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Chapter 1 : Introduction 

1. Epilepsy  

1) Nomenclature and classification 

Epilepsy is one of the most common neurologic disorders affecting more than 65 million people 

worldwide, including around 0.5% of the population in the United States, and one out of 26 people may 

develop epilepsy during their lifetime.  Epilepsy is characterized by recurrent unprovoked seizures, which 

are caused by overexcited and hypersynchronized neurons in the brain (1-4).  Epilepsy can increase 

mortality, is associated with multiple comorbidities including sudden unexplained death in epilepsy 

(SUDEP) and depression and affects the health and quality of life of patients, thus imposing a burden on 

both individuals and society (4-6). 

As clinical symptoms, seizures are the manifestation of epilepsy.  Seizures can be focal, originating in 

local networks that are limited to one hemisphere.  Seizures can also be generalized, engaging bilaterally 

distributed brain networks.  Generalized seizures include tonic-clonic, absence, myoclonic, clonic, tonic 

and atonic seizures (7, 8).  They are distinct clinic symptoms correlated with different 

electroencephalography (EEG) patterns and are important for epilepsy syndrome diagnosis, prognosis, 

and treatment. 

According to the revised classification by the International League Against Epilepsy (ILAE) in 2010, 

epilepsies are classified as genetic, structural-metabolic, and unknown based on their underlying causes (8, 

9) (Table 1).  Genetic epilepsies, such as channelopathies, are directly caused by a known or presumed 

genetic defect(s); structural/metabolic epilepsies result secondarily from distinct structural or metabolic 

conditions; and unknown epilepsies refer to those with unknown causes.  Although reflecting current 

advances in epilepsy research, this classification is not perfect.  The symptoms could overlap, and not all 

patients can be easily categorized.  The etiologies of many types of epilepsy syndromes are still unknown, 
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and we are not sure whether there is a common mechanism of pathogenesis for patients diagnosed with 

the same epilepsy syndrome.  In addition, the process of epileptogenesis is not clear.  

2) Current treatments 

Most patients with epilepsy are well controlled by antiepileptic drugs (AEDs) and enter long-term 

remission.  However, around 20% of epilepsies are refractory, not responding to current treatments (6, 10, 

11), and many AEDs are associated with side effects (12, 13).  Furthermore, most current AEDs are anti-

seizure, but not anti-epileptogenesis, therapies.  Rather than prevent the development of epilepsy, these 

medications only suppress seizures (14).  After treatment with an initial AED, the seizure recurrence rate 

is as high as 30-40%.  A significant proportion of seizure-free patients also relapse after the termination of 

treatment (6, 15).  Generally speaking, a prior neurologic insult, focal seizures, age of onset below 10 

years or above 65 years, and abnormal EEG patterns are associated with poorer outcomes (6, 15). 

During the process of epileptogenesis, three elements in neuronal circuits could contribute to the 

overexcitation: modification of membrane properties of neurons that generates intrinsic bursting, 

reduction of GABAergic inhibition, and enhancement of excitatory neurotransmission.  Thus, most 

clinical useful AEDs target voltage-gated sodium channels, voltage-gated calcium channels, glutamate 

neurotransmission or/and GABAergic neurotransmission (16, 17) (Table 2).  For example, carbamazepine, 

a major AED, can reduce neuronal high-frequency firing by inhibiting voltage-gated sodium channels 

(18).  Ethosuximide, a first-line AED for absence seizures, blocks T-type calcium channels (19).  

Phenobarbital and benzodiazepines like diazepam and clonazepam, are potentiators of type-A γ-

aminobutyric acid receptors (GABAARs) (20).  Valproate, one of the most common AEDs effective 

against a broad spectrum of seizures, has been suggested to elevate GABA levels, suppress N-Methyl-D-

aspartate (NMDA)-elicited depolarization or block voltage-gated sodium channels (21).  

While AEDs are the most common option for treating epilepsy, there are other therapeutic strategies.  

The ketogenic diet, a high-fat diet effectively increasing the seizure threshold in different animal models, 
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is still used in modern treatment, although its mechanism of action is still not clear (22).  Vagal nerve 

stimulation -- electrical stimulation of the vagus nerve -- has been used when multiple medications have 

failed and surgery is not an option and can decrease the total AED burden for patients (23).  Brain surgery 

to remove or disconnect epileptic regions is an effective treatment for selected patients with intractable 

epilepsy.  Considering current treatment options are not satisfactory, new therapeutic methods based on a 

good understanding of etiology of individual patients will be helpful.  

2. GABAA receptors 

GABA, γ-aminobutyric acid, is the main inhibitory neurotransmitter in the central nervous system 

(CNS).  Although only accounting for 20% of all neurons, GABAergic interneurons are widely 

distributed in the CNS, sending out broad and extensive inhibitory connections to almost every neuron.  

Type-A GABA receptors (GABAARs) are ligand-gated ion channels mostly located at postsynaptic 

membranes that mediate GABA-induced fast inhibitory neurotransmission.  Ubiquitously expressed in the 

brain, GABAARs are not only important for maintaining excitation/inhibition balance but are also critical 

in regulating network oscillations. 

1) GABAAR composition  

GABAARs are pentameric receptors that form a Cl- ion channel (Figure 1-1).  They belong to the 

superfamily of cys-loop ligand gated ion channels.  This family also includes nicotinic acetylcholine 

receptors (nAChRs), 5-hydroxytryptamine type 3 serotonin receptors (5-HT3Rs), and glycine receptors 

(GlyRs) in vertebrates (24, 25).  Five homologous subunits are arranged pseudo-symmetrically, forming a 

central pore allowing ions to pass through (26-28).  Due to the low Cl- ion concentration in most mature 

CNS neurons, opening of GABAAR channels induces the influx of Cl- ions to hyperpolarize the 

membrane, thus maintaining inhibitory tone.  However, during early development, the expression of the 

Na+-K+-2Cl- cotransporter dominates that of the K+-Cl- cotransporter, leading to a high concentration of 
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intracellular Cl- ions.  Thus GABAARs mediate excitatory neurotransmission in immature neurons, which 

is critical for neuronal growth and synaptogenesis (29-31).   

Nineteen different GABAAR subunits, α1-6, β1-3, γ1-3, δ, ε, θ, π, and ρ1-3, have been cloned (Figure 

1-2A).  Interestingly, except for δ, π, and ρ subunit genes, most human GABAAR subunit genes are 

clustered on chromosomes 4, 5, 15, and X, in a common pattern of β-[α]-α-γ (32) .  Each cluster is 

comprised by 1 or 2 α subunit, 1 β subunit and 1 γ subunit genes, where a β subunit gene could be 

replaced by the related θ subunit gene, and a γ subunit gene by the related ε subunit gene.  Chromosome 4 

contains β1, α2, α4, and γ1 subunit genes; chromosome 5 contains β2, α1, α6, and γ2 subunit genes; 

chromosome 15 contains α5, β3, and γ3 subunit genes, while chromosome X contains θ, α3, and ε 

subunit genes.  These gene clusters were suggested to arise from an ancestral gene set, expanding the 

genetic heterogeneity through duplications and chromosomal translocations. 

GABAAR subunits share 60-80% amino acid identity within subunit subfamilies and 20-40% among 

subfamilies (33).  Similar to other subunits from the cys-loop receptor family, GABAAR subunits share a 

conserved structure (Figure 1-2B).  Each subunit contains a large N terminal extracellular domain, 

followed by four transmembrane segments (M1-M4) and a small C terminal tail.  Subunit interfaces 

contributed by extracellular domains provide drug binding sites, the M2 segments line the ion channel, 

and the large cytoplasmic M3-M4 loop is subject to different types of modulation (25, 28, 34-36).  The 

heterogeneity is further increased by alternative splicing (32, 37), RNA editing (38, 39), as well as 

phosphorylation (35, 40). 

However, not all subunit combinations can form functional receptors.  The majority of postsynaptic 

GABAARs are αβγ type receptors (41, 42), with α1β2γ2 receptors being the most abundant receptor 

subtype and accounting for about 40% of all GABAARs (43).  αβγ receptors are composed of two α, two 

β and one γ subunits (44, 45) in a counterclockwise sequence of γ- β-α-β-α as viewed from the synaptic 

cleft (46, 47) (Figure 1-1 C).  Mostly αβγ receptors mediate phasic inhibition responding to the short and 
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transient synaptic GABA release (48).  In contrast, αβδ receptors are predominantly located at 

extrasynaptic membranes (49, 50) and are suggested to mediate tonic inhibition by responding to ambient 

GABA in the extracellular space (48, 51).  These two modes of inhibition (phasic/tonic) are generally 

associated with different subcellular localization (synaptic/extrasynaptic), GABA sensitivity (low/high), 

and kinetic properties (fast/slow desensitization) of these two receptor types (48, 52). 

2) Expression and function of major GABAAR subunits 

Although not all subunit combinations can form functional receptors, more than twenty different 

GABAAR subtypes still exist.  The heterogeneity of GABAAR subunits may be important to guarantee the 

redundancy.  The heterogeneity of GABAAR subunits also enables modulation of GABAergic 

neurotransmission involved in different physiologic activities (Table 3). 

α subunits:  Six different α subunits have been cloned, among which α1 subunits are the mostly 

widely distributed in adult brain (53-55).  For example, α1 subunit-containing receptors account for more 

than 50% of GABAARs in rodent cerebellum (41, 42) and more than 40% benzodiazepine binding sites in 

the whole rat brain (53).  α2 subunits are expressed in many regions including cortex (but limited to outer 

layers), showing strong expression in olfactory bulb, hippocampus, amygdala, septum, striatum, nucleus 

accumbens and hypothalamus.  α3 subunits are also expressed in the cortex, but mostly in inner layers.  

α3 subunits are also expressed in the olfactory bulb, amygdala, reticular nucleus of thalamus, but weak in 

other thalamic regions (54).  During development, the expression of α2/3 subunits are dominant in most 

brain regions at embryonic stages, while the expression of α1 subunits starts perinatally (56, 57).  

However, the expression of α1 subunits increases dramatically after birth, while the expression of α2/3 

subunits decreases in many brain areas, thus α1 subunits become the most prevalent α subunits of mature 

brain.   The expression of α4 subunits begins at the perinatal stage (56).  In adult brain, its expression is 

high in thalamus, striatum and nucleus accumbens, and the molecular layer of the dentate gyrus.  α4 
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subunits are less concentrated in cerebral cortex and CA1 and are low or absent in the cerebellum (54).  

The expression of α5 subunits also begins at embryonic stages and increases after birth, but decreases 

quickly in the adult cortex and thalamus (56), while the expression in the hippocampus stays strong (54).  

Different from other α subunits, the expression of α6 subunits is quite unique and dominant in postnatal 

granule cells in cerebellum, and its expression is increased during postnatal development (54, 56). 

Although more than half of GABAARs were lost and recorded miniature inhibitory post-synaptic 

current (IPSC) amplitudes were greatly reduced in α1 subunit knock-out mice, the mice were still viable 

and fertile (58, 59), which could be explained by compensatory mechanisms.  The protein, but not mRNA, 

levels of α3, α4, and α6 subunits were increased in different brain regions (60-62).  Increased tonic 

currents mediated by reduced GABA transporter (GAT) activity were also reported in cerebellar granule 

cells (63).  Micro-array analysis revealed large transcriptional responses to regulate the excitability and 

plasticity of neurons, which may offset the α1 subunit deficiency (64).  However a recent more detailed 

study reported reduced viability and absence-like seizures in congenic homozygous and heterozygous α1 

subunit knock-out mice respectively (65), indicating that α1 subunits are still indispensable.  Studies on 

α1(H101R) subunit knock-in mice, where a critical benzodiazepine binding site of the subunit was 

mutated, showed that α1 subunits might be involved in myorelaxant and motor-impairing effects of 

diazepam, but not the anxiolytic and ethanol-potentiating effects (66, 67).  

Highly expressed in limbic system, α2 and α3 subunits are involved in anxiety and depression (68).  

α2 subunit knock-out mice exhibited depressive-like activities (69).  Contrary to α1(H101R) subunit 

knock-in mice, sedative, motor-impairing and anticonvulsant effects of diazepam were retained in 

diazepam-insensitive α2(H101R) and α3(H126R) subunit knock-in mice (70).  Further behavioral tests 

using these two mouse lines suggested that α2, but not α3, subunit-containing GABAARs mediated the 

anxiolytic effects of diazepam (70), although later pharmacological studies indicated α3 subunits could 

also be involved in anxiolysis (71, 72).  Besides, α3 subunit knock-out mice showed remarkably 
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attenuated sensorimotor-gating mediated through a deficit of GABAergic neurotransmission in 

dopaminergic neurons, which is a typical phenotype of schizophrenia (73). 

Highly expressed in dentate gyrus and thalamus, α4 subunits play an important role in tonic 

inhibitory currents by forming extrasynaptic α4β2δ receptors (74, 75).  α4β2δ receptors are not sensitive 

to benzodiazepine modulation, but are sensitive to ethanol potentiation (76).  α4 subunit knock-out mice 

were superficially indistinguishable from wildtype mice (75).  While the tonic currents were absent in 

dentate granule cells and thalamic relay neurons, the expression of α2 and γ2 subunits was increased in 

the hippocampus (77), which may compensate for the reduced inhibition.  Behaviorally, the global α4 

subunit knock-out mice were insensitive to ataxic, sedative and analgesic effects of the hypnotic drug 

gaboxadol (75) and were more susceptible to pentylenetetrazol-induced seizures (78), but showed normal 

responses to moderate-to-high doses of ethanol (78).  Virus-mediated conditional α4 subunit knock-down 

in rats that reduced expression of α4 subunits in the shell, but not the core, structure of nucleus 

accumbens caused decreased consumption of low-to-moderate levels of alcohol, suggesting the 

involvement of α4 subunits in alcohol uptake (79). 

Enriched in hippocampus, α5 subunit-containing receptors account for around 20% of hippocampal 

αβγ receptors (80) and are located both synaptically and extrasynaptically (81, 82).  Recordings from the 

CA1 region in α5 subunit knock-out mice showed reduced IPSC amplitudes, no change of long term 

potentiation (LTP), but increased paired-pulse facilitation of the field excitatory postsynaptic potential 

(EPSP).  Consistently, α5 subunit knock-out mice had better performance in Morris water maze testing, 

indicating a role for them in learning and memory (83).  Similarly, α5(H105R) subunit knock-in mice, 

where the expression of α5 subunits was reduced by 20%, exhibited facilitated responses in trace fear 

conditioning test, indicating improved hippocampus-associated learning (84).   

α6 subunits are highly expressed in cerebellar granule cells, present in about 40% of cerebellar αβγ 

receptors, while weak expression in substantial nigra, thalamus and inferior colliculi was also reported 
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(85).  Posttranslational loss of δ subunits was identified in cerebellar granule cells, indicating a close 

association.  However, α6 subunit knock-out mice had no overt behavioral deficits (86). 

β subunits:  All three β subunit subtypes are widely distributed, especially in the cortex.  Their 

expression is complementary in subcortical regions and cerebellum.  Specifically, β2 subunits are highly 

expressed in most regions of thalamus, except in the reticular nucleus, where β1 and β3 subunits are 

expressed (54).  During early development, β3 subunits are relatively abundant in many brain regions, but 

their expression is decreased in adult brain. 

β1 subunit expression begins after birth with weak expression in the adult cortex and thalamus, and 

strong expression in the hippocampus.  No β1 subunit knock-out mice have been characterized.  Recently, 

two β1 subunit knock-in mice were generated by induced or spontaneous mutagenesis and both mouse 

models, showed increased spontaneous GABAAR channel openings and increased tonic currents in 

nucleus accumbens, exhibited increased alcohol consumption, indicating that β1 subunits are related to 

alcohol abuse (87).  β2 subunits are the dominant β subunits in adult brain, accounting for more than half 

of the GABAARs (58).  The expression of β2 subunits could be identified at embryonic stages and 

increased during development, highly expressed in cortex, thalamus, pallidum and cerebellum.  Although 

receptors containing different types of α subunits were reduced in β2 subunit knock-out mice, the mice 

did not show major phenotypic abnormalities except higher spontaneous locomotor activities (58).  The 

expression of β3 subunits also starts at an early embryonic stage but decreases after P12 in many brain 

regions and is almost gone in adult thalamus (except the reticular nucleus), while the expression in the 

hippocampus is still relative high.  Interestingly, mice devoid of β3 subunits showed a severe phenotype 

(88), including high neonatal mortality rate, reduced life span, cleft palate, hyperactivity and epileptic 

seizures.  The amount of GABAARs was reduced in many brain regions of β3 subunit knock-out mice, 

while the GABAergic inhibition was almost absent in the reticular nucleus, and thalamocortical 

oscillations were greatly intensified (89).  
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γ subunits:  Out of three γ subunits, the γ2 subunit is most abundant.  γ2 subunit expression begins 

around E17 (56).  In adult, they are highly expressed throughout the brain, but relatively weakly in the 

thalamus where the subunit expression is decreased during development.  Meanwhile, γ1 subunit 

expression is limited to some midbrain areas, while γ3 subunit expression is weakly distributed through 

the brain (54).   

In γ2 subunit knock-out mice, the majority of benzodiazepine binding sites were gone, but GABA 

binding sites were not affected (90).  No complementary up-regulation of other subunits was observed, 

and GABA-evoked currents from knock-out dorsal root ganglion (DRG) neurons were greatly reduced 

(90). γ2 subunits are also required for maintenance of postsynaptic GABAARs (91), and αβ receptors were 

formed in the absence of γ2 subunits (90).  Most of mice devoid of γ2 subunits died within a few days 

after birth, with normal embryonic development.  Those that survived exhibited severe sensorimotor 

deficits and died before P18 (90), consistent with physiological importance of γ2 subunits.  Heterozygous 

γ2 subunit knock-out mice also showed about a 25% reduction of γ2 subunits, most pronounced in 

cerebral cortex, hippocampus and thalamus, accompanied by reduced GABAAR clusters and exhibited 

elevated anxiety (92).  Loss of one Gabrg2 allele in forebrain neurons in mice from early embryonic 

stages will cause reduced hippocampal neurogenesis and anxiety, but not when that allele is lost at P17 

(93).  In addition, absence-like spike-wave-discharges were reported from heterozygous γ2 subunit 

knock-out mice in DBA background (94).  Specifically, γ2L and γ2S subunits are two γ2 subunit splicing 

isoforms that differ by eight amino acids including a serine residue.  It was suggested that 

phosphorylation of this serine residue inhibited the self-trafficking of γ2L subunits and in the contrast γ2S 

subunits could insert into surface membrane without forming the heteropentamer (37).  These two 

isoforms are almost equally expressed in CNS, although the amount may differ in different brain regions 

during different age (95-97) and the ratio was reported to be altered in schizophrenia patients (98).  

However, replacement of one isoform by the other did not have big impact on mouse behavior except for 

ethanol response (99, 100).  How these two isoforms affect the physiology and pathology is still a big 



10 

 

unknown.  Knock-out mice devoid of γ1 or γ3 subunits have not been reported.  γ3 subunits could form 

weak postsynaptic clusters with α3 subunits, which was increased in homozygous γ2 subunit knock-out 

mice.  Interestingly, although the overexpression of γ3 subunits partially restored GABAergic 

neurotransmission in γ2 subunit knock-out mice, the mice still showed perinatal or postnatal lethality.  In 

addition, reduced fertility and seizures were observed in γ3tg/ γ20/+ mice, indicating the dominant negative 

effects of γ3 subunits (101). 

δ subunits:  δ subunits are expressed in postnatal cortex, striatum, thalamus, dentate (limited to 

dentate granule cells in hippocampus) and cerebellar granule cells (54, 56).  Primarily coupled with α4 or 

α6 subunits, δ subunits form extrasynaptic αβδ receptors, which have distinct patterns of channel kinetics, 

drug responses and subcellular localizations compared to αβγ receptors (102).  Noteworthy, δ subunit-

containing receptors are sensitive to the action of low concentration of neurosteroid, steroid that is 

synthesized in the nervous system and potentiate GABAA receptors (103).  Mice devoid of δ subunits 

showed higher mortality, decreased pentylenetetrazol (PTZ) -induced seizure threshold and non-

responsiveness to neuroactive steroids (104, 105).  GABA binding sites were greatly reduced in δ subunit 

knock-out mouse brain, and IPSC decay in hippocampus became faster.  Learning and memory was 

normal in knock-out mice, although better spatial learning was reported during puberty in knock-out mice 

(106), and a more recent study showed that female mice had increased trace fear conditioning but not 

delayed fear conditioning, which could be caused by changed neurosteroid regulation (107).  

To summarize, GABAARs are broadly expressed in the brain and vital in different brain functions.  

They are targets of many pharmaceutical drugs such as benzodiazepines and barbiturates as well as 

neurosteroids (108, 109).  In addition, GABAARs are associated with multiple disorders, including 

anxiety (70), depression (110), schizophrenia (73), alcoholism (111), autism (112, 113) and epilepsy 

(114-116).  
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3. Epilepsy-associated mutations in GABAARs 

Although epilepsies could be caused by acquired factors such as brain tumors and injury, genetic 

factors play an important role, which may account for more than 60% of all cases (117).  Family 

aggregation studies showed that for patients with epilepsy, the recurrent risk ratio was around 2.5 in first-

degree relatives; twin studies showed that the concordance of epilepsy was much greater in monozygotic 

twins compared to dizygotic twins; and linkage analysis also revealed phenotype-genotype cosegregation 

(118).  While the genetic factors contributing to epilepsy is complicated and multiple genes are usually 

involved, studies on multiplex pedigrees from families with epilepsy identified specific epilepsy-

associated monogenetic mutations in ion channels, such as voltage-gated sodium channels (119), voltage-

gated potassium channels (120), nicotinic acetylcholine receptors (121) and GABAARs (122, 123).  

The GABAergic system has been implicated in epilepsy.  Reduced benzodiazepine binding was 

observed in the epileptic foci of patients with epilepsy (124, 125).  Subunit specific changes in surface 

GABAARs was revealed in rat models of induced status-epilepticus (126).  Enhanced tonic inhibition in 

thalamocortical neurons was identified in several different models of absence epilepsy (127).  Meanwhile, 

an increasing number of mutations were identified in GABAARs from families or individuals with 

epilepsy.  Mutant proteins may activate the cellular surveillance machinery and could impact GABAergic 

function through quite different ways.  A comprehensive understanding of the molecular deficits and 

epileptogenesis mechanism underlying these mutations would benefit the diagnosis, prognosis and 

treatment design (Table 4). 

1) Epilepsy-associated missense mutations in GABAAR subunits 

Missense mutations, or non-synonymous mutations, are single nucleotide changes causing the 

replacement of one residue by another residue.  The location of the residue in the mutant protein and the 

similarity between these two residues determines how disruptive the mutation is.  Nine epilepsy-

associated missense mutations have been identified in GABAARs and are distributed among α1, β3, γ2 
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and δ subunit genes.  They decreased GABAAR-mediated inhibition to different extents, impairing 

receptor biogenesis or decreasing channel function.   

GABRA1(A322D):  Missense mutations could affect protein folding and lead to degradation of mutant 

protein (128), with the GABRA1(A322D) mutation as an example.  GABRA1(A322D) was identified in a 

four-generation French Canadian family with juvenile myoclonic epilepsy (JME), and all affected 

members carried one mutant allele.  An alanine residue conserved in the α subunit subfamily was 

switched to an aspartic acid in the M3 domain of α1 subunits (129).  This mutation is associated with 

lower subunit expression, altered channel kinetic properties and smaller amplitude of GABA-evoked 

currents.  Further study suggested that the major defect was faster degradation caused by subunit 

misfolding.  The M3 domain of mutant α1 subunits failed to insert into the membrane, and thus the 

misfolded mutant protein was presented to endoplasmic reticulum (ER) chaperone molecules, activated 

ER-associated degradation (ERAD) and was quickly degraded by both lysosome and proteasome 

pathways (130-133).  The amount of mutant α1 subunits was dramatically reduced, and most residual 

mutant α1 subunits were retained in the ER (131, 134), which could still assemble with other GABAAR 

subunits in the ER, and slightly prevent their trafficking to the surface (132).  Mutant α1(A322D) 

subunits that were trafficked to the cell surface were also internalized faster through dynamin-dependent 

endocytosis (135).  The histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) 

was reported to increase the elevated interaction between mutant α1(A322D) subunits and chaperone 

molecules, increase the transcription, folding, trafficking and function of mutant α1(A322D) subunits, 

partially through increasing BiP chaperone level by inhibiting HDAC7 (136).  As heterozygous Gabra1+/- 

knock-out mice experienced spike wave discharges on EEG and absence-like seizures, α1 subunit 

haploinsufficiency could contribute to the epilepsy syndromes in patients carrying the GABRA1(A322D) 

mutation (65). 
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GABRA1(D219N), GABRG2(R82Q), GABRG2(R177G), GABRB3(P11S), GABRB3(S15F), 

GABRB3(G32R):  The biogenesis of GABAARs is complicated and inefficient.  Although different 

intermediate oligomers are formed, only those with the correct pentameric composition can pass quality-

control checkpoints and can be inserted into the surface membrane (137, 138).  The missense mutations 

GABRG2(R82Q),GABRG2(R177G),GABRA1(D219N),GABRB3(G32R), GABRB3(P11S), and 

GABRB3(S15F) disrupted receptor biogenesis and membrane delivery, consequently depressing 

inhibitory neurotransmission. 

The GABRG2(R82Q) mutation is one of the first and most extensively studied epilepsy-associated 

mutations identified in GABAARs.  It was originally found in a large Australian family with childhood 

absence epilepsy (CAE) and febrile seizures (FS) (123).  A highly conserved (among cys-loop receptor 

subunits) arginine residue located in an N-terminal loop of γ2 subunits was replaced by glutamine.  

Although different mechanisms including altered channel kinetics (139, 140), impaired benzodiazepine 

binding (123, 139), smaller current amplitudes (141-143) and less surface expression of γ2 subunits (142-

146), have been suggested, most evidence was consistent with the R82Q mutation impairing surface 

expression of GABAARs containing γ2 subunits and thus reducing postsynaptic inhibitory currents, a 

conclusion that was subsequently confirmed in a knock in mouse model (147).  The R82 residue is 

located at the positive face of γ2 subunits in a homology model, contributing to the γ(+)/β(-) interface 

through salt bridge connections.  It seems that the conserved region around the R82 residue plays a role in 

receptor assembly (143, 144, 146), and thus, the mutant γ2 subunits were trapped in the ER (142).  A 

small amount of mutant γ2 subunits were shown to still form functional receptors on the surface (141), 

although they were reported to be subjected to faster endocytosis (148).  However, it is still controversial 

whether the mutant γ2 subunits affect the surface insertion of their assembly partners (142, 146).  

Overexpression of mutant γ2(R82Q) subunits in hippocampal neurons did not affect synaptic IPSPs, 

which is largely produced by GABA binding to GABAARs containing α1 subunits, but was reported to 
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reduce extrasynaptic tonic currents by preventing surface expression of α5 subunits, suggesting subunit-

dependent dominant negative effects (145).  

Although individual family members carrying the R82Q mutation exhibited different syndromes 

including FS, CAE and generalized epilepsy with febrile seizures plus (GEFS+), genetic analysis 

indicated that this mutation alone could account for FS, while an interaction with other gene/genes is 

required for the CAE phenotype (149).  This is partially consistent with observations in a knock-in mouse 

model carrying this mutation (150).  While the homozygous knock-in mice were not viable, heterozygous 

knock-in mice displayed spontaneous absence seizures characterized by a 5-8 Hz, high amplitude spike-

wave-discharges (SWDs) on EEG, which could be blocked by antiepileptic drug ethosuximide, similar to 

the typical 3 Hz SWDs recorded from CAE patients (147).  Decreased surface γ2 subunits and decreased 

cortical inhibition in the heterozygous knock-in mice (147) is also well correlated with the reduced 

benzodiazepine binding sites (151) and increased intracortical excitability (152) in human patients.  More 

detailed characterizations comparing mice from different backgrounds suggested that while loss of γ2 

subunit function could account for the absence seizure phenotype, the R82Q mutation might be 

responsible for the FS phenotype (153).  However, it is still controversial whether the elevated 

temperature during FS will exacerbate the defects of this mutation (154, 155).  It is worth mentioning that 

in a conditional knock-in study, the presence of the R82Q mutation increased seizure susceptibility 

compared to a hypomorphic allele and exhibited developmental impacts on epileptogenesis (156).  Thus 

the R82Q mutation had effects in addition to haploinsufficiency of the Gabrg2 gene and the defects 

during development can exacerbate the epilepsy symptom.   

GABRG2(R177G), GABRA1(D219N) are also missense mutations identified from small pedigrees 

with GFES+ in γ2 and α1 subunits respectively (157, 158).  Although they were shown to affect the 

channel kinetics and the response to benzodiazepines, it seemed that the major defects were during 

biogenesis and both mutant subunits were partially trapped in the ER, reducing the surface level of 

subunits and consequently decreasing current amplitudes (157-159).   
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GABRB3(P11S), GABRB3(S15F), and GABRB3(G32R) are three CAE-associated missense mutations 

in β3 subunits that were reported to cause hyperglycosylation of β3 subunits and to significantly decrease 

GABAAR current amplitudes (160).  P11S and S15F are located in exon1a of the GABRB3 gene that 

encodes part of the signal peptide.  Although identified in multiple CAE and autism families (161, 162), 

P11S was also identified in healthy controls (162), thus it is still controversial whether P11S is an 

epilepsy-associated mutation or it is just a risk variant.  Differently, G32R is located in the N terminus of 

mature β3 subunits.  Further characterization suggested that G32R was located in the α1(+)/β3(-) subunit 

interface, and the mutation might affect the salt-bridge formation in the interface.  When coexpressed 

with α and γ subunits in human embryonic kidney (HEK) cells, mutant β3(G32R) subunits increased the 

surface level of β3 subunits, decreased the surface level of γ2 subunits and decreased channel current 

amplitudes.  Interestingly, the mean open time of single α1β3γ2L receptor channels was also reduced by 

this mutation (163).  Generally, GABRB3(P11S), GABRB3(S15F), and GABRB3(G32R) mutations 

slightly decrease the current amplitude of β3 subunit-containing receptors by affecting receptor 

biogenesis.  Since a loss of β3 subunits intensifies thalamocortical oscillations (89), these mutations could 

increase seizure susceptibility by impacting the thalamocortical circuitry.   

GABRG2(K328M), GABRD(E117A), GABRD(R220H):  The gating process of GABAARs is through 

a series of conformational change and domain interactions (164).  Thus structural abnormalities impacting 

channel gating will also alter channel function.  The missense mutations GABRG2(K328M), 

GABRD(E117A), and GABRD(R220H) were found to alter properties of both macroscopic and 

microscopic currents. 

The GABRG2(K328M) mutation was found in a French family with GEFS+ (122).  A positively 

charged lysine residue in the extracellular M2-M3 linker of γ2 subunits, conserved among GABAAR and 

glycine receptor subunits, was converted to methionine.  The M2-M3 linker where the lysine residue is 

located has been shown to participate in channel gating (165).  In response to GABA, the homologous 

K278 residue in α1 subunits moves closer to the negatively charged D149 residue in loop 7, indicating 
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that these two regions move closer during the gating process (166).  Although decreased current 

amplitude (122, 167) was reported using an ultra-fast exchange system (rise time shorter than 400 µs) to 

mimic the synaptic physiology, our lab found faster deactivation using excised macropatches and shorter 

single channel mean open time of GABA-evoked currents recorded from mutant α1β3γ2(K328M) 

receptors (141), which will lead to depressed GABAergic inhibition.  This observation was confirmed by 

the finding of faster decay of synaptic IPSCs in γ2(K328M) subunit transfected neurons (145).  No 

significant change of protein expression was identified (145, 168).  Compared to the aforementioned 

mutations that impaired protein biogenesis, the K328M mutation affected the channel activity of 

GABAAR receptors.  Reduced volume of negative charge being transferred or the altered temporal 

kinetics of synaptic inhibition can cause the epilepsy phenotype.  

The GABRD(E117A)and GABRD(R220H) mutations found in GEFS+ and JME families, respectively, 

are located in the extracellular N-terminal domain of δ subunits and reduced channel current amplitudes 

(169).  Although these two mutations also affected subunit trafficking slightly, the major defects were 

caused by reduced single channel opening time, suggesting the function of mutant receptors is impaired 

(170).  As the PTZ-induced seizure threshold was lower in δ subunit knock-out mice (104, 105), the 

dysfunction of mutant δ subunit-containing receptors could contribute to the epilepsy phenotype. 

2) Epilepsy-associated nonsense/frame-shift mutations in GABAAR subunits 

Instead of single amino acid alteration, truncation mutations caused by nonsense or frame-shift 

mutations may generate very different proteins.  Nonsense mutations are non-synonymous mutations 

where a codon coding for an amino acid residue is replaced by a stop codon, causing the translation 

machinery to pause and generate a truncated protein.  Frame-shift mutations are insertions or deletions 

that often cause a shift of the translation reading frame and usually also generate truncated protein.  

Depending on the position of the novel stop codon, or premature translation-termination codon (PTC), 
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mutant truncated protein could exhibit different stability and properties and affect channel function to 

different extents, ranging from pure loss of function to severe dominant negative effects. 

GABRA1(975delC, S326fs328X), GABRG2(Q40X), GABRG2(R136X):  Nonsense-mediated mRNA 

decay (NMD) is a post-transcriptional surveillance mechanism that eliminates abnormal transcripts with 

PTCs.  Generally, PTCs located at least 50-55 nt upstream of the last exon-exon junction will elicit NMD 

(171).  The GABRA1(975delC, S326fs328X) deletion mutation was identified in one sporadic CAE 

individual.  A deletion in exon 10 of GABRA1 caused a shift in the reading frame, resulting in a stop 

codon 74 nt upstream of the last exon-exon junction (172, 173).  A study using minigene constructs 

containing intron 10 showed that the mutant α1 subunit mRNA was reduced, which could be reversed by 

silencing the NMD essential factor UPF1, confirming activation of NMD machinery (173).  Similarly, 

GABRG2(Q40X) (174) and GABRG2(R136X) (175) are two nonsense mutations located in the second 

exon of the GABRG2 gene and both PTCs activate the NMD machinery.   

Although mutant mRNAs harboring PTCs could be degraded, NMD efficiency is not 100% and 

varies among different cell types (176, 177).  A certain amount of truncated protein could still be 

synthesized from the un-degraded mutant mRNA.  The mutant protein generated by GABRA1(975delC, 

S326fs328X), GABRG2(Q40X) and GABRG2(R136X) mutations were all trapped in the ER (175, 178), 

and the truncated mutant GABRA1(975delC, S326fs328X) subunits were shown to be degraded faster 

through ERAD (173). 

GABRG2(Q390X), GABRG2(W429X), GABRG2(S443delC):  In contrast, mutant mRNA transcripts 

harboring PTCs in the last exon do not activate the NMD machinery.  GABRG2(Q390X) is one such 

mutation.  Q390X is a nonsense mutation identified in a family with GEFS+ (179), and the proband was 

diagnosed with the severe myoclonic epilepsy in infancy (Dravet syndrome).  This mutation results in a 

PTC in the large M3-M4 cytoplasmic loop of γ2 subunits, generating a truncated peptide lacking the 

fourth transmembrane domain and the small C-terminal tail.  With “heterozygous” coexpression of 

mutant γ2 subunits with α1, β2, and wildtype γ2 subunits in HEK cells, the mutant γ2 subunits were 
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retained in the ER and GABA induced currents were substantially reduced.  Mutant γ2 subunits also 

prevented membrane insertion of wildtype α1, β2 and wildtype γ2 subunits through subunit 

oligomerization and degraded the partnering α1 subunits by ERAD through ubiquitin-proteasome 

pathway, producing strong dominant negative effects (180).  The strong dominant negative effects may 

come from the surprisingly high stability of mutant γ2(Q390X) subunits, which were subjected to 

inefficient slow degradation.  Accumulated in the ER, the mutant subunit protein formed high-molecular-

mass protein complexes, activated ER-resident stress markers, and were degraded through both 

proteasome and lysosome pathways (181, 182). 

GABRG2(W429X) is another GEFS+-associated nonsense mutation that is similar to GABRG2(Q390X) 

but with smaller dominant negative effects (182).  GABRG2(S443delC) is a GEFS+-associated frameshift 

mutation caused by a deletion of cytosine in the last exon, generating a new stop codon in the three prime 

untranslated region (3’-UTR) .  Mutant γ2 subunits of higher molecular weight were generated by this 

frameshift mutation, although to a lesser amount, and were trapped in the ER (183).  Haplo-insufficiency 

of γ2 subunits may account for the major effects. 

3) Epilepsy-associated noncoding mutations in GABAAR subunits 

GABRB3(-897T/C), GABRA1(K353delins18X), GABRG2(IVS6+2T->G):  Although exonic 

information encoding the protein sequence is critical for gene function, mutations located in the 

noncoding regions, including promoter, intron, 5’ or 3’ untranslated regions could also affect its normal 

behavior.  GABRB3(-897T/C), GABRA1(K353delins18X), and GABRG2(IVS6+2T->G) are three such 

epilepsy-associated mutations identified in noncoding regions of GABAAR subunit genes. 

GABRB3(-897T/C) is a SNP enriched in CAE patients.  It is located in the promoter region of exon1a 

of GABRB3, encoding for a fetal splice variant of β3 subunits (184).  Reporter assay indicated that the -

897C haplotype reduced the transcription activity compared to the -897T haplotype, possibly by reducing 

the binding with neuronal specific activators (185).   
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GABRA1(K353delins18X) is an intronic mutation identified in a GEFS+ family.  The extra 25 nt in 

intron 10 of GABRA1 is located close to the splice branching point of exon 11, causing intron retention, 

translating parts of the intronic amino acids and generating a PTC in the M3-M4 loop of α1 subunits.  

When coexpressed with β2 and γ2 subunits, mutant α1 subunits were retained in the ER and totally 

abolished GABA evoked currents (158).   

GABRG2(IVS6+2TG) is an intronic mutation in the splice donor site of intron 6 of GABRG2 that 

segregated with CAE and FS in a small pedigree (186).  A cryptic splice donor site was activated by the 

mutation resulting in retention of 53 bp of intron 6 were and causing a frame shift in exon 7 that produced 

a PTC.  NMD was activated to reduce the amount of mutant γ2 subunit transcripts.  Meanwhile, the 

truncated mutant protein generated was retained in the ER and increased ER stress (187). 

4. Future issues in genetic epilepsies 

Characterization of monogenic epilepsy-associated mutations has advanced our understanding of 

genetic epilepsy.  However, genetic epilepsy is complicated, and our current knowledge has only 

disclosed a small tip of the iceberg.  How genetic information causes epilepsy in different individuals and 

how to design related therapies needs further investigation. While I am discussing issues need to be 

addressed in future in the following paragraphs, I will show how we characterized three different types of 

epilepsy-associated mutations found in GABRG2 gene and how we developed corresponding potential 

treatments using different model systems in the next three chapters.  

1) Genetic epilepsies are complicated disorders. 

Most epilepsy-associated GABAAR mutations discussed above come from studies of epilepsy 

pedigrees and were enriched in genes coding α1, β3, γ2 and δ subunits.  Considering the wide expression 

pattern of these subunits and the epilepsy related phenotypes observed in respective knock-out studies, it 

is not surprising that these mutations have big contributions to epilepsy syndromes found in patients 
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carrying these mutations, if they are not the only contributors.  However, although pedigree studies are 

useful and effective in identifying epilepsy-associated mutations, monogenic epilepsy only accounts for a 

very small proportion of genetic epilepsy, and many patients with genetically complex forms of epilepsy 

do not have a family history of disease transmission (188).  Even for people carrying the same monogenic 

epilepsy mutation, the disease penetrance is not complete at all and patients exhibit quite diverse 

symptoms with different severity, further indicating the involvement of risk variants in susceptible genes.   

Recently a GABRA6(R46W) mutation in α6 subunits was identified in one patient and shown to 

decrease the receptor current amplitude by impairing gating and assembly (189, 190).  But whether 

dysfunction of α6 subunits could affect seizure susceptibility is still unknown.  A large ion channel gene 

exon sequencing project also revealed several new GABAAR subunit gene variants in patients with 

epilepsy (191).  Without support from genetic segregation, it is difficult to speculate their roles in 

epileptogenesis.  In addition, several de novo mutations in β1 and β3 subunits were also identified from 

patients with epileptic encephalopathies by whole exome sequencing (192).  This sporadic genetic 

information will not be easily revealed without the development of next-generation-sequencing 

techniques, and further characterization of these de novo mutations may give us better perspectives about 

genetic epilepsy.  

Similar to epilepsy-associated mutations in GABAARs, many mutations have been identified in other 

genes especially those encoding ion channels through pedigree studies or candidate gene screening in 

patients and families with epilepsy (193, 194).  However, a study comparing the exonic information of 

ion channel genes between epilepsy patients and a control cohort found that it was impossible to predict 

outcomes based on the burden of mutations in ion channel genes.  With the invention and development of 

next-generation sequencing techniques, more mutations/variants will be discovered, which may change 

our understanding of epilepsy diagnosis and prevention (191, 192).  Thus, how interactions among 

different risk genes and accumulation of epilepsy-associated variants lead to epilepsy, would be an 

important and interesting topic worthy of investigation. 
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2) What can be the next generation AEDs? 

As mentioned above, current treatment does not prevent the process of epileptogenesis, and around 20% 

of epilepsy cases are refractory.  Thus, treatments targeting the etiology of epilepsy could be beneficial.  

Epilepsy research in recent decades has greatly advanced our understanding of why the epilepsy happens 

and how the epilepsy is generated.  Novel targeted therapeutic strategies accompanied by technical 

advancements could potentially prevent disease onset or slow the progression of epilepsy.  Although most 

new findings have been focused on acquired epilepsies caused by focal insult, underlying principles could 

be applied to treat genetic epilepsies. 

One candidate is gene therapy.  Gene interventions using DNA or RNA to replace cellular function 

are defined as gene therapy (195), with adeno-associated virus and lentivirus being the most common 

gene therapy vectors.  They are relative safe, easily manipulated and efficient, and thus have been used to 

treat CNS disorders in rodent models and are being evaluated by on-going clinical trials.  Introducing 

different genetic information to disease onset region could specifically restore the loss of function, correct 

the dominant-negative effects, or ameliorate cell damage during/after epileptogenesis.  For example, viral 

delivery of neuroprotective factors including FGF-2 and BDNF (196), GDNF (197), and Nrf2, a 

transcription factor orchestrating neuroprotective response，all reduced seizures in mice with temporal 

lobe epilepsy (TLE) (198).  Infusion of constructs expressing seizure-inhibiting factors, mostly 

neuropeptides, could inhibit neuronal activities and attenuate activities of induced seizures (199-204).  

Expression or restoration of inhibitory ion channels including Kv1.1 potassium channels (205), GABAAR 

α1 subunits, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channel (206) have been 

shown to be both antiseizure and antiepileptogenic in several rodent models of induced seizure.  The 

invention of optogenetic tools further facilitated the control of this method.  Optogenetic inhibition of a 

subset of neurons in the epileptic focus could also attenuate toxin-and stroke-induced seizures (205, 207).  

Although no gene therapies have been studied on models of genetic epilepsies, it will not be surprising if 
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restoration of mutant gene function or restoration of downstream pathways caused by the mutation, could 

also suppress seizure activities in genetic epilepsies. 

Another candidate is interneuron transplantation.  GABAergic interneurons are important elements in 

inhibiting neuronal firing and orchestrating the network activity in the brain.  Loss of interneurons (208) 

or interneuron dysfunction (113, 209) has been observed in different models of epilepsy, suggesting that it 

could be beneficial to replace interneurons in epileptic brain.  For example, reduced interneuron 

excitability was reported in SCN1a knock-out mice, a model of severe Dravet syndrome.  Grafted 

embryonic medial ganglionic eminence (MGE) cells could integrate into local circuit of postnatal brain, 

develop into functional GABAergic interneurons and increase inhibitory neurotransmission (210).  

Transplantation of MGE precursors into cortex of neonatal mice devoid of Kv1.1 potassium channels 

successfully reduced the seizure duration and frequency (211).  Compared to MGE precursors, stem cell-

derived interneurons are more accessible.  Mouse embryonic stem cell-derived GABAergic precursors 

successfully developed into functional GABAergic neurons and integrated into local circuits after 

transplantation into the dentate gyrus of mice experiencing TLE (212).  Transplanted neural stem cells 

were shown to improve the cognitive deficits in kainic-acid induced TLE mice (213).  In future, with 

efforts to better enrich GABAergic precursors, induced interneurons could be tested in models of genetic 

epilepsies.    

Besides gene therapy and interneuron transplantation, focal cooling (214) and deep brain stimulation 

(215) are also used in epilepsy treatments.  Furthermore, strategies used in treatments of other disorders, 

could be tried in epilepsy, especially genetic epilepsy.  Pharmacological chaperones are small chemical 

molecules that selectively bind with the target protein, stabilize the structure and facilitate folding.  

Proteostasis chaperones are also small chemical molecules like enzyme inhibitors targeting the pathways 

of protein processing.  Molecular chaperones are protein molecules like heat shock proteins that assist 

with the biogenesis of target proteins.  All of them have been studied in disorders including 

neurodegenerative diseases, lysosomal storage diseases and cystic fibrosis, to correct misfolded mutant 
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proteins (216-219).  PTC readthrough chemicals like aminoglycosides, which could skip the immature 

stop codon and resynthesize the mature protein, were also used to correct truncation mutation in multiple 

disease models (220).  Although not yet studied in epilepsy-associated mutations, these mutation-specific 

strategies could be promising. 
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Figure 1-1: Schematics of GABAA receptors 

(A) GABAA receptors are located in postsynaptic or extrasynaptic membrane.  (B) They are pentameric receptors 
mediating the entry of chloride ions in mature neurons, and the majority of receptors are composed of two α, two β 
and one γ subunits.  (C) Each subunit contains four transmembrane domains, and M2 domains of five subunit line 
the ion passing pore, forming a pseudo-symmetric receptor in a counter-clock sequence of  γ- β- α- β-, if viewed 
from the synapse cleft. . The extracellular domain of each subunit contains a principle side (+) and a complementary 
side (-) to contribute to the interface. 
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Figure 1-2: GABAA receptor subunits 

 (A) Polygenetic tree analysis of 19 human GABAAR subunits distributed in 7 chromosomes.  The dendrogram was 
generated by Dendroscope based on the alignment generated by ClustalX, using (immature) amino acid sequences 
obtained from the Uniprot database.  (B) Membrane topology of γ2 subunits.  Human γ2 subunit of the GABAAR is 
composed of 475 amino acids.  After the cleavage of the 39 aa long signal peptide, the mature subunits contains one 
extracellular N terminal domain, followed by four transmembrane domain and a big cytoplasmic M3-M4 domain. 
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Table 1: Classification of Epilepsy 

 Definition(9) Examples of Epilepsy Syndromes 
Genetic Epilepsy “Epilepsy is the direct result of a 

known or presumed genetic defect(s) 
in which seizures are the core 
symptom of the disorder” 

Childhood Absence Epilepsy 
Juvenile Myoclonic Epilepsy 
Dravet Syndrome 
Lennox-Gastaut syndrome 

Structural/Metabolic 
Epilepsy 

“A distinct structural or 
metabolic condition or disease has 
been associated with a substantially 
increased risk of developing epilepsy 
in appropriately designed studies”  

traumatic brain injury 
hypoxic-ischemic encephalopathy 

Unknown Epilepsy “The underlying cause is as yet 
unknown” 
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Table 2: Common AEDs 

AED Action Targets Indications Side Effects 

Benzodiazepines 
(Diazepam, 
Clonazepam, 
Clobazam) 

GABAAR potentiator Broad use for focal and generalized 
seizures, including convulsive 
disorders, Lennox-Gastaut 
syndrome, and status epilepticus,  

Sedative; leads to tolerance 

Phenobarbital GABAAR potentiator 
(also work on VDCC, 
VDPC, and AMPAR) 

GTCS, partial seizures and drug-
resistant status epilepticus 

Skin hypersensitivity 

Tiagabine GAT inhibitor Partial seizures  

Vigabatrin irreversible inhibitor of 
GABA-T 

Infantile spasms, complex partial 
seizures  

Vision loss; weight gain 

Phenytoin VDSC blocker GTCS, partial seizures Skin hypersensitivity 

Carbamazepine VDSC blocker GTCS, partial seizures Skin hypersensitivity 

Oxcarbazepine VDSC blocker Partial seizures Skin hypersensitivity 

Lamotrigine VDSC blocker 
(also an antagonist of 
AMPAR, also work on 
VDCC) 

GTCS, partial seizures, Lennox-
Gastaut syndrome 

Skin hypersensitivity 

Topiramate Broad targets including 
VDSC, VDCC, VDPS, 
GABAAR, 
and AMPAR 
 

Broad use for focal and generalized 
seizures, including GTCS, partial 
seizures, and Lennox-Gastaut 
syndrome 

somnolence; dizziness; cognitive 
impairment; speech problems; 
kidney stones; weight loss 

Ethosuximide T type VDCC blocker Generalized absence seizure somnolence; loss of appetite; 
nausea; vomiting; singultus; 
depression; psychotic episodes; 
insomnia; rare aplastic anaemia 

Valproate VDSC blocker 
T type VDCC blocker 
Increase GABA by 
affecting the metabolism 

Broad use for focal and generalized 
seizures, including GTCS, partial 
seizures and absence seizures 

substantial teratogenicity; weight 
gain 

Zonisamide VDSC blocker 
T type VDCC blocker 
 

Partial seizure Sedative 

Lacosamide Enhance slow inactivation 
of  VDSC  

partial seizures  

Gabapentin Not fully understand 
(may act through GABA 
synthesis or block VGCC) 

GTCS, partial seizure Weight loss 

Levetiracetam Not fully understand 
(may act through the 
synaptic vesicle protein 
SV2A) 

Partial seizures  

(GABA-T: GABA transaminase;  GAT: GABA transporter; GTCS: Generalized tonic clonic seizures; VDCC: Voltage dependent 
calcium channels; VDPC: voltage dependent potassium channels; VDSC: voltage dependent sodium channels) (16, 17, 221) 
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Table 3.  Expression pattern in adult rodents and related mouse physiology for major GABAAR subunits 

Subunit Gene  
 

Chromosome  
(human/mouse) 

Expression Pattern Mouse Physiology 

GABRA1 (α1) 5/11 Widely distributed in the brain, 
abundant in cortex, cerebellum 
and hippocampus 

α1 knock-out mice were viable (58, 
59) , but showed reduced viability 
and absence-like seizures (65); 
α1(H101R) mice were resistant to the 
sedative effects of diazepam (66, 67) 

GABRA2  (α2) 4/5 Strong in cortex (out layers), 
olfactory bulb, hippocampus, 
amygdala, septum, striatum, 
accumbens and hypothalamus 

α2 knock-out mice exhibited 
depressive-like activities (69); 
α2(H101R) mice were resistant to the 
anxiolytic effects of diazepam (70) 

GABRA3  (α3) X/X Strong in cortex (inner layers), 
olfactory bulb, amygdala, 
reticular nucleus of thalamus 

α3 knock-out mice showed 
remarkably attenuated sensorimotor-
gating (73) 

GABRA4  (α4) 4/5 Strong in thalamus, striatum and 
nucleus accumbens, and the 
molecular layer of the dentate 
gyrus, less concentrated in 
cerebral cortex and CA1, and low 
or absent in the cerebellum 

α4 knock-out mice were more 
sensitive to pentylenetetrazol-induced 
seizure (78) 

GABRA5  (α5) 15/7 Strong in hippocampus and weak 
in most other areas 

α5 knock-out mice had better 
performance in Morris water maze 
(83) 
 

GABRA6   (α6) 5/11 Only granule cells in cerebellum α6 subunit knock-out mice had no 
overt behavioral deficits (86) 

GABRB1   (β1) 4/5 Weak in cortex and thalamus, but 
strong in hippocampus 

β1(L285R) and β1(P228H) knock-in 
mice showed increased alcohol 
assumption (87) 

GABRB2   (β2) 5/11 highly expressed in cortex, 
thalamus, pallidum and 
cerebellum 

β2 knock-out mice showed higher 
spontaneous locomotor activities (58)  

GABRB3   (β3) 15/7 Strong in cortex, striatum, 
hippocampus and cerebellum 

β3 knock-out mice showed high 
mortality rate as neonates, reduced 
life span, cleft palate, hyperactive and 
epileptic seizures (88) 

GABRG2   (γ2) 5/11 highly expressed through the 
brain, but relatively weak in the 
thalamus 

Homozygous γ2 knock-out died 
within a few days after birth and 
those survived exhibited severe 
sensorimotor deficits and died before 
P18 (90); heterozygous γ2 knock-out 
mice showed elevated anxiety (92) 
and absence seizure (94) 

GABRD     (δ) 1/4 cortex, striatum, thalamus, dentate 
and cerebellar granule cells 

δ knock-out mice showed higher 
mortality, decreased PTZ-induced 
seizure threshold, and non-
responsiveness to neuroactive 
steroids (104, 105) 
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Table 4. Epilepsy-associated GABAAR mutations 

Subunit 

Gene 

Mutation Type Phenotypes Major molecular deficits Mechanism 

GABRA1 A322D missense JME folding, ERAD LOF, slight DN effects 

GABRA1 D219N missense GEFS+ trafficking LOF 

GABRB3 P11S missense CAE trafficking? LOF 

GABRB3 S15F missense CAE trafficking? LOF 

GABRB3 G32R missense CAE trafficking LOF 

GABRG2 R82Q missense CAE, FS trafficking LOF, slight DN effects 

GABRG2 R177G missense GEFS+ trafficking LOF 

GABRG2 K328M missense GEFS+ channel activity LOF 

GABRD E117A missense GEFS+ channel activity LOF 

GABRD R220H missense JME channel activity LOF 

GABRA1 975delC, 

S326fs328X 

frame-shift CAE NMD, ERAD LOF 

GABRG2 Q40X truncation DS NMD, trafficking LOF 

GABRG2 R136X truncation GEFS+ NMD, trafficking LOF 

GABRG2 Q390X truncation GEFS+ trafficking, aggregation LOF, DN effects 

GABRG2 W429X truncation GEFS+ trafficking LOF, slight DN effects 

GABRG2 S443delC frame-shift GEFS+ trafficking LOF 

GABRA1 K353delins18

X 

intron GEFS+ trafficking LOF 

GABRB3 -897T/C promoter CAE transcription LOF 

GABRG2 IVS6+2T->G intron CAE, FS NMD, trafficking LOF 

LOF: Loss of function    DN: Dominant negative 
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Chapter 2 : Three Epilepsy-Associated GABRG2 Missense Mutations at the γ+/β- interface Disrupt 

GABAA Receptor Assembly and trafficking by Similar Mechanisms but to Different Extents 

Xuan Huang, Ciria C. Hernandez, Ningning Hu and Robert L. Macdonald 

This work has been published in Neurobiol Dis. 2014 (222) 

1. Abstract 

We compared the effects of three missense mutations in the GABAA receptor γ2 subunit on GABAA 

receptor assembly, trafficking and function in HEK293T cells cotransfected with α1, β2, and wildtype or 

mutant γ2 subunits.  The mutations R82Q and P83S were identified in families with GEFS+, and N79S 

was found in a single patient with generalized tonic-clonic seizures (GTCS).  Although all three mutations 

were located in an N terminal loop that contributes to the γ+/β- subunit-subunit interface, we found that 

each mutation impaired GABAA receptor assembly to a different extent.  The γ2(R82Q) and γ2(P83S) 

subunits had reduced α1β2γ2 receptor surface expression due to impaired assembly into pentamers, ER 

retention and degradation.  In contrast, γ2(N79S) subunits were efficiently assembled into GABAA 

receptors with only minimally altered receptor trafficking, suggesting that N79S was a rare or 

susceptibility variant rather than an epilepsy mutation.  Increased structural variability at assembly motifs 

was predicted by R82Q and P83S, but not N79S, substitution, suggesting that R82Q and P83S 

substitutions were less tolerated.  Membrane proteins with missense mutations that impair folding and 

assembly often can be “rescued” by decreased temperatures.  We coexpressed wildtype or mutant γ2 

subunits with α1 and β2 subunits and found increased surface and total levels of both wildtype and mutant 

γ2 subunits after decreasing the incubation temperature to 30 oC for 24 hours, suggesting that lower 

temperatures increased GABAA receptor stability.  Thus epilepsy-associated mutations N79S, R82Q and 

P83S disrupted GABAA receptor assembly to different extents, an effect that could be potentially rescued 

by facilitating protein folding and assembly.  
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Key words: GABAA receptors, genetic generalized epilepsy, GABRG2(N79S) mutation, 

GABRG2(R82Q) mutation, GABRG2(P83S) mutation, loss of function, dominant negative effects, subunit 

interface, impaired receptor assembly. 

2. Introduction 

Epilepsy is a common neurological disorder that affects about 1% of the world’s population (223), 

and genetic epilepsy (GE) syndromes comprise ~30% of all cases (224, 225).  Many epilepsy-mutations 

in affected individuals in families with GEs have been found in ion channels, including GABAARs, which 

are heteropentameric chloride ion channels that mediate the majority of inhibitory neurotransmission in 

the CNS.  The receptor is composed of five subunits, and the predominant synaptic receptors are 

composed of two α subunits, two β subunits and one γ2 subunit.  The most common epilepsy-associated 

GABAA receptor gene (GABR) is GABRG2, and epilepsy mutations in γ2 subunits have been shown to 

decrease receptor function by altering receptor biogenesis or channel function (114).  Three GABRG2 

mutations R82Q, P83S and N79S (numbered based on the immature γ2 subunit containing the signal 

peptide) were reported to be associated with generalized epilepsies and are all located in the same 

structural loop in the N terminus of γ2 subunits, suggesting that they might impair GABAA receptor 

function similarly.   

R82Q is one of the best characterized epilepsy-associated GABRG2 mutations.  It was originally 

found in a large family with GEFS+ (123, 149), contributing to childhood absence epilepsy and febrile 

seizures.  A single nucleotide substitution caused a highly conserved arginine residue located within a 

loop between the α-helix and the β1-sheet (the α-β1 loop) in the extracellular N terminus to be replaced 

by a glutamine (Figure 2-1 A), resulting in impaired surface expression of γ2 subunits and decreased 

GABAAR currents (141-146).  Heterozygous knock-in mice carrying this mutation displayed spontaneous 

spike-wave discharges and thermal-induced seizures (150, 153), consistent with R82Q being an epilepsy-

causing mutation.  However, whether this mutation has dominant negative effects on other GABAAR 
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subunits and how it affects subunit-subunit interactions is still controversial (143, 146).  A recent study 

showed that while loss of γ2 subunit function could account for the absence seizure phenotype, the R82Q 

mutation might be responsible for the febrile seizure phenotype (153), further suggesting that the R82Q 

mutation had effects in addition to haploinsufficiency.   

Recently, another epilepsy-associated GABRG2 mutation, P83S, which is also located within the α-β1 

loop of the γ2 subunit, was identified in a three generation GEFS+ family (158).  Although this mutation 

was found in all affected individuals in this family and was predicted to have damaging effects, it was 

reported that GABAAR channel function was not affected by the mutation, and the effects on receptor 

trafficking were not addressed.  How this mutation contributes to epileptogenesis is therefore still 

uncertain.   

Finally, it was reported that a GABRG2 mutation, N79S, also located in the α-β1 loop of the γ2 

subunit, was found in a single patient with generalized tonic-clonic seizures (GTCS) (226).  The mutation 

was reported to only modify the steepness of the GABA concentration-response curve (178).   

All three mutations are located in the N terminal domain of γ2 subunits that forms part of the γ2+/β2- 

subunit interface (Figure 2-1 B), suggesting that they may produce similar impairments of subunit 

oligomerization and receptor assembly (143).  In the present study, we compared the effects of these three 

epilepsy-associated GABRG2 mutations on surface expression and function of α1β2γ2 receptors in 

transfected HEK293T cells and rat cortical neurons and found that they impaired assembly and trafficking 

of GABAA receptors by similar mechanisms but to different extents.   

3. Materials and Methods  

Expression vectors 

The coding sequences of human α1, β2 and γ2 GABAAR subunits were cloned into pcDNA3.1 

expression vectors (Invitrogen).  All subunit residues were numbered based on the immature peptide.  

Mutant γ2 subunit constructs were generated using the QuikChange site-directed mutagenesis kit 
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(Stratagene).  An HA or FLAG epitope was inserted at a functionally silent site (between the 4th and 5th 

residue of the mature peptide) to facilitate our experiments (137).  Both γ2S and γ2L subunits (227), two 

different splice isoforms, were used.  For neuronal transfections, wildtype and mutant γ2L subunits were 

cloned into pLVX-IRES-ZsGreen vectors (Clontech). 

Cell culture and transfection 

Human embryonic kidney cells (HEK293T) (ATCC, CRL-11268) were incubated at 37°C in 

humidified 5% CO2 incubator and maintained in Dulbecco's modified Eagle's medium (Invitrogen) 

supplemented with fetal bovine serum (10%, Life technologies), and penicillin/ streptomycin (100 IU/ml, 

Life technologies).  Cells were transfected using the FuGENE 6 transfection reagent (Roche Applied 

Science) or polyethylenimine (PEI) reagent (40 kD, Polysciences) and harvested 36 hours after 

transfection.  To express wildtype and mutant α1β2γ2 receptors, a total of 3 µg of subunit cDNAs were 

transfected at a ratio of 1:1:1 into 6 cm dishes for most experiments except for whole cell recording.  In 

experiments studying the effects of low temperature, cells were incubated at 30°C for 24 hours beginning 

about 16 hours after transfection. 

Rat cortical neurons were obtained from E18 embryos as previously described (187), incubated at 

37°C in 5% CO2 incubator, and maintained in serum-free Neurobasal medium (Gibco) supplemented with 

B27 supplement (Gibco), glutamine (Gibco) and penicillin/streptomycin (Gibco, 20 U/ml).  Cultured 

neurons were transfected at DIV5 using Lipofectamine 2000 (Invitrogen).  One hour after transfection, 

culture medium containing DNA/Lipofectamine complex was replaced by fresh medium. 

Western Blot, endoglycosidase H (Endo H) digestion, surface biotinylation and immunoprecipitation 

After sonication, whole cell lysates of transfected HEK293T cells were collected in modified RIPA 

buffer (50 mM Tris (pH = 7.4), 150 mM NaCl, 1% NP-40, 0.2% sodium deoxycholate, 1 mM EDTA) and 

1% protease inhibitor mixture (Sigma).  Collected samples were subjected to gel electrophoresis using 

NuPAGE® (Invitrogen) precast gel and then transferred to PVDF-FL membranes (Millipore).  

Monoclonal anti-HA antibody (Covance or Cell signaling) and monoclonal anti-FLAG antibody (Sigma) 
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were used to detect the epitope tag.  Polyclonal anti-γ2 antibodies (Sysy or Millipore) were used to detect 

GABAA receptor γ2 subunits.  Anti-sodium potassium ATPase antibody (Abcam) was used as a loading 

control.  After incubation with primary antibodies, IRDye® (LI-COR Biosciences) conjugated secondary 

antibody was used at a 1:10,000 dilution, and the signals were detected using the Odyssey Infrared 

Imaging System (LI-COR Biosciences).  The integrated intensity value of each specific band was 

calculated using the Odyssey 3.0 software (LI-COR Biosciences). 

To remove immature N-linked glycans, cell lysates were incubated with the enzyme Endo H 

(NEBiolab) at 37°C for 3 hours.  Treated samples were then subjected to SDS-PAGE and Western blot.  

Surface proteins were collected using surface biotinylation as described before (228).  Transfected 

cells were biotinylated using the membrane-impermeable reagent sulf-HNS-SS-biotin (1 mg/ml, Thermo 

Scientific) at 4°C for 1 h.  Cells were lysed after being quenched with 0.1 M glycine.  The biotin-labeled 

plasma membrane proteins were pulled down by High Binding Capacity NeutrAvidin beads (Thermo 

Scientific Pierce) after centrifugation and cleaved by sampling buffer (Invitrogen) containing 10% beta-

mercaptoethanol. 

Protein complexes containing FLAG-tagged GABAA receptor subunits were extracted in modified 

RIPA buffer with reduced amounts of detergents (50 mM Tris (pH=7.4), 150 mM NaCl, 1% Triton) and 

immunoprecipitated using EZview Red Anti-FLAG M2 affinity gel (Sigma) at 4°C overnight, then eluted 

with 3X FLAG peptide (Sigma). 

Immunocytochemistry and confocal microscopy 

Cultured cortical neurons were fixed by 4% paraformaldehyde/4% glucose in PBS for 15 min 

followed by 1h block with 10% BSA in PBS and were supplemented with 0.2% Triton for total staining.  

Coverslips were then incubated in mouse monoclonal anti-HA antibody (Covance) for 2 h, followed by 

incubation with Alexa 647-conjugated donkey anti-mouse IgG antibodies. 

Confocal images were obtained using a Zeiss LSM 510 META inverted confocal microscope.  

Images were taken with 8 bit, 512×512 pixel resolution, and an average of four scans was taken to 
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decrease the background noise.  Pinholes were adjusted so that the sample thickness was smaller than 2 

µm.  Confocal experiments were performed in part through the use of the VUMC Cell Imaging Shared 

Resource. 

Flow cytometry 

High throughput flow cytometry was performed to investigate the surface expression of GABAA 

receptor subunits.  Transfected cells were collected in phosphate-buffered saline containing 2% fetal 

bovine serum and 0.05% sodium azide as described before (229).  Cell samples were incubated with an 

Alexa fluorophore (Invitrogen)-conjugated monoclonal anti-α1 antibody (Millipore), monoclonal anti-

β2/β3 antibody (Millipore) or monoclonal anti-HA antibody (Covance), and then fixed by 2% 

paraformaldehyde.  The fluorescence signals were read on a BD Biosciences FACSCalibur system.  

Nonviable cells were excluded from study based on the previously determined forward and side scatter 

profiles.  The mean fluorescence value of each experimental condition was subtracted by that of mock-

transfected condition and was then normalized to that of the control condition.  Flow Cytometry 

experiments were performed in the VMC Flow Cytometry Shared Resource. 

Whole cell voltage-clamp recordings 

Whole cell voltage-clamp recordings were performed at room temperature on lifted HEK293T cells 

36-48 hrs after transfection with GABAA receptor subunits as described previously (230).  Cells were 

bathed in an external solution containing 142 mM NaCl, 1 mM CaCl2, 8 mM KCl, 6 mM MgCl2, 10 mM 

glucose, and 10 mM HEPES (pH 7.4, ∼325 mOsM).  Recording electrodes were pulled from thin-walled 

borosilicate capillary glass (World Precision Instruments) using a P2000 laser electrode puller (Sutter 

Instruments), fire-polished with a microforge (Narishige), and filled with an internal solution containing 

153 mM KCl, 1 mM MgCl2, 10 mM HEPES, 5 mM EGTA, 2 mM Mg2+-ATP (pH 7.3, ∼300 mOsM).  

All patch electrodes had a resistance of 1 – 1.6 MΩ.  The combination of internal and external solutions 

yielded a chloride reversal potential of ~ 0 mV, and cells were voltage-clamped at -20 mV using an 

Axopatch 200B amplifier (Axon Instruments).  A rapid exchange system (open tip exchange times ~ 400 
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μs), composed of a four-barrel square pipette attached to a Warner SF-77B Perfusion Fast-Step (Warner 

Instruments Corporation) and controlled by Clampex 9.0 software (Axon Instruments) was used to apply 

GABA to lifted whole cells.  The channels were activated by 1 mM GABA for 4 s, followed by an 

extensive wash for 40 s, and then blocked by 10 µM Zn2+ for 10 s.  GABA (1 mM) was then applied for 4 

s in the presence of 10 µM Zn2+.  Peak current amplitudes after the Zn2+ application were normalized to 

those before the Zn2+ application to calculate the sensitivity to Zn2+ blockade.  All currents were low-pass 

filtered at 2 kHz, digitized at 5-10 kHz, and analyzed using the pCLAMP 9 software suite. 

Structural modeling and simulation 

Three-dimensional models of human GABAAR subunits were generated using the crystal structure of 

the C. elegans glutamate-gated chloride channel (GluCl) (231) as a template (PDB: 3rhw) using 

DeepView/Swiss-PdbViewer 4.02 (232).  The initial sequence alignments between human GABAA 

receptor subunits and C. elegans GluCl subunits were generated with full-length multiple alignments 

using ClustalW.  Then full-length multiple alignments were submitted for automated comparative protein 

modeling implemented in the program suite incorporated in SWISS-MODEL 

(http://swissmodel.expasy.org/SWISS-MODEL.html) using human GABAA receptors sequences as target 

proteins and the C. elegans GluCl sequence as a template structure.  To generate pentameric GABAA 

receptor homology models, α, β, and γ subunit structural models were assembled in a counter-clockwise 

β-α-β-α-γ order by superposition onto the C. elegans GluCl channel as a template.  The resulting models 

were subsequently energy-optimized using GROMOS96 in default settings within the Swiss-PdbViewer.  

Side-chain prediction and conformational backbone variability of γ2 subunit mutation were implemented 

using Rosetta backrub flexible backbone design (233) in the program suite incorporated in 

RosettaBackrub (https://kortemmelab.ucsf.edu/backrub/cgi-bin/rosettaweb.py).  Structural models of the 

best-scoring low-energy backrub structures of wildtype and mutant γ2 subunits were represented.   

Data analysis 

https://kortemmelab.ucsf.edu/backrub/cgi-bin/rosettaweb.py
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Numerical data were reported as mean ± S.E.  Statistical analysis was performed using GraphPad 

Prism.  Statistically significant differences were taken as p < 0.05 using one way ANOVA followed by 

Dunnet’s multiple comparison or by Student’s t test. 

4. Results 

1) The three interface-located γ2 subunit impaired surface levels of α1β2γ2 receptors but to 

different extents.    

The mutations N79S, R82Q, and P83S were located close to each other in the N terminus of γ2 

subunits (Figure 2-1A).  By comparing sequences of this region we found that the R82 and P83 residues 

were identical among different GABAA receptor subunits and other cys-loop receptor subunits (Figure 2-

1A, dark grey bars), while the N79 residue was not conserved among the cys-loop receptor subunit 

families (i.e., acetylcholine receptor α subunit (ACHA), serotonin 3A receptor (5HT3A) subunit and 

Avermectin-sensitive glutamate-gated chloride channel α subunit (G5EBR3CA)).  

We also built three-dimensional pentameric GABAA receptor homology models based on the crystal 

structure of the C. elegans GluCl channel (Figure 2-1B).  We found that this cluster of γ2 subunit 

mutations was located in the loop between the α-helix and the β1-sheet (the α-β1 loop, purple) at the top 

of the N-terminal extracellular domain that contributes to the γ+/β- subunit interface in assembled 

receptors (interface contributed by the principle side of γ subunits and the complementary side of β 

subunits, as shown in Figure 1-1).  The R82 residue (orange) was closer than the P83 residue (green) to 

the complementary (-) face of β2 subunits, while the N79 residue (light blue) was located behind the 

interface.  Of note it has been shown that the γ2 subunit mutation R82Q disrupts salt bridges at the γ+/β- 

subunit interface (146).  Furthermore, in silico analysis using Polyphen-2 (234) and SIFT (235), software 

programs that predict whether or not protein structure would tolerate mutations based on sequence 

conservation and local structural features, predicted that that both R82Q and P83S substitutions would not 

be tolerated and might damage protein structure, while the N79S substitution would be tolerated.   
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To examine the effects of these three mutations on surface expression of receptors, we cotransfected 

HEK293T cells with α1, β2, and wildtype or mutant γ2LHA or γ2SHA subunits at a 1:1:1 α1:β2:γ2 subunit 

ratio and evaluated surface and total levels of wildtype and mutant γ2HA subunits by flow cytometry.  For 

γ2LHA subunits containing the R82Q or P83S mutation, we found substantial reductions of surface γ2LHA 

subunit levels and small reductions of total γ2LHA subunit levels (Figure 2-2 A top).  For coexpressed 

α1β2γ2L(R82Q)HA or α1β2γ2L(P83S)HA subunits, surface HA levels were decreased to 0.14 ± 0.01 (p < 

0.001, n = 12) and 0.26 ± 0.02 (p < 0.001, n = 13), respectively, relative to that of coexpressed α1β2γ2LHA 

subunits (1.00, n = 17), while the surface HA level of coexpressed α1β2γ2L(N79S)HA subunits was not 

significantly lower (0.92 ± 0.05 , p > 0.05, n = 13).  With coexpression of α1β2γ2L(R82Q)HA and 

α1β2γ2L(P83S)HA subunits, total HA levels were slightly but significantly decreased to 0.79 ± 0.04 (p < 

0.001, n = 11) and 0.84 ± 0.06 (p < 0.01, n = 12), respectively, relative to that of coexpressed α1β2γ2LHA 

subunits (1.00, n = 16), while the total HA level of coexpressed α1β2γ2L(N79S)HA was not affected 

significantly (0.96 ± 0.05, p > 0.05, n = 12).   

We found similar results with mutant γ2S subunits (Figure 2-2A bottom).  For coexpressed 

α1β2γ2S(N79S)HA, α1β2γ2S(R82Q)HA and α1β2γ2S(P83S)HA subunits, surface HA levels were decreased 

to 0.88 ± 0.01 (p < 0.001, n = 5), 0.10 ±0.01 (p < 0.001, n = 9) and 0.11 ± 0.01 (p < 0.001, n = 10), 

respectively, compared to that for coexpressed α1β2γ2SHA subunits (1.00, n = 11).  Total HA levels of 

coexpressed α1β2γ2S(R82Q)HA and α1β2γ2S(P83S)HA subunits were decreased to 0.76 ± 0.07 (p < 0.05, n 

= 8) and 0.68 ± 0.06 (p < 0.005, n = 11), respectively, relative to that for coexpressed α1β2γ2SHA subunits 

(1.00, n = 11).  The total HA level of coexpression of α1β2γ2S(N79S)HA subunits was not significantly 

different (0.92 ± 0.15, p > 0.05, n = 5).   

To control for any artifact produced by the HA epitope-tag, we also coexpressed untagged α1β2γ2L 

subunits and examined surface γ2L levels by surface biotinylation (Figure 2-2 B).  Similar to the flow 

cytometry results, compared to wildtype γ2L subunits (1.00, n = 6) we found that surface levels of 
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γ2L(R82Q) and γ2L(P83S) subunits were reduced to 0.17 ± 0.06 (p < 0.001, n = 5) and 0.24 ± 0.05 (p < 

0.001, n = 4), respectively, and that the surface level of γ2L(N79S) subunits was reduced slightly but 

significantly to 0.78 ± 0.08 (p < 0.05, n = 5).  Total expression of γ2L(R82Q) and γ2L(P83S) subunits 

was also decreased to 0.60 ± 0.08 (p < 0.01, n = 8,) and 0.56 ± 0.10 (n = 6, p < 0.01), respectively, but 

total expression of γ2L(N79S) subunits was not reduced significantly (0.86 + 0.10, p > 0.05, n = 8).   

These results suggested that R82Q, P83S and N79S substitutions were all in the same loop structure 

contributing to the γ2+/β2- subunit interface and all affected surface levels of receptors, but to different 

extents.  The R82Q and P83S substitutions likely disrupted subunit oligomerization or receptor assembly 

more severely than the N79S substitution, thus producing a much more substantial decrease of surface γ2 

subunits.   

2) In neurons, the R82Q and P83S mutations impaired surface trafficking of γ2 subunits, but 

the N79S mutation had minimal if any effect.   

To study the expression pattern of mutant subunits in neurons, we transfected wildtype or mutant 

γ2LHA subunits into rat cortical neurons and labeled the transfected γ2LHA subunits using anti-HA 

antibody (Figure 2-2C).  Wildtype and mutant γ2LHA subunits were cloned into pLVX-IRES-ZsGreen 

vectors, and the ZsGreen signal was used to identify transfected neurons.  Without cell permeabilization, 

the surface expression and localization of γ2L subunits could be visualized.  For γ2LHA and γ2L(N79S)HA 

subunits, the HA signal could be seen outlining the soma and dendrites of ZsGreen positive cells (Figure 

2-2 C, left top).  In contrast, the surface HA signals for γ2L(R82Q)HA and γ2L(P83S)HA subunits were 

almost absent (Figure 2-2 C, left bottom).  With cell permeabilization, however, wildtype and all three 

mutant γ2LHA subunits were well detected in both soma and dendrites (Figure 2-2 C, right).  Thus, similar 

to HEK293T cells, γ2L(R82Q)HA and γ2L(P83S)HA subunit levels were reduced on the cell surface of 

neurons, but γ2L(N79S) HA subunits had surface levels similar to those obtained for wildtype γ2LHA 
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subunits.  While there was no apparent reduction of surface γ2L(N79S) HA subunits in neurons, this is only 

a qualitative method that is not suitable for detecting small changes, and thus, we cannot exclude small 

effects of the N79S mutation on γ2L subunit surface level in neurons.  

3) Mutant subunits disrupted GABAA receptor function and/or changed GABAA receptor 

composition. 

Because all three mutations decreased surface levels of γ2 subunits, although to different extents, we 

determined how receptor function was affected using whole cell patch clamp recordings.  Wildtype or 

mutant γ2L subunits were coexpressed with α1 and β2 subunits in HEK293T cells at a 1:1:0.1 α1:β2:γ2L 

subunit ratio, and macroscopic peak currents were evoked by applying a saturating GABA concentration 

(1 mM) for 4 s using a rapid exchange system (Figure 2-3A, left traces).  Current density of receptors 

containing γ2(N79S) subunits was only slightly, but significantly, reduced (1003 ± 16.53 pA/pF, n = 10, p 

< 0.05) compared with wildtype receptors (1163 ± 50.95 pA/pF, n = 21).  Current densities for receptors 

containing γ2(R82Q) subunits (394.7 ± 35.95 pA/pF, n = 11, p < 0.001) or γ2(P83S) subunits (140.4 ± 

16.36 pA/pF, n = 10, p < 0.001) were substantially decreased compared with wildtype receptors (Figure 

2-3B), consistent with the results described above showing that R82Q and P83S mutations reduced the 

surface levels of γ2L subunits much more extensively than the N79S mutation.   

The reduction in current density produced by the mutations suggested that the mutant subunits may 

not be effectively assembled into receptor pentamers.  GABAA receptors composed of α1 and β2 subunits 

can form in the absence of γ2 subunits, and it is possible that the currents recorded in the presence of the 

mutant γ2 subunits were due, at least in part, to surface α1β2 receptors.  While α1β2 receptors can form, 

they have different physiological and pharmacological properties including increased sensitivity to Zn2+ 

inhibition.  To evaluate the possibility of α1β2 receptor formation in the presence of mutant γ2 subunits, 

we determined the Zn2+ sensitivity of currents from receptors formed with coexpression of α1, β2, and 

wildtype or mutant γ2L subunits.  Whole-cell currents evoked by co-application of 1 mM GABA with or 
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without 10 μM Zn2+ were recorded (Figure 2-3A, right traces).  The fractional Zn2+ inhibition of currents 

evoked from cells coexpressing α1β2γ2(R82Q) or α1β2γ2(P83S) subunits was significantly higher than 

inhibition of currents from cells coexpressing α1β2γ2 or α1β2γ2(N79S) subunits (WT: 9 ± 1%, n = 16; 

N79S: 6 ± 2%, n = 10, p > 0.05; R82Q: 49 ± 4%, n = 11, p < 0.001; P83S: 84 ± 2%, n = 10, p < 0.001) 

(Figure 2-3B).  Because the sensitivity of GABAA receptor currents to Zn2+ inhibition depends on subunit 

composition, these results suggested that mutant γ2(R82Q) and γ2(P83S) subunits were incompletely 

incorporated into ternary α1β2γ2L receptors, leading to increased expression of Zn2+-sensitive binary 

α1β2 receptors and decreased expression of relatively Zn2+ insensitive α1β2γ2L receptors on the cell 

surface, thus resulting in decreased GABAA receptor currents.   

In contrast, although the peak current amplitude was slightly and significantly reduced, cells 

coexpressing α1β2γ2(N79S) subunits displayed currents that were Zn2+ insensitive.  Peak currents evoked 

from α1β2γ2L receptors are much larger than those from α1β2 receptors.  Because the N79S mutation 

only slightly reduced peak current amplitude, it is likely that there was only a small reduction of 

incorporation of γ2(N79S) subunits into ternary α1β2γ2L(N79S) receptors, and thus the dominant Zn2+-

insensitive α1β2γ2L(N79S) receptor currents would have masked any small increase of Zn2+-sensitive 

α1β2 receptor currents. 

4) Mutant γ2L(R82Q) and γ2L(P83S) subunits impaired formation of stable trafficking-

competent oligomers with partnering subunits and were retained in the ER and degraded.  

During biogenesis of ternary GABAA receptor pentamers, subunit dimers form but are not trafficked 

to the cell surface (236).  Further, it has been demonstrated that γ2L subunits alone and βγ2 subunit 

complexes did not form trafficking-competent receptors and were trapped in the ER (44, 137).  As all 

three mutations are located in the α-β1 loop that contributes to the γ2+/β2- subunit-subunit interface, and 

surface and total expression of γ2 subunits carrying these mutations were decreased to different levels 
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(Figure 2-2), we studied how receptor biogenesis was affected.  To explore how these mutations affected 

expression/stability of γ2 subunits in HEK293T cells, we expressed wildtype and mutant γ2LHA subunits 

alone, with only β2 subunits or with both α1 and β2 subunits to study their expression as single subunits, 

dimeric oligomers and ternary receptors (Figure 2-4A).  Whole cell lysates were obtained and Western 

blots were performed to study the expression pattern of γ2L subunits.  We blotted for wildtype and mutant 

γ2LHA subunits using anti-HA antibody, quantified the band intensity, normalized it to that of ATPase, 

and normalized the HA/ATPase ratio to that obtained with expression of wildtype α1β2γ2LHA subunits.  

The expression differences between single subunits, dimeric oligomers and ternary receptors were 

compared for each wildtype or mutant group.   

For wildtype γ2L subunits, total level was greatly increased with coexpression with α1 and β2 

subunits compared to expression of γ2L subunits alone or with only β2 subunits (Figure 2-4A, lanes 1, 5, 

9), suggesting that coexpression of wildtype α1β2γ2L subunits formed stable oligomers while expression 

of single subunits and coexpression of γ2L and β2 subunits did not form stable oligomers and were 

degraded (n = 4, p < 0.01).  Similarly, the total level of γ2L(N79S) subunits was also increased when 

coexpressed with α1 and β2 subunits, compared to expressed alone or with only β2 subunits (Figure 2-4A, 

lanes 2, 6, 10) (n = 4, p < 0.01).  In contrast, total levels of γ2L(R82Q) (Figure 2-4A, lanes 3, 7, 11) and 

γ2L(P83S) (Figure 2-4A, lanes 4, 8, 12) subunits were not significantly different when coexpressed with 

α1 and β2 subunits (n = 4, p > 0.05).  These results suggested that most γ2L(R82Q) and γ2L(P83S) 

subunits did not form stable oligomers with α1 and β2 subunits and were likely degraded as single 

subunits or intermediate oligomers. 

Interestingly, we found that when coexpressed with α1 and β2 subunits, γ2L and γ2L(N79S) subunits 

displayed an additional band with increased molecular mass (Figure 2-4A, lanes 9, 10), which was present 

but relatively weak for coexpressed γ2L(R82Q) and γ2L(P83S) subunits (Figure 2-4A, lane 11, 12: top 

band, ~47 kD; bottom band, ~42 kD).  During protein biogenesis and trafficking, glycans are attached to 
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nascent peptides in the ER and then subjected to several rounds of processing.  To examine whether this 

shift of molecular mass reflected different glycosylation patterns, we coexpressed α1 and β2 subunits 

with wildtype or mutant γ2LHA subunits and digested with Endo H, which cleaves only immature glycans 

added in the ER but not mature glycans added in the Golgi apparatus (Figure 2-4B).  After Endo H 

digestion, we found that the γ2L and γ2L(N79S) subunits were relatively resistant to Endo H digestion, 

while in contrast, mutant γ2L(R82Q) and γ2L(P83S) subunits showed high sensitivity to Endo H 

digestion.  The lower molecular weight band (grey arrow), which was the dominant expression pattern of 

γ2L(R82Q) and γ2L(P83S) subunits, was almost gone after Endo H digestion.  We compared the 

proportion of Endo H sensitive bands (bottom bands after digestion) and found that the Endo H sensitive 

proportions for γ2L(R82Q) (0.80 ± 0.02, p < 0.001) and γ2L(P83S) (0.84 ± 0.05, p < 0.001), but not 

γ2L(N79S) (0.30 ± 0.10, p > 0.05), subunits were significantly larger than for wildtype γ2L subunits (0.28 

± 0.06, n = 4).  Consistent with findings mentioned above (Figure 2-4A), the amount and size of 

undigested mutant γ2L(R82Q) and γ2L(P83S) subunits were different from the undigested wildtype γ2L 

and γ2L(N79S) subunits.  The lower molecular mass and smaller amount of undigested mutant γ2L(R82Q) 

and γ2L(P83S) subunits indicated they were immature and nonstable.  As none of these three residues are 

located near the predicted glycosylation sites, it is unlikely that the mutation itself affect the glycosylation 

patterns.  Taken together, the mature glycosylation pattern and increased expression levels of γ2L and 

γ2L(N79S) subunits demonstrated that the majority of them formed stable trafficking-competent receptors 

with α1 and β2 subunits, which were successfully delivered to the Golgi apparatus and cell surface.  In 

contrast, the immature glycosylation pattern and decreased total levels of γ2L(R82Q) and γ2L(P83S) 

subunits suggested that although some of them could still form stable trafficking-competent receptors 

when coexpressed with partnering subunits, most of them did not and were trapped in the ER and 

degraded like single subunits or dimeric oligomers. 
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5) γ2L(R82Q) and γ2L(P83S) subunits were incorporated into pentamers inefficiently.   

It has been shown that the extracellular N termini of different GABAA receptor subunits interact 

during receptor assembly (236).  We found that the mutations were located near to or contributing to the 

γ2+/β2- subunit interface (Figure 2-1B, left panel), and thus we wondered whether the assembly of 

γ2(N79S), γ2(R82Q), and γ2(P83S) subunits into trafficking-competent receptors was interrupted.  

Previous studies reported that the α-β1 loop structure on the plus interface of γ2 subunits (γ2+) directly 

interacts with the minus interface of β2 subunits (β2-), and that the R82Q mutation impaired the 

interaction of γ2 and β2 subunits mediated by this α-β1 loop (143).  To better understand how these 

mutations affected the subunit-subunit oligomerization during receptor assembly, we coexpressed α1 and 

β2FLAG subunits with wildtype or mutant γ2LHA subunits, pulled down β2 subunits and their subunit 

binding partners using anti-FLAG beads and blotted associated γ2L subunits using anti-HA antibody 

(Figure 2-5A).  The amount of γ2L(N79S)HA subunit associated with β2FLAG subunits was not 

significantly reduced compared to associated wildtype γ2LHA subunits (0.94 ± 0.05, n = 6, p > 0.05) 

(Figure 2-5B).  In contrast, the amounts of γ2L(R82Q) and γ2L(P83S) subunits associated with β2 

subunits were substantially reduced, indicating that fewer γ2L subunits were assembled into αβγ 

pentamers (R82Q: 0.47 ± 0.05, n = 6, p < 0.001; P83S: 0.71 ± 0.05, n = 6, p < 0.001, respectively) (Figure 

2-5B).   

It is possible that the reduced association was caused by the reduced amount of mutant γ2L(R82Q) 

and γ2L(P83S) subunits.  However, we found that while the main bands of γ2L(R82Q) and γ2L(P83S) 

subunits in the whole cell lysate had lower molecular mass than wildtype γ2L and γ2L(N79S) subunits, 

consistent with immature glycosylation (Figure 2-4 and 2-5A bottom, Input), most of the γ2L(R82Q) and 

γ2L(P83S) subunits associated with β2 subunits were of the same higher molecular mass as the wildtype 

γ2L and γ2L(N79S) subunits (Figure 2-5A top, IP).  Taking these results with previous findings (Figure 

2-4), we suggest that when forming α1β2γ2 receptors, mutant γ2(R82Q) and γ2(P83S) subunits 
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inefficiently assembled into pentamers to form mature receptors and unassembled subunits were trapped 

in the ER and degraded.  Nonetheless, a small portion of the mutant γ2L(R82Q) and γ2L(P83S) subunits 

were still incorporated into stable pentamers that were trafficked beyond the ER and reached the cell 

surface.  Thus, the reduced amount of mutant γ2L(R82Q) and γ2L(P83S) subunits is the result rather than 

the cause of reduced subunit/subunit interaction.  In contrast, the γ2L(N79S) subunits were much more 

efficiently assembled into receptors and trafficked to the cell surface, consistent with the finding that this 

mutation only produced a small reduction of surface level (Figures 2-2A, B;2-3A, B).   

6) Mutant subunits impaired trafficking of partnering subunits and/or changed receptor 

composition. 

Our results above demonstrated that processing and assembly of αβγ receptors were reduced, but not 

abolished totally, by the presence of either γ2(R82Q) and γ2(P83S) subunits and to a much lesser extent 

by the γ2(N79S) subunit.  Increased Zn2+ sensitivity of receptors containing either γ2(R82Q) and γ2(P83S) 

subunits also suggested a changed receptor stoichiometry.  However, as mutant subunits were still 

expressed, they could form unstable trafficking-incompetent intermediate oligomers with partnering 

subunits in the ER, which could impede their assembly and trafficking.  To further investigate which type 

of GABAA receptors were trafficked to the surface and if mutant γ2L subunits had a dominant negative 

effect by decreasing the trafficking of partnering α and β subunits, we coexpressed α1 and β2 subunits 

with wildtype or mutant γ2LHA subunits and evaluated surface and total expression of α1 and β2 subunits 

by flow cytometry (Figure 2-6).   

In the absence of wildtype γ2L subunits, the α1 subunit surface level was slightly increased (1.21 ± 

0.05, n = 17, p < 0.001), and the β2 subunit surface level was greatly increased (2.82 ± 0.21, n = 14, p < 

0.001) relative to their surface levels in the presence of γ2L subunits (Figure 2-6A), compatible with a 

change of receptor stoichiometry from 2α2β1γ to 2α3β (46, 237).  Surface α1 subunit levels were slightly, 

but not significantly, reduced with coexpression of α1 and β2 subunits with either γ2L(N79S) (0.92 ± 
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0.05, n =13, p > 0.05) or γ2L(R82Q) (0.92 ± 0.04, n = 11, p > 0.05) subunits and only slightly, but 

significantly, reduced with γ2L(P83S) subunits (0.85 ± 0.03, n = 12, p < 0.05) (Figure 2-6A).  Surface β2 

levels were not increased with coexpression of γ2L(N79S) (0.86 ± 0.07, n = 11, p > 0.05). Surface β2 

levels were significantly increased with coexpression of γ2L(R82Q) subunits (1.52 ± 0.13, n = 9, p < 0.05) 

and shoed a trend of increase with coexpression of γ2L(P83S) subunits although the trend is not 

significant (1.38 ± 0.07, n = 11, p > 0.05) (Figure 2-6A).  Total levels of α1 and β2 subunits also 

exhibited similar trends (Figure 2-6A).  The changed surface receptor stoichiometry in the presence of 

R82Q or P83S mutations suggested increased expression of surface α1β2 receptors, consistent with the 

increased Zn2+ sensitivity of GABA evoked currents (Figure 2-3), but the increase was lower than that 

obtained with total removal of the γ2L subunit (α1β2 subunit coexpression condition).  The slight 

reduction rather than an increase of surface α1 subunits as well as the small increase of surface β2 

subunits when coexpressed with mutant γ2L(R82Q) or γ2L(P83S) subunits indicated these mutant 

subunits might have dominant negative effects to suppress assembly of α1 and β2 subunits.   

In contrast to γ2L subunits, γ2S subunits can be trafficked to the surface by themselves (37).  Thus, an 

excess of γ2S subunits might impede trafficking of partnering subunits less than γ2L subunits did.  To 

identify any dominant negative effects of mutant γ2S subunits, we determined surface and total levels of 

α1 and β2 subunits coexpressed with wildtype or mutant γ2SHA subunits.  In the absence of γ2S subunits, 

the α1 subunit surface level was not changed (0.92 ± 0.05, n = 11, p > 0.05), but the β2 subunit surface 

level was increased (2.09 ± 0.17, n = 11, p < 0.001), compared to surface levels in the presence of 

wildtype γ2S subunits, also suggesting assembly of αβ receptors (Figure 2-6B).  Interestingly, in the 

presence of the mutations, α1 subunit surface levels were all significantly decreased (N79S, 0.76 ± 0.06, n 

= 5, p < 0.001; R82Q, 0.54 ± 0.02, n = 8, p < 0.001; P83S, 0.57 ± 0.03, n =11, p < 0.001) compared to 

wildtype receptors, while β2 subunit surface levels were not increased (N79S, 0.77 ± 0.03, n = 5, p > 0.05; 

R82Q, 0.94 ± 0.04, n = 8, p > 0.05; P83S, 0.88 ± 0.08, n = 11, p > 0.05).  Total levels of α1 and β2 
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subunits also exhibited similar trends (Figure 2-6B).  The β2 subunits could not be trafficked to the 

surface without α1 subunits.  Because we found a significant decrease of surface α1 subunits without an 

increase of surface β2 subunits when coexpressing mutant γ2S subunits, it is likely that the mutations 

caused a decrease of αβγ receptors that was offset by an increase of αβ receptors.  Taken together, these 

results demonstrated that both γ2 subunit R82Q and P83S mutations caused disrupted pentameric receptor 

processing or trafficking, not only due to inefficient receptor assembly but also due to trapping partnering 

subunits in the ER hindering their assembly and trafficking; whereas the N79S mutation had similar, but 

much smaller, effects on receptor assembly and trafficking.  

7) Lower temperature increased surface and total levels of wildtype and mutant γ2L subunits    

Membrane proteins with missense mutations that impair trafficking have been shown to have their 

function “rescued” at lower temperatures, presumably due to slowed protein processing that facilitates 

subunit folding and receptor assembly and/or slowed subunit degradation or receptor internalization (238-

241).  We thus explored the effects of decreased temperature on the total and surface expression of 

wildtype and mutant receptors.  We coexpressed wildtype or mutant γ2LHA subunits with α1 and β2 

subunits in HEK293T cells and determined total expression of wildtype and mutant γ2LHA subunits after 

incubation at 37°C or 30°C for 24 h by Western blot using anti-HA antibody (Figure 2-7A).  We 

quantified the band intensity, normalized it to that of ATPase, and normalized the HA/ATPase ratio for 

mutant γ2LHA subunits to that obtained with expression of α1, β2 and wildtype γ2LHA subunits.  The 

expression difference between 37°C and 30°C was compared for each wildtype or mutant condition.  We 

found substantially increased total wildtype and mutant γ2LHA subunit levels when incubated at 30°C for 

24 h compared to those at 37°C (WT: (37°C: 1.00, 30°C: 2.08 ± 0.28, p < 0.05); N79S: (37°C: 0.91 ± 

0.12, 30°C: 1.55 ± 0.17, p < 0.05); R82Q: (37°C: 0.37 ± 0.06, 30°C: 0.54 ± 0.08, p < 0.001); P83S: (37°C: 

0.36 ± 0.06, 30°C: 0.57 ± 0.03, p < 0.05); n = 5), indicating that the stability of both wildtype and mutant 

γ2LHA subunits was increased at a lower temperature.   
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We then determined whether surface levels of receptor subunits were also increased by reduced 

temperature (Figure 2-7B).  We coexpressed α1β2γ2LHA subunits in HEK293T cells and examined the 

surface levels of α1 subunits and wildtype and mutant γ2LHA subunits after a 24 h incubation at 37°C or 

30°C by surface biotinylation using anti-α1 and anti-γ2 antibodies.  We normalized the surface expression 

levels at 30°C to those at 37°C.  Interestingly, we found a moderate, but not significant, increase of 

surface α1 subunit levels with all conditions (WT: 1.33 ± 0.25; N79S: 1.63 ± 0.32; R82Q: 1.40 ± 0.24; 

P83S: 1.36 ± 0.29; n = 4, p > 0.05), but a significant large increase of surface γ2L subunit levels (WT: 

2.16 ± 0.34; N79S: 2.26 ± 0.20; R82Q: 1.86 ± 0.16; P83S: 1.93 ± 0.21; n = 4, p < 0.05).  These results 

suggest that the biogenesis of wildtype and mutant γ2L subunits was facilitated by lower temperatures.  

Although the increase of surface α1 subunit levels was not significant, it is possible that at a lower 

temperature the rate of α1β2γ2L receptor assembly is relatively slow compared to that of γ2L 

homopentamer assembly, leading to a large increase of surface γ2L homopentamers and a small increase 

of surface α1β2γ2L receptors. 

5. Discussion 

1) The R82Q and P83S mutations were located in the α-β1 loop at the γ(+)/β2(-) subunit-

subunit interface and disrupted receptor assembly and trafficking.   

Biogenesis of cys-loop receptors is complex and inefficient (138).  After the synthesis of single 

subunits, intermediate dimers form, but only pentamers with correct subunit folding and assembly will 

pass the ER quality control, be further trafficked to and processed by the Golgi apparatus and then be 

trafficked to the cell surface (44, 236).  Inappropriately folded and unassembled subunits are quickly 

degraded (138).  Our data suggested that the γ2 subunit mutations R82Q and P83S decreased to similar 

extents the efficiency of pentamer formation.  Mutant γ2 subunits that were not incorporated into 

pentamers were trapped in the ER and likely degraded.  Due to the inefficient assembly of mutant γ2 
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subunit-containing pentameric receptors, receptors with a different stoichiometry (α1β2 dimeric receptors) 

were able to be assembled.  We previously reported two other mutations within structural loops 

contributing to interface interactions with similar fates: the β3 subunit mutation G32R located at the γ+/β- 

subunit interface (163), and the γ2 subunit mutation R177G located at the α+/γ- interface (157).  Both 

GABRB3(G32R) and GABRG2(R177G) mutations were shown to decrease surface levels of mutant γ2L 

subunits and increase surface levels of αβ heteropentamers and/or β3 homopentamers, indicating a 

common molecular mechanism shared by this group of mutations.   

Our findings in this study were contrary to those in a previous study, which reported that receptor 

function as well as Zn2+ sensitivity of GABAA receptors containing mutant γ2(P83S) subunits were 

normal (158).  This conflict may have been due to the different ratios of subunit cDNAs used for 

transfection.  In contrast to a 1:1:2 α1:β2:γ2 cDNA ratio used in their study, we used a 1:1:0.1 cDNA ratio.  

Unpublished data from our laboratory has shown that GABA-evoked peak currents in HEK cells 

transfected with 1:1:0.1 (α1:β2:γ2) ratio were equal to those obtained with a 1:1:1 ratio, although the 

surface level of γ2 subunits was much lower.  Thus, our data indicated that transfection ratios greater than 

1:1: 1 are oversaturating for whole cell recordings, which could mask the deficits caused by mutations.  

Our study explored how the R82Q and P83S mutations affected receptor biogenesis.  We found that 

the surface level of mutant subunits was greatly decreased (Figure 2-2), while the total level was also 

slightly, but significantly, decreased (Figure 2-2, 4).  This was similar to in the findings with homozygous 

knock-in mice carrying the R82Q mutation (150).  While we did not compare the rates of subunit 

synthesis or degradation, we have previously demonstrated that two other epilepsy-associated GABAA 

receptor subunit missense mutations GABRA1(A322D) and GABRG2(Q390X) altered the degradation 

rates, but not the synthesis rates, of the subunits (130, 181).  Recently we found that another subunit-

interface-located missense mutation GABRG2(R177G) increased the degradation rate of mutant subunits 

(159).  Thus, stability rather than synthesis of GABAA receptor subunits was regulated by the ER quality 
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control machinery.  We also explored how the R82Q and P83S mutations affected assembly of α1, β2 and 

γ2 subunits into receptors.  It has been reported that the γ2 subunit mutation R82Q disrupted the binding 

of β2 subunits and a GST-fused γ2 subunit peptide N-terminal fragment containing this mutation (143).  

However, another group reported that the mutation did not decrease β3γ2 subunit association (146).  In 

the current study, we found a substantial decrease in β2γ2 subunit association when coexpressing 

α1β2γ2(R82Q) or α1β2γ2(P83S) subunits.  Compared to wildtype γ2 subunits, only a small proportion of 

mutant γ2(R82Q) and γ2(P83S) subunits were assembled into pentamers, trafficked to the Golgi apparatus 

and inserted into the surface membrane, while the majority of them were trapped in the ER and degraded.  

Meanwhile, the mutant γ2(R82Q) and γ2(P83S) subunits still formed unstable intermediate oligomers 

with partnering subunits (data not shown), thus also impeding their assembly and trafficking (Figure 2-6).  

This is consistent with our structural simulation (discussed below) showing that R82Q and P83S 

mutations caused substantial structural rearrangements in several distinct domains involved in receptor 

assembly.  The finding that some mutant γ2(R82Q) and γ2(P83S) subunits were still successfully 

incorporated into pentamers is also in agreement with the finding that small currents with normal kinetic 

properties were formed with coexpression of α1β2γ2(R82Q) subunits (141) and with a recent report 

showing that some mutant γ2(R82Q) subunits reached the cell surface and triggered endocytosis of the 

receptor (148).  The discrepancy with the previous study could have been caused by use of different 

subtypes of β subunits or by the immunoprecipitation process.  In the previous study (146), different 

amounts of wildtype and mutant γ2 subunits were pulled down, while many mutant γ2 subunits that were 

not incorporated into pentamers were already degraded.  In our study, we tried to pull down the same 

amount of β2 subunits, including γ2 subunits that were both associated and not associated, representing 

αβγ and αβ pentamers respectively.  It is possible that the decreased association was caused by the paucity 

of mutant γ2 subunits.  Nevertheless, in that case, the dominant form of γ2 subunits associated with β2 

subunits should be the immature pattern rather than the mature pattern observed (Figure 2-5A).  Thus we 
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believe that the primary defect in receptor biogenesis was during subunit assembly, but we could not 

exclude some contributions from other steps.   

Although also located in the γ2 subunit α-β1 loop, the N79S mutation had only small effects on 

receptor assembly.  Different from R82Q and P83S mutations associated with epilepsy families, the N79S 

mutation was identified only in one patient (226).  Similar to a recent finding demonstrating that γ2(N79S) 

subunits had no effects on GABAA receptor function except to modify the steepness of the GABA 

concentration-response curve (178), we found that the N79S mutation produced significant but minimal 

reduction of receptor assembly.  We identified a small reduction of surface γ2(N79S) subunits by flow 

cytometry and surface biotinylation and decreased peak current amplitudes through whole cell recordings 

in HEK cells.  We also found a small reduction of surface α1 subunits, indicating that the N79S mutation 

also slightly affected the assembly and trafficking of partnering subunits.  We did not quantify the 

fluorescence intensity of immunostaining in neurons because it was not sensitive to small changes.  As 

the defects were minimal and the majority of γ2(N79S) subunits assembled into stable pentamers that 

were trafficked beyond the ER and expressed on the surface as functional α1β2γ2 receptors, the γ2(N79S) 

mutation had only small effects on receptor biogenesis.  Our model of receptor structure predicted that the 

N79 residue does not face the γ2+/β2- subunit interface but rather is adjacent to the interface (Figure 2-

1B), and thus the N79S mutation may disrupt to a lesser extent the subunit interaction required to form 

trafficking-competent pentamers.  These findings suggest that while GABRG2(N79S) decreases receptor 

surface expression and peak whole cell current amplitude, the magnitudes of effects are small and 

unlikely to be the major disease-causing factor.  Considering that GABRG2(N79S) was identified in only 

one patient without evidence of co-segregation with an epilepsy syndrome or sporadic occurrence and is 

absent in the NHLBI exome variant server (http://evs.gs.washington.edu/EVS/), we suggest that rather 

than being an epilepsy associated mutation, GABRG2(N79S) might be a relatively benign rare variant or 

might increase seizure susceptibility and that other unidentified mutations or variants may be responsible 
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for the GTCSs experienced by the patient.  However, for the consistency, we will continue to refer to 

GABRG2(N79S) as a “mutation” in this paper.   

2) Structural simulation predicts that mutation-induced changes in protein structure impaired 

subunit oligomerization.   

Not all missense mutations will significantly affect protein structure and function, and a considerable 

number of mutations are well tolerated for protein folding.  Proper folding and trafficking of GABAA 

receptors requires specific sequences and structural motifs within subunits that contribute to selective 

oligomerization among their γ+/β-, β+/α-, and α+/γ- interfaces.  For example, it has been reported that γ2 

subunit residues 130-143 in between the β2-β3 and β3-β4 loops interacted directly with α1 subunit 

residues, γ2 subunit residues 122-131 at the beginning of β2-β3 loop interacted with the β3 subunit (242, 

243) and γ2 subunit residues 106-121 in the β1-β2 loop and β2 sheet were important for formation of the 

α1+/γ2- subunit interface (244) (Figure 2-8C).  Many of these sequences lie in homologous regions of α, 

β, and γ subunits (Figure 2-1B, homologous assembly motifs in α, β, and γ subunits were shown in red, 

dark blue and yellow loops, respectively).  Structural rearrangements of assembly motifs could strongly 

impair association of partnering subunits, formation of correct subunit/subunit interfaces, oligomerization 

of pentameric receptors, and receptor trafficking to the cell surface.  

We propose that even though the N79S, R82Q and P83S mutations in the γ2 subunit are located at or 

near the γ2+/β2- subunit/subunit interface in the same general subunit domain, they might have different 

impacts on receptor structure, and thus impair the assembly and trafficking of partnering subunits quite 

differently.  Using flexible backbone simulations we characterized structural conformational changes 

(Figure 2-8A) produced by introducing an N79S, R82Q or P83S mutation in γ2 subunits (Figure 2-8, box 

inserts).  We found that all mutations were predicted to cause structural rearrangements to neighboring 

residues that were within 7Å from their respective mutation site.  Greater structural variability was 

observed by the presence of alternative secondary backbone conformations at specific structural loops 
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(Figure 2-8A; wildtype in gray, mutation-associated alternative backbones in other colors, and Figure 2-

8C), and disordered side-chains of residues surrounding the mutation sites at the α-β1 loop were also 

observed (Figure 2-8B).   

We also compared the mutation-induced structural differences by analyzing the carbon alpha root 

mean squared deviation (Cα RMSD) from the wildtype structure caused by each substitution (Figure 2-

8C).  Cα RMSD provides Cα-Cα comparisons between two structurally aligned models; the larger the Cα 

RMSD, the more the mutant structure deviates from the wildtype structure.  The R82Q mutation had a 

much larger Cα RMSD than P83S and N79S mutations for any structural loop.  With a Cα RMSD of 0.73 

± 0.05 Å for residues D65-G102 in the α-helix, α-β1 loop and β1 sheet, the R82Q substitution had a less 

preserved native conformation than P83S (Cα RMSD of 0.16 ± 0.02 Å) or N79S (Cα RMSD of 0.14 ± 

0.02 Å) substitutions.  We previously found that this α-β1 loop domain, which participates in formation of 

the γ+/β- interface (Klausberger et al., 2000), interacts with the β2 subunit N32 glycosylation site 

impairing receptor assembly and function (243, 245), suggesting that the R82Q mutation disrupted 

primarily the α-β1-loop-mediated γ+/β-  interaction.  

All three mutations were predicted to cause rearrangements in other domains also (Figure 2-8C).  

While both R82Q and P83S mutations primarily produced changes among residues at the γ+/β- interface, 

they also produced rearrangements in the β7-β8 loop and β8 sheet (Cα RMSD of 0.07 ± 0.005 Å, and Cα 

RMSD of 0.02 ± 0.005 Å, respectively for residues Y213-Y220) and P83S also produced rearrangements 

in the β3-β4 loop (Cα RMSD of 0.06 ± 0.01 Å for residues V142-P148).  Strikingly, only the P83S 

mutation had side-chain rearrangements among residues found at both α+/γ- and γ+/β- interfaces (Cα 

RMSD of 0.19 ± 0.02 Å for residues W121-K127 in the β2 sheet and β2-β3 loop) (Figure 2-8A and C).  

In addition, the P83S mutation had rearrangements of two conserved tryptophan residues (W121 and 

W146), which are among residues located at homologous assembly domains described as necessary for 

the formation of the γ2, α1, and β2 subunits interfaces (243, 244, 246).  On the other hand, despite the fact 

that the N79S mutation had the largest Cα RMSD at the β3-β4 loop (Cα RMSD of 0.43 ± 0.04 Å for 
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residues V142-P148), which formed part of an assembly motif between γ2 and α1 subunits (243, 244), 

this structural rearrangement did not seem as important for the stability of the receptor as it was not 

accompanied by additional structural changes in other loops nor in the core of the subunit.  This could be 

due to differences in side-chain rearrangements between a buried-polar mutation at site 83 (P83S) and an 

exposed-polar mutation at site 79 (N79S), resulting in a somewhat smaller pocket for surrounding 

interactions and formation of buried polar interactions for P83S.  It seems that mutations at positions 82 

and 83 were less “tolerated” than at position 79, resulting in R82 and P83 contributing the most to 

interactions at the γ2 interfaces and the core of the subunit.  Overall, both R82Q and P83S mutations 

caused the most disruptive rearrangements at both γ+/β- and α+/γ- interfaces and were less structurally 

“tolerated” than N79S.  These findings are in agreement with our functional data, which demonstrated 

that R82Q and P83S mutations were less tolerated with marked impairment of receptor function and 

assembly, and in contrast, the N79S mutation was located two-three residues away and had minimal 

effects on GABAA receptor function and assembly.  

3) How do the GABRG2(R82Q) and GABRG2(P83S) mutations contribute to epileptogenesis? 

In contrast to the γ2 subunit N79S mutation, the P83S mutation was as detrimental to GABAA 

receptor function as the R82Q mutation.  Heterozygous knock-in mice carrying the R82Q mutation 

developed absence and febrile seizures, recapitulating patients phenotype (150).  Compared to a 

hypomorphic allele, the R82Q mutation increased seizure susceptibility indicating that it had effects in 

addition to haploinsufficiency (156).  A recent study also suggested that γ2 subunits haploinsufficiency 

could account for genesis of absence seizures in γ2R82Q/+ knock-in mice but not the increased thermal 

seizure susceptibility, while the R82Q mutation increased thermal seizure susceptibility, independent of 

genetic background  (153).   

There is controversy concerning whether mutant γ2(R82Q) subunits have dominant negative effects 

on partnering α1 and β2 subunits (143, 145, 146, 155).  Here we determined the effects of mutant γ2 
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subunits on surface expression of α1 and β2 subunits using flow cytometry, which is more quantifiable 

and sensitive.  Surface α1 levels were significantly reduced by all three mutant subunits when 

coexpressed with β2γ2S subunits, but not when coexpressed with β2γ2L subunits.  The dominant negative 

effects may have been caused by the formation of dimers between mutant γ2 subunits and α1 or β2 

subunits, preventing formation of αβ receptors and trapping partnering subunits in the ER.  It could also 

have been caused by internalization of receptors containing these mutations (148), which would result in 

subunit degradation through the endosome/lysosome pathway.  We did not observe a significant decrease 

of surface β2 subunits, probably because there were increased αβ receptors on the cell surface, which 

would increase surface β2 subunit levels.  Compared to γ2L subunits, γ2S subunits can be trafficked to 

the cell surface in the absence of α and β subunits (37, 227, 247), probably by forming trafficking-

competent homopentamers.  With excess γ2 subunits, unassembled γ2L subunits are retained in the ER, 

while γ2S subunits assemble into pentamers and are trafficked to the cell surface.  As unassembled γ2L 

subunits can still interact with α1 and β2 subunits, excessive wildtype γ2L subunits could produce 

dominant negative effects on partnering subunits similar to those caused by trafficking-incompetent 

mutant subunits.  This could have contributed to the failure to find significant dominant-negative effects 

of mutant γ2L subunits. 

In summary, while R82Q and P83S mutations decreased surface α1β2γ2 receptors and increased 

surface α1β2 receptors, they also decreased the amount of surface receptors through slight dominant 

negative effects, both of which would be expected to contribute to the epileptogenesis.   

4) Implications for future treatments 

Trafficking-deficient mutant proteins have been shown to be rescued by lower temperature and 

molecular or pharmacological chaperones (238-241, 248, 249).  Here we found that lower incubation 

temperature (30°C) increased surface and total levels of wildtype and mutant γ2L subunits.  Interestingly, 
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although the surface α1 subunit levels showed a trend of increase, they were insignificantly.  This 

demonstrated that the biogenesis of GABAA receptor subunits was complex and inefficient.  Many 

misfolded or unassembled subunits were degraded, which were rescued by lower temperature.  However, 

the assembly of GABAA receptor subunits was still slow at 30°C.  Trafficking of mutant γ2L(R82Q) and 

γ2L(P83S) subunits was not further improved further compared to wildtype γ2L subunits, and the 

dramatic increase of surface γ2L subunits could be partially caused by increased γ2L homopentamers 

formed at the low temperature . 

Compared to temperature-induced rescue, which affects multiple proteins, specific pharmacological 

chaperones may be favored.  It was reported that GABAA receptor ligands could promote receptor 

trafficking as ligand chaperones (250).  However, we did not find significant chaperone effects of either 

GABA or diazepam on wildtype or mutant receptors (data not shown).  With more thorough drug 

screening, chemicals with specific chaperone effects on GABAA receptors may be identified and 

developed for future treatment of GEs.   
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Figure 2-1: Sequence and structural model of N-terminal region containing three mutations 

A. Sequences of N-terminal α-helix, α-β1 loop and β1-sheet domains of human α(1-6), β(1-3), γ(1-3) and δ subunits 
from the GABAA receptor family were aligned with sequences of the nicotinic acetylcholine receptor α subunit 
(ACHA(7,9)), 5-hydroxytryptamine 3A receptor subunit (5HT3A) and glutamate-gated chloride channel GluCl α 
subunit (G5EBR3).  Sites of missense mutations in the γ2 subunit were highlighted in red.  In all sequences, 
identical residues were highlighted in dark gray and conserved residues were highlighted in light gray.  The α-helix, 
α-β1 loop and β1-sheet domains were also represented across subunits above the alignments.  B. On the left, a 
structural model of the α1β2γ2 GABAA receptor, as viewed from the synaptic cleft, was shown.  Sites of missense 
mutations in γ2 subunit, located at the γ2(+)/β2(-) interface, were shown in space-filling representation, i.e., N79 in 
light blue, R82 in orange, and P83 in green, and the α-β1 loop where these three residues were located was shown in 
purple.  Homologous motifs for α1β2γ2 receptor assembly at the respective complementary (-) interfaces (α1: red; 
β2: dark blue; γ2: yellow) and conserved tryptophan residues located in these motifs (α1W97, red; β2W91, dark blue; 
γ2W121, yellow) were also represented.  On the right, an enlarged 45 ° side view of the γ+/β- subunit-subunit 
interface with a close-up of missense mutations in the α-β1 loop was also shown.  
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Figure 2-2: Surface expression of mutant γ2 subunits was reduced to different extents 

A. α1β2 and α1β2γ2HA (wildtype or mutant γ2S or γ2L) subunits were coexpressed in HEK293T cells.  Surface and 
total γ2HA subunit levels were evaluated through flow cytometry.  The mock-subtracted mean fluorescence value of 
γ2HA subunits under different experimental conditions were normalized to those obtained with cotransfection of 
wildtype α1β2γ2HA subunits (n ≥ 5, mean ± SEM).  Differences compared to cotransfection of wildtype α1β2γ2HA 
subunits were analyzed by the one way ANOVA test followed by Dunnett’s multiple comparison test.  (*** p < 
0.001; ** p < 0.01; * p < 0.05).  B. Wildtype or mutant γ2L subunits were coexpressed with α1β2 subunits in 
HEK293T cells.  Surface protein samples were collected through surface biotinylation and blotted by anti-γ2 and 
anti-ATPase antibodies (not shown).  Cell lysates from transfected cells were loaded as the total fraction.  Band 
intensity of the γ2LHA subunit was normalized to the ATPase signal (n ≥ 4, mean ± SEM).  Differences compared to 
cotransfection of wildtype α1β2γ2L subunits were analyzed by the one way ANOVA test followed by Dunnett’s 
multiple comparison test.  (*** p < 0.001; ** p < 0.01; * p < 0.05).  C. Wildtype or mutant γ2LHA subunits were 
expressed in rat cortical neurons in pLVX-IRES-ZsGreen vectors and stained by anti-HA antibody.  Surface 
(without permeabilization) and total (with permeabilization) staining patterns were revealed by confocal imaging.  
Scale bar = 20 µm.  Inset scale bar = 2 µm.  
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Figure 2-3:  Mutant receptors showed decreased whole cell current amplitudes and increased Zn2+sensitivity. 

A. Wildtype or mutant γ2L subunits were coexpressed with α1β2 subunits in HEK293T cells.  GABAA receptor 
currents in response to 4 s applications of 1 mM GABA alone (left traces) or coapplied with 10 µM Zn2+ (right 
traces) to lifted cells containing wildtype and mutant γ2 subunits were shown.  Subunit identity and length of GABA 
application (black line) were indicated above the current traces.  Scale bars = 1 nA and 0.4 nA.  B. Mean current 
densities (pA/pF, top panel) and Zn2+ inhibition (%, bottom panel) from cells coexpressing wildtype or mutant γ2L 
subunits were calculated.  *** indicated p < 0.001, * indicated p < 0.05,  compared with wildtype. 
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.  
Figure 2-4: Mutant γ2(R82Q) and γ2(P83S) subunits showed immature glycosylation patterns and decreased 
stability 

A. Wildtype or mutant γ2LHA subunits were expressed alone, coexpressed with β2 subunits only, or coexpressed 
with both α1 and β2 subunits in HEK293T cells.  The total lysates of transfected cells were collected and blotted by 
anti-HA and anti-ATPase antibodies.  When γ2LHA subunits were coexpressed with both α1 and β2 subunits, a top 
band around 47 kD (black arrow) appeared in addition to the bottom band (grey arrow) around 42 kD.  Band 
intensity of the γ2LHA subunit was normalized to the ATPase signal and then normalized to that with cotransfection 
of wildtype α1β2γ2LHA subunits (n = 4, mean ± SEM).  Results obtained from transfection of wildtype or mutant 
γ2LHA subunits alone or cotransfection of wildtype or mutant γ2LHA subunits with β2 subunits were compared to 
those from cotransfection of corresponding wildtype or mutant γ2LHA subunits and α1β2 subunits and were analyzed 
by one way ANOVA test followed by Dunnett’s multiple comparison test.  (*** p < 0.001; ** p < 0.01; * p < 0.05).  
B. Wildtype or mutant γ2LHA subunits were coexpressed with α1β2 subunits in HEK293T cells.  The total lysates of 
transfected cells were collected, digested by Endo H, and blotted by anti-HA antibody.  The two bands of γ2LHA 
subunits before Endo H digestion were labeled by black and grey arrows.  The intensity of the Endo H sensitive 
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band (bottom band after digestion) was normalized to the total band intensity (top band and bottom band together 
after digestion) and analyzed by one way ANOVA test followed by Dunnett’s multiple comparison test.  (*** p < 
0.001) 
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Figure 2-5: Mutant γ2(R82Q) and γ2(P83S) subunits were incorporated inefficiently into receptor pentamers. 

A. Wildtype or mutant γ2LHA subunits were coexpressed with α1 and β2FLAG subunits in HEK293T cells.  In whole 
cell lysates, β2FLAG subunits and associated subunits were pulled down by anti-FLAG beads and blotted on Western 
blots by anti-FLAG and anti-HA antibodies.  The total lysates were loaded as input and blotted by anti-HA antibody.  
B. The amount of wildtype or mutant γ2LHA subunits associated with β2FLAG subunits when coexpressed with α1 and 
β2FLAG subunits were compared (n = 6, mean ± SEM).  Differences compared to cotransfection of wildtype 
α1β2γ2LHA subunits were analyzed by the one way ANOVA test followed by Dunnett’s multiple comparison test.  
(*** p < 0.001; ** p < 0.01; * p < 0.05) 

 

  



63 

 

  
Figure 2-6: Over-expression of mutant γ2 subunits decreased surface levels of partnering subunits 

A. B. Wildtype or mutant γ2LHA (A) or γ2SHA (B) subunits were coexpressed with α1β2 subunits in HEK293T cells.  
Surface and total levels of α1 or β2 subunits were evaluated using flow cytometry.  The mock-subtracted mean 
fluorescence value of each subunit under different experimental conditions were normalized to those obtained with 
cotransfection of wildtype α1β2γ2LHA (A) (n ≥ 9, mean ± SEM) or α1β2γ2SHA (B) (n ≥ 5, mean ± SEM) subunits.  
Differences compared to wildtype α1β2γ2 receptor condition were analyzed by the one way ANOVA test followed 
by Dunnett’s multiple comparison test.  (*** p < 0.001; ** p < 0.01; * p < 0.05).   
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Figure 2-7: Decreased temperature stabilized both wildtype and mutant γ2 subunits 

 A. Wildtype or mutant γ2LHA subunits were coexpressed with α1 and β2 subunits in HEK293T cells and incubated 
at 37°C or 30°C for 24 hours.  The total lysates of transfected cells were collected and blotted by anti-HA and anti-
ATPase antibodies.  Band intensity of the γ2LHA subunit was normalized to the ATPase signal, then normalized to 
that of wildtype α1β2γ2LHA subunits (n = 5, mean ± SEM).  Differences between 37°C and 30°C incubation were 
analyzed by t test.  (*** p < 0.001; ** p < 0.01; * p < 0.05).  B. Wildtype or mutant γ2LHA subunits were 
coexpressed with α1 and β2 subunits in HEK293T cells and incubated at 37°C or 30°C for 24 hours.  Surface 
protein samples were collected through surface biotinylation and blotted by anti-α1, anti-γ2 and anti-ATPase 
antibody.  Band intensities of the α1 and γ2L subunits were normalized to the ATPase signal.  The values for the 
30°C incubation were further normalized to those obtained at 37°C (n = 4, mean ± SEM) to calculate the fold 
increase.  The significance of fold increase was analyzed by t test.  (*** p < 0.001; ** p < 0.01; * p < 0.05).   
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Figure 2-8: Structural simulation predicted mutation-induced changes in subunit structure 

A. Superpositions of structural models for up to 10 of the best-scoring low-energy generated backbones of wildtype 
and mutated N79S, R82Q and P83S γ2 subunits were made.  In ribbon representation, the native secondary structure 
was shown in gray, and the mutated secondary structures were represented by other colors.  Structural domains as 
shown in panel C were also represented.  Sites of missense mutations in γ2 subunits were shown in space-filling 
representation in the inserts: N79 in blue, R82 in orange, and P83 in green.  B. Local side-chain rearrangements 
observed for mutated N79S, R82Q and P83S γ2 subunit residues were displayed.  Neighboring residues within an 11 
Å radius were shown in stick representation and color by element (CPK representation).  Sites of wildtype or 
mutated N79S, R82Q or P83S residues were labeled in blue, orange or green circles.  C. A table of predicted amino 
acids contributing to side-chain rearrangements for mutated residues at positions 79, 82 and 83 was categorized by 
structural domains.  The mutated residues were shown in red, and identical residues among the Cys-loop family 
were labeled with an asterisk.  
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1. Abstract 

The GABRG2 nonsense mutation, Q40X, is associated with the severe epilepsy syndrome, Dravet 

syndrome, and is predicted to generate a PTC in the GABAA receptor γ2 subunit mRNA in a position that 

codes for the first amino acid of the mutant subunit.  We determined the effects of the mutation on γ2 

subunit mRNA and protein synthesis and degradation, as well as on α1β2γ2 GABAA receptor assembly, 

trafficking and surface expression in HEK cells.  Using bacterial artificial chromosome (BAC) constructs, 

we found that γ2(Q40X) subunit mRNA was degraded by NMD.  Undegraded mutant mRNA was 

translated to a truncated peptide, likely the signal peptide, which was cleaved further.  We also found that 

mutant γ2(Q40X) subunits did not assemble into functional receptors, thus decreasing GABA-evoked 

current amplitudes.  The GABRG2(Q40X) mutation is one of several epilepsy-associated nonsense 

mutations that have the potential to be rescued by reading through the PTC, thus restoring full-length 

protein translation.  As a first approach, we investigated use of the aminoglycoside, gentamicin, to rescue 

translation of intact mutant subunits by inducing mRNA read-through.  In the presence of gentamicin, 

synthesis of full length γ2 subunits was partially restored, and surface biotinylation and whole cell 

recording experiments suggested that rescued γ2 subunits could corporate into functional, surface GABAA 

receptors, indicating a possible direction for future therapy. 
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2. Introduction 

Epilepsy is a common neurological disorder that affects about 1% of the world’s population (223).  

Epilepsy syndromes are usually either symptomatic and due to a known brain injury or idiopathic and not 

due to brain injury.  Genetic generalized epilepsy syndromes (GGEs) comprise ~30% of all cases and can 

vary in severity from the mild childhood absence epilepsy syndrome to the severe Dravet syndrome (224, 

225).  While many GGES are benign, Dravet syndrome is not.  It is associated with myoclonic and 

generalized tonic-clonic seizures  that begin at an early age, frequent episodes of status epilepticus and 

progressive intellectual decline, and it is resistant to a wide range of antiepileptic drugs.  About one half 

of Dravet syndrome-associated mutations are nonsense mutations in genes such as voltage-gated sodium 

channels that create PTCs, and thus, truncated subunit proteins (252).  Although rare, nonsense mutations 

in GABAA receptor subunit genes have been identified also in Dravet syndrome patients (179).  

GABRG2(Q40X) is a nonsense mutation located in GABAA receptor γ2 subunits that has been associated 

with Dravet syndrome (253).   

GABAA receptors are heteropentameric chloride ion channels that mediate the majority of inhibitory 

neurotransmission in the CNS.  The receptor complex is composed of five subunits from nineteen 

different genes, and the main synaptic receptors are composed of two α subunits, two β subunits and one 

γ2 subunit.  Out of the fifteen GABR epilepsy-associated mutations or variants, seven are in GABRG2, and 

these mutations have been shown to decrease channel function by altering receptor biogenesis or channel 

function (114).  The GABRG2(Q40X) mutation was shown to impair GABAA receptor channel function 

and to form granules in neurons (253).  However, the effects of this mutation on GABAA receptor 

function are unknown.   
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Current therapies for the devastating epilepsies produced by truncation mutations are symptomatic 

and relatively ineffective.  One potential treatment would be to rescue the nonsense mutation by drug-

induced read-through.  Aminoglycosides such as G-418 and gentamicin partially restore the expression 

and function of full-length proteins by inducing PTC read-through (254, 255).  A drug designed to 

specifically induce ribosomes to read through stop codons generated by PTCs (Ataluren®) is currently 

under Phase 3 clinical trial to treat cystic fibrosis patients carrying PTCs in the gene CFTR, further 

confirming the clinical feasibility of this strategy (256, 257).  Because the dramatic loss of function 

produced by subunit truncation mutations likely contributes to the pathogenesis of Dravet syndrome, the 

read-through strategy presents a potential approach to treat epilepsies associated with PTCs.   

To explore the effects of the GABRG2(Q40X) mutation, we studied the transcription of wildtype and 

mutant GABRG2 mRNA, the translation of γ2 and γ2(Q40X) subunit protein and the properties of 

GABAA receptors that were assembled with coexpression of α1, β2 and γ2 or γ2(Q40X) subunits in HEK 

293T cells.  We found that the Q40X mutation engaged the cellular quality control machinery to activate 

nonsense mediated mRNA decay (NMD) to decrease mutant mRNA levels and produced a truncated 

signal peptide that was not incorporated into functional receptors.  Restoring expression of the full-length 

wildtype γ2 subunit by read-through should be able to rescue the subunit truncation caused by the Q40X 

mutation.  To evaluate the plausibility of aminoglycoside-induced read-through of an epilepsy-associated 

PTC, we determined whether gentamicin could rescue mutant γ2(Q40X) subunits.  We demonstrated that 

gentamicin partially restored the expression of full-length γ2 subunits, and that the rescued γ2 subunits 

assembled with α1β2 subunits to form functional α1β2γ2 GABAA receptors.    
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3. Materials and Methods  

Expression vectors 

The coding sequences of human α1, β2 and γ2S GABAA receptor subunits were cloned into 

pcDNA3.1 expression vectors (Invitrogen) as previously described (258).  All subunit residues were 

numbered based on the immature peptide.  The γ2S(Q40X) and γ2S(Q40X,TGA) subunit constructs were 

generated using the QuikChange site-directed mutagenesis kit (Stratagene).  An HA epitope was inserted 

at a functionally silent site (between the 4th and 5th residue of the mature peptide of both wildtype and 

mutant γ2S subunit) to facilitate our experiments (137).  To detect the truncated protein generated by the 

mutation, we also inserted an HA epitope at the N terminus of the unprocessed subunit, while an FLAG 

epitope was inserted between the 4th and 5th residue of the mature peptide, using overlapping PCR.   

The GABRG2 BAC construct containing the Q40X mutation was generated using the BAC clone 

number RP11-1035I20 (BACPAC Resources; http://bacpac.chori.org), which contains the wildtype 

human GABRG2 gene genomic sequence.  The human chromosome sequence upstream of GABRG2 

translation start site was replaced with a CMV promoter, and the mutation was introduced by galK 

facilitated BAC recombineering (259).  The oligonucleotide sequences for BAC recombineering are 

available upon request.  A reporter gene containing an SV40 early promoter-driven eGFP was integrated 

to BACs using Cre (NEB) recombination (260).  Thus, both wildtype and mutant GABRG2 BACs 

contained the CMV promoter-driven GABRG2 gene and an eGFP reporter gene driven by the SV40 early 

promoter.   

Cell culture and transfection 

Human embryonic kidney cells (HEK 293T) (ATCC, CRL-11268) were incubated at 37°C in 

humidified 5% CO2, 95% air and grown in Dulbecco's modified Eagle's medium (Invitrogen) 

supplemented with 10% fetal bovine serum, 100 IU/ml penicillin, and 100 μg/ml streptomycin 

(Invitrogen).  Cells were transfected using the FuGENE 6 transfection reagent (Roche Applied Science) at 
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a DNA:Transfection Reagent ratio of 1:3 according to the manufacturer’s instructions.  Eighteen to 20 

hours after transfection, gentamicin (50 mg/ml, GIBCO) was added to the culture dish. 

The NMD essential factor UPF1 or SMG6 was knocked down using siRNAs to block the NMD 

machinery.  SilencerSelect® pre-designed and validated siRNA (Ambion, siRNA ID s11926) was 

transfected to cells using Lipofectamine RNAiMax (Invitrogen) according to the manufacturer’s manual.  

Twenty-four hours later cells were transfected again with the wildtype or mutant BAC constructs and 

harvested two days later for RT-PCR.   

RNA extraction, RT-PCR and Taqman real-time qPCR 

Total RNAs from transfected HEK 293T cells were extracted by using the PerfectPure RNA Cultured 

Cell kit (5Prime) following the manufacturer's protocol and then reverse transcribed to cDNA using the 

Taqman MicroRNA Reverse Transcription Kit (Applied Biosystems).  The transcribed cDNA was used 

then as the PCR template to identify γ2 subunit transcripts using a forward primer located in exon 6 and a 

reverse primer located in exon 7.  Taqman® probes detecting human GABRG2 and GAPDH mRNA, 18S 

rRNA, or eGFP mRNA (part number 4331348 [Custom Taqman Gene Expression Assay Service]) were 

used to quantify the amount of transcribed cDNA.  Samples were obtained in triplicate for each 

experiment, and the average threshold cycle (Ct) value for each sample was calculated by the Sequence 

Detection System v2.3 Standard Edition (Applied Biosystems).  The average Ct values of GABRG2 gene 

mRNA were normalized to the endogenous human GAPDH mRNA, 18S rRNA or eGFP mRNA levels to 

compare the relative RNA abundance. 

Western Blot, PNGase F digestion and surface biotinylation 

After sonication, the whole cell lysates of transfected HEK cells were collected in modified RIPA 

buffer (Pierce) and 1% protease inhibitor mixture (Sigma).  Collected samples were subjected to gel 

electrophoresis using NuPAGE○R (Invitrogen) or TGX (BioRad) precast gel and then transferred to PVDF-

FL membranes (Millipore).   
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Monoclonal anti-HA antibody (Covance or Cell signaling) and monoclonal anti-FLAG antibody 

(Sigma) were used to detect the epitope tag in γ2S subunits.  Anti-sodium potassium ATPase antibody 

(Abcam) was used as a loading control.  After incubation with primary antibodies, IRDye® (LI-COR 

Biosciences) conjugated secondary antibody was used at 1:10,000 dilution, and the signals were detected 

using the Odyssey Infrared Imaging System (LI-COR Biosciences).  The integrated intensity value (IDV) 

of each specific band was calculated using the Odyssey 3.0 software (LI-COR Biosciences). 

To remove all N-linked glycans, cell lysates were incubated with the enzyme PNGase F (NEBiolab) 

at 37°C for 3 hours following manufacturer’s manual.  Treated samples were then subjected to SDS-

PAGE and Western blot.  

Surface proteins were collected using surface biotinylation as described before (228).  Transfected 

cells were biotinylated using the membrane-impermeable reagent sulf-HNS-SS-biotin (1 mg/ml, Thermo 

Scientific) at 4°C for 1 h.  Cells were lysed after being quenched with 0.1 M glycine.  The biotin-labeled 

plasma membrane proteins were pulled down by High Binding Capacity NeutrAvidin beads (Thermo 

Scientific Pierce) after centrifugation.   

Flow cytometry 

High throughput flow cytometry was performed to investigate the surface expression of GABAA 

receptor subunits.  Transfected cells were collected in phosphate-buffered saline containing 2% fetal 

bovine serum and 0.05% sodium azide as described before (229).  Cell samples were incubated with an 

Alexa fluorophore (Invitrogen)-conjugated monoclonal anti-α1 antibody (Millipore), monoclonal anti-

β2/β3 antibody (Millipore) or monoclonal anti-HA antibody (Covance), then fixed by 2% 

paraformaldehyde.  The fluorescence signals were read on a BD Biosciences FACSCalibur system.  

Nonviable cells were excluded from study based on the previously determined forward and side scatter 

profiles.  The fluorescence index of each experimental condition was subtracted by the fluorescence index 

of mock-transfect condition and then normalized to that of the control condition.  Flow Cytometry 

experiments were performed in the VMC Flow Cytometry Shared Resource, which is supported by the 
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Vanderbilt Ingram Cancer Center (P30 CA68485) and the Vanderbilt Digestive Disease Research Center 

(DK058404). 

Whole cell electrophysiology 

Whole cell voltage-clamp recordings were performed at room temperature on lifted HEK293T cells 

24-72 hrs after transfection with GABAA receptor subunits as described previously (230).  Successfully 

transfected cells were identified by the presence of GFP fluorescence (see Cell culture and transfection, 

above).  Cells were bathed in an external solution containing 142 mM NaCl, 1 mM CaCl2, 8 mM KCl, 6 

mM MgCl2, 10 mM glucose, and 10 mM HEPES (pH 7.4, ∼325 mOsM).  Recording electrodes were 

pulled from thin-walled borosilicate capillary glass (World Precision Instruments, Sarasota, FL) using a 

P2000 laser electrode puller (Sutter Instruments, San Rafael, CA), fire-polished with a microforge 

(Narishige, East Meadow, NY), and filled with an internal solution containing 153 mM KCl, 1 mM 

MgCl2, 10 mM HEPES, 5 mM EGTA, 2 mM Mg2+-ATP (pH 7.3, ∼300 mOsm).  All patch electrodes had 

a resistance of 1–2 MΩ.  The combination of internal and external solutions yielded a chloride reversal 

potential of ~ 0 mV, and cells were voltage-clamped at -20 mV using an Axopatch 200B amplifier (Axon 

Instruments, Union City, CA).  A rapid exchange system (open tip exchange times ~ 400 μs), composed 

of a four-barrel square pipette attached to a Perfusion Fast-Step (Warner Instruments Corporation, 

Hamden, CT) and controlled by Clampex 9.0 (Axon Instruments), was used to apply GABA to lifted 

whole cells.  The channels were activated by 1 mM GABA for 4 s, followed by an extensive wash for 40 

s, then blocked by 10 mM Zn2+ for 10 s.  GABA (1 mM) was then applied for 4 s in the presence of 10 

µM Zn2+.  Peak current amplitudes after the Zn2+ application were normalized to those before the Zn2+ 

application to calculate the sensitivity to Zn2+ blockade.  Diazepam sensitivity was determined by co-

application of 1 μM diazepam with 2 μM GABA for 4 s.  Peak currents before and after diazepam co-

application were compared to determine the % enhancement by diazepam.  All currents were low-pass 

filtered at 2 kHz, digitized at 5-10 kHz, and analyzed using the pCLAMP 9 software suite. 
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Data analysis 

Numerical data were reported as mean ± S.E.  Statistical differences were determined by one way 

analysis of variance or by pair wise Student’s t-test.   

4. Results 

1) The γ2S subunit mutation, Q40X, decreased γ2S subunit transcripts. 

The nonsense mutation, Q40X, generated a PTC in the second exon of the nine exon GABRG2 

(Figure 3-1A).  Because nonsense mutations located at least 50-55 nt upstream of an exon-exon junction 

activate NMD to degrade susceptible transcripts (171), the mutant γ2S(Q40X) subunit mRNA level 

should be lower.  NMD efficiency is an inherent property of cells and varies among cell types (177).  In 

HEK 293T cells, the mRNA level of an NMD-competent construct was degraded by about 60% (261).  

To determine whether mutant GABRG2(Q40X) mRNA was degraded by the NMD machinery, we 

expressed mutant or wildtype CMV promoter-driven GABRG2 BACs in HEK293T cells with siRNAs 

against the NMD essential factor UPF1 or negative control siRNAs.  Total RNA was extracted from 

transfected cells 36 hours after transfection, and mRNAs were reverse transcribed to cDNA.  RT-PCR 

using primers flanking GABRG2 5’ exon 6 and 3’ exon 7 amplified a fragment from both wildtype and 

mutant BAC transfected cells (Figure 3-1B).  Sequencing showed that the mutant BAC transcript 

contained the γ2S subunit containing a PTC at codon 40.  The γ2S subunit mRNA levels were then 

quantified using real-time PCR with a probe targeting the GABRG2 5’ exon 4 and 3’ exon 5 border and 

normalized to GFP or GAPDH mRNA levels for each condition.  The transcript levels from cells treated 

with siRNA against UPF1 were compared to those from cells treated with control siRNA.  The γ2S 

subunit mRNA level in cells transfected with wildtype GABRG2 BACs was not changed by UPF1 siRNA 

(1.03 ± 0.08 fold, n = 6) after UPF1 knock down (Figure 3-1C).  The mutant γ2S(Q40X) subunit mRNA 

level in cells transfected with mutant GABRG2(Q40X) BACs, however, was increased by UPF1 siRNA 
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(1.94 ± 0.23 fold, n = 6, p < 0.05) (Figure 3-1C).  Thus, blocking NMD rescued the mutant γ2S(Q40X) 

subunit mRNA, but did not alter wildtype γ2S subunit mRNA levels.  A similar trend was observed in 

cells transfected with siRNAs against the NMD essential factor SMG6 (data not shown). 

2) The γ2S subunit mutation, Q40X, generated a truncated peptide. 

Because not all mutant mRNA was degraded by NMD, we studied the protein generated by the 

mutant γ2S(Q40X) subunit cDNA.  The Q40X nonsense mutation is located in the 40th residue of the 

immature γ2S subunit, which is the first residue of the predicted mature subunit (262).  Thus, this 

mutation is predicted to generate a truncated protein encoding the 39 amino acid γ2 subunit signal peptide.  

To explore this prediction, we inserted an HA-tag at the N terminus of the immature γ2S subunit cDNA 

and a FLAG-tag between the 4th and 5th residue of the mature γ2S subunit cDNA, generating a double 

tagged SPHA-γ2SFLAG subunit (Figure 3-2A).  Signal peptides are composed typically of a positively 

charged ‘N domain’, a hydrophobic ‘H domain’ and a slightly polar ‘C domain’ (263, 264).  The 

additional HA tag at the N terminus of the immature γ2S subunit did not significantly affect the 

hydrophobicity pattern of the signal peptide calculated in silico using the ProtScale software (265) (Figure 

3-2B).  Insertion of an epitope in the N domain should not change signal peptide topology or function 

(266, 267).   

We expressed wildtype γ2SHA, mutant SPHA-γ2S(Q40X)FLAG or wildtype SPHA-γ2SFLAG subunits in 

HEK293T cells and ran Western blots for HA- or FLAG-tagged proteins (Figure 3-2C).  In cells 

transfected with γ2SHA subunits, a large band was detected by anti-HA antibody at about 44 kDa, and as 

expected, no signal was detected by anti-FLAG antibody (Figure 3-2C, lane 2).  In cells transfected with 

SPHA-γ2SFLAG subunits, a large band around 44 kDa was detected by anti-FLAG antibody and a small 

band around 7.5 kDa was detected by anti-HA antibody (Figure 3-2C, lane 4).  The size of the higher 

molecular mass FLAG-band was consistent with mature, glycosylated γ2S subunits (180), and the size of 
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the lower molecular mass HA-band was consistent with the predicted signal peptide.  In contrast, in cells 

transfected with mutant SPHA-γ2S(Q40X)FLAG subunits, no FLAG-specific signal was detected (Figure 3-

2C, lane 3), indicating that synthesis of full length γ2S subunits was abolished by the GABRG2(Q40X) 

mutation.  Interestingly, two different small peptides around/below 7.5 kDa were detected by anti-HA 

antibody in the mutant SPHA-γ2S(Q40X)FLAG subunit transfected cells (Figure 3-2C, lane 3), which may 

have been caused by a further cleavage of the signal peptide by signal peptide peptidase (268).   

In addition to the small signal peptide, a clear, but faint, band with a higher molecular mass was also 

detected from SPHA-γ2SFLAG transfected cells using an anti-HA antibody (Figure 3-2C, lane 4).  Its 

molecular mass was similar to that of immature γ2S subunits containing signal peptides.  To determine 

molecular masses of γ2S and SPHA-γ2SFLAG subunits more accurately, we removed all of their glycans by 

PNGase F digestion (Figure 3-2D).  After glycan removal, the size of HA-tagged γ2SHA subunits was 

shifted from about 45 KDa to about 37 kDa, consistent with a mature, glycosylated subunit.  In contrast, 

the size of HA-tagged SPHA-γ2FLAG subunits was unchanged by glycan removal and remained at about 42 

kDa, consistent with an immature, unglycosylated subunit.  The 5 kDa difference in molecular mass of 

the two subunits after PNGase F treatment was consistent with the molecular mass of the signal peptide.  

Thus, SPHA-γ2SFLAG subunits produced an HA-tagged immature subunit in addition to the HA-tagged 

signal peptide and FLAG-tagged mature subunit.  Mutant SPHA-γ2S(Q40X)FLAG subunits, however, only 

produced an HA-tagged signal peptide that was subjected to further cleavage.  These results demonstrated 

that the γ2S subunit mutation, Q40X, disrupted translation of mature γ2S subunits and generated a 

truncated protein composed of the signal peptide.    
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3) The γ2S subunit mutation, Q40X, disrupted the membrane insertion of γ2S subunits and 

changed the composition of GABAA receptors.  

To explore the effects of the GABRG2(Q40X) mutation on receptor assembly and channel function, 

we created HA-tagged γ2S(Q40X)HA subunits with the HA-tag inserted between the 4th and 5th residue of 

the mature γ2S(Q40X) subunits.  We then cotransfected HEK 293T cells with α1, β2 and γ2SHA or 

γ2S(Q40X)HA subunits.  Surface levels of different GABAA receptor subunits were detected by flow 

cytometry (Figure 3-3A).  The fluorescence indices of each subunit under different experimental 

conditions were normalized to those obtained with cotransfection of α1β2γ2SHA subunits.  Cotransfection 

of either α1β2 or α1β2γ2 subunits can produce functional GABAA receptors on the cell surface (137, 269).  

Binary αβ receptors are likely composed of two α and three β subunits while ternary αβγ receptors are 

likely composed of two α, two β and one γ subunits (46, 237).  Our flow cytometry analysis revealed a 

significant increase of surface β2 subunit levels with cotransfection of α1β2 subunits compared to 

cotransfection of α1β2γ2SHA subunits (α1β2: 2.14 ± 0.23; α1β2γ2SHA: 1.00; n = 7) with no change in the 

relative amount of surface α1 subunits (α1β2: 0.92 ± 0.05; α1β2γ2SHA: 1.00; n = 7) (Figure 3-3A).  In the 

presence of the Q40X mutation, no surface γ2S(Q40X) HA signal was detected by anti-HA antibody 

(Figure 3-3A), consistent with finding that synthesis of the full-length γ2S(Q40X) subunits was disrupted 

by the mutation (Figure 3-2C).  With cotransfection of α1β2γ2S(Q40X)HA subunits, surface α1 subunit 

levels were similar to those obtained with cotransfection of α1β2 and α1β2γ2SHA subunits (α1β2: 0.92 ± 

0.05; α1β2γ2SHA: 1.00; α1β2γ2S(Q40X)HA: 0.91 ± 0.03; n = 7).  However, with cotransfection of 

α1β2γ2S(Q40X)HA subunits, surface β2 levels were increased significantly compared to those obtained 

with cotransfection of α1β2γ2SHA subunits, reaching the levels of α1β2 receptors (α1β2γ2S(Q40X)HA: 

1.99 ± 0.20; n = 7; p < 0.05) (Figure 3-3A).  We also evaluated the total cell expression of the receptor 

subunits (Figure 3-3B).  The total levels of α1 and β2 subunits with cotransfection of α1β2γ2S(Q40X)HA 
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subunits were also similar to those obtained with cotransfection of α1β2 subunits.  These data indicated 

that mutant γ2S(Q40X) subunits did not incorporate into surface receptors, and thus GABAA receptors 

assembled in the presence of mutant γ2S(Q40X) subunits were binary αβ receptors. 

To determine how mutant γ2S(Q40X) subunits affected GABAA receptor function, we used a rapid 

exchange system to apply 1 mM GABA for 4s to lifted HEK293T cells coexpressing α1β2, α1β2γ2SHA, 

or α1β2γ2S(Q40X)HA subunits (Figure 3-3C).  Peak current amplitude recorded from cells coexpressing 

α1β2 subunits was 1351 ± 158 pA (n = 9), approximately 33% of currents recorded from cells 

coexpressing α1β2γ2SHA subunits (4106 ± 156 pA, n = 15, p < 0.001) (Figure 3-3C, left traces), a 

difference consistent with previously reported data (269-271).  Peak current amplitude from cells 

coexpressing α1β2γ2S(Q40X)HA subunits was also decreased significantly (1778 ± 232 pA, n = 18) to 

about 43% of that recorded from cells coexpressing α1β2γ2SHA subunits (p < 0.001), but not different 

from that obtained from cells coexpressing only α1β2 subunits (p > 0.05).  Furthermore, currents recorded 

from cells containing α1β2γ2S(Q40X)HA subunits were substantially more sensitive to Zn2+ inhibition 

than currents recorded from cells containing α1β2γ2SHA subunits.  Currents evoked by 1 mM GABA from 

cells coexpressing α1β2, α1β2γ2SHA or α1β2γ2S(Q40X)HA subunits were inhibited to different extents by 

coapplication of 10 μM Zn2+ (Figure 3-3C, right traces).  The fractional Zn2+ inhibition of currents evoked 

from cells coexpressing α1β2γ2S(Q40X)HA subunits was significantly higher than inhibition of currents 

from cells coexpressing α1β2γ2SHA subunits (93 ± 1%, n = 18; 9 ± 2%, n = 15, respectively, p < 0.001) 

but similar to inhibition of currents evoked from cells containing α1β2 subunits (94 ± 1%, n = 17, p > 

0.05).  Because the sensitivity of GABAA receptors to Zn2+ inhibition depends on subunit composition, 

these results also suggested that mutant γ2S(Q40X) subunits were not incorporated into ternary 

α1β2γ2S(Q40X) receptors, thus leading to expression primarily of binary α1β2 receptors on the cell 

surface. 
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4) Full-length γ2S(Q40X) subunits were partially rescued by gentamicin-induced stop codon 

read-through.   

The Q40X mutation generated a PTC in GABRG2 and failure to produce functional, full-length γ2S 

subunits likely contributes to its epilepsy pathogenesis.  Aminoglycosides, such as G-418 and gentamicin, 

can promote partial read-through of PTCs, thus partially rescuing the synthesis of functional, full-length 

subunits (220, 272).  Therefore, we determined to what extent gentamicin could rescue the 

GABRG2(Q40X) mutation.  The read-through efficiency of gentamicin depends on the nature of the stop 

codon as well as the surrounding nucleotides, with the TGA stop codon being most efficiently bypassed 

(273).  To maximize read-through efficiency, we replaced the original TAG stop codon with the TGA 

stop codon (Figure 3-4A) and then transfected γ2S(Q40X,TGA)HA subunit cDNA into HEK cells.  

Eighteen hours after transfection, varying concentrations of gentamicin were added to the culture media.  

Forty-eight hours later, the transfected cells were collected, and amounts of full length γ2SHA subunit 

translated from the mutant γ2S(Q40X,TGA)HA subunit mRNA was evaluated by Western blot with anti-

HA antibody (Figure 3-4B) .  

In the absence of gentamicin treatment, mature, full-length, HA-tagged γ2S subunits were detected 

from wildtype transfected cells (Figure 3-4B, lane 9), but mature, full-length, HA-tagged 

γ2S(Q40X,TGA)HA subunits were not detected from mutant transfected cells (Figure 3-4B, lane 1).  After 

addition of gentamicin, we were able to detect an HA-tagged protein band of the same size as the 

wildtype γ2SHA subunit in cells transfected with γ2S(Q40X,TGA)HA subunits (Figure 3-4B, lanes 2-6).  

No HA signal was detected from mock transfected cells in the presence or absence of gentamicin (Figure 

3-4B, lanes 7-8), indicating that the rescue was specific and that expression of full length γ2S subunits 

was partially restored from γ2S(Q40X,TGA)HA transfected cells.  Compared to non-treated wildtype 

γ2SHA subunit transfected cells, the rescue efficiency of γ2S(Q40X,TGA)HA subunits was gentamicin 

concentration-dependent (Figure 3-4D, filled circles), reaching as high as 6.2 ± 0.7% at a concentration of 
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2 mg/ml gentamicin (n = 7), which is comparable to previous reports (273, 274).  We also evaluated the 

read-through efficiency of γ2S(Q40X)HA subunits whose mRNA contained the native TAG stop codon.  

We found that a smaller, but still substantial, amount of full-length γ2SHA subunit (2.5 ± 0.2%, n = 5) was 

rescued (Figure 3-4C) in a gentamicin concentration-dependent fashion (Figure 3-4D, filled squares). 

5) Gentamicin-rescued γ2S subunits were trafficked to the cell surface. 

A functional γ2S subunit will oligomerize with partnering α and β subunits to form pentameric αβγ2S 

receptors that are trafficked to the cell surface.  To determine whether the γ2S subunits rescued by 

gentamicin were functional, we evaluated their surface expression.  We cotransfected HEK 293T cells 

with α1β2γ2S(Q40X,TGA)HA subunits, and after forty-eight hours of gentamicin treatment (1 mg/ml), 

surface protein was collected through surface biotinylation and blotted by anti-HA antibody.  We found 

that after gentamicin treatment a small, but significant, amount of HA-signal was detected on the cell 

surface with a molecular mass similar to that of wildtype γ2SHA subunits (Figure 3-5A, lane 2 versus 4).  

HA-signal was not found in non-biotinylated samples, indicating that the detected HA-signal was not 

caused by artifact introduced during experiments (Figure 3-5A, lane 3).   

To exclude the possibility that the HA-signal we detected through surface biotinylation was due to 

membrane destruction after gentamicin treatment, we also blotted for the cytoplasmic marker GAPDH.  

Then we compared the HA/GAPDH ratio between total samples and surface samples.  Although a little 

GAPDH signal was found in surface samples, it was much lower than that obtained from total samples.  

After gentamicin treatment, the HA/GAPDH ratio of surface samples from mutant transfected cells was 

more than 200 times higher compared to the HA/GAPDH ratio of total samples (data not shown).  This 

result indicated that the HA signal detected through surface biotinylation was not caused by cytoplasmic 

contamination and that the rescued γ2S subunits were expressed on the cell surface. 
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6) Gentamicin-rescued γ2S subunits were functional. 

We then evaluated assembly of α1β2γ2S(Q40X) receptors after gentamicin treatment by studying 

Zn2+ sensitivity of GABA-evoked currents to distinguish αβ from αβγ receptor currents.  In the absence of 

gentamicin, currents recorded from cells containing α1β2γ2S(Q40X,TGA)HA subunits were substantially 

sensitive to Zn2+ inhibition (Figure 3-3B), consistent with assembly of only α1β2 receptors.  In contrast, 

after 24 h gentamicin treatment, the fractional Zn2+ inhibition of currents recorded from treated cells 

containing α1β2γ2S(Q40X,TGA)HA subunits was significantly smaller than those recorded from untreated 

cells (Figure 3-5B,C) (79 ± 1%, n = 19, treated, 93 ± 1%, n = 18, untreated; p < 0.001).  This appearance 

of Zn2+ insensitive currents indicates the existence of αβγ receptors on the cell surface.  We also 

determined the diazepam sensitivity of α1β2γ2S(Q40X) receptors since γ subunits are required for 

potentiation of GABAA receptor currents by diazepam (270, 275).  In the absence of gentamicin, currents 

recorded from cells containing α1β2γ2S(Q40X,TGA)HA subunits were not potentiated by diazepam 

application (1.9 ± 1.9%, n = 5) (Figure 3-5B,C), consistent with the insensitivity to diazepam potentiation 

of αβ receptors (270).  In contrast, after gentamicin treatment, the peak current amplitudes recorded from 

cells containing α1β2γ2S(Q40X,TGA)HA subunits was significantly enhanced (Figure 3-5B,C) (302 ± 

55%, n = 11, treated; 2 ± 2%, n = 5, untreated; p < 0.05).  Taken together, these results suggested that 

gentamicin caused read-through of some of the γ2S(Q40X) subunit transcripts to produce full length γ2S 

subunits, and that the rescued full length γ2S subunits were assembled with α1 and β2 subunits to form 

functional α1β2γ2S receptors on the cell surface.  

5. Discussion 

1) The GABRG2 mutation, Q40X, may induce epilepsy through haploinsufficiency. 

The GABRG2(Q40X) mutation was identified from heterozygous dizygotic twin sisters with Dravet 

Syndrome (253).  We investigated the effects of this mutation on the assembly, trafficking and function of 
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receptors in HEK cells cotransfected with α1β2γ2S(Q40X) subunits.  Q40X is a mutation that produces a 

PTC in exon 2 of GABRG2 genomic DNA.  Using BAC constructs containing this mutation, we found 

that mutant γ2S subunit mRNA levels were increased significantly after we knocked down the NMD 

factor UPF1 or SMG6, indicating that the mutant mRNA was degraded by NMD.  NMD is a cellular 

surveillance mechanism that reduces expression of truncated products by degrading nonsense mutation-

containing mRNA during translation (274).  It was shown that NMD could reduce the level of a PTC-

containing transcript to 20% in the brain, although the regional specificity was not addressed (176).  If 

NMD destroys the mutant mRNA completely, heterozygous patients carrying one mutant GABRG2(Q40X) 

allele would suffer from GABRG2 haploinsufficiency.  However, not all mutant transcripts will be 

degraded, and NMD efficiency was shown to vary among different cell types (177).  Thus, we also 

characterized the mutant protein generated by this mutation.  Q40 is the first residue of the predicted 

mature γ2 subunit.  Therefore, production of a truncated protein composed only of the signal peptide 

would be predicted.  To investigate this small peptide, we generated double tagged SPHA-γ2S(Q40X)FLAG 

subunits.  We found that synthesis of full-length γ2 subunit protein was abolished by this mutation and 

production of the signal peptide was increased.  Surprisingly, the signal peptide generated by SPHA-

γ2S(Q40X)FLAG subunits was further cleaved (Figure 3-2B), probably through signal peptide peptidase 

(268, 273).  Our strategy successfully demonstrated the signal peptide processing products of γ2 subunits, 

providing a method to study other signal peptide related mutations.  Our strategy also revealed an 

additional outcome of the Q40X mutation.  It is possible that the signal peptide peptidase cleavage site 

was better exposed in the truncated γ2(Q40X) subunits, resulting in further cleavage.  Although quite 

limited, a few studies have indicated that in addition to membrane targeting, signal peptide fragments 

could interact with signaling molecules (276) or be processed as antigenic epitopes (277).  Whether or not 

the novel cleavage pattern of the γ2(Q40X) subunit signal peptide contributes to the epilepsy pathogenesis 

requires more detailed study. 
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To further explore how the truncated γ2(Q40X) subunits affected receptor assembly, we compared 

GABAA receptors formed by coexpression of α1β2γ2S or α1β2γ2S(Q40X) subunits.  Both flow 

cytometry and whole cell recordings showed that mutant γ2(Q40X) subunits did not incorporate into 

functional ternary α1β2γ2S(Q40X) receptors.  Instead, binary α1β2 receptors were formed that conducted 

much smaller currents.  Therefore, GABRG2(Q40X) is likely a non-functional allele, and this mutation 

could cause haploinsufficiency of γ2 subunits in patients.  γ2 subunits are widely distributed in the brain 

(54), and homozygous γ2 knockout mice died within a few days after birth (275).  Although seizures have 

not been reported from heterozygous γ2+/- knockout mice, heterozygous γ2R82Q/+ knock-in mice carrying 

one mutant GABRG2 allele developed absence epilepsy (150).  Several epilepsy-associated GABRG2 

mutations have been identified in families with (GEFS+ (114).  Hence, loss of one functional GABRG2 

allele in patients carrying the GABRG2(Q40X) mutation combined with other unidentified modifier genes 

is likely responsible for development of the Dravet syndrome phenotype.   

2) The expression and function of mutant γ2(Q40X) subunits were partially rescued by 

gentamicin in vitro. 

Out of the seven epilepsy-associated mutations identified in GABRG2, four generated PTCs (114), 

and out of mutations identified from Dravet Syndrome patients, 50% were nonsense mutations (252).  

Aminoglycosides, including G418 and gentamicin, promote read-through of PTCs by disturbing stop 

codon recognition during translation.  In vitro, in animals in vivo and in preclinical studies in humans, 

successful rescue of the mutant phenotype has been reported for several different disease models (220, 

278, 279).  In our study, we observed that full length γ2S subunits were rescued from both γ2S(Q40X, 

TGA) subunits containing an optimized PTC and γ2S(Q40X) subunits containing the native PTC TAG, 

suggesting that this strategy could be applied to partially compensate for nonsense mutations.  
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Furthermore, the rescued γ2 subunits were trafficked to the cell surface and were incorporated into 

functional receptors, which is promising for future therapy. 

Aminoglycoside-induced read-through has been used primarily in recessive genetic disorders where 

protein expression is almost null.  However, this therapeutic approach may also work in autosomal 

dominant disorders (280), including epilepsy.  It is possible that a small amount of rescued γ2 subunits 

during a critical time period could benefit patients substantially.  GABA acts as a trophic factor during 

neural development (281-283) and disrupting postsynaptic γ2 subunit clusters decreased presynaptic 

GABAergic innervation (284).  Study of heterozygous γ2R82Q/+ mice revealed that GABAA receptor 

dysfunction during development increased seizure threshold in adulthood (285).  Thus lack of functional 

GABAA receptors during development may cause reduction of GABAergic neurons, further contributing 

to the decreased inhibitory tone in adult brain.  If neuronal inhibitory tone could be increased in patients 

carrying mutations such as Q40X before synaptogenesis is complete, it is possible that only a small 

amount of rescued γ2 subunits could ameliorate the developmental deficits and decreased seizure 

susceptibility in later life.  On the other hand, perhaps full rescue of mutant γ2 subunits is not needed to 

compensate for the haploinsufficiency.  Our in vitro data showed that 75% of γ2 subunits were still 

expressed on the cell surface when only half amount of γ2 subunit cDNA was transfected with α1 and β2 

subunit cDNAs at 1:1:0.5 ratio and had about 63% of GABA-evoked current compared to cells expressing 

α1β2γ2 subunit cDNAs at 1:1:1 ratio (180).  According to the 2:2:1 stoichiometry ratio of αβγ receptors, 

with expression of αβγ2 subunits mRNA in a 1:1:1 ratio, γ2 subunits may be in excess.  In vivo studies in 

heterozygous γ2+/- knockout mice also showed 25% reduction of αβγ receptors (286).  If that also holds 

true in patients carrying a haplo-insufficient GABRG2 allele such as GABRG2(Q40X), less than 50% of γ2 

subunits would be required to restore the normal function of γ2 subunits.  Furthermore, mutations like 

Q390X in γ2 subunits display a dominant negative effect to impair trafficking of wildtype subunits (180).  

Read-through of γ2(Q390X) subunits could not only increase surface γ2 subunits translated from mutant 
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γ2(Q390X) subunits, but also increase trafficking of γ2 subunits translated from wildtype γ2 subunits as 

well as partnering α and β subunits.  Therefore, it would be interesting to evaluate read-through of 

GABRG2(Q390X) subunit mRNA.  Besides, as mutations in neuronal sodium channel SCN1A account for 

approximately 70% of all Dravet patients, it will be worthwhile to study how the chemical read-through 

approach could rescue SCN1A-associated nonsense mutations. 

Long term use of aminoglycosides could cause nephrotoxicity and ototoxicity (287).  With treatment 

using a high concentration of gentamicin (2 mg/ml), our cells also exhibited lower survival rates (data not 

shown).  Although gentamicin has been tested in patients with cystic fibrosis (288) and Duchenne 

muscular dystrophy (278) carrying PTCs, it is necessary to explore other less toxic drugs.  PTC124 

(Ataluren®) is a nonaminoglycoside compound with superior read-through efficacy and lower toxicity 

(257, 289).  A phase II prospective trial showed that PTC124 administration reduced abnormalities in 

cystic fibrosis patients (290).  Another strategy is to use suppressor tRNA  (291, 292).  However, both 

transfection and read-through efficiency of suppressor tRNA is not high, and high level of suppressor 

tRNA was shown to be toxic to cells (292, 293).  Recently, pseudouridylation has been suggested to 

target a specific nonsense codon into sense codon, but the rescue efficiency of this method is similar to 

that of aminoglycosides (294).  Compounds with better efficacy and therapeutic window could be 

identified in future and our work shows a possible direction for epilepsy therapy. 

6. Acknowledgements 

We acknowledge Dr Lily Wang in Department of Statistics, Vanderbilt University for her help in data 

analysis.  This work was supported by NIH R01 NS051590 to RLM. 



85 

 

 

Figure 3-1: Mutant mRNA was degraded by NMD. 

A. A schematic representation of the genomic structure of GABRG2.  Vertical blue lines represent the exons 
composing the γ2S subunit cDNA.  The Q40X mutation is located in exon 2.  B. The γ2S transcript was identified in 
mutant GABRG2(Q40X) BAC transfected cells using RT-PCR.  HEK 293T cells were treated with siRNA against 
the NMD factor UPF1 or with nonspecific siRNA and were then transfected with wildtype or mutant GABRG2 BAC.  
A forward primer located in exon 6 and a reverse primer located in exon 7 of the γ2S subunit cDNA were used to 
amplify reverse transcribed cDNA from transfected cells.  C. The transcript level of the mutant GABRG2(Q40X) 
BAC was increased by NMD knock down (n = 6, mean ± SEM).   
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Figure 3-2: The GABRG2(Q40X) mutation generated a truncated peptide. 

A. To identify the protein generated by the GABRG2(Q40X) mutation, an HA tag was inserted into the N terminal 
signal peptide and a FLAG tag was inserted between the 4th and 5th residue of the mature γ2S subunit protein to 
produce wildtype SPHA-γ2SFLAG or mutant SPHA-γ2S(Q40X)FLAG subunits.  SP: signal peptide. SC: stop codon.  B. 
The hydrophobicity patterns of γ2S and SPHA-γ2SFLAG subunit signal peptides were calculated using the online 
PScale program.  The Y-axis represents scores calculated based on the hydrophobicity scale of different amino acids; 
the X-axis represents the numbering of each residue in the signal peptide sequence.  C. The γ2(Q40X) subunit 
mutation generated a truncated peptide.  HEK 293T cells were transfected with wildtype γ2SHA, wildtype SPHA-
γ2SFLAG or mutant SPHA-γ2S(Q40X)FLAG subunits.  Cell lysates (10 µg) from wildtype γ2SHA subunit transfected 
cells and cell lysates (50 µg) from wildtype SPHA-γ2SFLAG or mutant SPHA-γ2S(Q40X)FLAG subunit transfected cells 
were subjected to Western blot by anti-FLAG and anti-HA antibodies.  ATPase levels were used as loading controls.  
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D. Samples from cells transfected with γ2SHA or SPHA-γ2SFLAG subunits were collected and treated with PNGase F to 
remove all glycans.  F: PNGase F digestion; U: undigested control; M: protein loading marker.  Figures are 
representative of 3 different experiments. 
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Figure 3-3: The mutant γ2S(Q40X) subunit was not expressed on the cell surface. 

A. and B. Wildtype α1β2 or α1β2γ2SHA or mutant α1β2γ2S(Q40X)HA subunits were coexpressed in HEK293T cells.  
Surface and total level of each subunit were evaluated through flow cytometry.  The fluorescence indices of each 
subunit under different experimental conditions were normalized to those obtained with cotransfection of 
α1β2γ2SHA subunits (n = 7, mean ± SEM).  Group differences were analyzed by the one way ANOVA test.  C. 
Sample traces of whole cell recordings of currents evoked by 1 mM GABA from cells expressing α1β2, α1β2γ2SHA 
or α1β2γ2S(Q40X)HA subunits were obtained.  After a 4.0 sec wash, the currents were recorded again with 
coapplication of 1 mM GABA and 10 µM Zn2+ (n > 9).   
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Figure 3-4: Gentamicin partially restored expression of full length γ2S subunits by read-through of γ2S(Q40X) 
subunit mRNA. 

A.  The original TAG stop codon was replaced by the TGA stop codon to maximize read-through efficiency.  B. and 
C. Cells were transfected with γ2SHA and γ2S(Q40X,TGA)HA (B) or γ2SHA and γ2S(Q40X)HA (C) subunits and 
treated with different concentrations of gentamicin for 48 hours.  Cell lysates (10 µg) from wildtype γ2SHA subunit 
transfected cells were loaded, while cell lysates (50 µg) from mutant γ2S(Q40X,TGA)HA or γ2S(Q40X)HA subunits 
transfected cells were loaded.  D.  Band intensity of the γ2SHA subunit was normalized to the ATPase signal and 
plotted against gentamicin concentration (n = 7 and 5 respectively, mean ± SEM). 
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Figure 3-5: Gentamicin increased surface expression of mutant γ2(Q40X) subunits and decreased Zn2+ 
sensitivity of mutant receptor currents. 

A. HEK 293T cells were cotransfected with α1β2γ2SHA or α1β2γ2S(Q40X,TGA)HA subunits.  Cells were then 
treated with 1 mg/ml of gentamicin for 48 hours.  Surface protein samples were collected through surface 
biotinylation and blotted by anti-HA, anti-ATPase and anti-GAPDH antibody.  Cell lysates (0.5 mg and 1 mg) from 
cells expressing wildtype γ2SHA or mutant γ2S(Q40X,TGA)HA subunits were used to collect the surface fraction.  
Cell lysates (10 µg and 50 µg) from wildtype γ2SHA or mutant γ2S(Q40X,TGA)HA subunits transfected cells were 
loaded as total fraction.  Samples not coated with biotin were also collected as controls.  B. HEK 293T cells were 
cotransfected with α1β2γ2S(Q40X,TGA)HA subunits.  Cells were treated then with 1 mg/ml of gentamicin for 24 
hours, and whole cell currents in response to 1 mM or 2 µM GABA then were recorded.  The current amplitudes 
recorded in the presence of 10 µM Zn2+ or 1 µM diazepam were normalized to those recorded in the absence of Zn2+ 
or diazepam.  The percentage of current amplitudes inhibited by Zn2+ (n = 19, mean ± SEM) or enhanced by 
diazepam (n = 11, mean ± SEM) ) was compared to that obtained from cells untreated with gentamicin (n = 18 and 5, 
respectively). 
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Chapter 4 : Overexpressing wildtype γ2 subunits reversed seizure phenotype in a mouse model of 

genetic epilepsy 

 

Xuan Huang*, Chengwen Zhou*, Wangzhen Shen,  Kelienne Verdier and Robert L 

Macdonald 

* Both authors contribute equally to this work 

1. Abstract 

The  GABAA receptor mutation, GABRG2(Q390X), is an epilepsy-associated mutation identified in a 

family with GEFS+ (Harkin et al., 2002).  It generates a premature stop codon that disrupts assembly of 

γ2 subunits into GABAA receptors and affects trafficking of partnering α and β subunits.  Heterozygous 

Gabrg2Q390X/+ knock-in mice showed reduced cortical inhibition, exhibited a lower seizure threshold and 

developed epileptic EEGs.  In this study, we tried to theoretically rescue the knock-in mice from these 

deficits by using a gene therapy.  To accomplish this we introduced an extra GABRG2 allele by crossing 

Gabrg2Q390X/+ knock-in mice with BAC transgenic mice overexpressing HA tagged human γ2HA subunits.  

Compared to adult knock-in mice, adult mice carrying both the mutant allele and the transgene expressed 

γ2HA subunits and had increased expression of wildtype γ2 subunits in the brain, increased miniature IPSC 

amplitudes in cortical neurons, and reduced intense thalamocortical oscillations.  We measured seizure 

threshold by injecting mice with the chemoconvulsant PTZ and found that adult mice carrying both the 

mutant allele and the transgene exhibited a higher PTZ seizure threshold compared to the knock-in mice.  

Our results suggested that the epilepsy phenotype caused by a human epilepsy GABRG2 mutation with 

dominant negative effects could be potentially rescued by increasing expression of wildtype γ2 subunits. 
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2.  Introduction 

Epilepsy is a common neurological disorder affecting more than 65 million patients worldwide (4), in 

which altered excitatory/inhibitory balance in brain cortex is the likely underlying mechanism. Many 

patients have no discernable cause for epilepsy, suggesting a genetic origin (117).  These genetic seizures 

exhibit varied epileptic and epileptogenesis mechanism and around 20% of them are refractory to 

treatments (6, 10, 11, 150, 153, 295).  Meanwhile, many AEDs have undesirable side effects and current 

therapies provide symptomatic treatment and do not prevent the epileptogenesis process (14).  Thus, 

alternative strategies are under development, such as interneuron transplantation (296) and 

neuroprotective factor-based gene therapy (196, 197).  Gene-replacement therapy targeting the underlying 

genetic causes of epilepsy could provide another potential strategy. 

Epilepsy-associated mutations have been identified in individuals and families with epilepsy, and 

many of them alter or even disrupt functioning of ion channels  such as type-A γ-aminobutyric acid 

receptors (GABAARs) (119, 123).  GABAARs are the major receptor mediating fast inhibitory synaptic 

transmission and controlling network excitability in the CNS.  GABAARs play an important role in 

establishing synapses during development and maintaining inhibitory tone in adulthood and are the 

molecular targets for multiple anticonvulsant and anxiolytic drugs (109).  Nineteen different GABAAR 

subunits have been cloned, but the majority of postsynaptic GABAAR are composed of 2 α, 2 β and 1 γ2 

subunits. Among currently known epilepsy-associated mutations identified in GABAAR subunits, half of 

them are found in GABRG2, which encodes the γ2 subunits of the receptor (114).   

Epilepsy-associated GABRG2 mutations exhibit a wide range of effects, from subtle kinetic alteration, 

loss of function, to dominant negative effects (297).  For example, R82Q is one of the best characterized 

epilepsy-associated GABRG2 mutations (123, 149) and produces a loss of function and slight dominant 
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negative effects (141, 143, 145, 146, 222); heterozygous knock-in mice carrying this mutation had 

reduced cortical inhibition and displayed spontaneous spike-wave discharges and thermal-induced 

seizures (150, 153).  The GABRG2(Q390X) mutation is a GEFS+ associated mutation identified in a 

patient with the severe Dravet syndrome (179).  In vitro the Q390X mutation not only completely 

disrupted the trafficking and function of mutant subunits but also affected the trafficking of partnering α 

and β subunits (180).  Mutant γ2(Q390X) subunits were slowly degraded and formed aggregates (181).  

Recent in vivo data in our lab also showed that heterozygous Gabrg2+/Q390X knock-in mice carrying this 

mutation showed decreased expression of γ2 subunits, reduced cortical inhibition, elevated anxiety, as 

well as behavioral and electrographic seizures, which is much more severe compared to heterozygous 

Gabrg2+/-  knock-out mice (Kang et al., under review).   

Here we explored whether a gene-replacement therapy could rescue the seizure phenotype of 

Gabrg2+/Q390X knock-in mice.  It has been shown before that mice overexpressing γ2 subunits were 

indistinguishable from wildtype mice except for decreased alcohol tolerance (298).  To compensate for 

the reduced inhibition caused by mutant γ2(Q390X) subunits, we introduced HA-tagged wildtype γ2 

subunits in knock-in Gabrg2+/Q390X mice using a BAC transgene.  We found that the transgene not only 

restored the total amount of wildtype γ2 subunits, but also reverse the decreased miniature(m) IPSCs, 

seizure threshold, and mitigated the intensified thalamocortical oscillation in adult heterozygous KI mice.   

3. Materials and Methods  

Mice 

All animal experiments were approved by the Institutional Animal Care and Use Committee of 

Vanderbilt University.  The Tg(hGABRG2HA) transgenic mice were generated in C57BL/6J mice by 

pronucleus injection.  Gabrg2+/Q390X knock-in mice were generated in a C57BL/6J ;129svJ mixed 

background and were backcrossed into the C57BL/6J background for more than 8 generations.  
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Tg(hGABRG2HA) transgenic mice were bred with Gabrg2+/Q390X knock-in mice, generating offspring with 

four different genotypes, as described in Figure 4-1A.   

Mouse tail samples collected at P14 – P21 were extracted using red Extract-N-AMP tissue PCR kit 

(Sigma-Aldrich) according to the manufacturer's manual.  Mice were genotyped with the following 

primer sets:  Tg(hGABRG2HA): forward primer (5’-TACCCCTACGACGTGCCCGACTACGCC-3’) and 

reverse primer (5’ -CACCTCTCCCACTCATAGGCCTGAATG-3’) (324 bp); Gabrg2: forward primer 

(5’-ATGGCGATGGAAGTTGACA-3’) and reverse primer (5’-TGATGTTGCTCATGCCTCTC-3’) (323 

bp for wildtype allele and 405 bp for mutant allele). 

Immunohistochemistry 

Adult mice were anesthetized using isoflurane, followed by transcardial perfusion of 20 ml ice-cold 4% 

paraformaldehyde.  Brains were removed and postfixed at 4 °C overnight, then cryoprotected in 30% 

sucrose at 4 °C for 48 hours.  Brain sections of 50 µm thickness were collected in microtome and stored 

at -20 °C until immunostaining.  Slices were incubated in rabbit monoclonal anti-HA antibody (1:500; 

Cell Signaling) in PBS with 0.3% Triton X and 4% horse serum at 4 °C for two nights, followed by 2 h 

incubation in IRDye800-conjugated donkey anti-rabbit IgG secondary antibody (1:1000; Li-COR).  

Immunolabeled slices were mounted by propyl gallate and scanned using Odyssey imaging system (LI-

COR) with a resolution of 42 µm. 

Western blot 

Brains were removed from CO2-euthanized adult mice, then cortices were dissected. Cortical protein 

was collected in RIPA buffer  with 1% protease inhibitor (Sigma), and extracted by sonication. Collected 

samples were subjected to gel electrophoresis using NuPAGE® (Invitrogen) precast gel and then 

transferred to PVDF-FL membranes (Millipore).  Monoclonal anti-HA antibody (Covance or Cell 

signaling) and polyclonal anti-γ2 antibodies (Millipore) were used to detect HA tag and GABAA receptor 

γ2 subunits respectively.  Anti-sodium potassium ATPase antibody (Abcam) was used as a loading 

control.  After incubation with primary antibodies, IRDye® (LI-COR Biosciences) conjugated secondary 
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antibody was used, and the signals were detected using the Odyssey Infrared Imaging System (LI-COR 

Biosciences).  The integrated intensity value of each specific band was calculated using the Odyssey 3.0 

software (LI-COR Biosciences). 

PTZ-induced seizure threshold 

Male adult mice (2 – 4 month old) were administered with 55 mg/kg pentylenetetrazol by 

intraperitoneal injection.  The mice were then video-monitored for 20 min.  The latency to GTCS and 

death were recorded. 

Whole cell slice recording 

Brain slice were prepared as the method in.(299) and (300).  Briefly, adult mice (2-6 month old, either 

gender) were anesthetized with isoflurane and transcardially perfused with ice-cooled dissection solution 

(4°C) (mM:  2.5 KCl, 0.5 CaCl2, 10 MgSO4 , 1.25 NaH2PO4, 24 NaHCO3, 11 Glucose, 214 Sucrose).  

Then mice were decapitated and the brains were removed.  Coronal section slices (300 µm) were prepared 

using a LEICA VT-1200S vibrotome (Leica Inc) with oxygenated (bubbling with 95%O2/5%CO2) 

dissection solution.  The slices were transferred to an incubation chamber containing oxygenated ACSF 

(mM: 126 NaCl, 2.5 KCl, 2 CaCl2, 2 MgCl2, 26 NaHCO3, 10 Glucose, pH 7.4).  After 40 min incubation 

at 35-36°C, the slices were recovered at room temperature for at least 1 hour before experiments. 

Slice recordings were carried out with an upright NIKON Eclipse FN-1 IR-DIC microscope (Nikon) 

and one MultiClamp 700B amplifier and Digidata 1440A (Molecular devices Inc.).  Since the 

thalamocortical circuitry is involved in epileptogenesis (299, 301), Layer VI pyramidal neurons in the 

somatosensory cortex were chosen for recording, based on their apical dendrites and location right above 

the white matter.  mIPSCs were isolated by including 10-20 µM NBQX and 1 µM tetrodotoxin (TTX) in 

the ACSF (flow rate: 1-1.5 ml per min).  The internal solution for recordings contained (as (299), mM):  

135 CsCl, 10 HEPES, 10 EGTA, 5 QX-314, 5 ATP-Mg (290-295 mOsm, pH = 7.3) and filled glass 

electrodes had 3-5 MΩ resistance.  Access resistances during recording were continuously monitored and 

less than 20-25 MΩ.  The access resistances were compensated by 70% and cell capacitance.  Unstable 
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recordings with access resistance variation (>20%) or larger than 25 MΩ were discarded.  Junction 

potentials were compensated when electrodes were in ACSF.  The reversal potential of chloride anion 

was close to 0 mV and cells were clamped at -60 mV.  Data were collected by using the Clampex 

program 10.2 (Molecular devices Inc.) and synaptic currents were filtered at 2000 Hz and digitized at 10 

KHz.  All recordings were continuously made for 20-30 min after rupture of membrane.  All recordings 

were performed at room temperature (24°C). 

Thalamocortical oscillation recording 

Horizontal slices (350-400 µm) containing the thalamocortical circuitry were prepared  (302)and put 

on top side of a self-made nylon mesh interface (only one side of a slice contacted ACSF solution).  The 

network oscillation was recorded by using one tungsten electrode (MultiClamp 700B, current-clamp 

mode) in the Ventrabasal area (VB) and one concentric bipolar stimulating electrode placed in the internal 

capsule was used for stimulation.  The multiunit recordings were band-filtered (between 100 Hz and 3 

KHz) (303). Stimuli were 0.1 or 0.3 ms in duration.  These experiments were performed at 31-32ºC.   

Data analysis 

The mIPSC data were analyzed with Clampfit (Molecular Devices Inc.), using threshold detection (at 

least 2.5X baseline RMS with no clear synaptic events) (300, 303).  Histogram and accumulative graphs 

were constructed.  The network oscillation data were analyzed with both Clampfit (for spike histogram 

and autocorrelation function) and Matlab to obtain autocorrelograms.  As (302) and (304), oscillation 

indices were calculated to compare among different groups (both littermates and cogenic mice were used).  

Numerical data were reported as mean ± S.E and statistical differences were determined by the pair wise 

Student’s t-test/One-Way ANOVA or Mantel-Cox method.   
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4. Results 

1) The total amount of wildtype γ2 subunits was restored by introducing exogenous human 

GABRG2 allele to Gabrg2+/Q390X mice 

Previously we generated BAC transgenic mice Tg(hGABRG2HA) expressing HA-tagged human γ2 

subunits under the control of the endogenous GABARG2 promoter (187).  The human γ2HA subunits were 

expressed in a pattern that was similar to that of endogenous γ2 subunits in mouse brain, and the 

transgenic mice were indistinguishable from their wildtype littermates.  We crossed the transgenic mice 

with the heterozygous Gabrg2+/Q390X, knock-in mice that carried a GEFS+-associated mutation and 

developed spontaneous GTCS (Kang et al., under review).  Offspring with four different genotypes, WT;0 

(Gabrg2+/+), Het;0 (Gabrg2+/Q390X), WT;Tg (Gabrg2+/+; Tg(hGABRG2HA)), and Het;Tg (Gabrg2+/Q390X; 

Tg(hGABRG2HA)), were generated in an equal ratio, consistent with Mendelian inheritance (Figure 4-1A, 

B).  This suggested that overexpressing wildtype γ2 subunits did not affect the birth rate of any of the 

mouse genotypes and could be a potential method for gene therapy. 

We collected brain sections (50 µm) from WT;0 and Het;Tg littermates and stained the transgenic 

human γ2HA subunits using an anti-HA antibody.  As reported in the transgenic mice, the exogenous γ2HA 

subunits were expressed across the whole brain of Het;Tg mice, including cortex, hippocampus, thalamus, 

and cerebellum (Figure 4-2A).  Although the transgene was well expressed, the total amount of γ2 subunit 

protein may not be changed.  To study whether the total amount of wildtype γ2 subunits was up-regulated 

by the transgene, we prepared cortical lysates from adult mice and performed western blotting for 

wildtype γ2 subunits using an antibody recognizing the M3-M4 loop of both human and mouse γ2 

subunits but not the truncated mutant γ2(Q390X) subunits (Figure 4-2B1). While the total amount of 

wildtype γ2 subunits was significantly reduced in the cortex of Het;0 mice (0.68 ± 0.04, n = 7, p = 0.0001, 

two-tailed t test), it was significantly restored in Het;Tg mice (1.27 ± 0.18, n = 7, p = 0.01, two-tailed t 

test) (Figure 4-2B2).  A similar restoration was also observed in thalamic lysates (Het;0: 0.68 ± 0.04, 
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Het;Tg: 0.96 ± 0.06, n = 4) (WT;0 vs. Het;0, p = 0.0019; Het;0 vs. Het;Tg, p = 0.0262).  Thus, the total 

amount of wildtype γ2 subunits, which was reduced in the Het;0 mice, was restored to the Wt;0 level with 

the exogenous transgene.   

2) The PTZ-induced seizure threshold was reversed by overexpressing wildtype γ2 subunits in 

Gabrg2+/Q390X mice 

To determine whether the overexpression of the wild type γ2 subunit could rescue the seizure 

phenotype in Gabrg2+/Q390X,mice, we compared the pentylenetetrazol(PTZ)-induced seizure threshold 

among the four genotypes, WT;0 (Gabrg2+/+), Het;0 (Gabrg2+/Q390X), WT;Tg (Gabrg2+/+; 

Tg(hGABRG2HA)), and Het;Tg (Gabrg2+/Q390X; Tg(hGABRG2HA).  PTZ induces GTCS in rodents (305), 

mimicking one of the seizure phenotypes observed in Gabrg2+/Q390X mice.  We i.p. injected 55 mg/kg PTZ 

to 2-4 month-old mice and video monitored the mice after injection to assess development of GTCSs.  

Het;0 mice developed GTCSs quickly after injection, showing limb extension, tail-jerks, rearing or 

jumping, and many of the mice also died during seizures.  We plotted the survival curve for PTZ-induced 

GTCS (Figure 4-3A) and death (Figure 4-3B) among four different genotypes and found that the Het;0 

mice showed a lower seizure threshold compared to mice with the other three genotypes.  The Het;0 mice 

developed GTCSs and died much faster compared to WT;0 littermates, while the seizure threshold of 

Het;Tg mice was not significantly different from littermate WT;0 mice (GTCS: Wt;0 (n = 5) vs. Het;0 (n 

= 7):  p = 0.0009;  Het;0 (n = 7) vs. Het;Tg (n = 9):  p = 0.0001;  Wt;0 (n = 5) vs. Het;Tg (n=9): p =  

0.7713.  death: Wt;0 (n = 5) vs. Het;0 (n = 7):  p = 0.0034;  Het;0 (n=7) vs. Het;Tg (n=9):  p = 0.0004;  

Wt;0 (n = 5) vs. Het;Tg (n=9): p =  0.5050), indicating the restored expression and function of wildtype 

γ2 subunits by transgene was enough to rescue the seizure threshold of Gabrg2+/Q390X mice. 

 

 



99 

 

3) Reduced GABAergic synaptic transmission in Gabrg2+/Q390X mice was rescued by 

overexpression of wildtype γ2 subunits. 

Spontaneous generalized seizures including GTCS and myoclonic jerks evolved in heterozygous 

Gabrg2+/Q390X mice, as detected in daily manipulation and video-EEG recording (Kang et al., under 

review).  Here we characterized inhibitory synaptic transmission in thalamocortical circuitry, which was 

involved in generalized epilepsy and epileptogenesis (306, 307) Pyramidal neurons in cortical layer VI 

were visually identified by their upright apical dendrites.  After blocking the α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionate (AMPA) receptors (AMPARs) and kainic acid (KA) receptors (KARs) 

with NBQX and with the chloride anion reversal potential set at -0.3 mV, inward GABAA receptor-

mediated mIPSC were recorded while cells were voltage-clamped at -60 mV.  All mIPSCs from slices 

from wildtype littermates exhibited fast rising and slow decaying phases, which are similar to previous 

reports(308).  Consistent with western blot results for total γ2 subunit expression, mIPSCs in WT;0 mice 

were significantly larger in amplitude (39.65 ± 2.69 pA, n = 11 cells), compared with those in littermate 

Het;0 mice (31.02 ± 1.51 pA, n = 7 cells, t-test p = 0.018).  This is also indicated by the right shift of the 

cumulative probability curve generated from recordings from WT;0 mice (Figure 4-4).  Meanwhile, the 

mIPSCs in WT;0 mice occurred more frequently (4.96 ± 0.58 Hz, n = 11 cells) than those in Het;0 mice 

(2.45 ± 0.34 Hz, n=7 cells, t-test; p = 0.003) (Figure 4-4).  This indicated dysfunction of γ2 subunits not 

only reduced the amount of postsynaptic receptors, but also decreased the amount of innervated 

presynaptic terminals, consistent with the notion that GABAA receptors are important for synaptogenesis 

during early development (29-31). With exogenous wildtype γ2 subunits in Het;Tg mice, layer VI 

pyramidal neurons exhibited similar mIPSC amplitudes (41.23 ± 3.70 pA, n = 11 cells, t-test p = 0.739) to 

those in littermate WT;0 mice, and significantly larger than those in littermate Het;0 mice (t-test, p = 

0.024).  However, mIPSC frequency recorded from Het;Tg mice only showed a trend for recovery (3.59 ± 

0.64 Hz, n = 11 cells; t-test with het, p = 0.315), compared with those in Het;0 mice.  All together these 
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data suggested that overexpressing wildtype γ2 subunits in heterozygous Gabrg2+/Q390X mice could rescue 

the reduced mIPSCs in neurons.   

4) The intensity of thalamocortical network oscillation was reduced by overexpression of 

wildtype γ2 subunits in Gabrg2+/Q390X mice. 

Network oscillation in the thalamocortical circuitry plays a significant role on epileptogenesis and 

generalized epilepsy (89, 299, 302).  To examine whether the network oscillation or neuronal synchrony 

in Gabrg2+/Q390X mice was enhanced, we made extracellular multiunit recordings in VB nucleus of 

thalamus. Both spontaneous (Figure 4-5A1) and evoked (Figure 4-5A2) neuronal firing were observed 

and rhythms was self-repeated for a period in horizontal slices from Het:0 mice.  These firings exhibited 

different spike amplitudes (based on spike-sorting) as well as oscillatory characteristics of network 

activity (shown by oscillatory pattern with autocorrelation of neuron firing) indicating the involvement of 

different neurons (Figure 4-5B, Het;0 mice for both spontaneous and evoked firing autocorrelation). 

However neuronal synchrony/oscillation was less frequently observed in WT;0 mice. Sometimes only 

burst activity was observed in wt;0 mice.  Compared with that in WT;0 mice (oscillatory index: 0.49 ± 

0.10, n=8 slices, Figure 4-5C), neuronal oscillation index in Het;0 mice was larger (oscillatory index;  

0.70 ± 0.07, n=8 slices, t-test p=0.03). Moreover oscillation duration in het;0 mice had a long episode 

(2.46 ± 0.98 s, n=10 slices), much longer than that in WT;0 mice (0.72 ± 0.32 s, n=8 slices; t-test p=0.04) 

(Figure 4-5). With wildtype γ2 subunits introduced into heterozygous knock-in mice (Het;Tg), 

spontaneous and evoked oscillation were significantly reduced (oscillation index 0.52 ± 0.018, n=10 

slices) compared with Het;0 mice and was very similar to those oscillation in WT;0 mice (Figure 4-5C1). 

Meanwhile, the oscillation duration was shorter (0.94 ± 0.26 s, n=8 slices) than het;0 mice (Figure 4-5C2), 

suggesting that introducing wildtype γ2 subunits into the Het;0 mice could also rescue altered neuronal 

synchrony and network oscillation.  
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5. Discussion 

1) The seizure phenotype was rescued in a mouse model of genetic epilepsy 

In humans the GABRG2(Q390X) mutation has been found to be associated with GEFS+ and Dravet 

syndrome (179).  Here we report the rescue of the seizure phenotype in the Gabrg2+/Q390X mouse bearing 

one mutant allele with the GABRG2(Q390X) mutation.  These mice had a reduced threshold for 

chemically- and thermally-induced seizures, and displayed spontaneous myoclonic jerks and GTCS 

(Kang et al., under review).  Compared to heterozygous Gabrg2+/- knock-out mice, deficits caused by 

GABRG2(Q390X) mutation were much more severe, including a larger reduction of wildtype γ2 subunits, 

a larger decrease of mIPSC amplitude/frequency  and more frequent and severe seizures.  These are all 

consistent with in vitro characterization of the pathophysiological effects of the mutation that 

demonstrated that mutant γ2(Q390X) subunits were not only trapped in the endoplasmic reticulum but 

also prevented the trafficking of partnering subunits.  Thus, the  GABRG2(Q390X) mutation is a severe 

epilepsy-associated mutation with loss-of-function and dominant-negative-effects in vitro (180).  

To determine if the loss of function and dominant negative effects of mutant γ2((Q390X) subunits 

could be reversed by overexpression of wildtype γ2 subunits, we introduced exogenous wildtype γ2 

subunits using a BAC transgenic mouse, the Tg(hGABRG2HA) mouse, that expressed HA-tagged human 

γ2 subunits under the control of the endogenous hGABRG2 promoter (187).  Similar to other transgenic 

mice expressing β-actin driven γ2 subunits (298), Tg(hGABRG2HA) mice exhibited normal behavior and 

life span and had a PTZ-induced seizure threshold that was similar to that of wildtype mice.  To 

overexpress wildtype γ2 subunits in the mutant mice, we crossed Gabrg2+/Q390X and Tg(hGABRG2HA) 

mice determined whether overexpressing wildtype γ2 subunits could rescue deficits caused by 

GABRG2(Q390X) mutation.  We found a complete recovery of total γ2 subunit protein level and mIPSC 

amplitude, and the mIPSC frequency was partially reversed.  The incomplete recovery of mIPSC 

frequency indicated that presynaptic deficits were not fully rescued, which could be caused by the 
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dominant negative effects of mutant γ2(Q390X) subunits, especially during early development.  However, 

the intensity of thalamocortical oscillation, which is a hallmark of generalized epilepsy, was still greatly 

reduced by the transgene.  The PTZ-induced seizure threshold was also restored to control level.  These 

results are consistent with a substantial restoration of GABAergic neurotransmission by overexpression of 

wildtype γ2 subunits in Gabrg2+/Q390X mice greatly improving the seizure phenotype. 

2) Implication for future therapy 

Target-specific gene therapy has been explored in a variety of disease models including the genetic 

neurological disorder Rett syndrome (55, 309-312).  Although different genetic information, including 

those encoding Kv1.1 potassium channel (205) and GABAA receptor α1 subunits (313) have been 

delivered into brain to inhibit the hyperexcitability and seizure development in several epilepsy models, 

none has been reported for genetic epilepsies.  Here we found that target-specific gene therapy could 

become a future direction to treat genetic epilepsy caused by GABRG2 mutations.  As GABRG2(Q390X) 

is the most detrimental epilepsy-associated mutation identified in γ2 subunits, the same strategy is 

speculated to also rescue other less severe GABRG2 mutations. 

However, we only provided a proof-for-principle here.  In the future, gene delivery strategies using 

AAV or lentivirus and small chemical or genetic molecules regulating the gene expression of γ2 subunits 

may have more promising clinical application.  Here we introduced exogenous wildtype γ2 subunits from 

the beginning of gastrulation, but it would be important to study whether there is an important time 

window for therapeutic intervention.  In addition, in this study we also overexpressed the transgene across 

the whole brain.  Thalamocortical oscillation was suggested to be hijacked in generalized epilepsies (307) 

and and optogenetic inhibition of TC neurons in thalamus has been shown to inhibit thalamocortical 

seizures induced by stroke (207).  Thus it would be interesting to investigate whether overexpressing 

wildtype γ2 subunits in a specific brain region is enough to attenuate seizures. 

 



103 

 

6. Acknowledgements 

This work was supported by NIH R01 NS051590 to RLM. 

  



104 

 

  
Figure 4-1: Exogenous γ2HA subunits were introduced in Gabrg2+/Q390X mice by crossing them with 
Tg(hGABRG2HA) mice. 

A. The schematic diagram shows the breeding strategy.  Gabrg2+/Q390X knock-in mice were crossed with 
Tg(hGABRG2HA) transgenic mice, generating offspring with four different genotypes.  WT;0 denotes Gabrg2+/+ 
mice.  Het;0 denotes Gabrg2+/Q390X mice.  WT;Tg denotes Gabrg2+/+;Tg(hGABRG2HA) mice.  Het;Tg denotes 
Gabrg2+/Q390X;Tg(hGABRG2HA) mice.  B1. PCR and gel electrophoresis was used for genotyping and the gel 
presents results from littermates with four different genotypes.  Primers amplifying the endogenous Gabrg2 allele 
generated one 323 bp band for the wildtype allele and one 405 bp band for the mutant allele.  Primers amplifying the 
transgenic hGABRG2HA allele generated one specific band of 324 bp for the transgene.  B2. Mice with each of the 4 
genotypes were born with equal frequency.   
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Figure 4-2: Total amount of wildtype γ2 subunits was restored by the transgene 

A. Coronal brain sections from adult Wt;0 and Het;Tg mice were stained by an anti-HA antibody.  B1. Cortical 
protein was collected from adult Wt;0, Het;0 and Het;Tg mice and blotted by anti-ATPase, anti-HA and anti-γ2 
antibodies.  The anti-γ2 antibody only recognized the wildtype γ2 and γ2HA subunits.  B2. Expression levels of 
wildtype γ2 subunits in cortex and thalamus from adult Wt;0, Het;0 and Het;Tg mice were plotted.  The band 
intensity of γ2 subunits was normalized to that of ATPase, and further normalized to that of WT;0 littermate (n = 7, 
mean ± SEM).  Differences between littermates were analyzed by two-tailed paired t test (*** p < 0.001; ** p < 0.01; 
* p < 0.05).   
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Figure 4-3: PTZ-induced seizure threshold was reversed by the transgene. 

Mice were i.p. injected with PTZ (55 mg/kg) to induce seizures.  The susceptibility to A. PTZ-induced GTCS and B. 
death was assessed by survival curves.  Differences between littermates were analyzed by Mantel-Cox method.  (A. 
Wt;0 vs. Het;0:  p = 0.0009;  Het;0 vs. Het;Tg :  p = 0.0001;  Wt;0 vs. Het;Tg: p =  0.7713.  B. Wt;0 vs. Het;0:  p = 
0.0034;  Het;0 vs. Het;Tg :  p = 0.0004;  Wt;0 vs. Het;Tg: p =  0.5050).  
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Figure 4-4: Cortical mIPSC was restored by the transgene. 

A. Sample traces of mIPSC recorded from layer 6 cortical pyramidal neurons of littermates. B. Summary of the 
averaged mIPSC amplitudes and frequency(top) and normalized cumulative curves of mIPSC amplitude and 
intervals.  
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Figure 4-5: Spontaneous thalamocortical oscillation was less intense in Het;Tg mice. 

A. Representative extracellular multiple unit recordings (A1, spontaneous and A2, evoked) from VB neurons in 
horizontal slices.  B. Corresponding autocorrelograms showing oscillation patterns.  C. Oscillation index and 
duration were compared.  
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Chapter 5 : Discussion and Future Directions 

Epilepsy is a neurological disorder affecting almost 1% of the population, and genetic epilepsy is 

present in 30-60% of the affected individuals.  In vitro characterization of the pathogenesis of mutations 

associated with genetic epilepsy and in vivo study of mouse models mimicking genetic epilepsy enable us 

to better understand underlying pathogenic mechanisms that will improve diagnosis and may lead to more 

effective treatment.  In this dissertation study, I have worked on three projects to characterize different 

epilepsy-associated mutations in GABRG2 (Table 5) and searched for possible strategies to rescue the 

mutation-induced deficits.   

GABRG2 encodes for the 475 aa human γ2 subunits of GABAARs.  They are widely distributed in the 

CNS and contribute to the majority of synaptic GABAARs.  Although γ2 subunits are not obligatory for 

forming receptors, they are important for forming functional GABAergic synapses (314-316) and 

maintaining excitation/inhibition balance in the brain.  Total loss of γ2 subunits is lethal (90), and 

dysfunction of γ2 subunits is associated with elevated anxiety (92), epilepsy (150), and abnormal 

neurogenesis (93).   

Out of all epilepsy-associated mutations identified in GABAAR subunits, half of them were found in 

γ2 subunits (Figure 5-1).  Rigorous work has been done to study underlying pathogenic molecular 

mechanisms of mutations present in virtually all structural domains of the subunit.  Interestingly, several 

mutations have been found in similar locations of γ2 and other subunits suggesting that these mutations 

may disrupt channel function through similar mechanisms.  Now, with the help of next generation 

sequencing techniques, genetic screening is becoming cheaper and more available, yielding a large 

amount of genetic information for each individual.  As a result, many more epilepsy-associated 

mutations/variants will be identified.  In this section, I will speculate on future genomic medicine of 

epilepsy using hGABRG2 mutations as examples. 
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1. Diagnosis: heterogeneous and complex genetic diseases 

Genetic factors play important roles in epilepsy pathogenesis.  Many epilepsy-associated mutations 

have been identified in individuals or families with epilepsy, and it is clear now that loss of certain genes 

could cause epilepsy.  Currently, a whole genome can be sequenced in a single day for ~$1000, 

generating a personal genomic profile for each individual.  However, it remains uncertain how to utilize 

this ever expanding amount of data for epilepsy diagnosis. 

First of all, not each nonsynonymous variant is a disease-associated mutation, even if occurs in 

disease-associated genes.  Many genes, especially those encoding ion channels, are associated with 

epilepsy, and dysfunction of these human epilepsy genes is assumed to cause epilepsy.  However, not 

every amino acid change in human epilepsy genes is pathogenic.  Previous studies have suggested that the 

presence of an epilepsy and its phenotype cannot be determined simply based on the load of “mutations” 

in human epilepsy genes (191).  In one of my projects, we compared three epilepsy-associated 

mutation/variants in GABRG2(N79S, R82Q and P83S) that are clustered in the same region of the γ2 

subunit.  We found both the R82Q and P83S mutations disrupted the trafficking, and thus the function, of 

GABAARs tremendously while the N79S mutation only produced slight effects.  Thus we concluded that 

GABRG2(R82Q) and GABRG2(P83S) are epilepsy-associated mutations contributing to the epilepsy 

phenotype and GABRG2(N79S) is likely only a benign rare or susceptibility variant.  Software including 

Polyphen and SIFT provides very useful platforms for prediction of the effects of individual aa 

substitutions: however, functional characterizations are still needed before we clearly understand the 

structure-function relationship of subunits and receptors and are able to make accurate predictions how 

mutation/variant disrupt receptor function.   

Secondly, even if the effects of each mutation on protein function are known, it is still difficult to 

predict the impact of the mutation/variant on individuals that harbor the mutation/variant.  Genetic 

epilepsies are complex, with variable penetrance and a wide spectrum of syndromes, and the majority of 

genetic epilepsies are polygenetic.  Interaction of different genetic factors is the main theme for the 



111 

 

majority of genetic epilepsies.  It has been postulated that the effects of multiple variants in several 

different epilepsy genes can summate to cause epilepsy.  Interestingly, it was shown that a combination of 

two epilepsy-associated mutations with opposing effects could mask the epilepsy phenotype, further 

increasing the complexity of genetic profiling (317).  Alternatively, mutations or rare variants in 

susceptibility genes, producing dysfunction that does not cause epilepsy directly, could also affect the 

severity of the epilepsy.  For example, the potassium channel Kv8.2 was shown to modify the sodium 

channel Scn2a mutation-associated epilepsy phenotype in mice (318).  Meanwhile, we cannot exclude 

effects of common SNPs present in the general population, as some of them could increase or decrease 

disease risk.  How to model these complicated interactions is still unclear and may require multiple 

approaches including genetic, epidemiologic, bioinformatic, and statistical methods.  Inducible 

pluripotent stem cell derived neurons, which are converted from human fibroblasts, can be utilized to 

compare the neuronal excitability of single cells from different individuals, and also provide a platform 

for drug screening.  Establishment of a highly reproducible standard protocol for iPSC generation and 

neuron differentiation is required to reduce the variability of this procedure.  How to link the neuronal 

excitability to network excitability still needs further investigation.   

Nevertheless, this does not mean that genomic information is not helpful for epilepsy diagnosis.  

Although we are unable to build a model to accurately predict outcomes, incorporating personal genomic 

information during diagnosis could assist risk evaluation, guide medical management, and even prevent 

disease onset in the future.  Imagine a child who presents to a physician after his first seizure.  Knowing 

that the child bears a detrimental mutation in an epilepsy gene may change the approach to treatment. 

2. Etiology: Does the same group of mutations share a common theme? 

A good understanding of epilepsy genetics can improve diagnosis and determination of prognosis, but 

the ultimate goal is disease prevention and treatment.  The traditional treatment strategy for epilepsy, and 

for most diseases, is based on syndromes, and most treatments are to mitigate symptoms.  Anticonvulsant 
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medication is useful but does not cure the epilepsy.  A good understanding of epilepsy etiology would 

facilitate design of improved target-specific therapies.  An interesting initial question is whether or not the 

same types of mutations share common pathogenic mechanisms.  If so, could they be treated similarly?   

Here, we tried to group different types of epilepsy-associated GABRG2 mutations based on their 

properties and locations.  In one of my projects, we studied three missense mutations located in the 

subunit interface of γ/β subunits in assembled αβγ receptors.  We found that, although to different extents, 

this type of mutation affected subunit interaction during receptor assembly, decreased the efficiency of 

forming trafficking-competent αβγ pentamers, reduced the trafficking of mutant subunits, altered the 

stoichiometry of surface receptors, and finally impaired mutant receptor channel function.  Mutant 

subunits that were not incorporated into trafficking-competent pentamers were trapped in the ER and 

degraded.  However, mutant subunits still interacted with partnering subunits during this process, thus 

slightly preventing their trafficking and exhibiting small dominant negative effects.  These observations 

were partially supported by other studies showing that a β3 mutation located in the γ/β interface (163) and 

a γ2 mutation located in the α/γ interface (319) have similar effects, further suggesting that mutations 

located in subunit interfaces shared the same molecular mechanism.  We found that the expression and 

trafficking of both wildtype and mutant γ2 subunits were stabilized at low temperature.  Although we 

failed to identify molecular chaperones (e.g. heat shock proteins) and pharmacological chaperones (e.g. 

receptor ligands) that improved the trafficking of mutant subunits, chaperones slowing the biogenesis of 

receptors may be identified in future through larger scale screening to rescue trafficking-deficient mutant 

subunits. 

Similarly, we also made efforts to group nonsense mutations into pathogenic classes.  GABRG2(Q40X) 

and GABRG2(Q390X) are two nonsense mutations generating premature translation termination stop 

codons but exhibiting quite different effects.  One of my thesis studies indicated that the GABRG2(Q40X) 

mutation activated the NMD machinery to degrade mutant mRNA and the mutant protein that was 
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generated was not functional.  Thus the GABRG2(Q40X) mutation represented a group of nonsense 

mutations that result in loss-of-function, similar to the mutation GABRG2(R136X).  The other mutation, 

GABRG2(Q390X), has been extensively characterized previously.  As it is located in the last exon of 

GABRG2, it did not elicit NMD.  In addition, the mutant protein generated was stable and showed 

substantial dominant negative effects by trapping partnering subunits in the ER.  Mutant subunits also 

formed aggregates, which may further contribute to their pathogenesis.  Both in vitro characterization 

(180) and in vivo mouse model study (unpublished) indicated that the GABRG2(Q390X) mutation 

represented a group of nonsense mutations that have more detrimental effects than loss-of-function, which 

includes the GABRG2(W429X) mutation.  We found the synthesis of functional full-length γ2 subunits 

could be rescued from the GABRG2(Q40X) mutation by using aminoglycoside-induced readthrough, 

where the translational machinery was not terminated by the nonsense mutation.  Although currently 

available aminoglycosides are toxic and not very efficient, this provided proof of principle of a promising 

strategy to treat epilepsy caused by nonsense GABAG2 mutations.  

Generally, we have successfully grouped several different mutations based on their location and 

effects (222, 251).  Studies from several other projects in our laboratory also suggested that mutations in 

the same category usually shared the same molecular mechanism, although the severities of these effects 

vary mutation by mutation and could not be predicted without experimental support (175, 182, 192, 319).  

Treatments targeted to a specific group of mutations may be developed by pharmaceutical companies as 

individualized medication, a topic that I will elaborate on later. 

3. Etiology: Beyond genetics 

Study of genetics and associated molecular/cellular mechanisms reveals how a mutation affects 

channel function and cell excitability.  However, how altered cellular excitability cause seizures and how 

a normal brain progresses into an “epileptic” brain are still unaddressed and will require investigations on 

in vivo systems.   
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In this dissertation work, our studies involved three typical types of mutations:  GABRG2(Q40X) 

represented the group of loss-of-function mutations.  Thus, having one allele of the GABRG2(Q40X) 

mutation is similar to the heterozygous knock-out condition.  GABRG2(R82Q) represents the group of 

loss-of-function missense mutations with slight dominant negative effects.  Different from the 

heterozygous knock-out condition, the mutant protein is produced, and slightly affects the trafficking of 

partnering subunits.  GABRG2(Q390X) is a loss-of-function mutation with severe dominant negative 

effects, which is located at the other end of the disease spectrum.  Mutant γ2(Q390X) subunit protein is 

not only stable, but also toxic. 

Consistent with different extents of effects, three mutations are also associated with different epilepsy 

syndromes.  The GABRG2(Q40X) mutation was identified in dizygotic twins with severe Dravet 

syndrome and an apparently healthy father, indicating that the mutation itself will not cause severe 

epilepsy symptoms and other mutations may be involved in epileptogenesis in these two twins  (174).  

The GABRG2(R82Q) mutation was identified in a large family with CAE and FS (123, 149).  Genetic 

analysis suggested that the mutation accounted for the FS phenotype and a co-contribution with another 

unknown factor caused CAE.  The GABRG2(Q390X) mutation was also identified from members of a 

family with generalized epilepsy (179).  While the proband was diagnosed with the severe Dravet 

syndrome, other carriers in the family were not.  It seems that while the mutation is responsible for the 

epilepsy phenotype, another unknown genetic factor exacerbated the syndrome in the proband.  However, 

it is very difficult to predict the effects of these three types of mutations on brain circuitry and disease 

development, even though we clearly understand their molecular and cellular mechanisms.  Thus it will 

be very interesting to compare these three types of mutations in representative mouse models, 

heterozygous Gabrg2-/+ knock-out, Gabrg2R43Q/+ knock-in, and Gabrg2Q390X/+   knock-in mice.   

Although controversial, these three mouse models also showed different types of seizures with 

different severities.  While no seizure phenotype was reported when heterozygous Gabrg2-/+ knock-out 

mice were first generated, recent studies suggested that these mice showed absence-like spike-wave-



115 

 

discharges in a seizure-prone background (94).  Both absence-like spike-wave-discharges and thermal-

induced seizures were reported from heterozygous Gabrg2R43Q/+ knock-in mice, depending on the mouse 

background and age (94, 150).  Unpublished data from our laboratory suggested that heterozygous 

Gabrg2Q390X/+ knock-in mice exhibited spontaneous myoclonic seizures and GTCS.  How does 

dysfunction of GABAARs lead to different epilepsy syndromes and what cause the spontaneous seizures?  

To connect the known cellular/molecular dysfunction to behavioral/clinic phenotypes, we need to study 

pathogenic alterations in these mouse models from a higher level, using technologies such as large scale 

transcriptome analysis, brain imaging and multi-array recording.  

At first, we want to know how brain excitability is altered.  EEG recording could provide some 

general information, but its spatial resolution is low and the signal could be affected by brain states and 

mouse behaviors.  Combining EEG recording with extracellular recording including multi-array recording, 

network excitability in different brain regions and under different brain states could be compared.  

Second, we want to know how brain connections are altered.  GABAergic neurotransmission is not only 

to inhibit neuronal activities.  During early development, GABAARs are excitatory and important for 

neuronal growth.  GABAARs are also pivotal for establishment of GABAergic synapses.  If these 

GABRG2 mutations affect synaptic development, is there a critical time window turning a normal brain to 

an “epileptic” brain?  Or do they lead to any structural abnormalities?  And if these mutations do change 

brain connection during development, does this contribute to generation of spontaneous seizures?  

Imaging study including fluorescence microscopy and electron microscopy to compare morphology and 

connections of neurons and synapses at different developmental stage may reveal such general 

deficiencies.  Third, we want to know how synaptic plasticity is altered.  Epilepsy is comorbid with 

autism, which is associated with abnormal information processing.  Epileptic brain shows hyper-

excitability, and patterns of neuronal firing could change brain plasticity.  It is very likely that an 

“epileptic” brain responds to stimuli differently than a normal brain.  Electrophysiological recordings can 

be used to compare different types of plasticity.  Fourth, if any of these speculations are true, we want to 
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know how gene expression in different types of neurons is altered to cause a series of changes.  

Transcriptome alterations of different mouse models can be compared using RNAseq (Macdonald and 

Pimenta, unpublished).  Is any common pathway altered?  Are similar types of gene expression 

upregulated or downregulated?  Are there any specific types of neurons that are vulnerable to these 

changes?  Is there any brain region that is sensitive to these genetic defects?  Fifth, if these three 

mutations/mouse models do correspond to three different epilepsy syndromes, what is the circuitry basis 

for these clinic outcomes?  Generalized genetic epilepsies are manifested by different symptoms, 

including loss of consciousness, jerking, and muscle stiffening.  Absence seizures are very different from 

generalized tonic clonic seizures, but both phenotypes have been identified from patients carrying 

GABAAR subunit mutations.  A patient diagnosed with CAE could progress into JME.  How are different 

motor/sensory circuits involved and hijacked in different epilepsy syndromes?  Is the severity of 

phenotype only related to the severity of mutation?  Do different types of neurons show different 

vulnerability to a same dysfunction?  Pinpointing brain regions involved using small animal fMRI, 

comparing the altered network oscillation using in three types of epilepsy, or manipulating the 

spatial/temporal expression pattern of mutant subunits may be worth trying.  Answering these questions 

could help us understand the development of different types of seizures and may provide some clues to 

identify candidate biomarkers.  Answers to these questions can also help us to identify time windows for 

potential intervention and to identify drug targeting to pathogenic pathways.  

4. Future therapy  

A better understanding of molecular, cellular and circuitry mechanisms underlying the genetic 

epilepsies will provide more opportunities to advance the development of future therapies.  Individualized 

genomic medication is under intensive study and even has appeared during clinic assessments for disease 

including cancer, Duchenne muscular dystrophy (DMD), cystic fibrosis and some retinal disorders (320).  

Specific treatments will be provided to specific populations of patients based on their genetic information 
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and associated disease etiologies.  Compared to previous generations of AEDs that were found based on 

experience, or designed to suppress neuronal excitability, new generations of therapies will be more target 

specific, and even individual specific.  New generations of therapies may not only suppress seizures but 

also prevent epileptogenesis.  These different strategies could be applied to different types of genetic 

epilepsy or at different stages of disease progression.  Here, I will summarize several categories of future 

therapy based on our understanding of genetic epilepsies caused by monogenetic mutations in GABRG2.  

1) Mutation specific chemical therapy:   

Although big molecule drugs including antibodies and peptides are under intensive study and 

development for many diseases, small chemical molecules still occupy the majority of pharmaceutical 

market due to their convenience and bioavailability.  As GABAAR γ2 subunits are widely distributed in 

the brain, administration of chemicals to correct mutant γ2 subunit dysfunction all over the brain may 

prevent the pathological effects caused by the mutations.  A similar approach has been adopted in fields 

studying cystic fibrosis (216, 217).  Cystic fibrosis is caused by dysfunction of the cystic fibrosis 

transmembrane conductance regulator (CFTR) protein.  Based on the type of CFTR mutation, different 

drugs have been designed to partially reverse the effects of these mutations and some are already under 

investigation in clinical trials.  For example, a small molecule compound, ataluren, has been tested in a 

phase 3 clinical trial to read-through a premature stop codon caused by a CFTR nonsense mutation in 

patients.  Another small molecule compound, ivacaftor, which can potentiate the function of CFTRs that 

contain a missense mutation, showed clinical benefits in patients and has been approved by the FDA.  

Similarly, ataluren is also in a clinical trial for DMD to test its effects on patients carrying nonsense 

mutations (321).   

Several types of GABRG2 specific drug therapies could be developed.  These include receptor 

potentiators like benzodiazepines to increase function of both wildtype and mutant receptors.  However, 

administration of benzodiazepines produces side effects including drowsiness, amnesia and drug tolerance.  
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Besides, it has been suggested that these general receptor potentiators may induce absence seizure by 

increasing inhibition of thalamic neurons (302, 322).  Due to lack of access, we could not get detailed 

treatment histories for patients carrying GABAAR mutations to compare whether benzodiazepines showed 

better efficacy.  Identifying other potentiators that target receptors that contain subunits with specific 

mutations, like GABRG2(K328M), could be a future direction for drug development.  The K328M 

mutation accelerated channel deactivation of GABAARs.  Chemicals that increase the open duration of 

receptor channels containing the GABRG2(K328M) mutation may correct its dysfunction.  Chemical 

therapies also include molecular or pharmaceutical chaperones to improve receptor biogenesis by 

stabilizing the biogenesis of wildtype receptors, mutant receptors or both.  It was reported that GABAA 

receptor ligands could promote receptor trafficking (250), and thus small molecules that promote 

assembly and stabilize mutant receptors may exist.  Although we failed to identify such molecules to 

rescue the function of the missense mutation GABRG2(R82Q), we did show that slowing receptor 

biogenesis increased subunit stability and trafficking.  Chemical therapies also include gentamicin-like 

aminoglycosides and ataluren to promote read-through of nonsense mutations.  We demonstrated in our 

paper that gentamicin could partially restore the synthesis of full length functional γ2 subunits from 

subunits containing the GABRG2(Q40X) mutation.  Although it is not gene specific, this may be useful to 

prevent the production of toxic mutant protein like γ2(Q390X) subunits.  If similar chemicals with higher 

efficiency and lower toxicity are identified in future, it would be very interesting to test in heterozygous 

Gabrg2Q390X/+   knock-in mice. 

2) Mutation specific gene therapy:   

Gene therapy is promising because it is very target specific and should work well for monogenic 

disorders.  Lentiviral- and AAV-vector based gene therapy has been taken to clinical trials to treat genetic 

disorders such as the retina disorder choroideremia (323) and Parkinson’s disease (324).  Several anti-

sense oligonucleotide drugs, which can induce exon skipping to avoid generating out-of-frame mRNA 
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caused by deletion mutation, have been taken to clinic trials for DMD (321).  Gene therapy has emerged 

as a powerful tool to treat neurological disorders with improvements in vector design and delivery 

methods (195).  Following demonstration of substantial effects in preclinical animal models, gene therapy 

related clinical trials are already undergoing for neurodegenerative disease and brain tumors.   

For GABRG2 mutations, there are two prospective types of gene therapy.  The first kind is to 

overexpress wildtype γ2 subunits using viral vectors or nonviral gene delivery vehicles.  The rational is 

clear for loss-of-function mutation like GABRG2(Q40X), as this method could restore the loss of one 

allele.  This strategy may also work for other mutations like GABRG2(Q390X) as extra wildtype subunit 

protein could compete with mutant subunit protein, thus restoring the function of wildtype subunit protein 

while reducing dominant negative effects of mutant subunit protein.  Here we have demonstrated that 

supplementation with an extra GABRG2 allele could rescue reduced GABAergic inhibition and decrease 

seizure threshold in Gabrg2Q390X/+   knock-in mice.  It is necessary to test this principle using a more 

realistic delivery system such as lentivirus or AAV, which will elicit relatively low immune and 

inflammatory response and have been used in clinical trials.  This would also help us examine whether 

there is a specific time or a specific region that could maximize the effects of gene therapy, how many 

copies of wildtype allele are optimal, how much wildtype protein is required, and whether epileptogenesis 

can be prevented if treatment is delivered before the disease onset. 

The second type of gene therapy is to correct the mutation in the genomic sequence, regardless of the 

type of mutation.  It has been shown before that antisense oligonucleotide could prevent abnormal 

splicing events caused by insertion of a retrotransposon (325) and a similar strategy might be applied to 

splicing mutations like GABRG2(IVS6+2T->G) to correct the abnormal splicing.  The advances of 

genomic editing techniques, especially the invention of CRISPR (clustered regularly interspaced short 

palindromic repeats) techniques (326), shed lights on mutation correction for future disease treatment.  

Utilizing the endonuclease Cas9 and guide RNA, the CRISPR/Cas9 system could induce generation of 

indels (mismatches, insertions, or deletions) or homologous recombination targeting a specific DNA 
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sequence.  CRISPR techniques have been used to generate genetic modifications in rodents (327, 328), 

pigs (329) and even primates (330).  CRISPR techniques have also been used to correct genetic mutation 

in rodent models of hereditary tyrosinemia (331) and DMD (332) by replacing mutant nucleotides.  

Although only a small proportion of cells were corrected after the delivery of CRISPR-Cas9 system, it 

was enough to improve certain symptoms.  Due to the difficulty of delivery and the non-dividing property 

of neurons, it is still very difficult to apply this technique in central nervous system.  Future 

improvements of correction efficiency may enable correction of some detrimental mutations related to 

neurological disorders.  

3) Pathology specific therapy: 

 Mutation targeting therapies will be specific and with few side effects.  However, it may be 

impractical to develop a single reagent for each individual patient, and more importantly, it is difficult to 

identify the specific mutation for most patients with polygenic epilepsy.  Although the genetic factors 

contributing to epileptogenesis vary among individuals, multiple syndromes are shared among patients.  

Traditional AEDs are found or designed to suppress syndromes and are effective for two-thirds of patients.  

However, from the targeted patient population to the targeted syndrome, traditional AEDs are very 

nonspecific.  Furthermore, various side effects are accompanied, and around 20% of patients are 

unresponsive to AED treatments.  For new generation of AEDs, we want to better specify the patient 

population and target the pathogenic pathways underlying these epilepsy syndromes (Figure 5- 2).  We 

want to know for each type of epilepsy syndrome, is there a common underlying mechanism?  Is there a 

common brain circuit involved?  Is there a shared pattern of altered brain connections that leads to an 

epileptic brain?  If so, therapies correcting the common pathology could be applied to a group of patients.   

Studies on iPSCs derived from amyotrophic lateral sclerosis (ALS) patient samples have suggested 

that different ALS-associated mutations caused several common categories of downstream alterations in 

motor neurons, and some defects could be partially mitigated by the same drug (333, 334).  Genetic 
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epilepsies that share a similar cohort of syndromes may also exhibit the same core defects.  As I have 

mentioned before, we have already established several different models of genetic epilepsies caused by 

monogenic mutations in GABAG2.  Several other genetic mouse models have also been created based on 

findings in other gene mutations.  For example, deletion of Scn1a caused severe Dravet syndrome in mice 

(209), with reduced excitability of inhibitory interneurons; specific deletion of the Scn1a encoding 

sodium channels in forebrain interneurons caused seizures and premature death in mice (335).  Deletion 

of thalamic PLC-β4 led to absence seizures, which could be suppressed by T-type calcium channel 

blockers (336).  Do these models share any common downstream characteristics?  Are there any specific 

cell types prone to damage?  Comparisons across different models are necessary in the future and may 

reveal some surprising common “biomarkers” of genetic epilepsy.   

5. Conclusions 

Study of epilepsy has improved our understanding of human epilepsy genes and associated protein.  

Exploration of the brain mystery also advances our understanding, diagnosis and treatment of epilepsy.  

From the discovery of DNA molecules, to human genomics project, to the accelerating upgrade of 

sequencing techniques, basic research and biotechnology on genetics has led to grand changes in medical 

research.  For the next decade, what will cutting-edge neuroscience techniques and human connectome 

plan bring us?  What kind of surprise about brain and epilepsy will be revealed then?  I have tried to 

speculate a bit, but more details are waiting to be unraveled.    
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Table 5.  GABRG2 mutations involved in this study 

Mutation Amino Acid Alteration Location Associated Epilepsy 
Phenotype 

in vitro Pathological 
Mechanisms 

Q40X Glutamine-> stop codon N terminus dizygotic twins with the severe 
Dravet syndrome, and their 
healthy father 

unstable mRNA, nonfunctional 
protein, loss of function 

N79S Asparagine-> Serine N terminus one patient with generalized 
tonic-clonic seizures 

slightly decreased trafficking, 
benign or susceptibility variant 

R82Q Arginine-> Glutamine N terminus one family with febrile seizures 
and childhood absence epilepsy  

inefficient receptor assembly, 
decreased trafficking, loss of 
function with slight dominant 
negative effects 

P83S Proline-> Serine N terminus one family with idiopathic 
generalized epilepsy 

inefficient receptor assembly, 
decreased trafficking, loss of 
function with slight dominant 
negative effects 

Q390X Glutamine-> stop codon M3-M4 loop one family with generalized 
epilepsy with febrile seizures 
plus, and the proband was 
diagnosed with the severe 
Dravet syndrome 

stable mRNA, stable protein, 
decreased trafficking of mutant 
subunits and partnering 
subunits, loss of function with 
severe dominant negative 
effects 
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Figure 5-1: Epilepsy-associated mutations identified in GABRG2 gene. 

Each blue circle represents one residue of the γ2 subunits.  Green circles represent missense mutations and red 
circles represent mutations generate an alternative stop codon, including nonsense mutations, splice donor site 
mutations, and frame-shift mutations. 
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Figure 5-2: Candidate therapeutic targets for treatments of genetic epilepsy. 

Mutations ① in epilepsy genes will disrupt the protein function, alter downstream pathway which will change the 
normal brain to an epileptic brain ②, and finally lead to hyper-excited neuronal firings ③ during seizures.  
Traditional AEDs are to suppress the hyper-excited neuronal firings while future treatments could be 
designed to suppress, prevent or erase abnormal hyper-excitability targeting on mutations or pathogenic 
pathways.  
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