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ABSTRACT

There is insufficient understanding of the relationship between the severity of physiologic illness and

the transitions in cognitive and functional health states of patients during the course of an intensive

care unit (ICU) stay. To this end, the fundamental aim of this project was centered on developing a

predictive model for state transitions during ICU admission in order to determine the relevance of indices

of illness severity and other potentially modifiable risk factors that may inform clinical decision-making.

The motivating data for this work was derived from the BRAIN-ICU (Bringing to Light the Risk Factors

and Incidence of Neuropsychological Dysfunction in ICU Survivors) study. Five health transition states

(normal, delirium, coma, death, and discharge) were considered in the parent study, as were clinical indices

of illness severity such as the Sequential Organ Failure Assessment (SOFA) and the Acute Physiology And

Chronic Health Evaluation (APACHE) scores. The transition states constitute multiple end points laden

with scientific information that can be elucidated by sophisticated modeling approaches now afforded by

the advent of advanced statistical computing. Since the current state of a patient may be related to his/her

previous states, the BRAIN-ICU data was analyzed with accommodation for multiple outcome categories

(the transition states) by relating state-transition probabilities to patient covariates and past states via a

polytomous regression with Markov structure. This analysis strategy addressed competing risk explicitly by

assessing the effect of previous states while evaluating the motivating question of the impact of severity of

illness.
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CHAPTER I

Introduction and Background

In clinical medicine, outcome improvement from existing treatments has led to increased difficulty in

demonstrating additional mortality benefits with new interventions. Information on morbidity (e.g. quality

of life) has become increasingly desirable, thus the interest in outcome measures that provide information on

fatal and non-fatal events. However, main-stream approaches to the analysis of multi-level or multiple cate-

gorical outcomes in longitudinal clinical studies are suboptimal and reveal some of the challenges associated

with the analysis of longitudinal data. For example, analysis of clinical studies frequently employs simple

combined outcomes that make a binary distinction between event (fatal or non-fatal) and no event, which

are then analyzed using traditional statistical two-sample methods. However, simple binary outcomes ignore

critical information and do not distinguish between types or severity of events. Furthermore, in the setting of

survival analysis such binary outcomes are analyzed by the traditional the time-to-first event method, which

ignores cumulative events (or repeated measures), and represents remarkable loss of potentially relevant

information. In addition, the time-to-first event analysis may inadvertently capture less severe early events

at the expense of later more serious events, and hence different effects or patterns than might have been

observed by incorporating all events. Similarly, outside of survival improvement evaluation, the analysis of

categorical outcome longitudinal data by collapsing the categories of outcome to become amenable to the

application of logistic regression is fraught with the same problem of information loss.

Longitudinal studies can provide abundant insight when analytical approaches preserve scientific infor-

mation by incorporating the entire data available for each participant instead of discarding portions of it.

Advances in statistical computing now affords us intuitive, flexible, explicit, and transparent approaches for

longitudinal data analysis. In this context, we demonstrate the use of Markov multi-state models to analyze

longitudinal data obtained from observations of cognitive and functional health states of patients during

the course of an intensive care unit (ICU) stay. Herein, observations of health states are recognized as a

continuous-time process in which patients move between various states albeit observed at arbitrarily chosen

pre-specified intervals per study protocol. The description of how patients move between various health

states is provided by a multi-state model that relies on the first-order Markov assumption that the current

health state of a patient depends only on his/her previous health state; alternatively stated, the evolution

of a future health state depends on the current health state. The motivating data for this work is a subset

from the BRAIN-ICU (Bringing to Light the Risk Factors and Incidence of Neuropsychological Dysfunction

in ICU Survivors) study: a prospective multicenter cohort study conducted to estimate the prevalence of
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long-term cognitive impairment after critical illness in a heterogeneous population of critically ill patients.

The description of the motivating data is preceded by a succinct review of the two general classes of models

for longitudinal data analysis. Subsequently, we present the rationale for the use of multi-state transition

model vis-a-vis the motivating data, and then specify the model with respect to its parameters and likelihood

function. The crux of our analysis—model fitting, assessment, and interpretation—is addressed followed by

a discussion of the results, subject matter relevance, model critique, and future directions.

Methods for Analysis of Longitudinal Data

The modeling approaches for longitudinal data analysis can be grouped into two broad categories of

models known as marginal and conditional models.

Marginal Models

In the context of serial data, marginal models separates the time points.

E[Yij |xij ] = xijβ (1)

Cov[Y i] = Σi(α) (2)

As shown in equation 1, the marginal expectation of the outcome variable (Y ) is modeled as a function

of covariates (X), and a model is specified for longitudinal correlation (that is, within-person correlation

across time points of the outcome variable) and the correlation parameters (α) estimated (equation 2). The

implication of this approach as delineated in equations 1 and 2 is that the correlations may not necessarily

be functions of the marginal expectation. A marginal model considers population-averaged rate rather than

the conditional rate. Examples of models accommodated under this construct include:

1. Univariate generalized linear models (GLMs) which employ likelihood-based estimation ap-

proaches. Specific link functions allow modeling of different types of outcomes, thus we have

GLMs for count outcomes and GLMs for binary outcomes.

2. Generalized estimating equations (GEE) represents another good example of a marginal model-

ing approach typically employed when subject-specific estimates are not of interest. GEE is a

semi-parametric method that uses moment-based estimation strategy and therefore particularly

applicable when parametric modeling assumptions such as the specification of a complete prob-

ability distribution is undesirable if not impossible. GEE is specified by a mean model and a

correlation model:

• A regression model for the mean outcome, e.g. linear model, logistic
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• A model for longitudinal correlation, e.g., independence, exchangeable

If working independence is assumed, and intra-subject correlation corrected for post fitting, one

would say that GEE is a marginal model considering only the mean.

3. An extended linear model constitutes another marginal modeling approach. This approach is

exemplified by generalized least squares (GLS) models, which are fully correlation-specified mul-

tivariate fixed-effect models. GLS is like weighted least squares but employs a covariance matrix

that is not diagonal; thus each subject being measured at a different set of times can have his/her

own shape of variance-covariance matrix. The underlying estimation strategy could be ordinary

maximum likelihood (ML), Newton-Raphson (or other iterative methods), or restricted maximum

likelihood (REML). The use of REML is usually motivated by the desire for unbiased estimates

when the sample size is small or when the number of parameters estimated is particularly large

relative to the sample size.

If the primary analysis goal is to generate inference regarding the mean outcome as a function of covariates

and time, then a marginal mean model may be sufficient.

Conditional Models

There are two general categories of conditional models: Mixed-effects models and transition models. Mixed-

effects models use subject-specific random effects γi to explain a correlation structure as delineated in

equation 3.

E[Yij |xij ,γi] = xijβ + γi (3)

A variety of models can be accommodated under the mixed-effects construct:

1. Linear and non-linear mixed-effects models, which assume that each subject has a regression

model characterized by subject-specific parameters that are a combination of fixed effects pa-

rameters common to all subjects in the population and random subject-specific perturbations. Of

note, the subject-specific random effects induce a correlation structure. The underlying estima-

tion strategy is usually likelihood-based (REML or ordinary ML) and thus requires specification

of complete parametric probability distribution, however random effects may be estimated using

empirical Bayes estimators.

2. Generalized linear mixed-effects models (GLMM). Here as in the case of GLMs above, we also

have GLMMs for count outcomes and binary outcomes, however the parameter estimates ob-

tained from via GLMM estimate subject specific contrasts β, as in other conditional models.
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Essentially, a GLMM is defined by a random component describing outcomes given subject-

specific effects and a systematic component describing conditional mean given subject-specific

effects. Conditional and ordinary ML are two inference approaches used for GLMM. The condi-

tional likelihood approach treats the random effects as if they are fixed parameters and eliminates

the subject-specific effects by conditioning on their sufficient statistics; thus this likelihood-based

approach does not require a specified distribution for the random effects. The ordinary ML

method treats the random effects as unobserved nuisance variables and integrates over their

assumed distribution to obtain the marginal likelihood for the outcome Y .

Transition models specify the conditional expectation of current outcomes Yij as a function of covariates and

previous outcomes Yi(j−1) as denoted in equation 4.

E[Yij |xij , Yi(j−1)] = xijβ + Yi(j−1)α (4)

An equivalent statement is that the conditional expectation of future outcomes Yi(j+1) is a function of

covariates and current outcomes Yij as delineated in equation 5.

E[Yi(j+1)|xij , Yij ] = xijβ + Yijα (5)

In transition models response dependence is induced among the serial measurements for subject i Y i =

Yi1, . . . , Yimi because the past outcomes {Yi1, . . . , Yi(j−1)} explicitly influence the current outcome Yij , j =

1, . . . ,mi. The Markov assumption is the basis for equations 4 and 5. Also, in the context of transition models

there exist generalized linear transition models (GLTM) with link functions for specific types of outcomes,

e.g. identity link for continuous outcomes and logit link for binary outcomes. A GLTM corresponds to

the assumed exponential family model for the outcome Y given covariates and past outcomes. GLTM is

defined by random and systematic components. The estimation strategy for transition models is the same as

in standard GLM for independent data because outcomes are conditionally independent given their history

(assuming the conditional mean model is correctly specified). If the Markov model is correctly specified, then

the model-based standard errors are valid; otherwise a good practice is to use robust standard error estimates.

Higher-order transition models are limited to the available data. Transition models can be extended to an

outcome that has multiple categories, e.g. ordered outcome. In the context of the motivating data, herein

below we demonstrate the application of transition models to an outcome that represents various health

states, of which death is as an absorbing state. This concept is fully developed in the model specification
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section on page 7.

Although it is beyond the scope of this work to provide a comprehensive review of all contemporary meth-

ods for longitudinal data analysis, for a measure of completeness it is important to recognize marginalized

models, which are a relatively newer class of models for the analysis of longitudinal data. The principle is to

embed a marginal mean structure within a complete multivariate probability model based on mixed-effects

and/or transition models; and then in a regression setting decompose the mean model from the random

variation (dependence) model. This is represented mathematically in equations 6 and 7, respectively.

Mean : gµ(E[Yij |Xi]) = xijβ (6)

Dependence : gρ(E[Yij |Xi,Zij ]) = ∆ij(Xi) +Zijαij (7)

Of note, gµ(·) and gρ(·) are usually the same such that the mean and dependence parameters are on the

same scale, however occasionally they might differ and therefore may not be on the same scale. The random

variables are contained in the vector Zij . Some extensions of marginalized models include:

• Marginalized latent variable models, which combine a marginal mean regression model with the

flexibility of a GLMM in an effort to characterize subject-level heterogeneity.

• Marginalized transition models, which combine a marginal mean model with an associated GLM

to characterize systematic variation in the expected outcome as a function of covariates and

time. Dependence among repeated measurements on the same subject is induced by specifying

the association between past outcomes and current outcome that are assumed to be conditionally

independent.

• Marginalized transition and latent variable model are primarily intended for relatively long re-

sponse series that contain two sources of response dependence (serial and long range).

A comprehensive treatment of the methods for longitudinal data analysis has been provided by Diggle,

Heagerty, Liang, and Zeger (2002).

Motivating Data: BRAIN-ICU Study

The BRAIN-ICU study was conducted at two major medical centers in Nashville, TN: Vanderbilt Univer-

sity Medical Center and Saint Thomas Hospital. It was a prospective multicenter cohort study conducted to

estimate the prevalence of long-term cognitive impairment after critical illness in a heterogeneous population

of critically ill patients. The primary hypothesis tested in the study was that severe cognitive impairment

up to 1 year post hospital discharge is associated with two in-hospital predictors: the duration of delirium
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(defined as the number of hospital days with delirium) and dosage of analgesic and sedative medications

administered during hospitalization. Details pertaining to this study, including endpoint and covariate defi-

nitions, inclusion and exclusion criteria, and findings have been published elsewhere (Pandharipande, Girard,

Jackson, Morandi, Thompson, Pun, Brummel, Hughes, Vasilevskis, Shintani, et al., 2013). The study in-

cluded adult patients admitted to medical or surgical ICU for the management of cardiogenic shock, septic

shock, or respiratory failure. Patients were evaluated daily for delirium and level of consciousness until hos-

pital discharge or study-day 30 (in-hospital phase), and then follow-up was at 3 and 12-months post-hospital

discharge.

Five health states (normal, delirium, coma, death, and discharge) were present in the parent study, as

were clinical indices of illness severity such as the Sequential Organ Failure Assessment (SOFA) and the

Acute Physiology And Chronic Health Evaluation (APACHE) scores. Data were collected on many other

covariates considered relevant to the ICU clinical course of patients. Some of these covariates include: Age,

sex, educational level, Charlson co-morbidity index, preexisting cognitive impairment, ApoE genotype, stroke

risk, duration of severe sepsis, duration of hypoxemia, mean dose of sedatives, and mean dose of analgesics.

The fundamental aim of the current work is to develop a predictive model for health state transitions during

ICU admission with a focus on the potential relevance of indices of illness severity (SOFA and APACHE

scores) and other potentially modifiable risk factors that may inform clinical decision-making. This aim

stems from our incomplete understanding of the relationship between the severity of physiologic illness and

the transitions in cognitive and functional health states of patients during the course of an intensive care

unit (ICU) stay. The current work is entirely based on the analysis of ICU hospitalization data from the

BRAIN-ICU study.
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CHAPTER II

Model Specification

Rationale for State-transition Modeling

Various health states constitute multiple end points that contain relevant information regarding disease

process/progression or patients clinical course. For instance, what health states occur with high frequency;

how do subjects transition from state to state; what are the transition probabilities? These are all important

questions that warrant answers in the context of different types of research studies or programmatic endeavors

focused on risk factor interventions, disease management, diagnosis, screening, or treatment. The answers

to such questions, which facilitate decision making, can be unmasked using approaches such as multi-state

modeling now made feasible by advanced statistical computing. The dilemma of competing risk is another

justification for applying multi-state modeling to the motivating data. For instance, how do we account for

coma when considering delirium days in the BRAIN-ICU study? Herein, multi-state modeling provides an

explicit, intuitive, flexible, transparent, and simplified method for analyzing the motivating data. Finally,

in addition to the above advantages, multi-state models can still accommodate time-dependent covariates,

time to an outcome, and repeated outcomes.

Multi-state modelling methods have been applied to a spectrum of medical and non-medical research

studies Jackson and Sharples (2002); Jackson, Sharples, Thompson, Duffy, and Couto (2003); Sharples

(1993); Kay (1986); Satten and Longini (1996); Gentleman, Lawless, Lindsey, and Yan (1994); Sharples,

Jackson, Parameshwar, Wallwork, and Large (2003); Sweeting, De Angelis, Neal, Ramsay, Irving, Wright,

Brant, Harris, Trent HCV Study Group, and HCV National Register Steering Group (2006); Sweeting,

Farewell, and De Angelis (2010); Buter, van den Hout, Matthews, Larsen, Brayne, and Aarsland (2008);

Aspinall, Carniel, Jaquet, Woo, and Hincks (2006).The current work focuses on fitting multi-state models

to the motivating data, relying on the Markov assumption, that future health states depends on the current

state. While this work relies on the exposition and statistical software developed by Jackson (2011), refer to

Cox and Miller (1965) for a more comprehensive review of Markov chain theory.

Definitions

Health States

The health states used in this study include normal, delirium, coma, death, and discharge. While death,

delirium, and coma are easy to conceptualize as distinct, it is important to clearly define or distinguish
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between normal and discharge states. The discharged status indicates that the patient was enrolled, followed

for however long in the hospital, and later discharged alive from the hospital. In most cases, a discharge

would indicate a successful course of clinical treatment, however some patients were discharged to hospice

care, so ”successful” might be debatable in those cases; however, we will not pursue this further. The normal

status indicates that a patient was in the hospital and had at least one assessment on that day, and was

deemed to be in normal state on that particular day regardless of the patients status on the previous day.

It is important to recognize that some patients withdrew during the course of the parent study. Patients

(or surrogates, if the patients were unable to consent/withdraw on their own) could withdraw at anytime

during the course of the study. Most of them allowed the use of data already collected, but did not want

further assessment. There were a few who requested that all collected research data be destroyed. A patient

or surrogate must actively request to be withdrawn from the study in order to have a withdrawn status.

The research team assessed all patients in the ICU daily for all health states. It is possible that a patient

was not assessed on a given day for a few reasons: he/she may have been in a long clinical procedure when

the research team was available, or the family may have requested that the patient not be assessed that day.

But an assessment not being done does not indicate study withdrawal.

Model

The schematic of a multi-state model that captures the five health states in the BRAIN-ICU data is

illustrated in Figure 1. The logic of the diagram is that at anytime t a patient is in a state S(t) from

which he/she can transition between adjacent health states (the curved arrows) or can transition directly to

death from any state (the straight arrows), however death is an absorbing state from which no patient can

transition (Jackson, 2011). Progression within a transition space 1, . . . , R is dictated by transition intensities

qrs(t, z(t)) for a pair of states r and s, which may depend on time of the biological process t and/or covariates

z(t) that are time-varying or patient-specific (Jackson, 2011). According to Jackson (2011) the instantaneous

risk of moving from state r to state s is captured by the intensity as delineated by equation 8, and the qrs

form a R×R matrix Q whose rows sum to zero, so that the diagonal entries are defined by qrr = −
∑
s6=r qrs.

qrs(t, z(t)) = lim
δt→0

(S(t+ δt) = s|S(t) = r)/δt. (8)

Of note, the context of our data warrants the notion of rates as opposed to probabilities. This is because

although it is desirable to have information on exact event times, it is indeed not what happens in reality.

Quite frequently longitudinal datasets have health state information at specified regular intervals, but not

information on the actual time within the interval where the change in health state occurred. Thus in
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actuality, longitudinal data like the BRAIN-ICU represent discrete time approximations of a continuous time

process, and therefore the estimates of hazard rates more appropriate than the calculation of probabilities.

However, since we usually do not have information on exact timing, a direct calculation of hazards rates is

not possible, but its relationship with probability can be exploited for indirect calculation. That is, if we

assume a constant hazard rate in a time-homogeneous Markov model, and transition intensities qrs that are

independent of time t, then the time spent in each state has an exponential probability distribution. This

mathematical relationship forms the basis of various link functions employed in the calculation of hazard

rates in the setting of discrete time approximation of continuous time.

Discharge	
  
State	
  1	
  

Normal	
  
State	
  2	
  

Delirium	
  
State	
  3	
  

Coma	
  
State	
  4	
  

Death	
  
State	
  5	
  

Q =


q11 q12 q13 q14 q15
q21 q22 q23 q24 q25
q31 q32 q33 q34 q35
q41 q42 q43 q44 q45
q51 q52 q53 q54 q55


Figure 1: A generalized multi-state model for health states in the BRAIN-ICU data.

In the generic construct depicted by Figure 1 adapted from Jackson (2011) patients can transition back

and forth between health states and can die from any state, however no one recovers from death because

it is an absorbing state. Allowable transitions between states are specified in the transition matrix utilized

for model fitting. Thus, this generic model is flexible enough to accommodate modeling assumptions about

feasible health state transitions.
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Model Structure

Likelihood Function

According to Jackson (2011), the likelihood function for a general multi-state model used in msm package

is calculated from the transition probability matrix Q as a product of probabilities of transition between

observed states, over all individuals i and observation times j, as delineated in equation 9. The components

of Li,j are elements of the transition matrix at the S(tij)th row and S(ti,j+1)th column, evaluated at

t = ti,j+1 − tij . The likelihood L(Q) can be maximized using optimization algorithms such as the optim

function in R.

L(Q) =
∏
i

Li =
∏
i,j

Li,j =
∏
i,j

pS(tij)S(ti,j+1)(ti,j+1 − tij). (9)

Sampling times are assumed to be ignorable for all models in msm package, which implies that no relevant

information regarding the value of a particular observation can be deduced implicitly from the actual time

the observation was made.

Covariates

As stated earlier, the transition intensities may be dependent on the time t—capturing the temporal

evolution of the biological process—or covariates that are time-dependent or patient-specific. The msm

models the impact of covariates zij on the transition intensity for individual i at time j using proportional

hazards model proposed by Cox (1992) and Marshall and Jones (1995). As demonstrated by Jackson (2011)

using the construct of Marshall and Jones (1995) the elements qrs of the transition intensity matrix is

replaced by the covariate vector as shown in equation 10.

qrs(z(t)) = q(0)rs exp(β>rsz(t)). (10)

The new transition probability matrix Q then determines the likelihood, which is then maximized over the

q
(0)
rs and βrs.
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CHAPTER III

Data Analysis

Software

All analysis was conducted using R (R Development Core et al., 2012), and for sake of reproducibility

the R programming codes are shown in this document. The msm package version 1.4 developed by Jackson

(2011) was central to the analysis. The rationale for using msm for fitting multi-state model to the motivating

data is that it can model transition rates in terms of covariates, and accommodates data with a variety of

observation schemes including censoring. The msm package for R is freely available from http://CRAN.

R-project.org/package=msm. There are various extensions to the use of msm that have not been explored

or show-cased in this work; please refer to Jackson (2011) for complete detail of the full range of capabilities

of the msm. Other packages for R were indispensable for the entire exercise. These include Hmisc (Harrell,

2014a), rms (Harrell, 2014b), knitr (Yihui, 2014), and xtable (Dahl, 2014).

Data Description and Summaries

Description

l a t e x ( d e s c r i b e ( oneobs , d e s c r i p t=” D i s t r i b u t i o n o f b a s e l i n e v a r i a b l e s in the BRAIN−ICU data ” ) ,
f i l e=”” , s i z e=” sma l l e r ” )

Distribution of baseline variables in the BRAIN-ICU data
13 Variables 826 Observations

id : Patient ID
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

826 0 826 11590 11042 11084 11207 11414 12099 12222 12264

lowest : 11001 11002 11003 11004 11005
highest: 12301 12302 12303 12304 12305

age.enroll : Age at enrollment
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

821 5 809 60.18 32.57 39.73 50.87 61.24 70.74 78.24 81.81

lowest : 18.60 19.04 19.12 19.12 19.55
highest: 91.60 92.12 93.08 98.28 98.92

sex.pp : Sex
n missing unique

821 5 2

Male (420, 51%), Female (401, 49%)

edu : Years of education
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

796 30 20 12.32 8 9 12 12 14 16 18

lowest : 0 1 3 4 5, highest: 15 16 17 18 20
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charlson.score : Charlson score
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

821 5 14 2.636 0 0 1 2 4 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Frequency 145 148 167 127 97 42 43 18 13 8 5 5 1 2
% 18 18 20 15 12 5 5 2 2 1 1 1 0 0

iqcode.score.e: IQCODE score at enrollment (missing -> 3)

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
821 5 36 3.122 3.000 3.000 3.000 3.000 3.125 3.438 3.812

lowest : 1.625 2.688 2.750 2.812 2.875
highest: 4.562 4.625 4.688 4.750 4.812

apoe : ApoE type
n missing unique

583 243 6

E2/E2 E2/E3 E2/E4 E3/E3 E3/E4 E4/E4
Frequency 3 59 14 356 132 19
% 1 10 2 61 23 3

e4.type : ApoE E4 type
n missing unique

583 243 2

E4- (418, 72%), E4+ (165, 28%)

stroke.risk : Framingham stroke risk score
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

821 5 31 10.32 1 3 6 9 14 19 22

lowest : 0 1 2 3 4, highest: 26 27 28 29 30

num.apache : APACHE II at ICU admission
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

821 5 45 25.4 12 14 19 25 31 36 40

lowest : 2 6 7 8 9, highest: 45 46 47 50 56

apache.aps : APACHE APS at enrollment
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

821 5 44 21.15 9 11 15 21 26 31 35

lowest : 0 1 2 3 4, highest: 39 40 42 45 48

sofa : SOFA at enrollment
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

821 5 22 9.501 4 5 7 9 12 14 15

lowest : 0 2 3 4 5, highest: 18 19 20 21 22

sofa.mod : Modified SOFA (omits GCS) at enrollment
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

821 5 19 6.73 2 3 5 7 9 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Frequency 6 14 31 64 90 106 98 95 87 75 68 41 20 10 6 6 1 2 1
% 1 2 4 8 11 13 12 12 11 9 8 5 2 1 1 1 0 0 0

The distribution of the baseline variables in the analysis dataset is provided above. However, Table 1

provides additional summaries and is inclusive of variables measured more than once during the study.
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Summaries

s1 ← summary(∼ i q c o d e . s c o r e . e + c h a r l s o n . s c o r e + s t r o k e . r i s k + sex .pp + a g e . e n r o l l +
mean .ha l . i cu + mean.prop. icu + cum. s ev s eps i s + mean.benz . i cu + mean.op.new. icu +
mean.dex. icu + cum.onstat in + c u m . o f f s t a t i n + cum.hypox ic .de l + s o f a + sofa.mod +
num.apache + apache .aps

, data=icuDat
, method=” r e v e r s e ”
)

l a t e x ( s1 , f i l e =””
, where=” ! h”
, e x c l u d e . m i s s i n g=TRUE
, d i g i t s =2
, s i z e=” sma l l e r ”
, landscape = FALSE
, prmsd = TRUE
, midd le .bo ld=TRUE
, booktabs=TRUE
, capt ion = ”Summary o f v a r i a b l e s in the \\ t e x t b f {BRAIN−ICU} a n a l y s i s data ”
, l a b e l=”MyTable1” )

Table 1: Summary of variables in the BRAIN-ICU analysis data

IQCODE score at enrollment (missing -> 3) 3.00 3.00 3.12 (3.11±0.28)
Charlson score 1.0 2.0 4.0 (2.5±2.2)
Framingham stroke risk score 5.0 9.0 14.0 (10.1± 6.2)
sex.pp : Female 47% (5324)

Age at enrollment 51 61 71 (60±15)
Cumulative mean dose of haloperidol in ICU 0.00 0.00 0.18 (1.02±3.19)
Cumulative mean dose of propofol in ICU 0 12 851 ( 717±1337)
Cumulative days of severe sepsis 0.0 3.0 7.0 (4.5±5.2)
Cumulative mean dose of benzodiazepines in ICU (MDZ = 2.5*LZ = 0.5*DZM) 0.0 1.1 10.3 (13.9±33.1)
Cumulative mean dose of opiates in ICU (fentanyl = morphine*50 = hydromorphine*7.5) 24 492 1575 (1132±1615)
Cumulative mean dose of dexmedetomidine in ICU 0 0 0 ( 57±326)
Cumulative days on statins (in hospital) 0.0 0.0 0.0 (1.5±3.9)
Cumulative days off statins (in hospital) 2.0 7.0 13.0 ( 8.4± 7.4)
Cumulative days of hypoxic delirium 0.0 1.0 3.0 (2.0±2.9)
SOFA at enrollment 7.0 10.0 12.0 ( 9.7± 3.5)
Modified SOFA (omits GCS) at enrollment 5.0 7.0 9.0 (6.9±3.0)
APACHE II at ICU admission 20.0 26.0 31.0 (25.9± 8.6)
APACHE APS at enrollment 16 21 27 (22± 8)

a b c represent the lower quartile a, the median b, and the upper quartile c for continuous variables. x± s
represents X̄ ± 1 SD.Numbers after percents are frequencies.
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Data Reduction

Hierarchical Clustering

vc← va r c l u s (∼ sex .pp + a g e . e n r o l l + edu + c h a r l s o n . s c o r e + i q c o d e . s c o r e . e + s t r o k e . r i s k +
s o f a + sofa.mod + num.apache + apache.aps , sim = ” h o e f f d i n g ” , data=oneobs )

p l o t ( vc ) # n = 826
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Figure 2: Hierarchical clustering of candidate predictors using Hoeffding’s D as a similarity measure (n=826)

An examination of the inter-relationship among variables is demonstrated in Figure 2 using hierarchical

variable clustering based on Hoeffding’s D as a similarity measure. Evidently APACHE II at ICU admission

(num.apache) and APACHE APS at enrollment (apache.aps) are strongly related, which is not surprising

given the common components that comprise both scoring schemes. Similarly, there is an apparent strong
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similarity between SOFA (sofa) and the modified SOFA (sofa.mod) scores at enrollment. In general, in

the absence of an overriding reason, variables that share strong similarities should not be the same model.

Of note, the cluster analysis does not demonstrate any strong relationship among other variables. However,

added objectivity regarding the choice of variables for model building can be achieved via redundancy

analysis.

Redundancy Analysis

redun (∼ sex .pp + a g e . e n r o l l + edu + c h a r l s o n . s c o r e + i q c o d e . s c o r e . e + s t r o k e . r i s k + s o f a +
sofa.mod + num.apache + apache.aps , data=oneobs , r2=0.8 , nk=5)

Redundancy Analysis

redun(formula = ∼sex.pp + age.enroll + edu + charlson.score +

iqcode.score.e + stroke.risk + sofa + sofa.mod + num.apache +

apache.aps , data = oneobs , r2 = 0.8, nk = 5)

n: 796 p: 10 nk: 5

Number of NAs: 30

Frequencies of Missing Values Due to Each Variable

sex.pp age.enroll edu charlson.score iqcode.score.e stroke.risk

5 5 30 5 5 5

sofa sofa.mod num.apache apache.aps

5 5 5 5

Transformation of target variables forced to be linear

R2 cutoff: 0.8 Type: ordinary

R2 with which each variable can be predicted from all other variables:

sex.pp age.enroll edu charlson.score iqcode.score.e stroke.risk

0.092 0.736 0.077 0.237 0.089 0.542

sofa sofa.mod num.apache apache.aps

0.936 0.906 0.977 0.976

Rendundant variables:

num.apache sofa

Predicted from variables:

sex.pp age.enroll edu charlson.score iqcode.score.e stroke.risk sofa.mod apache.aps

Variable Deleted R2 R2 after later deletions

1 num.apache 0.977 0.977

2 sofa 0.936

The results of the redundancy analysis clearly demonstrates the presence of redundant variables: sofa and

num.apache can be predicted with high coefficient of determination (R2 ≥ 0.8) from all other variables in

the equation. This makes the case that we can eliminate them and employ all other variables as potential

predictors during modeling building. The results of the redundancy analysis affirms the conclusions drawn
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from the above hierarchical clustering analysis. In addition the large sample size relative to the candidate

predictors provide adequate degrees of freedom to incorporate all these non-redundant candidate predictors,

as deemed fit, during modeling.

Graphical Evaluation

The distribution of health states in relation to baseline modified SOFA scores, baseline APACHE APS

scores, and age at enrollment are explored graphically using extended box plots. Regarding the extended

boxes, the left and right margins represent the 0.05 and 0.95 quantiles, and the black dots within the boxes

represents the mean. Three vertical lines completely bisect the extended boxes of which the central vertical

line represents the median (0.5 quantile) while the lateral lines depict the 0.25 and 0.75 quantiles. The

0.375 and 0.625 quantiles are delineated by two indentations that reside midway between the median and

the 0.25 and 0.75 quantiles respectively. Similarly, the 0.125 quantile is depicted by the indentation midway

between the 0.5 and 0.25 quantiles while the 0.875 quantile is represented by the indentation between the

0.75 and 0.95 quantiles.

Modified SOFA at enrollment vs. transition states: Overall

p2a ← bpplotM ( sofa.mod ∼ s ta tus . today . imp , data=icuDat , n loc=” l e f t ” )
p2a
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Figure 3: Modified SOFA at enrollment vs. health states: Overall
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Modified SOFA at enrollment vs. transition states: By sex

p2b ← bpplotM ( sofa.mod ∼ s ta tu s . t oday . imp ∗ sex.pp , data=icuDat , n loc=” l e f t ” )
p2b
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Figure 4: Modified SOFA at enrollment vs. health states: By sex

Conventional wisdom indicates that death, coma, and delirium, in decreasing order, are undesirable health

states. In this context, the plots in Figures 3 and 4 indicate a trend towards higher mean and median SOFA

scores with increasing severity of health state. This pattern remains apparent when stratified by sex with

no remarkable distinction between the sexes.
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APACHE APS at enrollment vs. transition states: Overall

p3a ← bpplotM ( apache .aps ∼ s ta tus . today . imp , data=icuDat , n loc=” l e f t ” )
p3a
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Figure 5: APACHE APS at enrollment vs. health states: Overall
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APACHE APS at enrollment vs. transition states: By sex

p3b ← bpplotM ( apache .aps ∼ s ta tu s . t oday . imp ∗ sex.pp , data=icuDat , n loc=” l e f t ” )
p3b
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Figure 6: APACHE APS at enrollment vs. health states: By sex

Figures 5 and 6 illustrate health states versus APACHE distribution patterns similar to those observed for

SOFA scores.
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Age at enrollment vs. transition states: Overall

p4a ← bpplotM ( a g e . e n r o l l ∼ s ta tus . today . imp , data=icuDat , n loc=” l e f t ” )
p4a
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Figure 7: Age at enrollment vs. health states: Overall
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Age at enrollment vs. transition states: By sex

p4b ← bpplotM ( a g e . e n r o l l ∼ s ta tu s . t oday . imp ∗ sex.pp , data=icuDat , n loc=” l e f t ” )
p4b
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Figure 8: Age at enrollment vs. health states: By sex

Figures 7 and 8 suggest that the distribution of health states by age is devoid of any distinct pattern even

when stratified by sex.
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Modeling

Health State Transitions and Matrix Specification

State Transitions

t4 ← s tatetab le .msm ( s t a t e s
, id
, data=icuDat
)

rownames ( t4 ) ← colnames ( t4 ) ← c ( ” Discharged ” , ”Normal” , ” D e l i r i o u s ” , ”Comatose” , ” Deceased
” )

p r i n t ( x tab l e ( t4 ,
capt ion = ”Frequency t ab l e o f hea l th s t a t e s in the \\ t e x t b f {BRAIN−ICU}
Data. ” ,
l a b e l=”MyTable4” ) ,
inc lude.rownames=TRUE,
f o rmat . a rg s=l i s t ( big.mark=” , ” ) )

Discharged Normal Delirious Comatose Deceased
Discharged 136 0 0 0 0

Normal 499 4,340 351 94 11
Delirious 58 676 2,071 344 39

Comatose 14 100 543 1,023 93
Deceased 0 0 0 0 60

Table 2: Frequency table of health states in the BRAIN-ICU Data.

Table 2 summarizes the multi-state data as a frequency table of pairs of transition states. It captures the

reality that death is an absorbing state from which no subject emerges. However, in addition it delineates

that the discharged state in the study represents an exit from ICU stay, and thus the absence of any

transition from the discharged state to any of the other states.

Transition Matrix

The transition matrix for the allowed state transitions in this analysis of continuous-time Markov chain

is delineated in Table 3. Note that study design and/or assumptions specific to an analytical objective

serve to determine the matrix specification of allowed transitions. Zero entries in the transition matrix

denote were instantaneous transitions are not allowed from state r to state s. The non-zero entries, in this

instance the conventional 1, indicate allowed transitions. The values in the matrix are by no means the

actual transition values, rather they just specify the matrix structure.

Q ← rbind ( c (0 , 0 , 0 , 0 , 0)
, c (1 , 0 , 1 , 1 , 1)
, c (1 , 1 , 0 , 1 , 1)
, c (1 , 1 , 1 , 0 , 1)
, c (0 , 0 , 0 , 0 , 0)
)

rownames (Q) ← colnames (Q) ← c ( ” Discharged ” , ”Normal” , ” D e l i r i o u s ” , ”Comatose” , ” Deceased ” )
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pr in t ( x tab l e (Q
, capt ion = ”Matrix s p e c i f i c a t i o n o f a l l owab l e t r a n s i t i o n s ”
, l a b e l=”Q” )

, inc lude.rownames=TRUE
, f o rmat . a rg s=l i s t ( big.mark=” , ” )
)

Discharged Normal Delirious Comatose Deceased
Discharged 0.00 0.00 0.00 0.00 0.00

Normal 1.00 0.00 1.00 1.00 1.00
Delirious 1.00 1.00 0.00 1.00 1.00

Comatose 1.00 1.00 1.00 0.00 1.00
Deceased 0.00 0.00 0.00 0.00 0.00

Table 3: Matrix specification of allowable transitions

# generate crude intitial transition values

opt ions ( d i g i t s =6)
Q.crude ← crude in i t s .msm ( s t a t e s ∼ study.day

, id
, data=icuDat
, qmatrix=Q
)

pr in t ( x tab l e ( Q.crude
, capt ion = ” I l l u s t r a t i o n o f crude i n i t i a l t r a n s i t i o n va lue s ”
, l a b e l=” Q.crude ” ) )

Discharged Normal Delirious Comatose Deceased
Discharged -0.00 0.00 0.00 0.00 0.00

Normal 0.09 -0.18 0.07 0.02 0.00
Delirious 0.02 0.21 -0.35 0.11 0.01

Comatose 0.01 0.06 0.31 -0.42 0.05
Deceased 0.00 0.00 0.00 0.00 -0.00

Table 4: Illustration of crude initial transition values

Table 4 is for instructive purposes to demonstrate crude initial transition values generated using the above-

specified transition matrix Q. These crude estimates still provide some insight. For example, the transition

intensities indicate that a patient in a normal state will probably transition to a discharged state than to

either a delirious, comatose, or deceased state (transition intensities: 0.09, 0.07, 0.02, and 0.00, respectively).

Please see 25 for more details about the interpretation of transition intensities and the negative diagonal

entries. In the context various models herein below, we will revisit the insight that transition intensities can

provide. The main point of illustrating the transition matrix in Table 3 and crude initial values in Table 4

is that the model likelihood function is maximized by numerical optimization approaches using that matrix

and such initial transition values. However, in the actual modeling process below we allow initial transition

values to be generated automatically using the msm function with a call to gen.inits=TRUE argument. This

approach is better because it tends to provide more sensible initial values, which become important for
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achieving convergence during optimization of unstable models with a flat or multi-modal likelihood.

Model Fitting: Simple Model

#m1: simple bidirectional model

icuDat ← icuDat [ order ( icuDat $ id , icuDat $ study.day ) , ]
m1 ← msm( s t a t e s ∼ study.day

, s ub j e c t = id
, data=icuDat
, qmatrix = Q
, death = TRUE
, method = ”BFGS”
, g e n . i n i t s = TRUE
)

# The computer time required for this invocation of the msm function was 1.60 secs. This was

determineed using the system.time () function in R.

m1p ← pr in t (m1, d i g i t s =5)

p r i n t ( x tab l e (m1p) , f l o a t i n g=FALSE)

base.Estimate base.L base.U
Normal - Discharged 0.10 0.09 0.11

Normal - Normal -0.21 -0.23 -0.20
Normal - Delirious 0.09 0.08 0.10

Normal - Comatose 0.02 0.01 0.03
Normal - Deceased 0.00 0.00 0.21

Delirious - Discharged 0.01 0.00 0.02
Delirious - Normal 0.29 0.27 0.32

Delirious - Delirious -0.49 -0.52 -0.46
Delirious - Comatose 0.18 0.16 0.21
Delirious - Deceased 0.01 0.00 0.02

Comatose - Discharged 0.01 0.00 0.02
Comatose - Normal 0.01 0.00 0.06

Comatose - Delirious 0.50 0.46 0.55
Comatose - Comatose -0.59 -0.63 -0.55
Comatose - Deceased 0.07 0.06 0.09

Table 5: Simple bidirectional model: Baseline transition intensities. L and U represent lower and upper 95%
confidence limits, respectively

The simple model is a base model that tells us how likely a patient is to experience the transition to

a state (i.e. an event) given his/her current state. The parameters of the simple bidirectional model are

transition intensities (or rates, or hazards), they are not probabilities. In the model specification chapter on

page 7 we indicated that according to Jackson (2011) the transition intensities represent the instantaneous

risk of moving from state r to state s. We also pointed out that the diagonal entries qrr of the resulting

matrix of these intensities are defined by qrr = −
∑
s6=r qrs i.e. minus the sum of the rest of the row (page 8).

In the context of the results delineated in Table 5, a person in the normal state has an instantaneous risk

of 0.1 for transition to a discharged state. Note that −0.21 is a diagonal entry that is minus the sum
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of 0.10, 0.09, 0.02,&0.00, thus consistent with the above definition; these diagonal entries deal with the

same-state situation and are not intensities. The results also suggest that a patient in a delirious state has

a similar transition intensity (0.01) for either discharge or death. This finding is not inconsistent with the

precarious nature of delirium as a medical condition. Similarly, the model demonstrates that once a patient

is in a comatose state he/she is more likely to become deceased than to transition to a normal or discharged

state. Additional insight can be derived from the transition intensities. For instance, a person in the

normal state is about 5 (0.10/0.02) times more likely to transition to a discharged compared to comatose

state. This inference is determined from the ratio of normal-discharged and normal-comatose transition

intensities (Table 5). Similar conclusions or inferences can be deduced based on the interest or curiosity of

an investigator. However, non-experts would be better served by knowing the mean time a patient spends in

each transient state (sojourn time) and transition probabilities, both of which are available via the extractor

functions in the msm package as demonstrated on pages 32 and 32.

Model Fitting: Covariate Models

We explored two covariate models with the intent to determine whether the combined presence of SOFA

and APACHE scores improves model performance.

Reduced Covariate Model

m2 ← msm( s t a t e s ∼ study.day
, s ub j e c t = id
, data=icuDat
, qmatrix = Q
, death = 5
, g e n . i n i t s = TRUE
, c o v a r i a t e s = ∼ sofa.mod
, method = ”BFGS”
, c o n t r o l = l i s t ( f n s c a l e = 17000

, maxit = 10000)
)

# The computer time required for this invocation of the msm function was 71.4 secs. This was

determineed using the system.time () function in R.

m2p ← pr in t ( hazard.msm (m2)
, d i g i t s =5
, z e r o . p r i n t = ” . ”
)

From the reduced covariate model in Table 6, a unit increase in SOFA score was significantly associated

with a decrease in the risk of transitioning from either normal to discharged (5% decrease) or delirious to

normal (6% decrease), and a marginally significant decrease in the risk of transition from a comatose to

delirious state (3% decrease). Similarly, each unit increase in SOFA score was significantly associated with
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pr in t ( x tab l e (m2p$ sofa.mod ) , f l o a t i n g=FALSE)

HR L U
Normal - Discharged 0.95 0.93 0.98

Normal - Delirious 0.99 0.96 1.03
Normal - Comatose 0.96 0.87 1.05
Normal - Deceased 0.98 0.59 1.61

Delirious - Discharged 0.99 0.77 1.28
Delirious - Normal 0.94 0.92 0.97

Delirious - Comatose 0.98 0.95 1.02
Delirious - Deceased 1.37 1.11 1.70

Comatose - Discharged 0.93 0.69 1.27
Comatose - Normal 0.72 0.40 1.28

Comatose - Delirious 0.97 0.94 1.00
Comatose - Deceased 1.02 0.96 1.10

Table 6: Reduced covariate model: Hazard ratios associated with SOFA score. Baseline transition intensities.
L and U represent lower and upper 95% confidence limits, respectively

37% (line 8 in Table 6) increased hazard of transition to death from a delirious state.

Full Covariate Model

m3 ← msm( s t a t e s ∼ study.day
, s ub j e c t = id
, data=icuDat
, qmatrix = Q
, death = 5
, g e n . i n i t s = TRUE
, c o v a r i a t e s = ∼ apache .aps + sofa.mod + a g e . e n r o l l
, method = ”BFGS”
, c o n t r o l = l i s t ( f n s c a l e = 17000

, maxit = 10000)
)

# The computer time required for this invocation of the msm function was 3466 .8 secs. This

was determineed using the system.time () function in R.

m3p ← pr in t ( hazard.msm (m3)
, d i g i t s =5
, z e r o . p r i n t = ” . ”
)

Table 7 delineates the hazard ratios associated with APACHE score in the full covariate model. A unit

increase in APACHE score was significantly associated with 2% decrease in the risk of transition from

delirious to normal state. Similarly there was 1% increase in the risk of transition from normal to delirious

state for each unit increase in APACHE score, although this association was marginally significant.

Table 8 provides the hazard ratios associated with SOFA score in the full covariate model. The already

noted impact of SOFA score in the reduced model (Table 6) was preserved although the effect on the hazard

of transition from a comatose to delirious state was no longer significant. Likewise, each unit increase in
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pr in t ( x tab l e (m3p$ apache .aps ) , f l o a t i n g=FALSE)

HR L U
Normal - Discharged 1.00 0.99 1.02

Normal - Delirious 1.01 1.00 1.03
Normal - Comatose 0.99 0.95 1.03
Normal - Deceased 1.14 0.96 1.37

Delirious - Discharged 0.98 0.89 1.08
Delirious - Normal 0.98 0.97 0.99

Delirious - Comatose 0.99 0.98 1.01
Delirious - Deceased 0.90 0.76 1.06

Comatose - Discharged 1.07 0.67 1.70
Comatose - Normal 1.03 0.87 1.23

Comatose - Delirious 0.99 0.98 1.01
Comatose - Deceased 0.99 0.96 1.02

Table 7: Full covariate model: Hazard ratios associated with APACHE score. Baseline transition intensities.
L and U represent lower and upper 95% confidence limits, respectively

pr in t ( x tab l e (m3p$ sofa.mod ) , f l o a t i n g=FALSE)

HR L U
Normal - Discharged 0.95 0.92 0.98

Normal - Delirious 0.98 0.94 1.02
Normal - Comatose 0.96 0.87 1.06
Normal - Deceased 1.04 0.54 2.02

Delirious - Discharged 1.04 0.83 1.31
Delirious - Normal 0.96 0.93 0.99

Delirious - Comatose 1.00 0.95 1.04
Delirious - Deceased 1.88 0.99 3.58

Comatose - Discharged 0.91 0.56 1.47
Comatose - Normal 0.72 0.46 1.11

Comatose - Delirious 0.98 0.95 1.02
Comatose - Deceased 1.04 0.95 1.14

Table 8: Full covariate model: Hazard ratios associated with SOFA score. Baseline transition intensities. L
and U represent lower and upper 95% confidence limits respectively

SOFA score was associated with 88% (HR 1.88, 95% CI 0.99 to 3.58; line 8 in Table 8) increased hazard of

transition to death from a delirious state.

Table 9 demonstrates the hazard ratios associated with age in the full covariate model. In general, a unit

increase in enrollment age was associated with a small (1 − 2%) but marginally significant increase in the

hazard of transition from a normal to delirious or comatose states, comatose to delirious or deceased states,

and a decrease in the risk of transition from a delirious to normal state.
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pr in t ( x tab l e (m3p$ a g e . e n r o l l ) , f l o a t i n g=FALSE)

HR L U
Normal - Discharged 1.00 1.00 1.01

Normal - Delirious 1.01 1.01 1.02
Normal - Comatose 1.02 1.00 1.04
Normal - Deceased 0.98 0.85 1.14

Delirious - Discharged 1.07 1.01 1.12
Delirious - Normal 0.99 0.98 0.99

Delirious - Comatose 1.01 1.00 1.01
Delirious - Deceased 0.98 0.89 1.07

Comatose - Discharged 0.99 0.88 1.12
Comatose - Normal 1.13 0.98 1.31

Comatose - Delirious 1.01 1.00 1.02
Comatose - Deceased 1.02 1.00 1.03

Table 9: Full covariate model: Hazard ratios associated with age. Baseline transition intensities. L and U
represent lower and upper 95% confidence limits respectively

Model Comparisons

Baseline, Reduced, and Full Covariate Models

To assess the contribution of covariates and inform our decision on which model to employ in subsequent

analysis, we compared the baseline, reduced, and full covariate multi-state models using the likelihood ratio

test.

l r t e s t .msm (m1, m2) ; l r t e s t .msm (m2, m3)

-2 log LR df p

m2 52.07 12 0.0000006014

-2 log LR df p

m3 102.8 24 9.849e-12

The likelihood ratio tests indicate that the introduction of covariates significantly improved model perfor-

mance. Furthermore, the full covariate model is demonstrably superior to the reduced covariate model as

evidenced by the result from the comparison of their likelihood functions. In this context, we henceforth

concentrate on the full model with a focus on the impact of the covariates on patient health state transitions.

In addition, we will consider a number of extractor functions, which provide added information regarding

the study participants. These extractor functions include transition intensity and probability matrices,

mean sojourn times, and probability of the next state. Finally, we evaluate the survival plots for the full

covariate model as well as its assessment using prevalence plots. However before proceeding with looking

evaluating the extractor functions, it is instructive to compare our full covariate model to a traditional
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modeling approach.

Full Covariate Model vs. Binary Logistic Model

at1 ← s e l e c t ( icuDat , id , s ta tus . today . imp , sofa.mod , apache.aps , a g e . e n r o l l )
at2 ← at1 [ at1 $ s ta tu s . t oday . imp %in% c ( ” Deceased ” ) , ] # only deceased 204

at3 ← at1 [ ( at1 $ s ta tu s . t oday . imp ==”Normal” | at1 $ s ta tu s . t oday . imp==” Discharged ” ) , ]
at4 ← at3 [ which ( ! dup l i ca t ed ( at3 $ id ) ) , ]
at5 ← rbind ( at2 , at4 )
at5 $ binary ← i f e l s e ( at5 $ s ta tu s . t oday . imp==” Deceased ” , 1 , 0) #binary outcome meassure: Death

= 1, otherwise = 0

b ← lrm ( binary∼sofa.mod + apache .aps + a g e . e n r o l l , data=at5 )
b

Logistic Regression Model

lrm(formula = binary ∼ sofa.mod + apache.aps + age.enroll , data = at5)

Model Likelihood Discrimination Rank Discrim.

Ratio Test Indexes Indexes

Obs 890 LR chi2 43.69 R2 0.073 C 0.647

0 686 d.f. 3 g 0.613 Dxy 0.294

1 204 Pr(> chi2) <0.0001 gr 1.846 gamma 0.296

max |deriv| 0.000000007 gp 0.104 tau -a 0.104

Brier 0.168

Coef S.E. Wald Z Pr(>|Z|)

Intercept -3.6084 0.4520 -7.98 <0.0001

sofa.mod 0.0976 0.0314 3.11 0.0019

apache.aps 0.0334 0.0122 2.74 0.0062

age.enroll 0.0156 0.0056 2.78 0.0054

# -2∗logLik(m1) # simple bidirectional multi-state model

# -2∗logLik(m2) # reduced covariate multi-state model: sofa.mod only

# -2∗logLik(m3) # full covariate multi-state model: sofa.mod + apache.aps + age.enroll

# -2∗logLik(b) # Binary (dead or alive) logistic model: sofa.mod + apache.aps + age.enroll

l r t e s t .msm (m1, m3) # comparing full covariate model vs base model to obtian lR Chisq for

full model.

-2 log LR df p

m3 154.9 36 1.11e-16

The binary logistic model is a mainstream approach that can be used to characterize the impact of the

chosen covariates on the binary outcome (dead or alive), but it falls short of all the additional information

that the multi-state model provides. For instance, the logistic model demonstrates that the overall impact of

APACHE score is significant and provides understanding regarding the relevance of APACHE to mortality.

Furthermore, it provides knowledge of the impact of either SOFA score or age on the binary outcome measure.

Thus the binary model is limited in that it sheds light only on mortality. However, we were privileged to

a significant degree of added insight from the full covariate multi-state model. This reality might become

more crucial when assessing therapeutic interventions for signals of efficacy and/or effectiveness not only

with respect to mortality but to other endpoints that are relevant to the overall well-being of patients. In

addition, it is also apparent from the likelihood ratio chi square statistics that the full multi-state model
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(LRχ2
36 : 154.9) is superior to the binary logistic model (LR χ2

3 : 43.69) indicating that there is real covariate

information about states other than death.

Extractor Functions

Transition Intensity Matrix

# transition intensity matrix for specified values

opt ions ( d i g i t s =1)
qmatrix.msm (m3, c o v a r i a t e s = l i s t ( a g e . e n r o l l=mean( icuDat $ a g e . e n r o l l ) , s ex .pp=”Male” ,

sofa.mod=mean( icuDat $ sofa.mod ) ) )

Discharged

Discharged 0

Normal 0.09186486 ( 0.0701017638402 , 0.12038)

Delirious 0.00948678 ( 0.0006720997355 , 0.13391)

Comatose 0.00083535 ( 0.0000000005776 ,1208.18478)

Deceased 0

Normal

Discharged 0

Normal -0.18490788 ( -0.2576355554146 , -0.13271)

Delirious 0.43452637 ( 0.3345097596169 , 0.56445)

Comatose 0.00124529 ( 0.0000012174053 , 1.27381)

Deceased 0

Delirious

Discharged 0

Normal 0.06993300 ( 0.0487385689065 , 0.10034)

Delirious -0.66842913 ( -0.9507728652918 , -0.46993)

Comatose 0.60667963 ( 0.4396422926142 , 0.83718)

Deceased 0

Comatose

Discharged 0

Normal 0.02308850 ( 0.0098277094807 , 0.05424)

Delirious 0.21529665 ( 0.1420381969531 , 0.32634)

Comatose -0.69430563 ( -1.0773964712205 , -0.44743)

Deceased 0

Deceased

Discharged 0

Normal 0.00002152 ( 0.0000000176814 , 0.02619)

Delirious 0.00911933 ( 0.0004893889552 , 0.16993)

Comatose 0.08554536 ( 0.0407388416569 , 0.17963)

Deceased 0

The transition intensity matrix and corresponding 95% confidence intervals capture the transition intensities

for a male patient who has a mean age of 59.92 and a mean SOFA score of 6.92. In this example, a

patient who is in the normal state and has the specified covariate values is more likely transition to a

discharged state (transition intensity: 0.09) than to a delirious (transition intensity: 0.06) or comatose state

(transition intensity: 0.02). This matrix serves to illustrate one of the unique features of multi-state models

fitted using the msm package. The fact that specific covariate values can be specified allows for direct

comparison of transition intensities of patient groups defined by specific covariate settings. In the context

of an intervention study, this feature can provide remarkable insight into the efficacy or effectiveness of

the intervention. Similarly, it is a good way to evaluate the impact of various covariate values on different

groups of participants.
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Transition Probability Matrix

opt ions ( d i g i t s =1)
# Fitted transition probability matrix P(t) over an interval t = 30 days

(pm3 ← pmatrix.msm (m3, t = 30 , c i = ”normal” ) )

Discharged Normal

Discharged 1.00000 (1.000000 ,1.00000) 0

Normal 0.82096 (0.677766 ,0.88519) 0.06105 (0.026312 ,0.07047)

Delirious 0.73250 (0.565849 ,0.83758) 0.07778 (0.029082 ,0.08703)

Comatose 0.62828 (0.494019 ,0.79617) 0.07711 (0.023481 ,0.08731)

Deceased 0 0

Delirious Comatose

Discharged 0 0

Normal 0.02785 (0.010257 ,0.03206) 0.01235 (0.003138 ,0.01445)

Delirious 0.03551 (0.011226 ,0.03981) 0.01574 (0.003961 ,0.01813)

Comatose 0.03522 (0.009181 ,0.03966) 0.01562 (0.003106 ,0.01810)

Deceased 0 0

Deceased

Discharged 0

Normal 0.07779 (0.049775 ,0.29009)

Delirious 0.13847 (0.088547 ,0.37118)

Comatose 0.24377 (0.141888 ,0.43436)

Deceased 1.00000 (1.000000 ,1.00000)

For this evaluation of transition probabilities we do not specify any specific covariate settings, thus the

results represent transition probabilities with covariate values set to their means in the data. The estimated

30-day transition probability matrix depicts the probability of being in a particular state within the time

period. For instance, a typical study patient who is in a normal state has a probability of ≈ 0.08 of being

dead in 30 days. In contrast, a delirious study patient has a probability of ≈ 0.08 of being normal in 30 days,

but a ≈ 0.14 probability of death within the time period. The confidence interval reported here required a

computationally intensive process of drawing a random sample of size n = 1000 from the multivariate normal

distribution of the maximum likelihood estimates and covariance matrix, and then transforming. Boot-

strapped confidence intervals can also be obtained by specifying ci = "boot" in the pmatrix.msm argument.

Mean Sojourn Times

opt ions ( d i g i t s =3)
sojourn.msm (m3) # Mean soujourn times describes the average period in a single stay in a

state.

estimates SE L U

Normal 4.74 0.160 4.44 5.07

Delirious 2.03 0.067 1.90 2.17

Comatose 1.72 0.069 1.59 1.86

Mean sojourn times (in days) represent the estimated times spent in each transient state r for a specified

set of covariate values. In conjunction the probability of the next state (below), soujourn times intuitively
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provide full definition of a continuous-time Markov model although without event sequencing information.

Probability of the Next State

pnext.msm (m3) ; opt ions ( d i g i t s =1) # The matrix of prob that the next state after r is state s,

for each r and s.

Discharged Normal

Discharged 0 0

Normal 0.484147 (0.43022222 ,0.51559) 0

Delirious 0.011496 (0.00345275 ,0.03501) 0.610980 (0.55823017 ,0.64131)

Comatose 0.005829 (0.00008916 ,0.27541) 0.004211 (0.00007947 ,0.16939)

Deceased 0 0

Delirious Comatose

Discharged 0 0

Normal 0.426035 (0.36582845 ,0.46223) 0.087936 (0.05980805 ,0.11871)

Delirious 0 0.375699 (0.32979746 ,0.40697)

Comatose 0.864089 (0.55151511 ,0.88663) 0

Deceased 0 0

Deceased

Discharged 0

Normal 0.001881 (0.00002750 ,0.11006)

Delirious 0.001825 (0.00003126 ,0.08031)

Comatose 0.125871 (0.08026686 ,0.15075)

Deceased 0

As stated above, a knowledge of the probability of the next state in combination with an understanding of

the sojourn times contribute to our intuitive understanding of the transition state model. Based on the full

covariate model, the output from pnext.msm function indicates that in this study cohort a person in the

normal state the highest probability for the next state is discharge. Similarly, when a patient is comatose

the probability of the next state is highest for delirium (0.86) but also substantial for death (0.13).

Model Plots and Additional Assessment

Survival Plots

# plots of expected probability of survival against time from each transient state.

#plot(m1 , main = "simple model: no covariates ", legend.pos =c(4,0.2))

#plot(m2 , main = "Reduced covariate model", legend.pos =c(4,0.2))

p lo t (m3, main =” Ful l c o v a r i a t e model” , sub =”Legend : s t a t e 2 = normal , s t a t e 3 = d e l i r i o u s ,
s t a t e 4 = comatose” , xlab= ”Time in days” , l e g end .po s=c (4 ,0 . 2 ) )
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Figure 9: Survival probability plot

The survival plots provide graphical evaluation of the probability of survival for patients by category of

health states. While the same probabilities can be obtained directly from the transition probability matrix,

a visual display helps depict differences in survival (defined as not entering the absorbing state) by category

of health state. Figure 9 illustrates that the 30-day survival probabilities in BRAIN-ICU study population

decreases with increasing health state severity.

Prevalence Plots

# prevalence plots: observed and expected prevalence

pr3 ← prevalence.msm (m3, t imes = seq (0 , 30 , 2) )
p lo t .preva lence .msm (m3, mintime=0, maxtime=30)
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Figure 10: Prevalence plots from full covariate model

The prevalence plots provide an assessment of model performance by comparing expected and observed

percentages for each health state. From the plots in Figure 10 it is apparent that the predicted number

of patients who are discharged, normal, or comatose are overestimated until after the first 10 days of ICU

stay. The expected and observed percentages for delirious and deceased patients are congruent throughout

the time period. These prevalence plots indicate excellent model performance. In addition, from a practical

perspective the model has reasonable clinical application because it is understandable that on average

clinicians will be more informed about the possibility of a patient’s discharge after some days of ICU care

as opposed to very early in the course of admission.
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Ratio of Transition Intensities

# Ratio of progression rate q23 from a normal to delirious state versus the corresponding

recovery rate q32

opt ions ( d i g i t s =3)
qratio.msm (m3

, ind1=c (3 , 2 )
, ind2=c (2 , 3 )
, c o v a r i a t e s=l i s t ( a g e . e n r o l l=q u a n t i l e ( icuDat $ a g e . e n r o l l , 0 . 1 )

, sofa.mod=q u a n t i l e ( icuDat $ sofa.mod , 0 . 1 ) )
#, ci=" bootstrap"

, c l = 0 .95
# , B=1000

)

estimate se L U

11.53 2.38 7.69 17.29

qratio.msm (m3
, ind1=c (3 , 2 )
, ind2=c (2 , 3 )
, c o v a r i a t e s=l i s t ( a g e . e n r o l l=q u a n t i l e ( icuDat $ a g e . e n r o l l , 0 . 9 )

, sofa.mod=q u a n t i l e ( icuDat $ sofa.mod , 0 . 9 ) )
#, ci=" bootstrap"

, c l = 0 .95
# , B=1000

)

estimate se L U

3.550 0.993 2.052 6.141

# Ratio of progression rate q43 into a comatose state versus the corresponding recovery rate

q34

opt ions ( d i g i t s =3)
qratio.msm (m3

, ind1=c (4 , 3 )
, ind2=c (3 , 4 )
, c o v a r i a t e s=l i s t ( a g e . e n r o l l=q u a n t i l e ( icuDat $ a g e . e n r o l l , 0 . 1 )

, sofa.mod=q u a n t i l e ( icuDat $ sofa.mod , 0 . 1 ) )
# , ci=" bootstrap "

, c l = 0 .95
# , B=1000

)

estimate se L U

2.821 0.608 1.849 4.303

qratio.msm (m3
, ind1=c (4 , 3 )
, ind2=c (3 , 4 )
, c o v a r i a t e s=l i s t ( a g e . e n r o l l=q u a n t i l e ( icuDat $ a g e . e n r o l l , 0 . 9 )

, sofa.mod=q u a n t i l e ( icuDat $ sofa.mod , 0 . 9 ) )
# , ci=" bootstrap "

, c l = 0 .95
# , B=1000

)

estimate se L U

2.790 0.852 1.534 5.076

In our assessment of the ratio of transition intensities, we jointly modeled age and SOFA score using specific

covariate settings. First, at 0.1 quantile for age and 0.1 quantile for SOFA score. Second, at 0.9 quantile for
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age and 0.9 quantile for SOFA score. By estimating the ratio of two entries of the transition intensity matrix,

we assessed the ratio of the progression rate q23 into a delirious state to the recovery rate q32 at 0.1 and 0.9

quantiles for age and SOFA. The use of extreme covariate values was designed to compare and contrast the

impact of patient characteristics on health states. Similarly, we also assessed the ratio of progression rate

q34 into a comatose state to the recovery rate q43 at the same specified covariate values.

The ratio of transition intensities for a patient within the 10% quantiles of age and SOFA score indicates

that recovery from a delirious to normal state is 11.5 times as likely as progression from a normal to delirious

state, in contrast with a patient in the 90% age and SOFA score quantiles who is only 3.6 times as likely.

These findings are consistent with what an investigator will expect since any patient in the 90% quantile

for age and SOFA score will by any account be considered sicker (higher SOFA score) and at greater risk of

adverse events.

At the same specified extreme covariate values, that is 10% and 90% quantiles of age and SOFA scores,

a comparison of the ratio of transition intensities for recovery from a comatose to delirious state versus

progression from delirious to comatose state did not show any striking disparity (2.82 vs. 2.79 for 10%

vs. 90% quantiles of age and SOFA score). This finding may suggest that in this cohort there is a certain

threshold of illness that patients exceeds after which specific covariate characteristics have less impact on

the potential for recovery.

Simulation Studies

Raw Transitions

# For specified covariate values we generate the transition intensity matrices for our

simulations

mat1 ← qmatrix.msm (m3, , c o v a r i a t e s=l i s t ( a g e . e n r o l l=q u a n t i l e ( icuDat $ a g e . e n r o l l , 0 . 1 )
, sofa.mod=q u a n t i l e ( icuDat $ sofa.mod , 0 . 1 ) )

)
mat2 ← qmatrix.msm (m3, , c o v a r i a t e s=l i s t ( a g e . e n r o l l=q u a n t i l e ( icuDat $ a g e . e n r o l l , 0 . 9 )

, sofa.mod=q u a n t i l e ( icuDat $ sofa.mod , 0 . 9 ) )
)

# simulation1 : patients in the 0.1 quantile of age and SOFA score group

s e t . s e e d (2000)
cat ( ’ Pat ient #\t S t a t e s f o r Days 1−30\n ’ )

Patient # States for Days 1-30

f o r ( i in 1 : 10) {
s ← sim.msm ( mat1$ est imates , mintime=1, maxtime=30, s t a r t =2)
cat ( i , ’ \ t \ t ’ , approx ( s $ times , s $ s t a t e s , 1 : max( s $ t imes ) , method=’ constant ’ ) $y , ’ \n ’ , sep

=’ ’ )
}

1 2222222222223222

2 22233323342222
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3 22222222233222

4 22

5 22222222222222222

6 22

7 2222

8 224333322222

9 22222222222233222222222

10 2222222

# simulation2 : patients in the 0.9 quantile of age and SOFA score group

s e t . s e e d (2000)
cat ( ’ Pat ient #\t S t a t e s f o r Days 1−30\n ’ )

Patient # States for Days 1-30

f o r ( i in 1 : 10) {
s ← sim.msm ( mat2$ est imates , mintime=1, maxtime=30, s t a r t =2)
cat ( i , ’ \ t \ t ’ , approx ( s $ times , s $ s t a t e s , 1 : max( s $ t imes ) , method=’ constant ’ ) $y , ’ \n ’ , sep

=’ ’ )
}

1 22222222222

2 2222223222

3 222222222223

4 22222222222

5 222344

6 22222222222333332232433333

7 2

8 222223334433222222333434322434

9 222222222222

10 22223

We used simulation studies to assess our model by simulating the raw state transitions of 10 patients in

each category of the above-specified covariate values (0.1 vs. 0.9 quantiles of age and SOFA scores). These

single trajectory simulations were effected using the sim.msm function. The mean age in the 0.1 quantile

age group is ≈ 40 years and the mean SOFA score (i.e. modified SOFA score) in the 0.1 quantile SOFA

score group is 3. The corresponding numbers for the 0.9 quantile age and SOFA score groups are ≈ 78 years

and 11 respectively. Thus patients in the 0.9 quantile groups are much older and sicker and therefore one

would expect more transitions towards increasingly severe or undesirable health states. The results of the

raw transitions are consistent with one would expect. The corresponding health states represented by the

integers 2, 3, and 4 are normal, delirious, and comatose states, respectively. Of the 10 patients in the 0.1

quantile groups only 2 patients (patients 2 and 8) experienced a comatose health state, and interestingly,

despite how ominous the state of coma is, these individuals ended up transitioning to normal states. In fact,

every patient in that group ended up in normal states at the end of the simulation. On the contrary, in the

sicker group patients 3, 6, 10 remained in the delirious state) in addition to patients 5 and 8 whom remained

in comatose states at the simulation.
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Aggregate Transitions

We explored aggregate evaluation of the above findings by simulating multiple trajectories of intermit-

tently observed states. The simmulti.msm function in the msm package was used for this purpose. The

simmulti.msm function calls on the sim.msm function repeatedly to produce a simulated trajectory for

each individual; in this case with the specified covariate values as dictated by the covariate-specifications of

the derived transition matrices. The results of the simulations are illustrated graphically using extended box

plots.

The box plots in Figures 11 and 12 demonstrate a clear difference in the distribution of health states

between the two disparate populations simulated, and further insight is gained in the context of the

distribution of health states in the original dataset (Figure 13). Please refer to 16 for a reminder on the how

to interpret the extended boxes in the plots. Strikingly, patients within the 0.1 quantile age and SOFA score

group account only for 14 deceased states (Figures 11) in the population compared to 116 deceased states

accounted for by the sicker patients in the 0.9 quantile group (Figures 12). The same pattern of remarkable

disparity is evident for all other health states. Compared to the overall real study population (Figure 13)

our artificial sicker group had more than half the number of deaths. In addition, this sicker group had a

significant number of comatose and delirious states that far exceeds those associated with patients in the

0.1 quantile age and SOFA score group. These are all remarkable findings that have been made apparent

by more efficient use of data via multi-state modeling. It does indicate the importance of such analysis

strategies when evaluating the therapeutic efficacy and effectiveness of treatments.

icuDat $ time ← icuDat $ study.day
icuDat $ s ub j e c t ← icuDat $ id
icuDat ← icuDat [ order ( icuDat $ id , icuDat $ time ) , ]
sim1 ← simmulti.msm ( icuDat , s t a r t =2, qmatrix=mat1$ est imates , death=TRUE, drop.absorb=TRUE)
sim2 ← simmulti.msm ( icuDat , s t a r t =2, qmatrix=mat2$ est imates , death=TRUE, drop.absorb=TRUE)

par ( mfrow=c (2 , 1 ) )
sim1$ s t a t e ← f a c t o r ( sim1$ s tate , l a b e l s=c ( ” Discharged ” , ”Normal” , ” D e l i r i o u s ” , ”Comatose” , ”

Deceased ” ) )
bpplotM ( sim1$ time ∼ sim1$ state , n loc=” l e f t ” )
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Figure 11: Plot of simulation results for patients in the 0.1 quantile age and SOFA score group

sim2$ s t a t e ← f a c t o r ( sim2$ s tate , l a b e l s=c ( ” Discharged ” , ”Normal” , ” D e l i r i o u s ” , ”Comatose” , ”
Deceased ” ) )

bpplotM ( sim2$ time ∼ sim2$ state , n loc=” l e f t ” )
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Figure 12: Plot of simulation results for patients in the 0.9 quantile age and SOFA score group

bpplotM ( icuDat $ study.day ∼ icuDat $ s ta tus . today . imp , n loc=” l e f t ” )
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Figure 13: Plot of states versus time in BRAIN-ICU study population
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CHAPTER IV

Discussion and Conclusions

Discussion

We have demonstrated an alternative approach for the analysis of multiple outcomes in a longitudinal data

construct. This approach is contrary to mainstream modus operandi where multiple outcomes are collapsed

into simple binary or composite outcome measures for the application of logistic regression methods or time-

to-first event analysis as in the case of survival improvement evaluation. Such run-of-the mill methods are

fraught with remarkable loss of information; not only do they negate the proper or full-understanding of a

patient’s clinical journey, and how various factors—e.g. treatment in the case of an intervention trial—might

affect that journey, they inevitably lead to poor estimation of true treatment or covariate effects on the

burden of morbidity.

In the work presented here, the Markov multi-state transition models provide a lot of insight that other-

wise would have remained, at best, mere conjectures or hypothetical considerations. The simple bidirectional

model tells us how likely a patient is to transition from one state to another, while the covariate models

inform us of the impact of patient attributes on all pre-specified possible health state transitions. The ex-

tractor functions associated with the msm package employed in this analysis provides additional relevant

and interesting scientific information some of which are: the probability of being in a particular state within

a time period (transition probability), the estimated times spent in each transient state for specific covariate

values (mean sojourn times), and the probability that each state is next. These additional information collec-

tively allow investigators to have a more intuitive understanding of the study population via the multi-state

models. Such greater depth of understanding cannot be accomplished if traditional methods were employed.

Perhaps due to the origin of the dataset used in this study, one is reminded of the current practice of

using ventilator-free days (VFD) as an outcome measure in critical care studies. Under the current practice

investigators count the days off the ventilator (until day 28) during ICU stay, but subjects who die are

assigned a VFD of 0. The efficacy of an intervention is based on analysis of the differences in VFD between

treatment groups using traditional two-sample comparisons. There are many problems with this construct,

but we note only a few. The current approach ignores the VFD for the subjects that die. The difference

in VFD may be due to lower mortality and/or more days free off ventilation. Furthermore, intermittent

need and triggers for ventilator support is not fully taken into account. Death and VFD are two competing

endpoints, so analyzing one without the other does not address competing risk explicitly. Since VFD is

an outcome of interest, subjects who die are censored at the time of death, which violates a fundamental
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assumption of survival analysis, ignores or fails to characterize the realities of critical care outcomes given

the underlying complexities of disease mechanisms. Of note Schoenfeld and Bernard (2002) did not employ

the time-to-event method in their analysis, which was therefore devoid of a censoring problem in the formal

sense. However, multi-state modeling provides a solution to these issues associated with the use of VFD.

Firstly, not only can competing risk be addressed explicitly, we can capture the intermittent need for assisted

ventilation, which are indeed state transitions. In addition subjects who die can contribute to the analysis

because their VFD will be counted. Essentially, what investigators need to analyze are the transitions in

health stats between normal, ventilator supported state, other relevant states, and death. In this context,

the real efficacy of interventions can be determined. Furthermore, it is very straightforward to conduct a

formal statistical hypothesis test to determine covariate (treatment) effect on the transitions in and out of

assisted ventilation or other states of interest. Here a likelihood ratio test between models with and without

the covariate of interest will provide the answer to the question by comparing the LR χ2
d.f. accounting for the

degrees of freedom (d.f.) spent. For example, the effect of treatment on a particular transition (e.g. normal

to ventilator assistance) will cost 2 d.f if the analysis is of 2 possible state transitions.

It is important to acknowledge that the number of parameters tackled during multi-state transition

modeling can be challenging and thus a potential disadvantage in the sense that it requires adequate sample

size and strong computing platform. However, the flexibility that multi-state modeling offers for depicting

complex patterns should justify usage. In the context of an intervention trial, a complex pattern that can be

depicted is to assess differences in therapeutic efficacy between two interventions in terms of the probabilities

of improvement pare passu as assessment of the similarities in probabilities for events between the two

interventions. Such a complex pattern would otherwise be difficult to delineate using current mainstream

methods.

Conclusion

This study showcases some, but not all of the benefits of employing multi-state modeling strategies. We

deem it important to conclude by listing some of those major advantages.

• Intuitiveness.

• Flexibility.

• Transparency.

• Excellent for informing medical decisions especially when such decision problems can be articu-

lated in terms of states.

• Applicable for the assessment or comparison of various types of interventions: primary preven-

tion, screening, diagnosis, and treatment.

44



• Explicit approach for dealing with the problem of competing risk.

• Offers more interpretable predictions of more features of patient responses.

• Allows for quantitative hypotheses testing about covariate effect on various health states either

collectively or singularly.

• Offers more efficient use of data and provides a better approach for looking at multiple end-

points. Provides clear insight about the experience of patients as opposed to the black box that

classical approaches create by just looking at mortality or any other single outcome measure (e.g.

ventilator free days, as discussed above) with accounting for intermittent changes that may very

relevant regarding the assessment of true disease burden or therapeutic efficacy and effectiveness.

Future directions for employing the use of multi-state modeling can incorporate a random effects structure

to accommodate unexplained variation in transition probabilities between individuals. In this context, a

Bayesian statistical perspective can be employed using simulation techniques like MCMC. Furthermore,

higher order Markov transition models can also be considered albeit with suitable constraints to make

estimation feasible.
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APPENDICES

Computing Environment

All analyses were conducted using the following versions of R (R Development Core et al., 2012), the

operating system, and add-on packages Hmisc (Harrell, 2014a), msm (Jackson, 2011), rms (Harrell, 2014b),

xtable (Dahl, 2014), and others:

• R version 3.1.1 (2014-07-10), x86_64-apple-darwin10.8.0

• Base packages: base, datasets, graphics, grDevices, grid, methods, splines, stats, utils

• Other packages: diagram 1.6.2, dplyr 0.2, Formula 1.1-2, gcookbook 1.0, ggplot2 1.0.0,

Hmisc 3.14-4, knitr 1.6, lattice 0.20-29, msm 1.4, plyr 1.8.1, rattle 3.1.0, rms 4.2-0, shape 1.4.1,

SparseM 1.05, survival 2.37-7, xtable 1.7-3

• Loaded via a namespace (and not attached): assertthat 0.1, cluster 1.15.2, codetools 0.2-8,

colorspace 1.2-4, digest 0.6.4, evaluate 0.5.5, expm 0.99-1.1, formatR 0.10, gtable 0.1.2,

latticeExtra 0.6-26, MASS 7.3-33, Matrix 1.1-4, munsell 0.4.2, mvtnorm 1.0-0, parallel 3.1.1,

proto 0.3-10, RColorBrewer 1.0-5, Rcpp 0.11.2, reshape2 1.4, scales 0.2.4, stringr 0.6.2,

tools 3.1.1

The reproducible research framework knitr (Yihui, 2014) was used.

R Codes: Packages and Global Formatting

# Packages and global formatting

r e q u i r e ( k n i t r ) # Reproducible research platform

r e q u i r e ( Hmisc ) # Has many support functions extremely useful when working with knitr and

LaTeX e.g , escape special characters in R strings for LaTeX presentation.

r e q u i r e ( rms ) # Faithful functions for regression modelling: data reduction ,

imputatation , modeling , etc

r e q u i r e ( gcookbook ) # Data visualisation.

r e q u i r e ( ggp lot2 ) # Data visualisation

r e q u i r e ( g r id )

r e q u i r e ( x tab l e ) # Format R data frames as LaTeX tables.

r e q u i r e ( diagram ) # For flowchart production if the need arises

r e q u i r e ( dplyr ) # Data munging: tbl_df () for printing dataframes

r e q u i r e (msm) # The wonderful package for multi-state transition modeling

opts chunk $ s e t ( dev=” pdf ”
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, f i g . p a t h=” graph i c s / p l o t ”# puts all figures in a folder in the current

directory called "graphics. " If you use this , you need to create the

graphics folder first. It also starts each figure ’s filename with "plot"

, f i g . l p = ””

, out .width=” . 7 \\ textwidth ”

, f i g . k e e p=” high ”

, f i g . s h o w=” hold ”

, f i g . a l i g n=” cente r ”

, comment=NA

, s i z e=” smal l ”

, cache=TRUE

, autodep=TRUE

)

opt ions ( formatR.arrow=TRUE, formatR.blank=TRUE, fo rmatR.brace .newl ine=FALSE)

r e n d e r l i s t i n g s ( )

# Suppresses "##" in R output. The "##" is useful if you want people to be able to copy and

paste your code in the output file , though.

# this allows for code formatting inline.

kn i t hooks $ s e t ( i n l i n e = func t i on ( x ) {

i f ( i s . n u m e r i c ( x ) ) re turn ( k n i t r : : : f o r m a t s c i (x , ’ l a t e x ’ ) )

x = a s . c h a r a c t e r ( x )

h = k n i t r : : : h i l i g h t s o u r c e (x , ’ l a t e x ’ , l i s t ( prompt=FALSE, s i z e=’ s c r i p t s i z e ’ ) )

h = gsub ( ” ( [ #$%&] ) ” , ”\\\\\\1” , h)

h = gsub ( ’ ( [ ”\ ’ ] ) ’ , ’ \\1{} ’ , h )

gsub (” ‘ ‘ ‘\n+ ‘ ‘ ‘\n” , ”” , x )

gsub ( ’∧\\\\ begin \\{ a l l t t \\}\\ s ∗ |\\\\ end\\{ a l l t t \\}\\ s ∗$ ’ , ’ ’ , h ) })

par ( l a s = 1)

opt ions ( width = 90 , t idy = TRUE, sc ipen = 6 , d i g i t s = 4)

# For native bibliography of R packages

w r i t e b i b ( sub ( ”∧ . ∗/” , ”” , grep ( ”∧/” , searchpaths ( ) , va lue=TRUE) ) ,

f i l e=”mydoc.bib” )

R Codes: Data Management

#Data input and preparation

rm( l i s t=l s ( ) )

setwd ( ”∼/Dropbox/BiosGradPgm/ Thes i s In f o /PreparatoryWork” )

load ( ” uche braindata.RData ” ) #load main datasets brain.daily and uche.oneobs

data ← b r a i n . d a i l y #calls data into memory
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oneobs ← uche.oneobs #calls data into memory

dat ← merge ( data , oneobs , by=c ( ” id ” ) ) # merge both datasets by id var

dat1 ← dat [ with ( dat , s tudy .date ≤ death .date + 1) , ] # the makes certain that we capture

the health state before death in addition to discharge

dat2 ← dat [ with ( dat , s tudy .date ≤ ho spd i s . da t e + 1) , ] # this makes certain that we

capture the health state before discharge in addition to discharge itself.

dat3 ← rbind ( dat1 , dat2 )

dat3 $ s t a t e s ← a s . f a c t o r ( dat3 $ s ta tu s . t oday . imp )

dat4 ← dat3 [ ! dat3 $ s ta tu s . t oday . imp %in% c ( ”Withdrawn” ) , ] # this eliminates the few

subjects that withdrew from the study.

dat5 ← dat4 [ ! i s . n a ( dat4 $ s t a t e s ) , ] # a clean dataset

dat5 $ s t a t e s ← a s . i n t e g e r ( dat5 $ s t a t e s )

v ← c ( ” id ” , ” i q c o d e . s c o r e . e ” , ” study.day ” , ” s t a t e s ” , ” s ta tu s . t oday . imp ” , ” sofa.mod ” , ”

apache .aps ” , ” s o f a ” , ”num.apache” , ” c h a r l s o n . s c o r e ” , ” sex .pp ” , ” a g e . e n r o l l ” , ”

mean .ha l . i cu ” , ” mean.prop. icu ” , ” cum. s ev s eps i s ” , ” mean.benz . i cu ” , ” mean.op.new. icu ” , ”

mean.dex. icu ” , ” cum.onstat in ” , ” c u m . o f f s t a t i n ” , ” cum.hypox ic .de l ” , ” s t r o k e . r i s k ” )

icuDat ← dat5 ← dat5 [ , v ] # subsetting

save ( icuDat , f i l e = ” icuDat.RData” ) # saving data for future direct use etc.
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