cost of failure at the end of 

year 𝑥, divided by the cost of replacement. 

 

 

(𝐶𝑅)𝑘(𝑥) =
(𝐶𝑓)

𝑘
(𝑥)

(𝐶𝑅)𝑘(𝑥)
 

[5.6] 

 

The assets are ranked by benefit cost ratio and the cumulative benefit cost ratio (𝐶𝐶𝑅)(𝑥)𝑁  after 

replacing each asset is determined, where 𝑁 is the 𝐶𝑅 rank order of the asset. 

 

 
(𝐶𝐶𝑅)(𝑥)𝑁 = {

(𝐶𝑅)𝑘(𝑥) ,                                𝑓𝑜𝑟 𝑁 = 1

(𝐶𝐶𝑅)𝑁−1 + (𝐶𝑅)𝑘(𝑥),      𝑓𝑜𝑟 𝑁 > 1
 

[5.7] 

 

The cumulative cost 𝐶𝑐𝑚(𝑥)𝑁  is then calculated, which considers the financial impact of 

replacing assets according to B/C ratio ranking.   

 

 
𝐶𝑐𝑚(𝑥)𝑁  = {

(𝐶𝑅)𝑘(𝑥) ,                                𝑓𝑜𝑟 𝑁 = 1

𝐶𝑐𝑚(𝑥)𝑁−1 + (𝐶𝑅)𝑘(𝑥),      𝑓𝑜𝑟 𝑁 > 1
 

[5.8] 

 
 

 

Using the rankings, a cost benefit curve is plotted for each zone in each year.  This curve is fit to 

a logarithmic function to develop the CR ratio cost functions, (𝐶𝐶𝑅(𝑐𝑎𝑝))
𝑧
, where the costs 

ratio is a function of the capital spent in a zone.  As shown in Figure 5.1, there is a point at which 

investing more capital in a zone has a minimal impact on the CR value.  The goal of the decision 

maker is to invest enough capital, or replace enough pipes to maximize the CR value, while 

keeping the capital investment to a minimum. 
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FIGURE 5.1:  CUMULATIVE COSTS RATIO CURVE 

 

5.4.4 Optimization Problem Formulation 

 

 
max
z𝑖𝑗c𝑖𝑗

∑ ∑ 𝑧𝑖𝑗

𝑗𝑖

CCR𝑖𝑗(z𝑖𝑗c𝑖𝑗) [5.9] 

 

s.t. 

 
c𝑖𝑗

𝑚𝑖𝑛 ≤ c𝑖𝑗 ≤ c𝑖𝑗
𝑚𝑎𝑥      ∀  i ∈ I, j ∈ J 

[5.10] 

 

 
𝑧𝑗

𝑚𝑖𝑛 ≤ ∑ 𝑧𝑖𝑗

𝑖

≤ 𝑧𝑗
𝑚𝑎𝑥     ∀  j ∈ J [5.11] 

 

 
B𝑗

𝑚𝑖𝑛 ≤ ∑ 𝑧𝑖𝑗c𝑖𝑗

𝑖

≤ B𝑗
𝑚𝑎𝑥     ∀  j ∈ J  [5.12] 
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z 𝑖𝑗 ∈ {0,1} 

[5.13] 

 

Where: 

I = set of zones 

J = number of years in planning horizon 

𝑧𝑖𝑗= binary decision to work in zone i in year j 

c𝑖𝑗 = dollars to be spent in zone i 

𝑧𝑖𝑗c𝑖𝑗= actual expenditure in zone z in year j 

B𝑗
𝑚𝑖𝑛=minimum capital expenditure for total network in year j 

B𝑗
𝑚𝑎𝑥=maximum capital expenditure for total network in year j 

 

This optimization problem is solved using the OptQuest Engine available in the Excel add-on 

tool, Evolver[109].  The OptQuest algorithm incorporates Tabu search, scatter search and integer 

programming to solve linear and non-linear problems.  Tabu search allows for change in the 

search direction, which is not typical of genetic algorithms [84].  The engine remembers 

solutions that solved the constraints, and recombines them to search for new solutions.  As a 

result, this solving algorithm is less likely to get stuck in local minimum/maximums and more 

likely to find a global solution.   

 

The OptQuest Engine allows for a convergence stopping criterion, which is a number of runs 

without a certain percentage of improvement in the solution.  Though it is less likely to produce 

sub-optimal results, and replicability rate of results is high, the sensitivity of the model still needs 
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to be examined.  To further insure a more optimal solution, the engine is run 10 times for each 

evaluation.  The best result from all runs is selected as the optimal solution 

 

5.5 Case Study and Analysis 

The following sections describe a case study of this framework evaluated on assets within a 

pressure zone of Utility A.  Pressure zones are separated areas in the network with common 

elevation.  Pipe networks within these areas are constructed to maintain pressure targets and 

operate independently from networks in other pressure zones [110].   For these reasons, the 

operational characteristics of networks can vary dramatically across zones.  In considering 

maintenance and replacement programs to mitigate the impacts of future failures, one should 

consider projects isolated to specific pressure zones.     

 

The pressure zone selected for consideration in this case study contains a large number of break 

rate distribution hot spots.  Break rate distribution or cluster analysis can be used to identify 

priority zones for considerations in developing maintenance and replacement programs.  The 

zone considered in this case study recently experienced a massive line break and outage and 

contains a concentration of critical customers. A main break occurred on a catastrophic line 

which distributes water in the pressure zone from a pumping station.  The consequence of this 

break included temporary water outages for over 15,000 residents, closure of local businesses 

including a large shopping mall, and several residents being without water for a week.  The 

mitigation of future failures in this zone is important to the public’s perception of level of 

service. 
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5.5.1 Identifying Work Zones 

Using the Fishnet tool in ArcGIS, a grid is overlaid on the network.  The intersect tool is used to 

assign a bin ID to each asset in the network.  The bin size for the case study is 5,000 ft by 5,000 

ft (1.5 km by 1.5 km). 

 

FIGURE 5.2:  PRESSURE ZONE AND BINS 

 

For each year in the three year evaluation period, the constraints in Table 5.1 are used.  It is 

assumed that once work has been done in the zone, no more work will be done in that area for 

the remainder of the planning horizon.  As a result, the decision variables are further condensed 

as the evaluation progresses and zones are no longer included in the analysis. 
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Table 5.1:  Subset Constraints 

Constraint Value 

B𝑗
𝑚𝑖𝑛 $500,000 

B𝑗
𝑚𝑎𝑥 $1,000,000 

𝑧𝑗
𝑚𝑖𝑛 1 

𝑧𝑗
𝑚𝑎𝑥 2 

c𝑖𝑗
𝑚𝑖𝑛 $100,000 

c𝑖𝑗
𝑚𝑎𝑥 $1,000,000 

 

The zones selected for prioritization efforts from the best solution and the percent annual budget 

allocated in each zone are shown in Figure 5.3, which includes the zones and pipes overlaid on 

the break rate distribution map.  The cumulative cost benefit ratio for a $3 million investment is 

25.16.  The optimization was performed with convergence stopping criterion of 20,000 

simulations with less than 0.01 percent improvement.  To insure the most optimal solution was 

selected, the optimization routine was run ten times.  The run time for this study was 

approximately 20 minutes per run on a PC with a 2.80 GHz processor with 8 GB RAM.   
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FIGURE 5.3:  OPTIMIZATION RESULTS 

 

The zones selected for prioritization efforts are shown in Figure 5.3.  To demonstrate how this 

method can be used to prioritize assets on a street level, the pipes with the pipes with the highest 

CR values for the right two southwest zones are shown in  Figure 5.4.   
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FIGURE 5.4:  HIGH PRIORITY PIPES 

 

The white line segmenting the picture is a zone division.  Aerial photograph has been turned on 

in the background to allow for reference scale visualization.  Once plotting the assets, the 

decision maker can start evaluating the connectivity of high priority pipes and start designing a 

replacement project.  One can see the decision maker still has trade-off decisions to make in 

prioritizing pipes for condition assessment and/or replacement (see for example the two 

southwest pipe segments), but decisions can now be made on the street/neighborhood level, 

which is representative of such projects.  Additionally, expert opinion may dictate the re-

ordering of prioritization zones.  For example, the zones shown above were scheduled for 

replacement activities in subsequent years.  Though some optimality might be lost, obviously 

replacement work would be done in these zones at the same time.  This highlights again that not 
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this framework, or any framework, can replace expert opinion and analysis.  The framework 

presented is a tool that can be used to help decision makers narrow down alternatives and make 

well-informed asset management decisions. 

 

5.5.2 Impact of Binning 

To fully evaluate the benefits and trade-offs of the framework presented, a separate optimization 

routine which does not consider binning of assets was performed in order to examine the effects 

of binning on asset prioritization and the maximum cost/benefit ratio.  For simple comparison 

purposes, this algorithm was considered run for year one of the planning horizon and compared 

to the binning optimization results for year one.  The CR curve as a function of capital for all 

assets in year one is shown in Figure5.5. 

 

 

FIGURE 5.5:  CR CURVE FOR ALL ASSETS IN YEAR 1 
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No changes were made to the budgetary constraints shown in Table 5.2.   The differences in B/C 

ratios are noted in Table 5.3. 

 

Table 5.2:  Alternative Framework  Constraints 

Constraint Value 

𝐵𝑚𝑖𝑛 $100,000 

𝐵𝑚𝑎𝑥 $1,000,000 

 

Table 5.3:  B/C Comparison 

Framework B/C Ratio 

Binning 25.16 

Individual Assets 37.9 

 

Figure 5.6 shows assets selected for replacement or condition assessment using the binning 

method versus evaluating the costs ratio at the individual asset level.   

 

 

FIGURE 5.6  INDIVIDUAL ASSETS COMPARED TO ZONES 
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Though there is agreement between the high priority pipes selected from the alternative 

framework and the work zones, once can see that there is still a large percentage of pipes that fall 

outside of these zones, making project selection difficult.  Though optimality suffers, the binning 

method is a better approach for prioritization. 

 

5.6 Conclusions 

This chapter presented a risk-based approach for prioritizing assets considering both the 

likelihood failure, quantified using survival models presented in Chapter 4, and consequence of 

failure using an expert opinion based weighted methodology.  An optimization routine was 

presented to assist decision makers in selecting regions to undergo replacement programs.  This 

framework differs from those presented in literature as it helps prioritize pipes considering the 

actual operations of a utility, and the size of replacement projects which typically include 

replacement of 0.25 mile (0.4 km) to 1 mile (1.6 km) of pipe.  The sensitivity of bin size and 

shape on the optimization res 

 

This methodology was compared to a framework that did not consider restricting work to subsets 

of the network.  The comparison shows that the costs ratio is higher when considering 

prioritization of zones rather than individual assets, which is to be expected.  Also expected was 

the wide spatial distribution of priority assets across the network.  Utility operations dictate that 

the most optimal solutions through replacement will not be made due to the large spatial 

distribution of assets. The framework decision shows how to maximize costs ratios while 

considering how a utility actually designs, procures, and prioritizes pipe replacement or 

condition assessment projects. 
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CHAPTER VI – INVESTIGATION OF TRANSFER TECHNIQUES FOR WATER PIPE 

FAILURE PREDICTION MODELS FOR MEDIUM AND SMALL UTILITIES 

 

6.1 Introduction 

As water distribution pipes reach the end of their useful lives, the long-term costs of maintaining 

and operating water distribution networks are increasing.  A recent study by the Environmental 

Protection Agency (EPA) suggests that the 20-year cost of maintaining water distribution assets 

will exceed $384 Billion [4].  Approximately 65% of the funding needs are expected to come 

from medium and small sized utilities serving less than 100,000 persons.   

 

Though many statistical tools have been introduced to assist in the long-term planning and 

budget forecasting for water distribution linear assets, most of these tools have been 

demonstrated using data from large utilities with sophisticated asset management databases and 

maintenance inventories.  Developing failure prediction models for medium and small utilities 

can be challenging due to limited number of recorded failures, which are needed to train 

statistical models.  Also, medium and small utilities typically have less sophisticated asset 

management databases with fewer fields describing the physical properties of the pipe segment 

and the environmental conditions around the pipe.   

 

Hypothesized solutions for the problems associated with limited data associated with medium 

and small utilities are rooted in model transfer theory.   These methods assume that the 

parameters from a model trained on extensive data can be transferred to the smaller model, in 

order to improve prediction performance; information gained from a larger utility is useful to the 
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smaller utility.  These potential solutions have not been thoroughly examined.  Investigating the 

potential spatial transferability of models could lead to a solution for the problems associated 

with training survival models for medium and small utilities with limited data sets.   

 

This paper explores if model transfer can solve the problems associated with limited data for 

small and medium utilities using the Weibull Proportional Hazard Model as a base failure 

prediction model for one large utility and two medium sized, suburban utilities in the southeast 

United States. The three utilities are described in Chapter 3.   Three model transfer techniques 

are evaluated for improvement in prediction performance using standard validation metrics used 

for pipe replacement prioritization models presented in literature.   

 

The paper is organized as follows: A review of prioritization models and the development of 

models for medium and small utilities is introduced. The data for the utilities is described. The 

methodology for the model calibration and transfer are detailed. Model calibration and validation 

results are discussed. Conclusions and recommendations are made. 

 

6.2 Background 

Though numerous pipeline failure prediction models have been introduced over the past few 

decades, few have been demonstrated on medium and small utilities. Wood and Lence [11] 

investigate using time-linear and time-exponential models on various pipe groupings to estimate 

a cumulative number of breaks for small utilities.  Though the models did reveal the most 

significant pipe parameters when considering break potential, model results were mixed, with 
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some pipe groupings having high percent errors in prediction performance.  Additionally, the 

methodology was demonstrated on only one utility. 

 

Toumbou et al. [51] used a Weibull-Exponential-Exponential (WEE) to model pipe breaks for a 

small Canadian utility.  Parameterized and non-parameterized forms of the WEE model 

accurately predicted the long-term break trend. Information regarding a holdout sample for 

model validation was not given.  Additionally, the database for the utility spanned over twenty 

years with approximately one thousand failure records, which is comparable in record size to 

data sets from large utilities. 

 

Xu et al. [70] demonstrate the use of evolutionary polynomial regression (EPR) to predict 

failures in a utility with brief data.  Though the data set is described as brief in terms of 

observation period, the number of breaks is significant, ranging from 100 to 250 breaks per data 

set.   

 

More sophisticated, Bayesian updating models have recently been applied to water pipeline 

failure prediction for a small utility in Switzerland [76].  Describing the current state of 

knowledge of network performance, the estimation of the prior parameter distributions for a 

Weibull model is obtained by estimating model parameters for three larger utilities, and then 

aggregating the three parameter distributions.  Posterior parameter estimations for all utilities, 

including the small utility, are obtained through Markov Chain Monte Carlo (MCMC) sampling 

using the aggregated parameters from the large utilities and the data from the small utility.  
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Uncertainty is reduced by incorporating the data from the small utility.  The authors provide 

guidance for validating the model, yet do not provide validation results.  

 

Model transfer has been proposed as a potential solution to training valid models for small 

utilities.  Common model transfer techniques include a naïve or direct transfer model, joint 

estimation model, and a combined transfer estimator model. Some of these methodologies have 

been applied or indirectly suggested by researchers for predicting water main failures in medium 

and small utilities with limited data, yet have not been fully validated using metrics common to 

the pipeline replacement prioritization models presented in literature.   

 

The naïve transfer model assumes a direct transfer of estimators from the large utility to the 

small utility. Martins et al. [49] suggest using this method of model transfer for small utilities, 

but does not demonstrate its application.  Instead, the author examines transferability across a 

singular network by training a model on a random selection of 50% of the data from a large 

utility, and validating the model using the remaining 50% of data.  The validation shows that 

transferability of the model across the same network is viable, but does not definitively answer if 

the transferability of models across utilities is a valid approach. 

 

In order to retain properties associated with the smaller network, joint estimation can be used to 

estimate model parameters.  The data from multiple utilities is combined, and model parameters 

are estimated using data from all utilities.  Renaud et al. [111]  investigated joint estimation 

models when developing the prioritization software, SIROCO.  The SIROCO model was 

developed using data from various utilities across France.  The combined or amalgamated 
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models were significant, but did not necessarily improve base model performance because the 

only utilities with the sufficient amount of records required for the Weibull based model were a 

medium and large utility.  The researchers conclude that small utilities with less than 200 pipes 

would benefit from the amalgamated database approach, and would not be able to develop 

significant models otherwise.  The joint context estimation methodology assumes the spatial 

homogeneity of factors influencing pipe breakage rates.  Kleiner and Rajani [46] explain that 

non-pipe intrinsic factors such as climate can impact breakage rates in otherwise homogenous 

groups of pipe.  The combination of these non-intrinsic factors accelerate or decelerate failure in 

otherwise homogenous groups of pipe.  The assumptions that the groupings of these parameters 

have the same impact on network as the other may not be appropriate.  For example, not all the 

data needed to capture such non-intrinsic parameters could be included in the model. 

 

Similar to the naïve transfer model application demonstrated by Martins et al. [49], Savic et al. 

[112] demonstrate the applicability of joint estimation by examining model performance at 

individual zones across a network. Using data aggregated from over forty water quality zones 

within a utility, evolutionary polynomial regression (EPR) is used to formulate break rate 

prediction equations.  The prediction performance in each water quality zones within the 

distribution network is evaluated using the coefficient of determination metric.  The EPR model 

was valid, and the model is spatially transferable across regions in the same network, providing a 

proof of concept of joint context estimation, though not explicitly described. The authors 

determined that the EPR model successfully provides insight to the underlying physics of a 

failure model, and produces parsimonious models that are less likely to be fit to data noise.  
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Again, joint context estimation of the model was not explicitly described, nor was joint context 

estimation demonstrated with this model using data from more than one utility. 

 

A third model transfer technique that has not been applied to pipeline survival models is the 

combined transfer estimation (CTE) model proposed by Ben-akiva and Bolduc [113].  CTE is a 

less sophisticated Bayesian model that uses weighted averaging to account for bias associated 

with transferring parameters from the large utility, known as the transfer region, to the small 

utility, known as the application region.  This method has been demonstrated with much success 

for transportation planning problems [114], [115].  CTE method also allows for the asset 

manager to select which parameters from the large utility to transfer to the small utility, and 

which parameters to excuse.  For example, a physical property such as pipe diameter might be 

transferable, while parameters describing the clustering of accidents are likely network specific 

and cannot be transferred across time and space.   

 

Though model transfer techniques have been theorized and demonstrated in limited capacity, 

they need to be tested on more medium and small utilities.  Additionally, the potential 

improvements in model transfer gained by the CTE method needs to be explored.  Lastly, more 

thorough validation techniques need to be utilized to understand prediction performance at the 

asset level. 

 

6.2 Model Parameters 

The average break rate serves as a surrogate for many other parameters including soil conditions, 

pressure changes, and traffic levels above the pipe.  Other model parameters considered include 
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pipe diameter and installation date.  Two binary variables, Assumed Install and Assumed Mat are 

used to account for assumptions made with respect to pipe installation date and material.  These 

variables are described in Chapter 4. 

 

6.3 Methodology 

First, survival models are estimated for the data from each utility.  These models are stratified by 

material and the number of observed failures.  When the number of previous known failures 

(NOPKF) is zero, a parametric survival model is calibrated.  When NOPKF is greater than zero, 

a non-parametric survival model is calibrated.   

 

Monte Carlo simulation is used to estimate predicted failures within a specified observation 

period, using the estimated survival functions.  The prediction performance of the models is 

evaluated using two validation metrics.  A baseline comparison between the average expected 

number of failures and observed failures within a time window is made.  Then the decile ranking 

of the predicted failures versus the observed failures is analyzed.  Model calibration and 

validation are described in detail in this section.  Models transfer techniques are employed, and 

prediction performance is compared using the validation metrics described.   

 

6.3.1 Model Calibration 

Data is analyzed from Utilities A, B, and C, previously described.  Base statistics for all three 

networks are calculated.  Parameter estimates for a base model are estimated for all networks 

using a randomly selected 80% of data, with 20% reserved as a holdout sample for validation. 
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The base model selected is a parametric Weibull Hazard Rate Model (WHRM) introduced for 

predicting pipe failures described in detail in Chapter 4.  Due to the limited number of recorded 

multiple failures, a non-parametric WHRM is used to model subsequent failures.    Model 

parameter estimates are obtained through the maximum likelihood estimation method.   

 

The survival models for each utility are stratified by material.  The parameters included for each 

of these models include diameter, installation date, assumed installation date, assumed material, 

and local break rate.  Parameter estimates are obtained using maximum log likelihood 

estimation, and only significant parameters with p-values less than 0.05 are retained. 

 

Using the parameter estimates, several methods for model transferability are tested.  First, the 

naïve transfer method is evaluated by using the parameter estimates from Network A to estimate 

failures in Networks B and C.  Let the subscript i refer to Utility A and subscript j refer to the 

suburban utilities. The naïve transfer method assumes that the Equation 6.1 survival function 

regression parameters estimated for Utility A are directly transferable to Utilities B and C.   

 

 𝜷𝒋 = 𝜷𝒊         [6.3] 

 

                                                                     𝜎𝑗 = 𝜎𝑖  [6.4] 

 

Where 𝛽𝑖 is a vector of regression parameters from Utility A,  𝛽𝑖is a vector of Weibull regression 

parameters for the suburban utilities, 𝜎𝑖 is the Weibull scale parameter for Utility A, and 𝜎𝑗 is the 

Weibull scale parameter for the transfer region(s).   
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Next, joint context estimation for transferability of model parameters is explored. The data from 

all three utilities is aggregated.  The explanatory variables and failure times for the three utilities 

are aggregated as shown below: 

   

 
                                                                    𝒛 = [

𝒛𝒊

𝒛𝒋
]   [6.5] 

 

 

 
                                                                    𝑻 = [

𝑻𝒊

𝑻𝒋
]  [6.6] 

 

Where 𝒛 is a vector of explanatory variables and 𝑻 is a vector of failure times. Survival function 

parameters are then estimated using these vectors.   

 

Lastly, the feasibility of CTE method is explored.  The CTE methodology introduced by Ben-

akiva and Bolduc [113] investigates the variance, or transfer bias, between parameter estimates 

for the application region and the transfer region by evaluating the Mean Square Error of the 

combined estimator. A generalization of the Bayesian Updating method [115], this method 

allows for greater contribution from the estimation region when the transfer bias is low, and a 

decreased contribution when the transfer bias is high.  This transfer method could be particularly 

beneficial in the development of pipeline survival models as operational, environmental and 

maintenances differences vary across utilities, causing increases or decreases in model 

performance, which would impact regression parameters for survival models.  The combined 

transfer regression parameter is computed as follows: 
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                    𝜽𝐶𝑇𝐸 = ((𝚺𝑖
−1 + ∆∆T)−1 + 𝚺𝑗

−1)
−1

+ ((𝚺𝑖
−1 + ∆∆T)−1 + 𝜽𝑖+𝚺𝑗

−1𝜃𝑗)   [6.7] 

 

Where: 

𝜽 is a vector of Weibull regression parameters, [
𝜷
𝜎

]   

𝜽𝐶𝑇𝐸 is the transferred parameters of the suburban utility 

𝜽𝑖  is the estimated parameters of Utility A, the estimation region 

𝜽𝑗  is the estimated parameters of the suburban utility, the application region 

𝚺𝑖 is the covariance matrix of the regression parameters for the estimation region 

𝚺𝑗 is the covariance matrix of the regression parameters for the application region 

Δ is the transfer bias, (𝜽𝑖 − 𝜽𝑗)   

∆Tis the transposed transfer bias matrix 

 

It should be noted that though the CTE method is dependent upon weighted combined transfer 

estimator covariates, the weights selected are solely dependent upon the differences in the 

regression parameters.  The differences due to the number of training points in the transfer and 

estimation regions is not explicitly accounted for in the CTE weighting method, or any of the 

transfer methods presented above. 

 

Model Validation 

Monte Carlo simulation is used to simulate failures from the survival function, using the 

estimated parameters.  A survival probability is selected at random, and the corresponding 

survival time is computed.  If the survival time is less than the duration of the asset management 
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database, or time horizon under consideration, then a failure is recorded.  Over 1000 simulations 

are performed, and the average number of predicted failures is reported. 

 

Two validation metrics commonly presented in literature are utilized.  The first is a baseline 

comparison of the observed failures within the observation period, and the average expected 

failures simulated from the survival models using Monte Carlo simulation.   

The second validation metric is rank order validation introduced and utilized in Chapter 4. 

 

6.4 Results 

6.4.1 Base Model 

Separate models were calibrated for all materials in each Utility.  The calibration and validation 

results for these models are shown in Tables 6.1 and 6.2.  The tables comparing the predicted 

failures to observed failures show reasonable agreement, suggesting that the models for all three 

utilities are statistically valid, yet the rank order validation graphs show otherwise.   
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Table 6.1  Model Calibration Results 

Utility B C 

Material DI CU DI 

Model NOKPF=0 NOKPF>0 NOKPF=0 NOKPF>0 NOKPF=0 NOKPF>0 

Intercept 6.739164 6.109009 4.0704 0.2783 7.036589 0.25432 

Scale 0.925587 0.926909 1.147384 1.3545 1.190347 1.15607 

Parameters             

Diameter -- -- -- -- -0.09805 -- 

Installation                  

Date -- -- -- -- -- -- 

Assumed    

Installation 

Date -- -- -- -- -- -- 

Assumed 

Material -- -- -- -- 27.817 -- 

Average 

Break Rate -0.00843 -- -- -- -- -- 

 

Table 6.2 Prediction Performance Results 

  Predicted Failures 

Observed 

Failures Model 

Base 

Model Transfer 

Amalgamated 

Model 

Joint Context 

Transfer 

Utility A, DI 554 -- -- -- 668 

Utility A, CU 755 -- -- -- 953 

Utility B, DI 17 16 10 16 20 

Utility C, DI 47 37 28 47 54 

Utility C, CU 65 53 42 65 71 

 

The model validation graphs for the base models for Utility A, shown in Figure3, suggest that the 

base models are valid, as there is reasonable agreement between predicted and observed deciles 

and a marked jump in the eighth through tenth deciles, representing pipe cohorts with the 

greatest probability of failure.  One should note that the prediction performance for CU pipe was 

better than DI, with better realization of the highest risk pipes with respect to likelihood of 

failure.  
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(a) CU Base Model (b) DI Base Model 

FIGURE 6.1:  UTILITY A VALIDATION 

 

In contrast, Figures 6.2a to Figure 6.5a show the validation charts for models calibrated for 

Utilities B and C.  The jaggedness of the predicted failure lines correlating with the disagreement 

between predicted and observed deciles shows that the survival models are not valid.  Though 

the models perform reasonably well at predicting the appropriate number of failures, they do not 

accurately predict failures in the correct classes of pipe. 
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(a) Base Model (b) Direct Transfer 

  

(c) Joint Context Estimation (d) Combined Transfer Estimation 

FIGURE 6.2:  UTILITY B – DI PIPE VALIDATION 
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(a) Base Model (b) Direct Transfer 

  

(c) Joint Context Estimation (d) Combined Transfer Estimator 

FIGURE 6.3: UTILITY C—CU PIPE VALIDATION 
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(a) Base Model (b) Direct Transfer 

  

(c) Joint Context Estimation (d) Combined Transfer Estimator 

FIGURE 6.4: UTILITY C—DI PIPE VALIDATION 

  

 

6.4.2 Direct Transfer Models 

The direct transfer models result in worse performance than the base models, evidenced by both 

the base comparison to the observed failures and the cohort analysis of predicted versus observed 

failures.  Potential reasons for the lack of direct transferability of the models could be explained 

by differences in the data sets.  The conclusion that the model parameter information from the 

larger utilities is not valuable to the smaller utilities cannot yet be made.  The direct transfer 

method ignores any differences in the utilities, and the importance of the data from the smaller 
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utilities.  The model transfer methods explored below allow for contribution from the smaller 

utility in the survival model. 

 

6.4.3 Joint Context Estimation Models  

Table 6.3 shows the joint context model estimates, which are very different from both the 

parameters estimated for Utility A and the parameters estimated for the smaller utilities.  The 

joint context estimation models could not pass validation tests for the small utilities.  The data is 

being fit to the larger utility, and the small utility influences the estimates, but serves more as 

noise.  The CTE methodology allows for greater influence of the smaller data set on the 

regression parameters, by minimizing the bias between the parameters for the large data set and 

the smaller data set. 

 

Table 6.3. Joint Context Parameter Estimates 

Utility A,B,C A,C 

Material DI CU 

Model NOKPF=0 NOKPF>0 NOKPF=0 NOKPF>0 

Intercept -42.0592 0.596822548 35.03107 0.716367 

Scale 0.955053 1.063302848 0.99486 1.005168 

Parameters         

Pipe Diameter 0.081981 -- 0.141488 -- 

Installation Date 0.024444 -- -0.01568 -- 

Assumed  

Installation Date -0.90639 -- -1.0493 -- 

Assumed Material -0.39358 -- 1.872616 -- 

Average Break Rate -0.0022 -- -0.00278 -- 
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6.4.4 Combined Transfer Estimator Models  

Even with the bias minimization technique, the CTE method did not result in improved 

prediction performance.  The variance between the model parameters for the utilities was so 

large, that the contribution from the large utility was minimal. Table 6.4 shows the model 

parameters which are only minimally different from the base model parameters. 

 

Table 6.4 Combined Transfer Estimator Parameters 

Utility B C 

Material DI CL DI 

Model NOKPF=0 NOKPF>0 NOKPF=0 NOKPF>0 NOKPF=0 NOKPF>0 

Intercept 6.728369 6.07507 1.263821 0.397665 7.036349 0.38682 

Scale 0.92356 0.92141 0.700301 1.276072 1.190305 1.11641 

Parameters             

Diameter -- -- -- -- -0.09804 -- 

Installation 

Date -- -- -- -- -- -- 

Assumed  

Installation 

Date -- -- -- -- -- -- 

Assumed 

Material -- -- -- -- 27.817 -- 

Average  

Break Rate -0.00839 -- -- -- -- -- 

 

 

6.4.5 Discussion 

Statistically valid models for  DI and CU pipes from Utilities B and C could not be developed 

using the prescribed model form, due to lack of recorded failures.  Consultants has previously 

emphasized to utilities that at least 3 to 5 years of asset management data is needed to develop 

valid statistical models [19], or utilities must have more than 200 pipes [111]. The utilities 

studied met both of these requirements, yet valid models could not be produced.  Evidence of 
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this observation is given by model results for PVC pipe in Utility B, which was not evaluated for 

model transferability, due to the lack of prevalence of this material in the other networks.  With 

over 100 recorded failures, a valid model for PVC pipe was produced. More research is needed 

to examine the minimum number of breaks required to produce valid statistic models.   

 

Additionally, research is needed to discern if machine learning models are more appropriate for 

predicting pipe failures in medium and small utilities with little variance in pipe-intrinsic 

properties.  This is especially true with respect to DI pipe in utility B, which is very new to the 

network.  Most of this pipe was installed within the past ten years.  The Weibull-based survival 

model is appropriate for predicting the accelerated failure rate at the end of life of an 

infrastructure asset, yet does not adequately predict infant mortality rate, or the premature 

failures of a pipe.  Given that DI pipe has a design life of over 100 years [116], one can infer that 

DI pipe in this network still in infant mortality or early wear out stage, and the Weibull model is 

probably not an appropriate model form for DI pipe in this network; whereas PVC is reaching 

the end of its useful life and the Weibull model accurately describes the increased failure rate.   

 

Several observations can be drawn from the model transferability investigations.  The validation 

metrics used for Utility A show that models are spatially transferable across the same network.  

Contrary to suggestions made in literature, model transferability is not always demonstrated 

across other similar networks.  Potential reasons for the lack of transferability of the models 

including differing construction practices, environmental conditions, and operating conditions. 

Though the differences in construction practices and environmental conditions were minimized 

by analyzing three neighboring utilities, operational and maintenance differences still exist. With 
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respect to operation, the number of pressure zones, maximum operating pressure, and pressure 

variance from low to high vary for all three utilities. Varying pressure is cause of breaks, as 

water hammers can degrade the structural integrity of pipes.   

 

Also contributing to network reliability, replacement and maintenance activities differ amongst 

utilities.  For example, differences in maintenance activities such as line flushing programs can 

cause an increase or decrease the longevity of pipes.  Also, the aggressiveness of pipe 

replacement programs post failures additionally influences the overall level of service for the 

network, as new pipes are often expected to perform better than repaired pipes. 

 

Differences in digital asset management could also explain the lack of model transferability.  

Data quality is a concern for all utilities, but the sources and levels of uncertainty in both the 

distribution system properties and failure records can influence transferability.  Mentioned 

previously, three utilities referenced in this study all maintained failure records differently, yet 

each data set was lacking basic information regarding pipe material, installation date, and/or 

location.  Pipe segmentation within the GIS model differed for all utilities, which is another 

possible explanation for the lack of transferability. Since pipe definitions in GIS vary and do not 

always reflect the actual pipe segments, grouping pipes into cohorts prior to analysis can have an 

impact on the predictive performance of modes [18]. Though pipe length is not included, 

segmentation can inflate the number of pipes with properties that influence regression parameter 

estimates.   
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6.5 CONCLUSION 

The results of the analysis of data from three utilities first show that record keeping and GIS 

models vary significantly.  These differences might be one explanation for the lack of failure 

model transferability.  This paper investigated survival model transfer techniques suggested in 

literature as ways of developing valid survival models for medium and small utilities with 

limited recorded failure data.  In addition, a model transfer technique not yet suggested as a 

solution to developing survival models was investigated.  The results of the study suggest that 

pipeline survival models are not transferable across utilities, even utilities with similar 

environmental characteristics, contractors, and material sourcing.  The results of this study show 

that further research is needed to investigate the minimum number of recorded failures needed to 

train a statistically significant, regression based survival model.  For failure sets with too few 

data to train survival models, more case studies of applications of pipe prioritization frameworks 

including machine based learning models are needed.   
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CHAPTER VII – RISK-BASED OPTIMIZATION OF MR&R ACTIVITIES FOR 

MEDIUM AND SMALL UTILITIES 

 

7.1 Introduction 

The previous chapter examined using Weibull based models to predict pipe failures in medium 

and small utilities.  The results of these efforts showed that even when exploring the use of 

model transfer, valid prediction models could not be developed using the specified WHRM form.  

Alternative, machine learning based pipeline MR&R prioritization frameworks need to be 

developed for medium and small utilities with sparse data.  When developing such frameworks, 

the researcher needs to balance accuracy and value of information gained from machine learning 

models with the ease of implementation by utilities.  The less computationally intensive and the 

more intuitive the model, the more likely it is to be adopted by utilities. 

 

Though several machine learning models have been introduced to prioritize pipe replacement, 

these models are complex, require advanced knowledge to implement.  Validation metrics show 

the accuracy of some of these models is less than desirable.  

 

As an alternative to other computationally intensive models, researchers have implemented and 

improved clustering algorithms to identify network regions with higher than average breakage 

rates.  Cluster analysis can be used to identify potential reasons for increased break rates and to 

identify ways to mitigate future failures.   
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This chapter presents a background into machine learning models and clustering algorithms.  A 

methodology for identifying clusters using the algorithm DBSCAN and heuristic knowledge of 

network connectivity is described.  A case study is presented that synthesizes criticality analyses 

and cost estimates with cluster analysis to prioritize MR&R projects for Utility B.  In the final 

section, conclusions, recommendations, and limitations are discussed. 

 

7.2 Background  

Though statistical pipeline performance prediction models have been utilized extensively over 

the past several decades, research is moving towards machine learning models.  Though 

statistical models are easier to analyze with respect to visualizing the impact of parameters on the 

overall performance of pipe, machine learning models are often more accurate and better model 

the underlying failure process because they include fewer assumptions about the model structure 

[74]. Machine learning models can take various forms including ANN, fuzzy sets, Bayesian 

updating models, and data mining based models.  Each has been utilized in varying capacity for 

prioritizing water and sewer infrastructure for replacement. 

 

The review of both statistical and machine learning models in Chapter 2 shows that pipe break 

rate or previous breaks and pipe age are the most important parameters in determining future 

failures.  Cluster analysis models can be used to identify areas of high break rate, and attributes 

that may play a role in the elevated breakage rate.   Since the number of clusters in a zone is not 

readily realized, a clustering algorithm that is ignorant of the number of clusters is more prudent.  

Rather, algorithms like DBSCAN define clusters based on the number of points that define a 

cluster, and the search radius between points.   
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 Summarized in Chapter 2, Oliveira et al. [53] expand the use of DBSCAN to identify clustered 

pipe break regions.  The improved DBSCAN algorithm is used to define large clusters.  

Subclusters within larger clusters are determined by refining the algorithm to use a smaller 

search radius and minimum points to define a cluster.  The subcluster analysis is not extensive, 

and does not investigate explanatory parameters beyond the presence of bus routes in the cluster 

regions.   

 

A more detailed analysis of environmental and operational conditions within clusters can 

potentially lead to the identification of MR&R activities to decrease break rates in cluster zones.  

Additionally, these zones can be evaluated for the potential consequences associated with 

failures, allowing for risk-based prioritization of MR&R activities.   

 

7.3 Methodology 

The methodology presented expands upon the cluster analysis frameworks described previously, 

as it incorporates heuristic knowledge to refine clusters and identify MR&R activities.  In order 

to define initial clusters, the DBSCAN algorithm is utilized.  DBSCAN is dependent upon an 

arbitrarily defined minimum number of clusters to define a failure, minpts¸ and a search radius, ɛ.  

The algorithm is dependent upon the concept of density reachability.  Consider a core point, p, 

and an alternative point, q.  A cluster is formed when the minimum number of point to reach q 

from point p is contained within the search radius of p.  Alternatively, q is density reachable to p 

when other points within the search area are reachable given the search radius and minimum 

number of points.   
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To identify failure clusters, the MATLAB function developed by Kovesi [117] is used.  Failures 

coordinates are input in state plane coordinates.  The search radius is defined in feet.    The 

output of the function is the failure number a number associated with a cluster.  Failures 

considered to be noise, outside of clusters, are assigned a failure number of 0. 

 

The failure clusters are mapped in ArcGIS.  Using knowledge of network connectivity, pipes 

within cluster regions are identified.  In some instances, failure points identified as clusters are 

outside of hydraulically connected regions.  These failures are subsequently excluded from the 

cluster regions, and reclassified as noise.     

 

Next, the clusters are analyzed to identify attributes that might explain the elevated break rate in 

cluster zones.  Geo-processing must be performed in order to gather some of the necessary data 

including estimating traffic above the pipe and assessing pressure variances.  After performing 

this analysis, comparisons can be made between clusters and the rest of the network, using 

histograms. 

 

After this analysis has been made, and potential causes of failure have been identified, projects to 

mitigate the risk of pipe failure are proposed.  Expert opinion is used to subdivide operations 

large clusters into smaller, more realistic projects.  The cost of each project is then estimated. 

 

After identifying potential projects, a consequence analysis is conducted to evaluate the 

operational, economic, and environmental impacts of pipe failure.  The total consequence score 
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is considered as the weighted total of the categorical scores shown in Figures 7.1to Figure 7.3.  

This score is normalized to 1,000 L.F. based on GIS recorded pipe segment length. 

 

Finally, a cost-benefit analysis is performed by dividing the total cost of the project by the 

normalized total consequence score for all pipes within a project.  This cost-benefit ratio is 

coupled with expert analysis to prioritize projects. 

 

 

FIGURE 7.1: OPERATIONAL CONSEQUENCE SCORING 

Variable

Data Source

Data Field

Processing

Value Score Value Score Value Score Value Score

Intersects 

With 

Critical 

Customer 100

OTH 1 0.5-2.0 1 S 10

Doesn't 

Intersect 0
PVC 5 2.25-6 5 M 50

CI, CL, 

COPP,CU, DIP, 

STEE

10 8 - 14 10 I 100

AC, CONC 100 16 - 18 50

20 - 24 100

Index Weight

Category 

Weight

Valid Entries

WM_Database

PIPE_SIZE

None

Critical Customer Material

Tennessee POI
WM_Database

Category MATERIAL

TIGER Streets

Class

Spatial intersect with 

buffer around streets

OPERATIONAL

0.33

Pipe Size

Customer Impact

0.7

Traffic Impact

0.3

Road Type

Create buffer around 

pipe and join POI 

Government and Social 

Services points.

None
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FIGURE 7.2: ECONOMIC CONSEQUENCE SCORING 

Variable

Data Source

Data Field

Processing

Notes

Value Score Value Score Value Score

Other 1 OTH 1 0.5-2.0 1

Park 5 PVC 5 2.25-6 5

Residential 10

CI, CL, 

COPP,CU, DIP, 

STEE

10 8 - 14 10

Commerical/

Industrial
25 AC, CONC 100 16 - 18 50

High Density 100 20 - 24 100

Pipe Size

Intersect pipeline buffers 

with property polygons.  

Intersect Census 

population densities with 

pipe buffer

Category/Pop10

Tenneessee POI/ TIGER 

Census Blocks

Land Use Material

WM_Database

MATERIAL

None

ECONOMIC

0.33
Index Weight

Category 

Weight

REPAIR COSTS

1

WM_Database

PIPE_SIZE

None

Land use categories must 

be aggregated into valid 

entry categories.  

Valid Entries



137 

 

 

FIGURE 7.3:  ENVIRONMENTAL CONSEQUENCE SCORING 

 

7.4 Case Study 

This section presents a case study of implementing the aforementioned prioritization framework 

for Utility B.  Over an 8 year observation period, Utility B experienced over 140 total breaks.  

The coordinates of these breaks were obtained through GPS shots taken at the time of repair.  

These failure points were aggregated and imported into MATLAB. 

 

The DBSCAN algorithm was run under several conditions for both the minpts and ɛ values.  The 

final evaluation of the DBSCAN algorithm was conducted with minpts  equal to 5 and ɛ equal to 

1,000 ft. (305 m).  This evaluation resulted in 7 clusters varying in size from 5 failures to over 20 

failures.  The mapped cluster regions are shown in Figure 7.4. 

 

Variable

Weight

Data Source

Data Field

Processing

VALUE SCORE VALUE SCORE VALUE SCORE

Intersects 100 Intersects 100
0.5-2.0 1

Doesn't 

Intersect 0

Doesn't 

Intersect 0
2.25-6 5

8 - 14 10

16 - 18 50

20 - 24 100

Valid Entries

0.30.5 0.2

CRIT_HAB Poly CONUS_Poly Pipe Size

Intersect pipeline 

buffers with habitat 

polygon

Intersect pipeline 

buffers with wetland 

polygon

Only used if a 

pipeline intersects 

environmental area

Critical Habitat Wetlands Pipe Size

US FWS Crit. Habitat US FWS Wetlands WM_Database

Index Weight
ENVIRONMENTAL

0.33

Category 

Weight

ENVIRONMENTAL IMPACT

1
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FIGURE 7.4:  UTILITY B INITIAL CLUSTERS 

  

Each cluster was visually inspected in ArcGIS for connectivity constraints.  The clusters were 

redefined as needed.  Furthermore, cluster 5 was subdivided into subclusters based on estimated 

project sizes.  Figure 7.5  depicts an example of cluster refinement in the selection of pipes for 

cluster 5.   
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FIGURE 7.5.  CLUSTER REFINEMENT AND SUB-CLUSTERING 

 

Next, geoprocessing was performed to link the hydraulic model to the GIS model.  Nodal 

pressures from the hydraulic model were input as points into the GIS model.  A buffer was 

created around the pipe and spatially joined to the nodal point.  This geoprocessing step allowed 

for the assigning of the average nodal pressure for the group of pipes between nodes.  The 

hydraulic model nodes also contain information regarding the maximum, average, and 

differences in operating pressures.  Knowing this hydraulic information can help the decision 

maker determine if pipe failures can be attributed to pressure surges.  The upgrade of pump 

station controls could be a potential solution to mitigate pipe failures, and would be much more 

economical than a pipe replacement program. 
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Histogram analysis was performed on the clusters, noise, and remaining network to examine 

potential variables influencing pipe failures.  The variables investigated include pipe diameter, 

material, pressure difference, and velocity.   

 

The results of the histogram analysis shown in Figure 7.6 indicate that 6 inch pipe is more likely 

to fail than pipes of other sizes.  Additionally, PVC pipe is more likely to fail than other pipe 

materials.  This is expected as PVC is older and comprises more of the network.  Typically when 

replacement occurs, PVC is replaced and upsized with ductile iron pipe 
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Cluster Noise Network 

(a) Pipe Size, in. 

 
 

 
Cluster Noise Network 

(b) Material 

 
  

Cluster Noise Network 

(c) Pressure Difference, psi 

FIGURE 7.6 HISTOGRAM ANALYSIS 
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Incorporating insights gained from the histogram analysis, expert opinion was utilized to identify 

and estimate costs for potential MR&R projects for the assets within a cluster or subcluster.  For 

example, cluster 3 is located near a pump station.  Further analysis of the cluster showed that the 

pressure differences in this cluster were higher than in other clusters and parts of the network.   

 

 

FIGURE 7.7: CLUSTER 3 PRESSURE DIFFERENCE HISTOGRAM 

 

These pressure differences are indicative of the water hammer effect cause by the rapid changes 

in water velocity [118]. Changes to the pump station controls might mitigate the risk of pipe 

failures and prove to be a more economical solution than pipe replacement.  Such changes would 

decrease the pressure surges experienced internally, or minimize the water hammer effect inside 

the pipe.   

 

Potential pump station improvements include the addition of variable frequency drives (VFDs), 

soft starters, or surge tanks.  Soft starters control the voltage required to start or stop a pump 

motor.  This controlled start/stop results in a gradual change in water velocity, reducing the water 

hammer effects [118].  The more expensive power control alternative, VFDs can be used to 
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control power supplied to the pump and again limit the rapid velocity changes.  Though two to 

three times more expensive with respect to the initial capital expenditure, VFDs can result in 

significant energy savings, offsetting the initial purchase and installation costs [119].  Both of 

these operational improvements to mitigate water hammer are significantly cheaper than pipe 

replacement programs and should be considered as alternatives to replacement and condition 

assessment programs. 

 

For pricing purposes, the average cost of a replacement was assumed to be $50 per linear foot for 

8 in. pipe and $80 pera linear foot (0.3 m) for 12 in. (305 mm) pipe.  Condition assessment was 

estimated to be half the cost of replacement.  Finally, it was assumed that operational 

improvements at a pump would cost approximately $100,000.   

 

Lastly, in order to evaluate the impacts of pipe failures and remediation efforts, a failure 

consequence score was assigned to the pipes.  Figure 7.8 shows the non-normalized consequence 

score for the pipe network aggregated to low, medium and high consequence.  The raw scores 

were normalized per 1,000 ft. (305 m), and were used in the benefit/cost ratio evaluation.   
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FIGURE 7.8:  CONSEQUENCE SCORING 

7.5 Prioritization Results 

Figure 7.9 shows recommended MR&R activities and a timeline for the sequencing of these 

recommendations based on cost-benefit analysis.  
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FIGURE 7.9: MR&R PRIORITIZATION SEQUENCING 

 

7.6 Conclusion 

Though many parametric models have been introduced to use for pipeline replacement 

prioritization, they might not be appropriate for medium and small utilities that are more 

homogenous and have few recorded failures with which to train models. Machine learning based 

models are alternatives to physical based models, yet many are cumbersome to implement and 

difficult and lack transparency in model development.   

 

A review of machine learning models revealed that a primary contributing variable to degrading 

pipe condition is previous breaks or high break rate.  As an alternative to other complex machine 

learning methods, cluster analysis can be used to identify areas of high break rate and potential 

causes for the observed failures.  This chapter presented a framework for synthesizing cluster 

analysis results with hydraulic data, consequence analyses, and expert opinion to identify and 

prioritize MR&R projects.  
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The results of the study give credence to assumptions made in previous chapters that localized 

break rate in statistical models is potentially a more significant parameter than other proposed 

explanatory variables.  Though statistical models may include many different parameters to 

describe operational and environmental characteristics that contribute to pipe failures, the impact 

of these parameters is not necessarily consistent throughout the entire network.  For example, 

high pressure variances were not consistent in all utilities.  Additionally, high traffic loadings 

were observed in come failure clusters, and not in others.   

 

The framework is beneficial to utility operators for several reasons.  First, the analysis showed 

areas where maintenance and operation improvement projects which are much cheaper than pipe 

replacement could be conducted to mitigate breaks.  The framework also results in exhibits and 

planning tables that are easy to interpret.  These data-driven exhibits and tables are of paramount 

importance when requesting funding from utility boards and customers.   

 

This framework presented could be improved by incorporating hydraulic simulations into the 

consequence analysis.  Determining which pipes are critical to maintaining adequate pressure 

through hydraulic modeling simulations could shift the consequence analysis.  These pipes 

would result in some of the highest failure consequences as they impact the greatest number of 

consumers.  The criticality scoring methodology would need to be shifted to account for these 

pipes.   
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CHAPTER VIII – CONCLUSIONS 

 

8.1 Summary of Accomplishments 

This dissertation examines frameworks for prioritizing MR&R activities.  Examples are given 

for utilities of varying size.  Potential reasons for the lack of adoption of pipe replacement 

prioritization models are discussed, and  

 

Chapter 4 highlights the improvements made to the more commonly used and referenced 

Weibull-based failure prediction model.  Specifically, incorporating categorical variables that 

account for pipe property data assumptions moderately improved the prediction performance of 

the Weibull based model.  Incorporating a covariate describing the spatial distribution of breaks 

had a greater impact on prediction performance results.  Of note is that this model does not 

include pipe length as a covariate, which could lead to prediction bias. 

 

Chapter 5 demonstrates how to incorporate the validated failure prediction model into a 

framework for prioritizing inspection and replacement of water pipes.  The framework includes 

one of the most comprehensive consequence analyses presented in literature and incorporates the 

use of penalty multipliers based on consequence levels.  The framework also provides constraints 

that spatially limit proposed replacement work in zones.  This framework will help decision 

makers decide both when to replace assets and which assets to replace with respect to 

minimizing the consequences of failures and identifying viable pipeline replacement capital 

projects.   
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The optimization framework is demonstrated on a subset of the large utility, Utility A.  The 

scalability of the model is demonstrated by evaluating the model performance and run time using 

all data from Utility A.   The results show that the Excel-based model can be a valuable tool for 

utilities, providing them with options to easily edit constraints and objectives.   

 

Chapter 6 investigates using the WHRM demonstrated in Chapter 4 to predict failures for 

medium and small utilities.  As valid models could not be produced using the data from Utilities 

B and C alone, model transfer techniques demonstrated and/or proposed in literature for pipeline 

condition assessment were tested.  Neither direct transfer, joint context estimation nor combined 

transfer estimation of WHRM model parameters resulted in valid models for Utilities B and C.  

These findings are significant and drive the need to both determine the minimum number of 

samples required to develop valid statistical models and develop alternative, potentially machine 

learning based models for use by small and medium utilities.   

 

Building upon the concept of developing alternative models for medium and small utilities, a 

cluster analysis framework for MR&R prioritization is introduced.  Using the popular DBSCAN 

algorithm, failure clusters are identified and refined using heuristic knowledge.  This framework 

is demonstrated using data from Utility B.  Analysis of failure clusters facilitated the inference of 

root cause of failure and assessment of cost-effective failure mitigation MR&R activities.   
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8.2 Future Work 

8.2.1. Value of Information Analysis 

Resource allocation is the underlying problem associated with developing MR&R strategies for 

pipelines.  Given limited resources, utility makers must decide the value of modeling, data 

collection, and condition assessment efforts as it relates to gaining more valuable information 

about the system to make MR&R decisions.  Statistical models can serve as a first level in a 

hierarchy of a suite of decision support tools and methodologies.  Given the results of statistical 

analysis, the decision maker can decide to develop more expensive physical models or machine 

learning based models that require laboratory testing, perform condition assessment (or multiple 

condition assessments), or replace an asset.   

 

None of the models reviewed consider the cost effectiveness of employing condition assessment 

technologies prior to making replacement and renewal decisions.  Yet utility case studies show 

that condition assessment is a cost effective asset management strategy, preventing unwarranted 

rehabilitation and replacement [12]. Additionally, utilities see a greater benefit in long-term 

monitoring of assets and utilizing multiple condition assessment technologies to gain a deeper 

insight into the state of the pipe.      

 

Other valuable research has been performed to optimize the scheduling of condition assessment 

activities.  Kleiner [78] introduced a model using Markov transition state probabilities to 

determine when to replace or inspect a pipeline.  Inspection is scheduled when replacement is not 

warranted.  The model does not address which condition assessment technology should be 

utilized.  



150 

 

 

 Lau and Dwight [65] introduced a fuzzy-based decision support system for water pipe 

maintenance.  The model considers three condition assessment technologies, and incorporates 

expert opinion to assess the probability of failure given the condition assessment observations.  

This model has not been tested on an entire water pipeline network, and does not evaluate the 

cost-benefit trade-off between performing condition assessment and replacement. 

                        

The underlying problem in prioritizing condition assessment and rehabilitation activities for 

infrastructure is resource allocation.  With limited funds available, utilities need to decide when 

condition assessment is cost beneficial with respect to reducing the uncertainty associated with 

rehabilitation and replacement decisions.  Value of Information (VOI) analyses can be a 

powerful tool to the decision maker when making resource allocation decisions.  Originally 

proposed by Howard [120], VOI analysis is proven decision making framework, demonstrated in 

many applications including health sciences [121], economics [122],  and supply chain 

management [123].   

 

VOI is used to evaluate the expected value of obtaining additional information prior to making a 

decision compared to the outcome of making a less-informed decision.  To perform a VOI 

analysis, the decision maker must compile a set of actions and information collection strategies, 

develop probabilistic models for the reliability of information collection strategies, and calculate 

the values for the risk outcomes [124].  These expected value (EV) problems can be solved using 

decision trees [125].  Commercial software programs, spreadsheet, or independently written 

software can be used to solve decision tree problems. 
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Recent applications of VOI include the study by Khader et al. [125] which uses VOI analyses to 

assess the value of implementing of a groundwater quality monitoring and communications 

system.  Liu et al. [126] evaluate the influence parameter uncertainties on groundwater 

assessment and remediation using VOI.  Messer et al. [127] developed a VOI based decision 

support methodology for selecting appropriate higher and lower fidelity models given unknowns 

about prediction accuracy. These studies address the problems of condition assessment and 

rehabilitation scheduling such as justifying real-time monitoring efforts, making decisions based 

on uncertainties, and assessing the cost-benefit between a more expensive and more reliable 

model or assessment technology compared to a less expensive and less reliable model or  

assessment technology.  

 

With direct application to pipeline condition assessment, Osman et al [34] demonstrate the use of 

VOI analysis to optimize the scheduling of condition assessment activities.  This framework 

takes into account the current condition of the asset, the accuracy of the condition assessment 

technology, variations in assessments when using multiple technologies, and the cost of failure.  

The outcome of the assessment is an optimized condition assessment policy that describes which 

tools to apply and the frequency in which to employ them.  The application of this framework for 

a utility showed that estimated optimal inspection technologies and assessment frequency varied 

across the network with respect to the condition and criticality of assets.  This work can be 

expanded to evaluate business cases which consider the value of condition assessment 

information prior to making rehabilitation and replacement decisions. 
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The building blocks for developing a DSS that considers both pipelines condition assessment and 

rehabilitation in tandem have already been established.  Proven models for estimating the 

consequences of failure and case studies of condition assessment monitoring can be utilized to 

establish a basis for the cost-benefit analysis of condition assessment technologies.  More 

research is needed; however, to link condition assessment results to potential failure modes and 

to reduce the uncertainty of failure probabilities assigned using condition assessment results.  In 

the following we sections, we outline the necessary actions to develop a DSS that evaluates the 

cost effectiveness of condition assessment technologies on high consequence water mains. 

 

8.2.2. Interface Development 

With respect to furthering the use of the decision support system explored in this work, the 

workflow required to produce the desired results needs to be outlined and streamlined.  A 

summary of this workflow, which can be followed by other large utilities wishing to implement 

the framework described in this document is outlined below: 

 

1. Gather work orders/failure reports and compute start time and  duration of asset 

management database 

2. Computer time to failure, with the start time of the asset management database being 

zero 

3. Populate failure record database with pipeline properties from GIS model 

4. Make assumptions for unknown data, and account for assumptions using binary 

covariate 

5. Calculate break rate parameter described in Chapter 4 and assign values to all assets. 
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6. Stratify the database with respect to material 

7. For each material, create three tables.  One table consisting of the first recorded 

failure records, the second being failure records of subsequent failures, and the third 

being pipes that did not fail 

8. Randomly select 20% of the data from all tables to be withheld from calibration 

9. Calibrate WPHM model parameters using built in calibration functions included in 

software such as JMP or R. 

10. Write software or program Excel to perform Monte Carlo simulation outlined in 

Chapter 4 

11. Rank assets by predicted failures and calculate decile divisions 

12. Compute the predicted and observed failures for each quantile in Excel 

13. Plot and validate the results 

14. Computer consequence of failure using spatial tools outlined in Chapter 5 

15. Identify candidate pressure zone for MR&R activities 

16. Use spatial analysis tools to clip pipes within the pressure zone 

17. Use the ArcGIS fishnet tool to bin the pressure zone 

18. Use the spatial intersect tool to join the bins to the pipes 

19. Export the pipe records and join to existing asset management database 

20. Import asset management database for pipes in that pressure zone into Excel 

21. Import model calibration parameter results into Excel as lookup tables 

22. Create lookup table of  pipe replacement and repair costs 

23. Calculate cumulative failure probability for each year and costs for each year using 

values from the lookup tables 
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24. Add fields in the Excel sheet to calculate costs ratio for each year 

25. Use the Excel sort feature to sort the assets by zone and descending costs ratio 

26. Add fields to calculate cumulative costs ratio and replacement costs 

27. Plot the costs ratio versus replacement costs and add a logarithmic trend line 

28. Create a decision variables sheet that includes the bin number of the costs ratio 

function with respect to a capital costs decision cell 

29. Start the Evolver add-in and define the optimization model to maximize the sum of 

the costs ratio while restraining the number of bins in which work is being done and 

the capital costs 

30. Run the model and save results 

31. For each bin and capital investment, identify the pipes that are included in the capital 

investment with respect to the ranking procedure  

32. Create an sheet with these asset ID’s and import into ArcGIS 

33. Join the sheet to the pipeline shapefile in ArcGIS and display the joined features. 

34. Refine projects based on connectivity 

 

Much of the work was performed using tools that already exist within ArcGIS or add-ons to MS 

Excel, which was intentional to consider atomization of activities. Visual Basic and Python code 

can be written to automate processes in order to create a commercial tool that can be used by 

both consultants and large utility managers to help facilitate the increased adoption rate of risk-

based asset management tools.  Given the results and analysis of this work, this tool would be 

best used by large utilities with lined and unlined cast iron pipe that is reaching the end of its 

useful life.  Use of this software would not be appropriate for small utilities, or areas of large 
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utilities with large quantities of pipe installed in the past twenty years.  In some cases, when the 

number of failures is large enough, likelihood of failure modeling efforts for large utilities can be 

constrained to pressure zones that do contain older pipe.   
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APPENDIX A. BREAK RATE KRIGING IMPLEMENTATION 

 

The break rate distribution referenced in Chapter 4 was estimated using the Kriging spatial 

analysis model in ESRI ArcGIS 10.   Based on the works of Krige [128] the stationary Kriging 

models available in ArcGIS 10 are documented by [129], [130].  The following summarizes the 

methodology described in the aforementioned resources.  Subsequent sections show how to run a 

Kriging model, Kriging results from Chapter 4, and notes about improvements made in the ESRI 

Kriging model which are available for the newest models of ESRI ArcGIS. 

 

A.1 Methodology 

To predict a measurement or value at a location, 𝑠𝑜, the following equation is used: 

 

 

𝑍̂(𝑠𝑜) = ∑ 𝜆𝑖

𝑁

𝑖=1

𝑍(𝑠𝑖) 
[A.1] 

 

Where 𝜆𝑖 = an unknown weight for the measured value at the ith location. 

N = the number of measured values 

𝒁(𝒔𝒊) = the measured value at the ith location. 

 

It is assumed that the break rate is a spatially autocorrelated process with independent random 

errors described by a mean and error function shown in equation A.2. 
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𝑍𝑡(𝑠) = 𝜇(𝑠) + 𝜀𝑡(𝑠) 

[A.2] 

 

Where 𝜇(𝑠) is a unknown, deterministic mean value and 𝜀𝑡(𝑠) is a function that accounts for 

random measurement and model fitting errors.  The decomposition and prediction of the error 

function can be found in pages 262 – 263 of the Geospatial Analyst User’s Manual [129]. 

 

Spatial kriging in ArcGIS is performed by creating variograms and covariance functions to 

estimate the autocorrelation of the measured values.  Variograms are first determined by 

computing the difference squared between each pair of measurement/observation locations.  

Instead of plotting all of these location pairs, they are grouped into lag bins, 𝒉, and the average 

semivariance is plotted.   

 

Though most often lag bins are determined using radial functions, the geospatial analyst in 

ArcGIS assigns lags to a grid.  Because lag vectors near the edges of bins can cause issues in 

determining the semivariogram, kernel functions are used to weight the semivariogram.   

 

Once the bin semivariograms have been estimated, they are plotted with respect to distance.  An 

empirical function is used to fit a function to the semivariogram.  In examining semivariogram 

plots, there is a tendency for the semivariogram values to level off as distances increase.  Shown 

in Figure A.1, this semivariance value at which this occurs is called the sill.  This distance at 

which this occurs is called the range.   
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Figure A.1:  Depiction of Semivariogram Range and Sill [130] 

 

For the stationary process considered,  sill relates the semivariogram to the covariance matrix as  

 

 
               𝐶(𝒉; 𝜃) = 𝛾(∞; 𝜃) − 𝛾(𝒉; 𝜃) 

[A.3] 

 

Where 𝛾(∞; 𝜃) is the sill of the semivariogram, and 𝛾(𝒉; 𝜃) is the semivariogram value at 𝒉. 

 

For this study, the spherical semivariogram form was chosen.  The spherical function is the most 

widely used spatial Kriging model.  The model form is shown in Figure A.2 and described by the 

Equation A.4. 

 

 

𝛾(𝒉, 𝜽) = {
2𝜃𝑠

𝜋
[

‖ℎ‖

𝜃𝑟

√1 − (
‖ℎ‖

𝜃𝑟
)

2

+ arcsin
‖ℎ‖

𝜃𝑟
]  for 0 ≤ ‖ℎ‖ ≤ 𝜃𝑟

𝜃𝑠  for 𝜃𝑟 ≤ ‖ℎ‖

}                
             [A.4] 
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Where 𝜃𝑠 ≥ 0 is the partial sill parameter and 𝜃𝑟 ≥ 0 is the range parameter.    

 

Figure A.2:  Spherical Semivariogram Function [130] 

 

The fitting algorithms for the weights are described in detail on pages 259-260 of [129]  

 

A.2 Running a Kriging Model in ArcGIS 10.0 

Kriging in ArcGIS 10.0 is performed using the Kriging tool in the Spatial Analyst Toolbox.  

After using the Thiessen tool to create polygons around points, the linear feet in each polygon 

and break rate is computed.  The break rate is assigned to each failure point and used in the 

Kriging model.   

 

Using the Kriging tool, the user must input the observation points and select the semivariogram 

model as shown in Figure A.3  The user must also specify where to store the raster project and 

the output cell size that defines the refinement of the raster projection surface.   
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FIGURE A.3.  Kriging Model Dialog Box 

 

In order to assign the values from the raster image to the pipe segements, the raster image must 

be converted to a geostatistical surface.  In ArcGIS 10.0, the values within this surface cannot be 

less than one, so the field calculator is used to multiply the kriging values by 1000.  After the 

geostatistical surface is made, the average break rate across each pipe segment is added to the 

pipe asset table using the spatial join geopgrocessing tool.  The results of the kriging analysis are 

shown in Figure A.4.   
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FIGURE A.4:  BREAK RATE DISTRIBUTION RESULTS 
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A.3 Chapter 4 Kriging Results 

A.4 Improvements in Kriging 

In ArcGIS versions 10.1 and beyond, an improved kriging model is available.  This Empirical 

Bayesian kriging (EBK) model [131] helps account for the error introduced in the semivariogram 

estimates. In the kriging model described above, it is assumed that the correlation structure 

defined by the estimated semivariogram, chosen prior to running the kriging model, is the true 

semivariogram of the observed data generated from a Gaussian distribution.   

 

The EBK accounts for errors in these assumptions by estimating a spectrum of semivariograms 

that describe the semivariogram that best describes the data.  Following the same procedure 

described in Section A.1, a semivariogram is estimated from the data.  Using the estimated 

semivariogram, a prediction is simulated at the observation location.  A new semivariogram is 

then estimated for the prediction data.  Using Baye’s  rules, the new semivariogram is weighted 

based on the likelihood of predicting the observed data using the estimated semivariogram.  The 

process of estimating data from the semivariogram and weighting the new semivariogram is 

repeated and predictions at other locations in the network are made.     

 

The EBK methodology also includes a routine to transform data that is non-Gaussian and 

potentially differs in distribution across the study area using a transformation function shown in 

Figure A.5.  The process to estimate the semivariograms is the same, with a final transformation 

back to the original data form.      
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Figure A.5:  Transformation of Data to Gaussian Process 

 

This methodology was not available when the initial study was performed.  It should be noted 

that the results prevented can be improved by utilizing this method.  Future work should include 

an updated break rate distribution model. 
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APPENDIX B.  LOOKUP TABLES 

       
B.1: Repair Costs 

 

B.2: Replacement Costs 

Pipe 
Material 

Size Cost ($) 

 

Pipe 
Material 

Size 
Cost 

($/L.F.) 

CL 0.75 1000 

 

CL 0.75 30 

CL 1 1000 

 

CL 1 30 

CL 1.25 1000 

 

CL 1.25 30 

CL 1.5 1000 

 

CL 1.5 30 

CL 2 1000 

 

CL 2 30 

CL 2.25 1000 

 

CL 2.25 30 

CL 2.5 1000 

 

CL 2.5 30 

CL 3 1000 

 

CL 3 50 

CL 4 4000 

 

CL 4 50 

CL 6 4000 

 

CL 6 50 

CL 8 4000 

 

CL 8 80 

CL 10 6000 

 

CL 10 100 

CL 12 6000 

 

CL 12 120 

CL 16 6000 

 

CL 16 140 

CL 18 6000 

 

CL 18 180 

CL 20 12000 

 

CL 20 200 

CL 24 12000 

 

CL 24 200 

CL 30 20000 

 

CL 30 260 

CL 36 20000 

 

CL 36 260 

CU 0.5 1000 

 

CU 0.5 30 

CU 0.75 1000 

 

CU 0.75 30 

CU 1 1000 

 

CU 1 30 

CU 1.25 1000 

 

CU 1.25 30 

CU 1.5 1000 

 

CU 1.5 30 

CU 2 1000 

 

CU 2 30 

CU 2.25 1000 

 

CU 2.25 30 

CU 2.5 1000 

 

CU 2.5 30 

CU 3 1000 

 

CU 3 50 

CU 4 4000 

 

CU 4 50 

CU 6 6000 

 

CU 6 50 

CU 8 6000 

 

CU 8 80 

CU 10 8000 

 

CU 10 100 

CU 12 8000 

 

CU 12 120 

CU 14 8000 

 

CU 14 140 

CU 16 12000 

 

CU 16 140 
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B.1: Repair Costs (cont.)  B.2: Replacement Costs (cont.) 

Pipe 
Material 

Size Cost ($) 
 

Pipe 
Material 

Size 
Cost 

($/L.F.) 

CU 18 12000 

 

CU 18 180 

CU 20 16000 

 

CU 20 200 

CU 24 16000 

 

CU 24 200 

CU 30 20000 

 

CU 30 260 

CU 36 20000 

 

CU 36 260 

CU 48 25000 

 

CU 48 300 

DIP 0.75 6000 

 

DIP 0.75 30 

DIP 1 6000 

 

DIP 1 30 

DIP 1.25 6000 

 

DIP 1.25 30 

DIP 1.5 6000 

 

DIP 1.5 30 

DIP 2 6000 

 

DIP 2 30 

DIP 2.25 6000 

 

DIP 2.25 30 

DIP 2.5 6000 

 

DIP 2.5 30 

DIP 3 6000 

 

DIP 3 30 

DIP 4 6000 

 

DIP 4 30 

DIP 6 6000 

 

DIP 6 50 

DIP 8 6000 

 

DIP 8 80 

DIP 10 8000 

 

DIP 10 100 

DIP 12 8000 

 

DIP 12 120 

DIP 16 8000 

 

DIP 16 140 

DIP 18 12000 

 

DIP 18 180 

DIP 20 12000 

 

DIP 20 200 

DIP 24 16000 

 

DIP 24 200 

DIP 30 20000 

 

DIP 30 260 

DIP 36 20000 

 

DIP 36 260 

DIP 42 25000 

 

DIP 42 300 

DIP 48 25000 

 

DIP 48 300 

DIP 60 75000 

 

DIP 60 400 

 

The costs shown in the tables were based on repair and replacement costs presented in the 

literature and costs provided by engineers and contractors in the area.  These costs can be further 

refined with utility input.  
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