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CHAPTER I 

Introduction 

The field of medicine and the treatment of patients changed dramatically in the 20th century. 

One facet of this change was a consequence of the development of computers and their promulgation 

into the field. Electronic Health Records (EHRs) allow for the digital capture of patient information and 

have proven to be a valuable tool for patient treatment. In addition, they open the clinical world for 

research through secondary use of EHR data. In this dissertation, I explore the use of EHRs and their 

data for several purposes with a clinical focus on rheumatoid arthritis (RA).  RA is a chronic autoimmune 

disorder that primarily affects joints with swelling, stiffness, and pain, and if left untreated can lead to 

permanent joint damage. 

Chapter II contains a review of EHRs and secondary research in the context of RA. It starts with 

an overview of EHR components and rates of implementations in the US, including a model of EHR 

adoption over time. The next section looks at the clinical benefits of EHRs in general and with respect to 

RA. The third section covers secondary research in EHRs, including associated genetic studies. It 

concludes with a summary and a perspective on the future use of EHRs. This manuscript is currently 

under review for the journal Expert Review of Clinical Immunology. 

Chapter III was adapted from a published manuscript presenting a package for the R statistical 

program for performing phenome wide association studies (PheWAS). This package contains the tools 

needed to perform EHR-based or observational trial PheWAS, from ICD-9 code translation to association 

testing and meta-analysis. It includes a versatile plotting system for phenotype related information, 

based on the Manhattan plot paradigm commonly used in genome-wide association studies (GWAS). 
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Chapter IV presents an application of PheWAS to genetic risk scores (GRS).  GRSs are a method 

to aggregate many single nucleotide polymorphisms (SNPs) that all contribute to a common disease or 

trait. In this analysis, we investigate the potential pleiotropy in a RA GRS as well as the SNPs that 

comprise the GRS. We find that the GRS is more specific to RA than the SNPs, as expected, but note that 

there are some significant associations that remain, most notably to hypothyroidism. 

Chapter V presents the application of machine learning methods to the identification of RA drug 

response in the EHR. This work builds on my previous work to identify accurately RA from EHR data. The 

study is focused on using evidence from various forms of clinical documentation to determine if RA 

treatment using the anti-tumor necrosis factor alpha (anti-TNF) drug etanercept was deemed efficacious 

by the original treating care providers. We developed a phenotyping method to distinguish between 

individuals that respond and do not respond to this treatment. We made some improvements to 

address the more difficult phenotyping problem, including the use of ngram features which measure 

series of words up to n length and the application of the random forest machine learning method.  

Chapter VI is a preliminary analysis applying the response prediction methods of Chapter V to a 

new data set in order to investigate potential comorbidities found in individuals with a lack of response 

to etanercept. We found a trend towards axial skeleton disease in RA patients with poor response to 

etanercept compared with those individuals that respond, as well as a potential association with 

fibromyalgia.  

Chapter VII summarizes the results, discusses limitations, and presents future research 

directions. 
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CHAPTER II 

INTELLIGENT USE AND CLINICAL BENEFITS OF ELECTRONIC HEALTH RECORDS IN RHEUMATOID 

ARTHRITIS 

Introduction 

Electronic Health Records (EHRs) have been an important advance in clinical care, with both 

accelerated adoption and impact over the last five years. Clinicians and researchers have been seeking 

to design and implement electronic versions of the chart since the late 1960s[1]. Early electronic 

systems provided a common, up-to-date location for medical data that could be accessed by multiple 

providers at the same time. As early as the mid-1970s, researchers were using EHRs to improve care 

quality through active interventions with the introduction of decision support[2,3]. As adoption of EHRs 

has become more widespread, studies have shown improvements in patient care with fewer errors, 

better guideline adherence[4], and reduced cost[5]. As a result of developments in data standards and 

perceived financial incentives to optimize care, many healthcare systems have begun to share data 

across sites through Health Information Exchanges (HIE).  However, EHRs are not a panacea - some 

studies have shown possible increases in mortality[6] or medication errors[7] associated with new EHR 

efforts, highlighting the need to consider and evaluate EHR interventions and new installations carefully. 

Beyond clinical care, EHRs also provide a rich set of data for secondary research. One example of 

secondary use of EHR data is pharmacovigilance, mining records to check for previously unknown drug 

interactions or adverse events[8]. Institutions can also leverage EHR data for patient ascertainment for 

existing clinical trials[9]. Institutions are also beginning to utilize biobanks, most notably keeping DNA, in 

order to augment the available phenotypic data[10,11].   
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In this review, we survey the clinical and research uses of EHR data within the context of 

rheumatology with a specific focus on rheumatoid arthritis (RA).  Overall, data suggest that EHRs can 

improve the quality of care with some measures related to care for patients with rheumatologic 

diseases, though specific studies in RA are few.  On the other hand, RA and other rheumatologic 

diseases have been fertile ground for secondary use, including with DNA biobanks. These trends seem 

likely to lead to improvements patient care, both through new discoveries and improved workflows. 

Overview of EHRs 

Major Components of EHR Systems 

A 2009 New England Journal of Medicine article by Jha, et al. included an expert consensus 

definition of EHR functionalities[12]. Included were two general classes of EHRs, “basic” and 

“comprehensive” that each had a list of criteria to characterize functionality. They applied these 

definitions to measure implementation across the US. We review these definitions here as a foundation 

for discussing the breadth of features in EHRs and understanding the measures of implementation 

presented in the next section. 

Basic EHR systems include demographic data, systems for capturing physician and nursing 

documentation, structured problem and medication lists, laboratory and radiologic results, and 

discharge summaries. They additionally must include the ability to order medications electronically using 

e-prescribing tools that can electronically send prescriptions to pharmacies.[12] These tools typically 

represent electronic versions of paper based record systems. 

Comprehensive EHRs include more features and provide potential advantages over paper based 

records systems. Two primary examples are the use of Computerized Provider Order Entry (CPOE) and 
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Clinical Decision Support (CDS)[12]. The ability for providers to electronically enter medications, 

laboratory tests, and radiology exams can be helpful by itself, allowing opportunities for CDS logic to 

examine the patient’s record to provide recommendations based on clinical evidence.  For example, CDS 

can recommend dosing for medications with narrow therapeutic windows such as warfarin[13] and 

gentamycin[14], and alert clinicians to known drug-drug interactions[15].  Such CDS interventions have 

been shown to reduce preventable adverse drug event (ADEs) by 34% [16]. Leveraging the breadth of 

information available across a hospital system can additionally help in other areas, such as disease 

monitoring, where automated data retrieval can speed identification of potential outbreaks[17].   

A recent trend in CDS systems is the incorporation of complex genetic information into drug 

prescribing. One example is the Vanderbilt Pharmacogenomic Resource for Enhanced Decisions in Care 

and Treatment (PREDICT) program[13,18]. In a study of the first 10,000 enrolled individuals, 91% had at 

least one actionable variant[19]. St. Jude’s Children’s Hospital has also integrated variant testing into 

their care[20].  

Recent growth in Electronic Health Record use 

EHRs in their early forms were developed and implemented in the 1960s and 1970s[21,22]. 

Research groups have been investigating methods for the storage and use of patient treatment data 

very shortly after their first development[1]. The implementation of these records has grown in 

complexity, though the basic tenets of providing accessible information to help treat patients have 

remained. The broad recognition of the potential for EHRs to improve care, facilitate patient 

management, and reduce cost in part led to the Health Information Technology for Economic and 

Clinical Health (HITECH) Act in 2009. Enacted as part of the American Recovery and Reinvestment Act of 

2009, the HITECH act provides financial support for institutions implementing EHR systems[23]. 
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As EHRs have been more broadly adopted, guidelines have been established for basic and 

comprehensive EHR systems[12] helping researchers to measure their implementation.  By 2009, 48.3% 

of office based physicians had at least a partial EHR[24].  By 2012, 44% of general, acute care US 

hospitals reported using any type of EHR. However, only 27.3% of all hospitals met the requirements for 

a basic system and 16.7% for a comprehensive system[25]. In 2013, 78% of office-based physicians 

reported using an EHR with more than a billing system, with 48% of office-based physicians meeting the 

guidelines[24].  

In 2009, Ford et al. published an article showing the application of a technology diffusion model 

to EHR implementation data[26]. They showed that the pace of EHR adoption using data up to 2007 

seemed to slow from their previous projection, which used data up to 2004[27]. Applying their same 

projection method to more recent data shows a much-improved rate of adoption in office-based 

physicians than anticipated by these two earlier models, with large gains after the HITECH act came into 

effect. The HITECH act encourages the adoption of more feature-rich EHR systems, leading to a higher 

percentage of all EHR systems reaching the qualifications for basic systems over time. This is presented 

in Figure 1. 
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Figure 1: EHR adoption among office-based physicians in the United States by year. 

The points represent measurements from the National Center for Health Statistics[24]. The curves 
represent fits to the technology diffusion model used by Ford et al. The two dashed curves represent 

previously published projections[26,27] based on published measurements of institutions using any EHR 
system that implemented more than billing functions from 2001 to the listed year. The black curve uses 

similar measurements from the NCHS with data from 2001 to 2011. The final curve uses the 
measurement of EHRs that meet the higher qualifications for basic systems. The dashed vertical line for 

2009, the date at which the HITECH act was passed. The solid vertical line is 2011, the first year EHRs 
were certified. 
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Meaningful Use of EHRs 

The compensation from the HITECH act is tied to Meaningful Use (MU) milestones that were 

developed to promote clinically beneficial EHR systems.  MU is divided into different stages that 

describe the requirements for effective use of EHRs[28]. MU currently has two stages linked to 

compensation, each comprised of a set of core required attributes and a set of menu items, a set 

number of which must be fulfilled[29]. Institutions benefit from fulfilling MU stages early, as each stage 

requires at least 2 years of implementation before progressing to the next. Financial rewards are 

available for a limited period of time after which, Medicare reimbursement penalties are applied. 

The requirements for stage 1 of MU for professionals are similar to those of the basic EHRs: 

record vitals, demographics, current problems, diagnoses, medications, allergies, and smoking status, 

and provide CPOE for medications. In addition, EHRs must include some CDS rules, including drug-drug 

and drug-allergy interaction checking. Electronic prescribing (eRX), electronic patient access to their 

record including clinical summaries for each visit, and the protection of EHR information are also 

required as core objectives. Menu objectives include drug formulary checks, structured lab results, 

practice wide patient searches, patient reminders, patient-specific education needs assessments, 

medication reconciliation, a summary of care record for patient referrals, electronic submission of 

immunization records, and electronic submission of public health related surveillance data[30]. This is 

similar for hospitals, but eRX and patient visit summaries are not core objectives due to the different 

nature of visits. Hospitals also have an additional menu objective: the ability to submit electronic data 

on required reportable lab results to public health agencies[31]. For example, the Tennessee 

Department of Health requires reporting of certain diseases and events including positive HIV tests, all 

blood lead level tests, and any positive Salmonella tests[32]. Stage 2 of MU makes many of the stage 1 

menu items mandatory, while adding additional core and menu objectives[33]. 
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MU has also added requirements that problem and medication lists should use structured 

vocabularies to represent their content whenever possible.  Structured information can help prevent 

ambiguity and permit direct integration into CDS[34]. Before this, many medication and problem lists 

were kept primarily in free text forms[35], while some problem lists were derived automatically from 

the amalgamation of prior billed ICD9 codes, which may have limited clinical utility by accruing both 

irrelevant (acute upper respiratory infections) and nonspecific (“other malaise and fatigue”) problems.  

Medical problems are to be recorded using Systematized Nomenclature of Medicine-Clinical Terms 

(SNOMED-CT), which adds more clinical specificity to recording of medical problems than ICD9, and 

allows algorithmic reasoning on such codes. For example, SNOMED-CT defines “Felty’s syndrome” as a 

child concept of “Rheumatoid arthritis” with an “is a” relationship, which would allow an algorithm to 

know that all that Felty’s syndrome individuals also are RA individuals, though the reverse is not implied. 

In addition, both “lupus erythematosus” and “rheumatoid arthritis” are child concepts of “autoimmune 

diseases”, which is helpful when considering interactions or concerns related to classes of disease. 

Structured languages such as SNOMED-CT provide a foundation for these advanced uses that cannot be 

directly accomplished with free text. However, there are limitations to expressivity and content 

coverage that can arise when compared to free text[34]. The MU transition to primarily structured 

content, with free text being the exception, in these lists may allow for the best balance between utility 

and usability. 
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Benefits and Use of EHRs 

Clinical Benefits of EHRs 

The traditional randomized controlled trial can be difficult to implement in studies of EHRs; 

typically EHRs are implemented hospital-wide, yielding a pre- and post-intervention design with 

potential confounders and concerns about reliability of the results, as mentioned previously[6,7]. In an 

attempt to avoid these issues, one study used multiple sites, with site adjustments, to show an 

improvement in three of seven heart failure quality measures with EHR use[36]. Another study used a 

cluster-randomized trial to show the benefits of using an email notification system for reporting results 

of tests pending at discharge; attending physicians reported an improvement of awareness of these 

results from 38% to 76%[37]. 

In its simplest form, computerized documentation in EHRs provides a transmittable, legible, and 

persistent record of care plans and disease history. Although use of electronic documentation may mean 

that handwriting legibility is no longer an issue, typographical or transcription errors and ambiguous 

abbreviations are still a concern.  Some computerized documentation tools also have attempted to 

capture structured data[38,39].   

CPOE is one of the most well studied aspects of EHRs, and generally has demonstrated clinical 

benefit. Although there are studies that have shown the potential for increased cost and errors[40], a 

recent review and meta-analysis of CPOE data identified 16 studies that passed methodological criteria, 

and the majority of those studies demonstrated an improvement in patient treatment. Fourteen of 

those sixteen studies showed a decrease in the number of medication errors, with an overall pooled risk 

ratio of 0.46 (95% CI: 0.35 to 0.60). Of the six studies they identified with preventable ADE 
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measurements, all studies reported a decrease in preventable ADEs with a meta-analysis risk ratio of 

0.47 (95% CI: 0.31 to 0.71)[41].  

CDS has also been revealed to be impactful for improving medication dosing. One randomized 

controlled trial (RCT) found a reduction in excessive dosing of patients with renal insufficiency in an 

emergency department from 74% to 43%[42]. Another study showed an improvement in the accuracy of 

initial dosing of two aminoglycoside treatments from 40% to 80%. The overall ordered regimens that 

matched the recommended treatment regimen in that study increased from 31% to 76%[43]. 

Another important use of EHRs is for population health management – improving patient care 

and outcomes by better disease status monitoring. A randomized, controlled trial showed an 

improvement in reporting known problems by suggesting problems with evidence in the EHR, which can 

improve care by keeping care providers informed and up to date[44]. Partners Healthcare developed a 

class of tools called Smart Forms, which integrate many facets of the EHR into a view that provides most 

information necessary to manage one condition [39]. A study showed a statistically significant decrease 

in coronary artery disease and diabetes mellitus management deficiencies within 30 days after a PCP 

visit when comparing no CDS to a Smart Form. This implementation provided direct access to relevant 

previous lab results (e.g., LDL levels), orders, and notifications for out of date information[45].  

How CPOE and CDS are implemented can have a large impact on their success. One of the more 

impactful papers describing factors related to successful implementation of CDS is the “Ten 

Commandments for Effective Clinical Decision Support: Making the Practice of Evidence-based Medicine 

a Reality” from Bates et al.[46]. Their suggestions orient around system usability, particularly in speed, 

fitting workflows, simplicity, and accuracy. These tenets are underscored by the example of clinical 

alerts to alter care. The traditional alert model is interruptive, requiring the provider to attend to the 

message at hand.  Such alerts are overridden 49-96% of the time[47]. While some overrides are 
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legitimate, many represent alerts that could have been omitted by the system. Clinicians in one study 

spent around 49 minutes on average interacting with alerts, demonstrating the importance of curating 

these alerts[48].  An overabundance of alerts can also create negative clinical consequences, as “alert 

fatigue” can lead to important relevant, actionable alerts being ignored by busy clinicians[49].  Also, this 

article and others highlight the importance of tailoring the method of information display to the 

importance of information.  For example, information-only alerts may not need to be interruptive, but 

high-risk allergies and many out-of-range doses should be[50].  Researchers have also designed methods 

to help alert curation by automating the process of categorizing the importance of alerts[51]. 

EHRs are changing the way we document clinical encounters.  One study showed that even 

though there was a nominal and significant increase in documentation time after the deployment of an 

EHR for acute care and intensive care, respectively, the majority of care providers reported that 

electronic documentation was the most efficient means of documentation, over handwritten notes and 

dictation[52]. Researchers have noted an increase in duplication of content in clinical notes, via text 

copied and pasted from one document to another, resulting in notes with as little as 22% non-

duplicated content [53].  Some redundancy is expected (e.g., a murmur likely persists, the many of the 

chronic clinical problems remain the same visit to visit), but some can lead to inaccuracies, which can 

include specific symptoms, timing references, and non-updated medication lists.  The clinical impact of 

these redundancies and potential error rates are not known.  

Despite a general trend to the incorporation of more structured forms of documentation 

mentioned earlier, free text “natural language” documentation methods (using dictation, speech-to-text 

technologies, or typing) remain an important form of documentation.  Only free-text allows clinicians to 

record the nuance of a clinical presentation[34]. Natural language processing (NLP) leverages free-text 
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documentation by mapping the text to a structured vocabulary, which has then been used for clinical 

care[54], educational opportunities[55], and secondary research (discussed in detail below). 

Clinical studies for EHRs in the Treatment of RA  

Overall, few studies have directly studied EHR interventions in RA or other rheumatologic 

diseases. For example, a PubMed search for “clinical decision support” returns 1,934 results, yet a 

search also including “rheumatoid arthritis” only includes two results: one is a suggested study 

design[56] and the other was a feasibility study identifying the Arthritis Foundation’s quality indicators 

in the Veterans Administration Computerized Patient Record System and Health Data Repository[57]. 

Neither of these studies actually reported on the impact of CDS on patient care. 

The use of automated audits using EHR data could be a valuable tool to ensuring quality of 

patient care in RA[57]. Similar investigation was performed into the identification of the American 

College of Rheumatology (ACR) quality indicators for RA patients in the EHR at Geisinger Health System. 

These investigations at the VA and at Geisinger showed difficulty with identifying some of the subjective 

measures of patient information automatically in the EHR[57,58].  Selecting quality indicators that use 

the more typically codified data, e.g., lab tests and medication entries, is an easier solution, but 

additional complications related to the measuring of dates and filling status of prescriptions still 

remain[59]. 

One method of direct patient impact that has been investigated is the use of disease activity 

calculators. They are designed to help clinicians track patient status over time while encouraging 

detailed recording of the specific variables needed for calculation. One group of researchers designed 

and tested, both for accuracy and clinician response, a rheumatology-specific tool named 

“Rheumatology on Call” including Disease Activity Score on 28 joints (DAS28)[60]. It includes a graphical 
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interface with trends for measurements and an image based joint exam summary. The physicians found 

the tool useful: at the end of the study, 12 of 13 physicians reported that use of the application 

improved patient care and that seeing a trend in DAS28 was useful. The tool itself, even in the absence 

of erythrocyte sedimentation rate (ESR) and c-reactive protein (CRP) measurements at the time of the 

visit, was reported to be fairly accurate, especially in the extremes of disease activity[61]. 

Secondary Use of EHRs for Research 

Reusing EHR data for Research 

As institutions more widely implement EHRs, EHR data has been utilized more frequently in 

clinical research[62–64]. The accumulation of records over time has reached a critical mass where this 

data from institutions with early implementations of EHRs has captured sufficient patient data to 

investigate many hypotheses. Use of EHR data for research has revealed advantages and disadvantages 

compared to traditional case and control or other prospective studies[65].   

One of the most important differences in EHR-based research when contrasted with a 

traditional prospective study is the breadth of potentially recorded information. EHRs maintain 

information about all aspects of patient care, while a prospective study will only record prespecified 

data points under study. In an EHR, the difficulty of broadly assessing a patient’s health across a number 

of conditions for a stand-alone research database is alleviated by the necessity of the data for clinical 

care[66]. Patient ascertainment becomes much simpler as well, as one can simply query a database to 

find patients[67].  As described below, further refinement of a patient cohort is often necessary. 

There are some drawbacks to the secondary use of EHR data for research purposes as compared 

to traditional study designs. While the patient information recorded tends to be very broad, it may not 
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be as dense or uniformly recorded in a particular area of interest[68]. Only details relevant to patient 

treatment and the diagnosis process may be recorded. Lab tests that may be valuable for research 

purposes, e.g. rheumatoid factor tests, may be viewed as clinically unnecessary (or have been 

performed previously at another institution) and therefore not present in the individual’s record. Other 

data such as heights or weights may be irregularly measured, inaccurate, and missing[69]. 

Environmental exposures and phenotypic descriptors such as hair color, freckling, or handedness are 

often absent. Social and family histories may only be included if it was potentially relevant to a 

diagnosis. Researchers can be limited in their ability to recruit patients or accurately characterize a 

population, especially in cases where only electronic data warehouses are being used. Some data is not 

accessible: departments may have independent data repositories, documents may be scanned into the 

EHR, and portions of records, like imaging results, may be unavailable. This is of particular concern if 

patient recontact for further evaluation is not possible due to data de-identification, patient death, or 

institutional policies. This does apply to some prospective studies as well, depending on how the 

protocols were designed and if further communication was permitted. EHR data is also known to be 

noisy and variably complete[70]. Often data is 

This transition in research methods is most apparent in the growing number of secondary use 

publications and research networks, such as the Electronic Medical Records and Genomics network 

(eMERGE)[10], the Pharmacogenomics Research Network’s (PGRN) PharmacoGenomics in large 

POPulations (PGPop) initiative[71], and the recently-announced Patient-Centered Outcomes Research 

Network (PCORnet), which will allow secondary uses studies covering at least one half of a percent of 

the US population[72]. These collaborations increase the sample size for investigators, allowing larger 

studies across regions, which can be valuable in exploring more phenotypes and populations[66]. 
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Since EHR systems are optimized for patient-at-a-time queries, EHR data is typically restructured 

into population-queryable data structures as research data warehouses for secondary use.  Both 

academic and commercial EHR vendors have developed software systems to enable easier secondary 

use of EHRs.  Examples include the Informatics for Integrating Biology and the Bedside (i2b2) platform 

[73], Epic’s Clarity (Madison, WI), the Utah Population Database[74], Vanderbilt’s Synthetic 

Derivative[75], the Electronic Healthcare Record for Clinical Research (EHR4CR) platform[76], and others 

available for use by the community[77].  The i2b2 framework is a freely available, open-source platform 

that is flexible to inclusion of diverse clinical and genomic data and provides an extendible graphical user 

interface [73].  It has achieved particular success with implementations in around 90 different 

organizations and institutions[78]. It has further extensions, such as the Shared Health Research 

Information Network (SHRINE)[79] which provides mechanisms for data sharing among i2b2 institutions. 

The TranSMART[80] system, which shares the i2b2 data model, provides a platform to perform in silico 

analysis.  These initiatives represent the clinical research community’s entrance into the growing data 

science world. The vast amount of clinical data recorded in EHRs is valuable whether one is interested in 

improving outcomes, reducing spending, or identifying underlying pathways. 

Finding cases and controls in the EHR  

As mentioned in the previous section, the lack of study-specific detailed observations is one of 

the primary drawbacks to secondary use of EHR data. The breadth of information recorded in the EHR 

has allowed for investigation of many different phenotypes. One such method the phenome-wide 

association study, facilitates the identification of associations between a range of documented 

conditions and genetic variants, biomarkers, and other phenotypes[81]. The published methodology 
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maps ICD9 billing codes to a true hierarchy of case control phenotypes, but there is also potential to 

mine EHRs for broad ranges of phenotypes defined in other ways in clinical documentation. 

One of the major fields of study in EHR research is how to reliably identify exposures, disease 

status, and outcomes. Instead of investigating broad ranges of phenotypes, researchers focus on a small 

number of more specific, and accurate, phenotypes. Case control disease status is perhaps the most 

common example. Another might be assessing a lab value pre- and post-intervention, which can be 

complicated by patients visiting other providers, having previous treatments, timing of the test, 

confounding by other co-occurring exposures (e.g., other medications with an impact on liver function 

tests, or eating before a “fasting” glucose measurement). 

The simplest route to case and control identification is the use of codified billing code data. 

However, the presence of a billing code does not guarantee a diagnosis. In the case of RA, a study of a 

VA hospital database showed that only around 66% of rheumatology clinic patients with at least one 

ICD9 billing code for RA have a true clinical diagnosis[82]. As further demonstrated in that study, 

researchers often combine multiple classes of data to achieve high positive predictive values (i.e., a high 

percentage of individuals that are called a case truly have the disease). This process of creating 

algorithms to find individuals matching certain definitions has been referred to as “EHR 

phenotyping”[83]. For use in secondary research, data in EHRs is typically categorized as coded data, 

laboratory results, medication prescriptions, and clinical documents. Combining these data elements 

can result in both better sensitivity and positive predictive value for identifying a cohort with a given 

disease[83–85].  

Laboratory results are descriptive diagnostic tools often with codified or numeric values. They 

may be a measure of physiology, such as erythrocyte sedimentation rate to measure inflammation, or 

can be an informative biomarker for identifying a phenotype, such as rheumatoid factor for identifying 
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RA. These values are often important to diagnosis and describing disorders, but can be difficult to use 

due to changing standards over time, differences in measurement or reporting across institutions or 

over time, and the potential for inaccurate, missing, or invalid measurements. 

Records of medication exposures improve the confidence in a diagnosis and often serve as a 

marker of severity. However, medications and their indications are not typically explicitly linked within 

an EHR. As an example, many of the drugs used to treat RA can also be used to treat other autoimmune 

diseases. One resource, called MEDI, ties medication prescriptions to indications; an evaluation of 

adalimumab showed that in 50 patients with a prescription, 48 of them had known indications[86]. 

Methotrexate had worse performance, where out of 50 patients with a prescription, only 40 had known 

indications. Five were missing an indication, and five had an indication that was missing in MEDI. Tools 

like MEDI, while limited to some extent in scope and accuracy, can allow researchers to better integrate 

medication information by helping identify alternative reasons for prescriptions. When attempting to 

investigate drug-response phenotypes, prescription records do not guarantee patient adherence[87] 

and may remain on a patient’s chart long after the medication has been stopped.  When available, 

prescription fill data is beneficial, but is not available within most EHRs. Prescription records may also 

require normalization across dose sizes, dose frequencies, routes, and mapping between brand names 

and their generic equivalents. 

The free text from clinical documentation often contains important information not present 

elsewhere, but the extraction of this data to be used in any automated setting can be difficult. Factors 

such as negated terms (e.g., “no RA”), and word sense disambiguation (does “RA” mean rheumatoid 

arthritis, right atrium, right arm, or room air?) complicate the task. 
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 Figure 2: An example flow of data from patient care to secondary research. *Prescription filling data 

is not typically captured. 

Figure 2 contains a typical data flow chart from patient care to secondary research. Data from 

the patient care is recorded in the EHR, which is then transported to a secondary research data 

warehouse. This data may be de-identified to protect patient privacy in accordance with the Health 

Insurance Portability and Accountability Act[88]. This de-identification includes removal of safe harbor 

identifiers, such as names, but may be more complex depending on the institutional policies and 

intended use of the data[89]. In addition, biologic samples, such as DNA, may be collected, linked to EHR 

data, and stored in a biobank for later analysis. These samples may be from surplus collections or by 

intentional choice. The data from the datamart and biospecimens may be further processed and then 

incorporated into research methods. 

RA Identification in the EHR and Discovery Research 

RA has been well studied by researchers identifying phenotypes in the EHR. The identification of 

RA in the EHR is difficult in part due to the complex relationships between autoimmune disorders. An 

individual with one ICD9 billing code for RA was shown to have a confirmed clinical diagnosis of RA less 
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than 50% of the time at three sites; many of the individuals had diagnosis codes for Systemic Lupus 

Erythematosus (SLE), Juvenile Ideopathic Arthritis, or Psoriatic Arthritis (PsA) [90]. A study using the 

Veterans Health administration databases showed that of individuals with 2 RA codes 6 months apart, 

only 30.9% had a clinical diagnosis of RA on review at the last available encounter[91]. 

The earliest methods that sought to improve upon simple presence or absence of ICD9 billing 

codes included rule based approaches that identified based on the presence or absence of codes, 

medications, and text matches[85,91,92]. Later methods developed include more complicated statistical 

and machine learning approaches to case identification[85,93]. 

Liao et al. identified RA patients using logistic regression across many attributes including 

codified data, i.e. ICD9 codes, electronic prescriptions, and anti–citrullinated protein antibodies (ACPAs) 

and rheumatoid factor (RF) laboratory values, and NLP results from narrative EHR data, including disease 

diagnoses, medications, laboratory data, and radiology findings[85].  They began their algorithm with a 

filter first requiring the presence of at least one ICD9 code for RA.  The authors showed a dramatic 

improvement in positive predictive value over just using ICD9 codes: 94% as compared to 56% for those 

individuals with three RA billing codes. They also highlighted the importance of including both codified 

and NLP data, as the PPVs for models including only each class of data were 88% and 89% respectively. A 

further study has shown that these methods are applicable to other institutions[90]. Another method 

used Support Vector Machines, a machine learning technique[94], on ICD9 codes, NLP results, and 

medication records with similar performance[93]. Another group of researchers has investigated non-

diagnosis code lists and keywords in early identification of RA[95,96]. 

Newer research has focused on identifying more complex attributes of RA patients instead of 

simply case control disease status. These further studies allow the investigation of more distinct 

phenotypes. One example is a study that compared the serotypes of non-RA controls to RA individuals. 
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This study found that individuals with RA had a significantly increased likelihood of having antinuclear 

antibodies (ANAs), normally associated with SLE, as well as the expected ACPAs[97]. Work has also been 

done on identifying disease activity, which can be used for investigating treatment trends. Researchers 

were able to train a model using lab values and NLP concepts that could identify between the broad 

DAS28 groups moderate and high versus low and remission with an AUC of 0.83. This is comparable to 

the results of clinician chart review[98]. This work is similar to the DAS28 calculator discussed earlier, 

but retrieves some information from the free text clinical narratives that was collected in the disease 

calculator. 

A group of researchers out of Australia investigated issues with disease control for RA patients 

using deidentified EHR data from 28 sites. These sites implemented a DAS28-ESR calculator that 

presented information to the treating clinician, and the study focused on identifying barriers preventing 

patients from reaching low disease activity or remission. From 584 records with no adjustment of 

disease modifying anti-rheumatic drug (DMARD) therapy and a moderate or high DAS28-ESR score (≥ 

3.2), the authors identified irreversible joint damage as the most common barrier to treatment control 

(BTC) at almost 20% of records. Other common BTCs included patient-driven undertreatment (14.7%), 

rheumatologist-driven undertreatment (9.9%), noninflammatory musculoskeletal pain (9.2%), and 

insufficient time to assess response to recently initiated DMARD (9.2%)[99]. 

Researchers are also focusing on differences in treatment and ways to predict risk or benefit of 

different treatment options. One such example is a study in the Veterans Health Administration 

database[100]. The authors of this study identified risk factors for liver function test abnormalities in 

patients treated with methotrexate. This study is notable as it used only EHR data, and the researchers 

suggest a risk score could be calculated in the EHR and presented to physicians to help inform treatment 

and liver function monitoring decisions. 
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RA Genomics Research 

As early as 2010, replication of genetic associations with RA were shown using EHR derived 

data[92]. Two of the first four studies on EHR-based genetics studies included results on RA[92,81].The 

ability to use EHR derived phenotypes to identify genetic associations demonstrated in these and similar 

studies helped drive the adoption of biobanks linked to EHRs[10,11,75,101–103]. A 2011 study of RA 

using genomics data and EHR derived multiethnic cohort showed similar odds ratios to the published 

literature for many risk variants[104]. 

 This study was further able to show connections between RA risk loci and ACPA status. In an 

analysis of 29 SNPs previously associated with RA, they found some significant differences in ORs for 

some SNPs when comparing results from studies with cases who were ACPA positive vs. those who were 

ACPA negative. They were also able to show similarity of RA risk SNPs across ethnicities[104]. This work 

was further expanded by investigating other autoantibodies and phenotypes in conjunction with RA 

status. The genetic risk score (GRS) models were able to show an association between more total RA risk 

alleles and more auto-antibodies[97].  EHR-derived samples also contributed to a large meta-analysis 

GWAS of 29,880 RA patients and 73,758 controls; this study identified 42 new genetic loci as part of 

RA[105].   
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Table 1: List of EHR based RA identification and discovery research. 

 Citation Topic and Significance 

R
A

 P
h

e
n

o
ty

p
in

g 

Liao et al. [85] Designed a logistic regression model to identify RA. Demonstrates value of billing 
codes, text, lab, and medication attributes. 

Carroll et al. [93] Designed a support vector machine to identify RA. Discusses training set size 
requirements and the benefit of using expert-selected features. 

Carroll et al. [90] Shows portability of complex algorithms across three sites to identify RA. 

Ng et al. [91] Uses VA administration data to identify RA. 

Lin et al. [98] Calculates an estimate for disease activity groups from EHR notes and associated 
lab values. 

Nicholson et al. [95] Identifies markers of RA that appear before a coded diagnosis. 

Ford et al. [96] Compares RA keywords and information that appears in coded data to free text 
data, finding missing data in the coded information. 

Schmajuk et al. [100] Identifies risk factors for abnormal liver function tests in patients treated with 
methotrexate. 

R
A

 E
H

R
 G

e
n

e
ti

cs
 Ritchie et al. [92] Replicated known RA genetic associations using cohorts identified using an EHR 

algorithm. 

Kurreeman et al. [104] Uses a large, EHR derived RA cohort to investigate genetic associations. 
Demonstrates similar genetics across ethnicities divided into subsets based on 
ACPA status.  

Liao et al. [97] Compares genetics, autoantibodies, and diagnoses in an EHR cohort. Showed an 
association between more auto-antibodies and higher genetic risk for RA. 

Pharmacogenomics and RA 

Biobanks linked to EHRs are likely to continue to be important in many areas beyond simple 

disease associations, for example pharmacogenomics- finding associations between genes and drug 

metabolism, response, and toxicity[106]. Methotrexate treatment, commonly used in RA, can lead to 

drug-induced liver injury[107]. There is an opportunity using EHRs and genetics data to further 

investigate the pathways behind this toxicity[108]. 

Due to the importance of early, aggressive treatment in RA, identifying genetic markers or other 

factors that may impact the success of certain medication regimens could be very helpful. Studies have 

shown limited success thus far in identifying genetic factors related to anti-TNF treatment 

response[109], but larger studies may have the power to find or confirm signals. EHR biobanks and 
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multi-site collaborations may provide the sample size needed to identify markers that may lead to 

better patient treatment. 

Conclusions 

Expert commentary 

We find that EHR adoption is accelerating beyond the rate projected in studies as recent as five 

years ago. Many studies have demonstrated that EHRs can effectively improve clinical care, but there 

are relatively few studies investigating RA outcome improvements due to EHR interventions in clinical 

care. However, EHRs have proven a fertile environment for secondary research in RA, and the benefits 

of these studies are near to impacting clinical care. 

In particular, EHRs are sought for the improvements that they can provide for patient health 

outcomes and the potential financial benefits provided. Often overlooked is their potential as a platform 

for development with real opportunities to provide clinicians with tools to simplify and improve their 

practice. Some of these tools do exist as mentioned earlier; however, many EHRs cannot support 

customization to allow implementation of external tools. An EHR that meets stage 2 of MU criteria does 

not just provide more content for electronic consumption over a stage 1 qualified EHR but also provides 

a broader foundation on which to build these tools. As EHR adoption increases and more feature-rich 

EHRs spread, one can expect that the clinician-facing options will improve as well. One can compare this 

to the advent and adoption of smartphones: as smartphones have grown in capabilities, the user 

experience has improved. This growth in the platform has also provided for a much larger growth in the 

diversity and capability of the “apps”, magnifying the effects of wider adoption and growing features. 

Indeed, some such platforms are being developed today, including the Substitutable Medical 
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Applications, Reusable Technologies (SMART)[110], which would exposure EHR data to a marketplace of 

replaceable and sharable “apps” much like on a smartphone. 

EHR-based research in RA has provided some insights into the nature of the disease, in 

particular with the study of autoantibodies. The genetic risk SNPs identified for RA do not provide much 

direct clinical benefit at this time - even if one knew an individual was at high genetic risk for RA, it is 

unlikely to change anything about their treatment or lifestyle choices as there are no proven 

preventative strategies for RA. Understanding the underlying biology could perhaps lead to new 

therapeutic targets and drug repurposing; indeed one study has used genetic results to suggest new 

drugs that might have efficacy in RA[105]. The larger, more immediate clinical benefit of genetic 

discovery will likely come from pharmacogenomics studies, which are becoming more common. 

Predicting which individuals are likely to respond and not have adverse effects from a given treatment 

would have a very practical impact on patient treatment in the near term. Such studies have been 

implemented in cardiology[13] and oncology[111], but not yet in rheumatology.  These types of 

investigations can be well suited to the data available in EHRs and biobanks now instituted around the 

world.  Indeed, collecting cohorts of patients with adverse drug events take very large patient 

populations, which may be more easily and inexpensively accrued as a byproduct of health care than a 

clinical trial. 

Five Year View 

EHRs will continue to gain in both clinical adoption and their robustness for the near future. 

Growth in EHRs provides opportunities for improved care in RA while simultaneously providing a 

platform for reuse for clinical and genetic research. Opportunities to integrate the existing tools to track 

RA disease status can assist clinicians in care. These tools are likely to also provide a more organized set 



 26 
 

of data for secondary clinical and biological research. HIE implementation is likely to expand as well; 

benefits may include physician knowledge of DMARD treatment in emergency room visits for trauma 

where infections may be a concern.   

Pharmacogenomics is an important and growing area of secondary research. Studying RA drug 

response and toxicity phenotypes in the EHR will be easier as methods develop, data in EHRs expand, 

and consortia grow. In particular, the identification of treatment patterns may help researchers and 

clinicians identify factors that lead to better response or avoid adverse reactions.  

Key points  

1) EHRs are growing in adoption and complexity due to the HITECH act and MU objectives.  

EHR use is typically associated with improved outcomes and reduced cost, though specific studies in RA 

are lacking. 

2) RA specific tools exist to help track patient disease activity[60,99]. 

3) CDS is available to help clinicians treat patients, whether assisting in dosing, watching 

for drug-drug interactions, or alerting to outdated results.  However, no specific studies have evaluated 

these elements in RA. 

4) Identifying quality indicators and disease activity scores are helped by codified data, e.g. 

joint counts, and EHRs are moving to collect more of this information. 

5) RA has been an active area for secondary clinical and genetic research using EHR data.  

Genetic studies in EHR have demonstrated results in multiethnic cohorts, evaluated the role of genetics 

to predict autoantibody status, and contributed to finding new RA genetic loci. 

6) Statistical and machine learning methods exist for identifying RA patients and their 

disease activity automatically from the EHR. 
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7) Research networks provide opportunities for collaborations in studying hypotheses.  

Growing populations of EHR-linked biobanks will enable greater RA and RA pharmacogenetic research. 
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CHAPTER III 

R PHEWAS: DATA ANALYSIS AND PLOTTING TOOLS FOR PHENOME WIDE ASSOCIATION STUDIES 

IN THE R ENVIRONMENT 

Introduction 

The development and promulgation of genome-wide association studies (GWAS) as a method to 

investigate genetic risk for disease has shaped the field of genetics over the last 10 years. Investigating 

as many as several million genetic changes between a set of disease cases and controls, these studies 

have identified many genetic factors related to disease. Software has been developed to perform and 

support these analyses, two important examples being Plink and SNPTEST[112,113]. 

A more recent development in the field has been the phenome-wide association study 

(PheWAS), which flips the GWAS paradigm by searching across many phenotypes for a given genetic 

variant[81]. Utilizing the diverse information on phenotypes available in the electronic health record 

(EHR), one can find new associations of interest that would have been missed in a single case control 

study. A PheWAS using genetic data tied to an EHR cohort has replicated 66% of powered associations 

from the GWAS catalog, in addition to discovering new associations[114].  

GWAS software is optimized to efficiently find associations with single phenotypes and many 

genotypes. This does not translate well to PheWAS, where a small number of genotypes are investigated 

across many phenotypes. To facilitate local and widespread use of the PheWAS methodology, we 

developed a package for the R statistical environment[115] that can transform data, perform the 

analysis, and provide visualization[116].  
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Methods 

Data Input and Phenotypes 

The PheWAS package is designed to use data from the EHR, but it is flexible to any attributes 

that are supported in R regression models. To perform a classic PheWAS analysis, users can apply a 

function that translates ICD-9 codes, typically collected in the course of clinical billing, to the PheWAS 

phenotypes. Currently, these phenotypes represent a set of approximately 1600 diseases and disorders 

derived from ICD-9 billing code criteria[114]. These phenotypes include exclusion criteria which can be 

used to automatically exclude individuals from the control group of studies when they have evidence for 

similar diseases. Users must supply outcomes, e.g. ICD-9 codes translated to PheWAS phenotypes, and 

predictors, e.g. additive allele counts for a SNP. Users can additionally include covariates, such as age 

and gender, for the analysis. 

Statistical Analysis and Visualization 

The typical PheWAS uses logistic regression to find associations. The included phewas() function 

also permits linear regression models for continuous outcomes as well as t-tests and chi-square tests for 

unadjusted analyses. All standard attributes of the test are reported, e.g. p-values and odds ratios. Users 

can also request the complete computed models to be returned, as well as Hardy-Weinberg Equilibrium 

values and allele frequencies when testing additive allele models. The phewas() function has 

incorporated platform-independent parallelization. Meta-analysis of results can be performed using an 

included wrapper function for the “meta” package[117]. Results can be plotted using the “Manhattan” 

plot paradigm. The plotting methods include many customizations and are generated using ggplot2, 

which allows for modification by the end user[118]. 
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Applications of the PheWAS package 

In order to demonstrate the R PheWAS package, we replicated a PheWAS on the known multiple 

sclerosis SNP rs3135388 from the original PheWAS methodology manuscript[81]. This application is 

updated to include the newest PheWAS phenotypes[114] and adjusted logistic regression models, which 

should improve on the originally reported OR of 2.24 and p-value of 2.8x10-6 derived from a Chi-square 

test, in spite of using the same set of 6,005 individuals. There were additional tests performed as well; 

1127 PheWAS phenotypes had at least 20 cases and controls, as compared to the 733 phenotypes in the 

original study. We investigated a non-standard application of PheWAS in the same population by using 

phenotypes as predictors with an individual’s maximum white blood cell count (WBC) as the outcome 

measure. We included age and gender covariates in the linear regression models used. This dissertation 

contains several additional applications of the R PheWAS package. 

Results and Discussion 

The association between the HLA SNP rs3135388 and PheWAS phenotype multiple sclerosis 

improved from the original study to an OR of 2.56 and a p-value of 1.47x10-7. This OR is more consistent 

with the one found the largest published meta-analysis on multiple sclerosis, which reported an OR of 

2.75[119]. All associations are visualized by the PheWAS Manhattan plot in Figure 3. We found many 

PheWAS phenotypes were associated with maximum WBC, including infections and leukemias. These 

results are presented in Figure 4. 
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Figure 3. PheWAS Manhattan plot for rs3135388. PheWAS phenotypes are colored and grouped 
according to the general class along the x-axis. The red line is Bonferroni significance and the blue line is 

p=0.05. 
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Figure 4: PheWAS Manhattan plot for maximum WBC. PheWAS phenotypes are ordered within each 
phenotype group by p-value. Phenotypes were used as predictors, not outcomes, in this study. The red 

line is Bonferroni significance and the blue line is p=0.05. 

 

We present this package as an accessible method to perform PheWAS. The package includes a 

vignette, examples, and documentation of functions to assist in implementation. The PheWAS described 

here were performed primarily using the three functions “createPhewasTable”, “phewas”, and 

“phewasManhattan”. These example plots and results show some of the variation available in the 

methodology described. The R PheWAS package will ideally assist researchers interested in EHR-based 

studies by providing a toolkit to smooth their investigations.  
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Reference to Publication 

More detail on this project can be found in the following manuscript: Carroll RJ, Bastarache L, Denny JC. 

R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment. 

Bioinformatics 2014;30:2375–6. doi:10.1093/bioinformatics/btu197 
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CHAPTER IV 

PHENOME WIDE ASSOCATION STUDIES USING GENETIC RISK SCORES 

Introduction 

Disease comorbidity, the co-occurrence of two diseases, is a familiar concept to care providers. 

There are many ways common comorbidities can arise[120]. They may share the same risk factors, as in 

lung cancer and emphysema caused by smoking, one may increase risk for the other, for example an 

opportunistic oral candidiasis infection in an individual with an HIV infection, or some combination, 

where old age may increase risk for dementia and both old age and dementia increase risk for hip 

fractures. The risk pathways for these comorbidities may not be known, and it can be difficult to identify 

the true casual pathways. 

One possible cause of disease comorbidity is underlying genetic risk. Single Nucleotide 

Polymorphisms (SNPs) are genetic changes that can affect the risk of developing a disease[121]. SNPs 

may also lead to the risk of more than one condition. The SNP may be pleiotropic, meaning it increases 

risk directly for two different diseases. Alternatively, the observed increased risk may be due to a 

mediated risk pathway where the genetic change increases the risk to develop a disease whose clinical 

expression is the direct risk factor for the other disorders. Discriminating between these genetic effects 

can be very difficult, just as it is for disease comorbidities in general[122].  

Electronic Health Records (EHRs) provide researchers with an observational data set to discover 

diseases that co-occur more often than expected, and use of this data can help determine the origins of 

the increased risk. One can perform statistical tests across any set of attributes recorded in the EHR to 

look for associations. A simple example might be to use a chi square test on the number of patients with 
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billing codes for type 2 diabetes and congestive heart failure. While this would not show any causality or 

rule out a confounding factor, it would show that there is some association between the two diseases. 

Researchers can then investigate this association with more data and robust methods to assess causal 

pathways.  

Phenome Wide Association Studies (PheWAS) are one tool researchers can use to formulate and 

search their data[81]. PheWAS allows researchers to investigate associations between an attribute of 

interest and many phenotypes. PheWAS phenotypes are represented by codes and are mapped from 

ICD-9 billing codes. Unlike ICD-9 codes, PheWAS codes are truly hierarchical such that similar codes are 

grouped together and can be aggregated natively, which can assist analyses. The PheWAS code 

hierarchy also includes codes that allow one to identify controls for each PheWAS disease using 

“exclusion codes”, which allow a researcher to exclude individuals who may share a similar or 

potentially overlapping diagnosis from an analysis. One can use the more complex data in the EHR to 

identify connected traits that may not have been measured in a traditional clinical or genetic study.  

Overall genetic risk for a disease can be hard to measure and assess[123], as clinical disease 

presentation may be the result of many small changes and dysfunctions. Difficulties measuring this risk 

can be compounded by environmental and behavioral factors, e.g. tobacco use, and genetic and 

biological interactions. There do exist Mendelian disorders which are directly heritable and are easy to 

categorize, but they are rare. Genetic Risk Scores (GRS) are aggregations of known genetic risk factors; 

the amount of risk they explain varies from disease to disease, but they provide a way to integrate the 

body of genome wide association study (GWAS) results into a single metric[124]. GRS can be calculated 

in a number of ways; one may simply sum of risks alleles or use the sum of the risk alleles weighted by 

their published log odds ratio. 
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For this study, we calculated GRSs from a previously published GWAS meta-analysis of RA cases 

and controls to investigate the broader phenotype information available in the EHR[105]. We looked to 

identify any association between known genetic risk for rheumatoid arthritis (RA) and myocardial 

infarction (MI), as patients with a clinical diagnosis of RA are known to have an increased risk of MI, an 

association which appears in our data. There is evidence that this risk may be due to inflammation 

promoting atherosclerotic plaque development and the atherogenic lipid profile of RA patients 

compared to the general population[125]. By investigating GRS using PheWAS, we hope to establish a 

method of distinguishing between some causal pleiotropic genetic disease risk and disease mediated 

risk. 

Methods 

Our study population came from the eMERGE network. Individuals were collected across five 

sites: Geisinger Health System, Group Health Research Institute (Washington State), Mayo Clinic, 

Marshfield Clinic, and Vanderbilt University. We collected ICD-9 codes, demographics, and genotypes 

from each site. Our study is limited to those individuals of European ancestry. Genotypes were imputed 

to 1000 Genomes Project data using IMPUTE2[126], and the dosage estimates were used in our 

calculations.  

We use known RA risk SNPs and their odds ratios (ORs) identified in an RA GWAS meta-analysis 

for our GRS [105]. We calculated GRSs in three ways. The first was a simple sum of the number of risk 

alleles (Formula 1), the second was a sum of the risk alleles weighted by their log odds ratios (“weighted 

GRS”, Formula 2), and the third was the weighted GRS excluding the human leukocyte antigen (HLA) 

SNP, rs9268839, which is the strongest known genetic risk factor for RA for individuals of European 
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ancestry with a published OR of 2.47. We reference these three as “UGRS”, “WGRS+HLA”, and “WGRS-

HLA”. The list of SNPs and ORs used can be found in Supplementary Table 1. 

Formula 1: 𝑈𝐺𝑅𝑆 =  ∑ 𝑎𝑖
𝑛
𝑖=1   

Formula 2: 𝑊𝐺𝑅𝑆 =  ∑ 𝑎𝑖𝑟𝑖
𝑛
𝑖=1  

In these formulae, a is the risk allele dosage estimate for risk SNP i, n is the total number of risk 

alleles (99 for the UGRS and WGRS+HLA, 98 for the WGRS-HLA), and r is the log of the odds ratio for risk 

SNP i. 

To complete our phenotype information, we used the most recent mapping of ICD-9 CM codes 

to PheWAS codes[114]. This mapping includes exclusion criteria for similar phenotypes (e.g., 

autoimmune disorders are exclusions for each other). Cases are those with at least two PheWAS codes 

for a phenotype on distinct days, controls are those with no codes and no exclusion codes. Analysis was 

performed in R[115] using the PheWAS package[127]. 

Our first evaluation was to see the breadth of phenotypic associations with SNPs known to be 

associated with RA. We performed a PheWAS for each SNP in the GRS independently by site. The 

associations were measured using logistic regression models between the PheWAS case control status 

and the allele dosage estimates for each SNP. We adjusted each model for the individuals’ gender, age, 

and the first five principal components generated using SNPRelate[128]. Associations for each 

phenotype were only tested at sites with at least 20 cases and 20 controls to prevent potentially 

anomalous results.  Site results were merged by meta-analysis using the R PheWAS package wrappers 

for the meta package[117]. Random effects models were used for this study, as there may be expected 

differences in the data across sites. 
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Second, we investigated the specificity of the various GRS to RA by performing a PheWAS for 

each formulation of the GRS. These associations were tested in the same way and with the same 

covariates as the single SNPs. 

Results 

We tested 1361 phenotypes in at least one site, with 568 being tested at all 5 sites. Both RA 

phenotypes were successfully tested at all sites. Figure 5 is a PheWAS Manhattan plot showing the single 

SNP associations. Table 2 shows the top 10 most significant associations. 
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Figure 5: PheWAS Manhattan plot of all SNP associations. Phenotype are sorted along the x-axis, 
grouped and colored by phenotype category. The y-axis shows the –log10 of the p-value for each 
association. The red line shows the Bonferroni correction of 0.05/(99 SNPS x 1361 Phenotypes).  
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Table 2: Top 10 Single-SNP associations by p-value 

Phenotype CHR Gene SNP Risk Allele OR p Cases Controls Sites tested 

Hypothyroidism 1 PTPN22 rs2476601 A 1.34 4.69E-07 3179 16095 5 

Rheumatoid arthritis 6 HLA-DRB1 rs9268839 G 1.34 7.51E-07 568 16468 5 

Atherosclerosis of the extremities 10 PRKCQ rs947474 A 0.80 4.34E-06 1937 13838 5 

Hypothyroidism 12 SH2B3-
PTPN11 

rs10774624 G 1.14 1.10E-05 3179 16095 5 

Urinary complications 3 EOMES rs3806624 G 1.77 1.39E-05 125 10907 2 

Atherosclerosis of renal artery 3 IL20RB rs9826828 A 3.12 1.42E-05 410 11953 4 

Rheumatoid arthritis & related 
inflammatory polyarthropathies 

6 HLA-DRB1 rs9268839 G 1.26 1.49E-05 707 16468 5 

Hypothyroidism 2 CTLA4 rs3087243 G 1.13 1.70E-05 3179 16095 5 

Atherosclerosis of aorta 3 IL20RB rs9826828 A 3.14 1.92E-05 373 11953 4 

Systemic sclerosis 1 PTPN22 rs2476601 A 3.68 2.12E-05 24 4437 1 
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Only 14 out of 99 tested SNPs were associated with RA in our analysis at p<0.05. We tested two 

different RA phenotypes: the first is named “Rheumatoid arthritis” and uses more specific RA ICD-9 

codes 714.0, 714.1, 714.2, and 714.81, while the more general is named “Rheumatoid arthritis & related 

inflammatory polyarthropathies” and includes all 714 ICD-9 codes excluding the two non-polyarticular 

juvenical rheumatoid arthritis codes. We also observed a strong association between hypothyroidism 

and the genetic factors studied, including 17 of 99 tested SNPs at p<0.05. Only 3 of those SNPs map to 

similar SNP-hypothyroidism associations in the GWA catalog[129]. 

The results for the GRS based meta-analyses can be found in Figure 6 and Table 3. Figure 6 is a 

PheWAS Manhattan plot with results split into the UGRS, WGRS+HLA, and WGRS-HLA analyses. Table 3 

contains the top 10 most significant associations for the WGRS+HLA analysis. Table 3 contains the top 10 

most significant associations for the WGRS-HLA analysis. 
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Figure 6: PheWAS Manhattan plots of each GRS. Panel (a) contains the results for the unweighted 
GRS, panel (b) the weighted GRS including the HLA SNP, and panel (c) the weighted GRS excluding the 

HLA SNP 

  

a 

b 

c 
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Table 3: Results for the WGRS+HLA 

Phenotype OR p Cases Controls Sites tested 

Rheumatoid arthritis 1.48 1.96E-18 568 16468 5 

Rheumatoid arthritis & related inflammatory 
polyarthropathies 

1.41 3.24E-17 707 16468 5 

Hypothyroidism 1.09 5.26E-05 3179 16095 5 

Diseases of esophagus 1.06 6.06E-04 6173 10783 5 

Type 1 diabetic neuropathy 1.29 1.36E-03 178 7444 2 

Type 1 diabetic ketoacidosis 1.77 1.39E-03 37 3828 1 

Systemic sclerosis 1.97 1.40E-03 24 4437 1 

Esophagitis, GERD and related diseases 1.06 2.02E-03 5746 10783 5 

Type 1 diabetes nephropathy 1.28 2.11E-03 178 7444 2 

Kidney replaced by transplant 1.14 2.15E-03 727 8574 2 

 

Table 4: Results for the WGRS-HLA 

Phenotype OR p Cases Controls Sites tested 

Rheumatoid arthritis 1.29 5.23E-06 568 16468 5 

Rheumatoid arthritis & related 
inflammatory polyarthropathies 

1.26 3.68E-05 707 16468 5 

Hypothyroidism 1.11 6.11E-05 3179 16095 5 

H. pylori 1.62 3.14E-04 100 10892 3 

Discoid lupus erythematosus 1.54 4.13E-04 119 11193 3 

Diseases of hair and hair follicles 1.23 4.72E-04 496 17499 5 

Polyp of corpus uteri 0.70 7.48E-04 156 8856 2 

Gastritis and duodenitis 1.13 1.02E-03 1467 10783 5 

Gastritis and duodenitis, NOS 1.21 1.37E-03 528 10783 5 

Other specified diseases of hair and hair 
follicles 

1.30 1.39E-03 262 17499 5 

 

The top three associations with the WGRS+HLA remain in the top three for the WGRS-HLA, 

though the associations are weaker: 5.23E-06, 2.75E-06, and 6.11E-05 respectively. The top 5 

associations with the UGRS are found in Table 4. Note that the ORs are not directly comparable, as the 

scale and range of values of the WGRS and UGRS are different. Figure 7 shows the distribution of the 

unweighted GRS to the weighted GRS for comparison. MI was not associated (p<0.05) with any of the RA 

GRS models. 
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Table 4: Top 5 results for the UGRS 

Phenotype OR p Cases Controls Sites tested 

Hypothyroidism 1.01 4.24E-05 3179 16095 5 

Rheumatoid arthritis 1.05 4.90E-05 568 16468 5 

Discoid lupus erythematosus 1.07 5.11E-05 119 11193 3 

Rheumatoid arthritis & related inflammatory 
polyarthropathies 

1.05 7.45E-05 707 16468 5 

Systemic lupus erythematosus 1.07 3.21E-04 84 9712 2 

 

 

Figure 7: WGRS+HLA vs UGRS. This plot shows the positive correlation between the two measures. 
The points are colored by the dosage estimate for the HLA SNP of each individual. 
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Discussion 

One of the most surprising results of this study was the lack of strong single SNP associations 

with RA. Each of the SNPs used in this study has previously been shown to be associated with RA risk. 

The ORs reported in the large meta-analysis used to build our WGRS ranged very broadly, in some cases 

as small as 1.01. It is not surprising that many of these SNPs were not then associated with RA, given our 

small case size of 568 (or 707 for the more generic phenotype) across all sites. However, the strongest 

expected signals were underwhelming. The study included one HLA SNP, tagging HLA-DRB1. This SNP, 

rs9268839, has a previously reported OR of 2.47, yet in our study saw an OR of only 1.34. Another well 

studied association with the PTPN22 gene has a reported OR of 1.80 in populations of European 

ancestry, yet we found an OR of 1.27.  

There are several possible explanations for the observed weak associations. The first is that the 

RA phenotype may not be well defined by the default PheWAS methodology of a minimum of 2 RA 

codes. Studies have shown very low positive predictive value for such low counts of ICD-9 codes and 

RA[90]. On the genotyping side, these samples were ascertained for different reasons, and it is possible 

that bias in the patient selection could lead to underlying genetic differences. For instance, the risk allele 

rs2476601 in PTPN22 has a higher prevalence among controls at one site than any other population, 

which yielded an OR in the opposite direction to the other sites. The use of imputed genotype data also 

could contribute a small error that would reduce the study’s power to detect associations.  

The associations with hypothyroidism in the RA GRS are one of the most interesting results in 

this study. There is some discussion in the literature about the clinical association between RA and 

hypothyroidism, but there has been little conclusive evidence about the shared genetic risk or 

pathogenic risk between the two[130]. Seventeen SNPs were associated with hypothyroidism (p<0.05) 

in the single SNP tests of association, and 11 of these remained significant after adjustment for RA 
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status. The association with the UGRS suggests a shared genetic component between the two diseases 

where enough risk alleles are present among the 99 to still show an association. The OR of 1.01 reflects 

a small average effect on hypothyroidism risk for these SNPs. This evidence could mean not all SNPs are 

related to hypothyroidism risk, some are protective for hypothyroidism, or that all SNPs contribute a 

small genetic risk. In addition, the association with the UGRS remains after adjustment for RA, though it 

is slightly attenuated. This persistence suggests that the risk for hypothyroidism may due to pleiotropic 

genetic effects and not solely mediated by clinical presentation of RA. It may also be worth noting that 

some systemic sclerosis risk SNPs were identified, which also have potential ties to autoimmune thyroid 

disorders. 

The associations with atherosclerosis show a slightly different pattern. While there are several 

single SNP associations with atherosclerosis and hypercholesterolemia, these associations do not appear 

in the GRS. It is possible that there are not enough SNPs to show a signal when mixed in with the non-

associated risk SNPs. RA patients are at increased for myocardial infarction, an association which is 

present in the data used in this study. The lack of strong genetic signals suggests the risk is more likely 

pathogenic and not due primarily to shared genetic factors. 

Further analyses of these results could take advantage of known gene and protein interactions 

to more accurately model associations. It may be possible to discover new comorbidities with shared 

genetic risk by considering subsets of these SNPs, perhaps by known pathways. In addition, any 

interactive effects of the SNPs are missed by the aggregating methods used. Applying techniques that 

allow for interactions and leverage existing knowledge bases may provide new insight into the 

heritability of these phenotypes[131]. 

GRS have shown to be an effective tool in investigating the risk for comorbid disorders. By 

identifying an association between hypothyroidism and the RA GRS that is independent of RA status, we 
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are able to propose that shared genetic risk is an important factor in the observed association between 

RA and hypothyroidism. In addition, the lack of a genetic association with MI suggests little shared 

genetic risk and more risk due to the presence of RA in the patient.  
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CHAPTER V 

PREDICTION OF DRUG RESPONSE IN THE ELECTRONIC HEALTH RECORD 

Background and Significance 

Rheumatoid Arthritis (RA) is a chronic degenerative disease with significant morbidity and 

mortality, affecting an estimated 1.6 million adults in the United States in 2005[132]. The American 

College of Rheumatology (ACR) guidelines for treatment of RA include the use of anti-Tumor Necrosis 

Factor Alpha (anti-TNF) medications in more severe cases that do not respond to methotrexate or other 

non-biologic combination regimens[133]. Anti-TNF agents are anti-antibodies that suppress TNF-a in the 

patient[134]. Anti-TNF treatment is expensive, is contraindicated in cases of infections due to the 

immune modification, and is not always efficacious. Studying patient response may help in prescribing 

the correct medication and perhaps better our understanding of the RA disease process. Retrospectively 

identifying those individuals that do and do not respond to treatment is one step towards this 

investigation in the electronic health record (EHR). 

We have previously shown the ability to predict the disease status of potential RA cases through 

the use of billing codes, medications, and free clinical text data[90,93]. Drug response identification is a 

more difficult task, however. Efficacious anti-TNF treatment may not be stopped due to the chronic, 

incurable nature of RA, but there are several reasons to stop or change treatment, including the cost of 

treatment and infections. In a study on long-term efficacy of etanercept, 9% of patients stopped 

treatment due to lack of efficacy, 7% due to adverse events, and 6% at patient request[135].  Some 

studies suggested higher rates of nonresponse, including 25.3% in a study on treatment dosages and 

response[136]. Thus, given the variety of reasons individuals may discontinue use of anti-TNF agents, 
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the prescribing history for a responder stopped for a reason other than lack of efficacy (e.g. side effects 

or cost) can look very similar to a nonresponder.  For this reason and others, detection of 

nonresponders is a complex task involving analysis of patient involved joint counts (when recorded in 

the EHR), inflammatory markers, and global assessment of patient disease activity. 

There are two general informatics approaches to identification of responders and 

nonresponders from EHR data. The first is to take a visit based approach. An algorithm must identify the 

start and stop of the medication under study (potentially occurring more than once) and determine the 

trends in the individual’s disease activity over that treatment time. The second is to look at the record as 

a whole and seek out any indication that the individual did not respond. Researchers have explored the 

identification of disease activity from single visits[98]. The downside to this method is the large amount 

of data required at each visit to make an accurate prediction; if one does not have regular visits with 

detailed reports, it may prove difficult to find a reliable trend. Our study investigates the second method 

of drug response prediction: summarizing information over the entire record to make a response 

assignment. This format does not natively use temporal information in the record, but it only requires 

one layer of prediction to make a class assignment and it can incorporate more data if regular, robust 

information is not available.   

Methods 

The goal of this study is to identify responders and non-responders to treatment with 

etanercept. Our first evaluation describes the ability of our models and feature space to discriminate 

between these two classes. However, we identified a third class of individuals for which physicians 

reviewers cannot determine whether the individual is a responder or not. These individuals were 

labeled as “unsure”, as it is not possible to determine the response of these individuals from their 
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records. To address this concern, we also formulated a multiclass prediction problem to measure the 

additional difficulty of using non-curated data that met our inclusion criteria. Evaluating the 

performance of these models displays the ability of the feature space and machine learning algorithms 

to identify those individuals for whom there was insufficient information, as well as the previous 

problem. 

For these analyses, we used data from Vanderbilt’s Synthetic Derivative, a deidentified version 

of the EHR[75]. The initial cohort selection was based on three criteria. Individuals must be predicted to 

be RA positive by a support vector machine (SVM) ICD-9 based algorithm[93], they must have genotype 

information available in the connected DNA repository BioVU[75], and each individual must have a 

mention of one of the anti-TNF drugs etanercept, adalimumab, or infliximab in his or her record. These 

criteria identified 141 individuals. 

A rheumatology fellow reviewed the 141 charts that met these criteria to determine if the 

individual responded to the anti-TNF medication based on the original treating clinician’s opinion. A 

second clinician reviewed twenty of these charts, finding a Cohen’s kappa across all three drugs of 0.56. 

Disagreements were reconciled and a detailed plan to consistently identify response was outlined. 

Reviewers looked for documentation that indicated response or non-response, including clinical 

assessment, e.g. a reduction in swollen joint count, patient reported information, e.g. “patient reports 

less morning stiffness”, and continued long-term treatment. Individuals were considered responders if 

there was evidence for response at 6 months after initial treatment. However, if the individual appeared 

to no longer respond at 12 months, they were considered a non-responder. If the individual responded 

at 12 months but lost response after that point, reviewers classified the individual as a responder and 

additionally flagged their response as "fading". Individuals with drug exposure, but insufficient 

information to determine their response status were flagged as “unsure”. 
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After this initial review, 55 individuals with true etanercept exposure were identified. As this 

was the most commonly used anti-TNF agent identified via the reviews, it was selected for further study. 

In addition, some individuals were identified that had no true anti-TNF exposure. We selected a 

threshold of anti-TNF mentions that yielded a strong positive predictive value with respect to actual 

drug exposure. This threshold was used in the future when identifying individuals for study.  

In order to expand the gold standard reviews, we selected 274 new charts that were predicted 

to be RA positive, had DNA available for genotyping but had not been genotyped, and met the more 

stringent anti-TNF mention criteria for etanercept. The review of these records included a 20 chart 

overlap between reviewers one and two. We evaluated their agreement, finding an improved Cohen’s 

kappa of 0.76. A third reviewer reviewed a small set of charts selected using early algorithms predicting 

likely non-responder status, six of which were reviewed in conjunction with Reviewer 1 to ensure 

consistency. The complete summary of chart reviews can be found in Table 5. 

Table 5: Summary of chart reviews.  

Reviewer Total Responder Non-Responder Unsure 

Original set (Reviewer 1) 55 43 12 0 

Reviewer 1 158 105 25 28 

Reviewer 2 102 64 13 25 

Reviewer 3 14 3 9 2 

Totals 329 215 (65%) 59 (18%) 55 (17%) 

 

We used four types of data to predict response to etanercept: demographics, billing codes, 

medication entries, and clinical notes. A complete data description can be found in Supplementary Table 

2, the following is an overview of the data types. Demographic information included age, gender, and a 

binary variable for white as self-reported race. We transformed ICD-9 billing codes into PheWAS codes, 

which we aggregated for each individual and code by counting the number of unique dates the ICD9 

code was assigned. All count data was natural log transformed, while age was scaled to a maximum of 1. 
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We represented medication data in several ways. The simplest was counting the number of 

clinical notes and prescription entries containing mentions of “etanercept” or “Enbrel”. We included 

counts of other anti-TNF agents, as well as counts after the first prescription mention. We also 

measured the length of time between the first and last etanercept prescription, as well density of 

etanercept prescriptions as measured by prescriptions over time.  

We applied two methods to use the clinical note text. For the first, we processed the notes 

containing “Enbrel” terms with the KnowledgeMap Concept Identifier (KMCI) to find all UMLS concepts 

in those notes[137]. We sought to find concepts that may be informative about drug response by 

limiting to those concepts found in the same sentence as the drug mention. 

The second method used ngrams: ordered groups of words from the text. We performed several 

transformations to clean the text before creating the ngrams. First, we selected clinical notes containing 

Enbrel mentions. These notes are de-identified using DE-ID with additional pre- and post-processing as 

described in Roden et al, which replaces names and dates with special tags containing anonymized 

names and shifted dates, e.g. “**NAME[YYY ZZZ]” and “**DATE[Jan 01 2000]”[75]. We normalized DE-ID 

name and date tags to simply “name” and “date”, numbers to “num”, removed single letter words, and 

merged consecutive spaces to a single space. From there, we selected text segments of up to twenty 

words before and after the drug mention. These segments were combined if they overlapped. We 

normalized the words in these segments using snowball stemmer and identified all ngrams of up to size 

5. Ngrams that occurred in 2 or fewer individuals were removed from the data set. 

We also performed some simple feature selection to reduce the complexity of training the SVM 

models. Within each round of training set data, t-tests for the difference in the mean of each feature 

were performed between the two groups. For multiclass prediction, analysis of variance tests were 

performed. Attributes were included in the model for that step in the cross validation if they reached a 
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p<0.01 level of significance. Table 6 includes the number of features in each class of data, with and 

without feature selection (SVM and RF, respectively). 

Table 6: Numbers of features for each class of data. Feature selection was performed for the SVM data, 
the RF used no feature selection. 

Data class SVM RF 

All Data 3,633 93,087 

Ngrams 3,344 80,981 

CUIs 268 10,747 

PheWAS Codes 7 1,345 

Prescription Counts 1 1 

Medication Summary Measures 11 11 

Demographics 3 3 

We evaluated the performance of two types of predictive models, radial basis function kernel 

support vector machines (SVM) and random forests (RF) in the R statistical environment[115]. SVMs 

were selected given their strong previous performance in identifying RA cases, and RFs were selected for 

their ability to use data with many more attributes than samples. We used the e1071 package in R to 

create the SVMs[138]. They were trained with 5-fold cross validation to assess performance and used 

nested 3-fold cross-validation to tune hyperparameters. We created the RF models using the 

randomForest package in R[139]. We trained forests using the default parameters: 500 trees, the square 

root of the number of features per tree, and a minimum node size of one. This size feature set per tree 

covered all features in even the largest data sets, and applications of the tuneRF function showed no 

significant increase in performance varying the features per tree parameter. A grid search across 10, 

100, 1000, and 1000 for both number of trees and variables per tree with 1 and 5 for node size showed 

maximum performance estimates similar to the default parameters. We calculated the accuracy of the 

RF models using the out-of-bag predictions from the model training. 

The primary outcome measure was the area under the curve (AUC) of the receiver operating 

characteristic (ROC) curve of the algorithm to predict non-responders from the group of responders and 
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non-responders. We also evaluated the multi-class prediction problem including the unsure individuals. 

AUCs are reported for each class using the ROC curve for the probability scores reported by the 

algorithm for that class. To further characterize the unsure individuals, we classified them using the 

models trained on only responders and non-responders. 

Results 

Table 7 presents the results of the models. The most effective, and most complex, single set of 

features was the ngram counts. For methods combining feature sets, using all data in the case of SVMs 

or all data but CUIs in the case of RFs performed the best.  

Table 7: AUCs for the two-class discrimination models. Reported values are AUC ± 1 standard error. The 
highest AUC for each model type and per combined or single data class method is bolded. Ngrams are 

the most predictive feature set. 

Data Class Data Types Included SVM RF 

Combined All available 0.937±0.014 0.924±0.015 

 Ngrams, CUIs, Meds 0.938±0.014 0.915±0.017 

 Ngrams, PheWAS, Meds 0.933±0.015 0.917±0.017 

 Ngrams, Meds 0.930±0.015 0.912±0.019 

 CUIs, Medications 0.856±0.032 0.909±0.019 

 PheWAS, Medications 0.793±0.030 0.848±0.025 

Free Text Ngrams 0.930±0.015 0.920±0.017 

 CUIs 0.878±0.028 0.904±0.021 

PheWAS Codes PheWAS code counts 0.535±0.047 0.594±0.041 

Medications Prescription counts 0.676±0.045 0.773±0.032 

 Med summary measures 0.722±0.039 0.847±0.025 

Demographics Demographics only 0.524±0.044 0.672±0.038 

 

In addition, the non-responder class probabilities (i.e., tree vote percentages) were computed 

for the unsure labeled individuals and shown below for the random forest model trained on all input 

data. Figure 8 also includes the distribution of the out-of-bag probabilities for the training data. 
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Figure 8: Distribution of votes for the non-efficacious class by a model trained only on efficacious and 
non-efficacious records. Records unable to be labeled by the expert reviewers span the entire range of 

predicted probabilities. 

To further demonstrate the accuracy of the algorithms in a real world setting, we trained 

models including the unsure data. Table 8 contains the results from these experiments. Figure 9 is a 

multidimensional scaling plot of the similarities of the input data sets. It plots the first two principal 

components of the pairwise similarity score of all data, which is measured by the percentage of trees in 

which the records shared the same final node. 
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Table 8: AUCs of algorithm prediction performance as three one-vs-all class problems. Reported values are AUC ± 1 standard error. The highest 
AUC for each model type and per combined or single data class method is bolded. In general, ngrams provide the highest performance boosts. 

  
Non Efficacious Efficacious Unsure 

Data Class Data Types Included SVM RF SVM RF SVM RF 

Combined All available 0.869±0.020 0.858±0.021 0.882±0.020 0.878±0.022 0.722±0.034 0.714±0.039 

  Ngrams, CUIs, Meds 0.878±0.020 0.851±0.021 0.890±0.018 0.887±0.021 0.726±0.034 0.705±0.038 

  Ngrams, PheWAS, Meds 0.873±0.020 0.848±0.022 0.885±0.019 0.886±0.020 0.722±0.034 0.737±0.035 

  Ngrams, Meds 0.862±0.021 0.855±0.021 0.884±0.019 0.880±0.020 0.723±0.035 0.721±0.035 

  CUIs, Medications 0.816±0.030 0.849±0.023 0.868±0.021 0.865±0.023 0.726±0.035 0.700±0.040 

  PheWAS, Medications 0.763±0.029 0.791±0.026 0.832±0.023 0.836±0.023 0.735±0.033 0.708±0.034 

Free Text Ngrams 0.873±0.020 0.848±0.022 0.892±0.018 0.877±0.021 0.730±0.034 0.713±0.037 

  CUIs 0.830±0.029 0.851±0.024 0.833±0.026 0.854±0.024 0.680±0.041 0.675±0.041 

PheWAS Codes PheWAS code counts 0.534±0.045 0.593±0.042 0.506±0.035 0.529±0.034 0.528±0.046 0.556±0.042 

Medications Prescription counts 0.649±0.043 0.710±0.033 0.729±0.032 0.773±0.028 0.669±0.043 0.659±0.040 

  Med summary measures 0.718±0.035 0.786±0.027 0.803±0.025 0.839±0.024 0.734±0.031 0.734±0.036 

Demographics Demographics only 0.556±0.042 0.642±0.037 0.505±0.034 0.591±0.033 0.519±0.044 0.524±0.046 
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Figure 9: Principal components of the similarities of records. Red and blue points represent those 
individuals with efficacious and non-efficacious gold standard reviews, while black points are records 
where no determination could be made. Unsure individuals are spread out across the other records, 

though they tend to group with non-efficacious individuals. 

Discussion 

We have developed a set of attributes and algorithms that use EHR data to distinguish whether 

individuals respond to anti-TNF treatment. The formulation of attributes has proven to be important in 

drug response, and our drug mention targeted free text methods are very important to successful 

discrimination among the classes. Very high accuracy can be achieved using an both a clinical NLP 

approach identifying CUIs, which is simple with extant NLP results, and an n-gram approach, which is 

accessible to researchers without established NLP pipelines. 
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One method for determining drug response uses note and visit level information to make an 

estimated trend of disease activity over time for each patient record. In our data, much of the 

information one might need for disease activity scores in RA is not available. Many patients do not have 

repeated lab measures such as C-reactive protein and erythrocyte sedimentation rates. In addition, key 

variables, such as swollen joint counts, are generally not explicitly recorded. The lack of this specific, 

visit-level data led us to attempt a broader, whole-record based approach. 

We found that both type of data and formulation of that data were important to the 

classification task. Notably, the PheWAS code counts appeared to have very little predictive power. This 

observation is not too surprising, as we expected all individuals to be RA patients treated with anti-TNFs. 

There was some information in the count of RA, pain, and joint codes. One might expect knowledge of 

infections provided by the PheWAS codes to be informative for discriminating between individuals taken 

off the drug due to that contraindication, but PheWAS codes yielded little benefit to prediction accuracy. 

This is not too surprising, however, as presence of any infection at any point in the patient record may 

not be relevant to anti-TNF discontinuation. Integrating PheWAS codes with the temporality of the 

medication treatment may yield an increased value of the codes in the models. 

We found that in most cases the normalized ngrams near drug mentions provided more 

accurate predictions than the sentence-based concept unique identifier counts. The primary reason for 

this likely the ngrams’ ability to capture phrases valuable for drug response but not found in the UMLS. 

The strongest predictors of response in both CUIs and ngrams reflected the prescription of etanercept, 

primarily the mention of the drug itself, but also terms like “mg”, “subcutaneous”/”sub”, and 

“q”/”every”.  

With medication data, we found that identifying differences in where the medication appeared 

(i.e., problem list versus other notes) was very helpful. Individuals with little mention of etanercept 
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outside of problem lists were much more likely to be labeled unsure by the expert annotators than 

those individuals with many mentions outside of the problem list. In addition, the measures for time 

between first and last etanercept prescriptions and prescription density were among the most 

important features overall. 

Identification is possible to some extent through simple methods, such as the count of 

prescriptions. This metric, while providing some power to classify anti-TNF response, does not 

discriminate well due to the nature of EHR data. Patients may have prescriptions they are not filling or 

taking, which means the care provider would struggle to determine true response over a long period of 

time. Patients may have visited rheumatology only once in the system, which would not reflect the years 

of prior efficacious treatment. These scenarios can be more complicated in a de-identified research 

environment where there is no opportunity to seek extra-institutional data on the individual. In 

addition, identifying and targeting these scenarios is difficult, with complete enumeration likely 

impossible. Even designing specific and robust algorithms for just the two listed situations would be a 

challenge. 

One problem we did not identify before the study is the similarity of unsure and other 

individuals in our feature space. Figures 8 and 9 show this similarity. In Figure 8, we show that the 

percentage of votes in the RF for responder vs. non-responder when applied to all unsure records was 

evenly distributed, showing that the unsure records were similar to both classes. This is further 

demonstrated in Figure 9, where the unsure records are close in proximity to both responders and non-

responders and are distributed across this gradient. The individuals unable to be labeled may more 

closely resemble those labeled non-responder, which is likely due to the amount of information 

available. Unsure individuals are more likely to have short treatment records as there is not enough 

information for the expert reviewer to make a decision. Individuals for whom etanercept treatment was 
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non-efficacious are also more likely to have shorter treatment records, as the clinician would 

discontinue medication that was not working.  

This has not been a common issue in the past; most existing phenotyping algorithms have 

stringent case and control criteria that simply exclude any questionable individuals. Our initial attempts 

were to train two prediction problems non-responders versus others and responders versus others, and 

we found that the accuracy wasn’t optimal. When we attempted a multiclass solution that included the 

unsures, we found that these physician-unclassifiable records were the primary source of error, as 

shown in table 8.  

The issue is likely due, at least in part, to the nature of the features used.  For instance, 

algorithms trained with the CUI data were unable to make better predictions about whether an 

individual was labeled unsure by the reviewers than algorithms with just with a single attribute 

measuring the total prescription count for etanercept. This is in contrast to the strong AUC measures for 

the other classes and in the two class only problem, not to mention prior experience in RA identification. 

This classification task is different than those previously studied however; one is not trying to predict the 

state of a patient, but whether there is sufficient information to determine the state of the patient in 

the record. 

To help better discriminate between individuals with and without sufficient information for a 

gold standard label, we designed a set of medication summary features. These features integrated some 

simple temporal data and measured etanercept mentions in more reliable note types in an effort to add 

new information to make this distinction possible. It was somewhat effective, but how to identify 

“unsures”, i.e. those individuals without sufficient information for the reviewer to make a 

determination, from the EHR instead just the reliable cases or controls will be an important question in 

the future. 
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On a review of individuals that had predictions far from their gold standard reviews showed a 

few trends, one stand out scenario was the inclusion of “patient has tried” lists in prescriptions found in 

that individual’s record. While such occurrences should be suggestive of non-response or fading 

response, they were interpreted as an increased duration of treatment by the algorithms. 

In order to apply this algorithm to identify a cohort for further study, there are a few factors to 

consider: the required sample size for an analysis, the required purity of the case and control labels, the 

availability of candidate records, and the availability and cost (in time, effort, etc.) of chart reviews. The 

algorithms used here can be given prediction thresholds that optimize either towards quality or quantity 

of identified cases and controls. Instead of using a 50% threshold that assigns every individual a 

responder or non-responder status, one can use only those predicted with a 75% certainty either way. If 

there are a limited number of records available, one could use chart reviews of those individuals for 

which the algorithm is uncertain. Or if one needs greater positive predictive value, one could have 

manual review of the predicted non-responders. These algorithms applied with these criteria in mind 

can allow researchers greater flexibility in application. 

Conclusion 

This manuscript demonstrates the ability of RFs and SVMs to identify individuals that respond 

and fail to respond to the anti-TNF medication etanercept from the EHR. Free text and medication based 

features proved the most important. Additionally, identification of records containing insufficient 

information for a gold standard call were found to appear similar to the clinician identified responders 

and non-responders, a concern which will need to be addressed to further the field of electronic 

phenotyping.  



 62 
 

CHAPTER VI 

APPLICATION OF DRUG RESPONSE PREDICTION METHODS AND SECONDARY ANALYSIS 

Introduction 

Rheumatoid arthritis (RA) is a chronic, debilitating disease with significant morbidity and 

mortality. The American College of Rheumatology (ACR) guidelines for treatment of RA include the early 

use of anti-TNF medications in cases that do not respond to methotrexate or other non-biologic 

combination regimens[133]. Anti-TNF treatment is expensive, is contraindicated in cases of infections 

due to the immune modification, and is not always efficacious. Determining the genetic predictors of 

response and helping elucidate the biology of response are factors important to improving treatment 

options.  

In the previous chapter, we developed a method to identify responders and non-responders to 

the anti-TNF medication etanercept. In this chapter, we seek apply this method to select a cohort of 

individuals for study for which etanercept treatment was efficacious or non-efficacious. We then utilize 

the data available in the Synthetic Derivative (SD)[75] at Vanderbilt to further analyze comorbidity to 

this drug response. 

Methods 

To identify a cohort for study, we first selected all individuals in the SD that were strongly 

predicted to be true RA cases by a previously developed ICD-9 based algorithm[93]. This group was 

filtered to those individuals with at least seven mentions of etanercept to limit to those with anti-TNF 

exposure. Once the RA+ and likely etanercept treated individuals were identified, we collected data as 
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described in the previous chapter and Appendix A for anti-TNF response prediction. We used the 

demographics, ngram, and medication summary data for this analysis. PheWAS counts were not used as 

we intended to perform a downstream PheWAS, and CUIs were not used as their generation is 

computationally intensive. The predictive models generated using demographics, ngrams, and 

medication summaries were similarly predictive to models using all sets of attributes, so little error was 

added to expand the analysis options. 

We then trained both a random forest (RF) and support vector machine (SVM) on the data 

above using the complete set of gold standard reviews described in the previous chapter. We used the 

multiclass prediction models, and created labels from both the RF and SVM. With the RF, we set a vote 

threshold approximating the frequency from the training data: 0.6, 0.2, and 0.2 for efficacious, non-

efficacious, and unsure respectively. These thresholds appeared reasonable from visual inspect of the 

vote distributions. We used the default labels from the SVM. To make final status calls, we labeled all 

individuals which received the same responder or non-responder call for both algorithms, and excluded 

as unsure individuals that did not agree or received unsure labels. 

Once the final cohort was identified, we performed a PheWAS analysis in R of the individuals 

with responder and non-responder labels[115,127]. Instead of using genetic markers as predictors, we 

used these drug response labels. The analysis was adjusted by age, gender, and race. 

Results 

752 individuals were identified that met the RA+ status and etanercept mention criteria. Table 9 

presents the agreement between the two algorithms. The highlighted cells represent the calls used for 

the PheWAS analysis: 523 responders and 118 non-responders were identified, and 111 individuals were 

excluded as unsures. Our PheWAS analysis used the remaining 641 individuals. 
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Table 9: Predicted etanercept response 

  
SVM 

  

  
Efficacious Non-Efficacious Unsure 

RF Efficacious 523 1 1 

 
Non-Efficacious 63 118 1 

 
Unsure 4 8 33 

 

Figure 10 presents a PheWAS Manhattan plot of the results. Table 10 highlights the 5 most 

significant results, out of a total of 117 tests performed. 

 

Figure 10: PheWAS Manhattan plot of etanercept response 

Table 10: Top 5 PheWAS results by p-value. Odds Ratios (OR) greater than one signify increased 
prevalence in individuals where etanercept treatment was considered non-efficacious. 

PheWAS Phenotype OR p Cases Controls 

Myalgia and myositis NOS 3.092602 7.90E-06 113 457 

Malaise and fatigue 2.509544 6.26E-05 230 309 

Intervertebral disc disorders 3.304262 7.76E-05 66 490 

Degeneration of intervertebral disc 3.107376 4.67E-04 56 490 

Spinal stenosis 3.368251 1.23E-03 41 490 
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The intervertebral disc disorders (IDD) code is the parent code of the degeneration of 

intervertebral disc (DID) code, both of which share an exclusion group with the spinal stenosis (SS) code. 

Of these individuals, 26 and 31 are have both the SS phenotype and either the DID or IDD phenotypes 

respectively. 

Discussion 

We were able to successfully implement the prediction of two drug response algorithms. These 

methods used in concert identified a representative sample of responding, non-responding, and unsure 

individuals from the SD. Removing individuals for which the algorithms did not agree provided and 

additional way to target individuals for which status cannot be determined, a task which was shown in 

the previous chapter to be difficult. The largest number of individuals for which there was not 

agreement were labeled Efficacious by the SVM and Non-Efficacious by the RF. This is likely due to the 

use of an alternate threshold providing more weight for non-efficacious individuals in the RF. This 

change in threshold eliminates individuals with borderline calls, ideally strengthening the analysis. 

In the PheWAS, only 117 tests were performed. The limit of at least 20 cases or controls 

combined with the relatively small set of patients (641) all with likely RA diagnosis are the causes for the 

sparse phenotype distribution.  In these results, the association with pain and malaise codes is not 

particularly surprising. Individuals with poor disease control with a stronger treatment regimen are likely 

to have significant disease morbidity when compared with those individuals responding to treatment. 

These associations had many cases and controls, and it is not surprising a strong association was found.  

The associations with axial skeleton disease are the most interesting. RA is normally more 

associated with small joint inflammation, such as joints in the hands and feet. It can involve larger joints, 

however it is considered distinct from diseases like ankylosing spondylitis that are more associated with 
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axial skeleton disease. The RA classification from the ACR does not include spine complications in their 

RA criteria, for example. One explanation for these results may be the consequence of the poor drug 

response meaning longer, higher does treatment of corticosteroids. Long term treatment with 

corticosteroids can yield osteoporosis, which could promote the spinal issues seen. Another explanation 

is that individuals classified as non-responders have more severe disease, which is being expressed by 

increased risk in the PheWAS. It could also be that some individuals who fail to respond to etanercept 

have a distinct subphenotype of RA that includes spine and vertebral complications. 

The generic “Myalgia and myositis NOS” result could be related to fibromyalgia. There is 

evidence in the literature of higher levels of TNF-alpha in individuals suffering from fibromyalgia[140], 

which may be related to the connection of inflammation and pain. Two possible hypotheses for this 

association is that lack of response may be due to already higher levels of circulating TNF-alpha or that 

the poor control of TNF-alpha may increase risk of developing fibromyalgia. Unfortunately, ICD-9 does 

not provide further specification of the code 729.1 which is used to define this phenotype, so further 

investigation of this topic would require the use of clinical free text. 

This study shows the value of using phenotyping algorithms to extend case control sets for 

analysis. While it identifies some interesting associations, some further study is necessary to determine 

the etiology of these findings. This study is limited in the depth of its search; however, the EHR-based 

nature of this study means it is possible to further investigate the identified associations. Genetic studies 

are possible as well, which may elucidate possible underlying causes of the observed associations.  
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CHAPTER VII 

SUMMARY 

Summary of Findings 

Chapter II presented an in depth review of the growth and development of EHRs with a focus on 

applications in RA. It discussed the clinical benefits of EHR use and included a look at secondary use of 

EHR data for research. Chapter III summarized the R package to perform PheWAS that we developed, 

which has been a helpful tool in analyzing the data presented in the later chapters. 

Chapter IV presented a new application of PheWAS, using associations with GRS instead of SNPs. 

The analysis of GRS allows for the estimation of the pleiotropic risk of all known genetic risk for a 

condition, in this case RA. We showed that the SNPs comprising the GRS have many phenotype 

associations, and the GRS is much more specific to RA. One notable association remained: 

hypothyroidism. The relationship between RA and hypothyroidism has been recently under investigation 

in the literature, but conflicting results have been shown. This study provides a strong link between the 

genetic components of risk of both diseases. 

Chapter V established an algorithm for the prediction of an individual’s response to the anti-TNF 

drug etanercept using features derived from EHR data. The study showed strong predictive power, but 

noted a particular difficulty in identifying which individuals the reviewers were unable to give a response 

label. Chapter VI showed the application of this phenotyping algorithm to expand a cohort for study. In 

this analysis, we find associations between drug response to etanercept and intervertebral disc 

disorders, degeneration of intervertebral disc, spinal stenosis phenotypes, as well as a phenotype that 

may represent fibromyalgia, which merit further investigation.  
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These works make several new contributions to the field. The availability of a package to 

perform PheWAS increases the accessibility of the method to researchers. The novel application of 

PheWAS to GRS has shown to be of value in investigating shared genetic risk and pleiotropy. The 

prediction of drug response from the EHR using machine learning techniques demonstrates the 

feasibility of studying more complex phenotypes than single diseases. The use of non-disease 

phenotypes for PheWAS has also proven to uncover associations worthy of deeper study, even when 

those phenotypes were not helpful in the predictive model. 

Limitations 

These analyses are limited in a few ways. First, they rely on EHR data, which are collected in the 

course of regular clinical treatment and not for research purposes. This means data may not be final, 

e.g. individuals have diagnosis codes for a condition that was later ruled out, or complete, e.g. 

individuals may only be seen at a hospital for some of their treatment. The use of “noisy” data reduces 

power to detect associations. However, EHR data is a very powerful tool for research, and the large 

amount of data can help compensate for the reduced power. In addition, the eMERGE network data for 

Chapter IV was compiled across many sites. Five different EHRs are used across eMERGE, and the 

network has genotype information collected across several platforms. These differences can reduce 

power for studies. The drug response prediction methods have only been analyzed for one medication, 

etanercept. In addition, the framework for attribute creation did not seem to provide strong predictions 

for distinguishing between those records with enough information to make a determination by the 

expert reviewers. The small set size of the etanercept exposed individuals that had predictions for the 

PheWAS was the primary limitation of the application study. 
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Future Directions 

Chapter IV proposes some interesting opportunities for further research. The first is an 

investigation of the details of the shared genetic risk of RA and hypothyroidism. In addition, we can 

expand the analysis with larger sample groups or with new GRS selections. Allowing for interactions, 

such as genetic and protein-protein, with network-based or other modeling methods may allow for a 

deeper understanding of the shared genetic risk. Chapter V can be expanded by investigating the drug 

response prediction on other anti-TNF medications, as reviews exist for adalimumab and infliximab. 

Other drug response investigations would be a further extension. Chapter VI represents the application 

of the drug response prediction. Further investigation of the etanercept response phenotype, in 

particular investigating potential genotype associations, is strongly suggested by the results presented. 

Application of the methods to larger data sets could discover more results. 
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APPENDIX A 

ROLE OF THE STUDENT 

I was the primary author on all of the text in this dissertation. In addition, I performed all of the 

primary analyses and the majority of the data formulation. The exceptions were in the eMERGE data, 

both imputation of eMERGE genotype information and collection of the ICD-9 codes, and in the TNF 

analysis, the clinical reviews of the patients and some of the concept identification using KMCI. 
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APPENDIX B 

SUPPLEMENTARY TABLES 

Supplementary Table 1 

Supplementary Table 1:  RA risk SNPs and ORs  

Chromosome Base pair RSID 
Risk 
Allele Gene 

Odds 
Ratio 

1 114377568 rs2476601 A PTPN22 1.8 

1 117263790 rs624988 T CD2 1.09 

1 154426970 rs2228145 A IL6R 1.07 

1 157674997 rs2317230 T FCRL3 1.06 

1 160831048 rs4656942 G LY9-CD244 1.01 

1 161405053 rs72717009 T FCGR2A 1.12 

1 173349725 rs2105325 C LOC100506023 1.12 

1 17672730 rs2301888 G PADI4 1.11 

1 198640488 rs17668708 C PTPRC 1.12 

1 2523811 chr1:2523811 G TNFRSF14-MMEL1 1.1 

1 38278579 rs28411352 T MTF1-INPP5B 1.1 

1 38633879 rs12140275 A LOC339442 1.11 

1 7961206 rs227163 C TNFRSF9 1 

10 31415106 rs793108 T ZNF438 1.07 

10 50097819 rs2671692 A WDFY4 1.06 

10 6098949 rs706778 T IL2RA 1.12 

10 63779871 rs71508903 T ARID5B 1.15 

10 6390450 rs947474 A PRKCQ 1.12 

10 64036881 rs6479800 C RTKN2 1.08 

10 8104722 rs3824660 C GATA3 1.1 

10 81706973 rs726288 T SFTPD 0.96 

10 9049253 rs12413578 C 10p14 1.2 

11 107967350 chr11:107967350 A ATM 1.21 

11 118729391 rs10790268 G CXCR5 1.17 

11 128496952 rs73013527 C ETS1 1.08 

11 36501787 rs331463 T TRAF6-RAG1/2 1.12 

11 60906450 rs508970 A CD5 1.07 

11 61595564 rs968567 C FADS1-FADS2-FADS3 1.12 

11 72411664 rs11605042 G ARAP1 1.05 
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11 95311422 rs4409785 C CEP57 1.12 

12 111833788 rs10774624 G SH2B3-PTPN11 1.09 

12 56394954 rs773125 A CDK2 1.09 

12 58108052 rs1633360 T CDK4 1.08 

13 40368069 rs9603616 C COG6 1.11 

14 105392837 rs2582532 C PLD4-AHNAK2 0.93 

14 61940675 rs3783782 A PRKCH 1.12 

14 68760141 rs1950897 T RAD51B 1.09 

15 38834033 rs8032939 C RASGRP1 1.13 

15 69991417 rs8026898 A LOC145837 1.15 

16 11839326 rs4780401 T TXNDC11 1.09 

16 86019087 rs13330176 A IRF8 1.12 

17 37740161 rs1877030 C MED1 1.09 

17 38031857 chr17:38031857 G IKZF3-CSF3 1.09 

17 5272580 rs72634030 A C1QBP 1.12 

18 12881361 rs8083786 G PTPN2 1.12 

18 67544046 rs2469434 C CD226 1.05 

19 10463118 rs34536443 G TYK2 1.46 

19 10771941 chr19:10771941 C ILF3 1.47 

2 100825367 rs9653442 C AFF3 1.12 

2 111607832 rs6732565 A ACOXL 1.1 

2 191943742 rs11889341 T STAT4 1.12 

2 202154397 rs6715284 G CFLAR-CASP8 1.15 

2 204610396 rs1980422 C CD28 1.13 

2 204738919 rs3087243 G CTLA4 1.15 

2 30449594 rs10175798 A LBH 1.09 

2 61124850 rs34695944 C REL 1.13 

2 62461120 rs13385025 A B3GNT2 1.08 

2 65598300 rs1858037 T SPRED2 1.09 

20 44749251 rs4239702 C CD40 1.14 

21 34764288 rs73194058 C IFNGR2 1.13 

21 35928240 chr21:35928240 C RCAN1 1.12 

21 36738242 rs8133843 A 
RUNX1-
LOC100506403 1.09 

21 43855067 rs1893592 A UBASH3A 1.11 

21 45650009 rs2236668 C ICOSLG-AIRE 1.07 

22 21979096 rs11089637 C UBE2L3-YDJC 1.1 

22 37545505 rs3218251 A IL2RB 1.08 

22 39747671 rs909685 A SYNGR1 1.11 

3 136402060 rs9826828 A IL20RB 1.44 

3 17047032 rs4452313 T PLCL2 1.11 

3 27764623 rs3806624 G EOMES 1.08 
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3 58302935 rs73081554 T 
DNASE1L3-ABHD6-
PXK 1.18 

4 10727357 rs13142500 C CLNK 1.1 

4 123399491 rs45475795 G IL2-IL21 1.14 

4 26120001 rs11933540 C C4orf52 1.15 

4 48220839 rs2664035 A TEC 1.08 

4 79502972 rs10028001 T ANXA3 1.02 

5 102608924 rs2561477 G C5orf30 1.11 

5 131430118 rs657075 A IL3-CSF2 1.07 

5 55444683 rs7731626 G ANKRD55 1.21 

6 106667535 rs9372120 G ATG5 1.1 

6 138005515 rs17264332 G TNFAIP3 1.17 

6 138227364 rs7752903 G TNFAIP3 1.41 

6 14103212 chr6:14103212 T CD83 1.1 

6 149834574 rs9373594 T PPIL4 1.07 

6 159506600 rs2451258 T TAGAP 1.1 

6 167540842 rs1571878 C CCR6 1.13 

6 32428772 rs9268839 G HLA-DRB1 2.47 

6 36355654 rs2234067 C ETV7 1.14 

6 426155 rs9378815 C IRF4 1.09 

6 44233921 rs2233424 T NFKBIE 1.33 

7 128580042 chr7:128580042 G IRF5 1.12 

7 28174986 rs67250450 T JAZF1 1.11 

7 92236829 rs4272 G CDK6 1.1 

8 102463602 rs678347 G GRHL2 1.1 

8 11341880 rs2736337 C BLK 1.09 

8 129542100 rs1516971 T PVT1 1.16 

8 81095395 rs998731 T TPD52 1.09 

9 123636121 rs10985070 C TRAF1-C5 1.09 

9 34710338 rs11574914 A CCL19-CCL21 1.13 
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Supplementary Table 2 

Supplementary Table 2:  Data dictionary for drug response prediction  

Feature Group Feature Example Description 

Concept 
Unique 
Identifiers 

p720193:1 These features are log transformed sums of counts. CUIs 
are identified that occur in the same sentence as the 
drug mention under study. They are split into groups by 
the negation status of the CUI as well as the negation 
status of the drug mention. Features that represent 
negated CUIs are preceded by an "n", while non-negated 
CUI counts are preceded by a "p". If the CUI occurred in 
a sentence with a non-negated drug mention, the 
feature is followed by a :1, if the drug mention was 
negated a :-1, and if both negated and non-negated drug 
mentions appeared a :0. 

Ngrams everi week These features are log transformed sums of counts. 
Notes containing a mention of the drug under study are 
selected and filtered to those of type matching the 
following regular expression: 
clinic|note|rheum|letter|prescription|communication|
consult. The note text is normalized in several ways 
next: all characters are changed to lower case, new lines 
are changed to spaces, deID tags are simplified to 'name' 
and 'date', all numbers are simplified to 'num', all non-
alpha characters are changed to spaces, all single 
characters are removed, and all spaces are reduced to 
one. Up to 20 words before and after mentions of the 
drug under study are extracted; if there are overlaps in 
these windows due to close repetition, the windows are 
merged. A snowball stemmer is then applied, and 
ngrams are created from those windows. Ngrams that 
occur only in a single record were removed. 

PheWAS codes 714 These features are log transformed sums of counts. ICD-
9 codes are translated to phewas codes and aggregated 
as a count of distinct days the code occurred. 

Medication 
Summaries 

prescription_count Presciption count is the log transformed sum of the 
number of notes of type 'prescription' or 'rx' containing 
the drug under study 

  pl and non_pl Log transformed count of notes containing drug 
mentions, split into problem lists and non-problem lists 

  duration and has_duration The duration in days from the first to last enbrel 
prescription note divided by 180. has_duration is a 
boolean representing a duration that exists and is 
greater than 0, i.e., the individual has at least distinct 
dates with an enbrel presciption. 
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  humira_count and 
remicade_count 

The log transformed count of humira and remicade 
prescriptions. 

  hum_after_enb_count and 
rem_after_enb_count 

The log transformed count of humira and remicade 
prescriptions that occur after an enbrel prescription. 

  prescription_density and 
adj_prescription_density 

The count of enbrel prescriptions divided by the 
duration in days and half years, respectively. 

Demographics is.female Is the individual female? 

  scaled.age Age of the individual divided by the maximum age in the 
data. 

  race.w Is the individual recorded as white in the EHR? 
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