
REGULATION OF THE TRP CALCIUM CHANNEL BY EYE-PKC IN DROSOPHILA 

 

By 

Daniela Catalina Popescu 

 

Dissertation 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of 

 

DOCTOR OF PHILOSOPHY 

in 

Pharmacology 

 

December, 2006 

Nashville, Tennessee 

 

 

Approved:                                                                                       Date: 

Bih-Hwa Shieh, Ph.D.                                                                     08/03/06                          

Brian E. Wadzinski, Ph.D.                                                               08/03/06 

Louis J. DeFelice, Ph.D.                                                                  08/03/06 

David L. Hachey, Ph.D.                                                                      08/03/06 

John H. Exton, M.D., Ph.D.                                                             08/03/06 

 
 

 



 ii

 

 

 

 

 

To my parents, Ioana and Ioan, for their infinite love and support. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iii

ACKNOWLEDGMENTS 
 
 
 
 First, I would like to thank my mentor, Bih-Hwa Shieh. Some people initially 

questioned my decision to join her lab because she had developed a reputation of being 

tough, however, I would not have had it any other way. Through insightful instruction, 

being always available for discussion, she has taught me almost all that I know. I 

consider it a privilege to have learned from her. 

 I also thank my thesis committee, Brian Wadzinski, Louis DeFelice, Heidi 

Hamm, John Exton, and David Hachey. Brian served as the Chair of my committee, 

helping to guide me every step of the way, through his detailed and well-written after-

committee meeting letters. Lou also contributed to my development as a scientist, 

through useful discussions at the beginning of my journey as a graduate student.  

There is a person that contributed in a special way to this project: I thank Amy 

Ham for running the mass spectrometer samples and interpreting the mass spectrometry 

data.      

There are past and present members of the Bih-Hwa Shieh laboratory that I want 

to thank. I do need to first acknowledge Ning Wang for the electroretinogram recording 

set-up, for teaching me how to perform electroretinogram recordings, for collecting the 

electrophysiology data for the last transgenic fly, trpS884A, for making my days in the lab 

more enjoyable. I also thank Lisan Parker for our conversations, and simply for looking 

after me, even from the distance. I thank Mingya Liu and Li Peng for their technical 

assistance and incredible culinary skills, and Qingxia Chen for preparing the fly food.   

 I do not think I could have endured the last years if I had not had several great 

friends: Simona Codreanu, Joy Purdy (now Marlo) and Jamie McConnell. Our 



 iv

conversations made my days a true joy. I also thank Joy for proofreading almost 

everything that I wrote. 

 Finally, I thank my family for their invaluable love and support: my daughter 

Susanna, my husband, Andrei, my parents Ioana and Ioan, my brother, Catalin, my sister 

and brother-in law, Vali and Vlad.    

  

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 v

TABLE OF CONTENTS 
 
 
 
                                                                                                                                       Page 
 
ACKNOWLEDGEMENTS………………………………………………………………iii 
 
LIST OF TABLES……………………………………………………………………....viii 
 
LIST OF FIGURES…………………………………………………………………….…ix 
 
LIST OF ABBREVIATIONS………………………………………………………….....xi 
 

     Chapter 
 
I.  INTRODUCTION…….………………………………………………………………..1 

 
Visual transduction ...……………………………………………………………...1 
Vertebrates visual signaling…………………………………..………...………....3 
Drosophila visual signaling.……………………………………...…..……....…...4  
Why Drosophila? ………………………………………..………………………..4 
The visual system of Drosophila ……………….....………………………….…...7                    
Major components of Drosophila visual signaling………………….…….……….8 

Rhodopsin………………………………………………………………….8 
Gq……………………………………………………………………........10 
NORPA…………………………………………………………………..11 
The TRP Ca2+ channel……………………………………………...……12 
INAD…………………………………………………………………….15 
Eye-PKC..………………………………………………….……….….…...16 

Regulation of Drosophila visual transduction………..…...…………….………......17 
Ca2+……………………………………………….…………...…...…….…18 
The GTP-ase activity of NORPA………………..………….….……………...19 
Phosphorylation of key protein players………...…………...………...............19 
            Rhodopsin and Arrestins………….………….………………….....20 
            INAD and the TRP channel………………………….……………..…. 21 

Diversity of TRP channel regulation by phosphorylation………….……….........23 
The role of macromolecular complexes in attaining PKC substrate specificity....26 
Summary………………………………………………………………………….31 
Specific Aims………………………………………………………………………. 31 

 
II. SCAFFOLDING PROTEIN INAD REGULATES DEACTIVATION OF VISION  
BY PROMOTING PHOSPHORYLATION OF TRP BY EYE-PKC IN DROSOPHILA 
 

Introduction……………………………………………………..………………. 32 
Materials and Methods……………………………………………..…………….33 

Preparation of fly head extracts…………………………………...….…...33 
In vitro complex-dependent kinase assay …………………………….….34 



 vi

LC-MS analysis……….……………………………………………….…34 
P-element-mediated germ-line transformation ……………….……….…36 
Electroretinogram recordings …………………………………………....36 
Statistical Analysis…………………………………………….…………36 

Results………………………………………………............................................37              
The C-terminal tail of TRP contains PKC phosphorylation sites ……….37 
Phosphorylation of TRP906-1275 by eye-PKC is dependent on INAD 
in vitro……………………………………………………………………39 
TRP is phosphorylated at Ser982 in vitro ………………………....………41 

      TRP is phosphorylated in vivo at Ser982 by eye-PKC……………..………44 
      trpS982A displays slow deactivation of the visual response………………..46 

Discussion………..………………………………………………….…….….…...50 
 
 

III. INVESTIGATION OF OTHER POTENTIAL EYE-PKC PHOSPHORYLATION 
SITES IN TRP 
 

Introduction………………………………………………………..……………...57 
Materials and Methods………………………..………………………………….59 

 Generation of GST-TRP fusion peptides…..………..……………....…...59 
 In vitro kinase assay ……………………………………….……….….…...61 
 LC-MS analysis…………………………………………………..………61 
 Fly stocks………………………………………………………………...62 
 P-element-mediated Germ-line Transformation …….…………………..62 

                         Western blot analysis……………………………………………...….….62             
                         Electroretinogram recordings ………………………………………...…62 

Results………………………………………………………...…………….…….63 
 Ser884 of TRP is phosphorylated in vitro by PKCα.………………….…..63 
 Is Ser884 of TRP phosphorylated by eye-PKC?...................................…..64 
 trpS884A expressing wild-type level of TRP displays normal kinetics 

                         by ERG recordings……….………………...............................................67 
Discussion…………………………………………………………………….…..69 
Summary and Future directions………………...……………………..……….….72 

               
IV. EYE-PKC IS PHOSPHORYLATED IN VIVO AT THR671 

                     
Introduction…………………………………………………….…….….…............73 
Materials and Methods……………………………………...…………………....74 

 LC-MS analysis…………………….…………………….…….….……...74 
 Expression of GST-fusion proteins in bacteria…………….…….….........75 
 Expression of eye-PKC in insect cells...…………………………….........75 
 Purification of 6xHis eye-PKC…………………………………………..76 
 Peptide phosphorylation…………………………………………….…......76 
 Pull-down assay………………………………………………….…….....76 
In vitro kinase assay…………………………………………….…..………77 
Western blot analysis……………………………………………..………..77 

Results…………………………………………………………………………..…80 
 Eye-PKC is phosphorylated in vivo at Thr671………….………...…..……80 



 vii

 Expression of eye-PKC in Sf9 cells...…………………………...…….…81 
Discussion……………………………………………………………….…….….84 
Summary and Future directions………………….……...……………….………87 

 
V.  SUMMARY AND FUTURE DIRECTIONS…………………………………..…….91 
 

 BIBLIOGRAPHY……………………………………………………….……………….94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 viii

LIST OF TABLES 

 

Table                                                                                                                            Page 

1. TRP channels known to undergo phosphorylation………………………………..27 

2. PKC mediates the regulation of various ion channels……………………………..30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ix

LIST OF FIGURES 

 

      Figure                                                                                                                       Page 

1. Part of the electromagnetic spectrum……………………………………………..2 

2. Molecular basis of visual signaling…………………………………….…………5 

3. The compound eye of Drosophila………………………………………………...9 

4. Drosophila TRP ion channel is the founding member of the TRP 
              channel superfamily………………………………………………………...14 
 
5. The C-terminal sequence of TRP is phosphorylated by recombinant 
      PKCα…………………………………………………………………………….38 
 
6. TRP is phosphorylated in vitro by eye-PKC in a complex-dependent manner….40 

7. TRP906-1275 is phosphorylated in vitro by eye-PKC……………………………...42 

8. Mapping the PKC phosphorylation site in TRP906-1275 ………………………….43 

9. TRP is phosphorylated in vivo at Ser982 as revealed by LC-MS analysis………..45 

10.  Biochemical and electrophysiological characterization of transgenic flies 
                lacking the phosphorylation site at Ser982…………………...…………….47 

11. A model of the TRP regulation by eye-PKC-mediated phosphorylation 
                at Ser982 …………………………………………………………………...53 

12. The peptide containing Ser884 is phosphorylated in vitro by recombinant 
                 PKCα..........................................................................................................65  

13. Ser884 in TRP is phosphorylated in vitro by PKCα……………………………....66 

14. trpS884A expressing wild-type level of TRP displays normal response 
                 to light stimulation………………………………………………………..68 

15. Eye-PKC is phosphorylated in vivo at Thr671 as revealed by LC-MS analysis…..78 

16. Generation of recombinant eye-PKC……………………………………….……82 

      17. Recombinant eye-PKC does not phosphorylate a highly specific PKC       
                       substrate……………………………………………………………….….83 
 
      18. Recombinant eye-PKC is catalytically competent……………………………….85 



 x

19. Sequence alignment of catalytic domains of various PKCs………………………89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xi

LIST OF ABBREVIATIONS 

Arr = arrestin 

CaMK = Ca2+/ calmodulin-dependent kinase  

CID = collision induced dissociation 

DAG = diacylglycerol 

ERG = electroretinogram 

GPCR = G-protein coupled receptor  

GST = glutathione S-transferase 

Gt = transducin 

hINADL = human INAD-like 

inaC =  inactivation-no-afterpotential C 

INAD = inactivation-no-afterpotential D  

IP3 = inositol trisphosphate 

LC-MS = liquid chromatography-mass spectrometry 

MALDI-TOF = matrix-assisted laser desorption ionization time-of-flight 

NHERF = Na+/ H+ exchange regulatory factor 

NINAA = neither inactivation nor afterpotential A 

NINAC = neither inactivation nor afterpotential C 

NORPA = no-receptor-potential A 

PDK-1 = phosphoinositide-dependent kinase-1 

PDZ = Postsynaptic density 95; Drosophila Discs large; and Zonula occludens 1  

PIP2 = phophatidylinositol-4, 5-bisphosphate 

PKC =  protein kinase C 

PLC = phospholipase C 



 xii

pRGCs = photosensitive retinal ganglion cells 

PUFAs = polyunsaturated fatty acids  

RACK = receptor for activated C-kinase 

RICK = receptor for inactivated C-kinase 

S.D. = standard deviation 

S.E.M. = standard error of the mean 

Sf = Spodoptera frugiperda   

SOC = store-operated channel 

TRP = transient receptor potential 

TRPL = TRP-like  

WB = Western blotting 

 wt = wild-type 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER I 
 
 

INTRODUCTION 
 
 

Visual transduction 
 

Living on Earth can be a challenge for most creatures, and therefore, organisms 

endowed by evolution with advanced senses are best able to survive. To survive, an 

organism needs to accomplish three goals: eat, mate, and protect itself from predators and 

disease. In a world of light-dark cycles, the sense that provides the highest flux of 

information to the brain in the most advanced organisms is vision. Light represents 

energy in the form of electric and magnetic fields, which is converted to impulses in the 

brain. There are different types of light, which are classified according to wavelength 

(Figure 1). Humans are able to perceive light in wavelengths ranging from 400 nm (seen 

as violet) to 700 nm (seen as red). Birds and insects can see ultraviolet (UV) light that 

ranges from 200 nm to 400 nm, an advantage, since many seeds, fruits, flowers and even 

bird’s plumage contrast with their background better in UV than visible light, improving 

the chance of finding food and mating. In addition, there are reptiles that can see infrared 

light, which helps them identify warm-blooded prey at night. The ability to see different 

types of light relies on the existence of different photoreceptor cells. Photoreceptor cells 

are highly specialized neurons that absorb a unit of light (a photon) and then, relay this 

information to other neurons through neurotransmitters, which trigger a change in their 

membrane potential. The process by which a light stimulus generates an electrical 

response is called visual transduction or phototransduction. Visual transduction is 

initiated by activation of light-sensing receptors, which are composed of seven 

transmembrane proteins called opsins that are coupled to a derivative of vitamin A,

 xiii
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Figure 1. Part of the electromagnetic spectrum. The human eye can perceive 
light in the visible domain with wavelengths between 400-700 nm, and maximum 
absorption at 510 nm, a wavelength that corresponds to the color green. Birds and insects 
can see ultraviolet light (wavelength < 400 nm), whereas reptiles can see infrared light 
(wavelength > 700 nm).  
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retinal, which is the light absorbing pigment molecule. Light leads to isomerization of the 

retinal chromophore, which determines the conversion of the light-sensing receptor from 

its inactive to its activated form. Activated receptors trigger a cascade of intracellular 

signaling events, which eventually leads to generation of a nerve impulse that is 

transmitted to the brain by the optic nerve.  

 

Vertebrate visual signaling 

The vertebrate retina contains three types of photoreceptor cells: rods, cones and 

photosensitive retinal ganglion cells (pRGCs). Rods are responsible for night vision, 

whereas cones are responsible for daylight vision and color perception. pRGCs represent 

a small population (less than 3%) of neurons within the RGC layer of the retina that 

detects the environmental brightness (irradiance) (1). Rhodopsin is the light-sensing 

receptor in rods, photopsins are the light-sensing receptors in cones, and melanopsin (2) 

has been recently shown to be the receptor that senses light in pRGCs (3). 

 In rods and cones, light triggers the activation of rhodopsin or photopsin, from its 

inactive to its activated form, which in turn activates a heterotrimeric G-protein, 

transducin (Gt) (Figure 2A). The GTP-bound form of the α subunit of Gt stimulates a 

cGMP-phosphodiesterase that hydrolyzes cGMP to GMP, which leads to closure of 

cGMP-gated Na+ and Ca2+ channels in the plasma membrane (4). Because these cations 

can no longer enter, the net result is hyperpolarization of photoreceptors in response to 

light (Figure 2A).  

It has been recently shown that, unlike the visual signaling cascade of rods and 

cones, pRGCs utilize a pathway that is closely related to the invertebrate visual signaling 
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cascade. Activation of vertebrate melanopsin by light appears to trigger a Drosophila-like 

signaling cascade, involving Gq, phospholipase C and protein kinase C (5) (see below), 

which leads to depolarization of the photoreceptor cell (6-8). 

 

Drosophila visual signaling 

Drosophila visual signaling is a G-protein coupled signaling pathway initiated by 

activated rhodopsin, metarhodopsin, which activates a heterotrimeric Gq protein. 

Specifically, Gqα stimulates a phospholipase C β (PLCβ) encoded by the fly no-receptor-

potential A (norpA) locus (9) (Figure 2B). NORPA hydrolyzes phophatidylinositol-4, 5-

bisphosphate (PIP2) to generate inositol 1, 4, 5-trisphosphate (IP3) and 1, 2-diacylglycerol 

(DAG) leading to opening of the transient receptor potential (TRP) and TRP-like (TRPL) 

cation channels, which results in depolarization of the photoreceptor cell (10).  

 

Why Drosophila? 

Drosophila melanogaster (Figure 3A) is a small organism that is easily reared in the 

laboratory, and has a short life cycle of about two weeks. Drosophila has proven to be an 

attractive system for understanding the rules of genetic inheritance as well as the 

molecular mechanisms underlying various processes, such as circadian rhythm and 

development. Forward genetic analysis using ethyl methane sulfonate-induced mutations 

has been used classically for identification of various mutants based on their defective 

phenotypes (11). Furthermore, since the Drosophila genome is small (less than a tenth of 

that of humans and mice), and has been entirely sequenced, mutant genes can now be 

readily identified. P-element-mediated germline transformation is a tool unique to Droso-      
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Figure 2. Molecular basis of visual signaling. (A) Vertebrate rods and cones 
hyperpolarize in response to light due to the closure of cGMP-gated cation channels. (B) 
Vertebrate pRGCs utilize a Drosophila-like visual signaling pathway. Shown is a cartoon 
depicting Drosophila visual signaling, in which light triggers sequential cellular events 
that lead to opening of TRP and TRPL cation channels, and subsequently, depolarization 
of the photoreceptor cell. See text for details. 
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phila that is used for incorporating genes of interest in the genome to generate transgenic 

flies (12). Transgenic flies can be used to characterize the function of a gene product in 

its native environment, using cellular, biochemical and electrophysiological analyses. 

Studies performed in flies have provided useful information for understanding the 

structure and development of the visual system.  Moreover, the pathogenesis of retinitis 

pigmentosa, a hereditary human disease characterized by degeneration of photoreceptor 

cells in the retina, has been better understood following studies performed in flies. The 

first genetic defect associated with human recessive retinitis pigmentosa was discovered 

to be similar to a mutation in the Drosophila rhodopsin gene: this mutation results in 

premature termination of the opsin protein at the third cytoplasmic loop, and causes 

recessive retinal degeneration in flies (12).  

Drosophila was also the first organism in which a TRP channel was discovered. 

trp flies showed behavioral deficits at high levels of ambient light (13). Further molecular 

and electrophysiological analyses revealed that Drosophila TRP is a Ca2+ channel 

essential for fly vision. Many vertebrate and invertebrate TRP channels have been 

identified, and they constitute the TRP channel superfamily. Some vertebrate TRPs 

mediate responses to nerve growth factor, pheromones, temperature, mechanical stimuli, 

osmolarity, vasodilators, and metabolic stress (14). In addition, pathophysiological 

conditions appear to involve TRP channels. Among these are hypomagnesemia and 

hypocalcemia that result from a defective TRPM6 channel, autosomal dominant 

polycystic kidney disease caused by mutations in TRPP2 or TRPP1, and mucolipidosis 

caused by mutations in TRPML1 (15). All of these TRP proteins have related 

counterparts in Drosophila. Because basic cellular mechanisms and proteins are 
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conserved across species, understanding the regulation of these TRP channels in 

Drosophila can give us insight into similar regulation mechanisms present in humans.  

Recently, another type of photoreceptor cell has been discovered in human (3). 

This class of photoreceptor cell, pRGC, is localized within the RGC layer of the retina, 

and detects the environmental brightness (irradiance) (5). Interestingly, pRGC utilizes a 

signaling pathway similar to that of Drosophila visual signaling, in which light leads to 

depolarization of the photoreceptor cell, and not to the hyperpolarization seen in 

vertebrate rods and cones. The signaling pathway in pRGCs includes Gq, PLC and PKC; 

however, the details concerning phototransduction mechanism in pRGCs remain elusive. 

Therefore, elucidating Drosophila visual signaling can provide a better understanding of 

visual signaling in pRGCs.  

 
 

The visual system of Drosophila 
 

Drosophila, as with any dipteran insect, has compound eyes, each of which 

contains approximately 800 unit eyes or ommatidia (Figure 3B) (10). Each ommatidium 

is composed of eight photoreceptor neurons (R1-R8) and 12 accessory cells. 

Photoreceptor neurons have a particular spatial distribution within each ommatidium, 

with R1-R6 occupying the peripheral region (outer photoreceptors), and R7-R8 residing 

in the central region of the ommatidium (central photoreceptors) (Figure 3C). Each 

photoreceptor cell possesses specialized organelles called rhabdomeres. A rhabdomere 

contains approximately 60,000 microvilli, which are important for maximizing light 

absorption (Figure 3D). The rhabdomere of a photoreceptor neuron is important for 

visual transduction because it contains the proteins involved in visual signaling.   

 7



Major components of Drosophila visual signaling 
 
 

Rhodopsin 
 

The sensitivity of the photoreceptor cell to light of a particular wavelength is determined 

by the type of rhodopsin it contains. Rhodopsin is a G-protein coupled receptor (GPCR) 

which consists of a seven-transmembrane protein called opsin that is covalently attached 

at its seventh transmembrane helix to the vitamin A derivative called retinal, or 3-

hydroxy-retinal. Light triggers the 11-cis to all-trans photoisomerization of retinal, 

resulting in conversion of rhodopsin to its activated form, metarhodopsin. In Drosophila, 

there are six types of rhodopsin with distinctive spectral sensitivities. Rhodopsin 1 is the 

major rhodopsin in the retina, present in the six outer photoreceptor neurons, R1-R6, 

which are sensitive to blue light (16). Rhodopsin 2 is present in the ocelli, which are 

visual organs located on the top of the head, important for visual guidance of the fly. 

Rhodopsin 3 is expressed in R7 and R8, conferring sensitivity to UV-light, whereas 

rhodopsin 4 is another UV-sensitive rhodopsin present in R7 neurons. Rhodopsins 5 and 

6 are present within R8, conferring sensitivity of these neurons to blue or green light, 

respectively. There are three possible combinations of R7/R8 in the retina that permit 

different spectral sensitivities (17). 70% of total R7/R8 combinations is composed of 

rhodopsin 4 in R7 / rhodopsin 6 in R8,  whereas 30% consists of rhodopsin 3 in R7 / 

rhodopsin 5 in R8 (10). These two combinations allow color discrimination over a broad 

range of light wavelengths. Another combination (rhodopsin 3 in R7/ rhodopsin 3 in R8), 

present in a row of ommatidia in the most dorsal part of the eye (the dorsal rim area), 

detects polarized eye and is thus important for the navigation of the fly (17). 
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Figure 3. The compound eye of Drosophila. (A) Drosophila melanogaster, 
lateral view (image from http://en.wikipedia.org/wiki/Drosophila_melanogaster). (B) 
Scanning electron micrograph of the compound eye. (C) The adult ommatidia.  CO, 
corneal lens cells; psC, pseudocone; PC, pigment cells; CC, cone cells; R, photoreceptor 
cell.  Transverse section of proximal (lower) and distal (upper) regions of the ommatidia 
are shown on the right. Adapted from Montell, 1999. (D) The photoreceptive membrane 
of a photoreceptor cell. Sections through a rhabdomere are shown in both the upper panel 
and the bottom elecron micrograph. Each rhabdomere contains approximately 60,000 
microvilli. SMC, submicrovillar cisternae, are presumed to be smooth endoplasmic 
reticulum Ca2+ stores. Adapted from Hardie and Raghu, 2001. 
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As with all GPCRs, the opsin of the major rhodopsin (rhodopsin 1) translocates to 

the rough endoplasmic reticulum (ER), following synthesis on membrane bound 

ribosomes, where it undergoes proper folding and assembly. Two proteins, NINAA and 

calnexin, are essential for the posttranslational processing of opsin. NINAA is a 

cyclophilin homolog (18) that is important for the export of opsin from the ER, since 

mutations in ninaA lead to a dramatic retention of opsin in the ER cisternae (19). In 

addition, calnexin is also critical for biosynthesis of opsin, as mutations in calnexin result 

in defects in opsin maturation, and age-dependent retinal degeneration (20).  

The newly synthesized opsin incorporates the chromophore retinal (21), and the 

resulted  rhodopsin molecules are transported through the secretory pathway to the 

microvilli of rhabdomeres (Figure 3D), where phototransduction takes place.  

  

Gq 

In the fly eye, light triggers the conversion of rhodopsin to metarhodopsin, which 

in turn, stimulates the heterotrimeric Gq protein. Following GDP-GTP exchange, GTP-

bound Gαq is released from Gβγ and transmits the activation signal to PLCβ (NORPA).  

Gαq acts as a shuttle between metarhodopsin and NORPA that is associated with the 

INAD signaling complex (22). The essential role of  Gαq in phototransduction was 

revealed in flies lacking Gαq, which exhibited a severe loss of light responsiveness (23).  

Gαq has been shown to undergo light-dependent translocation from rhabdomeres to the 

photoreceptor cell body (24). This process appears to be an efficient way of controlling 

the number of Gαq molecules available for signaling, and thus may play a role in light-

adaptation (24). 
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Gαq is two-fold less abundant than Gβ  in photoreceptor cells, and the excess of 

Gβ has been shown to be important for preventing spontaneous activity of photoreceptor 

cells in the dark: mutant flies with lower levels of Gβ displayed a dramatic increase in 

spontaneous activity of photoreceptor cells in the absence of light (25).  

 

NORPA 

NORPA is a PLCβ essential for Drosophila visual signaling (9). At its N-

terminus, NORPA contains a membrane/phospholipid-binding pleckstrin homology (PH) 

domain and an EF-hand calcium-binding domain. These domains are followed by the 

catalytic domain (X and Y), which is responsible for the PLC activity. At its C-terminus, 

NORPA has a C2 domain which is involved in Ca2+ binding, and a Gq-binding domain 

important for its interaction with Gq. In addition, NORPA contains a PDZ-interacting 

domain at its C-terminus, important for its interaction with the scaffolding protein 

inactivation-no-afterpotential D (INAD). 

  As mentioned above, activated NORPA catalyzes the hydrolysis of PIP2 to 

generate IP3 and DAG, which leads to opening of the TRP and TRPL cation channels, 

and subsequent depolarization of the photoreceptor cell (26, 27). The key second 

messenger that activates the TRP channel is generated upon NORPA stimulation, and is 

thought to be either DAG or its lipid metabolites (28, 29), whereas IP3 does not appear to 

play a role in TRP activation (10, 30). DAG may have a dual function, since it also 

activates the eye-specific conventional PKC (eye-PKC) that is vital for deactivation of 

the light response (31, 32). 
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NORPA shares greatest sequence identity (49%) with mammalian PLCβ4.  PLCβ4 

is expressed in mammalian retina, cerebellum and brain regions that are involved in the 

visual pathway, including the lateral geniculate nucleus and superior colliculus (33). 

Mice lacking PLCβ4 have impaired visual processing abilities, as revealed by behavior 

tests, and display abnormal electroretinogram recordings. However, isolated rod cell 

recordings show no apparent defect in rod signaling pathway, suggesting that PLCβ4 is 

important for visual signaling processing, and not for the initial step of  phototransduction 

(33). Whether PLCβ4 is expressed in pRGCs of retina for detecting the environmental 

brightness remains to be determined by future studies.  

 

The TRP Ca2+ channel 

 The Drosophila TRP Ca2+ channel plays a crucial role in the visual signaling 

pathway. Originally, the name transient receptor potential (trp) described a mutant that 

was unable to maintain a prolonged electrophysiological response to a sustained light 

stimulus (13). This phenotype could be mimicked by the application of a non-specific 

Ca2+ blocker, La3+ (13). The trp gene was cloned and shown to encode an integral 

membrane protein (34-36). TRP is believed to be a homotetramer with each subunit 

composed of six transmembrane domains, and a loop region between the fifth and sixth 

transmembrane domains that forms the channel pore (Figure 4A) (37). At its N-terminus 

there are three or four ankyrin repeats, each consisting of a 33 amino acid residue motif. 

Ankyrin repeats may mediate binding of membrane proteins to the cytoskeleton and may 

also play a role in the channel subunit interactions. There are several sequences motifs at 

the C-terminus of TRP that may be critical for its regulation (Figure 4A). Immediately 
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downstream of the sixth transmembrane domain, there is a stretch of 25 amino acids 

referred to as the TRP domain, which contains six highly conserved amino acids 

(EWKFAR) called the TRP box (Figure 4A). The TRP box has been suggested to be 

important for PIP2 binding (38). TRP also contains a putative calmodulin binding domain 

between residues 682 and 977 (34, 39). Downstream of the calmodulin binding motif, 

there is a PEST region (Figure 4A) that is thought to be important for degradation of TRP 

by the Ca2+-dependent protease calpain (38); however, the exact role of the PEST 

sequence in TRP is not known because TRP has a very slow turnover rate in vivo (40). 

Near the PEST region there is a Pro-rich region containing 27 Lys-Pro repeats that may 

influence the conformation of the pore domain (41). Another stretch of eight amino acids 

(DKDKKPG/AD) in the C-terminus, which repeats nine times, is likely to mediate 

protein-protein interactions (38). The extreme C-terminus of TRP contains a PDZ-

binding domain that is involved in its interaction with INAD (42). In Drosophila, the 

TRP Ca2+ channel is critical for fly vision and is responsible for more than 90% of 

photoreceptor depolarization. TRP is 10-fold more abundant than TRPL channels in 

photoreceptor cells, and does not undergo light-dependent translocation as does TRPL 

(43). The light-dependent translocation of TRPL from rhabdomeres to the cell body is 

important for light adaptation (44). How light leads to activation of TRP is not 

completely understood. Originally, TRP was thought to be a store-operated channel 

(SOC), opened by the depletion of intracellular Ca2+ stores, via activation of the IP3 

receptor. However, null mutations in the sole IP3 receptor gene of Drosophila have no 

effect on visual signaling (30). Recent reports propose that DAG or other lipid mediators, 

polyunsaturated fatty acids (PUFAs) may gate the TRP channel in Drosophila. 
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Figure 4.  Drosophila TRP Ca2+ channel is the founding member of the TRP channel 
superfamily. (A) Schematic diagrams showing Drosophila TRP with distribution of its 
domains (top, see description in text). TRP consists of six transmembrane domains (S1-
6), with intracellular N- and C-terminal sequences. Between the fifth and sixth 
transmembrane domains a loop region contributes to formation of the pore of the channel 
(bottom). It is thought that the Drosophila TRP channel is a homotetramer, similar to the 
voltage-gated K+ channel. TRP d., TRP domain; CaM b.d., calmodulin binding domain; 
Pr, Pro rich region; PDZ b.d., PDZ binding domain. (B) Table showing the number of 
TRP channels found in various species. In humans, more than 25 TRP channels have 
been discovered to date (from Montell, 2005). (C) Phylogenetic tree of TRP channels. 
Drosophila TRP is a member of the TRPC family, closely related to TRPC1, 4 and 5 
(adapted from Montell, 2005). 
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Supporting evidence includes the observation that elevated DAG concentrations lead to   

constitutive activation of TRP in rdgA flies that lack DAG kinase (28). In addition, direct 

application of PUFAs reversibly activates the TRP channel in Drosophila (29). The 

identity of the secondary messenger that gates the TRP channel remains under further 

investigation. 

   

INAD 

Although the mechanism of TRP opening is not completely understood, TRP is 

known to associate with INAD, a scaffolding protein that tethers several components 

necessary for the Drosophila visual signaling. It is well established that three proteins, 

including NORPA, the TRP channel and an eye-specific isoform of protein kinase C 

(eye-PKC), are constitutively anchored to INAD. INAD imposes appropriate localization 

of these proteins within the microvilli of rhabdomeres, where visual signaling takes place, 

thereby assuring the accuracy and speed of phototransduction. INAD mediates these 

protein-protein interactions through its five PDZ domains. A PDZ domain is a protein-

protein interaction domain that is composed of around 90 amino acids with a conserved 

Gly-Leu-Gly-Phe motif. This motif typically binds to three or four C-terminal residues of 

a target protein. NORPA interacts with INAD via PDZ 1 (120), PDZ 3, 4, 5 (45), and 

PDZ 5 (120), whereas TRP binds to INAD via PDZ 3 (42) and PDZ 4 (135).  Eye-PKC 

interacts with PDZ 2 in INAD (54, 136).  

  Tsunoda et al. (46) demonstrated that INAD is responsible for the protein stability 

of NORPA, eye-PKC and TRP: in inaD1 flies lacking INAD, the levels of these proteins 

are reduced drastically. Interestingly, eye-PKC and NORPA require INAD for their 
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correct targeting to rhabdomeres (40), whereas TRP requires INAD not for targeting, but 

for its retention within rhabdomeres. In InaDp215, a mutant fly in which INAD does not 

interact with TRP (42), TRP undergoes mislocalization and degradation over time (42, 

47). In addition to protein stability, INAD also confers proper subcellular localization of 

eye-PKC, NORPA and TRP (40). Co-localization of these signaling proteins assures 

rapid activation and deactivation. It has been proposed that INAD complexes are 

connected to each other via PDZ-PDZ interactions (PDZ 3 or PDZ 4) (48), and also that 

NORPA within these complexes may form homodimers through its C-terminal domain 

(49). These data suggest the existence of a ‘signalplex’, a higher order signaling network 

that assures the stoichiometry, speed and specificity of visual signaling (48). INAD has 

also been reported to bind rhodopsin, calmodulin, TRPL and a nonconventional myosin, 

neither-inactivation-no-afterpotential C (NINAC) (39, 48, 50).  

 A human INAD homologue (hINADL) and two N-terminally truncated isoforms 

(hINADLΔ853 and hINADLΔ304) have been cloned and reported to be expressed in the 

cerebellum (51), yet their retinal expression has not been investigated. The exploration of 

human INAD expression within RGCs will be of interest, since these vertebrate 

photoreceptor cells utilize a Drosophila-like visual signaling pathway.  

 

Eye-PKC 

 Once the light stimulus ceases, deactivation of the visual response, and hence 

inactivation of TRP and TRPL channels, occurs in less than 20 ms (52). Drosophila eye-

PKC is a conventional PKC isoform that is expressed only in the eye. Eye-PKC is critical 
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for deactivation of visual response as flies lacking eye-PKC (inaCp209) exhibit abnormal 

termination of the light response and defects in light adaptation (53). 

By immunofluorescence, eye-PKC has been shown to co-localize with INAD and 

TRP in rhabdomeres (46, 47, 53). Using yeast two-hybrid and ligand overlay assays, 

Adamski et al. (1998)  demonstrated that eye-PKC interacts with the second PDZ domain 

of INAD (54). The in vivo function of eye-PKC depends upon its interaction with INAD, 

since flies lacking the PDZ-binding motif exhibit prolonged inactivation of the light 

response, similar to that of inaCp209 flies, which lack eye-PKC (54). To unveil the 

molecular details responsible for this abnormal phenotype, investigators started to look 

for substrates of eye-PKC within the INAD complex. Indeed, eye-PKC was shown to 

phosphorylate both TRP and INAD in Drosophila and Calliphora (55-57). INAD has 

been suggested to act as an adaptor protein for eye-PKC in a manner similar to the 

receptor for activated C kinase (RACK) (55). 

  

Regulation of Drosophila visual transduction 

Light initiates a cascade of intracellular events within the Drosophila eye that 

results in opening of TRP and TRPL channels, which results in an increase of Ca2+ 

concentration to about 1 mM in rhabdomeres (58). Subsequently, this massive increase in 

Ca2+ concentration leads to depolarization of the photoreceptor cell. It is well known that 

prolonged elevation of intracellular Ca2+ concentrations can lead to cell death. Therefore, 

levels of intracellular Ca2+ are regulated tightly within the photoreceptor cell, not only to 

maintain cellular homeostasis, but also to fine-tune signal transduction for which 

temporal resolution is critical. Ca2+ is removed from rhabdomeres via the Na+ / Ca2+ 
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exchanger or the diffusion to the cell body. Within the cell body of the photoreceptor cell, 

Ca2+ is removed from the cytosol by either a Ca2+-ATP-ase that helps sequestrating Ca2+ 

into the ER, or by Ca2+-binding proteins. It has been shown recently that calnexin, in 

addition to its role in rhodopsin maturation, is a Ca2+-binding protein that has a critical 

role in regulation of the Ca2+ concentration inside the photoreceptor cell (20). Calnexin is 

a transmembrane protein whose N-terminus resides within the ER lumen, whereas its C-

terminus is localized in the cytosol. Calnexin contains two Ca2+-binding sites. One of 

these Ca2+-binding sites is localized within the cytosolic C-terminus, and is thought to 

prevent Ca2+ toxicity and support photoreceptor cell survival (20) by buffering the high 

concentrations of  intracellular Ca2+. 

It has been shown previously that constitutive activation of TRP leads to retinal 

degeneration (59), possibly through a mechanism similar to that of neurodegenerative 

excitotoxicity (60). Thus, termination of the light response by shutting down TRP is vital 

not only for temporal resolution of the visual response but also for avoiding Ca2+ toxicity 

from uncontrolled TRP activity.  How the visual response is terminated is still under 

investigation; however, it is likely that it involves multiple mechanisms. Various cellular 

events appear to contribute to the inactivation of visual signaling, including increased 

intracellular Ca2+ concentrations, the GTP-ase activity of NORPA, and phosphorylation 

of key protein players. 

 

Ca2+ 

Ca2+ plays a crucial role in deactivation of the visual signaling (32, 61-63). 

Studies on isolated Drosophila photoreceptor cells, using fluorescent Ca2+-dyes and 
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“caged” Ca2+ have shown that deactivation of the light response depends on the 

concentration of extracellular Ca2+ (64). Following light stimulation, Ca2+ enters the 

photoreceptor cell primarily via the TRP channel, and generates localized intracellular 

Ca2+ transients that are about 1 mM (65). These Ca2+ transients are spatially restricted to 

rhabdomeres, where the transduction machinery resides. The organization in INAD 

complexes assures the high temporal resolution of phototransduction. However, how Ca2+ 

mediates the deactivation of the light response is not known. Rapid termination of the 

visual response may require Ca2+ to act on multiple target proteins via Ca2+-dependent 

enzymes such as Ca2+/calmodulin-dependent protein kinase (CaMK) or/and eye-PKC. 

 

The GTP-ase activity of NORPA 

Cook et al. (2000) investigated norpA mutants expressing low levels of PLCβ, 

and proposed that NORPA accelerates the rate of GTP hydrolysis in Gqα (66).  Thus, 

NORPA is suggested to have a dual role, as both an effector and a negative regulator of 

visual signaling. The mechanism of Gqα inactivation directed by the activation of 

NORPA by Gqα itself, may assure that Gqα-GTP remains in its activated state until it 

encounters a NORPA molecule, and that only that particular NORPA molecule will be 

activated, thereby contributing to maintenance of the stoichiometry of the cascade (66).   

 

Phosphorylation of key protein players 

Phosphorylation is one of the most common post-translational modifications that 

regulate signal transduction. One obvious advantage of phosphorylation is the 

reversibility of the reaction, which permits dynamic regulation of a protein’s activity. 
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This is accomplished by the complementary actions of kinases and phosphatases. In 

Drosophila, several proteins involved in phototransduction have been shown to undergo 

phosphorylation, such as rhodopsin, arrestins, INAD, and TRP.   

 

Rhodopsin and Arrestins 

It is well established that activated rhodopsin is phosphorylated at serine and 

threonine residues in a light-dependent manner by rhodopsin kinase (67). A recent study 

reported that G-protein coupled receptor kinase 1 is the rhodopsin kinase responsible for 

phosphorylation of the C-terminal sequence of rhodopsin (68). Phosphorylated  

rhodopsin interacts with arrestin (Arr), which quenches the activity of activated 

rhodopsin by impeding the direct coupling of rhodopsin and the G-protein (69). In 

Drosophila photoreceptors, there are two arrestins: Arr1 and Arr2 (also known as 

phosrestin 1). Arr1 (39 kDa) has a shorter C-terminus, and is seven-fold less abundant 

than Arr2, whereas Arr2 (49 kDa) has a long C-terminus, and is the most abundant Arr 

isoform in the fly eye (70). It appears that each Arr has a well-defined function inside the 

cell. Arr1 binds phosphorylated rhodopsin and mediates the light-induced endocytosis of 

phosphorylated rhodopsin, thereby attenuating the amplitude of the light response (70). In 

contrast, Arr2 binds to both unphosphorylated and phosphorylated activated rhodopsin 

molecules, and quenches their signaling. The fact that Arr2 can also bind to the 

unphosphorylated rhodopsin explains why transgenic flies expressing a modified 

rhodopsin that lacks phosphorylation sites at its C-terminus displayed an unaltered 

response to light (69). Further work is needed to clarify the mechanistic bases for the two 

distinct functions of arrestins. 
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 Drosophila arrestins also undergo light-dependent phosphorylation. The first 

indication of phosphorylation was the observation that these proteins together with an 80 

kDa protein, exhibited an anode-shifted migration in two-dimensional gel electrophoresis  

when isolated from light-treated flies (67). Interestingly, phosphorylation of the 80 kDa 

protein and Arr2 were rapidly reversible in the dark (within 5 minutes for the 80 kDa 

protein and 1 hour for Arr2) (67). Arr2 is known to be phosphorylated at Ser366 (71) by 

CaMK II (72). However, a modified Arr2 lacking this phosphorylation site is still able to 

bind rhodopsin, but it is incapable of releasing from the photoreceptor cell membrane 

once rhodopsin has been converted back to its inactive form (73), indicating that 

phosphorylation regulates the release of Arr2 from membranes. Flies expressing the 

modified Arr2 lacking the phosphorylation site at Ser366 displayed light-dependent retinal 

degeneration (73).   

 

INAD and TRP 

As mentioned above, an 80 kDa protein has been known to undergo light-

dependent phosphorylation (67). However, it was 15 years later when the 80 kDa protein 

was identified to be the inaD gene product, following analysis of tryptic mass fingerprints 

obtained by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) and 

Edman degradation (74). Based on the MALDI-TOF spectrum, the phosphorylated amino 

acids of INAD were tentatively assigned. Investigators have suggested that INAD may be 

the target of multiple kinases, since the putatively assigned phosphorylation sites 

included Ser, Thr and Tyr residues (74). 
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Evidences supporting eye-PKC phosphorylation of INAD and TRP come from the  

results of immunocomplex kinase assays (55). Experimentally, the INAD complex was 

immunoprecipitated from head extracts of wild-type or mutant flies lacking specific 

components of the visual signaling pathway, and subjected to in vitro kinase assay. The 

phosphorylation of both INAD and TRP was found to be dependent on co-purification of 

eye-PKC, since phosphorylation of INAD and TRP was not detected in INAD complexes 

from flies lacking eye-PKC. The same results were reported in Calliphora, in which the 

phosphorylation studies were employed using either intact photoreceptor cells followed 

by isolation of INAD or TRP by immunoprecipitation, or followed by immunocomplex 

kinase assays (56, 75).  
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Diversity of TRP channel regulation by phosphorylation 

 As mentioned before, TRP channels are expressed in many excitable and non-

excitable cells, and can be subdivided into seven subfamilies (TRPC, TRPV, TRPM, 

TRPN, TRPA, TRPP, and TRPML) based on amino acid sequence homology (Figures 

4B and C) (37).  

 The members of the “canonical” or “classical” TRPC subfamily are nonselective 

cation channels that are activated through PLC-coupled signaling pathways. For instance, 

TRPC1, TRPC2, TRPC4 and TRPC5 channels are SOCs that are activated by the release 

of Ca2+ from internal stores, whereas TRPC6 and TRPC7 are activated by DAG (76).  

 The TRPV subfamily comprises channels that are activated by vanilloid 

compounds such as capsaicin, which is found in hot chili pepper, heat and hypotonic 

changes. Moreover, TRPV5 and TRPV6 channels are important for vitamin D-stimulated 

Ca2+ uptake in the kidney and small intestine. However, how these two channels are 

activated is not known  (76). 

 The TRPM subfamily derives its name from the founding member, melastatin 

(TRPM1), a potent tumor suppressor. Three members of this subfamily, TRPM2, TRPM6 

and TRPM7, are unique among known ion channels because their C-terminal sequences 

contain protein kinase domains (37). The functional role of these protein kinase domains 

remains elusive. However, there is evidence that the protein kinase domain of TRPM7 

mediates the effect of adenosine 3',5'-monophosphate (cAMP) by increasing channel-

dependent current (76). TRPM8 is activated by cold and menthol. 

 The TRPN subfamily includes channels that are mechanically gated, whereas the 

TRPA subfamily contains ion channels that are either thermo- or mechano-sensitive. The 
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activation mechanism of TRPP and TRPML channels is not known, however, it is 

believed that TRPML may play a role in endosomal acidification and hearing, whereas 

TRPP may be involved in ovarian follicle maturation and differentiation (37). 

 Drosophila TRP shares the closest homology to the TRPC subfamily (14). There 

are five characteristics that TRPC channels have in common with Drosophila TRP 

including: 1) the predicted topology of six transmembrane domains with the typical pore 

region lying between the fifth and sixth domains, similar to that of the voltage-gated K+ 

channel, 2) the absence of charged residues in the fourth transmembrane domain that 

usually represent the voltage sensor of voltage-gated channels, 3) the presence of three to 

four ankyrin repeats in the N-terminus, 4) the presence of a proline-rich sequence in the 

C-terminus for potentially regulating the conformation of the channel pore (41), and 5) a 

highly conserved TRP domain. The TRP domain consists of 25 amino acids, and contains 

within it the TRP box, Glu-Trp-Lys-Phe-Ala-Arg. The TRP domain has been shown to be 

important for PIP2 binding and gating of TRPM8 and TRPV5 channels (37). In addition, 

the TRP domain has been reported to interact with regulatory proteins referred to as 

immunophilins. For example, FKBP12 binds to Drosophila TRP, TRPC3, TRPC6 and 

TRPC7. Immunophilin FKB59 binds to TRPL, whereas FKBP52 binds to TRPC1, 

TRPC4 and TRPC5 (77). The functional relevance of TRP-immunophilin interactions 

remains unknown (77).  In contrast, the scaffolding protein Homer has also been reported 

to bind the TRP domain of the TRPC1 channel. Homer is known to mediate the 

interaction between IP3R and TRPC1, which is vital for TRPC1 gating (78). 

 Mammalian TRP channels have been shown to be regulated by phosphorylation 

(Table 1). For example, PKC-dependent phosphorylation of TRPC1 has been reported to 

 24



activate the channel (79), but the phosphorylation site has not been identified. Moreover, 

PKC has been also shown to activate TRPM4 (80) and TRPV1 (81, 82), but the 

molecular details are still obscure. In contrast, phosphorylation of heterologously 

expressed TRPC3 at Ser712 by PKC inhibited channel activity in HEK 293 cells (83). 

Ser712 is located just downstream of the TRP domain, however, how phosphorylation 

affects the activity of TRPC3 remains unknown (84). Phosphorylation of TRPC5 at 

Thr972 by PKC has been suggested to contribute to desensitization of the channel, because 

PKC inhibitors or substitution of Thr972 to Ala, prevented desensitization of TRPC5 in 

HEK 293 cells (85). Thr972 of TRPC5 is present within the PDZ-interacting domain of 

TRPC5, and phosphorylation at this site may affect this protein-protein interaction and, 

consequently, the localization of the channel within the cell (85).  Phosphorylation of the 

TRPC6A isoform at Ser768 and the TRPC6B isoform at Ser714 by PKC inactivates these 

channels (86). In addition, PKC has been proposed to inactivate TRPC4 (87), TRPC7 

(88) and TRPM8 (89). Interestingly, TRP channels are subject to phosphorylation by 

other protein kinases including PKA, PKG, CaMK II and tyrosine kinases (see Table 1), 

which generally leads to activation of these channels. For example, TRPC3 has also been 

reported to be phosphorylated by PKG (90) and Src family tyrosine kinases (STKs) (91). 

Phosphorylation of TRPC4 at Tyr959 and Tyr972 by a member of the STK family, Fyn, led 

to activation of the channel (84). Moreover, tyrosine phosphorylation enhanced the 

association between TRPC4 and the scaffolding protein NHERF (Na+/ H+ exchange 

regulatory factor) that increases the membrane insertion of this channel and consequently, 

its activity (84). In addition, STKs (Fyn) phosphorylate TRPC6 (92), TRPM7 (93) and 

TRPV4 (by Lyn) (94), leading to activation of these channels. CaMKII phosphorylates 
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and activates TRPC6 (88) and TRPV1 (95), whereas PKA phosphorylates and activates 

TRPV1 (82, 96).  

 

The role of macromolecular complexes in regulating PKC substrate specificity 

Classical PKCs are serine/threonine protein kinases that transduce cellular signals 

derived from lipid hydrolysis and Ca2+. PKCs have been implicated in a multitude of 

physiological and pathological processes such as vision (12), diabetic retinopathy (97), 

learning and memory (98), stroke-induced damage (99), hypertension (100) and cancer 

(101). At the molecular level, PKC contains a regulatory and a catalytic domain. The 

regulatory domain consists of an autoinhibitory region, the pseudosubstrate, and two 

subdomains, C1 and C2, that bind DAG and phorbol esters, and acidic phospholipids and 

Ca2+, respectively (102). To date 12 different PKC isozymes have been identified in 

vertebrates. They are classified into three groups according to the structure of regulatory 

domains that, consequently, determines sensitivity to different cofactors. Conventional 

PKCs (α, βΙ, βΙΙ and γ)  respond to both Ca2+ and DAG, whereas novel PKCs 

(δ, ε, η/L and θ) respond only to DAG. In contrast, atypical PKCs (ζ and ι/λ ) are 

insensitive to both Ca2+ and DAG (101). 

 The subcellular localization of PKC is important for its substrate specificity.  The 

protein substrate that PKC interacts with is called substrate that interacts with C-kinase 

(101). Sometimes, PKC targets its substrates via a scaffold or adaptor protein. The 

adaptor protein may act either as a receptor for inactivated C-kinase (RICK) or a receptor 

for activated C-kinase (RACK) (101). Although there are many studies addressing 

phosphorylation of various ion channels by PKC (see Table 2), there have been only a 
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Table 1. TRP channels known to undergo phosphorylation.  

Channel Kinase Functional effect Phosphorylation site(s) References 

TRPC1 PKC activation ? (55) 

TRPC3 PKC inactivation Ser712  (56) 

 PKG inactivation Thr11, Ser263  (57) 

  Src activation Tyr226 (86, 93) 

TRPC4 PKC inactivation ? (79)  

  Fyn  activation Tyr959, Tyr972           (76) 

TRPC5 PKC inactivation  Thr972 (77, 79)  

TRPC6 Fyn  activation ? (87) 

PKC inactivation Ser768 (TRPC6A), Ser714(TRPC6B) (78) 

CaMK II activation ?  (80) 

PKA ? ? (91) 

  PKG ? ?  (91) 

TRPC7 PKC inactivation ? (80) 

TRPM4 PKC activation ? (82) 

TRPM7 Src activation ? (88) 

TRPM8 PKC inactivation ? (81) 

TRPV1 PKA activation Ser116, Thr370 (84, 92) 
 PKC activation ? (83, 84) 

  CaMKII activation ? (90) 

TRPV4 Lyn activation Tyr253 (89) 
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few studies exploring the involvement of the adaptor proteins in achieving the rapid 

regulation of ion channels by PKC. For instance, Hoshi et al. (2003) reported that the 

action of PKC on KCNQ is regulated by scaffolding protein A-kinase anchoring protein 

150, which binds both PKC and KCNQ, and supports PKC-mediated inhibition of the 

channel (103, 104). 

In addition, the PKCζ interacting protein known as ZIP, has been demonstrated to 

interact with PKCζ and the Kvβ2 subunits of the K+ channel in the hippocampus and 

Purkinje cells, to attain specificity of the PKCζ-targeted phosphorylation of the K+ 

channel (105). Another member of the ZIP protein family, ZIP3, which is expressed in 

the mammalian retina, has been found to form a complex between PKCζ and the ρ3 

subunit of the GABAc receptor, a ligand-gated Cl- channel that is important for vision 

(106). Croci et al. (2003) speculated that the long intracellular loop between 

transmembrane regions 3 and 4 of the GABAc receptor may be the target of PKC 

phosphorylation to mediate inhibition of the channel, since this region of the channel 

contains PKC consensus phosphorylation sites (107). 

In addition, CFTR is a Cl- channel whose improper functioning is responsible for 

the pathology of cystic fibrosis (108). CFTR is regulated by PKCε  via two proteins, 

RACK1 and NHERF1. Liedtke et al. (2002) found that RACK1 interacts with PKCε and 

NHERF1. NHERF1 also interacts with CFTR, and therefore, it is believed that RACK1 

and NHERF1 serve as scaffold proteins to anchor PKCε in close proximity to the CFTR 

channel (109). 

 PKCε has been demonstrated to bind to a PKC binding protein named enigma 

homolog (ENH), which also interacts with voltage-gated N-type Ca2+ channels in 
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hippocampal neurons. The PKCε-ENH-calcium channel macromolecular complex 

facilitates  the action of  PKCε on the channel (110).  

The data presented above highlight the importance of macromolecular complexes 

in attaining the specificity and efficiency of cellular signaling. In these complexes, PKC 

is targeted to ion channels with the help of adaptor proteins, which promote close 

proximity of PKC to its channel substrates. 
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                        Table 2. PKC mediates the regulation of various ion channels. 

Ion Channel Function  PKC-mediated effect  
Phosphorylation 
site(s) References 

Na+ Channels     
Cerebral 

voltage- gated 
Na+ channel 

- initiation and 
propagation of action 
potentials     decreased amplitude 

Ser1506 of α-subunit 
(111, 112) 

 -synaptic plasticity    
Na(v)1.9 -peripheral nociception activation ? (113) 

Skeletal muscle 
voltage-gated 
Na+ channel 

-skeletal muscle 
contraction inactivation ? (114) 

Calcium 

Channels     

L-type Calcium 
channel -vasoconstriction activation 

? 
(115, 116) 

Cav1.1 -skeletal muscle 
contraction inactivation ? (117) 

Cav1.2 -cardiac response to 
hormonal regulation activation Ser1928 (118) 

K+ Channels     

TREK-1 
 (KCNK2, 
K2P2.1) 

-maintaining the 
membrane potential in 
neurons (background 
K+ current) 

inactivation Ser333 (119) 

M- type 
(KCNQ2) 

-synaptic plasticity 
- negative control over 
neuronal excitability 

inactivation Ser534, Ser541 (104, 103) 

Kir3 

-maintaining the 
membrane potential in 
neurons 
 -inhibit hormone 
release 
-vagal-mediated 
bradicardia 
                                        

inactivation 
 

 
Ser503 (K(v) 3.1b) 

(121, 122) 

K(v)4.2/4.3 
channels 

- electric remodeling 
by cell volume 
changes (e.g. cell 
swelling or 
hypertrophy) 

inactivation 

 
? 

(123) 

Other Channels     

AMPAR - fast excitatory 
neurotransmission AMPAR trafficking Ser880(GluR2) (124-126) 

GluR2δ 
-cerebellar synaptic 
plasticity ? Ser945  (127) 

NMDAR - synaptic plasticity 
- learning and memory 
 

desensitization 

S890 and S896 (NR1) 
S900, S929 and S1416 

(N2A) 
S1303 and 

S1323(NR2B) 

(128-132) 

CTRL -mucus and sweat activation Ser660, Ser686, Ser700, 
Ser790 (108) 
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Summary 
 

The above review regarding regulation of ion channels by PKC illustrates the 

critical role of PKC-mediated phosphorylation in a large number of cellular events. PKC 

is important to regulate visual signaling in Drosophila, a PLCβ-coupled signaling 

cascade in which the TRP Ca2+ channel mediates the light-dependent depolarization of 

photoreceptor cells. Drosophila visual signaling is of particular interest not only because 

it is one of the fastest known G-protein coupled signaling pathways, but also because 

working with Drosophila provides ease of handling and phenotype assessment, genetic 

maneuverability, a database of existing mutants, and a sequenced genome. Uncovering 

the details concerning the regulation of TRP by eye-PKC for insight into deactivation of 

Drosophila visual response and light adaptation, will provide a better understanding of 

the regulation of ion channels, particularly, TRPs, by PKC-dependent phosphorylation. 

 

Specific Aims 

The work presented here seeks to determine the molecular details of the regulation 

of Drosophila visual signaling by eye-PKC. More specifically, I was interested in 

investigating how PKC regulates the activity of the TRP Ca2+ channel. Eye-PKC is 

critical for modulating visual signaling, and has been shown to phosphorylate TRP in 

vitro. The specific aims for my project were: 1) to identify the eye-PKC target region of 

TRP by in vitro phosphorylation assays; 2) to map the in vivo eye-PKC phosphorylation 

site(s) in TRP using mass spectrometry; and 3) to investigate how phosphorylation 

modulates the function of TRP by generating transgenic flies lacking the phosphorylation 

site(s), and assessing their visual phenotype. 
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CHAPTER II 

 

SCAFFOLDING PROTEIN INAD REGULATES DEACTIVATION OF VISION 
BY PROMOTING PHOSPHORYLATION OF TRP BY EYE-PKC IN 

DROSOPHILA 
 

Introduction 

 Drosophila visual transduction is a G-protein-coupled signaling pathway that 

provides a model system for understanding the molecular basis of signal transduction in 

the vertebrate nervous systems. Drosophila visual signaling is initiated upon activation of 

rhodopsin by light. Activated rhodopsin, via a Gq heterotrimeric protein, stimulates 

phospholipase Cβ (PLCβ) named NORPA (9). NORPA hydrolyzes phosphatidylinositol- 

4, 5-bisphosphate (PIP2) to inositol 1, 4, 5 trisphosphate (IP3) and 1, 2 diacylglycerol 

(DAG), which leads to opening of the TRP Ca2+ and TRP-like channels, and 

depolarization of photoreceptors (26, 27). The key second messenger that activates the 

TRP Ca2+ channel is thought to be either DAG or its lipid metabolites (28, 29), whereas 

IP3 does not appear to play a role (10, 30). DAG may have a dual function, because it 

also activates the eye-specific PKC (eye-PKC) essential for deactivation of the light 

response (31, 32). 

 Drosophila visual signaling is one of the fastest G-protein-coupled transduction 

cascades (65). The fast kinetics of vision is partly due to the formation of a 

macromolecular complex containing TRP Ca2+ channel (42, 135), NORPA (46, 54, 136) 

and eye-PKC (46, 54, 136). This complex is organized by INAD (137), a scaffolding 

protein with five PDZ domains. INAD regulates the subcellular localization and stability 

of these three proteins. Flies lacking INAD exhibit a profound reduction of the light 
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response (46). 

 To gain a better understanding of how the INAD complex modulates the kinetics 

of vision, we and others have shown that the INAD-TRP interaction is required for 

normal deactivation of the light response because a loss of the interaction leads to slow 

deactivation in InaDp215 flies (137, 138), In addition, the INAD-eye-PKC interaction is 

essential for the in vivo activity of eye-PKC as expression of modified eye-PKC that does 

not interact with INAD, fails to rescue inaCp209 flies lacking eye-PKC (54). Indeed, two 

proteins in the complex, INAD and TRP, were found to be phosphorylated in vitro by 

eye-PKC (56, 57).  

 Here we report the identification and functional characterization of an eye-PKC 

phosphorylation site in TRP. We show that TRP is phosphorylated at Ser982 by eye-PKC 

and this phosphorylation depends on INAD in vitro. By differential mass spectrometry 

(MS), we confirm that Ser982 of TRP is phosphorylated in vivo by eye-PKC. Moreover, 

we demonstrate that transgenic flies lacking this phosphorylation site display a slow 

deactivation phenotype similar to that of InaDp215. Our results indicate that INAD is 

critical for deactivation of visual signaling by positioning eye-PKC in close proximity to 

TRP, in order to facilitate its phosphorylation at Ser982. 

 

Materials and Methods 

 

Preparation of fly head extracts. Approximately 100 μl young wild-type, inaD1 or 

InaDp215 fly heads were homogenized with 1 ml of extraction buffer or EB (50 mM Tris-

HCl, pH 8.0, 150 mM NaCl, 1% Triton X-100 and a mixture of protease inhibitors). Head 
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homogenates were incubated at 4 °C with constant agitation for 1 h. The mixture was 

then centrifuged for 10 min (12,000 X g), and the supernatant was used for the in vitro 

complex-dependent kinase assay. Protein concentrations were determined by BCA 

(Pierce). 

 

In vitro complex-dependent kinase assay. This assay consists of a GST pull-down 

followed by an in vitro kinase assay. GST fusion proteins were immobilized to 

glutathione-agarose beads and incubated with 500 μl fly head extract (total protein 

concentration 3.5-5 μg/ml) for 1 h at 4°C. After incubation, GST fusion proteins and 

associated proteins were recovered by centrifugation and washed three times with EB. 

For the kinase assay, the GST fusion protein mixture was washed once with kinase 

reaction buffer or RB (50 mM Tris-HCl, pH 8.0, 10 mM MgCl2, 5 mM 2-

mercaptoethanol, 0.1 mM DTT, 0.4 mM EGTA, 0.7 mM CaCl2) and incubated at 30oC 

with 50 μl RB containing phorbol myristate acetate (PMA, 1 μM), 3 µCi of carrier-free 

[γ-32P]-ATP in the presence of 100 μM cold ATP. 2X SDS/PAGE loading buffer was 

added to terminate the kinase reactions. Samples were then subjected to SDS/PAGE (6% 

or 10%) followed by Western blotting or Coomassie Blue staining. Dried and stained gels 

were subject to autoradiography or PhosphorImager analysis to quantify phosphorylation 

of fusion proteins.  

 

LC-MS analysis. LC-MS was performed by the Proteomics Laboratory in the Vanderbilt 

Mass Spectrometry Research Center. About 14 pmoles of TRP were excised from 

SDS/PAGE gels for in-gel digestion with either trypsin or chymotrypsin (152). The 
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resulting peptides were separated by reverse phase high pressure liquid chromatography 

that is coupled directly with automatic tandem MS (LC-MS)  using a ThermoFinnigan 

LTQ ion trap mass spectrometer equipped with a Thermo MicroAS autosampler and 

Thermo Surveyor HPLC pump, Nanospray source, and Xcalibur 1.4 instrument control.  

MS/MS scans were acquired using an isolation width of 2 m/z, an activation time of 30 

ms, and activation Q of 0.250 and 30% normalized collision energy using 1 microscan 

and ion time of 100 for each scan. The mass spectrometer was tuned prior to analysis 

using the synthetic peptide TpepK (AVAGKAGAR). Typical tune parameters were as 

follows: spray voltage of between 1.8 KV, a capillary temperature of 150ºC, a capillary 

voltage of 50V and tube lens 100V. Initial analysis was performed using data-dependent 

scanning in which one full MS spectra, using a full mass range of 400-2000 amu, were 

followed by 3 MS/MS spectra.  Incorporated into the method was a data-dependent scan 

for the neutral loss of phosphoric acid or phosphate (-98, -80), such that if these masses 

were found, an MS/MS/MS of the neutral loss ion was performed. Peptides were 

identified using a cluster compatible version SEQUEST algorithm (140), using a 

Drosophila subset of proteins from the non-redundant database from NCBI or Uniref100. 

Sequest searches are done on a high speed, multiprocessor Linux cluster in the Advanced 

Computing Center for Research. In addition to using the SEQUEST algorithm to search 

for phosphorylation on serines or threonines, the data were also analyzed using the Pmod 

algorithm (162). All possible modified peptides were verified by manual inspection of the 

spectra. 
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P-element-mediated germ-line transformation. Wild-type and modified trp cDNA 

were subcloned into a modified pCaSpeR 4 vector (133) that contains Drosophila hsp70 

promoter without the hsp70 3’ trailer region. The P-element construct and a transposase 

plasmid (“wings-clipped”) were injected into y [1] w[67c23] embryos (CBRC transgenic 

Drosophila Core, Massachusetts General Hospital / Harvard Medical School). Flies with 

the transgene integrated into the second or third chromosome were selected and made 

homozygote in the trpp301 background for further analysis.  

 

Electroretinogram recordings (ERG).  ERG recordings were carried out using red-eye 

young flies (1-3 days old) that were reared in a 12/12 hr light/dark cycle. The flies were 

anesthetized by carbon dioxide and immobilized using non-drying modeling clay. Glass 

electrodes were filled with physiological saline (0.7% NaCl). White light stimulation 

(light intensity, 4.45 mW) was delivered by a fiber optic light source (Oriel) and 

attenuated using absorptive nd filters (Newport, Irvine, CA). Signals were amplified by 

means of a WPI Dam 50 differential amplifier (World Precision Instruments, Sarasota, 

FL), displayed on an oscilloscope. Data were digitalized and analyzed using AxonScope 

9.0 software (Axon Instruments, Sunnyvale, CA).  

 

Statistical analysis.  All bar graph data were analyzed with GraphPad Prism 4.0 software 

(San Diego, CA) one-way analysis of variance. Data represent the means ± S.E.M., 

unless otherwise noted, from several independent experiments. 
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Results 

 

The C- terminal tail of TRP contains PKC phosphorylation sites 
To investigate the regulation of TRP by eye-PKC, we first identified potential 

eye-PKC phosphorylation sites in TRP. TRP consists of six transmembrane domains with 

both N- and C-termini localized intracellularly. By NetPhos 2.0 

(http://www.cbs.dtu.dk/services/NetPhos/) and Prosite (http://www.expasy.ch/prosite/) 

software using the PKC consensus sequence motif (S/T)-X-(R/K), we found 16 putative 

phosphorylation sites in TRP with 14 present within the C-terminal sequence (Figure 

5A). Since the C-terminal tail of TRP has been implicated in gating and regulation of the 

channel, phosphorylation of this region may serve to switch on/off the channel activity. 

To investigate whether any of the putative PKC sites are bona fide PKC phosphorylation 

sites, we generated GST fusion proteins containing different intracellular regions of TRP 

and subjected them to in vitro kinase assays. As positive and negative controls we used a 

fusion protein containing full length INAD and GST alone, respectively. We first 

determined whether a recombinant PKCα  could phosphorylate these fusion proteins 

because both PKCα and  eye-PKC belong to the conventional PKC family. Indeed, we 

found that TRP906-1275 containing the last 370 residues of TRP including the six putative 

PKC sites became phosphorylated by PKCα  (Figure 5B), whereas TRP1-367 which 

contains two PKC sites did not (data not shown). Sequences spanning TRP657-905 failed to 

produce stable fusion proteins in E. coli and therefore were not tested. The stoichiometry 

of TRP906-1275 phosphorylation by PKCα  was approximately 0.55 moles phosphate/moles 

fusion protein.  
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Figure 5. The C-terminal tail of TRP is phosphorylated by recombinant PKCα. 
(A) Distribution of the 16 putative PKC phosphorylation sites in TRP. (B) 
Phosphorylation of TRP906-1275 and INAD by PKCα. Lane 1, no substrate; lane 2, GST; 
lane 3, INAD; lane 4, TRP906-1275. Asterisks indicate INAD degradation products. The 
protein standards (kDa) are denoted on the left. 
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These findings indicated that TRP906-1275 contains one PKC phosphorylation site. 

 

Phosphorylation of TRP906-1275 by eye-PKC is dependent on INAD in vitro  

Next we investigated if TRP906-1275 can be phosphorylated by eye-PKC. In 

Drosophila photoreceptors, eye-PKC and TRP form a macromolecular complex by 

tethering to INAD. To obtain eye-PKC, immobilized GST fusion proteins containing 

TRP906-1275 were incubated with wild-type fly head extracts in order to compete with 

endogenous TRP for retrieval of the INAD complex, including eye-PKC. The resulting 

complex was recovered by centrifugation and used for in vitro kinase assays. We found 

that TRP906-1275 pulled down INAD and eye-PKC, and became phosphorylated upon the 

addition of a PKC activator, PMA, by this complex-dependent kinase assay (Figure 6A, 

lane 2). To demonstrate that the observed phosphorylation of TRP906-1275 is dependent on 

INAD, we used fly extracts prepared from inaD1 and InaDp215. inaD1 is a loss-of-function 

allele of inaD (46), whereas InaDp215 expresses a modified protein resulting in a loss of 

the TRP-INAD association (42). As shown in Figure 6A (lanes 3-6), both extracts failed 

to support TRP906-1275 phosphorylation by the complex-dependent kinase assay. In both 

cases, phosphorylation was diminished because TRP906-1275 was unable to isolate INAD 

and consequently, eye-PKC, from these two extracts (Figure 6A, middle and bottom).  

 To further support the role of INAD in directing eye-PKC to TRP, we 

investigated phosphorylation of a modified TRP906-1275 containing an Asp substitution at 

Val1266, which has been previously shown to disrupt the interaction between TRP and 

INAD (40, 42). We found that phosphorylation of TRP906-1275, V1266D was greatly reduced 

(Figure 6B and C), because this modified TRP failed to recruit INAD and consequently, 
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Figure 6. TRP is phosphorylated in vitro by eye-PKC in a complex-dependent 
manner. (A) Phosphorylation of TRP906-1275 using wild-type (wt), inaD1 and InaDp215 fly 
head extracts. Recovery of INAD (middle) and eye-PKC (bottom) was detected by 
Western blotting. Lanes 1, 3 and 5, GST; lanes 2, 4 and 6, TRP906-1275. (B) Reduced 
phosphorylation of a modified TRP906-1275 containing an Asp substitution at Val1266 by the 
complex-dependent kinase assay (top). The corresponding Coomassie stained SDS-
PAGE gel is shown in the middle. Recovery of eye-PKC was detected by Western 
blotting (bottom). Lane 1, GST; lane 2, TRP906-1275; lane 3, TRP906-1275, V1266D. (C) Time-
course of the TRP phosphorylation using wild-type fly head extracts. Recovery of eye-
PKC by wild-type TRP was detected by Western blotting (top). GST (■); TRP906-1275 

(▼); TRP906-1275, V1266D (▲). All quantifications were performed as described in 
Materials and Methods (n = 3). (D) TRP906-1275, V1266D remains a substrate for 
recombinant PKCα (top). The corresponding Coomassie stained SDS-PAGE gel is 
shown at the bottom. Lane 1, GST; lane 2, TRP906-1275; lane 3, TRP906-1275, V1266D. 
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eye-PKC (Figure 6B, bottom). Importantly, this modified TRP remained an excellent 

substrate for recombinant human PKCα  (Figure 6D). Together, these results indicate that 

the phosphorylation of TRP906-1275 by endogenous eye-PKC in vitro is dependent on the 

interaction between TRP and INAD.  

To demonstrate that eye-PKC is involved in phosphorylation of TRP906-1275, we 

show that this phosphorylation is abolished in the presence of a specific conventional 

PKC inhibitor Go6976 (5 μM, Figure 7A). To further confirm that eye-PKC is 

responsible for the observed phosphorylation of TRP906-1275, we carried out the complex-

dependent kinase assay using extracts from inaCp209 (139) that lacks endogenous eye-

PKC (31). As expected, phosphorylation of TRP906-1275 and full-length INAD was greatly 

reduced, by 82  and 86%, respectively (Figure 7B, TRP906-1275, 17.77 ± 2.5 %, INAD, 

13.81 ± 4.13 %, n = 3, mean ± S.E.M.). The absence of phosphorylation is due to a lack 

of eye-PKC recovery when inaCp209 extracts were used (Figure 7B, middle). These 

findings indicate that eye-PKC is indeed responsible for phosphorylation of TRP906-1275. 

 

TRP is phosphorylated at Ser982 in vitro 

To investigate which of the six putative PKC sites in TRP906-1275 is 

phosphorylated by eye-PKC, we examined phosphorylation of two shorter TRP fusion 

proteins that contain one (TRP1157-1275) or four (TRP1030-1275) predicted PKC sites. We 

found that TRP1030-1275 and TRP1157-1275 displayed a drastic reduction of phosphorylation 

by 78 and 91%, respectively (Figures 8A, TRP1030-1275, 22.09 ± 7.78 %, TRP1157-1275, 8.33 

± 5.43 %, n = 3, mean ± S.E.M.), by eye-PKC (Figure 8B). Interestingly, these two 

fusion proteins were also not phosphorylated by recombinant PKCα  (Figure 8C). 
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Figure 7. TRP906-1275 is phosphorylated in vitro by eye-PKC. (A) Phosphorylation of 
TRP906-1275 was eliminated by a specific conventional PKC inhibitor, Go6976. Lanes 1, 3 
and 5, GST; lanes 2, 4 and 6, TRP906-1275. (B) inaCp209 extracts failed to promote the 
complex-dependent phosphorylation of TRP and INAD. The incorporated radioactivity 
was normalized to protein levels obtained by densitometry (Odyssey analysis software) 
and the relative phosphorylation was presented as mean ± S.E.M. (n  = 3). 
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Figure 8. Mapping the PKC phosphorylation site in TRP906-1275. (A) The complex-
dependent phosphorylation of three TRP fusion proteins: TRP906-1275, TRP1030-1275 and 
TRP1157-1275. One relevant autoradiography and its corresponding Coomassie stained 
proteins are shown. (B) Eye-PKC is recovered by all three TRP fusion proteins. Lane 1, 
GST; lane 2, TRP906-1275; lane 3, TRP1030-1275; lane 4, TRP1157-1275. (C) Phosphorylation of 
TRP fusion proteins by PKCα. Lane 1, no substrate; lane 2, GST; lane 3, TRP906-1275; 
lane 4, TRP1030-1275; lane 5, TRP1157-1275. Asterisks denote the location of each TRP fusion 
protein. (D) TRP is phosphorylated in vitro at Ser982 by PKCα. Lane 1, TRP906-1275, lane 
2, TRP906-1275, S958A, lane 3, TRP906-1275, S982A, lane 4, TRP906-1275, S958A, S982A. All 
quantifications were done as described before (n  = 3). All data are presented as mean ± 
S.E.M. 
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These data indicate that Ser958 or Ser982, the two sites present in TRP906-1275 but not in 

TRP1030-1275, are the potential phosphorylation sites for both eye-PKC and recombinant 

PKCα. 

To investigate whether Ser958 or Ser982 is indeed the primary PKC 

phosphorylation site, we generated a modified TRP906-1275 containing Ala substitutions at 

these two sites and performed in vitro kinase assays. We found that Ala substitution of 

Ser982 resulted in a marked decrease of phosphorylation by PKCα,  whereas a similar 

substitution at Ser958 did not (Figure 8D, TRP906-1275, 100 %, TRP906-1275, S958A, 80.47 ± 

22.24 %, TRP906-1275, S982A, 29.46 ± 2.84 %, n = 3, mean ± S.E.M.). Consistently, fusion 

proteins containing both mutations (S958A and S982A) also exhibited a drastically 

reduced phosphorylation (Figure 8D, TRP906-1275, S958A, S982A, 18.88 ± 6.93 

%, n =3, mean ± S.E.M.). 

To further confirm that Ser982 of TRP is a PKC phosphorylation site, we obtained 

a synthetic peptide, ALRAS982VKNVD, spanning Ser982 of TRP, and used it for in vitro 

kinase assays. This oligopeptide was a substrate of recombinant human PKCα with a Km 

of 263.1 μM and a Vmax of 17.35 pmol/min. Taken together, these data indicate that 

Ser982 represents a major in vitro PKC phosphorylation site in TRP906-1275. 

 

TRP is phosphorylated in vivo at Ser982 by eye-PKC 

Once we established that Ser982 of TRP was phosphorylated in vitro by eye-PKC, 

we investigated if Ser982 is phosphorylated in vivo by eye-PKC using liquid 

chromatography-MS (LC-MS) analysis. First, we isolated the INAD complexes from 

light-adapted wild-type flies via immunoprecipitation, using anti-INAD antibodies.  
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Figure 9. TRP is phosphorylated in vivo at Ser982 as revealed by LC-MS analysis. (A) 
Colloidal Blue staining of a gel from which TRP was recovered following 
immunoprecipitation. (B) The sequence coverage of TRP was approximately 70%, 
including 11 putative PKC sites. Solid lines denote tryptic and chymotryptic peptides 
identified by MS. Putative PKC phosphorylation sites are coded blue, Ser982 is coded red, 
and Lys-Pro repeats are coded green. (C) Low energy CID spectrum of the doubly 
charged phosphopeptide Arg980-Met999. The spectrum was zoomed in 5-fold due to a very 
prominent neutral loss of ion. (D) A low energy CID spectrum of the triply charged 
phosphopeptide spanning Arg980-Met999. The insets show the sequence of the 
phosphopeptide; black lines denote the identified cleavages. Fragment ions are labeled 
according to the accepted nomenclature. b-ions are coded blue, y-ions, red, and precursor 
ions, green. Spectra from the MS/MS/MS analysis of the neutral loss of phosphoric acid 
ions confirmed the sequence and the site of phosphorylation (data not shown).  
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The proteins in the INAD complexes were separated by SDS-PAGE and 

visualized by staining with Colloidal Blue. The 145 kDa protein band corresponding to 

TRP was excised (Figure 9A), digested “in-gel” with trypsin or chymotrypsin, and the 

resulting peptide mixture was subjected to LC-MS analysis. Peptide fragments were 

analyzed and identified by a cluster compatible version SEQUEST algorithm (140), using 

a subset of Drosophila proteins from the NCBI database. We obtained approximately 

70% amino acid coverage of TRP (Figure 9B) including sequences spanning Ser982. We 

also used Collision induced dissociation (CID), which fragments peptides such that the 

fragmentation pattern can be used to discern the amino acid sequence and the exact site(s) 

of phosphorylation. By CID analysis we identified and confirmed the amino acid 

sequence of the peptide RAS982VKNVDEKSGADGKPGTM and revealed the presence 

of a phosphate group at Ser982. Moreover, we also found the spectra of the unmodified 

peptide as well as both the doubly and triply charged phosphopeptides (Figures 9C and 

D). Importantly, only the unphosphorylated peptide RAS982VKNVDEKSGADGKPGTM 

was detected in TRP isolated from inaCp209 flies. Based on these data, we conclude that 

TRP is phosphorylated in vivo at Ser982 by eye-PKC. 

 

trpS982A displays slow deactivation of the visual response  

To gain insight into the functional significance of TRP phosphorylation at Ser982, 

we generated and characterized transgenic flies expressing a modified trp, trpS982A, in 

which the phosphorylation site is eliminated. As a control, we also generated transgenic 

flies expressing a wild-type trp (trpwt). The expression of wild-type or modified trp was 

under the control of the hsp70 promoter, and the function of TRP was analyzed in a null  
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Figure 10. Biochemical and electrophysiological characterization of transgenic flies 
lacking the phosphorylation site at Ser982. (A) Western blotting. The expression of TRP 
in the fly head or body was analyzed. (B) ERG analysis. Shown are representative ERG 
recordings of wild-type (OR), trpp301, trpwt, trpS982A, inaCp209 and InaDp215 flies following 
stimulation of a two-second pulse of the brightest light stimulus (log I/I0 = 0). (C) A 
histogram that compares half-repolarization times (n = 5, mean + S.E.M.) at different 
light stimuli. The stimuli were 2 sec white lights without any attenuation (log I/I0 = 0, I = 
stimulus intensity used, I0 = maximum stimulus intensity available) or attenuated by one 
(log I/I0 = -1), two (log I/I0 = -2) or three (log I/I0 = -3) log units. The half-repolarization 
time is the time required to reach 50% of repolarization, as diagrammatically depicted for 
trpS982A flies in (B). Two independent transgenic lines for both trpwt and trpS982A  were 
used for quantification. *** p = 0.001. 
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genetic background (trpp301 (35, 42)). We first determined if the modified TRP is stably 

expressed by Western blotting.  Indeed, we observed that the TRP protein in trpS982A flies 

reaches a steady-state concentration similar to that of wild-type flies (Oregon-R, OR) or  

transgenic flies expressing a wild-type trp, trpwt (Figure 10A). It appears that basal 

transcription driven by the hsp70 promoter is sufficient for transcription of trp leading to 

wild-type level of TRP in trpwt and  trpS982A flies. 

Next we characterized the visual electrophysiology by ERG for gaining insight 

into the in vivo activity of the modified TRP. ERG is an extracellular recording of the 

compound eye. Briefly, red-eye flies were dark-adapted for two minutes and then given a 

two-second white light stimulation. Using this stimulation paradigm, wild-type flies 

displayed the characteristic ERG waveform consisting of fast depolarization, maintained 

depolarization, and fast repolarization components (Figure 10B). In contrast, trpp301 flies 

displayed the initial fast depolarization but lacked the maintained component, and 

therefore the membrane potential returned gradually to baseline. This abnormal 

phenotype of trpp301 was completely rescued by transgenic expression of wild-type trp 

(Figure 10B). Remarkably, transgenic expression of trpS982A rescued the trpp301 phenotype 

but with delayed deactivation kinetics (Figure 10B). Close inspection of the deactivation 

kinetics in ERG revealed two subcomponents: a fast and a slow component. The fast 

subcomponent occurs immediately following light termination and achieves over 50% 

repolarization. The fast subcomponent is followed by the slow subcomponent that 

eventually returns the potential to baseline. It appears that trpS982A flies exhibit defects in 

the fast subcomponent. 
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To further characterize trpS982A flies we examined their visual response to various 

intensities of light over 4 log units. We show that the prolonged deactivation kinetics is 

more prominent during the brightest light stimulation (log I/I0 = 0): the half-

repolarization time of trpS982A is approximately two-fold longer than that of wild-type 

flies (Figure 10C, wild-type, 0.801 ± 0.119 s; trpwt, 0.842 ± 0.064 s; trpS982A, 1.668 ± 

0.253 s, n = 5, mean ± S.E.M.). In contrast, the amplitude of the ERG responses in 

trpS982A was comparable to that of trpwt flies (trpwt, 18.008 ± 0.95 mV; trpS982A, 20.71 ± 

2.73 mV, n = 5, mean ± S.E.M.), indicating that activation of visual signaling is not 

affected in trpS982A. These results demonstrate that expression of trpS982A leads to slow 

deactivation of visual response, which is likely due to a loss of eye-PKC phosphorylation 

of the modified TRP.  

We compared the deactivation kinetics of trpS982A with that of inaCp209 flies that 

lack eye-PKC. Interestingly, inaCp209 exhibited prolonged deactivation kinetics similar to 

trpS982A, in response to bright light stimuli. However, inaCp209 also shows defects in 

deactivation at lower light intensities: the half-repolarization time was at least two fold 

longer than that of wild-type, regardless of the light intensity used (log I/I0 = 0, inaCp209, 

2.216 ± 0.1 s; log I/I0 = -1, wild-type, 0.708 ± 0.087 s, trpwt, 0.721 ± 0.209 s, trpS982A, 

0.938 ± 0.182 s, inaCp209, 1.852 ± 0.053 s; log I/I0 = -2, wild-type, 0.491 ± 0.044 s, trpwt, 

0.501 ± 0.139 s, trpS982A, 0.626 ± 0.102 s, inaCp209, 1.493 ± 0.091 s; log I/I0 = -3, wild-

type, 0.490 ± 0.087 s, trpwt, 0.410 ± 0.091 s, trpS982A, 0.337 ± 0.048 s, inaCp209, 1.219 ± 

0.1 s,  n = 5, mean ± S.E.M.). These results indicate that the deactivation defect in 

inaCp209 is more complex than that of trpS982A and suggest that phosphorylation of 
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additional PKC sites in TRP or other substrates may be responsible for the fast 

deactivation of the visual response.  

We also investigated the deactivation kinetics of trpS982A in comparison with that 

of InaDp215 (139). InaDp215 contains a modified INAD, INADM442K, which fails to 

associate with TRP (42). The lack of the TRP-INAD interaction leads to a slow recovery 

of the visual response (42). We found that InaDp215 displayed an ERG phenotype similar 

to that of trpS982A with deactivation defects that manifested at bright light stimulation. 

Moreover, as for trpS982A, the deactivation kinetics of InaDp215 at low light intensities 

were indistinguishable from wild-type (Figure 10C, half-repolarization time for InaDp215, 

log I/I0 = 0, 1.432 ± 0.064 s; log I/I0 = -1, 0.815 ± 0.045 s, log I/I0 = -2, 0.374 ± 0.052 s, 

log I/I0 = -3, 0.398 ± 0.041 s, n = 5, mean ± S.E.M.). These results indicate that the slow 

recovery of InaDp215 may be due to a loss of eye-PKC phosphorylation in TRP. 

Taken together, our biochemical and electrophysiological analyses demonstrate 

that phosphorylation of TRP at Ser982 by eye-PKC is important for the rapid deactivation 

of visual signaling in Drosophila. 

 

Discussion 

Reversible phosphorylation modulates the dynamics of signal transduction by 

transiently altering activities of signaling proteins. Members of the conventional PKC 

family (102), which are activated by Ca2+ and DAG, are capable of phosphorylating a 

wide variety of protein substrates for temporal and spatial regulation of signaling 

processes (141). In Drosophila, eye-PKC is involved in the negative regulation of visual 

signaling as inaCp209 flies lacking eye-PKC display abnormal desensitization, slow 
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deactivation and defects in light adaptation (31, 142). Eye-PKC is anchored to a 

macromolecular complex by tethering to INAD (46, 54). Interaction with INAD enhances 

the stability of eye-PKC as well as targets eye-PKC to the rhabdomeres of photoreceptors 

(47), where visual signaling occurs. Importantly, the in vivo function of eye-PKC is 

regulated by interaction with INAD. Previously, it was shown that eye-PKC 

phosphorylates TRP in vitro (55, 57). In the present study we investigated the molecular 

basis of TRP phosphorylation by eye-PKC.  

To mimic eye-PKC phosphorylation of TRP in vitro, we designed a complex-

dependent kinase assay. We demonstrated that the in vitro complex-specific 

phosphorylation of TRP is regulated by the presence of the INAD-interacting domain in 

TRP, as well as the existence of INAD in the fly extracts. We showed that extracts 

lacking either eye-PKC or INAD fail to support TRP phosphorylation. Similarly, extracts 

prepared from InaDp215 that expresses a modified INAD devoid of the TRP binding (42), 

are not able to promote TRP phosphorylation. Together, these findings indicate that 

INAD targets eye-PKC to its substrates, similar to a receptor for activated C kinase 

(RACK) (55). By the complex-dependent kinase assay, we identified Ser982 of TRP as an 

eye-PKC phosphorylation site. Moreover, we analyzed TRP isolated from flies by LC-

MS and found that Ser982 of TRP is indeed phosphorylated in vivo by eye-PKC because 

phosphorylated peptides encompassing Ser982 of TRP were present in wild-type, but 

absent in inaCp209 flies.  

Next, we investigated the in vivo functional contribution of phosphorylation by 

characterizing transgenic flies expressing a modified TRP bearing an Ala substitution at 

Ser982 (trpS982A). Remarkably, these transgenic flies displayed prolonged deactivation 
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kinetics in response to bright light stimuli, indicating that phosphorylation of TRP at 

Ser982 by eye-PKC is involved in inactivation of TRP, leading to fast deactivation. A 

model of the TRP regulation by eye-PKC is proposed (Figure 11). TRP is an integral part 

of the INAD complex and is opened by light. Following light termination, the visual 

response is rapidly deactivated. Although molecular mechanisms underlying deactivation 

remain elusive, Ca2+ is known to play a vital role in response termination (32, 61-63). 

The increased intracellular Ca2+ (primarily mediated by TRP) and DAG activate eye-

PKC, which, in turn, phosphorylates TRP at Ser982. Phosphorylation of TRP leads to a 

rapid inactivation of the channel upon cessation of the light stimulation (Figure 11B), 

without affecting the interaction between TRP and INAD (data not shown). How does 

phosphorylation influence the TRP channel activity? Ser982 is located within the Lys-Pro 

rich region of TRP (Figure 9B), which may function in TRP gating (41). We speculate 

that phosphorylation at Ser982 may induce a conformational change in the pore domain, 

which in turn leads to a rapid closure and inactivation of TRP. Phosphorylation has been 

linked directly to conformational changes that play key roles in the regulation of ion 

channels (144). It is also possible that phosphorylation of TRP at Ser982 affects the 

interaction with some yet unidentified proteins which may be important for the 

modulation of the TRP channel activity.  

In the absence of eye-PKC-mediated phosphorylation of TRP, deactivation of 

visual signaling is slower as observed in inaCp209 or trpS982A. We found that inaCp209 

displays a more complex deactivation defect, whereas trpS982A exhibits prolonged 

deactivation only in response to bright light. These findings suggest that in addition to  
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Figure 11. A model of the TRP regulation by eye-PKC-mediated phosphorylation at 
Ser982. (A) INAD facilitates phosphorylation of TRP at Ser982 by eye-PKC, by 
positioning eye-PKC in close proximity to TRP. (B) Resting TRP channels (I) become 
open in response to light stimulation (II) leading to a massive influx of Ca2+ that results 
in depolarization of the photoreceptor cells. Meanwhile, increases in the concentrations 
of intracellular Ca2+ and DAG activate eye-PKC, which, in turn, phosphorylates TRP 
(III). When light stimulation is off, phosphorylated TRP rapidly becomes inactivated 
(IV). It is likely that eye-PKC-mediated phosphorylation at Ser982 of TRP facilitates the 
conformational changes associated with the closure of the channel. To return the TRP 
channels to the resting state, dephosphorylation with the participation of protein 
phosphatases may occur. Shown at the bottom is a representative ERG of a wild-type fly. 
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TRP, eye-PKC phosphorylates other substrates for efficient termination of the light 

response. Indeed, eye-PKC has been shown to phosphorylate INAD (56, 55) but the 

functional relevance of this phosphorylation is not known. Furthermore, Gu et al. (2005) 

reported that eye-PKC is required for the Ca2+-dependent inhibition of NORPA. NORPA 

is part of the INAD complex, however, it is not known to be phosphorylated by eye-PKC. 

Gu et al. (2005) also showed that the Ca2+-dependent inactivation of the light-induced 

current was unaltered in inaCp209. This finding suggests the existence of a parallel Ca2+-

dependent mechanism in inaCp209 by which TRP is inactivated or of an upregulation of a 

Ca2+-dependent mechanism that activates other kinases (71) to compensate for the loss of 

eye-PKC in inaCp209. 

Importantly, trpS982A displays slow deactivation kinetics similar to that of 

InaDp215. InaDp215 was isolated by Pak et al. (139) based on the ina (inactivation-no-

afterpotential) phenotype elicited by ERG. By whole-cell recordings, Shieh and 

Niemeyer (137) showed that InaDp215 exhibits slow deactivation kinetics. However, 

Tsunoda et al. (46) reported a delay in latency of the quantum bump and proposed that 

activation was affected in the InaDp215 mutant. To resolve this discrepancy, Henderson et 

al. (138) re-examined the mutant and concluded that the primary defect in InaDp215 is 

prolonged deactivation and not slow activation. InaDp215 expresses INADM442K  that fails 

to associate with TRP (137). How does a loss of INAD-TRP interaction lead to abnormal 

deactivation of visual signaling? It is likely that the lack of the INAD-TRP interaction 

prevents the recruitment of TRP to the INAD complex and consequently, eye-PKC-

mediated regulation. Indeed, both trpS982A and InaDp215 exhibit similar deactivation 

defects, indicating that the molecular basis underlying the slow deactivation defect in 
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InaDp215 is due to a lack of negative regulation of the TRP channel by eye-PKC. 

Together, these findings suggest that formation of the INAD complex is essential for fast 

deactivation of the visual response by promoting phosphorylation of TRP by eye-PKC. 

Moreover, Ser982 may be the sole eye-PKC phosphorylation site in TRP because trpS982A 

and InaDp215 display similar deactivation defects. A loss of INAD-TRP interaction was 

previously investigated in transgenic flies expressing modified TRP in which the INAD-

interacting domain was deleted (trpΔ1272). Li and Montell (2000) reported a reduced light 

response with normal deactivation kinetics in trpΔ1272. These authors proposed that the 

suppression of the delayed termination, which is due to a reduced eye-PKC level in 

trpΔ1272 is probably masked by a concomitant decrease in TRP and INAD levels (40).  

 To date many proteins related to Drosophila TRP have been discovered in both 

invertebrates and vertebrates. These TRP ion channels are subdivided into seven 

subfamilies (TRPC, TRPV, TRPM, TRPN, TRPA, TRPP, and TRPML) (37). Drosophila 

TRP belongs to the TRPC subfamily. Members of the TRPC subfamily are also activated 

by receptor-induced activation of phospholipase C (14) and therefore, may be regulated 

by PKC. Indeed, phosphorylation of the TRPC channels by PKC appears important for 

modulating the channel activity. For example, the PKC-mediated phosphorylation of 

TRPC1 was shown to contribute to its SOC activation, triggering Ca2+ entry into 

endothelial cells (79). In contrast, PKC-mediated phosphorylation was demonstrated to 

inhibit the activity of TRPC3 in HEK 293 cells (83) and of TRPC6 in PC12D neuronal 

cells (86). In both cases, TRPC3 and TRPC6 are activated by DAG, whereas DAG also 

turns on PKC. The authors proposed that timing is important because the channels are 

activated by DAG more rapidly than they are inhibited  by DAG-activated PKC (86). 
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Heterologously expressed TRPC7 was also shown to be  regulated by PKC: inhibition of 

PKC prolonged inactivation of the channel (88). Moreover, PKC phosphorylation of 

heterologously expressed TRPC5 resulted in desensitization of this channel, a process 

that was dependent on both extracellular and intracellular Ca2+ concentrations (85).  

In conclusion, here we uncover the molecular mechanism underlying the 

complex-dependent phosphorylation of TRP by eye-PKC and its role in fast deactivation 

of vision. Specifically, we show that eye-PKC phosphorylates TRP at Ser982 in vitro and 

in vivo. Importantly, phosphorylation of TRP facilitates rapid inactivation of the channel 

because transgenic flies bearing an Ala substitution at Ser982 display prolonged 

deactivation kinetics of the light response. Significantly, this slow deactivation defect is 

similar to that observed in InaDp215 in which TRP fails to associate with INAD. Our 

findings provide insights into the mechanistic basis of slow deactivation in InaDp215, 

suggesting that INAD plays a critical role in targeting eye-PKC to TRP for rapid 

deactivation of the visual signaling. Taken together, these data indicate that the INAD 

macromolecular complex is important for deactivation of the visual response by directing 

eye-PKC to TRP. Furthermore, PKC-mediated phosphorylation of TRP at Ser982 leads to 

fast deactivation of vision by promoting inactivation of the TRP channel. 
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CHAPTER III 
 
 

INVESTIGATION OF OTHER POTENTIAL EYE-PKC PHOSPHORYLATION 
SITES IN TRP 

 
 

Introduction 
 

 Drosophila TRP is a light-activated Ca2+ channel that plays a crucial role 

in the visual signaling pathway. TRP is a member of the TRP channel superfamily, which 

is subdivided into six subfamilies (TRPC, TRPV, TRPM and TRPN, TRPA, TRPP, and 

TRPML) (37). Drosophila TRP belongs to the TRPC subfamily and contains an extended 

C-terminus. TRPC channels are activated upon stimulation of PLCβ. Some TRPC 

members are known to be SOCs, whereas others are activated by DAG (see Chapter I). 

However, the gating mechanism of Drosophila TRP has not been firmly established. 

Potential secondary messengers include DAG (28) and PUFAs (29).  

TRP is responsible for 90% of photoreceptor depolarization (35, 43, 146-148). 

Once the light stimulus ceases, inactivation of both TRP and TRPL channels, and hence 

deactivation, occurs in less than 20 ms (52). The high temporal resolution of visual 

signaling may be due to the existence of INAD complexes, which promote the correct 

subcellular localization of proteins involved in visual signaling. Eye-PKC plays an 

important role in deactivation of visual signaling, since flies lacking eye-PKC (inaCP209) 

display slow deactivation kinetics and also undergo light-dependent retinal degeneration 

(31). Eye-PKC shares 52% amino acid identity with human PKCα and is thus a member 

of the conventional PKC family that is activated by both DAG and Ca2+. The in vivo 

function of eye-PKC appears to be dependent upon its interaction with INAD, since a 

loss of interaction results in an ERG phenotype similar to that of inaCP209 flies (54). This 
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result strongly suggests that eye-PKC regulates proteins in the INAD complex. Indeed, 

eye-PKC was shown to phosphorylate the TRP channel in vitro in Drosophila (55) and 

Calliphora (75). By complex-dependent kinase assays and mass spectrometry analysis, 

we have demonstrated previously that eye-PKC phosphorylates TRP at Ser982 both in 

vitro and in vivo, and that phosphorylation at this site is important for deactivation of 

visual signaling, because mutant flies lacking this phosphorylation site exhibit prolonged 

deactivation kinetics by ERG recordings (see Chapter II). Specifically, trpS982A flies 

displayed defects in the rapid component of deactivation in response to bright light, 

whereas their response to low intensities of light was normal (see Chapter II). In contrast 

to trpS884A, inaCp209 exhibited a more profound deactivation defect that manifested itself 

regardless of the light intensity stimulus used (see Chapter II). These data suggest that 

there is another eye-PKC-dependent mechanism that mediates deactivation of visual 

signaling. This mechanism may involve phosphorylation of another amino acid in TRP. 

In our previous in vitro phosphorylation studies we were not able to evaluate the 

intracellular C-terminal region of TRP upstream of amino acid 906, because we failed to 

produce stable fusion proteins in bacteria (see Chapter II). Interestingly, within this 

region there are eight putative PKC phosphorylation sites as predicted by NetPhos and 

Prosite software, using the consensus PKC motif (S/T)-X-(R/K). Moreover, only three of 

the eight phosphorylation sites were covered, and shown not to be phosphorylated in 

vivo, in our previous mass spectrometry analysis.   

 Here we investigated whether there is an additional PKC phosphorylation site in 

the intracellular C-terminal sequence of TRP upstream of amino acid 906. We employed 

in vitro kinase assays using GST-TRP fusion peptides encompassing the putative PKC 

 58



sites as substrates, and recombinant human PKCα as the enzyme. We found that a GST-

peptide containing two putative PKC sites, Ser881 and Ser884, was highly phosphorylated 

by PKCα. Using site-directed mutagenesis we determined that Ser884 was highly 

phosphorylated in vitro by PKCα. An alignment of TRP sequences from various 

invertebrate species revealed that this residue is highly conserved. In addition, Ser884 is 

positioned close to the calmodulin-binding domain of TRP. Taken together, these data 

suggested that phosphorylation of Ser884 may be functionally important. We assessed the 

functional relevance of this phosphorylation site by generating transgenic flies expressing 

a modified TRP in which Ser884 was replaced with Ala. Transgenic flies were analyzed 

by ERG. Preliminary data show that trpS884A exhibits normal kinetics in response to light, 

indicating that phosphorylation of Ser884 in TRP by PKC does not contribute to regulation 

of the light response in Drosophila. 

 

Materials and Methods 

 

Generation of GST-TRP fusion peptides 

Synthetic oligonucleotides encoding each of the predicted PKC sites were 

designed and generated, as follows: 

 Ser669  5’ AATTCTACCAAATCATCTCGGAGCGAGCCGACTAAC 3’ (sense) 

           5’ TCGAGTTAGTCGGCTCGCTCCGAGATGATTTGGTAG 3’ (antisense) 

Ser772  5’ AATTCCGCCAGGACATCAGCTCCTTGCGGTTCGAGTAAC 3’ (sense) 

           5’  TCGAGTTACTCGAACCGCAAGGAGCTGATGTCCTGGCGG 3’ (antisense) 

Thr801  5’ AATTCGGAGTTGCTCGAACCACCAAGGGCAAGTAAC 3’ (sense) 
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           5’ TCGAGTTACTTGCCCTTGGTGGTTCGAGCAACTCCG 3’ (antisense) 

Ser832  5’ AATTCAGCGAATCTGAGAGCGGACGAGATATATAAC 3’ (sense) 

           5’ TCGAGTTATATATCTCGTCCGCTCTCAGATTCGCTG 3’ (antisense) 

Thr849 5’ AATTCGGCAGAAAGAAGACCCAGAAGGGAGACTAAC 3’ (sense) 

           5’ TCGAGTTAGTCTCCCTTCTGGGTCTTCTTTCTGCCG 3’ (antisense) 

Ser872 5’ AATTCGATCCCATTGGCTCCAAGCGCTCCTCCTAAC 3’ (sense) 

          5’  TCGAGTTAGGAGGAGCGCTTGGAGCCAATGGGATCG 3’ (antisense) 

Ser881  5’ AATTCATGCAACGTCATAGCCAGCGAAGCTTGTAAC 3’(sense) 

           5’ TCGAGTTACAAGCTTCGCTGGCTATGACGTTGCATG 3’(antisense) 

Ser884  5’ AATTCCGTCATAGCCAGCGAAGCTTGAGGAGGAAGTAAC 3’ (sense) 

           3’ TCGAGTTACTTCCTCCTCAAGCTTCGCTGGCTATGACGG 3’ (antisense) 

Ser881 and Ser884 were converted to Ala residues using the following synthetic 

oligonucleotides: 

S881A   5’ AATTCCGTCATGCCCAGCGAAGCTTGAGGAGGAAGTAAC 3’ (sense) 

              5’ TCGAGTTACTTCCTCCTCAAGCTTCGCTGGGCATGACGG 3’ (antisense) 

S884A  5’ AATTCCGTCATAGCCAGCGAGCCTTGAGGAGGAAGTAAC 3’ (sense) 

       5’ TCGAGTTACTTCCTCCTCAAGGCTCGCTGGCTATGACGG 3’(antisense) 

S881A, S884A   

              5’ AATTCCGTCATGCCCAGCGAGCCTTGAGGAGGAAGTAAC 3’ (sense) 

              3’ TCGAGTTACTTCCTCCTCAAGGCTCGCTGGGCATGACGG 3’ (antisense) 

35 ng of both the sense and complementary antisense oligonucleotides were first 

annealed in a buffer containing 20 mM Tris-HCl, pH 7.5, 2 mM DTT, 0.1 mM EDTA, 

and 50% glycerol, by incubating at 600 C for two minutes, and gradually cooling the 
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tubes to room temperature. The annealed oligonucleotides were ligated into EcoRI and 

XhoI sites of pGEX-4T1. Next, Escherichia coli HMS174 cells were transformed with 

pGEX-4T1 constructs. Overnight cultures (1.5 ml) from a single colony were used to 

inoculate 50 ml of Luria-Broth containing ampicillin (50μg/ml). Cultures were grown at 

37oC for 2-3 hours until the density of bacterial cultures (OD600) reached 0.6-0.8. 

Expression of fusion peptides was initiated by adding IPTG to a final concentration of 

0.1-1 mM).  Cultures were harvested 3 hours after induction, and bacterial pellets were 

collected by centrifugation. Bacterial lysates containing the fusion peptides were 

prepared by re-suspending pellets in Extraction Buffer (EB) (1X Phosphate Buffered 

Saline (PBS), 10 mM DTT, 10 mM EDTA, 1% Triton X-100, and a mixture of protease 

inhibitors containing 1 mM PMSF, 1 µg/µl leupeptin and pepstatin A, 5 µg/µl aprotinin, 

0.01 mM benzamide, 1 mM benzamidine). Re-suspended pellets were subjected to 20-30 

strokes on ice using a Polytron homogenizer, and incubated at 4°C with constant agitation 

for 1 h to extract GST-fusion peptides. The mixture was centrifuged at 12,000 rpm for 20 

min at 4°C, and the supernatant containing GST-fusion peptides was used for 

immobilizing the GST-fusion peptides on Glutathione beads. 

 

In vitro kinase assay 

In vitro kinase assays were performed as described in Chapter II. 

 

LC-MS analysis 

LC-MS was performed by the Vanderbilt Mass Spectrometry Research Center, as 

described previously (see Chapter II, Materials and Methods). 
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Fly stocks 

Fly stocks (Drosophila melanogaster) were maintained at 25°C in a 12/12-hr 

light/dark  cycle. The wild-type strain was Oregon-R and the mutant included  trpp301.  

 

P-element-mediated Germ-line Transformation 

Modified trp cDNA was subcloned into a pCaSpeR 4 vector that contains the 

Drosophila hsp70 promoter. The P-element construct and a transposase plasmid (“wings-

clipped”) were injected into y [1] w[67c23] embryos (CBRC transgenic Drosophila 

Core, Massachusetts General Hospital- Harvard Medical School). Crosses were carried 

out using standard techniques. Flies with the transgene integrated into the X   and second 

chromosomes were selected and made homozygous in the trpp301 background for further 

analysis. 

 

WB analysis 

WB was performed using alkaline phosphatase-conjugated secondary antibodies. 

Antigens were visualized upon staining with BCIP and NBT. Polyclonal antibodies 

against INAD and TRP were generated as described before (42, 137). 

 

ERG Recordings 

ERG recordings were performed as described in Chapter II. 
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Results 

 

Ser884 of TRP is phosphorylated in vitro by PKCα  

To gain better insight into the regulation of TRP by eye-PKC, we focused our 

attention on the previously unexamined intracellular C-terminal sequence of TRP. Using 

NetPhos and Prosite software, and the PKC consensus sequence motif (S/T)-X-(R/K), we 

identified eight putative PKC phosphorylation sites within the TRP sequence between 

amino acid residues 657 and 906. To determine whether any of these potential PKC sites 

are indeed PKC phosphorylation sites, we generated GST-fusion peptides spanning each 

of these putative PKC sites, and assessed phosphorylation by recombinant human PKCα. 

We found that the GST-TRP779-888 fusion peptide was phosphorylated by PKCα, whereas 

the negative control, GST, was not. The phosphorylation of other GST-TRP peptides was 

negligible (Figure 12).  

The sequence spanning TRP779-888 contains two putative PKC sites, Ser881 and 

Ser884. To investigate which of the two sites are targeted by PKCα, we used site-directed 

mutagenesis to substitute one or both of the PKC sites with Ala. We show that 

phosphorylation of the TRP779-888 peptide lacking Ser884 was reduced by 80%, whereas 

the phosphorylation of the peptide lacking Ser881 was decreased by only 26% (Figure 

13A). These data demonstrate that Ser884 of TRP can be phosphorylated in vitro by 

PKCα.  
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Is Ser884 of TRP phosphorylated by eye-PKC?  

Once we established that Ser884 is phosphorylated by PKCα, we explored whether 

eye-PKC could also phosphorylate Ser884. However, we were not able to test whether 

Ser884 is phosphorylated by eye-PKC in vitro because TRP779-888 lacks the PDZ-binding 

region required for the TRP-INAD interaction. In addition, as mentioned previously, the 

fusion proteins containing sequences spanning TRP657-1275 is not stable in E. coli. Thus, in 

both cases, the complex-dependent kinase assay could not be employed to evaluate the 

eye-PKC-dependent phosphorylation at Ser884 in TRP.  

We investigated whether Ser884 is phosphorylated in vivo by eye-PKC, by LC-

MS. The TRP channel was isolated from light-adapted wild-type flies by 

immunoprecipitation using anti-INAD antibodies. Proteins in the complex were resolved  

by SDS-PAGE, and stained with Colloidal Blue. The band corresponding to TRP was 

excised, digested in-gel using trypsin or chymotrypsin. This mixture of peptides was 

subjected to LC-MS, and resultant data were analyzed by the SEQUEST algorithm, as 

described in Chapter II. Unfortunately, the TRP sequence between amino acid residues 

879 and 887 was not identified by SEQUEST. One possible reason for this is that 

complete digestion of the sequence surrounding Ser884  (MQRHSQRS884 LRRKII), using 

either trypsin (cleaves at C-terminal of K or R) or chymotrypsin (theoretically, cleaves at 

C-terminal of  F, W, Y , but experimentally, also cleaves nonspecifically at K, R, L, , N, 

Q, C, H, S, and M), may yield peptides containing less than five amino acid residues that 

are beyond the limits of MS detection. To bypass this potential problem, we performed a 

partial digestion of TRP, for 15, 30 and 60 minutes; however, the region encompassing 

Ser884 was still not covered by SEQUEST, and therefore, its in vivo phosphorylation state 
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Figure 12. The peptide containing Ser884 is phosphorylated in vitro by recombinant 
PKCα. The TRP peptides were designed as described in Materials and Methods. These 
peptides contain putative PKC sites within the TRP C-terminal region upstream of amino 
acid 906. Putative PKC sites were identified using  NetPhos and Prosite software, and the 
PKC consensus motif  (S/T)-X-(L/K). control, GST, n = 3. 
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Figure 13. Ser884 in TRP is phosphorylated in vitro by PKCα. (A) Peptide sequences 
used in the in vitro kinase assay are shown above. The histogram, which indicates that 
Ser884 is phosphorylated in vitro by PKCα,  is shown below. The incorporated 
radioactivity was normalized to protein levels obtained by densitometry (Odyssey 
analysis software), and the relative phosphorylation was presented as mean ± S.D. (n  = 
3). (B) Ser884 (blue) of Drosophila TRP is conserved across insect species. Residues 
corresponding to Ser881 and Ser884 are denoted by the black rectangles. dm, Drosophila 
melanogaster, cv, Calliphora vicinia, ag, Anophelus gambiae, am, Apis meliphera. 
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remains elusive. Although we were unable to demonstrate the phosphorylation of Ser884 

by eye-PKC, we noticed that Ser884 is conserved across different insect species (Figure 

13B), suggesting a functional role for this residue. 

 

trpS884A   expressing the wild-type level of TRPS884A displays normal kinetics by ERG 
recordings 

To address the functional significance of phosphorylation of Ser884 in TRP by 

PKC, we generated transgenic flies expressing a modified TRP lacking this 

phosphorylation site. These flies, trpS884A, express a modified TRP in which Ser884 is 

substituted with Ala, which is under the control of the hsp70 promoter. The function of 

TRPS884A was explored in a trp null genetic background (trpp301). By Western blotting, we 

examined the expression of TRPS884A and observed that the basal expression of TRPS884A 

in young (1 day) and old (10 day) trpS884A flies was variable: some transgenic flies 

displayed wild-type levels of TRP, whereas others exhibited no detectable TRP (Figure 

14A).  

We characterized the functional consequence of the loss of PKC phosphorylation 

at Ser884 in TRP using ERG, an extracellular recording method in which the electrical 

signals from the whole eye are recorded. A normal ERG waveform consists of initial fast 

depolarization, maintained depolarization and fast repolarization components. 

Unexpectedly, the ERG phenotype of trpS884A was variable, ranging from wild-type to 

abnormal waveforms. Significantly, the visual phenotype correlated with the levels of 

TRP in transgenic flies: flies containing wild-type amounts of TRP displayed a wild-type 

ERG waveform, whereas flies without detectable levels of TRP exhibited an abnormal 

ERG waveform similar to that of mutant flies lacking TRP, trpp301 (Figure 14B).   
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Figure 14. trpS884A  expressing wild-type level of TRP displays normal response to 
light stimulation. (A)  Western blotting showing variable expression of TRP in young (1 
day) trpS884A flies (trpS884A(1)  and  trpS884A(2)). (B) ERG analysis. Shown are 
representative ERG recordings of wild-type (wt), trpp301, and two trpS884A flies whose 
Western blotting is shown in (A). A white light pulse of 10 s was used for stimulation. 
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Taken together, our preliminary biochemical and electrophysiological findings 

suggest that Ser884 of TRP does not play a role in regulation of the light response by eye-

PKC, since flies expressing TRPS884A exhibit a wild-type ERG phenotype. Further 

investigation is needed to provide an explanation for the variety of the biochemical and 

electrophysiological profiles of trpS884 flies.  

 

Discussion 

Deactivation of Drosophila visual signaling is a very fast process that likely 

involves multiple mechanisms. These mechanisms are Ca2+–dependent, since by 

increasing the extracellular Ca2+, the rate of deactivation is enhanced in isolated 

photoreceptor cells (32, 61). Remarkably, studies using fluorescent Ca2+ dyes show that 

the increase in intracellular Ca2+ is mediated primarily through light-activated TRP 

channels (62). The prime candidate for Ca2+-mediated negative feedback of the light 

response is eye-PKC, a conventional PKC isoform that is activated by Ca2+ and DAG, 

and expressed specifically in the Drosophila eye. Indeed, the role of eye-PKC in 

deactivation of the light response and light adaptation has been demonstrated previously: 

flies lacking eye-PKC (inaCp209) exhibited prolonged deactivation kinetics and defects in 

light adaptation (31, 142).  

Importantly, eye-PKC is tethered to the scaffolding protein INAD (54), which 

also binds the TRP channel (42). INAD interacts constitutively with the main players 

involved in visual signaling including NORPA, eye-PKC and the TRP Ca2+ channel (46, 

149). The anchoring of eye-PKC to INAD is mandatory for proper functioning of 

Drosophila visual signaling, since transgenic flies expressing eye-PKCI700D, in which the 
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interaction of the kinase with INAD is eliminated, exhibit a profound defect in 

deactivation, similar to that of mutant flies lacking eye-PKC (inaCp209 flies) (54). The 

interaction between TRP and INAD is also important for phototransduction: mutant flies 

expressing modified INAD, in which a missense mutation (M442K) abolishes the 

interaction between INAD and TRP, display defects in termination of the light response 

(137, 138).   

TRP was shown previously to be phosphorylated by eye-PKC  in vitro (75, 55). In 

Chapter II we demonstrated that phosphorylation of TRP by eye-PKC in vitro depends on 

the anchoring of both proteins to INAD. In addition, we showed that eye-PKC 

phosphorylates TRP at Ser982, and phosphorylation at this site is important for 

deactivation of the light response. Specifically, trpS982A flies exhibited defects in 

deactivation kinetics in response to bright light, whereas their response to low light 

intensities was normal (see Chapter II). In contrast, flies lacking eye-PKC (inaCp209) 

displayed more profound deactivation defects that manifested regardless of the light 

intensity stimulus used. These data indicate that eye-PKC mediates another event that 

contributes to deactivation of visual signaling, possibly by phosphorylating another 

amino acid in TRP. 

 In this study, we investigated whether there are any additional PKC sites in the 

previously unevaluated C-terminal sequence upstream of amino acid 906 of TRP. We 

generated GST fusion peptides spanning each putative PKC site, and demonstrated that 

Ser884 is heavily phosphorylated by recombinant PKCα. However, we were not able to 

test whether Ser884 is phosphorylated in vitro or in vivo by eye-PKC. We were also not 

able to assess the status of Ser884 phosphorylation in vivo by mass spectrometry, because 
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the spectra of peptides containing  Ser884  were not recovered. Interestingly, Ser884 is 

conserved among several insect TRPs (Figure 13B), suggesting a functional role for 

Ser884. Importantly, Ser884 is located close to the region that has been suggested to bind 

calmodulin (48).  

We generated transgenic flies expressing modified TRP in which Ser884 was 

replaced by Ala. Our preliminary data indicate that phosphorylation of Ser884 does not 

have an effect on regulation of the light response, since trpS884A flies display a normal 

ERG waveform in response to light. We also observed that some flies exhibited an 

abnormal ERG waveform lacking the maintained component (Figure 14B), however, this 

phenotype was apparently due to decreased levels of  TRPS884A. The variable TRP levels 

in trpS884A flies may be due either to differential expression of TRPS884A, or to age- or 

light-dependent protein degradation. Further investigation is needed to explore these 

possibilities. 

Preliminary results of this study did not support that Ser884 is a candidate for the 

eye-PKC-dependent regulation of TRP. Therefore, the chapter regarding eye-PKC-

mediated deactivation of Drosophila visual signaling remains open to investigation. Eye-

PKC has been shown previously to phosphorylate other proteins that are involved in 

visual transduction, such as INAD (56, 55), but the functional relevance of this 

phosphorylation has not been investigated. Recently, NORPA has been suggested to be a 

substrate of eye-PKC based on electrophysiological studies (150), however, direct 

evidence of NORPA phosphorylation by eye-PKC is lacking.  

Deactivation of visual signaling is a Ca2+-dependent process. Other mechanisms 

that may be responsible for this Ca2+-dependent process include 1) direct action of 
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calmodulin on the TRP channel, and 2) phosphorylation of TRP by Ca2+/ calmodulin-

dependent kinase II (CaMKII). Calmodulin is a small Ca2+ binding protein (148 amino 

acids) that acts as a primary sensor of intracellular Ca2+ changes. It can bind a maximum 

of four ions, and can exist as partially filled calmodulin or Ca2+-free apocalmodulin. 

Ca2+-bound calmodulin may have an effect on the activity of TRP, since TRP contains a 

putative calmodulin binding site, and has been shown to bind calmodulin in an overlay 

assay in the presence of Ca2+ (48). Moreover, CaMKII has been shown previously to 

phosphorylate Arr1 in Drosophila photoreceptors (71, 72). It is possible that CaMKII 

phosphorylates and regulates the TRP channel activity.  

 

Summary and Future directions 

Drosophila visual signaling is one of the fastest GPCR signaling pathways. 

Previously, we showed that eye-PKC phosphorylates the TRP Ca2+ channel at Ser982, and 

this phosphorylation is important for deactivation of the light response. However, flies 

lacking eye-PKC (inaCp209) exhibit a more severe defect in deactivation compared to 

trpS884A flies, suggesting that eye-PKC phosphorylates another site in TRP besides Ser982, 

or in another protein that plays a role in deactivation. In the current study we sought to 

determine if eye-PKC phosphorylates a second site in TRP, in addition to Ser982. Our in 

vitro studies indicated that Ser884, a conserved PKC site in TRP may be involved in the 

eye-PKC-dependent regulation of the visual response. However, studies using transgenic 

flies expressing TRPS884A failed to support the possibility that phosphorylation at Ser884 

of TRP plays a role in deactivation of the visual response. 
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CHAPTER IV 
 
 

EYE-PKC IS PHOSPHORYLATED IN VIVO AT THR671 
 
 

Introduction 

Drosophila eye-PKC is a photoreceptor-specific PKC isoform critical for light 

adaptation (142) and deactivation of the visual signaling (31). Eye-PKC binds to the 

second PDZ domain of INAD via its terminal PDZ-binding motif (54). A lack of 

interaction with INAD renders eye-PKC unable to regulate the visual signaling: 

transgenic flies expressing a modified eye-PKC (eye-PKCI700D) in which the interaction 

of the kinase with INAD is eliminated, exhibit a defect in deactivation, similar to that of 

flies lacking eye-PKC (inaCp209) (54). 

 PKC belongs to a family of serine/threonine-specific protein kinases that are 

implicated in diverse physiological and pathological processes (98, 151). As mentioned 

before, to date 12 different PKC isozymes have been identified in vertebrates. They are 

classified into three groups, according to the structure of the regulatory domain that 

consequently, determines the sensitivity to different cofactors. Conventional PKCs 

(α, βΙ, βΙΙ and γ) are  activated by Ca2+ and DAG, whereas novel PKCs (δ, ε, η/L and θ)  

respond only to DAG. In contrast, atypical PKCs (ζ and ι/λ ) are insensitive to both Ca2+ 

and DAG (101). Eye-PKC shares the highest sequence identity with human 

PKCα  (52%)  and   PKCβ1 (53%). Previously, it was shown that a conventional PKC 

gains catalytic competence by undergoing three ordered phosphorylations (101). The first 

phosphorylation event is mediated by phosphoinositide-dependent kinase-1 (PDK-1), 

which phosphorylates the activation loop of PKC. This phosphorylation is a prerequisite 
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for the following two phosphorylation events that are contributed by an intramolecular 

autophosphorylation mechanism. It has been suggested that phosphorylation is involved 

in the maturation process of the enzyme, because 80% of PKC is already present in the 

triply-phosphorylated form in unstimulated cells (101). 

Eye-PKC is a conventional PKC, however, little is known about how eye-PKC 

becomes catalytically competent. Here we sought to investigate the phosphorylation state 

of eye-PKC in vivo as a first step in understanding how eye-PKC gains its catalytic 

competence. By mass spectrometry, we show that eye-PKC is phosphorylated in vivo at 

Thr671. We identified the spectra of doubly and triply charged phosphorylated peptides 

encompassing Thr671. We also found the neutral ion losses for these peptides. Thr671 is an 

evolutionary conserved residue that corresponds to Thr638 and Thr643 of vertebrate 

PKCα  and PKCβ1, respectively. Phosphorylation of Thr638 in PKCα  and Thr643 in 

PKCβ1 has been shown previously to be important for attaining the catalytic competence 

of these PKCs. We also report that expression of catalytic competent eye-PKC in 

Spodoptera frugiperda  (Sf 9) insect cells.  

 

Materials and Methods 

 

LC-MS analysis 

 LC-MS was performed as described before, by the Vanderbilt Mass Spectrometry 

Research Center. Approximately 10 pmoles of eye-PKC were excised from SDS/PAGE 

gels for in-gel digestion with either trypsin or chymotrypsin (152). The resulted peptides 

and data were analyzed and interpreted, as described before (see Chapter II). 
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Expression of GST-fusion proteins in bacteria 

The region of INAD, containing the first two PDZ domains, and of TRP, 

containing residues 906-1275, were expressed as GST-fusion peptides in E. coli HMS174 

cells, as described before (see Chapter II and III).  

 

Expression of eye-PKC in insect cells 

  Expression of wild-type eye-PKC without or with a 6xHis tag (at either N- or C-

termini) was employed in baculovirus Sf9 cells (Invitrogen, La Jolla, CA). Transfection 

of Sf9 cells with recombinant pVL1393 constructs was performed using the 

BaculoGold™ transfection kit (BD Biosciences, San Diego, CA). Transfected cells were 

incubated for 4 days at 270 C, and the supernatant containing the initial virus production 

(P1 virus) was collected and used to infect more cells to amplify the virus. A high titer 

virus stock solution was obtained after three rounds of amplification or three passages 

(P3 virus). Sf9 cells were maintained as suspension cultures in TMN-FH medium (BD 

Biosciences) containing 10% fetal bovine serum (GibcoBRL, Grand Island, NY), 1% L-

Glutamine (Sigma, Saint Louis, MO) and 0.1% Pluturonic acid (Sigma).  To express eye-

PKC, cells were grown to 2 x 106 cells/ml in 400 ml suspension cultures and then 

infected with the virus. After incubation at 270 C for two days, the cells were harvested 

by centrifugation at 3,000g for 15 minutes, and the pellet was kept at -800 C for later use.  

The extract was made by resuspending the pellet in a buffer containing 50 mM Phosphate 

buffer, 50 mM KCl, 5 mM β-mercaptoethanol, 1% triton X-100, and a cocktail of 

protease inhibitors, homogenized in a hand-held homogenizer chilled on ice, and 
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incubated on a rocker, for 1 hr at 4oC. Then the extract was centrifuged at 3, 000g and 

4oC for 30 min, and the supernatant was used for the pull-down assay. 

 
Purification of 6xHis eye-PKC 
 
 The Sf9 cell lysates containing 6xHis tagged eye-PKC were incubated with Ni-

NTA Agarose beads for 1 hr at 4oC, on a rocking platform. Following a brief 

centrifugation, the supernatant was removed and the Ni-NTA Agarose beads containing 

the associated protein were washed five times with a buffer containing 50 mM Na-

phosphate, 300 mM NaCl, and 10% glycerol, pH 8.0. Then, the recombinant eye-PKC 

was eluted from beads using a buffer containing 50 mM Na-phosphate, 300 mM NaCl, 

10% glycerol, pH 6.0, and imidazole 0.5M. Purification of eye-PKC was assessed by 

SDS-PAGE and WB. 

 

Peptide phosphorylation 
 

Peptide phosphorylation was performed according to a method described before 

(153). Briefly, the synthetic peptide RRGRTGRGRRGIFR (EMD Biosciences, San 

Diego, CA) was incubated with either recombinant human PKCα or 6xHis tagged eye-

PKC, and [γ-32P]-ATP for 10 minutes, in the presence of PMA (1μM).  The probes were 

subjected to 20% SDS-PAGE. The incorporation of radioactivity was detected by 

exposing the gel to a film.  

 

Pull-down assay 

25 μl of immobilized Glutathione-agarose beads were washed with 1X PBS and 

incubated with ten μg of GST-INAD or GST-TRP906-1275 fusion proteins, or GST alone, 
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for 2 h at 4°C. After a brief centrifugation, beads were washed three times with extraction 

buffer or EB (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% Triton X-100 and a mixture of 

protease inhibitors), and incubated with 500 μl Sf9 insect cell extracts expressing eye-

PKC, for 1 hour at 4°C. After incubation, beads bound to GST fusion proteins and 

associated proteins (i.e. eye-PKC) were recovered and washed three times with EB and 

once with kinase reaction buffer (RB) (50 mM Tris-HCl, pH 8.0, 10 mM MgCl2, 5 mM 

2-mercaptoethanol, 0.1 mM DTT, 0.4 mM EGTA, 0.7 mM CaCl2). The presence of 

pulled-down eye-PKC was analyzed by Western blotting. 

 

In vitro kinase assay  

Immobilized GST-fusion proteins together with the pulled-down proteins from 

the Sf9 cell extract, were incubated at 30oC with 50 μl RB containing PMA (1 μM), 3 µCi 

of carrier-free [γ-32P]-ATP in the presence of 100 μM cold ATP. 2X SDS/PAGE loading 

buffer was added to terminate the kinase reactions. Samples were then subjected to 

SDS/PAGE (10%) followed by Western blotting or Coomassie Blue staining. Dried and 

stained gels were subjected to autoradiography to assess phosphorylation. 

 

WB analysis 

WB was performed as described before (see Chapter III).  

 

 

 

 77



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. Eye-PKC is phosphorylated in vivo at Thr671 as revealed by LC-MS 
analysis. (A) The sequence coverage of eye-PKC was approximately 48.3%. Red denotes 
tryptic and chymotryptic peptides identified by MS. (B) Low energy CID spectrum of the 
doubly charged phosphopeptide Glu667-Lys676. The spectrum was zoomed in 10-fold due 
to a very prominent neutral loss of ion. (C) Low energy CID spectrum of the doubly 
charged phosphopeptide Thr675-Phe678. This spectrum was also zoomed in 5-fold due to a 
prominent neutral loss of ion. The insets show the sequence of the phosphopeptide; black 
lines denote the identified cleavages. Fragment ions are labeled according to the accepted 
nomenclature. b-ions are coded blue, y-ions, red, and precursor ions, green. Spectra from 
the MS/MS/MS analysis of the neutral loss of phosphoric acid ions confirmed the 
sequence and the site of phosphorylation (data not shown).  
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Results 

 

Eye-PKC is phosphoryated in vivo at Thr671 

To gain insight into how eye-PKC becomes catalytically competent, we explored 

the phosphorylation status of eye-PKC in vivo, using LC-MS analysis. To isolate eye-

PKC from flies, we immunoprecipitated INAD complexes from light-adapted wild-type 

flies, using anti-INAD antibodies. The proteins in INAD complexes were separated by 

SDS-PAGE and visualized by Colloidal Blue staining. The 80 kDa protein band 

corresponding to eye-PKC was excised (Chapter II, Figure 9A), in-gel digested with 

trypsin or chymotrypsin, and the resulting peptide mixture was subjected to LC-MS. 

Fragments of peptides were analyzed and identified as previously described in Chapter II, 

by the SEQUEST algorithm (140), using a subset of Drosophila proteins from the non-

redundant database from NCBI or Uniref100. The amino acid sequence coverage of eye-

PKC was approximately 48% (Figure 15A). To examine the presence of phosphorylation 

sites in eye-PKC, we employed CID, which identified and confirmed the amino acid 

sequence of peptides EKTDLT671PTDK and TKEKTDLT671PTDKLF, and showed the 

presence of a phosphate group at Thr671 (Figures 15B and C ). Moreover, the neutral loss 

of phosphoric acid was also detected for both peptides (data not shown), further 

confirming that Thr671 is phosphorylated. Together these data demonstrate that eye-PKC 

is phosphorylated in vivo at Thr671.  
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Expression of eye-PKC in Sf9 cells 

To gain better insight into how eye-PKC is regulated, we expressed eye-PKC in 

Sf9 cells, which support the post-translational modifications required for eye-PKC 

activity. Insect cells were infected with recombinant baculovirus containing full length 

inaC cDNA, and the expression of eye-PKC was assessed by Western blotting (Figure 

16A). We show that the levels of eye-PKC reached a maximal level 48 hrs after the 

infection, but declined after 72 hrs (Figure 16B).  

Once we established that eye-PKC is expressed in insect cells, we investigated 

whether the recombinant eye-PKC is catalytically competent. First, we purified the 6xHis 

tagged eye-PKC from insect cells by Ni2+-agarose affinity chromatography (Figures 17A 

and B). Next, we tested whether this recombinant eye-PKC can phosphorylate a highly 

specific PKC peptide substrate, RRGRTGRGRRGIFR. As a positive control we used 

recombinant human PKCα. We found that PKCα phosphorylates the PKC substrate, 

whereas recombinant eye-PKC does not (Figure 17C). These results suggest that either 

the recombinant eye-PKC is not catalytically competent, or we are not using the right 

assay to test the catalytic competency of recombinant eye-PKC.   

 To avoid the impact of the His tag on eye-PKC function, we decided to express 

eye-PKC without any tag in Sf9 cells, and investigate its catalytically competence. In 

Drosophila, eye-PKC, TRP and INAD form a macromolecular complex (149). Eye-PKC 

binds to the second PDZ domain of  INAD (54), and has been shown to phosphorylate 

both INAD and TRP in vitro by immunocomplex kinase assays  (56, 75, 55). In the 

complex kinase assay, phosphorylation of TRP by eye-PKC depends on the presence of 

INAD, which anchors eye-PKC in close proximity to TRP (see Chapter II).  
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Figure 16. Generation of recombinant eye-PKC. (A) WB showing increasing 
expression of eye-PKC, following infection of insect cells with increasing amounts of P2 
virus. (B) WB revealing that the maximum expression of eye-PKC is attained 48 hr 
postinfection. +, positive control consisting of wild-type fly head extract. WB, Western 
blotting. 
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Figure 17. Recombinant eye-PKC does not phosphorylate a specific PKC substrate. 
(A) Silver stained SDS-PAGE gel showing purification of eye-PKC from insect cells. 
Purification was done as described in Materials and Methods. Lane 1, input, lanes 2, 3, 4, 
5, 6 flow-through, lane 7, eluted eye-PKC. (B) WB following purification of eye-PKC. 
+, positive control (two fly heads), lane 1, input, lanes 2, 3, 4, 5, 6 flow-through, lane 7, 
eluted eye-PKC. WB, Western blotting. (C) Autoradiogram showing that recombinant 
human PKC phosphorylates a highly specific PKC substrate (RRGRTGRGRRGIFR), 
whereas recombinant eye-PKC does not. 
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To further investigate whether recombinant eye-PKC is catalytically competent, 

we employed the complex-dependent kinase assay using GST-fusion proteins containing 

either the first two PDZ domains of INAD or TRP906-1275. Experimentally, immobilized 

GST-fusion proteins were incubated with Sf9 insect cell extract expressing eye-PKC, and 

phosphorylation was monitored. We observed that GST-INAD became phosphorylated 

by in vitro kinase assay, since it was able to isolate eye-PKC from Sf9 cell lysates, 

whereas no phosphorylation was detected upon incubation with extract prepared from 

uninfected Sf9 cells (Figures 18A and B). In contrast, GST-TRP906-1275 and GST were not 

phosphorylated following incubation with Sf9 cell extract expressing eye-PKC, due to 

inability of these two proteins to recover eye-PKC from the extract (Figure 18B). 

Together these results demonstrate that the heterologously expressed eye-PKC is 

catalytically competent to phosphorylate INAD. 

 

Discussion 

  An essential requirement for the catalytic competence of a PKC is its 

phosphorylation state (151). Studies on vertebrate PKCs have demonstrated that a PKC 

undergoes three ordered phosphorylations important for the enzyme maturation (154).  

The first phosphorylation, which is mediated by PDK-1, is the rate-limiting step, and 

occurs on a loop at the entrance to the catalytic site (activation loop) (155). 

Phosphorylation of the activation loop acts as a switch, and triggers the rapid 

autophosphorylation of the turn motif, which is a Pro-rich domain (156). Phosphorylation 

of the turn motif determines autophosphorylation of the hydrophobic site (157). The 

phosphorylation of the activation loop is required to initiate the autophosphorylation 
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Figure 18. Recombinant eye-PKC is catalytically competent. (A) Autoradiogram 
indicating that INAD (PDZ1 and 2) is phosphorylated by recombinant eye-PKC. (B) 
GST-INAD pulls-down eye-PKC from infected Sf9 cell extract, whereas GST and GST-
TRP, do not. The protein molecular standards are denoted on the left. 
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events within the C-terminal sequence, however, once these events are completed, 

phosphorylation of the activation loop is not required for its activity (158, 159). 

Phosphorylation of the turn motif was shown to be both necessary and sufficient for the 

activity of a mature PKC (143), whereas phosphorylation at the hydrophobic motif 

affects only the stability of the enzyme, but not its function (145). 

   We report that eye-PKC is phosphorylated at Thr671 in vivo. Thr671 is located in 

the catalytic domain of eye-PKC. Sequence alignment of catalytic domains of Drosophila 

eye-PKC, Calliphora eye-PKC and vertebrates PKCα  and βΙ discloses a high degree of 

conservation at Thr671, suggesting that Thr671 is important for the eye-PKC function 

(Figure 19). Thr671 is the equivalent of Thr638 in PKCα and Thr642 in PKCβI. Both Thr638 

and Thr642 have been indicated to be autophosphorylated, and are essential for these 

PKCs activity. Taken together, these data indicate that phosphorylation of Thr671 in eye-

PKC may be sufficient for the activity of eye-PKC in vivo. Further studies are needed to 

support this hypothesis. 

We also noticed a high degree of sequence conservation at Thr528 and Ser680 of 

eye-PKC respectively, with mammalian PKC. In mammalian PKC, these residues are 

known to be either phosphorylated by PDK-1, or autophosphorylated (Figure 19). 

However, the phosphorylation status of these two residues in eye-PKC in vivo is not 

known. 

We also generated a catalytically competent recombinant eye-PKC in Sf9 cells. 

The advantage of using insect cells to express a conventional PKC is due to the 

preservation of post-translational modifications that are required for attaining the 

catalytic competence of a PKC, as shown previously for recombinant rat PKCβII (143). 
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Initially, we expressed a His-tagged eye-PKC in Sf9 cells, but this recombinant eye-PKC 

was not able to phosphorylate a highly specific PKC substrate. This may be because the 

His tag interferes with the proper folding or functional properties of the enzyme, or 

because we have not used the right assay. To avoid any interference of the His tag with 

the activity of eye-PKC, we generated a recombinant eye-PKC without a tag. Moreover, 

we employed a modified eye-PKC assay to address the kinase activity. In Drosophila, 

eye-PKC is anchored to the INAD complex by direct binding to INAD. INAD also 

interacts with NORPA and the TRP calcium channel. Here, we show that recombinant 

eye-PKC is able to bind and phosphorylate a fusion protein containing the first and 

second PDZ domains of INAD. In contrast, this recombinant eye-PKC does not bind and 

phosphorylate the fusion protein containing TRP906-1275. This result is consistent with our 

previous data showing that phosphorylation of TRP requires INAD to anchor eye-PKC 

from fly head extracts (see Chapter II).  

 

Summary and Future directions 

In conclusion, here we report that eye-PKC is phosphorylated in vivo at Thr671, a 

highly conserved autophosphorylation site that may play a role in maturation of eye-

PKC. We also generated a catalytically competent eye-PKC, using the baculovirus 

infection of insect cells. To gain better insight into the regulation of eye-PKC by 

phosphorylation, more studies are needed. The availability of a heterologous expression 

system in which eye-PKC can be obtained and studied, is a first step in unveiling details 

regarding the regulation of eye-PKC. We also believe that generating and characterizing 
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functionally transgenic flies lacking the phosphorylation site at Thr671 may reveal 

important details regarding the regulation of eye-PKC in vivo.  
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Figure 19. Sequence alignment of catalytic domains of various PKCs. The three 
conserved phosphorylation sites known to be important for regulation of vertebrates 
PKCs are indicated in gray and yellow. Based on sequence homology, Thr671 of eye-PKC, 
shaded in yellow, is located within the turn motif of the enzyme. The ATP-binding 
domain, catalytic core, activation loop, turn and hydrophobic motifs are indicated. 
dmeye-PKC, Drosophila melanogaster eye-PKC, cveye-PKC, Calliphora vicinia eye-
PKC, hsPKCα, Homo sapiens PKCα, hsPKCβ1, Homo sapiens PKCβ1. The alignment 
was done using MultAlin software (http://prodes.toulouse.inra.fr/multalin/multalin.html). 
Highly conserved residues are denoted in red, low conserved residues are denoted in 
blue. 

http://prodes.toulouse.inra.fr/multalin/multalin.html
http://prodes.toulouse.inra.fr/multalin/multalin.html
http://prodes.toulouse.inra.fr/multalin/multalin.html
http://prodes.toulouse.inra.fr/multalin/multalin.html
http://prodes.toulouse.inra.fr/multalin/multalin.html
http://prodes.toulouse.inra.fr/multalin/multalin.html


90

 
 
 
 
 
 
 
 
 
 
 
 
                        ATP-binding         ATP-binding 
 dmeye-PKC 369  DFN FVKVIGKGSF GKVLLAERRG TDELYAVKVL RKDVIIQTDD MELPMNEKKI LALSGRPPFL VSMHSCFQTM DRLFFVMEYC KGGDLMYHMQ QYGRFKESVA IFYAVEVAIA 
 cveye-PKC 354  DFN FIKVLGKGSY GKILLAERRG TDELYAVKVL RKDVIIQTDD MELPMIEKSI LALPGKSPFL VSLHSCFQTM DRLFFVMEYC KGGDLLYHMQ QYGRFKESVA IFYAVEVALA 
    hsPKCα 338  DFN FLMVLGKGSF GKVMLADRKG TEELYAIKIL KKDVVIQDDD VECTMVEKRV LALLDKPPFL TQLHSCFQTV DRLYFVMEYV NGGDLMYHIQ QVGKFKEPQA VFYAAEISIG 
   hsPKCβ1 341  DFN FLMVLGKGSF GKVMLSERKG TDELYAVKIL KKDVVIQDDD VECTMVEKRV LALPGKPPFL TQLHSCFQTM DRLYFVMEYV NGGDLMYHIQ QVGRFKEPHA VFYAAEIAIG 
 
                         Catalytic Core                      Activation Loop                                                                          
 dmeye-PKC 482  LFFLHERDII YRDLKLDNIL LDGEGHVKLV DFGLSKEGVT ERQTTRTFCG TPNYMAPEIV SYDPYSIAAD WWSFGVLLFE FMAGQAPFEG DDETTVFRNI KDKKAVFPKH  
 cveye-PKC 467  LFFLHERRII YRDLKLDNIL LDVEGHVKLT DFGLSKDNVA EGDTTKTFCG TSSYMAPEII MCEPYNHTVD WWAYGVFLYE MMAGQQPFEG DDDSTIFKNT KEKKAVFPKH  
    hsPKCα 451  LFFLHKRGII YRDLKLDNVM LDSEGHIKIA DFGMCKEHMM DGVTTRTFCG TPDYIAPEII AYQPYGKSVD WWAYGVLLYE MLAGQPPFDG EDEDELFQSI MEHNVSYPKS  
   hsPKCβ1 454  LFFLQSKGII YRDLKLDNVM LDSEGHIKIA DFGMCKENIW DGVTTKTFCG TPDYIAPEII AYQPYGKSVD WWAFGVLLYE MLAGQAPFEG EDEDELFQSI MEHNVAYPKS             
                                                                                                  
                                                                                                   Turn Motif       Hydrophobic motif 
 dmeye-PKC 592  FSVEAMDIIT SFLTKKPNNR LGAGRYARQE ITTHPFFRNV DWDKAEACE- MEPPIKPMIK HRKDISNFDD AFTKEKTDLT PTDKLFMMNL DQNDFIGFSF MNPEFITII       
 cveye-PKC 577  FTQESMDIIT SFLAKKPNNR LGAGRYARTE IQTHPFYQGV DWEAAEAVDW IDPPIVPHIK HRKDICNFDQ NFTKEKTDLT PTDKLFMMNL DQNDFIGFSY MNPEFITMI       
    hsPKCα 561  LSKEAVSICK GLMTKHPAKR LGCGPEGERD VREHAFFRRI DWEKLENRE- IQPPFKPKVC GK-GAENFDK FFTRGQPVLT PPDQLVIANI DQSDFEGFSY VNPQFVHPILQSAV 
   hsPKCβ1 564  MSKEAVAICK GLMTKHPGKR LGCGPEGERD IKEHAFFRYI DWEKLERKE- IQPPYKPKAR DKRDTSNFDK EFTRQPVELT PTDKLFIMNL DQNEFAGFSY TNPEFVINV       

 

 

 

 

 
 



CHAPTER V 
 
 

SUMMARY AND FUTURE DIRECTIONS 
 
 
 The wealth of information regarding the involvement of TRP channels in different 

physiological and pathological processes prompt the development of various strategies to 

intervene and study the function of TRP channels. One of these strategies is to study TRP 

in Drosophila (13). Drosophila is an attractive model system for understanding basic 

molecular mechanisms that underlie many biological processes. Particularly, Drosophila 

visual signaling is a G-protein coupled signaling pathway that shares similarities with the 

phototransduction pathway in vertebrates pRGCs. Mammalian pRGC detects irradiance   

(the environmental brightness) (5). Therefore, understanding Drosophila visual signaling 

can give us insight into not only how other TRP channels are regulated, but also the 

mechanism of pRGCs visual signaling. 

 In Drosophila photoreceptors, eye-PKC is crucial for deactivation of the light 

response (53). However, the molecular details remained elusive. This thesis describes the 

identification of an eye-PKC phosphorylation site in TRP, Ser982, which is important for 

deactivation of the visual signaling. We show that transgenic flies lacking this 

phosphorylation sites exhibit defects in deactivation in response to bright light (see 

Chapter II). We also show that phosphorylation of the TRP channel by eye-PKC depends 

on the scaffolding protein INAD, which positions eye-PKC in close proximity to TRP 

(Chapter II). To further characterize how phosphorylation of TRP at Ser982 affects the 

TRP function, intracellular recordings can be employed. In addition, one can generate 

transgenic flies in which the phosphorylation state at Ser982 is mimicked by Asp (trpS982D) 
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substitution, and assess these flies electrophysiologically.  

In Chapter III, we investigated another potential phosphorylation site at Ser884. 

Our preliminary data indicate that Ser884 does not play a role in regulation of the light 

response, since transgenic flies lacking this phosphorylation site exhibit normal response 

to light stimulation. Expression of variable levels of TRP in these transgenic flies is 

intriguing, and awaits further investigation. This can be presumably addressed by 

exploring whether this is an age- or light-dependent process, or whether it is due to 

variable expression of the modified TRP. If this is an age- or light dependent process, 

phosphorylation at Ser884 may regulate the stability of TRP. The TRP-INAD interaction 

has been reported to be important for retaining TRP within rhabdomeres, and also for its 

protein stability (149). Therefore, to investigate whether a lack of phosphorylation at 

Ser884 in trpS884A disrupts the interaction between INAD and TRP, immunoprecipitation 

studies can be employed. 

Finally, in Chapter IV, we show that eye-PKC is phosphorylated in vivo at Thr671. 

Thr671 is present within the turn motif of eye-PKC, and is evolutionary conserved. Thr671  

corresponds to Thr638 and Thr643 of human PKCα and PKCβI, respectively, which have 

been indicated previously to be essential for attaining the catalytic competence of these 

two enzymes (101, 154). To investigate the functional significance of eye-PKC 

phosphorylation at Thr671, one can generate transgenic flies either lacking this 

phosphorylation site, or mimicking the phosphorylation state at Thr671, and characterize 

these flies biochemically and electrophysiologically. In Chapter IV we also report 

generation of a recombinant eye-PKC in Sf9 cells. The availability of a heterologous 
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expression system in which eye-PKC can be obtained and studied will provide useful 

information concerning regulation of eye-PKC by phosphorylation.  

 

In conclusion, we have identified an eye-PKC phosphorylation site in TRP, at 

Ser982. Our work demonstrates that phosphorylation of Ser982 in TRP by eye-PKC is 

important for deactivation of the Drosophila visual signaling. We also found that eye-

PKC is phosphorylated in vivo at Thr671. The functional significance of phosphorylation 

of eye-PKC at this site requires further investigations.  
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	Preparation of fly head extracts. Approximately 100l young wild-type, inaD1 or InaDp215 fly heads were homogenized with 1 ml of extraction buffer or EB (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% Triton X-100 and a mixture of protease inhibitors). Head homogenates were incubated at 4 °C with constant agitation for 1 h. The mixture was then centrifuged for 10 min (12,000 X g), and the supernatant was used for the in vitro complex-dependent kinase assay. Protein concentrations were determined by BCA (Pierce).
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