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CHAPTER I

INTRODUCTION

Wireless Networks

Over the recent years, wireless networking technologies such as cellular

networks, wireless local area networking (WLAN), and wireless mesh net-

works are becoming an integral part of our communication environment due

to its convenience and flexibility. Such a strong proliferation in the use of

wireless technology all over the world creates new research and business op-

portunities for both its producers and consumers [26].

This dissertation investigates a significant branch of wireless networks –

multi-hop wireless networks. A multi-hop wireless network is formed by a

collection of wireless nodes which are capable of communicating with each

other over a certain range of wireless spectrum. These nodes cooperate to

relay traffic throughout the network via multiple hops. Since a multi-hop

network can be deployed rapidly without the support of a fixed networking

infrastructure, it can be found in a wide range of commercial and military

applications, such as residential Internet access, smart home/office, first re-

sponder networks, security/monitoring systems, etc.

1



Problem Description and Research Goal

In this dissertation, we study the problem of failure restoration and pre-

vention in multi-hop wireless networks. Wireless networks are more prone

to failures than their wireline counterparts. This dissertation considers the

following types of failures in wireless networks.

• Node Failure. Usually deployed in unplanned, sometimes hostile en-

vironments, wireless nodes are particularly vulnerable to failures due to a

variety of reasons such as power exhaustion, software and hardware faults,

natural disasters, malicious attacks, and human errors.

• Channel Failure. Built over an open, shared wireless medium, wire-

less networks suffer from all kinds of disturbances in the wireless channel,

which may be caused by environmental noises and interferences or malicious

attacks. In particular, when the jamming attack is launched, the jamming

nodes may consume part or all of the channel capacity and cause permanent

or intermittent channel failures.

• Link/Route Failure. Different from wired link, a wireless link is an

abstraction of the communication between two nodes that are within the

communication range of each other. When these two nodes move out of

range, the wireless link they form will fail. In a multi-hop wireless network

where mobile nodes serve as the route relays, such link failures will further

lead to route failures.
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• QoS Failure. Wireless networks typically operate over the shared wire-

less spectrum with limited and variable channel bandwidth. Packet deliver-

ies in this environment can experience high losses and unpredictable delays.

Real-time applications in wireless networks suffer from QoS (Quality of Ser-

vice) failures [7, 78], when their performance requirements (in terms of packet

delivery ratio, delay, throughput, etc) cannot be satisfied.

Compared with traditional wireline networks, the unique characteristics

of wireless networks [54, 32, 30, 47, 25, 66, 23, 60, 11, 16, 79, 51, 7, 78] pose

several new challenges when dealing with failures outlined above.

• Shared Channel Resource Model. In wireless networks, wireless links in

the neighborhood interfere with each other and share the channel resource

in a location dependent fashion [27]. This is fundamentally different from

wireline networks whose communication link capacities are independent from

each other. Thus the impact of the node failure in wireless networks is

different from the node failure in wireline networks. In wireline networks,

node failure is usually translated into the failures of a set of wireline links,

which causes a loss of network capacity and thus degraded performance. In

wireless networks, when a node fails, the channel resource remains unchanged

in that neighborhood. The other adjacent nodes need to take over its relaying

role and reroute the traffic. The impact of node failures to the global network

performance is thus much harder to evaluate. Furthermore, when wireless

channel failure happens, the wireless communication resource is lost on the

failed channel. The network can recover its service by switching to a new

3



channel when multiple channels are available. Such a failure recovery strategy

is not available for wireline networks.

• Dynamic Mobile Network Model. In wireline network, link failures are

usually assumed to be independent from each other and follow Poisson arrival

process [69]. The link failure in wireless mobile networks is mostly caused

by node mobility. Such link failures are correlated with each other. This

implies that when a wireless link fails, it is hard to locate an alternative link

in its immediate neighborhood. The link failure arrivals also do not follow a

Poisson process, but are rather closely related to the node mobility pattern.

The above discussion shows that the failure restoration and prevention

approaches proposed for wireline networks (such as the Internet) [22, 52, 70,

39, 45, 13, 8] cannot be directly applied to the wireless environment. The

issue of failure restoration and prevention needs a fresh treatment in wire-

less networks. This dissertation investigates the network and service failure

restoration and prevention strategies in multi-hop wireless networks. Its goal

is to minimize the service disruption caused by various wireless failures and

maximize the network performance after failure restoration.

Research Approach and Dissertation Contribution

This dissertation studies the failure restoration and prevention mecha-

nisms for a multi-hop wireless network at three levels: (1) route restoration

at the network level, (2) QoS failure prevention at the network and transport
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level, and (3) service restoration at the application level. We investigate both

stationary and mobile multi-hop wireless networks. For multi-hop wireless

stationary networks, we focus on the node failures, channel failures, and QoS

failures. For multi-hop wireless mobile networks, we focus on the mobility-

caused link failures.

To derive the best failure restoration solution, we employ an optimization-

based approach. In particular, we formulate the network restoration strate-

gies in multi-hop wireless stationary networks under node and channel fail-

ures as a set of linear programming problems which reflect the unique wire-

less resource model. For multi-hop wireless mobile networks, we formulate

the service restoration strategies as a dynamic programming problem which

explicitly incorporates the dynamic network topology model of the mobile

network. We investigate the QoS failure prevention strategies over a wireless

sensor network through system prototyping and experiment. We build QoS

support mechanisms including differentiated scheduling and queue manage-

ment in this network and use a remote healthcare system as an example

real-time application to evaluate its performance.

Network Restoration for Multi-hop Wireless Stationary Networks

This dissertation first presents the network-level route restoration solu-

tions that can minimize the performance degradation in the event of node

failures and jamming attacks.
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• Network Restoration under Node Failures. We study the following fail-

ure scenarios within this category: (1) Single Node Failure. Exactly one node

of the network fails. Thus all traffic to, from and through the node is affected.

This may happen as a result of human errors, software and hardware faults,

and power exhaustion. (2) Dispersed Multiple Node Failure. Several nodes

fail independently. This is due to the same reason as single node failure ex-

cept multiple nodes fail simultaneously. (3) Regional Multiple Node Failure.

The nodes within a certain geographic region fail. This may happen as a

result of malicious attacks and natural disasters.

• Network Restoration under Jamming Attacks. We investigate the net-

work restoration solutions via the joint design of traffic rerouting, chan-

nel re-assignment, and scheduling for a multi-hop wireless network with

multi-channel multi-radio support. Efficient routing and channel assignment

schemes can relieve the interference caused by both normal network nodes

and jamming nodes.

We formulate the maximum performance network restoration problem

under the above failure scenarios as a set of linear programming problems.

In particular, we consider different network restoration strategies, from global

restoration to local restoration, which can support a range of tradeoffs be-

tween the restoration latency and network throughput after restoration. Two

performance degradation indices, transient disruption index (TDI) and through-

put degradation index (THI), are defined to quantitatively evaluate the im-

pact of both node failures and jamming attacks during and after restoration.
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Service Restoration for Multi-hop Wireless Mobile Networks

This dissertation also presents the application-level service composition

and restoration framework which achieves minimum service disruptions in

multi-hop wireless mobile networks. The framework consists of two tiers:

service routing, which selects the service components that support the ser-

vice path, and network routing, which finds the optimal network path that

connects these service components. Our framework is based on the disruption

index, which is a novel concept that characterizes different service disruption

aspects, such as frequency and duration, that are not captured adequately

by conventional metrics, such as reliability and availability. Using the defi-

nition of disruption index, we formulate the problem of minimum-disruption

service composition and restoration (MDSCR) as a dynamic programming

problem and analyze the properties of its optimal solution for wireless mo-

bile networks with known mobility plan. Based on the derived analytical

insights, we present our MDSCR heuristic algorithm for wireless mobile net-

works with uncertain node mobility. This heuristic algorithm approximates

the optimal solution with one-step lookahead prediction, where service link

lifetime is predicted based on node location and velocity using linear regres-

sion. This approach addresses the correlated wireless link failures in the

multi-hop wireless mobile networks.
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QoS Failure Prevention for Wireless Remote Healthcare System

Finally, this dissertation presents a QoS support mechanism for multi-hop

wireless networks that prevents QoS failures. The QoS support mechanism

integrates an XML-based QoS specification, admission control policy, and

differentiated scheduling and queue management. The QoS support mecha-

nism is built into a heterogenous wireless sensor network consisting of medical

sensors and wireless gateways, called Carenet. A remote healthcare system

is built over this QoS-enable wireless sensor network to capture and transmit

in real time the medical data of the patients to their care providers. One of

the most important requirements of this system is to assure the timely and

robust delivery of the life-critical medical data in the resource-constrained

wireless sensor networking environment. We use this remote healthcare sys-

tem as an example real-time application to evaluate the performance of our

integrated QoS support mechanism in Carenet.

The main contributions of this dissertation are as follows. First, we de-

velop two optimization-based theoretical frameworks – a linear programming

framework for route restoration in wireless stationary networks and a dy-

namic programming framework for service restoration in wireless mobile net-

works. These frameworks capture the unique characteristics of wireless net-

works including the shared channel resource model and the dynamic network

topology model. Second, we present a set of novel metrics that quantita-

tively define the performance of network and service restoration strategies.

The metrics capture two important aspects of failure recovery – restoration
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overhead and after-restoration network performance. Third, extensive simu-

lation study and system experiments are conducted to evaluate the impact

of various failures and the performance of different failure restoration and

prevention strategies on multi-hop wireless networks. These performance

results provide valuable guidelines towards practical system design for multi-

hop wireless networks.

Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter II

provides the network restoration strategies for multi-hop wireless stationary

networks under node failures and jamming attacks, defines the performance

degradation model, and evaluates the performance of our network restoration

algorithms. Chapter III provides our service model over a multi-hop wireless

mobile network, presents our service composition and restoration framework

and the disruption model, formulates our Minimum Disruption Service Com-

position and Restoration (MDSCR) problem and gives its optimal solution,

explains our MDSCR heuristic algorithm, and describes our simulation re-

sults. Chapter IV introduces the design of our remote healthcare system –

CareNet, gives the implementation of the system prototype, describes the

details of our proposed QoS support scheme, and presents the results of our

experiment study. And Chapter V presents the concluding remarks.

Table I.1 summarizes a list of acronyms used in this dissertation.
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ACE ADAPTIVE Communication Environment
AODV Ad hoc On-Demand Distance Vector Routing
CBR Constant Bit Rate
ECG Eelectrocardiogram
ILP Integer Linear Programming
LP Linear Programming
MAC Medium Access Control
MDSCR Minimum-Disruption Service Composition and

Restoration
NS-2 Network Simulator 2
QoS Quality of Service
RSSCR random selection service composition and restora-

tion
RTS/CTS Request To Send/Clear To Send
SPSCR shortest path service composition and restoration
TCP Transmission Control Protocol
TDI Transient Disruption Index
THI THroughput degradation Index
WLAN Wireless Local Area Network
XML eXtensible Markup Language

Table I.1: Acronyms.
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CHAPTER II

MAXIMUM PERFORMANCE NETWORK RESTORATION
FOR MULTI-HOP WIRELESS STATIONARY NETWORKS

Introduction

Usually being deployed in unplanned, sometimes hostile environments,

multi-hop wireless networks are vulnerable to node failures due to a variety

of reasons such as power exhaustion, node departures, software and hardware

faults, natural disasters, and human errors. And built upon an open, shared

wireless medium, multi-hop wireless networks are also particularly vulnerable

to jamming attacks. The ability to deal with node failures and jamming

attacks, and maintain an acceptable level of performance degradation is thus

a crucial issue in the design of multi-hop wireless networks.

This chapter firstly investigates the network restoration strategies upon

node failures. In particular, we have the following failure scenarios: (1) Single

Node Failure – Exact one node of the network fails. Thus all traffic to, from

and through the node is affected. This may happen as a result of human

errors, software and hardware faults, and power exhaustion. (2) Dispersed

Multiple Node Failure – A part of the nodes fail independently. This is due

to the same reason as single node failure with multiple nodes failing simul-

taneously. (3) Regional Multiple Node Failure – The nodes within a certain

geographic region fail. This may happen as a result of malicious attacks and
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natural disasters. We use the similar solutions used in the jamming defense

strategies.

This chapter secondly investigates the jamming defense strategies via the

joint design of traffic rerouting, channel re-assignment, and scheduling in a

multi-hop multi-channel wireless network. When jamming occurs, the traffic

going through that jamming area is disrupted. The network either switches

to different channels other than those of the jammers, and/or its traffic needs

to be rerouted around the jamming area. Our network restoration scheme

needs to discover alternate paths and channels.

In particular, we consider different restoration strategies, from global

restoration to local restoration, which can support a range of tradeoffs be-

tween the restoration latency and network performance after restoration. In

global restoration, all flows in the network will be rerouted and/or re-assigned

to new channels in response to the node failures and jamming attacks. Local

restoration uses a set of detour paths and channels to route around the failed

nodes and the jamming area locally. The local restoration strategy can typi-

cally restore service much faster than the global restoration strategy because

the restoration is locally activated; while in the global restoration, all flows

in the network have to be notified with the traffic disruption information.

The goal of this chapter is to investigate the network restoration strategies

that can minimize the performance degradation in the event of node failures

and jamming attacks. In order to achieve this goal, we apply an optimization-

based approach, which formulates the network restoration strategies under
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the global and local restoration strategies as linear programming problems.

In particular, we define the minimum flow throughput scaling factor as the

network restoration performance metric and seek to maximize its value un-

der these two strategies. Our formulation explicitly incorporates the unique

characteristics of wireless network including the wireless interference, and

for multi-channel wireless network, the channel assignment. And based on

the LP solutions, we provide a greedy scheduling algorithm, which sched-

ules the active edges and channels at each time slot, and a greedy static

channel assignment algorithm to avoid the channel switching overhead. To

the best of our knowledge, this is the first work that studies the network

restoration problem in multi-hop wireless networks using an optimization-

based approach.

The main contributions of this chapter are as follows. First, we devel-

oped an optimization-based framework for network restoration strategies un-

der node failures and jamming attacks in multi-hop wireless networks. Sec-

ond, we define two novel indices, transient disruption index and through-

put degradation index, that quantitatively evaluate the performance of net-

work restoration strategies. Third, we provide a greedy scheduling algo-

rithm, which schedules the network traffic, and for the jamming attack prob-

lem, the jamming traffic. Fourth, we implement the solutions of different

optimization-based network restoration strategies, and provide extensive per-

formance evaluations in multi-hop wireless network under different network
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restoration strategies and different node failure and jamming attack scenar-

ios.

Related Work

It is worth nothing that there are existing works on routing restoration

over wireline networks [22, 52, 70, 39, 45, 13, 8] under link failures. While

these works also use an optimization-based approach, their results, however,

cannot be extended directly to routing restoration in multi-hop wireless net-

works due to the different network resource types and different network fail-

ure scenarios. First, the wireline and wireless networks are built based on

fundamentally different types of network resources. Wireline networks rely

on the communication links. When link fails, it will result in the loss of net-

work capacity and thus degraded performance. Multi-hop wireless networks

are self-organized by the wireless nodes communicating with each other over

wireless spectrum. The wireless link is only an abstraction of such commu-

nication. The impact of a node failure in wireless network is different from

the node failure in wireline networks, which is usually translated into the

failures of a set of wireline links. In wireline networks, the link capacities

are independent from each other. In wireless networks, wireless communi-

cations share the channel resource in a location-dependent fashion. When

a node fails, the channel resource remains unchanged in that neighborhood.

The other adjacent node needs to take over its relaying role and reroute the
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traffic. The potential network capacity loss highly depends on the locations

of the adjacent nodes and the restoration strategy. This issue has not been

quantitatively investigated so far.

Several complementary approaches are proposed in recent works to ad-

dress the jamming issue. For example, the work of [73] considers how to de-

tect jamming where congested and jammed scenarios can be differentiated.

It introduces the notion of consistency checking, where the packet delivery

ratio is used to classify a radio link that has poor utility and signal strength

consistency check is performed to classify whether poor link quality is due

to jamming. The work of [72] studies the jamming defense strategy over a

single-radio multi-channel network and presents two channel-surfing strate-

gies, where the wireless channels are re-assigned or dynamically switched

under jamming attacks. The work of [10] designs a jamming-resistant MAC

protocol for single-hop wireless networks and the work of [14] evaluates the

throughput performance degradation of the IEEE 802.11 MAC protocol un-

der various jamming models, including periodic or memoryless jammers, and

channel-oblivious or channel-aware jammers.

System Model

This section provides our network, node failure, and jamming models.
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Network Model

We consider a multi-hop wireless network and model it as a directed graph

G = (V,E, C), where v ∈ V represents a wireless node in the network. If this

network supports multi-radio multi-channel, C denotes a set of orthogonal

wireless channels1 and we assume each node v is equipped with κ(v) radios.

Otherwise, C denotes a single wireless channel and κ(v) = 1.

In this wireless network, we assume that the normal behavior of a wireless

node at the MAC layer follows the IEEE 802.11 wireless standard. All nodes

have a uniform transmission range denoted by RT and a uniform interference

range denoted by RI (RI ≤ RT ). A transmission edge e = (v, v′) ∈ ET is

formed if the distance between its two nodes r(v, v′) satisfies r(v, v′) ≤ RT ;

an interference edge e = (v, v′) ∈ EI is formed if the distance between its

two nodes r(v, v′) satisfies RT < r(v, v′) ≤ RI ; and E = ET

⋃
EI . We

assume that the data bit rate (wireless channel capacity) is the same for all

edge using channel c and denote it as φc. In IEEE 802.11 with RTS-CTS

exchange, the sending node need to hear the MAC layer acknowledgement

from the receiving node, therefore, it requires both the sending node and

receiving node to be free of interference. Therefore, packet transmission

from node v to v′ is successful if and only if (1) there is an transmission

edge e = (v, v′) ∈ ET ; (2) node v and v′ have radios that support a common

channel c; (3) any other node v′′ ∈ V within the interference range of the

1For example, in the IEEE 802.11b standard, |C| = 3.
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sending node v or the receiving node v′, i.e., e = (v, v′′) ∈ ET

⋃
EI or

e = (v′, v′′) ∈ ET

⋃
EI , is not transmitting on channel c. Further we define

interference set I(e), e ∈ ET which contains the transmission edges that

interfere with transmission edge e.

We assume any two nodes can communicate with each other in our multi-

hop wireless network. We call the traffic between any pair of nodes as a flow

and denote it as f ∈ F , where F is the set of all flows. The sending node of

flow f is denoted as sf and the receiving node of flow f is denoted as rf . We

use df to denote the demand of flow f . The traffic of flow f will be routed

over multiple paths and multiple channels. We denote the amount of flow

f ’s traffic being routed on edge e over channel c as xf(e, c). The amount of

all flows’ traffic on edge e over channel c is then given by
∑

f∈F xf(e, c).

Node Failure Model

Now we consider a multi-hop wireless network with node failures. Let

V N be the set of failed nodes. For simplicity, we assume that the source and

destination of a flow will not fail. Further, we use EN
T to denote the set of

failed wireless transmission edges and EN
I to denote the set of failed wireless

interference edges caused by the node failures. The new network, after all the

failed nodes and edges are removed, is denoted as G∗ = G−(V N , EN
T

⋃
EN

I ).
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Jamming Model

Now we consider a multi-hop wireless network under jamming attacks.

jc ∈ Jc represents a wireless jamming node at channel c, where Jc is the set

of all the jammers detected at channel c and J is the set of all the jammers

over all the channels. It has a constant traffic generating rate 0 ≤ Gjc ≤ φc.

We assume all the jamming nodes have a uniform jamming range RJ . We do

not consider the underlying MAC protocol used by the jamming nodes and

assume that they are smart jammers that can totally occupy the channels

when sending jamming traffic. We use Jc(e), e ∈ ET

⋃
EI to denote the set

of jammers who have one or both of the two end nodes of the edge e within

its jamming range. We also use ET (jc) to denote the set of transmission

edges whose sending or receiving node is within the jamming range of jc.

We assume that the jamming range of all the jammers does not overlap with

each other.

Table II.1 summarizes the notations used in this chapter.

Routing and Channel Assignment without Restoration

We first study the routing and channel assignment problem in a multi-hop

wireless network when there is no node failures or jamming attacks. Here,

we aim to achieve the maximum throughput. Understanding this problem

helps us to find a best strategy that can minimize the performance degrada-

tion to defend against node failures and jamming attacks. Since the network
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Notation Description
G = (V,E, C) network model
V node set
E edge set
C channel set
V node set
E edge set
C channel set
κ(v) number of radios node v equipped
φc channel capacity
RT transmission range
RI interference range
e = (v, v′) ∈ ET transmission edge
e = (v, v′) ∈ EI interference edge
f ∈ F flow
sf sending node of flow f
rf receiving node of flow f
df traffic demand of flow f
xf(e, c) amount of flow f ’s traffic being routed on edge e

over channel c
V N set of failed nodes
EN

T set of failed wireless transmission edges
EN

I set of failed wireless interference edges
G∗ = G− (V N , EN

T

⋃
EN

I ) new network model under node failures
jc ∈ Jc wireless jamming node at channel c
Gjc traffic generating rate of jamming node jc
RJ jamming range
Jc(e), e ∈ ET

⋃
EI set of jammers who have one or both of the two

end nodes of the edge e within its jamming range
ET (jc) set of transmission edges whose sending or receiv-

ing node is within the jamming range of jc
λ minimum flow throughput scaling factor
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Notation Description
λN minimum flow throughput scaling factor under

node failures
f ′ ∈ F ′ truncation flow of flow f in the new network G∗

df ′ truncation flow demand
xf ′(e, c) fraction of flow f ′ routing over edge e and channel

c

λJ
S new minimum flow throughput scaling factor after

scheduling
h ∈ H augument flow of flow f in the new network G∗

dh augument flow demand
xh(e, c) fraction of flow h routing over edge e and channel

c
λh augument flow scaling factor
pre(vN ) set of nodes that sending data of f directly to vN

post(vN ) set of nodes that receiving data of f directly from
vN

bf set of bypass flows
xbf (p,q)(e, c) traffic demand of bf (p, q) routed over edge e and

channel c
λb bypass flow scaling factor
λJ minimum flow throughput scaling factor under

jamming attacks
inf (jc) set of nodes within the jamming area of jc
pref(jc) set of nodes sending data of f directly to one or

more nodes in inf(jc)
postf(jc) set of nodes receiving data of f directly from one

or more nodes in inf (jc)

λJ
S new minimum flow throughput scaling factor after

scheduling

Table II.1: Key Notations.
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performance in a wireless network depends on the achievable channel capac-

ity which in turn relies on the underlying scheduling algorithm, the optimal

routing and channel assignment problem is typically considered jointly with

scheduling. Under our network and traffic model, optimizing the performance

of a multi-hop wireless network via the joint design of routing, channel assign-

ment, and scheduling can be formulated as an integer linear programming

problem (ILP) [6, 40, 44], where the objective is to maximize the traffic

throughput and the constraints come from the fairness requirements and the

wireless channel capacity. To make the integer linear programming problem

tractable, existing approaches [6, 40, 44] usually solve its LP (linear program-

ming) relaxation and then scale the solution to achieve feasibility. Based on

the results presented in [40, 44], the necessary conditions of channel assign-

ment and scheduling for a multi-radio multi-channel wireless network are

summarized as follows:

∀v ∈ V,
∑

c∈C

∑

v′∈V,
e=(v,v′)|(v′,v)∈ET

∑

f∈F

xf (e, c)

φc

≤ κ(v) (II.1)

∀c ∈ C, ∀e = (v, v′) ∈ ET ∪ EI ,
∑

e′=(v,v′′)|(v′′,v)|
(v′,v′′)|(v′′,v′)∈ET

∑

f∈F

xf (e
′, c)

φc

≤ 1 (II.2)

Inequality (II.1) gives the node radio constraint. Recall that a wireless

node v ∈ V has κ(v) radios, and thus can only support κ(v) simultaneous
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communications. Inequality (IV.2) shows the channel congestion con-

straint over an individual channel. It says that for any channel c, the total

traffic being routed on any of the transmission edges incident on each of any

two interfered nodes should be no more than the channel capacity φc.

A common metric that characterizes the throughput of a given routing

with respect to a certain traffic demand set is the minimum flow through-

put scaling factor. This is the minimum, over all flows, of the actual flow

throughput being routed divided by its throughput demand. Formally, the

minimum flow throughput scaling factor λ among all the flows F is defined

as follows.

λ = min
f∈F

λ(f),where (II.3)

λ(f) =
1

df
(
∑

c∈C

∑

v∈V,
e=(v,rf )

xf(e, c)−
∑

c∈C

∑

v∈V,
e=(rf ,v)

xf (e, c))

Note that in Equation (II.3),
∑

c∈C

∑
v∈V,

e=(v,rf )
xf(e, c)−

∑
c∈C

∑
v∈V,

e=(rf ,v)
xf(e, c)

is the amount of traffic received at the destination node rf of flow f over all

the channels.

The goal of the optimal multi-hop wireless routing problem is to max-

imize λ, where at least λdf amount of throughput can be routed for flow

f . This routing optimization problem is formulated as the following linear

programming (LP) problem:
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maximize λ (II.4)

subject to

∀v ∈ V,
∑

c∈C

∑

v′∈V,
e=(v,v′)|(v′,v)∈ET

∑

f∈F

xf (e, c)

φc

≤ κ(v) (II.5)

∀c ∈ C, ∀e = (v, v′) ∈ ET ∪ EI ,
∑

e′=(v,v′′)|(v′′,v)|
(v′,v′′)|(v′′,v′)∈ET

∑

f∈F

xf(e
′, c)

φc

≤ 1 (II.6)

∀f ∈ F, ∀v ∈ V − {sf , rf},
∑

c∈C

∑

v′∈V,
e=(v′,v)∈ET

xf (e, c)−
∑

c∈C

∑

v′∈V
e=(v,v′)∈ET

xf (e, c) = 0

(II.7)

∀f ∈ F,
∑

c∈C

∑

v∈V
e=(v,rf )∈ET

xf (e, c)−
∑

c∈C

∑

v∈V,
e=(rf ,v)∈ET

xf (e, c) = λdf (II.8)

∀f ∈ F, ∀c ∈ C, ∀e ∈ ET , xf (e, c) ≥ 0 (II.9)

In this formulation, Equation (II.5) and (II.6) come from the necessary

conditions of channel assignment and scheduling. Equation (II.7) and (II.8)

are the flow conservation conditions. This formulation is a linear program-

ming problem, which can be solved by either a LP solver [5] or a fast approx-

imation algorithm [20]. 2

2In our simulation study, we solve the LP problem in a centralized fashion. In practice,
LP algorithms can be implemented in both centralized way or in distributed way. There
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Optimal Network Restoration Strategies under Node Failures

This section studies the network restoration strategies under node failures,

which include global, end-to-end, and local restorations. We formulate the

optimal restoration problem under each strategy using linear programming,

from which the best after-restoration throughput performance can be derived.

Global Restoration

We first consider the global restoration strategy. In this strategy, all the

flows will be rerouted after the node failure in order to achieve the optimal

routing performance in terms of scaling factor in the new network. Formally,

let λN be the minimum flow throughput scaling factor of G∗. The global

network restoration strategy is formulated as follows.

maximize λN (II.10)

subject to

∀v ∈ V − V N ,
∑

c∈C

∑

v′∈V−V N ,
e=(v,v′)|(v′,v)∈ET

∑

f∈F

xf (e, c)

φc

≤ κ(v) (II.11)

∀c ∈ C, ∀e = (v, v′) ∈ ET − EN
T ∪ EI −EN

I ,
∑

e′=(v,v′′)|(v′′,v)|
(v′,v′′)|(v′′,v′)∈ET−EN

T

∑

f∈F

xf (e
′, c)

φc

≤ 1

(II.12)

are several works talking about how to solve the lp problem in a distributed way, such
as [68, 48].
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∀f ∈ F, ∀v ∈ V − V N − {sf , rf},

∑

c∈C

∑

v′∈V−V N ,

e=(v′,v)∈ET−EN
T

xf (e, c)−
∑

c∈C

∑

v′∈V−V N

e=(v,v′)∈ET−EN
T

xf (e, c) = 0 (II.13)

∀f ∈ F,
∑

c∈C

∑

v∈V−V N

e=(v,rf )∈ET−EN
T

xf (e, c)−
∑

c∈C

∑

v∈V −V N ,

e=(rf ,v)∈ET−EN
T

xf(e, c) = λdf

(II.14)

∀f ∈ F, ∀c ∈ C, ∀e ∈ ET − EN
T , xf(e, c) ≥ 0 (II.15)

This formulation is similar to the previous formulation (II), except that all

the failed nodes and edges are removed. This formulation gives the greatest

flexibility in choosing the restoration path.

End-to-end Restoration

Now we proceed to study the end-to-end restoration strategy. Different

from the global restoration strategy, this strategy will only reroute the flows

that are affected by the node failure(s), i.e., those flows whose paths traverse

the failed node(s). Two steps are involved in deriving the optimal end-to-end

restoration strategy. First we need to find the flows that are affected by the

node failure, so called unaffected flow truncation. Then we need to route

the affected flows using flow augmentation restoration. These two steps are

discussed below.
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Algorithm: Computing a Truncated Flow
In A flow f , xf (e, c), and a failed edge eNT = (a, b) with a or b ∈ V N

Out A truncated flow f ′, xf ′(e, c)
1 For each node v ∈ V , compute a topological order t(v), such that

∀v, v′, if(v, v′) ∈ ET , t(v) < t(v′)
2 For all edges e = (i, j) 6= (a, b), xf ′(e, c) = 0
3 Consider node v ∈ V sequentially, starting at node b and continuing

according to increasing topological order
3.1 Let In(v) be the sum of xf (e, c) on all incoming edges to v
3.2 Let Out(v) be the sum of xf (e, c) on all outgoing edges from v
3.3 For each outgoing edge e from v, set xf ′(e, c) =

In(v)xf (e, c)/Out(v)
4 Consider node v ∈ V sequentially, starting at node a and continuing

according to decreasing topological order
4.1 Let Out(v) be the sum of xf (e, c) on all outgoing edges from v
4.2 Let In(v) be the sum of xf (e, c) on all incoming edges to v
4.3 For each incoming edge e to v, set xf ′(, ce) = Out(v)xf(e, c)/In(v)

Table II.2: Algorithm for Computing a Truncated Flow.
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Unaffected Flow Truncation

We define the truncation of flow f in the new network G∗ to be a new

flow whose affected paths (i.e., paths that utilize edges in EN
T ) of flow f

are removed and denote it as f ′ ∈ F ′. For each flow f ∈ F , we have the

truncated flow demand 0 ≤ df ′ ≤ df and the fraction of flow f routing over

edge e and channel c, 0 ≤ xf ′(e, c) ≤ xf (e, c).

Table II.2 presents the algorithm for computing a truncated flow with a

single edge failure. This truncated flow computation is independently applied

to all flows. For node failures we apply this procedure iteratively edge-by-

edge to the edges that are adjacent to the failed nodes.

Optimal Flow Augmentation Restoration

We define the augmented flow in the new network G∗ as the flow that need

to be routed in addition to the truncated flow in order to ensure the original

traffic demand of each flow, and denote it as h ∈ H . For each flow f ∈ F , we

have the augmented flow demand dh = df−df ′ . The traffic demand of h that

is routed over e is denoted as xh(e, c). Obviously, the augmented flow h and

its original flow f have the same source and destination nodes, i.e., sh = sf ,

rh = rf . Because the augmented flows need to share the wireless channel

capacity with the truncated flows, both of them need to be scaled again.

This scaling factor is denoted as λh; obviously, λh ≤ 1. The end-to-end

network restoration problem is formulated as follows:
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maximize λN (II.16)

subject to

∀v ∈ V − V N ,
∑

c∈C

∑

v′∈V−V N ,
e=(v,v′)|(v′,v)∈ET

∑

f∈F

λhxf ′(e′, c) +
∑

h∈H xh(e
′, c))

φc

≤ κ(v)

(II.17)

∀c ∈ C, ∀e = (v, v′) ∈ ET − EN
T ∪ EI − EN

I ,

∑

e′=(v,v′′)|(v′′,v)|
(v′,v′′)|(v′′,v′)∈ET−EN

T

∑

f∈F

λhxf ′(e′, c) +
∑

h∈H xh(e
′, c))

φc

≤ 1 (II.18)

∀h ∈ H, ∀v ∈ V − V N − {sh, rh},

∑

c∈C

∑

v′∈V−V N ,

e=(v′,v)∈ET−EN
T

xh(e, c)−
∑

c∈C

∑

v′∈V−V N

e=(v,v′)∈ET−EN
T

xh(e, c) = 0 (II.19)

∀h ∈ H,
∑

c∈C

∑

v∈V −V N

e=(v,rh)∈ET−EN
T

xh(e, c)−
∑

c∈C

∑

v∈V−V N ,

e=(rh,v)∈ET−EN
T

xh(e, c) = λhdh

(II.20)

∀h ∈ H, ∀c ∈ C, ∀e ∈ ET − EN
T , xh(e, c) ≥ 0 (II.21)

λN = λλh (II.22)

In this formulation, λhxf ′(e′, c) is the scaled traffic of the truncated flow

f ′ that is routed over edge e and channel c; Equation (II.19) and (II.20) are

the flow conservation conditions for the augmented flows H and λhdh is the
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scaled traffic demand of an augmented flow h. λN is calculated as the scaling

factor λ of the network without node failures multiplied by the new scaling

factor λh.

Local Restoration

In this restoration strategy, the affected flow paths will be rerouted locally.

First we need to find the bypass flows that need to be routed away from the

failed nodes. For these flows, their immediate upstream and downstream

nodes surrounding the failed area should remain unchanged, by definition.

Algorithm: Computing a Bypass Flow
In A flow f , xf (e, c), and a failed node vN

Out A set of bypass flows bf , traffic demands dbf
1 For each node v ∈ V , if (v, vN ) ∈ ET , add v to the pre(vN ) set
2 For each node v′ ∈ V , if (vN , v′) ∈ ET , add v′ to the post(vN ) set
3 For each node v′ ∈ post(vN ), compute the ratio of the traffic of flow

f , passing node vN , that is received at node v′:

ratiof (v
N , v′) =

xf (v
N ,v′,c)

∑
∀w∈post(vN )

xf (vN ,w,c)

4 For each node v ∈ pre(vN ), v′ ∈ post(vN ), compute a
sub-bypass flow bv,v′ , the traffic demand of bv,v′ : dbf (v,v′) =
xf (v, v

N , c)ratiof(v
N , v′, c)

Table II.3: Algorithm for Computing a Bypass Flow.
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Bypass Flows

For a failed node vN and a flow f , we denote pre(vN ) as the set of nodes

that sending data of f directly to vN and post(vN ) as the set of nodes that

receiving data of f directly from vN , and define a set of bypass flows bf in

the new network G∗. bf (v, v
′) is the bypass flow of flow f from node v to

node v′, which is defined as

∀v ∈ pre(vN ), ∀v′ ∈ post(vN ), bf(v, v
′) ∈ bf (II.23)

Table II.4 presents the algorithm for computing a bypass flow with a

single node failure. This bypass flow computation is independently applied

to all flows and to all failed nodes.

Optimal Bypass Restoration

xbf (p,q)(e, c) is the traffic demand of bf (p, q) that is routed over edge e

and channel c. The minimum flow throughput scaling factor of the bypass

flows is denoted as λb. The local network restoration problem is formulated

as follows:

maximize λN (II.24)

subject to
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∀v ∈ V − V N ,
∑

c∈C

∑

v′∈V−V N ,
e=(v,v′)|(v′,v)∈ET

∑

f∈F

λbxf (e, c) +
∑

vN∈V N ,

p∈pre(vN ),
q∈post(vN )

xbf (p,q)(e, c)

φc

≤ κ(v)

(II.25)

∀c ∈ C, ∀e = (v, v′) ∈ ET − EN
T ∪ EI −EN

I ,

∑

e′=(v,v′′)|(v′′,v)|
(v′,v′′)|(v′′,v′)∈ET−EN

T

∑

f∈F

λbxf(e
′, c) +

∑
vN∈V N ,

p∈pre(vN ),
q∈post(vN )

xbf (p,q)(e
′, c)

φc

≤ 1 (II.26)

∀f ∈ F, ∀vN ∈ V N , p ∈ pre(vN ), q ∈ post(vN ), ∀v ∈ V − V N − {p, q},

∑

c∈C

∑

v′∈V−V N ,

e=(v′,v)∈ET−EN
T

xbf (p,q)(e, c)−
∑

c∈C

∑

v′∈V−V N

e=(v,v′)∈ET−EN
T

xbf (p,q)(e, c) = 0 (II.27)

∀f ∈ F, ∀vN ∈ V N , p ∈ pre(vN ), q ∈ post(vN ),

∑

c∈C

∑

v∈V −V N

e=(v,q)∈ET−EN
T

xbf (p,q)(e, c)−
∑

c∈C

∑

v∈V−V N ,

e=(q,v)∈ET−EN
T

xbf (p,q)(e, c) = λbdbf (p,q)

(II.28)

∀f ∈ F, ∀c ∈ C, ∀vN ∈ V N , p ∈ pre(vN ), q ∈ post(vN ), ∀e ∈ ET − EN
T ,

xbf (p,q)(e, c) ≥ 0 (II.29)

λN = λλb (II.30)

In this formulation, λbxf (e
′, c) is the scaled traffic of flow f that is routed

over edge e and channel c; Equation (II.27) and (II.28) are the flow con-

servation conditions for the bypass flows and λbdbf (p,q) is the scaled traffic
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demand of a bypass flow bf(p, q). λ
N is calculated as the scaling factor λ of

the network without node failures multiplied by the new scaling factor λb.

Optimal Network Restoration Strategies under Jamming Attacks

This section studies the network restoration strategies under jamming

attacks. The jamming attack issue is similar to node failure issue, except

that instead of reducing the network resource, we add more traffic into the

network.

In our multi-hop wireless network, when jamming attacks happen, the

throughput performance of the network traffic around the jamming nodes

is degraded. The disrupted network traffic can be rerouted to use other

intermittent nodes away from the jamming area, and/or switched to another

channel instead of using the jammed channel. In order to calculate how to

do the rerouting as well as channel reassignment, based on the discussion of

the optimal multi-hop wireless routing and channel assignment problem, we

proceed to study the network restoration strategies under jamming attacks.

In our previous introduced necessary conditions of channel assignment

and scheduling, Inequality (IV.2) shows the channel congestion con-

straint without jamming attacks. For a wireless network under jamming

attacks, the available network bandwidth is consumed partially by the jam-

ming nodes. Therefore, we need to include the jamming traffic into the

channel congestion constraint, which is defined as follows:
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∀c ∈ C, ∀e = (v, v′) ∈ ET ∪ EI ,
∑

e′=(v,v′′)|(v′′,v)|
(v′,v′′)|(v′′,v′)∈ET

∑

f∈F

xf (e
′, c)

φc

≤ 1−
∑

jc∈Jc(e)

Gjc

φc

(II.31)

Inequality (II.31) together with Inequality (II.1) gives the modified neces-

sary conditions of channel assignment and scheduling for a multi-hop wireless

network under jamming attacks.

We consider the network restoration via joint traffic rerouting and channel

re-assignment under global and local restoration strategies. We formulate the

optimal restoration problem under each strategy using linear programming,

from which the best after-restoration throughput performance can be derived.

Global Restoration

We first consider the global restoration strategy. In this strategy, all the

flows will be rerouted when there are jamming attacks, in order to achieve the

optimal routing performance in terms of scaling factor in the new network.

Formally, let λJ be the minimum flow throughput scaling factor of the new

network. The global restoration strategy is formulated as follows.

maximize λJ (II.32)
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subject to

∀v ∈ V,
∑

c∈C

∑

v′∈V,
e=(v,v′)|(v′,v)∈ET

∑

f∈F

xf (e, c)

φc

≤ κ(v) (II.33)

∀c ∈ C, ∀e = (v, v′) ∈ ET ∪ EI ,
∑

e′=(v,v′′)|(v′′,v)|
(v′,v′′)|(v′′,v′)∈ET

∑

f∈F

xf(e
′, c)

φc

≤ 1−
∑

jc∈Jc(e)

Gjc

φc

(II.34)

∑

c∈C

∑

v′∈V,
e=(v′,v)∈ET

xf (e, c)−
∑

c∈C

∑

v′∈V
e=(v,v′)∈ET

xf (e, c) = 0 (II.35)

∀f ∈ F,
∑

c∈C

∑

v∈V
e=(v,rf )∈ET

xf (e, c)−
∑

c∈C

∑

v∈V,
e=(rf ,v)∈ET

xf (e, c) = λJ df (II.36)

∀f ∈ F, ∀c ∈ C, ∀e ∈ ET , xf (e, c) ≥ 0 (II.37)

This formulation is similar to the previous formulation (II) except In-

equality (II.34). This formulation gives the greatest flexibility in choosing

the restoration routes and channels.

Local Restoration

In this restoration strategy, the affected flow paths will be rerouted locally.

First we need to find the bypass flows that need to be partially routed away

from the jamming area. For these flows, their immediate upstream and

downstream nodes surrounding the jamming area should remain unchanged.
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Bypass Flows

For a jamming node jc and a flow f , we denote inf (jc) as the set of nodes

that are within the jamming area of jc, pref (jc) as the set of nodes sending

data of f directly to one or more nodes in inf (jc) and postf(jc) as the set

of nodes receiving data of f directly from one or more nodes in inf (jc). We

also define a set of bypass flows bf of flow f in the new network. bf (v, v
′, jc)

is a bypass flow of flow f caused by jamming node jc, with sending node v

and receiving node v′ , which is defined as

∀jc ∈ Jc, ∀v ∈ pref (jc), ∀v
′ ∈ post(jc),

bf (v, v
′, jc) ∈ bf (II.38)

Table II.4 presents the algorithm for computing the bypass flows of a

given flow for a single jamming node under a given channel. This bypass

flow computation is independently applied to all flows, all jamming nodes,

and all channels.

Optimal Bypass Restoration

We use xbf (v,v′,jc)(e, c) to denote the traffic demand of bf (v, v
′, jc) that is

routed over edge e and channel c. Because the bypass flows need to share

the wireless channel capacity with the original flows, both of them need to
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Algorithm: Computing Bypass Flows of Flow f
In A flow f , a channel c, xf (e, c), and a jamming node jc
Out A set of bypass flows bf , traffic demands dbf
1 For each node v ∈ V , if r(v, jc) ≤ RJ , add v to the inf (jc) set
2 For each node v, v′ ∈ V , if (v, v′) ∈ ET and v′ ∈ inf (jc), add v to

the pref(jc) set
3 For each node v, v′ ∈ V , if (v, v′) ∈ ET and v ∈ inf (jc), add v′ to

the postf (jc) set
4 For each node v ∈ postf(jc), compute the ratio of the traffic of flow

f , passing the jamming area of jc, that is received at node v′:

ratiof (jc, v) =

∑
v′∈inf (jc),e=(v′,v) xf (e,c)

∑
v′∈inf (jc),w∈postf (jc),e=(v′,w) xf (e,c)

5 For each node v ∈ pre(jc), compute the demand of the traffic of
flow f , entering the jamming area of jc, that is sent from node v:
df(v, jc) =

∑
v′′∈inf (jc),e=(v,v′′) xf (e, c)

6 For each node v ∈ pre(jc), v
′ ∈ post(jc), compute a sub-bypass flow

bv,v′,jc, the traffic demand of bv,v′,jc :
dbf (v, v

′, jc) = df(v, jc) · ratiof(jc, v′)

Table II.4: Algorithm for Computing Bypass Flows.
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be scaled again. This scaling factor is denoted as λb. The local restoration

problem is formulated as follows:

maximize λJ (II.39)

subject to

∀v ∈ V,
∑

c∈C

∑

v′∈V,
e=(v,v′)|(v′,v)∈ET

∑

f∈F

(
λbxf (e, c)

φc

+
∑

jc∈Jc,
u∈pre(jc),
u′∈post(jc)

xbf (u,u′,jc)(e, c)

φc

) ≤ κ(v)

(II.40)

∀c ∈ C, ∀e = (v, v′) ∈ ET ∪ EI ,
∑

e′=(v,v′′)|(v′′,v)|
(v′,v′′)|(v′′,v′)∈ET

∑

f∈F

(
λbxf (e

′, c)

φc

+
∑

jc∈Jc,
u∈pre(jc),
u′∈post(jc)

xbf (u,u′,jc)(e
′, c)

φc

) ≤ 1−
∑

jc∈Jc(e)

Gjc

φc

(II.41)

∀f ∈ F, ∀jc ∈ Jc, u ∈ pre(jc), u
′ ∈ post(jc), ∀v ∈ V − {u, u′},

∑

c∈C

∑

w∈V,
e=(w,v)∈ET

xbf (u,u′,jc)(e, c)−
∑

c∈C

∑

w∈V,
e=(v,w)∈ET

xbf (u,u′,jc)(e, c) = 0 (II.42)

∀f ∈ F, ∀jc ∈ Jc, u ∈ pre(jc), u
′ ∈ post(jc),

∑

c∈C

∑

v∈V,
e=(v,u′)∈ET

xbf (u,u′,jc)(e, c)−
∑

c∈C

∑

v∈V,
e=(u′,v)∈ET

xbf (u,u′,jc)(e, c) = λbdbf (u, u
′, jc)

(II.43)

∀f ∈ F, ∀jc ∈ Jc, u ∈ pre(jc), u
′ ∈ post(jc), ∀c ∈ C, ∀e ∈ ET , xbf (u,u′,jc)(e, c) ≥ 0

(II.44)
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λJ = λλb (II.45)

In this formulation, Inequality (II.40) and (II.41) come from the necessary

conditions of channel assignment and scheduling for both the original flows

and the bypass flows. Equation (II.42) and (II.43) are the flow conservation

conditions for the bypass flows. λbxf (e, c) is the scaled traffic of flow f that

is routed over edge e and channel c, and λbdbf (u, u
′, jc) is the scaled traffic

demand of a bypass flow bf (u, u
′, jc). λ

J is calculated as the scaling factor λ

of the network without jamming nodes multiplies the new scaling factor λb.

Note that since we use multiple channels, a flow that is jammed by a jam-

ming node jc under channel c can use all the available channels for rerouting.

Scheduling with Dynamic Channel Assignment

3Both the global restoration and the local restoration strategies are based

on linear programming, which give an upper bound on the achievable net-

work throughput. We use the results from the LP solutions to schedule which

edges and channels are active at each time slot. We consider the dynamic

channel assignment problem, where a radio may need to switch to a differ-

ent channel at different time slots. Dynamic channel assignment provides

the maximum flexibility in channel assignment and scheduling. Since the

scheduling problem is NP-hard, we use a greedy approach to solve it.

3We focus on the jamming attack issue in this section; the node failure issue is similar
to it.
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After we solve the LP problems for the global restoration and the local

restoration strategies, we have a set of flows assigned to edges that have been

assigned to different channels. We now begin to schedule both the network

traffic on the edges and the jamming traffic. The algorithm is shown in

Table II.5. In this algorithm, I(e∗) is the set of transmission edges that

interfere with edge e∗ and E(j∗c ) is the set of transmission edges that are

within the jamming range of jammer j∗c .

We use N to denote the maximum number of time slots taken by all the

edge-channel pairs. The new scaling factor λJ
S after scheduling is calculated

as:

λJ
S =

λJ

N · τ
(II.46)

Static Channel Assignment

4Although dynamic channel assignment provides the maximum flexibility

in channel assignment and scheduling, it also results in channel switching

overhead. We further consider the static edge channel assignment problem,

where a channel is assigned to an edge at the beginning and will remain fixed

over all time slots. The static channel assignment problem is also NP-hard

and we use the greedy approach to solve this problem.

4We still focus on the jamming attack issue in this section.
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Algorithm: Greedy Scheduling
In Calculated xf (e, c) using LP
Out Each transmission edge is associated with a set of colors from the

smallest to the highest, which denotes the time slots the edge is
scheduled

1 Calculate the amount of all flows’ traffic on transmission edge e
over channel c: ∀c ∈ C, ∀e ∈ ET , x(e, c) =

∑
f∈F xf (e, c)

// Initialize the edge-channel color set
2 ∀c ∈ C, ∀e ∈ ET , associate a null color set to the pair (e, c)

// Initialize the node color set
3 ∀v ∈ V , associate a null color set to the node v

// Initialize x′(e, c), which denotes the residual traffic on edge e
4 ∀c ∈ C, ∀e ∈ E, x′(e, c) = x(e, c)

// Initialize G′
jc
, which denotes the residual traffic on jamming jc

5 ∀c ∈ C, ∀jc ∈ Jc, G
′
jc
= Gjc

// Schedule all the network traffic and jamming traffic
6 While

∑
c∈C

∑
e∈E x′(e, c) +

∑
c∈C

∑
jc∈Jc

G′
jc
≥ 0

// Consider edge e with the highest residual traffic
7 max edge traf = maxe∈E x′(e, c)
8 (e∗, c∗) = argmaxe∈E x′(e, c)

// Consider jammer jc with the highest residual traffic
9 max jam traf = maxjc∈J Gjc

10 j∗c = argmaxjc∈J Gjc

11 If max edge traf ≥ max jam traf
// Schedule the network traffic on the edge

12 ∀e′ ∈ I(e∗), find the smallest color k1, that has not
been added in the color set of the pair (e′, c∗)

13 e∗ = (v, v′), find the smallest color k2, that has not
occurred κ(v) times in the color set of the node v and
has not occurred κ(v′) times in the color set of the node v′

14 k = max(k1, k2)
15 ∀e′ ∈ I(e∗), add color k to the color set of the pair (e′, c∗)
16 add color k to the color set of the nodes v and v′

17 x′(e∗, c∗) = x′(e∗, c∗)− φcτ , where τ is the length of a
time slot
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Algorithm: Greedy Scheduling
18 Else

// Schedule the jamming traffic
19 ∀e′ ∈ E(j∗c ), find the smallest color k that has not

been added in the color set of the pair (e′, c)
20 ∀e′ ∈ E(j∗c ), add color k to the color set of the pair (e′, c)
21 G′

j∗c
= G′

j∗c
− φcτ , where τ is the length of a time slot

22 end If
23 end While

Table II.5: Algorithm for Greedy Scheduling.

Constraint Set

Note that in the definition of the necessary conditions of channel as-

signment and scheduling, the node radio constraint and the channel

congestion constraint have a common structure. On the left sides of In-

equality (II.1) and (II.31), we have L sets, each of which is composed of

(edge, channel) pairs; on the right sides of these inequalities, we have L fixed

values, where L is the number of all the expanded inequalities without the ∀

sign.

We use S1, S2, ..., SL to denote the sets of (link, channel) pairs and use

βS1 − GS1, βS2 − GS2 , ..., βSL
− GSL

to denote their corresponding values. If

Si comes from the node radio constraint, βSi
= κ(v)φc; if Si comes from

the channel congestion constraint, βSi
= φc. If Si comes from the node

radio constraint, GSi
= 0; if Si comes from the channel congestion
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constraint, GSi
=

∑
jc∈Jc(e)

Gjc. Therefore, the general form of Inequal-

ity (II.1) and (II.31) using constraint sets is defined as follows:

∀i ∈ 1, 2, ..., L,
∑

(e,c)∈Si

xf (e, c) ≤ βSi
−GSi

(II.47)

Static Channel Assignment

We use a greedy approach in solving the static channel assignment prob-

lem. Our static channel assignment algorithm is shown in Table II.6. We

calculate the amount of all flows’ traffic over all the channels on edge e and

denote it as x(e). For simplicity, we assume that only one channel can be as-

signed to a given edge. Therefore, x(e) is assigned to one particular channel

assigned to edge e. The input xf(e, c) of the algorithm is the amount of flow

f ’s traffic being routed on edge e over channel c xf (e, c), calculated using

LP. The output x(e, c) is the amount of traffic being assigned to edge e over

one particular channel c. The basic idea of our static channel assignment

algorithm is to distribute the load on the constraint sets as much as possible

among the given channels.

Once we get the results of static channel assignment, we can use the

similar scheduling algorithm described in Section II to schedule both the

network and jamming traffic.
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Algorithm: Static Channel Assignment
In Calculated xf (e, c) using LP
Out New assigned x(e, c)
1 Calculate the amount of all flows’ traffic on edge e over channel c:

∀c ∈ C, ∀e ∈ ET , x(e, c) =
∑

f∈F xf (e, c)

2 Calculate the amount of all flows’ traffic over all the channels on
edge e: ∀e ∈ ET , x(e) =

∑
c∈C x(e, c)

// T (e, c) denotes the constraint sets that contain the pair (e, c)
// lS denotes the total traffic that has been assigned to constraint
set S; it is originally equal to the jamming traffic

3 lS = GS

// Eleft denotes the set of the unassigned edges
4 Eleft = E
5 While

∑
e∈E x(e) ≥ 0

6 For ∀e ∈ Eleft

7 ∀c ∈ C,m(e, c) = maxS∈T (e,c) lS/βS

8 w(e) = minc∈C m(e, c)
9 b(e) = argminc∈C m(e, c)
10 end For
11 e∗ = argmine∈Eleft

w(e)
12 Assign e∗ to channel b(e∗)
13 ∀S ∈ T (e∗, b(e∗)), lS = lS + x(e∗)
14 x(e∗, b(e∗)) = x(e∗); ∀c 6= b(e∗), x(e∗, c) = 0
15 x(e∗) = 0
16 Eleft = Eleft − {e∗}
17 end While

Table II.6: Algorithm for Balanced Static Channel Assignment.
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Performance Degradation Model

A fundamental research challenge for choosing the restoration strategy is

to understand its tradeoff between the time and overhead involved in repair-

ing the failed traffic path(s) and the traffic throughput and network conges-

tion after restoration. To study this issue, we first define two novel indices,

transient disruption index (TDI), which is based on the repair overhead for

the failed traffic path(s) during restoration, and throughput degradation in-

dex (THI), which characterizes throughput degradation of the new network

after restoration.

Transient Disruption Index (TDI)

We use the number of modified routing table entries as an estimate of the

repair overhead for the failed path(s). For local repair, only the boundary

nodes outside the failed area will try to find the alternative paths in the

vicinity. Local repair therefore involves fewer routing table entry modifica-

tions and less restoration time. For global repair, the source node initiates

a new route discovery, which takes more time than local repair and involves

more routing table entry modifications. We use rv(c, v
′) to denote a routing

table entry of node v’s routing table. At a given channel c, it is calculated

as the ratio of the total traffic of all the flows sending from node v to its

next-hop node v′ to the total traffic of all the flows receiving at node v. Its

corresponding routing table entry for the new network under is denoted as
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r∗v(c, v
′). All the routing table entries of the nodes in the network G is de-

noted as r(G). The transient disruption index (TDI) can be quantitatively

defined as follows:

TDI =
1

|r(G)|

∑

c∈C,
v∈V,v′∈V,v 6=v′

rv(c, v
′) 6= r∗v(c, v

′) (II.48)

Throughput Degradation Index (THI)

We use the changes of the minimum flow throughput scaling factor λ as

an estimate of the throughput degradation of the new network. For local

repair, only the flows affected by the failed area will be rerouted. Local

repair therefore achieves partially optimal utilization of the network. For

global repair, all flows in the network will be considered in order to get an

optimal utilization of the network. The throughput degradation index (THI)

can be defined as a function of the minimum flow throughput scaling factor

λJ of the new network5 and the original optimal minimum flow throughput

scaling factor λ:

THI = 1−
λJ

λ
(II.49)

5For the node failure issue, it is λN .
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Performance Evaluation under Node Failures

This section evaluates the performance of these three optimal network

restoration strategies under different node failure scenarios.

Simulation Setup

0   360 720 1080 1440
0   

360 

720 

1080

1440

0

1

2

3

4

5
6

7

8

9

10

11

12

13 14

15

16
17

18

19

20

21

22

23

24

25
26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45
46

47

48

49

5051

52

53

54

55

56

57

58

59

60

61

62

63

X Position

Y
 P

os
iti

on

 

 

0

1

2

3

4

5
6

7

8

9

10

11

12

13 14

15

16
17

18

19

20

21

22

23

24

25
26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45
46

47

48

49

5051

52

53

54

55

56

57

58

59

60

61

62

63

Wireless
node
Source/
Destination
node
Critical
node
Marginal
node
Wireless
edge

Figure II.1: Example Multi-hop Wireless Network.

In the simulated multi-hop wireless network, 64 wireless nodes are ran-

domly deployed over a 1440×1440 m2 region. Each node has a transmission

range of 250 m and an interference range of 250 m. The channel capacity c

is set as 1 Mbps. The simulated network topology is shown in Figure II.1.
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There are 10 flows in the network with randomly selected sources (node num-

ber 0-9) and destinations (node number 10-19). All the flows have the same

traffic demand of 10 pkts/sec with packet size of 1k Bytes.

We evaluate the performance of global restoration, end-to-end restoration,

and local restoration under three failure scenarios:

• Single node failure, where only one node fails in the network;

• Dispersed multiple node failures, where multiple uncorrelated nodes

fail;

• Regional multiple node failures, where a set of geographically close

nodes fail at the same time. This scenario may happen as a result of

physical attack in this region.

Simulation Results

Single Node Failure

To qualitatively characterize the transient disruption index (TDI) and

throughput degradation index (THI) upon different node failure scenarios,

we first select each node one by one as the failed node. For simplicity, we

do not consider the source and destination nodes and the nodes that cause

disconnectivity of the network (node number 49 in the simulated network).

Figure II.2 and Figure II.3 show the comparison of TDI and THI for the

original network and the new network with global, end-to-end, and local
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Figure II.2: Comparison of TDI with Single Node Failure.

20212223242526272829303132333435363738394041424344454647485051525354555657585960616263
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Failed Node

T
H

I

 

 

Global Restroation
Avg. THI: 0.029786

End−to−end Restroation
Avg. THI: 0.061997

Local Restroation
Avg. THI: 0.095264

Figure II.3: Comparison of THI with Single Node Failure.
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Figure II.4: Comparison of Sorted TDI with Single Node Failure.
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restorations of single node failure, respectively. To get a clearer observation,

we sort the values of TDI and THI in Figure II.4 and Figure II.5. From

these four figures, we can see that the failures of some nodes do not change

the value of λ and do not modify the routing results; they are marked as

green star in Figure II.1. The reason is that they are marginal nodes that

do not have traffic passing through them. And we can see that the failures

of another group of the nodes do not change the value of λ, however, they

modify the routing results. The reason is that the traffic passing through

them is redirected to their adjacent nodes without any performance decrease

(as discussed in Section II). We can also see that the failures of a third part

of the nodes dramatically change the value of λ; they are marked as red

triangle in Figure II.1. The reason is that they are critical nodes and have

lots of traffic passing through; most of them are the joint points of different

network partitions. Comparing these three strategies, we could easily see that

the global restoration has lower average THI than the end-to-end strategy,

which also has lower average THI than the local strategy; however, the global

restoration has higher average TDI than the end-to-end strategy, which also

has higher average TDI than the local strategy.

Dispersed Multiple Node Failures

In this set of simulation studies, we investigate the performance of net-

work restoration strategies under simultaneous node failures. In our study,
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Figure II.6: Example Multi-hop Wireless Network with Dispersed Multiple
Node Failures.

Restoration Strategy TDI THI
Global Restoration 65.79% 27.30%
End-to-end Restoration 63.16% 31.51%
Local Restoration 57.89% 35.27%

Table II.7: TDI and THI of Global Restoration, End-to-end Restoration,
and Local Restoration under Dispersed Multiple Node Failures.
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Figure II.7: Example Multi-hop Wireless Network with Regional Multiple
Node Failures.
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Figure II.8: Throughput Comparison of No Failure, Global Restoration, End-
to-end Restoration, and Local Restoration under Dispersed Multiple Node
Failures.
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several nodes other than the source and destination nodes are randomly inde-

pendently selected as the failed nodes. The simulated network topology with

dispersed multiple node (30, 37, 59, and 62) failures is shown in Figure II.6.

Table II.7 presents the results of TDI and THI of global restoration, end-

to-end restoration, and local restoration under dispersed multiple node fail-

ures. From this table, we can see that the global restoration causes more TDI

and less THI than the end-to-end restoration, and the end-to-end restoration

in turn causes more TDI and less THI than the local restoration.

Figure II.8 shows the throughput comparison of the original network and

the failed network with global, end-to-end, and local restorations of dispersed

multiple node failures. The packet size is 1000 bytes. From this figure, we can

see that the average throughput of the global restoration (2.245 pkts/sec) is

greater than the end-to-end restoration (2.076 pkts/sec), and the end-to-end

restoration is greater than the local restoration (1.857 pkts/sec).

Regional Multiple Node Failures

In this set of simulation studies, we investigate the performance of net-

work restoration strategies under regional node failures. In our study, a

certain geographic region is randomly selected which contains all the failed

nodes. The simulated network topology with regional multiple node (20, 29,

34, and 53) failures is shown in Figure II.7.

Table II.8 presents the results of TDI and THI of global restoration,

end-to-end restoration, and local restoration under regional multiple node
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failures. From this table, we can see that the global restoration causes

more (less) transient disruption (throughput degradation) than the end-to-

end restoration, and the end-to-end restoration in turn causes more (less)

transient disruption (throughput degradation) than the local restoration. By

comparing the values of TDI in Table II.7 and Table II.8, we can see that

the transient disruption changes more dramatically under regional multiple

node failures than under dispersed multiple node failures. This is because

with local restoration, we only need to consider the nodes directly connect

to the failed region under regional multiple node failures; however, we need

to consider the nodes that have connection to all the failed nodes under dis-

persed multiple node failures. With the end-to-end restoration, we only need

to consider the flow paths enter the failed region under regional multiple node

failures; however, we need to consider the flows passing through all the failed

nodes under dispersed multiple node failures.

Figure II.9 shows the throughput comparison of the original network and

the failed network with global, end-to-end, and local restorations of regional

multiple node failures. From this figure, we can see that the average through-

put of the global restoration (3.095 pkts/sec) is greater than the end-to-end

restoration (2.192 pkts/sec), and the end-to-end restoration is greater than

the local restoration (2.039 pkts/sec). By comparing the values of THI

in Table II.7 and Table II.8 and the throughput results in Figure II.8 and

Figure II.9, we can see that the THI and the average throughput change

more dramatically from the global restoration to the end-to-end restoration
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under regional multiple node failures than under dispersed multiple node fail-

ures, while the difference between the end-to-end restoration and the local

restoration is not very much. This is because regional multiple node failures

greatly affect a part of the flows; furthermore, since the adjacent node of

a failed node is probably another failed node in the region, the amount of

substituted end-to-end flows and bypass flows are strongly limited.

Restoration Strategy TDI THI
Global Restoration 69.17% 11.89%
End-to-end Restoration 43.98% 30.37%
Local Restoration 29.32% 33.45%

Table II.8: TDI and THI of Global Restoration, End-to-end Restoration,
and Local Restoration under Regional Multiple Node Failures.
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Performance Evaluation under Jamming Attacks

This section evaluates the performance of our optimal network restoration

strategies under different network and jamming attack scenarios.

Simulation Setup
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Figure II.10: Example Multi-hop Wireless Network.

In the simulated multi-hop wireless network, 54 wireless nodes are ran-

domly deployed over a 1800×1080 m2 region. Each node has a transmission

range of 250 m and an interference range of 250 m. The channel capacity

φc(c ∈ C) is set as 1 Mbps. We have 3 randomly distributed jamming nodes

in the network, each of which has a jamming range of 100 m or 200 m. The

traffic generating rates of the jammers are from 0.2 Mbps to 0.8 Mbps. The
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simulated network topology is shown in Figure II.10. There are 5 flows in the

network with randomly selected sources (node number 0-4) and destinations

(node number 10-14). All the flows have the same traffic demand of 1 Mbps.

We evaluate the performance of the global restoration and local restora-

tion under two scenarios:

• Single channel, where all the network nodes and jamming nodes use the

same channel.

• Multiple channels, where all the network nodes and jamming nodes use

multiple channels and |C| = 5. Each network node is equipped with multiple

radios. Jammers are able to send jamming traffic over all the channels.

Simulation Results
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Figure II.11: TDI of Global Restoration and Local Restoration under Single
Channel Scenario.
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Figure II.12: THI of Global Restoration and Local Restoration under Single
Channel Scenario.

We first calculate the values of TDI and THI of global restoration and

local restoration under single channel scenario with various jamming traffic

generating rates and various jamming ranges. The simulation results of TDI

and THI are shown in Figure II.11 and II.12, respectively.

Multiple Channels
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Figure II.13: TDI of Global Restoration and Local Restoration under 5-
Channel-3-Radio Scenario using Dynamic Channel Assignment.
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Figure II.14: TDI of Global Restoration and Local Restoration under 5-
Channel-3-Radio Scenario using Static Channel Assignment.

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Jammer Traffic Generating Rate (Mbps)

T
H

I

 

 

Local Restroation
(R

J
=200m)

Local Restroation
(R

J
=100m)

Global Restroation
(R

J
=200m)

Global Restroation
(R

J
=100m)

Figure II.15: THI of Global Restoration and Local Restoration under 5-
Channel-3-Radio Scenario using Dynamic Channel Assignment.

0.2 0.4 0.6 0.8
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Jammer Traffic Generating Rate (Mbps)

T
H

I

 

 

Local Restroation
(R

J
=200m)

Local Restroation
(R

J
=100m)

Global Restroation
(R

J
=200m)

Global Restroation
(R

J
=100m)

Figure II.16: THI of Global Restoration and Local Restoration under 5-
Channel-3-Radio Scenario using Static Channel Assignment.
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Figure II.17: TDI of Global Restoration and Local Restoration under 5-
Channel-5-Radio Scenario using Dynamic Channel Assignment.
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Figure II.18: TDI of Global Restoration and Local Restoration under 5-
Channel-5-Radio Scenario using Static Channel Assignment.
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Figure II.19: THI of Global Restoration and Local Restoration under 5-
Channel-5-Radio Scenario using Dynamic Channel Assignment.
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Figure II.20: THI of Global Restoration and Local Restoration under 5-
Channel-5-Radio Scenario using Static Channel Assignment.

We then calculate the values of TDI and THI of global restoration and

local restoration under multiple channels scenario with various jamming traf-

fic generating rates and various jamming ranges, using both dynamic channel

assignment and static channel assignment. The results of 5-channel-3-radio

scenario are shown in Figure II.13, II.14, II.15, and II.16, and the results of

5-channel-5-radio scenario are shown in Figure II.17, II.18, II.19, and II.20,

respectively.

From these figures, we can see that the transient disruption of the global

restoration is much higher than that of the local restoration; however, the

throughput degradation is lower in the global restoration. And when the

jamming range is 200m, the values of both TDI and THI are higher than

when the jamming range is 100m. From these figures, we can also see that the

transient disruption of both the global and local restorations is not changed

too much as the traffic generating rate of the jammers increased. This is

because no matter how fast the jamming rate is, the routing table entries
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always need to be modified; and the number of the modifications is not

affected by the jamming rate. The throughput degradation of both the global

and local restorations increases as the traffic generating rate of the jammers

increased.

Comparison of TDI and THI under Various Scenarios

TDI Global Global Local Local
Restoration Restoration Restoration Restoration
(RJ200m) (RJ100m) (RJ200m) (RJ100m)

5-channel
3-radio 34.74% 31.85% 26.18% 15.75%
5-channel
5-radio 35.77% 34.66% 30.77% 19.88%

Table II.9: Average TDI Comparison using Dynamic Channel Assignment.

TDI Global Global Local Local
Restoration Restoration Restoration Restoration
(RJ200m) (RJ100m) (RJ200m) (RJ100m)

5-channel
3-radio 21.10% 18.94% 19.47% 17.21%
5-channel
5-radio 22.72% 19.86% 19.87% 17.81%

Table II.10: Average TDI Comparison using Static Channel Assignment.
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We further compare the average values of TDI and THI over all the

jamming traffic sending rates under multiple channels scenarios with differ-

ent jamming ranges RJ . The results are shown in Table II.9, II.10, II.11,

and II.12, respectively. Comparing the results in Table II.9 and II.10 be-

tween the first line and the second line, we can see that the transient disrup-

tion under 5-channel-3-radio scenario is lower than that of 5-channel-5-radio

scenario; this is because the network is more complicated under 5-channel-

5-radio scenario. Comparing the results in Table II.9 and II.10, we can see

that the transient disruption under static channel assignment is lower than

that under dynamic channel assignment; this is because dynamic channel

assignment involves channel switching overhead.

THI Global Global Local Local
Restoration Restoration Restoration Restoration
(RJ100m) (RJ200m) (RJ100m) (RJ200m)

5-channel
3-radio 15.26% 24.96% 36.60% 40.51%
5-channel
5-radio 20.40% 30.76% 38.14% 41.01%

Table II.11: Average THI Comparison using Dynamic Channel Assignment.

Comparing the results in Table II.11 and II.12 between the first line and

the second line, we can see that the throughput degradation of the 5-channel-

3-radio scenario is lower than that of the 5-channel-5-radio scenario. Based on
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THI Global Global Local Local
Restoration Restoration Restoration Restoration
(RJ100m) (RJ200m) (RJ100m) (RJ200m)

5-channel
3-radio 17.71% 22.43% 20.86% 35.06%
5-channel
5-radio 20.45% 36.30% 35.59% 39.47%

Table II.12: Average THI Comparison using Static Channel Assignment.

the necessary conditions of channel assignment and scheduling, the through-

put performance are based on two factors: the number of radios and the

available network capacity besides jamming. Under the 5-channel-3-radio

scenario, the number of radios also limits the achievable throughout, so the

impact of jamming is not very dominant.

Comparison of λ under Various Scenarios

As we mentioned earlier, the result derived from the linear programming

formulation of the network restoration problem gives an upper bound on

the achievable network throughput. And dynamic channel assignment pro-

vides the maximum flexibility in channel assignment and scheduling, so it

achieves higher network throughput than static channel assignment. Previ-

ously, we have compared the performance of our optimal network restoration

strategies under different network and jamming attack scenarios. In order to
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investigate the relationship among dynamic channel assignment, static chan-

nel assignment and the performance upper bound, we compare the value of

the minimum flow throughput scaling factor λ under various scenarios.

λ single channel 5-channel 5-channel
single radio 3-radio 5-radio

Linear Programming 0.2555 1.0 1.2777
Dynamic Channel Assignment 0.0979 0.3189 0.3811
Static Channel Assignment 0.0786 0.1463 0.1677

Table II.13: Comparison of λ without Jamming Attacks.

The original values of λ using linear programming, dynamic channel as-

signment, and static channel assignment for single channel, 5-channel-3-radio,

and 5-channel-5-radio scenarios without jamming attacks are shown in Ta-

ble II.13. Comparing the results from top to bottom, we can see that under

all the network configurations, the values of λ using linear programming

(performance upper bound) are higher than those using dynamic channel

assignment, which in turn are better than those using static channel assign-

ment. The performance gap is caused by the feasibility of scheduling under

two different radio operation models (i.e., dynamically switching and fixed

binding).

Table II.14, II.15, and II.16 further compare the average values of λ over

all the jamming traffic sending rates using different restoration strategies

under different network configuration scenarios. Comparing the values of λ
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λ single channel 5-channel 5-channel
single radio 3-radio 5-radio

Global Restoration
(RJ = 100m) 0.1984 0.8750 0.9922
Global Restoration
(RJ = 200m) 0.1738 0.7813 0.8690
Local Restoration
(RJ = 100m) 0.1644 0.5977 0.6389
Local Restoration
(RJ = 200m) 0.1385 0.5695 0.6389

Table II.14: Average λ Comparison using Linear Programming.

λ single channel 5-channel 5-channel
single radio 3-radio 5-radio

Global Restoration
(RJ = 100m) 0.0806 0.2702 0.3033
Global Restoration
(RJ = 200m) 0.0724 0.2393 0.2639
Local Restoration
(RJ = 100m) 0.0707 0.2022 0.2357
Local Restoration
(RJ = 200m) 0.0610 0.1897 0.2248

Table II.15: Average λ Comparison using Dynamic Channel Assignment.
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λ single channel 5-channel 5-channel
single radio 3-radio 5-radio

Global Restoration
(RJ = 100m) 0.1204 0.1334
Global Restoration
(RJ = 200m) 0.1150 0.1085
Local Restoration
(RJ = 100m) 0.1158 0.1080
Local Restoration
(RJ = 200m) 0.0950 0.1015

Table II.16: Average λ Comparison using Static Channel Assignment.

shown in the same cell in Table II.14, II.15, and II.16, we can see that the

global restoration scheme performs better than the local restoration scheme

under all scenarios6. We also observe that when the number of radios in-

creases from 3 to 5 in a 5-channel network, the network restoration scheme

with dynamic channel assignment shows improved performance. This shows

that the dynamic channel assignment could well explore the additional radio

resources in the restoration. Yet in the case of static channel assignment,

increasing the number of radios may not bring much additional performance

gain due to its greedy channel assignment strategy which may use a sub-

optimal assignment scheme.

6Under single channel single radio scenario, there is no need to consider the static
channel assignment.
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CHAPTER III

MINIMUM DISRUPTION SERVICE COMPOSITION AND
RESTORATION FOR MULTI-HOP WIRELESS MOBILE

NETWORKS

Introduction

Multi-hop wireless mobile networks, such as mobile ad hoc networks [56],

are self-organized networks formed dynamically through collaboration among

mobile nodes, which can be applied to a wide range of application scenar-

ios. These diverse application needs have fueled an increasing demand for

new functionalities and services. To meet these demands, component-based

software development [62] has been used to ensure the flexibility and main-

tainability of software systems. Service composition [29, 71, 12] is a promising

technique for integrating loosely-coupled distributed service components into

a composite service that provides end users with coordinated functionality,

such as web services and multimedia applications. The importance of service

composition has been widely recognized due to its high flexibility in allow-

ing development and deployment of customized applications from primitive

services.

There is an extensive literature on service composition techniques over

wireline networks. For example, [71, 49, 77] focus on finding a service path
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over wireline networks that satisfies various service requirements. Like-

wise, [55, 69] consider how to provide highly available services. While these

results have made critical steps towards constructing high quality service

paths in a variety of networking environments, they do not extend directly

to service composition in wireless mobile networks since intermittent link

connectivity and dynamic network topology caused by node mobility is not

considered.

To address this open issue, in this chapter, we study the service com-

position schemes to cope with node mobility in multi-hop wireless mobile

networks. In particular, we investigate the impact of node mobility and

dynamic network topology on service composition. Our goal is to provide

dynamic service composition and restoration strategies that enable highly re-

liable service delivery and incur the minimum disruptions to end users in

multi-hop wireless mobile networks. We focus on two important factors of

service disruption—frequency and duration—that characterize the disruption

experienced by end users. To achieve this goal, we address the following three

challenges:

• How to quantitatively characterize and measure the impact of service

disruptions. Reliability and availability are two common metrics that quan-

tify the ability of a system to deliver a specified service. For example, the

reliability metric helps guide and evaluate the design of many wireless mo-

bile routing algorithms [75, 64] and component deployment mechanisms [50]

using the path with maximum reliability for data/service delivery. There are
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two problems, however, with using reliability as a metric for service compo-

sition and restoration design: (1) it does not account for service repair and

restoration and (2) reliability is a dynamic metric that is usually estimated

based on the signal strength of a wireless link or the packet loss ratio along a

path. Its constantly changing value may cause repeated service adjustments,

especially if an application wants to use the path with maximum reliability.

Availability is also insufficient to evaluate the effect of disruptions since it

can not characterize the impact of disruption frequency.

• How to deal with the relation between service routing and network rout-

ing. In a wireless mobile network, a service link that connects two service

components is supported by the underlying network routing. Its ability to

deliver a service therefore depends on the network path in use, i.e., the tran-

sient and enduring wireless network link and path failures can constantly

change the service delivery capability of a service link. Conversely, service

routing determines the selection of service components, which in turn defines

the source and destination nodes for network routing. These interdepen-

dencies between service routing and network routing complicate the design

of service composition and restoration schemes. To maintain a service with

minimum disruption, therefore, routing operations must be coordinated at

both the service and network levels.

• How to realistically integrate the knowledge of node mobility in the ser-

vice composition and restoration strategies. Node mobility is a major cause
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of service failures in wireless mobile networks. To ensure highly reliable ser-

vice delivery and reduce service disruptions, therefore, we need to predict

the sustainability of service links based on node mobility patterns. Accurate

prediction is hard, however, for two reasons: (1) the mobility-caused link

failures are highly dependent and (2) the sustainability of a service link is

also affected by the network path repairs and the new nodes emerging in its

vicinity.

To address these challenges, we present a new service composition and

restoration framework for multi-hop wireless mobile networks to achieve min-

imum service disruptions. This framework consists of two tiers: (1) service

routing, which selects the service components that support the service de-

livery, and (2) network routing, which finds the network path that connects

these service components. Our framework is based on the disruption index.

This novel concept characterizes different service disruption aspects, such

as frequency and duration, that are captured inadequately by conventional

metrics, such as reliability and availability.

For wireless mobile networks with known mobility plan, we formulate the

problem of minimum-disruption service composition and restoration (MD-

SCR) as a dynamic programming problem and analyze the properties of its

optimal solution. Based on the derived analytical insights, we present our

MDSCR heuristic algorithm for wireless mobile networks with uncertain node

mobility. This heuristic algorithm approximates the optimal solution with

one-step lookahead prediction, where the sustainability of a service link is
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modeled through its lifetime and predicted via an estimation function de-

rived using linear regression.

The main contributions of this chapter are three folds. First, it creates a

theoretical framework for service composition and restoration strategies for

wireless mobile networks that characterize the effect of service disruption.

Second, it uses dynamic programming techniques to present the optimal so-

lution to MDSCR problem, which provides important analytical insights for

MDSCR heuristic algorithm design. Third, it presents a simple yet effec-

tive statistical model based on linear regression that predicts the lifetime of

a service link in the presence of highly correlated wireless link failures and

network path repairs.

Related Work

Our work is positioned in the overlapping area of service composition

for service-oriented networks and reliable network routing in wireless mobile

networks. This section reviews the existing literature in these two areas to

compare and highlight the contribution of our work.

Component-based software development focuses on building software sys-

tems by integrating reusable software components [62, 21]. At the founda-

tion of this technique is the requirement that all application components

are constructed as autonomous services, which perform independent oper-

ations. Service composition is a crucial technology for integrating loosely
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coupled distributed service components into a composite service that pro-

vides a comprehensive function for end users. The existing literature focuses

on the following two key issues in service composition:

• The quality of the composed service path, which is measured via

service performance metrics, such as the delay, bandwidth, and reliability.

For example, Xu et al. [71] find service paths to optimize the end-to-end

resource availability with controlled system overhead. In [49, 77], multiple

service criteria are aggregated for service path selection and optimization.

The scalable service composition is investigated in [36, 28] for large scale

systems, by employing distributed and hierarchical routing techniques.

• Failure restoration in service disruptions. Raman et al. [55]

presents an architecture for quick service path restoration using service repli-

cas and tuning the process of failure detection, focusing mainly on architec-

tural discussions. Li et al. [69] present a theoretical model for interference-

aware service routing in overlay networks.

Our work differs from prior work by considering the intermittent link

connectivity and dynamic network topology caused by node mobility in con-

structing and recovering the service paths.

There is also extensive research on achieving reliable data delivery in

wireless mobile networks. For example, [75] presents a reliability framework

for wireless mobile network routing, which uses the position and trajectory

information of the so-called reliable nodes (in terms of robust and secure)

to build reliable path. Likewise, [64, 34, 63, 58, 57] present reliable routing
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solutions based on mobility prediction to predict the future availability of

wireless links and adapt the mobile routing mechanisms. These studies focus

on building stable end-to-end connections at the network layer. In contrast,

our work considers the interaction between the service layer and the network

layer.

Our work is also closely related to work on the component-based service

support for mobile environments. For example, [50] studies how to distribute

the software components onto hardware nodes so that the system availability

is maximized. It takes into account the overall system availability with re-

gard to connection failures and presents a fast approximative solution. This

algorithm is based on the knowledge of connection reliability, which may be

impractical since (1) connection reliability is hard to be accurately estimated

and (2) even if it is able to be measured, reliability is usually a dynamic

metric whose value may constantly change with node mobility. Thus it may

cause repeated component deployments, especially if the goal is to maximize

the overall system availability.

Mobility prediction has also been applied to service component replication

strategies [46, 59] to provide continuous service despite of network partition.

Moreover, [17] presents a distributed architecture and associated protocols for

service composition in mobile environments. The composition protocols are

based on distributed brokerage mechanisms and utilize a distributed service

discovery process over network connectivity. Our work is complimentary

to—yet different from—this existing work. First we study the theoretical
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modeling and algorithm design for service composition and restoration, which

is different from the work of [17] that focuses on the architecture design.

We also assume that the service components are already deployed over the

network, where the existing service deployment and replication strategies [46,

59] could be applied.

System Model

This section provides our network and service model.

Network Model

We consider a multi-hop wireless mobile network consisting of a set of

nodes N . In this network, link connectivity and network topology change

with node movement. To model such a dynamic network environment, we

first decompose the time horizon T = [0,∞) into a set of time instances T ′ =

{τ1, τ2, ...} so that during the time interval [τi, τi+1), the network topology

remains unchanged, i.e., the same as the topology at τi.

We then model this multi-hop wireless mobile network using a series of

graphs indexed by time instances in T ′, i.e., GT ′ = {G(τ), τ ∈ T ′}. At time

τ , the network topology graph is represented by G(τ) = (N ,L(τ)}, where

L(τ) represents the set of wireless links at time τ , i.e., for link l = (n, n′) ∈

L(τ), nodes n and n′ are within the transmission range of each other.1 We

1For simplicity, we only consider bi-directional wireless links in this work.
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further denote a network path that connects node ns and nd in this graph

as P(ns,nd)(τ) = (n1, n2, ...nm), where (nj , nj+1) ∈ L(τ) for j = 1, ..., m − 1,

and n1 = ns, nm = nd. We also use |P(τ)| to denote the path length of P(τ)

(i.e., the number of links in P(τ)). To simplify the notation, we use G,L,P

and omit τ to represent the network topology, link set, and network path at

a particular time instance.

Figure III.1 shows an example multi-hop wireless mobile network based

on the terms defined above.

(i) time τ1 (ii) time τ2

a b a b

dc

e f

dc

e

f

Figure III.1: Example Multi-hop Wireless Mobile Network.

Two snapshots of the network topologies at time instances τ1 and τ2 are

shown in Figure III.1(i) and (ii), respectively. Due to the mobility of node

f , links (f, d) and (f, b) in G(τ1) are no longer available in G(τ2).

Service Model

To characterize the structure of distributed applications that are expected

to run in the mobile computing environments, we apply a component-based
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software model [62]. All application components are constructed as au-

tonomous services that perform independent operations (such as transforma-

tion and filtering) on the data stream passing through them. These services

can be connected to form a directed acyclic graph, called a service graph.

We focus on so-called uni-cast service connectivity, i.e., service compo-

nents are linked in a sequence order with only one receiver. We call such a

composed service a service path and denote it as S = (s1 → s2 → ... → sr),

where sk(k = 1, ..., r) is a service component, and sr is the service receiver.

Moreover, we call one hop in a service path (sk → sk+1) a service link.

In a wireless mobile network, each service component sk can be replicated

at multiple nodes to improve the service availability [65]. We denote the set

of nodes that can provide services sk as Nk ⊆ N and the service sk that

resides on node n as sk[n], n ∈ Nk. Figure III.2 shows an example of service

deployment and service composition.
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Figure III.2: Example Service Deployment and Service Composition.
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A service link is an overlay link that may consist of several wireless links

in the network, i.e., a network path. In Figure III.2, (s1[a]→ s2[b]→ s2[c]→

sr[r]) is a service path; the service link (s1[a] → s2[b]) is supported by the

network path P = (l1, l2).

The composed service usually needs to satisfy certain service require-

ments. To focus the discussion on the impact of service failures caused by

node mobility, we consider a simple metric—called the service link length—

that is defined as the number of wireless links traversed by a service link. In

particular, we require that the service link length is bounded by H hops.

Table III.1 summarizes the notations used in this chapter.

Service Composition and Restoration Framework

This section describes our service composition and restoration framework

for wireless mobile networks.

Service Composition

Service composition refers to the process of finding a service path that

satisfies designated service requirements in the network.

As shown in Figure III.3, service composition in a wireless mobile network

involves the following two inherently related processes:
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Notation Description
t ∈ T continuous real time
τ ∈ T ′ discrete time instance, when topology is changed
N set of mobile nodes
G(τ) network topology graph at time τ
L(τ) set of wireless links at time τ
P = (n1, n2, ...nm) network path
S = (s1 → s2 → ...→ sr) service path
H service link length requirement
πS service routing scheme
πN network routing scheme
π = (πS , πN ) service composition and restoration scheme
Π = (π(t1), π(t2), ..., π(tl)) service composition and restoration policy
Φ(GT ′) the set of all feasible service composition policies

over GT ′

F (t̄) disruption penalty function
D disruption index

D̃ disruption index estimation
NP→P ′ number of link substitutions from path P to path

P ′

NπS→π′
S

number of component substitutions from πS to π′
S

J (π(tw)) minimum disruption index for the service disrup-
tion experienced the service from time instance
tw ∈ T where composition scheme π(tw) is used

d̃n→n′(t+∆t) predicted distance of a service link (n→ n′)
Ln→n′ lifetime of service link (n→ n′)

Table III.1: Key Notations.
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Figure III.3: A Service Composition and Restoration Framework in a Wire-
less Mobile Network.

• Service routing, which selects the service components (out of many

replicas) for the service path. This routing process relies on service com-

ponent discovery [42, 41] to find the candidate service components, then

selects the appropriate ones to compose a service path that satisfies the

service requirement. Formally, a service routing scheme is represented as

πS = (s1[n1], s2[n2], ..., sr[nr]), where nk ∈ Nk is the hosting node for the

selected service component sk.

• Network routing, which finds the network path that connects the hosting

nodes for selected service components. Formally, the network routing scheme

can be represented as a set of routes πN = {P(nk ,nk+1), k = 1, ..., r − 1}
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where P(nk ,nk+1) represents the network route that supports the service link

(sk[nk]→ sk+1[nk+1]).

These two processes interact with each other closely. On one hand, the

component selection in the service routing determines the source and desti-

nation nodes in the network routing. On the other hand, the path quality

in the network routing also affects the selection of service components in the

service routing. Collectively, a service composition scheme is represented as

π = (πS , πN ).

In an wireless mobile network, service failures may occur for multiple

reasons. For example, end-to-end service requirements may be violated due

to network overload; service links may break due to failure of the underlying

wireless communication path. This chapter focuses on service failures caused

by node mobility.

Service Restoration

To sustain service delivery, the service path must be repaired. This repair

process essentially recomposes the service path and is called service restora-

tion. Service restoration is triggered by service failure detection at either

link, network, or service level. For example, a wireless link failure could be

detected at the link-level via IEEE 802.11 ACK frame, or at the network-

level through HELLO messages in the routing protocol, such as AODV (Ad

hoc On-Demand Distance Vector Routing) [53].
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Similar to service composition, service restoration also involves two pro-

cesses: (1) network-level restoration, which repairs the data path between

two components, and (2) service-level restoration, which replaces one or more

service components. The network-level path repair usually depends on the

specific wireless routing protocol used and relies on the route repair mecha-

nism built within the routing protocol. The service-level restoration involves

discovery of new components and establishment of a new service path.

Service restoration differs from service composition since it must consider

not only the quality of the recomposed (i.e., repaired) path, but also the

service path used previously (i.e., the one that just failed). Intuitively, to

reduce the repair overhead and restoration duration, we prefer a service path

that could maximally reuse the current nodes/components. For example,

network-level restoration may be attempted first without changing any ser-

vice components. If this restoration fails, then a service-level restoration is

initiated. The limitation with using this service restoration strategy, how-

ever, is that the new service path may have a poor service and/or may fail

again soon. Alternatively, we may wish to use service-level restoration di-

rectly without trying network-level restoration. Such a strategy, however,

will incur more overhead in repairing the failed service links.

Though node mobility can cause service failures, it may provide better

service paths by bringing new service components into their vicinity, i.e.,

within their transmission range. Service adjustment is the process of modify-

ing the current service path for better service or higher reliability by using a
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new network path or new component(s) that appear in the vicinity through

node mobility. Similar to the dilemma faced by service restoration, however,

such changes can disrupt the service, even though they improve the new

path’s reliability and quality.

Theoretical Framework

A fundamental research challenge for service restoration is how to best

tradeoff the time and overhead involved in service restoration and adjust-

ment and the sustainability of composed service path so that end users will

perceive minimum disruptions to the service during its lifetime. To address

this challenge, we need a theoretical framework that allows us to analyti-

cally study the service composition, adjustment, and restoration strategies

to achieve minimum service disruptions. This section quantitatively charac-

terizes the impact of service disruption and establishes an optimization-based

theoretical framework based on dynamic programming.

Service Disruption Model

During the service failure and restoration processes, the service is un-

available to the end user, thereby causing service disruption. To analytically

investigate service composition and restoration strategies that could provide

the most smooth and reliable service delivery, we first need to characterize

the impact of service disruption quantitatively.
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Figure III.4: Example Service Disruption Processes.
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A classical way to model service disruption is service availability, which is

defined as the fraction of service available time during the service lifetime T :

A =
T−

∑q
i=1(t̄i)

T
, where q is the number of service disruptions and t̄1, t̄2, ..., t̄q

is the sequence of disruption durations. Using availability as the metric to

characterize the impact of service disruption, however, we face the following

two problems:

• Service availability cannot characterize the impact of service failure fre-

quency, i.e., it cannot differentiate between one scenario with higher service

failure frequency but shorter disruption durations from the other scenario

with lower service failure frequency but longer disruption durations. Fig-

ure III.4 shows an example of two service disruption processes. In this figure,

scenario (i) and (ii) have the same service availability (24
36
). User-perceived

disruption could be different, however, since scenario (ii) has a higher service

failure frequency but smaller disruption durations. To model the effect of ser-

vice disruption precisely, therefore, we need a new metric that characterizes

both failure durations and failure frequency.

• Service availability is hard to compute. The calculation of service avail-

ability is based on the calculation of disruption durations, which include the

service failure time and restoration time. Such durations are determined by

many factors, such as network topology, routing protocol, and system con-

ditions, which are dynamic and thus hard to be incorporated into service

composition and restoration decisions. To establish a theoretical framework

that provides realistic insight to implementation of service composition and
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restoration strategy, we need a metric that is stable, easily computed, and

can provide a good estimation of disruption durations.

To address the problem of measuring the impact of service failure fre-

quency, we associate a disruption penalty function F (t̄) defined over the dis-

ruption duration t̄ with an end user. The shape of F (t̄) reflects its relative

sensitivity to disruption duration and frequency. Figure III.5 shows three

basic types of failure penalty functions (i.e., convex, linear, concave). We

further define disruption index D as a metric to characterize the impact of

service disruption during the entire service lifetime T :

D =
1

T

q∑

i=1

F (t̄i) (III.1)

To show how the disruption index D characterizes different user-specific

disruption effects by choice of F (t̄), we calculate the disruption indices for

the two service disruption processes in Figure III.4 using the different failure

penalty functions F (t̄) shown in Figure III.5. The results are summarized in

Table III.2.

Table III.2 shows that if F (t̄) is a convex function then disruption process

(ii) has a higher disruption index than process (i), i.e., its end user is more

sensitive to failure frequency. When F (t̄) is a concave function, disruption

process (i) has a higher disruption index than process (ii), i.e., its end user is

more impatient with disruptions with long duration. For a linear disruption
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Fi Fi(4) Fi(8) DProc(i) DProc(ii)

Fi Fi(4) Fi(8) DProc(i) DProc(ii)

F1 (convex) 6.0861 7.2376 0.4021 0.6762
F2 (convex) 5.8088 7.3186 0.4066 0.6454
F3 (convex) 5.2915 7.4833 0.4157 0.5879
F4 (linear) 4.0000 8.0000 0.4444 0.4444
F5 (concave) 2.2857 9.1429 0.5079 0.2540
F6 (concave) 1.3061 10.4490 0.5805 0.1451
F7 (concave) 0.7464 11.9417 0.6634 0.0829

Table III.2: Disruption Indices Under Different Penalty Functions.

penalty function the user is neutral and the disruption index depends on the

service availability.

To address the second problem of computing service availability, we present

simple and stable estimations of disruption durations for network-level restora-

tion and service-level restoration, respectively.

Estimation for Network-level Restoration

For network-level restoration, the service components remain the same,

i.e., we only need to repair the network path that connects them. A typi-

cal network-level restoration process in repairing a network path in wireless

mobile networks [53] involves discovering an alterative route to replace the

broken link/path and restarting the data delivery. Here we use the number

of wireless link substitutions in the repair as a simple estimate for the dis-

ruption duration introduced by network-level restoration. Formally, let P

and P ′ be the paths before and after restoration. We use NP→P ′ to denote
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the number of link substitutions from P to path P ′. Let P ∩ P ′ be the set

of common links in these two paths, then

NP→P ′ = |P ′| − |P ∩ P ′| (III.2)

Using the number of wireless link substitutions as an estimate for dis-

ruption duration introduced by network-level restoration is consistent with

typical network repair operations. For example, there are usually two repair

mechanisms in wireless routing: local repair and global repair. For local re-

pair, when a link fails, one of its end nodes will try to find an alternative path

in the vicinity to replace this link. Local repair therefore involves fewer link

substitutions and less restoration time. For global repair, the source node

initiates a new route discovery, which takes more time than local repair and

involves more link substitutions.2

Estimation for Service-level Restoration

A service-level restoration involves three operations: (1) finding the ap-

propriate substitution components, (2) starting the new components and

restoring the service states, and (3) finding a network path that supports

the connectivity between the new components. Service-level restoration thus

takes much more time than network-level restoration. Similar to network-

level restoration, the duration of service-level restoration depends largely on

2For simple estimation, we do not consider the impact of route caches here.
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the searching/replacing scope of the service components. We can therefore

use the number of substituted components to estimate its restoration du-

ration. Formally, let πS and π′
S be the service routing schemes before and

after restoration. We use NπS→π′
S
to represent the number of component

substitutions from πS to π′
S , then

NπS→π′
S
= |π′

S | − |πS ∩ π′
S | (III.3)

where |π′
S | = r is the number of components in π′

S and |πS∩π′
S | is number

of common nodes in these two sets.

Based on the restoration duration estimation, we now proceed to refine

the definition of disruption index. Consider a service S that starts at time

instance 0 and ends at T . Let π(t1), π(t2), ..., π(tl) be the sequence of service

composition schemes used during the service lifetime, and l be the length of

this sequence. The disruption duration t̄k from service composition π(tv) to

π(tv+1) is estimated as

t̄k = β ×Nπ(tv)→π(tv+1) (III.4)

= β × (NN
π(tv)→π(tv+1)

+ αNS
π(tv)→π(tv+1)

) (III.5)

where NN
π(tv)→π(tv+1)

and NS
π(tv)→π(tv+1)

denote the number of substituted

wireless links in network-level restoration (if any) and the number of substi-

tuted components in service-level restoration (if any) incurred by the service
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composition transition from π(tv) to π(tv+1) respectively. β is the param-

eter that converts the number of substitutions to disruption time. α > 1,

denotes the relative weight between service component substitution and link

substitution on disruption duration.

Based on the discussions above, the disruption indexD could be estimated

via the component and wireless link substitutions. We denote the estimation

of disruption index as D̃:

D̃ =
1

T

l−1∑

v=1

F (β ×Nπ(tv)→π(tv+1)) (III.6)

=
1

T

l−1∑

v=1

F (β × (NN
π(tv)→π(tv+1)

+ αNS
π(tv)→π(tv+1)

)) (III.7)

MDSCR Problem Formulation

Based on the definition of disruption index, we now formulate the mini-

mum disruptive service composition and restoration (MDSCR) problem. First,

we define a service composition and restoration policy as a sequence of service

composition schemes:

Π = (π(t1), π(t2), ..., π(tl)) (III.8)

where 0 = t1 < t2 < ... < tl ≤ T ∈ T . Π gives the initial service

composition scheme π(t1) and all the service restoration schemes π(tv) →

π(tv+1), v = 1, ..., l − 1.
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We say service composition π(tv) is feasible on network G(tv), if and only

if all the network paths in πN (tv) exist on G(tv). Moreover, Π is feasible if

and only if each of its service composition π(tv) is feasible over the network

topologies during its lifetime [tv, tv+1), i.e., π(tv) is feasible on all G(τ) where

tv ≤ τ < tv+1, τ ∈ T ′.

We denote the set of all feasible service composition policies over GT ′ as

Φ(GT ′). For a feasible service policy Π ∈ Φ(GT ′), there is a corresponding

disruption index, which is defined in Section III as D̃(Π):

D̃(Π) =
1

T

l−1∑

v=1

F (β ×Nπ(tv)→π(tv+1)) (III.9)

The goal of the MDSCR algorithm is to find the best policy Π ∈ Φ(GT ′)

that is feasible for GT ′ , so that D̃(Π) is minimized over the lifetime of service

S. Formally,

MDSCR : minimize D̃(Π) (III.10)

Π ∈ Φ(GT ′) (III.11)

At this point, we have established a theoretical framework for the MDSCR

problem in multi-hop wireless mobile networks. When the mobility plan is

determined a priori, the graph series G(t) is then given. In this case, the

MDSCR problem could be solved using dynamic programming. The mobility

plan, however, is usually unavailable, i.e., G(t) is unknown in practice.
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To derive a practical solution for the MDSCR problem, we must therefore

consider heuristics that can dependably predict link lifetime and integrate it

into service routing and restoration. We next study the optimal MDSCR

solution under a known mobility plan and derive its analytical properties.

Based on these analytical insights, we then present the location-aided MD-

SCR heuristic algorithm based on service link lifetime prediction.

Optimal Solution

If GT ′ is given, MDSCR is essentially a dynamic programming problem.

Let J (π(tw)) be the minimum disruption index for the service disruptions

experienced by the end user from time instance tw ∈ T where composition

scheme π(tw) is used, i.e.,

J (π(tw)) = min
Π∈Φ(GT ′)

1

T

l−1∑

v=w

F (β ×Nπ(tv)→π(tv+1)) (III.12)

Obviously J (π(t1)) = minΠ∈Φ(GT ′) D̃(Π). Based on dynamic program-

ming, we have

J (π(tw)) = min
π(tw+1)

{
1

T
F (β ×Nπ(tw)→π(tw+1)) + J (π(tw+1))} (III.13)
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When the mobility plan of the network is known, the equation shown

above could be used to give the optimal solution via standard dynamic pro-

gramming techniques [15]. In particular, solving J (π(t1)) gives the optimal

initial service composition π(t1). At time tw with service composition scheme

π(tw), solving Eq. (III.13) gives the optimal service restoration scheme (min-

imum disruption service restoration) that changes the service composition

from π(tw) to π(tw+1).

Analysis

The optimal solution outlined above reveals several interesting properties

for MDSCR strategies, as we discuss below.

Reactive Restoration

The first property of an optimal solution is the reactive adjustment and

restoration strategy. If the failure penalty function F is a linear or concave

function (neutral or disruption frequency sensitive user), a service path is

changed if and only if one of the underlying wireless link used by the service

path is broken in an optimal MDSCR strategy. This property means that

the service composition remains the same on the discovery of new nodes and

new service components in the neighborhood (i.e., no service adjustment) and

the node failures that are not on the service path. Formally, this property is

presented in Theorem 1 below.
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Theorem 1: Let Π∗ = (π∗(t1), ..., π
∗(tl)) be the optimal MDSCR pol-

icy. Then for any two consecutive service compositions π∗(tw) and π∗(tw+1),

π∗(tw) is not feasible on the network topology G(τi) (τi ≤ tw+1 < τi+1,

τi, τi+1 ∈ T ′) at tw+1.

The proof of this theorem is given in [35].

Reactive Service-level Restoration

For an optimal solution, the service-level restoration is invoked if and

only if the network-level restoration can not repair one of the service links

in use, i.e., there is no feasible network path connecting these two service

components. This property is formally summarized in Theorem 2 below.

Theorem 2: Let Π∗ = (π∗(t1), ..., π
∗(tl)) be the optimal MDSCR pol-

icy. Consider a sub-sequence of service compositions in Π∗, where service

components are changed. We denote this sub-sequence only with its service

routing scheme as Π∗
S = (π∗

S(t
s
1), ..., π

∗
S(t

s
g)). Then for any two consecutive

service compositions in Π∗
S , π

∗
S(t

s
w) and π∗

S(t
s
w+1), π

∗
S(t

s
w) is not feasible on

the network topology G(τi) (τi ≤ tsw+1 < τi+1, τi, τi+1 ∈ T ′) at tsw+1, i.e.,

there exists a service link in π∗
S(t

s
w) which has no feasible network path in

G(τi), when α≫ 1.

The proof of this theorem is given in [35].
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MDSCR Heuristic Algorithm

This section explains our MDSCR heuristic algorithm. The analytical

results establish several important guidelines for our MDSCR heuristic algo-

rithm. First, a restoration operation will only be triggered upon the failure

detection of the wireless link in use. Second, network-level restoration should

first be initiated before a service-level restoration is attempted.

Two-tier MDSCR Algorithm

Based on the analytical results, we can reduce the complexity of MDSCR

problem by decomposing it into two sub-problems: (1) the service-level MD-

SCR problem and (2) the network-level MDSCR problem. The service-level

MDSCR is the primary problem. Its objective is to minimize the service-level

disruption index D̃S via service routing, where D̃S is defined as

D̃S =
1

T

g−1∑

v=1

F (βαNS
πS(tsv)→πS(t

s
v+1)

) (III.14)

In particular, the initial service composition solution at the service level

is given by solving the following equation:

J (πS(t
s
1)) = min

ΠS∈Φ(GT ′ )

1

T

g−1∑

v=1

F (βαNS
πS(tsv)→πS(t

s
v+1)

) (III.15)

At time tsw with service routing scheme πS(t
s
w), the service restoration

scheme that changes the service route from πS(t
s
w) to πS(t

s
w+1) is given by

solving the following equation:
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J (πS(t
s
w)) = min

πS(t
s
w+1)
{
1

T
F (βαNS

πS(tsw)→πS(t
s
w+1)

) + J (πS(t
s
w+1))} (III.16)

The network-level MDSCR is the secondary problem. It tries to minimize

the disruption index caused by network-level restoration during the lifetime

of a service link. Formally, its objective is to minimize the network-level

disruption index D̃N (defined as follows) during the lifetime of each service

link via network routing.

D̃N (tsw → tsw+1) =
1

T

tsw+1∑

t=tsw

F (βNN
π(t)→π(t+1)) (III.17)

The decomposition mechanism presented above separates MDSCR con-

cerns so that the service-level MDSCR and the network-level MDSCR can be

treated separately. We focus our discussion below on the service-level MD-

SCR strategies and rely partially on the existing wireless network routing

protocols for the network-level MDSCR.

One-step Lookahead Approximation

Finding the solution to the service-level MDSCR problem is still a chal-

lenging issue for wireless networks with uncertain mobility plans since com-

plete knowledge of future network topologies is needed. The service restora-

tion decision at tsw+1 requires the knowledge of network topology after this
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time instance to calculate the future disruption index J (πS(t
s
w+1)). To ad-

dress this problem, we present a one-step look-ahead approximation method

where the future disruption index is estimated in the time period until its first

service-level path failure. When this failure occurs, its number of component

substitutions is approximated by an average value E(NS).

Formally, let Lnk→nk+1
be the expected lifetime3 for the service link (sk[nk]

→ sk+1[nk+1]). The service routing scheme at time tsw+1 is πS(t
s
w+1) = (s1[n1],

s2[n2], ..., sr[nr]). Its failure rate is estimated as γπS(t
s
w+1)

=
∑r−1

k=1
1

Lnk→nk+1
.

Likewise, J (πS(t
s
w+1)) is estimated as

Ĵ (πS(t
s
w+1)) = F (βα×E[NS ])× γπS(t

s
w+1)

(III.18)

The initial service composition strategy is to find πS(t
s
1) that minimizes

F (βα× E[NS ])× γπS(t
s
1)

(III.19)

The service-level restoration strategy involves finding a service routing

scheme πS(t
s
w+1) to minimize

1

T
F (βαNS

πS(tsw)→πS(t
s
w+1)

) + F (βαE[NS ])γπS(t
s
w+1)

(III.20)

3Here the lifetime of a service link is defined as the time interval between its formation
and the first time instance when the length of the shortest network path that supports
this service link is larger than service link length requirement H .

97



In Eq. (III.20), the first term characterizes the restoration duration from

the failed service routing scheme πS(t
s
w) to the new service routing scheme

πS(t
s
w+1). The second term characterizes the sustainability of the newly com-

posed service path. Thus minimizing Eq. (III.20) balances the tradeoff be-

tween these two factors faced by service restoration.

Lifetime Prediction

Another problem with deriving a practical MDSCR solution for Eq. (III.19)

and Eq. (III.20) involves estimating the service link lifetime. This problem

is hard due to the highly inter-dependent wireless link failures and the im-

pact from network path repairs. It therefore cannot be solved by traditional

network path reliability estimation methods.

To address this challenge, we devise a service link lifetime prediction

method based on linear regression.4 In particular, we estimate the lifetime

of a network path Ln→n′ based on the predicted distance between two com-

ponents d̃n→n′(t+∆t), which is calculated based on the current locations of

the hosting nodes, their velocities and the prediction time ∆t. For a service

link (n → n′), let dn→n′(t) be the distance between its two end nodes, and

vector Vn(t), Vn′(t) be their velocities at time t. The predicted distance of

service link (n→ n′) after time interval ∆t is then given as follows:

4We assume that the mobile nodes in the network are distributed roughly
homogeneously.

98



d̃n→n′(t+∆t) = dn→n′(t) + ∆t× |Vn(t)− Vn′(t)| (III.21)

To establish a relation between the predicted distance d̃n→n′(t+∆t) and

the lifetime Ln→n′ of a service link (n→ n′), we conducted the experiments

described below. The network configuration parameters are given in Ta-

ble III.5 in Section III. We plot the relation between the service link lifetime

and its predicted distance in Figure III.6.
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Figure III.6: Lifetime Prediction.

The black dots in Figure III.6 describe the relation of the predicted dis-

tance (x-value) and the lifetime (y-value) of a service link; and the black line

is the linear regression result. Using linear regression over the experiment

results, the lifetime of a service link is calculated as follows:

Ln→n′ = K × d̃n→n′(t+∆t) +B (III.22)
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Algorithm I: Minimum Disruption Service Composition
1 Top tier: service routing
1.1 For all feasible service links (sk[nk] → sk+1[nk+1]) whose shortest

underlying network path length ≤ H
Estimate lifetime Lnk→nk+1

.
1.2 Find the service routing scheme πS that minimizes Eq. (III.19).

//This could be done based on any minimum cost routing algorithm
2 Bottom tier: network routing
2.1 For each service link (sk[nk]→ sk+1[nk+1])

Find the network path with the maximum estimated lifetime
and length ≤ H .

P(nk ,nk+1) ←MLNR(nk, nk+1,G)
//MLNR is a minimum path failure rate routing algorithm that

could be done based on any minimum cost routing algorithm

Table III.3: Minimum Disruption Service Composition Algorithm.

where K = 121.4229 and B = −0.0922 are two coefficients of the linear

regression in this experiment.

In the simulation study, we derive the corresponding coefficients for linear

regression for different network configurations, and pick the best prediction

time ∆t with the largest goodness-of-fit.

Two-tier Predictive Heuristic Algorithm

We now summarize the discussions above and present the MDSCR heuris-

tic algorithm. The deployment of our algorithm needs the support of location

services [74] for node location and velocity information, as well as service dis-

covery services [41].
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Algorithm II: Minimum Disruption Service Restoration
//Assume a wireless link that supports service link (sk[nk] →
sk+1[nk+1]) fails

1 Bottom tier: network-level restoration
1.1 For all feasible network path P(nk ,nk+1) with length ≤ H

Estimate lifetime Lnk→nk+1
.

If no such feasible network path exists, goto 2
1.2 Find the network path with the maximum estimated lifetime

//Network-level restoration succeeds
Return the path.

//Network-level restoration fails, try service-level restoration
2 Top tier: service-level restoration

//Assume the current service routing scheme is πS(t
s
w)

2.1 For all feasible service links (sk[nk] → sk+1[nk+1]) whose shortest
underlying network path length ≤ H

Estimate lifetime Lnk→nk+1
.

//Then perform network routing
2.2 Find the service routing scheme πS(t

s
w+1) that minimizes

Eq. (III.20)
2.3 For each service link (sk[nk]→ sk+1[nk+1]) in πS(t

s
w+1)

Find the network path with the maximum estimated lifetime
and length ≤ H .

P(nk ,nk+1) ←MLNR(nk, nk+1,G)

Table III.4: Minimum Disruption Service Restoration.
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Table III.3 presents the minimum disruption service composition algo-

rithm. This algorithm has two tiers: top and bottom. The top tier is the

service routing that finds the service components with the lowest service link

failure rates for the service path. After the service components are deter-

mined, the network routing algorithm in the bottom tier will find the network

path with the maximum estimated lifetime to connect these components.

Table III.4 gives the minimum disruption service restoration algorithm.

This algorithm also has two tiers: bottom and top. The bottom tier is

the network-level restoration, which is triggered by the failure of a wireless

link on the current service path. If the network-level restoration succeeds,

the algorithm returns successfully. If it fails, however, then the service-level

restoration in the top tier will be triggered. The service-level restoration first

finds the new service components, which balances the restoration duration

and the sustainability for the new service link. It then performs the network

path routing between the new service components.

Simulation Study

This section evaluates the performance of our MDSCR algorithm via sim-

ulation and compares it with other service composition and restoration algo-

rithms.

102



Simulation Setup

We conducted the simulations using ns-2 [2]. In our simulated multi-hop

wireless mobile network, 50 nodes are randomly deployed over a 2, 000×1, 000

m2 region. Each node has a transmission range of 250 m. Node mobility

follows the random waypoint model with a maximum speed (default value is

10 m/s) and a pause time (default value is 10 s).

The service discovery is simulated based on the results presented in [43]

and the network routing protocol is simulated using AODV in ns-2. By

default, the service delivers constant bit rate (CBR) traffic at 1 packet/sec,

and the size of the packets is 512 bytes. The simulated service is composed

of 4 components and each component has 8 replicas by default. Each service

link requires its maximum network path length H ≤ 3 by default.

Based on the averaged simulation results, we set the values of α to 10 and

β to 1. Linear function F (t̄) = t̄ is used as the default disruption penalty

function. In the simulation, the prediction time is adjusted for each network

configuration to achieve the smallest prediction error. Default values of the

simulation parameters are given in Table III.5.

We compare the performance of our MDSCR algorithm with the shortest

path service composition and restoration (SPSCR) algorithm [9, 76] and the

random selection service composition and restoration (RSSCR) algorithm.

The shortest path routing algorithm [67] is a common multi-hop network

routing algorithm that chooses the path with the smallest hop number. The
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number of nodes 50
network size (m2) 2000× 1000
transmission range (m) 250
maximum speed (m/s) 10
pause time (s) 10
number of components in a service path 4
number of component replica |Nk| 8
service link length requirement H 3
α 10
β 1
disruption penalty function F (t̄) = t̄

Table III.5: Default Simulation Parameters.

SPSCR algorithm is a natural extension of the shortest path routing algo-

rithm, where the length of a service link is the length of the shortest network

path that supports it and the service path with the shortest service link

length will be chosen. The RSSCR algorithm randomly chooses the candi-

date hosting nodes for the service components in a service path. We use

RSSCR as the baseline for comparison since it does not use any optimization

strategy.

Basic Comparison

We first conduct the basic comparison of disruption index and through-

put for the MDSCR, SPSCR, and RSSCR algorithms. In this experiment,

the number of components in a service path is 2. The service link length

requirement is restricted by the default network path length requirement in

AODV , which is 30 hops.
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For each experiment, we run the MDSCR, SPSCR, and RSSCR algo-

rithms over the same network scenario, i.e., each node in two runs of the

simulation follows the same trajectory. Each CBR traffic simulation runs for

2 × 105 seconds. Since the experiment time is extremely long, it can reflect

a general network topology.

Figures III.7 and III.8 show the results of disruption index and throughput

for the MDSCR, SPSCR, and RSSCR algorithms using CBR traffic.
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Figure III.7: Disruption Index for MDSCR, SPSCR, and RSSCR When Ser-
vice Path Length is 2 Using CBR Traffic.

From Figure III.7, we can see that the disruption index is an accumulated

value, which increases with time. This figure also shows that the MDSCR

algorithm achieves a smaller disruption index compared with the SPSCR

and RSSCR algorithms, and thus incurs fewer and shorter disruptions with
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Figure III.8: Throughput for MDSCR, SPSCR, and RSSCR when Service
Path Length is 2 Using CBR Traffic.

regard to their frequencies and durations. This result can also be reflected by

the instantaneous throughput of the service, which is shown in Figure III.8.

This figure shows how the MDSCR algorithm achieves higher and smoother

throughput in comparison with the SPSCR and RSSCR algorithms.

The reason for these results is that the shortest path may fail quickly for

the SPSCR algorithm since some wireless links on the shortest path may be

broken shortly after the path is established due to node mobility. Likewise,

the RSSCR algorithm performs poorly since it considers neither the length of

a service link (as does the SPSCR algorithm) nor the future distance between

service components (as does the MDSCR algorithm).
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Impact of Service Path Length

We next measure the impact of service path length (i.e., the number of

service components involved in the service delivery) on the performance of

our algorithm. This simulation adjusts the number of service components

from 2 to 4. Figures III.9 and III.10 show these results.
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Figure III.9: Disruption Index for MDSCR, SPSCR, and RSSCR When Ser-
vice Path Length is 4 Using CBR Traffic.

Comparing Figure III.9 with Figure III.7, it is clear that the MDSCR

algorithm consistently outperforms the SPSCR and RSSCR algorithms under

both service path lengths. The throughput comparison in Figures III.10

and III.8 further validates this result. We also observe that the disruption

index increases and the throughput decreases when the synthetic service is
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Figure III.10: Throughput for MDSCR, SPSCR, and RSSCR When Service
Path Length is 4 Using CBR Traffic.

composed of more components (i.e., from 2 to 4), which means there is a

higher possibility for the service path to be disrupted.

Impact of Service Link Length Requirement H

The service link length requirement H can limit service link selection, and

thus may also affect the performance of the service composition and restora-

tion algorithms. Figure III.11 shows the results for the service consisting of

2 components with the service link length requirement as 3 hops, using CBR

traffic.

Comparing it with Figure III.7, we can see that the disruption index in-

creases with more restricted service link length requirement, which means

there is a higher possibility for a disconnected service link. The throughput
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Figure III.11: Disruption Index for MDSCR, SPSCR, and RSSCR When
Service Path Length is 2 and Service Link Length Requirement is 3 Using
CBR Traffic.
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Figure III.12: Throughput for MDSCR, SPSCR, and RSSCR when Service
Path Length is 2 and Service Link Length Requirement is 3 Using CBR
Traffic.
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comparison in Figures III.12 and III.8 also verifies this result, i.e., the ser-

vice throughput is higher and smoother when the service link has no length

requirement.

We next conducted experiments with the service consisting of 4 compo-

nents (service link length requirement remains the same), also using CBR

traffic. The results are shown in Figures III.13 and III.14.
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Figure III.13: Disruption Index for MDSCR, SPSCR, and RSSCR When
Service Path Length is 4 and Service Link Length Requirement is 3 Using
CBR Traffic.

By comparing these two figures with Figures III.9 and III.10, we observe

that the disruption index increases and throughput decreases with a more

restricted service link length requirement.

To further study the impact of service link length requirement H , we in-

troduced the disruption improvement ratio, which is defined as D̃SPSCR−D̃MDSCR

D̃SPSCR
,
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Figure III.14: Throughput for MDSCR, SPSCR, and RSSCR When Service
Path Length is 4 and Service Link Length Requirement is 3 Using CBR
Traffic.

where D̃MDSCR and D̃SPSCR are the disruption indices of the MDSCR and

SPSCR algorithms. We experimented with the MDSCR and SPSCR algo-

rithms over 50 different random network topologies, each of which runs for

2, 000s. We used the average improvement ratio as a metric in our simulation

study.

We run simulations under different values ofH (1, ..., 5) and plot the aver-

age improvement ratios in Figure III.19. The results show that the MDSCR

algorithm outperforms the SPSCR algorithm for all H values. The MDSCR

algorithm also works best when the maximum service link length require-

ment is 3. If the service link length requirement is too small (e.g., 1), then

there is no optional service path for most of the time. Conversely, if the

service link length requirement is too large (e.g., 5), the service link lifetime
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depends largely on the network topology instead of the relative locations of

its two components. The prediction method thus works less effectively due

to randomness in the service link lifetime.

Impact of Traffic Type

The performance of service composition and restoration algorithms heav-

ily depends on the inter-component traffic type, particularly if we consider

the throughput of the service in a highly dynamic and lossy network envi-

ronment. In our simulation study, we use CBR traffic as the default traffic

type. Without any loss-based rate adaptation, its throughput directly reflects

the impact of service disruption caused by node mobility and link failures.

In practice, TCP is also commonly used as a transport protocol for inter-

component communication. Here we study the performance of our algorithm

over TCP. In our simulation, the packet size is 2 kilobytes. Each simulation

runs for 2 × 104 seconds. Figures III.15 and III.16 show the results of dis-

ruption index and throughput when service path length is 2 with no service

link length requirement. From the figures, we could also observe that TCP

is more sensitive to the disruptions. This is because its sending rate adapts

based on its packet loss/delay, and it cannot distinguish the queueing loss

from the packet loss caused by link failures, which is a common problem of

TCP over wireless networks [37].
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Figure III.15: Disruption Index for MDSCR, SPSCR, and RSSCR When
Service Path Length is 2 Using TCP Traffic.
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Figure III.16: Throughput for MDSCR, SPSCR, and RSSCR When Service
Path Length is 2 Using TCP Traffic.
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We also conduct experiments with the service consisting of 2 components

and service link length requirement is 3, also using TCP traffic. The results

are shown in Figures III.17 and III.18.
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Figure III.17: Disruption Index for MDSCR, SPSCR, and RSSCR When
Service Path Length is 2 and Service Link Length Requirement is 3 Using
TCP Traffic.

Comparing these two figures with Figures III.15 and III.16 shows the

same result with regard to the disruption index discussed in “Impact of Ser-

vice Link Length Requirement H”, i.e., the disruption index increases with

more restricted service link length requirement. However, the result of the

throughput comparison is opposite. In particular, the service throughput is

higher and smoother when the service link length requirement is 3 because

the throughput of TCP traffic is also affected by the packet transmission

latency, which will decrease with small service link length requirement.
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Figure III.18: Throughput for MDSCR, SPSCR, and RSSCR When Service
Path Length is 2 and Service Link Length Requirement is 3 Using TCP
Traffic.

Impact of Number of Component Replicas

The performance of service composition and restoration algorithms de-

pends intuitively on the service component redundancy in the network (i.e.,

the number of component replica). We simulate the MDSCR and SPSCR al-

gorithms in networks with different numbers of component replica: 4, ..., 12,

and plot the average improvement ratio of 50 different random network

topologies running for 2, 000 seconds in Figure III.20.

Figure III.20 shows that the improvement ratio grows steadily as the

number of component replica increases. This result indicates that as the

number of optional service paths grows, the opportunity for the MDSCR

algorithm to select a better service path also increases.

115



1 2 3 4 5
0

0.05

0.1

0.15

0.2

H

A
ve

ra
ge

 Im
pr

ov
em

en
t R

at
io

Figure III.19: Impact of Service Link Length Requirement H on Improve-
ment Ratio.
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Figure III.20: Impact of Number of Component Replicas on Improvement
Ratio.
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Figure III.21: Impact of Pause Time on Improvement Ratio.
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Figure III.22: Impact of Node Speed on Improvement Ratio.
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Impact of System Dynamics

To analyze the impact of system dynamics, we simulate both the MD-

SCR and SPSCR algorithms under different node speeds and pause times.

In particular, we experiment with pause times of 1 s, 10 s, 30 s, 60 s, 100

s, 150 s, 200 s, 300 s and maximum node speeds of 2 m/s, 4 m/s, 6 m/s,

..., 30 m/s. The prediction time is also adjusted in each mobility configura-

tion to reflect the best prediction results (i.e., the largest goodness-of-fit in

linear regression). Each experiment runs over 50 different random network

topologies for 2, 000 seconds.

Figures III.21 and III.22 show that our MDSCR algorithm achieves better

performance than the SPSCR algorithm under all mobility scenarios. In

particular, our MDSCR algorithm works best with pause time ranging from

10 s to 100 s, which represents a medium-mobility environment. In this

mobility environment, the service link lifetime prediction method provides

the best prediction results.

Impact of F Function

In the simulation described above, the disruption penalty function F takes

a linear form. We now study the performance of our MDSCR algorithm under

different shapes of the F function. Figure III.23 compares the improvement

ratios under linear, concave, and convex functions.
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Figure III.23: Improvement Ratio Comparison for Concave, Linear, and Con-
vex Penalty Function F .

Each experiment also runs over 50 different random network topologies

for 2, 000 seconds.

Figure III.23 shows that the convex function F gives a larger improve-

ment ratio (33.54%) than the linear function (27.73%); and the linear func-

tion gives a larger improvement ratio than the concave function(19.20%).

This result occurs because under a convex function, local restoration (which

tries to replace as few components/links as possible) incurs much less dis-

ruption penalty than global restoration due to the convex shape. Our MD-

SCR heuristic algorithm aggressively encourages local restoration and thus

performs much better than the SPSCR algorithm. In the concave region,

conversely, the benefits of local restoration are not significant, and the ad-

vantages of MDSCR are therefore less prominent.
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CHAPTER IV

PROVIDING QOS SUPPORT FOR WIRELESS REMOTE
HEALTHCARE SYSTEM

Introduction

The health care system has become a national challenge with a rapidly

growing aging population and rising expenditure. According to the U.S.

Census Bureau, the number of people over the age of 65 is expected to hit 70

million by 2030, having doubled since 2000. Health care expenditures in the

United States are projected to rise to 15.9% of the GDP ($2.6 trillion) by

2010. This challenge calls for a major shift of health care from a traditional

clinical setting to a patient/home-centered setting, which can reduce health

care expenses through more efficient use of clinical resources, earlier detection

of medical conditions and proactive management of wellness.

Recent advances in sensor technology and wireless networks have made

it possible to deploy sensors on the human body and in the residential envi-

ronment, allowing continuous remote health monitoring of human subjects.

The application of wireless sensor networks to the medical environment, thus,

provides a unique opportunity to shift health care outside a traditional clini-

cal setting to a patient/home-centered setting. This will enable more efficient

use of clinical resources and earlier detection of medical conditions, and as a

result, significantly reduce healthcare expenses.
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Towards this vision, wireless-sensor-based patient monitoring system be-

comes an active research area. Although a significant amount of efforts have

been made, there remains a gap between the availability of the sensing tech-

nology and our ability to bring it into the practical use for home medical

sensing. One of the critical issues is to assure the timely and robust delivery

of the life-critical medical data in the resource-constrained wireless sensor

networking environment. A remote healthcare system usually involves the

usage of a variety of sensors. Different types of sensors (e.g., ECG (electrocar-

diogram) sensor, motion sensor) produce data with different characteristics

which require different network assurance (e.g., delay, packet loss).

In this chapter, we investigate issue of providing Quality of Service (QoS)

support for wireless remote healthcare systems. The proposed solution inte-

grates three components: (1) QoS specification based on data-driven state

machine, which is described using XML. The specification describes the QoS

requirement of medical data under different patient conditions; (2) patient

admission policy, which determines whether the sensor system has enough

resource to support the required data delivery quality under all possible sce-

narios using Linear Programming (LP) techniques; and (3) differentiated

scheduling and queue management, which enables data with higher quality

requirement to enjoy a better treatment in the network. The proposed QoS

support mechanism is implemented in CareNet, our two-tier wireless sensor

system for remote healthcare. Extensive experiment results show that our
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system can provide low latency and low loss rate assurance to critical medical

service traffic.

Related Work

Wireless-sensor-based patient monitoring system has become an active re-

search area. To name a few, CodeBlue [24] has developed sensor devices that

collect the heart rate, the oxygen saturation levels and ECG data. The data is

transmitted to receiving devices such as laptops or PDAs, which can display

the data in real time. Alarmnet [61] builds a wireless sensor network for smart

health care, which integrates heterogeneous devices including wearable sen-

sors and static environmental sensors. The Assisted Living Project [31] also

integrates sensing, computing, wireless networking and middleware technolo-

gies to buld an assisted living environment for elderly people. MEDiSN [38]

system consists of patient monitors, which collect the patients’ vital signs

and pass over the information through a wireless mesh infrastructure to the

doctor station via a tree protocol. The work of [19] has developed a medical

body networks using three types of lightweight and wearable sensors for data

sensing, processing, and collecting respectively.

System Overview

We first introduce CareNet, our remote healthcare system. CareNet has

three components: patient data collection at the Home Healthcare Gateway,
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data transmission from the Home Healthcare Gateway to the Medical Record

Database, and data access at the Accessing Client, as shown in Figure IV.1.
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Figure IV.1: System Architecture.

As illustrated in Figure IV.1, a two-tier wireless network is used to pro-

vide data sensing and collection functions. At the lower tier, a body sen-

sor network consisting of lightweight mobile wearable sensors provides data

sensing and transmission functions. These sensors can communicate with the

base-station sensors (which are attached to the backbone wireless network)

directly using IEEE 802.15.4 wireless standard. Handoff service is provided

for mobile wearable sensors when they roam between different base-stations.

In particular, the base-stations can automatically receive the incoming data

from the wearable sensors using synchronization messages. To ensure re-

liable packet delivery during the mobile sensor and base-station hand-offs,
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packets from the mobile sensors will be received by all base-stations within

their transmission ranges. This means that the same data may be forwarded

through more than one base-station (as well as backbone routers). To re-

move the duplicate data packets from the backbone network, each sensor

data packet is marked with a timestamp in its packet header. Duplicate

data packets that arrive late at the queue of a router will be dropped. The

remaining duplicate and out-of-order packets will be dropped and sorted at

the Home Healthcare Gateway.

At the upper tier of the network is a multi-hop IEEE 802.11-based wireless

network, which provides a high-performance backbone structure for packet

routing and forwarding. The backbone routers are connected to the base-

station sensors that communicate with the mobile wearable sensors directly.

Equipped with IEEE 802.11 wireless adaptors, the backbone routers com-

municate with each other and relay the sensing data to the Home Healthcare

Gateway. Finally, the Home Healthcare Gateway serves as an interface be-

tween the patient’s home and the caregiver’s medical system, which processes

all the sensing data and transmits them to the remote medical care system.

The backbone network of CareNet serves an important role of data de-

livery. Compared with sensor networks in which wireless communications

are solely based on IEEE 802.15.4 standard, our backbone network design

greatly improves the system reliability and scalability. The routing protocol

among the backbone routers is implemented at the application level. This

requires no modification of the operating system code, and thus makes it
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portable upon various operating systems. In particular, between each pair

of neighboring backbone routers, a TCP tunneling is established to provide

reliable single-hop wireless transmissions.

System Prototype

Our current CareNet system prototype provides physical activity moni-

toring and on-demand video monitoring services. The physical activity mon-

itoring is able to provide continuous regular physical movement monitoring.

Using a fall detection algorithm [18] that detects falls with the combination

of speed and orientation changes, it is also able to provide emergent alarms

when a fall is detected. The on-demand video monitoring can be used for

movement data verification and analysis.

Hardware Devices

Table IV.1 summarizes all the hardware devices we use. We use Telos

motes as the hardware devices of the body sensor network. For movement

sensing and fall detection, these motes are equipped with accelerometers and

gyroscopes. We use Stargate single board computers as the hardware devices

of the wireless backbone network. The Stargate board is also connected with

a web camera and serve as a video sensor.
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Device Description
Telos mote MoteIV TMote Sky
Stargate Processor Board SPB400CB Processor Board
Stargate Daughter Card SDC400CA Daughter Card
WiFi Card AmbiComWave2Net IEEE 802.11bWireless Com-

pactFlash Card
Webcam Logitech QuickCam Pro 4000
Memory Stick Kingston 512MB DataTraveler USB Flash Drive
Usb Hub Belkin USB 2.0 Thumb Hub

Table IV.1: Hardware Devices.
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Figure IV.2: Software Architecture.

Software Design

CareNet is built upon a multi-layered software infrastructure based on

the features and functions at each of the network tiers. The overall software

architecture is shown in Figure IV.2.

We use the TinyOS [3] operating system and the NesC programming lan-

guage to implement the movement data sensing at the wearable sensors and
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the data transmission between the mobile wearable sensors and the base-

stations. We use Embedded Linux operating system and the ACE [1] pro-

gramming environment to implement the network communication among the

backbone network routers and between the backbone routers and the Home

Healthcare Gateway. There are two major functions implemented at this

layer: as backbone routing structure, software components are built to route

and forward the video and sensor data to the Home Healthcare Gateway;

as video sensors, video data sampling and compression functions are also

implemented. We take advantage of ACE’s strong communication and con-

currency capabilities in our implementation. We use the Linux operating

system and the ACE programming environment to develop the application

software for the Home Healthcare Gateway.

QoS Support for Remote Healthcare System

In our remote healthcare system, different types of sensors (e.g., ECG sen-

sor, motion sensor) produce data with different characteristics which require

different network assurance (e.g., delay, packet loss).

To provide the QoS support for the sensor data delivery, our design in-

tegrates three components: (1) QoS specification, (2) QoS setup via patient

admission control, and (3) run-time QoS support via differentiated scheduling

and queue management.
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QoS Specification Based on XML

The QoS requirements of the sensor data are determined by two factors:

(1) sensor data type. For example, the physiological information (ECG,

blood oxygen levels) may require a higher level of reliability than video sensor

information; (2) Medical condition. For example, when a patient is having

an unusual heart rate, the ECG data are highly emergent. These sensor data

require higher reliability and lower delay.

Normal
Activity

A fall is detected
(for example, there is a sharp
increase in the z-axis acceleration)

Back to normal activity
(for example, catch the vision of 
patient standing up and walking)

Physical activity sensors
Number of sensors: 5
Packet Size: 300 Bytes
Data sending rate: 12 pkt/sec
Reliability Requirement: low
Delay Requirement: low

Fall

Video sensor
Number of sensors: 1
Packet Size: 30 Kilobytes
Data sending rate: 1 pkt/sec
Reliability Requirement: low
Delay Requirement: low

Video sensor
Number of sensors: 1
Packet Size: 30 Kilobytes
Data sending rate: 1 pkt/sec
Reliability Requirement: high
Delay Requirement: high

Physical activity sensors
Number of sensors: 5
Packet Size: 300 Bytes
Data sending rate: 12 pkt/sec
Reliability Requirement: high
Delay Requirement: high



Figure IV.3: An State-machine with State-based QoS Requirements for Pa-
tient Physical Activity Monitoring.

We use a data-driven state-machine to specify the QoS requirement of

sensor data under different patient conditions. Figure IV.3 shows an example

of patient physical activity monitoring application. It has two states: Normal

Activity and Fall. Transitions can occur from Normal Activity to Fall when
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  <state id="Normal_Activity">
      <sensor_type id="Physical_activity_sensor">
          <Number value=5>
	  <Packet_Size value=300 Bytes/>
          <Sending_Rate value=12 unit="pkt/sec"/>
          <Reliability_Requirement value=low />
          <Delay_Requirement value=low />
      </sensor_type>
      <sensor_type id="Video_sensor">
          <Number value=1>
	  <Packet_Size value=30 Kilobytes/>
          <Sending_Rate value=1 unit="pkt/sec"/>
          <Reliability_Requirement value=low />
          <Delay_Requirement value=low />
      </sensor_type>
      <transition condition="fall_detected">
          <target next="Fall"/>
      </transition>
  </state>

  <state id="Fall">
      <sensor_type id="Physical_activity_sensor">
          <Number value=5>
	  <Packet_Size value=300 Bytes/>
          <Sending_Rate value=12 unit="pkt/sec"/>
          <Reliability_Requirement value=high />
          <Delay_Requirement value=high />
      </sensor_type>
      <sensor_type id="Video_sensor">
          <Number value=1>
	  <Packet_Size value=30 Kilobytes/>
          <Sending_Rate value=1 unit="pkt/sec"/>
          <Reliability_Requirement value=high />
          <Delay_Requirement value=high />
      </sensor_type>
      <transition condition="back_to_normal">
          <target next="Normal_Activity"/>
      </transition>
  </state>



Figure IV.4: XML Definition of the Example State-machine.

a fall is detected, and from Fall to Normal Activity when the patient is

back to his/her normal activity. We use five physical activity sensors and

one video sensor at each state. Since the Fall state is more emergent than

the Normal Activity state, for both physical activity sensor data and video

sensor data, the reliability the delay requirements of the former state is higher

than those of the latter state. The exact values of QoS requirements of the

sensors at different states as well as the transition conditions are specified by

a particular patient and his/her family doctor.

We use the eXtensible Markup Language (XML) [4] to describe the state-

machines. Figure IV.4 shows the XML definition of the example.

Patient Admission Policy

To ensure that the QoS requirements of all the sensor data transmissions

are satisfied, we must first determine how many patients (i.e., number of
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sensors) can be supported by the current system resource and only admit

the patients and their required sensors up to the system capacity. This is a

non-trivial issue, as the sensors in use and their corresponding sending rates

may be different for a patient under different medical conditions based on the

QoS specification. In particular, we use dsp to denote the traffic demand (the

total sending rate of all the sensors) of patient p at state sp ∈ Sp, where Sp

is the set of all the states of patient p. Our admission control policy should

consider the worst-case resource utilization scenario under all possible states.

Specifically, a patient who wishes to use the current sensor network must

first request an admission. This involves sending a connection request mes-

sage to the Home Healthcare Gateway and informing the network about the

types of the sensor data and their corresponding sending rates under regu-

lar and emergent states. All the previous request information of other ac-

cepted patients has been stored at the Home Healthcare Gateway. The Home

Healthcare Gateway judges whether the sensor network has enough resource

available to accept the connection, and then either accepts or rejects the con-

nection request. If the network has enough resource, for each patient under

a particular state, the actual traffic being routed should be no less than its

traffic demand.

To determine whether the network has enough resource to support the

required traffic demand, we can consider an alternative question – whether

the traffic demand can be routed so that the possible throughput is larger

than the demand. Formally, we define the minimum throughput scaling
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factor λs under a given state s, which is the minimum, over all the patients,

of the actual traffic being routed divided by its traffic demand. Let us first

consider the calculation of λs under a given state s. The maximum value

of λs can be defined using the following routing optimization formulation,

which is an integer linear programming (ILP) problem [6, 40].

maximize λs (IV.1)

subject to

∀e ∈ E,
∑

e′∈I(e)

∑

p∈P

xs
p(e

′) ≤ c (IV.2)

∀p ∈ P, ∀u ∈ V − {sp},

∑

v∈V,
e=(v,u)

xs
p(e)−

∑

v∈V
e=(u,v)

xs
p(e) = 0 (IV.3)

∀p ∈ P,
∑

v∈V
e=(v,h)

xs
p(e)−

∑

v∈V,
e=(h,v)

xs
p(e) = λs · dsp (IV.4)

∀e ∈ E, ∀p ∈ P, xs
p(e) = 0 or xs

p(e) = λs · dsp (IV.5)

In this formulation, c denotes the channel capacity; e ∈ E represents

a wireless edge, v ∈ V represents a backbone router; I(e) denotes the set

of edges which interfere with edge e; sp is the backbone router that origi-

nally receives the sensor data from patient p; h denotes the Home Healthcare

Gateway; xs
p(e) is the amount of patient p’s traffic being routed on edge
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e. Inequality (IV.2) is the wireless channel constraint. Equation (IV.3) and

Equation (IV.4) are the flow conservation conditions. Equation (IV.5) means

that a edge either does not transmit patient p’s traffic, or transmits all of

his/her traffic.

Now let’s consider the value of λ under all possible states. In this case,

we use the worst case network utilization to make an admission decision.

Formally

λ = min
s

λs

∀pi ∈ P, ∀spi ∈ Spi, s = {sp1, sp2, ..., spi, ...} (IV.6)

λ reflects the minimum proportion of the traffic that can be routed for

each patient over his/her traffic demand under all possible patient medical

conditions. Therefore, as illustrated inEquation (IV.6), for any patient at

any state, the value of the corresponding λ should be no less than 1 in order

to admit the new patient.

Differentiated Scheduling and Queue Management

For the patients who are admitted into the system, their sensor data is as-

sociated with two types of priorities (services) – the reliability-based priority

and the delay-based priority. Initial packet priority setting is straightfor-

ward: for two packets, if packet 1 requires a lower delay than packet 2, then
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its delay priority is higher than packet 2. The reliability-based priority is

similarly set. The priorities of a packet will be used in scheduling and queue

management at the backbone routers.

The behavior of an individual router is based on the priorities of the

packets it receives. We use one normal packet queue at each router to store

the packets received, and use two virtual priority queues, one for reliability

priority and one for delay priority, to store the location and priority values

of each received packet.

The priorities of the packets that stored in the packet queue are dynam-

ically adjusted: the reliability priority decreases with time and the delay

priority increases with time. This is to ensure that the oldest packet has

more opportunity to be scheduled, however, it is also prone to be dropped if

it has not be scheduled.

Our scheduling and queue management policies are based on the com-

parison of the priorities of the packets, which need to achieve the goal that

the highest delay priority packet has the least delay and the highest reliabil-

ity priority packet has the least likelihood of being dropped due to a queue

reaching its maximum capacity. These two policies are described as follows.

• Differentiated Scheduling. When the network adaptor is ready to sched-

ule a packet, the packet with the highest delay priority is scheduled and

transmitted to the next hop.

• Queue Management. When the queue is full at the backbone router,

the packet with the lowest reliability priority will be dropped.
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Design of the Backbone Router
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Figure IV.5: Backbone Router Using Priority Queue and A Single Sending
Thread.

A backbone router implements the following two functionalities at the ap-

plication level: (1) Routing and forwarding functionality, which means select

the next hop router and forward sensor data to it. This is implemented based

on the optimization-based routing protocol; and (2) Queuing and scheduling

functionality, the design details of which are shown in Figure IV.5.

The backbone router is running a “Router” process. We use several re-

ceiving threads, each of which is used by a predecessor router, and a sin-

gle sending thread, which is used by a successor router; these threads are

spawned by the “Router” process at the backbone router. The number of

the receiving threads is the number of TCP connections requested by other
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backbone routers it accepted. There is a packet queue shared by all of these

threads. This queue uses the reliability priority queue and the delay prior-

ity queue to determine which packet to be dropped and which packet to be

scheduled.

If a backbone router receives the sensor data directly from a patient, it

also performs video and/or physical activity data sender functionality. As a

video data sender, a backbone router is running a “Video Sender” process,

which spawns two threads, one for receiving video packet from the video

sensor, the other for sending video packet to the next-hop backbone router.

There is a video packet queue shared by these two threads. As a physical

activity data sender, a backbone router performs the similar functionality.

System Prototype Experiment and QoS Evaluation

This section describes our system prototype experiment and evaluates the

performance and QoS support capability of our remote healthcare system.

System Prototype Experiment

Figure IV.6 shows the screen shot for an experiment using our system

prototype. In the experiment, five physical activity sensor motes are mounted

on a patient, two on the wrists, two on the ankles, and one on the waist. Each

sensor mote is capable of recording accelerations in three dimensions (x, y,

and z axis) as well as rotations in two dimensions (x and y axis). We received
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Figure IV.6: Sit-to-stand and stand-to-sit experiment.

more than 400 movement packets from each of the five sensors, and for each

packet we recorded the X-, Y-, Z-axis accelerations and the rotations around

X-, Y-axis. We also show the corresponding video images when receiving

movement packets 100 and 140. Detailed description of our software design

and experiment results can be found in our earlier work [33].

System Performance and QoS Experiment

Using the priority setting algorithm and the queuing and scheduling meth-

ods, and the design and implementation of the backbone routers, we conduct

a set of system performance and QoS experiments with and without QoS
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Figure IV.7: Throughput (scenario 1).

support. We compare the throughput, delay, and drop rate of the sensor

data packets from two patients; patient 1 is under the Normal Activity state

and patient 2 is under the Fall state. Each patient is equipped with five

physical activity sensors and is monitored by one video sensor.

In this experiment, we suppose that for both the physical activity sensors

and video sensors, the reliability requirement is 0.65 and delay requirement is

90 milliseconds at the Normal Activity state; and 0.85 and 45 milliseconds

at the Fall state.

Without QoS Support (Scenario 1)

For the first set of experiments, we do not provide the QoS support. All

of these sensors are with the same reliability-based priority and delay-based
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Figure IV.8: Throughput (scenario 2).

priority. The results of the throughput, drop rate, and delay are shown in

Figure IV.7, Figure IV.9, and Figure IV.11.

Table IV compares the reliability and delay of these sensors under the

same priority settings; they satisfy the QoS requirements defined before under

the Normal Activity state; however, they do not satisfy the QoS requirements

under the Fall state.

With QoS Support (Scenario 2)

For the second set of experiments, since patient 2 is at the Fall state,

we increase the reliability and delay priorities of video sensor 2 and physical

activity sensor set 2. The results of the throughput, drop rate, delay and are

shown in Figure IV.8, Figure IV.10, and Figure IV.12. From these figures,
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Figure IV.9: Drop Rate (scenario 1).

Video Physical Activity Video Physical Activity
Sensor 1 Sensor Set 1 Sensor 2 Sensor Set 2

Reliability 0.7613 0.8171 0.7821 0.8203
Delay (msec) 58.34 61.59 57.24 61.06

Table IV.2: Reliability and Delay with the same Priority Settings.

we can see that the sensors that have higher reliability and delay priorities

achieve higher throughput, lower delay, and lower drop rate.

Table IV compares the reliability and delay of these sensors under differ-

ent priority settings; they satisfy the QoS requirements defined before under

both the Normal Activity and Fall states.
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Figure IV.10: Drop Rate (scenario 2).

Video Physical Activity Video Physical Activity
Sensor 1 Sensor Set 1 Sensor 2 Sensor Set 2

Reliability 0.6886 0.7203 0.8610 0.8898
Delay (msec) 89.07 70.55 37.66 42.75

Table IV.3: Reliability and Delay of with different Priority Settings.
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Figure IV.11: Delay (scenario 1).
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Figure IV.12: Delay (scenario 2).
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CHAPTER V

CONCLUDING REMARKS

Wireless networks are more prone to failures than their wireline coun-

terparts. The unique characteristics of wireless networks introduce funda-

mental challenges to the design of restoration related wireless networks that

can satisfy the performance and reliability requirements. Network and ser-

vice restoration schemes posed for wireline networks (such as the Internet)

are poorly suited for highly dynamic and unstable wireless networks. This

dissertation investigates the network and service restoration as well as QoS

support issues in the design of reliable multi-hop wireless networks. Specifi-

cally, as shown in Table V.1, it investigates the following three problems for

wireless stationary and mobile networks, respectively.

Network Restoration for Linear programming approach is applied
Multi-hop Wireless to minimize the performance degradation
Stationary Networks caused by node failures and jamming attacks
Service Restoration for Dynamic programming approach is applied
Multi-hop Wireless to minimize the service disruption
Mobile Networks caused by node mobility
QoS Failure Prevention XML-based service description, patient
for Wireless Remote admission policy, differentiated scheduling
Healthcare System and queue management is applied

to provide QoS support

Table V.1: Research Contributions.
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It first investigates the network restoration problem in multi-hop wireless

stationary networks under node failures and jamming attacks. The pro-

posed defense strategy dynamically adjusts the channel assignment and traf-

fic routes to bypass the failed nodes and the jamming area. The goal is to

minimize the performance degradation caused by node failures and jamming

attacks. To achieve this goal, an optimization-based approach is applied,

which formulates network restoration strategies as linear programming prob-

lems and gives an upper bound on the achievable network throughput. After

we solve the LP problems, we have a set of flows assigned to edges that have

been assigned to different channels. And based on the LP solutions, we pro-

vide a greedy scheduling algorithm using dynamic channel assignment, which

schedules both the network traffic and the jamming traffic. We further pro-

vide a greedy static edge channel assignment algorithm, where a channel

is assigned to an edge at the beginning and will remain fixed over all time

slots. In particular, we consider two strategies, namely global restoration and

local restoration, which can support a range of tradeoffs between the restora-

tion latency and network throughput after restoration. To quantitatively

evaluate the impact of network failures during and after restoration, we de-

fine two performance degradation indices, transient disruption index (TDI)

and throughput degradation index (THI). Network performance of these opti-

mal network restoration strategies is evaluated via comprehensive simulation

study under different failure scenarios.
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It second investigates the service composition and restoration problem

in multi-hop wireless mobile networks under frequent mobility-caused wire-

less link failures. To address this issue, we propose a service composition and

restoration framework designed to achieve minimum service disruptions. The

framework consists of two tiers: service routing, which selects the service com-

ponents that support the service path, and network routing, which finds the

optimal network path that connects these service components. Our frame-

work is based on the disruption index, which is a novel concept that character-

izes different service disruption aspects, such as frequency and duration, that

are not captured adequately by conventional metrics, such as reliability and

availability. Using the definition of disruption index, we formulate the prob-

lem of minimum-disruption service composition and restoration (MDSCR) as

a dynamic programming problem and analyze the properties of its optimal

solution for wireless mobile networks with known mobility plan. Based on

the derived analytical insights, we present our MDSCR heuristic algorithm

for wireless mobile networks with uncertain node mobility. This heuristic

algorithm approximates the optimal solution with one-step lookahead pre-

diction, where service link lifetime is predicted based on node location and

velocity using linear regression. We conduct comprehensive simulation study

to compare and analyze the results of throughput and disruption index of

our MDSCR algorithm with the traditional methods (e.g., the shortest path

routing and service composition) under the impacts of service path length,
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service link length requirement, traffic type, service component redundancy,

system dynamics, and disruption penalty function.

It also investigates the QoS support scheme for health monitoring ser-

vices that integrates XML-based service description, patient admission pol-

icy, differentiated scheduling and queue management. The proposed solution

is implemented in CareNet, our two-tier wireless sensor system for remote

healthcare. Extensive experimental results show that our system can provide

low latency and low loss rate assurance to critical medical service traffic.
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