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1. INTRODUCTION 

 

1.1 OVERVIEW 

The overarching theme of this dissertation is the application of isotopically nonstationary 

13C metabolic flux analysis (INST-MFA) to photosynthetic organisms: cyanobacteria and 

plants. The food, energy, and environmental problems we are currently facing are driving 

the development of strategies to enhance the efficiency of photosynthetic systems. 

Cyanobacteria in particular have recently garnered attention as a renewable source for 

production of fuels and chemicals directly from CO2 [1]. Efforts to improve plant 

productivity are also continually increasing, as this leads to more food for a growing 

world population and can serve as a sustainable source of renewable feedstocks to 

supplant petroleum. Additionally, there is growing interest in the study of plants as host 

factories for the production of compounds with significant commercial value, such as 

pharmaceuticals, nutraceuticals, dyes, fragrances, flavors, and pesticides [2]. Therefore, 

there is a critical need to assess metabolic capabilities of these photosynthetic systems so 

that strains optimized for the production of fuels, chemicals, and/or biomass can be 

developed.  

 

Metabolic flux analysis (MFA) is a well-established method used to quantify intracellular 

metabolic fluxes. These metabolic fluxes constitute the physiological phenotype of 

biological systems [3]. As such, the in vivo measurement of intracellular fluxes provides 

invaluable information for understanding cellular regulation in response to genetic 
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interventions or changed environmental conditions [4]. Metabolic engineers have 

employed flux analysis to identify knockout, overexpression, and/or media optimization 

targets, thereby increasing product formation and enhancing metabolic efficiency of host 

cell factories. However, only INST-MFA can be applied to estimate carbon fluxes in 

autotrophic systems, which consume only single-carbon substrates (e.g., CO2) [5,6]. This 

task is impossible with stationary 13C MFA due to the fact that all carbon atoms in the 

system are derived from the same source and therefore will become uniformly labeled at 

steady state regardless of the flux distribution. As a result, prior 13C MFA studies of 

plants and cyanobacteria have been limited to heterotrophic or mixotrophic growth 

conditions, typically with sugar as the major carbon source [7,8]. Currently, only a few 

comprehensive INST-MFA experiments have been reported, and the majority of these 

studies have been applied to hosts other than cyanobacteria and plants. This dissertation 

discusses the results of research advancing the application of INST-MFA to 

photoautotrophic cyanobacterial and plant systems in the following chapters: 

 

• Chapter 2 provides an in-depth background into the mathematical principles 

behind MFA, and more specifically INST-MFA. Also reviewed are recent studies 

involving the application of flux analysis to photoautotrophs.  

 

• Chapter 3 applies INST-MFA to two cyanobacterial strains of Synechococcus 

elongatus PC 7942: a wild-type strain and a strain engineered to produce 

isobutyraldehyde. The resulting flux maps point to a bottleneck at the pyruvate 

node and a potential pyruvate kinase (PK) bypass pathway, leading to actionable 
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results in the form of targets for enzyme overexpression. The parental 

isobutyraldehyde-producing strain was used to generate single-, double-, and 

triple- overexpression strains involving PK or genes in the PK bypass pathway. 

Efforts to increase isobutyraldehyde productivity through rationally selected 

enzyme overexpression targets were successful, making this study a useful 

demonstration of how INST-MFA can be used to close the ‘design-build-test-

learn’ metabolic engineering cycle.  

 

• Chapter 4 describes further application of INST-MFA to a more complex 

photoautotrophic metabolic network in the leaves of the C3 plant Arabidopsis 

thaliana. This was the first application of INST-MFA to a terrestrial plant system 

in planta. Plant leaf metabolism was quantified under two different acclimated 

photoautotrophic conditions of low light (200 µmol m-2 s-1) and high light (500 

µmol m-2 s-1). The resulting comprehensive flux maps of central carbon 

metabolism quantitatively describe alterations in carbon partitioning by 

acclimation and light conditions. This study paves the way for future isotope 

labeling experiments and flux analysis in plant leaves to examine environmental 

and genetic perturbations on photosynthetic carbon fluxes.  

 

• Chapter 5 extends the application of the INST-MFA approach to plant leaves 

described in Chapter 4 and examines the differences in three transgenic lines of 

Arabidopsis thaliana engineered with a bacterial carbonic anhydrase 
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overexpression construct to enhance photosynthetic carbon fixation. As a control, 

we also quantified fluxes in wild-type Arabidopsis thaliana acclimated from low 

to high CO2 conditions (330 ppm to 800 ppm). The flux analysis revealed that 

plants grown under high CO2 conditions showed an overall increase in 

carboxylation, with a decrease in photorespiration as expected. However, 

although the transgenic lines also showed increases in carboxylation, there was an 

unexpected increase in photorespiration. Additionally, simulation studies 

performed as a result of this unexpected increase in photorespiration led to further 

scrutiny of the measured mass fragments used for INST-MFA. These simulation 

studies showed that ratios of individual mass isotopomers of ribulose-1,5-

bisphosphate (RUBP) could potentially be used in future studies as a labeling 

signature to qualitatively describe low and high photorespiratory fluxes prior to 

applying comprehensive flux analysis. Overall, this study shows that it is crucial 

to quantify global impacts of genetic perturbations on metabolic pathways in 

planta to guide further rounds of plant metabolic engineering. 

 

• Chapter 6 concludes the dissertation with a summary of the main findings and 

presents ideas for future work. 
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2. BACKGROUND AND LITERATURE REVIEW 

 

Methods in Molecular Biology (2013). 985:367–390. 

Methods in Molecular Biology (2014). 1090:181-210. 

Current Opinion in Biotechnology (2015). 38:50-56. 

 

2.1 PHOTOAUTOTROPHIC METABOLISM 

Photoautotrophic metabolism is the principal process by which photosynthetic organisms, 

such as algae, cyanobacteria, and plants, use solar energy to incorporate inorganic carbon 

dioxide into complex organic molecules. These complex molecules represent the main 

source of all food on earth, as well as raw materials for bio-based production of 

commodity and specialty chemicals, like fuels and pharmaceuticals, respectively. There 

have been six different pathways of carbon fixation identified in nature, and the Calvin-

Benson-Bassham (CBB) cycle accounts for more than 99% of the global primary biomass 

production [9,10]. However, less than 1% of available solar energy flux is typically 

converted into chemical energy by photosynthetic processes. Therefore, developing 

strategies to enhance the efficiency of photosynthetic carbon fixation is a key step toward 

solving food, energy and environmental challenges of the future [10].  

 

To meet the demands of biotechnology, metabolic engineering strategies have been 

employed to develop photosynthetic host organisms that produce valuable products more 
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efficiently. Metabolic engineering involves the introduction or modification of specific 

biochemical reactions with the use of recombinant DNA technology [11]. Typically, the 

manipulations made to the host strains impact the metabolic flux distributions in the 

system. In order to gain a better understanding of the impact of these manipulations, 

systems-level metabolic flux characterization approaches have been developed. These 

include in silico approaches, such as kinetic and stoichiometric modeling, which can 

simulate metabolic network behavior and predict genes that can be engineered to improve 

host cell performance. However, to fully quantify intracellular metabolic fluxes, 

experimental approaches such as 13C metabolic flux analysis (MFA), isotopically 

nonstationary 13C MFA (INST-MFA), and kinetic flux profiling (KFP) [12] have been 

used with isotope labeling experiments (ILEs). These experimental approaches have all 

been applied to quantify photoautotrophic metabolism and are discussed in further detail 

in Section 2.4. Much of the work in this dissertation is spent applying MFA, specifically 

INST-MFA, to photoautotrophic systems so that we can gain fundamental insights into 

how these systems respond to genetic or environmental perturbations, which can be used 

to guide further rounds of metabolic engineering. 

 

2.2 METABOLIC FLUX ANALYSIS 

13C metabolic flux analysis (MFA) is a powerful approach for quantifying central carbon 

metabolism based upon a combination of extracellular flux measurements and 

intracellular isotope labeling measurements. The ability to quantitatively map 

intracellular carbon fluxes using isotope labeling experiments (ILEs) and MFA is critical 

for identifying pathway bottlenecks and elucidating network regulation in biological 
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systems, especially those that have been engineered to alter their native metabolic 

capacities [13,14].  

 

MFA experiments involve feeding isotopically labeled substrates to cells, tissues, or 

whole organisms and subsequently measuring patterns of isotope redistribution in 

metabolic products. Typically, MFA relies on the assumption of both metabolic and 

isotopic steady state. Achieving this situation experimentally involves (1) equilibrating 

the system in a stable metabolic state, (2) introducing an isotopically labeled substrate 

without perturbing the metabolic steady state, (3) allowing the system to establish a new 

isotopic steady state that is dictated by the underlying metabolic fluxes, and (4) 

measuring isotopic labeling in the fully equilibrated system as shown in Figure 2.1. 
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\  

Figure 2.1. Comparison between steady-state and nonstationary MFA 
methodologies.  

The relative speed of metabolic and isotopic dynamics will influence the type of MFA 

study performed. The left panel shows the conventional MFA approach under both 

metabolic and isotopic steady state. The right panel shows INST-MFA at metabolic 

steady state, but not isotopic steady state. 

 

The patterns of isotope incorporation in intracellular and extracellular metabolites are 

measured using either mass spectrometry (MS) or nuclear magnetic resonance 

spectrometry (NMR). Although NMR is useful because it provides positional labeling 

information, these instruments are not as widely available as MS instruments, have a 

reduced sensitivity, and longer analysis time [15]. MS, on the other hand, provides a 

highly sensitive and accurate method for quantifying isotope incorporation, and much of 

the work with MFA in the past decade has shifted to MS techniques. The pathways of 

interest will dictate the measured metabolites and the types of MS analysis to be 

performed. Generally, amino acids, organic acids, fatty acids, and sugars can be analyzed 
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using GC-MS following chemical derivatization. Sugar phosphates and acyl-CoA 

molecules, on the other hand, are typically analyzed via LC-MS or LC-MS/MS, to avoid 

thermal degradation of these nonvolatile analytes. MS data provides mass isotopomer 

distributions (MIDs) of fragment ions associated with target analytes of interest, which 

can be used with extracellular flux measurements to quantify intracellular metabolism.  

 

2.3 ISOTOPICALLY NONSTATIONARY MFA (INST-MFA) 

Although 13C is the preferred isotope tracer for quantifying central carbon metabolism in 

heterotrophic systems, autotrophic organisms assimilate carbon solely from CO2 and 

therefore produce a uniform steady-state 13C-labeling pattern that is insensitive to fluxes 

(Figure 2.2). This makes conventional steady-state 13C-MFA ineffective for quantifying 

autotrophic metabolism [5,16]. However, transient measurements of isotope 

incorporation following a step change from natural CO2 to 13CO2 can be used to 

determine fluxes by application of INST-MFA. Furthermore, INST-MFA has the ability 

to quantify metabolite pool sizes based solely on their labeling dynamics [17,18], thus 

providing a potential framework for integrating metabolomic datasets with MFA [19]. 

Despite its advantages, however, the increased complexity of INST-MFA introduces 

additional difficulties at both the computational and experimental levels that must be 

addressed. First, the solution of large-scale ordinary differential equation (ODE) models 

poses a substantial challenge to efficiently simulate transient isotope labeling 

experiments. The application of elementary metabolite unit (EMU) decomposition to 

INST-MFA has greatly reduced this computational burden and has enabled determination 

of fluxes and accurate confidence intervals in biologically relevant networks [20,21].  
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Figure 2.2. Example of carbon labeling in an autotrophic system. 

Following the introduction of 13CO2 to the Calvin cycle, intracellular metabolites become 

gradually labeled over time. Once steady-state labeling is achieved, all metabolites are 

uniformly 13C-labeled irrespective of fluxes and intracellular pool sizes. Labeling patterns 

observed during the isotopically transient period, however, can be computationally 

analyzed to determine fluxes. 

 

Second, the requirement for isotopically nonstationary measurements adds further 

complexity to experimental design, including selection of sampling time points and 

metabolite concentration measurements. Finally, rapid sampling and metabolite 

quenching must be applied in order to obtain meaningful isotopomer data from rapidly 

labeled intracellular metabolites. The field of metabolomics has witnessed considerable 
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progress in this area, and some of these measurement techniques have already been 

successfully adapted for isotopomer studies in autotrophs [22]. 

 

A flow chart of a typical INST-MFA process is shown in Figure 2.3 [23]. INST-MFA is 

concerned with solving an “inverse problem” where fluxes and pool sizes are estimated 

from measured labeling patterns and extracellular rates through the means of an iterative 

least-squares fitting procedure. At each iteration, a “forward problem” is solved where an 

isotopomer model is used to simulate labeling measurements for a given metabolic 

network and a given set of parameter estimates. The discrepancy between the simulated 

and measured labeling patterns is then assessed, and the parameter estimates are updated 

to achieve an improving fit. Once convergence to the best-fit solution is obtained, the 

procedure terminates and the optimal flux and pool size estimates are returned. Our lab 

utilizes the INCA (Isotopomer Network Compartmental Analysis) software package, 

which runs through the MATLAB computing environment, to automate the 

computational workflow of INST-MFA [24]. 
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Figure 2.3. Flowchart showing the overall schematic of 13C INST-MFA. 

Following the labeling experiment and MS analysis of the measured metabolites, 

computational analysis of the dynamic changes in isotope labeling patterns can be used to 

estimate metabolic pathway fluxes and pool sizes. This involves solving an inverse 

problem whereby the vectors of flux (v) and pool size (c) parameters are iteratively 

adjusted until the mismatch between simulated and experimentally measured data sets is 

minimized. 

 

2.3.1 BUILDING ISOTOPOMER MODELS FOR INST-MFA 

In order to perform INST-MFA, it is necessary to reconstruct a metabolic network from 

biochemical literature and the annotated genome of the organism of interest. This 

network must prescribe both (i) the stoichiometry of all enzymatic reactions under 

consideration and (ii) atom transitions for each reaction. Reactions must also be classified 
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as either reversible or irreversible. When constructing a model, it is important to strive for 

parsimony in describing the available experimental measurements. The model must be 

sophisticated enough to reconcile all available experimental measurements while 

simultaneously avoiding the unnecessary complexity and redundancy that leads to 

overfitting of parameters. Fortunately, there are statistical tests to assess goodness-of-fit 

and to detect loss of precision due to overfitting (presented in Section 2.3.2). Overly 

sophisticated models can be reduced by (i) combining linear pathways into a single 

reaction, (ii) combining isoenzymes or parallel pathways that catalyze identical 

conversions, and (iii) omitting irrelevant pathways based on biological knowledge, such 

as repression of pathways under certain conditions [25]. Additionally, if the cells are 

growing at a significant rate, all fluxes toward biomass production can be lumped into a 

single biosynthetic reaction that summarizes the withdrawal of all necessary growth 

precursors. Cofactors that contribute to energy balancing (e.g., ATP) or redox balancing 

(e.g., NADH or NADPH) are usually omitted from the model to ensure that these 

difficult-to-quantify balances do not unduly bias the resulting flux estimates [25].  

 

Construction of a stoichiometric model can be further complicated by: (i) 

compartmentalization of metabolites, (ii) reaction reversibility, and (iii) tracer dilution 

from unlabeled sources. First, as a result of subcellular compartmentalization in 

eukaryotes, the same biochemical reactions can occur simultaneously in different 

organelles, giving rise to multiple distinct metabolic pools that must be treated as separate 

nodes in the isotopomer model. Transport of metabolites between different compartments 

also needs to be defined in the model (e.g., exchange of pyruvate between the cytosol and 
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mitochondria). Because each metabolite measurement obtained by MS analysis 

represents an aggregation of these different metabolic pools, pseudo-reactions can be 

introduced into the model to represent the contribution from each compartment. 

However, this also introduces additional parameters into the model that must be 

determined from the isotopomer measurements. Second, reaction reversibility is another 

crucial consideration, since exchange fluxes (defined as the minimum of the forward and 

reverse reaction rates) affect metabolite labeling patterns in addition to net fluxes 

(defined as the difference between forward and reverse reaction rates). While all enzymes 

are reversible to some extent, many can be classified as practically unidirectional as a 

result of thermodynamic and kinetic considerations (e.g., pyruvate kinase in glycolysis). 

Third, enrichment of the tracer can also be diluted by unlabeled sources, such as CO2 

present in air, unlabeled carbon sources in complex culture media, or even breakdown of 

macromolecular biomass components. The inclusion of these unlabeled sources in the 

model can be critical to obtaining a statistically acceptable description of actual 

experimental data sets. 

 

2.3.2 MATHEMATICAL PRINCIPLES OF INST-MFA 

When constructing the stoichiometric model, fluxes are required to satisfy the constraint 

𝑆 ∙ 𝑣 = 0 
 

(2.1) 

where S is the stoichiometric matrix and v is the flux vector. In Equation 2.1, the 

stoichiometric matrix S is a k × j matrix, with k metabolites and j fluxes. Reversible 
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reactions are modeled as separate forward and backward fluxes, so that all fluxes are non-

negative. Section 2.6 shows a simple network model example, which illustrates the 

process of setting up the stoichiometric matrix as well as subsequent steps discussed 

below. 

 

Once the stoichiometric matrix S is constructed, the free fluxes of the network, as well as 

the null space matrix need to be identified. From a computational standpoint, it is more 

convenient to work with “free” fluxes, rather than the “true” network fluxes [26,27]. Free 

fluxes can be obtained from the general solution to Equation (2.1 

𝑣 = 𝑁 ∙ 𝑢 (2.2) 

where N is the null space matrix of S and u is the vector of free fluxes. There are many 

methods to calculate a valid null space matrix, and generally there is not a unique null 

space matrix for any given stoichiometric matrix [28]. The size of the null space matrix 

and the number of independent flux variables are determined by the rank of the 

stoichiometric matrix. With r = rank(S) ≤ k, the null space matrix is a j × j – r matrix and 

the number of free fluxes is j – r. 

 

In INST-MFA, the isotopomer balances are described by a system of ordinary differential 

equations, which is significantly more difficult to solve than the algebraic systems that 

describe steady-state labeling. Due to this additional difficulty, algorithms for solving the 

forward problem of INST-MFA need to be carefully designed so that computational 

expense does not become prohibitive. The most efficient approach involves first 
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decomposing the isotopomer network into EMUs [20,21]. By only solving for the 

isotopomer distributions of EMUs that contribute to the available measurements, this 

approach minimizes the number of ODEs that need to be integrated and thereby enables 

the forward problem to be solved thousands of times faster than previous methods. This, 

in turn, increases the efficiency of solving the inverse problem of INST-MFA because 

each iteration of the parameter estimation procedure can be completed in minimal time.  

An EMU is defined as a distinct subset of a metabolite’s atoms and can exist in a variety 

of mass states depending on its isotopic composition. In its lowest mass state, an EMU is 

referred to as M0, while an EMU that contains one additional atomic mass unit (e.g., as a 

result of a 13C atom in place of 12C atom) is referred to as M1, with higher mass states 

described accordingly. An MID is a vector that contains the fractional abundance of each 

mass state of an EMU. To solve the forward problem of simulating metabolite labeling in 

INST-MFA, the isotopomer network is first systematically searched to enumerate all 

EMUs that contribute to measurable MS fragment ions [21]. The main advantage of the 

EMU decomposition is that metabolites are never broken into smaller pieces than is 

strictly required to describe the labeling state of the measured metabolites (Section 2.6). 

 

The EMU reactions identified from network decomposition form the new basis for 

generating system equations. In INST-MFA, these EMUs are grouped into mutually 

dependent blocks using a Dulmage-Mendelsohn decomposition [29,30]. Therefore, by 

definition, all EMUs within a particular block have the same number of atoms and must 
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be solved simultaneously and not sequentially. The decoupled blocks can be arranged 

into a cascaded system of ODEs with the following form 

𝐂! ∙
d𝐗!
d𝑡 = 𝐀! ∙ 𝐗! + 𝐁! ∙ 𝐘! (2.3) 

Level n of the cascade represents the network of EMUs within the nth block. The rows of 

the state matrix 𝐗! correspond to MIDs of EMUs within the nth block. The input matrix 

𝐘! is analogous but with rows that are MIDs of EMUs that are previously calculated 

inputs to the nth block (or MIDs of source EMUs that are unbalanced). The concentration 

matrix 𝐂! is a diagonal matrix whose elements are pool sizes corresponding to EMUs 

represented in 𝐗!. The system matrices 𝐀! and 𝐁! describe the network as follows 

𝐀! 𝑖, 𝑗 = −sum  of  fluxes  consuming  𝑖th  EMU  in  𝐗!  𝑖 = 𝑗
flux  to  𝑖th  EMU  in  𝐗!  from  𝑗th  EMU  in  𝐗!  𝑖 ≠ 𝑗 (2.4) 

𝐁! 𝑖, 𝑗 = flux  to  𝑖th  EMU  in  𝐗!  from  𝑗th  EMU  in  𝐘! (2.5) 

The system matrices 𝐀! and 𝐁! can be evaluated directly once the “true” flux vector (v) 

has been determined from the free fluxes (u) and the null space matrix (N). 

 

Solving the forward problem enables calculation of isotopomer distributions for each 

metabolite of interest, based on the initial flux and pool size estimates. The simulated 

MIDs can be plotted versus time and compared to the measured data. Figure 2.4 shows an 

example of the labeling dynamics of several metabolites in an autotrophic system using 

13C-labeled bicarbonate as the tracer. The relative abundances of unlabeled mass 

isotopomers (M0) dropped at the start of the labeling period and were replaced by M1, 

M2, and higher mass isotopomers following the introduction of tracer. Additionally, it is 



 18 

also informative to plot the average enrichments of various MS fragment ions as shown 

in Figure 2.5. The average 13C enrichment is calculated using the following expression: 

1
𝑁 𝑀𝑖×𝑖

!

!!!
 (2.6) 

where N is the number of carbon atoms in the metabolite and Mi is the fractional 

abundance of the ith mass isotopomer. 

 

Estimation of both the unknown fluxes and pool sizes using INST-MFA is accomplished 

by finding a best-fit solution to the inverse problem. Efficient solution of this problem 

typically relies on optimization algorithms that choose the search direction based on the 

gradient of the least-squares objective function (Equation (2.8)) with respect to all 

adjustable parameters. The most accurate and least expensive way to obtain the required 

gradient information is to integrate a system of sensitivity equations whose solution 

describes how the calculated MIDs vary in response to changes in the model parameters. 

Implicit differentiation of Equation (2.3) yields the following sensitivity equation: 

d
d𝑡
𝜕𝐗!
𝜕𝐩 = 𝐂!!! ∙ 𝐀! ∙

𝜕𝐗!
𝜕𝐩 +

𝜕 𝐂!!! ∙ 𝐀!
𝜕𝐩 ∙ 𝐗! + 𝐂!!! ∙ 𝐁! ∙

𝜕𝐘!
𝜕𝐩 +

𝜕 𝐂!!! ∙ 𝐁!
𝜕𝐩 ∙ 𝐘! (2.7) 

where p is the vector of adjustable flux and pool size parameters. This system of 

equations can be solved in tandem with those of Equation (2.3), and the time-dependent 

sensitivities can be used to evaluate the objective function gradient during each iteration 

of the INST-MFA inverse problem. Furthermore, if approximate values of the parameters 

are available prior to performing the labeling experiment, calculation of measurement 
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sensitivities can provide useful information pertaining to parameter identifiability and 

experimental design. 

 

 

Figure 2.4. Labeling trajectories of central metabolic intermediates. 

Experimentally measured labeling trajectories of central metabolic intermediates (data 

points) and INST-MFA model fits (solid lines) from an autotrophic INST-MFA study. 

The error bars represent standard measurement errors. Ions shown are for 3-

phosphoglycerate (3PGA), dihydroxyacetone phosphate (DHAP), ribose-5-phosphate 

(R5P), and ribulose-1,5-bisphosphate (RUBP). Nominal masses of M0 mass isotopomers 

are shown in parentheses. Adapted from Young et al. [6]. 
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Figure 2.5. Average 13C enrichments of selected ion fragments from an autotrophic 
INST-MFA study. 

The labeling trajectory is shown for 3-phosphoglycerate (3PGA), fructose-6-phosphate 

(F6P), malate (MAL), and succinate (SUC) over the course of 10 minutes. Adapted from 

Young et al. [6]. 

 

While solving the forward problem is an important step in the determination of fluxes 

using INST-MFA, it can also inform the experimental design. The precision with which a 

particular flux or pool size can be estimated, if at all, is solely determined by the 

sensitivity of the available measurements to the flux in question, which is a function of (i) 

the isotopic tracer applied, (ii) the structure of the metabolic network, (iii) the 

intracellular flux distribution, (iv) the timing of the measurements and (v) the metabolites 

that are measured. Since (ii) and (iii) are not under the control of the experimenters, the 

key elements of experimental design entail choosing appropriate combinations of (i), (iv) 

and (v) to identify the fluxes of interest. For the most part, the prevailing philosophy has 
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been to measure as many metabolites as possible that are relevant to the pathways of 

interest. Therefore, the focus of experimental design has been on choosing a labeling and 

sampling strategy that will maximize the precision of flux estimates based on the 

available isotopic measurements. There is a wide literature on optimal design of 13C 

labeling experiments, and the extension of these concepts to INST-MFA experiments has 

been presented by Wiechert and colleagues [17,31]. 

 

After the EMU balances have been set up, the labeling distributions can be simulated. 

Fluxes and pool sizes are estimated by minimizing the difference between measured and 

simulated data according to the following equation [17,21]. 

min𝐮,𝐜ϕ = 𝑚 𝑢, 𝑐, 𝑡 −𝑚 𝑡 ! ∙ ∙ 𝑚 𝑢, 𝑐, 𝑡 −𝑚 𝑡
!!

!
  

s. t.𝑁 ∙ 𝑢 ≥ 0, c ≥ 0 

(2.8) 

where ϕ is the objective function to be minimized, u is a vector of free fluxes, c is a 

vector of metabolite concentrations, t is time, 𝑚 𝑢, 𝑐, 𝑡  is a vector of simulated 

measurements, 𝑚 (t) is a vector of observed measurements, Σm is the measurement 

covariance matrix, and N is the null space of the stoichiometric matrix. A reduced 

gradient method can be implemented to handle the linear constraints of this problem 

within a Levenberg-Marquardt nonlinear least-squares solver [32,33].  

 

Once an optimal solution is found, the overall fit of the flux estimation needs to be 

assessed. Testing the goodness-of-fit will determine whether the optimal solution is 
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statistically acceptable based on the minimized sum of squared residuals (SSR). At 

convergence, the minimized variance-weighted SSR is a stochastic variable drawn from a 

chi-square distribution with n-p degrees of freedom (DOF), where n is the number of 

independent measurements and p is the number of estimated parameters. The SSR that is 

calculated should therefore be in the interval [𝜒!
!

!  𝜒!!! !
! ], where α is a chosen threshold 

value corresponding to the desired confidence level (e.g., 0.05 for 95% confidence or 

0.01 for 99% confidence). The model fit is accepted when the SSR falls within the limits 

of the expected chi-square range [34]. Additionally, the distribution of residuals should 

be assessed for normality. The standard deviation-weighted residuals should be normally 

distributed with a mean of zero and standard deviation of one. One approach that can be 

used to evaluate the hypothesis that the residuals are normally distributed is the Lilliefors 

test [35]. Various plots can also be constructed to assess normality of the residuals. 

 

In addition to checking the overall distribution of the residuals, it is often informative to 

plot the simulated and measured MIDs of each MS fragment ion to assess the goodness-

of-fit of each measurement. Furthermore, one should check the residuals between any 

measured extracellular fluxes and the estimates derived from INST-MFA. This provides a 

visual assessment of which measurements are responsible for the lack of fit. If the flux 

estimation provides a poor fit, further investigation needs to be performed to identify the 

source of disagreement between experimental measurements and the isotopomer model. 

There are three possible causes for this poor fit that should be evaluated: (1) there are 

errors associated with the measurements, (2) there is an inappropriate weighting of the 

residuals, or (3) there is an error or omission in the metabolic reaction network. One 
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should proceed by process of elimination to determine which of these is the root cause of 

a poor fit and then take corrective steps. 

 

Afterwards, it is important to identify measurements that contribute significantly to the 

precision of estimated fluxes. The fractional contribution of each measurement to the 

local variance of each flux can be calculated as described in Antoniewicz et. al [34]. The 

higher the contribution value, the more important the measurement is for determining a 

particular flux. Fluxes that depend on only one measurement are very sensitive to errors 

in that one measurement. It is therefore desirable that more than one measurement 

significantly contributes to the estimation of each flux. 

 

Once an optimal solution has been obtained, nonlinear confidence intervals on the fitted 

parameters should be computed using robust, global methods instead of relying solely 

upon local standard errors. The local standard errors can be easily obtained from the 

parameter covariance matrix at the optimal solution; however, they do not accurately 

reflect changing sensitivities at points removed from the optimal solution. Furthermore, 

the calculation of the covariance matrix becomes ill-conditioned when the Hessian of φ 

with respect to the fitted parameters is close to singular. Parameter continuation can be 

performed to calculate accurate upper and lower bounds on the 95% confidence interval 

for each flux or pool size parameter [34]. This determines the sensitivity of the 

minimized SSR to varying a single parameter away from its optimal value, while 

allowing the remaining parameters to adjust in order to minimize Δφ. Large confidence 
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intervals indicate that the flux cannot be estimated precisely. On the other hand, small 

confidence intervals indicate that the flux is well determined. Monte Carlo simulation can 

also be used to calculate the 95% confidence intervals. This method is typically more 

expensive than the parameter continuation approach, but is expected to yield similar 

results. 

 

Once an acceptable fit to the experimental measurements has been achieved and 

confidence intervals have been computed for all parameters, the results are best 

summarized visually in the form of a flux map. Several software tools have been recently 

developed for flux visualization in the context of metabolic networks, such as FluxMap 

[36], FluxViz [37], fa-BINA [38], Omix [39], BioCyc Omics Viewer [40], Reactome 

Skypainter [41], Pathway Projector [42], MetaFluxNet [43], OptFlux [44], and Escher 

[45]. 

 

Overall, INST-MFA holds great potential for future applications. INST-MFA 

experiments are already performed in a fraction of the time required for stationary MFA. 

If downstream sample processing and data analysis can be streamlined and automated, 

INST-MFA could soon become the basis for high-throughput MFA approaches [46,47]. 

It is also likely that INST-MFA will become the preferred approach for studies of plants, 

algae, and animal cell cultures, where labeling is slow and lack of long-term phenotypic 

stability can restrict the maximum duration of isotope tracer experiments. 

 



 25 

2.4 APPLICATION OF FLUX ANALYSIS TO ENABLE RATIONAL ENGINEERING IN 

PHOTOAUTOTROPHS 

Mammalian, plant, yeast, and bacterial cells are currently being used as industrial hosts 

for the production of commodity chemicals, specialty chemicals, small-molecule drugs, 

therapeutic proteins, and other biomolecules of commercial interest [48]. Of particular 

interest to this dissertation is the use of photoautotrophs, specifically cyanobacteria and 

plants, as industrial cell factories. Because these processes rely on living cells as 

biocatalysts, they are often hindered by toxic byproduct formation, low product yield, and 

slow production rates. Genome-scale modeling, cell-wide ‘omics’ platforms, and high-

throughput screening approaches have been developed to overcome these challenges by 

identifying genes that can be engineered to improve host cell performance. However, 

isotope labeling experiments (ILEs) and metabolic flux analysis (MFA), as described in 

the previous sections, have received limited attention in the biotech and biopharma 

industries to date, despite the fact that these approaches can provide direct readouts on in 

vivo metabolic pathway activities. This may be partly due to the fact that many 

companies lack the combined experimental and computational expertise needed to 

effectively analyze ILEs, but perhaps even more important is the perception that these 

studies are intrinsically difficult and there have not been enough success stories to justify 

the requisite effort [49]. The purpose of this section is to present examples where ILEs 

and MFA have been successfully applied in photoautotrophs to (1) characterize these 

non-model host organisms, (2) identify wasteful pathways that limit product yield, and 

(3) identify metabolic bottlenecks that restrict production.  
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2.4.1 APPLICATIONS OF FLUX ANALYSIS TO CYANOBACTERIA 

There has been increased interest in the use of photosynthetic organisms as production 

hosts because of their advantageous ability to use CO2 as their sole carbon source [50]. 

Cyanobacteria have been thoroughly probed and characterized through the application of 

isotope labeling experiments under heterotrophic, mixotrophic, and autotrophic 

conditions [22,51,52]. 13C MFA was first applied to Synechocystis sp. PCC 6803 by Yang 

et al. to investigate central carbon metabolism under heterotrophic and mixotrophic 

conditions [53–55]. Using a mixed feed of 90% unlabeled glucose and 10% [U-

13C]glucose tracer under heterotrophic conditions, the study revealed the oxidative PP 

pathway (oxPP) to be used almost exclusively for energy production, with more than 

90% of the incoming glucose metabolized by this pathway to produce NADPH for 

growth and respiration. In contrast, under mixotrophic conditions, CO2 fixation flux 

through the Calvin cycle was approximately two-fold higher than glucose assimilation. 

This was fueled by ATP and NADPH production from photosynthetic light reactions. 

Additionally, a substantial cyclic flux through PEP carboxylase (PEPC) and malic 

enzyme (ME) was noted, which led to the postulation of a functional C4 pathway in 

cyanobacteria. In a complementary study, Yang et al. looked at the effects of glucose 

addition on mRNA transcript levels and protein expressions of key enzymes for carbon 

assimilation. This study showed that most of the changes in carbon pathway fluxes could 

not be explained by expression changes. This highlights the usefulness of 13C MFA to 

uncover novel insights about regulatory mechanisms when combined with other ‘omics’ 

platforms. 
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Nakajima et al. [56] also combined 13C MFA with other ‘omics’ platforms. This study 

investigated the underlying metabolic regulation mechanisms in Synechocystis sp. PCC 

6803 under mixotrophic and photoheteroptrophic conditions by integrating metabolomics 

and transcriptomics with 13C MFA. A drastic difference in fluxes between the two culture 

conditions was observed even though the changes in the gene expression levels and 

metabolite concentrations were small. This suggests that the differences in flux could not 

primarily be explained by the changes in expression levels of the corresponding genes. 

Oxidative pentose phosphate (OxPP) pathway flux was elevated under 

photoheterotrophic conditions to balance out the loss of NADPH that would have 

normally been produced photosynthetically, even though gene expression was unaffected. 

Transcriptomics data did suggest that the repression of the gap1 gene, which encodes an 

isoform of glyceraldehye-3-phosophate dehydrogenase (GAPDH) that is essential for 

glycolytic glucose breakdown, functions as a control valve to shift carbon flow between 

glycolysis and oxPP pathway as a response to NADPH levels. Under photomixotrophic 

conditions in Synechocystis, You et al. [57] used NaH13CO3 and [U-13C]glucose to show 

that flux through CO2 fixation was higher than flux through glucose utilization, there was 

zero flux though the glyoxylate shunt, and that there was malic enzyme flux activity. 

These findings are in agreement with conclusions drawn from previous 13C MFA studies 

[54,56]. Additionally, this study provided new perspectives into other pathways of central 

carbon metabolism, specifically the TCA cycle. Isotope dilution with glutamate detected 

minimal carbon flow through α-ketoglutarate to succinate, which is consistent with the 

recently discovered α-ketoglutarate decarboxylase bypass pathway [58].  
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Other strains of cyanobacteria have also been studied using 13C MFA in addition to 

Synechocystis. An isotope labeling experiment of Cyanothece sp. ATCC 51142 looked at 

the effects of different carbon and nitrogen substrates on central carbon metabolism [59]. 

Using [U-13C]glucose, [2-13C]glycerol, and [3-13C]pyruvate in either nitrogen-fixing or 

nitrogen-sufficient conditions, this study revealed that only glycerol addition increased 

growth under both conditions; neither glucose nor pyruvate addition enhanced growth. 

Taking a further look at the 13C labeling data in amino acids, it was observed that carbon 

contribution from glycerol was much higher in comparison to contributions from glucose 

and pyruvate, consistent with the growth findings. Alagesan et al. [60] also applied ILEs 

to Cyanothece sp. ATCC 51142, but provided a more comprehensive flux analysis to 

estimate intracellular fluxes. This study was able to measure labeling in a greater number 

of amino acids, providing increased redundancy and pathway coverage. Flux analysis 

also revealed increased growth through the addition of glycerol to the media, as well as 

increased flux in CO2 incorporation through PEP carboxylase, indicating C4-like 

metabolism.  

 

In the past, most of the isotope labeling studies in cyanobacteria have been limited to 

mixotrophic or heterotrophic conditions because of the challenges associated with 

studying autotorophic growth. However, recent advances in mass spectrometry 

instrumentation and software capable of handling isotopically nonstationary growth 

conditions have enabled INST-MFA to be applied to cyanobacteria. Young et al. [6] first 

applied INST-MFA to model photoautotrophic growth in Synechocystis sp. 6803. Steady-

state labeling was typically achieved in less than 10 minutes, with notable exception of 
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the TCA pathway intermediates. The resulting flux map that was generated using INST-

MFA was compared to a previously published study using flux balance analysis (FBA) to 

predict the theoretical optimum flux need to maximize growth [5]. 13C flux analysis 

results revealed that the cells exhibited suboptimal carbon efficiency, with significant loss 

of fixed CO2 in the oxPP pathway. This study shows how the use of experimental isotope 

labeling measurements and flux analysis can be used to identify wasteful pathways that 

cannot be predicted solely by predictive modeling methods. Huege et al. [61] also 

performed a study using transient 13C labeling studies to study wild-type Synechocystis 

and two photorespiratory pathway mutants in either high or low carbon conditions. While 

this study did not attempt to quantify flux estimates from carbon labeling data, this study 

did assess metabolite turnover to provide local flux estimates. Although the growth 

conditions in this study were different from the study performed by Young et al., the 

results of the wild-type strain in both studies were in agreement with one another. Both 

groups noted C3 metabolism as the primary source of carbon fixation through the enzyme 

RuBisCO, even though there was some notable C4 metabolism detected through PEPC. 

Additionally, both groups saw minimal flux through the photorespiratory pathway, 

agreeing with previous findings of the presence of carboxysomes in cyanobacteria, which 

are effective carbon concentrating mechanisms that function to elevate CO2 concentration 

near RuBisCO [62]. Finally, both groups showed the possibility of metabolic channeling 

within pathways, where enzymes catalyzing successive reactions cluster together 

spatially in order to minimize diffusional imitations. This effect was revealed by more 

rapid 13C enrichment of downstream metabolites in comparison to upstream metabolites, 

which could not be explained in the absence of metabolite channeling. The number of 
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flux analysis studies being applied to cyanobacteria have been increasing and there are 

now a handful of examples of how cyanobacteria have been characterized under different 

conditions that are steps closer to industrial production conditions. There are a number of 

academic labs and a few industrial companies attempting to use cyanobacteria as 

production hosts. Further application of flux analysis as a tool for pathway engineering 

can eventually lead to the identification of other wasteful pathways and potential 

metabolic bottlenecks. 

2.4.2 APPLICATIONS OF FLUX ANALYSIS TO PLANTS  

Pant metabolic engineering has been hindered in the past by a lack of understanding of 

the complex metabolic network structure, function, and regulation [63,64]. The 

application of flux analysis studies to plants in recent years have been highly informative 

and continue to pave a path for a better understanding of plant metabolic functioning and 

its implications for plant genetic engineering. A number of 13C MFA studies have been 

recently applied to isolated plant cells or tissues under a variety of experimental 

conditions, such as maize root tips [65–68], tomato suspension cells [69], developing 

seeds of rapeseed [70–74], soybean [75–78], sunflower [79], maize kernels [80,81], and 

Catharanthus rosesus and Nicotiana tabacum hairy root cultures [82,83]. Several of these 

MFA results have interestingly revealed a similar pyruvate kinase bypass pathway, 

involving PEP carboxylase, malate dehydrogenase, and malic enzyme, to produce 

pyruvate. It was determined that 14% of mitochondrial pyruvate comes from 

mitochondrial malic enzyme in soybean seeds [78], 20% in developing sunflower seeds 

[79], and 40% in developing Brassica napus embryos [73]. Additionally, several of these 
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studies have revealed that a significant amount of cellular ATP is lost to futile substrate 

cycles [65–67,71].  

 

While the use of steady state MFA has been informative to many plant studies, it is more 

applicable to look at isotopic labeling time-courses when studying photoautotrophic 

metabolism in plants [84,85]. In particular, transient labeling experiments have been 

recently applied in combination with INST-MFA or kinetic flux profiling (KFP) to 

characterize flux phenotypes in complex photosynthetic systems. Chapters 4 and 5 of this 

dissertation discuss the work we have carried out to apply INST-MFA to Arabidopsis 

thaliana. Szecowka et al. [86] recently applied KFP to Aradibdopsis rosettes. KFP 

requires both isotopic labeling data and the measurement of subcellular pool sizes, and it 

is this requirement of direct pool size measurements that makes this technique arguably 

more difficult to implement. This point was discussed in a recent review article [87] and 

it remains to be seen whether the KFP protocol described in [88] will be adopted in the 

future for exploring photosynthetic metabolism in plants. Overall, it is clear that there are 

emerging methods being developed and applied to study photoautotrophic metabolism in 

plants, which represents an important step toward improving product yield and/or 

biomass productivity in plant hosts, which are not amenable to high-throughput 

engineering approaches. 
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2.5 CONCLUSION 

Photoautotrophic metabolism is a highly fascinating, yet complex process that serves as 

the underlying method in which all food on earth and bio-based chemicals are produced. 

13C flux analysis, in particular INST-MFA, is an ideal way to assess the metabolic 

phenotype of many photosynthetic hosts being used as production platforms for either 

bio-based chemicals or biomass itself. In the rest of this dissertation, the application of 

INST-MFA to dissect metabolic pathways associated with photoautotrophic metabolism 

will be discussed in more detail. 
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2.6 APPENDIX: SIMPLE NETWORK EXAMPLE FOR INST-MFA CALCULATIONS 

A simple metabolic network appears in Figure 2A.1 as an example of how to construct 

the stoichiometric matrix S, identify the set of EMUs required to simulate MIDs of 

measured metabolites, and set up dynamic isotopomer balances on these EMUs. Table 

2A.1 delineates the atom transitions for the network. In this network example, metabolite 

A is the sole substrate and metabolite G is the only final product. The intermediary 

metabolites B, C, D, E, and F are assumed to be at metabolic steady state, but isotopically 

nonstationary.  

 

 

Figure 2A.1. Simple metabolic network used to illustrate the decomposition into 
EMUs. 

Atom transitions for the reactions in this model are given in Table 2A.1. The network 

fluxes are assumed to be constant since the system is at metabolic steady state. 

Extracellular metabolite A is assumed to be at a fixed state of isotopic labeling to which 

intracellular metabolites B, C, D, E, F, and G adapt over time. 
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Table 2A.1. Stoichiometry and atom transitions for the reactions in the example 
metabolic network. 

Reaction no. Reaction stoichiometry Atom transitions 
1 A → B ab → ab 
2 B + E → C ab + c → abc 
3 and 4 C ↔ D + F abc ↔ cb + a 
5 and 6 B ↔ D ab ↔ ab 
7 D → E + G ab → b + a 
8 F → G a → a 

 

 
The stoichiometric matrix S is shown below, which has k = 5 intermediary metabolites 

and j = 8 fluxes, resulting in a 5 × 8 matrix. 

𝑆 =

1 −1 0 0 −1 1 0 0
0 1 −1 1 0 0 0 0
0 0 1 −1 1 −1 −1 0
0 −1 0 0 0 0 1 0
0 0 1 −1 0 0 0 −1

  

Therefore, S·v = 0 is expressed in vector form as 

𝑣! − 𝑣! − 𝑣! + 𝑣!
𝑣! − 𝑣! + 𝑣!

𝑣! − 𝑣! + 𝑣! − 𝑣! − 𝑣!
−𝑣! + 𝑣!

𝑣! − 𝑣! − 𝑣!

= 0  

A systematic method of EMU network decoupling in which metabolite units are grouped 

into mutually dependent blocks is described through this simple network example. For 

this example, we will set up the simplest possible model to simulate the MID of 

metabolite C, i.e., EMU C123. First, we need to identify all the possible EMUs that 

contribute to the formation of C123 – in this reaction model, C123 is formed from the 

condensation of B12+E1 and D12+F1 in reactions 2 and 4, respectively. This is recorded 
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and the process is then repeated for all new EMUs, starting with the largest EMU in size; 

in this case, all EMUs of size 3 have already been identified. Next, the process is repeated 

to determine all the EMUs of size 2 that were previously identified, starting with D12. D12 

is formed from two different reactions – from B12 in reaction 5 and from C23 in reaction 

3. Following this, we determine which reactions form C23; C23 is formed from D12 in 

reaction 4 and B2+E1 in reaction 2. Finally, we need to determine which reactions form 

B12. B12 is formed from A12 and D12 in reactions 1 and 6, respectively. A12 is a network 

substrate and is not produced by any other reactions and D12 has already been considered 

in the previous step. Therefore, all EMU reactions of size 2 have been identified. The 

process is repeated once again for EMUs of size 1, until all the EMUs have been traced 

back to network substrates or previously identified EMUs. Table 2A.2 shows the 

complete EMU decomposition of this system, which involves 24 EMU reactions 

connecting 16 EMUs. 

 

After EMU decomposition, the reaction network can be further decoupled into blocks, 

which group together minimal sets of mutually dependent metabolite units that must be 

solved simultaneously. Figure 2A.2 shows the EMU network decomposition for the 

simple network example after block decoupling. The blocks are arranged so that each one 

is a self-contained subproblem, which will depend on the outputs of the previously solved 

blocks. Therefore, EMUs in block 1 should first be solved, then block 2, etc.  
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Table 2A.2. Complete list of EMU reactions generated for metabolite C.  

Subscripts denote atoms that are part of their respective EMUs. The EMU reactions are 

also divided into their respective blocks after Dulmage-Mendelsohn decomposition has 

been applied.  

Reaction	
  no.	
   EMU	
  reaction	
   EMU	
  reaction	
  size	
  balance	
   Block	
  
2	
   B12	
  +	
  E1	
  →	
  C123	
   2	
  +1	
  =	
  3	
   6	
  
4	
   D12	
  +F1	
  →	
  C123	
   2	
  +1	
  =	
  3	
   6	
  
2	
   B2	
  +	
  E1	
  →	
  C23	
   1	
  +	
  1	
  =	
  2	
   5	
  
4	
   D12	
  →	
  C23	
   2	
  =	
  2	
   5	
  
3	
   C23	
  →	
  D12	
   2	
  =	
  2	
   5	
  
5	
   B12	
  →	
  D12	
   2	
  =	
  2	
   5	
  
6	
   D12	
  →	
  B12	
   2	
  =	
  2	
   5	
  
1	
   A12	
  →	
  B12	
   2	
  =	
  2	
   5	
  
2	
   B1	
  →	
  C1	
   1	
  =	
  1	
   4	
  
4	
   F1	
  →	
  C1	
   1	
  =	
  1	
   4	
  
3	
   C1	
  →	
  F1	
   1	
  =	
  1	
   4	
  
2	
   E1	
  →	
  C3	
   1	
  =	
  1	
   3	
  
4	
   D1	
  →	
  C3	
   1	
  =	
  1	
   3	
  
3	
   C3	
  →	
  D1	
   1	
  =	
  1	
   3	
  
5	
   B1	
  →	
  D1	
   1	
  =	
  1	
   3	
  
6	
   D1	
  →	
  B1	
   1	
  =	
  1	
   3	
  
1	
   A1	
  →	
  B1	
   1	
  =	
  1	
   3	
  
7	
   D2	
  →	
  E1	
   1	
  =	
  1	
   2	
  
2	
   B2	
  →	
  C2	
   1	
  =	
  1	
   1	
  
4	
   D2	
  →	
  C2	
   1	
  =	
  1	
   1	
  
1	
   A2	
  →	
  B2	
   1	
  =	
  1	
   1	
  
6	
   D2	
  →	
  B2	
   1	
  =	
  1	
   1	
  
5	
   B2	
  →	
  D2	
   1	
  =	
  1	
   1	
  
3	
   C2	
  →	
  D2	
   1	
  =	
  1	
   1	
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Figure 2A.2. EMU Network decompositions. 

a) EMU network decomposition for simple example network (Figure 2A.1) generated to 

simulate the labeling of metabolite C. The EMU network was decoupled based on EMU 

size and network connectivity. b) EMU network decomposition for the same network 

using block decoupling. Subscripts refer to the atoms that are contained within the EMU. 
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The EMU reactions obtained from network decomposition and block decoupling form the 

new basis for generating system equations. The decoupled blocks can be arranged into a 

cascaded system of ODEs with the following form, as described in section 2.3.2. 

𝐂! ∙
d𝐗!
d𝑡 = 𝐀! ∙ 𝐗! + 𝐁! ∙ 𝐘!  

The concentration matrix 𝐂!  is a diagonal matrix whose elements are pool sizes 

corresponding to EMUs represented in 𝐗!. 𝐗! is comprised of row vectors that represent 

the MIDs of each EMU and d𝐗!/d𝑡 is the time derivative of 𝐗!. Analogously, the input 

matrix 𝐘! is also comprised of row vectors that represent MIDs of EMUs that have been 

previously calculated. The system matrices 𝐀! and 𝐁! come from calculating the “true” 

flux vectors (v) based on the chosen free fluxes (u) and null space matrix (N). 

Furthermore, in the decoupled blocks, the full MID of products formed from 

condensation reactions can be obtained from the convolution (or Cauchy product, 

denoted by ‘×’) of MIDs of preceding EMUs. In the case of C123, these MIDs are B12 and 

E1 or D12 and F1 i.e., C123=B12×E1 or C123=D12×F1. The following equations represent the 

system of ODEs for the simple network example. 

𝐶! 0 0
0 𝐶! 0
0 0 𝐶!

!!!
!"
!!!
!"
!!!
!"

=
−𝑣! − 𝑣! 𝑣! 𝑣!

0 −𝑣! − 𝑣! 𝑣!
𝑣! 𝑣! −𝑣! − 𝑣!

𝐶!
𝐵!
𝐷!

+
0
𝑣!
0

𝐴!  

 

 

𝐶!
𝑑𝐸!
𝑑𝑡 = −𝑣! 𝐸! + 𝑣! 𝐷!  
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𝐶! 0 0
0 𝐶! 0
0 0 𝐶!

𝑑𝐶!
𝑑𝑡
𝑑𝐷!
𝑑𝑡
𝑑𝐵!
𝑑𝑡

=
−𝑣! − 𝑣! 𝑣! 0

𝑣! −𝑣! − 𝑣! 𝑣!
0 𝑣! −𝑣! − 𝑣!

𝐶!
𝐷!
𝐵!

+
𝑣! 0
0 0
0 𝑣!

𝐸!
𝐴!

	
  

 

 

𝐶! 0
0 𝐶!

𝑑𝐶!
𝑑𝑡
𝑑𝐹!
𝑑𝑡

=
−𝑣! − 𝑣! 𝑣!

𝑣! −𝑣!
𝐶!
𝐹!

+ 𝑣!
0 𝐵! 	
  

 

 

𝐶! 0 0
0 𝐶! 0
0 0 𝐶!

𝑑𝐶!"
𝑑𝑡
𝑑𝐷!"
𝑑𝑡
𝑑𝐵!"
𝑑𝑡

=
−𝑣! − 𝑣! 𝑣! 0

𝑣! −𝑣! − 𝑣! 𝑣!
0 𝑣! −𝑣! − 𝑣!

𝐶!"
𝐷!"
𝐵!"

+
𝑣! 0
0 0
0 𝑣!

𝐵!×𝐸!
𝐴!"

	
  

 

 

𝐶!
𝑑𝐶!"#
𝑑𝑡 = −𝑣! − 𝑣! 𝐶!"# + 𝑣! 𝑣!

𝐵!"×𝐸!
𝐷!"×𝐹!

	
  

 

 

Solving this system of ODEs will simulate the EMU labeling trajectories needed to 

calculate the time-dependent mass isotopomer distribution of metabolite C. The flux and 

pool size parameters can then be adjusted iteratively using an optimization search 

algorithm to converge on parameter values that minimize the lack-of-fit with 

experimental mass isotopomer data. 
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3. ISOTOPICALLY NONSTATIONARY 13C FLUX ANALYSIS OF 

CYANOBACTERIAL ISOBUTYRALDEHYDE PRODUCTION 

 

3.1 ABSTRACT 

Synechococcus elongatus PCC 7942 has been engineered to produce isobutyraldehyde 

(IBA), a precursor for the biofuel isobutanol. Isotopically nonstationary 13C metabolic 

flux analysis (INST-MFA) was applied to the IBA-producing S. elongatus strain SA590 

and a wild-type (WT) control strain. Comparison of flux maps generated for the two 

strains identified a potential bottleneck at the pyruvate kinase (PK) reaction step that was 

associated with diversion of flux into a three-step PK bypass pathway involving the 

enzymes PEP carboxylase (PEPC), malate dehydrogenase (MDH), and malic enzyme 

(ME). Single-gene overexpression of PK in the parental SA590 strain led to 56% 

improvement in IBA specific productivity. Single-gene overexpression of the three 

enzymes in the proposed PK bypass pathway also led to improvements in IBA 

production, although not to the same extent as PK overexpression. However, combined 

overexpression of two of the three enzymes in the proposed PK bypass pathway (MDH 

and ME) led to 68% improvement in specific productivity. This study shows how 13C 

flux analysis can be used to identify potential metabolic bottlenecks and to guide rational 

metabolic engineering to increase biochemicals production from photosynthetic host 

cells. 
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3.2 INTRODUCTION 

Recent studies have demonstrated the feasibility of converting energy from sunlight and 

carbon from CO2 directly into biofuels using photosynthetic microorganisms [89,50]. 

Specifically, cyanobacteria offer a direct process for capturing light and concentrated 

CO2 into biomass, and can be installed in locations that do not compete with food for 

water and land resources. In addition to the growing number of engineered pathways for 

the conversion of CO2 into useful products in cyanobacteria, tools for design and genetic 

manipulation are also becoming diverse [90,91,1,52]. However, despite the advances 

made in cyanobacterial biofuels production, the growth rates and productivities achieved 

in cyanobacteria are not economically feasible and are often lower than that of 

heterotrophic bacteria currently used in industry [92,93]. Additionally, there are few tools 

available that specifically address the challenges of determining and redirecting 

metabolic flux in photosynthetic microbes. 

 

As previously discussed in Chapter 2, isotope labeling experiments and metabolic flux 

analysis (MFA) studies have recently been carried out to accurately assess in vivo 

regulation of photosynthetic metabolism. This has been crucial to identifying potential 

pathways that will maximize carbon flux from the Calvin cycle, where CO2 fixation 

occurs, into biofuel-producing pathways. One promising biofuel-producing pathway 

engineered into the cyanobacteria Synechococcus elongatus PCC 7942 involves the 

production of isobutyraldehyde [94]. This engineered strain showed relatively high-flux 

production of isobutyraldehyde (1100 mg/L) and demonstrates the feasibility for 

commercial scale synthesis from CO2. Additionally, isobutyraldehyde is a direct 
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precursor of the potential fuel substitute, isobutanol, which has several properties that 

make it an attractive biofuel option over the first generation biofuel, ethanol. Isobutanol 

has a relatively high energy density (98% of gasoline), has low water solubility, which 

prevents the corrosion of engines and pipelines, and can be mixed at any proportion with 

gasoline, allowing it to be a “drop in” replacement or additive to the existing petroleum 

infrastructure [95]. Compared to isobutanol, isobutyraldehyde is a more advantageous 

target product for biosynthesis in our studies because it has been previously shown to be 

less toxic to S. elongatus cells [94].  

 

Previously, Young et al. [6] mapped carbon fluxes in the cyanobacterium Synechocystis 

sp. PCC 6803 by applying isotopically nonstationary metabolic flux analysis (INST-

MFA) under photoautotrophic condition. The flux analysis revealed unanticipated 

photosynthetic inefficiencies tied to oxidative metabolic pathways, despite minimal 

photorespiration. In this study, we aimed to close the ‘design-build-test-learn’ metabolic 

engineering cycle by applying isotopically nonstationary metabolic flux analysis (INST-

MFA) an engineered strain of S. elongatus, so that we could pinpoint wasteful byproduct 

pathways and potential bottlenecks towards isobutyraldehyde production. S. elongatus 

can only grow under photoautotrophic conditions, thus necessitating the need for 

transient labeling conditions and INST-MFA. The INST-MFA results showed a 

bottleneck at the pyruvate node, specifically at the pyruvate kinase (PK) reaction, which 

catalyzes the conversion of phosphoenolpyruvate into pyruvate. Pyruvate is a precursor 

of isobutyraldehyde production. Additionally, the results highlighted a natural PK bypass 

pathway, which we propose involves the three enyzmes that direct carbon from the 
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metabolite phosphoenolpyruvate to oxaloacetate to malate and finally into pyruvate; the 

accompanying enzymes to these reactions involve phosphoenolpyruvate carboxylase 

(PEPC), malate dehydrogenase (MDH), and malic enzyme (ME). Based on these results, 

we generated single-, double-, and triple-gene overexpression strains in the parental 

isobutyraldehyde producing strain to investigate the effects of these genetic 

manipulations on isobutyraldehyde production. We were able to see significant increases 

in isobutyraldehyde productivity in two of these engineered strains, which have been 

identified for further flux analysis characterization in future rounds of metabolic 

engineering. This work highlights the importance and usefulness of flux analysis to 

identify rational targets for strain engineering in cyanobacterial hosts, so that industrial 

feasibility in these photosynthetic organisms can ultimately be attained. 

 

3.3 METHODS 

3.3.1 MEDIUM AND CULTURE CONDITIONS 

Synechococcus elongatus strain PCC 7942 was obtained from the Johnson lab at 

Vanderbilt University and serves as the wild-type (WT) strain. The parental IBA-

producing strain (SA590) was obtained from the Liao lab at UCLA [94]. All other 

engineered strains generated for this study were constructed by the Johnson lab. The WT 

and engineered S. elongatus 7942 strains (Table 3.1) were grown on modified BG-11 

agar [96] (1.5% w/v) plates with appropriate antibiotics (40 µg/mL spectinomycin, 10 

µg/mL kanamycin, and/or 4 µg/mL carbenicillin). All strains were cultured in modified 

BG-11 medium containing an additional 50 mM NaHCO3 with appropriate antibiotics in 
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shake flasks. Precultures were grown under 150 µE m-2 s-1 light, supplied by 8 custom 

fluorescent lights (Build My LED, LLC, Austin, TX) at 30°C with rotary shaking at 130 

rpm, bubbling with air. Light was measured using a PAR quantum flux meter (Apogee 

Instruments, Logan, UT). Cell density was monitored by measuring OD750.  

 

Table 3.1. Strains used in this study. 

Strain Description Reference 

WT Wild-type S. elongatus PCC 7942 S.S. Golden 

SA590 IBA-producing parental strain. Ptrc::kivd in NSI 
(SpecR), PLlacO1::alsS-alvC-alvD in NSII (KmR) [94] 

SA590-PK SA590 Ptrc::pyk in NS III (CbR) This work 

SA590-PEPC SA590 Ptrc::pepc in NS III (CbR) This work 

SA590-MDH 
SA590 Ptrc::mdh in NS III (CbR). The Synechocystis sp. 
PCC 6803 mdh gene was codon-optimized for 
expression in S. elongatus. 

This work 

SA590-ME SA590 Ptrc::me in NS III (CbR) This work 

SA590-
MDH/ME SA590 Ptrc::mdh, Ptrc::me in NS III (CbR) This work 

SA590-
PEPC/MDH/ME SA590 Ptrc::pepc, Ptrc::mdh, Ptrc::me in NS III (CbR) This work 

 

 

3.3.2 QUANTIFICATION OF ALDHEYDE PRODUCTION 

Precultures were used to inoculate 75 mL of fresh medium to an initial OD750 of 0.4 in 

125 mL flasks. After inoculation, the cultures were supplemented with 50 mM NaHCO3 

as an inorganic carbon source and were placed in the dark for 12 hours to synchronize the 

circadian rhythms of the cells. Flasks were then removed from the dark and spiked with 1 
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mM isopropyl-β-D-1-thiogalactoside (IPTG) to induce expression of the recombinant 

genes. After the dark pulse, all cultures were allowed to grow in continuous light with air 

bubbling. Six hours after being placed in the light, cultures were closed with rubber 

stoppers to prevent loss of any product during incubation for the next 24 hours. Culture 

samples (1 mL) were collected at the start (t=6hr) and end (t=30hr) of the 24-hour 

incubation period and analyzed for aldehyde concentration and growth.  

 

Culture samples were centrifuged for 5 min at 15,000 rpm to remove cells. Then, 495 µL 

of the supernatant was mixed with 5 µL of 100 mM n-butyraldehyde (nBA) as internal 

standard. The mixture was vortexed and directly analyzed on a GC-FID (Shimadzu GC-

2010 system with flame ionization detector) using a DB-WAX column (30m, 0.20 mm 

ID, 0.20 µm film thickness) from Agilent Technologies (Santa Clara, CA). The injector 

and detector temperatures were maintained at 210°C and 250°C, respectively. Helium 

was used as the carrier gas, and the injection volume was 0.5 µL. The GC oven 

temperature was initially held at 30°C for 6 min and then raised to 60°C with a 

temperature ramp of 6°C/min. The GC oven was then maintained at 60°C for 2 min, then 

raised to 220°C with a ramp of 40°C/min. Finally, the oven was held at 220°C for 7 

minutes before completion of analysis. Column flow rate was 0.78 mL/min and the purge 

flow rate was 0.5 mL/min. IBA and isovaleraldehyde (IVA) peaks were identified and 

normalized to the internal standard peak. Serial dilutions of IBA and IVA standards with 

concentrations in the range of 0.01−2 mM were used to construct calibration curves. The 

amounts of IBA and IVA in each sample were calculated based on the ratios of the 

integrated IBA/nBA and IVA/nBA peak areas using linear regression from the 
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corresponding calibration curve. Specific productivity was calculated by using the 

publically available MATLAB-based software package Extracellular Timecourse 

Analysis [97], which takes into account cellular growth to regress metabolite uptake and 

production rates based on cell density and metabolite concentrations at given time points.  

 

3.3.3 13C LABELING EXPERIMENTS 

Precultures were used to inoculate 500 mL of fresh medium to an initial OD750 of 0.4 in 1 

L flasks. After inoculation, the flasks were placed in the dark for 12 hours to synchronize 

the circadian rhythm of the cells. Flasks were then removed from the dark after 12 hours 

and induced with 1 mM isopropyl-β-D-1-thiogalactoside (IPTG) to begin expression of 

the introduced genes. After the dark pulse, all cultures were allowed to grow in 

continuous light and air bubbling. The labeling experiment was initialized 30 hours after 

the dark pulse, when the cell density had reached an OD750 of 0.6-0.8. A 20mL sample 

corresponding to t=0 (unlabeled) was withdrawn from the flask using a syringe and luer-

lock needle (12 gauge, 12”, Sigma-Aldrich). Airflow was stopped to prevent unlabeled 

CO2 from entering the system. A 50 mL aliquot of BG11 media with added NaH13CO3 

(Cambridge Isotope Laboratories, 97% isotopic purity) was quickly introduced to the 

culture to achieve a final tracer concentration of 100 mM. Following this pulse, a series 

of 20mL samples were withdrawn and rapidly quenched at time points 30, 60, 120, 180, 

300, 600, and 900 s.  
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Each sample was quenched in a 50 mL centrifuge tube that contained 30 mL of partially-

frozen PBS maintained at 0°C on ice. Each quenched sample was centrifuged for 15 min 

at 5000 rpm and -10°C. The supernatant was discarded and the cell pellet was extracted 

using a modified Folch extraction method, which utilizes a biphasic 

chloroform:methanol:water (8:4:3) solvent mixture [98]. Polar metabolites were 

recovered in the methanol/water phase. Norvaline was added as an internal standard to all 

samples at the start of the extraction process to achieve a final concentration of 6.67 µM 

in the derivatized solution. 

 

3.3.4 SAMPLE PREPARATION AND DERIVATIZATION 

Derivatization for GC-MS was initiated by dissolving evaporated polar metabolite 

extracts in 50 mL of methoxyamine reagent (MOX; Pierce, Rockford, IL), sonicating at 

room temperature for 30 min, then incubating at 40°C for 90 min. 70 mL of BSTFA + 

10% TMCS (TMS; Pierce) was added, and the sample was incubated at 40°C for an 

additional 30 min. The sample was further incubated and placed in a refrigerator at 4°C 

overnight to ensure full derivatization. Lastly, the samples were centrifuged at 14,000 

RPM to pellet any undissolved residue. The resulting methoxime-trimethylsilyl (MOX-

TMS) derivatives were subjected to GC-MS analysis. 

 

3.3.5 GC-MS MEASUREMENT OF METABOLITE LABELING AND POOL SIZE 

The GC-MS method was adapted from Young et al. [6] and was performed using an 

Agilent 7890 gas chromatograph equipped with a DB-35ms column (30m x 0.25 mm i.d. 
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x 0.25mm; Agilent J&W Scientific). The injection volume was 1 µL and all samples 

were run in splitless mode with an inlet temperature of 270°C. Helium flow rate was set 

to 1 mL/min and purge flow of 50 mL/min was set to activate 2 min after injection. The 

GC oven temperature was held at 80°C for 5 min, ramped at 10°C/min to 320°C, and 

held at 320°C for an additional 5 min. Mass spectra were obtained in scan mode over the 

range 100-800 m/z. Raw ion chromatograms were integrated using a custom MATLAB 

M-file that applies consistent integration bounds and baseline correction to each ion [99]. 

 

3.3.6 ISOTOPOMER NETWORK MODEL 

An isotopomer model describing photosynthetic central carbon metabolism in S. 

elongatus PCC 7942 was adapted from a previous Synechocystis reaction network [6]. 

All isotopic measurements used for flux determination are listed in Table 3.2, and a list of 

the reactions included in the biochemical reaction network is provided in the Appendix. 

INST-MFA was used to estimate intracellular metabolic fluxes. Least-squares parameter 

regression, and statistical and sensitivity analysis of the optimal solution, were performed 

by using the publicly available software package Isotopomer Network Compartmental 

Analysis [24], which runs within MATLABTM. INCA relies on an elementary metabolite 

unit decomposition of the underlying isotopomer network to efficiently simulate the 

effects of varying fluxes on the labeling trajectories of measurable metabolites. Metabolic 

fluxes and pool sizes were estimated by minimizing the lack-of-fit between 

experimentally measured and computationally simulated mass isotopomer distributions 

(MIDs) by using a Levenberg-Marquardt optimization algorithm [20]. Flux evaluation 

was repeated a minimum of 50 times from random initial values to obtain best-fit 
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estimates. All results were subjected to a chi-square statistical test to assess goodness of 

fit, and accurate 95% confidence intervals were computed for all estimated parameters by 

evaluating the sensitivity of the sum-of-squared residuals (SSR) to parameter variations 

[34]. 

 

Table 3.2. Isotope labeling measurements used for metabolic flux determination. 

Metabolite Mass Carbons Composition 
3PGA 459 1 2 3 C14 H36 O7 P Si4 
3PGA 357 2 3 C11 H30 O5 P Si3 
F6P 357 5 6 C11 H30 O5 P Si3 
G6P 471 3 4 5 6 C16 H40 O6 P Si4 
G6P 357 4 5 6  C11 H30 O5 P Si3 
PEP 369 1 2 3 C11 H26 O6 P Si3 
ALA 116 2 3 C5 H14 N Si 
2PG 357 1 2 C10 H26 O6 P Si3 
2PG 328 2 C10 H29 O4 P Si3 
GLY 276 1 2 C10 H26 N O2 Si3 
GLY 174 2 C7 H20 N Si2 
SER 306 1 2 3 C11 H28 N O3 Si3 
GA 307 1 2 3 C11 H27 O4 Si3 
GA 292 2 3 C11 H28 O3 Si3 
CIT 465 1 2 3 4 5 6 C17 H37 O7 Si4 
CIT 363 1 2 3 4 5 C14 H31 O5 Si3 
AKG 304 1 2 3 4 5 C11 H22 N O5 Si2 
SUC 247 1 2 3 4 C9 H19 O4 Si2 
FUM 245 1 2 3 4 C9 H17 O4 Si2 
MAL 233 2 3 4 C9 H21 O3 Si2 
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3.4 RESULTS  

3.4.1 GROWTH AND ISOBUTYRALDEHYDE PRODUCTION 

Comparison of growth and IBA production between the WT and SA590 strains was used 

to assess the metabolic impact of genetic manipulations introduced in SA590 (Figure 

3.1). There was no significant difference in growth rate between the WT and SA590 

strains. As expected, the WT strain did not produce IBA. We initially hypothesized that 

the introduction of new carbon-consuming pathways in the engineered strains would 

result in decreased growth, with carbon being potentially redirected away from biomass. 

However, the reduction in growth was not significant, indicating low metabolic burden 

due to IBA production in the engineered strain. We also measured tolerance of WT S. 

elongatus to isobutyraldehyde in the closed flask collection system and saw that there 

was no significant effect on growth within the expected range of IBA concentrations 

(Figure 3A.1). 

 

 

Figure 3.1. (A) Growth rate and (B) aldehyde specific productivity in WT and 
SA590 strains. 

Data ± SE; n≥3. 
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While assessing samples for IBA production, we detected an additional aldehyde 

compound produced by SA590 cultures. This compound was identified as 

isovaleraldehyde (IVA) through comparison to IVA standards. We hypothesize that the 

recombinant ketoisovalerate decarboxylase (kivd) enzyme, which converts 

ketoisovalerate to IBA, also facilitates the conversion of ketoisocaproate to IVA. 

Ketoisocaproate is a precursor found in the leucine biosynthesis pathway, which branches 

off from the valine biosynthesis pathway that leads to IBA. The relative abundance of 

IVA was approximately 13% of the total aldehydes produced (IBA + IVA). This pointed 

to the leucine biosynthetic pathway as a potential knockdown target in future studies to 

shunt carbon flux back towards the intended IBA production pathway. 

 

3.4.2 ISOTOPICALLY NONSTATIONARY METABOLIC FLUX ANALYSIS 

INST-MFA was applied to characterized and compare the WT and SA590 strains. The 

measured MIDs, growth, and aldehyde production rates were used to construct 

comprehensive flux maps of photoautotrophic metabolism using a modified version of 

the reaction network developed by Young et al. [6] for wild-type Synechocystis. The 

SA590 flux map is shown in Figure 3.2. The major carbon fluxes occurred in the CBB 

cycle, where carbon fixation takes place. We also observed little to no flux through the 

photorespiratory pathway [100]. Additionally, there was minimal flux through the 

oxidative arm of the TCA cycle (citrate to α-ketogluatarate), which is consistent with 

previous flux analysis studies performed in cyanobacteria [6,57]. The fits were 

statistically acceptable based on a chi-square test of the SSR, which was assessed at the 

95% confidence level with 358 degrees of freedom for both models (SSR=376.3 and 
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397.6 for the WT and SA590 flux maps, respectively with the expected range [307.5, 

412.3]. The full list of optimal parameter estimates including net fluxes, exchange fluxes, 

subcellular fluxes, and pool sizes for both WT and SA590 can be found in the Appendix. 

 



 53 

 

Figure 3.2. Flux map of engineered S. elongatus IBA-producing strain determined 
under photoautotrophic conditions. 

Fluxes are shown normalized to a net CO2 uptake rate of 100. Arrow thickness is scaled 

proportional to net flux. Dotted arrows indicate fluxes to biomass formation. 
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Figure 3.3. Intracellular fluxes in WT and SA590 at the pyruvate node. 

A comparison of the pyruvate kinase (PK), pyruvate dehydrogenase (PDH), PEP 

carboxylase (PEPC), malate dehydrogenase (MDH), and malic enzyme (ME) fluxes as 

determined by INST-MFA. Error bars represent 95% confidence intervals on the flux 

estimates, and the plotted values represent the medians of the confidence intervals.  
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carbon metabolism to bypass pyruvate kinase (PK) in both WT and IBA strains. PK 

catalyzes the glycolytic conversion of phosphoenolpyruvate (PEP) to pyruvate. High 

levels of ATP, produced in abundance during photosynthesis, have been found to inhibit 

PK activity [101]. The proposed PK bypass involves carbon being routed sequentially 

through PEPC, MDH, and ME (Figure 3.2). The flux analyses of both the WT and SA590 
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suggests that flux to pyruvate through PK is inhibited during photoautotrophic growth of 

Synechococcus, as has been previously suggested for Synechocystis [6]. Because pyruvate 

supplies carbon for IBA production in SA590, we hypothesized that overexpressing PK 

would relieve this metabolic bottleneck and increase flux towards IBA. Simultaneously, 

we overexpressed all three genes involved in the PK bypass pathway, both individually 

and in combination, to determine if IBA production could be increased by forcing more 

flux through this alternative pathway to pyruvate. 

 

3.4.3 SINGLE GENE OVEREXPRESSION STRAINS 

Based on the INST-MFA results, we generated the following single-gene overexpression 

strains to enhance flux toward pyruvate in the SA590 parent: SA590-PK, SA590-PEPC, 

SA590-MDH, and SA590-ME. The SA590-PEPC and SA590-ME strains exhibited 

significantly slower growth in comparison to the parental strain (Figure 3.4).  
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Figure 3.4. Effect of strain engineering on growth. 

Growth was calculated by measuring optical density at the start (t=6hr) and end (t=30hr) 

of the capped flask aldehyde collection experiments. The parental IBA strain served as 

control. Dunnett’s test was used to calculate significant differences. Data ± SE, n=3. 

*p<0.05. 
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Figure 3.5. Effect of enzyme overexpression on aldehyde production. 

Aldehyde specific productivity was calculated by measuring aldehyde concentration and 

cell density at the start (t=6hr) and end (t=30hr) of the capped flask collection 

experiments. These values were regressed using the ETA software package to determine 

specific rates [97]. The parental SA590 strain served as control. Dunnett’s test was used 

to calculate significant differences. Data ± SE, n=3. *p<0.05. 
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double-overexpression strain (SA590-MDH/ME) because intermediate pool size 

measurements showed that MDH overexpression led to malate accumulation while ME 

overexpression resulted in malate depletion (Figure 3.6). Therefore, we hypothesized that 

overexpressing both MDH and ME simultaneously would balance flux through the PK 

bypass and restore malate to homeostatic levels. A triple overexpression strain (SA590-

PEPC/MDH/ME) was also generated and tested in parallel to determine whether 

overexpressing all three PK bypass genes together would result in even further increases 

in aldehyde specific productivity.  

 

The growth data showed that both SA590-MDH/ME and SA590-PEPC/MDH/ME had 

similar growth rates to one another and trended towards slower growth in comparison to 

the parental SA590 strain (Figure 3.4). The aldehyde specific productivity data showed 

that both the double and triple overexpression strains had increased production rates in 

comparison to the parental strain (Figure 3.5). Interestingly, the double overexpression 

strain had higher IBA productivity than the triple overexpression strain and had a slightly 

higher production rate than the IBA-PYK single overexpression strain. 

 

3.4.5 POOL SIZE MEASUREMENTS 

In addition to characterizing the growth and aldehyde production rates of the engineered 

strains, we also applied targeted metabolite pool size measurements in the engineered 

strains. Figure 3.6 shows the pool sizes of four metabolites, each normalized to OD750 at 

t=30hr and an internal standard, norvaline. The values shown are all expressed relative to 
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the pool sizes of the WT strain. For the parental SA590 and single-gene overexpression 

strains, we were able to quantify the pyruvate, alanine, succinate and malate pool sizes. 

For the double and triple overexpression strains, pyruvate was not quantifiable because 

the chromatographic peak was below the noise threshold of the GC-MS. While the malate 

pool size showed significant variation among the single-gene overexpression strains, the 

double and triple overexpression strains exhibited malate concentrations that were similar 

to SA590. This implies that enzymes within the PK bypass pathway should be 

overexpressed in combination to achieve balanced flux to pyruvate.  



 60 

 

Figure 3.6. Intracellular pool sizes of pyruvate and related metabolites.  

The GC-MS ion counts of central carbon intermediates. Metabolites were extracted and derivatized by MOX/TMS. Ion counts 

were normalized to an internal standard (norvaline) peak and to optical density (OD750) at time of sample measurement (t=30). 

Values are shown relative to WT (=1). Data ± SE, n=4.  
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3.5 DISCUSSION 

Production of chemicals and fuels from CO2 is advantageous for reducing carbon 

emissions, as well as reducing reliance on petroleum. In this study, we applied INST-

MFA to provide a direct readout of in vivo metabolic pathway activity in cyanobacteria 

that have been engineered to produce the chemical isobutyraldehyde under 

photoautotrophic conditions. The analysis revealed a substantial flux of PEP-derived 

carbon directed through PEPC rather than PK in both the WT and SA590 strains. This 

result is similar to the INST-MFA results in Synechocystis [6], where a natural PK bypass 

was observed in which carbon was channeled from PEP into pyruvate. The proposed PK 

bypass pathway converted carbon indirectly from PEP to pyruvate through reactions 

catalyzed by PEPC, MDH, and ME (Figure 3.2). In the previous INST-MFA study 

performed by Young et al. [6], the results showed approximately 49% of the flux 

emanating from PEP went through PEPC, as opposed to 40% through PK (the remaining 

11% went towards biomass production). In this study, we found that carbon flux through 

PEPC was significantly greater than flux through PK (86% vs 3% for the WT strain and 

84% vs 8% for the SA590).  

 

Previous studies have suggested that malic enzyme could be involved in a carbon 

concentrating mechanism that is similar to that found in C4 plants [54]. Additionally, 

previous studies have shown that knockout of ME significantly reduced growth in 

Synechocystis under both autotrophic and mixotrophic conditions, while growth could be 

recovered by providing exogenous pyruvate [102,103]. Therefore, it has been suggested 

that high flux through ME may serve as a key route for pyruvate synthesis when PK 
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activity is down-regulated due to reduced ADP/ATP ratios in the light. As a whole, the 

high flux in the proposed PK bypass pathway suggested to us that there was a potential 

bottleneck in the conversion of PEP to pyruvate. We therefore hypothesized that flux to 

pyruvate—and subsequently to IBA—could be increased by overexpressing PK or, 

alternatively, key enzymes in the PK bypass pathway.  

 

While all three of the PK bypass single-gene overexpression strains (SA590-PEPC, 

SA590-MDH, and SA590-ME) showed significant increases in aldehyde productivity in 

comparison to the parental SA590 strain, the SA590-PK strain showed the greatest 

increase in specific productivity (56% improvement) when using a closed flask system to 

capture the aldehyde products (Figure 3.5). However, preliminary data on aldehyde 

productivity obtained in an open flask cold-trap system (Figure 3A.2; [104]) showed only 

the SA590-ME strain had increased IBA productivity. Although the results from these 

two studies differ, the data generated are not necessarily contradictory. It is possible that 

the closed flask system limited the amount of CO2 available to the cells or led to more 

dramatic increases in pH over time, which would further reduce the availability of 

dissolved CO2 in the medium. A study by Schwarz et al. [105] investigated the metabolic 

and transcriptomic effects of acclimating S. elongatus PCC 7942 from high to low carbon 

conditions. In this study, they found that limiting available carbon to the cyanobacterial 

cells decreased levels of malate and fumarate, while increasing levels of PEP. These 

changes in pool sizes could potentially account for the differences in performance 

between the open and closed flask systems. A shift in dCO2 could have altered the 

availability of substrates for the PK and ME reactions and thus biased the assessment of 
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aldehyde productivity in the engineered strains. One previous study showed that a 50 mM 

NaHCO3 spike was sufficient to produce isobutanol for 6 days in a closed flask culture of 

Synechocystis [92]. However, we are currently evaluating whether changes in pH and 

dCO2 could confound measurements of IBA productivity in the closed flask system.  

 

Under the closed flask system, both double overexpression of MDH/ME and triple 

overexpression of PEPC/MDH/ME showed significant increases in aldehyde productivity 

when compared to the parental SA590 strain. The double overexpression strain had 

slightly higher aldehyde productivity than the SA590-PK strain. These data suggest that 

the majority of flux control within the PK bypass pathway is distributed between the 

MDH and ME reaction steps, while PEPC does not represent a significant bottleneck. 

Even though both the SA590-PK and SA590-MDH-ME strains showed similar aldehyde 

productivities, the PK overexpressing strain showed slightly better growth, possibly due 

to the reduced metabolic burden of amplifying expression of one gene instead of two. 

 

Preliminary pool size measurements using an open flask system were generated for the 

WT and engineered strains. The SA590-MDH strain showed a significant increase in 

malate pool size, while the SA590-ME strain showed a significant decrease in malate. 

Interestingly, out of the three strains with single-gene overexpression of PK bypass 

enzymes, SA590-MDH showed the largest increase in aldehyde specific productivity 

using the closed flask collection system, while SA590-ME showed the largest increase in 

the open flask system. Future studies will re-examine these pool size measurements in the 
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closed flask system to determine if carbon-limiting conditions might have played a role in 

shifting the availability of substrates for the PK bypass reactions. Overall, this dataset 

shows the potential usefulness of combined MFA and pool size measurements to provide 

complementary tools for optimizing product formation in engineered host strains. 

 

This study provides an illustrative example of how flux analysis can be applied to close 

the ‘design-build-test-learn’ metabolic engineering cycle, thereby guiding further rounds 

of strain improvement. Flux analysis was useful in identifying potential targets to 

debottleneck flux towards aldehyde production. These targets were overexpressed in the 

parental SA590 strain, and further characterization of growth and aldehyde specific 

productivity showed that the SA590-PK and SA590-MDH-ME strains had the greatest 

increases in aldehyde production. Further flux analysis studies should be performed on 

these two strains to quantify changes in metabolic flux and to determine if these 

overexpressions unexpectedly affected other pathways of central carbon metabolism. In 

addition, future studies could examine additional engineering targets, such as knocking 

down pyruvate dehydrogenase to shunt more carbon flux towards aldehyde production. 

Efforts to limit IVA production will also be beneficial to increase carbon flux towards 

IBA as the sole aldehyde product.  
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3.7 APPENDIX: SUPPLEMENTAL FIGURES AND TABLES 

 

 

Figure 3A.1. S. elongatus tolerance to isobutyraldehyde.  

Effect of IBA addition on growing cultures of S. elongatus as determined by optical 

density (OD750). At OD750 ~0.4, IBA was added to the cultures to final concentrations  of: 

0, 100, 1000, and 2000 mg/L. 
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Figure 3A.2. Effect of enzyme overexpression on aldehyde production using an open 
flask and cold trap collection system. 

These data were generated by Adebiyi [104]. IBA and IVA were captured for 24 hours, 6 

hours after induction of aldehyde production with IPTG. The total aldehyde productivity 

from each flask was normalized to the average productivity of the parental SA590 strain. 

Data ± SE; n ≥6. 
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Table 3A.1. Complete list of reactions and atom transitions for Synechococcus 
elongatus PCC 7942 metabolic network. 

Enzymatic Reactions for S. elongatus PCC 7942 metabolic network 
RUBISCO_CO2 RUBP (abcde) + CO2 (f)  →  3PGA (cde) + 3PGA (fba)  
GAPDH 3PGA (abc)  →  TP (abc) 
ALD TP (abc) + E4P (defg)  →  SBP (cbadefg) 
SBP SBP (abcdefg)  →  S7P (abcdefg) 
FBA TP (def) + TP (cba)  ↔  FBP (abcdef) 
PFK FBP (abcdef)  ↔  F6P (abcdef) 
TK1 TP (cde) + EC2 (ab)  ↔  X5P (abcde) 
TK2 S7P (abcdefg)  ↔  R5P (cdefg) + EC2 (ab) 
TK3 F6P (abcdef)  ↔  E4P (cdef) + EC2 (ab) 
PPE X5P (abcde)  ↔  RU5P (abcde) 
PPI R5P (abcde)  ↔  RU5P (abcde) 
PRK RU5P (abcde)  →  RUBP (abcde) 
PGI F6P (abcdef)  ↔  G6P (abcdef) 
PGM G6P (abcdef)  ↔  G1P (abcdef) 
GS G1P (abcdef)  ↔  GLYC (abcdef) 
G6PDH G6P (abcdef)  →  RU5P (bcdef) + CO2 (a) 
RUBISCO_O2 RUBP (abcde)  →  3PGA (cde) + 2PG (ba) 
PGP 2PG (ab)  →  GLY (ab) 
GDC GLY (ab) + GLY (cd)  →  SER (cdb) + CO2 (a) 
SGA SER (abc)  →  GA (abc) 
GK GA (abc)  ↔  3PGA (abc) 
ENO 3PGA (abc)  ↔  PEP (abc) 
PK PEP (abc)  →  PYR (abc) 
ALT PYR (abc)  ↔  ALA (abc) 
ALS PYR (abc) + PYR (def)  →  AcLAC (abcde) + CO2 (f) 
KIV1 AcLAC (abcde)  →  IBA (abcd) + CO2 (e) 
KIV2 AcLAC (abcde)  →  IVA (abcde) 
PDH PYR (abc)  →  ACA (bc) + CO2 (a) 
CS OAA (abcd) + ACA (ef)  →  CIT (dcbfea) 
ACO CIT (abcdef)  ↔  ICI (abcdef) 
IDH ICI (abcdef)  →  AKG (abcde) + CO2 (f) 
SDH SUC (abcd)  ↔  FUM (abcd) 
FUM FUM (abcd)  ↔  MAL (abcd) 
MDH MAL (abcd)  ↔  OAA (abcd) 
ME MAL (abcd)  →  PYR (abc) + CO2 (d) 
PPC PEP (abc) + CO2 (d)  →  OAA (abcd)  
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Table 3A.1. Continued. 

Growth 

0.715*R5P + 3.624*ACA + 
1.191*G6P + 0.501*E4P + 
1.205*3PGA + 1.002*PEP + 
1.197*PYR + 2.039*OAA 
(abcd) + 1.233*AKG + 
0.133*TP + 1.017*CO2  

→  Biomass + 0.683*FUM (abcd) 
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Table 3A.2. Net fluxes determined by 13C INST-MFA in WT and SA590. 

Estimated flux values (mmol/gDW/hr) and 95% confidence bounds are shown (n=3). 

  WT SA590 
Reaction Value LB95 UB95 Value LB95 UB95 
RUBP + CO2 → 3PGA + 3PGA 1.019 0.950 1.089 1.040 0.873 1.207 
3PGA → TP 1.796 1.676 1.955 1.821 1.526 2.144 
TP + E4P → SBP 0.341 0.318 0.373 0.349 0.292 0.411 
SBP → S7P 0.341 0.318 0.373 0.349 0.292 0.411 
TP + TP ↔ FBP 0.379 0.353 0.412 0.382 0.319 0.448 
FBP ↔ F6P 0.379 0.353 0.412 0.382 0.319 0.448 
TP + EC2 ↔ X5P 0.694 0.647 0.757 0.707 0.593 0.834 
S7P ↔ R5P + EC2 0.341 0.318 0.373 0.349 0.292 0.411 
F6P ↔ E4P + EC2 0.353 0.328 0.384 0.358 0.300 0.422 
X5P ↔ RU5P 0.694 0.647 0.757 0.707 0.593 0.834 
R5P ↔ RU5P 0.325 0.303 0.356 0.335 0.281 0.395 
RU5P → RUBP 1.019 0.951 1.113 1.041 0.874 1.230 
F6P ↔ G6P 0.027 0.025 0.043 0.023 0.019 0.063 
G6P ↔ G1P 0.000 0.000 0.000 0.000 0.000 0.000 
G1P ↔ GLYC 0.000 0.000 0.000 0.000 0.000 0.000 
G6P → RU5P + CO2 0.000 0.000 0.016 0.000 0.000 0.039 
RUBP → 3PGA + 2PG 0.000 0.000 0.051 0.001 0.001 0.082 
2PG → GLY 0.000 0.000 0.051 0.001 0.001 0.082 
GLY + GLY → SER + CO2 0.000 0.000 0.025 0.001 0.000 0.041 
SER → GA 0.000 0.000 0.025 0.001 0.000 0.041 
GA ↔ 3PGA 0.000 0.000 0.025 0.001 0.000 0.041 
3PGA ↔ PEP 0.215 0.201 0.230 0.237 0.202 0.273 
PEP → PYR 0.007 0.001 0.016 0.018 0.000 0.190 
PYR ↔ ALA 0.000 0.000 0.000 0.000 0.000 0.000 
PYR + PYR → AcLAC + CO2 0.000 0.000 0.000 0.024 0.022 0.026 
AcLAC → IBA + CO2 0.000 0.000 0.000 0.021 0.019 0.023 
AcLAC → IVA 0.000 0.000 0.000 0.003 0.003 0.003 
PYR → ACA + CO2 0.108 0.101 0.116 0.095 0.078 0.113 
OAA + ACA → CIT 0.028 0.026 0.029 0.024 0.020 0.029 
CIT ↔ ICI 0.028 0.026 0.029 0.024 0.020 0.029 
ICI → AKG + CO2 0.028 0.026 0.029 0.024 0.020 0.029 
SUC ↔ FUM 0.000 0.000 0.000 0.000 0.000 0.000 
FUM ↔ MAL 0.015 0.014 0.016 0.013 0.011 0.016 
MAL ↔ OAA 0.112 0.101 0.123 0.135 -0.016 0.163 
MAL → PYR + CO2 0.128 0.116 0.139 0.149 0.000 0.178 
PEP + CO2 → OAA 0.185 0.171 0.200 0.200 0.164 0.236 
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Table 3A.2. Continued. 

0.715*R5P + 3.624*ACA + 
1.191*G6P + 0.501*E4P + 
1.205*3PGA + 1.002*PEP + 
1.197*PYR + 2.039*OAA + 
1.233*AKG + 0.133*TP + 
1.017*CO2 → Biomass + 
0.683*FUM 

0.022 0.021 0.024 0.020 0.016 0.023 
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Table 3A.3. Exchange fluxes determined by 13C INST-MFA for WT and SA590.  

The exchange flux is the minimum of the forward and backward fluxes of a reversible 

reation. Estimated flux values (mmol/gDW/hr) and 95% confidence bounds are shown 

(n-=3). 

  WT SA590 
Reaction Value LB95 UB95 Value LB95 UB95 
TP + TP ↔ FBP Unidentifiable 0.000 Inf Unidentifiable 0.000 Inf 
FBP ↔ F6P Unidentifiable 0.000 Inf Unidentifiable 0.000 Inf 
TP + EC2 ↔ X5P Unidentifiable 0.000 Inf 0.702 0.000 2.571 
S7P ↔ R5P + EC2 Unidentifiable 0.000 Inf Unidentifiable 0.000 Inf 
F6P ↔ E4P + EC2 Unidentifiable 0.000 Inf Unidentifiable 0.000 Inf 
X5P ↔ RU5P Unidentifiable 0.000 Inf 0.000 0.000 0.233 
R5P ↔ RU5P Unidentifiable 0.000 Inf Unidentifiable 0.000 Inf 
F6P ↔ G6P 0.027 0.000 0.118 0.000 0.000 0.015 
G6P ↔ G1P 0.468 0.061 Inf Unidentifiable 0.065 Inf 
G1P ↔ GLYC Unidentifiable 0.000 Inf Unidentifiable 0.065 Inf 
GA ↔ 3PGA 0.304 0.129 0.451 0.000 0.000 0.007 
3PGA ↔ PEP Unidentifiable 0.000 Inf Unidentifiable 0.000 Inf 
PYR ↔ ALA 3.224 1.570 13.635 Unidentifiable 0.000 Inf 
CIT ↔ ICI Unidentifiable 0.000 Inf 0.658 0.143 1.282 
SUC ↔ FUM 3.229 2.100 7.255 1.287 0.831 2.801 
FUM ↔ MAL 4.858 2.706 17.451 0.765 0.497 1.692 
MAL ↔ OAA 27642 7.966 Inf Unidentifiable 0.000 Inf 
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Table 3A.4. Pool sizes determined by 13C INST-MFA for WT and SA590. 

nmol/gDW WT SA590 
Pool LB95 UB95 LB95 UB95 
2PG 0.0 9.6 0.0 0.6 

3PGA 0.0 9.6 0.0 2.4 
ACA 116.2 Inf 0.0 64.8 
AKG 0.0 0.3 0.0 0.7 
ALA 0.0 2.9 0.0 11.9 

AcLAC 0.0 Inf 0.0 Inf 
CIT 0.0 0.2 0.0 8.1 
CO2 0.0 1.3 6.1 16.6 
E4P 0.0 7.8 0.0 0.7 
F6P 0.0 3.0 0.0 0.7 
FBP 0.0 3.0 0.0 1.5 
FUM 0.0 7.9 0.0 10.8 
G1P 0.0 Inf 0.0 Inf 
G6P 0.0 13.3 0.0 3.3 
GA 163.9 737.3 0.0 0.1 

GLY 0.0 24.3 0.1 11.6 
GLYC 0.0 Inf 0.0 Inf 

IBA 0.0 Inf 0.0 Inf 
ICI 0.0 0.3 27.2 190.3 
IVA 0.0 0.0 0.0 Inf 
MAL 0.0 4.3 0.0 2.9 
OAA 0.0 4.3 0.0 1.4 
PEP 0.0 0.0 0.0 0.0 
PEP 19.3 42.6 0.0 2.4 
PYR 0.0 2.9 0.0 11.9 
R5P 0.0 1.8 0.0 1.1 

RU5P 0.0 1.8 0.0 1.1 
RUBP 0.0 1.8 0.0 1.1 

S7P 0.0 1.2 0.0 1.1 
SBP 0.0 0.8 0.0 0.4 
SER 0.0 0.3 0.3 Inf 
SUC 287.5 375.4 203.4 484.1 
TP 0.0 3.7 0.0 2.9 

X5P 0.0 3.4 14.2 26.2 
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4. ISOTOPICALLY NONSTATIONARY 13C FLUX ANALYSIS OF 

CHANGES IN ARABIDOPSIS THALIANA LEAF METABOLISM DUE TO 

HIGH LIGHT ACCUMULATION 

 

Proceedings of the National Academy of Sciences (2014). 111:16967-16972. 

 

4.1 ABSTRACT 

Improving plant productivity is an important aim for metabolic engineering. There are 

few comprehensive methods that quantitatively describe leaf metabolism, though such 

information would be valuable for increasing photosynthetic capacity, enhancing biomass 

production, and rerouting carbon flux toward desirable end products. Isotopically 

nonstationary metabolic flux analysis (INST-MFA) has been previously applied to map 

carbon fluxes in photoautotrophic bacteria, which involves model-based regression of 

transient 13C-labeling patterns of intracellular metabolites. However, experimental and 

computational difficulties have hindered its application to terrestrial plant systems. We 

performed in vivo isotopic labeling of Arabidopsis thaliana rosettes with 13CO2 and 

estimated fluxes throughout leaf photosynthetic metabolism by INST-MFA. Leaves were 

acclimated to either 200 or 500 µmol m-2s-1 light. Approximately 1,400 independent mass 

isotopomer measurements obtained from analysis of 37 metabolite fragment ions were 

regressed to estimate 136 fluxes under each condition. The results provide a 

comprehensive description of changes in carbon partitioning and overall photosynthetic 

flux in response to high-light acclimation of leaves. Despite a doubling in the 
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carboxylation rate, the photorespiratory flux increased from 17% to 28% of net CO2 

assimilation with high-light acclimation (Vc/Vo: 3.5:1 vs. 2.3:1, respectively) and was 

independently validated by 14C-labeling. The concentrations of multiple Calvin cycle 

intermediates were reduced during acclimation, indicating an inverse relationship 

between intermediate pool sizes and fluxes. This study highlights the potential of 13C 

INST-MFA to describe emergent flux phenotypes that respond to environmental 

conditions or plant physiology and cannot be obtained by other complementary 

approaches. 

 

4.2 INTRODUCTION 

Photosynthetic organisms assimilate over 100 billion tons of carbon, approximately 15% 

of the atmospheric total, each year and generate organic compounds for food and 

renewable chemicals [106]. However, photosynthesis is a complex process that responds 

to heterotrophic tissue demands and environmental stimuli such as drought, temperature, 

and light intensity [107,108]. The light incident on the plant varies with intensities in the 

range of 0-2000 µmol photons m-2 s-1 and can change dramatically due to passing clouds, 

shading, and the position of the sun. Thus, plants adjust light harvesting and carbon 

assimilation steps to accommodate many fluctuations, resulting in changes in plant 

morphology, physiology, and metabolism [109]. 

 

For ninety-five percent of all terrestrial plants (i.e., C3 plants), the reductive pentose 

phosphate (Calvin-Benson-Bassham, or CBB) cycle directly links light and dark 
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reactions and sustains anabolic activities [110]. RuBisCO (Ribulose-1,5-bisphosphate 

carboxylase oxygenase) plays a central role in the cycle by carboxylating ribulose-1,5-

bisphosphate (RUBP) with CO2 to form two 3-phosphoglycerate (3PGA) molecules. The 

other 10 enzymes in the CBB cycle regenerate the RUBP substrate to repeat this process. 

RuBisCO has a low turnover rate [~3/s; [111]] and also performs a competitive 

oxygenation side reaction that limits carboxylation activity. The binding of RuBisCO to 

oxygen produces 2-phosphoglycolate (2PG), and additional enzymatic steps, known 

collectively as photorespiration, are required to convert 2PG into 3PGA. Rectifying the 

oxygenase-based production of 2PG, that would otherwise be toxic, requires CO2 release 

and consumes energy through photorespiration, thereby expending up to 50% of all fixed 

carbon [112] to maintain plant health [113]. Researchers have attempted to augment 

RuBisCO’s specificity and throughput [114], introduce non-native forms of RuBisCO 

[111], increase the regenerative capacity of the CBB cycle [115,116], and minimize 

metabolic costs associated with photorespiration [117]. These studies produced mixed 

results, thus advocating for a more comprehensive, systems-level approach to enhance 

and/or redirect photosynthetic carbon flux. 

 

In silico methods including kinetic [118] and stoichiometric [119–121] models can 

simulate metabolic network behavior and improve our mechanistic understanding of 

photosynthetic metabolism, but the predictions must be experimentally verified by other 

methods [122]. We and others have used metabolic flux analysis (MFA) based on steady-

state 13C labeling studies to map the flow of carbon through the biochemical pathways of 

plant seeds [123–126] or cultured plant cells [82,127], which exhibit extended periods of 
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pseudo-steady-state metabolism. However, leaves exhibit diurnal patterns of metabolism 

with limited metabolic steady states [128,129]. Furthermore, autotrophic tissues produce 

uniform steady-state 13C-labeling patterns that are largely uninformative [5]. Therefore, 

transient 13CO2 labeling studies are necessary to quantify leaf metabolic fluxes.  

 

A prior 13CO2 labeling study by Szecowka et al. [130] applied kinetic flux profiling 

(KFP) to estimate net carbon fixation and photorespiration fluxes along with biosynthetic 

fluxes leading to sucrose, starch, trehalose, and myo-inositol in Arabidopsis rosettes 

under a single condition with illumination at 120 µmol m-2 s-1. The KFP approach [12] 

uses a differential equation model to regress the trajectories of unlabeled mass 

isotopomer abundances (M0) and intracellular pool size measurements obtained for 

multiple 13C-labeled metabolites, but without accounting for the distribution of higher 

mass isotopomers (M1, M2, etc.) observed. In contrast, isotopically nonstationary MFA 

(INST-MFA) is able to describe the full mass isotopomer distributions (MIDs) of 

measured metabolites, and is therefore capable of distinguishing flux contributions from 

different metabolic pathways based on the atomic rearrangements they produce. This 

provides enhanced flux resolution and does not require direct pool size measurements.  

 

Previously, Young et al. applied 13C INST-MFA to map 76 fluxes within the central 

carbon metabolism of the cyanobacterium Synechocystis sp. PCC 6803 [6]. The flux 

analysis revealed unanticipated photosynthetic inefficiencies tied to oxidative metabolic 

pathways, despite minimal photorespiration. In this study, we applied a similar modeling 
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approach to map autotrophic metabolism of Arabidopsis rosettes under varying light 

intensities. The Allen lab at the Donald Danforth Plant Science Center in St. Louis, MO 

grew the rosettes involved in this study, performed the labeling experiments by 

administering 13CO2 to whole plants, and measured labeling using LC-MS/MS and GC-

MS. I integrated and analyzed the MS data generated and carried out the 13C INST-MFA. 

13C INST-MFA was applied to determine i) network-wide flux estimates from 

isotopomer labeling for both low light (LL) and high light acclimated (HL-ACC) 

Arabidopsis plants, including photorespiratory fluxes that were further validated by 

independent radiolabeling measurements; ii) a compartmentalized description of sucrose 

and starch biosynthesis; iii) a description of leaf export of sucrose and amino acids 

consistent with measurements of vascular exudates; and iv) model-based estimates of 

inactive pools consistent with cellular and subcellular leaf heterogeneity. The models 

were validated through benchmarking fluxes with the literature and by independent 

experiments not used for model identification. This study reveals the potential for 13C 

INST-MFA to provide novel insights into photosynthetic metabolism that can guide plant 

metabolic engineering. 
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4.3 METHODS 

4.3.1 PLANT GROWTH CHARACTERISTICS 

Wild-type Arabidopsis thaliana ecotype Col-0 plants were grown in a Conviron growth 

chamber (model MTPS 120-2, Pembina, ND) under 16/8-hr day/night cycles, 

temperature of 22/18°C, light intensity of 200 µmol m-2 s-1, and 50% relative humidity. 

At 24 days of age, plants were transferred to a Percival incubator (model E22L, Perry, 

IA) that was set up with identical incubation conditions, where plants were maintained 

for three days prior to isotopic labeling (LL). For the high light acclimation process, 

plants initially grown to 17 days of age at 200 µmol m-2 s-1 were exposed to 500 µmol m-2 

s-1 for nine days prior to isotope labeling at 500 µmol m-2 s-1 (HL-ACC). In both cases, 

plants were labeled 28 days after planting when leaves were fully expanded. Pigments 

including chlorophyll were quantified spectroscopically, RuBisCO was quantified by 

western blot and gel image, sucrose was quantified by GC-MS, starch was quantified 

using an enzymatic assay (Megazyme, Wicklow, Ireland), leaf cross-sections and 

chloroplast ultrastructure were imaged in an energy filter transmission electron 

microscope (LEO 912 AB, LEO, Oberkochen, Germany), and oil was quantified by GC-

FID (SI Materials and Methods). 

 

4.3.2 GAS EXCHANGE AND 13CO2 LABELING OF ARABIDOPSIS ROSETTES 

A LI-6400 XT portable photosynthesis system (Li-Cor, Lincoln, NE) was used to monitor 

assimilation and light response of four-week-old plants. Isotopic labeling experiments 

(n≥3) were performed on plants acclimated to light intensities of 200 µmol m-2 s-1 (LL) or 



 80 

500 µmol m-2 s-1 (HL-ACC). Arabidopsis rosettes were labeled in a Percival E22L 

incubator containing an inflated glove bag (Gas-Col) or custom-made individual gas-tight 

chambers, using premixed gas containing 13CO2 (Sigma, St Louis, MO) at a 13CO2/N2/O2 

ratio of 0.033/78/21.967. Ten samples were collected over a 15-minute interval at the 

following time points: 30s, 60s, 90s, 120s, 150s, 180s, 300s, 420s, 600s, and 900s 

followed by immediate quenching with liquid nitrogen. In each case, liquid nitrogen was 

dumped directly on plants that were still in the incubator with care to avoid any shading. 

The liquid nitrogen resulted in some leaves falling off of the rosettes almost instantly 

(i.e., less than a second after the nitrogen was applied). Therefore, we expect that the 

quenching process was adequate. 

 

4.3.3 LC-MS/MS AND GC-MS OF METABOLITE LABELING AND CONCENTRATION 

Methods to extract metabolites were modified from Arrivault et al. [128]. Leaf tissue was 

extracted with methanol/chloroform/water (4ºC). Filtered samples were run on an AB 

Sciex QTRAP™ 4000 linked to a Shimadzu HPLC using negative ionization. Ion-pair 

chromatography (IPC) linked to tandem MS was performed as described in [6,128] with 

slight modifications. GC-MS was used to inspect labeling in amino and organic acids. 

The final parameters used for isotopomer measurements are listed in the Appendix. 

 

4.3.4 ISOTOPOMER NETWORK AND FLUX DETERMINATION 

An isotopomer model describing photosynthetic central carbon metabolism in 

Arabidopsis rosettes was constructed from reaction networks in biochemical literature. A 
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list of the reactions is provided in the Appendix. MFA was performed assuming 

intracellular metabolite levels and metabolic fluxes remained constant throughout the 

labeling experiment and were not perturbed by replacement of 12CO2 with the same 

concentration of 13CO2. MFA studies presume that the effect of carbon isotope 

fractionation is small. Even though different pathways of carbon fixation are known to 

exhibit varying levels of isotope fractionation (i.e., a preference for 12C over 13C or vice 

versa), these deviations are well below the levels that can be detected by the quadrupole 

MS instruments used in this study [9]. The enzyme-bound carbon fragment EC2 was 

present at infinitesimal concentrations and thus was in isotopic quasi-equilibrium with its 

metabolite precursors. E4P and SBP were treated similarly, since they could not be 

directly measured but were assumed to be small pools that equilibrate rapidly with their 

upstream precursors. Intermediates were in some cases less labeled than their 

downstream products, indicating the presence of spatial heterogeneity. Others have 

similarly noted the presence of inactive pools [130] and have also observed labeling 

patterns that indicate multiple pools that are spatially resolved and subject to different 

degrees of labeling. Rather than attempt to measure the pools by organelle fractionation, 

which can be compromised by organelle leakage and contamination, dilution parameters 

were introduced to describe the lack of equilibration between labeled (i.e., metabolically 

active) and unlabeled (i.e., metabolically inactive) pools of the same metabolite. These 

parameters are mathematically equivalent to the (1-G) parameters introduced by [131], 

which were later adopted by [6] and [132]to account for isotopic nonsteady state in 

isotopomer models of bacterial metabolism. 
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INST-MFA was used to estimate intracellular metabolic fluxes. Least-squares parameter 

regression, as well as statistical and sensitivity analysis of the optimal solution, was 

performed using the publically available software package Isotopomer Network 

Compartmental Analysis [INCA [24]], which runs within MATLAB™ [6,124]. INCA 

relies upon an elementary metabolite unit (EMU) decomposition of the underlying 

isotopomer network to efficiently simulate the effects of varying fluxes on the labeling 

trajectories of measurable metabolites. Metabolic fluxes and pool sizes were estimated by 

minimizing the lack-of-fit between experimentally measured and computationally 

simulated mass isotopomer distributions (MIDs) using a Levenberg-Marquardt 

optimization algorithm [20]. Flux evaluation was repeated a minimum of 50 times from 

random initial values to obtain best-fit estimates. All results were subjected to a chi-

square statistical test to assess goodness-of-fit, and accurate 95% confidence intervals 

(CIs) were computed for all estimated parameters by evaluating the sensitivity of the 

sum-of-squared residuals (SSR) to parameter variations [34]. 

 

4.4 RESULTS 

4.4.1 PLANT DEVELOPMENT AND PHOTOSYNTHETIC RATES 

Developmental stages and photosynthetic metabolism are closely linked. Leaf 

morphology, pigmentation, photosynthetic rate, enzyme activities, and carbon 

partitioning impact plant development. In turn, the expansion of leaves, development of 

reproductive sink, and leaf senescence influence photosynthesis [133]. Leaves of three- to 

five-week-old Arabidopsis plants had comparable amounts of chlorophyll per unit leaf 
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fresh weight (FW) and net photosynthetic rates per unit leaf area; however, RuBisCO 

content per unit FW decreased with age (Figure 4.1), and five-week-old plants exhibited 

flower development. Fully expanded leaves of four-week-old plants were selected for all 

further experiments. Light-response curves (Figure 4.1) indicated that plants acclimated 

to high light have approximately 38±4% greater maximum photosynthetic rates than non-

acclimated plants (measured at ~2000 µmol m-2 s-1) and an altered ratio of chlorophyll 

a/b (Figure 4A.1). 

 

 

Figure 4.1. Net photosynthetic rate as a function of light intensity in four-week-old 
plants. 

Plants were grown at light intensity of 200 µmol m-2 s-1 (black diamonds) or acclimated 

to 500 µmol m-2 s-1 for nine days (white diamonds) prior to measurement (SEM; n=4). 

(Table inset) Photosynthetic measurements of leaves of three- to five-week-old plants 

grown at 200 µmol m-2 s-1 including chlorophyll (Chl; mg gFW-1; SEM, n=4), RuBisCO 

(mg gFW-1; SEM, n=3) and net CO2 assimilation rate (Pn; µmol CO2 m-2 s-1; SEM, n=6). 
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4.4.2 STARCH AND SUCROSE MEASUREMENTS 

Starch and sucrose, two significant products of leaf photosynthetic metabolism, were 

quantified to determine the times during the day that leaves exhibit pseudo-steady-state 

metabolism. The amount of starch and sucrose per unit FW were measured hourly from 

morning to midday. The leaves produced starch at a rate of 6.3±0.3 µmol glucose gFW-1 

hr-1 throughout the experimental time course (Figure 4A.1). The sucrose pool size did 

not change significantly during the same period of time, indicating that the biosynthetic 

and export rates were balanced. Therefore, plant leaves were isotopically labeled in the 

late morning. 

 

4.4.3 13C-LABELING OF ARABIDOPSIS ROSETTES AT DIFFERENT LIGHT INTENSITIES 

In order to map carbon fluxes after acclimation to varied light intensities, 3-6 replicate 

13C-labeling experiments were performed at low light (200 µmol m-2 s-1; LL) or high light 

conditions after acclimation (500 µmol m-2 s-1, 9-day acclimation; HL-ACC). 

Immediately after the introduction of 13C-labeled CO2, a time-series of leaf samples were 

collected and the mass spectra of 37 fragment ions from each of 10 time points were 

analyzed using LC-MS/MS and GC-MS. Raw measured isotopomer abundances can be 

found in the supplemental dataset of [23]. The average 13C enrichment of most 

metabolites increased hyperbolically over time, with the MID shifting gradually toward 

heavier mass isotopomers (Figure 4.2, Figure 4A.2,Figure 4A.3). Intermediates involved 

in the CBB cycle, photorespiration, and sugar synthesis became enriched at a faster rate 

than organic and amino acids. Of the latter, only serine, glycine, alanine, and aspartate 

were significantly enriched during the initial 15-minute labeling period. 
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Figure 4.2. Transient 13C-labeling in intracellular metabolites.  

(A) Average 13C-enrichments of ADP-glucose (ADPG; closed circles) and UDP-glucose 

(UDPG; open circles) under LL conditions calculated using the formula 𝟏
𝑵

𝑴𝒊  𝒙  𝒊𝑵
𝒊!𝟏  , 

where N is the number of carbon atoms in the metabolite and Mi is the fractional 

abundance of the ith mass isotopomer. The solid lines connecting average 13C-

enrichments were added to aid data visualization and do not represent model fits. (B) 

Experimentally measured mass isotopomer abundances (data points) and INST-MFA 

model fits (solid lines) of ADPG and UDPG under LL conditions. Error bars represent 

standard measurement errors (SEM, n=6). Mass isotopomer data corrected for natural 

isotope abundance are shown. Nominal masses of M0 mass isotopomers are shown in 

parentheses for ADPG and UDPG. (C) Experimentally measured MIDs and INST-MFA 

model fits of glucose-1-phosphate (G1P) with and without inclusion of dilution 

parameters to account for inactive pools. Cellular heterogeneity can result in inactive 

pools that are not significantly enriched within the time course of the experiment. The 

contribution of these pools to the measured MID can be accommodated by incorporating 

dilution parameters into the model. 
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4.4.4 ADPG AND UDPG REVEAL METABOLIC COMPARTMENTATION 

The MIDs of ADP-glucose (ADPG) and UDP-glucose (UDPG), which are the respective 

precursors for starch and sucrose biosynthesis, were examined to assess subcellular 

compartmentation in central metabolic pathways. Initial tests indicated labeling only 

within the glucosyl component of the nucleotide phosphates; therefore, labeling was 

quantified only in this “metabolically active” component of ADPG and UDPG. Isotopic 

incorporation resulted in 81±3% enrichment of ADPG and 49±4% enrichment of UDPG 

at 15 minutes (Figure 4.2A). The labeling differences confirm that starch and sucrose are 

generated from precursors that originate within distinct subcellular locations (i.e., plastid 

and cytosol, respectively; Figure 4.2A, Figure 4.2B) and are consistent with current 

understanding of leaf carbon partitioning [134,135]. 

 

4.4.5 ISOTOPICALLY NONSTATIONARY METABOLIC FLUX ANALYSIS 

A set of comprehensive isotopomer models were constructed to estimate metabolic fluxes 

based on the measured MIDs, the net CO2 assimilation and starch production rates, and 

steady-state levels of sucrose and amino acids in vascular exudate (Figure 4.3). The 

reaction network and fluxes (Figure 4A.4, Table 4A.5) included the CBB cycle, 

photorespiration, a bifurcated TCA pathway, and pathways for starch, sucrose and amino 

acid biosynthesis [136]. Inclusion of inactive pools and subcellular compartmentation 

was required to pass the chi-square goodness-of-fit test and to describe the multicellular, 

heterogeneous anatomy of a leaf (Figure 4.2C). In general, the model-estimated sizes of 

inactive pools (expressed as a fraction of the total intracellular pool) were in qualitative 

agreement with M0 mass isotopomer abundances measured after a 60-min 13CO2-
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labeling experiment (Figure 4A.5). Some quantitative disagreements were observed, most 

notably in the amino acid measurements collected under LL conditions, which were 

likely due to the existence of slowly labeled intracellular pools that were not explicitly 

included in the isotopomer model. These unmodeled pools appear inactive during the 15-

min labeling experiment but become gradually enriched at longer times. Such 

discrepancies were less prevalent under HL-ACC conditions, likely because overall 

photosynthetic rates were enhanced and amino acid labeling equilibrated more rapidly.  
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Figure 4.3. Carbon assimilatory fluxes of a photosynthetic Arabidopsis leaf.  

(A) Arabidopsis net flux maps determined under varying light conditions for the LL and 

HL-ACC conditions. Relative fluxes are presented after normalization to a net CO2 

uptake rate of 100 (SEM, n=6 LL; n=4 HL-ACC). Values shown are the medians of the 

95% flux confidence intervals. The estimated standard errors are calculated as (UB95-

LB95)/3.92, where UB95 and LB95 are the upper and lower bounds of each confidence 

interval, respectively, and 3.92 is the number of standard errors that span the 95% 

confidence interval of a normally distributed random variable. Metabolites 

compartmentalized to the plastid are denoted by ‘.p’, while metabolites 

compartmentalized to the cytosol are denoted by ‘.c’. (B) Selected relative flux values (as 

a percentage of net CO2 assimilation). (C) Comparison of photosynthetic parameters; net 

CO2 assimilation is in terms of absolute fluxes (µmol metabolite gFW-1 hr-1). 

Abbreviations: netA=net CO2 assimilation, Vpr=photorespiratory CO2 release, 

Vc=carboxylation flux, Vo=oxygenation flux, AGP=starch synthesis flux, SPS=sucrose 

synthesis flux. 
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TCA cycle metabolism is challenging to model in leaves because the combination of 

large organic acid pool sizes and low fluxes relative to CBB cycle (i.e., ~10% or less; 

[136]) result in poorly identifiable fluxes. To accurately depict the non-cyclic TCA 

pathway activity, output fluxes to amino acids and sucrose were stoichiometrically 

constrained to each other on the basis of their measured steady-state concentrations in 

vascular exudate (Figure 4A.6). As an apoplastic loader, Arabidopsis can export more 

sucrose during high light acclimation due to H+/sucrose symport [137,138], which could 

result in an enhanced ratio of sucrose production relative to amino acids in HL-ACC 

plants. 

  

Model-determined fluxes were not constrained to a particular measurement but rather 

were based on nonlinear regression of numerous MID measurements and experimentally-

derived starch and CO2 net assimilation rates. Each model included 54 free flux 

parameters and required over 1,000 ordinary differential equations (ODEs) to simulate 

the labeling time course of the measured MIDs (Figure 4.3, Figure 4A.2, Figure 4A.3). 

Computing the sensitivities of all MIDs to the adjustable parameters required an 

additional ~94,000 ODEs. The LL and HL-ACC models had sum-of-squared residuals 

(SSR) of 1003 and 808, which were both accepted based on chi-square tests with degrees 

of freedom (DOF) equal to 1139 and 1019, respectively (Figure 4.3). 
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4.4.6 METABOLIC RESPONSE TO ALTERED LIGHT AND ACCLIMATION 

Photosynthetic adjustments range from less than seconds to weeks or months dependent 

on the species and specific developmental process. This study focused on metabolic 

fluxes determined after nine days of development with exposure to high light and was 

therefore aimed at examining the acclimated metabolic phenotype and not a short-term 

response to elevated irradiance. The nine-day time frame allowed plants to acclimate 

developmentally to a new metabolic pseudo-steady state that was compared to LL leaves 

through the use of transient isotopic labeling experiments. The short time scale (~15 

minutes) of the labeling experiments relative to time scale of acclimation enabled us to 

apply INST-MFA to obtain a snapshot of the flux values at the end of the acclimation 

period.  

 

Absolute fluxes (µmol metabolite gFW-1 hr-1) obtained from the best-fit models were 

subsequently normalized by the net assimilation rate to enable direct comparisons of 

carbon partitioning between LL and HL-ACC conditions (Figure 4.3). Both the 

carboxylation and oxygenation activities of RuBisCO were established through the 

modeling process, resulting in a ratio of Vc/Vo that dropped from 3.5:1 in LL plants to 

2.3:1 in HL-ACC plants. The change in this ratio reflected an absolute increase in 

photorespiratory flux from 19 to 60 µmol CO2 released gFW-1 hr-1 whereas carboxylation 

changed from 135 to 278 µmol CO2 fixed gFW-1 hr-1. This resulted in photorespiratory 

fluxes that were 17 and 28% of net assimilation, respectively. The additional carbon lost 

to photorespiration in the HL-ACC condition was offset primarily by decreases in the 

relative flux to starch accumulation (from 33% to 24% of net assimilation).  
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Despite the increase in photorespiration, the relative flux to sucrose export also increased 

to support more biomass production in HL-ACC plants. Sucrose export flux more than 

doubled from 11.7 to 26.4 µmol (hexose units) gFW-1 hr-1, while starch production 

increased marginally from 6.3 to 8.5 µmol (hexose units) gFW-1 hr-1. Higher carryover 

starch levels were observed in HL-ACC leaves throughout the diurnal cycle (Figure 

4A.1). HL-ACC plants also had elevated levels of RuBisCO on the basis of leaf area, FW 

or chlorophyll and produced thicker leaves with more biomass. Furthermore, HL-ACC 

plants produced more seed biomass (i.e., ten plants produced approximately twice the 

amount of seeds that resulted in 93% more biomass by weight) with a greater amount of 

oil, had altered leaf chlorophyll levels, and had reduced measured concentrations of 

several of the Calvin cycle intermediates (Table 4A.1). 

 

Interestingly, measured changes in several CBB intracellular pool sizes were inversely 

correlated with the model-determined increase in CBB cycle fluxes for HL-ACC plants. 

We did not supply the pool size measurements to the model when performing data 

regressions because accurate measurement of absolute pool sizes can be challenging, and 

other methods aimed at indirectly assessing subcellular compartmentation [75,139] were 

not applicable within the short time period of this study. As a result, most intracellular 

pool sizes were not identifiable by INST-MFA. Since pool size estimates were not 

strongly correlated to flux estimates (Figure 4A.7, Figure 4A.8), precise determination of 

fluxes could still be achieved despite poor identifiability of pool sizes. This is a 
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significant advantage of INST-MFA over other modeling approaches that do not utilize 

full MID measurements, require direct pool size measurements for data regression, or 

depend upon kinetic parameter values that may not be reliably known in planta. We have 

observed a similar lack of coupling between flux and pool size estimates in previous 

studies [6], which appears to be a general characteristic of INST-MFA models. 

 

4.5 DISCUSSION 

4.5.1 LEAF METABOLIC PHENOTYPING BY INST-MFA 

13C INST-MFA provides a comprehensive approach to map the flow and fate of carbon 

throughout autotrophic metabolic networks [5]. This enables quantitative studies of 

integrated metabolic pathways, rather than individual reactions or nodes in isolation. 

Although INST-MFA has been previously applied to cultured cyanobacteria [6], this is 

the first time that it has been successfully performed in a terrestrial plant. Other recent 

studies have used 13CO2 labeling to estimate fluxes [130] or metabolite turnover [140] 

from dynamic labeling data by modeling total 13C enrichments, but without applying 

comprehensive isotopomer models. As presented here, isotopomer models that describe 

the full MIDs of the measured metabolites are capable of distinguishing flux 

contributions from different metabolic pathways based on the atomic rearrangements they 

confer. This approach allows increased pathway-specific information to be extracted 

from the MS measurements and, importantly, does not require direct pool size 

measurements to be supplied for model regression. The latter consideration is particularly 

germane to plant systems, as uncertainties introduced by metabolite compartmentation, 
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rapid exchange with unmeasurable metabolites, heterogeneous cell populations, or losses 

during the extraction process may corrupt the absolute pool size measurements and lead 

to biased flux estimates when using previously established methods. 

 

Though other models were considered based upon biochemical descriptions in the 

literature, we found that dilution parameters to accommodate photosynthetically inactive 

metabolite pools were required to achieve statistically acceptable fits to the experimental 

data (Figure 4A.5), reflecting the cellular heterogeneity of leaves and also the mixing of 

compartmentalized pools that occurs during cell lysis. Incorporation of dilution 

parameters into the model enabled a parsimonious description of the labeling dynamics, 

which did not require detailed modeling of pools that cannot be independently measured 

and also did not depend on ad hoc assumptions found in the literature. The dilution 

parameters established by modeling were comparable to measurements obtained from a 

longer-term labeling experiment (t=60 min), thus providing independent validation of this 

approach. Constraining the dilution parameters in the LL model to match the measured 

M0 isotopomer abundances at t=60 min (with the exception of the amino acids alanine, 

serine and glycine that label more gradually than the other metabolites included in the 

model), resulted in only a small increase in SSR from 1003 to 1087 and did not 

significantly alter the estimated flux values. Therefore, the change in SSR remained 

within statistically acceptable bounds and indicated that the estimated dilution parameters 

were in quantitative agreement with isotope labeling measurements at t=60 min. 
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4.5.2 PHOTORESPIRATION CHANGES WITH ACCLIMATION TO HIGH LIGHT LEVEL 

Methods to quantify photorespiration minimally include: post-illumination CO2 burst, 

inhibition of net CO2 assimilation by O2, CO2 influx into CO2-free air, NH4 formation, 

and ratio of 14CO2 to 12CO2 uptake. The assumptions and limitations for each approach 

have been summarized elsewhere [141,142]. We considered an alternative strategy using 

13CO2 labeling followed by computational flux estimation that does not require kinetic 

constants and therefore avoids some of the measurements and assumptions inherent to 

other methods. Furthermore, the approach (i) accounts for the exchange of intermediates 

across mitochondrial, peroxisomal, and cytosolic compartments (e.g., [143]) that interact 

with plastidic pools and (ii) couples photorespiration flux to biosynthetic demands for 

folate [144] and amino acid [145] metabolism. Thus photorespiration is treated as a 

branched network with multiple input and output nodes, consistent with the known 

biochemistry. 

 

Recent direct measurements of photorespiration indicate values of 14-17% of 

carboxylation [145,146], consistent with the LL model; however, the range in the 

literature varies considerably (approximately 6-70% photorespiratory CO2 release relative 

to net assimilation). Our results indicate that the absolute rates of carboxylation and 

oxygenation increased with acclimation to high light intensity, but the rate of 

oxygenation increased more substantially (Figure 4.3B). The HL-ACC case is not 

experimentally similar to a short-term exposure to high light because the additional 

acclimation time results in changes to leaf anatomy. In particular, HL-ACC plants have 

thicker leaves that maximize exposed chloroplast surface area to the intracellular space 
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and swollen chloroplasts (Figure 4A.1) that contain heightened levels of RuBisCO per 

unit leaf area. As the internal CO2 conductance cannot increase in proportion to 

RuBisCO, leaves have greater internal diffusion resistances and lower CO2 partial 

pressures at the site of carboxylation [147] that enhance photorespiration [148]. 

Combining the ratio of model-derived Vo/Vc ratios for the LL and HL-ACC plants with 

gas exchange relationships that approximate photorespiration based on CO2 concentration 

[141], the difference between LL and HL-ACC photorespiration would be explained by 

an additional 34% drawdown in the stromal CO2 concentration at the carboxylation site 

Cc. This reduction is reasonable, as other studies on high light acclimation in leaves 

indicate up to 50% decrease in Cc [e.g. [148,149]].  

 

Other parameters such as the enhanced levels of nucleotide cofactors that are co-

substrates in photorespiration may also further activate this pathway, rebalancing and 

consuming additional reducing equivalents across organelles and subverting 

photodamage [150]. Photorespiration in HL-ACC plants led to consumption of an 

additional 72% ATP and 65% NADPH relative to the minimum required for CO2 

fixation, whereas in LL these percentages were lower (48% and 43%, respectively) but 

still significant. 

 

4.5.3 METABOLISM ADJUSTS IN LIGHT 

The increase in photorespiratory carbon loss under the HL-ACC condition was associated 

with a repartitioning of flux among the major carbon sinks represented in the isotopomer 
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model (Figure 4.3). Relative flux to support sucrose export increased, while relative flux 

to starch decreased, indicating a higher carbon export capacity that corresponded to 

increased growth and photosynthetic flux in HL-ACC plants [138]. The modeled sucrose 

to starch ratio (1.9:1) in LL plants was consistent with the literature and increased in HL-

ACC plants to 3.1:1. Thus, the description of intermediary fluxes provided by INST-

MFA enabled a global assessment of these flux alterations that would not be observable 

without a comprehensive, model-based analysis of isotope labeling dynamics.  

 

This study also illustrates how combined analysis of flux and metabolite profiling data 

can provide complementary information about cellular reprogramming in response to 

light. For example, several measured metabolite intermediates appeared to adjust to the 

long-term high light acclimation through decreased pool sizes (on either a FW or 

chlorophyll basis) within the CBB cycle (Table 4A.11), even as their interconnected 

pathway fluxes increased. Though this was unanticipated, consistent results were 

obtained in multiple repeat experiments by using sample collection strategies specifically 

designed to minimize shading or other potential artifacts.  

 

The pool size measurements were not used in the INST-MFA model regressions, which 

provide an independent assessment of the metabolic adaptation to high light. 

Unfortunately, measured changes in metabolite levels could not be verified by INST-

MFA, since the 95% confidence intervals for most model-estimated pool sizes exhibited 

overlap between the two conditions (Table 4A.10). Furthermore, subcellular 
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compartmentation and/or dilution by inactive pools will impact the model-estimated pool 

sizes but will not be reflected in the pool size measurements, thus complicating direct 

comparisons. 

 

Although the inverse correlation between measured intermediate pool sizes and CBB 

cycle fluxes may seem counterintuitive from the standpoint of mass-action kinetics, it 

could be explained by increases in enzyme expression or other regulatory changes that 

occur during the acclimation process and is considered elsewhere [151,152]. These 

longer-term physiological adaptations are not simply an extrapolation of the short-term 

response to high light. Further studies are needed to fully define the mechanism 

underlying this unexpected relationship between CBB cycle fluxes and intermediate pool 

sizes. However, this finding highlights the potential of 13C INST-MFA to uncover 

systems-level properties of plant metabolic networks that are not directly observable by 

static metabolite profiling approaches. 
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4.7 APPENDIX: SUPPLEMENTAL FIGURES AND TABLES 

 

Figure 4A.1. Leaf metabolism and characterization.  

A) Starch production rate and sucrose pool size (SEM, n≥3). Four-week-old plants were 

grown at 200 µmol m-2 s-1. Subsequent labeling experiments were performed near midday 

when plants exhibited pseudo-steady state metabolism. B) Leaf biomass and 

photosynthetic characterization acclimated to different light levels (SEM, n≥3) for LL 

and HL-ACC conditions. High light resulted in consistently altered ratio of Chla/b 

consistent with other reports [153]. C) Chloroplast ultrastructure imaged in TEM 

(bars=2µm).  
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Figure 4A.2. Dynamic isotope labeling trajectories of measured metabolites in LL 
condition. 

Experimentally determined (points with error bars) and INST-MFA fitted (lines) mass 

isotopomer distributions are shown for low light grown plants (LL). Nominal masses of 

M0 mass isotopomers are shown in parentheses. Error bars represent standard 
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measurement errors. Raw mass isotopomer data are shown with correction for natural 

isotope abundance (SEM; LL, n=6). MIDs of metabolites with near zero labeling (PRO, 

THR, ASN, GLU, and GLN) are not shown. 
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Figure 4A.3. Dynamic isotope labeling trajectories of measured metabolites in HL-
ACC condition.  

Experimentally determined (points with error bars) and INST-MFA fitted (lines) mass 

isotopomer distributions are shown for high light acclimated plants (HL-ACC). Nominal 
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masses of M0 mass isotopomers are shown in parentheses. Error bars represent standard 

measurement errors. Raw mass isotopomer data are shown with correction for natural 

isotope abundance (SEM; HL-ACC, n=4). MIDs of metabolites with near zero labeling 

(PRO, THR, ASN, GLU, and GLN) are not shown. 

 

 

 

Figure 4A.4. Central carbon metabolic network in Arabidopsis thaliana leaves.  

Absolute fluxes (µmol metabolite gFW-1 hr-1) presented are representative of the LL 

condition. 
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Figure 4A.5. Estimate of inactive pool contributions in A) LL and B) HL-ACC 
conditions.  

Calvin cycle intermediates had relatively low dilution parameters, indicating that they 

were derived largely from photosynthetically active cells. Most of the model-estimated 

dilution parameters were qualitatively consistent with inactive pool contributions 

determined from a longer-term independent 13C-labeling experiment, with the exceptions 

of amino acid dilutions obtained in the LL experiment. Generally, amino acids exist in 

multiple intracellular pools with differing metabolic roles, some of which are turned over 

at time scales that differ from the more rapidly labeled Calvin cycle intermediates. 

Independent measurements from all pools could not be obtained; therefore the inclusion 

of dilution parameters provides a parsimonious description of the complex labeling 

dynamics observed. During low light, the alternative metabolic roles of amino acids 
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comprise a more significant portion of their overall use. Under high-light acclimated 

conditions, the model-determined dilution parameters show closer agreement with the 60-

min labeling study, which implies that photorespiration plays a more significant role in 

amino acid metabolism under this condition. Labeling measurements for R5P and FBP 

were not obtained for the HL-ACC experiment, which resulted in the high uncertainty for 

the dilution fluxes associated with those metabolites. 
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Figure 4A.6. Sucrose and amino acid concentrations in vascular exudates.  

A) Relative amount (% of total) of individual amino acid in vascular exudates (SD, n = 9-

12). B) Sucrose and amino acid levels in vascular exudates (SD, n=9-12) and the ratios of 

sucrose to several amino acids and the families of aspartate (A) and glutamate (G) amino 

acids that are derived from oxaloacetate and alpha ketoglutarate. Sucrose, glutamine 

(Gln), glutamate (Glu), proline (Pro), asparagine (Asn), aspartate (Asp), threonine (Thr), 
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alanine (Ala), serine (Ser) and glycine (Gly) were measurable in exudates. 

Concentrations and the sugar to amino acid ratios were comparable to previous reports on 

phloem sap that utilized EDTA exudation methods [154,155]. Amino acid contents in 

vascular exudates did not change significantly under different light treatments whereas 

sucrose content increased under HL-ACC, as has been previously reported [156], 

indicating the phloem loading of amino acids is an independent process and that leaf 

anatomical changes may facilitate carbon export during acclimation to high irradiance 

[157]. Mature leaves acclimated to high light that have increased palisade mesophyll 

thicknesses may export more carbohydrates to meet the increasing demands from sink 

tissues [138]. Apoplastic loaders are capable of using H+/sucrose symporters to alter 

sugar export into the phloem [137,138].  
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Figure 4A.7. Heat map showing contributions of pool size and isotopic labeling 
measurements to estimated parameters.  

To study the effects of pool size measurements on estimated fluxes, we treated the pool 

sizes as measurements and computed a “contribution matrix” based on the local 

parameter sensitivities [34]. Each element of this contribution matrix (e.g., at row i and 

column j) represents the fractional contribution of the jth measurement to the local 

variance of the ith parameter. The heat map shows that the MS labeling measurements are 

more important than pool size measurements in determining the flux values. 
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Figure 4A.8. Correlation heat map of estimated parameters.  

Each element of this matrix (e.g., at row i and column j) represents the correlation 

coefficient between parameters i and j, where coefficients near 1 indicate positive 

correlation, coefficients near -1 indicate negative correlation, and coefficients near 0 

indicate that the parameters i and j are uncorrelated. The heat map shows that the net and 

exchange fluxes are strongly correlated with each other, whereas the estimated pool size 

parameters only correlate weakly, if at all, with the net and exchange fluxes. 
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Table 4A.1. Specific compound dependent MS parameters used in multiple reaction 
monitoring (MRM) for LC-MS/MS. 

Metabolites Parent ion ( [M-H]- )   Product ion   

         
  Formula Mass Formula Mass 
PGA C3H6O7P- 185 [PO3]- 79 
GAP C3H6O6P- 169 [H2PO4]- 97 
DHAP C3H6O6P- 169 [H2PO4]- 97 
FBP C6H13O12P2

- 339 [H2PO4]- 97 
F6P C6H12O9P- 259 [H2PO4]- 97 
G6P C6H12O9P- 259 [H2PO4]- 97 
S7P C7H14O10P- 289 [H2PO4]- 97 
R5P C5H10O8P- 229 [H2PO4]- 97 
P5P (Ru5P/Xu5P) C5H10O8P- 229 [H2PO4]- 97 
RUBP C5H11O11P2

- 309 [H2PO4]- 97 
G1P C6H12O9P- 259 [PO3]- 79 
ADPG C16H24N5O15P2

- 588 C6H11O8P- 241 
UDPG C15H23N2O17P2

- 565 C9H12N2O9P- 323 
2PG C2H4O6P- 155 [PO3]- 79 
GA C3H5O4

- 105 C2H3O3
- 75 

PEP C3H4O6
- 167 [PO3]- 79 

Pyruvate C3H3O3
- 87 C2H3O- 43 

ACO C6H5O6
- 173 - 2CO2 85 

AKG C5H5O5
- 145  -CO2 101 

SUC C4H5O4
- 117  -CO2 73 

FUM C2HO3
- 115  -CO2 71 

MAL C4H5O5
- 133 - H2O 115 

S6P C12H22O14P- 421 [H2PO4]- 97 
Glycolate C2H3O3

- 75  -CO 47 
Glyoxylate C2HO3

- 73  -CO 45 
T6P C12H22O14P- 421 [PO3]- 79 

 



 110 

Table A4.2. Specific compound dependent MS parameters used in selected ion 
monitoring (SIM) with GC-MS. 

Metabolite Mass range Carbon atoms Fragmentation 
Serine 288-291 2, 3 M-C7H15O2Si 
Serine 302-305 1, 2 M-C7H17O1Si 
Serine 390-394 1, 2, 3 M-C4H9 
Glycine 218-220 2 M-C5H9O 
Glycine 246-249 1, 2 M-C4H9 
Alanine 232-235 2, 3 M-C5H9O 
Alanine 260-264 1, 2, 3 M-C4H9 
Aspartate 316-320 2, 3, 4 M-C7H15O2Si 
Aspartate 390-394 2, 3, 4 M-C5H9O 
Aspartate 418-423 1, 2, 3, 4 M-C4H9 
Threinine 376-379 2, 3, 4 M-C5H9O 
Threinine 404-408 1, 2, 3, 4 M-C4H9 
Glutamate 330-334 2, 3, 4, 5 M-C7H15O2Si 
Glutamate 404-408 2, 3, 4, 5 M-C5H9O 
Proline 258-262 2, 3, 4, 5 M-C5H9O 

Asparagine 417-421 1, 2, 3, 4 M-C4H9 

Asparagine 302-304 1, 2 M-C8H18NOSi  

Glutamine 431-436 1, 2, 3, 4, 5 M-C4H9 
Citrate 591-598 1, 2, 3, 4, 5, 6 M-C4H9 
Succinate 289-294 1, 2, 3, 4 M-C4H9 
Succinate 331-336 1, 2, 3, 4 M-CH3 
Fumarate 287-292 1, 2, 3, 4 M-C4H9 
Malate 419-424 1, 2, 3, 4 M-C4H9 
Malate 461-466 1, 2, 3, 4 M-CH3 
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Table 4A.3. Specific isotopomer-dependent LC-MS/MS parameters. 

Q1, m/z of the precursor ion; Q3, m/z of the product ion. Dwell time was set at 20 ms for 

each transition. 

Metabolites C atoms Isotopomers  Q1[Q3] (m/z) of mass isotopomers 
PGA 3 [M]+ - [M+3]+ 185[79], 186[79], 187[79], 188[79] 
DHAP 3 [M]+ - [M+3]+ 169[97], 170[97], 171[97], 172[97] 

FBP 6 [M]+ - [M+6]+ 339[97], 340[97], 341[97], 342[97], 
343[97], 344[97], 345[97] 

HP 6 [M]+ - [M+6]+ 259[97], 260[97], 261[97], 262[97], 
263[97], 264[97], 265[97] 

P5P 5 [M]+ - [M+5]+ 229[97], 230[97], 231[97], 232[97], 
233[97], 234[97]  

S7P 7 [M]+ - [M+7]+ 289[97], 290[97], 291[97], 292[97], 
293[97], 294[97], 295[97], 296[97] 

RUBP 5 [M]+ - [M+5]+ 309[97], 310[97], 311[97], 312[97], 
313[97], 314[97] 

G1P 6 [M]+ - [M+6]+ 259[79], 260[79], 261[79], 262[79], 
263[79], 264[79], 265[79] 

2PG 2 [M]+ - [M+2]+ 155[79], 156[79], 157[79] 
PEP 3 [M]+ - [M+3]+ 167[79], 168[79], 169[79], 170[79] 

GA 3 [M]+ - [M+3]+ 105[75], 106[75], 106[76], 107[76], 
107[77], 108[77] 

ACO 5 [M]+ - [M+5]+ 173[85], 174[85], 174[86], 175[85], 
175[86], 175[87], 176[86], 

   
176[87], 176[88],177[87], 177[88], 
177[89], 178[88], 178[89], 179[89] 

AKG 5 [M]+ - [M+5]+ 145[101], 146[101], 146[102], 147[102], 
147[103], 148[103], 148[104], 

    149[104], 149[105], 150[105]  

SUC 4 [M]+ - [M+4]+ 117[73],118[73], 118[74], 119[74], 
119[75], 120[75], 120[76], 121[76]  

FUM 4 [M]+ - [M+4]+ 115[71], 116[71], 116[72], 117[72], 
117[73], 118[73], 118[74], 119[74]  

MAL 4 [M]+ - [M+4]+ 133[115], 134[116], 135[117], 136[118], 
137[119] 
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Table 4A.4. Specific isotopomer-dependent MS parameters for UDP-glucose 
(UDPG) and ADP-glucose (ADPG). 

  
Isotopomer
s  Q1[Q3] (m/z) of mass isotopomers 

UDP
G [M]+ 565[323] 

 [M+1]+ 566[323], 566[324] 

 [M+2]+ 567[323], 567[324], 567[325] 

 [M+3]+ 568[323], 568[324], 568[325], 568[326]  

 [M+4]+ 569[323], 569[324], 569[325], 569[326], 569[327] 

 [M+5]+ 570[323], 570[324], 570[325], 570[326], 570[327], 570[328]  

 [M+6]+ 571[323], 571[324], 571[325], 571[326], 571[327], 571[328], 
571[329] 

 [M+7]+ 572[324], 572[325], 572[326], 572[327], 572[328], 572[329], 
572[330] 

 [M+8]+ 573[325], 573[326], 573[327], 573[328], 573[329], 573[330], 
573[331] 

 [M+9]+ 574[326], 574[327], 574[328], 574[329], 574[330], 574[331], 
574[332] 

 [M+10]+ 575[327], 575[328], 575[329], 575[330], 575[331], 575[332] 

 [M+11]+ 576[328], 576[329], 576[330], 576[331], 576[332] 

 [M+12]+ 577[329], 577[330], 577[331], 577[332] 

 [M+13]+ 578[330], 578[331], 578[332] 

 [M+14]+ 579[331], 579[332] 
  [M+15]+ 580[332] 
ADP
G [M]+ 588[241] 

 [M+1]+ 589[241], 589[242] 

 [M+2]+ 590[241], 590[242], 590[243] 

 [M+3]+ 591[241], 591[242], 591[243], 591[244] 

 [M+4]+ 592[241], 592[242], 592[243], 592[244], 592[245] 

 [M+5]+ 593[241], 593[242], 593[243], 593[244], 593[245], 593[246] 

 [M+6]+ 594[241], 594[242], 594[243], 594[244], 594[245], 594[246], 
594[247]  

 [M+7]+ 595[241], 595[242], 595[243], 595[244], 595[245], 595[246], 
595[247]  

 [M+8]+ 596[241], 596[242], 596[243], 596[244], 596[245], 596[246], 
596[247]  

 [M+9]+ 597[241], 597[242], 597[243], 597[244], 597[245], 597[246], 
596[247]  

 [M+10]+ 598[241], 598[242], 598[243], 598[244], 598[245], 598[246], 
598[247]  

 [M+11]+ 599[242], 599[243], 599[244], 599[245], 599[246], 599[247]  

 [M+12]+ 600[243], 600[244], 600[245], 600[246], 600[247]  
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Table 4A.4. Continued 

 [M+13]+ 601[244], 601[245], 601[246], 601[247]  

 [M+14]+ 602[245], 602[246], 602[247]  

 [M+15]+ 603[246], 603[247]  
  [M+16]+ 604[247]  
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Table 4A.5. Complete list of reactions and atom transitions for Arabidopsis rosette 
metabolic network. 

Enzymatic Reactions for Arabidopsis rosette metabolic network 
Calvin Cycle 

   RUBISCO_CO2 RUBP.p (abcde) + CO2 
(f)  → 3PGA.p (cde) + 3PGA.p (fba)  

ALD TP.p (abc) + E4P.p (defg)  → SBP (cbadefg) 
SBPase SBP (abcdefg)  → S7P.p (abcdefg) 
TK1 TP.p (cde) + EC2 (ab)  ↔ X5P.p (abcde) 
TK2 S7P.p (abcdefg)  ↔ R5P.p (cdefg) + EC2 (ab) 
TK3 F6P.p (abcdef)  ↔ E4P.p (cdef) + EC2 (ab) 
PPE X5P.p (abcde)  ↔ RU5P.p (abcde) 
PPI R5P.p (abcde)  ↔ RU5P.p (abcde) 
PRK RU5P.p (abcde)  → RUBP.p (abcde) 
Photorespiration       
RUBISCO_O2 RUBP.p (abcde)  → 3PGA.p (cde) + 2PG.p (ba) 
PGP 2PG.p (ab)  → GLY.p (ab) 
GLYdil GLY.p (ab) ↔ GLY.x (ab) + GLYout 
GDC GLY.p (ab) + GLY.p (cd)  → SER.p (cdb) + CO2 (a) 
SERdil SER.p (ab) ↔ SER.x (ab) + SERout 
SGA1 SER.p (abc)  → GA.p (abc) 
GK GA.p (abc)  ↔ 3PGA.p (abc) 
Starch Synthesis 

   GAPDH.p 3PGA.p (abc)  → TP.p (abc) 
FBA.p TP.p (def) + TP.p (cba)  ↔ FBP.p (abcdef) 
PFP.p FBP.p (abcdef)  ↔ F6P.p (abcdef) 
PGI.p F6P.p (abcdef)  ↔ G6P.p (abcdef) 
PGM.p G6P.p (abcdef)  ↔ G1P.p (abcdef) 
AGP G1P.p (abcdef)  → ADPG (abcdef) 
SS ADPG (abcdef) → Starch (abcdef) 
Sucrose Synthesis       
FBA.c TP.c (def) + TP.c (cba)  ↔ FBP.c (abcdef) 
PFP.c FBP.c (abcdef)  ↔ F6P.c (abcdef) 
PGI.c F6P.c (abcdef)  ↔ G6P.c (abcdef) 
PGM.c G6P.c (abcdef)  ↔ G1P.c (abcdef) 
GPU G1P.c (abcdef)  ↔ UDPG (abcdef) 

SPS F6P.c (abcdef) + UDPG 
(ghijkl)  → S6P (abcdefghijkl) 

TCA cycle 
   PGAM.c 3PGA.c (abc) ↔ PEP.c (abc) 

PK.c PEP.c (abc) → PYR.c (abc) 
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Table 4A.5. Continued 

PDH PYR.C (abc) → ACA (bc) + CO2 (a) 
CS OAA (abcd) + ACA (ef) → CIT (dcbfea) 
ACO CIT (abcdef) ↔ ICI (abcdef) 
IDH ICI (abcdef) → AKG (abcde) + CO2 (f) 
MDH MAL (abcd) ↔ OAA (abcd) 
Anaplerotic        
PPC PEP.c (abc) + CO2 (d) → OAA (abcd) 
Amino Acids       
ALT PYR.c (abc)  → ALA.c (abc) 
ASPT OAA (abc) → ASP (abc) 
GLUDH AKG (abcde) → GLU (abcde) 
PCR GLU (abcde) ↔ PRO (abcde) 
GS GLU (abcde) ↔ GLN (abcde) 
TS ASP (abcd) ↔ THR (abcd) 
AS ASP (abcd) ↔ ASN (abcd) 

PhloemOut 
S6P + α(GLU) + β(ASP) 
+ γ(ALA.c) + δ(GLYout) 
+ ε(SERout)  

→ Sink 

Transporters 
   T_3PGA 3PGA.p (abc)  ↔ 3PGA.c (abc) 

T_TP TP.p (abc)  ↔ TP.c (abc) 
Note: α, β, γ, δ, and ε are measured ratios of output fluxes in amino acids and sucrose 
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Table 4A.6. Net fluxes determined by 13C INST-MFA under LL and HL-ACC 
conditions. 

Values are absolute fluxes (µmol metabolites gFW-1 hr-1) based on the measured net CO2 

uptake rate. Estimated flux values and 95% confidence bounds are shown (SEM; LL, 

n=6; HL-ACC, n=4). 

  LL         HL-ACC         
Reaction Value LB95 UB95 Value LB95 UB95 
Calvin cycle             
RUBP.p + CO2 → 3PGA.p 
+ 3PGA.p 135.1 110.3 160.4 277.8 239.0 314.8 

TP.p + E4P.p →  SBP 57.9 47.1 69.0 132.4 114.4 150.1 
SBP → S7P.p 57.9 47.1 69.0 132.4 114.4 150.1 
TP.p + EC2 ↔ X5P.p 115.8 94.3 138.1 264.8 228.7 300.2 
S7P.p ↔ R5P.p + EC2 57.9 47.1 69.0 132.4 114.4 150.1 
F6P.p ↔ E4P.p + EC2 57.9 47.1 69.0 132.4 114.4 150.1 
X5P.p ↔ RU5P.p 115.8 94.3 138.1 264.8 228.7 300.2 
R5P.p ↔ RU5P.p 57.9 47.1 69.0 132.4 114.4 150.1 
RU5P.p → RUBP.p 173.7 141.4 207.1 397.3 343.1 450.3 
Photorespiration             
RUBP.p → 3PGA.p + 2PG.p 38.6 30.6 47.8 119.5 102.4 137.2 
2PG.p → GLY.p 38.6 30.6 47.8 119.5 102.4 137.2 
GLY.p ↔ GLY.x + GLYout 0.1 0.0 0.1 0.0 0.0 0.0 
GLY.p + GLY.p → SER.p + 
CO2 19.3 15.2 23.9 59.7 51.2 68.5 

SER.p ↔ SER.x + SERout 0.2 0.1 0.3 0.1 0.1 0.2 
SER.p → GA.p 19.1 15.1 23.6 59.6 51.1 68.1 
GA.p ↔ 3PGA.p 19.1 15.1 23.6 59.6 51.1 68.1 
Starch Synthesis             
3PGA.p → TP.p 325.4 265.4 387.2 731.9 632.3 828.3 
TP.p + TP.p ↔ FBP.p 64.2 53.4 75.3 140.9 122.8 158.8 
FBP.p ↔ F6P.p 64.2 53.4 75.3 140.9 122.8 158.8 
F6P.p ↔ G6P.p 6.3 5.7 6.8 8.5 6.4 10.6 
G6P.p ↔ G1P.p 6.3 5.7 6.8 8.5 6.4 10.6 
G1P.p → ADPG 6.3 5.7 6.8 8.5 6.4 10.6 
Sucrose Synthesis             
TP.c + TP.c ↔ FBP.c 11.7 8.4 14.9 26.4 21.2 31.5 
FBP.c ↔ F6P.c 11.7 8.4 14.9 26.4 21.2 31.5 
F6P.c ↔ G6P.c 5.8 4.2 7.5 13.2 10.6 15.7 
G6P.c ↔ G1P.c 5.8 4.2 7.5 13.2 10.6 15.7 
G1P.c ↔ UDPG 5.8 4.2 7.5 13.2 10.6 15.7 
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Table 4A.6. Continued 

F6P.c + UDPG → S6P 5.8 4.2 7.5 13.2 10.6 15.7 
TCA cycle             
3PGA.c ↔ PEP.c 2.5 1.8 3.2 2.7 2.2 3.2 
PEP.c → PYR.c 1.1 0.8 1.4 1.3 1.0 1.5 
PYR.c + dummy → ACA + 
CO2 0.9 0.7 1.2 1.1 0.9 1.4 

OAA + ACA → CIT 0.9 0.7 1.2 1.1 0.9 1.4 
CIT ↔ ICI 0.9 0.7 1.2 1.1 0.9 1.4 
ICI + dummy → AKG + 
CO2 0.9 0.7 1.2 1.1 0.9 1.4 

MAL ↔ OAA 0.0 0.0 0.0 0.0 0.0 0.0 
Anaplerotic              
PEP.c + CO2 → OAA + 
dummy 1.4 1.0 1.7 1.4 1.2 1.7 

Amino Acids             
PYR.c → ALA.c 0.2 0.1 0.2 0.1 0.1 0.2 
OAA → ASP 0.4 0.3 0.5 0.3 0.2 0.4 
AKG → GLU 0.9 0.7 1.2 1.1 0.9 1.4 
GLU ↔ PRO 0.0 0.0 0.0 0.0 0.0 0.0 
GLU ↔ GLN 0.0 0.0 0.0 0.0 0.0 0.0 
ASP ↔ THR 0.0 0.0 0.0 0.0 0.0 0.0 
ASP ↔ ASN 0.0 0.0 0.0 0.0 0.0 0.0 
S6P + α(GLU) + β(ASP) + 
γ(ALA.c) + δ(GLYout) + 
ε(SERout) → Sink 

5.8 4.2 7.5 13.2 10.6 15.7 

Transporters             
3PGA.p ↔ 3PGA.c 2.5 1.8 3.2 2.7 2.2 3.2 
TP.p ↔ TP.c 23.3 16.9 29.9 52.8 42.3 62.9 
Note: α, β, γ, δ, and ε are measured ratios of output fluxes in amino acids and sucrose 
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Table 4A.7. Exchange fluxes determined by 13C INST-MFA under LL and HL-ACC 
conditions. 

Values are scaled according to the transformation Vexch = 100 x Vexch/(Vexch + Vref) where 

Vref is the net CO2 uptake flux. The exchange flux is the minimum of the forward and 

backward fluxes of a reversible reaction. Estimated flux values and 95% confidence 

bounds are shown.  

  LL HL-ACC 
Reaction Value LB95 UB95 Value LB95 UB95 
Calvin cycle             
TP.p + EC2 ↔ 
X5P.p Unidentifiable 0.0 100.0 0.0 0.0 10.5 

S7P.p ↔ R5P.p + 
EC2 20.5 14.8 26.4 0.0 0.0 5.3 

F6P.p ↔ E4P.p + 
EC2 0.0 0.0 2.8 0.0 0.0 6.5 

X5P.p ↔ RU5P.p 49.5 0.0 70.2 0.0 0.0 51.0 
R5P.p ↔ RU5P.p 59.8 44.3 75.4 Unidentifiable 0.0 100.0 
Photorespiration             
GLY.p ↔ GLY.x + 
GLYout 3.9 2.1 5.8 4.4 3.1 5.8 

SER.p ↔ SER.x + 
SERout 3.3 0.8 6.3 5.9 4.5 7.4 

GA.p ↔ 3PGA.p 19.4 14.1 26.2 31.7 26.1 39.7 
Starch Synthesis             
TP.p + TP.p ↔ 
FBP.p Unidentifiable 0.0 100.0 Unidentifiable 0.0 100.0 

FBP.p ↔ F6P.p Unidentifiable 0.0 100.0 Unidentifiable 0.0 100.0 
F6P.p ↔ G6P.p 1.4 0.0 13.4 Unidentifiable 0.0 100.0 
G6P.p ↔ G1P.p 99.9 9.8 100.0 Unidentifiable 0.0 100.0 
Sucrose Synthesis             
TP.c + TP.c ↔ 
FBP.c 23.5 11.7 37.7 1.8 0.4 4.3 

FBP.c ↔ F6P.c 15.7 9.1 40.0 Unidentifiable 0.0 100.0 
F6P.c ↔ G6P.c 67.6 20.2 100.0 Unidentifiable 0.0 100.0 
G6P.c ↔ G1P.c 99.8 40.4 100.0 Unidentifiable 0.0 100.0 
G1P.c ↔ UDPG 71.6 42.1 100.0 Unidentifiable 0.0 100.0 
TCA cycle             
3PGA.c ↔ PEP.c Unidentifiable 0.0 100.0 Unidentifiable 0.0 100.0 
CIT ↔ ICI Unidentifiable 0.0 100.0 Unidentifiable 0.0 100.0 
MAL ↔ OAA 0.0 0.0 0.7 0.4 0.0 2.4 
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Table 4A.7. Continued 

Amino Acids             
GLU ↔ PRO Unidentifiable 0.0 100.0 Unidentifiable 0.0 100.0 
GLU ↔ GLN Unidentifiable 0.0 100.0 0.0 0.0 0.9 
ASP ↔ THR 0.0 0.0 0.2 0.0 0.0 0.5 
ASP ↔ ASN 0.0 0.0 0.2 0.1 0.0 0.7 
Transporters             
3PGA.p ↔ 3PGA.c Unidentifiable 0.0 100.0 0.0 0.0 5.7 
TP.p ↔ TP.c 23.6 9.0 36.2 0.0 0.0 13.4 
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Table 4A.8. Subcellular contribution parameters determined by 13C INST-MFA 
under LL and HL-ACC conditions. 

The estimated lower and upper 95% confidence bounds of subcellular contributions of 

metabolites spatially separated in the plastid and cytosol are shown below as percentages 

of the contribution towards total labeling. 

  LL HL-ACC 
Subcellular Compartmentation, % LB95 UB95 LB95 UB95 
3PGA.p 0.0 93.6 0.0 85.3 
3PGA.c 0.0 94.5 12.3 99.1 
DHAP.p 6.5 62.9 0.0 64.3 
DHAP.c 27.6 88.0 26.3 94.1 
F6P.p 29.8 56.3 46.8 57.5 
F6P.c 27.6 55.2 21.3 33.9 
FBP.p 0.0 27.7 0.0 100.0 
FBP.c 56.3 87.1 0.0 100.0 
G1P.p 0.0 15.7 8.5 18.4 
G1P.c 31.5 51.8 11.2 23.8 
G6P.p 5.8 27.2 0.0 27.0 
G6P.c 49.1 72.9 36.1 58.8 
RU5P.p 0.0 65.1 81.9 96.9 
X5P.p 28.0 94.2 0.0 15.0 
R5P.p 80.8 83.8 0.0 100.0 
GA.p 68.3 78.6 94.7 100.0 
SER.p 52.6 67.1 72.4 80.0 
GLY.p 33.3 40.4 76.3 81.4 
RUBP.p 91.1 94.0 92.9 95.8 
S7P.p 97.2 99.8 95.9 97.9 
2PG.p 85.4 88.8 80.2 87.7 
ADPG.p 94.0 96.3 89.5 93.8 
PEP.c 87.6 90.9 90.4 97.1 
UDPG.c 67.4 78.6 57.3 62.7 
ALA.c 28.5 34.4 44.8 100.0 
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Table 4A.9. Dilution parameters determined by 13C INST-MFA under LL and HL-
ACC conditions. 

Dilution parameters represent the percentage of the total sampled pool that is 
metabolically active, which is equivalent to the 1-G parameter introduced by Kelleher 
and Masterson [131]. Median parameter estimates and 95% confidence bounds are 
shown. 

  LL HL-ACC 
Dilution Parameters, % Value LB95 UB95 Value LB95 UB95 
3PGA 7.1 5.5 8.6 2.0 1.0 2.9 
DHAP 7.5 4.2 10.2 8.5 5.9 10.9 
FGP 14.8 11.4 17.7 20.2 17.9 22.5 
FBP 16.5 12.9 19.6 39.2 0.0 100.0 
G1P 50.2 45.9 54.2 68.9 66.6 71.1 
G6P 22.1 17.7 25.8 36.0 33.7 38.3 
RU5P 7.2 5.8 8.5 3.9 3.1 4.6 
R5P 17.7 16.2 19.2 29.8 0.0 100.0 
GA 27.0 21.4 31.7 1.8 0.0 5.3 
SER 40.7 32.9 47.4 24.0 20.0 27.6 
GLY 63.2 59.6 66.7 21.2 18.6 23.7 
RUBP 7.5 6.0 8.9 5.7 4.2 7.1 
S7P 1.5 0.2 2.8 3.1 2.1 4.1 
2PG 13.0 11.2 14.6 16.3 12.3 19.8 
ADPG 4.9 3.7 6.0 8.4 6.2 10.5 
PEP 10.8 9.1 12.4 6.4 2.9 9.6 
UDPG 27.6 21.4 32.6 40.1 37.3 42.7 
ALA 68.8 65.6 71.5 9.1 0.0 55.2 
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Table 4A.10. Pool sizes determined by 13C INST-MFA under LL and HL-ACC 
conditions. 

Identifiable pool sizes are those with both nonzero lower and finite upper bounds on their 

95% confidence interval. Bounded pool sizes are those with a finite upper bound but with 

zero lower bound. 95% confidence bounds are shown. Pool sizes units in nmol/gFW. 

nmol/g-FW LL HL-ACC 
Pool LB95 UB95 LB95 UB95 
2PG.p 0.0 13.4 132.3 756.8 
3PGA.c 0.0 83.0 0.0 147.9 
3PGA.p 0.0 81.8 0.0 312.5 
ACA 0.0 Inf 0.0 Inf 
ADPG.p 0.0 14.9 0.0 11.5 
AKG 0.0 Inf 0.0 250.7 
ALA.c 10.5 20.1 21.2 73.1 
ASN 0.0 Inf 0.0 2057.9 
ASP 304.8 687.5 0.0 3.1 
CIT 0.0 Inf 0.0 26564.9 
CO2 1141.5 1745.2 1908.3 2716.0 
F6P.c 0.0 1906.4 0.0 315.1 
F6P.p 0.0 54.9 0.0 116.4 
FBP.c 0.0 43.2 0.0 1404.9 
FBP.p 0.0 55.7 0.0 115.9 
G1P.c 0.0 933.0 0.0 351.5 
G1P.p 0.0 158.5 0.0 153.3 
G6P.c 0.0 911.1 0.0 413.2 
G6P.p 0.0 159.4 0.0 79.5 
GA.p 0.0 66.9 0.0 290.8 
GLN 0.0 Inf 0.0 Inf 
GLU 0.0 Inf 0.0 251.8 
GLY.p 568.5 1013.1 334.8 1164.7 
ICI 0.0 Inf 0.0 26540.2 
MAL 0.0 2925.3 0.0 Inf 
OAA 0.0 11.3 169.4 1648.6 
PEP.c 0.0 73.1 0.0 149.9 
PRO 0.0 Inf 0.0 Inf 
PYR.c 0.0 1.0 0.0 8.5 
R5P.p 809.6 1245.9 0.0 269.5 
RU5P.p 0.0 36.3 0.0 272.4 
RUBP.p 0.0 19.2 0.0 134.3 
S7P.p 0.0 36.8 0.0 51.8 
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Table 4A.10. Continued 

SER.p 399.7 891.2 1264.7 1901.2 
THR 0.0 Inf 0.2 Inf 
TP.c 0.0 72.3 35.5 510.9 
TP.p 0.0 88.2 0.0 231.0 
UDPG.c 0.0 1956.3 0.0 1405.9 
X5P.p 0.0 35.3 669.0 1071.5 
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Table 4A.11. Measured metabolite Pool Sizes.  

Metabolite pool sizes in LL and HL-ACC samples on the basis of leaf fresh weight, area, and chlorophyll content (SD, n>4) compared 

with reported metabolite data [128,130,158]. Data were generally comparable. Of note, RuBP concentration was lowest in the HL-

ACC condition, though comparable to others [158–161], indicating that available active sites on RuBisCO is more pertinent than the 

hypothetical total number [162,163]. High light increases the percent activation of RuBisCO and photosynthetic carbon flow that 

negatively correlate with RuBP levels in Arabidopsis [158,164]. Hexose phosphate levels are far from equilibrium, consistent with a 

regulatory role for starch production relative to RuBP regeneration [165,166]. Increased organic acid contents reflect differences in 

developmental stage (growth stage was 5.10; [167]) and higher irradiance and were more comparable to [158,168,169]. Amino acid 

pools were not quantified in absolute though qualitative observations during mass spectrometry were consistent with prior acclimation 

studies that report minor to insignificant changes in amino acid concentrations, including those linked to photorespiration [109]. 

 
 nmol gFW-1 nmol mgChlorophyll-1 

Compound LL (24) (27) (62) HL-ACC LL HL-ACC 
RUBP  71.0 ± 20.2 46.7 ± 8.2 118.0 ± 11.0 42.0 ± 8.2 10.2 ± 7.1 115.1 ± 32.7 25.9 ± 18.0 
3-PGA 180.2 ± 33.9 200.0 ± 45.0 168.0± 15.0 n.d. 57.3 ± 45.6 292.5 ± 55.1 145.5 ± 115.8 
DHAP 66.5 ± 18.1 2.7 ± 0.6 57.3 ± 4.2 13.2 ± 2.9 30.0 ± 12.4 108.0 ± 29.4 76.2 ± 31.5 
FBP 11.64 ± 4.5 8.9 ± 2.3 31.2 ± 2.4 3.1 ± 0.2 3.6 ± 2.0 18.8 ± 7.3 9.2 ± 5.1 
G6P  228.1 ± 56.5 173.0 ± 51.0 272.0 ± 15.0 159.2 ± 17.4 109.5 ± 35.3 370.2 ± 91.7 278.1 ± 89.5 
F6P  175.0 ± 16.9 86.4 ± 14.6 128.0 ± 8.0 71.5 ± 12.5 126.4 ± 21.8 283.9 ± 27.5 321.0± 55.4 
G1P  29.0 ± 12.7 11.7± 2.4 11.4 ± 1.2 17.9 ± 1.6 33.7 ± 7.9 47.0 ± 20.7 98.7 ± 20.0 
S7P 58.9 ± 12.0 28.0 ± 5.4 87.5 ± 4.3 33.8 ± 11.6 48.4 ± 14.1 95.6 ± 19.5 122.9± 35.9 
R5P  5.2 ± 0.8 1.2 ± 0.2 3.3 ± 0.8 6.2 ± 1.8 3.9 ± 1.0 8.5 ± 1.4 10.0 ± 2.5 

UDPG 163.4 ± 38.7 35.7 ± 5.7 151.0 ± 4.0 86.0 ± 4.8 127.2 ± 37.2 265.1 ± 62.7 323.1± 94.4 
ADPG 2.7 ± 0.7 0.6 ± 0.1 1.0 ± 0.1 1.0 ± 0.3 5.0 ± 1.9 4.5 ± 1.2 12.7 ± 4.9 

Glycerate 101.1 ± 18.2 169.0 ± 65.0 290.0 ± 11.0 522.3 ± 101.0 209.4 ± 66.4 164.1 ± 29.6 531.8 ± 168.7 
2-PGA 8.5 ± 3.4 20.0 ± 4.5 nd nd 3.6 ± 2.2 13.8 ± 5.5 9.0 ± 5.7 

Glycolate 33.1 ± 9.2 nd nd nd 44.8 ± 5.1 53.8 ± 14.9 113.8 ± 13.0 
Aconitate 143.0 ± 61.9 14.5 ± 5.5 22.8 ± 1.6 nd 106.3 ± 40.5 232.0 ± 100.5 270.0 ± 102.9 
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Table 4A.11. Continued 

2-OG  174.7 ± 27.1 63.1 ± 18.8 90.4 ± 2.6 132.6 ± 32.8 236.8 ± 87.5 283.4 ± 43.9 601.4 ± 222.2 

Succinate 353.5 ± 105.4 84.0 ± 48.2 122.0 ± 7.0 nd 472.3 ± 201.0 573.6 ± 171.1 
1199.4 ± 

510.4 

Fumarate 
12988.8 ± 

1620.8 1154.0 ± 47.0 nd nd 
26330.2 ± 

3621.6 
21077.1 ± 

2630.2 
66866.4 ± 

9197.2 

Malate 
9213.0 ± 
1381.4 

1820.0 ± 
547.0 

3222.0 ± 
185.0 

11147.0 ± 
1217.0 

9301.1 ± 
1557.1 

14950.1 ± 
2241.7 

23620.5 ± 
3954.4 
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5. EFFECTS OF A HIGH CARBON ENVIRONMENT AND 

OVEREXPRESSING 

A BACTERIAL CARBONIC ANHYDRASE 

ON ARABIDOPSIS THALIANA LEAF METABOLISM 

 

5.1 ABSTRACT 

Quantitatively understanding the impacts of environmental and genetic perturbations on 

photosynthetic carbon fluxes is important for plant metabolic engineering. We previously 

applied isotopically nonstationary metabolic flux analysis (INST-MFA) for the first time 

in planta to map photoautotrophic metabolism of Arabidopsis thaliana leaves at varying 

light conditions. In this study, we performed INST-MFA on wild-type Arabidopsis leaves 

at varying atmospheric CO2 concentrations and on three transgenic Arabidopsis lines 

with varying levels of bacterial carbonic anhydrase (BCA) overexpression. These 

transgenic lines represent the first steps towards recapitulating a fully functional algal 

carbon concentrating mechanism (CCM) in C3 plants as a strategy to enhance 

photosynthetic efficiency. INST-MFA revealed that plants exposed to high-CO2 

conditions showed an expected increase in RuBisCO carboxylation and decrease in 

oxygenation. The transgenic lines also showed an increase in absolute carboxylation flux, 

but accompanied by an unexpected increase in absolute oxygenation flux. This led to 

simulation studies that probed both positional and mass isotopomer distributions of key 

metabolites involved in carboxylation and oxygenation. We found that the labeling 

patterns that arise from RUBP (ribulose 1,5-bisphosphate) can be used to qualitatively 

predict low and high ratios of carboxylation and oxygenation, in the absence of 
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comprehensive flux analysis. This study highlights the usefulness of INST-MFA to 

describe and quantify the global impacts of targeted genetic modifications on 

photosynthetic metabolism, which is necessary to guide further rounds of metabolic 

engineering. The resulting improvements in photosynthetic capacity in Arabidopsis 

leaves provide a scientific framework for similarly transformative steps in crops that are 

important for biofuel and chemical feedstock needs. 

 

5.2 INTRODUCTION 

A major limitation of photosynthetic efficiency in C3 plants is the competitive 

carboxylase and oxygenase activities of RuBisCO, the enzyme responsible for carbon 

dioxide fixation [170]. Oxygen fixation by RuBisCO is the first-dedicated step in the 

photorespiratory pathway, which further reduces photosynthetic efficiency by releasing 

previously fixed CO2 during glycine decarboxylation and by limiting regeneration of the 

CO2 acceptor molecule RuBP. Overall, photorespiration reduces photosynthetic 

efficiency by as much as 30% [171]. To date, attempts to engineer RuBisCO isoforms 

with decreased oxygenase activity have largely been unsuccessful. Significantly, 

cyanobacteria [172,173], eukaryotic microalgae [174], and C4 plants [175,176] have 

evolved mechanisms to concentrate CO2 near the active site of RuBisCO, thus 

competitively inhibiting oxygenase activity leading to substantial increases in yield and 

water use efficiency per unit carbon fixed. However, carbon concentrating systems are 

not operational in the vast majority of plant species. Therefore, there is a critical need to 

improve the photosynthetic efficiency of C3 plants by engineering mechanisms that will 

concentrate CO2 near the active site of RuBisCO. 
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Currently, there are a number of groups working towards engineering carbon 

concentrating mechanisms (CCMs) in C3 plants. For example, there is a large effort to 

improve the yield of rice by redesign of this crop at the cellular level to include a C4 

photosynthetic pathway [177–180]. Additionally, Lin et al [181] recently engineered a 

functional RuBisCO from the cyanobacteria S. elongatus PCC 7942 in two 

transplastomic tobacco lines, which represents an important step toward engineering a 

cyanobacterial CCM in plants. To our knowledge, no known attempts have been made to 

incorporate the algal CCM into other species, and our collaborators in the Sayre lab at 

Los Alamos National Laboratory have been working towards achieving this goal. 

Eukaryotic microalgae use plasma membrane and chloroplastic envelope bicarbonate 

transporters to deliver dissolved inorganic carbon to chloroplastic pyrenoid bodies, which 

contain RuBisCO and carbonic anhydrase (CA); CA accelerates the conversion of 

bicarbonate to CO2. When algae are grown under low CO2 conditions, both bicarbonate 

pumps and CA expression are increased to elevate internal CO2 concentrations [182]. As 

a first step towards testing our algal CCM hypothesis, the Sayre lab has generated three 

transgenic Arabidopsis lines with plastidial overexpression of a bacterial CA (BCA) from 

Neisseria gonorrhoeae, which resulted in substantial biomass increases. 

 

We previously applied isotopically nonstationary metabolic flux analysis (INST-MFA), a 

comprehensive method that quantitatively describes leaf metabolism, to Arabidopsis 

thaliana rosettes for the first time in planta. As described in Chapter 4, this study was 
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able to assess the effects of environmental light perturbations on the central carbon 

metabolism of Arabidopsis leaves [183]. The flux analysis revealed simultaneous 

increases in carboxylation and photorespiration fluxes as light intensity increased. In this 

study, we applied a similar modeling approach to map photoautotrophic metabolism of 

wild-type Arabidopsis rosettes exposed to a high-CO2 environment and in the three 

transgenic lines with overexpressed plastidial BCA. Our expectation was that, if BCA 

functioned to elevate chloroplast CO2 levels by partially recapitulating the algal CCM, 

the BCA transgenic lines would mimic the phenotype observed under high-CO2 

conditions in wild-type plants. The Allen lab at the Danforth Plant Science center grew 

all plants involved in this study, performed the 13CO2 labeling experiments, and measured 

isotope labeling using LC-MS/MS and GC-MS. I integrated and analyzed the MS data 

generated and carried out the INST-MFA calculations. These studies revealed that the 

plants exposed to high-CO2 conditions had increased carboxylation and decreased 

oxygenation, as expected. However, while the BCA plants had increased biomass and 

carboxylation flux, the oxygenation flux also increased unexpectedly. This led to further 

scrutiny of the individual mass isotopomers of the CBB cycle metabolite RUBP to better 

understand and validate the calculation of oxygenation flux using our INST-MFA model. 

Through the use of simulation studies, I found that the measured patterns of RUBP 

enrichment had the highest contribution to the estimated oxygenation flux out of all the 

available isotopomer measurements. This study shows that accurately assessing in planta 

regulation of photoautotrophic metabolism is crucial to quantifying global impacts of 

genetic perturbations on metabolic pathways and can guide further rounds of plant 

metabolic engineering.  
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5.3 METHODS 

5.3.1 PLANT GROWTH 

Wild-type Arabidopsis thaliana ecotype Col-0 plants were grown at 200 µmol m-2 s-1 

light intensity and under an enriched (800 ppm) concentration of CO2. After acclimation 

for 9 days , plants were subjected to isotopic labeling as previously described in Section 

4.3.1 and [183]. In addition to the high-CO2 acclimated plants, three transgenic lines 

containing a bacterial carbonic anhydrase (BCA) from Neisseria gonorrhoeae were also 

evaluated under ambient CO2 (330 ppm). These transgenic lines were generated by the 

Sayre lab at Los Alamos National Laboratory. Physiological parameters, such as 

chlorophyll, RuBisCO, and starch were quantified as previously described [183].  

 

5.3.2 13CO2 LABELING OF WILD-TYPE AND TRANSGENIC ARABIDOPSIS ROSETTES 

Isotopic labeling experiments were performed on four-week old wild-type plants 

acclimated to high CO2 (HC) and the three transgenic lines with overexpressed BCA 

(BCA-P1, BCA-P5, BCA-P6). The Arabidopsis rosettes were labeled using customized 

individual plant chambers with a reduced headspace volume of approximately 100 mL. 

13CO2 was introduced to each plant chamber at a flow rate of 2 L/min. For the plants 

labeled under the HC condition, ten samples were collected over a 15-minute interval at 

the following time points: 0.5, 1, 1.5, 2, 2.5, 3, 5 7, 10, and 15 minutes followed by 

immediate quenching with liquid nitrogen. For the three transgenic lines studied, eight 

samples were collected over a 15-minute interval at the following time points: 0.5, 1, 1.5, 

2, 4, 6, 10, and 15 minutes with immediate quenching via liquid nitrogen. 
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5.3.3 LC-MS/MS AND GC-MS OF METABOLITE LABELING AND CONCENTRATION 

Methods to extract metabolites were done as previously described in Section 4.3.3 and 

[183]. The final parameters used for isotopomer measurements are listed in the Appendix 

(Section 5.7). 

 

5.3.4 ISOTOPICALLY NONSTATIONARY 13C METABOLIC FLUX ANALYSIS 

INST-MFA was used to estimate intracellular metabolic fluxes. The isotopomer model 

previously used to describe photosynthetic central carbon metabolism in Arabidopsis 

[183] was used for quantifying fluxes in the HC and BCA plants. The publicly available 

software package Isotopomer Network Compartmental Analysis (INCA) [24], was used 

to perform the least-squares parameter regression, as well as statistical and sensitivity 

analysis of the optimal solution for the four different studies. 

 

5.3.5 SIMULATION STUDIES TO IDENTIFY KEY INDICATORS OF PHOTORESPIRATORY 

FLUX 

INCA was used to perform simulation studies in the HC plants to identify isotope 

labeling measurements that are most sensitive to the photorespiration flux. Next, the best-

fit model from the wild-type Arabidopsis leaf model at low CO2 conditions (LC) [183] 

was used to perform further simulation studies. The net assimilation, starch, and sucrose 

fluxes were all fixed to their best-fit values, while the oxygenation flux was varied from 0 

to 80 µmol gFW-1 hr-1 (the best fit oxygenation flux for the LC model was at 39 ± 4 µmol 
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gFW-1 hr-1). INCA was used to simulate the expected isotope labeling trajectories of 

measurable metabolites for each selected value of the oxygenation flux. 

 

5.4 RESULTS 

5.4.1 PLANT DEVELOPMENT OF HC AND BCA PLANTS 

Relative to wild-type plants grown at low CO2 conditions (LC), the four-week-old HC 

and BCA plants did not display apparent differences in rosette development (Figure 5.1). 

However, the HC plants did have less RuBiscCO content and total chlorophyll on a fresh 

weight basis than observed in the LC plants. The three BCA lines had comparable levels 

of RuBisCO content and total chlorophyll when compared to the LC plants (Figure 5.2). 

Starch production rate increased more than three-fold in the HC plants, and the BCA 

plants also showed significantly increased starch production in the P5 and P6 lines 

(Figure 5.2). The starch production rate in the BCA lines had an inverse correlation with 

the measured BCA gene expression level (Figure 5.3). 
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Figure 5.1. Four-week old wild-type and BCA plants (bar=2cm) grown at normal 
light (200 µmol m-2 s-1). 

(A) WT Arabidopsis rosettes grown under ambient/low CO2 (LC; 330 ppm) and high 

CO2 conditions (HC; 800 ppm). (B) WT and transgenic BCA plants grown at ambient 

CO2 conditions (330 ppm). (C) Whole rosette fresh weight per leaf area. Data ± SEM, 

n≥6; *p<0.05 versus LC. 
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Figure 5.2. Measured physiological parameters of wild-type (LC and HC) and BCA plants. 

(A) Net CO2 assimilation. (B) Starch production rate. (C) RuBisCO content. (D) Total chlorophyll content. Data ± SEM, n≥3; 

*p<0.05 versus LC. 
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Figure 5.3. RT-PCR of BCA expression. 

 

5.4.2 13C LABELING OF HC AND BCA PLANTS 

13C labeling experiments were carried out on the HC and BCA lines. These labeling 

experiments were compared to the results of a previous study [183] performed on wild-

type rosettes at low CO2 conditions (LC; study labeled as “LL” in Chapter 4). Similar to 

the LC plants, intermediates involved in the CBB cycle, photorespiration, and sugar 

synthesis became enriched at a faster rate than organic and amino acids. These 

intermediates are highlighted in the metabolic network shown in Figure 5.4. The average 

percent enrichment curves for selected intermediates in the CBB cycle, photorespiration, 

and starch/sucrose production are shown in Figure 5.5. In general, CBB cycle 

intermediates were more enriched in the HC and BCA plants than in the LC plants, which 

is consistent with the measured net photosynthetic rates in these plants. However, F6P, 

G6P, and G1P showed less enrichment at later time points in the HC condition than in 

LC. Comparing between the three BCA lines, the level of enrichment in most of the 

intermediates showed an inverse correlation with BCA expression.  
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Figure 5.4. Central metabolic network used for flux estimation in Arabidopsis thaliana leaves. 

Absolute fluxes (µmol metabolite gFW-1 hr-1) presented are representative of the LC condition. Measured metabolites in the 

Calvin cycle (red box), photorespiratory (blue box), and sink precursor (green box) are highlighted on the metabolic network 

map. 
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Figure 5.5. Experimentally measured 13C enrichments of intermediates in the LC, HC, and BCA plants. 

(A) Calvin cycle intermediates. (B) Photorespiratory pathway intermediates. (C) Starch and sucrose synthesis precursors. 13C 

enrichment data are shown with correction for natural isotope abundance.  
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ADPG, which is the precursor to starch production, did not show appreciable differences 

in labeling across all lines studied, which is reasonable given that the ADPG pool is 

usually much smaller than other Calvin cycle intermediates. As mentioned before, starch 

production was enhanced in all lines, most significantly in the HC line, and may reflect a 

greater degree of feedback inhibition in these plants. Sucrose production was inversely 

related to starch production because the two major fates of carbon are internetal storage 

as starch or export as sucrose to feed the other, non-photosynthetic portions of the plant. 

While there was increased enrichment in the sucrose precursor UDPG in the BCA lines, 

there was noticeably less enrichment in the HC plants, indicative of reduced flux to 

sucrose. 

 

Additionally, there was a striking difference in the labeling of the photorespiratory 

intermediates in both the HC and BCA plants in comparison to LC plants. The labeling 

profiles of these photorespiratory intermediates were all less enriched under HC 

conditions than LC conditions, pointing to decreased oxygenation in response to the 

increase in CO2 concentration in the HC plants’ environment. However, for the BCA 

lines grown at ambient CO2 concentrations, the increased labeling of photorespiratory 

intermediates indicates either oxygenation. In particular, 2PG, glycine, and serine were 

all more rapidly labeled in the BCA lines. 
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5.4.3 INST-MFA OF HC AND BCA PLANTS 

The measured mass isotopomer distributions (MIDs), net CO2 assimilation rate, starch 

production rate, and steady-state levels of sucrose and amino acids in vascular exudate 

were used to construct comprehensive flux maps of photosynthetic metabolism in the HC 

and BCA plants using the Arabidopsis reaction network established in [183]. To ensure 

the final solution was the global optimum, flux estimation was repeated 50 times starting 

from random initial values. The fits of the HC and BCA flux maps were all statistically 

accepted based on a chi-square test of the sum-of-squared residuals (SSR), which were 

assessed at the 95% confidence level and are reported in Table 5.1. Photosynthetic 

parameters of interest are also reported in Table 5.1. A full listing of the optimal 

parameter estimates including net fluxes, exchange fluxes, subcellular fluxes, dilution 

fluxes, and pool sizes can be found in the Appendix.  

 



 140 

Table 5.1. Comparison of model goodness-of-fit and estimated photosynthetic 
parameters. 

The SSR (sum of squared residuals) of each model was statistically accepted based a chi-

square test at the 95% confidence level and the indicated DOF (degrees of freedom) [16]. 

NetA (net CO2 assimilation) is shown normalized to fresh weight (µmol metabolite gFW-

1 hr-1). Abbreviations: netA=net CO2 assimilation, Vpr=photorespiratory CO2 release, 

Vc=carboxylation flux, Vo=oxygenation flux, AGP=starch synthesis flux, SPS=sucrose 

synthesis flux. 

 LC HC BCA-P1 BCA-P5 BCA-P6 

DOF 1139 1157 897 864 891 

SSR 1002 824 741 937 599 

      

netA 115.3 ± 10.9 144.0 ± 5.9 149.5 ± 9.0 147.6 ± 6.2 161.1 ± 3.2 

Vpr/netA (%) 16.7 0.9 17.0 17.6 15.5 

Vc:Vo Ratio 3.5:1 56.5:1 3.4:1 3.3:1 3.7:1 

Sucrose:Starch 
Ratio 1.9:1 0.2:1 0.8:1 1.5:1 2.9:1 

 

 

The flux analysis results confirm an overall increase in net photosynthetic assimilation 

for the HC and BCA plants, based on estimated absolute fluxes (µmol metabolite gFW-1 

hr-1). Our previous Arabidopsis INST-MFA study comparing low-light and high-light 

acclimated conditions indicated an increase in photorespiration as light intensity 

increased. However, when light intensity was held constant and CO2 concentration 

increased (HC), INST-MFA results indicated that photorespiration decreased 

dramatically (Figure 5.6). The carboxylation to oxygenation flux ratio (Vc:Vo) increased 
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from 3.5:1 in LC plants to 43:1 in HC plants. The change in this ratio reflected the drop 

in oxygenation flux, resulting in the photorespiratory flux accounting for only 1.2% of 

netA in the HC study. The BCA lines, on the other hand, had Vc:Vo ratios that were 

more similar to the LC study. While there was an increase in carboxylation, there was 

also an unexpected increase in oxygenation in the three BCA lines, resulting in 

photorespiratory fluxes that were 15.4, 18.0, and 14.3% of net assimilation in BCA-P1, 

P5, and P6, respectively. 

 

The estimated starch and sucrose production fluxes displayed similar trends when 

compared at both an absolute and relative flux basis (Figure 5.6). HC plants had a 

dramatic three-fold increase in starch production, leading to a decreased sucrose:starch 

ratio from 1.9:1 to 0.2:1 in the comparison between LC and HC. The BCA lines also 

showed varying levels of sucrose:starch production ratios, with BCA-P1 having the 

lowest ratio, BCA-P5 having the next highest ratio, and finally BCA-P6 having the 

highest ratio among the three lines. Interestingly, these ratios showed a correlation with 

the amount of BCA expressed in each of the three lines (Figure 5.3).  
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Figure 5.6. Estimated carbon assimilatory fluxes of wild-type and transgenic Arabidopsis leaves. 

Absolute fluxes (µmol metabolite gFW-1 hr-1; black boxes) and relative fluxes (normalized to a net CO2 uptake rate of 100; 

white boxes) are shown for (A) RuBisCO carboxylation flux (B) RuBisCO oxygenation flux (C) starch synthesis flux and (D) 

sucrose synthesis flux. Flux values shown are the medians of the 95% confidence intervals. The estimated standard errors are 

calculated as (UB95-LB95)/3.92 where UB95 and LB95 are the upper and lower bounds of each confidence interval, 

respectively, and 3.92 is the number of standard errors that span the 95% confidence interval of a normally distributed random 

variable 
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5.4.4 DETERMINING KEY INDICATORS OF PHOTORESPIRATORY FLUX 

The INST-MFA results showed a significant difference in photorespiration in the HC 

study when compared to the LC study. To verify our model and determine the 

measurements that contributed most significantly to the estimated photorespiratory flux, 

we tested the sensitivity of our model by removing all of the labeling measurements and 

activating different combinations of measurements associated with the photorespiratory 

pathway starting from the best-fit HC model. We examined the effect of activating these 

different combinations of measurements on the confidence interval of the estimated 

oxygenation flux. In order to ensure no bias was coming from the measurement errors, 

we simulated data from the best-fit HC flux map and set all the simulated measurement 

errors to 0.005. We saw that the inclusion of the RUBP MID had the largest effect on the 

precision of the estimated oxygenation flux value (Figure 5.7). 
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Figure 5.7. Effects of simulated metabolite measurements on the precision of 
oxygenation flux estimates.  

Estimated oxygenation flux values are shown with 95% confidence intervals for each 
simulation study using various combinations of Calvin cycle and photorespiratory 
metabolites activated in the model.  
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5.4.5 POSITIONAL ISOTOPOMER DESCRIPTION OF RUBP LABELING 

Taking a further look at RUBP, we examined the experimentally measured and estimated 

individual mass isotopomers of RUBP across all five labeling studies (Figure 5.8). We 

observed that M2 mass isotopomer abundances at earlier time points and M4 mass 

isotopomer abundances at later time points were substantially reduced in HC plants. We 

also observed that the LC plants had initially slower enrichment of M3 and M5 mass 

isotopomers, and maintained the lowest M5 enrichment of all plants even after 15 

minutes of labeling. To determine if these differences in individual RUBP mass 

isotopomers provide representative signatures of carboxylation and/or oxygenation rates, 

we used the best-fit LC model to perform simulation studies that examined the effect of 

varying oxygenation flux on RUBP labeling.  

 

Oxygenation flux was varied from 0 to 80 µmol gFW-1 hr-1 while holding netA, starch, 

sucrose, and TCA fluxes fixed. In order to maintain overall mass balance, fluxes 

associated with carboxylation were allowed to vary as oxygenation was changed. Figure 

5.9 shows the trajectories of individual RUBP mass isotopomers that were simulated for a 

range of different oxygenation values. Even though there were no noticeable differences 

in M0 abundance for the different oxygenation rates, M2, M4, and M5 mass isotopomers 

were sensitive to variations in oxygenation. And while MS measurements can only 

describe MIDs and not positional enrichment information like NMR [15], we were able 

to use the best-fit LC flux model to simulate positional 13C enrichment information for 

each individual carbon atom of RUBP, 3PGA, and 2PG (Figure 5.10). The positional 

enrichment plots for RUBP showed equivalent labeling in C1 and C2, as well as in C4 
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and C5. The C3 carbon in RUBP showed the most enrichment. Similarly, 3PGA showed 

similar labeling in C2 and C3, with C1 being the most enriched. Finally, 2PG showed 

equivalent chances of labeling between its two carbon atoms. Figure 5.11 shows the 

simulated positional enrichments of RUBP in response to variations in oxygenation. As 

oxygenation increased, enrichments at all five carbon atoms decreased, which is 

consistent with less labeled CO2 entering the CBB cycle. The positional simulation 

shows that C1 and C2 (carbons 1 and 2) have equal chances of being labeled, as well as 

C4 and C5. However, C3 shows the fastest and highest labeling in comparison to the 

other four atoms of RUBP. The labeling signatures that arise at these individual carbon 

atoms can then be related back to the mass isotopomer distributions, which determine the 

estimated fluxes from INST-MFA. 
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Figure 5.8. 13C labeling trajectories of RUBP. 

The experimentally measured mass isotopomer abundances (data points) and INST-MFA model fits (solid lines) are shown for 

RUBP in each of the five studies. Raw mass isotopomer data are shown with correction for natural abundance.  
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Figure 5.9. Simulated mass isotopomer distributions (MIDs) of RUBP for varying levels of photorespiration (PR). 
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Figure 5.10. Simulated positional isotopomer distributions of (A) RUBP (B) 3PGA and (C) 2PG using the best-fit LC 
flux model. 
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Figure 5.11. Simulated positional isotopomer distributions of RUBP for varying levels of photorespiration (PR). 
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5.5 DISCUSSION 

5.5.1 RESPONSE OF PHOTOSYNTHETIC FLUXES UNDER A HIGH CO2 ENVIRONMENT 

Our CCM hypothesis is predicated on the limited amount of CO2 that is immediately 

available to the active site of RuBisCO. As a control, we subjected wild-type plants to 

increased CO2 conditions for comparison with transgenic BCA lines that were 

hypothesized to increase CO2 levels near the active site of RuBisCO. As expected, 

artificially enhancing atmospheric CO2 concentration resulted in more efficient carbon 

use with less photorespiration. In general, increasing atmospheric CO2 levels enhances 

C3 photosynthesis and inhibits photorespiration because increased delivery of CO2 to 

RuBisCO accelerates the carboxylation reaction while suppressing the competing 

oxygenation reaction [184,185]. This suppression in oxygenation reduces the CO2 loss 

and energy costs associated with photorespiration. A study by Florian et al. [186] 

investigated the effects of increasing CO2 levels on wild-type Arabidopsis rosettes to 900 

ppm under non-acclimated conditions and also obtained similar oxygenation flux results 

of 3% Vpr/netA, which were calculated using Sharkey’s equation [141]. The labeling of 

the CBB cycle and photorespiratory pathway intermediates reflected the change in Vc:Vo 

flux ratio. On a relative flux basis, this dramatic decrease in photorespiration led to a 

reduced flux through the CBB cycle since RUBP was not diverted toward oxygenation as 

in the case of LC plants. This was also reflected in the decrease in RuBisCO content in 

the HC plants [187].  
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The HC plants also produced more biomass, although the exact mechanism of how 

biomass increased is currently unclear. There was a measured three-fold increase in 

starch production, matching the estimated starch production flux. However, unlike the 

high-light studies in [183], the rate of sucrose production flux was reduced, implying that 

sucrose export during the day may not account for the increased biomass production and 

may instead have been feedback inhibited. The increase in CO2 could have unmasked a 

bottleneck in the export of sucrose, which affects the triose translocator balancing the 

amount of carbon and phosphate between the plastid and cytosol. Generally, the triose 

translocator moves triose from the plastid to the cytosol in exchange for phosphate that is 

moved from the cytosol to the plastid [188]. Without the phosphate from the triose 

translocator, the accumulation of starch provides an alternative way to get the needed 

phosphate to fuel the CBB cycle. 

 

While the labeling rate of ADPG was similar in both the LC and HC plants, UDPG 

labeling was reduced in the HC study. ADPG and UDGP are the precursors to starch and 

sucrose, respectively. This is in agreement with the reduced sucrose production rate in 

HC plants. This could also be indicative of bigger pool sizes of intermediates in the 

(cytosolic) sucrose synthesis pathway as a result of increased CO2 concentration. The 

flux analysis results show that the estimated 95% confidence interval upper bounds for 

the cytosolic hexose phosphates and UDPG pool sizes were increased in the HC plants 

(Table 5A.5). Since the labeling measurements reflect a mixture of compartmentalized 

pools, we have built reactions into our model to account for the different compartmental 

contributions of metabolites located in both the plastid and cytosol. The hexose 
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phosphates F6P, G6P, and G1P showed increased cytosolic contributions in the HC 

plants, which was consistent with the observed decrease in the enrichment of these 

intermediates. This decrease in enrichment could also indicate bigger inactive pools, 

matching the reduced carboxylation machinery as shown by decreased RuBisCO content. 

While the estimated dilution flux values did not reflect this, the overlap in the confidence 

intervals in the estimated fluxes leaves this particular hypothesis inconclusive. Further 

analyses of measured compartmentalized pool sizes acquired by additional techniques, 

such as non-aqueous fractionation [189,190], could help probe this hypothesis further. 

 

Since both high light and high carbon perturbations lead to increased biomass, it is clear 

that plants have different mechanisms to enhance growth dependent upon which 

resources are limiting. Unraveling this complexity at the systems level is a problem well-

suited for MFA, and further labeling studies will have important implications for 

improving crop yield. 

 

5.5.2 A CLOSER LOOK AT LABELING OF RUBP 

To assess the validity of our model and the significantly lower photorespiratory flux 

calculated in our HC labeling study, we performed simulation studies on the best-fit HC 

flux model to determine which measurements were most responsible for the estimated 

photosrespiratory flux. Using the best-fit model from the HC study, we found that 

inclusion of the RUBP measurement had the largest effect on the precision of the 

oxygenation flux value. While adding other measurements involved with the first steps of 
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carboxylation or oxygenation, such as 3PGA or 2PG, respectively, helped to make the 

confidence interval tighter, having only 3PGA or 2PG alone increased the confidence 

interval of the flux relative to RUBP alone. This is reasonable since the labeling of 3PGA 

and 2PG both come directly from RUBP (Figure 5.12).  
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Figure 5.12. Isotope labeling in carboxylation and oxygenation pathways. 

A schematic diagram of either RuBisCO carboxylation (blue) or oxygenation (red), showing the fate of the RUBP carbon 

atoms.  
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When the experimentally measured mass isotopomers of RUBP were plotted against one 

another in the five different studies, we found that M2 and M4 accumulated more slowly 

in HC plants while M3 and M5 lagged behind in LC plants. Since it was difficult to 

completely discern the combined contributions of carboxylation and oxygenation to these 

experimentally derived RUBP MIDs, we simulated measurements while varying 

oxygenation linearly from values of 0 to 80 µmol gFW-1 hr-1 and holding netA, starch, 

sucrose, and TCA fluxes constant. The simulated M0 mass isotopomers of RUBP were 

unchanged at different photorespiratory conditions. However, the higher mass 

isotopomers of RUBP were sensitive to variations in photorespiration flux. In particular, 

the differences in M2, M4, and M5 abundances appear to directly reflect the oxygenation 

flux. This makes the use of INST-MFA advantageous when determining intermediary 

fluxes from labeling data, in contrast to kinetic flux profiling (KFP), which uses only the 

washout kinetics of measured M0 mass isotopomers and requires measured pool size data 

to estimate fluxes [12,88].  

 

This begs the question of how the M2 and M4 mass isotopomers of RUBP arise in these 

13CO2 labeling experiments. It is not trivial to trace out the expected patterns of isotope 

incorporation in individual metabolites because of the complex atom rearrangements that 

occur within the Arabidopsis metabolic network. The triose phosphate node alone has 

two potential routes for 13C entry and 5 potential routes for labeling to exit. To address 

the underlying mechanism of the decreased labeling of M2 and M4 in low oxygenation 

situations, we examined the positional labeling of RUBP to see which carbons were most 

quickly labeled from oxygenation versus carboxylation (Figure 5.12). When 
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carboxylation occurs, two molecules of 3PGA are formed, with one of the 3PGA 

molecules coming directly from the last three carbons on RUBP and the other 3PGA 

molecule from the incorporated CO2 and the first two carbons of RUBP. However, when 

oxygenation takes place, one 3PGA and one 2PG molecules are formed without CO2 

incorporation. 

 

It was confirmed from simulating positional labeling of RUBP that the first two carbons 

(C1 and C2) label symmetrically, as well as the last two carbons (C4 and C5). C3 labels 

the fastest, which is consistent with the atom rearrangements that occur when CO2 is 

incorporated through carboxylation and then goes through CBB cycle to regenerate more 

RUBP. This is because when carboxylation occurs, 3PGA is made up of either the last 

three carbons on RUBP or the first two carbons from RUBP with the fixed CO2 

incorporated in the first carbon position. This makes carboxylation have the effect of 

making C1 of 3PGA more enriched than the symmetrically labeled C2 and C3 carbons. 

On the other hand, since the carbons from 2PG come directly from the first two carbons 

on RUBP, it is expected that C1 and C2 on 2PG label up symmetrically as well, which is 

confirmed by simulating its positional labeling (Figure 5.10). When photorespiration 

occurs, the carbons from 2PG become the backbone of serine and are eventually recycled 

to form 3PGA. Therefore, photorespiration produces similar enrichments on all three 

carbons of 3PGA. As a result, M2 and M4 mass isotopomers of RUBP are more likely. 

On the other hand, M5 is less likely due to oxygenation competing against 13CO2 

incorporation by carboxylation. 
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Finally, we used our simulated M4 and M5 enrichments of RUBP to plot the M4/M5 

ratio over time (Figure 5.13). Qualitatively speaking, the experimentally measured MIDs 

of RUBP in the five different labeling studies matched the expected order of M4/M5 

ratios based on the model-estimated oxygenation values. The oxygenation flux was 

directly correlated with increasing M4/M5 ratios (Figure 5.13). This type of labeling 

signature of photorespiration could potentially serve as a screening tool for future 

transgenic lines to quickly determine low or high photorespiration rates without carrying 

out comprehensive metabolic flux analysis. 
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Figure 5.13. Mass isotopomer ratios of RUBP M4/M5. 

Ratios are shown for (A) experimentally measured data and (B) computationally simulated data with varying photorespiration 

levels. Raw mass isotopomer data use in panel A are shown with correction for natural abundance. 
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5.5.3 RESPONSE OF PHOTOSYNTHETIC FLUXES TO OVEREXPRESSION OF A 

BACTERIAL CARBON ANHYDRASE 

Similar to the HC plants, the BCA transgenic plants were capable of enhanced biomass, 

net CO2 assimilation, and carboxylation rates. The enhanced labeling of the CBB cycle 

intermediates in the BCA plants supports the measured increase in netA, as well as the 

increase in absolute carboxylation flux. However, Vc:Vo ratios in the BCA plants were 

also at similar values to the LC plants and did not have the same expected increase 

observed under HC conditions. This points to a distinct mechanism of increased biomass 

in the BCA plants that is different from the HC plants, although the exact mechanism is 

still under investigation. 

 

Unlike the HC plants, the labeling of photorespiratory intermediates in the BCA lines 

actually increased relative to LC plants. The rapid increase in labeling of glycine in the 

BCA lines might have been considered a consequence of small 2PG pool sizes. However, 

concentrations of photorespiratory intermediates (2PG, glycine, and serine) were found to 

be either comparable to those in the LC plants or slightly higher. And the labeling in 

serine was more variable as were glycine pool sizes such that insights prior to modeling 

could not be established. On the other hand, when estimated photorespiratory pool sizes 

from flux analysis were examined, it was noted that the 2PG and serine pool sizes in the 

BCA plants increased, while glycine pool sizes were estimated to decrease (Table 5A.5) 

in comparison to the LC plants. While these measured and estimated pool sizes may 

show conflicting results, it should be noted that most of the 95% confidence intervals for 

these model-estimated pool sizes exhibited overlap between the LC and BCA plants, thus 
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making direct comparisons complicated. Another possible explanation for the 

simultaneous increases in photorespiratory and carboxylation fluxes is that this reflects 

the growing recognition that photorespiration is important to metabolism for 

redistribution of reducing equivalents and production of some metabolites. Therefore, this 

pathway may function as  more than a wasteful mechanism for detoxifying the cell of 

phosphoglycolate [191]. 

 

While the three BCA lines all had similar estimated carboxylation and oxygenation rates 

at both an absolute and relative flux scale, the starch production flux showed an inverse 

correlation with sucrose production, with BCA-P1 showing high starch accumulation and 

BCA-P6 showing similar levels to that of the LC plants. This difference in estimated 

starch production among the three lines also inversely correlated with BCA expression 

levels. It appears that the line with the most BCA overexpression, BCA-P6, was capable 

of overcoming the feedback inhibition that limited sucrose export in the HC plants and to 

an extent, the BCA-P1 and BCA-P5 plants. It is possible that the transgenic lines that 

must adjust developmentally to the perturbation from the time of germination have an 

adaptive strategy that balances carbon to nitrogen (C:N) and results in improved growth 

without dramatically altering Vc:Vo or reducing the flux through photorespiration. While 

the RuBisCO content in the HC plants was decreased, the RuBisCO content in the BCA 

lines were similar to the LC plants. Since RuBisCO can account for up to approximately 

50% of leaf soluble protein and 25% of leaf nitrogen, this increase in carboxylation 

associated with unchanged levels of RuBisCO suggests that these transgenic lines have 

adapted a better strategy to maintain an optimal C:N ratio.  
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One other possible hypothesis for differences between the BCA and HC plants is that the 

overexpression of carbonic anhydrase leads to a change in pH in the chloroplast stroma, 

where the enzymes of the CBB cycle are located. An increase in BCA overexpression can 

increase the CO2 levels in the stroma, which can decrease the pH, contributing to the 

activation of certain Calvin cycle enzymes, such as RuBisCO, FBPase, SBPase, and 

PRK. 

 

A full understanding of how photosynthetic efficiency can be increased via a fully 

reconstituted functional CCM complex in C3 plants is underway. The addition of the two 

bicarbonate transporters to the transgenic BCA plant lines could potentially improve 

photosynthetic efficiency even more, thus providing an important basis for engineering 

increased crop yield in the future. Further investigation of these proposed transgenic lines 

using 13C flux analysis can help confirm the photosynthetic fluxes associated with source 

and sink metabolism, as well as point out unexpected impacts on intermediary 

metabolism. 
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5.7 APPENDIX: SUPPLEMENTAL TABLES 

Table 5A.1. Net fluxes determined by INST-MFA. 

Values are absolute fluxes (µmol metabolites gFW-1 hr-1) based on the measured net CO2 uptake rate. Estimated flux values 

and 95% confidence bounds are shown (SEM; LC, n=6; HC, n=5; BCA-P1, BCA-P5, BCA-P6, n=3). 

  LC HC BCA-P1 BCA-P5 BCA-P6 
Reaction Value LB95 UB95 Value LB95 UB95 Value LB95 UB95 Value LB95 UB95 Value LB95 UB95 
Calvin cycle                
RUBP.p + CO2 
→ 3PGA.p + 
3PGA.p 

135.1 110.3 160.4 145.4 133.5 159.4 175.2 154.4 196.1 174.1 159.8 188.4 186.8 178.9 194.3 

TP.p + E4P.p →  
SBP 57.9 47.1 69.0 49.3 45.1 54.9 75.4 66.3 84.5 75.4 69.1 81.6 79.0 75.3 82.6 

SBP → S7P.p 57.9 47.1 69.0 49.3 45.1 54.9 75.4 66.3 84.5 75.4 69.1 81.6 79.0 75.3 82.6 
TP.p + EC2 ↔ 
X5P.p 115.8 94.3 138.1 98.7 90.2 109.8 150.8 132.6 169.1 150.8 138.2 163.3 158.0 150.7 165.1 

S7P.p ↔ R5P.p 
+ EC2 57.9 47.1 69.0 49.3 45.1 54.9 75.4 66.3 84.5 75.4 69.1 81.6 79.0 75.3 82.6 

F6P.p ↔ E4P.p 
+ EC2 57.9 47.1 69.0 49.3 45.1 54.9 75.4 66.3 84.5 75.4 69.1 81.6 79.0 75.3 82.6 

X5P.p ↔ 
RU5P.p 115.8 94.3 138.1 98.7 90.2 109.8 150.8 132.6 169.1 150.8 138.2 163.3 158.0 150.7 165.1 

R5P.p ↔ 
RU5P.p 57.9 47.1 69.0 49.3 45.1 54.9 75.4 66.3 84.5 75.4 69.1 81.6 79.0 75.3 82.6 

RU5P.p → 
RUBP.p 173.7 141.4 207.1 148.0 135.3 164.7 226.2 198.9 253.6 226.2 207.3 244.9 236.9 226.0 247.7 

Photorespiration                
RUBP.p → 
3PGA.p + 2PG.p 38.6 30.6 47.8 2.6 0.0 8.3 50.9 44.2 57.9 52.1 47.0 57.2 50.2 45.7 54.4 

2PG.p → GLY.p 38.6 30.6 47.8 2.6 0.0 8.3 50.9 44.2 57.9 52.1 47.0 57.2 50.2 45.7 54.4 
GLY.p ↔ 
GLY.x + 
GLYout 

0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 
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Table 5A.1. Continued 

GLY.p + GLY.p 
→ SER.p + CO2 19.3 15.2 23.9 1.3 0.0 4.1 25.5 22.1 28.9 26.0 23.6 28.5 25.0 22.9 27.2 

SER.p ↔ SER.x 
+ SERout 0.2 0.1 0.3 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 

SER.p → GA.p 19.1 15.1 23.6 1.2 0.0 4.1 25.3 22.0 28.8 25.9 23.4 28.4 24.9 22.6 27.0 
GA.p ↔ 3PGA.p 19.1 15.1 23.6 1.2 0.0 4.1 25.3 22.0 28.8 25.9 23.4 28.4 24.9 22.6 27.0 
Starch Synthesis                
3PGA.p → TP.p 325.4 265.4 387.2 294.2 268.8 325.7 425.5 374.9 476.0 424.4 388.9 459.6 446.2 425.6 465.7 
TP.p + TP.p ↔ FBP.p 64.2 53.4 75.3 69.8 62.4 77.9 89.2 79.9 98.6 85.0 78.1 91.8 85.6 81.3 89.5 
FBP.p ↔ F6P.p 64.2 53.4 75.3 69.8 62.4 77.9 89.2 79.9 98.6 85.0 78.1 91.8 85.6 81.3 89.5 
F6P.p ↔ G6P.p 6.3 5.7 6.8 20.5 14.8 24.8 13.8 11.4 16.2 9.6 7.0 12.1 6.6 5.0 8.2 
G6P.p ↔ G1P.p 6.3 5.7 6.8 20.5 14.8 24.8 13.8 11.4 16.2 9.6 7.0 12.1 6.6 5.0 8.2 
G1P.p → ADPG 6.3 5.7 6.8 20.5 14.8 24.8 13.8 11.4 16.2 9.6 7.0 12.1 6.6 5.0 8.2 
Sucrose Synthesis                
TP.c + TP.c ↔ FBP.c 11.7 8.4 14.9 3.3 0.0 9.2 10.5 6.9 14.0 14.1 11.1 17.2 19.1 17.2 20.9 
FBP.c ↔ F6P.c 11.7 8.4 14.9 3.3 0.0 9.2 10.5 6.9 14.0 14.1 11.1 17.2 19.1 17.2 20.9 
F6P.c ↔ G6P.c 5.8 4.2 7.5 1.7 0.0 4.6 5.2 3.5 7.0 7.1 5.6 8.6 9.5 8.6 10.5 
G6P.c ↔ G1P.c 5.8 4.2 7.5 1.7 0.0 4.6 5.2 3.5 7.0 7.1 5.6 8.6 9.5 8.6 10.5 
G1P.c ↔ UDPG 5.8 4.2 7.5 1.7 0.0 4.6 5.2 3.5 7.0 7.1 5.6 8.6 9.5 8.6 10.5 
F6P.c + UDPG → 
S6P 5.8 4.2 7.5 1.7 0.0 4.6 5.2 3.5 7.0 7.1 5.6 8.6 9.5 8.6 10.5 

TCA cycle                
3PGA.c ↔ PEP.c 2.5 1.8 3.2 0.4 0.0 1.1 1.3 0.9 1.7 1.7 1.4 2.1 2.3 2.1 2.6 
PEP.c → PYR.c 1.1 0.8 1.4 0.2 0.0 0.6 0.6 0.4 0.9 0.9 0.7 1.1 1.2 1.1 1.3 
PYR.c + dummy → 
ACA + CO2 0.9 0.7 1.2 0.2 0.0 0.4 0.5 0.3 0.6 0.6 0.5 0.8 0.9 0.8 1.0 

OAA + ACA → CIT 0.9 0.7 1.2 0.2 0.0 0.4 0.5 0.3 0.6 0.6 0.5 0.8 0.9 0.8 1.0 
CIT ↔ ICI 0.9 0.7 1.2 0.2 0.0 0.4 0.5 0.3 0.6 0.6 0.5 0.8 0.9 0.8 1.0 
ICI + dummy → 
AKG + CO2 0.9 0.7 1.2 0.2 0.0 0.4 0.5 0.3 0.6 0.6 0.5 0.8 0.9 0.8 1.0 

MAL ↔ OAA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table 5A.1. Continued 

Anaplerotic                 
PEP.c + CO2 → 
OAA + dummy 1.4 1.0 1.7 0.2 0.0 0.6 0.6 0.4 0.9 0.9 0.7 1.1 1.2 1.1 1.3 

Amino Acids                
PYR.c → ALA.c 0.2 0.1 0.2 0.1 0.0 0.1 0.2 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 
OAA → ASP 0.4 0.3 0.5 0.1 0.0 0.1 0.2 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 
AKG → GLU 0.9 0.7 1.2 0.2 0.0 0.4 0.5 0.3 0.6 0.6 0.5 0.8 0.9 0.8 1.0 
GLU ↔ PRO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
GLU ↔ GLN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
ASP ↔ THR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
ASP ↔ ASN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
S6P + α(GLU) + 
β(ASP) + γ(ALA.c) + 
δ(GLYout) + 
ε(SERout) → Sink 

5.8 4.2 7.5 1.7 0.0 4.6 5.2 3.5 7.0 7.1 5.6 8.6 9.5 8.6 10.5 

Transporters                
3PGA.p ↔ 3PGA.c 2.5 1.8 3.2 68.1 45.0 89.9 63.2 0.0 69.9 56.5 0.0 60.8 47.0 38.0 55.9 
TP.p ↔ TP.c 23.3 16.9 29.9 23.6 0.8 47.6 36.1 28.8 100.0 43.5 39.3 100.0 52.9 43.0 62.2 
Note: α, β, γ, δ, and ε are measured ratios of output fluxes in amino acids and sucrose 
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Table 5A.2. Exchange fluxes determined by INST-MFA. 

Values are scaled according to the transformation Vexch = 100 x Vexch/(Vexch + Vref) where Vref is the net CO2 uptake flux. The 

exchange flux is the minimum of the forward and backward fluxes of a reversible reaction. Estimated flux values and 95% 

confidence bounds are shown. 

  LL HC BCA-P1 BCA-P5 BCA-P6 
Reaction Value LB95 UB95 Value LB95 UB95 Value LB95 UB95 Value LB95 UB95 Value LB95 UB95 
Calvin cycle                               
TP.p + EC2 ↔ 
X5P.p - 0.0 100.0 - 0.0 100.0 32.4 0.0 100.0 - 0.0 100.0 - 0.0 100.0 

S7P.p ↔ R5P.p 
+ EC2 20.5 14.8 26.4 - 0.0 100.0 9.6 0.0 100.0 - 0.0 100.0 - 0.0 100.0 

F6P.p ↔ E4P.p 
+ EC2 0.0 0.0 2.8 0.0 0.0 7.0 0.0 0.0 26.2 0.0 0.0 4.5 0.0 0.0 9.6 

X5P.p ↔ 
RU5P.p 49.5 0.0 70.2 0.8 0.0 8.4 0.0 0.0 9.7 0.0 0.0 12.7 0.0 0.0 5.2 

R5P.p ↔ 
RU5P.p 59.8 44.3 75.4 0.0 0.0 17.0 0.0 0.0 47.7 0.0 0.0 44.6 0.0 0.0 37.3 

Photorespiration                               
GLY.p ↔ 
GLY.x + 
GLYout 

3.9 2.1 5.8 0.3 0.0 1.6 3.2 2.2 4.4 2.4 1.3 3.5 4.3 2.7 6.1 

SER.p ↔ SER.x 
+ SERout 3.3 0.8 6.3 0.0 0.0 4.1 2.7 1.6 3.9 2.4 0.9 3.8 2.8 0.7 5.1 

GA.p ↔ 3PGA.p 19.4 14.1 26.2 2.5 0.0 7.6 4.1 2.9 5.0 1.9 1.3 2.6 1.9 0.9 3.6 
Starch Synthesis                               
TP.p + TP.p ↔ 
FBP.p - 0.0 100.0 0.0 0.0 5.2 55.3 5.3 89.8 12.4 0.0 37.8 0.0 0.0 17.2 

FBP.p ↔ F6P.p - 0.0 100.0 100.0 89.4 100.0 100.0 93.0 100.0 - 0.0 100.0 - 65.3 100.0 
F6P.p ↔ G6P.p 1.4 0.0 13.4 6.7 0.0 16.8 0.0 0.0 2.0 0.0 0.0 1.0 0.0 0.0 1.6 
G6P.p ↔ G1P.p 99.9 9.8 100.0 - 0.0 100.0 - 0.0 100.0 - 0.0 100.0 - 0.0 100.0 
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Table 5A.2. Continued 

Sucrose 
Synthesis                               

TP.c + TP.c ↔ 
FBP.c 23.5 11.7 37.7 17.3 10.2 33.3 2.0 1.0 4.4 3.2 2.2 5.0 1.3 0.0 3.2 

FBP.c ↔ F6P.c 15.7 9.1 40.0 9.4 5.0 16.9 3.4 1.3 8.4 2.3 0.0 5.8 4.2 0.0 19.4 
F6P.c ↔ G6P.c 67.6 20.2 100.0 100.0 15.8 100.0 - 0.0 100.0 - 15.4 100.0 10.9 3.3 55.0 
G6P.c ↔ G1P.c 99.8 40.4 100.0 22.8 9.5 100.0 - 0.0 100.0 - 0.0 100.0 - 16.9 100.0 
G1P.c ↔ UDPG 71.6 42.1 100.0 91.2 11.9 100.0 - 0.0 100.0 - 0.0 100.0 - 22.8 100.0 
TCA cycle                               
3PGA.c ↔ PEP.c - 0.0 100.0 - 0.0 100.0 - 0.0 100.0 - 0.7 100.0 - 0.0 100.0 
CIT ↔ ICI - 0.0 100.0 - 0.0 100.0 - 0.0 100.0 - 0.0 100.0 26.6 5.1 88.5 
MAL ↔ OAA 0.0 0.0 0.7 0.0 0.0 0.5 0.0 0.0 10.5 0.0 0.0 4.5 3.5 0.0 17.7 
Amino Acids                               
GLU ↔ PRO - 0.0 100.0 - 0.0 100.0 - 0.0 100.0 - 0.0 100.0 - 0.0 100.0 
GLU ↔ GLN - 0.0 100.0 - 0.0 100.0 - 0.0 100.0 - 0.0 100.0 - 0.0 100.0 
ASP ↔ THR 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.9 0.0 0.0 1.2 0.0 0.0 5.6 
ASP ↔ ASN 0.0 0.0 0.2 - 0.0 100.0 0.0 0.0 0.9 0.1 0.0 8.0 0.1 0.0 10.4 
Transporters                               
3PGA.p ↔ 
3PGA.c - 0.0 100.0 0.0 0.0 6.6 0.0 0.0 3.0 0.0 0.0 3.2 0.0 0.0 2.5 

TP.p ↔ TP.c 23.6 9.0 36.2 38.6 21.5 51.4 0.0 0.0 8.8 0.0 0.0 5.7 0.0 0.0 15.7 
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Table 5A.3. Subcellular contribution parameters determined by INST-MFA. 

The estimated lower and upper 95% confidence bounds of subcellular contributions of metabolites spatially separated in the 

plastid and cytosol are shown below as percentages of the contribution towards total labeling. 

  LL HC BCA-P1 BCA-P5 BCA-P6 
Subcellular Compartmentation, % LB95 UB95 LB95 UB95 LB95 UB95 LB95 UB95 LB95 UB95 
3PGA.p 0.0 93.6 45.0 89.9 0.0 69.9 0.0 60.8 38.0 55.9 
3PGA.c 0.0 94.5 0.8 47.6 28.8 100.0 39.3 100.0 43.0 62.2 
DHAP.p 6.5 62.9 0.0 49.4 0.0 69.9 0.0 25.9 0.0 41.4 
DHAP.c 27.6 88.0 46.9 100.0 26.5 100.0 70.7 100.0 52.2 97.9 
F6P.p 29.8 56.3 32.6 50.4 31.7 48.5 35.8 47.3 16.6 38.1 
F6P.c 27.6 55.2 30.2 66.2 43.8 64.7 45.1 59.1 42.2 66.9 
FBP.p 0.0 27.7 0.0 47.1 5.6 42.9 12.8 30.4 0.0 21.3 
FBP.c 56.3 87.1 47.5 100.0 50.7 90.1 59.7 80.2 70.5 95.0 
G1P.p 0.0 15.7 7.9 13.8 3.4 30.2 6.3 23.3 0.0 10.3 
G1P.c 31.5 51.8 24.8 71.3 24.1 56.4 30.2 52.4 25.6 69.0 
G6P.p 5.8 27.2 0.0 23.9 0.0 47.3 14.1 32.1 0.0 22.9 
G6P.c 49.1 72.9 55.9 100.0 35.5 82.5 50.8 73.9 49.4 73.1 
RU5P.p 0.0 65.1 62.7 90.4 0.0 98.6 37.6 86.3 0.0 24.9 
X5P.p 28.0 94.2 0.0 26.2 0.0 99.5 8.8 58.2 61.5 90.3 
R5P.p 80.8 83.8 73.7 80.1 84.2 88.6 0.0 100.0 77.7 88.5 
GA.p 68.3 78.6 75.7 100.0 96.8 100.0 81.8 95.4 96.1 100.0 
SER.p 52.6 67.1 30.9 100.0 64.9 77.9 72.3 83.3 75.0 92.1 
GLY.p 33.3 40.4 10.7 15.6 64.8 74.8 77.4 82.8 71.7 84.3 
RUBP.p 91.1 94.0 89.9 93.6 93.9 97.3 92.6 95.5 90.0 94.0 
S7P.p 97.2 99.8 92.8 97.1 96.6 99.8 96.6 99.3 95.0 99.7 
2PG.p 85.4 88.8 65.4 71.5 84.7 91.4 88.9 93.8 84.7 90.4 
ADPG.p 94.0 96.3 85.6 93.7 90.3 100.0 90.8 100.0 92.0 100.0 
PEP.c 87.6 90.9 79.6 85.2 85.8 96.6 85.3 90.0 89.5 93.9 
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Table 5A.3 .Continued 

UDPG.c 67.4 78.6 64.7 100.0 76.2 94.2 80.5 94.3 60.8 92.3 
ALA.c 28.5 34.4 29.4 60.5 9.2 100.0 12.9 100.0 11.5 100.0 
SBP.p     79.2 84.3 91.1 97.3 91.5 95.3 84.8 93.6 
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Table 5A.4. Dilution parameters determined by INST-MFA. 

Dilution parameters represent the percentage of the total sampled pool that is metabolically active, which is equivalent to the 1-

G parameter introduced by Kelleher and Masterson [131]. Median parameter estimates and 95% confidence bounds are shown. 

  LC HC BCA-P1 BCA-P5 BCA-P6 
Dilution Parameters, 
% 

Valu
e 

LB9
5 

UB9
5 

Valu
e 

LB9
5 

UB9
5 

Valu
e 

LB9
5 

UB9
5 

Valu
e 

LB9
5 

UB9
5 

Valu
e 

LB9
5 

UB9
5 

3PGA 7.1 5.5 8.6 8.3 5.5 10.6 0.6 0.0 2.7 0.0 0.0 0.6 0.1 0.0 2.9 
DHAP 7.5 4.2 10.2 0.0 0.0 6.5 1.4 0.0 4.5 2.6 0.0 5.1 5.4 2.1 8.5 
FGP 14.8 11.4 17.7 8.9 0.0 25.1 5.1 0.0 11.3 6.4 0.8 10.8 18.9 8.7 25.5 
FBP 16.5 12.9 19.6 1.1 0.0 11.0 5.3 0.4 9.6 8.9 3.5 13.6 6.9 1.1 11.7 
G1P 50.2 45.9 54.2 43.6 20.8 67.8 43.0 37.0 48.0 43.9 38.8 48.5 53.7 31.8 68.8 
G6P 22.1 17.7 25.8 8.7 0.0 34.3 15.0 8.0 20.5 14.6 8.4 19.7 26.5 11.1 34.5 
RU5P 7.2 5.8 8.5 11.4 9.2 13.5 3.7 0.5 6.8 4.4 2.8 6.0 13.8 9.8 17.7 

R5P 17.7 16.2 19.2 23.2 19.9 26.3 13.6 11.5 15.8 - 0.0 100.
0 17.0 11.5 22.3 

GA 27.0 21.4 31.7 17.0 0.0 24.3 0.0 0.0 3.2 11.7 4.6 18.2 0.0 0.0 3.9 
SER 40.7 32.9 47.4 59.7 0.0 69.1 28.6 22.1 35.1 22.4 16.7 27.7 17.3 7.9 25.0 
GLY 63.2 59.6 66.7 87.0 84.4 89.3 30.3 25.2 35.2 20.0 17.2 22.6 22.3 15.7 28.3 
RUBP 7.5 6.0 8.9 8.4 6.4 10.1 4.3 2.7 6.1 6.0 4.5 7.4 8.0 6.0 10.0 
S7P 1.5 0.2 2.8 5.3 2.9 7.2 1.9 0.2 3.4 2.1 0.7 3.4 2.7 0.3 5.0 
2PG 13.0 11.2 14.6 31.5 28.5 34.6 12.1 8.6 15.3 8.7 6.2 11.1 12.6 9.6 15.3 
ADPG 4.9 3.7 6.0 10.5 6.3 14.4 0.6 0.0 9.7 1.5 0.0 9.2 2.7 0.0 8.0 
PEP 10.8 9.1 12.4 17.8 14.8 20.4 9.0 3.4 14.2 12.4 10.0 14.7 8.4 6.1 10.5 
UDPG 27.6 21.4 32.6 0.0 0.0 35.3 16.4 5.8 23.8 13.7 5.7 19.5 27.3 7.7 39.2 
ALA 68.8 65.6 71.5 61.0 39.5 70.6 50.1 0.0 90.8 75.8 0.0 87.1 77.0 0.0 88.5 
SBP       18.2 15.7 20.8 5.9 2.7 8.9 6.7 4.7 8.5 10.9 6.4 15.2 
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Table 5A.5. Pool sizes determined by INST-MFA. 

Identifiable pool sizes are those with both nonzero lower and finite upper bounds on their 95% confidence interval. Bounded 

pool sizes are those with a finite upper bound but with zero lower bound. 95% confidence bounds are shown. Pool sizes units 

in nmol/gFW. 

 
LL HC BCA-P1 BCA-P5 BCA-P6 

Pool LB95 UB95 LB95 UB95 LB95 UB95 LB95 UB95 LB95 UB95 
2PG.p 0.0 13.4 0.1 62.7 83.2 348.5 285.6 458.1 126.7 366.9 
3PGA.c 0.0 83.0 0.0 72.8 0.0 102.5 0.0 44.0 0.0 114.1 
3PGA.p 0.0 81.8 0.0 65.1 0.0 132.2 0.0 84.2 0.0 388.0 
ACA 0.0 Inf 0.0 Inf 0.0 Inf 0.0 Inf 0.0 Inf 
ADPG.p 0.0 14.9 0.0 52.6 0.0 418.7 0.0 40.3 0.0 169.5 
AKG 0.0 Inf 0.0 Inf 0.0 Inf 0.0 Inf 0.0 Inf 
ALA.c 10.5 20.1 0.0 20.5 0.0 293.0 0.0 1.7 0.0 8.0 
ASN 0.0 Inf 0.0 181.2 0.0 Inf 0.0 Inf 0.0 Inf 
ASP 304.8 687.5 0.0 3.4 0.0 322.0 9.9 864.1 34.7 2189.8 
CIT 0.0 Inf 0.0 Inf 0.0 19816.6 0.0 Inf 0.0 11745.7 
CO2 1141.5 1745.2 456.9 771.3 423.6 796.9 453.5 716.0 1139.7 1698.5 
F6P.c 0.0 1906.4 0.0 1701.1 0.0 906.9 0.0 1218.5 0.0 222.1 
F6P.p 0.0 54.9 0.0 36.9 0.0 94.5 0.0 48.7 0.0 246.5 
FBP.c 0.0 43.2 18.7 335.8 73.5 316.1 295.8 572.2 243.2 483.6 
FBP.p 0.0 55.7 0.0 39.3 0.0 101.3 0.0 49.0 0.0 247.1 
G1P.c 0.0 933.0 0.0 4227.4 0.0 420.0 0.0 378.4 0.0 1327.8 
G1P.p 0.0 158.5 0.0 151.1 0.0 231.1 0.0 152.7 0.0 76.6 
G6P.c 0.0 911.1 0.0 1702.2 0.0 1025.2 0.0 1301.4 0.0 1946.0 
G6P.p 0.0 159.4 136.9 400.1 0.0 636.3 0.0 430.3 0.0 173.7 
GA.p 0.0 66.9 0.0 48.3 0.0 203.6 0.0 75.5 0.0 411.6 
GLN 0.0 Inf 0.0 Inf 0.0 Inf 0.0 Inf 0.0 Inf 
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Table 5A.5. Continued 

GLU 0.0 Inf 0.0 Inf 0.0 Inf 0.0 Inf 0.0 Inf 
GLY.p 568.5 1013.1 0.0 44.0 220.5 680.8 151.3 327.8 319.4 751.0 
ICI 
MAL 

0.0 
0.0 

Inf 
2925.3 

0.0 
0.0 

Inf 
Inf 

0.0 
0.0 

Inf 
Inf 

0.0 
0.0 

Inf 
Inf 

2337.1 
0.0 

Inf 
Inf 

OAA 0.0 11.3 0.0 817.5 83.8 2626.0 40.8 3465.5 0.0 277.3 
PEP.c 0.0 73.1 0.0 74.0 0.0 79.8 0.0 77.3 0.0 117.4 
PRO 0.0 Inf 0.0 Inf 0.0 Inf 0.0 Inf 0.0 Inf 
PYR.c 0.0 1.0 0.0 2.9 0.0 1313.3 107.7 1543.7 107.2 2425.8 
R5P.p 809.6 1245.9 0.0 26.0 0.0 363.0 0.0 87.4 0.0 113.2 
RU5P.p 0.0 36.3 0.0 25.9 0.0 279.0 0.0 84.7 0.0 114.2 
RUBP.p 0.0 19.2 0.0 21.6 0.0 74.4 0.0 76.1 0.0 89.8 
S7P.p 0.0 36.8 0.0 9.4 0.0 46.1 0.0 18.0 0.0 23.6 
SBP.p     238.2 384.7 109.5 288.3 162.5 264.0 154.5 355.5 
SER.p 399.7 891.2 0.5 1279.1 811.0 1362.1 1732.2 2307.5 2257.4 3425.5 
THR 0.0 Inf 0.0 Inf 0.0 Inf 0.0 Inf 0.0 Inf 
TP.c 0.0 72.3 0.0 186.6 0.0 276.3 0.0 34.4 15.1 199.0 
TP.p 0.0 88.2 0.0 66.3 0.0 201.4 0.0 101.2 0.0 491.5 
UDPG.c 0.0 1956.3 1228.7 5723.1 0.0 661.8 0.0 1056.7 0.0 1946.1 
X5P.p 0.0 35.3 554.9 817.9 311.9 762.4 620.5 819.1 499.6 803.5 
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6. CONCLUSIONS AND FUTURE WORK 

 

6.1 CONCLUSIONS 

The work presented in this dissertation further advances the application of the relatively 

young flux analysis tool, isotopically nonstationary metabolic flux analysis (INST-MFA), 

to photoautotrophic systems. These cyanobacterial and plant systems have attracted a lot 

of interest in recent years as hosts for the production of renewable fuels and chemicals. 

As such, it is important to gain a better in vivo understanding of the metabolic state of 

these systems, especially ones with altered capabilities due to either environmental or 

genetic perturbations. Our contributions show how INST-MFA provides a way for us 

peek inside the black box of host cell metabolism and generate rational strain engineering 

targets to characterize non-model host organisms, as well as identify and subsequently 

eliminate wasteful byproduct pathways or metabolic bottlenecks. 

 

Shortly after the dynamic theory of metabolic isotopomer labeling systems was 

established over a decade ago [192], the experimental concept of isotopically 

nonstationary labeling experiments was proposed and since then, there have only been a 

few fully quantitative applications of INST-MFA to diverse biological systems 

[6,20,46,193–199], with only one application to a fully photoautotrophic cyanobacterial 

system [6]. Our work, along with the existing literature reviewed in Chapter 2, validates 

the usefulness of INST-MFA as an effective tool for subsequent strain engineering in 

photoautotrophic systems. 
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In Chapter 3, we investigated the photoautotrophic metabolism of wild-type 

Synechococcus elongatus PCC 7942 and a derivative strain engineered to produce 

isobutyraldehyde heterologously. Using INST-MFA, we elucidated a bottleneck at the 

pyruvate node and identified a potential pyruvate kinase (PK) bypass pathway. This led 

to the generation of six overexpression strains that all had significantly improved 

isobutyraldehyde production rates, with the double overexpression strain of malate 

dehydrogenase (MDH) and malic enzyme (ME) showing the most improved productivity 

by 68% compared to the parental isobutyraldehyde strain.  

 

Chapter 4 builds on the metabolic network developed in the previous chapter for a 

cyanobacterial system and describes a more complex system in Arabidopsis thaliana 

leaves with compartmentalized fluxes. INST-MFA was employed for the first time to a 

terrestrial plant system in planta to generate metabolic flux maps for Arabidopsis leaves 

at two different light intensities. The resulting comprehensive flux maps showed 

increases in carbon partitioning towards sucrose and away from starch as light intensity 

was increased. Additionally, flux analysis revealed that despite a doubling in the 

carboxylation rate, the photorespiratory flux increased from 17 to 28% of net CO2 

assimilation when grown under high light conditions. This study highlights the potential 

for INST-MFA to describe emergent flux phenotypes in response to environmental and 

genetic perturbations that cannot be obtained by other complementary approaches. 
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Finally, in Chapter 5 we used the same Arabidopsis metabolic network and further 

applied the INST-MFA methodology to leaves exposed to both environmental and 

genetic perturbations. The metabolic response of wild-type Arabidopsis leaves exposed to 

high CO2 conditions was examined, as well as the responses of three transgenic lines 

engineered with a bacterial carbonic anhydrase (BCA) at ambient CO2 condtions. The 

BCA plants were engineered as a first step towards a fully recapitulated algal carbon 

concentrating mechanism in a C3 plant to increase photosynthetic efficiency. Flux 

analysis revealed that the plants grown under high CO2 had higher carboxylation flux 

and had lowered oxygenation flux, as expected. Additionally, there was a dramatic 

increase towards starch production in the high CO2 conditions. Furthermore, the BCA 

plants had an inverse correlation with starch production and BCA expression and 

although these plants had increased carboxylation flux, there was also an unexpected 

increase in absolute oxygenation flux. Finally, simulation studies pointed to the labeling 

patterns of the metabolite RUBP as a key indicator of photorespiratory flux and will be 

useful for screening purposes in future transgenic lines. Overall, these flux analysis 

results will assist further rounds of plant metabolic engineering and will ultimately lead 

to improve photosynthetic efficiency of C3 plants. 

 

6.2 RECOMMENDATION FOR FUTURE WORK 

Although the studies detailed in this dissertation are complete, there is room for more 

work to be accomplished. While Chapter 3 details the work surrounding one full turn 

through the metabolic engineering cycle leading to significant increases in 

isobutyraldehyde productivity in cyanobacteria, INST-MFA should be applied again to 
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the top performing strains (IBA/PYKox and IBA/MoMox) to verify the anticipated 

redistribution of fluxes surrounding the pyruvate node. Since pyruvate serves as a major 

branch node in central carbon metabolism, increasing flux towards pyruvate may have 

also inadvertently increased flux towards other alternate carbon sinks, such as amino acid 

biosynthesis, TCA cycle, and lipid biosytneshis pathways, thereby limiting 

isobutyraldehdye production. This can potentially identify knockdown or deletion targets 

for further strain engineering so that increases in carbon product formation can be 

directly solely towards isobutyraldehyde.  

 

Furthermore, the work in Chapter 5 pointed to an unexpected increase in absolute 

oxygenation flux in the transgenic BCA plants. Although this is outside the scope of 

expertise in our lab, further work should be done by our collaborators to determine why 

overexpression of bacterial carbonic anhydrase led to this unexpected increase in 

oxygenation flux, even though carboxylation flux was successfully increased. Our 

preliminary hypothesis is that overexpression of BCA led to changes in pH in the plant 

leaves, which increased activity of key enzymes in the Calvin cycle. Additionally, our 

collaborators have been working on generating transgenic plants expressing genes 

involved with an algal carbon concentrating mechanism – INST-MFA should be 

performed on these transgenic plants to assess the alterations in carbon partitioning, as 

well as to identify any unexpected metabolic flux redistributions.  
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APPENDIX OF DETAILED PROTOCOLS 

 

BG11 Media Recipe for cyanobacteria growth 

A. Introduction 
 

This protocol describes the BG11 recipe used for culturing cyanobacteria. 
 

B. Required Materials  
 

 Stock Add to 1L Medium 
   

1) NaNO3 150 g/L 10 mL 
2) K2HPO4•3H2O 40 g/L 1 mL 
3) MgSO4•7H2O 75 g/L 1 mL 
4) CaCl2•2H2O 36 g/L 1 mL 
5) FeNH4•Citrate 12 g/L 1 mL 
6) Na2EDTA (pH8.0) 1 g/L 1 mL 
7) Na2CO3 20 g/L 1 mL 
8) A5 (see below) --- 1 mL 

H3BO3 2.86 g/L  
MnCl2•4H2O 1.81 g/L  
ZnSO4•7H2O 0.222 g/L  

Na2MoO4•2H2O 0.391 g/L  
CuSO4•5H2O 0.079 g/L  

Co(NO3)2•6H2O 0.0494 g/L  
 

9a) Bacto Agar (for Agar only) 
9) NaS2O3 (for Agar only) 

 
1M 

15 g/L 
1mL 

10) Antibiotics   

Antibiotic Stock 
(mg/mL) 

Final 
Concentration 

(µg/mL) 

Added from 
Stock (mL/L 

BG11) 
Km 50 10 0.2 
Spec 40 40 1 
Cb 10 5 0.05 
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C. Protocol 
 
Liquid BG11 Media 
1. For liquid BG11 media, add steps B.1-8 in a 2L flask with 983mL DI H2O and 

autoclave on liquid cycle. Allow to cool before proceeding and add the 
appropriate amount of antibiotics as necessary. 

2. For modified BG11 media with an added 50mM NaHCO3, remove 50 mL of 
media from 1L of BG11. In a separate beaker, add 4.2g of NaHCO3 and mix with 
a stir bar until fully dissolved. Filter sterilize the NaHCO3 solution back into the 
meida. 

 

BG11 agar plates 

3. For BG11 agar plates, add steps B.1-9a in a 2L flask with 983 DI H2O and 
autoclave on liquid cycle. Allow to cool before proceeding.  

4. Once cool to touch, add stepB10 and the appropriate amount of antibiotics.  
5. Pour approximately 25mL to each sterile petri dish. Allow agar to solidify in the 

hood with open or cracked lids to prevent condensation on top of the lid. When 
cool, place lid back onto the plate and store in a cold room. 
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Cyanobacterial optical cell density assay 

A. Introduction 
 

This protocol describes how the optical density each culture is measured. 
 
B. Required Materials and Equipment 
 

• BG11 media 
• 96-well clear bottom plate 
• µQuant Spectrophotometer 

 
C. Protocol 

 
1. Remove 350uL of culture and mix with 350uL of BG11 media in a 

microcentrifuge tube. 
2. Pipette out 200 uL of the diluted culture into 3 wells for technical replicates. 
3. Measure absorbance (OD) at 750nm and 730nm using the plate reader.  
4. Calculate cell density using the following equation:  

Cell density (mg/mL) =0.684 * (OD750 – 0.045); The value of 0.045 is used as a 
blank BG11 media value for correction. 

5. Cell growth may be calculated by correlating the optical cell density measured at 
given time points during the exponential growth phase.  
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Cyanobacterial aldehyde production assay 

A. Introduction 
 

This protocol describes how aldehyde production is quantified in a closed system 
cyanobacterial culture. 

 
 

B. Protocol 
 
1. Grow enough culture to reseed 3- 125mL erlenmeyer flasks with 75mL of 

modified BG11 media (with 50mM NaHCO3 added) and appropriate amount of 
antibiotics to achieve a final starting OD750 of 0.4.  

2. Set the water bath to 30°C and shaking speed of 120 rpm. Bubble flasks with air. 
3. Give all the cell cultures a dark pulse for 12 hours (t=-12) to synchronize 

circadian rhythm by wrapping the flasks with aluminum foil and then placing 
back in the water bath. 

4. At t=0, remove the foil from the flasks and add 75uL of IPTG (1M stock 
concentration) to each flask to induce aldehyde production and turn the lights on 
to 150 uE.  

5. At t=6, stop bubbling and remove 1.5mL for growth and aldehyde quantification. 
Add a rubber stopper to each flask. Store samples in fridge until ready for 
processing. 

6. At t=30, chill cultures in flask in fridge for 10-15 minutes to condense all 
aldehyde in the headspace back into the liquid culture. Remove 1.5mL for growth 
and aldehyde quantification. Store samples in fridge until ready for processing. 

7. For all samples taken for aldehyde quantification, spin down 1mL of culture in a 
microcentrifuge tube. Transfer the supernatant to a new microcentrigue tube and 
discard cell pellet. 

8. To 450 uL of supernatant, add 5uL of 100 mM n-butyraldehyde (internal 
standard; final concentration 1mM nBA).  

9. Transfer 200 uL into a 2mL GC amber vial fitted with a 250 uL polypropylene 
insert to run on the GC-FID. 

10. Run samples on GC-FID using a calibration curve with known amounts of 
isobutyraldehyde and isovaleraldehyde for quantification.  
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GC-FID method for quantifying aldehyde production 

A. Introduction 
 

This protocol describes the parameters necessary for GC-FID analysis. It is best to 
inject sample as quickly as possible on GC-FID after aldehyde sample 
preparation. 

 
B. GC-FID method parameters 

 
Instrument: Shimadzu GC-2010 
Column: DB-Wax (30m x 0.2 mm i.d. x 0.2um film thickness; Agilent J&W 
Scientific) 
Injector temperature: 210°C 
Detector temperature: 250°C 
Injection volume: 0.5 uL 
Carrier gas: Helium 
 
Oven gradient: 
 
 Rate (°C/min) Temp (°C) Hold time 

(min) 
Run time 
(min) 

Initial  30 8 8 
Ramp 30 220 8 22.33 
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Cyanobacterial isotopically nonstationary 13C labeling experiment  

A. Introduction 
 

This protocol is used for the 13C labeling experiment of cyanobacterial cells in 
liquid culture. 

 
 

B. Protocol 
 
1. In a 1L flask, start with 500 mL of culture and modified BG11 media (with 50mM 

NaHCO3) at OD750=0.4 and appropriate amount of antibiotics. 
2. Set the water bath to 30°C and shaking speed of 120 rpm. Bubble flask with air. 
3. Give the flask a dark pulse for 12 hours (t=-12) to synchronize circadian rhythm 

by wrapping with aluminum foil and then placing back in the water bath. 
4. At t=0, remove the foil from the flask and add 500uL of IPTG (1M stock 

concentration) to each flask to induce aldehyde production and turn the lights on 
to 150 uE.  

5. At t=30, initiate labeling by adding 50mL of 13C Sodium Bicarbonate solution 
(Cambridge Isotope Laboratories, 97% isotopic purity) to achieve a final tracer 
concentration of 100mM in the culture. 

6. At each time point, remove 20mL of cell culture using a syringe and luer-lock 
needle (12 gauge, 12”, Sigma-Aldrich) and immediately add to 30mL of quench 
solution (0C PBS). 

7. Pellet out cell by centrifugation (chillded to -5C or coler). Spin at 4000rpm fro 15 
min. 

8. Remove supernatant; collect supernatant sample for further analysis (to ensure 
intracellular metabolites have not leaked out).  

9. Flash freeze cell pellet in liquid N2 and store in -80C freezer until ready for 
metabolite extraction. 

Time points: t= 0, 30, 60, 120, 180, 300, 600, and 900 sec. 
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Metabolite extraction/ sample preparation 
 

A. Introduction 
 

This protocol describes the extraction of intracellular metabolites for subsequent 
derivatization and GC-MS analysis. Received starting sample should be cell 
pellet. 

 
B. Required Materials and Equipment 
 

• Pre-cooled chloroform (-20°C) 
• Pre-cooled methanol (-20°C) 
• Ice-cold water 
• 10 mM Norvaline (internal standard) 
• 15 mL falcon tube 
• Refrigerated centrifuge 

 
C. Extraction Protocol 

 
1. Resuspend cells in 4 mL chloroform (-20°C) 
2. Add 2 mL methanol (-20°C) 
3. Add internal standard (6uL of Norvaline at 10mM) 
4. Vortex tubes for 30 minutes in cold room or with ice stays 
5. Add 1.5 mL iced-cold water 
6. Vortex tubes for additional 5 minutes 
7. Transfer to 15 mL centrifuge tube 
8. Centrifuge at 5,000 rpm for 20 min at lowest temperature setting 
9. Collect aqueous (upper) phase in a new 15 mL tube or two Eppendorf tubes (label 

the tubes)  
10. Evaporate all extracts to dryness using aeration at room temperature. Store 

samples at -80°C 
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Modified MOX-TMS derivatization of metabolite extracts 
 
A. Introduction 
 

This protocol describes the derivatization of intracellular metabolites for 
subsequent GC/MS analysis. 

 
B. Required Materials and Equipment 
 

• MOX reagent (Pierce Biotechnology, product# 45950) 
• TMS: BSTFA + 10% TMCS, 1 mL ampules (Pierce Biotechnology, product# 

38840)  
• 2 mL amber glass injection vial 
• 150 uL insert for injection vial 
• Evaporator (Pierce Reacti-Vap) 
• Sonicator 
• Heating block 

 
C. MOX derivatization protocol 
 

1. Dissolve dried sample in 50 uL MOX reagent 
2. Place in sonication bath for 30 min at room temperature 
3. Incubate for 90 min. at 40°C on a heating block 
 

D. TMS derivatization protocol 
 

4. Add 70 uL of BSTFA +10 % TMCS 
5. Incubate for 30 min at 40°C on a heating block  
6. Remove from heating block and incubate overnight at room temperature 
 

E. Preparation for GC/MS 
 

7. Centrifuge for 5 min at 14,000 rpm to remove solid debris 
8. Transfer liquid to injection vial containing a 150 uL microvolume insert 
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GC-MS Method for analyzing TMS (or TBDMS) derivatized metabolites 
 
A. Introduction 
 

This protocol describes the parameters necessary for GC-MS analysis. It is best to 
inject sample as quickly as possible on GC-MS after derivatization. 

 
B. GC-MS method parameters 

 
GC parameters:  
Instrument: Agilent 7890A 
Column: DB-35MS (30m x 0.25 mm i.d. x 0.25mm; Agilent J&W Scientific) 
Injection: 1 µL (splitless) 
Inlet temperature: 270°C 
He Flow: 1 mL/min 
Purge Flow: 50 mL/min, activated 2 min after injection 
 
MS parameters: 
Instrument: Agilent 5975C inert XL EI/CI MSD with Triple-Axis Detector 
Scan: 50-800 m/z 
Use auto tune parameters for ionization voltages 
 
Oven gradient: 
 
 Rate (°C/min) Temp (°C) Hold time 

(min) 
Run time 
(min) 

Initial  80 5 5 
Ramp 10 320 5 34 
 

 

 


