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CHAPTER 1 

 

INTRODUCTION 

 

Post-traumatic stress disorder 

 

Clinical features and current therapies 

Post-traumatic stress disorder (PTSD) is a psychiatric condition that manifests in a subset 

of individuals after experiencing a traumatic event(s) (1). PTSD symptoms are categorized into 

the following four diagnostic criteria: intrusion, including flashbacks and nightmares; avoidance; 

negative alterations in cognition and mood; and alterations in arousal, such as hypervigilance and 

poor sleep (1-3). While the lifetime prevalence of PTSD in the general population lies on the 

order of 6.8% (4, 5) estimates reach as high as 30.9% among subpopulations at particular risk for 

trauma such as war veterans (6). PTSD symptoms usually begin within one to six months after 

the trauma, but can last for decades and are associated with significant increases in health care 

use and costs (7, 8). Current treatments include both psychotherapy, such as exposure therapy 

and cognitive behavioral therapy (9), and medication (10-12). The selective serotonin reuptake 

inhibitors (SSRIs) sertraline (Zoloft) and paroxetine (Paxil) represent the front-line 

pharmacological treatment for PTSD patients, but these drugs are only partially effective and 

rarely result in full remission of symptoms (10). Sleep disturbances and nightmares are 

particularly resistant to treatment with currently available therapies, and constitute some of the 

most prevalent and disruptive symptoms in PTSD patients (2, 11). Thus, there is a critical need 

to develop novel therapeutic approaches for better management, remission, or prevention of 

PTSD. 
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Role of emotional memory  

Collectively, PTSD symptoms represent a persistent, inextinguishable stress response 

initiated by the traumatic event. From an evolutionary perspective, this response can be an 

adaptive means of enhancing survival when confronted with threatening or fearful stimuli (13, 

14). By augmenting associative memory for contextual cues surrounding the threat, activation of 

the stress response can also compel avoidance or vigilance behaviors that prevent future 

encounters with the same danger (13, 14). Indeed, multiple studies have demonstrated that 

memories with an affective component are more vivid and durable than other memories (15). 

This response becomes maladaptive when the dangers associated with the traumatic event no 

longer pose a threat. Enhanced implicit and explicit memory for the traumatic event, as well as 

impaired extinction of this memory and generalization of associated cues, then contribute to the 

maintenance of chronic symptoms, leading to PTSD (14, 16-20). Thus, PTSD can be 

conceptualized as a disorder of learning and memory, the proximal cause of which is the 

acquisition and consolidation of traumatic memory and related negative emotions (14, 16-20). 

Mounting empirical evidence demonstrates PTSD-related disruptions in multiple domains 

of emotional memory that likely contribute to susceptibility for the disorder or the maintenance 

of symptoms (21-28). These deficits in PTSD patients are linked to structural and functional 

alterations in various subregions of the prefrontal cortex (PFC), hippocampus, and amygdala, 

brain areas known to be important for both memory formation and the regulation of emotion (29, 

30). Specifically, PTSD symptoms are associated with altered size and function of the 

hippocampus, impaired activation of the PFC, and a corresponding disinhibition of amygdala 

activity (29, 30). This pathophysiology may contribute to PTSD symptom development by 

promoting the formation and maintenance of negative emotional memory during and 
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immediately after the trauma, or by impairing the successful extinction of these memories once 

formed (21-25, 31). 

 

Novel treatment strategies 

A novel strategy for the treatment of PTSD, therefore, is to modulate emotional memory 

formation and maintenance in order to attenuate explicit or implicit recall for the traumatic event 

(14, 16-18, 31, 32). Among neuropsychiatric disorders, PTSD is uniquely well suited to this 

approach because its diagnosis is contingent upon a requisite environmental component, the 

traumatic event, which signals the onset of symptoms (1, 13). Pharmacological interventions that 

promote or inhibit emotional memory formation and maintenance are hypothesized to have 

therapeutic potential at different points in the timeline of PTSD symptom progression. Based on 

the learning hypothesis of PTSD, these strategies can be broadly classified into four groups: 1) 

compounds that inhibit the acquisition or consolidation of emotional memory formation during 

or immediately after trauma, 2) compounds that inhibit the reconsolidation of emotional memory 

during subsequent recall of events related to the trauma, 3) compounds that facilitate the 

extinction of emotional memory associated with the trauma, and 4) compounds that attenuate the 

general expression of anxious behaviors (Figure 1). 

Recent successes with both pharmacotherapeutic and psychotherapeutic interventions 

have provided clinical proof of concept validation for some of these approaches (14, 18, 31, 32), 

but the limited availability of pharmacological agents that potently and selectively target 

molecular mediators of emotional learning and memory represents a hurdle to the clinical 

advancement of new treatments. Furthermore, the initial discovery and development of 

pharmacological agents that manipulate emotional memory is performed exclusively in the 
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Figure 1. Opportunities for intervention in symptom progression after trauma. These 

strategies can be broadly classified into four groups: 1) compounds that inhibit the acquisition or 

consolidation of emotional memory formation during or immediately after trauma, 2) compounds 

that inhibit the reconsolidation of emotional memory during subsequent recall of events related 

to the trauma, 3) compounds that facilitate the extinction of emotional memory associated with 

the trauma, and 4) compounds that attenuate the general expression of anxious behaviors. 

 

preclinical arena, highlighting the need for an animal model of traumatic stress with robust 

predictive, face, and construct validity. 

 

Rodent behavioral assays of emotional memory  

Traditionally, researchers have employed rodent models of aversive associative 

conditioning, such as auditory cued and contextual conditioned fear (CF), fear-potentiated startle 

(FPS), inhibitory avoidance (IA), and conditioned taste aversion (CTA), to probe the 

mechanisms underpinning emotional memory formation and maintenance. Multiple studies 

employing these and other paradigms have revealed that encoding of emotionally valenced 

information occurs in distinct phases. Initial acquisition of the memory is followed by 

consolidation; subsequent recall of the memory can lead to either reconsolidation or extinction 

depending on the duration of and context surrounding the recall event (33). Each of these steps is 
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mediated by distinct molecular mechanisms which take place within and between various 

subregions of the thalamus, PFC, hippocampus, and amygdala (18, 33, 34). 

In general, the successful acquisition, consolidation, and expression of threat-based 

memory requires convergent excitatory signaling in the amygdala which is contextualized by 

hippocampal input, and gated by PFC afferents to inhibitory interneurons (Figure 2). The 

induction of long term potentiation (LTP) at thalamic and sensory cortical synapses in the 

basolateral amygdala (BLA) represents a well-established neurophysiological correlate of 

emotional memory acquisition (18, 33, 35). This initial excitation of primary BLA neurons 

during acquisition is followed by the induction of several mechanisms promoting the 

consolidation of emotional memory, which include the activation of intracellular signaling 

pathways such as extracellular receptor kinase 1/2 (ERK 1/2) phosphorylation, culminating in 

transcriptional activation and new protein synthesis (33). For example, activation of early growth 

response protein 1 (EGR-1) in the amygdala is known to be required for the formation of new 

threat-based memories (33). EGR-1 is an immediate early gene and transcription factor that lies 

downstream of ERK1/2 activation, and induces the rapid expression of a host of genes involved 

in synaptic remodeling (33). Specifically, the protein products of these genes are involved in the 

maintenance of amygdala LTP and morphological changes such as increased dendritic spine size 

and density (33, 36, 37). Reactivation of emotional memories through passive recall returns these 

synapses to a labile state during which reconsolidation or extinction can take place (37-39). The 

cellular mechanisms that subserve reconsolidation have yet to be fully delineated, but early work 

suggests that this process shares some of the same molecular mediators with initial consolidation, 

although reconsolidation may be mediated by post-synaptic rather than pre-synaptic 

modifications (37-39). Repeated recall of an emotional memory without further reinforcement of 



 6 

the initial association leads to extinction (37, 39). Extinction is partially mediated by activation 

of the infralimbic region of the PFC (IL) which attenuates amygdala output through excitation of 

inhibitory intercalated cells (ITC) and through long term depression (LTD) or depotentation of 

thalamic and cortical synapses in the BLA that had previously undergone LTP (40-45). Finally, 

the expression of threat responses related to the emotional memory requires BLA activation of 

output neurons in the central amygdala (CeA) and the bed nucleus of the stria terminalis (BNST), 

which is facilitated by persistent activity in the prelimbic region of the PFC (PL) (46-50). 

Throughout all of these processes, hippocampal activation and long-term plasticity provides 

context specificity (51). 

It is important to note that the neural circuitry involved in emotional memory encoding 

corresponds to the same brain regions found in functional neuroimaging studies to be altered in 

PTSD patients (52). Reduced hippocampal volume is a well-established finding in PTSD patients 

that likely results in poor contextualization of emotional memory, a symptom of PTSD patients 

that leads to inappropriate stress reactions (52). Reduced activation of the ventromedial PFC, a 

brain region analogous to the IL in rodents, has also been reported multiple times in PTSD 

patients, and is associated with enhanced expression and poor extinction of threat-based 

memories (52). Impaired PFC activation also correlates with disinhibition of the amygdala in 

PTSD patients, resulting in hyperactivity of this structure and associated behavioral outcomes 

that include hyperarousal symptoms and sleep disturbances (52).  

Using the rodent behavioral assays mentioned above to manipulate the function of these 

circuits, multiple compounds that target various neurotransmitter systems as well as broad 

cellular functions such as gene transcription and protein synthesis have been discovered that 

affect the acquisition, consolidation, reconsolidation, extinction, and/or expression of learned 
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threat behavior (53). However, there are two important caveats to the interpretation of 

experimental results gleaned from pharmacological manipulation of the rodent response to 

aversive associative conditioning. First, it is not known whether the acquisition, consolidation, 

and recall of a rodent’s memory for threatening stimuli fully encompass the complexity of 

emotional memory formation and maintenance in humans (54). Second, these aversive learning 

paradigms likely represent normal associative learning after a stressful event, not necessarily the 

pathological overconsolidation of emotional memory that occurs in PTSD patients who have 

experienced traumatic stress. While the molecular mechanisms that subserve normal threat 

learning are likely involved in pathological processes as well, and thus provide valuable insight, 

the physiological and behavioral consequences of trauma are different from those of mild stress 

in both rodents and humans. It will be critical, therefore, to test novel pharmacological 

interventions in rodent models that employ more severe stressors akin to the trauma experienced 

by an individual who goes on to develop PTSD. 

 

Rodent models of traumatic stress 

Putative rodent models of traumatic stress include underwater trauma (55), predator scent 

stress (56), social conflict (57), learned helplessness (58), and Single Prolonged Stress (SPS) 

(59). Each of these models recapitulates some of the physiological and behavioral alterations 

found in PTSD patients, and offers new insight into the pathophysiology of the disorder. Each 

model has also been used to test novel pharmacological interventions that could prevent or 

ameliorate these changes (55-59).  
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Figure 2. Neural threat circuitry. Adapted from (51). Acquisition, consolidation, and 

expression of threat-based memory requires convergent excitatory signaling in the amygdala 

which is contextualized by hippocampal input, and gated by PFC afferents to inhibitory 

interneurons. PL: prelimbic cortex; IL: infralimbic cortex; BLA: basolateral amygdala; CeA: 

central amygdala; ITC: intercalated inhibitory cells. 

 

 

Of these models, SPS exhibits strong face and construct validity (Table 1). SPS is 

induced by a single presentation of three classically used rodent stressors: two hours of restraint, 

followed by twenty minutes of forced swim and then exposure to ether inhalation until anesthesia 

(60). SPS achieves a level of traumatic stress that surmounts the stress that would be induced by 

each individual stressor alone. In this way, SPS represents a traumatic experience for rodents 

consisting of an acute physical and psychological insult culminating in simulated death through 

loss of consciousness. SPS treatment mounts a dramatic stress response in rodents as measured 

by increases in circulating corticosterone, the rodent analogue of the human stress hormone, 

cortisol (60). Similar to the pathophysiology of PTSD patients, rats and mice which have 

undergone SPS subsequently display enhanced negative feedback of the hypothalamic-pituitary-
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adrenal (HPA) axis (60), cell death in the hippocampus (61-64), and reduced excitatory tone in 

the PFC (65). SPS rats also demonstrate increased hippocampal expression of FK506-binding 

protein 51 (FKBP5), an early stress-responsive gene that acts as a co-chaperone of the 

glucocorticoid receptor complex (66). Importantly, genetic variability and altered expression of 

FKBP5 has been associated with PTSD risk, diagnosis, and treatment (67-69). 

At the level of behavior, rodents exposed to SPS show increased startle reactivity (70-

75), augmented threat responding in aversive associative conditioning assays (70-75), and 

impaired extinction of threat-related behaviors (76-81), consistent with disruption of normal 

emotional memory formation and maintenance. The behavioral alterations induced by SPS in 

rats have been found to be sensitive to SSRI treatment (82), suggesting that this model may also 

exhibit predictive validity. Recently, it was also found that SPS results in increased cerebrospinal 

fluid (CSF) levels of the excitatory neurotransmitter, glutamate, caused in part by reduced 

hippocampal expression of the glutamate transporters GLAST and GLT-1 (83). Together, these 

findings indicate combined dysfunction of the serotonergic and glutamatergic neurotransmitter 

systems that could conspire to induce short and long-term PTSD-like behavioral alterations 

spurred by the persistent expression of traumatic memory. The SPS model, therefore, may be a 

viable means of discovering novel interventions to prevent or treat PTSD by modulating 

emotional memory formation and maintenance before, during, or after trauma.  
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Table 1. Summary of effects of SPS 

Effect of SPS Reference 

Increased expression of norepinephrine synthesizing enzyme tyrosine hydroxylase 
(TH) in locus coeruleus (LC) Sabban EL, et al. (2015) 

Increased CF expression and anxiety-like behavior in open field and EPM Qiu ZK, et al. (2015) 

Altered cocaine intake and reduced dopamine content in the striatum Enman NM, et al. (2015) 

Increased CSF glutamate and decreased glutamate transporter GLAST/GLT-1 
expression;  increased CF expression and anxiety-like behavior in open field Feng D, et al. (2015) 

Increased neuronal apoptosis in PFC Li X, et al. (2015) 

Increased activity-dependent metabolites in amygdala Han F, et al. (2015) 

Increased CF expression and impaired extinction Keller SM, et al. (2015) 

Impaired reversal learning George SA, et al. (2015) 

Increased glucocorticoid receptor (GR) levels in hippocampus and impaired CF 
extinction Keller SM, et al. (2015) 

Increased cocaine-mediated hyperlocomotion Eagle AL, et al. (2015) 

Anxiety-like behavior in open field and EPM Wang HN, et al. (2015) 

Anxiety-like behavior in EPM Sabban EL, et al. (2015) 

Anxiety-like behavior in open field, EPM, light-dark box; radial arm maze deficits; 
increased plasma corticosterone; decreased histone acetylation Solanki N, et al. (2015) 

Increased GR levels and PKC phosphorylation in PFC Wen L, et al. (2015) 

Impaired CF extinction Eskandarian S, et al. (2015) 

Impaired CF extinction; increased GR expression in PFC and hippocampus George, et al. (2015) 

Apoptosis in PFC; impaired Morris Water Maze performance Yu B, et al. (2014) 

Depression-like behavior in FST and anxiety-like behavior in open field and EPM Ji LL, et al. (2014) 

Increased plasma corticosterone, corticotrophin-releasing hormone (CRH) mRNA in 
mediobasal hypothalamus, and TH and dopamine-β hydroxylase mRNA in LC Serova LI, et al. (2014) 

Increased CRH and FK506-binding protein 5 (FKBP5) mRNA in hippocampus and 
hypothalamus Laukova M, et al. (2014) 

Decreased body weight; reduced sucrose preference; increased plasma 
corticosterone; nxiety-like behavior in open field and EPM Lee B, et al. (2014) 

Increased CF expression and anxiety-like behavior in EPM Miao YL, et al. (2014) 

Decreased GR and mineralocorticoid receptor (MR) expression in amygdala Han F, et al. (2014) 

Increased phosphorylation of ERK1/2 in PFC Qi J, et al. (2014) 

Increased CF expression and anxiety-like behavior in EPM; decreased 
phosphorylation of ERK1/2 in hippocampus Nie H, et al. (2014) 

Depression-like behavior in FST and anxiety-like behavior in open field and EPM Serova, et al. (2014) 

Increased GR expression in PFC and hippocampus George SA, et al. (2013) 

Anxiety-like behavior in open field and EPM Peng Z, et al. (2013) 

Anxiety-like behavior in open field and EPM Serova LI, et al. (2013) 

Apoptosis and reduced phosphorylation of ERK1/2 in hippocampus Peng Z, et al. (2013) 

Increased evoked, reduced spontaneous firing of LC neurons George SA, et al. (2013) 
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Increased GR expression and PKB phosphorylation in hippocampus Eagle AL, et al. (2013) 

Increased IA and acoustic startle response Ganon-Elazar E, et al. (2012) 

Decreased Ca
2+

/calmodulin kinase IIα (CaMKIIα) expression in PFC Wen Y, et al. (2012) 

Altered CaMKIIα expression in dorsal raphe Xie H, et al. (2012) 

Increased 5-HT1A receptor expression in dorsal raphe Luo FF, et al. (2011) 

Altered MR and GR expression in LC Li M, et al. (2011) 

Increased BDNF and tyrosine kinase B (TrkB) receptor expression in hippocampus Takei S, et al. (2011) 

Increased phosphorylation of ERK1/2 and apoptosis in amygdala Liu H, et al. (2010) 

Increased CF expression and impaired extinction; increased GlyT1 mRNA in 
hippocampus Yamamoto S, et al. (2010) 

Increased CF expression and impaired extinction; increased GlyT1 mRNA in 
hippocampus Iwamoto Y, et al. (2007) 

Increased CF expression Takahashi T, et al. (2006) 

Enhanced negative feedback of HPA axis Liberzon I, et al. (1999) 
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Mechanisms of emotional memory formation and maintenance 

 

Glutamate-mediated emotional memory  

Over the past several years, ionotropic and metabotropic glutamate receptors (iGluRs and 

mGluRs) have emerged as key regulators of the molecular, synaptic, and behavioral correlates of 

emotional memory formation and maintenance (84). During memory encoding related to 

stressful stimuli, glutamate acts as the primary excitatory neurotransmitter via activation of 

postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-Methyl-D-

aspartate (NMDA) iGluRs as well as pre and postsynaptic mGluRs of various subtypes (84, 85). 

NMDA receptor activation, in particular through its induction of synaptic plasticity, is known to 

be a requisite component of the cellular and behavioral correlates of emotional memory 

acquisition, consolidation, reconsolidation, extinction, and expression (33, 35).  

The facilitation of NMDA receptor-mediated extinction represents a particularly 

promising approach for the treatment of individuals with PTSD. This approach involves the 

pairing of a drug treatment with exposure-based psychotherapy to pharmacologically facilitate 

extinction learning, leading to remission of symptoms (86). Compounds that activate the NMDA 

receptor result in accelerated extinction of threat responses in several preclinical models of 

PTSD symptoms, pointing to the therapeutic potential of targeting this receptor in conjunction 

with exposure therapy. Unfortunately, despite their critical role in every step of emotional 

memory formation, direct targeting of NMDA receptors has limited clinical utility due to the 

potential for severe adverse effects (87, 88). NMDA receptor activation can be achieved with 

therapeutic index, however, using D-cycloserine (DCS), a partial agonist of the strychnine-

insensitive glycine binding (GlyB) site on the NMDA receptor. DCS has been shown to facilitate 
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the extinction of conditioned fear (CF), a rodent behavioral assay analogous to exposure therapy 

(86). Based on these data, recent clinical experiments were undertaken demonstrating modest 

efficacy of DCS in augmenting the beneficial effects of exposure therapy in PTSD patients (89). 

Although these studies offer proof-of-concept validation for this therapeutic approach, other 

studies employing a similar strategy in PTSD patients found DCS to have no effect or to have a 

negative effect on recovery (90). These discrepant results are likely due to the fact that DCS, a 

partial agonist for the GlyB site, can actually act as an antagonist of NMDAR activity in the 

presence of high synaptic concentrations of the endogenous full agonist, glycine (91). 

Selective inhibition of the Glycine Transporter 1 (GlyT1) offers an alternative approach 

for the indirect modulation of NMDA receptors. Under normal conditions, the GlyB site on the 

NMDA receptor is not saturated due to the tightly controlled regulation of synaptic glycine levels 

by GlyT1, expressed in a distribution pattern that closely overlaps with NMDA receptor 

expression in the cortex and limbic regions of the brain (92). Previous studies have demonstrated 

that selective inhibitors of GlyT1 can increase synaptic glycine levels sufficiently to produce 

enhanced NMDA receptor function in preclinical rodent models (93). Recently, we have reported 

the development and characterization of a novel series of GlyT1 inhibitors, represented by 

ACPPBII, (2-amino-4-chloro-N-((4-phenyl-1-(propylsulfonyl)piperidin-4-yl)methyl)benzamide), 

with suitable bioavailability, brain penetration, and physical properties for extensive 

characterization in vivo (94). Selective inhibition of GlyT1 by ACPPBII may provide a novel 

target for enhancing the therapeutic effects of exposure therapy in PTSD patients. Studies aimed 

at addressing this question were undertaken, and are presented in Appendix A. However, due to 

adverse effects that precluded the interpretation of these data (discussed in Chapter 4), we sought 

alternative routes to pharmacologically modulate NMDA receptor-dependent emotional memory.  
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Indirect modulation of NMDA receptor activity and its downstream molecular, synaptic, 

and behavioral effects can also be achieved through activation or inhibition of certain mGluRs. 

Recent evidence further supports a role for mGluRs in mediating emotional learning independent 

of their coupling to NMDA receptor-mediated signaling. Thus, targeting mGluRs as a means of 

altering traumatic memory formation and maintenance may have the potential to treat or possibly 

prevent PTSD symptoms. 

mGluRs are part of a subfamily of neuromodulatory G protein-coupled receptors 

(GPCRs) divided into three groups based on sequence homology, synaptic localization, and G 

protein coupling (for an in-depth review of receptor pharmacology and function see (95)). Group 

I includes mGluR1 and mGluR5, Group II includes mGluR2 and mGluR3, and Group III includes 

mGluR4, mGluR6, mGluR7, and mGluR8 (95). 

The Group I mGluRs are predominantly postsynaptic (95, 96), and exhibit high 

expression in PFC, amygdala, and hippocampus (96, 97) (Figure 3). Both mGluR1 and mGluR5 

couple to the Gαq/11 subtype of G proteins, activation of which leads to the induction of classical 

intracellular signaling pathways including phospholipase Cβ activation, formation of inositol 

1,4,5-trisphosphate (IP3), intracellular calcium mobilization, and activation of protein kinase C 

(PKC) (95). Importantly, mGluR1 and mGluR5 agonism has also been shown to increase activity 

in the mitogen-activated protein kinase/extracellular receptor kinase (MAPK/ERK) pathway, and 

the mammalian target of rapamycin (mTOR)/p70 S6 kinase pathway, leading to alterations in 

gene expression, protein synthesis, and synaptic plasticity particularly relevant to the formation 

and maintenance of emotional memories (33, 95, 98). In addition, both mGluR1 and mGluR5 

have been shown to be structurally and functionally linked to the NMDA receptor (99-104) such 

that mGluR1 or mGluR5 activation can promote, and its antagonism or genetic deletion can  
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Figure 3. Ionotropic and group I mGluR receptor signaling. Adapted from (105). Group I 

mGluRs are predominantly postsynaptic and couple to the Gαq/11 subtype of G proteins, 

activation of which leads to the induction of classical intracellular signaling pathways including 

phospholipase Cβ activation, formation of inositol 1,4,5-trisphosphate (IP3), intracellular 

calcium mobilization, and activation of protein kinase C (PKC). Both mGluR1 and mGluR5 have 

been shown to be structurally and functionally linked to the NMDA receptor. Arrow indicates a 

known allosteric binding site within the transmembrane domain. 

 

inhibit, NMDA receptor-dependent LTP and LTD in multiple brain regions (99, 103, 106-110). 

Based on these initial findings, several studies have gone on to demonstrate that more selective 

mGluR1 or mGluR5 modulation is sufficient to alter synaptic correlates of emotional memory 

formation and maintenance with measurable behavioral consequences (42, 111-151). 

The Group II mGluRs are generally localized to presynaptic terminals in several brain 

regions including the PFC, amygdala, and hippocampus (152, 153) where they function as 

autoreceptors or heteroreceptors to inhibit glutamate and other neurotransmitter release (95). 

Unlike the Group I mGluRs, mGluR2 and mGluR3 couple to the Gi/o subtype of G proteins 
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leading to inhibition of adenylyl cyclase and liberation of the Gβγ subunit (95). However, both 

mGluR2 and mGluR3 have also been found to be expressed postsynaptically (154, 155) where 

their activation causes hyperpolarization of postsynaptic neurons (154). Additionally, mGluR2/3 

antagonists have been shown to increase mTOR signaling in the PFC, indicating a negative 

coupling of these receptors to the MAPK/ERK and mTOR/p70 S6 kinase pathways (156). 

mGluR2 and mGluR3 modulate NMDA receptor function directly (157-159), and indirectly 

through alteration of presynaptic glutamate release (160). Furthermore, activation of the Group II 

mGluRs has been shown to enhance LTD and inhibit LTP in both NMDA receptor-dependent 

and independent manners in multiple brain regions including the cortex, hippocampus, and 

amygdala (161-175) with relevant effects on behavioral measures of emotional memory (176-

196). 

Similar to Group II, Group III mGluRs reside primarily in presynaptic terminals, and 

generally act to inhibit neurotransmitter release through coupling to the Gi/o subtype of G 

proteins (95), although Group III-mediated signaling through the MAPK and phosphatidyl 

inositol 3-kinase (PI3K) pathways has also been reported (197). Group III mGluRs exhibit 

diverse expression in the brain. mGluR4 and mGluR8 are both found in relatively low levels in 

the cortex, hippocampus, and amygdala (198, 199). mGluR7 is expressed throughout the brain, 

but has a very low affinity for glutamate (199). mGluR6, unlike the other mGluRs in this group, 

is primarily postsynaptic, and its expression is restricted almost entirely to the retina (199). 

Consistent with its expression profile, mGluR6 has not yet been shown to be involved in 

emotional learning and memory. Together, each of the other Group III mGluRs has been shown 

to be involved in NMDA receptor-dependent and independent plasticity in the hippocampus 

(199) and amygdala (200), and to affect emotional memory encoding (201-220). 
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Developing selective ligands represents a major hurdle to delineating the specific role of 

each mGluR subtype in modulating emotional memory formation and maintenance. Traditional 

methods of compound development, in which displacement of the endogenous ligand was the 

primary endpoint, restricted discovery efforts to compounds that bind the orthosteric site of a 

given receptor (221). In the case of many GPCRs including mGluRs, however, these sites are 

highly conserved between subtypes, rendering orthosteric ligands largely non-selective (221). 

Over the past several years, new screening methods and chemical optimization techniques have 

increasingly allowed for the discovery of small molecules that bind outside the orthosteric site of 

mGluRs and other GPCRs (221). By binding to less highly conserved regions of the receptor, 

often in the transmembrane domain, these allosteric ligands generally exhibit greater selectivity 

for specific GPCR subtypes (221). Allosteric ligands have been discovered that are capable of 

modulating the GPCR response to orthosteric agonists without having any intrinsic activity 

themselves; compounds that potentiate receptor response have been named positive allosteric 

modulators (PAMs) and compounds that inhibit the response have been named negative 

allosteric modulators (NAMs) (221). To date, multiple PAMs and NAMs have been developed 

that selectively target specific mGluR subtypes with little or no off-target activity at other 

GPCRs (95, 221). In addition, many of these selective compounds have been optimized for in 

vivo administration, enabling studies aimed at determining the effect of specifically targeting 

each mGluR subtype on the formation and maintenance of threat-related behaviors in mice and 

rats (95, 221). 

Due to the significant involvement of mGluR5 in emotional learning and memory, PAMs 

and NAMs for this receptor may be particularly useful for the treatment of PTSD. As mentioned 

above, mGluR5 canonically couples to the Gαq/11 subtype of G proteins; when activated by 
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stress-induced glutamate release, mGluR5 ultimately leads to the induction of downstream 

effectors that mediate synaptic remodeling and memory formation/maintenance (Figure 4). Many 

of these downstream signaling molecules lie also in the pathway that is activated by NMDA 

receptors, offering an indirect means of targeting the NMDA receptor for therapeutic purposes. 

This process is also dependent on new protein synthesis, and can be blocked by protein synthesis 

inhibitors such as anisomycin (33). Importantly, pharmacological inhibition of mGluR5 can also 

reduce new protein synthesis (222), and as mentioned above, attenuate the neural and behavioral 

correlates of emotional memory formation. 

One of the first studies to specifically implicate mGluR5 in the neural underpinnings of 

emotional learning and memory demonstrated that both acquisition/consolidation and extinction 

of combined cued and contextual CF could increase mGluR5 expression in the hippocampus 

(138). These experiments were quickly followed by several reports that 2-methyl-6-

(phenylethynyl)pyridine (MPEP), a selective mGluR5 negative allosteric modulator (NAM), 

could block, but not reverse, the ex vivo induction of thalamo-amygdala LTP (129, 139) and late-

LTP (122), a putative neurophysiological correlate of long term threat-based memory (98). In the 

intact animal, in vivo hippocampal LTP was also shown to be susceptible to 

intracerebroventricular MPEP administration (115). In addition to blockade of mGluR5, recent 

advances in the development of mGluR5 PAMs have enabled experiments examining the effect 

of selective potentiation of these receptors on synaptic plasticity in fear circuits. For example, ex 

vivo application of VU-29, a selective mGluR5 PAM, augmented subthreshold electrical 

induction of hippocampal LTP as well as stimulus or DHPG-induced hippocampal LTD (113). 

This finding was replicated with a novel mGluR5 PAM, ADX47273, and shown to be absent in 
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mGluR5 knockout mice (150), suggesting that mGluR5 participates in hippocampal-dependent 

contextualization of emotional memory. 

 mGluR5 activation has also been shown to be important for the acquisition of 

aversive learning in behaving animals. Multiple groups have demonstrated that systemic 

administration of MPEP blocks the acquisition of FPS (145, 151), cued CF (141), and CTA 

(144). It has also been found that infusion of MPEP directly into the amygdala is sufficient to 

inhibit the acquisition of cued and contextual CF (122, 139), and FPS (122), demonstrating that, 

along with mGluR1 and consistent with the electrophysiological evidence, the amygdala 

represents an important locus of action for Group I modulation of emotional memory acquisition. 

MTEP, an analogue of MPEP with similar pharmacological properties, also attenuated the 

acquisition of FPS (137), and contextual but not cued CF (127). More recently, it was shown that 

constitutive genetic deletion of mGluR5 in mice also impairs performance in contextual CF 

(149), although it is not possible in these animals to determine what specific phase of emotional 

memory formation or maintenance is compromised. The recent development of mGluR5-

selective PAMs has enabled studies examining the effect of mGluR5 activation on aversive 

associative conditioning. Consistent with previous studies demonstrating the importance of 

mGluR5 signaling in encoding threat-based memory, a recent study found that the novel mGluR5 

PAM VU0409551 enhances acquisition of contextual CF (223).  

In addition to its role in acquisition of emotional memory, there is an extensive literature 

demonstrating the importance of mGluR5 activation for the expression of aversive learning. It 

was first shown in 1997 that S-4C3H-PG, a non-selective Group I mGluR antagonist, increased 

punished responding in rodents (119), an effect considered to be anxiolytic. Systemic 

administration of the selective mGluR5 NAMs, MPEP or MTEP, also inhibited the expression of  
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Figure 4. mGluR5 and NMDA receptor involvement in synaptic correlates of emotional 

memory. Adapted from (224). mGluR5 canonically couples to the Gαq/11 subtype of G proteins; 

when activated by stress-induced glutamate release, mGluR5 ultimately leads to the induction of 

downstream effectors that mediate synaptic remodeling and memory formation/maintenance. 

Many of these downstream signaling molecules lie in the pathway that is activated by NMDA 

receptors, offering an indirect means of targeting the NMDA receptor for therapeutic purposes. 

This process is also dependent on new protein synthesis which allows for synaptic remodeling 

and long term memory storage that, in a subset of individuals leads to PTSD symptoms after 

trauma. 
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fear-based memory as measured by FPS (117, 145), cued or contextual CF (127), punished 

responding (114, 137, 140, 147), and aversive place conditioning (112). Similar to these 

prototypical compounds, the novel mGluR5-selective NAM, VU0285683, was shown to increase 

punished responding (140). Contrary results have been obtained in which there was no effect of 

MPEP on expression of FPS (122) or cued or contextual CF (122, 139); however, both of these 

experiments employed direct infusion of the compound into the amygdala, suggesting that the 

locus of action for mGluR5 antagonism on fear expression may include brain regions outside the 

amygdala.  

 

Sleep-dependent emotional memory  

One mechanism through which the activation or inhibition of mGluR5 and other mGluRs 

may mediate emotional memory encoding is by altering the amount, timing, or quality of sleep 

(34, 225, 226). In both rodents and humans, non-rapid eye-movement (NREM) and rapid eye-

movement (REM) sleep accrued after learning has been shown to promote the successful 

consolidation of new memory as evidenced by improved recall or performance on a given task 

after a delay (34, 225, 226). Mammalian sleep-wake architecture is highly conserved between 

species (227) such that rodents provide a valid translational model of normal human sleep 

patterns, as well as aberrant sleep related to various disease states (228, 229). Similar to human 

sleep studies, rodent sleep is measured using electroencephalography (EEG), in which electrodes 

are placed in contact with the scalp (in humans) or the dura mater (in rodents), allowing for the 

detection of electricity generated primarily by cortical neuronal ensembles (227, 228, 230). 

Based on characteristic changes in the oscillatory electrical activity in the brains of both species, 

it is possible to detect transitions between arousal states, from wake to NREM sleep to REM 
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sleep (227, 228, 230) (Figure 5). Although rodents are nocturnal, they cycle between 

wakefulness, through deepening stages of NREM sleep, and into bouts of REM sleep in the same 

stereotypical manner as humans (227, 228, 231). Both rodents and humans exhibit longer, more 

frequent bouts of NREM sleep early in the quiescent phase, transitioning to lighter NREM sleep 

and more frequent entries into REM sleep as the active phase approaches (227, 228, 231, 232). 

 Physiological pressure to enter NREM sleep is generated by the gradual accumulation of 

adenosine, a by-product of activity-dependent use of adenosine triphosphate (ATP) (227). 

Adenosine acts primarily through the adenosine receptor subtype 2A to activate γ-aminobutyric 

acid (GABA)-ergic neurons in the ventrolateral preoptic (VLPO) region of the hypothalamus 

which project to and inhibit wake-stabilizing orexinergic neurons in the lateral hypothalamus, 

histaminergic neurons in the tuberomammillary nucleus, serotonergic neurons in the dorsal 

raphe, and noradrenergic neurons in the locus coeruleus (227). During wake, orexinergic and 

monoaminergic neurons are active, and mediate reciprocal inhibition of the VLPO, ensuring that 

sleep is not initiated suddenly or unexpectedly (227). Once NREM sleep is initiated, periodic 

transition into REM sleep is caused by the activation of REM-on glutamatergic and cholinergic 

cells in the pontine reticular formation (PRF) and the laterodorsal/pedunculopontine tegmental 

nuclei (LDT/PPT), which project to the cortex and limbic regions of the brain, causing 

paradoxical excitation of the cortical EEG during REM sleep (227). Firing of monoaminergic 

neurons during REM sleep approaches zero, however, and the extracellular content of serotonin 

(5-HT), norepinephrine, and dopamine in the cortex, hippocampus and amygdala is very low, 

despite functional magnetic resonance imaging (fMRI) studies that reveal significant activation 

of these regions (227). The serotonergic system, in particular, is a key regulator of both sleep-
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wake architecture and emotional memory (233), and represents one of the neurochemical links 

between these two closely associated physiological and behavioral processes.  

While NREM sleep appears to confer a benefit primarily to the consolidation of 

declarative or episodic memory (34, 225, 226), REM sleep seems to be particularly important for 

the consolidation and contextualization of emotional memory (34, 225, 226, 234-239), although 

recent findings suggest involvement of NREM sleep in this process as well (238). The 

accumulation of REM sleep after emotional learning promotes the consolidation of memory 

related to the content of the new information as well as its emotional valence (226, 235, 237, 

240). This finding appears to be consistent regardless of the phase of emotional memory 

encoding; REM sleep can improve emotional memory consolidation after initial acquisition (226, 

236, 240), reconsolidation (34), or extinction (241-244) in both rodents and humans.  

The amount of time spent in each sleep state is not the only factor that determines its 

contribution to emotional memory formation and maintenance. The spectral composition of the 

EEG can also change within each sleep-wake state, and these changes are associated with 

different physiological and behavioral consequences. Although these transitions can be visually 

distinguished by qualitatively examining the EEG, quantitative EEG (qEEG) methods can also 

be applied to quantify the relative contribution of different frequencies to the total EEG 

waveform (Figure 5). These frequencies are grouped into the conventional power bands delta (δ: 

0.5-4 Hz), theta (θ: 5-8 Hz), alpha (α: 9-13 Hz), beta (β: 14-30 Hz), low gamma (low γ: 31-50 

Hz), and high gamma (high γ: 51-100 Hz). The prominence of each power band in the EEG 

changes depending on arousal state (227, 228, 230, 231). For example, waking EEG is 

characterized by power in mixed frequencies, NREM sleep by global increases in delta power, 

and REM sleep by increases in theta power (227, 228, 230, 231).  
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The power of each band is not discrete, but can fluctuate continuously within each sleep-

wake state (227, 228, 230, 231). Within-state alterations in the relative power of each band are 

associated with different behavioral outcomes (227, 228, 230, 231), and thus may be useful as 

biomarkers of disease and/or treatment (228). For example, the low frequency delta oscillations 

present during NREM sleep, also known as slow wave activity (SWA), are a well-established 

neurophysiological correlate of the r estorative properties of deep sleep (231, 232), and have 

been shown to be the component of NREM sleep most important for promoting the consolidation 

of declarative memory (225, 245). In multiple human studies with both healthy subjects and 

patients with mental illness associated with cognitive impairments, it has now been shown that 

this relationship is causative; when SWA is experimentally amplified, recall of prior learning is 

improved (245-249). For example, using transcranial induction of slow oscillations during 

NREM sleep, it was shown that declarative memories could be enhanced in healthy subjects 

(245). 

The memory-enhancing function of REM sleep is also dependent on the spectral 

composition of the EEG. In particular, increases in theta power during REM sleep have been 

correlated with enhanced emotional memory consolidation in humans and rats (240, 250, 251). 

Notably, increased REM sleep duration and theta power are not only associated with improved 

recall after learning, but this enhancement is strongest for negatively valenced information (239, 

240), suggesting that REM sleep preferentially promotes the consolidation of negative emotional 

memory. For example, after memorizing names associated with pictures of faces exhibiting 

neutral or negative expressions, REM sleep positively correlated with recall of the negative facial 

expressions, but not the neutral ones (240). 
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Figure 5. Representative rodent EEG and spectral power analysis characterizing each 

sleep-wake state. Characteristic changes in the EEG delineate transitions between each sleep-

wake state for both rodents and humans. These changes can be visually distinguished in order to 

stage sleep-wake architecture. qEEG methods can also be applied to decompose the total EEG 

waveform into its component frequency bands. When power in each band is plotted as a function 

of frequency, it is clear that the spectral composition of the EEG is distinct between each sleep-

wake state. This method also allows for the detection of changes in power spectra within each 

sleep-wake state that are associated with different behavioral outcomes.   
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Although these studies have primarily been performed in the experimental setting, it is likely that 

post-trauma accumulation of REM sleep similarly contributes to the consolidation of traumatic 

memory and may spur the development of PTSD symptoms (252). 

Thus, any pharmacological treatment aimed at therapeutically blocking emotional 

memory consolidation in the aftermath of traumatic stress should impinge on both wake and 

sleep-dependent memory encoding processes. As mentioned above, glutamate signaling in 

cortical and subcortical brain regions is a key mediator of emotional memory formation and 

maintenance during wakefulness, but it is also critical for the regulation of sleep-wake 

architecture and state-dependent qEEG spectral power (225). Selective antagonism or genetic 

deletion of different iGluRs and mGluRs has been found to differentially alter these measures 

with correlated behavioral consequences in both rodents and humans (253-278). For example, 

noncompetitive NMDA receptor antagonism with the rapid-acting antidepressant ketamine has 

been shown to specifically reduce REM sleep and enhance SWA, an effect that correlated with 

treatment response in depressed patients (263, 277, 278). Ketamine has also been found to 

increase gamma power in the frontal cortex during wake in rodents and humans, a measure that 

was successfully used as a translational biomarker of central target engagement (279). These 

studies highlight the importance of examining sleep-dependent effects of drug treatment, and 

underscore the potential value of employing qEEG as a biomarker of both target engagement and 

efficacy. NMDA receptor antagonist-induced suppression of REM sleep could also explain the 

effectiveness with which this class of compounds impairs emotional memory consolidation in 

rodents and humans. Although emotional memory consolidation is sensitive to both 

pharmacological treatment and sleep deprivation (226, 252, 280-282), it is important to note that 

there may be a critical temporal window for modifying this process (37). Indeed, depending on 
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the physiological or behavioral endpoint, NMDA receptor blockade and REM sleep deprivation 

lose the ability to attenuate memory consolidation if performed hours to days after emotional 

learning (37, 283, 284). Again, although preliminary evidence suggests that this window may be 

as short as six hours in victims of trauma (31, 37) most of these studies have been performed in 

experimental settings on healthy human participants, or on rodents subjected to mild aversive 

associative conditioning paradigms. Thus, it is not clear whether NMDA receptor antagonism 

after more severe traumatic stress can prevent traumatic memory consolidation and/or PTSD 

symptom progression, nor is it known exactly what role REM sleep may play in this process.  

Unfortunately, to date, no clinical study has objectively measured the effect of trauma on 

human sleep-wake architecture within hours to days of the traumatic experience (285). The 

earliest time point at which polysomnographic EEG has been collected in humans is between one 

week and two months after trauma (286-290). Furthermore, no sleep-dependent pharmacological 

or behavioral intervention has been attempted in victims of trauma until days after the event 

(291, 292), likely missing what may be the critical temporal window during which REM sleep 

suppression would be therapeutic (37, 283, 284). The logistical hurdles inherent to the collection 

of human EEG data at earlier time points highlight the importance of a valid rodent model of 

trauma-induced sleep-wake alterations. Such a model would enable studies in which 

pharmacological manipulation of sleep-wake architecture and state-dependent qEEG spectral 

power could be tested as a means of attenuating the development of PTSD-like symptoms after 

trauma. Given the impressive attenuating effect of NMDA receptor antagonism on both REM 

sleep and emotional memory consolidation, it would be of interest to test the effect of NMDA 

receptor blockade, and associated REM sleep suppression, on traumatic stress-induced 

physiological and behavioral alterations. However, as previously mentioned, translation of these 
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findings to the clinic would be impeded by the known adverse effects and formulation 

constraints associated with NMDA receptor antagonists such as ketamine (87, 88). 

Recently, it was found that the selective mGluR5 NAM 2-methyl-6-

(phenylethynyl)pyridine (MPEP) has similar effects to NMDA receptor antagonists, specifically 

suppressing REM sleep, enhancing SWA, and inducing increased gamma power during 

wakefulness in rodents (253, 258), possibly with fewer and/or less severe adverse effects (293). 

These findings are consistent with cellular data pointing to the structural and functional coupling 

of mGluR5 and NMDA receptors (99-101, 103, 106, 107, 294). They also suggest that both 

NMDA receptor and mGluR5 activation may promote emotional memory formation in part 

through increasing time spent in REM sleep after emotional learning. Indeed, antagonism of 

mGluR5, possibly through downstream inhibition of NDMA receptor function, has been shown 

to attenuate emotional memory acquisition, consolidation, and extinction at the neural and 

behavioral level in multiple rodent assays of threat learning (113, 115, 122, 129, 138, 139, 144, 

145, 149, 150). These observations suggest that mGluR5 NAMs could be used in a prophylactic 

approach to block the consolidation of emotional memory immediately after a traumatic event, 

possibly impeding the development of PTSD symptoms. Despite promising results in rodent 

behavioral assays of emotional memory (113, 115, 122, 129, 138, 139, 144, 145, 149, 150), 

however, mGluR5 NAMs have not been tested in a rodent model of traumatic stress such as SPS. 

 

Outline of current studies 

Thus, in Chapter 2, we performed studies intended to test whether SPS can be used as a 

rodent model of traumatic stress-induced physiological and behavioral alterations that would 

mimic PTSD patients. Specifically, we examined short and long-term alterations in sleep-wake 
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architecture and state-dependent qEEG spectral power. We also measured corresponding 

changes in several validated physiologic measures of the rodent stress response, as well as 

alterations in brain regional serotonergic signaling that may relate to observed disruptions in 

EEG measures. Then we determined whether these alterations have behavioral consequences, 

testing the effect of SPS on subsequent threat learning. 

Having validated the model, in Chapter 3, we attempted to pharmacologically intervene 

in the deleterious effects of SPS. First, we tested the effects of systemic administration of 3-

fluoro-N-(4-methylthiazol-2-yl)-5-(pyrimidin-5-yloxy)benzamide (VU0409106), a novel, 

selective, brain penetrant mGluR5 NAM (295) on rat sleep-wake architecture and state-

dependent qEEG spectral power to confirm that it behaves similar to reported mGluR5 NAMs in 

these measures. Then, we tested the effects of VU0409106 on multiple rodent assays of sedation 

and motor impairments to determine the therapeutic range of this compound, and to aid in 

selecting a dose for subsequent studies. Finally, we measured the effects of post-trauma 

administration of VU0409106 on SPS-induced alterations in behavior, sleep-wake architecture, 

qEEG spectral power, and brain regional serotonin (5-HT) utilization. We hypothesized that 

VU0409106, in part through acute suppression of REM sleep and impairment of emotional 

memory consolidation would attenuate the subsequent physiological and behavioral effects of 

SPS. 
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CHAPTER 2 

 

TRAUMATIC STRESS INDUCES LASTING SLEEP AND QUANTITATIVE 

ELECTROENCEPHALOGRAPHIC DISTURBANCES IN RATS 

 

Introduction 

SPS represents a valid model of traumatic stress that recapitulates many of the 

physiological and behavioral alterations present in PTSD patients (59). However, despite the 

prevalence, severity, and intractability of hyperarousal-associated sleep disturbances associated 

with PTSD (2, 11), it is not known whether SPS induces alterations in sleep-wake architecture 

and state-dependent qEEG power spectra similar to those seen in patients. 

Polysomnographic studies in chronic PTSD patients as well as recently traumatized 

individuals have revealed deficits in both NREM and REM sleep, including reduced and 

fragmented NREM and REM sleep, shortened latency to REM sleep, and increased REM density 

(2, 288-290, 296). Abnormalities in state-dependent qEEG power spectra indicative of 

heightened arousal during wakefulness, such as increased high frequency beta power, and 

inappropriate cortical activation during NREM sleep, such as reduced low frequency delta power 

(aka SWA) have also been observed in individuals with PTSD (297-301). These abnormalities 

are correlated with the previously discussed structural and functional alterations in the HPA axis, 

hippocampus, PFC, and amygdala (29). 

As mentioned, SSRIs are the front-line treatment for PTSD (10); this, combined with the 

finding that PTSD susceptibility and severity is associated with a 5-HT transporter gene 

polymorphism (302-305) implicates disrupted serotonergic neurotransmission in the 
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pathophysiology of the disorder. Recent studies suggest that SSRIs may partially exert their 

therapeutic effects through modulation of neuropeptide Y (NPY) and its Y1 and Y2 receptor 

subtypes (306). NPY has anxiolytic (307, 308) and sleep-promoting (309, 310) properties, and is 

significantly decreased in the plasma and cerebrospinal fluid (CSF) of PTSD patients (311, 312). 

Previous anatomical studies have shown that serotonergic terminals synapse onto NPY-

expressing inhibitory interneurons in the amygdala (313), suggesting the possibility that 

combined disruption of these neurotransmitter systems may contribute to hyperarousal symptoms 

and sleep-wake disruptions in PTSD patients.  

In order to test this hypothesis, and to determine whether SPS induces accompanying 

alterations in sleep-wake architecture and state-dependent qEEG power spectra, we 

telemetrically recorded EEG from rats in their home cage. Specifically, we tested whether SPS 

causes reduced and fragmented NREM and REM sleep that persists beyond the day of traumatic 

stress, similar to PTSD patients. In addition, we performed qEEG spectral power analysis to 

evaluate whether SPS induces markers of chronically increased cortical activation during wake 

and NREM sleep consistent with PTSD-like hyperarousal. To determine whether alterations in 

sleep-wake architecture coincided with activation of the HPA axis, we assessed changes in 

several validated physiologic measures of the rodent stress response including hyperthermia, 

increases in plasma corticosterone (314), and induction of FKBP5, an early stress-responsive 

gene that acts as a co-chaperone of the glucocorticoid receptor complex (66). Finally, we 

evaluated the effects of SPS on regional 5-HT utilization, and expression of NPY and its 

receptors to assess whether disruption of these neurotransmitter systems may be involved in 

mediating SPS-induced sleep-wake and qEEG spectral power alterations. 
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Methods 

 

Subjects 

All male Sprague-Dawley rats (Harlan, Indianapolis, IN) used in the present studies were 

housed under a 12 hour light:12 hour dark cycle and given ad libitum access to food and water. 

All animal experiments were approved by the Vanderbilt University Animal Care and Use 

Committee and experimental procedures conformed to guidelines established by the National 

Research Council Guide for the Care and Use of Laboratory Animals. All efforts were made to 

minimize animal suffering and the number of animals used. 

 

Surgery 

Twenty male rats (250-375 grams) were surgically implanted with a telemetry transmitter 

(4-ET, Data Sciences International, St. Paul, MN) for recording EEG, electromyography (EMG), 

and body temperature. Under isoflurane anesthesia (3% induction; 1.5-2.5% maintenance) the 

transmitter was implanted subcutaneously across the back of each rat. Transmitter leads were 

tunneled subcutaneously to the skull. After holes were drilled in the skull, the exposed wires 

were placed in contact with the dura and secured in place with dental cement (Butler Schein, 

Dublin, OH). Three sets of leads were placed bilaterally to record from cortical regions 

corresponding with the frontal, parietal, and occipital cortices (+2 mm, -2 mm, and -6mm 

anterior-posterior from Bregma, respectively and +/- 2 mm lateral to the midline). An additional 

set of leads was placed bilaterally in the nuchal muscles for EMG recording. Rats were 

individually housed following surgery and allowed to recover and acclimate to the recording 

room for a minimum of 10 days prior to testing.  
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Experimental design 

After post-operative recovery, each rat was randomized into either the SPS or SHAM 

group. Continuous 24 hour baseline (BL) recordings were performed for each rat in its home 

cage to serve as within-subjects comparator for all subsequent sleep-wake, qEEG, and body 

temperature data. After BL recordings, each rat received either SPS or SHAM treatment. 

Immediately following treatment, home cage recordings were re-initiated in both groups (Day 0), 

continued for two days (Days 1 and 2) after which transmitters were turned off, then reactivated 

on Day 7. Subsequent off-line analysis of sleep-wake and qEEG data was divided into the 

remaining hours of Day 0, or in 24hr intervals comprising Days 1, 2, and 7 post-SPS or SHAM 

treatment. Figure 6 depicts the experimental design for the EEG studies (Cohort 1) as well as the 

time points for tissue collections for the biochemistry and neurochemistry studies (Cohort 2). For 

all experiments, SPS or SHAM treatment occurred within the first 6 hours of the light phase. 

 

Single Prolonged Stress 

SPS was performed according to Liberzon et al. (315). Briefly, rats were restrained for 2 

hours, followed by forced swim for 15 minutes in 24 ⁰C water. Following a 15 minute recovery 

period, rats were exposed to diethyl ether vapor in a bell jar until anesthesia. The SPS model did 

not cause mortality. SPS did illicit hallmarks of the rodent stress response such as porphyrin 

staining of the eyes, and urination and defecation. There were no major individual differences 

observed in these parameters during each experiment, and no inclusion or exclusion criteria were 

applied prior to the start of EEG recordings or tissue collection. SHAM treatment consisted of 

placement in a novel procedure room for 2 hours followed by brief handling. All animals were 

placed into fresh cages after treatment.  
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Figure 6. Experimental design for EEG studies and tissue collection.  In cohort 1, continuous 

EEG, EMG, and temperature data were telemetrically recorded from chronically implanted rats 

throughout successive 24 hour light-dark cycles (ON: 6:00AM; OFF: 6:00PM) before (BL) and 

several days after (Days 0, 1, 2, and 7) either single prolonged stress (SPS) or SHAM treatment. 

Both treatments were performed within the first 6 hours of the light phase on Day 0 during which 

recording was not possible; EEG data from this day was re-initiated when each animal was 

returned to its home cage. In cohort 2, non-implanted aged-matched rats underwent either SPS or 

SHAM treatment. SPS rats were sacrificed either one hour (Day 0), one day (Day 1), or seven 

days (Day 7) later; SHAM rats were sacrificed seven days later. 

 

Tissue collection 

For all biochemical and neurochemical endpoints, a group of thirty-six non-implanted 

rats was randomly assigned to SHAM treatment or one of three SPS groups (Day 0, 1 or 7). Rats 

were briefly anesthetized with isoflurane, and sacrificed by decapitation either immediately (Day 

0), one day (Day 1), or seven days (Day 7) after SPS; SHAM rats were sacrificed immediately 

after SHAM treatment. Hippocampus, amygdala, and PFC were dissected, rapidly frozen on dry 

ice, and stored at −80 °C for tissue mRNA and neurochemistry experiments. Trunk blood was 

collected into heparin-lined tubes, and then centrifuged at 5,000 rpm for 9 minutes at 4 °C to 

obtain plasma. 

 

Plasma corticosterone 

Corticosterone, the rodent analogue of the human glucocorticoid cortisol, was measured 

using a double antibody radioimmunoassay (RIA) kit (MP Biomedicals, Orangeburg, NY). 
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Tissue neurochemistry 

Tissue concentrations of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) 

were determined by HPLC-ECD as described previously (316).   

 

Quantitative real-time polymerase chain reaction (qRT-PCR) 

Alterations in mRNA expression levels of NPY and its Y1 and Y2 receptor subtypes 

were measured using Aqueous Micro kits (Life Technologies, Grand Island, NY) for RNA 

extraction, NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE) 

for RNA quantification, QuantiTect Reverse Transcription Kit (QIAGEN, Hilden, Germany) for 

complementary DNA transcription, CFX96 Real-Time PCR Detection System (Bio-Rad, 

Hercules, CA) using primers from TaqMan Gene Expression Assays (Life Technologies) for 

qRT-PCR of rat NPY (Rn01410145_m1), Y1 (Rn02769337_s1), and Y2 (Rn00576733_s1). 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an internal control; data are 

presented using the comparative cycle threshold (CT) method normalized to SHAM-treated rats. 

 

Sleep staging 

EEG, EMG, and temperature data were collected with Dataquest A.R.T. 4.3 software 

(DSI, Minneapolis, MN) using a continuous sampling method. Telemetric data were sampled at a 

rate of 500 Hz and transmitted via a receiver (RPC-2, DSI) placed below the cage of each rat. 

Each receiver was connected to a data exchange matrix (DSI) which transferred EEG, EMG, and 

temperature data to a computer for off-line analysis. Two trained observers used Neuroscore 3.0 

software to manually stage each 10 second epoch as wake, NREM, or REM sleep based on 

accepted characteristic EEG and EMG oscillatory patterns (317). All 10 second epochs were 
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summed into 60 minute bins. For the acute effects of SPS or SHAM treatment on Day 0, 60 

minute bins were group averaged to examine the amount of time spent in wake, NREM, or REM 

sleep. To assess the prolonged effects of SPS or SHAM treatment (Days 1, 2, and 7), 12 hour 

bins comprising either the light or dark phase of a given day were group averaged. 

 

qEEG spectral power analysis 

qEEG relative power spectra from frontal and parietal electrodes were computed for each 

rat and on each day of recording in 10 second epochs in 1Hz bins from 0.5 to 100 Hz using a 

Fast Fourier Transform with a Hamming window and overlap ratio of 0.5. Relative power within 

each 1 Hz increment was calculated as a percent of total power, then binned by stage (wake, 

NREM, or REM), and averaged across the 12 hour light or dark phase to yield the state-

dependent relative power spectrum for each rat. To calculate the percent change from BL the 

following formula was used: 

 

% change=100* (relative power (posttreatment day))/(relative power (BL) )-100 

 

where relative power (posttreatment day) is the relative power value of a frequency bin of a rat 

on Day 0, 1, 2 or 7, and relative power (BL) is the BL value of the same frequency bin for the 

same rat during the corresponding sleep-wake stage and light-dark phase. The % change values 

were then group averaged. The qEEG changes are discussed in terms of changes in power bands 

defined based on convention as delta (0.5-4 Hz), theta (5-8 Hz), alpha (9-13 Hz), beta (14-30 

Hz), low gamma (31-50 Hz), and high gamma (51-100 Hz) (227). Slow wave activity (SWA) 

was defined as relative delta power in the frontal cortex during NREM sleep; a time course of 



 37 

SWA changes was calculated by normalizing SWA values for each rat, in 2 hour bins, to the 

same rat’s BL SWA value during the first 2 hours of the light phase. 

 

Statistical analysis 

For the acute effects of SPS or SHAM on sleep-wake architecture (Day 0) and the effect 

of SPS or SHAM on qEEG spectral power, a repeated measures two-way analysis of variance 

(ANOVA) was applied; if significant, a Bonferroni post hoc test was performed with 

significance defined as P < 0.05 for sleep-wake data and P < 0.01 for qEEG data. For the 

prolonged effects of SPS or SHAM (Days 1, 2, and 7), a repeated measures one-way ANOVA 

followed by a Dunnett’s post hoc test was used with significance defined as P < 0.05. Two-way 

ANOVA without repeated measures was used to analyze temperature and SWA changes due to 

the fact that certain rats did not enter NREM or REM states during various 2 hour epochs 

resulting in randomly missing values. If significant, Bonferroni post hoc tests were conducted 

with significance defined as P < 0.05. Day 0 sleep-wake, qEEG, and temperature data were 

analyzed separately from Days 1, 2, and 7 to distinguish between the acute and prolonged effects 

of SPS, which could differ due to the short-term rebound effects of sleep deprivation. One rat in 

the SPS group did not enter REM sleep during the light phase of Day 0 and was excluded from 

spectral and temperature analysis for this period. One rat in the SHAM group was excluded from 

spectral and temperature analysis on Day 7 due to transmitter failure. For qRT-PCR, tissue 

neurochemistry, and plasma corticosterone data, analysis was performed by one-way ANOVA 

followed by Dunnett’s post hoc test with significance defined as P < 0.05. 
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Results 

 

SPS induced acute and persistent PTSD-like alterations in sleep-wake architecture. 

SPS induced robust acute increases in percent time awake (Figure 7A) (time [F18,162 = 7.99, P 

< 0.0001], interaction [F18,162 = 12.65, P < 0.0001]) with concurrent reductions in time spent in 

NREM (Figure 7B) (time [F18,162 = 8.55, P < 0.0001], treatment [F1,9 = 5.35, P = 0.04], 

interaction [F18,162 = 13.84, P < 0.0001]), and REM sleep (Figure 7C) (time [F18,162 = 5.08, P 

< 0.0001], interaction [F18,162 = 12.18, P < 0.0001]) during the light (rodent quiescent) phase. 

The reductions in NREM and REM sleep during the light phase were followed by a rebound in 

these states during the dark (rodent active) phase. In contrast, SHAM treatment produced minor 

reductions in percent time awake relative to BL (Figure 7D)  (time [F18,162  = 33.98, P < 

0.0001], treatment [F1,9 = 51.75, P < 0.0001]), and increased time spent in NREM (Figure 7E) 

(time [F18,162  = 33.62, P < 0.0001], treatment [F1,9 = 40.15, P = 0.0001]), and REM sleep 

(Figure 7F) (time [F18,162  = 11.8, P < 0.0001], treatment [F1,9 = 42.3, P = 0.0001]). 

We then determined the time spent in wake, NREM, and REM sleep on Days 1, 2, and 7 

post-SPS or SHAM treatment to determine whether SPS-induced sleep-wake alterations 

persisted beyond the day of traumatic stress. Increased wake and decreased NREM and REM 

sleep during the light phase persisted for at least 2 days post-SPS, but normalized by Day 7 (See 

Table 2 for statistical analysis). On Day 2, SPS caused reductions in NREM bout length, and 

increases in NREM bout number, indicative of sleep fragmentation. SHAM treatment produced 

no sustained effect on sleep-wake architecture (Table 3).  
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Figure 7. SPS induced acute alterations in sleep-wake architecture the day of treatment. 
SPS (left panels, n = 10) increased (A) % time spent in wake, and suppressed (B) time in NREM, 

and (C) time in REM sleep during the light phase. Both NREM and REM sleep rebounded 

during the dark phase. SHAM treatment (right panels, n = 10) caused the opposite effect, 

moderately decreasing (D) % time spent in wake, and increasing (E) time in NREM, and (F) time 

in REM sleep during the light phase. Black bar indicates dark phase. Missing values occur while 

the rats were removed from the recording room for treatment. No significant differences detected 

between SPS BL and SHAM BL. Data are depicted as mean + SEM. Comparison between 

treatment and BL performed by repeated measures two-way ANOVA. * P < 0.05, ** P < 0.01, 

*** P < 0.001, **** P < 0.0001 in Bonferroni post hoc test compared to BL. 

 

 

SPS induced acute and sustained PTSD-like alterations in state-dependent qEEG power 

spectra in the frontal cortex. 

We next tested the hypothesis that SPS would disrupt the normal qEEG power spectra 

within each sleep-wake state in a manner similar to that exhibited by PTSD patients. On Day 0, 

SPS significantly altered qEEG power spectra in the frontal cortex during light phase wake, 
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causing an increase in relative theta and high gamma power (black line, Figure 8A) (frequency 

[F100,900 = 5.91, P < 0.0001], interaction [F100,900 = 5.91, P < 0.0001]). In addition, SPS 

induced qEEG power spectra changes during dark phase wake, resulting in increased alpha, beta, 

and low gamma power, and decreased high gamma power (black line, Figure 8D) (frequency 

[F100,900 = 33, P < 0.0001], interaction [F100,900 = 33, P < 0.0001]). 

 

 

Table 2. SPS induced persistent disturbances in sleep-wake architecture. 

 Light Phase 

 SPS BL SPS Day 1 SPS Day 2 SPS Day 7 F P 

WAKE (min/hr) 15.6 ± 0.7 18.7 ± 0.6*** 17.8 ± 0.4* 16.2 ± 0.8 7.80 <.001 

NREM (min/hr) 37.2 ± 0.8 35.7 ± 0.5* 35.9 ± 0.5 36.9 ± 0.6 3.11 .043 

REM (min/hr) 7.1 ± 0.3 5.6 ± 0.4*** 6.1 ± 0.3* 6.9 ± 0.4 10.0 <.001 

WAKE bouts/hr 10.8 ± 0.7 11.4 ± 0.8 12.4 ± 0.7 10.9 ± 1.0 2.21 .110 

NREM bouts/hr 11.1 ± 0.7 11.8 ± 0.8 13.0 ± 0.6* 11.1 ± 1.0 3.63 .026 

REM bouts/hr 4.1 ± 0.2 3.4 ± 0.2 4.1 ± 0.2 4.0 ± 0.4 2.25 .106 

WAKE bout (min) 1.3 ± 0.1 1.6 ± 0.1* 1.4 ± 0.1 1.4 ± 0.1 2.88 .054 

NREM bout (min) 3.5 ± 0.3 3.1 ± 0.2 2.8 ± 0.2** 3.1 ± 0.2 5.43 .005 

REM bout (min) 1.8 ± 0.1 1.6 ± 0.1 1.5 ± 0.1 1.7 ± 0.1 2.62 .071 

 
Dark Phase 

 SPS BL SPS Day 1 SPS Day 2 SPS Day 7 F P 

WAKE (min/hr) 37.2 ± 1.0 30.6 ± 2.2*** 31.6 ± 1.4* 33.6 ± 1.7 7.09 .001 

NREM (min/hr) 19.9 ± 0.8 23.8 ± 1.8** 24.1 ± 1.2* 22.8 ± 1.5 6.27 .002 

REM (min/hr) 2.9 ± 0.3 5.5 ± 0.7*** 4.3 ± 0.3 3.6 ± 0.3 7.34 <.001 

WAKE bouts/hr 8.4 ± 0.3 8.8 ± 0.6 8.9 ± 0.9 8.6 ± 0.6 .257 .856 

NREM bouts/hr 8.4 ± 0.3 9.0 ± 0.6 9.1 ± 0.9 8.8 ± 0.6 .508 .680 

REM bouts/hr 2.5 ± 0.2 3.0 ± 0.2 2.8 ± 0.2 2.7 ± 0.3 1.14 .350 

WAKE bout (min) 4.3 ± 0.3 3.5 ± 0.3 4.1 ± 0.5 4.7 ± 0.7 1.86 .160 

NREM bout (min) 2.4 ± 0.1 2.8 ± 0.1 2.6 ± 0.2 2.5 ± 0.2 1.80 .172 

REM bout (min) 1.2 ± 0.1 1.5 ± 0.1*** 1.3 ± 0.0 1.2 ± 0.1 10.7 <.001 
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Table 3. SHAM treatment had no persistent effect on sleep-wake architecture. 

 Light Phase 

 SHAM BL SHAM Day 1 SHAM Day 2 SHAM Day 7 F P 

WAKE (min/hr) 16.8 ± 0.7  16.5 ± 0.7  16.3 ± 0.6  14.8 ± 0.8  2.59  .125  

NREM (min/hr) 35.6 ± 0.8  36.2 ± 0.6  36.7 ± 0.6  37.5 ± 0.8  1.76  .181  

REM (min/hr) 7.5 ± 0.3  7.4 ± 0.3  7.0 ± 0.3  7.6 ± 0.3  1.06  .385  

WAKE bouts/hr 12.8 ± 0.7  12.9 ± 0.7  12.8 ± 1.0  11.6 ± 1.1 1.51  .238  

NREM bouts/hr 13.5 ± 0.8 13.4 ± 0.6 13.2 ± 0.9 12.3 ± 0.9 1.39  .270  

REM bouts/hr 5.3 ± 0.3  5.0 ± 0.3 5.2 ± 0.4  5.5 ± 0.3 .914  .449  

WAKE bout (min) 1.3 ± 0.1  1.3 ± 0.1  1.3 ± 0.1 1.3 ± 0.1 .350  .790  

NREM bout (min) 2.8 ± 0.2  2.8 ± 0.2 2.9 ± 0.2 3.2 ± 0.3 2.60  .076  

REM bout (min) 1.5 ± 0.1  1.5 ± 0.1 1.4 ± 0.1 1.4 ± 0.1 .603  .620  

 
Dark Phase 

 SHAM BL SHAM Day 1 SHAM Day 2 SHAM Day 7 F P 

WAKE (min/hr) 39.8 ± 0.9  37.5 ± 1.7  37.9 ± 1.4  37.7 ± 0.7  2.22  .111  

NREM (min/hr) 17.6 ± 0.9  19.5 ± 1.5  19.2 ± 1.3 19.69 ± 0.7  2.42  .091  

REM (min/hr) 2.6 ± 0.2  3.0 ± 0.3  2.9 ± 0.3  2.6 ± 0.2  1.29  .300  

WAKE bouts/hr 9.4 ± 0.4  11.2 ± 0.6  11.1 ± 0.5  10.8 ± 0.8  2.31  .102  

NREM bouts/hr 9.3 ± 0.4 11.2 ± 0.6 11.1 ± 0.5 10.9 ± 0.8  2.41  .092  

REM bouts/hr 2.6 ± 0.3 2.8 ± 0.3 2.8 ± 0.3  2.8 ± 0.2  .208  .890  

WAKE bout (min) 4.4 ± 0.3 3.5 ± 0.3  3.6 ± 0.3  3.7 ± 0.3  2.06  .132  

NREM bout (min) 1.9 ± 0.1 1.8 ± 0.1 1.7 ± 0.1 1.9 ± 0.1  .485  .696  

REM bout (min) 1.0 ± 0.0 1.1 ± 0.0 1.0 ± 0.0  1.0 ± 0.1  1.14  .353  

 

 

During light phase NREM sleep on Day 0, SPS increased delta and theta power, and 

decreased relative power in the higher frequencies (black line, Figure 8B) (frequency [F100,900 

= 9.31, P < 0.0001], treatment [F1,9 = 11.82, P = 0.0074], interaction [F100,900 = 9.31, P < 

0.0001]), while during dark phase NREM sleep, SPS caused a selective reduction in high gamma 

(black line, Figure 8E) (frequency [F100,900 = 4.90, P < 0.0001], treatment [F1,9 = 7.61, P = 

0.0222], interaction [F100,900 = 4.90, P < 0.0001]). Finally, during light phase REM sleep, SPS 

increased theta and alpha power on Day 0 (black line, Figure 7C) (frequency [F100,800 = 3.11, P 



 42 

< 0.0001], interaction [F100,800 = 3.11, P < 0.0001]), but decreased beta power during the dark 

phase (black line, Figure 8F) (frequency [F100,900 = 2.52, P < 0.0001], interaction [F100,900 = 

2.52, P < 0.0001]). 

These alterations in qEEG power spectra were sustained for multiple days after SPS. SPS 

increased beta and low gamma power, and decreased high gamma power during light phase 

wake (colored lines, Figure 8A) (frequency [F100,900 = 4.56, P < 0.0001], interaction 

[F300,2700 = 3.81, P < 0.0001]), and dark phase wake (colored lines, Figure 8D) (frequency 

[F100,900 = 17.96, P < 0.0001], interaction [F300,2700 = 10.32, P < 0.0001]) over the entire 7 

day time course. Delta power was significantly reduced for at least two days post-SPS during 

light phase NREM sleep, (colored lines, Figure 8B) (frequency [F100,900 = 5.02, P < 0.0001], 

treatment [F3,27 = 9.07, P = 0.0003], interaction [F300,2700 = 5.46, P < 0.0001]), and more 

moderately during dark phase NREM sleep (colored lines, Figure 8E) (frequency [F100,900 = 

6.05, P < 0.0001], treatment [F3,27 = 3.34, P = 0.0341], interaction [F300,2700 = 4.44, P < 

0.0001]). Most alterations in qEEG power spectra during REM sleep normalized by Day 2 with 

the exception of  a sustained decrease in delta during the light phase (colored lines, Figure 8C) 

(interaction [F300,2700 = 2.16, P < 0.0001]), and dark phase (colored lines, Figure 8F) 

(interaction [F300,2700 = 1.15, P = 0.0465]).  
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Figure 8. SPS induced acute and sustained alterations in qEEG power spectra in the 

frontal cortex. In the light phase (top panels), SPS caused (A) a transient increase in high 

gamma, and a prolonged increase in low gamma during wake; (B) an acute rebound, but a 

persistent subsequent reduction in delta power during NREM sleep; and (C) a prolonged 

decrease in delta power during REM sleep. In the dark phase (bottom panels), SPS caused (D) an 

increase in theta, alpha, and low gamma with a sustained increase in beta, and a sustained 

decrease in high gamma during wake; (E) a prolonged reduction in high gamma during NREM 

sleep; and (F) an acute increase in theta during REM sleep. Day 0 only includes values from 

remaining hours of the light phase immediately after SPS treatment. Data are depicted as mean + 

SEM (n = 9-10). Background shades delineate power bands delta (δ), theta (θ), alpha (α), beta 

(β), low and high gamma (γ). Comparison between treatment and BL performed by repeated 

measures two-way ANOVA. Colored lines below data points correspond to each day and 

indicate P < 0.01 in Bonferroni post hoc test. 

 

 

SPS induced acute and sustained PTSD-like alterations in state-dependent qEEG power 

spectra in the parietal cortex. 

SPS significantly disrupted the normal qEEG power spectra in the parietal cortex in a 

manner similar to that observed in the frontal cortex with a few notable differences. On Day 0, 

SPS significantly altered qEEG power spectra in the parietal cortex during light phase wake 

(black line, Figure 9A) (frequency [F100,900 = 12.19, P < 0.0001], treatment [F1,9 = 37.86, P < 
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0.0001] interaction [F100,900 = 12.19, P < 0.0001]) and dark phase wake (black line, Figure 9D) 

(frequency [F100,900 = 6.7, P < 0.0001], interaction [F100,900 = 6.7, P < 0.0001]) but did not 

cause reduced high gamma power as in the frontal cortex. During light phase NREM sleep, SPS 

caused a short-term rebound in delta power (black line, Figure 9B) (frequency [F100,900 = 7.69, 

P < 0.0001], treatment [F1,9 = 8.99, P = 0.0150], interaction [F100,900 = 7.69, P < 0.0001]), but 

had no effect during dark phase NREM sleep (black line, Figure 9E). Unlike in the frontal 

cortex, SPS caused a significant increase in alpha and low beta power during light phase REM 

sleep, (black line, Figure 9C) (frequency [F100,800 = 3.61, P < 0.0001], interaction [F100,800 = 

3.61, P < 0.0001]), and dark phase REM sleep(black line, Figure 9F) (frequency [F100,900 = 

8.09, P < 0.0001], interaction [F100,900 = 8.09, P < 0.0001]), but had little or no effect on theta. 

Similar to the frontal cortex, SPS-induced qEEG changes were largely sustained in the parietal 

cortex during light phase wake (colored lines, Figure 9A) (frequency [F100,900 = 4.0, P < 

0.0001], treatment [F3,27 = 9.17, P = 0.0002], interaction [F300,2700 = 5.59, P < 0.0001]) and 

dark phase wake (colored lines, Figure 9D) (frequency [F100,900 = 4.48, P < 0.0001], 

interaction [F300,2700 = 2.52, P < 0.0001]); light phase NREM, (colored lines, Figure 9B) 

(frequency [F100,900 = 5.65, P < 0.0001], treatment [F3,27 = 4.65, P = 0.0095], interaction 

[F300,2700 = 3.88, P < 0.0001]); and light phase REM (colored lines, Figure 9C) (frequency 

[F100,900 = 1.47, P = 0.0028], interaction [F300,2700 = 1.89, P < 0.0001]), and dark phase 

REM sleep (colored lines, Figure 9F) (interaction [F300,2700 = 2.13, P < 0.0001]). 
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Figure 9. SPS induced acute and sustained alterations in qEEG power spectra in the 

parietal cortex. In the light phase (top panels), SPS caused (A) a transient increase in high 

gamma; (B) an acute rebound, but a persistent subsequent reduction in delta power during 

NREM sleep; and (C) an acute increase in alpha, and a prolonged decrease in delta power during 

REM sleep. In the dark phase (bottom panels), SPS caused (D) a transient increase in theta, 

alpha, and low gamma with a sustained increase in beta during wake; (E) no change during 

NREM sleep; and (F) an acute increase in alpha during REM sleep. Day 0 only includes values 

from remaining hours of the light phase immediately after SPS treatment. Data are depicted as 

mean + SEM (n = 9-10). Background shades delineate power bands delta (δ), theta (θ), alpha (α), 

beta (β), low and high gamma (γ). Comparison between treatment and BL performed by repeated 

measures two-way ANOVA. Colored lines below data points correspond to each day and 

indicate P < 0.01 in Bonferroni post hoc test. 

 

SHAM treatment had minor effects on state-dependent qEEG power spectra in the frontal 

and parietal cortices. 

In contrast to the robust and sustained effects of SPS, SHAM treatment had only minor 

effects on qEEG relative spectral power in the frontal cortex on Day 0 during light phase wake 

(Figure 10A) (frequency [F100,900 = 4.95, P < 0.0001], treatment [F1,9 = 5.8, P = 0.04], 

interaction [F100,900 = 4.95, P < 0.0001]), dark phase wake (Figure 10D) (frequency [F100,900 
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= 2.57, P < 0.0001], interaction [F100,900 = 2.57, P < 0.0001]), light phase NREM (Figure 10B) 

(frequency [F100,900 = 8.41, P < 0.0001], treatment [F1,9 = 8.14, P = 0.0190], interaction 

[F100,900 = 8.41, P < 0.0001]), dark phase NREM (Figure 10E) (frequency [F100,900 = 2.28, P 

< 0.0001], interaction [F100,900 = 2.28, P < 0.0001]), light phase REM (Figure 10C) (frequency 

[F100,900 = 1.37, P = 0.0134], interaction [F100,900 = 1.37, P = 0.0134]), and dark phase REM 

sleep (Figure 10F) (frequency [F100,900 = 1.36, P = 0.0139], interaction [F100,900 = 1.36, P = 

0.0139]).  

On Days 1, 2, and 7, SHAM treatment modestly altered power spectra during light phase 

wake (Figure 10A) (frequency [F100,800 = 3.34, P < 0.0001], interaction [F300,2400 = 1.51, P 

< 0.0001]), dark phase wake (Figure 10D) (frequency [F100,800 = 2.73, P < 0.0001], interaction 

[F300,2400 = 1.85, P < 0.0001]), light phase NREM (Figure 10B) (interaction [F300,2400 = 

1.48, P < 0.0001]), dark phase NREM (Figure 10E) (frequency [F100,800 = 3.81, P < 0.0001], 

interaction [F300,2400 = 1.36, P = 0.0001]), light phase REM (Figure 10C) (frequency 

[F100,800 = 2.00, P < 0.0001], interaction [F300,2400 = 2.42, P = 0.0001]), and dark phase 

REM sleep (Figure 10F) (frequency [F100,800 = 3.48, P < 0.0001], interaction [F300,2400 = 

1.98, P = 0.0001]). 

In the parietal cortex on Day 0, SHAM treatment modestly altered power spectra during 

light phase wake (Figure 11A) (frequency [F100,900 = 11.79, P < 0.0001], treatment [F1,9 = 

16.38, P = 0.0029], interaction [F100,900 = 11.79, P < 0.0001]), dark phase wake (Figure 11D) 

(frequency [F100,900 = 6.28, P < 0.0001], treatment [F1,9 = 10.33, P = 0.0106], interaction 

[F100,900 = 6.28, P < 0.0001]), light phase NREM (Figure 11B) (frequency [F100,900 = 4.74, P 

< 0.0001], treatment [F1,9 = 14.54, P = 0.0041], interaction [F100,900 = 4.74, P < 0.0001]), dark 

phase NREM (Figure 11E) (frequency [F100,900 = 2.14, P < 0.0001], interaction [F100,900 =  
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Figure 10. SHAM treatment had minor effects on qEEG power spectra in the frontal 

cortex. In the light phase (top panels), SHAM treatment had only minor effects during light 

phase (A) wake, (B) NREM, and (C) REM sleep, and during dark phase (D) wake, (E) NREM, 

and (F) REM sleep. Day 0 only includes values from remaining hours of the light phase 

immediately after SHAM treatment. Data are depicted as mean + SEM (n = 9-10). Background 

shades delineate power bands delta (δ), theta (θ), alpha (α), beta (β), low and high gamma (γ). 

Comparison between treatment and BL performed by repeated measures two-way ANOVA. 

Colored lines below data points correspond to each day and indicate P < 0.01 in Bonferroni post 

hoc test. 

 

 

2.14, P < 0.0001]), and dark phase REM sleep (Figure 11F) (frequency [F100,900 = 1.38, P = 

0.0107], treatment [F1,9 = 5.19, P = 0.0488], interaction [F100,900 = 1.38, P = 0.0107]). 

On Days 1, 2, and 7, SHAM treatment modestly altered power spectra in the parietal 

cortex during light phase wake (Figure 11A) (frequency [F100,800 = 3.42, P < 0.0001], 

interaction [F300,2400 = 1.50, P < 0.0001]), dark phase wake (Figure 11D) (frequency 

[F100,800 = 4.20, P < 0.0001], interaction [F300,2400 = 1.66, P < 0.0001]), light phase NREM 
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(Figure 11B) (interaction [F300,2400 = 1.51, P < 0.0001]), and dark phase REM sleep (Figure 

11F) (frequency [F100,800 = 1.45, P = 0.0044], interaction [F300,2400 = 1.30, P = 0.0010]). 

 

 

Figure 11. SHAM treatment had minor effects on qEEG power spectra in the parietal 

cortex. In the light phase (top panels), SHAM treatment had only minor effects during light 

phase (A) wake, (B) NREM, and (C) REM sleep, and during dark phase (D) wake, (E) NREM, 

and (F) REM sleep. Day 0 only includes values from remaining hours of the light phase 

immediately after SHAM treatment. Data are depicted as mean + SEM (n = 9-10). Background 

shades delineate power bands delta (δ), theta (θ), alpha (α), beta (β), low and high gamma (γ). 

Comparison between treatment and BL performed by repeated measures two-way ANOVA. 

Colored lines below data points correspond to each day and indicate P < 0.01 in Bonferroni post 

hoc test. 

 

 

SPS induced prolonged reductions in SWA 

SWA was highest during the early hours of the light phase, and gradually reduced across 

the quiescent period (Figure 12A), consistent with dissipation of sleep drive (232). Relative to 

BL, SPS increased SWA on Day 0 (treatment [F1,50 = 42.74, P < 0.0001]) consistent with the 
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rebound effects of sleep deprivation (232), but produced significantly decreased SWA on Days 1 

and 2 post-SPS treatment (Figure 12A) (time [F15,215 = 24.33, P < 0.0001], treatment [F15,215 

= 14.19, P < 0.0001]), especially during the early hours of the light phase. By contrast, relative to 

BL, SHAM increased SWA on Day 0 (time [F2,54 = 32.03, P < 0.0001], interaction [F2,54 = 

5.68, P = 0.0058], treatment [F1,54 = 42.23, P < 0.0001]) consistent with the rebound effects of 

sleep deprivation (232), but produced no prolonged effect on SWA (Figure 12B). No SWA 

differences were detected between SPS BL and SHAM BL. 

 

SPS induced an acute and persistent physiological stress response. 

Given the magnitude and duration of SPS-induced sleep-wake and qEEG disruptions, we 

measured concomitant changes in several validated measures of the rodent stress response, 

including hyperthermia, corticosterone release, and brain regional FKBP5 induction (66, 314). 

SPS induced acute and persistent hyperthermia for several days post-SPS (Figure 13A) during 

wake (Day 0: hour [F8,158 = 3.2, P = 0.0022], hour [F8,158 = 3.2, P = 0.0022]; Days 1,2,7: 

interaction [F33,430 = 1.69, P = 0.0116], treatment [F3,430 = 4.67, P < 0.0032], hour [F11,430 = 

5.29, P < 0.0001]), NREM (Day 0: hour [F8,155 = 2.13, P = 0.0357], treatment [F1,155 = 4.11, P 

< 0.0443], interaction [F8,155 = 2.13, P = 0.0357]; Days 1,2,7: interaction [F33,424 = 1.85, P = 

0.0035], treatment [F3,424 = 6.5, P < 0.0003], hour [F11,424 = 5.78, P < 0.0001]), and REM  
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Figure 12. SPS induced prolonged reductions in slow wave activity (SWA). (A) During the 

light (rodent quiescent) phase, SPS caused an initial rebound in SWA immediately after SPS, but 

subsequently reduced SWA for up to two days post-SPS. Data are depicted as mean - SEM (n = 

9-10). ^^^ P < 0.001, ^^^^ P < 0.0001, Day 0 vs. BL; * P < 0.05, ** P < 0.01, Day 1 vs. BL; # P 

< 0.05, #### P < 0.0001, Day 2 vs. BL in Bonferroni post hoc test. (B) SHAM treatment had no 

prolonged effect on SWA. During the light (rodent quiescent) phase, SHAM treatment caused an 

initial rebound in slow wave activity (SWA), but subsequently had no effect. Data are depicted 

as mean + SEM (n = 9-10). ^^ P < 0.01, ^^^^ P < 0.0001, Day 0 vs. BL in Bonferroni post hoc 

test. 

 

 

sleep (Day 0: hour [F8,118 = 2.84, P = 0.0064], treatment [F1,118 = 16.82, P < 0.0001], 

interaction [F8,118 = 2.84, P = 0.0064]; Days 1,2,7: interaction [F33,398 = 1.56, P = 0.0279], 

treatment [F3,398 = 5.91, P < 0.0006], hour [F11,398 = 6.63, P < 0.0001]), specifically during 

the light phase. In contrast to SPS, SHAM treatment had only minor effects on body temperature 

(Figure 13B) during wake (Day 0: hour [F8,162 = 4.07, P = 0.0002], treatment [F1,162 = 23.24, 

P < 0.0001], interaction [F8,162 = 4.07, P = 0.0002]; Days 1,2,7: hour [F11,418 = 4.2, P < 

0.0001], treatment [F3,418 = 4.35, P = 0.005]), NREM (Day 0: hour [F8,162 = 3.42, P = 

0.0012], treatment [F1,162 = 15.79, P = 0.0001], interaction [F8,162 = 3.42, P = 0.0012]; Days 

1,2,7: hour [F11,420 = 4.00, P < 0.0001], treatment [F3,420 = 4.13, P = 0.0066]), and REM 

sleep (Days 1,2,7: hour [F11,385 = 2.37, P = 0.0077]). 
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In parallel with body temperature increases, SPS rats exhibited robust acute HPA axis 

activation as evidenced by elevated plasma corticosterone (Figure 14A) [F3,29 = 14.67, P < 

0.0001]. In addition, there was a concurrent acute induction of FKBP5 mRNA levels in the brain 

regions that comprise the neural fear circuitry (Figure 14B) including the hippocampus [F3,28 = 

40.84, P < 0.0001], PFC [F3,28 = 25.43, P < 0.0001], and amygdala [F3,27 = 36.46, P < 0.0001]. 

 

 

 

Figure 13. SPS induced acute and persistent hyperthermia. SPS caused (A) increases in body 

temperature during the light phase of all sleep-wake states that lasted until Day 2. Black bars 

indicate dark phases. SHAM treatment (B) moderately reduced temperature relative to BL at 

various time points after treatment. Data are depicted as mean + SEM (n = 9-10). Comparison 

between treatment and BL performed by two-way ANOVA. * P < 0.05 in Bonferroni post hoc 

test.  
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SPS caused acute and sustained alterations in brain regional 5-HT utilization. 

Due to the well-established role of 5-HT in modulating anxiety and sleep-wake 

architecture (233), we tested whether the observed SPS-induced sleep-wake and qEEG power 

spectra changes were associated with altered 5-HT signaling. SPS produced acute increases in 

the levels of the 5-HT metabolite, 5-HIAA, in the PFC (Figure 14A) [F3,32 = 29.31, P < 0.0001] 

and hippocampus (Figure 15B) [F3,32 = 8.70, P = 0.0002], and prolonged reductions in the 

amygdala (Figure 15C) [F3,32 = 5.98, P = 0.0023] with no effect on 5-HT levels across the three 

brain regions (Figure 15D-F). 

 

SPS caused delayed reductions in amygdala expression of NPY. 

As previously discussed, NPY signaling in the amygdala plays a critical role in 

modulating the stress response (307); thus, we hypothesized that SPS would alter expression of 

NPY and its Y1 and Y2 receptor subtypes specifically in the amygdala. SPS caused NPY mRNA 

levels to be significantly reduced in the amygdala by Day 7 post-SPS (Figure 16A) [F3,26 = 

4.94, P = 0.0076], but had no effect on Y1 or Y2 mRNA levels (Figures 16B,C). 

 

Results summary 

SPS produced robust alterations in sleep-wake architecture accompanied by state-

dependent changes in qEEG power spectra that resemble PTSD symptomatology. These changes 

corresponded with time-dependent and brain region-specific alterations in physiological markers 

of HPA axis activation, 5-HT utilization, and NPY expression, suggesting key alterations in the 

neural fear circuitry that may potentially underlie PTSD-related hyperarousal and sleep-wake 

disturbances. 
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Figure 14. SPS induced an acute and persistent physiological stress response. SPS acutely 

increased plasma corticosterone concentrations (A), and FKBP5 mRNA levels in the 

hippocampus (B), PFC (C), and amygdala (D). Data are depicted as mean + SEM (n = 8-9). 

Comparison between SHAM and SPS Day performed by one-way ANOVA. * P < 0.05, *** P < 

0.001, **** P < 0.0001 in Dunnett’s post hoc test compared to SHAM. 

 

 

Discussion 

Our current findings demonstrate SPS-induced dysregulation and fragmentation of 

NREM and REM sleep that mirror the abnormal sleep-wake patterns of recently traumatized 

individuals (287, 288) and patients with chronic PTSD (296).   The observed changes in sleep-

wake architecture on Day 0 post-SPS likely represent the immediate effects of traumatic stress,  
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Figure 15. SPS caused acute and sustained alterations in brain regional 5-HT utilization. 

Concentration of the 5-HT metabolite 5-HIAA was increased by SPS on Day 0 in (A) the PFC 

and (B) the hippocampus, but decreased on Days 1 and 7 in (C) the amygdala. (D-F) 5-HT levels 

in these regions were not significantly affected. Data are depicted as mean + SEM (n = 8-9). 

Comparison between SHAM and SPS Day performed by one-way ANOVA. *P < 0.05, ** P < 

0.01 in post-hoc Dunnett’s test versus SHAM. 

 

 

which have not yet been objectively assessed in traumatized clinical populations. As mentioned 

above, the amount of NREM and especially REM sleep accumulated in healthy subjects 

immediately following emotional learning imparts strong and lasting benefits to the 

consolidation and subsequent recall of these memories (235, 236, 240), suggesting that acute 

SPS-induced reductions in sleep may actually represent a protective response in the hours after 

traumatic stress on Day 0.  In contrast, the significant fragmentation of NREM sleep coupled 

with increased wake time during the quiescent phases observed on Days 1 and 2 closely 

resemble documented sleep disruptions in chronic PTSD patients (2, 287, 288, 296, 318).  These 

insomnia-like reductions in NREM and REM sleep on Days 1 and 2, therefore, may be  
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Figure 16. SPS caused acute and sustained alterations in amygdala expression of 

neuropeptide Y (NPY). mRNA levels of NPY were reduced on Day 7 after SPS, while NPY 

receptor mRNA levels were not significantly altered in the amygdala. Data are depicted as mean 

+ SEM (n = 8-9). Comparison between SHAM and SPS Day performed by one-way ANOVA. 

** P < 0.01 in post-hoc Dunnett’s test versus SHAM. 

 

representative of the sleep symptoms present in patients with established disease, and are 

unlikely to be part of an early adaptive response to trauma.  

The SPS-induced alterations in qEEG power spectra during wake, NREM and REM sleep 

also recapitulate many of the qEEG abnormalities reported in PTSD patients. Augmentation of 

beta/low gamma power during wake in the active phase was one of the most enduring effects of 

SPS, lasting for at least 7 days. In chronic PTSD patient populations, increased waking beta/low 

gamma power has been reported both at rest (297, 299), and in response to affective stimuli 

(298), although this finding was absent in one study (319). Reductions in waking high gamma 

power were also sustained for 7 days post-SPS, a change that was specific to frontal cortical 

regions as it was absent in recordings from the parietal cortex. A recent fMRI study 

demonstrated that increases in high gamma power are correlated with activation of 

corresponding cortical regions (320). The current finding of SPS-induced reductions in this 

power band specifically in the frontal cortex, therefore, could be indicative of PFC hypoactivity, 

a commonly reported finding in PTSD patients (29). 
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During NREM sleep, SPS caused a prolonged, but not acute, increase in beta/gamma 

power, and a decrease in SWA that mirrors similar deficits in patients with PTSD (300, 301), and 

likely indicates poor sleep quality (321). Interestingly, despite causing reduced SWA on Days 1 

and 2, SPS acutely caused a large increase in SWA on Day 0, again suggesting that rats may 

exhibit failed protective responses immediately after SPS, prior to the development of PTSD-like 

symptoms days later. This finding further supports the interpretation that the previously 

discussed sleep-wake architecture changes present on Days 1 and 2 represent sleep disturbances 

related to established PTSD. Impaired SWA has also been associated with impairments in sleep-

dependent fear extinction memory, a robust PTSD-like behavioral effect of SPS (59). 

Pharmacologically augmenting SWA, therefore, could represent a therapeutic approach for 

PTSD patients or recently traumatized individuals that can be tested in this model. In the case of 

REM sleep, the most significant change in frontal cortical qEEG spectral power was an acute 

increase in frontal theta power which is thought to promote emotional memory consolidation in 

rodents (250) and humans (240), perhaps contributing to the subsequent development of PTSD-

like symptoms in the SPS model. Future experiments correlating SPS-induced alterations in theta 

power during REM sleep with subsequent anxiety-like behaviors will be critical for 

understanding the function of these state-specific oscillations in the processing of traumatic 

events. 

In addition to causing sustained qEEG deficits indicative of hyperarousal, we confirmed 

that SPS concomitantly and robustly induces markers of HPA axis activation. For example, SPS 

induced hyperthermia during all sleep-wake states, and caused substantial increases in plasma 

corticosterone, consistent with previous findings (322). Corticosterone release was accompanied 
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by induction of FKBP5 expression, a gene that has been associated with PTSD risk, diagnosis, 

and treatment (67-69), and which may contribute to acute SPS-induced sleep loss (323).  

SPS-induced reductions in NREM and REM sleep during the quiescent phase could also 

be explained by acute increases in 5-HT utilization in the PFC and hippocampus, brain structures 

implicated in the modulation of sleep-wake architecture (3). This hypothesis is supported by 

reports that other acute stressors cause 5-HT release in multiple brain regions including the 

cortex, leading to inhibition of sleep (324). In the amygdala, however, SPS did not increase 5-HT 

utilization, but rather induced a delayed decrease on Days 1 and 7 which correlated with 

sustained increases in relative beta/low gamma power during wake. 5-HT exerts a net inhibitory 

influence on the excitability of lateral amygdala neurons (325, 326) which, when directly 

stimulated, can induce high frequency EEG oscillations (327) highly comparable to the long-

lasting effects of SPS. This finding may help to explain the partial efficacy of SSRIs on 

hyperarousal symptoms in PTSD patients and their behavioral correlates in SPS-treated rats (82, 

328). Similar to 5-HT, SPS caused a delayed reduction in expression of amygdala NPY which 

also acts to inhibit the firing of projection neurons in the lateral amygdala (329). Importantly, 

this finding is consistent with previous studies demonstrating the therapeutic efficacy of 

exogenous NPY administration in SPS-treated rats (330, 331). Moreover, intracerebroventricular 

infusion of NPY in rats increases low frequency and decreases beta frequency qEEG spectral 

power (332, 333), in direct opposition to the long-term effects of SPS. The changes in NPY 

expression reported here were at the level of mRNA, however, and may not translate into 

reductions in amygdala peptide concentration, or more importantly, peptide release. 

Collectively, we have demonstrated that SPS, a rodent model of traumatic stress, leads to 

alterations in sleep-wake architecture and state-dependent qEEG spectral power that correlate 
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with regional changes in 5-HT utilization and NPY expression, providing new understanding of 

possible mechanisms underlying the pathophysiology of PTSD-related hyperarousal and sleep 

disturbances. Taken together, the observed alterations in sleep-wake architecture also offer novel 

insight into the acute effects of trauma while simultaneously recapitulating longer term PTSD 

symptoms, thereby providing an attractive model for testing the efficacy of sleep-dependent 

prophylactic interventions in the aftermath of a traumatic event. 

 

 

 

 

 

 

 



 59 

CHAPTER 3 

 

SELECTIVE ANTAGONISM OF mGluR5 MODULATES SLEEP-WAKE 

ARCHITECTURE AND AMELIORATES BEHAVIORAL ABNORMALITIES 

INDUCED BY TRAUMATIC STRESS IN RATS 

 

Introduction 

 The proximal cause of PTSD is the acquisition and consolidation of a traumatic memory, 

suggesting that modulation of traumatic memory formation or maintenance may be a viable 

approach to the prevention or treatment of PTSD symptoms (14, 16, 18, 20). Pharmacological 

manipulation of glutamatergic signaling before, during, or after trauma offers a promising target 

for this strategy. Glutamate-mediated activation of NMDA receptors, and ensuing induction of 

synaptic plasticity in the hippocampus, PFC, and amygdala, is required for the successful 

acquisition and consolidation of threat-based memories (33, 35). These preclinical findings 

suggest that systemic NMDA receptor antagonism in the aftermath of trauma could impede the 

development of PTSD symptoms.  

As mentioned above, NMDA receptor activation may promote consolidation of fear-

based memory in part through the induction of REM sleep (34, 225, 226, 234-239). NMDA 

receptor antagonists reduce REM sleep in rats (256, 257, 264, 268) and humans (263, 277, 278), 

possibly contributing to their blockade of emotional memory consolidation. Unfortunately, the 

adverse effects associated with currently available NMDA receptor antagonists including 

drowsiness, hallucinations, and abuse potential limit their clinical utility (87, 88). An alternative 

strategy to direct blockade of NMDA receptors is to inhibit NMDA receptor-mediated signaling 
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through antagonism of mGluR5, which is structurally and functionally coupled to NMDA 

receptors in the hippocampus, PFC, and amygdala (99-101, 103, 106, 107, 294). mGluR5 

antagonism with the prototypical mGluR5 NAM MPEP has been shown to attenuate NMDA 

receptor-mediated signaling and to induce similar physiological and behavioral effects of NMDA 

receptor antagonists but with fewer adverse effects (101, 334, 335). Importantly, MPEP and 

other mGluR5 antagonists potently reduce REM sleep similar to NMDA receptor blockers (253, 

258).  

Recently, our group reported the discovery of VU0409106, a novel, potent and selective 

mGluR5 NAM with favorable pharmacokinetic properties for in vivo testing (223, 295, 336). In 

vitro evaluation of VU0409106 has revealed that this compound competitively binds at the 

allosteric MPEP binding site, completely attenuates glutamate-mediated calcium mobilization 

(IC50 = 24nM) in HEK293A cells heterologously expressing mGluR5, and displays no significant 

off-target activity at any of the other seven mGluRs (295). Importantly, positron emission 

tomography (PET) imaging in rats has revealed that VU0409106 is brain penetrant, occupying 

about 50% of mGluR5 after 10 mg/kg intraperitoneal (i.p.) dosing, and displays behavioral 

efficacy in a rat model of anxiety (223). 

Thus, VU0409106 provides us with the opportunity to determine whether selective 

mGluR5 inhibition immediately after traumatic stress can impede the development of PTSD-like 

symptoms in rats, possibly through attenuation of sleep-dependent emotional memory 

consolidation. In order to test this hypothesis, we first examined the effects of systemic 

VU0409106 administration on sleep-wake architecture and state-dependent qEEG power spectra 

in healthy rats. Then, we took advantage of the findings described in Chapter 2, and tested the 

effect of post-trauma VU0409106 treatment on SPS-induced alterations in contextual CF, sleep-
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wake architecture, qEEG power spectra, body temperature, and amygdala 5-HT utilization, as 

well as the induction of amygdala early growth response protein 1 (EGR-1), a key molecular 

mediator of emotional memory consolidation (33). 

 

Methods 

 

Subjects 

All male Sprague-Dawley rats (Harlan, Indianapolis, IN) used in the present studies were 

housed under a 12 hour light:12 hour dark cycle and given ad libitum access to food and water. 

All animal experiments were approved by the Vanderbilt University Animal Care and Use 

Committee and experimental procedures conformed to guidelines established by the National 

Research Council Guide for the Care and Use of Laboratory Animals. All efforts were made to 

minimize animal suffering and the number of animals used. 

 

Compound 

 3-fluoro-N-(4-methylthiazol-2-yl)-5-(pyrimidin-5-yloxy)benzamide (VU0409106) was 

synthesized in house as previously described (295), and dissolved in 10% Tween 80 vehicle, 

creating a microsuspension prior to intraperitoneal (i.p.) administration at a volume of 2mL/kg.  

 

EEG Surgery 

Rats (250-375 grams) were surgically implanted with a telemetric transmitter (4-ET, Data 

Sciences International, St. Paul, MN) for recording EEG, electromyography (EMG), and body 

temperature. Under isoflurane anesthesia (3% induction; 1.5-2.5% maintenance) the transmitter 
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was implanted subcutaneously across the back of each rat. Transmitter leads were tunneled 

subcutaneously to the skull. After holes were drilled in the skull, the exposed wires were placed 

in contact with the dura and secured in place with dental cement (Butler Schein, Dublin, OH). 

Three sets of leads were placed bilaterally to record from cortical regions corresponding to the 

frontal, parietal, and occipital cortices (+2 mm, -2 mm, and -6mm anterior-posterior from 

Bregma, respectively and +/- 2 mm lateral to the midline). An additional set of leads was placed 

bilaterally in the nuchal muscles for EMG recording. Rats were individually housed following 

surgery and allowed to recover and acclimate to the recording room for a minimum of 10 days 

prior to testing.  

 

EEG 

For experiments testing the effect of VU0409106 on sleep-wake architecture and qEEG 

spectral power in non-stressed rats, each rat was randomized into vehicle, 3mg/kg VU0409106, 

10mg/kg VU0409106, or 30mg/kg VU0409106 dose groups. Baseline recordings were begun at 

the start of the light phase, then the appropriate compound was administered two hours later, and 

recordings were allowed to continue for the remainder of the twenty-four hour period. In a partial 

crossover design, each rat received two different doses or vehicle, allowing for a 5 day washout 

period between compound administrations. 

 

Spontaneous locomotor activity 

 Spontaneous locomotor activity was conducted in open-field chambers (27 × 27 × 20 cm) 

(Hamilton Kinder) equipped with 16 horizontal (x- and y-axes) infrared photobeams. Changes in 

locomotor activity were measured as the number of photobeam breaks per five minutes, and 
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were recorded with a Pentium I computer equipped with rat activity monitoring system software 

(Hamilton Kinder). Rats were pretreated with vehicle or VU0409106, (3, 10, or 30 mg/kg, i.p.) 

then placed individually into each chamber 30 minutes later. Locomotor activity was assessed for 

thirty minutes.  

 

Rotarod 

The effects of VU0409106 on motor performance were evaluated by using a rotarod 

(MED Associates, St. Albans, VT). All rats were given an initial training trial of 120 seconds, 

followed by two additional training trials of 85 seconds, approximately 10 min apart, using a 

rotarod (7.5 cm in diameter) rotating at a constant speed of 20 revolutions/min. After initial 

training trials, a baseline trial of 120 s was conducted, and any rats that did not reach the 120 

second criteria were excluded from the study. Rats were then treated with vehicle or VU0409106 

(3, 10, or 30 mg/kg i.p.), and tested 30 min later. The time each animal remained on the rotarod 

was recorded, and animals that did not fall off of the rotarod were given a maximal score of 120 

seconds. 

 

Experimental design for post-trauma intervention studies 

For determining the effects of VU0409106 on SPS-induced alterations in the CF 

response, rats were randomized to receive either SPS or SHAM treatment followed immediately 

by administration of vehicle or VU0409106, (3, 10, or 30 mg/kg, i.p.). Fifteen days later, all rats 

underwent fear conditioning; one day after that, they were tested for their freezing response. 

For testing the effect of VU0409106 administration on SPS-induced EEG alterations, 

each rat was randomized into either SPS/Vehicle or SPS/VU0409106 groups. Two continuous 24 
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hour baseline (BL) recordings were performed for each rat in its home cage to serve as within-

subjects comparator for all subsequent sleep-wake, qEEG, and body temperature data. After BL 

recordings, each rat received SPS treatment and was administered either 10 mg/kg VU0409106 

or vehicle within 30 minutes of SPS completion. Home cage recordings were immediately re-

initiated in both groups (Day 0), continued for two days (Days 1 and 2) after which transmitters 

were turned off, then reactivated on Day 7. Subsequent off-line analysis of sleep-wake and qEEG 

data was divided into the remaining hours of Day 0, or in 24hr intervals comprising Days 1, 2, 

and 7 post-SPS treatment.  

For testing the effect of VU0409106 administration on SPS-induced alterations in 

biochemistry and neurochemistry, rats were randomized to receive either SPS or SHAM 

treatment followed immediately by administration of vehicle or 10 mg/kg VU0409106, i.p. 

SHAM rats were sacrificed thirty minutes after dosing; SPS rats were sacrificed either thirty 

minutes, (Day 0), one day (Day 1), or seven days (Day 7) after dosing. On the day of sacrifice, 

rats were briefly anesthetized with isoflurane and decapitated. Hippocampus, amygdala, and PFC 

were dissected, rapidly frozen on dry ice, and stored at −80 °C for tissue mRNA and 

neurochemistry experiments. Trunk blood was collected into heparin-lined tubes, and then 

centrifuged at 5,000 rpm for 9 minutes at 4 °C to obtain plasma. 

Figure 17A depicts the experimental design for behavioral studies (Cohort 1), EEG 

studies (Cohort 2), and tissue collection studies (Cohort 3). For all experiments, SPS and SHAM 

treatment occurred within the first 6 hours of the light phase. Figure 17B shows the chemical 

structure of VU0409106. 
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Single Prolonged Stress 

SPS was performed according to Liberzon et al. (315). Briefly, rats were restrained for 2 

hours, followed by forced swim for 15 minutes in 24 ⁰C water. Following a 15 minute recovery 

period, rats were exposed to diethyl ether vapor in a bell jar until anesthesia. The SPS model did 

not cause mortality. SPS did illicit hallmarks of the rodent stress response such as porphyrin 

staining of the eyes, and urination and defecation. There were no major individual differences 

observed in these parameters during each experiment, and no inclusion or exclusion criteria were 

applied prior to the start of EEG recordings or tissue collection. SHAM treatment consisted of 

brief handling in a novel procedure room. All animals were placed into fresh cages after 

treatment.  

 

Contextual CF 

 Fear conditioning and testing were performed in sound attenuating chambers equipped 

with a stainless steel grid floor for shock delivery and a video camera for recording freezing 

behavior (MedAssociates, Allentown, NJ). For determining the effects of VU0409106 on SPS-

induced alterations in the CF response, rats were randomized to receive either SPS or SHAM 

treatment followed immediately by i.p. administration of vehicle or VU0409106, (3, 10, or 30 

mg/kg, i.p.). Fifteen days later, all rats underwent fear conditioning to the chamber context 

consisting of a 3 minute habituation period followed by a 4 second, 0.8 mA footshock, and 

ending with a 1 minute undisturbed period after which each rat was returned to its home cage. 

One day later, all rats were reexposed to the same chambers, and freezing behavior, defined as 

motionless posture excluding respiratory movements, was measured in the absence of any shock 

stimuli for 5 minutes.  
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Figure 17. Experimental design for post-trauma intervention studies with VU0409106. (A) 

In cohort 1, non-implanted rats were exposed to either single prolonged stress (SPS) or SHAM 

treatment immediately followed by systemic i.p. administration of either vehicle or 10 mg/kg 

VU0409106. Fifteen days later, all rats underwent contextual fear conditioning (CFC Train); one 

day later they were reexposed to the context in the absence of shock and freezing response was 

measured (CFC Test). In cohort 2, continuous EEG, EMG, and temperature data were 

telemetrically recorded from chronically implanted rats throughout successive 24 hour light-dark 

cycles (ON: 6:00AM; OFF: 6:00PM) before (BL) and several days after (Days 0, 1, 2, and 7) 

SPS with systemic i.p. administration of either vehicle or 10 mg/kg VU0409106 immediately 

after treatment. SPS treatment was performed within the first 6 hours of the light phase on Day 0 

during which recording was not possible; EEG data from this day was re-initiated when each 

animal was returned to its home cage. In cohort 3, non-implanted rats underwent either SPS or 

SHAM treatment immediately followed by systemic i.p. administration of either vehicle or 10 

mg/kg VU0409106. SHAM rats were sacrificed thirty minutes after dosing; SPS rats were 

sacrificed either thirty minutes, (Day 0), one day (Day 1), or seven days (Day 7) after dosing. (B) 

Chemical structure of VU0409106. 

 

 

 To determine whether VU0409106 impairs the consolidation of normal fear learning, a 

separate group of rats having received no prior treatment other than handling underwent fear 

conditioning to the chamber context consisting of a 1 minute habituation period followed by 

three 1 second, 0.5 mA footshocks with 1 minute inter-shock intervals, and ending with a 1 

minute undisturbed period. Immediately after removal from the chamber, each rat was 

administered vehicle or VU0409106, (3, 10, or 30 mg/kg, i.p.), after which it was returned to its 
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home cage. One day later, all rats were reexposed to the same chambers, and freezing behavior, 

defined as motionless posture excluding respiratory movements, was measured in the absence of 

any shock stimuli for 5 minutes. 

 

Tissue collection 

For biochemical and neurochemical endpoints, a group of non-implanted rats was 

randomly assigned to SHAM treatment or one of three SPS groups (Day 0, 1 or 7). Rats were 

briefly anesthetized with isoflurane, and sacrificed by decapitation either immediately (Day 0), 

one day (Day 1), or seven days (Day 7) after SPS; SHAM rats were sacrificed immediately after 

SHAM treatment. Hippocampus, PFC, and amygdala were dissected, rapidly frozen on dry ice, 

and stored at −80 °C for tissue neurochemistry. Trunk blood was collected into heparin-lined 

tubes, and then centrifuged at 5,000 rpm for 9 minutes at 4 °C to obtain plasma. 

 

Tissue neurochemistry 

Tissue concentrations of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) 

were determined by HPLC-ECD as described previously (316).  5-HT utilization was calculated 

as 5-HIAA/5-HT in ng/mg protein. 5-HT, 5-HIAA, and 5-HT utilization values were then 

normalized to the SHAM/Vehicle group average. Values greater than 3 standard deviations from 

the mean for 5-HIAA and 5-HT utilization were excluded. 

 

Quantitative real-time polymerase chain reaction (qRT-PCR) 

Alterations in mRNA expression levels of EGR-1, brain-derived neurotrophic factor 

(BDNF), NR1, NR2A, and NR2B were measured using Aqueous Micro kits (Life Technologies, 
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Grand Island, NY) for RNA extraction, NanoDrop ND-1000 spectrophotometer (NanoDrop 

Technologies, Wilmington, DE) for RNA quantification, QuantiTect Reverse Transcription Kit 

(QIAGEN, Hilden, Germany) for complementary DNA transcription, CFX96 Real-Time PCR 

Detection System (Bio-Rad, Hercules, CA) using primers from TaqMan Gene Expression 

Assays (Life Technologies) for qRT-PCR. Glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) was used as an internal control; data are presented using the comparative cycle 

threshold (CT) method normalized to SHAM-treated rats. 

 

Plasma corticosterone 

Corticosterone, the rodent analogue of the human glucocorticoid cortisol, was measured 

using a double antibody radioimmunoassay (RIA) kit (MP Biomedicals, Orangeburg, NY). 

 

Sleep staging 

EEG, EMG, and temperature data were collected with Dataquest A.R.T. 4.3 software 

(DSI, Minneapolis, MN) using a continuous sampling method. Telemetric data were sampled at a 

rate of 500 Hz and transmitted via a receiver (RPC-2, DSI) placed below the cage of each rat. 

Each receiver was connected to a data exchange matrix (DSI) which transferred EEG, EMG, and 

temperature data to a computer for off-line analysis. Two trained observers used Neuroscore 3.0 

software to manually stage each 10 second epoch as wake, NREM, or REM sleep based on 

accepted characteristic EEG and EMG oscillatory patterns (317). All 10 second epochs were 

summed into 2 hour bins. For the acute effects of VU0409106 administration on SPS treatment 

on Day 0, 2 hour bins were group averaged to examine the amount of time spent in wake, 

NREM, or REM sleep. To assess the prolonged effects of VU0409106 administration on SPS 
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treatment (Days 1, 2, and 7), 12 hour bins comprising either the light or dark phase of a given 

day were group averaged. 

 

qEEG spectral power analysis 

qEEG relative power spectra from frontal and parietal electrodes were computed for each 

rat and on each day of recording in 10 second epochs grouped into conventional power bands 

(delta δ: 0.5-4.9 Hz, theta θ: 5-8.9 Hz, alpha α: 9-13.9 Hz, beta β: 14-29.9 Hz, low gamma γ: 30-

49.9 Hz, and high γ: 50-100 Hz) (227) using a Fast Fourier Transform with a Hamming window 

and overlap ratio of 0.5. Relative power within each band was calculated as a percent of total 

power, then binned by stage (wake, NREM, or REM). The percent change from the BL value of 

the same power band for the same rat during the corresponding sleep-wake stage was then 

calculated for each individual rat and group averaged. For the acute effects of VU0409106 

administration on healthy rats, BL values refer to an average of values collected during the first 

two hours of the light phase recorded on the day of treatment, in twenty minute bins. For the 

effects VU0409106 administration on SPS treatment, BL values refer to an average of those 

gathered during the two BL recording days in twelve hour bins. Slow wave activity (SWA) was 

defined as relative delta power in the frontal cortex during NREM sleep. Equipment error 

prevented recording from the frontal lead of one rat in each of the SPS/Veh and SPS/VU0409106 

groups, and from the parietal lead of one rat in the SPS/Veh group. 

 

Statistical analysis 

For the acute effects of VU0409106 on sleep-wake architecture, qEEG spectral power, 

temperature, and spontaneous locomotor activity in non-stressed rats, as well as the effects of 
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post-SPS VU0409106 administration on short and long-term sleep-wake architecture, qEEG 

spectral power, and temperature, a repeated measures two-way analysis of variance (ANOVA) 

was applied; if significant, a Bonferroni post hoc test was performed with significance defined as 

P < .05. For the acute effects of VU0409106 on rotarod performance and normal fear learning, 

and for the effects of SPS on EGR-1 expression in the amygdala, a one-way ANOVA was 

applied; if significant, a Dunnett’s post hoc test was used with significance defined as P < .05. 

For the effects of post-SPS VU0409106 administration on contextual CF, 5-HT utilization, and 

plasma corticosterone concentration, a two-way ANOVA was applied; if significant, a 

Bonferroni post hoc test was performed with significance defined as P < .05. For the effects of 

post-SPS VU0409106 administration on sleep latencies, a student’s t test was applied with 

significance defined as P < .05. 

 

Results 

 

mGluR5 antagonism preferentially suppressed REM sleep. 

 VU0409106 modestly increased time spent awake only at the highest dose of 30 mg/kg 

(Figure 18A) (time [F11,363 = 91.10, P < 0.0001], dose [F3,33 = 11.98, P < 0.0001], interaction 

[F33,363 = 1.62, P = 0.02]), and there was a main effect of time and dose on NREM sleep 

(Figure 18B) (time [F11,363 = 91.41, P < .0001], dose [F3,33 = 13.88, P < .0001]), but no time 

point reached post-hoc significance. The most significant effect of VU0409106 was a dose-

dependent suppression of time spent in REM sleep (Figure 18C) (time [F11,363 = 35.38, P < 

.0001], interaction [F33,363 = 4.88, P < .0001]). 
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mGluR5 antagonism increased waking high gamma power and NREM sleep delta power in 

the frontal cortex. 

 Similar to NMDA receptor antagonists (279), VU0409106 dose-dependently increased 

high gamma power during wake (Figure 19A) (time [F30,1046 = 6.46, P < .0001], dose [F3,1012 

= 32.57, P < .0001], interaction [F90,1012 = 2.25, P < .0001]). Also similar to NMDA receptor 

antagonists, and consistent with an improvement in sleep quality (263, 277, 278), VU0409106 

dose-dependently increased delta power during NREM sleep (aka SWA) (Figure 19B) (time 

[F30,1012 = 21.34, P < .0001], dose [F3,1012 = 32.57, P < .0001], interaction [F90,1012 = 2.25, 

P < .0001]). 
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Figure 18. VU0409106 selectively suppressed REM sleep. (A) VU0409106 administration 

modestly increased time spent in wake at the highest dose of 30 mg/kg, i.p., but (B) had no 

significant effect on NREM sleep time. (C) By contrast, VU0409106 preferentially and dose-

dependently reduced REM sleep time for up to several hours. Black bar indicates dark phase. 

Data are depicted as mean ± SEM (n = 8-10). Comparison between doses performed by repeated 

measures two-way ANOVA. ^^ P < 0.01, 3mg/kg vs. Veh; **P < 0.01, 10 mg/kg vs. Veh; #P < 

0.05, ##P < .01, ####P < .0001, 30 mg/kg vs. Veh in Bonferroni post hoc test.   
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Figure 19. VU0409106 increased waking high gamma power and NREM sleep delta power 

in the frontal cortex. (A) Relative to baseline, VU0409106 administration dose-dependently 

increased high gamma power in the frontal cortex during wake, and (B) delta power during 

NREM sleep, a measure referred to as slow wave activity (SWA). Data are depicted as mean ± 

SEM (n = 9-10). Comparison between doses performed by repeated measures two-way ANOVA. 

^ P < 0.05, 3mg/kg vs. Veh; *P < 0.05, 10 mg/kg vs. Veh; #P < 0.05, 30 mg/kg vs. Veh in 

Bonferroni post hoc test.   
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mGluR5 antagonism caused dose-dependent reductions in body temperature and sedation. 

 In order to effectively determine whether post-trauma VU0409106 administration could 

prevent PTSD-like symptoms in the studies described below, we first attempted to select a dose 

that did not induce significant adverse effects. Antagonists of both NMDA receptors and mGluR5 

have been shown to cause reductions in body temperature, induce sedation, and impair 

locomotor activity in rodents (337, 338), so we first determined whether VU0409106 also 

exhibits this liability. Systemic administration of VU0409106 caused acute reductions in body 

temperature during wake (Figure 20A) (time [F24,792 = 7.24, P < .0001], dose [F3,792 = 15.63, 

P < .0001], interaction [F72,792 = 3.41, P < .0001]) and NREM sleep (Figure 20B) (time [24,769 

= 5.12, P < .0001], dose [F3,769 = 19.90, P < .0001], interaction [F72,769 = 3.72, P < .0001]). 

Time spent in REM sleep was so reduced that no temperature data for this state could be 

gathered during the hours after VU0409106 administration (Figure 20C). VU0409106 also dose-

dependently decreased spontaneous locomotor activity (Figure 20D) (time [F5,140 = 75.29, P < 

.0001], interaction [F15,140 = 3.47, P < .0001]), and reduced the latency to fall in a rotarod test 

(Figure 20E) (F3,20 = 3.18, P = .05) indicating sedation. Given the insomnia-like effects induced 

by SPS reported above, however, mild sedation could be an advantageous property for a 

compound intended to intervene in posttraumatic symptoms. Since 10 mg/kg VU0409106 

exhibited modest sedation in the spontaneous locomotor assay, but impaired motor function to a 

lesser degree than the 30 mg/kg dose in the rotarod assay, this dose was chosen for the post-SPS 

dosing experiments described below.  
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Figure 20. VU0409106 caused dose-dependent reductions in body temperature and 

sedation. (A) Relative to baseline, VU0409106 acutely decreased body temperature during wake 

and (B) NREM sleep, but not (C) REM sleep, which was suppressed such that few data points 

could be collected for temperature. (D) VU0409106 also inhibited spontaneous locomotor 

activity in an open field, and (E) induced modest motor impairments at the highest dose of 30 

mg/kg in the rotarod test. Data are depicted as mean ± SEM (n = 9-10 for A-C, 6-8 for D,E). 

Comparison between doses performed by repeated measures two-way ANOVA for A-D, and 

one-way ANOVA for E. ^ P < 0.05, ^^ P < 0.01, 3mg/kg vs. Veh; *P < 0.05, **P < 0.01, ***P < 

0.001, 10 mg/kg vs. Veh; #P < 0.05, ##P < .01, ###P < .001, ####P < .0001, 30 mg/kg vs. Veh 

in Bonferroni post hoc test for A-D, and Dunnett’s post hoc test for E.   
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Post-trauma mGluR5 antagonism inhibited the development of augmented threat 

responding without disturbing normal threat learning. 

 Similar to previous reports (59, 339), SPS induced an augmented threat response as 

measured by contextual CF (Figure 21A). However, this exaggerated threat response was 

attenuated in rats that received VU0409106 immediately after SPS (Figure 21A) (treatment 

[F1,80 = 6.88, P = 0.01], interaction [F3,80 = 2.84, P = .04]), with 10 mg/kg VU0409106 being 

the most effective dose. VU0409106 administered after SHAM treatment did not affect 

contextual CF (Figure 21A). In addition to its ameliorative effect on SPS-induced augmentation 

of threat learning, VU0409106 left intact the consolidation of normal threat learning when 

administered after contextual CF (Figure 21B) in rats that had not undergone SPS treatment 

(experimental design depicted in Figure 21C). 

 

Post-trauma mGluR5 antagonism acutely extended REM sleep suppression. 

 Consistent with our previous findings, SPS significantly increased time spent in wake 

(Figure 22A) (time [F21,294 = 36.02, P < .0001]), and reduced time spent in NREM sleep 

(Figure 22B) (time [F21,294 = 50.81, P < .0001]) relative to BL. 10 mg/kg VU0409106 had no 

significant effect on wake or NREM sleep time, but further reduced time spent in REM sleep 

(Figure 22C) (time [F21,294 = 27.80, P < .0001], interaction [F21,294 = 2.10, P = .0037]) 

relative to vehicle-treated rats. In addition, 10 mg/kg VU0409106 significantly reduced the 

latency to NREM sleep after SPS (Figure 23A) (t = 2.95, p = .01), and increased the latency to 

REM sleep after SPS (Figure 23B), and after the onset of NREM sleep (Figure 23C) (t = 2.96, p 

= .01). 
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Figure 21. Post-trauma VU0409106 inhibited the development of trauma-induced 

augmented threat responding without disturbing normal threat learning. (A) SPS caused 

augmented threat responding in the contextual CF assay relative to SHAM rats fifteen days after 

treatment; this effect was attenuated if VU0409106 had been administered immediately after 

SPS. (B) VU0409106 did not induce a general amnesic effect, however, leaving normal threat 

responding intact (C) when administered immediately after contextual CF training. Data are 

depicted as mean + SEM (n = 10-11).Comparison between doses performed by two-way 

ANOVA for A, and one-way ANOVA for B. **P < 0.01, SPS/Veh vs. SHAM/Veh; *P < 0.05, 

SPS/10 mg/kg VU0409106 vs. SPS/Veh in Bonferroni post hoc test.   
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Figure 22. Post-trauma VU0409106 acutely extended REM sleep suppression. (A) 

VU0409106 had no effect on acute SPS-induced increases in wake or (B) decreases in NREM 

sleep relative to baseline (BL), but (C) further reduced REM sleep time for up to several hours 

after SPS relative to vehicle treated rats. Black bars indicate dark phases. Data are depicted as 

mean ± SEM (n = 8). Comparison between groups performed by repeated measures two-way 

ANOVA. *P < 0.05, 10 mg/kg vs. Veh in Bonferroni post hoc test.  



 79 

 

Figure 23. Post-trauma VU0409106 decreased NREM sleep latency and increased REM 

sleep latency. (A)VU0409106 significantly decreased the latency to first enter NREM sleep after 

SPS, (B) non-significantly increased the time to enter REM sleep after SPS, and (C) significantly 

increased the latency to enter REM sleep after first NREM sleep bout. Data are depicted as mean 

+ SEM (n = 8). Comparison between groups performed by t test, *P < 0.05.  
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Post-trauma mGluR5 antagonism modestly attenuated subsequent sleep reduction and 

fragmentation. 

 Consistent with our previous findings, and possibly indicative of an insomnia-like 

phenotype, SPS caused significant increases in time spent awake during the light phase on Days 

1 and 2 (Table 4) (time [F3,42 = 27.93, P < .0001]), culminating in an increased number of bouts 

(time [F3,42 = 2.44, P < .0001]) and longer average bout lengths (time [F3,42 = 10.08, P < 

.0001]). These changes in wake were accompanied by reductions in light phase NREM sleep 

time (time [F3,42 = 16.33, P < .0001]), increased NREM sleep bout number (time [F3,42 = 

14.51, P < .0001]), and decreased NREM sleep average bout length (time [F3,42 = 21.85, P < 

.0001]), as well as decreased REM sleep time (time [F3,42 = 14.9, P < .0001]), and a main effect 

on REM sleep average bout length (time [F3,42 = 3.84, P = .02]). This fragmentation of NREM 

and REM sleep during the light phase was modestly attenuated by prior administration of 10 

mg/kg VU0409106 post-SPS which decreased the number of wake bouts, and increased their 

average length (dose [F1,14 = 4.88, P = .04]). Post-trauma 10 mg/kg VU0409106 also attenuated 

subsequent reductions in light phase REM sleep time (dose [F1,14 = 5.67, P = .03]) relative to 

rats that had received vehicle after SPS.  

 During the dark phase, SPS induced significant reductions in wake time on Days 1 and 2 

(Table 4) (time [F3,42 = 252.56, P < .0001])), along with increases in bout number (time [F3,42 

= 18.21, P = .0002]) and reductions in average bout length (time [F3,42 = 14.13, P < .0001]). 

SPS also caused persistent increases in NREM sleep time (time [F3,42 = 35.90, P < .0001]) and 

bout number (time [F3,42 = 8.03, P = .0002]) during the dark phase, as well as increases in REM 

sleep time (time [F3,42 = 39.02, P < .0001]), bout number (time [F3,42 = 10.84, P < .0001]), and 

average bout length (time [F3,42 = 7.45, P = .0004]). Rats that received 10 mg/kg VU0409106  
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Table 4. Post-trauma mGluR5 antagonism modestly attenuated subsequent sleep disturbances. 

LIGHT PHASE  Treatment BL SPS Day 1 SPS Day 2 SPS Day 7 

Time (min) 

WAKE 
Vehicle 200.3 ± 6.9 238.7 ± 7.2 224.6 ± 9.9 202.2 ± 7.5 

VU0409106 203.5 ± 6.9 249.4 ± 9.9 238.3 ± 8.6 219.2 ± 10.1 

NREM 
Vehicle 435.7 ± 5.0 415.0 ± 5.8 423.1 ± 8.6 438.1 ± 6.6 

VU0409106 423.2 ± 7.6 391.2 ± 8.5 406.3 ± 8.7 410.8 ± 8.5 

REM 
Vehicle 83.5 ± 2.1 66.2 ± 3.1 72.4 ± 3.5 79.9 ± 3.5 

VU0409106 93.6 ± 4.7 79.5 ± 3.2* 75.2 ± 5.0 89.5 ± 3.9 

 No. bouts per 

hour 

WAKE 
Vehicle 13.8 ± 0.5 15.9 ± 0.7 16.2 ± 0.9 12.3 ± 0.5 

VU0409106 13.7 ± 0.6 14.3 ± 0.6 13.4 ± 0.7* 11.6 ± 0.7 

NREM 
Vehicle 14.0 ± 0.4 16.1 ± 0.7 16.2 ± 0.9 12.4 ± 0.5 

VU0409106 14.0 ± 0.6 14.5 ± 0.6 13.4 ± 0.6* 11.7 ± 0.7 

REM 
Vehicle 4.1 ± 0.1 3.5 ± 0.2 3.9 ± 0.4 3.7 ± 0.1 

VU0409106 5.3 ± 0.2 3.9 ± 0.1 4.1 ± 0.3 4.4 ± 0.3 

Bout length 

(sec) 

WAKE 
Vehicle 72.2 ± 3.0 76.1 ± 4.7 71.3 ± 5.3 83.1 ± 4.4 

VU0409106 73.1 ± 3.0 87.2 ± 3.7 90.1 ± 4.6* 98.1 ± 7.1 

NREM 
Vehicle 159.2 ± 6.8 131.8 ± 5.5 134.5 ± 7.0 181.2 ± 6.8 

VU0409106 158.8 ± 8.0 137.9 ± 7.2 156.4 ± 9.5 184.1 ± 13.3 

REM 
Vehicle 100.2 ± 2.7 95.6 ± 5.5 107.9 ± 2.6 106.4 ± 7.2 

VU0409106 104.3 ± 5.3 104.0 ± 5.4 94.3 ± 6.3 106.4 ± 7.2 

DARK PHASE  Treatment BL SPS Day 1 SPS Day 2 SPS Day 7 

Time (min) 

WAKE 
Vehicle 476.5 ± 13.1 407.4 ± 21.6 439.5 ± 18.9 453.9 ± 14.6 

VU0409106 473.7 ± 8.0 384.8 ± 12.8 431.7 ± 8.5 465.8 ± 12.6 

NREM 
Vehicle 217.5 ± 10.7 270.8 ± 18.1 247.2 ± 15.2 236.1 ± 12.3 

VU0409106 214.5 ± 8.0 280.6 ± 14.2 243.6 ± 8.7 218.9 ± 11.5 

REM 
Vehicle 25.9 ± 3.1 41.7 ± 4.2 33.1 ± 4.2 29.4 ± 3.3 

VU0409106 31.6 ± 2.2 54.4 ± 4.2* 44.6 ± 2.0 35.3 ± 2.5 

 No. bouts per 

hour 

WAKE 
Vehicle 9.9 ± 0.6 10.7 ± 0.7 11.5 ± 0.8 8.9 ± 0.2 

VU0409106 9.9 ± 0.5 11.2 ± 0.4 9.8 ± 0.4 8.8 ± 0.4 

NREM 
Vehicle 9.8 ± 0.6 10.6 ± 0.7 11.4 ± 0.8 8.9 ± 0.3 

VU0409106 9.8 ± 0.5 11.2 ± 0.4 9.7 ± 0.4 8.7 ± 0.4 

REM 
Vehicle 1.8 ± 0.2 2.3 ± 0.2 2.1 ± 0.2 2.1 ± 0.2 

VU0409106 2.1 ± 0.2 3.0 ± 0.2 2.9 ± 0.1* 2.7 ± 0.2 

Bout length 

(sec) 

WAKE 
Vehicle 244.9 ± 27.0 205.7 ± 20.6 201.1 ± 20.5 261.2 ± 14.2 

VU0409106 235.3 ± 14.7 177.2 ± 9.8 224.2 ± 6.6 275.7 ± 16.7 

NREM 
Vehicle 127.3 ± 7.4 130.5 ± 8.9 113.4 ± 10.3 134.4 ± 5.5 

VU0409106 122.0 ± 8.7 126.6 ± 5.9 126.9 ± 7.5 128.9 ± 8.5 

REM 
Vehicle 74.5 ± 7.6 87.0 ± 9.9 86.7 ± 9.9 69.9 ± 3.5 

VU0409106 73.6 ± 4.6 88.8 ± 4.4 78.6 ± 2.7 66.4 ± 4.0 
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after SPS exhibited further increased time spent in REM sleep (dose [F1,14 = 4.80, P = .04]), and 

increased REM bouts during the dark phase (dose [F1,14 = 7.02, P = .02]). 

 

Post-trauma mGluR5 antagonism blocked acute increases in frontal theta power during 

REM sleep and enhanced SWA. 

 Consistent with our previous findings, SPS induced dramatic acute increases in theta 

power during REM sleep in the frontal cortex during the light phase on Day 0, an effect that was 

almost completely attenuated by post-SPS administration of 10 mg/kg VU0409106 (Figure 24A) 

(time [F4,48 = 13.56, P < .0001], interaction [F4,48 = 5.21, P = .0014]). Also similar to our 

previous report, SPS caused an acute increase in light phase SWA measured in the frontal cortex 

on Day 0, but subsequently reduced this measure on Days 1 and 2 (Figure 24B) (time [F4,48 = 

62.10, P < .0001]). Rats that received 10 mg/kg VU0409106 after SPS exhibited significantly 

increased SWA on Day 0 relative to vehicle-treated rats (dose [F1,12 = 9.08, P = .01], interaction 

[F4,48 = 4.57, P = .0033]), but there was no effect on SWA reductions on Days 1 and 2 (Figure 

24B). VU0409106 did not alter REM sleep theta power in the frontal cortex in rats that had not 

received prior SPS (Figure 25A), nor did it modulate SPS-induced alterations in REM sleep theta 

power in the parietal cortex (Figure 25B) (time [F4,52 = 7.62, P < .0001]). Additionally, SPS-

induced increases in theta power were specific to REM sleep, being absent during wake in the 

frontal (Figure 25C) and parietal (Figure 25D) cortices. 

 

  



 83 

 

Figure 24. Post-trauma VU0409106 blocked acute increases in frontal theta power during 

REM sleep and acutely enhanced SWA. (A)SPS treatment acutely increased theta power 

during REM sleep in the frontal cortex on Day 0; this effect was substantially attenuated by 

VU0409106 administration. (B) SPS also caused acute increases in delta power during NREM 

sleep in the frontal cortex (aka SWA); this effect was augmented by VU0409106 administration. 

SPS also caused modest reductions in SWA on Days 1 and 2, but this change was not reversed 

by prior VU0409106 administration. Data are depicted as mean + SEM (n = 7). Comparison 

between groups performed by repeated measures two-way ANOVA. ***P < 0.001, 10 mg/kg vs. 

Veh in Bonferroni post hoc test. 

 

 

 Post-trauma mGluR5 antagonism attenuated reductions in amygdala 5-HT utilization. 

 SPS caused a delayed reduction in 5-HT utilization in the amygdala beginning on Day 1; 

10 mg/kg VU0409106 administered immediately after SPS attenuated this reduction (Figure 

26B) (dose [F3,79 = 3.99, P = .05]). Consistent with our findings above, SPS also caused an 

acute increase in 5-HT utilization in the PFC (Figure 26C) (time [F3,79 = 8.12, P < .0001]) and 

hippocampus (Figure 26C) (time [F3,80 = 13.60, P < .0001]) on Day 0, but these increases were 

not affected by VU0409106 administration. 
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Post-trauma mGluR5 antagonism acutely inhibited SPS-induced hyperthermia with no 

effect on plasma corticosterone increases. 

 10mg/kg VU0409106 administered after SPS reduced subcutaneous body temperature, 

and prevented hyperthermia for several hours during wake (Figure 27A) (time [F57,798 = 30.64, 

P < .0001], interaction [F57,798 = 2.48, P < .0001]) and NREM sleep (Figure 27B) (time 

[F57,810 = 12.01, P < .0001], interaction [F57,810 = 2.96, P < .0001]), but not REM sleep 

(Figure 27C) (time [F56,763 = 7.72, P < .0001]). SPS-induced acute increases in body 

temperature were accompanied by increased circulating levels of corticosterone on Day 0 (Figure 

28) (time [F3,64 = 54.46, P < .0001], dose [F1,64 = 5.01, P = .03], interaction [F3,64 = 3.47, P = 

.02]).  

 

SPS induces amygdala expression of EGR-1. 

 In order to confirm that the deleterious effects of SPS are partially mediated by traumatic 

memory consolidation, we examined the effects of SPS on amygdala expression of EGR-1, a key 

molecular mediator of emotional memory (33). SPS acutely increased mRNA levels of EGR-1 in 

the amygdala on Day 0 relative to SHAM-treated rats (Figure 29) (F3,27 = 8.38, P = .0004).  

 

Discussion 

 In these studies, we demonstrated that the selective mGluR5 NAM VU0409106, when 

administered immediately after traumatic stress in rats, attenuates subsequent behavioral and 

physiological changes, possibly through acute suppression of REM-sleep dependent emotional 

memory consolidation. 



 85 

We first showed that VU0409106 dose-dependently suppresses REM sleep in healthy 

rats, while leaving NREM sleep entirely intact. This effect differentiates mGluR5 antagonism 

from the effects of NMDA receptor antagonists, which at subanesthetic doses can inhibit both 

REM and NREM sleep (340). However, similar to NMDA receptor antagonists (263, 277-279), 

VU0409106 substantially and dose-dependently increased high gamma power during wake and 

delta power during NREM sleep in the frontal cortex. These effects are consistent with the 

functional coupling of mGluR5 and NMDA receptors (99-101, 103, 106, 107), and suggest that 

VU0409106 may partially exert its behavioral effects through downstream inhibition of NMDA 

receptors. Furthermore, NMDA receptor antagonist-induced increases in gamma power during 

wake and delta power during NREM sleep were recently employed as translational biomarkers 

of central target engagement and efficacy, respectively (263, 277-279). These exciting advances 

combined with our current findings suggest that this qEEG approach may also be available for 

the clinical development of novel mGluR5 NAMs.  

We next attempted to determine whether selective mGluR5 antagonism with VU0409016 

could inhibit the behavioral consequences of trauma when administered immediately after SPS.  

We found that post-SPS VU0409106 administration prevented the development of 

augmented threat responding, suggesting that mGluR5 inhibition after trauma could impede the 

progression of PTSD symptoms. We also found that VU0409106 extended SPS-induced REM 

sleep suppression consistent with the hypothesis that mGluR5 antagonism after trauma may 

prevent the development of PTSD-like hypervigilance through inhibition of REM sleep-

dependent emotional memory consolidation. VU0409106 administration after SPS not only 

reduced the amount of time spent in REM sleep, but also increased the latency to first enter REM 

sleep after NREM sleep onset. Importantly, it has been observed that REM sleep latency after 
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emotional learning can correlate strongly with behavioral measures of memory consolidation 

(240), possibly due to the existence of a critical temporal window for this process (31, 37). Due 

to an increased REM sleep rebound during the dark phase of Day 0, rats that were administered 

VU0409106 after SPS regained much of the REM sleep they had lost during the light phase of 

that day. This observation underlines the importance of the timing of REM sleep suppression 

after trauma for therapeutic purposes. It is likely that this REM sleep rebound occurred outside 

the temporal window during which emotional memory consolidation takes place (31, 37), and 

therefore did not lead to the subsequent manifestation of PTSD-like behavioral changes. This 

finding suggests that mGluR5 antagonist-mediated REM sleep suppression would lose its 

therapeutic effect if introduced several hours or days after trauma. Studies are ongoing to address 

this question, and to determine how long the temporal window for intervention after SPS might 

be.  

 In addition to suppressing the amount of time spent in REM sleep, VU0409106 also 

attenuated acute SPS-induced increases in theta power in the frontal cortex during REM sleep. 

Given that increased REM sleep theta power in the frontal cortex is a putative 

neurophysiological correlate of REM sleep-dependent emotional memory consolidation in both 

rodents (250) and humans (240), this finding strongly supports the interpretation that mGluR5 

inhibition exerts its therapeutic behavioral effect through blockade of traumatic memory 

consolidation. During post-trauma REM sleep, rhythmic activation of the amygdala at theta 

frequency likely promotes emotional memory consolidation through the induction of synaptic 

plasticity in the hippocampus and PFC, target brain structures known to oscillate at theta 

frequency in phase with the lateral amygdala, and to store long term emotional memory traces 

(250, 341, 342). Neuronal projections between the hippocampus, PFC, and lateral amygdala are 
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glutamatergic (341), suggesting that VU0409106 may interfere with reciprocal entrainment of 

hippocampus, PFC and amygdala at theta frequency via post-synaptic mGluR5 inhibition in these 

regions, resulting in the observed attenuation of post-SPS increases in theta power during REM 

sleep, and possibly preventing the induction of synaptic plasticity associated with emotional 

memory consolidation (250, 341). VU0409106 administration in non-stressed rats did not reduce 

REM sleep theta power, suggesting that this effect is a specific blockade of trauma-induced 

alterations. This effect was also specific to the REM sleep state and to the frontal cortex, in 

support of the hypothesis that traumatic memory consolidation after SPS, and its attenuation by 

VU0401906, is heavily dependent on REM sleep-specific processes. Future studies are 

warranted aimed at determining whether SPS induces LTP at cortico-amygdala and 

hippocampal-amygdala synapses (33, 36, 37), and whether this plasticity is dependent on 

mGluR5-mediated increases in REM sleep theta power after trauma. 

 Consistent with the notion that VU0409106 prevents hyperactivation of the amygdala, we 

also found that this compound attenuated SPS-induced reductions in amygdala 5-HT utilization. 

As mentioned in Chapter 2, 5-HT exerts a net inhibitory influence on the lateral amygdala (325, 

326); the gradual reduction of 5-HT utilization caused by SPS, therefore, is hypothesized to 

contribute to amygdala hyperexcitability, a common finding in PTSD patients (29). One 

mechanism through which post-trauma mGluR5 antagonism may spare amygdala 5-HT content 
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Figure 25. VU0409106-mediated reductions in theta power only occurred after trauma 

specifically in the frontal cortex during REM sleep. (A) VU0409106 had no effect at any dose 

on theta power during REM sleep in the frontal cortex in rats that had not received any stress 

treatment. (B) SPS-induced acute increases in REM sleep theta power were less pronounced in 

the parietal cortex, and VU0409106 had no effect on this change. (C) SPS also had no significant 

effect on theta power during wake in the frontal cortex, or (D) in the parietal cortex. Data are 

depicted as mean ± SEM (n = 7-10). Comparison between groups performed by repeated 

measures two-way ANOVA.   
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Figure 26. Post-trauma VU0409106 non-significantly accelerated the normalization of beta 

power during wake while attenuating reductions in amygdala 5-HT utilization. (A) SPS 

treatment caused acute and persistent increases in beta power during wake in the frontal cortex; 

VU0409106 administration non-significantly accelerated the normalization of this change (n = 

7). (B) SPS treatment caused a concurrent reduction in amygdala 5-HT utilization starting on 

Day 1; this change was also blocked by VU0409106 administration. (C) VU0409106 

administration did not affect SPS-induced acute increases in 5-HT utilization in the PFC or (D) 

hippocampus (n = 9-13). Data are depicted as mean + SEM. Comparison between groups 

performed by repeated measures two-way ANOVA. *P < .05 SPS/VU0409106 vs. SPS/Veh in 

Bonferroni post hoc test.  
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Figure 27. Post-trauma VU0409106 acutely inhibited SPS-induced hyperthermia. (A) SPS 

caused acute and persistent hyperthermia during wake, (B) NREM sleep, and (C) REM sleep 

specifically during the light phase; VU0409106 significantly attenuated hyperthermia during 

wake and NREM sleep for several hours after SPS treatment. Data are depicted as mean ± SEM 

(n = 8). Comparison between doses performed by repeated measures two-way ANOVA. . ****P 

< .0001 SPS/VU0409106 vs. SPS/Veh in Bonferroni post hoc test.  
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Figure 28. Post-trauma VU0409106 had no effect on plasma corticosterone increases. SPS 

caused acute increases in circulating corticosterone on Day 0 relative to SHAM treatment. 

VU0409106 administration increased corticosterone levels in the plasma in SHAM treated rats, 

but had no effect on SPS-induced corticosterone increases. Data are depicted as mean + SEM (n 

= 9-10). Comparison between doses performed by repeated measures two-way ANOVA. **P < 

.01, ****P < .0001 in Bonferroni post hoc test.  
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Figure 29. SPS induces amygdala expression of EGR-1 and NMDA receptor subunits. 

Relative to SHAM-treated rats, SPS caused substantial increases in the mRNA levels of EGR-1 

in the amygdala on Day 0. This increase normalized by Day 1. SPS also increased expression of 

NR1 on Day 7, and NR2B on Days 0, 1 and 7. Data are depicted as mean + SEM (n = 8-9). 

Comparison between SHAM and SPS Day performed by one-way ANOVA. *P < 0.05, **P < 

0.01, *** P < 0.001 in Dunnett’s post hoc test compared to SHAM. 

 

  



 93 

is by inhibiting the loss of serotonergic neurons in the dorsal raphe nucleus, the anatomical 

source of 5-HT in the amygdala (326). SPS has previously been shown to cause apoptosis in the 

dorsal raphe with cell death peaking at Day 7 (343), an observation that is consistent with our 

finding of delayed reductions in amygdala 5-HT utilization. Cell death in the dorsal raphe could 

be the result of excitotoxicity spurred by stress-induced release of excessive glutamate in this 

brain region (85), possibly originating from PFC or amygdala afferents (344, 345). VU0409106 

might counteract this process in the dorsal raphe by exerting neuroprotective effects similar to 

other mGluR5 antagonists (109, 335). It will be important in future studies to determine whether 

these changes in 5-HT utilization are specific to the lateral amygdala which is the predominant 

subregional target of serotonergic projections in the amygdala. 

Reduced 5-HT utilization in the amygdala, and the resulting disinhibition of this brain 

structure, could manifest as an increase in high frequency frontal cortical EEG oscillations 

during wake (327) which have been found to be elevated in PTSD patients and associated with 

hyperarousal (297-299). While we replicated our previous finding that, similar to these patients, 

waking beta power is increased up to seven days after SPS, VU0409106-treated rats did not 

exhibit a significant reduction in this measure. However, there was a trend toward more rapid 

normalization of waking beta power that coincided with attenuation of the loss of amygdala 5-

HT utilization. Replication of these studies is ongoing to determine whether mGluR5 antagonism 

after SPS can ameliorate this qEEG correlate of hyperarousal. 

  Another major effect of VU0409106 administration on SPS-induced alterations in qEEG 

power spectra was a dramatic acute enhancement of SWA. Consistent with our previous results, 

SPS caused an acute increase in SWA prior to a reduction in this measure on Days 1 and 2 that 

might reflect similar disturbances in the sleep quality of PTSD patients (300, 301, 321). Rats that 
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received VU0409106 after SPS displayed a further increase in SWA on Day 0 that coincided 

with reduced latency to NREM sleep onset after SPS. This finding suggests that the restorative 

properties of deep NREM sleep may be improved by post-trauma mGluR5 antagonism, an effect 

that could counteract the sleep disturbances and insomnia reported by recently traumatized 

individuals (287). Interestingly, NREM sleep and SWA increases are known to preferentially 

improve recall of declarative memories (225, 239, 245-249), offering the speculative 

interpretation that augmentation of this measure by mGluR5 inhibition may spare explicit 

memory for the declarative components of the previously experienced traumatic event while 

simultaneously inhibiting associated implicit negative emotions. In translating to the clinic, it 

may be more beneficial to attenuate implicit emotional reactivity to the traumatic memory rather 

than ablate explicit recall for the memory entirely. This assertion is supported by the observation 

that trauma victims who report peritraumatic amnesia and related dissociative symptoms may 

actually be at increased risk for PTSD development (14). With this potential caveat in mind, we 

demonstrated that multiple doses of VU0409106 administered after contextual CF do not block 

the consolidation of normal threat learning, lending further support to the interpretation that 

mGluR5 antagonism after SPS does not induce a general amnesic effect, possibly through sparing 

SWA. This effect differentiates mGluR5 antagonists from SSRIs and γ-aminobutyric acid A 

(GABAA) receptor PAMs, both classes of drugs which suppress REM sleep (346, 347), but 

which also acutely impair SWA (347, 348). GABAA PAMs such as benzodiazepines are known 

to be amnesic, and are actually contraindicated for the treatment of acute posttraumatic stress 

symptoms, possibly for this reason (291, 292, 349). 

 Preliminarily, we also found that SPS treatment results in the induction of EGR-1 in the 

amygdala, a molecular correlate of emotional memory consolidation (33). EGR-1 is an 
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immediate early gene and transcription factor, expression of which is required for initiating many 

of the cellular changes that are the substrates of memory consolidation after emotional learning  

(33). One product of EGR-1-mediated transcription is brain-derived neurotrophic factor (BDNF), 

which can promote increased expression of NMDA receptor subunits NR1, NR2A, and NR2B. 

We found that SPS had no significant effect on BDNF levels, but that subsequent to EGR-1 

expression increases, NR1 and NR2B mRNA levels in the amygdala were also increased, 

possibly contributing to the hyperactivity of this brain region and concomitant qEEG indices of 

hyperarousal on these days. EGR-1 expression has also been shown to be specifically increased 

during REM sleep after aversive associative conditioning (284, 350), suggesting that increased 

activity of this molecule may represent one mechanism through which traumatic memory is 

encoded in a sleep-dependent manner. Future studies are warranted aimed at determining 

whether EGR-1 and NMDA receptor protein levels are also increased in the amygdala, and 

whether post-trauma mGluR5 antagonism blocks its induction as a means of inhibiting emotional 

memory consolidation during REM sleep. 

 Taken together, these data suggest that selective mGluR5 antagonism after trauma may be 

a safe and effective means of inhibiting or preventing the development of PTSD symptoms. Our 

data also indicate that the potential therapeutic effects of this approach would be partially sleep-

dependent, and possibly grounded in the attenuation of traumatic memory consolidation. 

  



 96 

CHAPTER 4 

 

DISCUSSION 

 

In this work, we have demonstrated that SPS offers a viable model of traumatic-stress 

induced physiological and behavioral changes similar to those exhibited by PTSD patients. In 

particular, rats which have undergone SPS display acute and persistent alterations in sleep-wake 

architecture and state-dependent qEEG spectral power indicative of PTSD-like symptoms. This 

model, therefore, provides the opportunity to test novel pharmacological interventions aimed at 

preventing these symptoms or treating them once they have already developed. We attempted the 

former approach by systemically administering the selective mGluR5 NAM VU0409106 

immediately after SPS with the hypothesis that this compound would block PTSD-like symptom 

development through attenuation of REM sleep-dependent traumatic memory consolidation. We 

found that a single dose of 10 mg/kg VU0409106 prevented the manifestation of augmented 

threat responding, a correlate of PTSD-related hypervigilance, and that this behavioral change 

was preceded by acute post-trauma REM sleep inhibition, and accompanied by normalization of 

5-HT signaling in the amygdala. These findings add to a growing literature in support of the 

hypothesis that PTSD symptoms may be prevented by early post-trauma intervention. This work 

also provides the first evidence that selective mGluR5 NAMs may represent one feasible target 

for this type of approach, and highlights the need to consider sleep effects in the development of 

this or other prophylactic drugs. 

The pharmacological prevention of PTSD symptoms would represent a major advance in 

the care of traumatized individuals, and would significantly reduce the societal burden of treating 
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thousands of chronic PTSD patients (4, 5). Despite the therapeutic potential demonstrated by the 

preclinical studies outlined above, however, there are significant hurdles that would need to be 

addressed for the clinical development of mGluR5 NAMs and other compounds aimed at 

inhibiting PTSD symptom progression after trauma. First, as mentioned, there is likely a 

restricted temporal window during which emotional memory consolidation could be blocked 

after experiencing trauma (31, 37, 284). This window may be as short as six hours, significantly 

limiting the amount of time that professional care givers would have to reach recently 

traumatized persons in need of prophylactic treatment. This limitation may be less of an 

impediment in certain populations at high risk for experiencing trauma, such as the military, in 

which victims of trauma are routinely reached within hours, and regimented care is rapidly 

initiated. Active members of the military in combat zones would likely be important partners in 

early proof-of-concept trials to determine whether post-trauma administration of clinically 

approved mGluR5 NAMs, such as fenobam (351), can prevent PTSD development. 

The fact that only about thirty percent of individuals who experience a traumatic event 

actually develop PTSD (5) represents another limitation to this preventive strategy. Based on this 

estimate, in the majority of traumatized individuals, prophylactic treatment with an mGluR5 

NAM or other compound would be unnecessary. This caveat would be especially important to 

consider for a drug with a narrow therapeutic index or high adverse effect liability. For care 

givers, this consideration would affect the cost-benefit analysis of drug treatment in the wake of 

trauma; it would be less tolerable to administer a drug that has potentially severe adverse effects 

to individuals at lower risk for PTSD development. Ideally, only those traumatized individuals 

known to harbor a predisposition for PTSD development would be given an mGluR5 NAM or 

other preventive drug. This problem could be addressed in two ways. First, it would be 
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advantageous to develop a drug that has modest adverse effect liability, such that the potential 

benefits of its administration are not outweighed by its risks. Whether this can be achieved is yet 

to be determined, but future research should emphasize the elimination of adverse effect liability 

in compounds, including mGluR5 NAMs, that show promise as inhibitors of emotional memory 

consolidation. Second, it would be important to determine what genetic and environmental 

factors contribute to PTSD vulnerability. Although significant resources are being dedicated to 

answer this question, it is as yet impossible to accurately predict who will get PTSD and who 

will not (352).  

Both of these endeavors could be served by the SPS model of PTSD symptoms. In 

particular, to determine susceptibility to PTSD, future studies could group rats into vulnerable 

and resistant subpopulations based on the magnitude or duration of change in one or more of the 

EEG alterations described above. Subsequent behavioral testing could be employed to determine 

whether these measures are indeed predictive, and whether there is a differential effect of 

mGluR5 antagonism on these two groups. For example, it is possible that the degree to which 

REM sleep theta power is increased in the hours after SPS predicts the likelihood or severity of 

augmented threat responding two weeks later. These types of studies would offer insight into the 

mechanisms of resilience while at the same time contributing to the possible discovery of 

translational methods for the prediction of PTSD susceptibility in humans. In the predator scent 

stress model, this use of cutoff criteria to define vulnerability and resilience in rats has been 

employed with interesting results (282, 353-358), and has been successfully used to test multiple 

pharmacological interventions for the prevention of PTSD-like symptoms (353, 355-358). 

Interestingly, in one study, post-trauma NMDA receptor antagonism with ketamine did not 

reduce the number of rats that went on to qualify as high responders in assays of PTSD-like 
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symptomology (358). This finding begs the question of whether ketamine would be equally 

ineffective in the SPS rodent model of traumatic stress, despite the efficacy of mGluR5 inhibition 

as described above. Future studies to test this hypothesis are warranted. 

Of note, SPS does not involve the use of ethologically relevant threats as with predator 

scent stress or social conflict. Nor does SPS incorporate threat from a conspecific during the 

traumatic experience. As such, despite portraying strong construct (59) and predictive validity 

(82, 339), the SPS model does not exhibit high levels of face validity as it relates to interpersonal 

trauma, such as physical or sexual assault. While traumas of this type generally result in higher 

rates of PTSD, and may cause more severe symptoms (359), it can be argued that traumas 

encountered during combat, vehicular accident, and natural disaster are not ethologically relevant 

to humans, and are not necessarily characterized by interpersonal interactions. Thus, SPS may 

more closely model trauma related to combat or disaster, and its effects may be more relevant to 

PTSD symptoms resulting from these types of traumatic experiences. As mentioned above, the 

clinical testing of prophylactic interventions for PTSD would be facilitated by the unique 

circumstances of military deployment; thus, the effects of SPS as reported here may be the best 

model for initially examining the benefits and risks of these interventions. 

An important unanswered question is whether total sleep deprivation after SPS would 

have the same ameliorative effects as mGluR5 NAM-mediated REM sleep suppression. We 

speculate that the unique profile of selective mGluR5 antagonism, which results in REM sleep 

suppression while simultaneously facilitating SWA during NREM sleep, is necessary to achieve 

the observed behavioral benefits. Indeed, acute insomnia is a common complaint of recently 

traumatized individuals, and has actually been correlated with subsequent risk for PTSD 

development (289). Insomnia is characterized primarily by a loss of NREM sleep enriched in 
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SWA (301, 321), suggesting that mGluR5 NAMs could counteract this effect while still 

inhibiting REM sleep-dependent emotional memory consolidation. In this way, the importance 

of simultaneous REM sleep suppression and NREM sleep facilitation could be explained by the 

preferential contribution of each of these sleep states to the consolidation of implicit and explicit 

memory, respectively (252). In experimental settings, recall for implicit and explicit components 

of a negative emotional memory can be dissociated such that prior stress enhances implicit recall 

for the affective components of the memory while simultaneously impairing explicit recall for 

the declarative components of the same memory (360). Victims of trauma can also exhibit 

enhanced implicit but not explicit memory for trauma-related information (17, 361). This 

phenomenon is especially striking in PTSD patients with trauma-related amnesia who exhibit the 

full spectrum of PTSD symptoms but demonstrate no explicit recall for the traumatic memory 

(14). With few exceptions (238), multiple lines of evidence demonstrate that the accumulation of 

REM sleep favors the consolidation of implicit memory (34, 225, 226, 234-239), while NREM 

sleep (and SWA) preferentially improves explicit memory (34, 225, 226, 234-239). This 

experimental observation, combined with the finding that peritraumatic amnesia predicts PTSD 

symptom severity (14), suggests that it may be beneficial to selectively suppress REM sleep 

during the aftermath of trauma in order to specifically inhibit overconsolidation of implicit 

negative feelings surrounding the traumatic memory, while sparing explicit recall for the event 

itself. Future studies could compare the effects of mGluR5 NAMs (REM sleep suppressing; 

NREM sleep sparing; SWA enhancing), SSRIs (REM sleep suppressing; NREM sleep 

suppressing; SWA impairing) (347), and benzodiazapenes (REM sleep suppressing; NREM 

sleep sparing; SWA impairing) (348) on SPS-induced behavioral and physiological alterations to 

determine which sleep-related factors are most important to engender a therapeutic effect. It is of 
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interest to note that even in the absence of pharmacological intervention, SPS resulted in an acute 

suppression of REM sleep and an increase in SWA, suggesting that these changes may be part of 

a failed adaptive response that is facilitated by mGluR5 antagonism.  

It could also be informative to determine whether non-pharmacological treatments aimed 

at specifically reducing REM sleep after SPS, such as the small platform method (362), have any 

therapeutic effects on the physiological or behavioral consequences of traumatic stress. If so, this 

finding would suggest that selective targeting of mGluR5 is not necessary, and that the 

ameliorative effects of inhibiting this receptor come primarily from REM sleep inhibition. 

Another means of testing this hypothesis would be to perform SPS during the rodent active 

phase, when there would be no need for sleep deprivation. It is possible that performing SPS at 

the beginning of the active phase would effectively delay the onset of sleep after trauma, and 

possibly attenuate subsequent symptoms. Support for this notion comes from the recent finding 

that this exact parametric manipulation ameliorated the behavioral effects of predator scent stress 

(282). Similarly, experimental sleep deprivation in healthy human subjects has been shown to 

preferentially impair consolidation of the implicit components of traumatic memory analogues 

(252). 

These questions arise from the fact that the studies above demonstrate a correlation 

between mGluR5 NAM-mediated REM sleep suppression and behavioral efficacy in a rodent 

model of trauma, but they do not show that REM sleep suppression is required for VU0409106 

to engender its therapeutic effect. The studies outlined in the previous two paragraphs would go 

some way toward addressing this question, but in order to demonstrate causality, post-SPS 

VU0409106 would have to be systemically administered while simultaneously preventing its 

inhibitory effects on REM sleep time and theta power. This could potentially be achieved by 



 102 

optogenetically activating REM-on cells in the brainstem (363) while VU0409106 is present in 

relevant concentrations in the brain. In this study design, if post-trauma mGluR5 antagonism 

maintains its therapeutic behavioral effects, then REM sleep suppression is not required. 

However, we hypothesize that elimination of mGluR5 antagonist-mediated REM sleep changes 

would result in a loss or reduction of therapeutic effect, which would demonstrate a causal 

relationship between this component of VU0409106 and its benefits. 

In addition to suppression of REM sleep, mGluR5 antagonism may block emotional 

memory consolidation through attenuation of new protein synthesis in the amygdala. New 

protein synthesis in this brain region is required for the consolidation of emotional memory in 

rats (364), and selective inhibition of mGluR5 can inhibit new protein synthesis (365). Thus, it is 

possible that VU0409106 blocks new protein synthesis that would otherwise contribute to the 

remodeling of synapses in the neural fear circuitry, including the amygdala, preventing traumatic 

memory consolidation. Future studies aimed at determining whether SPS causes increased 

protein synthesis in the amygdala, and whether post-trauma administration of protein synthesis 

inhibitors such as anisomycin can exert similar therapeutic effects as VU0409106 would be 

informative.  

An alternative means of determining the role of mGluR5-mediated sleep alterations in 

traumatic memory consolidation would be to administer a compound that increases post-trauma 

REM sleep time or theta power, and determine whether the deleterious effects of SPS are 

exacerbated. This type of study would lend support to the hypothesis that REM sleep alterations 

affect the long term response to traumatic stress. To this end, in preliminary experiments, we 

attempted to positively modulate mGluR5 in an attempt to pharmacologically increase REM 

sleep in healthy rats, possibly providing an avenue to testing this hypothesis in the SPS model 
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(Appendix A). We systemically administered the selective mGluR5 PAM VU0409551 (366) to a 

group of healthy rats implanted with EEG electrodes, and recorded the effects of this compound 

on sleep-wake architecture. We found that selective mGluR5 activation resulted in dose-

dependent increases in time spent awake with concurrent reductions in both NREM and REM 

sleep. This increase in wake time may have been due to the fact that the neural circuitry that 

mediates wakefulness substantially overlaps with the brain regions that are activated to generate 

REM sleep, such as the LDT/PPT which exhibit mGluR5 expression (367). This observation 

precluded the use of this compound to test whether post-trauma pharmacological increases in 

REM sleep could exacerbate the effects of SPS. However, VU0409551 has been shown to 

potentiate mGluR5 signaling ex vivo without having any downstream effect on NMDA receptor 

activity (223). Thus, it is possible that an mGluR5 PAM that does not exhibit this signaling bias 

could potentiate both NMDA receptor activity and promote entry into REM sleep. This 

hypothesis is supported by our finding that systemic administration of D-cycloserine (DCS), a 

partial agonist of the strychnine-insensitive glycine binding (GlyB) site on the NMDAR, was 

capable of increasing time spent in REM sleep (Appendix A). In addition to being a potentially 

useful tool for testing the effect of pharmacological increases in REM sleep on traumatic 

memory consolidation, this finding opens another area of inquiry based on the observation that 

REM sleep promotes not only the consolidation of emotional memory, but also its extinction 

(241-244). 

Extinction learning represents the behavioral underpinning of exposure-based 

psychotherapy, and its pharmacological facilitation is a novel target for the treatment of PTSD 

(16, 242). If successful, this strategy would be capable of addressing the treatment resistant 

symptoms of PTSD patients who could not be reached quickly enough after experiencing a 
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traumatic event for prophylactic intervention. This approach would also be practicable without 

the discovery of predictive biomarkers for PTSD susceptibility because treatment would 

commence after the disorder has already developed. In both rodents and humans, the amount of 

REM sleep generated after extinction learning correlates with subsequent reductions in recall or 

reactivity to the memory (241, 243, 244). Thus, compounds that can increase REM sleep after 

successful exposure therapy sessions would be predicted to promote extinction of the traumatic 

memory and accelerate the reduction of associated symptoms. In support of this hypothesis, it 

was recently found that DCS administration modestly augmented the beneficial effects of 

exposure therapy in PTSD patients (89, 368). As mentioned in Chapter 1, these studies offer 

proof-of-concept validation for this therapeutic approach, but must be considered alongside other 

conflicting studies  (90). These discrepant results are likely due to the fact that DCS, a partial 

agonist for the GlyB site, can actually act as an antagonist of NMDA receptor activity (91), 

pointing to the need for an alternative means of safely facilitating NMDA receptors. 

Selective inhibition of the Glycine Transporter 1 (GlyT1) offers a different approach for 

the indirect positive modulation of NMDA receptors. Under normal conditions, the GlyB site on 

the NMDA receptor is not saturated due to the tightly controlled regulation of synaptic glycine 

levels by GlyT1, expressed in a distribution pattern that closely overlaps with NMDA receptor 

expression (92). Previous studies have demonstrated that selective inhibitors of GlyT1 can 

increase synaptic glycine levels sufficiently to produce enhanced NMDA receptor function in 

preclinical rodent models (93). Recently, we reported the development and characterization of a 

novel series of GlyT1 inhibitors, represented by ACPPBII, (2-amino-4-chloro-N-((4-phenyl-1-

(propylsulfonyl)piperidin-4-yl)methyl)benzamide), with suitable bioavailability, brain 

penetration, and physical properties for extensive characterization in vivo (94). Selective 
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inhibition of GlyT1 by ACPPBII may thus provide a novel target for enhancing the therapeutic 

effects of exposure therapy in PTSD patients. 

We performed preliminary experiments aimed at assessing this hypothesis in rats prior to 

testing ACPPBII in the SPS model. First, we demonstrated the potency and brain penetrance of 

ACPPBII relative to the prototypical GlyT1 inhibitor NFPS (N-[3-(4’-fluorophenyl)-3-(4’-

phenylphenoxy)propyl]sarcosine) (93) (Appendix A). Then, in opposition to the long term 

effects of SPS and consistent with a therapeutic profile of this compound, we found that 

ACPPBII increased 5-HT utilization in the amygdala. However, when we tested the effect of this 

compound on sleep-wake architecture, we found that ACPPBII increased time spent awake, and 

reduced time spent in NREM and REM sleep. This effect was likely caused by adverse motor 

effects such as compulsive walking and respiratory depression that manifested in a substantial 

reduction in spontaneous locomotor activity. These motor side effects are found in other GlyT1 

inhibitors, and are likely mediated by increased activation of the strychnine-sensitive inhibitory 

GlyA site on the glycine receptor which is expressed in the brain stem and mediates autonomic 

nervous system function (369). This toxicity, and the failure of ACPPBII to enhance REM sleep, 

likely contributed to our subsequent observation that, unlike the reported effects of DCS, 

ACPPBII failed to accelerate the acquisition or consolidation of extinction of context-mediated 

CF. Based on these studies, we determined that the therapeutic index of this compound was not 

conducive to further testing in the SPS model. 

In addition to the glutamatergic system, in preliminary experiments, we identified the 

histaminergic and orexinergic systems as potential targets for ameliorating the effects of SPS 

(Appendix B). As mentioned in Chapter 1, histamine and orexin release from hypothalamic 

neurons promotes transition to and maintenance of wakefulness, suggesting that SPS treatment 
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may induce an insomnia-like phenotype on Days 1 and 2 partially through augmentation of these 

neurotransmitter systems. Specifically, we found that SPS induced increased mRNA expression 

of orexin receptor subtype 1 (OxR1) in the PFC and hippocampus and orexin receptor subtype 2 

(OxR2) in the hippocampus in a time course that coincided with the persistent reductions in 

NREM and REM sleep time. This is consistent with the observation that increased orexin 

signaling contributes to wake promotion (227), and suggests that orexin antagonists such as the 

recently clinically approved compound suvorexant, could be an effective treatment for insomnia 

associated with chronic PTSD (370). Unlike benzodiazepines, suvorexant promotes NREM sleep 

time without reducing SWA (371), making it an especially attractive option for this application. 

However, it has been found that levels of the primary orexin signaling peptide, orexin A, are 

actually lower in the CSF of PTSD patients (372). Histamine also acts as a wake-promoting 

neurotransmitter (227), so we examined mRNA expression levels of the rate-limiting 

synthesizing enzyme for this molecule, histidine decarboxylase (HDC) in the hypothalamus. We 

found HDC expression was substantially decreased after SPS for at least seven days. One 

possible interpretation of these data is that HDC expression is reduced to compensate for 

excessive histamine release, which could contribute to insomnia-like symptoms in the SPS 

model. However, future studies including the measurement of extracellular histamine in the 

hypothalamus using microdialysis would be required to confirm this hypothesis. Additionally, a 

cellular mechanism would have to be elucidated through which excessive histamine release is 

detected resulting in compensatory reductions in HDC expression. Still, this finding suggests that 

antihistaminergic drugs could be useful as hypnotic agents in addressing PTSD-related insomnia. 

This hypothesis is supported by the recent observation that the antihistamine hydroxyzine was 

moderately effective in treating sleep disruptions in PTSD patients (373). 
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 Taken together, our initial validation of the SPS model provides a strong foundation for 

the examination of this and other alternative interventions aimed at preventing or treating PTSD 

symptoms. We have also provided the first evidence that post-trauma systemic administration of 

a selective mGluR5 NAM prevents the development of some PTSD-like symptoms in this model, 

and may show similar promise in the clinical arena. This therapeutic effect was at least partially 

mediated by altering the amount and quality of REM sleep in the aftermath of trauma exposure, 

highlighting the importance of examining sleep-dependent emotional memory consolidation 

during the discovery and development of novel pharmacotherapeutic strategies for the treatment 

of PTSD symptoms. 
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APPENDIX A 

 

POSITIVE MODULATORS OF NMDA RECEPTOR FUNCTION 

 

Methods 

Subjects 

All male Sprague-Dawley rats (Harlan, Indianapolis, IN) used in the present studies were 

housed under a 12 hour light:12 hour dark cycle and given ad libitum access to food and water. 

All animal experiments were approved by the Vanderbilt University Animal Care and Use 

Committee and experimental procedures conformed to guidelines established by the National 

Research Council Guide for the Care and Use of Laboratory Animals. All efforts were made to 

minimize animal suffering and the number of animals used. 

 

Compound 

 VU0409551 was synthesized in house as previously described (366), and dissolved in 

10% Tween 80 vehicle, creating a microsuspension prior to intraperitoneal (i.p.) administration 

at a volume of 2mL/kg. D-cycloserine (DCS) was purchased from Sigma-Aldrich, and fully 

dissolved in saline prior to i.p. administration at a volume of 1mL/kg. ACPPBII was synthesized 

in house as previously described (94), and dissolved in 20% beta-cyclodextrin vehicle, creating a 

suspension prior to i.p. administration at a volume of 3mL/kg. 
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EEG Surgery 

Rats (250-375 grams) were surgically implanted with a telemetric transmitter (4-ET, Data 

Sciences International, St. Paul, MN) for recording EEG, electromyography (EMG), and body 

temperature. Under isoflurane anesthesia (3% induction; 1.5-2.5% maintenance) the transmitter 

was implanted subcutaneously across the back of each rat. Transmitter leads were tunneled 

subcutaneously to the skull. After holes were drilled in the skull, the exposed wires were placed 

in contact with the dura and secured in place with dental cement (Butler Schein, Dublin, OH). 

Three sets of leads were placed bilaterally to record from cortical regions corresponding to the 

frontal, parietal, and occipital cortices (+2 mm, -2 mm, and -6mm anterior-posterior from 

Bregma, respectively and +/- 2 mm lateral to the midline). An additional set of leads was placed 

bilaterally in the nuchal muscles for EMG recording. Rats were individually housed following 

surgery and allowed to recover and acclimate to the recording room for a minimum of 10 days 

prior to testing.  

 

EEG 

Eeach rat was randomized into vehicle, VU0409551 (3, 10, 30 mg/kg, i.p.),  DCS (3, 10, 

30 mg/kg, i.p.), or ACPPBII (1, 3, 10 mg/kg, i.p.) dose groups. Baseline recordings were begun 

at the start of the light phase, then the appropriate compound was administered two hours later, 

and recordings were allowed to continue for the remainder of the twenty-four hour period. In a 

partial crossover design, each rat received two different doses or vehicle, allowing for a 5 day 

washout period between compound administrations. 
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Spontaneous locomotor activity 

 Spontaneous locomotor activity was conducted in open-field chambers (27 × 27 × 20 cm) 

(Hamilton Kinder) equipped with 16 horizontal (x- and y-axes) infrared photobeams. Changes in 

locomotor activity were measured as the number of photobeam breaks per five minutes, and 

were recorded with a Pentium I computer equipped with rat activity monitoring system software 

(Hamilton Kinder). Rats were pretreated with vehicle or ACPPBII, (1, 3, 10 mg/kg, i.p.) then 

placed individually into each chamber 30 minutes later. Locomotor activity was assessed for 

thirty minutes. 

 

In vitro glycine uptake  

 Human choriocarcinoma (JAR) cells (American Type Culture Collection), endogenously 

expressing GlyT1 were cultured in vitro in complete DMEM supplemented with 10% FBS, 2 

mM glutamine, 20 mM HEPES, 0.1 mM nonessential amino acids, 1mM sodiumpyruvate, and 

antibiotic/antimycotic (Life Technolgies ,Carlsbad, CA) at 37 ºC in 5% CO2 in a humidified cell 

incubator. Cells were plated at 20,000 cells per well in 96-well Cytostar-T scintillation 

microplates (GE Healthcare, Chalfont St. Giles, Buckinghamshire, UK) and cultured for 24 

hours. The culture medium was then aspirated and the cells were washed followed by addition of 

a range of concentrations of ACPPBII, the comparator NFPS, or glycine dissolved in DMSO in 

combination with 10 ul of [14C]glycine. After two hours, each well was washed to remove 

radioactivity from the media, and radioactivity counts present inside the cell due to specific 

glycine uptake were performed using a TopCount (PerkinElmer). Fifty percent inhibitory 

concentrations (IC50) for each compound was determined after performing non-linear regression 

analysis in the statistical software Prism (GraphPad). 
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In vivo pharmacokinetics 

 15min, 1, 3, 8, 12, and 24 hours after ACPPBII or NFPS administration, rats were deeply 

anesthetized with isoflurane, rapidly decapitated, and trunk blood and whole brain was collected. 

Plasma was separated by centrifugation (4000 rcf, 4 °C) and stored at -80 °C until analysis. On 

the day of analysis, frozen whole-mouse brains were weighed and diluted with 1:3 (w/w) parts of 

70:30 isopropanol:water. The mixture was then subjected to mechanical homogenation 

employing a Mini-Beadbeater™ and 1.0 mm Zirconia/Silica Beads (BioSpec Products) followed 

by centrifugation. The sample extraction of plasma (20 μL) or brain homogenate (20 μL) was 

performed by a method based on protein precipitation using three volumes of acetonitrile 

containing an internal standard (50 ng/mL carbamazepine). The samples were centrifuged (3000 

rcf, 5 min) and supernatants transferred and diluted 1:1 (supernatant:water) into a new 96 well 

plate, which was then sealed in preparation for LC/MS/MS analysis.  

 

LC/MS/MS analysis 

 Analysis was performed as previously described (374). 

 

Tissue collection 

Rats were briefly anesthetized with isoflurane, and sacrificed by decapitation thirty 

minutes after i.p. administration of vehicle or ACPPBII (1, 3, 10 mg/kg). Hippocampus, 

amygdala, and PFC were dissected, rapidly frozen on dry ice, and stored at −80 °C for tissue 

neurochemistry experiments. 
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Tissue neurochemistry 

Tissue concentrations of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) 

were determined by HPLC-ECD as described previously (316).   

 

Fear extinction 

 For contextual CF extinction experiments, rats were placed in the CF chambers described 

above for each component of the experiment. To test the effects of ACPPBII on extinction 

acquisition, rats were trained with the following protocol: habituation to the chamber for one 

minute followed by exposure to four 1s, 0.5mA footshocks with intershock intervals of one 

minute. On each of the subsequent extinction days, rats were returned to the same chamber for 

seven minutes, and their freezing response was recorded in the absence of footshock. The 

compound was dosed thirty minutes prior to each extinction session every day.  

To test the effects of ACPPBII on extinction consolidation, rats were trained with the 

following protocol: habituation to the chamber for three minutes followed by two 4s, 0.8 mA 

footshocks with intershock intervals of 30s and 60s after the last shock.  On each of the 

subsequent extinction days, rats were returned to the same chamber for ten minutes, and their 

freezing response was recorded in the absence of footshock. The compound was dosed 

immediately after each extinction session every day. 

 

Statistical analysis 

For the acute effects of each compound on sleep-wake architecture, and the effect of 

ACPPBII on spontaneous locomotor activity a repeated measures two-way analysis of variance 

(ANOVA) was applied; if significant, a Bonferroni post hoc test was performed with 
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significance defined as P < .05. For the effects of ACPPBII on 5-HT utilization in the amygdala, 

a one-way ANOVA was applied; if significant, a Dunnett’s post hoc test was used with 

significance defined as P < .05.  

 

Results 

VU0409551 increased time spent awake (Figure 30) (time [F11,264 = 31.80, P < 0.0001], 

interaction [F33,264 = 2.02, P = 0.0013]), and decreased NREM sleep (time [F11,264 = 32.98, P 

< .0001], interaction [F11,264 = 2.06, P = .001]) and REM sleep (time [F11,286 = 17.54]). DCS 

had a main effect on time spent in wake (Figure 31) (time [F11,352 = 78.26, P < 0.0001], dose 

[F3,32 = 3.83, P = 0.0188]) and NREM sleep (time [F11,308 = 70.86, P < 0.0001], dose [F3,28 = 

3.77, P = 0.0217]), and acutely increased time spent in REM sleep ) (time [F11,308 = 22.21, P < 

0.0001]). ACPPBII acutely increased time spent in wake (Figure 32) (time [F11,506 = 117.1, P < 

0.0001], interaction [F33,506 = 2.61, P < 0.0001]), and reduced time spent in NREM sleep (time 

[F11,506 = 115.1, P < 0.0001], interaction [F33,506 = 2.00, P = 0.001]) and REM sleep (time 

[F11,506 = 26.32, P < 0.0001], dose [F3,46 = 4.05, P = 0.0123], interaction [F33,506 = 2.74, P < 

0.0001]). 
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Figure 30. VU0409551 increased time spent in wake. ^^ P < 0.01, 3mg/kg vs. Veh; *P < 0.05, 

**P < 0.01, 10 mg/kg vs. Veh; #P < 0.05, ####P < .0001, 30 mg/kg vs. Veh in Bonferroni post 

hoc test. 
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Figure 31. DCS increased time spent in REM sleep. ^ P < 0.05, 3mg/kg vs. Veh; #P < 0.05, 

##P < .01, 30 mg/kg vs. Veh in Bonferroni post hoc test. 
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Figure 32. ACPPBII increased time spent in wake. ^ P < 0.05, 1mg/kg vs. Veh; #P < 0.05, 

##P < .01, 10 mg/kg, ###P < .001, 30 mg/kg vs. Veh in Bonferroni post hoc test. 
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 ACPPBII exhibited an in vitro IC50 of 45 nanomolar (nM) which was similar in potency 

to the prototypical GlyT1 inhibitor NFPS (Figure 33) (IC50 = 24 nM). ACPPBII was similarly 

brain penetrant as well, achieving concentrations well above its in vitro IC50 (Figure 34). 

ACPPBII also increased 5-HT utilization as evidenced by increased 5-HIAA concentrations in 

the amygdala (Figure 35) (F3,26 = 1.55, P = 0.0392) with no change in 5-HT concentration. 

However, ACPPBII also induced adverse motor effects including a reduction in spontaneous 

locomotor activity (Figure 36) (time [F5,125 = 99.5, P < 0.0001], dose [F3,25 = 5.23, P = 

0.0061], interaction [F15,125 = 3.80, P < 0.0001]). Consistent with the observed toxicity of this 

compound, ACPPBII failed to facilitate the extinction of contextual CF (Figure 37). 
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Figure 33. ACPPBII is a potent inhibitor of GlyT1. ACPPBII exhibited a potency of 45nM in 

inhibiting glycine uptake by GlyT1 in an in vitro assay. NFPS exhibited a potency of 24nM.  
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Figure 34. ACPPBII penetrates the central nervous system similar to the prototypical 

GlyT1 inhibitor NFPS. 
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Figure 35. ACPPBII increase 5-HT utilization in the amygdala. *P < 0.05 vs. Veh in 

Dunnett’s post-hoc test. 
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Figure 36. ACPPBII reduces spontaneous locomotor activity. #P < 0.05, ###P < 0.001, 

####P < 0.0001 10mg/kg vs. Veh. 
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Figure 37. ACPPBII did not enhance extinction learning. ACPPBII failed to promote 

reductions in the freezing response when administered before or after context-mediated 

extinction training at 3 or 30mg/kg, i.p. Arrows represent dose times.  
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APPENDIX B 

 

EFFECTS OF TRAUMATIC STRESS ON OREXINERGIC AND HISTAMINERGIC 

SYSTEMS 

 

Methods 

Subjects 

All male Sprague-Dawley rats (Harlan, Indianapolis, IN) used in the present studies were 

housed under a 12 hour light:12 hour dark cycle and given ad libitum access to food and water. 

All animal experiments were approved by the Vanderbilt University Animal Care and Use 

Committee and experimental procedures conformed to guidelines established by the National 

Research Council Guide for the Care and Use of Laboratory Animals. All efforts were made to 

minimize animal suffering and the number of animals used. 

 

Single Prolonged Stress 

SPS was performed according to Liberzon et al. (315). Briefly, rats were restrained for 2 

hours, followed by forced swim for 15 minutes in 24 ⁰C water. Following a 15 minute recovery 

period, rats were exposed to diethyl ether vapor in a bell jar until anesthesia. The SPS model did 

not cause mortality. SPS did illicit hallmarks of the rodent stress response such as porphyrin 

staining of the eyes, and urination and defecation. There were no major individual differences 

observed in these parameters during each experiment, and no inclusion or exclusion criteria were 

applied prior to the start of EEG recordings or tissue collection. SHAM treatment consisted of 
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placement in a novel procedure room for 2 hours followed by brief handling. All animals were 

placed into fresh cages after treatment.  

 

Tissue collection 

For all biochemical endpoints, rats were randomly assigned to SHAM treatment or one of 

three SPS groups (Day 0, 1 or 7). Rats were briefly anesthetized with isoflurane, and sacrificed 

by decapitation either immediately (Day 0), one day (Day 1), or seven days (Day 7) after SPS; 

SHAM rats were sacrificed immediately after SHAM treatment. Hippocampus, amygdala, and 

PFC were dissected, rapidly frozen on dry ice, and stored at −80 °C for tissue mRNA 

experiments.  

 

Quantitative real-time polymerase chain reaction (qRT-PCR) 

Alterations in mRNA expression levels were measured using Aqueous Micro kits (Life 

Technologies, Grand Island, NY) for RNA extraction, NanoDrop ND-1000 spectrophotometer 

(NanoDrop Technologies, Wilmington, DE) for RNA quantification, QuantiTect Reverse 

Transcription Kit (QIAGEN, Hilden, Germany) for complementary DNA transcription, CFX96 

Real-Time PCR Detection System (Bio-Rad, Hercules, CA) using primers from TaqMan Gene 

Expression Assays (Life Technologies) for qRT-PCR of rat OxR1, OxR2, and HDC. 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an internal control; data are 

presented using the comparative cycle threshold (CT) method normalized to SHAM-treated rats. 

 

Statistical analysis 

For the acute effects of each compound on sleep-wake architecture, and the effect of 

ACPPBII on spontaneous locomotor activity a repeated measures two-way analysis of variance 
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(ANOVA) was applied; if significant, a Bonferroni post hoc test was performed with 

significance defined as P < .05. For the effects of ACPPBII on 5-HT utilization in the amygdala, 

a one-way ANOVA was applied; if significant, a Dunnett’s post hoc test was used with 

significance defined as P < .05.  

 

Results 

SPS increased mRNA concentration of Ox1R in the PFC on Days 1 and 2 after SPS 

(F3,28 = 5.52, P = 0.0042), and on Day 2 in the hippocampus (F3,28 = 3.94, P = 0.0184). SPS 

also increased Ox2R expression in the hippocampus on Day 2 (F3,26 = 3.63, P < 0.0259), but 

had no significant effect in the hypothalamus or amygdala (Figure 37). SPS also caused a 

substantial sustained reduction in mRNA concentration of HDC in the hypothalamus (Figure 38) 

(F3,30 = 4.01, P < 0.0163).  
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Figure 38. SPS caused an increase in mRNA concentration of orexin receptors in the PFC 

and hippocampus. SPS increased mRNA concentration of Ox1R in the PFC on Days 1 and 2 
after SPS, and on Day 2 in the hippocampus. SPS also increased Ox2R expression in the 
hippocampus on Day 2. *P < 0.05, **P < 0.01 vs. SHAM in Dunnett’s post hoc test.  
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Figure 39. SPS caused a decrease in mRNA concentration of HDC in the hypothalamus. *P 

< 0.05 vs. SHAM.  
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