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CHAPTER I 

 

INTRODUCTION 

 

An essential step in the pathogenesis of many viruses is systemic dissemination to 

target organs where secondary replication can occur. Viral replication at targeted sites of 

secondary replication is often manifested as the clinical symptoms associated with viral 

infection. The bloodstream is a common route used by many viral pathogens to ensure 

widespread dissemination in infected hosts. Although viremia is a well-established 

prerequisite to spread of the virus to sites of secondary replication, mechanisms used by 

viruses to gain entry into or exit from the bloodstream are not well understood.  

 Mammalian orthoreoviruses (reoviruses) are nonenveloped, double-stranded (ds) 

RNA viruses that are transmitted primarily by the fecal-oral route. Systemic 

dissemination of reoviruses occurs via bloodstream and neural routes, and the patterns of 

spread and pathogenesis differ based on viral serotype. While reoviruses infect virtually 

all mammals, disease manifestations of reovirus infection are seen only in the very 

young. Reovirus infection of newborn mice results in various disease phenotypes 

including biliary atresia, myocarditis, hydrocephalus, and encephalitis. A robust neonatal 

mouse model and a facile reverse genetics system has allowed for the use of reovirus to 

be used as a model to dissect mechanisms of viral hematogenous dissemination.   

 When this work was initiated, a proteinaceous receptor for reovirus, junctional 

adhesion molecule A (JAM-A), had been found to mediate hematogenous dissemination 

of reovirus in vivo. However, the precise mechanism by which JAM-A promotes 
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bloodstream spread was unknown. I hypothesized that expression of JAM-A in 

endothelial cells is required for reovirus entry into and egress from the bloodstream and 

subsequent dissemination to targeted sites of secondary replication. In Chapter II, I report 

that endothelial but not hematopoietic JAM-A is required for bloodstream dissemination 

using mice with tissue-specific alterations in JAM-A expression. In Chapter III, I present 

data demonstrating the requirement of sialic acid and JAM-A in reovirus infection of 

polarized endothelial cells in culture. In Chapter IV, I show that reovirus egress from 

polarized endothelial cells is directional and occurs noncytolytically. Together, these 

findings indicate that the endothelium is an essential mediator of reovirus pathogenesis. 

Furthermore, my work demonstrates that the precise expression of a viral receptor is 

critical for bloodstream dissemination.  

 

Reoviruses 

 

 Viruses of the Reoviridae family infect a wide range of host organisms, including 

mammals, birds, insects, and plants (1). The Reoviridae includes rotaviruses, the most 

common diarrheal pathogen among children (2), orbiviruses, which are economically 

important pathogens of sheep, cattle, and horses (3), and reoviruses. Three reovirus 

serotypes (T1, T2, and T3) currently circulate in humans and other mammals. The 

serotypes are distinguished on the basis of antibody-mediated neutralization of infectivity 

and inhibition of hemagglutination. Each serotype is represented by a prototype strain 

isolated from a human host: type 1 Lang (T1L), type 2 Jones (T2J), and type 3 Dearing 

(T3D). These strains differ dramatically in host cell tropism, mechanisms of cell killing, 
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modes of dissemination, and central nervous system (CNS) disease. In particular, studies 

of T1 and T3 reoviruses have generated foundational knowledge about strategies used by 

viruses to replicate and cause neural injury. Development of a plasmid-based reverse 

genetics system allows introduction of mutations into the viral genome to test specific 

hypotheses about the structure and function of viral proteins and RNAs (4, 5). In concert 

with an experimentally facile mouse model of infection (6, 7), reovirus is an ideal 

experimental platform for studies of virus-host interactions. 

 Reoviruses are nonenveloped, icosahedral viruses that contain a genome 

consisting of 10 segments of dsRNA (Figure I-1) (1). There are three large (L1, L2, L3), 

three medium (M1, M2, M3), and four small (S1, S2, S3, S4) dsRNA segments that are 

packaged in an equimolar stoichiometric relationship with one copy of each per virion. 

With the exception of the M3 and S1 gene segments, each of the reovirus gene segments 

is monocistronic. Reovirus virions are composed of two concentric protein shells, the 

outer capsid and core (Figure I-1) (8). The outer capsid consists of heterohexameric 

complexes of the µ1 (encoded by M2) and σ3 (encoded by S4) proteins. At each of the 

icosahedral five-fold symmetry axes, the attachment protein σ1 (encoded by S1) extends 

from turret-like structures formed by pentamers of λ2 (encoded by L2) protein. The inner 

core shell is formed by parallel asymmetric dimers of λ1 (encoded by L3) protein that are 

stabilized by σ2 (encoded by S2) protein. The λ3 (encoded by L1) and µ2 (encoded by 

M1) proteins are anchored to the inner surface of the core via interactions with λ1. Lastly, 

the M3 gene segment encodes nonstructural proteins µNS and µNSC, the S3 gene 

segment encodes nonstructural protein σNS, and the S1 gene segment encodes 

nonstructural protein σ1s.  
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Figure I-1. The reovirus virion. (A) Cryo-electron micrograph image reconstruction 
of a reovirus virion. Outer-capsid protein σ3 (blue), is the initial target for virion 
disassembly in infected cells. Pentameric λ2 protein (yellow) forms an insertion 
pedestal for σ1, which is the viral attachment protein. From Nason et al. (2001). (B) 
Schematic of a reovirus virion. Reovirus particles are formed from two concentric 
protein shells, the outer capsid and core. The core contains the viral genome, which 
consists of ten dsRNA segments. Reovirus also encodes nonstructural proteins, σNS, 
µNS, µNSC, and σ1s. 
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Reovirus Attachment and Entry 

 

 Viral attachment protein σ1 is a long filamentous molecule with head-and-tail 

morphology (Figure I-2A) (9-12). The σ1 protein is comprised of three distinct structural 

domains: an N-terminal α-helical coiled-coil tail, a central β-spiral body, and a C-

terminal globular head (9, 11). Short regions of undefined structure separate each domain 

and are hypothesized to permit molecular flexibility required to engage cellular receptors 

during viral entry (Figure I-2A) (9-11, 13). Attachment of the σ1 protein to cell-surface 

receptors initiates reovirus infection of susceptible host cells (14, 15). The σ1 protein 

targets two different receptors, α-linked sialic acid (SA) (16-21) and JAM-A (22-24). 

Residues in the T1 σ1 head domain (21) and T3 σ1 β-spiral body domain bind SA (11, 

25); sequences in the head domain of both T1 and T3 σ1 engage JAM-A (22, 26). 

 Residues in the T3 σ1 protein that interact with SA have been identified using 

structure-guided point-mutant viruses. The T3 σ1 residues Asn198, Arg202, Leu203, 

Pro204, and Gly205 are required for hemagglutination and infection of murine 

erythroleukemia (MEL) cells, which are dependent on SA engagement for productive T3 

reovirus infection (Figure I-3) (11). Residues in the T1 σ1 protein that engage SA also 

have been identified using studies of structure-guided point mutant viruses. The T1 σ1 

residues Val354, Ser370, and Gln371 are required for hemagglutination and infection of 

murine embryonic fibroblasts (MEFs), which are dependent on SA engagement for T1 

reovirus infection (21). A glycan array was performed and identified ganglioside GM2 as 

the glycan engaged by T1 reovirus (21).  
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 JAM-A is used as a receptor by all reovirus serotypes (23, 24). Each σ1 trimer is 

capable of binding three independent JAM-A monomers (24). Structural and biochemical 

studies identified residues in the D-E loop of the σ1 head that mediate interactions with 

JAM-A. Residues Thr380, Gly381, and Asp 382 engage JAM-A via polar interactions 

(Figure I-4) (26). Mutations of these residues in the reovirus σ1 protein diminishes JAM-

A engagement (26).  

 After receptor binding, reovirus virions are internalized into endosomes via a 

process dependent on β1 integrin (27) and distributed to organelles marked by Rab7 and 

Rab9 where viral disassembly takes place (28). During viral disassembly, outer-capsid 

protein σ3 is degraded by cathepsin proteases, attachment protein σ1 undergoes a 

conformational change, and outer-capsid protein µ1 is cleaved to form infectious 

subvirion particles (ISVPs) (29). The µ1 cleavage fragments undergo conformational 

rearrangement to facilitate endosome penetration and delivery of transcriptionally active 

core particles into the cytoplasm (30, 31). Primary transcription occurs within the viral 

core, and nascent RNAs are translated or encapsidated into new viral cores, where they 

serve as templates for negative-strand synthesis. Within new viral cores, secondary 

rounds of transcription occur. Outer-capsid proteins are added to nascent cores, which 

silences viral transcription and yields progeny viral particles. 
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Figure I-2. Structure of σ1 and JAM-A. (A) Full-length model of attachment protein 
σ1 bound to JAM-A. A model of full-length σ1 extending from the virion is shown as 
a ribbon drawing, with the known structure of the C-terminus in tricolor and the 
predicted structure of the N-terminus in grey. Arrows indicate predicted regions of 
flexibility. A model of full-length JAM-A is shown in green as a ribbon drawing of the 
known structure of the extracellular domain and a schematic representation of the 
transmembrane and intracellular domains. For clarity, only two JAM-A monomers are 
shown bound to σ1. Adapted from Kirchner et al. (2008). (B) Structure of human 
JAM-A D1 and D2 domains. Ribbon drawings of a JAM-A homodimer, with one 
monomer shown in yellow and the other in green. Two orthogonal views are 
displayed. Adapted from Prota et al. (2003).  
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Figure I-3. Critical contacts of T3D σ1 and SA. (A) Ribbon drawing of the T3D σ1 
body and head domains in complex with α-2,3-sialyllactose. The σ1 monomers are 
shown in red, blue, and yellow. The body domain consists of seven triple β-spiral 
repeats (β1–β7) and an α-helical coiled-coil domain (cc) that is inserted between β-
spiral repeats β4 and β5. The bound α-2,3-sialyllactose is shown in stick 
representation and colored in orange. The black box indicates the enlarged region 
depicted in (B). (B) Detailed interactions between σ1 and the terminal SA of α-2,3-
sialyllactose. Residues in the binding region are drawn in ball and stick representation, 
while the rest of the protein is shown as a ribbon drawing. The σ1 residues forming 
hydrogen bonds or salt bridges with the ligand are shown in green, and residues 
forming van der Waals contacts are shown in cyan. The side chain of Asn189 (colored 
dark blue) is contributed by a neighboring σ1 monomer. SA is shown in ball-and-stick 
representation, with carbons colored orange, oxygens colored red, and nitrogens 
colored blue. Bridging waters are shown as orange spheres. Hydrogen bonds and salt 
bridges are represented with broken lines. Adapted from Reiter et al. (2011). 
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JAM-A D1 

σ1 Head A B 

Figure I-4. Critical contacts at the σ1 head-JAM-A D1 interface. (A) Overview 
displaying the location of residues in the σ1 head-JAM-A D1 complex shown in (B). 
D1 and σ1 head are colored green and orange, respectively. The black box indicates 
the enlarged region depicted in (B). (B) Carbon atoms are shown in green (D1) or 
orange (σ1H), oxygen atoms in red, and nitrogen atoms in blue. Dotted lines represent 
hydrogen bonds and salt bridges. For clarity, only interacting residues are shown. 
Amino acids are labeled in single-letter code. (B) Interactions between D1 and 
residues in the 310 helix in the D–E loop of σ1H. The 310 helix is depicted 
transparently so that the main chain interactions are visible. Adapted from Kirchner et 
al. (2008). 
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Reovirus Assembly and Egress 

 

Assembly of reovirus particles is thought to occur in cytoplasmic viral inclusions, 

which contain viral proteins, double-stranded RNA, and virion particles at various stages 

of maturation. Empty cores and fully-assembled particles are evident in electron 

micrographs of viral inclusions (32). The synthesis of genomic dsRNA and viral core 

assembly likely occur simultaneously, and assembly of the outer capsid occurs 

subsequent to formation of the complete core particle (1). The addition of reovirus 

attachment protein σ1 to the outer capsid requires host chaperone proteins Hsc70 and 

Hsp90 (33, 34). Reovirus release from host cells is hypothesized to occur via a lytic 

mechanism, but the egress pathway is not understood (1). Reovirus induces apoptosis 

(35-38), which may contribute to viral release from some cell types. 

 

JAM-A 

 

JAM-A is the only known proteinaceous receptor for reovirus. It mediates entry of 

prototype and field-isolate strains of all three reovirus serotypes (22, 23). JAM-A is a 

member of the immunoglobulin (Ig) superfamily of proteins that functions in cell-cell 

adhesion (39). It is expressed on the surface of endothelial and epithelial cells as a 

component of tight junctions (TJs) that maintain the integrity of barriers formed between 

polarized cells (40, 41). JAM-A also is expressed on hematopoietic cells, where it 

mediates leukocyte extravasation (42, 43), and on platelets, where it functions in platelet 

activation during blood clot formation (39, 44). JAM-A contains three distinct structural 
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domains: an N-terminal ectodomain, a single-span transmembrane anchor, and a C-

terminal cytoplasmic tail (Figure I-2) (24). The ectodomain consists of two Ig-like 

domains, a membrane-distal D1 domain and a membrane-proximal D2 domain (Figure I-

2B). The cytoplasmic tail terminates in a post-synaptic density protein (PSD95), 

Drosophila disc large tumor suppressor (Dig1), zona occludens 1 (ZO-1) (PDZ)-binding 

domain that interacts with intracellular TJ components (45, 46). JAM-A participates in 

homotypic interactions between D1 domains on opposing monomers (24). An interaction 

between two JAM-A monomers on adjacent cells promotes cell adhesion (47-49). 

 The σ1 protein interacts with the JAM-A D1 domain to adhere reovirus virions to 

the surface of target cells (26). JAM-A residues Ar59, Glu61, Lys63, Leu72, Tyr75, and 

Asn76 are required for σ1 binding and reovirus infectivity (50). Interestingly, the σ1-

JAM-A interaction is substantially stronger (approximately 1000-fold) than the 

interaction between JAM-A monomers (26). Consequently, σ1 binding to JAM-A likely 

disrupts JAM-A homodimers. Studies using JAM-A knock-out (KO) mice indicate that 

JAM-A is required for the establishment of viremia, which is essential for dissemination 

and disease in newborn mice following peroral inoculation of reovirus (51). JAM-A is 

not required for reovirus replication in the murine CNS or development of encephalitis 

(51). These findings suggest that reovirus utilizes other cell-surface receptors to mediate 

entry into specific cell types.  

JAM-A is localized to the apical junctional complex that link epithelial and 

endothelial cells together. Endothelial cells are specialized cells that line blood vessels, 

and are responsible for separating the vascular compartment from surrounding tissue. 

Endothelial cells are linked together via the interactions of several cell-surface proteins 
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(52). Tight junctions are comprised of occludins, claudins, coxsackie and adenovirus 

receptor (CAR), JAM-A, and endothelial cell-selective adhesion molecule (ESAM), and 

nectin (52). Adherens junctions include vascular endothelial cadherin (VE-cadherin) and 

vascular endothelial protein tyrosine phosphatase (VE-PTP) (52).  Adjacent endothelial 

cells also are linked by platelet endothelial cell adhesion molecule (PECAM) and neural 

cadherin (N-cadherin) (52). Several TJ proteins act as viral receptors or facilitators of 

viral entry. Occludin is used by coxsackie B virus for internalization (53) and along with 

claudin-1 is required for hepatitis C virus infection of liver cells (54). CAR is used by 

both adenovirus and coxsackievirus infection (55) and JAM-A also serves as a receptor 

for feline calicivirus (56). The pathogenesis of these viruses requires traversal of 

polarized epithelial cell barriers, making TJ proteins logical targets for viral entry. In 

addition, Helicobacter pylori interacts with JAM-A to induce epithelial barrier 

dysfunction (57). Understanding how JAM-A facilitates infection of polarized cells may 

shed light on how other viruses and pathogens utilize TJ proteins as receptors or entry 

mediators.  

 

Reovirus Pathogenesis 

 

 Reoviruses have been isolated from the stools of healthy (58, 59) and ill (60) 

children as well as a variety of animals (60). These findings suggest that reovirus is 

ingested into and shed from the gastrointestinal tract. The dynamics of reovirus infection 

in vivo have largely been elucidated using experimental mouse and rat model systems. 

Following entry into the gastrointestinal tract, intestinal proteases rapidly convert 
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reovirus virions to ISVPs, suggesting that the form of the reovirus particle that initiates 

infection in the intestine is the ISVP (61-63). In newborn mice, cells at the tips of 

microvilli are readily infected (Figure I-5), whereas cells in the intestinal crypts are 

spared (51, 64). In contrast, intestinal crypt cells are infected in adult mice, and cells at 

the villus tips are uninfected (65). Infectious reovirus can be recovered following peroral 

inoculation from the duodenum, jejunum, ileum, and colon (65, 66). However, the vast 

majority of virus is produced in the ileum. This differential production of virus may be 

due to the capacity of reovirus to infect Peyer patches. Reoviruses are thought to 

penetrate the intestinal barrier via transport across microfold (M) cells (Figure I-5), which 

are specialized cells of the follicle-associated epithelium (FAE) that overlay the Peyer 

patches (67-70). M cells transfer antigens from the intestinal lumen to lymphoid cells of 

the gut-associated lymphoid tissue (GALT) (71) and serve to monitor luminal contents by 

exposing Peyer patch lymphoid cells to food antigens, the intestinal microbiota, and 

intestinal microbial pathogens. This process is essential for induction of oral tolerance 

and activation of immune responses to pathogenic microorganisms (71). The preferential 

targeting of crypt cells observed in adult mice is hypothesized to result from transcytosis 

of virus across M cells and subsequent infection of crypt cells via the basolateral surface 

(72). However, M cells also take up reovirus in neonatal mice (51, 64, 67), suggesting 

that viral transcytosis across M cells is unlikely to explain the difference in intestinal cell 

tropism observed in adult and newborn mice. It is possible that the proliferative status of 

stem cells in the crypts of adult mice may recapitulate the cellular environment of 

neonatal intestinal cells, thereby facilitating reovirus infection of intestinal crypt cells. 
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 Systemic reovirus infection is thought to originate from infected lymphoid cells in 

the Peyer patch (Figure I-5). From the Peyer patch, reovirus transits intestinal lymphatics 

to the mesenteric lymph node (MLN) and ultimately enters the bloodstream via the 

thoracic duct (51, 64, 67). Many pathogens that cause systemic disease, including 

poliovirus (73, 74) and Salmonella (75-77), initiate extraintestinal infection and access 

the bloodstream via this route. It is possible that in addition to this route reovirus also 

contacts endothelial cells within the intestine that allow entry into the bloodstream to 

allow for systemic dissemination.  
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Figure I-5. Model of reovirus dissemination from the intestine. A schematic 
depicting where reovirus antigen is detected in the intestine following peroral 
infection. Reovirus antigen is detectable in the tips of microvilli, M cells, and FAE. 
Infected dendritic cells traffic reovirus out of the intestine via the lymphatic system. 
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 Reovirus reaches the Peyer patches early after infection; viral antigen is detected 

in Peyer patches within 24 hours after peroral inoculation (51, 64, 67, 69, 70, 78). 

However, the mechanism by which reovirus infects Peyer patch cells is not known. It is 

possible that dendritic cells in the Peyer patches take up reovirus virions immediately 

following viral transcytosis across M cells. This is the most direct route from the 

intestinal lumen to the Peyer patch and the primary pathway used for processing of 

intestinal antigens for immune surveillance. A second possibility is that progeny virions 

released from the basolateral surface of infected FAE cells are taken up by lymphoid cells 

in Peyer patches. Both viral structural and nonstructural proteins are detected in FAE 

cells (79), indicating that active viral replication occurs in these cells. However, it is not 

known whether FAE cells produce virus. A third possibility is that dendritic cells in 

Peyer patches take up apoptotic fragments from infected FAE cells, which undergo 

apoptosis following reovirus infection (79). Dendritic cells in the underlying Peyer 

patches immediately adjacent to apoptotic FAE cells contain both active caspase-3 and 

reovirus structural proteins (79). These observations suggest that Peyer patch dendritic 

cells take up apoptotic bodies from infected FAE cells. Additionally, apoptosis induction 

in the FAE may signal Peyer patch cells to phagocytose the apoptotic remnants, along 

with reovirus particles. 

 Regardless of the mechanism by which reovirus accesses Peyer patches, reovirus 

antigen is detected in the MLN 24 hours after peroral inoculation. Little is known about 

the cell types that support reovirus growth within the intestine and dissemination to the 

MLN. In adult mice, CD11c+ dendritic cells harbor reovirus antigen, but these cells are 

not thought to be actively infected (79). Viral nonstructural proteins are not present in 
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these cells (79), suggesting that active replication does not occur. CD11c+ dendritic cells 

are present in neonatal animals (80), but it is not known whether these cells internalize 

reovirus following peroral inoculation of newborn mice.  

 From Peyer patches, reovirus is hypothesized to traffic via afferent lymphatics to 

the MLN, then through efferent lymphatics to the blood. It is possible that infected 

lymphoid cells or lymphoid cells harboring virus mediate transport from the Peyer 

patches to the bloodstream. However, migrating dendritic cells rarely exit lymph nodes 

once they enter and present antigen to B and T cells (81). Thus, the cells responsible for 

transport of reovirus from the Peyer patch are likely retained in the MLN. Reovirus titers 

in the MLN increase rapidly after peroral inoculation (51, 64), suggesting that active viral 

replication occurs in the MLN. However, it also is possible that the increase in viral load 

in the MLN represents migration of infected lymphoid cells from the Peyer patches. 

Dissemination from the MLN to the bloodstream may occur as free virus or within 

another lymphoid cell subset. 

 An alternative mechanism for accessing the blood is direct uptake of viral 

particles from the gut. CD18+ phagocytes extend cellular processes between enterocytes 

to directly sample luminal contents. Dendritic cells also extend processes through the 

epithelial monolayer while maintaining barrier integrity to sample gut pathogens (82). A 

number of pathogens, including Salmonella (83) and Yersinia (84), use macrophages or 

dendritic cells to invade the bloodstream and cause extraintestinal infection. Following 

uptake of luminal pathogens, CD18+ phagocytes traffic across the lamina propria and 

directly into the blood allowing for rapid entry of the pathogen into the bloodstream.  
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Reoviruses are highly virulent in newborn mice and cause injury to a variety of 

host organs, including the CNS, heart, and liver (1). T1 and T3 reovirus strains invade the 

CNS but use different routes and produce distinct pathologic consequences following 

peroral or intramuscular inoculation. T1 reoviruses spread by hematogenous routes and 

infect ependymal cells, causing nonlethal hydrocephalus (85-87). T3 reoviruses spread to 

the CNS by both hematogenous and neural routes and infect neurons (51, 87, 88). In the 

brain, T3 reoviruses induce neuronal apoptosis, which results in fatal encephalitis (85-87, 

89). Studies using T1L × T3D reassortant viruses mapped the major determinant of CNS 

pathology to the viral S1 gene (90, 91), which encodes attachment protein σ1 and 

nonstructural protein σ1s (14, 92). Because of its role in viral attachment and entry, these 

serotype-specific differences in dissemination and disease have largely been ascribed to 

the σ1 protein. However, σ1s plays a critical role in promoting reovirus spread by the 

bloodstream (64, 88). 

 

Reovirus Viremia 

 

Reovirus viremia serves to spread virions to sites of secondary replication that are 

distant from the initial portal of entry. Other Reoviridae family members, including 

bluetongue virus (BTV) and Colorado tick fever virus, produce cell-associated viremia 

during infection. BTV infects and replicates in mononuclear cells, lymphocytes, and 

endothelial cells (93-97). Colorado tick fever virus is detected in mature erythrocytes (98). 

However, arthropod vectors transmit BTV and Colorado tick fever virus, making viremia 

a necessary part of the viral infectious cycle in nature. Mammalian reoviruses are not 
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transmitted by arthropod vectors and may produce a distinctly different type of viremia. 

Studies in which oncolytic reovirus was delivered intravenously to persons with cancer 

revealed that virus is largely found in hematopoietic cells, specifically mononuclear cells, 

granulocytes, and platelets (99). Each of these cell types express JAM-A (40, 100, 101), 

suggesting that reovirus associates with or infects blood cells to disseminate through the 

blood to target organs. However, in these studies, virus was delivered directly into the 

bloodstream by intravenous inoculation. It is not known how reovirus spreads 

systemically following infection from a natural portal, such as the intestine or lung. 

 

Role of Reovirus Receptors in Pathogenesis 

 

Interactions between viral attachment proteins and host cell receptors play a 

pivotal role in viral pathogenesis. Receptor engagement is a primary mechanism by 

which viruses target specific cell types. Therefore, patterns of receptor expression are a 

key determinant of viral disease. Reoviruses engage two types of cellular receptors: cell-

surface carbohydrate (16) and JAM-A (16, 22, 23). Both T1 and T3 reoviruses bind cell-

surface SA (16-20). However, the domains of σ1 that engage glycans differ between the 

serotypes (19, 21), as do the specific glycans bound (21). 

SA engagement enhances reovirus infection through an adhesion-strengthening 

mechanism in which viral particles are tethered to the cell surface via a low-affinity 

interaction with the carbohydrate (102). This interaction maintains the virus on the cell 

surface and increases the opportunity to engage JAM-A. SA-binding reovirus strains have 

an increased capacity to infect cells compared with non-SA-binding viruses; pre-
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treatment of cells with neuraminidase to remove cell-surface SA eliminates this 

advantage (102). SA engagement also enhances reovirus tropism for bile duct epithelial 

cells in mice following peroral inoculation (103). The resulting disease closely mimics 

biliary atresia in human infants (103), an illness epidemiologically associated with 

reovirus (104, 105).  

 Reovirus strains circulating in nature vary in the capacity to bind SA (19, 106). 

This finding suggests that SA binding comes with a fitness cost. Accordingly, SA binding 

appears to inhibit the capacity of reovirus to establish infection at mucosal portals of 

entry. Non-SA-binding viruses infect primary human airway epithelial cells substantially 

more efficiently than SA-binding strains (107). Moreover, infection of primary human 

airway epithelial cells by SA-binding viruses is enhanced by removal of cell-surface SA 

with neuraminidase. Mucosal surfaces are covered with a glycocalyx consisting of 

polysaccharides and glycoproteins that are rich in SA (107). SA-binding viruses may be 

trapped by SA within the glycocalyx and incapable of reaching the underlying epithelium 

(107). However, once infection is established, SA binding may enhance the capacity of 

reovirus to cause disease. In addition to the capacity to target bile duct epithelium, SA-

binding strains are more neurovirulent than non-SA-binding viruses following 

intracranial inoculation (103). This increase in virulence is likely due to more efficient 

infection of neurons, which results in neuronal apoptosis and encephalitis. The function 

of SA binding in reovirus hematogenous spread remains to be determined. 

Although all reoviruses bind JAM-A, T1 and T3 reoviruses infect distinct cells 

and cause serotype-specific patterns of pathologic injury within the CNS. These 

observations suggest that JAM-A binding does not influence serotype-specific 
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differences in reovirus neural tropism and CNS disease. Following peroral inoculation, 

reovirus produces similar titers in the intestine of wild-type and JAM-AKO mice (Figure 

I-6) (51), suggesting that JAM-A is not required for reovirus replication in the mouse 

gastrointestinal tract. In sharp contrast, viral titers at all sites of secondary replication are 

significantly lower in JAM-AKO animals compared with wild-type controls (Figure I-6) 

(51). Viral loads are comparable within the brains of wild-type and JAM-AKO animals 

after intracranial inoculation, suggesting that JAM-A is not required for viral replication 

at this site of secondary replication (51). These results suggest that JAM-A is required for 

dissemination of the virus from the intestine to replication sites in target organs.  
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Figure I-6. Reovirus T3SA- is attenuated following peroral inoculation of JAM-A 

KO mice. Newborn JAM-A+/+ and JAM-A−/− mice were inoculated perorally with 104 
PFU T3SA-. At days 4, 8, and 12 after inoculation, mice were euthanized, organs were 
resected, and viral titers were determined by plaque assay. Results are expressed as 
mean viral titers for 6–13 animals for each time point. Error bars indicate SD. *, P < 
0.05 by Student’s t test. Adapted from Antar et al. (2009).  
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Reovirus Neural Spread 

 

In addition to bloodborne spread, T3 reoviruses use neural circuits to disseminate 

to the CNS (87, 88). Spread via neural routes is a fundamental mechanism of reovirus 

pathogenesis that is essential for development of reovirus-induced encephalitis (87, 88). 

Direct infection of neurons at peripheral sites provides the virus with access to the spinal 

cord and serves as a conduit to the brain. Although the importance of neural spread to 

reovirus pathogenesis is well-appreciated, the cellular and molecular mechanisms that 

underlie neuronal reovirus trafficking are not well understood.  

In contrast to hematogenous spread, JAM-A is dispensable for neural 

dissemination. Although JAM-A is expressed in the brain, the cell types on which it is 

present have not been defined. JAM-A is found on NG2-glia cells, which are a subset of 

stem cells that give rise to oligodendrocytes (108). It is unclear whether JAM-A is 

expressed on peripheral or CNS neurons. Viral titers in the brains of wild-type and JAM-

AKO mice are comparable after intracranial inoculation (51). Viral tropism in the brain 

for hippocampal, thalamic, and cortical regions also does not differ between wild-type 

and JAM-AKO mice. Concordantly, primary cortical neurons isolated from wild-type and 

JAM-AKO mice are equally susceptible to reovirus infection and produce equivalent 

yields of viral progeny (51). Together, these data indicate JAM-A is not required for 

reovirus infection of neural tissue and suggest that JAM-A is dispensable for reovirus 

spread by neural routes. These findings further suggest that a cellular receptor distinct 

from JAM-A mediates reovirus infection of neurons. 
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Some evidence exists about the means by which reovirus traverses neural circuits. 

Treatment of animals with colchicine to inhibit fast axonal transport impairs reovirus 

spread to the spinal cord following hindlimb inoculation (87, 109). However, treatment 

with β-β′-iminodipropronitrile to inhibit slow axonal transport does not affect reovirus 

dissemination to the spinal cord (87, 110). These findings suggest that reovirus traffics in 

neurons along fast axonal transport pathways. However, these inhibitors may act non-

specifically to impair other aspects of viral replication. Much work is required to fully 

elucidate how reoviruses replicate and traffic in neurons. 

 

Reovirus Oncolytics 

 

Reoviruses are superb candidates for oncolytic therapeutics due to their preference 

for transformed cells and capacity to induce apoptosis (1). It is not well understood why 

reoviruses preferentially infect transformed cells. Cells with expression of epidermal 

growth factor receptor and activated Ras signaling pathways have increased susceptibility 

to reovirus infection (111, 112). In addition, transformed cells often do not have normal 

interferon responses, have increased receptor availability, more effective infectious 

particle generation, and increased virus release (1). Currently, reovirus strain T3D is 

being administered to a variety of cancer patients in Phase I-III clinical trials 

intravenously due to its poor infectivity within the intestine (1). Spread of reovirus by the 

bloodstream route enables the virus to target even the smallest foci of tumor cells (99, 

113).  
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Significance of the Research 

 

Viremia is often a key step in viral pathogenesis. The circulatory system ensures 

systemic spread throughout an infected host. Although this critical process is prerequisite 

to seeding virus to targeted sites of secondary replication, little is known about how 

viruses gain access to, replicate within, and egress from the bloodstream. It is possible 

that pathways into and out of the bloodstream may be conserved amongst viruses that 

establish viremia during an infectious cycle.  

The overarching goal of this dissertation was to determine mechanisms by which 

reovirus disseminates hematogenously. The central hypothesis was that JAM-A 

expression on endothelial cells facilitates bloodstream spread of reovirus. In the work 

presented here, I demonstrate that endothelial JAM-A facilitates reovirus bloodstream 

entry, viremia, and egress from the circulation using in vivo and in vitro studies. Future 

studies will focus on examining the means of reovirus bloodstream transport, egress of 

reovirus from infected endothelial cells, and reovirus exit from the circulatory system. 

Understanding mechanisms that govern the spread of reovirus by the bloodstream may 

shed light on how to inhibit this critical process during viral pathogenesis and also allow 

manipulation of reovirus to be a more effective oncolytic. 
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CHAPTER II 

 

ENDOTHELIAL JAM-A FACILITATES REOVIRUS 

VIREMIA AND BLOODSTREAM SPREAD 

 

Clinical manifestations of viral infection are often dictated by tropism of the virus 

for a particular cell type or organ. In the case of neurotropic viruses, infection of neurons 

can lead to encephalitis or other neurologic impairment. However, for many viruses to 

cause disease, they must first reach target tissues from a site of entry into the host and 

commonly use lymphatic, hematogenous, or neural pathways to traffic systemically. 

Infection of cells that facilitate access to these pathways can influence whether viral 

infection results in symptomatic disease. For example, a neurotropic virus may infect 

endothelial cells to promote viral entry into the bloodstream and delivery to the CNS. 

Knowledge gained from studies to determine precisely how viruses disseminate can be 

used to block this key step in viral pathogenesis and improve vector targeting for clinical 

purposes. 

To determine whether endothelial or hematopoietic JAM-A facilitates reovirus 

bloodstream dissemination, mice with decreased endothelial cell-specific expression of 

JAM-A (EndoJAM-AKD) were generated and infected by peroral and intravascular 

routes. Because EndoJAM-AKD mice also lack JAM-A expression in hematopoietic 

cells, mice lacking or expressing JAM-A solely in the hematopoietic cell compartment 

(HematoJAM-AKO and HematoJAM-A, respectively) also were generated to determine 

whether hematopoietic JAM-A facilitates reovirus bloodstream spread. Viral titers in 
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blood and at sites of secondary replication were lower in EndoJAM-AKD mice than 

those in wild-type mice following either peroral or intravascular reovirus inoculation. In 

contrast, viral titers in blood and at sites of secondary replication in HematoJAM-AKO 

mice were similar to those in wild-type mice following both peroral and intravascular 

inoculation. Levels of viremia and viral replication at sites of secondary replication in 

HematoJAM-A mice were lower than those in wild-type mice following both peroral and 

intravascular inoculation. Together, these data suggest that endothelial and not 

hematopoietic JAM-A is required for bloodstream dissemination of reovirus. 

 

Characterization of mice with targeted disruption of JAM-A expression. To 

determine the role of endothelial JAM-A in reovirus infection, I generated mice lacking 

JAM-A exclusively in the endothelial cell compartment (Figure II-1). Genotypes of the 

different mouse strains were confirmed by PCR using primers specific for the Tek-Cre 

(Cre recombinase) transgene and floxed JAM-A (Table 1, Figure II-1). I assessed cell-

surface expression of JAM-A on hematopoietic and endothelial cells of EndoJAM-AKD 

mice. Surprisingly, I found that cell-surface JAM-A was decreased on endothelial cells 

and absent on hematopoietic cells in EndoJAM-AKD mice (Figures II-2, II-6, II-7). 

Compared to JAM-A expression on endothelial cells in wild-type mice, JAM-A 

expression on endothelial cells in EndoJAM-AKD mice was diminished approximately 

two-fold as determined by the mean fluorescence intensity (MFI) (Figure II-3).  

To determine the role of hematopoietic JAM-A in reovirus infection, I generated 

mice that either lack or express JAM-A solely in the hematopoietic compartment (Figure 

II-4). Genotypes of the different mouse strains were confirmed by PCR using primers 
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specific for the Vav-cre transgene and floxed JAM-A (for HematoJAM-AKO mice) or 

Vav-JAM transgene and JAM-AKO allele (for HematoJAM-A mice) (Table 1, Figure II-

4). I assessed cell-surface JAM-A expression on endothelial and hematopoietic cells of 

HematoJAM-AKO and HematoJAM-A mice. As expected, JAM-A expression on lung 

endothelial cells of HematoJAM-AKO mice mirrored that seen in lung endothelial cells 

of wild-type mice (Figure II-5). In contrast, lung endothelial cells from HematoJAM-A 

mice, which lack all native JAM-A but express a hematopoietic-specific JAM-A 

transgene (Figure II-4), had levels of JAM-A expression similar to JAM-AKO mouse 

lung endothelial cells (Figure II-5). Levels of JAM-A expression on hematopoietic cells 

collected from HematoJAM-AKO mice were undetectable, but hematopoietic JAM-A 

expression in HematoJAM-A mice was identical to that seen in wild-type mice (Figures 

II-5, II-6, II-7). The JAM-A expression phenotypes of the mouse strains used in this 

study are shown in Table 2. 
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TABLE 1. Primer sequences used to genotype mice with altered JAM-A expression. 
 
Mouse Region Forward Primer Reverse Primer 
JAM-A 

f/f 
(WT) 

JAM-A 
Exon 1 

TCT TTT CAC CAA TCG GAA 
CG 

AAA AAC TCT AGG AAC TCA 
CCC AGG A 

JAM-
AKO 
(KO) 

JAM-A 
Exon 1 

TCT TCT TCA GAC GCC 
GAA CCT 

CCT CTC TTT TCA CCA ATC 
GGA 

Tek-Cre 
(EKO) 

Tek P 
to Cre 

CCC TGT GCT CAG ACA 
GAA ATG AGA  

CGC ATA ACC AGT GAA 
ACA GCA TTG C 

Vav-Cre 
(HKO) 

Vav P 
to Cre 

GAA GGA ACG AGG GTG 
CAC 

TGC CTG TCC CTG AAC ATG 
TC 

Vav-Cre 
(HKO) 

Cre to 
Vav E 

ATG CAG GCT GGT GGC 
TGG 

GGC TCG CGA GGT TTT ACT 
TGC 

Vav-
JAM 
(HJ) 

Vav P 
to 

JAM-A 

GAA GGA ACG AGG GTG 
CAC 

GTG CAG GTC AAT  TTG ATG 
GAC TCG  

Vav-
JAM 
(HJ) 

JAM-A 
to Vav 

E 

CAG CTG TCC TGG TAA 
CAC TGA TTC  

GGC TCG CGA GGT TTT ACT 
TGC 

aIn cases in which two sets of primers for a particular mouse strain are shown, only one 
was used at any time to determine the genotype. 
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Figure II-1. Generation of EndoJAM-AKD mice. A schematic depicting the 
generation of EndoJAM-AKD mice used in infection experiments. Exon 1 of JAM-A 
is flanked by loxP sites in JAM-A f/f mice. Cre recombinase expression in 
endothelial-specific Cre tg mice is driven by Tek promoter and enhancer sequences 
from an inserted transgene. Crosses between JAM-A f/f and tissue-specific Cre mice 
generate mice in which exon 1 of JAM-A is excised in tissues where Cre is expressed. 
Arrows indicate primer binding sites for JAM-A primers (J1, J2), JAM-A f/f primers 
(F1, F2), and Tek-Cre primers (TC1, TC2). Tek = Tek promoter, CRE = Cre 
recombinase, E = Tek enhancer. 
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Figure II-2. Characterization of EndoJAM-AKD mice. JAM-A expression was 
assessed in 6- to 8-week-old mice by genomic DNA PCR and flow cytometry. 
Hematopoietic cells were collected from blood and spleens, and endothelial cells were 
cultured from lungs. JAM-A expression was quantified using flow cytometry. (A) 
Agarose gels displaying bands corresponding to regions of genomic DNA amplified in 
genotyping PCR reactions. Bands from the following reactions are shown for each 
mouse strain: JAM-A f/f, Tek-Cre, Vav-Cre, Vav-JAM, JAM-AKO. (B) Flow 
cytometric profiles of endothelial and hematopoietic cells (peripheral blood 
granulocytes and macrophages) from each mouse strain. US = Unstained, WT = Wild-
type (JAM-A f/f), KO = JAM-AKO, EKD = EndoJAM-AKD.  
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Figure II-3. Quantification of JAM-A expression in primary lung endothelial 
cells. Endothelial cells were cultured from lungs excised from 6- to 8-week-old mice. 
Cells were stained with JAM-A-specific antibody and cell-surface JAM-A expression 
was quantified using flow cytometry. JAM-A expression is displayed as MFI values 
that were normalized by subtracting MFI of unstained controls. WT = Wild-type 
(JAM-A f/f), KO = JAM-AKO, EKD = EndoJAM-AKD. 

EKD HJ HKO KO WT 
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Figure II-4. Generation of HematoJAM-AKO and HematoJAM-A mice. (A) A 
schematic depicting the generation of HematoJAM-AKO mice used in infection 
experiments. Cre recombinase expression in hematopoietic-specific Cre tg mice is 
driven by Vav promoter and enhancer sequences from an inserted transgene. Arrows 
indicate primer binding sites for JAM-A primers (J1, J2), JAM-A f/f primers (F1, F2), 
and Vav-cre primers (TC1, TC2). Vav = Vav promoter, CRE = Cre recombinase, E = 
Vav enhancer. (B) Mice that express JAM-A only within the hematopoietic cell 
compartment (HematoJAM-A mice) were obtained by generating tg mice expressing a 
transgene in which JAM-A expression is driven by Vav1 promoter and enhancer 
sequences. JAM-A expression was abolished by breeding the tg mice with JAM-AKO 
mice. Arrows indicate primer binding sites for Vav-JAM primers (VJ1, VJ2). Vav = 
Vav promoter, JAM = JAM-A cDNA, E = Vav enhancer.  
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Figure II-5. Characterization of HematoJAM-AKO and HematoJAM-A mice. 
JAM-A expression was assessed in 6- to 8-week-old mice by genomic DNA PCR and 
flow cytometry. Hematopoietic cells were collected from blood and spleens, and 
endothelial cells were cultured from lungs. JAM-A expression was quantified using 
flow cytometry. (A) Agarose gels displaying bands corresponding to regions of 
genomic DNA amplified in genotyping PCR reactions. Bands from the following 
reactions are shown for each mouse strain: JAM-A f/f, Tek-Cre, Vav-Cre, Vav-JAM, 
JAM-AKO. (B) Flow cytometric profiles of endothelial and hematopoietic cells 
(granulocytes and macrophages) from each mouse strain. US = Unstained, WT = 
Wild-type (JAM-A f/f), KO = JAM-AKO, HKO = HematoJAM-AKO, HJ = 
HematoJAM-A. 
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Figure II-6. JAM-A expression in circulating hematopoietic cells. Blood was 
collected retroorbitally from 6- to 8-week-old mice, and JAM-A expression on 
leukocytes was quantified using flow cytometry. B and T lymphocytes were defined as 
the populations that were B220+ and TCR-β+, respectively. Each set of histograms 
includes data from unstained, WT, and JAM-AKO cells along with the indicated 
genotype. WT = Wild-type (JAM-A f/f), KO = JAM-AKO, EKD = EndoJAM-AKD, 
HKO = HematoJAM-AKO, HJ = HematoJAM-A. 
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Figure II-7. JAM-A expression in splenocytes. Spleens were excised from 6- to 8-
week-old mice, and splenocytes were stained for various hematopoietic cell markers. 
Granulocytes, macrophages, dendritic cells, B lymphocytes, and T lymphocytes were 
defined as the populations that were Gr-1+, CD11b+, Cd11c+, B220+, and TCR-β+, 
respectively. Each set of histograms includes data from unstained, WT, and JAM-AKO 
cells along with the indicated genotype. WT = Wild-type (JAM-A f/f), KO = JAM-
AKO, EKD = EndoJAM-AKD, HKO = HematoJAM-AKO, HJ = HematoJAM-A. 

HKO HJAM EKD 
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TABLE 2. JAM-A expression in mouse strains used in studies of reovirus 
bloodstream spread. 
 

Mouse strain 
JAM-A Expression 

Endothelial Cells Hematopoietic 
Cells 

Wild-type (JAM-A f/f) +a + 

JAM-AKO -b - 

EndoJAM-AKD ↓c       - 

HematoJAM-AKO + - 

Hemato-JAM-A - + 

aWild-type expression; bAbsent expression;  
cExpression decreased approximately 50% 
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Endothelial JAM-A promotes bloodstream dissemination of reovirus. To determine 

whether endothelial or hematopoietic JAM-A is required for bloodstream spread of 

reovirus, wild-type, JAM-AKO, EndoJAM-AKD, HematoJAM-AKO, and HematoJAM-

A mice were inoculated perorally with reovirus strain T1L. Following peroral inoculation 

of newborn mice, T1L infects the intestine, disseminates hematogenously, and reaches 

high titers in most visceral organs (51, 64). Reovirus dissemination was assessed by 

determining viral titers in organ homogenates and blood of infected mice 4, 8, and 12 d 

post-inoculation. As anticipated, wild-type, JAM-AKO, and the tissue-specific JAM-A-

expressing mice had equivalent viral titers in the intestine (Figure II-8), as replication at 

this site is not JAM-A-dependent (51). Viral titers were minimally detectable in the brain, 

heart, and blood of JAM-AKO mice and significantly lower in the spleen and liver 

compared with those in wild-type animals (Figures II-8, II-9). After peroral reovirus 

inoculation, HematoJAM-AKO mice, which lack JAM-A only in hematopoietic cells, 

phenocopied wild-type mice. Viral titers in the heart, spleen, liver, brain, and blood of 

infected HematoJAM-AKO mice were equivalent to those in infected wild-type mice 

(Figures II-8, II-9). Viral titers in the brain, heart, spleen, liver, and blood of 

HematoJAM-A mice, which express JAM-A solely in hematopoietic cells, were similar 

to those seen in JAM-AKO mice (Figures II-8, II-9). These data suggest that 

hematopoietic JAM-A is dispensable for reovirus hematogenous dissemination.Viral 

titers in the spleen, liver, heart, brain, and blood of EndoJAM-AKD mice were 

significantly lower than those observed in wild-type mice (Figures II-8, II-9). Titers of 

virus in these animals were similar to those observed in JAM-AKO and HematoJAM-A 
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mice, suggesting that reovirus hematogenous dissemination is dependent on endothelial 

but not hematopoietic JAM-A.  
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Figure II-8. Endothelial JAM-A is required for reovirus bloodstream spread. 
Newborn (2-3 d) mice were inoculated perorally with reovirus strain T1L at 1000 
plaque forming units (PFU) per mouse. At 4, 8, and 12 d post-inoculation, intestine, 
heart, and brain were excised and blood was collected into an equal volume of 
Alsever’s solution for determination of viral titer by plaque assay. Results are 
presented as mean viral titer. Error bars indicate standard deviation. For each time 
point and mouse strain, two to twenty-two mice were used. WT = Wild-type (JAM-A 
f/f), KO = JAM-AKO, EKO = EndoJAM-AKO, HKO = HematoJAM-AKO, HJ = 
HematoJAM-A. *, P < 0.05, **, P < 0.005, ***, P < 0.001 by Student’s t test. 
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Supplemental Figure 3

Figure II-9. Reovirus dissemination to the liver and spleen requires endothelial 
JAM-A. Newborn (2-3 d) mice were inoculated perorally with reovirus strain T1L at 
1000 PFU per mouse. At 4, 8, and 12 d post-inoculation, spleen and liver were excised 
for determination of viral titer by plaque assay. Results are presented as mean viral 
titer. Error bars indicate standard deviation. For each time point and mouse strain, two 
to twenty-two mice were used. WT = Wild-type (JAM-A f/f), KO = JAM-AKO, EKO 
= EndoJAM-AKO, HKO = HematoJAM-AKO, HJ = HematoJAM-A. *, P < 0.05, **, 
P < 0.005, ***, P < 0.001 by Student’s t test. 
 



	
   44 

Endothelial JAM-A is required for reovirus egress from the bloodstream. Because 

the requirement for bloodstream entry may differ from the requirement for bloodstream 

egress, I used an intravenous inoculation protocol to directly assess the role of JAM-A in 

reovirus bloodstream egress. Wild-type and JAM-AKO mice were inoculated 

intravenously with reovirus strain T1L, and viral titers in organ homogenates were 

determined by plaque assay 8 d post-inoculation (Figure II-10). Viral titers in wild-type 

mice inoculated intravenously were similar to those in perorally-inoculated wild-type 

mice (Figures II-8, II-9, II-10). In intravenously-inoculated mice, reovirus disseminated 

to the intestine, spleen, liver, heart, and brain (Figure II-10). Viral titers in JAM-AKO 

mice were significantly lower in all organs tested compared with those in wild-type mice, 

suggesting that reovirus egress from the bloodstream is dependent on JAM-A expression 

(Figure II-10).  

To determine whether endothelial or hematopoietic JAM-A facilitates reovirus 

egress from the bloodstream, EndoJAM-AKD, HematoJAM-AKO, and HematoJAM-A 

mice were inoculated intravenously, and viral titers were determined in organ 

homogenates 8 d post-inoculation. Reovirus titers in HematoJAM-AKO were comparable 

to those observed in wild-type mice (Figure II-10), suggesting that dissemination to these 

sites does not require hematopoietic JAM-A. Viral titers in the liver and heart of 

HematoJAMKO mice were significantly lower than those seen in wild-type mice (Figure 

II-10). However, the magnitude of this decrease in viral titers is modest. Viral titers in the 

intestine, spleen, liver, heart, and brain of HematoJAM mice were similar to those 

observed in JAM-AKO mice, suggesting that hematopoietic JAM-A is not sufficient for 

reovirus exit from the circulation and infection of these organs (Figure II-10). Viral titers 
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in EndoJAM-AKD mice were significantly lower in the blood and intestine, spleen, liver, 

heart, and brain compared with those observed in wild-type mice (Figure II-10). Taken 

together, these data suggest that reovirus egress from the bloodstream requires 

endothelial but not hematopoietic JAM-A.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   46 

 

Figure II-10. Reovirus uses endothelial JAM-A to egress from the circulation. 
Newborn (2-3 d) mice were inoculated perorally with reovirus strain T1L at 1000 PFU 
per mouse. At 8 d post-inoculation, intestine, spleen, liver, heart, and brain were 
excised and blood was collected into an equal volume of Alsever’s solution for 
determination of viral titer by plaque assay. Results are presented as the mean viral 
titer. Error bars indicate standard deviation. For each time point and mouse strain, five 
to eighteen mice were used. WT = Wild-type (JAM-A f/f), KO = JAM-AKO, EKO = 
EndoJAM-AKO, HKO = HematoJAM-AKO, HJ = HematoJAM-A. *, P < 0.05, **, P 
< 0.005, ***, P < 0.001 by Student’s t test. 
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Primary endothelial cells are permissive for reovirus infection. Polarized endothelial 

cells are permissive for reovirus infection in vitro (51, 114). Because reovirus spread was 

limited in EndoJAM-AKD mice, I wondered whether this defect in viral replication is 

due to a replication defect in the endothelial cell compartment. Primary lung endothelial 

cells were cultured from lungs excised from wild-type, JAM-AKO, EndoJAM-AKD, 

HematoJAM-AKO, and HematoJAM-A mice and infected with reovirus strain T1L at a 

multiplicity of infection (MOI) of 100 PFU per cell. After one replication cycle, cells 

were collected and stained for reovirus antigen using Alexa Fluor-conjugated reovirus-

specific antiserum. The percentage of infected cells for each genotype (Figure II-11) 

correlated with the level of JAM-A expression in endothelial cells (Figure II-3). These 

data suggest that reovirus replication in endothelial cells seeds the bloodstream with 

virus.  
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Figure II-11. Reovirus infectivity is diminished in EndoJAM-AKO lung 
endothelial cells. Endothelial cells were cultured from lungs excised from 6- to 8-
week-old mice. Cells were adsorbed with virus strain T1L at an MOI of 100 PFU per 
cell. After incubation at 37⁰C for 24 h, cells were harvested and stained for reovirus 
antigen using Alexa Fluor-conjugated reovirus-specific antiserum. The percentage of 
infected cells was determined using flow cytometry.  
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Discussion 

 

Reoviruses are neurotropic viruses that disseminate by hematogenous and neural routes. 

These viruses are useful experimental models to dissect mechanisms by which viruses 

gain access to these systemic transport pathways. In this study, I assessed hematogenous 

reovirus spread in mice with tissue-specific alterations in JAM-A expression. I 

hypothesized that systemic bloodstream spread of reovirus depends on expression of 

JAM-A in the endothelium and on hematopoietic cells. The key finding in this chapter is 

that endothelial but not hematopoietic JAM-A is required for reovirus bloodstream 

spread.  

To generate mice with altered JAM-A expression in the endothelial compartment, 

I chose to use animals that express Cre driven by the Tek promoter. Tek is a tyrosine 

kinase that is specific for endothelial cells, but it also is expressed in hematopoietic stem 

cells (115). Tek-dependent Cre recombinase expression in hematopoietic stem cells likely 

accounts for the absence of JAM-A expression in all hematopoietic cell types in 

EndoJAM-AKD mice (Figures II-2B, II-6, II-7). To exclude the possibility that the 

absence of hematopoietic JAM-A might confound the effects seen in EndoJAM-AKD 

mice, I generated HematoJAM-AKO and HematoJAM-A mice.   

Dissemination by the bloodstream route requires that a virus surmount several 

physiological obstacles. Reoviruses initially replicate in the small intestine in a JAM-A-

independent manner (51), enter into the bloodstream, and target the CNS where 

replication is again JAM-A-independent (51). Mice lacking JAM-A are protected from 

reovirus-induced encephalitis because the virus cannot enter the bloodstream (51). 
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Accordingly, reovirus infection of polarized endothelial cells is dependent on JAM-A 

(114). When infected from the basolateral (or tissue) surface, polarized endothelial cells 

route the virus to the luminal (or blood) surface of the polarized monolayer (114). These 

data suggest that reovirus uses JAM-A to infect endothelial cells to gain access to the 

bloodstream. EndoJAM-AKD mice, which display diminished JAM-A expression in 

endothelial cells, have significantly lower levels of viremia after peroral and intravenous 

inoculation compared with those in wild-type mice (Figures II-8D, H, L and II-10F), 

suggesting that endothelial JAM-A facilitates reovirus entry into and exit from the 

bloodstream. Subsequent spread to sites of secondary replication (e.g., brain and heart) 

after peroral inoculation is significantly diminished in EndoJAM-AKD mice (Figure II-

8), suggesting that efficient spread to those sites requires a threshold level of viremia. 

Although viral titers in organ homogenates prepared from EndoJAMKD mice are 

significantly lower than those observed in wild-type mice, there is detectable virus at 

these sites. This finding might be attributable to residual JAM-A expression in the 

endothelium of EndoJAM-AKD mice or the presence of another host component that 

facilitates systemic trafficking of reovirus. Nonetheless, my findings provide strong 

evidence that endothelial JAM-A promotes bloodstream entry during systemic infection.  

Many viruses use hematopoietic cells to traffic in an infected host. For example, 

HIV-1 adheres to dendritic cells prior to contact with their primary target, CD4+ T 

lymphocytes (116, 117). Because JAM-A is expressed on circulating hematopoietic cells, 

I hypothesized that reovirus uses leukocytes to traffic within the circulation. Surprisingly, 

I found that viral titers in the blood and at sites of secondary replication of 

HematoJAMKO mice, which lack JAM-A in the hematopoietic compartment, are 



	
   51 

equivalent to those seen in wild-type mice after peroral and intravenous inoculation 

(Figures II-8, II-9, II-10). Viral titers in HematoJAM mice, which express JAM-A only in 

hematopoietic cells, mirrored those seen in JAM-AKO mice (Figures II-8, II-9, II-10), 

further confirming that hematopoietic JAM-A does not facilitate reovirus spread through 

the bloodstream. Since reoviruses have been reported to associate with dendritic cells in 

vivo (99), it is possible that reoviruses bind to or infect leukocytes using a molecule 

distinct from JAM-A. In clinical trials using reovirus strain T3D as an oncolytic agent, 

the virus was observed to bind human immune cells in the blood (99). Therefore, reovirus 

strains may differ in the capacity to infect leukocytes in vivo.  

Development of viremia may occur as a consequence of viral replication in 

endothelial cells. Flaviviruses like dengue virus (DENV) are capable of infecting 

endothelial cells and replicate to high titers, lysing the cells to increase viremia (118). In 

the case of DENV infection, high-titer viremia is required for vectoral transmission of the 

virus to a naïve host (119). Reovirus viremia is not required for transmission of the virus 

since reovirus host-to-host spread occurs primarily by the fecal-oral route. Instead, 

viremia serves to spread reovirus systemically to sites of secondary replication. Viral 

titers in the blood of JAM-AKO mice are significantly lower than those observed in wild-

type mice (Figure II-8D, H, L) (51), suggesting that JAM-A promotes establishment of 

viremia. Infection of polarized endothelial cells with reovirus requires JAM-A and may 

serve as a means to amplify reovirus within the bloodstream (114). Apical (or luminal) 

infection of polarized endothelial cells is efficient, and infected cells release virus 

noncytolytically from the apical surface (114). Lower viral titers in the blood of 

EndoJAM-AKD mice and wild-type viral titers in the blood of HematoJAM-AKO mice 
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after peroral and intravenous inoculation (Figures II-8, II-10) suggest that endothelial and 

not hematopoietic JAM-A is required for development of viremia.  

Reoviruses are superb candidates for oncolytic therapeutics due to their 

preference for transformed cells and capacity to induce apoptosis (1). Currently, reovirus 

strain T3D is being administered to a variety of cancer patients in Phase I-III clinical 

trials intravenously due to its poor infectivity within the intestine (1). Spread of reovirus 

by the bloodstream route enables the virus to target even the smallest foci of tumor cells 

(99). By understanding how reovirus interacts with JAM-A on the endothelium, it may be 

possible to design new reovirus vectors to reach target tumors more efficiently. For 

example, reoviruses with higher affinity for JAM-A may enter and exit the circulation 

more readily, allowing for more efficient targeting of tumor cells. On the other hand, 

generating reoviruses that bind JAM-A with lower affinity may decrease the 

pathogenicity of the virus by inhibiting viremia. Thus, understanding mechanisms that 

govern the spread of reovirus by the bloodstream sheds light on how pathogens 

systemically disseminate and may enhance systemic vector targeting for a host of 

therapeutic applications.  
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CHAPTER III 

 

JAM-A FACILITATES REOVIRUS INFECTION OF POLARIZED  

HUMAN BRAIN MICROVASCULAR ENDOTHELIAL CELLS 

 

Bloodstream dissemination within an infected host is required for the 

pathogenesis of many viruses. In particular, many neurotropic viruses use the circulation 

to invade the CNS from a distant site of primary replication. Regardless of the site of 

entry into the host, viruses that disseminate hematogenously must first traverse an 

endothelial barrier and egress from the circulation. Although viremia is a well-established 

dissemination process, precise mechanisms of viral entry into the bloodstream are not 

well understood. 

In this study, I examined reovirus infection of polarized human brain 

microvascular endothelial cells (HBMECs) to better understand mechanisms of viral 

entry into the bloodstream. I found that reovirus productively infects polarized 

endothelial cells from both apical and basolateral routes of adsorption. Regardless of the 

route of adsorption, reovirus infection of polarized endothelial cells is dependent on 

engagement of receptors SA and JAM-A. Reovirus infection by the apical route of 

infection is more efficient than infection by the basolateral route, likely because of 

increased expression of JAM-A on the apical surface of polarized endothelial cells. These 

studies provide a new understanding of how viruses infect polarized endothelial cells and 

identify the endothelium as an important mediator of viral pathogenesis. 
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Generation of a polarized endothelial cell system for studies of reovirus infection. To 

investigate how reoviruses might use a polarized endothelium to enter the bloodstream, a 

polarized endothelial cell system was generated by culturing HBMECs on Transwell 

inserts. To confirm that the conditions used to cultivate HBMECs on Transwell inserts 

lead to formation of polarized cultures, transendothelial electrical resistance (TEER) and 

permeability of the monolayers to diffusion of dextrans was determined. The TEER of 

HBMECs increased over time in comparison to L929 fibroblast cells, which do not 

polarize, suggesting the formation of TJs and establishment of polarized cultures (Figure 

III-1A). The permeability to FITC-labeled dextrans across cultured HBMEC monolayers 

decreased over time in parallel with increased TEER, with dextran diffusion barely 

detectable 7 d post-seeding (Figure III-1B). As a control, ethylenediaminetetraacetic acid 

(EDTA) treatment, which chelates divalent cations required for TJ maintenance, 

enhanced permeability across the HBMEC monolayer (Figure III-1B). Furthermore, TJ 

protein markers are present in confocal micrographs of HBMECs cultured on Transwells 

for 7 d (Figure III-1C, white asterisks). These data suggest that HBMECs cultivated on 

Transwell inserts form TJs and become polarized 7 d post-seeding.  
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Figure III-1. Barrier properties of polarized HBMECs. (A) HBMECs (solid line) 
and L929 cells (dashed line) cultivated on Transwells were monitored for TEER daily 
for 12 d. The data are presented as unit area resistance, where normalized TEER is 
multiplied by the area of the Transwell insert (Ω·cm2). A representative experiment of 
two performed is shown, with each experiment conducted in duplicate. Error bars 
indicate range of data for the duplicates. (B) FITC-labeled dextrans were added to the 
apical compartment of HBMECs cultivated on Transwell inserts at 1, 4, or 7 d post-
seeding. Prior to the addition of dextrans, TEER (Ω·cm2) was determined and is 
presented in parentheses above each bar. The percent permeability was determined 
using the following equation: Permeability (%) = [FITC-dextran]basolateral/([FITC-
dextran]basolateral + [FITC-dextran]apical) x 100. On day 7, 2.5 mM EDTA was added to 
the apical and basolateral compartments as a control to disrupt TJs. A representative 
experiment of three performed is shown, with each experiment conducted in duplicate. 
Error bars indicate range of data for the duplicates. (C) HBMECs cultured on 
Transwells for 7 d were stained for TJ proteins claudin-1 (red) and JAM-A (green) and 
nuclei (blue). At the bottom of the merged image, blue staining shows the Transwell 
membrane. Representative images of the cell monolayer in the xz plane are shown. 
White asterisks indicate colocalization of TJ proteins. Cell images were captured using 
a Zeiss LSM 510 Meta laser-scanning confocal microscope using a 63×/1.40 Plan-
Apochromat objective lens. 
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Reovirus infection of polarized endothelial cells is more efficient from the apical 

surface. To determine whether reovirus productively infects polarized endothelial cells, I 

adsorbed either the apical or basolateral surface of polarized HBMECs with strain 

T3SA+, a virus that efficiently binds sialic acid and JAM-A (22, 102). Viral titer in cell 

lysates increased over time regardless of the route of adsorption (Figure III-2A). 

Following apical adsorption, viral titer peaked at 24 h post- infection, with the yield 

reaching approximately 1000-fold over input (Figure III-2A). In contrast, following 

basolateral adsorption, viral replication was delayed with yields of 5-fold at 24 h and 

100-fold at 48 h post-infection (Figure III-2A). I observed a similar trend with polarized 

HBMECs infected with reovirus strain T1L (Figure III-3A). These data indicate that 

reovirus infection of polarized HBMECs is productive following either apical or 

basolateral entry routes, but apical adsorption results in more efficient replication and 

increased viral yields.  

Because I observed higher peak titers in polarized HBMECs after apical 

adsorption, I sought to determine whether initiation of reovirus infection is more efficient 

when cells are infected apically versus basolaterally. Polarized HBMECs were adsorbed 

with virus by the apical or basolateral route, and the percentage of reovirus antigen-

positive cells was quantified using flow cytometry. Apical adsorption resulted in 

approximately ten-fold more infected cells compared with that following basolateral 

adsorption (Figure III-2B). Apical infection of polarized HBMECs by reovirus strain T1L 

also yielded significantly more infected cells than that observed after basolateral infection 

(Figure III-3B). As a control, apical or basolateral adsorption of nonpolarized L929 
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fibroblast cells cultivated on Transwell inserts yielded equivalent numbers of infected 

cells (Figure III-2B).  

To determine whether differences in infectivity are attributable to differences in 

virus binding, I assessed virus attachment to polarized HBMECs following apical or 

basolateral adsorption. In concordance with the infectivity data, approximately 10-fold 

more virus was bound to HBMECs following apical adsorption compared with that 

following basolateral adsorption (Figure III-2C). As anticipated, virus bound equivalently 

to L929 fibroblasts following adsorption either apically or basolaterally (Figure III-2C). 

Together, these data suggest that reovirus binds more efficiently to the apical surface of 

polarized HBMECs, which results in increased infectivity and replication. 
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Figure III-2. Reovirus infection of polarized HBMECs is more efficient following 
adsorption from the apical surface. Polarized HBMECs were adsorbed either 
apically (white bars) or basolaterally (black bars) with reovirus T3SA+ at an MOI of 
10 PFU per cell. (A) Transwell inserts were excised at 0, 24, and 48 h post-infection, 
and viral titers in cell lysates were determined by plaque assay. A representative 
experiment of three performed is shown, with each experiment conducted in duplicate. 
Error bars indicate range of data for the duplicates. (B) HBMECs were incubated for 
20-24 h and harvested by trypsinization. Cells were permeabilized and stained with 
Alexa Fluor-conjugated reovirus-specific antiserum. The percentage of infected cells 
was determined using flow cytometry. A representative experiment of three performed 
is shown, with each experiment conducted in duplicate.    Error bars indicate range of 
data for the duplicates. (C) HBMECs were removed immediately after adsorption and 
stained with Alexa Fluor-conjugated reovirus-specific antiserum. MFI was determined 
using flow cytometry. A representative experiment of three performed is shown, with 
each experiment conducted in duplicate. Error bars indicate range of data for the 
duplicates.**, P < 0.005, n.s., not significant. 
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Figure III-3. T1L infection of polarized HBMECs is more efficient by the apical 
route. Polarized HBMECs were adsorbed either apically or basolaterally with reovirus 
T1L at an MOI of 10 PFU per cell. After adsorption with virus, cells were incubated 
for various intervals. (A) Transwell inserts were excised at 0, 24, and 48 h post-
infection, and viral titers in cell lysates were determined by plaque assay. A 
representative experiment of two performed is shown, with each experiment 
conducted in duplicate. Error bars indicate range of data for the duplicates. (B) 
HBMECs were incubated for 20-24 h and harvested by trypsinization. Cells were 
permeabilized, stained with Alexa Fluor-conjugated reovirus-specific antiserum, and 
the percentage of infected cells was determined using flow cytometry. A 
representative experiment of two performed is shown, with each experiment 
conducted in duplicate. Error bars indicate range of data for the duplicates.                
**, P < 0.005. 
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SA and JAM-A are required for reovirus infection of polarized endothelial cells. To 

determine whether differences in infectivity of polarized HBMECs after apical or 

basolateral adsorption are attributable to differences in receptor engagement, I used  

mutant reovirus strains impaired in the capacity to bind either sialic acid or JAM-A. 

Single amino acid mutations in the σ1 attachment protein can dramatically diminish 

binding to these receptors (11, 102). Polarized HBMECs were adsorbed apically or 

basolaterally with wild-type or mutant reovirus strains, and the percentage of infected 

cells was quantified 24 h post-infection. There were significantly more infected cells 

following apical adsorption with wild-type strain type 3 Dearing (rsT3D) compared with 

mutant strain rsT3D-σ1R202W, which is deficient in SA-binding (11, 120), or mutant 

strain rsT3D-σ1G381A, which is deficient in JAM-A-binding (Figure III-4A) (26). 

Treatment of polarized HBMECs with neuraminidase (to remove cell-surface SA) and 

JAM-A-specific antibody prior to apical virus adsorption significantly decreased 

infection by rsT3D. Similarly, neuraminidase and JAM-A-specific antibody pretreatment 

substantially decreased infection of polarized HBMECs by rsT3D-σ1G381A and rsT3D-

σ1R202W, respectively (Figure III-4A). Concordantly, rsT3D bound more efficiently to 

the apical surface of polarized HBMECs compared with the mutant virus strains, and 

virtually all virus binding was abolished with neuraminidase or JAM-A-specific antibody 

pretreatment (Figure III-4C).  I observed a similar trend after basolateral adsorption in 

that diminished receptor engagement by mutant viruses or blockade of receptor 

engagement using inhibitors significantly decreased the percentage of virus-infected and 

virus-bound cells (Figure III-4B and D). However, the overall percentage of infected cells 

and levels of virus binding after basolateral adsorption were substantially less than those 

A 
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following apical adsorption, which diminishes the magnitude of the observed differences 

(note the different y-axis scales in Figure III-4). Reovirus mutant rsT3D-σ1R202W 

bound to the basolateral surface of HBMECs equivalently to wild-type rsT3D but 

infected significantly fewer cells, suggesting that SA engagement may enhance reovirus 

replication at a post-attachment step following basolateral adsorption of polarized 

endothelial cells. These data suggest that infection of polarized endothelial cells is 

dependent on virus binding to sialylated glycans and JAM-A on the apical and basolateral 

surfaces of polarized endothelial cells, but binding to the apical surface is more efficient. 

To determine whether increased binding of reovirus to the apical surface of 

polarized HBMECs is attributable to enhanced receptor expression, I examined the 

distribution of JAM-A on polarized HBMECs by confocal microscopy. Polarized 

HBMEC monolayers were stained using antibodies specific for TJ protein claudin-1 as 

well as JAM-A (Figure III-5A). Substantially more JAM-A staining was detected at the 

apical surface of the polarized cell monolayer (Figure III-5B), including non-junction 

sites that lack detectable claudin-1 staining (Figure III-5A). Confocal micrographs of 

apical portions of cells showed a stippled pattern of JAM-A expression. In equatorial 

sections of cells, JAM-A was distributed at the cell periphery, presumably in contact with 

JAM-A on adjacent cells. In these images, TJ puncta marked by claudin-1 and JAM-A 

colocalization are clearly visible (Figure III-5A, white asterisks). At the basolateral 

surface, the JAM-A signal was diminished in intensity and diffusely localized compared 

with JAM-A staining at the apical surface (Figure III-5). Increased distribution of JAM-A 

to the apical surface of polarized HBMECs may allow reovirus to bind and infect these 

cells more efficiently from this route.  
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Figure III-4. JAM-A and sialic acid are required for reovirus infection of 
polarized HBMECs. Polarized HBMECs were adsorbed either apically (A,C) or 
basolaterally (B,D) at an MOI of 10 PFU per cell with reovirus strains rsT3D, rsT3D-
σ1R202W, or rsT3D-σ1G381A in the presence or absence of anti-JAM-A antibody 
(20 µg/ml) or A. ureafaciens neuraminidase (80 mU/ml). (A,B) Cells were incubated 
for 20-24 h, removed from Transwells using trypsin, permeabilized, and incubated 
with Alexa Fluor-conjugated reovirus-specific antiserum. The percentage of infected 
cells was determined using flow cytometry. A representative experiment of two 
performed is shown, with each experiment conducted in duplicate. Error bars indicate 
range of data for the duplicates. (C,D) Cells were harvested from Transwells 
immediately after adsorption and stained with Alexa Fluor-conjugated reovirus-
specific antiserum. MFI was quantified using flow cytometry. Note that different y-
axis scales are used for apical and basolateral adsorption. A representative experiment 
of two performed is shown, with each experiment conducted in duplicate. Error bars 
indicate range of data for the duplicates. *, P < 0.05; **, P < 0.005 
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Figure III-5. Polarized HBMECs express JAM-A predominantly at the apical 
surface.  (A) Polarized HBMECs were stained for JAM-A (green), claudin-1 (red), 
and nuclei (blue) and imaged by confocal microscopy. Shown are images of the apical, 
equatorial, and basolateral regions of a single, representative z-stack. Colocalization of 
TJ proteins is indicated by white asterisks. Scale bar indicates 10 µm. Enlarged images 
of the white boxed areas are shown in the bottom panels. Cell images were captured 
using a Zeiss LSM 510 Meta laser-scanning confocal microscope using a 63×/1.40 
Plan-Apochromat objective lens. (B) JAM-A channel MFI of apical and basolateral 
sections of individual cells (n = 5) was quantified. Error bars indicate standard 
deviation. *, P < 0.05 
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Reovirus infection does not alter endothelial cell TJ integrity. To determine whether 

reovirus infection alters the integrity of TJs in the polarized monolayer, I quantified the 

TEER at both early and late times post-adsorption. After adsorption with an MOI of 1000 

PFU per cell, no significant alteration in TEER was observed in an interval from 0 to 2 h 

post-infection (Figure III-6). I conclude from these data that reovirus does not alter the 

function of endothelial TJs at early time points during infection.  
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Figure III-6. Reovirus infection of polarized HBMECs does not disrupt TJs at 
early times post-infection. Polarized HBMECs were mock-infected (closed symbol, 
solid line) or adsorbed either apically (closed symbol, dashed line) or basolaterally 
(open symbol, dotted line) with reovirus T3SA+ at an MOI of 1000 PFU per cell. 
Cells were washed, fresh medium was added to the apical and basolateral 
compartments, and TEER was determined at the times shown. A representative 
experiment of two performed is shown, with each experiment conducted in duplicate. 
Error bars indicate range of data for the duplicates. TEER from the various samples 
was compared using one-way ANOVA. Student’s t test was used to evaluate 
differences between mock- and apical-infected or mock- and basolateral-infected 
samples. No differences were statistically significant. 
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Discussion 

 

Disease caused by many viruses in an infected host occurs after bloodstream spread from  

an initial site of infection to distant target sites. Reoviruses are neurotropic viruses that 

first replicate within the small intestine and disseminate systemically via the blood, 

nerves, and lymphatics. Reovirus penetration of the endothelium to invade the 

bloodstream may occur within the intestine or lymph nodes to allow establishment of 

primary viremia. To investigate reovirus infection of the endothelium, I cultured 

HBMECs on Transwell membranes until polarization was achieved (Figure III-1). 

Although reoviruses use TJ protein JAM-A as a receptor, TEER was not altered 

immediately following reovirus adsorption (Figure III-6), suggesting that TJ integrity 

remains intact after infection. Adsorption of polarized endothelial cells either apically or 

basolaterally with reovirus resulted in productive infection (Figures III-2 and III-3). 

Interestingly, reovirus strain T3D replicated more efficiently than strain T1L in polarized 

endothelial cells (compare Figures III-2 and III-3). This difference might be due to 

differences in cell-surface expression of the sialylated glycans used by the different 

reovirus serotypes or cell-intrinsic properties of endothelial cells that confer serotype-

dependent differences in reovirus susceptibility. Regardless of the serotype, replication 

was more efficient when reovirus was adsorbed to the endothelial cell apical surface 

(Figures III-2 and III-3), and significantly more reovirus antigen-positive cells were 

detected following adsorption by this route (Figures III-2B and III-3B). The observed 

increase in infectivity and replication after apical adsorption is most likely due to 

increased virus binding to the apical surface (Figure III-2C). The number of cells bound 
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by virus was actually higher than the number of cells productively infected. This finding 

suggests that not all viral particles bound to the cell surface complete an infectious cycle, 

a phenomenon observed in other cell lines (121-123). Reovirus infection of polarized 

endothelial cells by either the apical or basolateral route requires engagement of 

sialylated glycans and JAM-A (Figure III-4). Consistent with these findings, substantially  

more JAM-A is distributed to the apical than the basolateral surface of polarized 

HBMECs (Figure III-5). Subconfluent, non-polarized HBMECs are substantially more 

susceptible to reovirus infection than are polarized HBMECs (Figure III-7), presumably 

due to higher levels of JAM-A on the cell surface and absence of a restriction of JAM-A 

expression to TJs. 

Although bloodstream spread is an important step in the pathogenesis of many 

viral diseases, mechanisms used by viruses to gain entry into the blood are not well 

understood. My work describes how viral infection of endothelial cells may allow access 

into the circulation. I show that reovirus productively infects polarized endothelial cells 

by both apical and basolateral routes. Infection after apical adsorption is more efficient 

compared with basolateral adsorption due to increased utilization of SA and JAM-A at 

the apical surface. And although reovirus infection of polarized endothelial cells requires 

engagement of JAM-A, TJ function remains intact at early time points of infection. Since 

TJ proteins are used as receptors by a diverse array of viruses, including adenovirus (55), 

feline calicivirus (56), hepatitis C virus (124, 125), and several picornaviruses (55, 126), 

my findings may provide a more general understanding of how viruses establish viremia 

for bloodstream spread.  
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Figure III-7. Subconfluent endothelial cells are more permissive for reovirus 
infection than confluent endothelial cells. HBMECs were plated at a density of 105 

cells per well and cultured for 1, 4, or 7 d prior to adsorption with reovirus strain 
T3SA+. Cells were incubated in OptiMEM alone (mock), OptiMEM containing JAM-
A-specific antibody (J10.4), or OptiMEM containing A. ureafaciens neuraminidase 
(NM) for 1 h at room temperature prior to the addition of virus. HBMECs were 
adsorbed with reovirus at an MOI of 10 PFU per cell for 1 h at room temperature, and 
the amount of virus was adjusted according to the number of cells on the day of 
adsorption. After incubation at 37C for 20-24 h, cells were collected, permeabilized, 
and stained using Alexa Fluor-conjugated reovirus-specific antiserum. The percentage 
of infected cells was quantified using flow cytometry. Shown is a representative graph 
of duplicate samples, with the experiment repeated twice. Error bars indicate range of 
data for the duplicates. **, P < 0.005 
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CHAPTER IV 

 

REOVIRUS IS RELEASED NONCYTOLYTICALLY FROM THE APICAL 

SURFACE OF POLARIZED HUMAN BRAIN MICROVASCULAR 

ENDOTHELIAL CELLS 

 

  Viral access to the bloodstream requires traversal of the endothelium. Invasion of 

the bloodstream by viruses can occur by direct inoculation of the virus via an insect 

vector, dismantling TJs that connect endothelial cells, productive infection of endothelial 

cells, or hijacking of hematopoietic cells that normally exist within the circulation. 

Reoviruses invade the bloodstream of a host shortly after inoculation of the 

gastrointestinal tract and establish viremia, however, mechanisms used by reoviruses to 

gain access to the bloodstream are not known. In the previous chapter, I showed that 

reoviruses productively infect polarized endothelial cells in a receptor-dependent manner. 

If productive infection of endothelial cells serves as a means to direct reovirus into the 

bloodstream, infected endothelial cells should route virions directionally into the 

bloodstream or undergo cell lysis to release virus nonspecifically into the circulatory 

system. Because many viruses disseminate hematogenously, understanding mechanisms 

used by reovirus to gain entry into the vascular compartment may shed light on how other 

viruses establish viremia and aid in the development of inhibitors of this key step in viral 

pathogenesis.  

 In this study, I determined how reoviruses are released from infected polarized 

endothelial cells to better understand mechanisms of viral entry into the bloodstream. I 
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found that regardless of the route of adsorption, reovirus release occurs exclusively from 

the apical surface of polarized endothelial cells. Interestingly, I found that despite the 

high titers of reovirus released into the supernatant, infected polarized cells do not 

undergo cell death. These studies suggest that infection via the tissue (basolateral) side of 

the endothelium results in release of progeny virions apically into the blood vessel lumen. 

Furthermore, these findings highlight a new route of reovirus egress from infected cells 

that is independent of cell lysis.  

 

Reovirus is released apically from infected polarized endothelial cells. To determine 

whether reovirus release from infected polarized endothelial cells was directional, 

polarized HBMECs were adsorbed apically or basolaterally with reovirus strain T3SA+, 

and titers within the apical and basolateral compartments were quantified at various 

intervals by plaque assay. After apical adsorption, viral titer in the apical compartment 

increased more than 30-fold at 24 h and more than 3000-fold at 48 h (Figure IV-1A). 

Interestingly, no virus was detected in the basolateral compartment at any time point 

tested (Figure IV-1A). After basolateral adsorption, virus was detected in the basolateral 

compartment at all intervals tested (Figure IV-1B). However, titers did not increase over 

time, suggesting that infectious virus in this compartment is most likely residual virus 

from the inoculum. Viral titer in the apical compartment was detected at 24 h post-

infection and increased approximately 100,000-fold by 48 h post-infection (Figure IV-

1B). I found that reovirus strain T1L exhibited a similar pattern of release from infected 

polarized endothelial cells (Figure IV-1C, D). TEER of polarized endothelial cells 

adsorbed either apically or basolaterally did not significantly decrease over the course of 
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infection, suggesting that endothelial TJs remained intact (Figure IV-2). Therefore, 

regardless of the route of adsorption, reovirus egress from polarized endothelial cells 

occurs from the apical surface.  
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Figure IV-1. Reovirus release from polarized HBMECs occurs from the apical 
surface. Polarized HBMECs were adsorbed either apically (A,C) or basolaterally 
(B,D) with reovirus T3SA+ (A,B) or T1L (C,D) at an MOI of 10 PFU per cell. Cells 
were washed, fresh medium was added to the apical and basolateral compartments, 
and cells were incubated for the times shown. Viral titers in the medium from the 
apical (white bars) or basolateral (black bars) compartments were determined by 
plaque assay. A representative experiment of three performed is shown, with each 
experiment conducted in duplicate. Error bars indicate range of data for the duplicates. 
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Figure IV-2. Reovirus infection of polarized HBMECs does not disrupt TJs at 
late times post-infection. Polarized HBMECs were mock-infected (closed symbol, 
solid line) or adsorbed either apically (closed symbol, dashed line) or basolaterally 
(open symbol, dotted line) with reovirus T3SA+ at an MOI 10 PFU per cell. Cells 
were washed, fresh medium was added to the apical and basolateral compartments, 
and TEER was determined at the times shown. A representative experiment of three 
performed is shown, with each experiment conducted in duplicate. Error bars indicate 
range of data for the duplicates. TEER from the various samples was compared using 
one-way ANOVA. Student’s t test was used to evaluate differences between mock- 
and apical-infected or mock- and basolateral-infected samples. No differences were 
statistically significant. 
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Reovirus egress from polarized HBMECs occurs noncytolytically. To determine 

whether reovirus egress from infected polarized HMBECs is associated with cell lysis, I 

assessed cell viability using trypan blue staining. Polarized HBMECs or confluent L929 

cells cultured on Transwells were adsorbed apically or basolaterally at an MOI of 10 PFU 

per cell, and cell viability was quantified 24 h post-infection. Levels of HBMEC lysis 

were less than background levels of lysis in mock-treated HBMECs after either apical or 

basolateral virus adsorption (Figure IV-3). In contrast, more than half the population of 

infected L929 cells were lysed at 24 h post-infection (Figure IV-3). These data suggest 

that reovirus infection of polarized HBMECs does not compromise cell viability.  

Reovirus is capable of inducing apoptosis in many types of cultured cells (35-38) 

and in the CNS of infected mice (87, 127-129). Although polarized HBMECs remain 

intact after reovirus infection, I wondered whether reovirus egress from polarized 

HBMEC monolayers might occur via apoptosis. To test this hypothesis, polarized 

HBMECs were adsorbed apically or basolaterally at an MOI of 100 PFU per cell, and 

levels of apoptosis were quantified at 24 and 48 h post-infection using terminal 

deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining. At 24 h post-

infection, 17.7% of cells were infected after apical adsorption, but apoptosis was 

detectable in only 0.9% of those cells (Figure IV-4A). At 24 h after basolateral 

adsorption, 3.0% of cells were infected, but apoptosis was not detected in those cells 

(Figure IV-4A). At 48 h post-apical adsorption, 29.5% of cells were infected with 

reovirus, with only 3.0% showing evidence of apoptosis (Figure IV-4A). After 

basolateral adsorption, 6.6% of cells were infected with reovirus, yet only 1.4% of those 

cells were apoptotic (Figure IV-4A). As a positive control for apoptosis, treatment of 
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polarized HBMECs with staurosporine resulted in ~ 50% of cells displaying evidence of 

apoptosis with a concomitant decrease in TEER (Figure IV-4), suggesting that the low 

levels of apoptosis in reovirus-infected cells are not attributable to an inherent block to 

apoptosis in HBMECs. Additionally, levels of apoptosis in reovirus-infected HBMECs 

were lower than in mock-infected cells using the complementary acridine orange and 

annexinV staining assays (Figure IV-5).   These data suggest that reovirus egress from 

polarized HBMECs occurs without inducing apoptosis. 
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Figure IV-3. Reovirus infection of polarized HBMECs does not induce cell lysis. 
Polarized HBMECs or confluent L929 cells cultured on Transwells were mock-
infected (M) or adsorbed either apically (AP) or basolaterally (BL) with reovirus 
T3SA+ at an MOI of 10 PFU per cell. Cells were washed, fresh medium was added to 
the apical and basolateral compartments, and cells were incubated at 37⁰C for 20-24 h. 
Cells were harvested and incubated with trypan blue or permeabilized and stained for 
reovirus antigen using Alexa Fluor-conjugated reovirus-specific antiserum. The 
percentage of infected cells (white bars) and the percentage of lysed cells (black bars) 
are shown in a stacked column graph. A representative experiment of two performed 
is shown, with each experiment conducted in duplicate. Error bars indicate range of 
data for the duplicates. 
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Figure IV-4. Reovirus infection of polarized HBMECs is noncytolytic. Polarized 
HBMECs were mock-infected (M) or adsorbed either apically (AP) or basolaterally 
(BL) with reovirus T3SA+ at an MOI of 100 PFU per cell. Cells were incubated at 
37⁰C and harvested at 24 or 48 h post-infection. As a control for apoptosis, 
staurosporine (ST, 10 μM) was added to the medium in the apical and basolateral 
compartments of uninfected cells, which were incubated for 18 h. (A) Cells were 
stained for reovirus antigen using Alexa Fluor-conjugated reovirus-specific antiserum 
and apoptosis using the TUNEL technique. The percentage of infected cells (white 
bars) and percentage of TUNEL-positive cells (black bars) within the population of 
infected cells are shown in a stacked column graph. A representative experiment of 
three performed is shown, with each experiment conducted in duplicate. Error bars 
indicate range of data for the duplicates. (B) TEER was recorded for each sample at 
the time of cell harvest. A representative experiment of three performed is shown, with 
each experiment conducted in duplicate. Error bars indicate range of data for the 
duplicates. 
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Figure IV-5. Reovirus infection of polarized HBMECs does not induce cell death. 
Polarized HBMECs were mock-infected (M) or adsorbed either apically (AP) or 
basolaterally (BL) with reovirus T3SA+ at an MOI of 100 PFU per cell. Cells were 
incubated at 37⁰C and harvested at 24 h post-infection. As a control for apoptosis, 
staurosporine (ST, 10 µM) was added to the medium in the apical and basolateral 
compartments of uninfected cells, which were incubated for 18 h. (A) Cells were 
harvested, washed, and stained with acridine orange dye. The number of apoptotic 
cells was enumerated under brightfield microscopy. A representative experiment of 
three performed is shown, with each experiment conducted in duplicate. Error bars 
indicate range of data for the duplicates. (B) Cells were harvested and stained either 
for apoptosis using Alexa Fluor-conjugated antibody specific for AnnexinV or 
reovirus antigen using Alexa Fluor-conjugated reovirus-specific antiserum. The 
percentage of infected cells (within parentheses above the respective bars) and 
percentage of AnnexinV-positive cells are shown. A representative experiment of 
three performed is shown, with each experiment conducted in duplicate. Error bars 
indicate range of data for the duplicates. 



	
   81 

Discussion 

 

Productive infections are characterized by successful viral entry into, replication and 

assembly within, and exit from a host cell. Because nonenveloped viruses do not require 

the incorporation of host cell membranes into progeny virions, these viruses are thought 

to exit infected cells mainly by the induction of apoptosis and cell lysis. Interestingly, 

hepatitis A virus, a nonenveloped member of the Picornaviridae, exits infected cells in 

exosome-like vesicles as a possible mechanism to evade humoral immunity (130).  Until 

now, reoviruses have not been shown to egress from infected cells in a noncytolytic 

manner.  

Infection of endothelial cells is a possible mechanism for reovirus entry into the 

bloodstream. In this chapter, I show that reovirus strains T1 and T3 are directionally 

released apically from infected polarized endothelial cells (Figure IV-1) in a manner that 

maintains TJ function (Figure IV-2).  Furthermore, I found that reovirus release from 

infected polarized endothelial cells does not induce cell death and lysis (Figures IV-3, 4, 

and 5).  

Regardless of the route of adsorption, reovirus egress from infected polarized 

HBMECs occurs solely from the apical surface (Figure IV-1). Similarly, reovirus 

infection of polarized human airway epithelial cells results in apical release of progeny 

virions (107). Although TEER did not change appreciably over a timecourse of reovirus 

infection of HBMECs (Figure IV-2), I questioned whether infected cells are extruded 

from the monolayer in a manner analogous to epithelial cell turnover (131). If so, I would 

expect TEER to be maintained despite detection of an increased number of nonviable 
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cells over time. To test this hypothesis, I used trypan blue staining to determine whether 

polarized HBMECs infected with reovirus are lysed. Compared with infected L929 cells, 

which display substantial cytopathic effect after reovirus infection (Figure III-2) (38), 

polarized HBMECs infected with reovirus apically or basolaterally do not undergo cell 

lysis (Figure  IV-3), despite the presence of  high viral titers in cells and supernatants 

(Figures III-1 and IV-1). Apical or basolateral adsorption of polarized HBMECs with 

reovirus led to an increase in reovirus antigen-positive cells, but the number of apoptotic 

cells did not increase above those in mock-treated samples (Figure IV-4). I conclude from 

these data that regardless of the route of entry, reovirus release occurs from the apical 

surface in a manner that maintains cell viability. Because infection of polarized 

endothelial cells is noncytolytic, clearance of reovirus from an infected host may require 

cytotoxic T lymphocyte-mediated immunity in addition to neutralizing antibodies (132-

136).  

Virus infection of endothelial cells may serve as an additional mechanism to 

produce and maintain high levels of viremia. For example, DENV infection of 

endothelial cells leads to high-titer viremia by inducing endothelial cell apoptosis, 

resulting in endothelial barrier dysfunction and vascular leak (118). Murine 

cytomegalovirus primarily infects hepatocytes, but virus produced from infected hepatic 

endothelial cells is responsible for dissemination to other organs (137, 138). Similarly, 

reovirus may use the endothelium as a means to amplify to high titers in the bloodstream. 

Reovirus infection from the basolateral route is not efficient (Figures III-2, III-3), but 

progeny viral particles are efficiently transported to and released from the apical surface 

of polarized endothelial cells (Figure IV-1). Once released, progeny virions have access 
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to the apical surface of adjacent endothelial cells and can enter those cells efficiently. 

This cycle may serve as a mechanism to generate high titers of virus in the bloodstream, 

which are observed during reovirus infection (51, 64, 120). Sialylated glycans and JAM-

A are required for infection of endothelial cells by both apical and basolateral routes, 

which may account for the absence of viremia in reovirus-infected JAM-AKO mice (51).  

How reovirus exits the bloodstream is not clear from my studies. Because JAM-A 

is present on the surface of hematopoietic cells, it is possible that reovirus-infected 

hematopoietic cells transport the virus from the bloodstream to sites of secondary 

replication including the CNS. It also is possible that cells adjacent to blood vessels 

become infected as a consequence of infection of the endothelium. Epstein-Barr virus 

(EBV) binding to B cells leads to conjugate formation between B cells and epithelial 

cells, resulting in EBV entry into epithelial cells (139, 140). Blood vessels in the brain 

closely appose pericytes and astrocytes, and reovirus infection of endothelial cells may 

induce modifications of these cells resulting in invasion of the CNS.  

 My studies of reovirus infection of polarized endothelial cells have identified a 

new mechanism for reovirus egress. Maintenance of cell viability may ensure that 

reovirus can replicate to high titers to generate viremia and subsequent targeting of 

organs where secondary replication can occur. The findings I have made with my in vivo 

and in vitro systems to study the role of endothelial JAM-A in reovirus bloodstream 

spread suggest that infection of the endothelium and apical release of reovirus from these 

cells serve as a mechanism for reovirus entry into the bloodstream and amplification in 

the circulation.  
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CHAPTER V 

 

SUMMARY AND FUTURE DIRECTIONS 

 

Many viruses use the bloodstream as a means to disseminate systemically within 

the infected host. Because viruses capable of bloodstream spread may share similar 

mechanisms of dissemination, understanding how reovirus disseminates by this route 

may aid in the development of therapeutics that target this critical step in viral 

pathogenesis. Prior to the initiation of my work, JAM-A was known to be a proteinaceous 

receptor for reoviruses that mediates hematogenous dissemination. The goal of my 

dissertation work was to determine precisely how JAM-A expression in vivo facilitates 

reovirus bloodstream spread. In this chapter, I will summarize the work I have 

accomplished, discuss potential implications of the findings, and pose future directions 

for this research.  

 

Role of receptors in viremia and systemic viral spread 

 

 Viremia is an important step in the pathogenesis of many viruses. Seeding of the 

bloodstream ensures systemic virus spread. For arboviruses, high titers of virus in the 

blood are required for host-to-host transmission. DENV replicates in endothelial cells to 

generate high bloodstream titers (118). For other viruses that are not transmitted by an 

insect vector, dissemination by the blood allows the virus to reach sites of secondary 

replication. For murine cytomegalovirus, primary viremia allows the virus to infect 
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hepatocytes (137, 138). However, high titers in the blood occur after infection of 

endothelial cells to produce secondary viremia (137, 138). Although viremia is a common 

step in the life cycle of many viruses, little is known about how bloodstream entry and 

egress occurs. Understanding mechanisms by which viruses traverse the endothelium 

may allow for the design of broad-spectrum therapeutics that target the systemic 

dissemination of viruses. Furthermore, elucidating mechanisms by which reovirus 

disseminates by the blood may allow for the design of oncolytic vectors that spread more 

effectively.  

 Interactions with specific receptors initiate the infectious life cycle of viruses. 

Receptors serve to tether virus particles to the cell surface and initiate viral cell entry. 

JAM-A is expressed on a variety of cell types in many different tissues (39-41, 42 , 43, 

44). JAM-AKO mice are protected from reovirus-induced morbidity and mortality after 

peroral virus inoculation but succumb to reovirus-induced encephalitis after intracranial 

virus inoculation (51). This observation suggests that JAM-A is dispensable for reovirus 

neuropathogenesis. Rather, I found that JAM-A must be expressed in endothelial cells for 

dissemination to the CNS (Figure II-8). If JAM-A is absent on the endothelium, as in 

EndoJAM-AKD mice, virus cannot reach sites of secondary replication, and the 

pathogenesis of reovirus virulence is consequently diminished. I present evidence that 

JAM-A, although expressed at various sites, facilitates an exquisitely specific step in the 

reovirus-host encounter by facilitating bloodstream entry into and egress from the 

circulatory system.  

Primary endothelial cells are permissive for reovirus infection (51), which 

suggests that reovirus infects endothelial cells in vivo during systemic spread. Reovirus 
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infection of endothelial cells may route virions into the circulation, amplify virus within 

the bloodstream, or a combination of both effects (Figure V-1). When examining 

infection of polarized endothelial cells in vitro, reovirus is capable of infecting cells from 

both apical and basolateral routes (Figures III-2 and III-3). The basolateral route of 

adsorption simulates reovirus infection of the endothelium from a tissue (Figure V-1). 

This route of infection is less efficient than apical infection (Figures III-2 and III-3), 

which simulates reovirus infection of polarized endothelial cells from within the blood 

(Figure V-1). Infection by both routes results in replication and efficient release of 

progeny virions from the apical surface (Figure IV-1). These findings suggest that 

reovirus amplification occurs in endothelial cells, which serves to establish viremia in an 

infected host.   

 Several unanswered questions remain. From my work, endothelial JAM-A is 

clearly required for efficient bloodstream entry and exit. However, it is  not clear how 

reovirus uses JAM-A to infect endothelial cells. I found that JAM-A is localized to the 

apical surface and TJs of polarized HBMECs in culture. However, do these cells 

faithfully simulate the endothelial surface in vivo? And if so, does reovirus engage 

junctional JAM-A or JAM-A localized to the luminal surface? Second, it is not known 

how reovirus transits within the vascular compartment. I found that hematopoietic JAM-

A is dispensable for reovirus bloodstream spread. Do virus particles exist freely in the 

plasma? Or are viruses associated with hematopoietic cells or platelets in a JAM-A-

independent manner? Third, it is unclear how reovirus exits the bloodstream. 

Mechanisms of reovirus entry into the bloodstream also may be used for viral egress from 

this compartment. Lastly, I observed noncytolytic reovirus egress from polarized 
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endothelial cells. This type of viral egress has not been described for reoviruses and 

suggests that there exist cell type-specific modes of reovirus release.  
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Figure V-1. Model for reovirus infection of the endothelium. A cross-sectional 
schematic of a blood vessel is shown. The blood vessel is lined with endothelial cells 
that are linked via TJs (black bars). Following reovirus infection of endothelial cells 
from the basolateral surface (1), virus is routed apically (or luminally) into the 
bloodstream (2). Once within the bloodstream, virus is capable of infecting endothelial 
cells from the apical surface (3). Reovirus binding to JAM-A, found mostly within 
tight junctions, and sialic acid at the apical surface may account for the increased 
efficiency of infection. After reovirus infects cells from the apical surface, progeny 
virions are routed apically into the bloodstream. The efficiency of apical infection may 
allow for endothelial amplification of reovirus (4), resulting in higher levels of viremia 
within an infected host. From Boehme et al. (2013). 
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JAM-A-Dependent Reovirus Infection of Endothelial Cells 

 

 Because JAM-A is a TJ protein, the distribution of JAM-A in subconfluent cells 

may differ from that observed in confluent or polarized cells. I found that subconfluent 

HBMECs were more susceptible to reovirus infection than confluent HBMECs (Figure 

III-7). Furthermore, reovirus infection was lessened to a greater extent in subconfluent 

cells than in confluent cells when a JAM-A-specific antibody was administered prior to 

virus adsorption (Figure III-7). These data suggest that reovirus infection of subconfluent 

HBMECs occurs via JAM-A expressed abundantly on the cell surface. In support of this 

idea, this interaction can be blocked by addition of JAM-A-specific antibody. In 

confluent cells, antibody may not be able to access junctional JAM-A, and reovirus 

infection may be inhibited to a lesser extent by JAM-A-specific antibody. Regardless of 

where reovirus interacts with JAM-A, it is unclear how reovirus-JAM-A interactions 

progress to productive infection. In epithelial cells, JAM-A localizes to the TJ and is 

thought to recruit other proteins to the TJ via signaling through its cytoplasmic tail 

domain (141, 142). Through interactions with Afadin and Rap-1, JAM-A regulates the 

levels of β1 integrin (143). This function of JAM-A may be important in facilitating 

reovirus internalization.  

 In non-polarized Chinese hamster ovary (CHO) cells, reovirus infection can occur 

in the absence of the cytoplasmic tail of JAM-A (144). However, different requirements 

for infection may exist in settings where JAM-A functions in TJ maintenance. To 

determine whether reovirus usurps JAM-A signaling functions to facilitate infection of 

polarized endothelial cells, reovirus infection can be assessed in brain microvascular or 
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pulmonary endothelial cells cultured from JAM-AKO mice stably transfected with 

mutant JAM-A constructs (Figure V-2).  A mutant JAM-A construct lacking the 

cytoplasmic domain (JAM-AΔCT) can be expressed in JAM-AKO endothelial cells to 

determine whether the cytoplasmic tail is required for reovirus infection. A mutant JAM-

A construct with the JAM-A ectodomain fused to a glycosylphosphatidylinositol (GPI) 

anchor (JAM-AΔTM) can be expressed in JAM-AKO endothelial cells to determine 

whether the transmembrane domain is required for reovirus infection. If the 

transmembrane domain or cytoplasmic tail is required for reovirus internalization, 

contributions of specific cytoplasmic tail residues to reovirus infection could be defined 

using JAM-A constructs with an altered PDZ-binding motif (JAM-APDZmut) and 

phosphorylation sites (JAM-A Cluster 1-4) (FigureV-2). The JAM-A cytoplasmic tail 

incorporates twelve potential phosphoacceptor sites (serines, threonines, or tyrosines). To 

test the requirement of cytoplasmic tail phosphorylation sites for reovirus infection of 

polarized endothelial cells, the twelve possible phosphoacceptor residues could be 

changed to alanine in clusters of three (Figure V-2). The cluster mutants will collectively 

disrupt all potential phosphorylation sites within the JAM-A cytoplasmic tail. The JAM-

A cluster mutants could be stably introduced into JAM-AKO endothelial cells, followed 

by infection with reovirus.  
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Figure V-2. Mutant JAM-A constructs. Schematic depictions of wild-type and 
mutant JAM-A constructs are shown. Extracellular D1 and D2 Ig-like domains, a 
single transmembrane (TM) domain, and the cytoplasmic tail (CT) are shown. The 
PDZ-binding motif (PDZ) is located within the JAM-A CT and potential 
phosphorylation residues are indicated with residue number. Residues to be altered in 
each mutant are boxed in blue. 

TM CT
STY T T TS SS S SY F L V

D1 D2

TM CT
STY T T TS SS S SY F L V

D1 D2

TM CT
STY T T TS SS S SY A A A

D1 D2

CT
STY T T TS SS S SY F L V

D1 D2
GPI 

anchor

JAM-A
Wild type

JAM-A
_CT

JAM-A
_TM

JAM-A
PDZmut

Extracellular

PDZ

TM CT
STA A T TA SS S SY F L V

D1 D2
JAM-A

Cluster 1

TM CT
SAY T T TS SA S SA F L V

D1 D2
JAM-A

Cluster 2

TM CT
STY T A TS SS A AY F L V

D1 D2
JAM-A

Cluster 3

TM CT
ATY T T AS AS S SY F L V

D1 D2
JAM-A

Cluster 4

Δ 

Δ 



	
   92 

Reovirus Viremia 

 

 Reoviruses are neurotropic viruses that are transmitted primarily by the fecal-oral 

route(1). Spread within the blood from the gastrointestinal tract to the CNS indicates that 

reovirus stably exists in body compartments that differ dramatically. For example, the 

luminal environment within the intestine differs substantially from the sterile 

environment of the CNS. The blood compartment contains many cellular components, 

including erythrocytes, leukocytes, and platelets, in addition to serum components. It is 

not clear whether reoviruses exist within the cellular or serum compartment within the 

bloodstream. Reovirus binds to erythrocytes by interacting with cell-surface glycophorin, 

a sialoglycoprotein, in hemagglutination assays (25). In Chapter II, I show that 

hematopoietic JAM-A does not facilitate reovirus hematogenous spread, but another cell-

surface molecule may be used by reovirus for binding interactions with or productive 

infection of these cells. JAM-A on the surface of platelets facilitates platelet activation 

and clot formation (44); reovirus may bind to platelets during systemic spread in the 

circulation. To determine how reovirus exists in the circulation, blood from reovirus-

infected mice could be harvested and fractionated into erythrocyte, leukocyte, platelet, 

and serum fractions. Each blood component could be titered by plaque assay to determine 

which compartment contains reovirus particles. Determining how reovirus traffics within 

the blood has implications for generating reovirus oncolytic vectors that exist more stably 

within the blood.  
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Reovirus Bloodstream Egress 

 

I provide evidence in Chapters II and III that infection of endothelial cells in a 

JAM-A-dependent manner facilitates reovirus bloodstream entry and egress. However, it 

is not understood how reovirus egress from the vascular compartment occurs. Reovirus 

infection of polarized endothelial cells in vitro suggests that endothelial cell infection 

does not direct virus particles basolaterally into the surrounding tissue. I envision three 

possibilities for reovirus bloodstream exit. First, reovirus engagement of JAM-A may 

induce TJ dysfunction, resulting in vascular leak. Vascular permeability studies may 

determine whether reovirus engagement of endothelial JAM-A dismantles TJs in vivo. 

Methylene blue and sodium fluorescein are tracers that are commonly used in studies of 

vascular permeability (145-147). These molecules do not normally diffuse through 

endothelial TJs but can be detected and quantified in tissues where TJ function is 

compromised. Mouse adenovirus-1 infection of endothelial cells reduces TJ protein 

expression and decreases barrier function in polarized endothelial cell monolayers (148). 

Coxsackieviruses engage decay-accelerating factor, an apically distributed protein of 

polarized epithelial cells, to disrupt TJs (149). In doing so, coxsackieviruses gain access 

to the basolaterally located CAR (53). HIV-1 gp120 diminishes expression of TJ proteins 

and increases vascular permeability (150). In Chapters III and IV, I found that reovirus 

infection of polarized endothelial cells in culture does not reduce the TEER, suggesting 

that TJs remain intact. However, what happens in vivo may be different from what is 

observed in cell-culture systems, and studies should be performed to determine whether 

reovirus induces vascular leak.  
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 Second, it is possible that reovirus infection of endothelial cells induces local 

changes in the endothelium that result in infection of perivascular cells. EBV binding to 

B cells can result in conjugate formation between B cells and epithelial cells (139, 140). 

This interaction leads ultimately to infection of the epithelium. Reovirus infection of the 

endothelium may lead to infection of cells closely apposed to blood vessels. For example, 

the blood brain barrier (BBB) is composed of endothelial cells and their TJs, pericytes, 

and astrocyte foot processes. In a pilot experiment to determine whether cells of the BBB 

also are susceptible to reovirus infection, I adsorbed a confluent monolayer of human 

brain pericytes with reovirus strains T1L and T3D. I found that these cells are permissive 

for infection by either reovirus strain (Figure V-3). Infection of astrocytes that are closely 

associated with the brain microvasculature may be an alternative route of entry into the 

CNS.  

 Third, it is possible that reovirus uses hematopoietic cells to exit the circulatory 

system. Although I provide evidence in Chapter II that hematopoietic JAM-A is 

dispensable for reovirus dissemination, it is possible that reovirus uses a receptor distinct 

from JAM-A to either bind to or infect hematopoietic cells. Since reoviruses have 

evolved to use different receptors for infection and replication within the gastrointestinal 

tract, bloodstream, and CNS, it is possible that an unknown receptor exists for trafficking 

of virus out of the bloodstream and into target tissues. Furthermore, reovirus is associated 

with leukocytes in the blood of cancer patients receiving intravenous reovirus oncolytic 

therapy (99). To determine whether reovirus binds to or infects hematopoietic cells in 

vivo, splenocytes and peripheral blood leukocytes could be collected from reovirus-

infected animals and assessed for reovirus antigen. Flow cytometric profiles of different 
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hematopoietic cell subsets could be used to identify whether a particular cell type is used 

by reovirus to traffic systemically.   
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Figure V-3. Human brain pericytes are permissive for infection by reovirus 
strains T1L and T3D. Confluent monolayers of human brain pericytes were adsorbed 
with reovirus strains T1L or T3D at an MOI of 100 PFU per cell at room temperature 
for 1 h. After incubation at 37°C for 24 h, cells were fixed and stained with reovirus-
specific antiserum. The percentage of infected cells was determined using indirect 
immunofluorescence.  
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Reovirus Noncytolytic Egress 

 

 When examining reovirus infection of polarized endothelial cells, I found that 

release of virus occurs noncytolytically. Mechanisms of reovirus egress are not well 

understood, but viral release from cells has traditionally been linked to cell lysis (1). I 

wondered whether viral release independent of cell lysis or cell death only occurred in the 

context of a polarized cell monolayer. I found that reovirus infection of subconfluent 

HBMECs induced very little cell death compared to that observed after infection of L929 

murine fibroblasts (Figure V-4). These data suggest that reovirus exhibits cell type-

specific modes of egress. 

 To determine possible pathways used by reovirus to exit infected cells in the 

absence of cell lysis or cell death, I examined electron micrographs of reovirus-infected 

polarized HBMECs. In these images, I found that reovirus cytoplasmic inclusions in 

polarized HBMECs appeared to incorporate membranes (Figure V-5). It is possible that 

reovirus recruits membranes to viral inclusions to enable assembled reovirus particles to 

exit infected cells via exocytosis. Hepatitis A virus, a nonenveloped virus, is capable of 

exiting infected cells using exosomes in an endosomal sorting complexes required for 

transport (ESCRT)-dependent manner (130). Interestingly, in examining infected 

polarized HBMECs by electron microscopy, I observed viral particles exiting an intact 

cell (Figure V-6).  

Because I observed membrane-like structures in reovirus inclusions, I wondered 

how membranes might be recruited or generated. Poliovirus interacts with autophagy 

proteins to egress from cells noncytolytically (151). Porcine reproductive and respiratory 
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syndrome virus (PPRSV) activates autophagy to replicate efficiently (152). Interestingly, 

reovirus infection of multiple myeloma cells upregulates autophagy machinery but 

induces apoptosis in these cells (153). To determine whether autophagy is induced 

following reovirus infection of HBMECs, I assessed cleavage of LC3, a protein found in 

autophagosome membranes (154), in infected polarized HBMECs as an indicator of 

autophagic activity. I found that after apical and basolateral infection there was no 

significant cleavage of LC3-I to LC3-II (Figure V-7), suggesting that autophagy is not 

being induced during reovirus infection. However, these data do exclude the possibility 

that individual proteins in the autophagy pathway are being used independently of the 

formation of autophagosomes. To determine whether other autophagy proteins are 

important for reovirus noncytolytic egress, expression of autophagy proteins could be 

diminished using small-interfering RNA (siRNAs), and virus release could be quantified 

in these cells.  

An alternative possibility for the presence of membranes in reovirus inclusions is 

that membranes are generated de novo. Poliovirus activates fatty acid import and 

upregulates cellular long chain acyl-CoA synthetase activity resulting in genesis of 

phospholipids that are incorporated into replication complexes (155). To determine 

whether reovirus infection increases fatty acid import, infected cells could be labeled 

with boron-dipyrromethene (BODIPY)-labeled fatty acid. Subsequent experiments would 

include downregulating expression of enzymes involved in phospholipid synthesis and 

evaluating viral egress in these cells. These studies would shed light on egress of reovirus 

in the absence of cell lysis.  
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Figure V-4. Reovirus infection does not induce cell death in subconfluent 
HBMECs. Subconfluent HBMECs (A) or L929 murine fibroblasts (B) were either 
mock-treated (white bars) or adsorbed with reovirus strain T3SA+ at an MOI of 10 
(gray bars) or 100 (black bars) PFU per cell. After incubation at 37°C for 24 or 48 h, 
cells were trypsinized and stained with acridine orange dye. The percentage of 
apoptotic cells was determined as the number of apoptotic nuclei divided by the total 
number of nuclei. Cells were incubated in 10 µM staurosporine as a positive control 
for cell death.  
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A 

B C 

Figure V-5. Reovirus cytoplasmic inclusions contain membrane-like structures. 
Polarized HBMECs were adsorbed with reovirus strain T3SA+ at an MOI of 10 PFU 
per cell. After incubation at 37°C for 24 h, cells were fixed in 4% paraformaldehyde 
and 1% electron microscopy (EM)-grade glutaraldehyde. (A) Image of an infected 
cell with a cytoplasmic inclusion. Boxed regions are enlarged in (B) and (C). Scale 
bars: 0.2 µm. (B and C) Enlarged regions of the cytoplasmic inclusion shown in (A). 
Arrows indicate membrane-like structures.  
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Figure V-6. Reovirus egress from an intact cell. Polarized HBMECs were 
adsorbed with reovirus strain T3SA+ at an MOI of 10 PFU per cell. After incubation 
at 37°C for 24 h, cells were fixed in 4% paraformaldehyde and 1% EM-grade 
glutaraldehyde. (A) Image of an infected cell with a cytoplasmic inclusion. Boxed 
regions are enlarged in (B). Scale bars: 100 nm. (B) Enlarged region of the boxed 
region shown in (A). Arrows indicate exiting virus particles.  
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Figure V-7. Reovirus infection of polarized HBMECs does not induce 
autophagic activity. Polarized HBMECs were adsorbed either apically (A) or 
basolaterally (B) with reovirus strain T3SA+ at an MOI of 10 PFU per cell. After 
incubation at 37°C for 24 or 48 h, cell lysates were prepared from each sample and 
subjected to SDS-PAGE. (A) Immunoblots of mock-treated (M), apically-adsorbed 
(A), or basolaterally-adsorbed (B) polarized HBMECs. Rottlerin-treated cells (R) 
were used as positive controls for autophagy. The left panel shows samples collected 
24 h post-adsorption and the right panel shows samples collected 48 h post-
adsorption. (B and C) Quantification of the LC3-I (B) and LC3-II (C) densitometry 
units observed in the immunoblot shown in (A). Densitometry units for each sample 
were normalized against a tubulin control.  The left panel shows samples collected 
24 h post-adsorption and the right panel shows samples collected 48 h post-
adsorption. 
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Conclusions 

 

 Defining factors that govern reovirus dissemination in the blood is essential for 

optimum use of reovirus in clinical applications. Reovirus efficiently replicates in and 

kills cancer cells (99, 156). Phase I-III clinical trials are underway to test the efficacy of 

reovirus as an adjunct to conventional cancer therapies (99, 156) (157). Following 

intravenous administration, reovirus must navigate and exit the bloodstream to infect 

solid organ tumors. Intratumoral injection of reovirus may allow for enhanced replication 

in tumor cells and subsequent spread through the blood to target metastatic tumor foci. 

Thus, determining viral and cellular determinants underlying how reoviruses gain access 

to the blood compartment, spread within the bloodstream, and exit from the circulation 

may aid in oncolytic design.  

 Use of the reverse genetics system may allow engineering of reovirus therapeutics 

with mutations that increase vector potency or safety by manipulating dissemination 

determinants (4). For example, during intratumoral reovirus administration, mutating the 

residues in reovirus attachment protein σ1 that interact with JAM-A may decrease 

bloodstream spread from the tumor and retain higher reovirus titers within the tumor 

microenvironment. Furthermore, this virus may have fewer adverse effects due to 

systemic reovirus spread.  It is possible that mutating residues important for reovirus 

interactions with JAM-A will decrease tumor cell infection, however infectivity could be 

unchanged due to SA engagement (158, 159). The presence of proteases in the tumor 

microenvironment (160) also may result in the formation of ISVPs, which are more 

infectious than virion particles (1, 161).  
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 In this dissertation, I present data showing that endothelial JAM-A facilitates 

reovirus bloodstream spread. Reovirus infection of the endothelium may serve to route 

virions into and amplify titers in the vascular compartment. Understanding mechanisms 

of reovirus dissemination will provide broader insight into events at the pathogen-host 

interface that lead to systemic disease and may aid in the development of therapeutics 

that target this critical step in viral pathogenesis. 
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CHAPTER VI 

 

MATERIALS AND METHODS 

 

Cells, Viruses, Enzymes, and Antibodies 

Spinner-adapted murine L929 fibroblast cells were grown in either suspension or 

monolayer cultures as described (28, 64). Human brain microvascular endothelial cells 

(HBMECs) (162, 163) were grown in RPMI-1640 medium (Mediatech) supplemented to 

contain 10% FBS, 10% NuSerum (BD Biosciences), nonessential amino acids (Sigma), 1 

mM sodium pyruvate, MEM vitamins (Mediatech), 2 mM L-glutamine, 100 U/ml 

penicillin, 100 µg/ml streptomycin, and 25 ng/ml amphotericin B. HBMECs and L929 

cells were cultured on collagen-coated Transwells (6.5 mm diameter, 0.4 µm pores; 

Costar) for 7 d prior to infection or imaging experiments.  

Reovirus strain T1L is a laboratory stock. Strain T3SA+ was generated as 

described (102). Recombinant viruses rsT3D, rsT3D-σ1R202W, and rsT3D-σ1G381A 

were generated using plasmid-based reverse genetics (26, 120). Virus was purified as 

described (164). Viral titers were determined by plaque assay using L929 cells (134). 

The immunoglobulin G (IgG) fraction of a rabbit antiserum raised against strains 

T1L and T3D (122) was purified by protein A-Sepharose as described (102, 103). 

Reovirus-specific IgG was conjugated to Alexa Fluor-647 or Alexa Fluor-488 using 

APEX antibody labeling kits (Invitrogen). Human JAM-A-specific monoclonal antibody 

J10.4 (provided by Charles Parkos, Emory University) and claudin-1-specific antibody 

(ab15098, Abcam) were used in confocal microscopy imaging experiments in HBMECs. 
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Murine JAM-A-specific polyclonal antibody (AF1077; R&D Systems) was used to 

characterize mouse strains. Alexa Fluor-conjugated antibodies (Invitrogen) were used as 

secondary antibodies.  

 

Generation of mouse strains 

EndoJAM-AKD mice, which have decreased endothelial JAM-A and lack hematopoietic 

JAM-A, or HematoJAM-AKO mice, which lack JAM-A only within the hematopoietic 

compartment, were generated using cre-lox technology. Female JAM-A flox/flox mice 

were bred to male Tek-cre transgenic (tg) mice (165) to generate EndoJAM-AKD mice 

(Figure II-1) or male Vav-cre tg mice (166) to generate HematoJAM-AKO mice (Figure 

II-4). Litters from these breeding pairs were used for infection experiments. 

HematoJAM-A mice, which lack native JAM-A but overexpress JAM-A within the 

hematopoietic compartment, were obtained by first generating Vav-JAM tg mice in 

which JAM-A expression is driven by the hematopoietic-specific vav promoter (Figure 

II-4). Vav-JAM tg mice were then bred to JAM-AKO mice to ablate native JAM-A 

expression (Figure II-4). All strains used for these studies were maintained on a C57BL/6 

background. Cell-surface expression of JAM-A in endothelial and hematopoietic cells 

was assessed in the different mouse strains using flow cytometry. JAM-A expression 

profiles of the mouse strains are shown in Table 2.  

Mouse genotypes were confirmed using PCR. Primer sequences used for 

genotyping experiments are shown in Table 1. Mouse ear clippings or aliquots of 

homogenized organ were employed for genomic DNA extraction using the REDExtract-

N-Amp Tissue PCR Kit (Sigma).  
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Mouse infection studies 

Two- to three day-old mice were inoculated perorally or intravenously with purified 

reovirus strain T1L diluted in PBS. Peroral inoculations were performed as described (51, 

64). Intravenous inoculations were performed following anesthesia by hypothermia (88, 

167). The proper depth of anesthesia was assessed visually by lack of response to 

external stimuli. Anesthetized mice were positioned on a Wee Sight transilluminator 

(Phillips) to visualize the superficial temporal vein. A dose of 50 microliters of virus 

inoculum was administered via a 33-gauge 0.25-inch needle (Cadence) attached to a 1-ml 

syringe by a T-connector extension set (Braun). Successful inoculation was assessed by 

blanching of the superficial temporal vein and noting reflux of blood from the injection 

site upon removal of the needle. Pups were placed on a warming pad until consciousness 

was regained. At various times post-inoculation, organs were excised, submerged into 

PBS, subjected to two freeze-thaw cycles, and sonicated until homogenized. Viral titers 

in organ homogenates were determined by plaque assay (134). Blood was collected into 

an equal volume of Alsever’s solution (Sigma), subjected to two freeze-thaw cycles, 

sonicated, and processed for viral titer determination by plaque assay (134). Animal 

husbandry and experimental procedures were performed in accordance with Public 

Health Service policy and approved by the Vanderbilt University School of Medicine 

Institutional Animal Care and Use Committee. 

 

Flow cytometry 

Hematopoietic cells were harvested from peripheral blood or from spleens of 6- to 8-

week-old mice. Erythrocytes were lysed using ACK lysis buffer at room temperature for 
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5 min. Leukocytes were collected by centrifugation at 1000 x g for 5 min, and 

hematopoietic cell subsets were identified using antibodies specific for granulocytes (Gr-

1), B cells (B220), T cells (TCRβ), macrophages (CD11b), and dendritic cells (CD11c). 

Expression of cell-surface JAM-A was assessed using an antibody specific for JAM-A 

(AF1077; R&D Systems).  

Lung endothelial cells were harvested as described (168). Lungs were excised 

from euthanized animals and flushed with 10 ml 2.5 mM EDTA, followed by 5 ml 0.25% 

trypsin in 2.5 mM EDTA. Following incubation at 37⁰C for 30 min, lungs were minced 

with a scalpel and washed with 1 ml complete DMEM. Cells were collected by 

centrifugation at 1000 x g for 10 min, resuspended in 1.5 ml EBM-2 medium 

supplemented to contain EGM-2 MV SingleQuots (hEGF, hydrocortisone, gentamicin, 

amphotericin B, VEGF, hFGF-B, IGF-1, ascorbic acid, and heparin) (Lonza), and 

cultivated in 6-well plates coated with 0.2% gelatin. Lung endothelial cells were cultured 

at 37⁰C for 5-7 d, washed twice with PBS on day 3, and supplemented with fresh EBM-2 

medium. Expression of cell-surface JAM-A was assessed by flow cytometry following 

staining of cells with antibodies specific for hematopoietic cells (CD45), endothelial cells 

(CD31), and JAM-A. To determine whether cell-surface expression of JAM-A correlates 

with reovirus infectivity, lung endothelial cells were infected at a MOI of 100 PFU per 

cell. After incubation at 37⁰C for 20-24 h, cells were collected, and stained with Alexa 

Fluor-conjugated reovirus antiserum. The percentage of infected cells was determined 

using flow cytometry. All cell staining was quantified using FlowJo software (Tree Star). 
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Transwell collagen coating 

Transwell inserts were incubated with 100 µl rat tail collagen I (50 µg/ml; Sigma) in the 

presence of ammonium hydroxide at room temperature for 15 min. Transwell inserts 

were washed three times using Hanks balanced salt solution (Mediatech) and once with 

sterile water (Invitrogen) and allowed to dry at room temperature for 2 h. HBMECs or 

L929 cells were cultured on the apical surface of collagen-treated Transwell inserts for 7 

d (Figure VI-1), with the apical compartment containing 200 µl medium and the 

basolateral compartment containing 1 ml medium. Medium within the apical and 

basolateral compartments was replaced with fresh medium 3 and 6 d post-seeding. TEER 

was quantified 3 and 6 d post-seeding, on the day of infection, and at various intervals 

post-infection using an EndOhm-6 Voltohmmeter (Figure VI-1B). 

 
TEER measurements 

TEER across polarized HBMEC monolayers was quantified at 3 and 6 d post-seeding, on 

the day of infection, and at various intervals post-infection using an EVOM 

Voltohmmeter and EndOhm-6 cup electrode (World Precision Instruments). TEER 

readings for test samples were normalized by subtracting TEER of blank collagen-coated 

Transwells. The data are presented as unit area resistance (Ω·cm2) (169).   
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Figure VI-1. Transwell schematic and infection timeline. (A) A schematic of a 
Transwell insert is shown. Transwell inserts are coated with collagen prior to the 
addition of endothelial cells. Endothelial cells are plated on the apical surface of 
the Transwell insert and media is added to the basolateral surface. (B) A schematic 
depicting a timeline of an infection experiment. Seven days prior to infection, 
Transwell inserts are coated with collagen and cells are plated. Media is changed 3 
and 6 d post-seeding, and TEER measurements are recorded to monitor 
polarization status of the monolayer. On day 7 post-seeding, the endothelial cell 
monolayer is polarized and can be used for an infection experiment.  
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Permeability assay 

On 1, 4, and 7 d post-seeding, FITC-labeled 10 kDa dextrans (FITC-dextrans, 25 µg/ml; 

Sigma) were added to the apical compartment of HBMECs seeded on Transwell 

membranes in 200 µl incomplete RPMI medium and 1 ml medium was added to the 

basolateral compartment. Cells were incubated at 37°C for 4 h, and medium from the 

apical and basolateral compartments was collected. FITC fluorescence in the medium 

obtained from each compartment was assessed using a Plate Chameleon Multilabel 

Detection Platform (Hidex) with 485 nm excitation and 535 nm emission filters. Dextran 

concentration was determined from the FITC fluorescence intensity using a standard 

curve generated with the FITC-dextrans. The degree of permeability was determined 

using the following equation: Permeability (%) = [FITC-dextran]basolateral/([FITC-

dextran]basolateral + [FITC-dextran]apical) x 100. On day 7, permeability also were assessed 

for a sample in which 2.5 mM EDTA (Mediatech) was added to the apical and basolateral 

compartments to disrupt TJs. 

 

Virus assays 

Polarized HBMECs cultivated on Transwell inserts were adsorbed with virus apically or 

basolaterally at a MOI of 10 PFU per cell. For apical adsorption, 30 µl of virus inoculum 

was added to the apical compartment. For basolateral adsorption, the Transwell insert 

was inverted in a sterile dish, and 30 µl of virus inoculum was added to the basolateral 

surface. In some experiments, cells were treated with medium, anti-JAM-A antibody (20 

µg/ml), or Arthrobacter ureafaciens neuraminidase (80 mU/ml; MP Biomedicals) prior to 

virus adsorption. After adsorption of virus at room temperature for 1 h, cells were washed 
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twice with PBS, and 200 µl medium was added to the apical compartment and 1 ml 

medium was added to the basolateral compartment. For viral release assays, medium 

from the apical or basolateral compartments was collected at various intervals, and viral 

titers in medium from each compartment were determined by plaque assay using L929 

cells (134). For viral replication assays, Transwell membrane inserts were removed from 

Transwells using a scalpel, submerged in 500 µl medium, and subjected to two cycles of 

freezing and thawing. Viral titers in cell lysates were determined by plaque assay using 

L929 cells (134).  

For infectivity studies, cells were incubated at 37°C for 20-24 h, harvested with 

0.05% trypsin-EDTA (Invitrogen) at room temperature, and quenched with medium 

collected from the apical compartment of the respective sample. Cells were stained with 

Alexa Fluor-conjugated reovirus-specific antiserum as described (28). The percentage of 

reovirus antigen-positive cells was determined using flow cytometry. For binding studies, 

cells were detached from the Transwell insert immediately after adsorption with 

Cellstripper (Mediatech) at 37°C for 5 min and stained using Alexa Fluor-conjugated 

reovirus-specific antiserum as described (28). The MFI of each sample was determined 

using flow cytometry. All cell staining was quantified using FlowJo software (Tree Star). 

Human brain microvascular pericytes were cultured until confluent. Cells were 

adsorbed at an MOI of 100 PFU per cell at room temperature for 1 h, washed twice, 

replaced with fresh medium, and incubated at 37°C for 24 h. Cells were fixed and stained 

with reovirus-specific antiserum and 4',6-diamidino-2-phenylindole (DAPI). Reovirus 

infectivity was assessed by indirect immunofluorescence.  
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Cell imaging 

Polarized HBMECs were fixed in 100% methanol at -20⁰C for 5 min. Cells were blocked 

in PBS containing 5% bovine serum albumin (BSA) at room temperature for 30 min. 

Cells were stained with antibodies specific for JAM-A (1:1000) and claudin-1 (1:100) as 

described (28, 170). After staining, Transwell membranes containing cells were excised 

using a scalpel. Membranes were placed onto glass slides, and glass coverslips (#1.5; 

Thermo Scientific) were mounted using Aqua-Poly/Mount mounting medium 

(Polysciences, Inc.). Cell images were captured using a Zeiss LSM 510 Meta laser-

scanning confocal microscope using a 63×/1.40 Plan-Apochromat objective lens. A 

standard threshold pixel intensity was employed for all images, and the pinhole size used 

was identical for all fluorophores. Images represent a single or series of sections from 

within a z-stack and were adjusted for brightness and contrast to the same extent. MFI of 

pixels from apical and basolateral sections of cells (n = 5) was quantified using ImageJ 

software (NIH).  

 

Trypan blue exclusion assay 

HBMECs and L929 cells were cultured on Transwell inserts until polarized and 

confluent, respectively. Virus was adsorbed apically or basolaterally at an MOI of 10 

PFU per cell, and cells were incubated at 37°C for 20-24 h. After incubation, cells were 

harvested using trypsin-EDTA, quenched with medium collected from the apical 

compartment, and washed once with PBS. A small aliquot (20 µl) of cells was removed 

for analysis of cell lysis. An equal volume of trypan blue (0.4% w/v din PBS; Mediatech) 

was added to cells, followed by incubation at room temperature for 3 min. Lysed and 
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intact cells were enumerated using a hemocytometer with brightfield microscopy. The 

percentage of reovirus-infected cells was quantified from the remainder of each sample 

using flow cytometry. 

 

TUNEL assay 

Polarized HBMECs were adsorbed with virus at an MOI of 100 PFU per cell, washed 

twice with PBS, and incubated at 37°C for 24 or 48 h. Cells were removed from the 

Transwell using trypsin-EDTA, quenched with medium collected from the apical 

compartment, washed once with PBS, and assayed for the percentage of apoptotic cells 

using the TUNEL technique (APO-BrdU TUNEL assay kit; Invitrogen) according to the 

manufacturer’s instructions. After TUNEL staining, cells were stained with Alexa Fluor-

conjugated reovirus-specific antiserum (1:1000) at 4°C for 30 min, washed, and pelleted. 

The samples were resuspended in 0.5 ml propidium iodide-containing buffer. Stained 

cells were analyzed for apoptosis and reovirus antigen-positive cells using flow 

cytometry. 

 

Acridine Orange assay 

Polarized HBMECs were adsorbed with virus at an MOI of 100 PFU per cell, washed 

twice with PBS, and incubated at 37°C for 24 h. Cells were removed from the Transwell 

using trypsin-EDTA, quenched with medium collected from the apical compartment, 

washed once with PBS, and resuspended in a volume to obtain a final concentration of 1 

x 106 cells/mL. Acridine orange dye (50 µl per 1 mL cells; PBS containing 100 µg/ml 

acridine orange and 100 µg/ml ethidium bromide [Bio-Rad]) was added and the 
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percentage of apoptotic cells was determined by enumerating the number of acridine 

orange-stained nuclei versus unstained nuclei under brightfield microscopy.  

  

AnnexinV/Dead Cell Apoptosis assay 

Polarized HBMECs were adsorbed with virus at an MOI of 100 PFU per cell, washed 

twice with PBS, and incubated at 37°C for 24 h. Cells were removed from the Transwell 

using Cellstripper, quenched with FACS buffer, washed once with PBS, and assayed for 

the percentage of apoptotic cells using AnnexinV staining (Alexa Fluor 488 

annexinV/Dead Cell Apoptosis Kit; Invitrogen) according to the manufacturer’s 

instructions. A portion of each cell sample was stained with Alexa Fluor-conjugated 

reovirus-specific antiserum. Stained cells were analyzed for apoptosis or reovirus-

positive antigen using flow cytometry. 

 

Transmission electron microscopy 

Apically-infected and basolaterally-infected HBMEC Transwell samples were fixed in 

4% paraformaldehyde and 1% glutaraldehyde. Samples were washed with PBS four 

times, and incubated in 1% osmium and 0.8% potassium ferricyanide in the dark at 4°C 

for 1 h. Transwell membranes were washed with PBS four times and incubated in 

solutions containing increasing concentrations of acetone (50%, 70%, 90%, 100%, in 

water) on ice for 10 min. After the last incubation in 100% acetone, new 100% acetone 

was replaced and cells were incubated on ice for 10 min. Samples were then incubated 

overnight in a solution containing equal volumes of acetone and epoxy resin. Transwell 

samples were placed in 100% epoxy resin for 10 h, moved to new 100% epoxy resin, 
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placed in in plastic embedding capsules, and polymerized at 60°C for 48 h. Consecutive, 

ultrathin (50 nm) sections were collected on parallel-bar copper grids (with 300 mesh) 

using an Ultramicrotome UC6 (Leica). Copper grids containing samples were stained in a 

solution containing saturated uranyl acetate in the dark at room temperature for 20 min. 

After incubation, grids were washed in four drops of distilled water, incubated in lead 

citrate for 2 min, and washed with four drops of distilled water (170). Grids were dried at 

room temperature and images were acquired using an electron microscope (JEOL 1011 

100 KV).  

 

Immunoblotting 

Immunoblot analysis of cell lysates was performed as described (170). Total cell lysates 

of HBMECs adsorbed apically or basolaterally with reovirus strain T3SA+, or treated 

with rottlerin (10 µM) were resolved by SDS-PAGE and immunoblotted with primary 

antibodies specific for tubulin, LC3, or reovirus-specific antiserum. Membranes were 

scanned using an Odyssey imaging system, and band intensity was quantified using the 

Odyssey software suite.  

 

Statistical analysis 

Experiments were performed in duplicate and repeated at least twice. Representative 

results of single experiments are shown. Mean values were compared using an unpaired 

Student's t test or one-way ANOVA (GraphPad Prism). Error bars denote the range of 

data or standard deviation. P values of < 0.05 were considered to be statistically 

significant. 
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Directional Release of Reovirus from the Apical Surface of Polarized
Endothelial Cells

Caroline M. Lai,a,b Bernardo A. Mainou,b,c Kwang S. Kim,d Terence S. Dermodya,b,c

Department of Pathology, Microbiology and Immunology,a Elizabeth B. Lamb Center for Pediatric Research,b and Department of Pediatrics,c Vanderbilt University School
of Medicine, Nashville, Tennessee, USA; Department of Pediatrics, Division of Pediatric Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, USAd

ABSTRACT Bloodstream spread is a critical step in the pathogenesis of many viruses. However, mechanisms that promote
viremia are not well understood. Reoviruses are neurotropic viruses that disseminate hematogenously to the central nervous
system. Junctional adhesion molecule A (JAM-A) is a tight junction protein that serves as a receptor for reovirus. JAM-A is re-
quired for establishment of viremia in infected newborn mice and viral spread to sites of secondary replication. To determine
how viruses gain access to the circulatory system, we examined reovirus infection of polarized human brain microvascular endo-
thelial cells (HBMECs). Reovirus productively infects polarized HBMECs, but infection does not alter tight junction integrity.
Apical infection of polarized HBMECs is more efficient than basolateral infection, which is attributable to viral engagement of
sialic acid and JAM-A. Viral release occurs exclusively from the apical surface via a mechanism that is not associated with lysis or
apoptosis of infected cells. These data suggest that infection of endothelial cells routes reovirus apically into the bloodstream for
systemic dissemination in the host. Understanding how viruses invade the bloodstream may aid in the development of therapeu-
tics that block this step in viral pathogenesis.

IMPORTANCE Bloodstream spread of viruses within infected hosts is a critical but poorly understood step in viral disease. Reovi-
ruses first enter the host through the oral or respiratory route and infect cells in the central nervous system. Spread of reoviruses
to the brain occurs by blood or nerves, which makes reoviruses useful models for studies of systemic viral dissemination. In this
study, we examined how reoviruses infect endothelial cells, which form the walls of blood vessels. We found that reovirus infec-
tion of endothelial cells allows the virus to enter blood vessels and serves as a means for the virus to reach high titers in the circu-
lation. Understanding how reovirus is routed through endothelial cells may aid in the design of antiviral drugs that target this
important step in systemic viral infections.
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Bloodstream dissemination within an infected host is required
for the pathogenesis of many viruses. In particular, many neu-

rotropic viruses use the circulation to invade the central nervous
system (CNS) from a distant site of primary replication. Regard-
less of the site of entry into the host, viruses that disseminate
hematogenously must first traverse an endothelial barrier and
egress from the circulation. Although viremia is a well-established
dissemination process, precise mechanisms of viral entry into or
exit from the bloodstream are not well understood.

Mammalian orthoreoviruses (reoviruses) are neurotropic vi-
ruses that disseminate hematogenously to the CNS, where they
display serotype-specific patterns of tropism for neural cells. Se-
rotype 1 reoviruses spread strictly by the bloodstream and infect
ependymal cells within the CNS, causing nonlethal hydrocephalus
(1–3). In contrast, serotype 3 reoviruses spread neurally and he-
matogenously, infect neurons within the CNS, and cause fatal
encephalitis (1, 4, 5). These serotype-specific differences in neu-
ropathogenesis segregate with the viral S1 gene (2, 3), which en-
codes attachment protein �1 and nonstructural protein �1s (6–8).
Both S1 gene products play key roles in reovirus pathogenesis (4,

5, 9–11), with �1 targeting reovirus to specific host cells (12–14)
and �1s contributing to lymphatic and bloodstream spread (5,
10).

Reoviruses engage two known cellular receptors, oligosaccha-
rides terminating in sialic acid and junctional adhesion molecule
A (JAM-A), via attachment protein �1 by using an adhesion-
strengthening mechanism (15). Virions are first tethered to the
cell surface by low-affinity binding to the relatively more abun-
dant sialic acid, followed by high-affinity interactions with JAM-A
(15). JAM-A is a member of the immunoglobulin superfamily and
is expressed in epithelial and endothelial cells, where it functions
in the formation and maintenance of tight junctions (TJs) (16–
18). JAM-A also is expressed on the surface of hematopoietic cells
and platelets, where it facilitates leukocyte extravasation and
platelet activation, respectively (16, 19, 20). In mice, the capacity
of reovirus to bind sialic acid enhances neurovirulence (9, 21) and
allows infection of bile duct epithelial cells, producing a disease
that mimics biliary atresia in human infants (9). In contrast, the
capacity of reovirus to bind JAM-A is required for the establish-
ment of viremia and dissemination to sites of secondary replica-
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tion through the blood (4). The function of sialic acid and JAM-A
in reovirus infection of polarized endothelial cells is not known.

In this study, we examined reovirus infection of polarized en-
dothelial cells to better understand mechanisms of viral entry into
and egress from the bloodstream. We found that reovirus produc-
tively infects polarized endothelial cells from both apical and ba-
solateral routes of adsorption. Infection was more efficient after
adsorption from the apical surface, a property attributable to the
binding of sialic acid and JAM-A. Interestingly, reovirus was re-
leased exclusively from the apical surface in a noncytolytic man-
ner. These studies provide a new understanding of how viruses
infect polarized endothelial cells and identify the endothelium as
an important mediator of viral pathogenesis.

RESULTS
Reovirus infection of polarized endothelial cells is more effi-
cient from the apical surface. To determine whether reovirus
productively infects polarized endothelial cells (see Fig. S1 in the
supplemental material), we adsorbed either the apical or the ba-
solateral surface of polarized human brain microvascular endo-
thelial cells (HBMECs) with strain T3SA�, a virus that efficiently
binds sialic acid and JAM-A (15, 22). The viral titer in cell lysates
increased over time, regardless of the route of adsorption
(Fig. 1A). Following apical adsorption, the viral titer peaked at
24 h postinfection, with the yield reaching approximately 1,000-
fold over the input. In contrast, following basolateral adsorption,
viral replication was delayed, with yields of 5-fold at 24 h and
100-fold at 48 h postinfection. These data indicate that reovirus
infection of polarized HBMECs by either the apical or the baso-
lateral entry route is productive, but apical adsorption results in
more efficient replication and increased viral yields.

Because we observed higher peak titers in polarized HBMECs
after apical adsorption, we sought to determine whether initiation
of reovirus infection is more efficient when cells are infected api-
cally than when they are infected basolaterally. Polarized
HBMECs were adsorbed with virus by the apical or basolateral
route, and the percentage of reovirus antigen-positive cells was
quantified by flow cytometry. Apical adsorption resulted in ap-
proximately 10-fold more infected cells than did basolateral ad-
sorption (Fig. 1B). As a control, apical or basolateral adsorption of
nonpolarized L929 fibroblast cells cultivated on Transwell inserts
yielded equivalent numbers of infected cells (Fig. 1B).

To determine whether differences in infectivity are attributable
to differences in virus binding, we assessed virus attachment to
polarized HBMECs following apical or basolateral adsorption. In
concordance with the infectivity data, approximately 10-fold
more virus was bound to HBMECs following apical adsorption
than following basolateral adsorption (Fig. 1C). As anticipated,
virus bound equivalently to L929 fibroblasts following adsorption
either apically or basolaterally (Fig. 1C). Together, these data sug-
gest that reovirus binds more efficiently to the apical surface of
polarized HBMECs, which results in increased infectivity and rep-
lication.

Sialic acid and JAM-A are required for reovirus infection of
polarized endothelial cells. To determine whether differences in
the infectivity of polarized HBMECs after apical or basolateral
adsorption are attributable to differences in receptor engagement,
we used mutant reovirus strains impaired in the capacity to bind
either sialic acid or JAM-A. Single amino acid mutations in the �1
attachment protein can dramatically diminish binding to these

FIG 1 Reovirus infection of polarized HBMECs is more efficient following
adsorption from the apical surface. Polarized HBMECs were adsorbed either
apically (white bars) or basolaterally (black bars) with reovirus T3SA� at an
MOI of 10 PFU per cell. (A) Transwell inserts were excised at 0, 24, and 48 h
postinfection, and viral titers in cell lysates were determined by plaque assay. A
representative experiment of three performed, with each experiment con-
ducted in duplicate, is shown. Error bars indicate the range of data for the
duplicates. (B) HBMECs were incubated for 20 to 24 h and harvested by
trypsinization. Cells were permeabilized and stained with Alexa Fluor-
conjugated, reovirus-specific antiserum. The percentage of infected cells was
determined by flow cytometry. A representative experiment of three per-
formed, with each experiment conducted in duplicate, is shown. Error bars
indicate the range of data for the duplicates. (C) HBMECs were removed
immediately after adsorption and stained with Alexa Fluor-conjugated,
reovirus-specific antiserum. MFI was determined by flow cytometry. A repre-
sentative experiment of three performed, with each experiment conducted in
duplicate, is shown. Error bars indicate the range of data for the duplicates. **,
P � 0.005.
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receptors (15, 23). Polarized HBMECs were adsorbed apically or
basolaterally with wild-type or mutant reovirus strains, and the
percentage of infected cells was quantified at 24 h postinfection.
There were significantly more infected cells following apical ad-
sorption with wild-type strain type 3 Dearing (rsT3D) than after
apical adsorption with mutant strain rsT3D-�1R202W, which is
deficient in sialic acid binding (21, 23), or mutant strain rsT3D-
�1G381A, which is deficient in JAM-A binding (24) (Fig. 2A).
Treatment of polarized HBMECs with neuraminidase (to remove
cell surface sialic acid) and JAM-A-specific antibody prior to api-
cal virus adsorption significantly decreased infection by rsT3D.
Similarly, neuraminidase and JAM-A-specific antibody pretreat-
ment substantially decreased infection of polarized HBMECs by
rsT3D-�1G381A and rsT3D-�1R202W, respectively (Fig. 2A).
Concordantly, rsT3D bound more efficiently to the apical surface
of polarized HBMECs than did the mutant virus strains, and vir-
tually all virus binding was abolished by neuraminidase or JAM-
A-specific antibody pretreatment (Fig. 2C). We observed a similar
trend after basolateral adsorption in that diminished receptor en-
gagement by mutant viruses or blockade of receptor engagement
with inhibitors significantly decreased the percentages of virus-
infected and virus-bound cells (Fig. 2B and D). However, the
overall percentage of infected cells and levels of virus binding after
basolateral adsorption were substantially lower than those follow-
ing apical adsorption, which diminishes the magnitude of the ob-
served differences (note the different y axis scales in Fig. 2C and
D). Reovirus mutant rsT3D-�1R202W bound to the basolateral
surface of HBMECs equivalently to wild-type rsT3D but infected
significantly fewer cells, suggesting that sialic acid engagement
may enhance reovirus replication at a postattachment step follow-
ing basolateral adsorption of polarized endothelial cells. These
data suggest that infection of polarized endothelial cells is depen-
dent on virus binding to sialylated glycans and JAM-A on the
apical and basolateral surfaces of polarized endothelial cells, but
binding to the apical surface is more efficient.

To determine whether increased binding of reovirus to the
apical surface of polarized HBMECs is attributable to enhanced
receptor expression, we examined the distribution of JAM-A on
polarized HBMECs by confocal microscopy. Polarized HBMEC
monolayers were stained with antibodies specific for TJ protein
claudin-1, as well as JAM-A (Fig. 3A). Substantially more JAM-A
staining was detected at the apical surface of the polarized cell
monolayer (Fig. 3B), including nonjunction sites that lack detect-
able claudin-1 staining (Fig. 3A). Confocal micrographs of apical
portions of cells showed a stippled pattern of JAM-A expression.
In equatorial sections of cells, JAM-A was distributed at the cell
periphery, presumably in contact with JAM-A on adjacent cells. In
these images, TJ puncta marked by claudin-1 and JAM-A colocal-
ization are clearly visible (Fig. 3A, white asterisks). At the basolat-
eral surface, the JAM-A signal was diminished in intensity and
diffusely localized compared with JAM-A staining at the apical
surface (Fig. 3A and B). Increased distribution of JAM-A to the
apical surface of polarized HBMECs may allow reovirus to bind
and infect these cells more efficiently by this route.

Reovirus is released apically from infected polarized endo-
thelial cells. We next determined whether progeny virus is re-
leased apically or basolaterally from infected polarized endothelial
cells. Polarized HBMECs were adsorbed apically or basolaterally
with virus, and titers within the apical and basolateral compart-
ments were quantified at various intervals by plaque assay. After

FIG 2 JAM-A and sialic acid are required for reovirus infection of polarized
HBMECs. Polarized HBMECs were adsorbed either apically (A, C) or basolat-
erally (B, D) at an MOI of 10 PFU per cell with reovirus strain rsT3D, rsT3D-
�1R202W, or rsT3D-�1G381A in the presence or absence of anti-JAM-A an-
tibody (Ab; 20 �g/ml) or A. ureafaciens neuraminidase (80 mU/ml). (A, B)
Cells were incubated for 20 to 24 h, removed from Transwell inserts with
trypsin, permeabilized, and incubated with Alexa Fluor-conjugated, reovirus-
specific antiserum. The percentage of infected cells was determined by flow
cytometry. A representative experiment of two performed, with each experi-
ment conducted in duplicate, is shown. Error bars indicate the range of data for
the duplicates. (C, D) Cells were harvested from Transwell inserts immediately
after adsorption and stained with Alexa Fluor-conjugated, reovirus-specific anti-
serum. MFI was quantified by flow cytometry. Note that different y axis scales are
used for apical and basolateral adsorption. A representative experiment of two
performed, with each experiment conducted in duplicate, is shown. Error bars
indicate the range of data for the duplicates. *, P � 0.05; **, P � 0.005.
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apical adsorption, the viral titer in the apical compartment in-
creased more than 30-fold at 24 h and more than 3,000-fold at 48 h
(Fig. 4A). Interestingly, no virus was detected in the basolateral
compartment at any time point tested (Fig. 4A). After basolateral
adsorption, virus was detected in the basolateral compartment at
all of the intervals tested (Fig. 4B). However, titers did not increase
over time, suggesting that infectious virus in this compartment is
most likely residual virus from the inoculum. The viral titer within
the apical compartment was detected at 24 h postinfection and
increased approximately 100,000-fold by 48 h postinfection
(Fig. 4B). Therefore, regardless of the route of adsorption, reovi-
rus egress from polarized endothelial cells occurs from the apical
surface.

Reovirus infection does not alter endothelial cell TJ integrity.
To determine whether reovirus infection alters the integrity of TJs
in the polarized monolayer, we quantified the transendothelial
electrical resistance (TEER) at both early and late times postad-
sorption. After adsorption with a multiplicity of infection (MOI)
of 1,000 PFU per cell, no significant alteration in TEER was ob-

FIG 3 Polarized HBMECs express JAM-A predominantly at the apical sur-
face. (A) Polarized HBMECs were stained for JAM-A (green), claudin-1 (red),
and nuclei (blue) and imaged by confocal microscopy. Shown are images of the
apical, equatorial, and basolateral regions of a single representative z stack.
Colocalization of TJ proteins is indicated by white asterisks. The scale bar
indicates 10 �m. Enlarged images of the white-boxed areas are shown in the
bottom panels. Cell images were captured with a Zeiss LSM 510 Meta laser-
scanning confocal microscope with a 63�/1.40 Plan-Apochromat objective lens.
(B) JAM-A channel MFI of apical and basolateral sections of individual cells (n �
5) was quantified. Error bars indicate standard deviations. *, P � 0.05.

FIG 4 Reovirus release from polarized HBMECs occurs from the apical
surface. Polarized HBMECs were adsorbed either apically (A) or basolaterally
(B) with reovirus T3SA� at an MOI of 10 PFU per cell. Cells were washed,
fresh medium was added to the apical and basolateral compartments, and cells
were incubated for the times shown. Viral titers in the medium from the apical
(white bars) and basolateral (black bars) compartments were determined by
plaque assay. A representative experiment of three performed, with each ex-
periment conducted in duplicate, is shown. Error bars indicate the range of
data for the duplicates.
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served in the 2-h postinfection interval (Fig. 5A). Similarly, after
adsorption with an MOI of 10 PFU per cell, no significant altera-
tion in TEER was observed at 1 or 2 days postinfection (Fig. 5B).
We conclude from these data that reovirus does not alter the func-
tion of endothelial TJs during infection.

Reovirus egress from polarized HBMECs occurs noncyto-
lytically. To determine whether reovirus egress from infected po-
larized HMBECs is associated with cell lysis, we assessed cell via-
bility with trypan blue. Polarized HBMECs or confluent L929 cells
cultured on Transwell inserts were adsorbed apically or basolater-
ally at an MOI of 10 PFU per cell, and cell viability was quantified
at 24 h postinfection. Levels of HBMEC lysis were lower than the
background levels of lysis in mock-treated HBMECs after either
apical or basolateral virus adsorption (Fig. 6A). In contrast, more
than half of the population of infected L929 cells was lysed at 24 h
postinfection. These data suggest that reovirus infection of polar-
ized HBMECs does not compromise cell viability.

FIG 5 Reovirus infection of polarized HBMECs does not disrupt TJs. Polar-
ized HBMECs were mock infected (closed circle, solid line) or adsorbed either
apically (closed circle, dashed line) or basolaterally (open circle, dotted line)
with reovirus T3SA� at an MOI of 1,000 PFU per cell (A) or 10 PFU per cell
(B). Cells were washed, fresh medium was added to the apical and basolateral
compartments, and TEER was determined at the times shown. A representa-
tive experiment of two (A) or three (B) performed, with each experiment
conducted in duplicate, is shown. Error bars indicate the range of data for the
duplicates. TEER from the various samples was compared by one-way
ANOVA. Student’s t test was used to evaluate differences between mock-
infected and apically infected (A) or mock-infected and basolaterally infected
(B) samples. No differences were statistically significant.

FIG 6 Reovirus infection of polarized HBMECs is noncytolytic. (A) Polarized
HBMECs or confluent L929 cells cultured on Transwell inserts were mock
infected (M) or adsorbed either apically (AP) or basolaterally (BL) with reovi-
rus T3SA� at an MOI of 10 PFU per cell. Cells were washed, fresh medium was
added to the apical and basolateral compartments, and cells were incubated at
37°C for 20 to 24 h. Cells were harvested and incubated with trypan blue or
permeabilized and stained for reovirus antigen with Alexa Fluor-conjugated,
reovirus-specific antiserum. The percentage of infected cells (white bars) and
the percentage of lysed cells (black bars) are shown in a stacked-column graph.
A representative experiment of two performed, with each experiment con-
ducted in duplicate, is shown. Error bars indicate the range of data for the
duplicates. (B, C) Polarized HBMECs were mock infected (M) or adsorbed
either apically (AP) or basolaterally (BL) with reovirus T3SA� at an MOI of
100 PFU per cell. Cells were incubated at 37°C and harvested at 24 or 48 h
postinfection. As a control for apoptosis, staurosporine (ST, 10 �M) was
added to the medium in the apical and basolateral compartments of unin-
fected cells, which were incubated for 18 h. (B) Cells were stained for reovirus
antigen with Alexa Fluor-conjugated, reovirus-specific antiserum and for ap-
optosis by the TUNEL technique. The percentage of infected cells (white bars)
and the percentage of TUNEL-positive cells (black bars) within the population
of infected cells are shown in a stacked-column graph. A representative exper-
iment of three performed, with each experiment conducted in duplicate, is
shown. Error bars indicate the range of data for the duplicates. (C) TEER was
recorded for each sample at the time of cell harvest. A representative experi-
ment of three performed, with each experiment conducted in duplicate, is
shown. Error bars indicate the range of data for the duplicates.
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Reovirus is capable of inducing apoptosis in many types of
cultured cells (25–28) and in the CNS of infected mice (1–3, 29).
Although polarized HBMECs remain intact after reovirus infec-
tion, we wondered whether reovirus egress from polarized
HBMEC monolayers might occur via apoptosis. To test this hy-
pothesis, we adsorbed polarized HBMECs apically or basolaterally
at an MOI of 100 PFU per cell and quantified levels of apoptosis
at 24 and 48 h postinfection by using terminal deoxy-
nucleotidyltransferase-mediated dUTP-biotin nick end labeling
(TUNEL) staining. At 24 h postinfection, 17.7% of the cells were
infected after apical adsorption but apoptosis was detectable in
only 0.9% of those cells (Fig. 6B). At 24 h after basolateral adsorp-
tion, 3.0% of the cells were infected but apoptosis was not detected
in those cells (Fig. 6B). At 48 h after apical adsorption, 29.5% of
the cells were infected with reovirus, with only 3.0% showing ev-
idence of apoptosis (Fig. 6B). After basolateral adsorption, 6.6%
of the cells were infected with reovirus, yet only 1.4% of those cells
were apoptotic (Fig. 6B). As a positive control, treatment of po-
larized HBMECs with staurosporine resulted in ~50% of the cells
displaying evidence of apoptosis with a concomitant decrease in
TEER (Fig. 6B and C), suggesting that the low levels of apoptosis in
reovirus-infected cells are not attributable to an inherent block to
apoptosis in HBMECs. These data suggest that reovirus egress
from polarized HBMECs occurs without inducing apoptosis.

DISCUSSION

Many viruses cause disease in infected hosts after bloodstream
spread from an initial site of infection to a distant target site.
Reoviruses are neurotropic viruses that first replicate within the
small intestine and disseminate systemically via the blood, nerves,
and lymphatics. Reovirus penetration of the endothelium to in-
vade the bloodstream may occur within the intestine or lymph
nodes to allow the establishment of primary viremia. To investi-
gate reovirus infection of the endothelium, we cultured HBMECs
on Transwell membranes until polarization was achieved (see
Fig. S1 in the supplemental material). Although reoviruses use TJ
protein JAM-A as a receptor, TEER was not altered immediately
following reovirus adsorption (Fig. 5), suggesting that TJ integrity
remains intact after infection. Adsorption of polarized endothelial
cells either apically or basolaterally with reovirus resulted in pro-
ductive infection (Fig. 1; see Fig. S2 in the supplemental material).
Interestingly, reovirus strain T3D replicated more efficiently than
strain type 1 Lang (T1L) in polarized endothelial cells (compare
Fig. 1; see Fig. S2). This discrepancy might be due to differences in
the cell surface expression of the sialylated glycans used by the
different reovirus serotypes or cell-intrinsic properties of endo-
thelial cells that confer serotype-dependent differences in reovirus
susceptibility. Regardless of the serotype, replication was more
efficient when reovirus was adsorbed to the endothelial cell apical
surface (Fig. 1; see Fig. S2), and significantly more reovirus
antigen-positive cells were detected following adsorption by this
route (Fig. 1B; see Fig. S2). The observed increase in infectivity and
replication after apical adsorption was most likely due to increased
virus binding to the apical surface (Fig. 1C). The number of cells
bound by virus was actually higher than the number of cells pro-
ductively infected. This finding suggests that not all viral particles
bound to the cell surface complete an infectious cycle, a phenom-
enon observed in other cell lines (30–32). Reovirus infection of
polarized endothelial cells by either the apical or the basolateral
route requires the engagement of sialylated glycans and JAM-A

(Fig. 2). Consistent with these findings, substantially more JAM-A
is distributed to the apical than to the basolateral surface of polar-
ized HBMECs (Fig. 3). Subconfluent, nonpolarized HBMECs are
substantially more susceptible to reovirus infection than are po-
larized HBMECs (data not shown), presumably because of higher
levels of JAM-A on the cell surface and the absence of a restriction
of JAM-A expression to TJs.

Regardless of the route of adsorption, reovirus egress from
infected polarized HBMECs occurs solely from the apical surface
(Fig. 4; see Fig. S2 in the supplemental material). Similarly, reovi-
rus infection of polarized human airway epithelial cells results in
apical release of progeny virions (33). Although TEER did not
change appreciably over a time course of reovirus infection of
HBMECs (Fig. 5), we questioned whether infected cells are ex-
truded from the monolayer in a manner analogous to epithelial
cell turnover (34). If they are, we would expect TEER to be main-
tained despite the detection of an increased number of nonviable
cells over time. To test this hypothesis, we used trypan blue stain-
ing to determine whether polarized HBMECs infected with reovi-
rus are lysed. Compared with infected L929 cells, which display
substantial cytopathic effect after reovirus infection (28) (Fig. 6A),
polarized HBMECs infected with reovirus apically or basolaterally
do not undergo cell lysis (Fig. 6A), despite the presence of high
viral titers in cells and supernatants (Fig. 1 and 4). Sonication of
supernatants harvested from the apical surface of polarized
HBMECs did not lead to an increased viral titer, suggesting that
released virus was not trapped within extruded cells or
membrane-bound vesicles (data not shown). Apical or basolateral
adsorption of polarized HBMECs with reovirus led to an increase
in reovirus antigen-positive cells, but the number of apoptotic
cells did not increase above that in mock-treated samples
(Fig. 6B). Additionally, levels of apoptosis in reovirus-infected
HBMECs were lower than in mock-infected cells by the comple-
mentary acridine orange and annexin V staining assays (see Fig. S3
in the supplemental material). We conclude from these data that
regardless of the route of entry, reovirus release occurs from the
apical surface in a manner that maintains cell viability. Because
infection of polarized endothelial cells is noncytolytic, clearance of
reovirus from an infected host may require cytotoxic T
lymphocyte-mediated immunity in addition to neutralizing anti-
bodies (35–39).

Virus infection of endothelial cells may serve as an additional
mechanism to produce and maintain high levels of viremia. For
example, dengue virus infection of endothelial cells leads to high-
titer viremia by inducing endothelial cell apoptosis, resulting in
endothelial barrier dysfunction and vascular leakage (40). Murine
cytomegalovirus primarily infects hepatocytes, but virus pro-
duced from infected hepatic endothelial cells is responsible for
dissemination to other organs (41, 42). Similarly, reovirus may
use the endothelium as a means to amplify to high titers in the
bloodstream (Fig. 7). Reovirus infection from the basolateral
route is not efficient, but progeny viral particles are efficiently
transported to and released from the apical surface of polarized
endothelial cells. Once released, progeny virions have access to the
apical surface of adjacent endothelial cells and can enter those cells
efficiently. This cycle may serve as a mechanism to generate high
titers of virus in the bloodstream, which are observed during reo-
virus infection (4, 10, 21). Sialylated glycans and JAM-A are re-
quired for the infection of endothelial cells by both the apical and
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basolateral routes, which may account for the markedly dimin-
ished viremia in reovirus-infected JAM-A-deficient mice (4).

How reovirus exits the bloodstream is not clear from our study.
Because JAM-A is present on the surface of hematopoietic cells, it
is possible that reovirus-infected hematopoietic cells transport the
virus from the bloodstream to sites of secondary replication, in-
cluding the CNS. It also is possible that cells adjacent to blood
vessels become infected as a consequence of infection of the endo-
thelium. Epstein-Barr virus (EBV) binding to B cells leads to con-
jugate formation between B cells and epithelial cells, resulting in
EBV entry into epithelial cells (43, 44). Blood vessels in the brain
closely appose pericytes and astrocytes, and reovirus infection of
endothelial cells may induce modifications of these cells, resulting
in invasion of the CNS.

Bloodstream spread is an important step in the pathogenesis of
many viral diseases, but the mechanisms used by viruses to gain
entry into the bloodstream are not well understood. Our work
describes how viral infection of endothelial cells may allow access
to and amplification within the circulation. We show that reovirus
productively infects polarized endothelial cells by both the apical
and basolateral routes. Infection after apical adsorption is more
efficient than basolateral adsorption because of increased utiliza-
tion of sialic acid and JAM-A at the apical surface. Reovirus release
from polarized endothelial cells occurs exclusively from the apical
surface in a manner that maintains TJ integrity and cell viability.
Since TJ proteins are used as receptors by a diverse array of viruses,
including adenovirus (45), feline calicivirus (46), hepatitis C virus
(47, 48), and several picornaviruses (45, 49), our findings may
provide a more general understanding of how viruses establish
viremia for bloodstream spread. Moreover, the apical release
mechanism employed by reovirus may be similarly generalizable,
providing a potential new target for a host-specific, broad-
spectrum antiviral therapeutic.

MATERIALS AND METHODS
Cells, viruses, enzymes, and antibodies. Spinner-adapted murine L929
fibroblast cells were grown in either suspension or monolayer cultures as

previously described (10, 50). HBMECs (51, 52) were grown in RPMI
1640 medium (Mediatech) supplemented to contain 10% fetal bovine
serum, 10% NuSerum (BD Biosciences), nonessential amino acids
(Sigma), 1 mM sodium pyruvate, MEM Vitamins (Mediatech), 2 mM
L-glutamine, 100 U/ml penicillin, 100 �g/ml streptomycin, and 25 ng/ml
amphotericin B. HBMECs and L929 cells were cultured on collagen-
coated Transwell inserts (6.5-mm diameter, 0.4-�m pores; Costar) for
7 days prior to infection or imaging experiments.

Reovirus strain T1L is a laboratory stock. Strain T3SA� was generated
as previously described (15). Recombinant viruses rsT3D, rsT3D-
�1R202W, and rsT3D-�1G381A were generated by plasmid-based re-
verse genetics (21, 24). Virus was purified as previously described (53).
Viral titers were determined by plaque assay with L929 cells (37).

The immunoglobulin G (IgG) fraction of a rabbit antiserum raised
against strains T1L and T3D (31) was purified by protein A-Sepharose as
previously described (9, 15). Reovirus-specific IgG was conjugated to
Alexa Fluor 647 with an APEX antibody labeling kit (Invitrogen). JAM-
A-specific monoclonal antibody J10.4 (provided by Charles Parkos, Em-
ory University) and claudin-1-specific antibody ab15098 (Abcam) were
used in confocal microscopy imaging experiments. Alexa Fluor-
conjugated antibodies (Invitrogen) were used as secondary antibodies.

TEER measurements. TEER across polarized HBMEC monolayers
was quantified at 3 and 6 days postseeding, on the day of infection, and at
various intervals postinfection with an EVOM voltohmmeter and an
EndOhm-6 cup electrode (World Precision Instruments). TEER readings
for test samples were normalized by subtracting the TEER of blank
collagen-coated Transwell inserts. The data are presented as unit area
resistance (�·cm2) (54).

Virus assays. Polarized HBMECs cultivated on Transwell inserts were
adsorbed with virus apically or basolaterally at an MOI of 10 PFU per cell.
For apical adsorption, 30 �l of virus inoculum was added to the apical
compartment. For basolateral adsorption, the Transwell insert was in-
verted in a sterile dish and 30 �l of virus inoculum was added to the
basolateral surface. In some experiments, cells were treated with medium,
anti-JAM-A antibody (20 �g/ml), or Arthrobacter ureafaciens neuramin-
idase (80 mU/ml; MP Biomedicals) prior to virus adsorption. After ad-
sorption of virus at room temperature for 1 h, cells were washed twice with
phosphate-buffered saline (PBS) and 200 �l of medium was added to the
apical compartment and 1 ml of medium was added to the basolateral
compartment. For viral release assays, medium from the apical or baso-
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FIG 7 Model of reovirus infection of the endothelium. A cross-sectional schematic of a blood vessel is shown. The blood vessel is lined with endothelial cells that
are linked via TJs (black bars). Following reovirus infection of endothelial cells from the basolateral surface (step 1), virus is routed apically (or luminally) into
the bloodstream (step 2). Once within the bloodstream, virus is capable of infecting endothelial cells from the apical surface (step 3). Reovirus binding to JAM-A,
found mostly within TJs, and sialic acid at the apical surface may account for the increased efficiency of infection. After reovirus infects cells from the apical
surface, progeny virions are routed apically into the bloodstream. The efficiency of apical infection may allow for endothelial amplification of reovirus (step 4),
resulting in higher levels of viremia within an infected host.
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lateral compartment was collected at various intervals and viral titers in
medium from each compartment were determined by plaque assay with
L929 cells (37). For viral replication assays, Transwell membrane inserts
were removed from Transwell inserts with a scalpel, submerged in 500 �l
of medium, and subjected to two cycles of freezing and thawing. Viral
titers in cell lysates were determined by plaque assay with L929 cells (37).

For infectivity studies, cells were incubated at 37°C for 20 to 24 h,
harvested with 0.05% trypsin-EDTA (Invitrogen) at room temperature,
and quenched with medium collected from the apical compartment of the
respective sample. Cells were stained with Alexa Fluor-conjugated,
reovirus-specific antiserum as previously described (50). The percentage
of reovirus antigen-positive cells was determined by flow cytometry. For
binding studies, cells were detached from the Transwell insert immedi-
ately after adsorption with Cellstripper (Mediatech) at 37°C for 5 min and
stained with Alexa Fluor-conjugated, reovirus-specific antiserum as pre-
viously described (50). The mean fluorescence intensity (MFI) of each
sample was determined by flow cytometry. All cell staining was quantified
with FlowJo software (Tree Star).

Cell imaging. Polarized HBMECs were fixed in 100% methanol at
�20°C for 5 min. Cells were blocked in PBS containing 5% bovine serum
albumin at room temperature for 30 min. Cells were stained with anti-
bodies specific for JAM-A (1:1,000) and claudin-1 (1:100) as previously
described (50, 55). After staining, Transwell membranes containing cells
were excised with a scalpel. Membranes were placed onto glass slides, and
glass coverslips (#1.5; Thermo Scientific) were mounted with Aqua-Poly/
Mount mounting medium (Polysciences, Inc.). Cell images were captured
with a Zeiss LSM 510 Meta laser-scanning confocal microscope with a
63�/1.40 Plan-Apochromat objective lens. A standard threshold pixel
intensity was used for all images, and the pinhole size used was the same
for all fluorophores. Images represent a single section or a series of sec-
tions from within a z stack and were adjusted for brightness and contrast
to the same extent. The MFI of pixels from apical and basolateral sections
of cells (n � 5) was quantified with ImageJ software (NIH).

Trypan blue exclusion assay. HBMECs and L929 cells were cultured
on Transwell inserts until polarized and confluent, respectively. Virus was
adsorbed apically or basolaterally at an MOI of 10 PFU per cell, and cells
were incubated at 37°C for 20 to 24 h. After incubation, cells were har-
vested with trypsin-EDTA, quenched with medium collected from the
apical compartment, and washed once with PBS. A small aliquot (20 �l) of
cells was removed for analysis of cell lysis. An equal volume of trypan blue
(0.4% [wt/vol] in PBS; Mediatech) was added to cells, which were then
incubated at room temperature for 3 min. Lysed and intact cells were
enumerated using a hemocytometer with bright-field microscopy. The
percentage of reovirus-infected cells in the remainder of each sample was
quantified by flow cytometry.

TUNEL assay. Polarized HBMECs were adsorbed with virus at an
MOI of 100 PFU per cell, washed twice with PBS, and incubated at 37°C
for 24 or 48 h. Cells were removed from the Transwell insert with trypsin-
EDTA, quenched with medium collected from the apical compartment,
washed once with PBS, and assayed for the percentage of apoptotic cells
by the TUNEL technique (APO-BrdU TUNEL assay kit; Invitrogen)
according to the manufacturer’s instructions. After TUNEL staining, cells
were stained with Alexa Fluor-conjugated, reovirus-specific antiserum
(1:1,000) at 4°C for 30 min, washed, and pelleted. The samples were re-
suspended in 0.5 ml propidium iodide-containing buffer. Stained cells
were analyzed for apoptosis and the presence of reovirus antigen by flow
cytometry. See Text S1 in the supplemental material for the additional
methods used.

Statistical analysis. Experiments were performed in duplicate and re-
peated at least twice. Representative results of single experiments are
shown. Mean values were compared with an unpaired Student’s t test or
one-way analysis of variance (ANOVA) (GraphPad Prism). Error bars
denote the range of data or standard deviation. P values of �0.05 were
considered statistically significant.
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Abstract

Many viruses cause disease within an infected host after spread from an initial portal of
entry to sites of secondary replication. Viruses can disseminate via the bloodstream or
through nerves. Mammalian orthoreoviruses (reoviruses) are neurotropic viruses that
use both bloodborne and neural pathways to spread systemically within their hosts
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to cause disease. Using a robust mouse model and a dynamic reverse genetics system,
we have identified a viral receptor and a viral nonstructural protein that are essential for
hematogenous reovirus dissemination. Junctional adhesion molecule-A (JAM-A) is a
member of the immunoglobulin superfamily expressed in tight junctions and on hema-
topoietic cells that serves as a receptor for all reovirus serotypes. Expression of JAM-A is
required for infection of endothelial cells and development of viremia in mice,
suggesting that release of virus into the bloodstream from infected endothelial cells
requires JAM-A. Nonstructural proteins1s is implicated in cell cycle arrest and apoptosis
in reovirus-infected cells but is completely dispensable for reovirus replication in
cultured cells. Surprisingly, a recombinant s1s-null reovirus strain fails to spread hema-
togenously in infected mice, suggesting that s1s facilitates apoptosis of reovirus-
infected intestinal epithelial cells. It is possible that apoptotic bodies formed as a
consequence ofs1s expression lead to reovirus uptake by dendritic cells for subsequent
delivery to the mesenteric lymph node and the blood. Thus, both host and viral factors
are required for efficient hematogenous dissemination of reovirus. Understanding
mechanisms of reovirus bloodborne spread may shed light on how microbial
pathogens invade the bloodstream to disseminate and cause disease in infected hosts.

1. INTRODUCTION

Many pathogenic human and animal viruses disseminate frommucosal

sites to peripheral tissues where they cause organ-specific disease

(Nathanson & Tyler, 1997). The capacity of a virus to spread systemically

can correlate with increased virulence (de Jong et al., 2006; Gu et al.,

2007; Kuiken et al., 2003; Pallansch & Roos, 2001). Systemic dissemination

requires that the virus effectively navigate diverse intracellular and extracel-

lular environments to infect, replicate, and evade immune detection in

multiple cell types and tissues (Adair et al., 2012; Antar et al., 2009;

Boehme, Frierson, Konopka, Kobayashi, & Dermody, 2011; Boehme,

Guglielmi, & Dermody, 2009). Although some general principles of virus

dissemination are understood, little is known about the precise viral and cel-

lular determinants that govern virus spread. Defining mechanisms by which

viruses disseminate within their hosts is of fundamental importance to an

understanding of viral pathogenesis.

Mammalian orthoreoviruses (reoviruses) are highly tractable models for

studies of viral pathogenesis. Studies of reovirus neural spread have provided

important information about mechanisms by which neurotropic viruses cause

disease in the central nervous system (CNS). The recent identification of new

viral and host determinants that govern reovirus spread by the blood provides

new insights intohowhematogenousdisseminationcontributes toviral disease.
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1.1. Reoviruses
Viruses of the Reoviridae family infect a wide range of host organisms, includ-

ing mammals, birds, insects, and plants (Dermody, Parker, & Sherry, 2013).

The Reoviridae includes rotaviruses, the most common diarrheal pathogen

among children (Parashar, Bresee, Gentsch, & Glass, 1998), orbiviruses,

which are economically important pathogens of sheep, cattle, and horses

(Coetzee et al., 2012), and reoviruses. Three reovirus serotypes (T1, T2,

and T3) currently circulate in humans and other mammals. The serotypes

are distinguished on the basis of antibody-mediated neutralization of infectiv-

ity and inhibition of hemagglutination. Each serotype is represented by a

prototype strain isolated from a human host: type 1 Lang (T1L), type 2

Jones (T2J), and type 3 Dearing (T3D). These strains differ dramatically in

host cell tropism, mechanisms of cell killing, modes of dissemination, and

CNS disease. In particular, studies of T1 and T3 reoviruses have generated

foundational knowledge about strategies used by viruses to replicate and cause

neural injury. Development of a plasmid-based reverse genetics system

allows introduction of mutations into the viral genome to test specific hypo-

theses about the structure and function of viral proteins andRNAs (Kobayashi

et al., 2007; Kobayashi, Ooms, Ikizler, Chappell, & Dermody, 2010).

In concert with an experimentally facile mouse model of infection

(Fields, 1992; Parashar, Tarlow, & McCrae, 1992), reovirus is an ideal

experimental platform for studies of virus–host interactions.

Reoviruses are nonenveloped, icosahedral viruses that contain a genome

consisting of 10 segments of double-stranded (ds) RNA (Fig. 1.1; Dermody

et al., 2013). There are three large (L1, L2, L3), three medium (M1, M2,

M3), and four small (S1, S2, S3, S4) dsRNA segments that are packaged

in an equimolar stoichiometric relationship with one copy of each per

virion. With the exception of the M3 and S1 gene segments, each of the

reovirus gene segments is monocistronic. Reovirus virions are composed

of two concentric protein shells, the outer capsid and core (Fig. 1.1;

Dryden et al., 1993). The outer capsid consists of heterohexameric com-

plexes of the m1 (encoded by M2) and s3 (encoded by S4) proteins. At each
of the icosahedral fivefold symmetry axes, the attachment protein s1
(encoded by S1) extends from turret-like structures formed by pentamers

of l2 (encoded by L2) protein. The inner core shell is formed by parallel

asymmetric dimers of l1 (encoded by L3) protein that are stabilized by

s2 (encoded by S2) protein. The l3 (encoded by L1) and m2 (encoded

byM1) proteins are anchored to the inner surface of the core via interactions
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with l1. Lastly, the M3 gene segment encodes nonstructural protein mNS,

the S3 gene segment encodes nonstructural protein sNS, and the S1 gene

segment encodes nonstructural protein s1s.
Viral attachment protein s1 is a long filamentous molecule with

head-and-tail morphology (Fig. 1.2A; Chappell, Prota, Dermody, & Stehle,

2002; Fraser et al., 1990;Mercier et al., 2004;Reiter et al., 2011). Thes1 pro-
tein is comprised of three distinct structural domains: an N-terminal a-helical
coiled-coil tail, a central b-spiral body, and a C-terminal globular head

(Chappell et al., 2002;Reiter et al., 2011). Short regions of undefined structure

partition each domain and are hypothesized to permit molecular flexibility

required to engage cellular receptors during viral entry (Bokiej et al., 2012;

Chappell et al., 2002; Fraser et al., 1990; Reiter et al., 2011). Attachment

of thes1 protein to cell-surface receptors initiates reovirus infection of suscep-
tible host cells (Lee, Hayes, & Joklik, 1981; Weiner, Ault, & Fields, 1980;

Weiner, Powers, & Fields, 1980). The s1 protein of T3 reovirus targets

two different receptors, a-linked sialic acid (SA) (Armstrong, Paul, & Lee,

1984; Dermody, Nibert, Bassel-Duby, & Fields, 1990a; Pacitti & Gentsch,

1987; Paul, Choi, & Lee, 1989; Paul & Lee, 1987) and junctional adhesion

molecule-A (JAM-A) (Barton, Forrest, et al., 2001; Campbell et al., 2005;

Prota et al., 2003). Residues in the T3 s1 b-spiral body domain bind SA

Outer capsid

Core

L1
L2
L3

M1
M2
M3

S1
S2
S3
S4

(σ3 and µ1) 

σ1

λ2

µNS
σNS
σ1s

λ3
m2

(σ2 and λ1) 

A B

Figure 1.1 The reovirus virion. (A) Cryoelectron micrograph image reconstruction of a
reovirus virion. Outer-capsid protein s3 (blue) is the initial target for virion disassembly
in infected cells. Pentameric l2 protein (yellow) forms an insertion pedestal for s1,
which is the viral attachment protein. (B) Schematic of a reovirus virion. Reovirus par-
ticles are formed from two concentric protein shells, the outer capsid and core. The core
contains the viral genome, which consists of 10 dsRNA segments. Reovirus also encodes
nonstructural proteins, sNS, mNS, and s1s. Copyright © American Society for Microbiol-
ogy, Nason et al. (2001).
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(Chappell, Duong, Wright, & Dermody, 2000; Reiter et al., 2011), whereas

sequences in the s1 globular head domain engage JAM-A (Barton, Forrest,

et al., 2001; Kirchner et al., 2008).

After receptor binding, virions are internalized into endosomes via a pro-

cess dependent on b1 integrin (Maginnis et al., 2006) and distributed to

organelles marked by Rab7 and Rab9 where viral disassembly takes place

(Mainou &Dermody, 2012). During viral disassembly, outer-capsid protein

s3 is degraded by cathepsin proteases, attachment protein s1 undergoes a

conformational change, and outer-capsid protein m1 is cleaved to form

infectious subvirion particles (ISVPs) (Danthi et al., 2010). The m1 cleavage
fragments undergo conformational rearrangement to facilitate endosome

penetration and delivery of transcriptionally active core particles into the

Cell

σ1

JAM-A

Regions of flexibility

Virion

A

B

D1

D2

Figure 1.2 Structure of s1 and JAM-A. (A) Full-length model of attachment protein s1
bound to JAM-A. A model of full-length s1 extending from the virion is shown as a rib-
bon drawing, with the known structure of the C-terminus (Reiter et al., 2011) in tricolor
and the predicted structure of the N-terminus in gray. Arrows indicate predicted regions
of flexibility. A model of full-length JAM-A is shown in green as a ribbon drawing of the
known structure of the extracellular domain (Prota et al., 2003) and a schematic repre-
sentation of the transmembrane and intracellular domains. For clarity, only two JAM-A
monomers are shown bound to s1. (B) Structure of human JAM-A D1 and D2 domains.
Ribbon drawings of a JAM-A homodimer, with one monomer shown in yellow and the
other in green. Two orthogonal views are displayed. (A) Adapted from Kirchner, Guglielmi,
Strauss, Dermody, and Stehle (2008, Fig. 1). (B) Adapted from Prota et al. (2003). Copyright
(2003) National Academy of Sciences, USA.
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cytoplasm (Nibert, Odegard, Agosto, Chandran, & Schiff, 2005; Odegard

et al., 2004). Primary transcription occurs within the viral core, and nascent

RNAs are translated or encapsidated into new viral cores, where they serve

as templates for negative-strand synthesis. Within new viral cores, secondary

rounds of transcription occur. Outer-capsid proteins are added to nascent

cores, which silences viral transcription and yields progeny viral particles.

Reovirus release from host cells is hypothesized to occur via a lytic mech-

anism, but the egress pathway is not understood (Dermody et al., 2013).

1.2. Junctional adhesion molecule-A
JAM-A is the only known proteinaceous receptor for reovirus. It mediates

entry of prototype and field-isolated strains of all three reovirus serotypes

(Barton, Forrest, et al., 2001; Campbell et al., 2005). JAM-A is a member

of the immunoglobulin (Ig) superfamily of proteins that functions in cell–

cell adhesion (Bazzoni, 2003). It is expressed on the surface of endothelial

and epithelial cells as a component of tight junctions that maintain the integ-

rity of barriers formed between polarized cells (Martin-Padura et al., 1998;

Woodfin et al., 2007). JAM-A also is expressed on hematopoietic cells,

where it mediates leukocyte extravasation (Corada et al., 2005; Ghislin

et al., 2011), and on platelets, where it functions in platelet activation during

blood clot formation (Bazzoni, 2003; Sobocka et al., 2004). JAM-A contains

three distinct structural domains: an N-terminal ectodomain, a single-span

transmembrane anchor, and a C-terminal cytoplasmic tail (Fig. 1.2B; Prota

et al., 2003). The ectodomain consists of two Ig-like domains, a membrane-

distal D1 domain and a membrane-proximal D2 domain. The cytoplasmic

tail terminates in a PDZ-binding domain that interacts with intracellular

tight junction components (Bazzoni et al., 2005; Nomme et al., 2011).

JAM-A participates in homotypic interactions between D1 domains on

opposing monomers (Prota et al., 2003). An interaction between two

JAM-A monomers on adjacent cells promotes cell adhesion (Iden et al.,

2012; Mandell, Babbin, Nusrat, & Parkos, 2005; Ostermann et al., 2005).

The s1 protein interacts with the JAM-A D1 domain to adhere reovirus

virions to the surface of target cells (Kirchner et al., 2008). Interestingly, the

s1–JAM-A interaction is substantially stronger (approximately 1000-fold)

than the interaction between JAM-A monomers (Kirchner et al., 2008).

Consequently, s1 binding to JAM-A likely disrupts JAM-A homodimers.

Studies using JAM-A-deficient mice indicate that JAM-A is required for

the establishment of viremia, which is essential for dissemination and disease
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in newborn mice following peroral inoculation of reovirus (Antar et al.,

2009). JAM-A is not required for reovirus replication in the murine CNS

or development of encephalitis (Antar et al., 2009). These findings suggest

that reovirus utilizes other cell-surface receptors to mediate entry into spe-

cific cell types.

1.3. Reovirus pathogenesis
Reoviruses are highly virulent in newborn mice and cause injury to a variety

of host organs, including the CNS, heart, and liver (Dermody et al., 2013).

T1 and T3 reovirus strains invade the CNS but use different routes and pro-

duce distinct pathologic consequences following peroral or intramuscular

inoculation. T1 reoviruses spread by hematogenous routes and infect

ependymal cells, causing nonlethal hydrocephalus (Tyler, McPhee, &

Fields, 1986; Weiner, Drayna, Averill, & Fields, 1977; Weiner, Powers,

et al., 1980). T3 reoviruses spread to the CNS by both hematogenous

and neural routes, and infect neurons (Antar et al., 2009; Boehme et al.,

2011; Tyler et al., 1986). In the brain, T3 reoviruses induce neuronal apo-

ptosis, which results in fatal encephalitis (Morrison, Sidman, & Fields, 1991;

Tyler et al., 1986;Weiner et al., 1977;Weiner, Powers, et al., 1980). Studies

using T1L!T3D reassortant viruses mapped the major determinant of CNS

pathology to the viral S1 gene (Dichter &Weiner, 1984; Tardieu &Weiner,

1982), which encodes attachment protein s1 and nonstructural protein s1s
(Sarkar et al., 1985; Weiner, Ault, et al., 1980). Because of its role in viral

attachment and entry, these serotype-specific differences in dissemination

and disease have largely been ascribed to thes1 protein. However,s1s plays
a critical role in promoting reovirus spread by the bloodstream (Boehme

et al., 2011, 2009).

1.4. Nonstructural protein s1s
Protein s1s is a 14 kDa nonstructural protein encoded by the viral S1 gene

segment (Cashdollar, Chmelo, Wiener, & Joklik, 1985; Ernst & Shatkin,

1985; Sarkar et al., 1985). The s1s open-reading frame (ORF) completely

overlaps the s1 coding sequence; however, s1s lies in a different reading

frame (Cashdollar et al., 1985; Cenatiempo et al., 1984; Dermody,

Nibert, Bassel-Duby, & Fields, 1990b; Ernst & Shatkin, 1985; Sarkar

et al., 1985). Although every reovirus strain sequenced to date contains

a s1s ORF, little amino acid sequence identity exists between the s1s
proteins from the different reovirus serotypes (Cashdollar et al., 1985;
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Dermody et al., 1990b). The only conserved sequence among s1s proteins
is a cluster of basic amino acids near the amino terminus (Cashdollar et al.,

1985; Dermody et al., 1990b). The basic cluster from T3 s1s functions as
an autonomous nuclear localization signal that can redirect an appended

heterologous protein to the nucleus (Hoyt, Bouchard, & Tyler, 2004).

While the majority of native s1s localizes to the nucleus (Rodgers,

Connolly, Chappell, & Dermody, 1998), it is not known whether the basic

cluster mediates nuclear translocation in the context of reovirus infection.

Functionally, the s1s protein is implicated in reovirus-induced cell cycle

arrest at the G2/M boundary (Poggioli, Dermody, & Tyler, 2001;

Poggioli, Keefer, Connolly, Dermody, & Tyler, 2000) and may influence

reovirus neurovirulence by promoting reovirus-induced apoptosis in the

murine CNS (Hoyt et al., 2005). Initial studies to define the function of

s1s in reovirus pathogenesis were complicated by the use of nonisogenic

s1s-null mutant and parental virus strains (Rodgers et al., 1998).

Development of a plasmid-based reverse genetics system for mammalian

reovirus (Kobayashi et al., 2007, 2010) made it possible to elucidate the

function of s1s in reovirus replication and pathogenesis. Recombinant

reoviruses deficient in s1s expression were engineered by incorporating a

single nucleotide change (AUG to ACG) to disrupt the s1s translational
start site into the plasmid containing the cDNA encoding the S1 gene

segment. Importantly, the mutation does not affect the coding sequence

of the overlapping s1 ORF. Thus, except for s1s expression, the resultant
viruses are isogenic with the parental strain. Viruses deficient in s1s expres-
sion have been generated in the T1 and T3 S1 gene backgrounds. In both

cases, the s1s-null viruses are viable and replicate with equivalent kinetics

and produce yields of progeny virus comparable to the corresponding

wild-type viruses, indicating that the s1s protein is dispensable for reovirus

replication in cultured cells (Boehme et al., 2011, 2009). These viruses were

used to uncover a role for s1s in promoting hematogenous reovirus

dissemination.

2. DYNAMICS OF REOVIRUS INFECTION IN THE
INTESTINE AND LUNG

Reoviruses infect their hosts by the fecal-oral and respiratory routes.

Virus enters the host by ingestion of contaminated food or inhalation of

virus-containing aerosols. At both portals of entry, reoviruses infect epithe-

lial cells and disseminate to peripheral sites where they cause disease.
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2.1. Infection via the gastrointestinal tract
Reoviruses have been isolated from the stools of healthy (Ramos-Alvarez &

Sabin, 1954, 1956) and ill (Ramos-Alvarez & Sabin, 1958) children as well as

a variety of animals (Ramos-Alvarez & Sabin, 1958). These findings suggest

that reovirus is ingested into and shed from the gastrointestinal tract. The

dynamics of reovirus infection in vivo have largely been elucidated using

experimental mouse and rat model systems. Following entry into the gastro-

intestinal tract of rodents, intestinal proteases rapidly convert reovirus virions

to ISVPs, suggesting that the form of the reovirus particle that initiates infec-

tion in the intestine is the ISVP (Bass et al., 1990; Bodkin, Nibert, & Fields,

1989; Chappell et al., 1998). In newborn mice, cells at the tips of microvilli

are readily infected, whereas cells in the intestinal crypts are spared (Antar

et al., 2009; Boehme et al., 2009). In contrast, intestinal crypt cells are

infected in adult mice, and cells at the villus tips are uninfected (Rubin,

Kornstein, & Anderson, 1985). Infectious reovirus can be recovered follow-

ing peroral inoculation from the duodenum, jejunum, ileum, and colon

(Rubin, Eaton, & Anderson, 1986; Rubin et al., 1985). However, the vast

majority of virus is produced in the ileum. This differential production of

virus may be due to the capacity of reovirus to infect Peyer patches. Reo-

viruses are thought to penetrate the intestinal barrier via transport across

microfold (M) cells, which are specialized cells of the follicle-associated epi-

thelium (FAE) that overlay the Peyer patches (Amerongen, Wilson,

Fields, & Neutra, 1994; Wolf, Dambrauskas, Sharpe, & Trier, 1987;

Wolf et al., 1983, 1981). M cells transfer antigens from the intestinal lumen

to lymphoid cells of the gut-associated lymphoid tissue (van de Pavert &

Mebius, 2010) and serve to monitor luminal contents by exposing Peyer

patch lymphoid cells to food antigens, the intestinal microbiota, and invad-

ing pathogens. This process is essential for induction of oral tolerance and

activation of immune responses to pathogenic microorganisms (van de

Pavert & Mebius, 2010). The preferential targeting of crypt cells observed

in adult mice is hypothesized to result from transcytosis of virus across

M cells and subsequent infection of crypt cells via the basolateral surface

(Rubin, 1987). However, M cells also take up reovirus in neonatal mice

(Antar et al., 2009; Boehme et al., 2009; Wolf et al., 1981), suggesting that

viral transcytosis across M cells is unlikely to explain the difference in intes-

tinal cell tropism observed in adult and newborn mice. It is possible that

the proliferative status of stem cells in the crypts of adult mice may recapit-

ulate the cellular environment of neonatal intestinal cells, thereby facilitating

reovirus infection of intestinal crypt cells.
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2.2. Infection via the respiratory tract
Reovirus also infects the respiratory tract (Sabin, 1959). In rats, both T1 and

T3 reovirus strains cause a pneumonia that is characterized by destruction of

type 1 alveolar epithelial cells and infiltration of leukocytes into the alveolar

spaces (Morin,Warner, & Fields, 1996). The pathology associated with reo-

virus infection closely mimics disease progression in bronchiolitis obliterans

organizing pneumonia, which is notable for fibrous extensions into alveolar

spaces in the context of an organizing pneumonia (Bellum et al., 1997). Fol-

lowing inoculation into the respiratory tract, lung proteases convert reovirus

virions to ISVPs (Golden & Schiff, 2005; Nygaard, Golden, & Schiff, 2012).

Similar to infection in the intestine, reovirus infects the lung by transcytosis

through M cells that overlie the bronchus-associated lymphoid tissue

(Morin, Warner, & Fields, 1994; Morin et al., 1996).

3. HEMATOGENOUS SPREAD OF REOVIRUS
3.1. Transport of reovirus from the intestine to the

bloodstream
Systemic reovirus infection is thought to originate from infected lymphoid

cells in the Peyer patch. From the Peyer patch, reovirus transits intestinal

lymphatics to the mesenteric lymph node (MLN) and ultimately enters the

bloodstream via the thoracic duct (Antar et al., 2009; Boehme et al., 2009;

Wolf et al., 1981). Many pathogens that cause systemic disease, including

poliovirus (Bodian, 1955; Sabin, 1956) and Salmonella (Carter & Collins,

1974; Galan & Curtiss, 1989; Jones, Ghori, & Falkow, 1994), initiate

extraintestinal infection and access the bloodstream via this route.

Reovirus reaches the Peyer patches early after infection; viral antigen is

detected in Peyer patches within 24 h after peroral inoculation (Antar et al.,

2009; Bass, Trier, Dambrauskas, & Wolf, 1988; Boehme et al., 2009; Wolf

et al., 1987, 1983, 1981). However, the mechanism by which reovirus

infects Peyer patch cells is not known. It is possible that dendritic cells in

the Peyer patches take up reovirus virions immediately following viral trans-

cytosis across M cells. This is the most direct route from the intestinal lumen

to the Peyer patch and the primary pathway used for processing of intestinal

antigens for immune surveillance. A second possibility is that progeny

virions released from the basolateral surface of infected FAE cells are

taken up by lymphoid cells in Peyer patches. Both viral structural and non-

structural proteins are detected in FAE cells (Fleeton et al., 2004), indicating
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that active viral replication occurs in these cells. However, it is not known

whether FAE cells produce virus. A third possibility is that dendritic cells in

Peyer patches take up apoptotic fragments from infected FAE cells, which

undergo apoptosis following reovirus infection (Fleeton et al., 2004). Den-

dritic cells in the underlying Peyer patches immediately adjacent to apopto-

tic FAE cells contain both active caspase-3 and reovirus structural proteins

(Fleeton et al., 2004). These observations suggest that Peyer patch dendritic

cells take up apoptotic bodies from infected FAE cells. Additionally, apopto-

sis induction in the FAEmay signal Peyer patch cells to phagocytose the apo-

ptotic remnants, along with reovirus particles.

Regardless of the mechanism by which reovirus accesses Peyer patches,

reovirus antigen is detected in theMLN 24 h after peroral inoculation. Little

is known about the cell types that support reovirus replication within the

intestine and dissemination to the MLN. In adult mice, CD11cþ dendritic

cells harbor reovirus antigen, but these cells are not thought to be actively

infected (Fleeton et al., 2004). Viral nonstructural proteins are not present in

these cells (Fleeton et al., 2004), suggesting that active replication does not

occur. CD11cþ dendritic cells are present in neonatal animals

(Muthukkumar, Goldstein, & Stein, 2000), but it is not known whether

these cells internalize reovirus following peroral inoculation of newborn

mice. Reovirus productively infects bulk splenocytes isolated from newborn

mice (Tardieu, Powers, & Weiner, 1983), suggesting that reovirus can rep-

licate in primary lymphoid cells. Reovirus cannot productively infect

splenocytes explanted after the mouse reaches 7 days of age (Tardieu

et al., 1983). Thus, the lack of viral replication in Peyer patch cells in older

animals may contribute to the age restriction to reovirus infection.

From Peyer patches, reovirus is hypothesized to traffic via afferent lym-

phatics to theMLN, then through efferent lymphatics to the blood. It is pos-

sible that infected lymphoid cells or lymphoid cells harboring virus mediate

transport from the Peyer patches to the bloodstream. However, migrating

dendritic cells rarely exit lymph nodes once they enter and present antigen

to B and T cells (Iwasaki, 2007). Thus, the cells responsible for transport of

reovirus from the Peyer patch are likely retained in the MLN. Reovirus

titers in the MLN increase rapidly after peroral inoculation (Antar et al.,

2009; Boehme et al., 2009), suggesting that active viral replication occurs

in the MLN. However, it is also possible that the increase in viral load in

the MLN represents migration of infected lymphoid cells from the Peyer

patches. Dissemination from the MLN to the bloodstream may occur as free

virus or within another lymphoid cell subset.
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An alternative mechanism for accessing the blood is direct uptake of viral

particles from the gut. CD18þ phagocytes extend cellular processes between

enterocytes to directly sample luminal contents. Dendritic cells also extend

processes through the epithelial monolayer, while maintaining barrier integ-

rity to sample gut pathogens (Rescigno et al., 2001). A number of pathogens,

including Salmonella (Vazquez-Torres et al., 1999) and Yersinia (Isberg &

Barnes, 2001), use macrophages or dendritic cells to invade the bloodstream

and cause extraintestinal infection. Following uptake of luminal pathogens,

CD18þ phagocytes traffic across the lamina propria and directly into the

blood allowing for rapid entry of the pathogen into the bloodstream.

3.2. Reovirus viremia
Although virus is detected in the blood of infected animals, it is not known

whether reovirus virions within the blood are free in the plasma or associated

with hematopoietic cells. Other Reoviridae family members, including blue-

tongue virus (BTV) and Colorado tick fever virus, produce cell-associated

viremia during infection. BTV infects and replicates in mononuclear cells,

lymphocytes, and endothelial cells (Barratt-Boyes & MacLachlan, 1994;

Ellis et al., 1993; MacLachlan, Jagels, Rossitto, Moore, & Heidner, 1990;

Mahrt & Osburn, 1986; Veronesi et al., 2009). Colorado tick fever virus is

detected in mature erythrocytes (Oshiro, Dondero, Emmons, & Lennette,

1978). However, arthropod vectors transmit BTV and Colorado tick fever

virus, making viremia a necessary part of the viral infectious cycle in nature.

Mammalian reoviruses are not transmitted by arthropod vectors and may

produce a distinctly different type of viremia. Studies in which oncolytic reo-

virus was delivered intravenously to persons with cancer revealed that virus

is largely found in hematopoietic cells, specifically mononuclear cells,

granulocytes, and platelets (Adair et al., 2012). Each of these cell types express

JAM-A (Martin-Padura et al., 1998; Naik, Naik, Eckfeld, Martin-DeLeon,

& Spychala, 2001; Sobocka et al., 2000), suggesting that reovirus associates

with or infects blood cells to disseminate through the blood to target organs.

However, in these studies, virus was delivered directly into the bloodstream

by intravenous inoculation. It is not known how reovirus spreads systemically

following infection from a natural portal, such as the intestine or lung.

3.3. Role of receptors in reovirus dissemination
Interactions between viral attachment proteins and host cell receptors play a

pivotal role in viral pathogenesis. Receptor engagement is a primary
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mechanism to define cells targeted by viruses. Therefore, patterns of receptor

expression are a keydeterminant of viral disease.Reoviruses engage two types

of cellular receptors: cell-surface carbohydrate (Paul et al., 1989) and JAM-A

(Barton, Forrest, et al., 2001). Both T1 and T3 (Dermody et al., 1990a;

Pacitti & Gentsch, 1987; Paul et al., 1989) reoviruses bind cell-surface SA

(Armstrong et al., 1984; Dermody et al., 1990a; Pacitti & Gentsch, 1987;

Paul et al., 1989; Paul& Lee, 1987).However, the domains ofs1 that engage
glycans differ between the serotypes (Dermody et al., 1990a; Chappell et al.,

2000), as do the specific glycans bound (Reiss et al., 2012).

SA engagement enhances reovirus infection through an adhesion-

strengthening mechanism in which viral particles are tethered to the cell sur-

face via a low-affinity interaction with the carbohydrate (Barton, Connolly,

Forrest, Chappell, & Dermody, 2001). This interaction maintains the virus

on the cell surface and increases the opportunity to engage JAM-A.

SA-binding reovirus strains have an increased capacity to infect cells com-

pared with non-SA-binding viruses; pretreatment of cells with neuramini-

dase to remove cell-surface SA eliminates this advantage (Barton, Connolly,

et al., 2001). SA engagement also enhances reovirus tropism for bile duct

epithelial cells in mice following peroral inoculation (Barton et al., 2003).

The resulting disease closely mimics biliary atresia in human infants

(Barton et al., 2003), an illness epidemiologically associated with reovirus

(Richardson, Bishop, & Smith, 1994; Tyler et al., 1998).

Reovirus strains circulating in nature vary in the capacity to bind

SA (Dermody et al., 1990a, 1990b). This finding suggests that SA binding

comes with a fitness cost. Accordingly, SA binding appears to inhibit the

capacity of reovirus to establish infection at mucosal portals of entry.

Non-SA-binding viruses infect primary human airway epithelial cells sub-

stantially more efficiently than SA-binding strains (Excoffon et al., 2008).

Moreover, infection of primary human airway epithelial cells by

SA-binding viruses is enhanced by removal of cell-surface SA with neur-

aminidase. Mucosal surfaces are covered with a glycocalyx consisting of

polysaccharides and glycoproteins that are rich in SA (Excoffon et al.,

2008). SA-binding viruses may be trapped by SA within the glycocalyx

and incapable of reaching the underlying epithelium (Excoffon et al.,

2008). However, once infection is established, SA binding may enhance

the capacity of reovirus to cause disease. In addition to the capacity to

target bile duct epithelium, SA-binding strains are more neurovirulent than

non-SA-binding viruses following intracranial inoculation (Barton et al.,

2003; Frierson et al., 2012). This increase in virulence is likely due to more
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efficient infection of neurons, which results in neuronal apoptosis and

encephalitis. The function of SA binding in reovirus hematogenous spread

remains to be determined.

Although all reoviruses bind JAM-A, T1, and T3 reoviruses infect dis-

tinct cells and cause serotype-specific patterns of pathologic injury within

the CNS. These observations suggest that JAM-A binding does not influ-

ence serotype-specific differences in reovirus neural tropism and CNS dis-

ease. Following peroral inoculation, reovirus produces similar viral titers

in the intestine of wild-type and JAM-A-deficient mice, suggesting that

JAM-A is not required for reovirus replication in the mouse gastrointestinal

tract (Antar et al., 2009). In sharp contrast, viral titers at all sites of secondary

replication are significantly lower in JAM-A-deficient animals compared

with wild-type controls (Fig. 1.3). Viral loads are comparable within the

brains of wild-type and JAM-A-deficient animals after intracranial inocula-

tion, suggesting that JAM-A is not required for viral replication at this site of

secondary replication (Antar et al., 2009). These results suggest that JAM-A

is required for dissemination of the virus from the intestine to replication

sites in target organs.

How might JAM-A promote hematogenous dissemination? Substan-

tially lower reovirus titers are detected in the blood of JAM-A-deficient

mice compared with wild-type mice (Fig. 1.4), suggesting that JAM-A is

involved in the establishment of viremia (Antar et al., 2009). Diminished

viremia is detected in mice inoculated with either T1 or T3 reovirus, indi-

cating that JAM-A functions in promoting bloodborne spread of T1 viruses

that disseminate by strictly hematogenous mechanisms as well as neurotropic

T3 reoviruses. Primary pulmonary endothelial cells isolated from JAM-A-

deficient mice are refractory to reovirus infection compared with

those harvested from wild-type mice (Fig. 1.5). These data suggest that

reovirus engages JAM-A to infect endothelial cells, likely in the lymphatics

or vasculature of the gastrointestinal tract. It is possible that virus released

from endothelial cells invades the bloodstream to disseminate to peri-

pheral target organs either free in the plasma or associated with hematopoi-

etic cells.

3.4. Function of nonstructural protein s1s in reovirus
dissemination

Studies using T1 s1s-null virus uncovered a role for s1s in promoting

bloodborne reovirus spread (Boehme et al., 2009). The s1s protein is not

required for the initial establishment of reovirus infection in the gut.
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Wild-type and s1s-null viruses replicate to comparable levels in the gastro-

intestinal tract following peroral inoculation (Fig. 1.6). Reovirus antigen is

evident in the intestinal epithelium and Peyer patches of mice inoculated

with wild-type or s1s-null virus, indicating that s1s does not influence
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Figure 1.3 JAM-A is required for hematogenous reovirus dissemination. (A) Newborn
C57/BL6 JAM-Aþ/þ and JAM-A#/# mice were inoculated perorally with 106 PFU of strain
T1L. At days 4, 8, and 12 after inoculation, mice were euthanized, organs were resected,
and viral titers were determined by plaque assay. Results are expressed as mean viral titers
for sixanimals foreach timepoint. Errorbars indicateSD.*P<0.005byStudent’s t-test.When
all values are less than the limit of detection (spleen, liver, heart, andbrain in JAM-A#/#mice),
a Student’s t-test P value cannot be calculated. (B) Newborn JAM-Aþ/þ and JAM-A#/# mice
were inoculatedperorallywith104 PFUof strainT3SA#. Atdays4,8, and12after inoculation,
mice were euthanized, organs were resected, and viral titers were determined by plaque
assay. Results are expressed as mean viral titers for 6–13 animals for each time point. Error
bars indicate SD. *P<0.05 by Student’s t-test in comparison to JAM-A#/# mice. Reprinted
from Antar et al. (2009), Copyright (2009), with permission from Elsevier.
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reovirus tropism in the intestine. In contrast to wild-type virus, the s1s-null
mutant fails to produce substantial titers in the MLN. The s1s-null virus is
detected at low titer in the MLN, but viral titers do not increase over the

course of infection. These findings indicate that s1s either is essential for
transit through lymphatic channels to the MLN or serves to promote
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Figure 1.4 JAM-A is required for reovirus viremia. Newborn C57/BL6 JAM-Aþ/þ and
JAM-A#/# mice were inoculated perorally with 108 PFU of T1L. At days 1, 2, 4, and 6 after
inoculation,micewere euthanized,mesenteric lymphnode (MLN), blood, and spleenwere
collected, and viral titers were determined by plaque assay. Results are expressed as
mean viral titers for three to eight animals for each time point. Error bars indicate SD.
Reprinted from Antar et al. (2009), Copyright (2009), with permission from Elsevier.
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Figure 1.5 JAM-A is required for efficient reovirus infection of endothelial cells.
JAM-Aþ/þ and JAM-A#/# primary endothelial cells were adsorbed with T1L or T3SA#
at MOIs of 1, 10, or 100 PFU/cell and incubated for 20 h. The percentage of infected cells
was quantified by dividing the number of cells exhibiting reovirus staining by the total
number of cell nuclei exhibiting DAPI staining in whole 96 wells for triplicate experi-
ments. Wells contained between 200 and 1600 nuclei. Error bars indicate SD.
*P<0.05 as determined by Student’s t-test in comparison to JAM-A#/# endothelial cells
inoculated at the same MOI. Reprinted from Antar et al. (2009), with permission from
Elsevier.
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replication inMLN cells.Wild-type virus is detected in the blood and sites of

secondary viral replication, including the brain, heart, liver, and spleen

(Fig. 1.6). Thes1s-null virus is not detected in the blood or any of the target
organs examined. This difference is probably not due to a requirement for

s1s in mediating replication at these sites, as wild-type and s1s-null viruses
produce comparable titers in the brain following intracranial inoculation.

Together, these findings suggest that the s1s protein performs a function

that is essential for reovirus to spread from the gut through intestinal lym-

phatics and ultimately to the blood where it gains access peripheral organs.

In contrast to T1 reoviruses that spread by strictly hematogenous mech-

anisms, T3 reoviruses disseminate by both hematogenous and neural path-

ways. The amino acid sequences of the s1s proteins from the different

reovirus serotypes differ markedly (Dermody et al., 1990b). Therefore, it

is possible that the s1s proteins perform serotype-specific functions. In

nature, reovirus infects by the peroral route and spreads to the CNS in infant

animals resulting in neuropathology. However, infectivity of T3 prototype
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Figure 1.6 The s1s protein is required for systemic reovirus dissemination following
peroral inoculation. Newborn C57/BL6 mice were inoculated perorally with 104 PFU
of wild-type or s1s-null reovirus. At days 4, 8, and 12 postinoculation, viral titers in
the organs shown were determined by plaque assay. Error bars indicate SEM.
*P<0.05 as determined by Mann–Whitney test in comparison to wild-type virus. When
all values are less than the limit of detection, a Mann–Whitney test P value cannot
be calculated. Adapted from Boehme et al. (2009). Copyright (2009) National Academy
of Sciences, USA.
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strain T3D is diminished significantly within the gastrointestinal tract

(Bodkin & Fields, 1989; Bodkin et al., 1989) due to cleavage of itss1 protein
by intestinal proteases (Bodkin & Fields, 1989; Bodkin et al., 1989; Nibert,

Chappell, &Dermody, 1995). Consequently, intramuscular inoculation into

the hindlimb is used to assess mechanisms of T3D dissemination. Inoculation

of Type 3 reoviruses intramuscularly leads to invasion of the brain by neural

routes (Tyler et al., 1986). Following intramuscular inoculation, wild-type

T3D produces substantially higher titers than thes1s-null virus in peripheral
organs including the heart, liver, intestine, and spleen, similar to results

obtained using wild-type and s1s-null T1 viruses (Boehme et al., 2011).

Moreover,wild-typeT3Dbut not theT3Ds1s-nullmutant virus is detected

in the blood. Together, these data suggest that s1s functions to promote

the establishment of reovirus viremia in a serotype-independent manner,

which ultimately leads to infection of peripheral target tissues.

In contrast to its function in hematogenous spread, thes1s protein is dis-
pensable for reovirus spread to the CNS by neural routes. Both wild-type

and s1s-null viruses produce comparable titers in the spinal cord following

inoculation into the hindlimb muscle (Boehme et al., 2011). Both viruses

also produce comparable titers in the brain following direct intracranial

inoculation and in cultured primary neurons. Together, these findings indi-

cate that s1s is not required for reovirus neural spread or replication in the

murine CNS. Thus, although T3 viruses spread via neural and hematoge-

nous mechanisms, the T3 s1s protein only influences the efficiency of

hematogenous dissemination.

4. NEURAL DISSEMINATION OF REOVIRUS

In addition to bloodborne spread, T3 reoviruses use neural circuits to

disseminate to the CNS (Boehme et al., 2011; Tyler et al., 1986). Spread via

neural routes is a fundamental mechanism of reovirus pathogenesis that is

essential for development of reovirus-induced encephalitis (Boehme

et al., 2011; Tyler et al., 1986). Direct infection of neurons at peripheral sites

provides the virus with access to the CNS and serves as a conduit to the

brain. Although the importance of neural spread in reovirus pathogenesis

is well appreciated, the cellular and molecular mechanisms that underlie

neuronal reovirus trafficking are not well understood.

In contrast to hematogenous spread, JAM-A is dispensable for neural dis-

semination. Although JAM-A is expressed in the brain, the cell types on

which it is present have not been defined. JAM-A is found on NG2-glia
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cells, which are a subset of stem cells that give rise to oligodendrocytes

(Nomme et al., 2011). It is unclear whether JAM-A is expressed on periph-

eral or CNS neurons. Viral titers in the brains of wild-type and JAM-A-

deficient mice are comparable after intracranial inoculation (Antar et al.,

2009). Viral tropism in the brain for hippocampal, thalamic, and cortical

regions also does not differ between wild-type and JAM-A-deficient mice.

Concordantly, primary cortical neurons isolated from wild-type and JAM-

A-deficient mice are equally susceptible to reovirus infection and produce

equivalent yields of viral progeny (Antar et al., 2009). Together, these data

indicate JAM-A is not required for reovirus infection of neural tissue

and suggest that JAM-A is dispensable for reovirus spread by neural routes.

These findings further suggest that a cellular receptor distinct from JAM-A

mediates reovirus infection of neurons.

Some evidence exists about the means by which reovirus traverses neural

pathways. Treatment of animals with colchicine to inhibit fast axonal trans-

port impairs reovirus spread to the spinal cord following hindlimb inocula-

tion (Sjostrand & Karlsson, 1969; Tyler et al., 1986). However, treatment

with b-b0-iminodipropionitrile to inhibit slow axonal transport does not

affect reovirus dissemination to the spinal cord (Hansson, Kristensson,

Olsson, & Sjostrand, 1971; Mahrt & Osburn, 1986). These findings suggest

that reovirus traffics in neurons by fast axonal transport. However, these

inhibitors may act nonspecifically to impair other aspects of viral replication.

It also is not known whether reovirus uses afferent or efferent neurons to

traffic to the CNS or whether virions can travel using both retrograde

and anterograde pathways within neurons. Finally, it is not known where

or how progeny virions exit neurons. Much work is required to fully elu-

cidate how reoviruses replicate and traffic in neurons.

5. FUNCTION OF HEMATOGENOUS AND NEURAL
SPREAD IN REOVIRUS PATHOGENESIS

T1 reoviruses disseminate to sites of secondary viral replication solely

by hematogenous pathways. Following peroral inoculation of JAM-A-

deficient mice, T1 reovirus does not reach the blood or peripheral organs

(Antar et al., 2009). Similarly, T1 s1s-null virus fails to disseminate from

the intestine to sites of secondary replication (Boehme et al., 2009). Because

T1 reoviruses utilize a single mechanism to spread within its host, inhibiting

that mode of dissemination prevents virus-induced systemic disease.
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T3 reoviruses, in contrast, disseminate to peripheral organs using a

combination of hematogenous and neuralmechanisms.Neural spread is essen-

tial for maximal neural injury induced by T3 reovirus (Tyler et al., 1986).

Following peroral inoculation or inoculation into the hindlimb muscle, T3

reovirus infects peripheral neurons and travels along nerve fibers to infect

the CNS and cause disease (Morrison et al., 1991; Tyler et al., 1986).

Inhibiting neural spread by sectioning the sciatic nerve prior to hindlimb inoc-

ulation prevents virus spread to the spinal cord (Tyler et al., 1986). This finding

indicates that T3 reovirus spreads along neural routes to the CNS and suggests

that neural dissemination is essential for reovirus neuropathogenesis.

The importance of hematogenous spread in reovirus neuropathogenesis is

evident from studies that identified host and viral factors that mediate reovirus

transport through the blood. JAM-A-deficient mice are completely resistant

to reovirus-induced disease following peroral inoculation with T3 reovirus,

whereas wild-type mice succumb to infection (Antar et al., 2009). Viral titers

in the brains of JAM-A-deficientmice are substantially reduced in comparison

to those in wild-type controls. Concordantly, viral loads in the blood of

JAM-A-deficient mice are lower than those detected in wild-type mice

(Antar et al., 2009). However, following intracranial inoculation, wild-type

and JAM-A-deficient mice are equally susceptible to reovirus disease, and

equivalent viral yields are produced in the brains of wild-type and JAM-A-

deficient mice (Antar et al., 2009). These results indicate that reduced reovirus

virulence in JAM-A-deficient mice following peroral inoculation is not the

result of differences in reovirus replication in the brain.

Studies of T3 s1s-null viruses also highlight the requirement of hematog-

enous dissemination for reovirus neuropathogenesis. Wild-type T3 reovirus is

substantially more virulent than the T3 s1s-null virus following hindlimb

inoculation (Fig. 1.7). Approximately 75% of animals inoculated with

wild-type virus succumb to infection compared with 25% of mice inoculated

with the s1s-null virus (Boehme et al., 2011). Wild-type and s1s-null T3
reoviruses induced 100% mortality following intracranial inoculation,

although animals inoculated with wild-type virus succumbed to CNS disease

with slightly faster kinetics than those inoculated with the s1s-null virus.
Wild-type and s1s-null viruses also produce equivalent titers in the brain

following intracranial inoculation, indicating that s1s is dispensable for viral
replication in themurineCNS.Thus, the disparity in virulence betweenwild-

type and s1s-null viruses following intramuscular inoculation does not result

from differences in replication in the CNS between the two viral strains.
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Figure 1.7 The s1s protein enhances reovirus virulence following intramuscular inoc-
ulation. (A) Newborn C57/BL6 mice were inoculated in the left hindlimb with 106 PFU of
wild-type or s1s-null T3 reovirus. Mice (n¼19 for each virus strain) were monitored for
survival for 25 days. *P<0.001 as determined by log-rank test in comparison to wild-
type T3 reovirus. (B) Thes1s protein is not required for reovirus spread by neural routes.
Newborn C57/BL6 mice were inoculated in the left hindlimb with 106 PFU of wild-type
or s1s-null T3 reovirus. At days 1, 2, 4, 8, and 12 postinoculation, mice were euthanized,
hindlimb muscle, spinal cord, and brain were resected, and viral titers were determined
by plaque assay. Results are expressed asmean viral titers for six to nine animals for each
time point. Error bars indicate SEM. *P<0.05 as determined by Mann–Whitney test in
comparison to wild-type T3 reovirus. Copyright © American Society for Microbiology,
Boehme et al. (2011).
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Following hindlimb inoculation, wild-type virus is detected in the brain

1 day after infection (Fig. 1.7). In contrast, the s1s-null virus is not found in
the brain until 2 days after inoculation. At days 2 and 4 postinoculation, viral

titers in the brains of animals inoculated with wild-type virus are markedly

higher than those observed in mice inoculated with the s1s-null mutant.

This finding correlates with significantly higher loads of wild-type virus

in the blood of infected animals at early times postinoculation compared

with the s1s-null virus (Boehme et al., 2011). Comparable titers of wild-

type ands1s-null viruses are found in the spinal cord at days 1, 2, and 4 post-
inoculation. This observation suggests that transport of the s1s-null virus to
the CNS by neural pathways is not impaired. At day 8 postinoculation, titers

of wild-type and s1s-null viruses in the brain are equivalent, possibly

reflecting delivery of virus to the brain via neural routes. Collectively, these

findings suggest that hematogenous spread is required for reovirus transport

to the brain at early times after infection. These results also suggest that the

timing of reovirus delivery to the brain is critical for neuropathogenesis.

Viral transport by neural routes does not differ between wild-type and

s1s-null viruses, and both virus strains produce equivalent peak titers in

the brain. However, peak titers of the s1s-null virus appear to be achieved

after the mice reach the age-imposed limit to reovirus infection, and these

animals are no longer susceptible to reovirus-induced CNS disease (Mann,

Knipe, Fischbach, & Fields, 2002). Thus, reovirus transport to the brain by

the blood at early times after infection is critical for neuropathogenesis.

Reovirus spreads to the spinal cord via the sciatic nerve following intra-

muscular inoculation into the hindlimb (Tyler et al., 1986). Transection of

the sciatic nerve prior to inoculation inhibits neural transmission of the virus

to the spinal cord; however, viral dissemination by the blood is unaffected

(Tyler et al., 1986). T3 reovirus retains the capacity to spread to the brain

after sciatic nerve section (Boehme et al., 2011), suggesting that reovirus

can access the brain even in the absence of neural spread, likely via the

bloodstream (Fig. 1.8). In addition, almost no virus is detected in the brain

following hindlimb inoculation with the s1s-null virus when the sciatic

nerve is sectioned. Thus, virus cannot access the brain when both hematog-

enous and neural pathways of spread are inhibited.

Together, these findings suggest that (i) spread by neural routes alone is

not sufficient to cause reovirus CNS disease, (ii) bloodborne spread is

required for delivery of reovirus to the brain at early times postinfection,

(iii) hematogenous viral dissemination to the brain is an essential mechanism

of reovirus neuropathogenesis, and (iv) virus must be delivered to the brain

by the blood early after inoculation for full reovirus neurovirulence.
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Figure 1.8 Reovirus disseminates to the CNS by hematogenous and neural routes.
The left sciatic nerve of newborn C57/BL6 mice was sectioned prior to inoculation in
the left hindlimb with 106 PFU of wild-type or s1s-null T3 reovirus. In parallel, mice
in which the left sciatic nerve was not sectioned were inoculated in the left hindlimb
with 106 PFU of wild-type or s1s-null T3 reovirus. At days 2 and 4 postinoculation, mice
were euthanized: (A) hindlimb muscle, spinal cord, and brain and (B) heart, intestine,
liver, and spleen were resected, and viral titers were determined by plaque assay.
Results are expressed as mean viral titers for six animals for each time point. Error
bars indicate SEM. *P<0.05 as determined by Mann–Whitney test in comparison to
animals in which the sciatic nerve was not sectioned. Copyright © American Society
for Microbiology, Boehme et al. (2011).
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6. UNANSWERED QUESTIONS AND FUTURE DIRECTIONS

We have identified host and viral factors essential for the hematoge-

nous dissemination of reovirus. However, many unanswered questions

remain. Because viruses capable of bloodstream spread may share similar

mechanisms of dissemination, understanding how reovirus spreads in the

infected host may aid in the development of therapeutics that target this crit-

ical step in viral pathogenesis.

6.1. How does reovirus enter and exit the bloodstream?
To spread to peripheral organs by hematogenous pathways, reovirus must

first enter the bloodstream. Studies of reovirus pathogenesis suggest that fol-

lowing peroral inoculation, reovirus infects Peyer patch lymphoid cells that

transport virus to the bloodstream (Fig. 1.9). However, reovirus also

Dendritic cell
Lymphocyte
Macrophage
M cell
Lymphatics
Endothelial cell

1

2

3

5

4

Figure 1.9 Model of reovirus hematogenous spread from the intestine. (1) Following
peroral inoculation, reovirus infects intestinal epithelial cells (2) and is taken up by lym-
phoid cells in the Peyer patch. (3) Infected dendritic cells or lymphocytes carry reovirus
from the Peyer patch through the lymphatics and finally to the blood. (4) Phagocytic
cells that extend processes into the lumen of the intestine also might be infected for
subsequent transport of virus through the lymphatics. (5) Reovirus may enter directly
into the blood by passing between endothelial cells or via release into the bloodstream
from infected cells.
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disseminates hematogenously following intracranial inoculation (Boehme

et al., 2011, 2009). This observation suggests that reovirus has the capacity

to cross endothelial barriers to enter the blood. Little is known about how

reovirus infects polarized cells, such as those that constitute the endothelium.

JAM-A localizes to tight junctions linking endothelial cells and functions in

maintaining the barrier between the tissue and blood compartments. JAM-A

is required for hematogenous spread of reovirus and infection of primary

cultures of pulmonary vascular endothelial cells (Antar et al., 2009). We

envision several possible mechanisms to explain how reovirus uses

JAM-A to facilitate entry into the blood. First, JAM-A may function as

a gatekeeper for reovirus entry into the bloodstream (Fig. 1.9). Although

reovirus infection does not change the barrier function of primary human

airway epithelial cells (Excoffon et al., 2008), it is unclear whether the

same phenomenon occurs during reovirus infection of the endothelium.

Free reovirus virions may interact with JAM-A in endothelial cell tight

junctions, transiently disrupt these structures, and cause focal breaches

of the endothelial barrier to allow viral invasion of the bloodstream. Other

viruses are known to disrupt polarized cell barriers during infection. Mouse

adenovirus-1 infection of endothelial cells reduces tight junction protein

expression and decreases barrier function in polarized endothelial cell mono-

layers (Gralinski et al., 2009). Coxsackieviruses engage decay-accelerating

factor, an apically distributed protein of polarized epithelial cells, to disrupt

tight junctions (Coyne, Shen, Turner, & Bergelson, 2007). In doing so,

coxsackieviruses gain access to the basolaterally located coxsackievirus

and adenovirus receptor (Coyne et al., 2007). HIV-1 gp120 diminishes

expression of tight junction proteins and increases vascular permeability

(Kanmogne et al., 2005).

Second, it is possible that reovirus infects endothelial cells to allow

progeny virus to be released directly into the blood (Fig. 1.9). Endothelial

cells function as sites of amplification for many viruses that spread via the

bloodstream. Murine cytomegalovirus dissemination occurs after an episode

of secondary viremia that requires viral replication in endothelial cells

(Sacher et al., 2008). It is possible that reovirus productively infects endo-

thelium from the basolateral surface on the abluminal side of the endothe-

lium and is released from the apical surface into the blood. Many viruses

that infect polarized cells egress apically (Roberts, 1995). This mechanism

is common for respiratory viruses, in which release from the apical

surface of infected respiratory epithelial cells ensures that the virus will be

shed into the respiratory tract to facilitate transmission to susceptible hosts
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(Brock et al., 2003; Gerl et al., 2012; Rodriguez & Sabatini, 1978). Studies of

reovirus infection of polarized endothelial cells will shed light on mecha-

nisms used by the virus to traverse endothelial monolayers.

Third, reovirus spread may involve infection or association with hema-

topoietic cells (Fig. 1.9). Hematopoietic cells express JAM-A as an adhesin to

allow monocyte extravasation across endothelial barriers (Martin-Padura

et al., 1998; Williams, Martin-Padura, Dejana, Hogg, & Simmons, 1999).

It is not knownwhether hematopoietic cells are infected or whether infected

blood cells transport reovirus systemically following infection by a natural

route of inoculation. However, in cancer patients treated with an intrave-

nous infusion of reovirus, virions associate with mononuclear cells,

granulocytes, and platelets to allow dissemination to tumors localized in

the viscera (Adair et al., 2012). If hematopoietic cells are responsible for

hematogenous reovirus dissemination, age-dependent restriction of reovirus

replication in these cells may be one mechanism to explain the limitation of

reovirus disease to newborn animals (Tardieu et al., 1983).

Reovirus exit from the bloodstream is required for infection and repli-

cation in target tissues and development of organ-specific disease. After per-

oral inoculation of reovirus, high viral titers are found in virtually all organs

(Antar et al., 2009; Boehme et al., 2011, 2009). Mechanisms similar to those

that facilitate reovirus entry into the vasculature maymediate reovirus escape

from the blood. Reovirus interactions with JAM-A may induce localized

perturbations of tight junction integrity that permit virus escape into tissues.

Reovirus virions in the blood may infect endothelial cells from the apical

surface and progeny virions may be released basolaterally. Finally, infected

hematopoietic cells may transport virus from the blood into target organs.

None of these possibilities is mutually exclusive; reovirus may use multiple

strategies to enter and exit the bloodstream. Studies using mice with tissue-

specific expression of JAM-A may help to elucidate mechanisms by which

JAM-A facilitates reovirus spread through the bloodstream.

6.2. How does s1s promote hematogenous spread?
Mechanisms by which s1s promotes dissemination have not been deter-

mined. The s1s protein is required for reovirus-induced cell cycle arrest

at the G2/M boundary (Poggioli et al., 2002, 2001) and has been implicated

in apoptosis in vivo (Hoyt et al., 2005). It not known whether inhibition of

cell cycle progression is related to the induction of apoptosis following reo-

virus infection. Cells respond to replication stress or DNA damage by
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activating checkpoints that arrest the cell cycle. For cells in which genomic

damage cannot be repaired, apoptosis is induced to ensure that only faithfully

replicated DNA is passed to daughter cells. The relationship between cell

cycle arrest and apoptosis in the context of reovirus infection has not been

examined. It is possible that s1s-mediated cell cycle arrest contributes to

reovirus-induced apoptosis. Interaction of s1s with components of the host

cell cycle machinery that inhibit normal cell cycle progression could cause

the cell to undergo apoptosis.

It is not known whether s1s-dependent cell cycle arrest and apoptosis

are responsible for s1s-mediated reovirus dissemination. It is possible that

s1s-dependent apoptosis in intestinal epithelial cells promotes reovirus

uptake by phagocytic cells at the site of inoculation, and these cells in turn

traffic virus to the bloodstream where the virus has access to JAM-A.

Although s1s is not required for reovirus replication in cultured cells

(Boehme et al., 2011, 2009; Rodgers et al., 1998), it is possible that s1s
is necessary for efficient reovirus replication in specific cell types that are

required for viral dissemination. Defining the cell types used by reovirus

to spread through the blood may help uncover hows1s promotes hematog-

enous spread. Finally, s1s may mediate evasion of the host immune

response, thereby allowing viral spread. Differences in viral dissemination

between wild-type and s1s are evident at early times postinoculation. This

suggests that s1s would dampen host innate immune mechanisms, as

opposed to adaptive responses that develop at later times after infection.

Determining how s1s promotes hematogenous reovirus spread is essential

to understand how an enteric, neurotropic virus transits from the intestine to

the CNS.

6.3. Clinical implications
Defining factors that govern reovirus dissemination in the blood is essential

for optimum use of reovirus in clinical applications. Reovirus efficiently rep-

licates in and kills cancer cells (Adair et al., 2012; Karapanagiotou et al.,

2012). Phase II and III clinical trials are underway to test the efficacy of reo-

virus as an adjunct to conventional cancer therapies (Adair et al., 2012;

Karapanagiotou et al., 2012; Kottke et al., 2011). Following intravenous

administration, reovirus must navigate and exit the bloodstream to infect

solid organ tumors. Intratumoral injection of reovirus may allow for

enhanced replication in tumor cells and subsequent spread through the

blood to target metastatic tumor foci. Thus, defining viral and cellular
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determinants underlying how reoviruses gain access to the blood compart-

ment, spread within the bloodstream, and exit from the circulation may aid

in oncolytic design. Use of the reverse genetics system may allow engineer-

ing of reovirus therapeutics with mutations that increase vector potency or

safety by manipulating dissemination determinants (Kobayashi et al., 2007).

We have uncovered a central role for hematogenous dissemination in

reovirus neuropathogenesis and elucidated molecular mechanisms that gov-

ern reovirus spread by the blood. However, we have much more to learn.

Understanding mechanisms of reovirus dissemination will provide broader

insight into events at the pathogen–host interface that lead to systemic dis-

ease and may aid in the development of therapeutics that target this critical

step in viral pathogenesis.
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